Sample records for ultrasound qus measurements

  1. Validation of Greyscale-Based Quantitative Ultrasound in Manual Wheelchair Users

    PubMed Central

    Collinger, Jennifer L.; Fullerton, Bradley; Impink, Bradley G.; Koontz, Alicia M.; Boninger, Michael L.

    2010-01-01

    Objective The primary aim of this study is to establish the validity of greyscale-based quantitative ultrasound (QUS) measures of the biceps and supraspinatus tendons. Design Nine QUS measures of the biceps and supraspinatus tendons were computed from ultrasound images collected from sixty-seven manual wheelchair users. Shoulder pathology was measured using questionnaires, physical examination maneuvers, and a clinical ultrasound grading scale. Results Increased age, duration of wheelchair use, and body mass correlated with a darker, more homogenous tendon appearance. Subjects with pain during physical examination tests for biceps tenderness and acromioclavicular joint tenderness exhibited significantly different supraspinatus QUS values. Even when controlling for tendon depth, QUS measures of the biceps tendon differed significantly between subjects with healthy tendons, mild tendinosis, and severe tendinosis. Clinical grading of supraspinatus tendon health was correlated with QUS measures of the supraspinatus tendon. Conclusions Quantitative ultrasound is valid method to quantify tendinopathy and may allow for early detection of tendinosis. Manual wheelchair users are at a high risk for developing shoulder tendon pathology and may benefit from quantitative ultrasound-based research that focuses on identifying interventions designed to reduce this risk. PMID:20407304

  2. A hybrid FDTD-Rayleigh integral computational method for the simulation of the ultrasound measurement of proximal femur.

    PubMed

    Cassereau, Didier; Nauleau, Pierre; Bendjoudi, Aniss; Minonzio, Jean-Gabriel; Laugier, Pascal; Bossy, Emmanuel; Grimal, Quentin

    2014-07-01

    The development of novel quantitative ultrasound (QUS) techniques to measure the hip is critically dependent on the possibility to simulate the ultrasound propagation. One specificity of hip QUS is that ultrasounds propagate through a large thickness of soft tissue, which can be modeled by a homogeneous fluid in a first approach. Finite difference time domain (FDTD) algorithms have been widely used to simulate QUS measurements but they are not adapted to simulate ultrasonic propagation over long distances in homogeneous media. In this paper, an hybrid numerical method is presented to simulate hip QUS measurements. A two-dimensional FDTD simulation in the vicinity of the bone is coupled to the semi-analytic calculation of the Rayleigh integral to compute the wave propagation between the probe and the bone. The method is used to simulate a setup dedicated to the measurement of circumferential guided waves in the cortical compartment of the femoral neck. The proposed approach is validated by comparison with a full FDTD simulation and with an experiment on a bone phantom. For a realistic QUS configuration, the computation time is estimated to be sixty times less with the hybrid method than with a full FDTD approach. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Epidemiological survey of quantitative ultrasound in risk assessment of falls in middle-aged and elderly people.

    PubMed

    Ou, Ling-Chun; Sun, Zih-Jie; Chang, Yin-Fan; Chang, Chin-Sung; Chao, Ting-Hsing; Kuo, Po-Hsiu; Lin, Ruey-Mo; Wu, Chih-Hsing

    2013-01-01

    The risk assessment of falls is important, but still unsatisfactory and time-consuming. Our objective was to assess quantitative ultrasound (QUS) in the risk assessment of falls. Our study was designed as epidemiological cross-sectional study occurring from March 2009 to February 2010 by community survey at a medical center. The participants were collected from systemic sample of 1,200 community-dwelling people (Male/Female = 524/676) 40 years old and over in Yunlin County, Mid-Taiwan. Structural questionnaires including socioeconomic status, living status, smoking and drinking habits, exercise and medical history were completed. Quantitative ultrasound (QUS) at the non-dominant distal radial area (QUS-R) and the left calcaneal area (QUS-C) were measured. The overall prevalence of falls was 19.8%. In men, the independently associated factors for falls were age (OR: 1.04; 95%CI: 1.01~1.06), fracture history (OR: 1.89; 95%CI: 1.12~3.19), osteoarthritis history (OR: 3.66; 95%CI: 1.15~11.64) and speed of sound (OR: 0.99; 95%CI: 0.99~1.00; p<0.05) by QUS-R. In women, the independently associated factors for falls were current drinking (OR: 3.54; 95%CI: 1.35∼9.31) and broadband ultrasound attenuation (OR: 0.98; 95%CI: 0.97~0.99; p<0.01) by QUS-C. The cutoffs at -2.5< T-score<-1 derived using QUS-R (OR: 2.85; 95%CI: 1.64~4.96; p<0.01) in men or T-score ≦-2.5 derived using QUS-C (OR: 2.72; 95%CI: 1.42~5.21; p<0.01) in women showed an independent association with falls. The lowest T-score derived using either QUS-R or QUS-C was also revealed as an independent factor for falls in both men (OR: 2.13; 95%CI: 1.03~4.43; p<0.05) and women (OR: 2.36; 95%CI: 1.13~4.91; p<0.05). Quantitative ultrasounds, measured either at the radial or calcaneal area, are convenient tools by which to assess the risk of falls in middle-aged and elderly people.

  4. Prospective evaluation of risk of vertebral fractures using quantitative ultrasound measurements and bone mineral density in a population-based sample of postmenopausal women: results of the Basel Osteoporosis Study.

    PubMed

    Hollaender, R; Hartl, F; Krieg, M-A; Tyndall, A; Geuckel, C; Buitrago-Tellez, C; Manghani, M; Kraenzlin, M; Theiler, R; Hans, D

    2009-03-01

    Prospective studies have shown that quantitative ultrasound (QUS) techniques predict the risk of fracture of the proximal femur with similar standardised risk ratios to dual-energy x-ray absorptiometry (DXA). Few studies have investigated these devices for the prediction of vertebral fractures. The Basel Osteoporosis Study (BOS) is a population-based prospective study to assess the performance of QUS devices and DXA in predicting incident vertebral fractures. 432 women aged 60-80 years were followed-up for 3 years. Incident vertebral fractures were assessed radiologically. Bone measurements using DXA (spine and hip) and QUS measurements (calcaneus and proximal phalanges) were performed. Measurements were assessed for their value in predicting incident vertebral fractures using logistic regression. QUS measurements at the calcaneus and DXA measurements discriminated between women with and without incident vertebral fracture, (20% height reduction). The relative risks (RRs) for vertebral fracture, adjusted for age, were 2.3 for the Stiffness Index (SI) and 2.8 for the Quantitative Ultrasound Index (QUI) at the calcaneus and 2.0 for bone mineral density at the lumbar spine. The predictive value (AUC (95% CI)) of QUS measurements at the calcaneus remained highly significant (0.70 for SI, 0.72 for the QUI, and 0.67 for DXA at the lumbar spine) even after adjustment for other confounding variables. QUS of the calcaneus and bone mineral density measurements were shown to be significant predictors of incident vertebral fracture. The RRs for QUS measurements at the calcaneus are of similar magnitude as for DXA measurements.

  5. QUS devices for assessment of osteoporosis

    NASA Astrophysics Data System (ADS)

    Langton, Christian

    2002-05-01

    The acronym QUS (Quantitative Ultrasound) is now widely used to describe ultrasound assessment of osteoporosis, a disease primarily manifested by fragility fractures of the wrist and hip along with shortening of the spine. There is currently available a plethora of commercial QUS devices, measuring various anatomic sites including the heel, finger, and tibia. Largely through commercial rather than scientific drivers, the parameters reported often differ significantly from the two fundamental parameters of velocity and attenuation. Attenuation at the heel is generally reported as BUA (broadband ultrasound attenuation, the linearly regressed increase in attenuation between 200 and 600 kHz). Velocity derivatives include bone, heel, TOF, and AdV. Further, velocity and BUA parameters may be mathematically combined to provide proprietary parameters including ``stiffness'' and ``QUI.'' In terms of clinical utility, the situation is further complicated by ultrasound being inherently dependent upon ``bone quality'' (e.g., structure) in addition to ``bone quantity'' (generally expressed as BMD, bone mineral density). Hence the BMD derived WHO criteria for osteoporosis and osteopenia may not be directly applied to QUS. There is therefore an urgent need to understand the fundamental dependence of QUS parameters, to perform calibration and cross-correlation studies of QUS devices, and to define its clinical utility.

  6. The use of the posture-p questionnaire and the quantitative ultrasound to assess the bone density of postmenopausal women

    NASA Astrophysics Data System (ADS)

    Winardi, A. M.; Wulansari, L. K.; Kusdhany, L. S.

    2017-08-01

    Osteoporosis must be detected early in order to prevent failures in denture treatment. To this end, tools such as the Posture-P questionnaire and the Quantitative Ultrasound (QUS) are widely used for osteoporosis screening. Posture-P. This study is a diagnostic test that analyzes the sensitivity and specificity of the Posture-P questionnaire towards QUS in assessing the bone density of postmenopausal women. Data was collected through interviews using the Posture-P questionnaire, and bone density was measured using the QUS. The results of this study show that both the sensitivity and specificity of the Posture-P questionnaire towards QUS are quite good, with respective values of 77.23% and 75%. Thus, the Posture-P questionnaire can replace the QUS in osteoporosis screening.

  7. Comparison of an imaging heel quantitative ultrasound device (DTU-one) with densitometric and ultrasonic measurements.

    PubMed

    Diessel, E; Fuerst, T; Njeh, C F; Hans, D; Cheng, S; Genant, H K

    2000-01-01

    The purpose of this study was to evaluate a new imaging ultrasound scanner for the heel, the DTU-one (Osteometer MediTech, Denmark), by comparing quantitative ultrasound (QUS) results with bone mineral density (BMD) of the heel and femur from dual X-ray absorptiometry (DXA), and by comparing the DTU-one with another QUS device, the UBA 575+. The regions of interest in the DXA heel scan were matched with the regions evaluated by the two QUS devices. 134 healthy and 16 osteoporotic women aged 30-84 years old were enrolled in the study. In vivo short-term precision of the DTU-one for broadband ultrasound attenuation (BUA) and speed of sound (SOS) was 2.9% and 0.1%, respectively, and long-term precision was 3.8% and 0.2%, respectively. Highest correlations (r) between QUS and BMD measurements were achieved when comparing DTU-one results with BMD in matched regions of the DXA heel scan. Correlation coefficients (r) were 0.81 for BUA and SOS. Highest correlations with the UBA 575+ were 0.68 and 0.72, respectively. The comparison of BMD in different femoral sites with BUA and SOS (DTU-one) varied from 0.62 to 0.69 when including the entire study population. The correlation between BMD values within different sites of the femur tended to be higher (from r = 0.81 to 0.93). When comparing BUA with BUA and SOS with SOS on the two QUS devices, the absolute QUS values differed significantly. However, correlations were relatively high, with 0.76 for BUA and 0.82 for SOS. In conclusion, the results of the new quantitative ultrasound device, the DTU-one, are highly correlated (r = 0.8) with results obtained using the UBA 575+ and with BMD in the heel. The precision of the DTU-one is comparable to other QUS devices for BUA and is high for SOS.

  8. 2D/ 3D Quantitative Ultrasound of the Breast

    NASA Astrophysics Data System (ADS)

    Nasief, Haidy Gerges

    Breast cancer is the second leading cause of cancer death of women in the United States, so breast cancer screening for early detection is common. The purpose of this dissertation is to optimize quantitative ultrasound (QUS) methods to improve the specificity and objectivity of breast ultrasound. To pursue this goal, the dissertation is divided into two parts: 1) to optimize 2D QUS, and 2) to introduce and validate 3D QUS. Previous studies had validated these methods in phantoms. Applying our QUS analysis on subcutaneous breast fat demonstrated that QUS parameter estimates for subcutaneous fat were consistent among different human subjects. This validated our in vivo data acquisition methods and supported the use of breast fat as a clinical reference tissue for ultrasound BI-RADSRTM assessments. Although current QUS methods perform well for straightforward cases when assumptions of stationarity and diffuse scattering are well-founded, these conditions often are not present due to the complicated nature of in vivo breast tissue. Key improvements in QUS algorithms to address these challenges were: 1) applying a "modified least squares method (MLSM)" to account for the heterogeneous tissue path between the transducer and the region of interest, ROI; 2) detecting anisotropy in acoustic parameters; and 3) detecting and removing the echo sources that depart from diffuse and stationary scattering conditions. The results showed that a Bayesian classifier combining three QUS parameters in a biased pool of high-quality breast ultrasound data successfully differentiated all fibroadenomas from all carcinomas. Given promising initial results in 2D, extension to 3D acquisitions in QUS provided a unique capability to test QUS for the entire breast volume. QUS parameter estimates using 3D data were consistent with those found in 2D for phantoms and in vivo data. Extensions of QUS technology from 2D to 3D can improve the specificity of breast ultrasound, and thus, could lead to improved screening with this modality.

  9. Muscle ultrasound quantifies disease progression over time in infants and young boys with duchenne muscular dystrophy.

    PubMed

    Zaidman, Craig M; Malkus, Elizabeth C; Connolly, Anne M

    2015-09-01

    Quantitative muscle ultrasound (QUS) in boys with Duchenne muscular dystrophy (DMD) shows increased echointensity as muscle is replaced with fat and fibrosis. Studies of quantitative ultrasound in infants/young boys with DMD over time have not been reported. We used calibrated muscle backscatter (cMB), a reproducible measure of ultrasound echointensity, to quantify muscle pathology in 5 young boys with DMD (ages 0.5-2.8 years) over 17-29 months. We compared the results with repeated assessments of function (n = 4) and with muscle ultrasound images from a cross-section of 6 male controls (0.6-3.1 years). cMB in boys with DMD increased (worsened) over time (P < 0.001), whereas function improved. After age 2 years, cMB in most (4 of 5) boys with DMD was higher than in any control. QUS measures disease progression in young boys with DMD despite functional improvements. QUS could be employed as an outcome measure for serial assessment of young boys with DMD. © 2015 Wiley Periodicals, Inc.

  10. A new quality of bone ultrasound research.

    PubMed

    Gluer, C C

    2008-07-01

    Quantitative ultrasound (QUS) methods have strong power to predict osteoporotic fractures, but they are also very relevant for the assessment of bone quality. A representative sample of recent studies addressing these topics can be found in this special issue. Further pursuit of these methods will establish micro-QUS imaging methods as tools for measuring specific aspects of bone quality. Once this is achieved, we will be able to link such data to the clinical QUS methods used in vivo to determine which aspects of bone quality cause QUS to be a predictor of fracture risk that is independent of bone mineral density (BMD). Potentially this could lead to the development of a new generation of QUS devices for improved and expanded clinical assessment. Good quality of basic science work will thus lead to good quality of clinical patient examinations on the basis of a more detailed assessment of bone quality.

  11. Non-invasive assessment of bone quantity and quality in human trabeculae using scanning ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Xia, Yi

    Fractures and associated bone fragility induced by osteoporosis and osteopenia are widespread health threat to current society. Early detection of fracture risk associated with bone quantity and quality is important for both the prevention and treatment of osteoporosis and consequent complications. Quantitative ultrasound (QUS) is an engineering technology for monitoring bone quantity and quality of humans on earth and astronauts subjected to long duration microgravity. Factors currently limiting the acceptance of QUS technology involve precision, accuracy, single index and standardization. The objective of this study was to improve the accuracy and precision of an image-based QUS technique for non-invasive evaluation of trabecular bone quantity and quality by developing new techniques and understanding ultrasound/tissue interaction. Several new techniques have been developed in this dissertation study, including the automatic identification of irregular region of interest (iROI) in bone, surface topology mapping (STM) and mean scattering spacing (MSS) estimation for evaluating trabecular bone structure. In vitro results have shown that (1) the inter- and intra-observer errors in QUS measurement were reduced two to five fold by iROI compared to previous results; (2) the accuracy of QUS parameter, e.g., ultrasound velocity (UV) through bone, was improved 16% by STM; and (3) the averaged trabecular spacing can be estimated by MSS technique (r2=0.72, p<0.01). The measurement errors of BUA and UV introduced by the soft tissue and cortical shells in vivo can be quantified by developed foot model and simplified cortical-trabecular-cortical sandwich model, which were verified by the experimental results. The mechanisms of the errors induced by the cortical and soft tissues were revealed by the model. With developed new techniques and understanding of sound-tissue interaction, in vivo clinical trail and bed rest study were preformed to evaluate the performance of QUS in clinical applications. It has been demonstrated that the QUS has similar performance for in vivo bone density measurement compared to current gold-standard method, i.e., DXA, while additional information are obtained by the QUS for predicting fracture risk by monitoring of bone's quality. The developed QUS imaging technique can be used to assess bone's quantity and quality with improved accuracy and precision.

  12. [Bone ultrasonography in kidney disease: applications and limitations].

    PubMed

    Aucella, Filippo; Gesuete, Antonio; Cicchella, Antonio; Granata, Antonio; Fiorini, Fulvio; Guglielmi, Giuseppe

    2012-01-01

    Quantitative ultrasound (QUS) of the bone is a technique that is generating great interest among bone structure researchers because of its intrinsic features. Its safety and low cost make it an ideal technique for repeated measurements over time such as in chronic disease or when it is necessary to monitor the effects of prescribed therapies. The method was developed for the study of osteoporosis and the sites of measurement are all peripheral, including the distal diaphyses and metaphyses of the phalanges, calcaneus, radius and tibia. QUS parameters, however, cannot be used directly for the diagnosis of osteoporosis according to the WHO criteria, although many authors have shown that ultrasound parameters, particularly those of calcaneal QUS, can predict the risk of osteoporotic fractures independently of MBD. Very promising results with the use of QUS have been obtained in corticosteroid-induced osteoporosis, rheumatoid arthritis, Cushing's syndrome, cystic fibrosis, osteomalacia, thalassemia and osteopenia related to parenteral nutrition. QUS can also monitor the effectiveness of therapy in various pathological conditions. In nephrology the combined use of phalangeal QUS and biochemical markers of bone turnover allows adequate follow-up of patients on dialysis and renal transplant recipients with alterations or disorders of the bone.

  13. Agreement between calcaneal quantitative ultrasound and osteoporosis self-assessment tool for Asians in identifying individuals at risk of osteoporosis

    PubMed Central

    Chin, Kok-Yong; Low, Nie Yen; Kamaruddin, Alia Annessa Ain; Dewiputri, Wan Ilma; Soelaiman, Ima-Nirwana

    2017-01-01

    Background Calcaneal quantitative ultrasound (QUS) is a useful tool in osteoporosis screening. However, QUS device may not be available at all primary health care settings. Osteoporosis self-assessment tool for Asians (OSTA) is a simple algorithm for osteoporosis screening that does not require any sophisticated instruments. This study explored the possibility of replacing QUS with OSTA by determining their agreement in identifying individuals at risk of osteoporosis. Methods A cross-sectional study was conducted to recruit Malaysian men and women aged ≥50 years. Their bone health status was measured using a calcaneal QUS device and OSTA. The association between OSTA and QUS was determined using Spearman’s correlation and their agreement was assessed using Cohen Kappa and receiver-operating curve. Results All QUS indices correlated significantly with OSTA (p<0.05). The agreement between QUS and OSTA was minimal but statistically significant (p<0.05). The performance of OSTA in identifying subjects at risk of osteoporosis according to QUS was poor-to-fair in women (p<0.05), but not statistically significant for men (p>0.05). Changing the cut-off values improved the performance of OSTA in women but not in men. Conclusion The agreement between QUS and OSTA is minimal in categorizing individuals at risk of osteoporosis. Therefore, they cannot be used interchangeably in osteoporosis screening. PMID:29070951

  14. Polyunsaturated fatty acids and calcaneal ultrasound parameters among Inuit women from Nuuk (Greenland): a longitudinal study.

    PubMed

    Paunescu, Alexandra-Cristina; Ayotte, Pierre; Dewailly, Eric; Dodin, Sylvie; Pedersen, Henning S; Mulvad, Gert; Côté, Suzanne

    2013-01-01

    The traditional diet of Inuit people comprises large amounts of fish and marine mammals that are rich in omega-3 polyunsaturated fatty acids (PUFAs). Results from in vitro studies, laboratory animal experiments and population studies suggest that omega-3 PUFA intake and a high omega-3/omega-6 ratio exert a positive effect on bone health. This longitudinal study was conducted to examine the relationship between omega-3 and omega-6 PUFA status and quantitative ultrasound (QUS) parameters in Greenlandic Inuit women. The study included 118 Inuit women from Nuuk (Greenland), aged 49-64 years, whose QUS parameters measured at baseline (year 2000), along with PUFA status and covariates, and follow-up QUS measurements 2 years later (year 2002). QUS parameters [speed of sound (SOS); broadband ultrasound attenuation (BUA)] were measured at the right calcaneus with a water-bath Lunar Achilles instrument. Omega-3 and omega-6 PUFA contents of erythrocyte membrane phospholipids were measured after transmethylation by gas chromatography coupled with a flame ionization detector. Relationships between QUS parameters and different PUFAs were studied in multiple linear regression models. Increasing values of EPA, DHA and the omega-3/omega-6 PUFA ratio were associated with increased BUA values measured at follow-up (year 2002). These associations were still present in models adjusted for several confounders and covariates. We found little evidence of associations between PUFAs and SOS values. The omega-3 PUFA intake from marine food consumption seems to have a positive effect on bone intrinsic quality and strength, as revealed by higher BUA values in this group of Greenlandic Inuit women.

  15. Heel Ultrasound Can Assess Maintenance of Bone Mass in Women with Breast Cancer

    PubMed Central

    Langmann, Gabrielle A.; Vujevich, Karen T.; Medich, Donna; Miller, Megan E.; Perera, Subashan; Greenspan, Susan L.

    2016-01-01

    Postmenopausal women with early-stage breast cancer are at increased risk for bone loss and fractures. Bisphosphonates can prevent bone loss, but little data are available on changes in bone mass assessed by heel quantitative ultrasound (QUS). Our objectives were to determine if (1) heel QUS would provide a reliable and accessible method for evaluation of changes in bone mass in women with breast cancer as compared to the current standard of bone mass measurement, dual-energy x-ray absorptiometry (DXA), and (2) oral risedronate could affect these changes. Eighty-six newly postmenopausal (up to 8 years) women with nonmetastatic breast cancer were randomized to risedronate, 35 mg once weekly or placebo. Outcomes were changes in heel QUS bone mass measurements and conventional dual-energy x-ray absorptiometry (DXA) derived bone mineral density (BMD). Over 2 years, bone mass assessed by heel QUS remained stable in women on risedronate, while women on placebo had a 5.2% decrease (p ≤ 0.05) in heel QUS bone mass. Both total hip BMD and femoral neck BMD assessed by DXA decreased by 1.6% (p ≤ 0.05) in the placebo group and remained stable with risedronate. Spine BMD remained stable in both groups. Heel QUS was moderately associated with BMD measured by DXA at the total hip (r = 0.50), femoral neck (r = 0.40), and spine (r = 0.46) at baseline (all p ≤ 0.001). In conclusion, risedronate helps to maintain skeletal integrity as assessed by heel QUS for women with early-stage breast cancer. Heel QUS is associated with DXA-derived BMD at other major axial sites and may be used to follow skeletal health and bone mass changes in these women. PMID:22425507

  16. Prediction of hip fracture risk by quantitative ultrasound in more than 7000 Swiss women > or =70 years of age: comparison of three technologically different bone ultrasound devices in the SEMOF study.

    PubMed

    Krieg, Marc-Antoine; Cornuz, Jacques; Ruffieux, Christiane; Van Melle, Guy; Büche, Daniel; Dambacher, Maximilian A; Hans, Didier; Hartl, Florian; Häuselmann, Hansjorg J; Kraenzlin, Marius; Lippuner, Kurt; Neff, Maurus; Pancaldi, Pierro; Rizzoli, Rene; Tanzi, Franco; Theiler, Robert; Tyndall, Alan; Wimpfheimer, Claus; Burckhardt, Peter

    2006-09-01

    To compare the prediction of hip fracture risk of several bone ultrasounds (QUS), 7062 Swiss women > or =70 years of age were measured with three QUSs (two of the heel, one of the phalanges). Heel QUSs were both predictive of hip fracture risk, whereas the phalanges QUS was not. As the number of hip fracture is expected to increase during these next decades, it is important to develop strategies to detect subjects at risk. Quantitative bone ultrasound (QUS), an ionizing radiation-free method, which is transportable, could be interesting for this purpose. The Swiss Evaluation of the Methods of Measurement of Osteoporotic Fracture Risk (SEMOF) study is a multicenter cohort study, which compared three QUSs for the assessment of hip fracture risk in a sample of 7609 elderly ambulatory women > or =70 years of age. Two QUSs measured the heel (Achilles+; GE-Lunar and Sahara; Hologic), and one measured the heel (DBM Sonic 1200; IGEA). The Cox proportional hazards regression was used to estimate the hazard of the first hip fracture, adjusted for age, BMI, and center, and the area under the ROC curves were calculated to compare the devices and their parameters. From the 7609 women who were included in the study, 7062 women 75.2 +/- 3.1 (SD) years of age were prospectively followed for 2.9 +/- 0.8 years. Eighty women reported a hip fracture. A decrease by 1 SD of the QUS variables corresponded to an increase of the hip fracture risk from 2.3 (95% CI, 1.7, 3.1) to 2.6 (95% CI, 1.9, 3.4) for the three variables of Achilles+ and from 2.2 (95% CI, 1.7, 3.0) to 2.4 (95% CI, 1.8, 3.2) for the three variables of Sahara. Risk gradients did not differ significantly among the variables of the two heel QUS devices. On the other hand, the phalanges QUS (DBM Sonic 1200) was not predictive of hip fracture risk, with an adjusted hazard risk of 1.2 (95% CI, 0.9, 1.5), even after reanalysis of the digitalized data and using different cut-off levels (1700 or 1570 m/s). In this elderly women population, heel QUS devices were both predictive of hip fracture risk, whereas the phalanges QUS device was not.

  17. Factors that influence bone mass of healthy children and adolescents measured by quantitative ultrasound at the hand phalanges: a systematic review☆

    PubMed Central

    Krahenbühl, Tathyane; Gonçalves, Ezequiel Moreira; Costa, Eduardo Tavares; Barros, Antonio de Azevedo

    2014-01-01

    Objective: To analyze the main factors that influence bone mass in children and teenagers assessed by quantitative ultrasound (QUS) of the phalanges. Data source: A systematic literature review was performed according to the PRISMA method with searches in databases Pubmed/Medline, SciELO and Bireme for the period 2001-2012, in English and Portuguese languages, using the keywords: children, teenagers, adolescent, ultrasound finger phalanges, quantitative ultrasound of phalanges, phalangeal quantitative ultrasound. Data synthesis: 21 articles were included. Girls had, in QUS, Amplitude Dependent Speed of Sound (AD-SoS) values higher than boys during pubertal development. The values of the parameters of QUS of the phalanges and dual-energy X-ray Absorptiometry (DXA) increased with the increase of the maturational stage. Anthropometric variables such as age, weight, height, body mass index (BMI), lean mass showed positive correlations with the values of QUS of the phalanges. Physical activity has also been shown to be positively associated with increased bone mass. Factors such as ethnicity, genetics, caloric intake and socioeconomic profile have not yet shown a conclusive relationship and need a larger number of studies. Conclusions: QUS of the phalanges is a method used to evaluate the progressive acquisition of bone mass during growth and maturation of individuals in school phase, by monitoring changes that occur with increasing age and pubertal stage. There were mainly positive influences variables of sex, maturity, height, weight and BMI, with similar data when compared to the gold standard method, the DXA. PMID:25479860

  18. A priori Prediction of Neoadjuvant Chemotherapy Response and Survival in Breast Cancer Patients using Quantitative Ultrasound

    PubMed Central

    Tadayyon, Hadi; Sannachi, Lakshmanan; Gangeh, Mehrdad J.; Kim, Christina; Ghandi, Sonal; Trudeau, Maureen; Pritchard, Kathleen; Tran, William T.; Slodkowska, Elzbieta; Sadeghi-Naini, Ali; Czarnota, Gregory J.

    2017-01-01

    Quantitative ultrasound (QUS) can probe tissue structure and analyze tumour characteristics. Using a 6-MHz ultrasound system, radiofrequency data were acquired from 56 locally advanced breast cancer patients prior to their neoadjuvant chemotherapy (NAC) and QUS texture features were computed from regions of interest in tumour cores and their margins as potential predictive and prognostic indicators. Breast tumour molecular features were also collected and used for analysis. A multiparametric QUS model was constructed, which demonstrated a response prediction accuracy of 88% and ability to predict patient 5-year survival rates (p = 0.01). QUS features demonstrated superior performance in comparison to molecular markers and the combination of QUS and molecular markers did not improve response prediction. This study demonstrates, for the first time, that non-invasive QUS features in the core and margin of breast tumours can indicate breast cancer response to neoadjuvant chemotherapy (NAC) and predict five-year recurrence-free survival. PMID:28401902

  19. A priori Prediction of Neoadjuvant Chemotherapy Response and Survival in Breast Cancer Patients using Quantitative Ultrasound.

    PubMed

    Tadayyon, Hadi; Sannachi, Lakshmanan; Gangeh, Mehrdad J; Kim, Christina; Ghandi, Sonal; Trudeau, Maureen; Pritchard, Kathleen; Tran, William T; Slodkowska, Elzbieta; Sadeghi-Naini, Ali; Czarnota, Gregory J

    2017-04-12

    Quantitative ultrasound (QUS) can probe tissue structure and analyze tumour characteristics. Using a 6-MHz ultrasound system, radiofrequency data were acquired from 56 locally advanced breast cancer patients prior to their neoadjuvant chemotherapy (NAC) and QUS texture features were computed from regions of interest in tumour cores and their margins as potential predictive and prognostic indicators. Breast tumour molecular features were also collected and used for analysis. A multiparametric QUS model was constructed, which demonstrated a response prediction accuracy of 88% and ability to predict patient 5-year survival rates (p = 0.01). QUS features demonstrated superior performance in comparison to molecular markers and the combination of QUS and molecular markers did not improve response prediction. This study demonstrates, for the first time, that non-invasive QUS features in the core and margin of breast tumours can indicate breast cancer response to neoadjuvant chemotherapy (NAC) and predict five-year recurrence-free survival.

  20. Phalangeal quantitative ultrasound and metabolic control in pre-menopausal women with type 1 diabetes mellitus.

    PubMed

    Catalano, A; Morabito, N; Di Vieste, G; Pintaudi, B; Cucinotta, D; Lasco, A; Di Benedetto, A

    2013-05-01

    Several studies have reported increased fracture risk in Type 1 diabetes mellitus (T1DM). Quantitative Ultrasound (QUS) provides information on the structure and elastic properties of bone, which are important determinants of fracture risk, along with bone mineral density. To study phalangeal sites by QUS, examine bone turnover markers and analyze association between these factors with metabolic control in a population of pre-menopausal women with T1DM. Thirty-five T1DM pre-menopausal women (mean age 34.5 ± 6.8 yr) attending the Diabetic Outpatients Clinic in the Department of Internal Medicine, University of Messina, were consecutively enrolled and divided into two groups, taking into account the mean value of glycated hemoglobin in the last three years. Twenty healthy age-matched women served as controls. Phalangeal ultrasound measurements [Amplitude Dependent Speed of Sound (AD-SoS), Ultrasound Bone Profile Index (UBPI), TScore, Z-Score] were performed using a DBM Sonic Bone Profiler. Osteocalcin and deoxypyridinoline served as markers of bone formation and bone resorption, respectively. T1DM women with poor metabolic control showed lower phalangeal QUS values compared to healthy controls (p<0.01) and T1DM women with good metabolic control (p<0.05). No significant differences in QUS measurements were detected between T1DM women with good metabolic control and healthy controls. Lower bone formation and increased bone resorption, although not statistically significant, were observed in patients with poor metabolic control in comparison to patients with good metabolic control. Poor metabolic control may worsen the quality of bone in T1DM. Phalangeal QUS could be considered as a tool to screen T1DM women for osteoporosis in pre-menopausal age.

  1. Normative calcaneal quantitative ultrasound data for the indigenous Shuar and non-Shuar Colonos of the Ecuadorian Amazon.

    PubMed

    Madimenos, Felicia C; Snodgrass, J Josh; Blackwell, Aaron D; Liebert, Melissa A; Cepon, Tara J; Sugiyama, Lawrence S

    2011-01-01

    Minimal data on bone mineral density changes are available from populations in developing countries. Using calcaneal quantitative ultrasound (QUS) techniques, the current study contributes to remedying this gap in the literature by establishing a normative data set on the indigenous Shuar and non-Shuar Colonos of the Ecuadorian Amazon. The paucity of bone mineral density (BMD) data from populations in developing countries partially reflects the lack of diagnostic resources in these areas. Portable QUS techniques now enable researchers to collect bone health data in remote field-based settings and to contribute normative data from developing regions. The main objective of this study is to establish normative QUS data for two Ecuadorian Amazonian populations-the indigenous Shuar and non-Shuar Colonos. The effects of ethnic group, sex, age, and body size on QUS parameters are also considered. A study cohort consisting of 227 Shuar and 261 Colonos (15-91 years old) were recruited from several small rural Ecuadorian communities in the Upano River Valley. Calcaneal QUS parameters were collected on the right heel of each participant using a Sahara bone sonometer. Three ultrasound generated parameters were employed: broadband ultrasound attenuation (BUA), speed of sound (SOS), and calculated heel BMD (hBMD). In both populations and sexes, all QUS values were progressively lower with advancing age. Shuar have significantly higher QUS values than Colonos, with most pronounced differences found between pre-menopausal Shuar and Colono females. Multiple regression analyses show that age is a key predictor of QUS while weight alone is a less consistent determinant. Both Shuar males and females display comparatively greater QUS parameters than other reference populations. These normative data for three calcaneal QUS parameters will be useful for predicting fracture risk and determining diagnostic QUS criteria of osteoporosis in non-industrialized populations in South America and elsewhere.

  2. The RSPO3 gene as genetic markers for bone mass assessed by quantitative ultrasound in a population of young adults.

    PubMed

    Correa-Rodríguez, María; Schmidt Rio-Valle, Jacqueline; Rueda-Medina, Blanca

    2018-05-01

    Ultrasound bone mass measurement has been postulated as a valuable bone-health assessment tool for primary care. The aim of this study was to analyse the possible relationship between the SPTBN1, RSPO3, CCDC170, DKK1, GPATCH1, and TMEM135 genes, with calcaneal quantitative ultrasound (QUS) in a population of young adults. These genes were first associated with broadband ultrasound attenuation (BUA) in the GEFOS/GENOMOS study. A cross-sectional study was conducted on 575 individuals (mean age 20.41 ± 2.69). Bone mass at the right calcaneus was estimated by QUS. Six single-nucleotide polymorphisms (SNPs) in SPTBN1 (rs11898505), RSPO3 (rs7741021), CCDC170 (rs4869739), DKK1 (rs7902708), TMEM135 (rs597319), and GPATCH1 (rs10416265) were selected as genetic markers based on their previous association with calcaneal QUS. After adjusting for multiple confounding factors, the only significant association with QUS in our population was found for the rs7741021 SNP in the RSPO3 gene (P = 0.006) using the dominant model of inheritance. This suggests the possible implication of the RSPO3 gene in bone mass acquisition during early adulthood. © 2017 John Wiley & Sons Ltd/University College London.

  3. Quantitative ultrasound assessment of breast tumor response to chemotherapy using a multi-parameter approach

    PubMed Central

    Tadayyon, Hadi; Sannachi, Lakshmanan; Gangeh, Mehrdad; Sadeghi-Naini, Ali; Tran, William; Trudeau, Maureen E.; Pritchard, Kathleen; Ghandi, Sonal; Verma, Sunil; Czarnota, Gregory J.

    2016-01-01

    Purpose This study demonstrated the ability of quantitative ultrasound (QUS) parameters in providing an early prediction of tumor response to neoadjuvant chemotherapy (NAC) in patients with locally advanced breast cancer (LABC). Methods Using a 6-MHz array transducer, ultrasound radiofrequency (RF) data were collected from 58 LABC patients prior to NAC treatment and at weeks 1, 4, and 8 of their treatment, and prior to surgery. QUS parameters including midband fit (MBF), spectral slope (SS), spectral intercept (SI), spacing among scatterers (SAS), attenuation coefficient estimate (ACE), average scatterer diameter (ASD), and average acoustic concentration (AAC) were determined from the tumor region of interest. Ultrasound data were compared with the ultimate clinical and pathological response of the patient's tumor to treatment and patient recurrence-free survival. Results Multi-parameter discriminant analysis using the κ-nearest-neighbor classifier demonstrated that the best response classification could be achieved using the combination of MBF, SS, and SAS, with an accuracy of 60 ± 10% at week 1, 77 ± 8% at week 4 and 75 ± 6% at week 8. Furthermore, when the QUS measurements at each time (week) were combined with pre-treatment (week 0) QUS values, the classification accuracies improved (70 ± 9% at week 1, 80 ± 5% at week 4, and 81 ± 6% at week 8). Finally, the multi-parameter QUS model demonstrated a significant difference in survival rates of responding and non-responding patients at weeks 1 and 4 (p=0.035, and 0.027, respectively). Conclusion This study demonstrated for the first time, using new parameters tested on relatively large patient cohort and leave-one-out classifier evaluation, that a hybrid QUS biomarker including MBF, SS, and SAS could, with relatively high sensitivity and specificity, detect the response of LABC tumors to NAC as early as after 4 weeks of therapy. The findings of this study also suggested that incorporating pre-treatment QUS parameters of a tumor improved the classification results. This work demonstrated the potential of QUS and machine learning methods for the early assessment of breast tumor response to NAC and providing personalized medicine with regards to the treatment planning of refractory patients. PMID:27105515

  4. Quantitative ultrasound assessment of breast tumor response to chemotherapy using a multi-parameter approach.

    PubMed

    Tadayyon, Hadi; Sannachi, Lakshmanan; Gangeh, Mehrdad; Sadeghi-Naini, Ali; Tran, William; Trudeau, Maureen E; Pritchard, Kathleen; Ghandi, Sonal; Verma, Sunil; Czarnota, Gregory J

    2016-07-19

    This study demonstrated the ability of quantitative ultrasound (QUS) parameters in providing an early prediction of tumor response to neoadjuvant chemotherapy (NAC) in patients with locally advanced breast cancer (LABC). Using a 6-MHz array transducer, ultrasound radiofrequency (RF) data were collected from 58 LABC patients prior to NAC treatment and at weeks 1, 4, and 8 of their treatment, and prior to surgery. QUS parameters including midband fit (MBF), spectral slope (SS), spectral intercept (SI), spacing among scatterers (SAS), attenuation coefficient estimate (ACE), average scatterer diameter (ASD), and average acoustic concentration (AAC) were determined from the tumor region of interest. Ultrasound data were compared with the ultimate clinical and pathological response of the patient's tumor to treatment and patient recurrence-free survival. Multi-parameter discriminant analysis using the κ-nearest-neighbor classifier demonstrated that the best response classification could be achieved using the combination of MBF, SS, and SAS, with an accuracy of 60 ± 10% at week 1, 77 ± 8% at week 4 and 75 ± 6% at week 8. Furthermore, when the QUS measurements at each time (week) were combined with pre-treatment (week 0) QUS values, the classification accuracies improved (70 ± 9% at week 1, 80 ± 5% at week 4, and 81 ± 6% at week 8). Finally, the multi-parameter QUS model demonstrated a significant difference in survival rates of responding and non-responding patients at weeks 1 and 4 (p=0.035, and 0.027, respectively). This study demonstrated for the first time, using new parameters tested on relatively large patient cohort and leave-one-out classifier evaluation, that a hybrid QUS biomarker including MBF, SS, and SAS could, with relatively high sensitivity and specificity, detect the response of LABC tumors to NAC as early as after 4 weeks of therapy. The findings of this study also suggested that incorporating pre-treatment QUS parameters of a tumor improved the classification results. This work demonstrated the potential of QUS and machine learning methods for the early assessment of breast tumor response to NAC and providing personalized medicine with regards to the treatment planning of refractory patients.

  5. Does Quantitative Tibial Ultrasound Predict Low Bone Mineral Density Defined by Dual Energy X-Ray Absorptiometry?

    PubMed Central

    Birtane, Murat; Ekuklu, Galip; Cermik, Fikret; Tuna, Filiz; Kokino, Siranus

    2008-01-01

    Purpose Efforts for the early detection of bone loss and subsequent fracture risk by quantitative ultrasound (QUS), which is a non-invasive, radiation free, and cheaper method, seem rational to reduce the management costs. We aimed in this study to assess the probable correlation of speed of sound (SOS) values obtained by QUS with bone mineral density (BMD) as measured by the gold standard method, dual energy X-ray absorptiometry (DEXA), and to investigate the diagnostic value of QUS to define low BMD. Materials and Methods One hundred twenty-two postmenopausal women having prior standard DEXA measurements were included in the study. Spine and proximal femur (neck, trochanter and Ward's triangle) BMD were assessed in a standard protocol by DEXA. The middle point of the right tibia was chosen for SOS measurement by tibial QUS. Results The SOS values were observed to be significantly higher in the normal BMD (t score > - 1) group at all measurement sites except for the lumbar region, when compared with the low BMD group (t score < - 1). SOS was negatively correlated with age (r = - 0.66) and month since menopause (r = - 0.57). The sensitivity, specificity, and positive and negative predictive values for QUS t score to diagnose low BMD did not seem to be satisfactory at either of the measurement sites. Conclusion Tibial SOS was correlated weakly with BMD values of femur and lumbar spine as measured by DEXA and its diagnostic value did not seem to be high for discriminating between normal and low BMD, at these sites. PMID:18581594

  6. The rs3736228 polymorphism in the LRP5 gene is associated with calcaneal ultrasound parameter but not with body composition in a cohort of young Caucasian adults.

    PubMed

    Correa-Rodríguez, María; Schmidt-RioValle, Jacqueline; Rueda-Medina, Blanca

    2017-11-01

    The aim of the present study was to investigate the possible influence of low-density lipoprotein receptor-related protein 5 (LRP5) and sclerostin (SOST) genes as genetic factors contributing to calcaneal quantitative ultrasound (QUS) and body composition variables in a population of young Caucasian adults. The study population comprised a total of 575 individuals (mean age 20.41years; SD 2.36) whose bone mass was assessed through QUS to determine broadband ultrasound attenuation (BUA, dB/MHz). Body composition measurements were performed using a body composition analyser. Seven single-nucleotide polymorphisms (SNPs) of LRP5 (rs2306862, rs599083, rs556442 and rs3736228) and SOST (rs4792909, rs851054 and rs2023794) were selected as genetic markers and genotyped using TaqMan OpenArray ® technology. Linear regression analysis was used to test the possible association of the tested SNPs with QUS and body composition parameters. Linear regression analysis revealed that the rs3736228 SNP of LPR5 was significantly associated with BUA after adjustment for age, sex, weight, height, physical activity and calcium intake (P = 0.028, β (95% CI) = 0.089 (0.099-1.691). For the remaining SNPs, no significant association with the QUS measurement was observed. Regarding body composition, no significant association was found between LRP5 and SOST polymorphisms and body mass index, total fat mass and total lean mass after adjustment for age and sex as covariates. We concluded that the rs3736228 LRP5 genetic polymorphism influences calcaneal QUS parameter in a population of young Caucasian adults. This finding suggests that LRP5 might be an important genetic marker contributing to bone mass accrual early in life.

  7. Bone mineral density referral for dual-energy X-ray absorptiometry using quantitative ultrasound as a prescreening tool in postmenopausal women from the general population: a cost-effectiveness analysis.

    PubMed

    Marín, F; López-Bastida, J; Díez-Pérez, A; Sacristán, J A

    2004-03-01

    The aim of our study was to assess, from the perspective of the National Health Services in Spain, the cost-effectiveness of quantitative ultrasound (QUS) as a prescreen referral method for bone mineral density (BMD) assessment by dual-energy X-ray absorptiometry (DXA) in postmenopausal women of the general population. Using femoral neck DXA and heel QUS. We evaluated 267 consecutive postmenopausal women 65 years and older and attending primary care physician offices for any medical reason. Subjects were classified as osteoporotic or nonosteoporotic (normal or osteopenic) using the WHO definition for DXA. Effectiveness was assessed in terms of the sensitivity and specificity of the referral decisions based on the QUS measurement. Local costs were estimated from health services and actual resource used. Cost-effectiveness was evaluated in terms of the expected cost per true positive osteoporotic case detected. Baseline prevalence of osteoporosis evaluated by DXA was 55.8%. The sensitivity and specificity for the diagnosis of osteoporosis by QUS using the optimal cutoff thresholds for the estimated heel BMD T-score were 97% and 94%, respectively. The average cost per osteoporotic case detected based on DXA measurement alone was 23.85 euros. The average cost per osteoporotic case detected using QUS as a prescreen was 22.00 euros. The incremental cost-effectiveness of DXA versus QUS was 114.00 euros per true positive case detected. Our results suggest that screening for osteoporosis with QUS while applying strict cufoff values in postmenopausal women of the general population is not substantially more cost-effective than DXA alone for the diagnosis of osteoporosis. However, the screening strategy with QUS may be an option in those circumstances where the diagnosis of osteoporosis is deficient because of the difficulty in accessing DXA equipment.

  8. Urinary Mineral Concentrations in European Pre-Adolescent Children and Their Association with Calcaneal Bone Quantitative Ultrasound Measurements †

    PubMed Central

    Van den Bussche, Karen; Herrmann, Diana; De Henauw, Stefaan; Kourides, Yiannis A.; Lauria, Fabio; Marild, Staffan; Molnár, Dénes; Moreno, Luis A.; Veidebaum, Toomas; Ahrens, Wolfgang; Sioen, Isabelle

    2016-01-01

    This study investigates differences and associations between urinary mineral concentrations and calcaneal bone measures assessed by quantitative ultrasonography (QUS) in 4322 children (3.1–11.9 years, 50.6% boys) from seven European countries. Urinary mineral concentrations and calcaneal QUS parameters differed significantly across countries. Clustering revealed a lower stiffness index (SI) in children with low and medium urinary mineral concentrations, and a higher SI in children with high urinary mineral concentrations. Urinary sodium (uNa) was positively correlated with urinary calcium (uCa), and was positively associated with broadband ultrasound attenuation and SI after adjustment for age, sex and fat-free mass. Urinary potassium (uK) was negatively correlated with uCa but positively associated with speed of sound after adjustment. No association was found between uCa and QUS parameters after adjustment, but when additionally adjusting for uNa, uCa was negatively associated with SI. Our findings suggest that urinary mineral concentrations are associated with calcaneal QUS parameters and may therefore implicate bone properties. These findings should be confirmed in longitudinal studies that include the food intake and repeated measurement of urinary mineral concentrations to better estimate usual intake and minimize bias. PMID:27164120

  9. Discriminatory ability of quantitative ultrasound parameters and bone mineral density in a population-based sample of postmenopausal women with vertebral fractures: results of the Basel Osteoporosis Study.

    PubMed

    Hartl, F; Tyndall, A; Kraenzlin, M; Bachmeier, C; Gückel, C; Senn, U; Hans, D; Theiler, R

    2002-02-01

    The discriminatory potential to classify subjects with or without vertebral fractures was tested cross-sectionally with different methods for the measurement of bone status in a population-based sample of postmenopausal women. Quantitative ultrasound (QUS) measurement at the calcaneus (Lunar Achilles, Hologic Sahara), the proximal phalanges (Igea Bone Profiler), and measurement of bone mineral density (BMD) with dual-energy X-ray absorptiometry (DXA; Lunar Expert) at several anatomic sites was performed in 500 postmenopausal women (aged 65-75 years) randomly selected from the population. In addition, 50 young female subjects (20-40 years old) had QUS measurements and served as controls to express QUS results as T-score values. Radiographs of the lumbar and thoracic spine were performed in the elderly women. Two independent radiologists reviewed the X-rays for the presence of vertebral fractures. Of 486 eligible study participants, no fracture was seen in 396 participants. Single vertebral fractures were observed in 71 subjects; 19 individuals presented multiple fractures. The overall prevalence of vertebral fractures was 18.5%. Participants without vertebral fractures were compared with subjects with vertebral fractures. Normal statistical distributions were found for all bone measurement results. Risk of vertebral fracture in subjects with no and multiple vertebral fracture was estimated using age adjusted odds ratios (ORs) for QUS and dual-energy X-ray absorptiometry (DXA) values. Each SD decrease in bone measurement increased the risk of multiple vertebral fracture by 3.0 (95% CI, 1.6-5.6) for the Achilles stiffness, by 3.8 (95% CI, 1.8-8.2) for the Sahara QUI, 2.1 (95% CI, 1.3-3.4) for the Bone Profiler amplitude-dependent speed of sound (AD-SOS), and 2.1 (95% CI, 1.2-3.9) and 2.4 (95% CI, 1.3-4.3) for DXA lumbar spine and for DXA total hip, respectively. Results of a discriminant analysis showed sensitivities between 84% and 58% and specificities between 72% and 58% for the respective DXA and QUS parameters. Optimum fracture thresholds for QUS measurements derived from this analysis were calculated also. Optimum T-score threshold values for QUS measurements tended to be higher than those for DXA measurements. However, the performance of QUS measurements is at least comparable with DXA measurements in identifying subjects with multiple vertebral fractures randomly selected from the population.

  10. Does quantitative ultrasound imaging enhance precision and discrimination?

    PubMed

    Frost, M L; Blake, G M; Fogelman, I

    2000-01-01

    The aim of this study was to compare quantitative ultrasound (QUS) measurements obtained using a new calcaneal QUS imaging device with a conventional non-imaging device using fixed transducers. The study group consisted of 340 healthy women with no risk factors associated with osteoporosis (176 premenopausal and 164 postmenopausal) and 83 women with one or more vertebral fractures. All women had QUS measurements performed on the Osteometer DTU-one (imaging) and Walker-Sonix UBA575+ (non-imaging) devices and bone mineral density (BMD) measurements performed at the spine and hip. A subgroup of 81 women had additional dual-energy X-ray absorptiometry (DXA) scans at the calcaneus. Short-term standardized precision (SP = SD/young adult SD) based on duplicate measurements was significantly better on the DTU for broadband ultrasound attenuation (BUA) (SP: DTU 0.15 vs UBA 0.21,p = 0.01) and speed of sound (SOS) (SP: DTU 0.14 vs UBA 0.18, p = 0.01). However, long-term SP of the DTU was comparable to or significantly poorer than the SP of the UBA device. The BUA and SOS measurements obtained on the DTU and UBA were significantly correlated (r = 0.76 and 0.89 for BUA and SOS measurements respectively). The correlations between QUS and BMD measurements were all significant, ranging from 0.53 to 0.72. No significant improvements in the correlation with axial or peripheral BMD were observed using the imaging device. All the QUS measurement parameters showed a significant negative relationship between age and years since menopause in the postmenopausal group. Annual losses were lower for the DTU for BUA (DTU 0.22 dB/MHz per year vs UBA 0.44 dB/MHz per year) but comparable for SOS (DTU 0.29 m/s per-year vs UBA 0.22 m/s per year). However, when these figures were standardized to take into account the clinical range, the annual losses were similar on the DTU and UBA. Age-adjusted odds ratios for each SD decline were similar on the DTU for BUA (DTU 3.2 vs UBA 3.3) and SOS (DTU 3.4 vs UBA 5.1). The corresponding odds ratios for BMD at the lumbar spine, femoral neck and total hip were 2.7, 2.9 and 3.3 respectively. Age-adjusted receiver-operating characteristics analysis yielded values for the area under the curve (AUC) ranging from 0.74 to 0.83. The DTU BUA AUC of 0.83 was significantly greater than the AUC obtained for UBA BUA and BMD measurements at the lumbar spine and femoral neck. Ultrasound imaging at the calcaneus was found to improve the standardized precision of BUA and SOS measurements in the short term but not in the long term. Neither the correlation with BMD nor the discriminatory ability of QUS was improved by utilizing QUS images at the calcaneus. The inconsistencies of the imaging system used for this study demonstrate that further development is required before it will be possible to show improvements in long-term precision.

  11. Correlation between Parameters of Calcaneal Quantitative Ultrasound and Hip Structural Analysis in Osteoporotic Fracture Patients

    PubMed Central

    Zheng, Hailiang; Li, Ming; Yin, Pengbin; Peng, Ye; Gao, Yuan; Zhang, Lihai; Tang, Peifu

    2015-01-01

    Background Calcaneal quantitative ultrasound (QUS), which is used in the evaluation of osteoporosis, is believed to be intimately associated with the characteristics of the proximal femur. However, the specific associations of calcaneal QUS with characteristics of the hip sub-regions remain unclear. Design A cross-sectional assessment of 53 osteoporotic patients was performed for the skeletal status of the heel and hip. Methods We prospectively enrolled 53 female osteoporotic patients with femoral fractures. Calcaneal QUS, dual energy X-ray absorptiometry (DXA), and hip structural analysis (HSA) were performed for each patient. Femoral heads were obtained during the surgery, and principal compressive trabeculae (PCT) were extracted by a three-dimensional printing technique-assisted method. Pearson’s correlation between QUS measurement with DXA, HSA-derived parameters and Young’s modulus were calculated in order to evaluate the specific association of QUS with the parameters for the hip sub-regions, including the femoral neck, trochanteric and Ward’s areas, and the femoral shaft, respectively. Results Significant correlations were found between estimated BMD (Est.BMD) and BMD of different sub-regions of proximal femur. However, the correlation coefficient of trochanteric area (r = 0.356, p = 0.009) was higher than that of the neck area (r = 0.297, p = 0.031) and total proximal femur (r = 0.291, p = 0.034). Furthermore, the quantitative ultrasound index (QUI) was significantly correlated with the HSA-derived parameters of the trochanteric area (r value: 0.315–0.356, all p<0.05) as well as with the Young’s modulus of PCT from the femoral head (r = 0.589, p<0.001). Conclusion The calcaneal bone had an intimate association with the trochanteric cancellous bone. To a certain extent, the parameters of the calcaneal QUS can reflect the characteristics of the trochanteric area of the proximal hip, although not specifically reflective of those of the femoral neck or shaft. PMID:26710123

  12. The utility of dual-energy X-ray absorptiometry, calcaneal quantitative ultrasound, and fracture risk indices (FRAX® and Osteoporosis Risk Assessment Instrument) for the identification of women with distal forearm or hip fractures: A pilot study.

    PubMed

    Esmaeilzadeh, Sina; Cesme, Fatih; Oral, Aydan; Yaliman, Ayse; Sindel, Dilsad

    2016-08-01

    Dual-energy X-ray absorptiometry (DXA) is considered the "gold standard" in predicting osteoporotic fractures. Calcaneal quantitative ultrasound (QUS) variables are also known to predict fractures. Fracture risk assessment tools may also guide us for the detection of individuals at high risk for fractures. The aim of this case-control study was to evaluate the utility of DXA bone mineral density (BMD), calcaneal QUS parameters, FRAX® (Fracture Risk Assessment Tool), and Osteoporosis Risk Assessment Instrument (ORAI) for the discrimination of women with distal forearm or hip fractures. This case-control study included 20 women with a distal forearm fracture and 18 women with a hip fracture as cases and 76 age-matched women served as controls. BMD at the spine, proximal femur, and radius was measured using DXA and acoustic parameters of bone were obtained using a calcaneal QUS device. FRAX® 10-year probability of fracture and ORAI scores were also calculated in all participants. Receiver operating characteristic (ROC) analysis was used to assess fracture discriminatory power of all the tools. While all DXA BMD, and QUS variables and FRAX® fracture probabilities demonstrated significant areas under the ROC curves for the discrimination of hip-fractured women and those without, only 33% radius BMD, broadband ultrasound attenuation (BUA), and FRAX® major osteoporotic fracture probability calculated without BMD showed significant discriminatory power for distal forearm fractures. It can be concluded that QUS variables, particularly BUA, and FRAX® major osteoporotic fracture probability without BMD are good candidates for the identification of both hip and distal forearm fractures.

  13. Feasibility of Quantitative Ultrasound Measurement of the Heel Bone in People with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Mergler, S.; Lobker, B.; Evenhuis, H. M.; Penning, C.

    2010-01-01

    Low bone mineral density (BMD) and fractures are common in people with intellectual disabilities (ID). Reduced mobility in case of motor impairment and the use of anti-epileptic drugs contribute to the development of low BMD. Quantitative ultrasound (QUS) measurement of the heel bone is a non-invasive and radiation-free method for measuring bone…

  14. Quantitative ultrasound and dual-energy X-ray absorptiometry in the prediction of fragility fracture in men.

    PubMed

    Gonnelli, Stefano; Cepollaro, Chiara; Gennari, Luigi; Montagnani, Andrea; Caffarelli, Carla; Merlotti, Daniela; Rossi, Stefania; Cadirni, Alice; Nuti, Ranuccio

    2005-08-01

    Fragility fractures in men represent a major health problem, and this prompts a necessity for reliable tools for the identification of men at risk of fracture. In order to assess the ability of dual-energy X-ray absorptiometry (DXA) and quantitative ultrasound (QUS) in the prediction of fracture risk in men and whether their combination might be useful in a clinical setting, we studied 401 men (age range 45-82 years, mean 60.3+/-12.5), of whom 133 had osteoporotic fractures and 268 did not. In all subjects we measured bone mineral density at the lumbar spine (BMD-LS) and at the femur, calculating thereafter the standard femoral subregions: neck (BMD-FN), total hip (BMD-T), trochanter (BMD-TR), intertrochanter (BMD-ITR), and Ward's triangle (BMD-W), by DXA. We also performed ultrasound parameters at the calcaneus: speed of sound (SOS), broadband ultrasound attenuation (BUA) and Stiffness, by Achilles plus, and at the phalanxes: amplitude dependent speed of sound (AD-SoS) and the parameters of the graphic trace: bone transmission time (BTT), fast wave amplitude (FWA), signal dynamic (SDy) and ultrasound bone profile index (UBPI), by Bone Profiler. All DXA and QUS parameters, apart from FWA, were significantly (P<0.001) lower in patients with a history of fracture. BMD at the proximal femur showed the best ability in discriminating men with or without fractures. QUS at the heel showed discriminatory ability significantly better than QUS at the fingers. By logistic regression analysis, adjusted for age and BMI, BMD-T showed the best association with fragility fracture [odds ratio (OR)=3.43, 95% confidence interval (CI)=2.47-4.77]. Among QUS parameters, the highest value of the OR was shown by stiffness (OR=3.18, CI=2.27-4.48). FWA and SDy were not associated with fragility fractures in men. If DXA and QUS were combined, the prediction of the OR of fragility fracture events in men increases; in fact Stiffness was able to increase the OR when added to BMD-LS (OR=5.44, CI=3.16-10.13) and BMD-T (OR=6.08, CI=2.63-14.27). SOS and BUA showed a similar pattern. AD-SoS improved the prediction of fracture only when combined with BMD-LS (OR=4.36, CI=1.99-9.57). If BMD-LS and BMD-FN or BMD-T were combined, the value of the OR increases (OR=4.59, CI=2.27-9.25 and OR=4.68, CI=2.24-9.76), respectively. Our study supports the effectiveness of QUS in the identification of osteoporotic fractures in men. QUS seems to play an independent and complementary role, with respect to DXA, in order to enhance the power for predicting osteoporotic fractures in men.

  15. Review of Quantitative Ultrasound: Envelope Statistics and Backscatter Coefficient Imaging and Contributions to Diagnostic Ultrasound.

    PubMed

    Oelze, Michael L; Mamou, Jonathan

    2016-02-01

    Conventional medical imaging technologies, including ultrasound, have continued to improve over the years. For example, in oncology, medical imaging is characterized by high sensitivity, i.e., the ability to detect anomalous tissue features, but the ability to classify these tissue features from images often lacks specificity. As a result, a large number of biopsies of tissues with suspicious image findings are performed each year with a vast majority of these biopsies resulting in a negative finding. To improve specificity of cancer imaging, quantitative imaging techniques can play an important role. Conventional ultrasound B-mode imaging is mainly qualitative in nature. However, quantitative ultrasound (QUS) imaging can provide specific numbers related to tissue features that can increase the specificity of image findings leading to improvements in diagnostic ultrasound. QUS imaging can encompass a wide variety of techniques including spectral-based parameterization, elastography, shear wave imaging, flow estimation, and envelope statistics. Currently, spectral-based parameterization and envelope statistics are not available on most conventional clinical ultrasound machines. However, in recent years, QUS techniques involving spectral-based parameterization and envelope statistics have demonstrated success in many applications, providing additional diagnostic capabilities. Spectral-based techniques include the estimation of the backscatter coefficient (BSC), estimation of attenuation, and estimation of scatterer properties such as the correlation length associated with an effective scatterer diameter (ESD) and the effective acoustic concentration (EAC) of scatterers. Envelope statistics include the estimation of the number density of scatterers and quantification of coherent to incoherent signals produced from the tissue. Challenges for clinical application include correctly accounting for attenuation effects and transmission losses and implementation of QUS on clinical devices. Successful clinical and preclinical applications demonstrating the ability of QUS to improve medical diagnostics include characterization of the myocardium during the cardiac cycle, cancer detection, classification of solid tumors and lymph nodes, detection and quantification of fatty liver disease, and monitoring and assessment of therapy.

  16. Review of quantitative ultrasound: envelope statistics and backscatter coefficient imaging and contributions to diagnostic ultrasound

    PubMed Central

    Oelze, Michael L.; Mamou, Jonathan

    2017-01-01

    Conventional medical imaging technologies, including ultrasound, have continued to improve over the years. For example, in oncology, medical imaging is characterized by high sensitivity, i.e., the ability to detect anomalous tissue features, but the ability to classify these tissue features from images often lacks specificity. As a result, a large number of biopsies of tissues with suspicious image findings are performed each year with a vast majority of these biopsies resulting in a negative finding. To improve specificity of cancer imaging, quantitative imaging techniques can play an important role. Conventional ultrasound B-mode imaging is mainly qualitative in nature. However, quantitative ultrasound (QUS) imaging can provide specific numbers related to tissue features that can increase the specificity of image findings leading to improvements in diagnostic ultrasound. QUS imaging techniques can encompass a wide variety of techniques including spectral-based parameterization, elastography, shear wave imaging, flow estimation and envelope statistics. Currently, spectral-based parameterization and envelope statistics are not available on most conventional clinical ultrasound machines. However, in recent years QUS techniques involving spectral-based parameterization and envelope statistics have demonstrated success in many applications, providing additional diagnostic capabilities. Spectral-based techniques include the estimation of the backscatter coefficient, estimation of attenuation, and estimation of scatterer properties such as the correlation length associated with an effective scatterer diameter and the effective acoustic concentration of scatterers. Envelope statistics include the estimation of the number density of scatterers and quantification of coherent to incoherent signals produced from the tissue. Challenges for clinical application include correctly accounting for attenuation effects and transmission losses and implementation of QUS on clinical devices. Successful clinical and pre-clinical applications demonstrating the ability of QUS to improve medical diagnostics include characterization of the myocardium during the cardiac cycle, cancer detection, classification of solid tumors and lymph nodes, detection and quantification of fatty liver disease, and monitoring and assessment of therapy. PMID:26761606

  17. Nonlinear optical microscopy and ultrasound imaging of human cervical structure

    NASA Astrophysics Data System (ADS)

    Reusch, Lisa M.; Feltovich, Helen; Carlson, Lindsey C.; Hall, Gunnsteinn; Campagnola, Paul J.; Eliceiri, Kevin W.; Hall, Timothy J.

    2013-03-01

    The cervix softens and shortens as its collagen microstructure rearranges in preparation for birth, but premature change may lead to premature birth. The global preterm birth rate has not decreased despite decades of research, likely because cervical microstructure is poorly understood. Our group has developed a multilevel approach to evaluating the human cervix. We are developing quantitative ultrasound (QUS) techniques for noninvasive interrogation of cervical microstructure and corroborating those results with high-resolution images of microstructure from second harmonic generation imaging (SHG) microscopy. We obtain ultrasound measurements from hysterectomy specimens, prepare the tissue for SHG, and stitch together several hundred images to create a comprehensive view of large areas of cervix. The images are analyzed for collagen orientation and alignment with curvelet transform, and registered with QUS data, facilitating multiscale analysis in which the micron-scale SHG images and millimeter-scale ultrasound data interpretation inform each other. This novel combination of modalities allows comprehensive characterization of cervical microstructure in high resolution. Through a detailed comparative study, we demonstrate that SHG imaging both corroborates the quantitative ultrasound measurements and provides further insight. Ultimately, a comprehensive understanding of specific microstructural cervical change in pregnancy should lead to novel approaches to the prevention of preterm birth.

  18. Noninvasive Diagnosis of Nonalcoholic Fatty Liver Disease and Quantification of Liver Fat Using a New Quantitative Ultrasound Technique.

    PubMed

    Lin, Steven C; Heba, Elhamy; Wolfson, Tanya; Ang, Brandon; Gamst, Anthony; Han, Aiguo; Erdman, John W; O'Brien, William D; Andre, Michael P; Sirlin, Claude B; Loomba, Rohit

    2015-07-01

    Liver biopsy analysis is the standard method used to diagnose nonalcoholic fatty liver disease (NAFLD). Advanced magnetic resonance imaging is a noninvasive procedure that can accurately diagnose and quantify steatosis, but is expensive. Conventional ultrasound is more accessible but identifies steatosis with low levels of sensitivity, specificity, and quantitative accuracy, and results vary among technicians. A new quantitative ultrasound (QUS) technique can identify steatosis in animal models. We assessed the accuracy of QUS in the diagnosis and quantification of hepatic steatosis, comparing findings with those from magnetic resonance imaging proton density fat fraction (MRI-PDFF) analysis as a reference. We performed a prospective, cross-sectional analysis of a cohort of adults (N = 204) with NAFLD (MRI-PDFF, ≥5%) and without NAFLD (controls). Subjects underwent MRI-PDFF and QUS analyses of the liver on the same day at the University of California, San Diego, from February 2012 through March 2014. QUS parameters and backscatter coefficient (BSC) values were calculated. Patients were assigned randomly to training (n = 102; mean age, 51 ± 17 y; mean body mass index, 31 ± 7 kg/m(2)) and validation (n = 102; mean age, 49 ± 17 y; body mass index, 30 ± 6 kg/m(2)) groups; 69% of patients in each group had NAFLD. BSC (range, 0.00005-0.25 1/cm-sr) correlated with MRI-PDFF (Spearman ρ = 0.80; P < .0001). In the training group, the BSC analysis identified patients with NAFLD with an area under the curve value of 0.98 (95% confidence interval, 0.95-1.00; P < .0001). The optimal BSC cut-off value identified patients with NAFLD in the training and validation groups with 93% and 87% sensitivity, 97% and 91% specificity, 86% and 76% negative predictive values, and 99% and 95% positive predictive values, respectively. QUS measurements of BSC can accurately diagnose and quantify hepatic steatosis, based on a cross-sectional analysis that used MRI-PDFF as the reference. With further validation, QUS could be an inexpensive, widely available method to screen the general or at-risk population for NAFLD. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  19. Associations of insulin-like growth factor-I and insulin-like growth factor binding protein-3 with bone quality in the general adult population.

    PubMed

    Böker, J; Völzke, H; Nauck, M; Hannemann, A; Friedrich, N

    2018-03-01

    Growth hormone (GH) and its main mediator, insulin-like growth factor-I (IGF-I), play a significant role in bone metabolism. The relations between IGF-I and bone mineral density (BMD) or osteoporosis have been assessed in previous studies but whether the associations are sex-specific remains uncertain. Moreover, only a few studies examined bone quality assessed by quantitative ultrasound (QUS). We aimed to investigate these associations in the general population of north-east Germany. Data from 1759 men and 1784 women who participated in the baseline examination of the Study of Health in Pomerania (SHIP)-Trend were used. IGF-I and IGF-binding protein-3 (IGFBP-3) concentrations were measured on the IDS-iSYS multidiscipline automated analyser (Immunodiagnostic Systems Limited). QUS measurements were performed at the heel (Achilles InSight, GE Healthcare). Sex-specific linear and multinomial logistic regression models adjusted for potential confounders were calculated. Linear regression analyses revealed significant positive associations between IGF-I and IGF-I/IGFBP-3 ratio, a marker for free IGF-I, with all QUS parameters in men. Among women, we found an inverse association between IGF-I and the QUS-based fracture risk but no association with any other QUS parameter. There was no association between IGFBP-3 and the QUS-based fracture risk. Our data suggest an important role of IGF-I on bone quality in men. The observed association of IGF-I with the QUS-based stiffness index and QUS-based fracture risk in this study might animate clinicians to refer patients with low IGF-I levels, particularly men, to a further evaluation of risk factors for osteoporosis and a detailed examination of the skeletal system. © 2018 John Wiley & Sons Ltd.

  20. Nonlinear optical microscopy and ultrasound imaging of human cervical structure

    PubMed Central

    Reusch, Lisa M.; Feltovich, Helen; Carlson, Lindsey C.; Hall, Gunnsteinn; Campagnola, Paul J.; Eliceiri, Kevin W.

    2013-01-01

    Abstract. The cervix softens and shortens as its collagen microstructure rearranges in preparation for birth, but premature change may lead to premature birth. The global preterm birth rate has not decreased despite decades of research, likely because cervical microstructure is poorly understood. Our group has developed a multilevel approach to evaluating the human cervix. We are developing quantitative ultrasound (QUS) techniques for noninvasive interrogation of cervical microstructure and corroborating those results with high-resolution images of microstructure from second harmonic generation imaging (SHG) microscopy. We obtain ultrasound measurements from hysterectomy specimens, prepare the tissue for SHG, and stitch together several hundred images to create a comprehensive view of large areas of cervix. The images are analyzed for collagen orientation and alignment with curvelet transform, and registered with QUS data, facilitating multiscale analysis in which the micron-scale SHG images and millimeter-scale ultrasound data interpretation inform each other. This novel combination of modalities allows comprehensive characterization of cervical microstructure in high resolution. Through a detailed comparative study, we demonstrate that SHG imaging both corroborates the quantitative ultrasound measurements and provides further insight. Ultimately, a comprehensive understanding of specific microstructural cervical change in pregnancy should lead to novel approaches to the prevention of preterm birth. PMID:23412434

  1. The Prevalence of Osteopenia and Osteoporosis Among Malaysian Type 2 Diabetic Patients Using Quantitative Ultrasound Densitometer

    PubMed Central

    Abdulameer, Shaymaa Abdalwahed; Sahib, Mohanad Naji; Sulaiman, Syed Azhar Syed

    2018-01-01

    Background: Type 2 Diabetes Mellitus (T2DM) and osteoporosis are both chronic conditions and the relationship between them is complex. Objective: The aims of this study were to assess the prevalence of Low Bone Mineral density (LBMD, i.e., osteopenia and osteoporosis), as well as, the difference and associations between Quantitative Ultrasound Scan (QUS) parameters with socio-demographic data and clinical related data among T2DM in Penang, Malaysia. Method: An observational, cross-sectional study with a convenient sample of 450 T2DM patients were recruited from the outpatient diabetes clinic at Hospital Pulau Pinang (HPP) to measure Bone Mineral Density (BMD) at the heel bone using QUS. In addition, a self-reported structured questionnaire about the socio-demographic data and osteoporosis risk factors were collected. Moreover, the study included the retrospective collection of clinical data from patients’ medical records. Results: The mean value of T-score for normal BMD, osteopenic and osteoporotic patients’ were (-0.41±0.44), (-1.65±0.39) and (-2.76±0.27), respectively. According to QUS measurements, more than three quarters of T2DM patients (82%) were at high risk of abnormal BMD. The results showed that QUS scores were significantly associated with age, gender, menopausal duration, educational level and diabetic related data. Moreover, the QUS parameters and T-scores demonstrated significant negative correlation with age, menopausal duration, diabetic duration and glycaemic control, as well as, a positive correlation with body mass index and waist to hip ratio. The current study revealed that none of the cardiovascular disease risk factors appear to influence the prevalence of low BMD among T2DM Malaysian patients. Conclusion: The study findings revealed that the assessment of T2DM patients’ bone health and related factor are essential and future educational programs are crucial to improve osteoporosis management. PMID:29755605

  2. Response monitoring of breast cancer patients receiving neoadjuvant chemotherapy using quantitative ultrasound, texture, and molecular features

    PubMed Central

    Gangeh, Mehrdad; Tadayyon, Hadi; Sadeghi-Naini, Ali; Gandhi, Sonal; Wright, Frances C.; Slodkowska, Elzbieta; Curpen, Belinda; Tran, William; Czarnota, Gregory J.

    2018-01-01

    Background Pathological response of breast cancer to chemotherapy is a prognostic indicator for long-term disease free and overall survival. Responses of locally advanced breast cancer in the neoadjuvant chemotherapy (NAC) settings are often variable, and the prediction of response is imperfect. The purpose of this study was to detect primary tumor responses early after the start of neoadjuvant chemotherapy using quantitative ultrasound (QUS), textural analysis and molecular features in patients with locally advanced breast cancer. Methods The study included ninety six patients treated with neoadjuvant chemotherapy. Breast tumors were scanned with a clinical ultrasound system prior to chemotherapy treatment, during the first, fourth and eighth week of treatment, and prior to surgery. Quantitative ultrasound parameters and scatterer-based features were calculated from ultrasound radio frequency (RF) data within tumor regions of interest. Additionally, texture features were extracted from QUS parametric maps. Prior to therapy, all patients underwent a core needle biopsy and histological subtypes and biomarker ER, PR, and HER2 status were determined. Patients were classified into three treatment response groups based on combination of clinical and pathological analyses: complete responders (CR), partial responders (PR), and non-responders (NR). Response classifications from QUS parameters, receptors status and pathological were compared. Discriminant analysis was performed on extracted parameters using a support vector machine classifier to categorize subjects into CR, PR, and NR groups at all scan times. Results Of the 96 patients, the number of CR, PR and NR patients were 21, 52, and 23, respectively. The best prediction of treatment response was achieved with the combination mean QUS values, texture and molecular features with accuracies of 78%, 86% and 83% at weeks 1, 4, and 8, after treatment respectively. Mean QUS parameters or clinical receptors status alone predicted the three response groups with accuracies less than 60% at all scan time points. Recurrence free survival (RFS) of response groups determined based on combined features followed similar trend as determined based on clinical and pathology. Conclusions This work demonstrates the potential of using QUS, texture and molecular features for predicting the response of primary breast tumors to chemotherapy early, and guiding the treatment planning of refractory patients. PMID:29298305

  3. Quantitative ultrasound method for assessing stress-strain properties and the cross-sectional area of Achilles tendon

    NASA Astrophysics Data System (ADS)

    Du, Yi-Chun; Chen, Yung-Fu; Li, Chien-Ming; Lin, Chia-Hung; Yang, Chia-En; Wu, Jian-Xing; Chen, Tainsong

    2013-12-01

    The Achilles tendon is one of the most commonly observed tendons injured with a variety of causes, such as trauma, overuse and degeneration, in the human body. Rupture and tendinosis are relatively common for this strong tendon. Stress-strain properties and shape change are important biomechanical properties of the tendon to assess surgical repair or healing progress. Currently, there are rather limited non-invasive methods available for precisely quantifying the in vivo biomechanical properties of the tendons. The aim of this study was to apply quantitative ultrasound (QUS) methods, including ultrasonic attenuation and speed of sound (SOS), to investigate porcine tendons in different stress-strain conditions. In order to find a reliable method to evaluate the change of tendon shape, ultrasound measurement was also utilized for measuring tendon thickness and compared with the change in tendon cross-sectional area under different stress. A total of 15 porcine tendons of hind trotters were examined. The test results show that the attenuation and broadband ultrasound attenuation decreased and the SOS increased by a smaller magnitude as the uniaxial loading of the stress-strain upon tendons increased. Furthermore, the tendon thickness measured with the ultrasound method was significantly correlated with tendon cross-sectional area (Pearson coefficient = 0.86). These results also indicate that attenuation of QUS and ultrasonic thickness measurement are reliable and potential parameters for assessing biomechanical properties of tendons. Further investigations are needed to warrant the application of the proposed method in a clinical setting.

  4. The Association between Bone Quality and Atherosclerosis: Results from Two Large Population-Based Studies.

    PubMed

    Lange, V; Dörr, M; Schminke, U; Völzke, H; Nauck, M; Wallaschofski, H; Hannemann, A

    2017-01-01

    It is highly debated whether associations between osteoporosis and atherosclerosis are independent of cardiovascular risk factors. We aimed to explore the associations between quantitative ultrasound (QUS) parameters at the heel with the carotid artery intima-media thickness (IMT), the presence of carotid artery plaques, and the ankle-brachial index (ABI). The study population comprised 5680 men and women aged 20-93 years from two population-based cohort studies: Study of Health in Pomerania (SHIP) and SHIP-Trend. QUS measurements were performed at the heel. The extracranial carotid arteries were examined with B-mode ultrasonography. ABI was measured in a subgroup of 3853 participants. Analyses of variance and linear and logistic regression models were calculated and adjusted for major cardiovascular risk factors. Men but not women had significantly increased odds for carotid artery plaques with decreasing QUS parameters independent of diabetes mellitus, dyslipidemia, and hypertension. Beyond this, the QUS parameters were not significantly associated with IMT or ABI in fully adjusted models. Our data argue against an independent role of bone metabolism in atherosclerotic changes in women. Yet, in men, associations with advanced atherosclerosis, exist. Thus, men presenting with clinical signs of osteoporosis may be at increased risk for atherosclerotic disease.

  5. Review of comparative studies between bone densitometry and quantitative ultrasound of the calcaneus in osteoporosis.

    PubMed

    Flöter, Michelle; Bittar, Cíntia Kelly; Zabeu, José Luis; Carneiro, Ana Carolina

    2011-01-01

    To assess the utility of quantitative ultrasound (QUS) of the calcaneus for diagnosing osteoporosis compared to the gold standard, bone densitometry using dual-emission X-ray absorptiometry (DXA), according to published reports. In this systematic review, the Medline/PUBMED, Medline Ovid and Journals@Ovid, and Wilson General Sciences Full Text database were used. The search strategy involved use of the following MeSH descriptors: [osteoporosis AND (densitometry OR ultrasonography)], and 39 articles published between 2001 and April 2010 were assessed. However, only six articles met the inclusion criteria: sensitivity and specificity of QUS, sample (women or men with no treatment or other disease likely to change bone mass index), devices used, comparative T-score between QUS of the calcaneus and DXA. The GE-Lunar Achilles and Hologic Sahara devices were used in most of the tests reported and were effective. All studies assessed compared QUS of the calcaneus to DXA of the lumbar spine or femoral neck, as the gold standard. QUS sensitivity ranged from 79% to 93% and specificity ranged from 28% to 90% when at the lower threshold. It is a controversial parameter, because the gold-standard threshold (T-score < -2.5, DXA) could not be used for QUS without errors in osteoporosis diagnosis. All studies had a threshold determined by the authors’ criteria, with a variability of -1.7 (pDXA T--score) and -2.4 for QUS, leading to the same prevalence of osteoporosis, and a T-score of < -3.65 for QUS was equivalent to a T-score < -2.5 for DXA. Based on the analysis of seven studies, we conclude that QUS of the calcaneus still cannot be used to confirm diagnosis of osteoporosis by comparing the results to those of patients who had already received such a diagnosis based on DXA. However, further research should be conducted in this area, because it is possible to improve the number diagnoses by varying the cutoff T-score. Furthermore, using QUS of the calcaneus was a helpful tool for assessing pathological fractures, whether or not they were associated with osteoporosis.

  6. Sex hormones and quantitative ultrasound parameters at the heel in men and women from the general population.

    PubMed

    Pätzug, Konrad; Friedrich, Nele; Kische, Hanna; Hannemann, Anke; Völzke, Henry; Nauck, Matthias; Keevil, Brian G; Haring, Robin

    2017-12-01

    The present study investigates potential associations between liquid chromatography-mass spectrometry (LC-MS) measured sex hormones, dehydroepiandrosterone sulphate, sex hormone-binding globulin (SHBG) and bone ultrasound parameters at the heel in men and women from the general population. Data from 502 women and 425 men from the population-based Study of Health in Pomerania (SHIP-TREND) were used. Cross-sectional associations of sex hormones including testosterone (TT), calculated free testosterone (FT), dehydroepiandrosterone sulphate (DHEAS), androstenedione (ASD), estrone (E1) and SHBG with quantitative ultrasound (QUS) parameters at the heel, including broadband ultrasound attenuation (BUA), speed of sound (SOS) and stiffness index (SI) were examined by analysis of variance (ANOVA) and multivariable quantile regression models. Multivariable regression analysis showed a sex-specific inverse association of DHEAS with SI in men (Beta per SI unit = - 3.08, standard error (SE) = 0.88), but not in women (Beta = - 0.01, SE = 2.09). Furthermore, FT was positively associated with BUA in men (Beta per BUA unit = 29.0, SE = 10.1). None of the other sex hormones (ASD, E1) or SHBG was associated with QUS parameters after multivariable adjustment. This cross-sectional population-based study revealed independent associations of DHEAS and FT with QUS parameters in men, suggesting a potential influence on male bone metabolism. The predictive role of DHEAS and FT as a marker for osteoporosis in men warrants further investigation in clinical trials and large-scale observational studies.

  7. [Menopause and ultrasonographic measurements of calcaneus].

    PubMed

    López-Caudana, Alma Ethelia; Castillo-Calderón, María Griselda; Ávila-Jiménez, Laura

    2014-01-01

    In Mexico, calcaneal ultrasound measurements -bone mineral density (BMD), broadband ultrasound attenuation (BUA), speed of sound (SOS), ultrasonic quantitative index (QUI)- and their differences in regards to menopause have not been documented. It was carried out a cross-sectional study in 862 women from 20 to 90 years old, incorporated through consecutive sample, who were users of the Sistema para el Desarrollo Integral de la Familia (DIF) in Morelos. Sociodemographic, reproductive and life style factors were identified. BMD, BUA, SOS and QUI were measured with quantitative ultrasound (QUS), using a Sunlight Omnisense 7000 S device. Adjusted differences in the mean of these measurements were estimated between pre and postmenopausal women through multiple linear regression. The medians were: BMD, 0.455 g/cm² (IQR, interquartile range = 0.378, 0.538); BUA, 66.0 dB/mHz (IQR = 54.3, 78.1); SOS, 1530.7 m/s (IQR = 1509.8, 1551.7); QUI = 83.7 units (IQR = 71.1, 96.6). In postmenopausal women, adjusted mean for BUA was -4.34 dB/mHz (CI 95 % = -8.23,-0.43); for SOS, -4.26 m/s (CI 95 % = -13.82, 5.30) ; for QUI, -4.42 units (CI 95 % = -8.64,-0.19). This report increases information about the clinical applicability of QUS. SOS in calcaneus does not reflect changes related with menopause.

  8. A Pilot Comparative Study of Quantitative Ultrasound, Conventional Ultrasound, and MRI for Predicting Histology-Determined Steatosis Grade in Adult Nonalcoholic Fatty Liver Disease

    PubMed Central

    Paige, Jeremy S.; Bernstein, Gregory S.; Heba, Elhamy; Costa, Eduardo A. C.; Fereirra, Marilia; Wolfson, Tanya; Gamst, Anthony C.; Valasek, Mark A.; Lin, Grace Y.; Han, Aiguo; Erdman, John W.; O’Brien, William D.; Andre, Michael P.; Loomba, Rohit; Sirlin, Claude B.

    2017-01-01

    OBJECTIVE The purpose of this study is to explore the diagnostic performance of two investigational quantitative ultrasound (QUS) parameters, attenuation coefficient and backscatter coefficient, in comparison with conventional ultrasound (CUS) and MRI-estimated proton density fat fraction (PDFF) for predicting histology-confirmed steatosis grade in adults with nonalcoholic fatty liver disease (NAFLD). SUBJECTS AND METHODS In this prospectively designed pilot study, 61 adults with histology-confirmed NAFLD were enrolled from September 2012 to February 2014. Subjects underwent QUS, CUS, and MRI examinations within 100 days of clinical-care liver biopsy. QUS parameters (attenuation coefficient and backscatter coefficient) were estimated using a reference phantom technique by two analysts independently. Three-point ordinal CUS scores intended to predict steatosis grade (1, 2, or 3) were generated independently by two radiologists on the basis of QUS features. PDFF was estimated using an advanced chemical shift–based MRI technique. Using histologic examination as the reference standard, ROC analysis was performed. Optimal attenuation coefficient, backscatter coefficient, and PDFF cutoff thresholds were identified, and the accuracy of attenuation coefficient, backscatter coefficient, PDFF, and CUS to predict steatosis grade was determined. Interobserver agreement for attenuation coefficient, backscatter coefficient, and CUS was analyzed. RESULTS CUS had 51.7% grading accuracy. The raw and cross-validated steatosis grading accuracies were 61.7% and 55.0%, respectively, for attenuation coefficient, 68.3% and 68.3% for backscatter coefficient, and 76.7% and 71.3% for MRI-estimated PDFF. Interobserver agreements were 53.3% for CUS (κ = 0.61), 90.0% for attenuation coefficient (κ = 0.87), and 71.7% for backscatter coefficient (κ = 0.82) (p < 0.0001 for all). CONCLUSION Preliminary observations suggest that QUS parameters may be more accurate and provide higher interobserver agreement than CUS for predicting hepatic steatosis grade in patients with NAFLD. PMID:28267360

  9. A Pilot Comparative Study of Quantitative Ultrasound, Conventional Ultrasound, and MRI for Predicting Histology-Determined Steatosis Grade in Adult Nonalcoholic Fatty Liver Disease.

    PubMed

    Paige, Jeremy S; Bernstein, Gregory S; Heba, Elhamy; Costa, Eduardo A C; Fereirra, Marilia; Wolfson, Tanya; Gamst, Anthony C; Valasek, Mark A; Lin, Grace Y; Han, Aiguo; Erdman, John W; O'Brien, William D; Andre, Michael P; Loomba, Rohit; Sirlin, Claude B

    2017-05-01

    The purpose of this study is to explore the diagnostic performance of two investigational quantitative ultrasound (QUS) parameters, attenuation coefficient and backscatter coefficient, in comparison with conventional ultrasound (CUS) and MRI-estimated proton density fat fraction (PDFF) for predicting histology-confirmed steatosis grade in adults with nonalcoholic fatty liver disease (NAFLD). In this prospectively designed pilot study, 61 adults with histology-confirmed NAFLD were enrolled from September 2012 to February 2014. Subjects underwent QUS, CUS, and MRI examinations within 100 days of clinical-care liver biopsy. QUS parameters (attenuation coefficient and backscatter coefficient) were estimated using a reference phantom technique by two analysts independently. Three-point ordinal CUS scores intended to predict steatosis grade (1, 2, or 3) were generated independently by two radiologists on the basis of QUS features. PDFF was estimated using an advanced chemical shift-based MRI technique. Using histologic examination as the reference standard, ROC analysis was performed. Optimal attenuation coefficient, backscatter coefficient, and PDFF cutoff thresholds were identified, and the accuracy of attenuation coefficient, backscatter coefficient, PDFF, and CUS to predict steatosis grade was determined. Interobserver agreement for attenuation coefficient, backscatter coefficient, and CUS was analyzed. CUS had 51.7% grading accuracy. The raw and cross-validated steatosis grading accuracies were 61.7% and 55.0%, respectively, for attenuation coefficient, 68.3% and 68.3% for backscatter coefficient, and 76.7% and 71.3% for MRI-estimated PDFF. Interobserver agreements were 53.3% for CUS (κ = 0.61), 90.0% for attenuation coefficient (κ = 0.87), and 71.7% for backscatter coefficient (κ = 0.82) (p < 0.0001 for all). Preliminary observations suggest that QUS parameters may be more accurate and provide higher interobserver agreement than CUS for predicting hepatic steatosis grade in patients with NAFLD.

  10. TU-H-CAMPUS-IeP3-04: Evaluation of Changes in Quantitative Ultrasound Parameters During Prostate Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Najafi, M; El Kaffas, A; Han, B

    Purpose: Clarity Autoscan ultrasound monitoring system allows acquisition of raw radiofrequency (RF) ultrasound data prior and during radiotherapy. This enables the computation of 3D Quantitative Ultrasound (QUS) tissue parametric maps from. We aim to evaluate whether QUS parameters undergo changes with radiotherapy and thus potentially be used as early predictors and/or markers of treatment response in prostate cancer patients. Methods: In-vivo evaluation was performed under IRB protocol to allow data collection in prostate patients treated with VMAT whereby prostate was imaged through the acoustic window of the perineum. QUS spectroscopy analysis was carried out by computing a tissue power spectrummore » normalized to the power spectrum obtained from a quartz to remove system transfer function effects. A ROI was selected within the 3D image volume of the prostate. Because longitudinal registration was optimal, the same features could be used to select ROIs at roughly the same location in images acquired on different days. Parametric maps were generated within the rectangular ROIs with window sizes that were approximately 8 times the wavelength of the ultrasound. The mid-band fit (MBF), spectral slope (SS) and spectral intercept (SI) QUS parameters were computed for each window within the ROI and displayed as parametric maps. Quantitative parameters were obtained by averaging each of the spectral parameters over the whole ROI. Results: Data was acquired for over 21 treatment fractions. Preliminary results show changes in the parametric maps. MBF values decreased from −33.9 dB to −38.7 dB from pre-treatment to the last day of treatment. The spectral slope increased from −1.1 a.u. to −0.5 a.u., and spectral intercept decreased from −28.2 dB to −36.3 dB over the 21 treatment regimen. Conclusion: QUS parametric maps change over the course of treatment which warrants further investigation in their potential use for treatment planning and predicting treatment outcomes. Research was supported by Elekta.« less

  11. Breast tumour visualization using 3D quantitative ultrasound methods

    NASA Astrophysics Data System (ADS)

    Gangeh, Mehrdad J.; Raheem, Abdul; Tadayyon, Hadi; Liu, Simon; Hadizad, Farnoosh; Czarnota, Gregory J.

    2016-04-01

    Breast cancer is one of the most common cancer types accounting for 29% of all cancer cases. Early detection and treatment has a crucial impact on improving the survival of affected patients. Ultrasound (US) is non-ionizing, portable, inexpensive, and real-time imaging modality for screening and quantifying breast cancer. Due to these attractive attributes, the last decade has witnessed many studies on using quantitative ultrasound (QUS) methods in tissue characterization. However, these studies have mainly been limited to 2-D QUS methods using hand-held US (HHUS) scanners. With the availability of automated breast ultrasound (ABUS) technology, this study is the first to develop 3-D QUS methods for the ABUS visualization of breast tumours. Using an ABUS system, unlike the manual 2-D HHUS device, the whole patient's breast was scanned in an automated manner. The acquired frames were subsequently examined and a region of interest (ROI) was selected in each frame where tumour was identified. Standard 2-D QUS methods were used to compute spectral and backscatter coefficient (BSC) parametric maps on the selected ROIs. Next, the computed 2-D parameters were mapped to a Cartesian 3-D space, interpolated, and rendered to provide a transparent color-coded visualization of the entire breast tumour. Such 3-D visualization can potentially be used for further analysis of the breast tumours in terms of their size and extension. Moreover, the 3-D volumetric scans can be used for tissue characterization and the categorization of breast tumours as benign or malignant by quantifying the computed parametric maps over the whole tumour volume.

  12. Assessment of tumor response to radiation and vascular targeting therapy in mice using quantitative ultrasound spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Kaffas, Ahmed; Sadeghi-Naini, Ali; Falou, Omar

    Purpose: It is now recognized that the tumor vasculature is in part responsible for regulating tumor responses to radiation therapy. However, the extent to which radiation-based vascular damage contributes to tumor cell death remains unknown. In this work, quantitative ultrasound spectroscopy (QUS) methods were used to investigate the acute responses of tumors to radiation-based vascular treatments. Methods: Tumor xenografts (MDA-MB-231) were treated with single radiation doses of 2 or 8 Gy alone, or in combination with pharmacological agents that modulate vascular radiosensitivity. The midband fit, the slope, and the 0-MHz intercept QUS parameters were obtained from a linear-regression fit tomore » the averaged power spectrum of frequency-dependent ultrasound backscatter and were used to quantify acute tumor responses following treatment administration. Power spectrums were extracted from raw volumetric radio-frequency ultrasound data obtained before and 24 h following treatment administration. These parameters have previously been correlated to tumor cell death. Staining using in situ end labeling, carbonic anhydrase 9 and cluster of differentiation 31 of tumor sections were used to assess cell death, oxygenation, and vasculature distributions, respectively. Results: Results indicate a significant midband fit QUS parameter increases of 3.2 ± 0.3 dBr and 5.4 ± 0.5 dBr for tumors treated with 2 and 8 Gy radiation combined with the antiangiogenic agent Sunitinib, respectively. In contrast, tumors treated with radiation alone demonstrated a significant midband fit increase of 4.4 ± 0.3 dBr at 8 Gy only. Preadministration of basic fibroblast growth factor, an endothelial radioprotector, acted to minimize tumor response following single large doses of radiation. Immunohistochemical analysis was in general agreement with QUS findings; an R{sup 2} of 0.9 was observed when quantified cell death was correlated with changes in midband fit. Conclusions: Results from QUS analysis presented in this study confirm that acute tumor response is linked to a vascular effect following high doses of radiation therapy. Overall, this is in agreement with previous reports suggesting that acute tumor radiation response is regulated by a vascular-driven response. Data also suggest that Sunitinib may enhance tumor radiosensitivity through a vascular remodeling process, and that QUS may be sensitive to changes in tissue properties associated with vascular remodeling. Finally, the work also demonstrates the ability of QUS methods to monitor response to radiation-based vascular strategies.« less

  13. The Association between Bone Quality and Atherosclerosis: Results from Two Large Population-Based Studies

    PubMed Central

    Lange, V.; Dörr, M.; Schminke, U.; Völzke, H.; Nauck, M.; Wallaschofski, H.

    2017-01-01

    Objective It is highly debated whether associations between osteoporosis and atherosclerosis are independent of cardiovascular risk factors. We aimed to explore the associations between quantitative ultrasound (QUS) parameters at the heel with the carotid artery intima-media thickness (IMT), the presence of carotid artery plaques, and the ankle-brachial index (ABI). Methods The study population comprised 5680 men and women aged 20–93 years from two population-based cohort studies: Study of Health in Pomerania (SHIP) and SHIP-Trend. QUS measurements were performed at the heel. The extracranial carotid arteries were examined with B-mode ultrasonography. ABI was measured in a subgroup of 3853 participants. Analyses of variance and linear and logistic regression models were calculated and adjusted for major cardiovascular risk factors. Results Men but not women had significantly increased odds for carotid artery plaques with decreasing QUS parameters independent of diabetes mellitus, dyslipidemia, and hypertension. Beyond this, the QUS parameters were not significantly associated with IMT or ABI in fully adjusted models. Conclusions Our data argue against an independent role of bone metabolism in atherosclerotic changes in women. Yet, in men, associations with advanced atherosclerosis, exist. Thus, men presenting with clinical signs of osteoporosis may be at increased risk for atherosclerotic disease. PMID:28852407

  14. Usefulness of circuit training at home for improving bone mass and muscle mass while losing fat mass in undergraduate female students.

    PubMed

    Takahata, Yoko

    2018-05-09

    The purpose of this study was to determine whether or not circuit training at home affects the calcaneus quantitative ultrasound status as well as other indices of body composition among undergraduate female students. Forty-one adolescents were recruited (18.5 ± 0.6 years old). The stiffness index of the calcaneus, broadband ultrasound attenuation of the calcaneus, speed of sound of the calcaneus, and body frame index. This was a three-month intervention study, so the measurements were conducted at baseline, 2 months later, and 3 months later while the subjects underwent circuit training at home. The subjects were divided into two groups: namely, the exercising group and non-exercising group. In the exercising group, broadband ultrasound attenuation of the calcaneus was higher 2 months later (p = 0.033) as well as 3 months later (p = 0.036), and the speed of sound of the calcaneus was higher 3 months later (p = 0.018). In addition, the muscle mass was strongly positively correlated with the calcaneus QUS-SOS (p = 0.004), while the body fat percentage was a strongly negatively correlated with the calcaneus QUS-BUA (p = 0.043). In the non-exercising group, the stiffness index of the calcaneus was higher 2 months later (p = 0.002) as well as 3 months later (p = 0.002). Furthermore, the body percentage was strongly positively correlated with the calcaneus QUS-SI (p = 0.009). These findings suggest that the calcaneus quantitative ultrasound status and muscle mass while losing fat mass may be improved by means of a simple exercise regimen within a short period among undergraduate female students.

  15. Ultrasound-based quantification of vitreous floaters correlates with contrast sensitivity and quality of life.

    PubMed

    Mamou, Jonathan; Wa, Christianne A; Yee, Kenneth M P; Silverman, Ronald H; Ketterling, Jeffrey A; Sadun, Alfredo A; Sebag, J

    2015-01-22

    Clinical evaluation of floaters lacks quantitative assessment of vitreous structure. This study used quantitative ultrasound (QUS) to measure vitreous opacities. Since floaters reduce contrast sensitivity (CS) and quality of life (Visual Function Questionnaire [VFQ]), it is hypothesized that QUS will correlate with CS and VFQ in patients with floaters. Twenty-two eyes (22 subjects; age = 57 ± 19 years) with floaters were evaluated with Freiburg acuity contrast testing (FrACT; %Weber) and VFQ. Ultrasonography used a customized probe (15-MHz center frequency, 20-mm focal length, 7-mm aperture) with longitudinal and transverse scans taken in primary gaze and a horizontal longitudinal scan through premacular vitreous in temporal gaze. Each scan set had 100 frames of log-compressed envelope data. Within each frame, two regions of interest (ROIs) were analyzed (whole-central and posterior vitreous) to yield three parameters (energy, E; mean amplitude, M; and percentage of vitreous filled by echodensities, P50) averaged over the entire 100-frame dataset. Statistical analyses evaluated E, M, and P50 correlations with CS and VFQ. Contrast sensitivity ranged from 1.19%W (normal) to 5.59%W. All QUS parameters in two scan positions within the whole-central ROI correlated with CS (R > 0.67, P < 0.001). P50 in the nasal longitudinal position had R = 0.867 (P < 0.001). Correlations with VFQ ranged from R = 0.52 (P < 0.013) to R = 0.65 (P < 0.001). Quantitative ultrasound provides quantitative measures of vitreous echodensity that correlate with CS and VFQ, providing objective assessment of vitreous structure underlying the functional disturbances induced by floaters, useful to quantify vitreous disease severity and the response to therapy. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  16. Ultrasound-Based Quantification of Vitreous Floaters Correlates with Contrast Sensitivity and Quality of Life

    PubMed Central

    Mamou, Jonathan; Wa, Christianne A.; Yee, Kenneth M. P.; Silverman, Ronald H.; Ketterling, Jeffrey A.; Sadun, Alfredo A.; Sebag, J.

    2015-01-01

    Purpose. Clinical evaluation of floaters lacks quantitative assessment of vitreous structure. This study used quantitative ultrasound (QUS) to measure vitreous opacities. Since floaters reduce contrast sensitivity (CS) and quality of life (Visual Function Questionnaire [VFQ]), it is hypothesized that QUS will correlate with CS and VFQ in patients with floaters. Methods. Twenty-two eyes (22 subjects; age = 57 ± 19 years) with floaters were evaluated with Freiburg acuity contrast testing (FrACT; %Weber) and VFQ. Ultrasonography used a customized probe (15-MHz center frequency, 20-mm focal length, 7-mm aperture) with longitudinal and transverse scans taken in primary gaze and a horizontal longitudinal scan through premacular vitreous in temporal gaze. Each scan set had 100 frames of log-compressed envelope data. Within each frame, two regions of interest (ROIs) were analyzed (whole-central and posterior vitreous) to yield three parameters (energy, E; mean amplitude, M; and percentage of vitreous filled by echodensities, P50) averaged over the entire 100-frame dataset. Statistical analyses evaluated E, M, and P50 correlations with CS and VFQ. Results. Contrast sensitivity ranged from 1.19%W (normal) to 5.59%W. All QUS parameters in two scan positions within the whole-central ROI correlated with CS (R > 0.67, P < 0.001). P50 in the nasal longitudinal position had R = 0.867 (P < 0.001). Correlations with VFQ ranged from R = 0.52 (P < 0.013) to R = 0.65 (P < 0.001). Conclusions. Quantitative ultrasound provides quantitative measures of vitreous echodensity that correlate with CS and VFQ, providing objective assessment of vitreous structure underlying the functional disturbances induced by floaters, useful to quantify vitreous disease severity and the response to therapy. PMID:25613948

  17. Relationship between bone turnover markers and the heel stiffness index measured by quantitative ultrasound in middle-aged and elderly Japanese men

    PubMed Central

    Nishimura, Takayuki; Arima, Kazuhiko; Abe, Yasuyo; Kanagae, Mitsuo; Mizukami, Satoshi; Okabe, Takuhiro; Tomita, Yoshihito; Goto, Hisashi; Horiguchi, Itsuko; Aoyagi, Kiyoshi

    2018-01-01

    Abstract The aim of the present study was to investigate the age-related patterns and the relationships between serum levels of tartrate-resistant acid phosphatase-5b (TRACP-5b) or bone-specific alkaline phosphatase (BAP), and the heel stiffness index measured by quantitative ultrasound (QUS) in 429 Japanese men, with special emphasis on 2 age groups (40–59 years and 60 years or over). The heel stiffness index (bone mass) was measured by QUS. Serum samples were collected, and TRACP-5b and BAP levels were measured. The stiffness index was significantly decreased with age. Log (TRACP-5b) was significantly increased with age, but Log (BAP) was stable. Generalized linear models showed that higher levels of Log (TRACP-5b) and Log (BAP) were correlated with a lower stiffness index after adjusting for covariates in men aged 60 years or over, but not in men aged 40 to 59 years. In conclusion, higher rates of bone turnover markers were associated with a lower stiffness index only in elderly men. These results may indicate a different mechanism of low bone mass among different age groups of men. PMID:29465590

  18. Factors Associated with Bone Health in Malaysian Middle-Aged and Elderly Women Assessed via Quantitative Ultrasound.

    PubMed

    Chin, Kok-Yong; Low, Nie Yen; Dewiputri, Wan Ilma; Ima-Nirwanaa, Soelaiman

    2017-07-06

    Risk factors for osteoporosis may vary according to different populations. We aimed to investigate the relationship between risk factors of osteoporosis and bone health indices determined via calcaneal quantitative ultrasound (QUS) in a group of Malaysian women aged 50 years or above. A cross-sectional study was performed on 344 Malaysian women recruited from a tertiary medical centre in Kuala Lumpur, Malaysia. They answered a self-administered questionnaire on their social-demographic details, medical history, lifestyle, and physical activity status. Their height was measured using a stadiometer, and their body composition estimated using a bioelectrical impedance device. Their bone health status was determined using a water-based calcaneal QUS device that generated three indices, namely speed of sound (SOS), broadband ultrasound attenuation (BUA), and stiffness index (SI). A T-score was computed from SI values using a reference database from a mainland Chinese population. Women with three or more lifetime pregnancies, who were underweight and not drinking coffee had a significantly lower BUA. Stepwise multiple linear regression showed that SOS was predicted by age alone, BUA and SI by years since menopause, body mass index (BMI), and number of lifetime pregnancies, and T-score by years since menopause and percentage of body fat. As a conclusion, suboptimal bone health in middle-aged and elderly Malaysian women as indicated by QUS is associated with old age, being underweight, having a high body fat percentage, and a high number of lifetime pregnancies. Women having several risk factors should be monitored more closely to protect their bones against accelerated bone loss.

  19. The Ability of Lumbar Spine DXA and Phalanx QUS to Detect Previous Fractures in Young Thalassemic Patients With Hypogonadism, Hypothyroidism, Diabetes, and Hepatitis-B: A 2-Year Subgroup Analysis From the Taranto Area of Apulia Region

    PubMed Central

    Neglia, Cosimo; Peluso, Angelo; di Rosa, Salvatore; Ferrarese, Antonio; Di Tanna, Gianluca; Caiaffa, Vincenzo; Benvenuto, Marco; Cozma, Alexandru; Chitano, Giovanna; Agnello, Nadia; Paladini, Daniele; Baldi, Nicola; Distante, Alessandro; Piscitelli, Prisco

    2013-01-01

    Background: Osteoporosis is a leading cause of morbidity in patients affected by β-thalassemia major or intermediate; we aimed to assess the association between demineralization observed in young thalassemic patients. Methods: A total of 88 patients with β-thalassemia were recruited at Microcitemia Center of Taranto Hospital under the Prevention Osteoporosis and Fractures research project from 2008 to 2010. All the patients were screened with both dual energy x-ray absorptiometry (DXA) and quantitative ultrasound (QUS). T score and Z score values were obtained for each subject. Results: The overall prevalence of demineralization was 84% with DXA and 70% with QUS, whereas normality was found in 16% of patients screened with DXA and in 30% of cases with QUS. Hypogonadism, hypothyroidism, diabetes mellitus, hepatitis-B, and the presence of previous fragility fractures were significantly associated with the demineralization status (lower T scores values) both with DXA and QUS. Conclusion: Our data confirm that DXA and QUS examinations are both useful for detecting bone demineralization in thalassemic patients. PMID:23652868

  20. Comparison study on the feasibility of photoacoustic power spectrum analysis in osteoporosis detection

    NASA Astrophysics Data System (ADS)

    He, Weizhen; Zhu, Yunhao; Feng, Ting; Wang, Huaideng; Yuan, Jie; Xu, Guan; Wang, Xueding; Carson, Paul

    2017-03-01

    Osteoporosis is a progressive bone disease which is characterized by a decrease in the bone mass and deterioration in bone micro-architecture. In theory, photoacoustic (PA) imaging analysis has potential to obtain the characteristics of the bone effectively. Previous study demonstrated that photoacoustic spectral analysis (PASA) method with the qualified parameter slope could provide an objective assessment of bone microstructure and deterioration. In this study, we tried to compare PASA method with the traditional quantitative ultrasound (QUS) method in osteoporosis assessment. Numerical simulations of both PA and ultrasound (US) signal are performed on computerized tomographic (CT) images of trabecular bone with different bone mineral densities (BMDs). Ex vivo experiments were conducted on porcine femur bone model of different BMDs. We compared the quantified parameter slope and the broadband ultrasound attenuation (BUA) coefficient from the PASA and QUS among different bone models, respectively. Both the simulation and ex vivo experiment results show that bone with low BMD has a higher slope value and lower BUA value. Our result demonstrated that the PASA method has the same efficacy with QUS in bone assessment, considering PA is a non-ionizing, non-invasive technique, PASA method holds potential for clinical diagnosis in osteoporosis and other bone diseases.

  1. Breast-Lesion Characterization using Textural Features of Quantitative Ultrasound Parametric Maps.

    PubMed

    Sadeghi-Naini, Ali; Suraweera, Harini; Tran, William Tyler; Hadizad, Farnoosh; Bruni, Giancarlo; Rastegar, Rashin Fallah; Curpen, Belinda; Czarnota, Gregory J

    2017-10-20

    This study evaluated, for the first time, the efficacy of quantitative ultrasound (QUS) spectral parametric maps in conjunction with texture-analysis techniques to differentiate non-invasively benign versus malignant breast lesions. Ultrasound B-mode images and radiofrequency data were acquired from 78 patients with suspicious breast lesions. QUS spectral-analysis techniques were performed on radiofrequency data to generate parametric maps of mid-band fit, spectral slope, spectral intercept, spacing among scatterers, average scatterer diameter, and average acoustic concentration. Texture-analysis techniques were applied to determine imaging biomarkers consisting of mean, contrast, correlation, energy and homogeneity features of parametric maps. These biomarkers were utilized to classify benign versus malignant lesions with leave-one-patient-out cross-validation. Results were compared to histopathology findings from biopsy specimens and radiology reports on MR images to evaluate the accuracy of technique. Among the biomarkers investigated, one mean-value parameter and 14 textural features demonstrated statistically significant differences (p < 0.05) between the two lesion types. A hybrid biomarker developed using a stepwise feature selection method could classify the legions with a sensitivity of 96%, a specificity of 84%, and an AUC of 0.97. Findings from this study pave the way towards adapting novel QUS-based frameworks for breast cancer screening and rapid diagnosis in clinic.

  2. Modifiable lifestyle factors affecting bone health using calcaneus quantitative ultrasound in adolescent girls.

    PubMed

    Robinson, M L; Winters-Stone, K; Gabel, K; Dolny, D

    2007-08-01

    One hundred and fourteen girls were measured for calcaneus QUS (stiffness index score), calcium intake, weight, and total hours spent in physical activity (moderate to high-impact activities and low to no-impact activities). Multiple regression analysis indicated that hours spent in moderate to high-impact activities, current calcium intake, and weight significantly predicted SI. To determine the influence of modifiable lifestyle factors on adolescent girls' bone health measured by calcaneus quantitative ultrasound (QUS). One hundred and fourteen girls, ages 14-18 (15.97 +/- .7), enrolled in high school physical education classes, were measured for calcaneus QUS (stiffness index score), height, weight, current calcium intake from 2-3 day food records, and estimated total hours spent in physical activity from kindergarten to present. Cumulative physical activity hours were separated into two classifications (according to their estimated strain from ground reaction force): moderate to high-impact activities and low to no-impact activities. Pearson correlations between stiffness index (SI) and age, height, weight, current calcium intake, and hours spent in moderate to high-impact versus low to no-impact activities indicated a positive relationships between SI and weight (r = .259, p = .005), current calcium intake (r = .286, p = .002), and hours spent in moderate to high-impact activities (r = .451, p < .001). Multiple regression between SI and the above independent variables indicated that collectively, hours spent in moderate to high-impact activities, current calcium intake, and weight (r (2) = .363, p = <.001) significantly predicted SI. Our data indicate that moderate to high-impact activities, current calcium intake, and weight positively influence bone properties of the calcaneus in adolescent girls.

  3. Epidemiological survey of the feasibility of broadband ultrasound attenuation measured using calcaneal quantitative ultrasound to predict the incidence of falls in the middle aged and elderly.

    PubMed

    Ou, Ling-Chun; Chang, Yin-Fan; Chang, Chin-Sung; Chiu, Ching-Ju; Chao, Ting-Hsing; Sun, Zih-Jie; Lin, Ruey-Mo; Wu, Chih-Hsing

    2017-01-09

    We investigated whether calcaneal quantitative ultrasound (QUS-C) is a feasible tool for predicting the incidence of falls. Prospective epidemiological cohort study. Community-dwelling people sampled in central western Taiwan. A cohort of community-dwelling people who were ≥40 years old (men: 524; women: 676) in 2009-2010. Follow-up questionnaires were completed by 186 men and 257 women in 2012. Structured questionnaires and broadband ultrasound attenuation (BUA) data were obtained in 2009-2010 using QUS-C, and follow-up surveys were done in a telephone interview in 2012. Using a binary logistic regression model, the risk factors associated with a new fall during follow-up were analysed with all significant variables from the bivariate comparisons and theoretically important variables. The incidence of falls was determined when the first new fall occurred during the follow-up period. The mean follow-up time was 2.83 years. The total incidence of falls was 28.0 per 1000 person-years for the ≥40 year old group (all participants), 23.3 per 1000 person-years for the 40-70 year old group, and 45.6 per 1000 person-years for the ≥70 year old group. Using multiple logistic regression models, the independent factors were current smoking, living alone, psychiatric drug usage and lower BUA (OR 0.93; 95% CI 0.88 to 0.99, p<0.05) in the ≥70 year old group. The incidence of falls was highest in the ≥70 year old group. Using QUS-C-derived BUA is feasible for predicting the incidence of falls in community-dwelling elderly people aged ≥70 years. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  4. Evaluating The Relation of Trace Fracture Inclination and Sound Pressure Level and Time-of-flight QUS Parameters Using Computational Simulation

    NASA Astrophysics Data System (ADS)

    Rosa, P. T.; Fontes-Pereira, A. J.; Matusin, D. P.; von Krüger, M. A.; Pereira, W. C. A.

    Bone healing is a complex process that stars after the occurrence of a fracture to restore bone optimal conditions. The gold standards for bone status evaluation are the dual energy X-ray absorptiometry and the computerized tomography. Ultrasound-based technologies have some advantages as compared to X-ray technologies: nonionizing radiation, portability and lower cost among others. Quantitative ultrasound (QUS) has been proposed in literature as a new tool to follow up the fracture healing process. QUS relates the ultrasound propagation with the bone tissue condition (normal or pathological), so, a change in wave propagation may indicate a variation in tissue properties. The most used QUS parameters are time-of-flight (TOF) and sound pressure level (SPL) of the first arriving signal (FAS). In this work, the FAS is the well known lateral wave. The aim of this work is to evaluate the relation of the TOF and SPL of the FAS and fracture inclination trace in two stages of bone healing using computational simulations. Four fracture geometries were used: normal and oblique with 30, 45 and 60 degrees. The TOF average values were 63.23 μs, 63.14 μs, 63.03 μs 62.94 μs for normal, 30, 45 and 60 degrees respectively and average SPL values were -3.83 dB -4.32 dB, -4.78 dB, -6.19 dB for normal, 30, 45 and 60 degrees respectively. The results show an inverse pattern between the amplitude and time-of-flight. These values seem to be sensible to fracture inclination trace, and in future, can be used to characterize it.

  5. A Cross-Sectional Study of the Association between Autoantibodies and Qualitative Ultrasound Index of Bone in an Elderly Sample without Clinical Autoimmune Disease

    PubMed Central

    McEvoy, Mark; Kelly, Brian; Agnew, Linda; Walker, Frederick R.; Boyle, Michael

    2018-01-01

    Bone loss is characteristic of the ageing process and a common complication of many autoimmune diseases. Research has highlighted a potential role of autoantibodies in pathologic bone loss. The confounding effects of immunomodulatory drugs make it difficult to establish the contribution of autoantibodies amongst autoimmune disease sufferers. We attempted to examine the relationship between autoantibodies and bone mass in a population of 2812 elderly participants without clinical autoimmune disease. Serum samples were assayed for a panel of autoantibodies (anti-nuclear, extractable nuclear antigen, anti-neutrophil cytoplasmic, thyroid peroxidase, tissue transglutaminase, anti-cardiolipin, rheumatoid factor, and cyclic citrullinated peptide). Bone mass was measured using quantitative ultrasound (QUS) of the calcaneus. The relationship between each autoantibody and bone mass was determined using linear regression models. Anti-nuclear autoantibodies were the most prevalent, positive in approximately 11%, and borderline in roughly 23% of our sample. They were also the only autoantibody observed to be significantly associated with QUS index in the univariate analysis (n = 1628; r = −0.20; 95% CI: −0.40–0.00; p = 0.046). However, statistical significance was lost after adjustment for various other potential confounders. None of the other autoantibodies was associated with QUS index in either univariate or multivariate analysis. We are limited by the cross-sectional nature of the study and the low prevalence of autoantibodies in our nonclinical sample. PMID:29854851

  6. The Lichfield bone study: the skeletal response to exercise in healthy young men

    PubMed Central

    Eleftheriou, Kyriacos I.; Kehoe, Anthony; James, Laurence E.; Payne, John R.; Skipworth, James R.; Puthucheary, Zudin A.; Drenos, Fotios; Pennell, Dudley J.; Loosemore, Mike; World, Michael; Humphries, Steve E.; Haddad, Fares S.; Montgomery, Hugh E.

    2012-01-01

    The skeletal response to short-term exercise training remains poorly described. We thus studied the lower limb skeletal response of 723 Caucasian male army recruits to a 12-wk training regime. Femoral bone volume was assessed using magnetic resonance imaging, bone ultrastructure by quantitative ultrasound (QUS), and bone mineral density (BMD) using dual-energy X-ray absorptiometry (DXA) of the hip. Left hip BMD increased with training (mean ± SD: 0.85 ± 3.24, 2.93 ± 4.85, and 1.89 ± 2.85% for femoral neck, Ward's area, and total hip, respectively; all P < 0.001). Left calcaneal broadband ultrasound attenuation rose 3.57 ± 0.5% (P < 0.001), and left and right femoral cortical volume by 1.09 ± 4.05 and 0.71 ± 4.05%, respectively (P = 0.0001 and 0.003), largely through the rise in periosteal volume (0.78 ± 3.14 and 0.59 ± 2.58% for right and left, respectively, P < 0.001) with endosteal volumes unchanged. Before training, DXA and QUS measures were independent of limb dominance. However, the dominant femur had higher periosteal (25,991.49 vs. 2,5572 mm3, P < 0.001), endosteal (6,063.33 vs. 5,983.12 mm3, P = 0.001), and cortical volumes (19,928 vs. 19,589.56 mm3, P = 0.001). Changes in DXA, QUS, and magnetic resonance imaging measures were independent of limb dominance. We show, for the first time, that short-term exercise training in young men is associated not only with a rise in human femoral BMD, but also in femoral bone volume, the latter largely through a periosteal response. PMID:22114178

  7. Discriminative capacity of calcaneal quantitative ultrasound and of osteoporosis and fracture risk factors in postmenopausal women with osteoporotic fractures.

    PubMed

    Hernández, J L; Marin, F; González-Macías, J; Díez-Pérez, A; Vila, J; Giménez, S; Galán, B; Arenas, M S; Suárez, F; Gayola, L; Guillén, G; Sagredo, T; Belenguer, R; Moron, A; Arriaza, E

    2004-04-01

    Bone fragility fractures constitute the principal complication of osteoporosis. The identification of individuals at high risk of sustaining osteoporotic fractures is important for implementing preventive measures. The purpose of this study is to analyze the discriminative capacity of a series of osteoporosis and fracture risk factors, and of calcaneal quantitative ultrasound (QUS), in a population of postmenopausal women with a history of osteoporotic fracture. A cross-sectional analysis was made of a cohort of 5195 women aged 65 or older (mean +/- SD: 72.3 +/- 5.4 years) seen in 58 primary care centers in Spain. A total of 1042 women (20.1%) presented with a history of osteoporotic fracture. Most fractures (93%) were non-vertebral. Age-adjusted odds ratios corresponding to each decrease in one standard deviation of the different QUS parameters ranged from 1.47 to 1.55 (P < 0.001) for fractures. The age-adjusted multivariate analysis yielded the following risk factors independently associated with a history of osteoporotic fracture: number of fertile years, a family history of fracture, falls in the previous year, a history of chronic obstructive airway disease, the use of antiarrhythmic drugs, and a low value for any of the QUS parameters. The area under the receiver operating characteristic curve of the best model was 0.656. In summary, a series of easily assessable osteoporotic fracture risk factors has been identified. QUS was shown to discriminate between women with and without a history of fracture, and constitutes a useful tool for assessing fracture risk. Various of the vertebral and hip fracture risk factors frequently cited in North American and British populations showed no discriminative capacity in our series--thus suggesting that such factors may not be fully applicable to our population and/or to the predominant type of fractures included in the present study.

  8. Constitutional bone impairment in Noonan syndrome.

    PubMed

    Baldassarre, Giuseppina; Mussa, Alessandro; Carli, Diana; Molinatto, Cristina; Ferrero, Giovanni Battista

    2017-03-01

    Noonan syndrome (NS) is an autosomal dominant trait characterized by genotypic and phenotypic variability. It belongs to the Ras/MAPK pathway disorders collectively named Rasopathies or neurocardiofaciocutaneous syndromes. Phenotype is characterized by short stature, congenital heart defects, facial dysmorphisms, skeletal and ectodermal anomalies, cryptorchidism, mild to moderate developmental delay/learning disability, and tumor predisposition. Short stature and skeletal dysmorphisms are almost constant and several studies hypothesized a role for the RAS pathway in regulating bone metabolism. In this study, we investigated the bone quality assessed by phalangeal quantitative ultrasound (QUS) and the metabolic bone profiling in a group of patients with NS, to determine whether low bone mineralization is primary or secondary to NS characteristics. Thirty-five patients were enrolled, including 20 males (55.6%) and 15 females (44.5%) aged 1.0-17.8 years (mean 6.4 ± 4.5, median 4.9 years). Each patients was submitted to clinical examination, estimation of the bone age, laboratory assays, and QUS assessment. Twenty-five percent of the cohort shows reduced QUS values for their age based on bone transmission time. Bone measurement were adjusted for multiple factors frequently observed in NS patients, such as growth retardation, delayed bone age, retarded puberty, and reduced body mass index, potentially affecting bone quality or its appraisal. In spite of the correction attempts, QUS measurement indicates that bone impairment persists in nearly 15% of the cohort studied. Our results indicate that bone impairment in NS is likely primary and not secondary to any of the phenotypic traits of NS, nor consistent with metabolic disturbances. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Tumour Vascular Shutdown and Cell Death Following Ultrasound-Microbubble Enhanced Radiation Therapy

    PubMed Central

    El Kaffas, Ahmed; Gangeh, Mehrdad J.; Farhat, Golnaz; Tran, William Tyler; Hashim, Amr; Giles, Anoja; Czarnota, Gregory J.

    2018-01-01

    High-dose radiotherapy effects are regulated by acute tumour endothelial cell death followed by rapid tumour cell death instead of canonical DNA break damage. Pre-treatment with ultrasound-stimulated microbubbles (USMB) has enabled higher-dose radiation effects with conventional radiation doses. This study aimed to confirm acute and longitudinal relationships between vascular shutdown and tumour cell death following radiation and USMB in a wild type murine fibrosarcoma model using in vivo imaging. Methods: Tumour xenografts were treated with single radiation doses of 2 or 8 Gy alone, or in combination with low-/high-concentration USMB. Vascular changes and tumour cell death were evaluated at 3, 24 and 72 h following therapy, using high-frequency 3D power Doppler and quantitative ultrasound spectroscopy (QUS) methods, respectively. Staining using in situ end labelling (ISEL) and cluster of differentiation 31 (CD31) of tumour sections were used to assess cell death and vascular distributions, respectively, as gold standard histological methods. Results: Results indicated a decrease in the power Doppler signal of up to 50%, and an increase of more than 5 dBr in cell-death linked QUS parameters at 24 h for tumours treated with combined USMB and radiotherapy. Power Doppler and quantitative ultrasound results were significantly correlated with CD31 and ISEL staining results (p < 0.05), respectively. Moreover, a relationship was found between ultrasound power Doppler and QUS results, as well as between micro-vascular densities (CD31) and the percentage of cell death (ISEL) (R2 0.5-0.9). Conclusions: This study demonstrated, for the first time, the link between acute vascular shutdown and acute tumour cell death using in vivo longitudinal imaging, contributing to the development of theoretical models that incorporate vascular effects in radiation therapy. Overall, this study paves the way for theranostic use of ultrasound in radiation oncology as a diagnostic modality to characterize vascular and tumour response effects simultaneously, as well as a therapeutic modality to complement radiation therapy. PMID:29290810

  10. Heel quantitative ultrasound in HIV-infected patients: a cross-sectional study.

    PubMed

    Pinzone, Marilia Rita; Castronuovo, Daniela; Di Gregorio, Adriana; Celesia, Benedetto Maurizio; Gussio, Maria; Borderi, Marco; Maggi, Paolo; Santoro, Carmen Rita; Madeddu, Giordano; Cacopardo, Bruno; Nunnari, Giuseppe

    2016-04-01

    HIV infection has been associated with increased risk of osteoporosis and fragility fractures. Dual-energy X-ray absorptiometry (DXA) is the reference standard to assess bone mineral density (BMD); however, it is not easily accessible in several settings. Heel Quantitative ultrasound (QUS) is a radiation-free, easy-to-perform technique, which may help reducing the need for DXA. In this cross-sectional study, we used heel QUS (Hologic Sahara(®)) to assess bone status in a cohort of HIV-infected patients. A QUS stiffness index (QUI) threshold >83 was used to identify patients with a low likelihood of osteoporosis. Moreover, we compared QUS results with those of 36 sex- and age-matched HIV-negative controls. 244 HIV-positive patients were enrolled. Median heel QUI value was 83 (73-96) vs. 93 (IQR 84-104) in the control group (p = 0.04). 110 patients (45 %) had a QUI value ≤83. Risk factors for low QUI values were age (OR 1.04 per year, 95 % CI 1.01-1.07, p = 0.004), current use of protease inhibitors (OR 1.85, CI 1.03-3.35, p = 0.039), current use of tenofovir (OR 2.28, CI 1.22-4.27, p = 0.009) and the number of risk factors for secondary osteoporosis (OR 1.46, CI 1.09-1.95, p = 0.01). Of note, QUI values were significantly correlated with FRAX score (r = -0.22, p = 0.004). According to EACS guidelines, 45 % of patients had risk factors for osteoporosis which make them eligible for DXA. By using QUS, we may avoid DXA in around half of them. As HIV-positive patients are living longer, the prevalence of osteoporosis is expected to increase over time. Appropriate screening, prevention and treatment are crucial to preserve bone health in this population. The use of screening techniques, such as heel QUS, may help reducing the need for DXA. Further studies are needed to define the diagnostic accuracy of this promising technique in the setting of HIV.

  11. Quantitative ultrasound imaging for monitoring in situ high-intensity focused ultrasound exposure.

    PubMed

    Ghoshal, Goutam; Kemmerer, Jeremy P; Karunakaran, Chandra; Abuhabsah, Rami; Miller, Rita J; Sarwate, Sandhya; Oelze, Michael L

    2014-10-01

    Quantitative ultrasound (QUS) imaging is hypothesized to map temperature elevations induced in tissue with high spatial and temporal resolution. To test this hypothesis, QUS techniques were examined to monitor high-intensity focused ultrasound (HIFU) exposure of tissue. In situ experiments were conducted on mammary adenocarcinoma tumors grown in rats and lesions were formed using a HIFU system. A thermocouple was inserted into the tumor to provide estimates of temperature at one location. Backscattered time-domain waveforms from the tissue during exposure were recorded using a clinical ultrasonic imaging system. Backscatter coefficients were estimated using a reference phantom technique. Two parameters were estimated from the backscatter coefficient (effective scatterer diameter (ESD) and effective acoustic concentration (EAC). The changes in the average parameters in the regions corresponding to the HIFU focus over time were correlated to the temperature readings from the thermocouple. The changes in the EAC parameter were consistently correlated to temperature during both heating and cooling of the tumors. The changes in the ESD did not have a consistent trend with temperature. The mean ESD and EAC before exposure were 120 ± 16 μm and 32 ± 3 dB/cm3, respectively, and changed to 144 ± 9 μm and 51 ± 7 dB/cm3, respectively, just before the last HIFU pulse was delivered to the tissue. After the tissue cooled down to 37 °C, the mean ESD and EAC were 126 ± 8 μm and 35 ± 4 dB/cm3, respectively. Peak temperature in the range of 50-60 °C was recorded by a thermocouple placed just behind the tumor. These results suggest that QUS techniques have the potential to be used for non-invasive monitoring of HIFU exposure. © The Author(s) 2014.

  12. Competitive Swimming and Handball Participation Have a Positive Influence on Bone Parameters as Assessed by Phalangeal Quantitative Ultrasound in Female Adolescents.

    PubMed

    Krahenbuhl, Tathyane; Gonçalves, Ezequiel M; Guimarães, Roseane Fatima; Guerra-Junior, Gil; Barros-Filho, Antonio

    2016-08-01

    To examine the influence of participation in competitive sports on bone parameters, as assessed by quantitative ultrasound (QUS) of the phalanges in female adolescents. Female adolescents (n = 329, 13.0-16.7 years old) were classified into handball (n = 55), swimming (n = 49) and control (n = 225) groups. QUS was used to evaluate the amplitude-dependent speed of sound (AD-SoS) and bone transmission time (BTT), and their z-scores (zAD-SoS and zBTT) were calculated. Anthropometric measurements and Tanner's stages were also obtained. Swimmers had higher AD-SoS (2089 ± 43.8 m/s) and zAD-SoS (0.47 ± 0.8) than controls (2060 ± 54.0 m/s; 0.09 ± 1.0; both p ≤ .05) and both groups of athletes had higher BTT (handball: 1.44 ± 0.2 μs; swimming: 1.45 ± 0.2) and zBTT (handball: 0.71 ± 0.8; swimming: 0.72 ± 1.1) than the control group (1.37 ± 0.2 μs; 0.32 ± 0.9; all p ≤ .05). Swimmers had a higher total training time (TTT: 52.5 ± 27.6 months) and frequency of training per week (FT: 5.38 ± 0.1) compared with the handball group (35.9 ± 18.1; 3.32 ± 0.8; p ≤ .05). zAD-SoS, BTT and zBTT were positively correlated with FT, while BTT and zBTT showed a positive correlation with TTT. Sports practice influences bone parameters and higher bone parameter values are related to the amount of time and frequency of weekly training. The differences in phalangeal QUS parameters are independent of the impact of weight-bearing exercise.

  13. Calcaneal Quantitative Ultrasound Indicates Reduced Bone Status Among Physically Active Adult Forager-Horticulturalists.

    PubMed

    Stieglitz, Jonathan; Madimenos, Felicia; Kaplan, Hillard; Gurven, Michael

    2016-03-01

    Sedentary lifestyle contributes to osteoporosis and fragility fracture risks among modern humans, but whether such risks are prevalent in physically active preindustrial societies with lower life expectancies is unclear. Osteoporosis should be readily observable in preindustrial societies if it was regularly experienced over human history. In this study of 142 older adult Tsimane forager-horticulturalists (mean age ± SD, 62.1 ± 8.6 years; range, 50 to 85 years; 51% female) we used calcaneal quantitative ultrasonography (qUS) to assess bone status, document prevalence of adults with reduced bone status, and identify factors (demographic, anthropometric, immunological, kinesthetic) associated with reduced bone status. Men (23%) are as likely as women (25%) to have reduced bone status, although age-related decline in qUS parameters is attenuated for men. Adiposity and fat-free mass positively co-vary with qUS parameters for women but not men. Leukocyte count is inversely associated with qUS parameters controlling for potential confounders; leukocyte count is positively correlated within adults over time, and adults with persistently low counts have higher adjusted qUS parameters (6% to 8%) than adults with a high count. Reduced bone status characteristic of osteoporosis is common among active Tsimane with minimal exposure to osteoporosis risk factors found in industrialized societies, but with energetic constraints and high pathogen burden. © 2015 American Society for Bone and Mineral Research.

  14. PROPERTIES OF PHANTOM TISSUE-LIKE POLYMETHYLPENTENE IN THE FREQUENCY RANGE 20–70 MHZ

    PubMed Central

    Madsen, Ernest L; Deaner, Meagan E; Mehi, James

    2011-01-01

    Quantitative ultrasound (QUS) has been employed to characterize soft tissues at ordinary abdominal ultrasound frequencies (2–15 MHz) and is beginning application at high frequencies (20–70 MHz). For example, backscatter and attenuation coefficients can be estimated in vivo using a reference phantom. At high frequencies it is crucial that reverberations do not compromise the measurements. Such reverberations can occur between the phantom's scanning window and transducer components as well as within the scanning window between its surfaces. Transducers are designed to minimize reverberations between the transducer and soft tissue. Thus, the acoustic impedance of a phantom scanning window should be tissue-like; polymethylpentene (TPX) is commonly used because of its tissue-like acoustic impedance. For QUS it is also crucial to correct for the transmission coefficient of the scanning window. Computation of the latter requires knowledge of the ultrasonic properties, viz, density, speed and attenuation coefficients. This work reports values for the ultrasonic properties of two versions of TPX over the high frequency range. One form (TPX film) is used as a scanning window on high frequency phantoms, and at 40 MHz and 22°C was found to have an attenuation coefficient of 120 dB/cm and a propagation speed of 2093 m/s. PMID:21723451

  15. Quantitative calcaneal ultrasound parameters and bone mineral density at final height in girls treated with depot gonadotrophin-releasing hormone agonist for central precocious puberty or idiopathic short stature.

    PubMed

    Kapteijns-van Kordelaar, Simone; Noordam, Kees; Otten, Barto; van den Bergh, Joop

    2003-11-01

    To evaluate the effect of gonadotrophin-releasing hormone (GnRH) agonist treatment on bone quality at final height, we studied girls with central precocious puberty (CPP) and with idiopathic short stature (ISS). A total of 25 Caucasian girls were included: group A (n=14) with idiopathic CPP (mean age at start 7.4 years) and group B (n=11) with ISS (mean age at start 11.7 years). Treatment duration was 3.8 and 1.7 years respectively. The quantitative ultrasound parameters (QUS) broadband ultrasound attenuation (BUA) and speed of sound (SOS) were measured at the calcaneus (UBIS 3000 device). Lumbar spine bone mineral density (BMD; L2-L4) was measured by dual energy X-ray absorptiometry (DXA) (Hologic QDR1000). Measurements were performed at final height and expressed as Z-scores corrected for bone age. Mean Z-scores of QUS parameters, areal BMD and volumetric BMD (BMDvol) were above -1 in both groups (group A: BUA Z-score -0.21, SOS Z-score -0.29, BMD Z-score 0.02, BMDvol Z-score 0.05, group B: BUA Z-score -0.93, SOS Z-score -0.40, BMD Z-score -0.86, BMDvol Z-score -0.68), although mean Z-scores of BUA and areal BMD in group B were significantly different from zero (P=0.03 and P=0.02 respectively). Mean Z-score BMDvol was not significantly different from zero (P=0.05), we found no significant difference between the groups for BMDvol (P=0.13). Although quantitative ultrasound parameters parameters and bone mineral density were normal in girls with central precocious puberty at final height after gonadotrophin-releasing hormone agonist treatment, mean Z-score for broadband ultrasound attenuation and areal bone mineral density were significantly different from zero and mean Z-score for volumetric bone mineral density was (just) not significantly different from zero in idiopathic short stature girls with normal puberty treated with gonadotrophin-releasing hormone agonists. Therefore we cannot say that this treatment is safe in these girls with regard to bone health.

  16. Calcaneal quantitative ultrasound value for middle-aged and elderly Malaysian Chinese men and its association with age and body anthropometry.

    PubMed

    Chin, Kok-Yong; Ima-Nirwana, Soelaiman; Isa Naina, Mohamed; Norazlina, Mohamed; Ahmad Nazrun, Shuid; Norliza, Muhammad; Faizah, Othman; Farihah, H Suhaimi; Elvy Suhana, Mohd Ramli; Wan Zurinah, Wan Ngah

    2012-01-01

    Quantitative ultrasound (QUS) is a relatively easy, reliable, and safe method for bone status assessment, but reference data for Asian males remain scarce. Our study aimed to determine the values for one QUS parameter, the speed of sound (SOS) at the calcaneus, in Malaysian Chinese men and to determine the association between the SOS and several demographic characteristics, such as age, weight, height, and body mass index. Three hundred forty-eight Malaysian Chinese men aged 40 yr and older were recruited, and their calcaneal QUS value was determined using the CM-200 densitometer (Furuno Electric, Nishinomiya City, Japan). The results indicated a significant correlation between SOS and age, and multiple stepwise regression analysis indicated that age and height were important predictors of SOS. A significant reduction in SOS value was observed when men 60 yr and older were compared with men aged 40-49 yr. Compared with the reference data for Japanese males, Chinese men in Malaysia showed higher SOS values across all the age groups studied. In conclusion, there is an age-related decrease in SOS values in Malaysian Chinese men, and the SOS values established in this study can be used as a reference for future studies. Copyright © 2012 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  17. Brazilian Pediatric Reference Data for Quantitative Ultrasound of Phalanges According to Gender, Age, Height and Weight

    PubMed Central

    de Carvalho, Wellington Roberto Gomes; de Moraes, Anderson Marques; Roman, Everton Paulo; Santos, Keila Donassolo; Medaets, Pedro Augusto Rodrigues; Veiga-Junior, Nélio Neves; Coelho, Adrielle Caroline Lace de Moraes; Krahenbühl, Tathyane; Sewaybricker, Leticia Esposito; Barros-Filho, Antonio de Azevedo; Morcillo, Andre Moreno; Guerra-Júnior, Gil

    2015-01-01

    Aims To establish normative data for phalangeal quantitative ultrasound (QUS) measures in Brazilian students. Methods The sample was composed of 6870 students (3688 females and 3182 males), aged 6 to 17 years. The bone status parameter, Amplitude Dependent Speed of Sound (AD-SoS) was assessed by QUS of the phalanges using DBM Sonic BP (IGEA, Carpi, Italy) equipment. Skin color was obtained by self-evaluation. The LMS method was used to derive smoothed percentiles reference charts for AD-SoS according to sex, age, height and weight and to generate the L, M, and S parameters. Results Girls showed higher AD-SoS values than boys in the age groups 7–16 (p<0.001). There were no differences on AD-SoS Z-scores according to skin color. In both sexes, the obese group showed lower values of AD-SoS Z-scores compared with subjects classified as thin or normal weight. Age (r2 = 0.48) and height (r2 = 0.35) were independent predictors of AD-SoS in females and males, respectively. Conclusion AD-SoS values in Brazilian children and adolescents were influenced by sex, age and weight status, but not by skin color. Our normative data could be used for monitoring AD-SoS in children or adolescents aged 6–17 years. PMID:26043082

  18. A frequent regulatory variant of the estrogen-related receptor alpha gene associated with BMD in French-Canadian premenopausal women.

    PubMed

    Laflamme, Nathalie; Giroux, Sylvie; Loredo-Osti, J Concepción; Elfassihi, Latifa; Dodin, Sylvie; Blanchet, Claudine; Morgan, Kenneth; Giguère, Vincent; Rousseau, François

    2005-06-01

    Genes are important BMD determinants. We studied the association of an ESRRA gene functional variant with BMD in 1335 premenopausal women. The ESRRA genotype was an independent predictor of L2-L4 BMD, with an effect similar to smoking and equivalent to a 10-kg difference in weight. Several genetic polymorphisms have been associated with osteoporosis or osteoporosis fractures, but no functional effect has been shown for most of these gene variants. Because functional studies have implicated estrogen-related receptor alpha (ESRRA) in bone metabolism, we evaluated whether a recently described regulatory variant of the ESRRA gene is associated with lumbar and hip BMD as measured by DXA and with heel bone parameters as measured by quantitative ultrasound (QUS). Heel bone parameters were measured by right calcaneal QUS in 1335 healthy French-Canadian premenopausal women, and one-half of these women also had their BMD evaluated at two sites: femoral neck and lumbar spine (L2-L4) by DXA. All bone measures were tested separately for association with the ESRRA genotype by analysis of covariance. The significance of the ESRRA contribution to the model was also assessed by two different permutation tests. A statistically significant association between ESRRA genotype and lumbar spine BMD was observed: women carrying the long ESRRA genotype had a 3.9% (0.045 g/cm2) higher lumbar spine BMD than those carrying the short ESRRA genotype (p = 0.004), independently of other risk factors measured. This effect of ESRRA genotype is similar to the effect of smoking and equivalent to a 10-kg difference in weight. This association was confirmed by permutation tests (p = 0.004). The same trend was observed for femoral neck BMD (2.6%, p = 0.07). However, no association was observed between ESRRA and QUS heel bone measures. These results support the genetic influence of this ESRRA regulatory variant on BMD.

  19. The ESR1 (6q25) Locus Is Associated with Calcaneal Ultrasound Parameters and Radial Volumetric Bone Mineral Density in European Men

    PubMed Central

    Thomson, Wendy; Boonen, Steven; Borghs, Herman; Vanderschueren, Dirk; Gielen, Evelien; Huhtaniemi, Ilpo T.; Adams, Judith E.; Ward, Kate A.; Bartfai, Gyorgy; Casanueva, Felipe; Finn, Joseph D.; Forti, Gianni; Giwercman, Aleksander; Han, Thang S.; Kula, Krzysztof; Labrie, Fernand; Lean, Michael E. J.; Pendleton, Neil; Punab, Margus; Wu, Frederick C. W.; O'Neill, Terence W.

    2011-01-01

    Purpose Genome-wide association studies (GWAS) have identified 6q25, which incorporates the oestrogen receptor α gene (ESR1), as a quantitative trait locus for areal bone mineral density (BMDa) of the hip and lumbar spine. The aim of this study was to determine the influence of this locus on other bone health outcomes; calcaneal ultrasound (QUS) parameters, radial peripheral quantitative computed tomography (pQCT) parameters and markers of bone turnover in a population sample of European men. Methods Eight single nucleotide polymorphisms (SNP) in the 6q25 locus were genotyped in men aged 40–79 years from 7 European countries, participating in the European Male Ageing Study (EMAS). The associations between SNPs and measured bone parameters were tested under an additive genetic model adjusting for centre using linear regression. Results 2468 men, mean (SD) aged 59.9 (11.1) years had QUS measurements performed and bone turnover marker levels measured. A subset of 628 men had DXA and pQCT measurements. Multiple independent SNPs showed significant associations with BMD using all three measurement techniques. Most notably, rs1999805 was associated with a 0.10 SD (95%CI 0.05, 0.16; p = 0.0001) lower estimated BMD at the calcaneus, a 0.14 SD (95%CI 0.05, 0.24; p = 0.004) lower total hip BMDa, a 0.12 SD (95%CI 0.02, 0.23; p = 0.026) lower lumbar spine BMDa and a 0.18 SD (95%CI 0.06, 0.29; p = 0.003) lower trabecular BMD at the distal radius for each copy of the minor allele. There was no association with serum levels of bone turnover markers and a single SNP which was associated with cortical density was also associated with cortical BMC and thickness. Conclusions Our data replicate previous associations found between SNPs in the 6q25 locus and BMDa at the hip and extend these data to include associations with calcaneal ultrasound parameters and radial volumetric BMD. PMID:21760950

  20. Bone health measured using quantitative ultrasonography in adult males with muscular dystrophy

    PubMed Central

    Morse, C.I.; Smith, J.; Denny, A.; Tweedale, J.; Searle, N.D.; Winwood, K.; Onambele-Pearson, G.L.

    2016-01-01

    Objectives: To compare muscle and bone health markers in adult males (aged 20-59 yrs) with and without muscular dystrophy (MD). Methods: Participants included 11 Fascioscapulohumeral (FSH), 11 Becker’s (Be), 9 limb girdle (LG), 11 Duchenne (DMD), and 14 non-dystrophic controls (CTRL). Physical activity was assessed using Bone (BPAQ) and disability specific (PASIPD) questionnaires. Bone QUS provided T- and Z scores from the Distal Radius (DR) and Mid-shaft tibia (MST). Tibialis anterior cross sectional area (TAACSA) was measured using B-mode ultrasound. Grip strength was measured in all but DMD. Results: Physical activity was lower in DMD, FSH and BeMD than CTRL (P<0.05), and lower in DMD than other MDs (P<0.01). T and Z scores were lower in DMD and Be than CTRL (DR, P<0.05); and lower in DMD than CTRL, LG, and FSH (MST, P<0.01). TAACSA and grip strength was 35-59% and 50-58% smaller in MD than CTRL, respectively (P<0.01). Within MD, BPAQ correlated with bone QUS measures (r=0.42-0.38, P<0.01). PASIPD correlated with grip strength (r=0.65, P<0.01) and TAACSA (r=0.46, P<0.01). Conclusion: Muscle size, strength, and bone health was lower in adult males with MD compared to adult males without MD, the extent of this is partially determined by physical activity. PMID:27973386

  1. Bone health measured using quantitative ultrasonography in adult males with muscular dystrophy.

    PubMed

    Morse, C I; Smith, J; Denny, A; Tweedale, J; Searle, N D; Winwood, K; Onambele-Pearson, G L

    2016-12-14

    To compare muscle and bone health markers in adult males (aged 20-59 yrs) with and without muscular dystrophy (MD). Participants included 11 Fascioscapulohumeral (FSH), 11 Becker's (Be), 9 limb girdle (LG), 11 Duchenne (DMD), and 14 non-dystrophic controls (CTRL). Physical activity was assessed using Bone (BPAQ) and disability specific (PASIPD) questionnaires. Bone QUS provided T- and Z scores from the Distal Radius (DR) and Mid-shaft tibia (MST). Tibialis anterior cross sectional area (TA ACSA ) was measured using B-mode ultrasound. Grip strength was measured in all but DMD. Physical activity was lower in DMD, FSH and BeMD than CTRL (P<0.05), and lower in DMD than other MDs (P<0.01). T and Z scores were lower in DMD and Be than CTRL (DR, P<0.05); and lower in DMD than CTRL, LG, and FSH (MST, P<0.01). TA ACSA and grip strength was 35-59% and 50-58% smaller in MD than CTRL, respectively (P<0.01). Within MD, BPAQ correlated with bone QUS measures (r=0.42-0.38, P<0.01). PASIPD correlated with grip strength (r=0.65, P<0.01) and TA ACSA (r=0.46, P<0.01). Muscle size, strength, and bone health was lower in adult males with MD compared to adult males without MD, the extent of this is partially determined by physical activity.

  2. Genome-wide association study meta-analysis for quantitative ultrasound parameters of bone identifies five novel loci for broadband ultrasound attenuation.

    PubMed

    Mullin, Benjamin H; Zhao, Jing Hua; Brown, Suzanne J; Perry, John R B; Luan, Jian'an; Zheng, Hou-Feng; Langenberg, Claudia; Dudbridge, Frank; Scott, Robert; Wareham, Nick J; Spector, Tim D; Richards, J Brent; Walsh, John P; Wilson, Scott G

    2017-07-15

    Osteoporosis is a common and debilitating bone disease that is characterised by low bone mineral density, typically assessed using dual-energy X-ray absorptiometry. Quantitative ultrasound (QUS), commonly utilising the two parameters velocity of sound (VOS) and broadband ultrasound attenuation (BUA), is an alternative technology used to assess bone properties at peripheral skeletal sites. The genetic influence on the bone qualities assessed by QUS remains an under-studied area. We performed a comprehensive genome-wide association study (GWAS) including low-frequency variants (minor allele frequency ≥0.005) for BUA and VOS using a discovery population of individuals with whole-genome sequence (WGS) data from the UK10K project (n = 1268). These results were then meta-analysed with those from two deeply imputed GWAS replication cohorts (n = 1610 and 13 749). In the gender-combined analysis, we identified eight loci associated with BUA and five with VOS at the genome-wide significance level, including three novel loci for BUA at 8p23.1 (PPP1R3B), 11q23.1 (LOC387810) and 22q11.21 (SEPT5) (P = 2.4 × 10-8 to 1.6 × 10-9). Gene-based association testing in the gender-combined dataset revealed eight loci associated with BUA and seven with VOS after correction for multiple testing, with one novel locus for BUA at FAM167A (8p23.1) (P = 1.4 × 10-6). An additional novel locus for BUA was seen in the male-specific analysis at DEFB103B (8p23.1) (P = 1.8 × 10-6). Fracture analysis revealed significant associations between variation at the WNT16 and RSPO3 loci and fracture risk (P = 0.004 and 4.0 × 10-4, respectively). In conclusion, by performing a large GWAS meta-analysis for QUS parameters of bone using a combination of WGS and deeply imputed genotype data, we have identified five novel genetic loci associated with BUA. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Association Between Geographic Elevation, Bone Status, and Exercise Habits: The Shimane CoHRE Study.

    PubMed

    Takeda, Miwako; Hamano, Tsuyoshi; Kohno, Kunie; Yano, Shozo; Shiwaku, Kuninori; Nabika, Toru

    2015-06-30

    In recent years, there has been growing interest in the association between the residential environment and health. The association between residential environment (i.e., geographic elevation) and bone status is unknown. Furthermore, these associations could differ by exercise habits due to the chronically greater daily activity caused by steep slopes in mountainous areas. The aim of this study was to test whether the association between bone status of elderly people measured using quantitative ultrasound (QUS) and elevation varied according to the exercise habits in a mountainous area population. Data were collected from a cross-sectional study conducted during 2012-2013. QUS value was expressed as a proportion of the young adult mean (%YAM), with higher scores donating better bone status. After excluding subjects with missing data, we analyzed the data for 321 men and 500 women. Our results indicate that %YAM was not associated with elevation among men, or among women with exercise habits. However, elevation was associated with %YAM among women without exercise habits. Our results highlight the importance of considering residential environment and exercise habits when establishing promotion strategies to maintain bone status of the elderly people who live in rural mountainous areas.

  4. Ultrasound capsule endoscopy: sounding out the future

    PubMed Central

    Stewart, Fraser; Lay, Holly; Cummins, Gerard; Newton, Ian P.; Desmulliez, Marc P. Y.; Steele, Robert J. C.; Näthke, Inke; Cochran, Sandy

    2017-01-01

    Video capsule endoscopy (VCE) has been of immense benefit in the diagnosis and management of gastrointestinal (GI) disorders since its introduction in 2001. However, it suffers from a number of well recognized deficiencies. Amongst these is the limited capability of white light imaging, which is restricted to analysis of the mucosal surface. Current capsule endoscopes are dependent on visual manifestation of disease and limited in regards to transmural imaging and detection of deeper pathology. Ultrasound capsule endoscopy (USCE) has the potential to overcome surface only imaging and provide transmural scans of the GI tract. The integration of high frequency microultrasound (µUS) into capsule endoscopy would allow high resolution transmural images and provide a means of both qualitative and quantitative assessment of the bowel wall. Quantitative ultrasound (QUS) can provide data in an objective and measurable manner, potentially reducing lengthy interpretation times by incorporation into an automated diagnostic process. The research described here is focused on the development of USCE and other complementary diagnostic and therapeutic modalities. Presently investigations have entered a preclinical phase with laboratory investigations running concurrently. PMID:28567381

  5. Measurement of bone adjacent to tibial shaft fracture.

    PubMed

    Findlay, S C; Eastell, R; Ingle, B M

    2002-12-01

    Delayed union and non-union are common complications after fracture of the tibial shaft. Response of the surrounding bone as a fracture heals could be monitored using techniques currently used in the study of osteoporosis. The aims of our study were to: (1) evaluate the decrement in bone measurements made close to the fracture using dual-energy X-ray absorptiometry (DXA), quantitative ultrasound (QUS) and peripheral quantitative computed tomography (pQCT); (2) compare values for fractured versus non-fractured leg to determine the duration of decrement in bone measurements; and (3) calculate short-term precision in DXA, QUS and pQCT in order to calculate the ratio of decrement to precision (response ratio, RR) to determine the optimal test for monitoring changes after tibial fracture. The biggest decrement in bone measurements at the ipsilateral limb of 28 patients with tibial shaft fracture was observed at the pQCT tibial trabecular sites (distal = 19%, p<0.0001; proximal 5% = 21%, p<0.001; proximal 10% = 28%, p<0.001) and the ultradistal tibia/fibula measured by DXA (19%, p<0.0001). When comparing Z-scores, the magnitude of decrements at the ipsilateral limb was bigger for variables measured directly at the tibia, both proximal and distal to the fracture. The magnitude of the decrement in ultradistal tibia/fibula BMD decreased as the time since fracture increased ( r = 0.55). When response ratios are considered, pQCT measurements at the distal tibia (RR 6-8) and proximal 5% and 10% trabecular sites (RR 5 and 9 respectively) were found to be the most sensitive to change. Therefore, pQCT of the trabecular regions of either the proximal or distal tibia should prove the most sensitive measurement for monitoring changes in bone adjacent to a tibial shaft fracture.

  6. Bone health status and lipid profile among post-menopausal malay women in Cheras, Kuala Lumpur.

    PubMed

    Hasnah, H; Amin, I; Suzana, S

    2012-08-01

    A cross-sectional study was conducted to determine bone health status and nutrient intakes among post-menopausal women residing in low cost houses in Cheras, Kuala Lumpur. A total of 125 subjects aged 60 +/- 4 years who had attained menopause at age 50 +/- 5 years participated in this study. Subjects' weight and height were measured and calculated for body mass index (BMI). They were also assessed for bone health status using the Quantitative Ultrasound (QUS). Nutrient intake was assessed using a dietary history Questionnaire. Fasting serum lipid and blood pressure measurements were also taken. The majority of the subjects were overweight and obese (80%) based on BMI status. Calcaneal measurements using the QUS indicated that while 57% or the subjects had normal bone mineral density, 37% were osteopenic and 6% osteoporotic. Calcium intake of the subjects was 505 +/- 263 mg /day, which is only 50% of the Malaysian Recommended Nutrient Intake for calcium (1000 mg/d). About 74% of the subjects were hypercholesterolemic and 58% were hypertriglyceridemic. Two-thirds reported that they were taking medication for hypertension, diabetes mellitus and heart disease. The results showed low health and nutritional status among post-menopausal women living in low-cost flats in Kuala Lumpur. They have low bone mass which may be due to their predominantly non-milk based diets which places them at high risk of hip fractures. Apart from milk, other food sources of calcium, including soya bean products such as 'tempeh' and healthy ways of cooking should be recommended to older people.

  7. Bone health of the Ovahimba people of north-western Namibia in the context of urbanization and a change of the sociocultural environment.

    PubMed

    Wilhelm, Anneke; Hadji, Peyman; Münzel, Mark; Daniel, Hanna; Flache, Stephan; Nyarango, Peter; Kann, Peter Herbert

    2017-04-01

    The prevalence of osteoporosis in Sub-Saharan African (SSA) countries is low, however, as urbanization takes root, it is predicted that bone health will decrease dramatically. The bone health of the semi-nomadic Ovahimba people of Namibia was investigated in the context of urbanization and changes of the sociocultural environment. Furthermore, data on bone health in SSA countries is scarce; there exists no ethnic-specific reference group for people of black origin. Included in the study were 98 urban and rural living Ovahimba people. Quantitative ultrasound was performed, sunrise/sunset saliva cortisol concentrations was measured and a questionnaire was conducted. There was no significant difference in the QUS parameters, however, after adjustment for confounders, SOS and SI differed significantly. The saliva cortisol concentrations differed significantly. After adjustment for confounders, saliva cortisol was significantly negatively correlated to SOS (r= -0.27, p = 0.021) giving an indication for an association between cortisol concentration and QUS parameters. The urban group furthermore showed a nutritional transition. Even though the bone health of the Ovahimba is very good, first signs of the adverse effects of urbanization were detected. Beside changes of lifestyle, this may be attributed to an increased cortisol exposure of the Ovahimba people living in an urban environment due to an increased psychosocial stress.

  8. Skeletal robustness and bone strength as measured by anthropometry and ultrasonography as a function of physical activity in young adults.

    PubMed

    Scheffler, Christiane; Gniosdorz, Birgit; Staub, Kaspar; Rühli, Frank

    2014-01-01

    During the last 10 years, skeletal robustness in children has generally decreased. The reasons for this phenomenon, as well as its outcomes, are undetermined so far. The present study explores the association between anthropometric skeletal measurements, bone quality measurements, and physical activity in young adults. 118 German young men (N = 68; 19-25 years old) and women (N = 50; 19-24 years old) were investigated by anthropometric methods (i.e., height, weight, shoulder, elbow breadth, and pelvic breadth) and quantitative ultrasound measurement (QUS). Strength and stability of Os calcis have been determined by speed of sound (in m/s) and broadband ultrasound attenuation (in dB/Mhz); individual physical activity was analyzed by a pedometer and by questionnaire. The results show a correlation between sports hours per week and bone quality index in males. But no correlation exists between anthropometric data and QUSs for either sexes, as well as no correlation between total steps per day and internal bone quality or external bone dimensions. These results are discussed in the context of generally decreasing physical activity, the outcomes of prevention programs as well as evolutionary adaptation of human phenotypic plasticity in a changing environment. Copyright © 2014 Wiley Periodicals, Inc.

  9. Psychometric properties of the Malay version of the Osteoporosis Health Belief Scale (OHBS-M) among Type 2 diabetic patients.

    PubMed

    Abdulameer, Shaymaa A; Syed Sulaiman, Syed A; Hassali, Mohamed A; Sahib, Mohanad N; Subramaniam, Karuppiah

    2014-01-01

    The aims of this study were to translate and examine the psychometric properties of the Malaysian version of the Osteoporosis Health Belief Scale (OHBS-M) among type 2 diabetes patients (T2DM) and to assess the correlation between osteoporosis knowledge, health belief and self-efficacy scales, as well as assess the osteoporosis risk in the sample population using quantitative ultrasound measurement (QUS). A standard 'forward-backward' procedure was used to translate OHBS into the Malay language, which was then validated with a convenience sample of 250 T2DM. Bone mineral density (BMD) measurements were carried out using QUS at the calcaneus. The mean score of OHBS-M was 158.31 ± 20.80. The Fleiss' kappa, content validity ratio range and content validity index were 0.99, 0.75-1.00 and 0.88, respectively. Seven factors of the OHBS-M were identified using exploratory factor analysis and were confirmed through confirmatory factor analysis. Internal consistency and test-retest reliability values were 0.89 and 0.555, respectively. In addition, only 22% had a normal BMD (low risk of abnormal BMD), while osteopenia and osteoporosis were 57.6% and 20.4% (considered as high risk of abnormal BMD), respectively. The results showed that the OHBS-M is a reliable and valid instrument for measuring health belief toward osteoporosis in diabetic patients. In addition, it is an appropriate tool to identify patients needing a bone health-promoting intervention regarding lifestyle behavior changes in a clinical setting. Moreover, the sample population showed high risk of osteoporosis and would subsequently benefit from dual-energy x-ray absorptiometry scanning for definite evaluation and treatment. © 2013 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  10. Bone measurements of infants with hyperbilirubinemia by quantitative ultrasound: the influence of phototherapy.

    PubMed

    Arıkan, Fatma İnci; Kara, Semra; Bilgin, Hüseyin; Özkan, Fatma; Bilge, Yıldız Dallar

    2017-07-01

    The purpose of the current study was to investigate the possible effects of phototherapy on bone status of term infants evaluated by measurement of tibial bone speed of sound (SOS). The phototherapy group (n = 30) consisted of children who had undergone phototherapy for at least 24 h and the control group (n = 30) comprised children who had not received phototherapy. Blood samples were obtained from all infants for serum calcium, phosphorus, magnesium, alkaline phosphatase, parathyroid hormone and vitamin D concentrations. The left tibial quantitative ultrasound (QUS) measurements were performed using a commercial device. There was no statistically significant difference between phototherapy-exposed and nonexposed infants in terms of Ca, P, ALP, PTH and vitamin D levels. Comparison of bone SOS between the phototherapy-exposed and control group revealed no statistically difference. Also, no significant difference in Z-score for SOS was observed between those with or without exposure. The data of our study indicate that phototherapy treatment has no impact on bone status in the hyperbilirubinemic infants. Although there is no statistically significant evidence of an excess risk of bone damage following phototherapy, studies with larger sample sizes and longer duration of follow-up are needed to gain a better understanding of its effects.

  11. Photo-acoustic excitation and optical detection of fundamental flexural guided wave in coated bone phantoms.

    PubMed

    Moilanen, Petro; Zhao, Zuomin; Karppinen, Pasi; Karppinen, Timo; Kilappa, Vantte; Pirhonen, Jalmari; Myllylä, Risto; Haeggström, Edward; Timonen, Jussi

    2014-03-01

    Photo-acoustic (PA) imaging was combined with skeletal quantitative ultrasound (QUS) for assessment of human long bones. This approach permitted low-frequency excitation and detection of ultrasound so as to efficiently receive the thickness-sensitive fundamental flexural guided wave (FFGW) through a coating of soft tissue. The method was tested on seven axisymmetric bone phantoms, whose 1- to 5-mm wall thickness and 16-mm diameter mimicked those of the human radius. Phantoms were made of a composite material and coated with a 2.5- to 7.5-mm layer of soft material that mimicked soft tissue. Ultrasound was excited with a pulsed Nd:YAG laser at 1064-nm wavelength and received on the same side of the coated phantom with a heterodyne interferometer. The FFGW was detected at 30-kHz frequency. Fitting the FFGW phase velocity by the FLC(1,1) tube mode provided an accurate (9.5 ± 4.0%) wall thickness estimate. Ultrasonic in vivo characterization of cortical bone thickness may thus become possible. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  12. Alcohol consumption and body composition in a population-based sample of elderly Australian men.

    PubMed

    Coulson, Carolyn E; Williams, Lana J; Brennan, Sharon L; Berk, Michael; Kotowicz, Mark A; Lubman, Dan I; Pasco, Julie A

    2013-05-01

    Alcohol is calorie dense, and impacts activity, appetite and lipid processing. The aim of this study was to therefore investigate the association between alcohol consumption and components of body composition including bone, fat and lean tissue. Participants were recruited from a randomly selected, population-based sample of 534 men aged 65 years and older enrolled in the Geelong Osteoporosis Study. Alcohol intake was ascertained using a food frequency questionnaire and the sample categorised as non-drinkers or alcohol users who consumed ≤2, 3-4 or ≥5 standard drinks on a usual drinking day. Bone mineral density (BMD), lean body mass and body fat mass were measured using dual energy X-ray absorptiometry; overall adiposity (%body fat), central adiposity (%truncal fat) and body mass index (BMI) were calculated. Bone quality was determined by quantitative heel ultrasound (QUS). There were 90 current non-drinkers (16.9 %), 266 (49.8 %) consumed 1-2 drinks/day, 104 (19.5 %) 3-4 drinks/day and 74 (13.8 %) ≥5 drinks/day. Those consuming ≥5 drinks/day had greater BMI (+4.8 %), fat mass index (+20.1 %), waist circumference (+5.0 %), %body fat (+15.2 %) and proportion of trunk fat (+5.3 %) and lower lean mass (-5.0 %) than non-drinkers after adjustment for demographic and lifestyle factors. Furthermore, they were more likely to be obese than non-drinkers according to criteria based on BMI (OR = 2.83, 95 %CI 1.10-7.29) or waist circumference (OR = 3.36, 95 %CI 1.32-8.54). There was an inverse relationship between alcohol consumption and QUS parameters and BMD at the mid forearm site; no differences were detected for BMD at other skeletal sites. Higher alcohol intake was associated with greater total and central adiposity and reduced bone quality.

  13. Advances in Imaging Approaches to Fracture Risk Evaluation

    PubMed Central

    Manhard, Mary Kate; Nyman, Jeffry S.; Does, Mark D.

    2016-01-01

    Fragility fractures are a growing problem worldwide, and current methods for diagnosing osteoporosis do not always identify individuals who require treatment to prevent a fracture and may misidentify those not a risk. Traditionally, fracture risk is assessed using dual-energy X-ray absorptiometry, which provides measurements of areal bone mineral density (BMD) at sites prone to fracture. Recent advances in imaging show promise in adding new information that could improve the prediction of fracture risk in the clinic. As reviewed herein, advances in quantitative computed tomography (QCT) predict hip and vertebral body strength; high resolution HR-peripheral QCT (HR-pQCT) and micro-magnetic resonance imaging (μMRI) assess the micro-architecture of trabecular bone; quantitative ultrasound (QUS) measures the modulus or tissue stiffness of cortical bone; and quantitative ultra-short echo time MRI methods quantify the concentrations of bound water and pore water in cortical bone, which reflect a variety of mechanical properties of bone. Each of these technologies provides unique characteristics of bone and may improve fracture risk diagnoses and reduce prevalence of fractures by helping to guide treatment decisions. PMID:27816505

  14. Multi-frequency Axial Transmission Bone Ultrasonometer

    PubMed Central

    Tatarinov, Alexey; Egorov, Vladimir; Sarvazyan, Noune; Sarvazyan, Armen

    2014-01-01

    The last decade has seen a surge in the development of axial transmission QUS (Quantitative UltraSound) technologies for the assessment of long bones using various modes of acoustic waves. The condition of cortical bones and the development of osteoporosis are determined by numerous mechanical, micro-structural, and geometrical or macro-structural bone properties like hardness, porosity and cortical thickness. Such complex manifestations of osteoporosis require the evaluation of multiple parameters with different sensitivities to the various properties of bone that are affected by the disease. This objective may be achieved by using a multi-frequency ultrasonic examination The ratio of the acoustic wavelength to the cortical thickness can be changed by varying the frequency of the ultrasonic pulse propagating through the long bone that results in the change in composition of the induced wave comprised of a set of numerous modes of guided, longitudinal, and surface acoustic waves. The multi-frequency axial transmission QUS method developed at Artann Laboratories (Trenton, NJ) is implemented in the Bone Ultrasonic Scanner (BUSS). In the current version of the BUSS, a train of ultrasonic pulses with 60, 100, 400, 800, and 1200 kHz frequencies is used. The developed technology was tested on a variety of bone phantoms simulating normal, osteopenic, and osteoporotic bones. The results of this study confirm the feasibility of the multi-frequency approach for the assessment of the processes leading to osteoporosis. PMID:24206675

  15. Bone volume fraction and structural parameters for estimation of mechanical stiffness and failure load of human cancellous bone samples; in-vitro comparison of ultrasound transit time spectroscopy and X-ray μCT.

    PubMed

    Alomari, Ali Hamed; Wille, Marie-Luise; Langton, Christian M

    2018-02-01

    Conventional mechanical testing is the 'gold standard' for assessing the stiffness (N mm -1 ) and strength (MPa) of bone, although it is not applicable in-vivo since it is inherently invasive and destructive. The mechanical integrity of a bone is determined by its quantity and quality; being related primarily to bone density and structure respectively. Several non-destructive, non-invasive, in-vivo techniques have been developed and clinically implemented to estimate bone density, both areal (dual-energy X-ray absorptiometry (DXA)) and volumetric (quantitative computed tomography (QCT)). Quantitative ultrasound (QUS) parameters of velocity and attenuation are dependent upon both bone quantity and bone quality, although it has not been possible to date to transpose one particular QUS parameter into separate estimates of quantity and quality. It has recently been shown that ultrasound transit time spectroscopy (UTTS) may provide an accurate estimate of bone density and hence quantity. We hypothesised that UTTS also has the potential to provide an estimate of bone structure and hence quality. In this in-vitro study, 16 human femoral bone samples were tested utilising three techniques; UTTS, micro computed tomography (μCT), and mechanical testing. UTTS was utilised to estimate bone volume fraction (BV/TV) and two novel structural parameters, inter-quartile range of the derived transit time (UTTS-IQR) and the transit time of maximum proportion of sonic-rays (TTMP). μCT was utilised to derive BV/TV along with several bone structure parameters. A destructive mechanical test was utilised to measure the stiffness and strength (failure load) of the bone samples. BV/TV was calculated from the derived transit time spectrum (TTS); the correlation coefficient (R 2 ) with μCT-BV/TV was 0.885. For predicting mechanical stiffness and strength, BV/TV derived by both μCT and UTTS provided the strongest correlation with mechanical stiffness (R 2 =0.567 and 0.618 respectively) and mechanical strength (R 2 =0.747 and 0.736 respectively). When respective structural parameters were incorporated to BV/TV, multiple regression analysis indicated that none of the μCT histomorphometric parameters could improve the prediction of mechanical stiffness and strength, while for UTTS, adding TTMP to BV/TV increased the prediction of mechanical stiffness to R 2 =0.711 and strength to R 2 =0.827. It is therefore envisaged that UTTS may have the ability to estimate BV/TV along with providing an improved prediction of osteoporotic fracture risk, within routine clinical practice in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Polymorphisms in Genes Involved in the NF-κB Signalling Pathway Are Associated with Bone Mineral Density, Geometry and Turnover in Men

    PubMed Central

    Roshandel, Delnaz; Thomson, Wendy; Pye, Stephen R.; Boonen, Steven; Borghs, Herman; Vanderschueren, Dirk; Huhtaniemi, Ilpo T.; Adams, Judith E.; Ward, Kate A.; Bartfai, Gyorgy; Casanueva, Felipe F.; Finn, Joseph D.; Forti, Gianni; Giwercman, Aleksander; Han, Thang S.; Kula, Krzysztof; Lean, Michael E.; Pendleton, Neil; Punab, Margus; Wu, Frederick C.

    2011-01-01

    Introduction In this study, we aimed to investigate the association between single nucleotide polymorphisms (SNPs) within two genes involved in the NF-κB cascade (GPR177 and MAP3K14) and bone mineral density (BMD) assessed at different skeletal sites, radial geometric parameters and bone turnover. Methods Ten GPR177 SNPs previously associated with BMD with genome-wide significance and twelve tag SNPs (r2≥0.8) within MAP3K14 (±10 kb) were genotyped in 2359 men aged 40–79 years recruited from 8 centres for participation in the European Male Aging Study (EMAS). Measurement of bone turnover markers (PINP and CTX-I) in the serum and quantitative ultrasound (QUS) at the calcaneus were performed in all centres. Dual energy X-ray absorptiometry (DXA), at the lumbar spine and hip, and peripheral quantitative computed tomography (pQCT), at the distal and midshaft radius, were performed in a subsample (2 centres). Linear regression was used to test for association between the SNPs and bone measures under an additive genetic model adjusting for study centre. Results We validated the associations between SNPs in GPR177 and BMDa previously reported and also observed evidence of pleiotrophic effects on density and geometry. Rs2772300 in GPR177 was associated with increased total hip and LS BMDa, increased total and cortical vBMD at the radius and increased cortical area, thickness and stress strain index. We also found evidence of association with BMDa, vBMD, geometric parameters and CTX-I for SNPs in MAP3K14. None of the GPR177 and MAP3K14 SNPs were associated with calcaneal estimated BMD measured by QUS. Conclusion Our findings suggest that SNPs in GPR177 and MAP3K14 involved in the NF-κB signalling pathway influence bone mineral density, geometry and turnover in a population-based cohort of middle aged and elderly men. This adds to the understanding of the role of genetic variation in this pathway in determining bone health. PMID:22132199

  17. Association with replication between estrogen-related receptor gamma (ESRRgamma) polymorphisms and bone phenotypes in women of European ancestry.

    PubMed

    Elfassihi, Latifa; Giroux, Sylvie; Bureau, Alexandre; Laflamme, Nathalie; Cole, David Ec; Rousseau, François

    2010-04-01

    Osteoporosis is a bone disease characterized by low bone mineral density (BMD), a highly heritable polygenic trait. Women are more prone than men to develop osteoporosis owing to a lower peak bone mass and accelerated bone loss at menopause. Lack of estrogen thus is a major risk factor for osteoporosis. In addition to having strong similarity to the estrogen receptor 1 (ESR1), the orphan nuclear estrogen-related receptor gamma (ESRRgamma) is widely expressed and shows overlap with ESR1 expression in tissues where estrogen has important physiologic functions. For these reasons, we have undertaken a study of ESRRgamma sequence variants in association with bone measurements [heel quantitative ultrasound (QUS) by measurements of broadband ultrasound attenuation (BUA), speed of sound (SOS), and stiffness index (SI) and dual-energy X-ray absorptiometry (DXA) at the femoral neck (FN) and lumbar spine (LS)]. A silent variant was found to be associated with multiple bone measurements (LS, BUA, SOS, and SI), the p values ranging from .006 to .04 in a sample of 5144 Quebec women. The region of this variant was analyzed using the HapMap database and the Gabriel method to define a block of 20 kb. Using the Tagger method, eight TagSNPs were identified and genotyped in a sample of 1335 women. Four of these SNPs capture the five major block haplotypes. One SNP (rs2818964) and one haplotype were significantly associated with multiple bone measures. All SNPs involved in the associations were analyzed in two other sample sets with significant results in the same direction. These results suggest involvement of ESRRgamma in the determination of bone density in women. Copyright 2010 American Society for Bone and Mineral Research.

  18. [Effect of milk product with soy isoflavones on quality of life and bone metabolism in postmenopausal Spanish women: randomized trial].

    PubMed

    García-Martín, Antonia; Quesada Charneco, Miguel; Alvárez Guisado, Alejandro; Jiménez Moleón, José Juan; Fonollá Joya, Juristo; Muñoz-Torres, Manuel

    2012-02-04

    To analyze the effects of nutritional intervention with a milk product enriched with soy isoflavones on quality of life and bone metabolism in postmenopausal Spanish women. We performed a double-blind controlled randomized trial in ninety-nine postmenopausal women. Group S women (n=48) were randomized to consume milk product enriched with soy isoflavone (50 mg/day) while group C (n=51) consumed product control for 12 months. Parameters of quality of life (Cervantes scale), markers of bone metabolism and bone mass estimated by ultrasound of the calcaneus (QUS) were evaluated. Overall, there was an improvement in the domains menopause (P=.015) and vasomotor symptoms (P<.001). S group emphasized the assessment of vasomotor symptoms (P=.001) and differed positively from group C in health (P=.019), sex (P=.021) and partner (P=.002). Serum levels TRAP (P<.001) and OPG (P=.007) decreased and concentrations of 25-OH-vitamin D increased (P<.001) without differences between groups. In the assessment of QUS, there was an increase in estimated bone mineral density in group S (P=.040), whereas in group C there were no significant differences. Daily consumption of these milk products increases levels of 25-OH-vitamin D and decreases bone metabolism markers. Additional supplementation with soy isoflavones seems to improve quality of life and bone mass in Spanish postmenopausal women. Copyright © 2010 Elsevier España, S.L. All rights reserved.

  19. Osteoporosis and Osteopathy Markers in Patients with Mastocytosis

    PubMed Central

    Alpay Kanıtez, Nilüfer; Erer, Burak; Doğan, Öner; Büyükbabani, Nesimi; Baykal, Can; Sindel, Dilşad; Tanakol, Refik; Yavuz, Akif Selim

    2015-01-01

    Objective: Osteoporosis, osteosclerosis, and lytic bone lesions have been observed in patients with systemic mastocytosis (SM). We examined bone mineral density (BMD) biochemical turnover markers and serum tryptase levels in SM, which is considered a rare disease. Materials and Methods: Seventeen adult patients (5 females, 12 males; median age: 33 years, range: 20-64) with mastocytosis were included in this study. We investigated the value of quantitative ultrasound (QUS) of the calcaneus in the assessment of BMD in SM patients, as well as BMD of the lumbar spine (L1-L4), femoral neck, and distal radius using dual energy x-ray absorptiometry (DXA) and plasma tryptase levels, biochemical markers of bone turnover. Results: At lumbar spine L1-L4, the femoral neck, and the distal radius or as calcaneus stiffness, 12 of 17 patients had T-scores of less than -1 at least at 1 site, reflecting osteopenia. Three of 17 patients had T-scores showing osteoporosis (T-score <-2.5). There was no relationship between DXA and bone lesion severity. We also found a significant positive correlation between tryptase levels and disease severity, as well as between disease severity and pyridinoline (p<0.01 by Spearman’s test). Conclusion: DXA and calcaneal QUS may not be appropriate techniques to assess bone involvement in SM patients because of the effects of osteosclerosis. This study further shows that the osteoclastic marker pyridinoline is helpful in patients with severe disease activity and sclerotic bone lesions to show bone demineralization. PMID:25805674

  20. Comparison of the effects of three oral bisphosphonate therapies on the peripheral skeleton in postmenopausal osteoporosis: the TRIO study.

    PubMed

    Paggiosi, M A; Peel, N; McCloskey, E; Walsh, J S; Eastell, R

    2014-12-01

    We compared the effects of oral alendronate, ibandronate and risedronate on the central and peripheral skeleton over 2 years. We report differences in effect on the central skeleton but not on the peripheral skeleton. Greater effects were observed for ibandronate (and alendronate) than risedronate at the spine but not the hip. Generally, comparative clinical trials of bisphosphonates have examined changes in bone within central skeletal regions. We have examined the effects of bisphosphonate treatment on the peripheral skeleton. We conducted a 2-year, open-label, parallel randomised control trial of three orally administered bisphosphonates, at their licensed dose, to examine and compare their effects on the peripheral skeleton using multiple modes of measurement. We studied 172 postmenopausal women (53-84 years) who had either a bone mineral density (BMD) T-score of  ≤ -2.5 at the spine and/or total hip or  < -1.0 at either site plus a previous low trauma fracture. Participants were randomised to receive either (i) ibandronate 150 mg/month, (ii) alendronate 70 mg/week or (iii) risedronate 35 mg/week, plus calcium (1,200 mg/day) and vitamin D (800 IU/day), for 2 years. Premenopausal women (33-40 years, n = 226) were studied to monitor device stability. We measured central BMD of the lumbar spine, total hip, total body and forearm using dual-energy X-ray absorptiometry. We measured calcaneus BMD (using dual-energy X-ray absorptiometry plus laser), radius and tibia BMD (using peripheral quantitative computed tomography), finger BMD (using radiographic absorptiometry), and phalangeal and calcaneal ultrasound variables (using quantitative ultrasound). Mixed effects regression models were used to evaluate effects of time and treatment allocation on BMD change. By 2 years, there were significant increases (p < 0.05) in central BMD sites (lumbar spine, total hip). In the peripheral skeleton, only significant changes in calcaneus BMD, 33 % total radius BMD and quantitative ultrasound (QUS)-2 broadband ultrasound attenuation (BUA) were evident for women receiving oral bisphosphonates. The increases in lumbar spine and total body BMD were greater with ibandronate and alendronate than with risedronate. Treatment effects on peripheral measurements did not differ between the three bisphosphonates.

  1. Bone mass and lifestyle related factors: a comparative study between Japanese and Inner Mongolian young premenopausal women.

    PubMed

    Zhang, M; Shimmura, T; Bi, L F; Nagase, H; Nishino, H; Kajita, E; Eto, M; Wang, H B; Su, X L; Chang, H; Aratani, T; Kagamimori, S

    2004-07-01

    The purpose of this study was to evaluate the ethnic difference in bone mass between Japanese and Inner Mongolian young premenopausal women and to assess the contribution of lifestyle related and anthropometric factors to bone mass. We studied 33 Japanese and 44 Inner Mongolian healthy young women, aged 20-34 years, in urban area. Speed of sound (SOS), broadband ultrasound attenuation (BUA) and stiffness index (SI) were measured at the calcaneus using quantitative ultrasound (QUS) analysis. Age at menarche, regularity of menstruation and lifestyle related factors were estimated by a self-reported questionnaire. There were no differences between the two groups in age, height, weight, BMI, regularity of menstruation, frequency of meat intake, frequency of yellow-green vegetable intake and exercise habit. Japanese women had significantly lower age at menarche and higher proportion of milk consumption habit at junior high school, senior school and present. Before adjustment, Japanese women had significantly higher SOS and SI than Inner Mongolian women. However, after adjustment for age at menarche and milk consumption habit at junior high school, both of which were significantly different between groups, no group-differences remained in either SOS or SI. These results suggest that the differences in age at menarche and milk consumption habit at junior high school, which relate to hormonal and nutritional status during puberty, may account for the differences in bone mass between Japanese and Inner Mongolian young women.

  2. Noncontact ultrasound imaging applied to cortical bone phantoms

    PubMed Central

    Bulman, J. B.; Ganezer, K. S.; Halcrow, P. W.; Neeson, Ian

    2012-01-01

    Purpose: The purpose of this paper was to take the first steps toward applying noncontact ultrasound (NCU) to the tasks of monitoring osteoporosis and quantitative ultrasound imaging (QUS) of cortical bone. The authors also focused on the advantages of NCU, such as its lack of reliance on a technologist to apply transducers and a layer of acoustical coupling gel, the ability of the transducers to operate autonomously as specified by preprogrammed software, and the likely reduction in statistical and systematic errors associated with the variability in the pressure applied by the clinician to the transmitting transducer that NCU might provide. The authors also undertook this study in order to find additional applications of NCU beyond its past limited usage in assessing the severity of third degree burns. Methods: A noncontact ultrasound imaging system using a pair of specially designed broadband, 1.5 MHz noncontact piezoelectric transducers and cortical bone phantoms, were used to determine bone mineral density (BMD), speed of sound (SOS), integrated response (IR), and ultrasonic transmittance. Air gaps of greater than 3 cm, two transmission and two reflection paths, and a digital signal processor were also used in the collection of data from phantoms of nominal mass densities that varied from 1.17 to 2.25 g/cm3 and in bone mineral density from 0 to 1.7 g/cm3. Results: Good correlations between known BMD and measured SOS, IR, and transmittance were obtained for all 17 phantoms, and methods for quantifying and minimizing sources of systematic errors were outlined. The BMD of the phantom sets extended through most of the in vivo range found in cortical bone. A total of 16–20 repeated measurements of the SOS, thickness, and IR for the phantom set that were conducted over a period of several months showed a small variation in the range of measurements of ±1%–2%. These NCU data were shown to be in agreement with similar results using contact ultrasound to be within 1%–2%. Transmittance images of cortical bone phantoms showed differences in the nominal overall BMD values of the phantoms that were large enough to be distinguished by a visual examination. A list of possible sources of errors in quantitative NCU was also included in this study. Conclusions: The results of this paper suggest that NCU might find additional applications in medical imaging, beyond its original and only previous usage in assessing third degree burns. The fact that the authors’ phantom measurements using conventional, gel coupled ultrasound are in agreement with those obtained with NCU demonstrates that in spite of large additional levels of attenuation of up to 150 dB and new error sources, NCU could have comparable levels of accuracy to those of conventional quantitative ultrasound, while providing the medical and patient comfort-related advantages of not involving direct contact. PMID:22755697

  3. High prevalence of vitamin D deficiency among middle-aged and elderly individuals in northwestern China: its relationship to osteoporosis and lifestyle factors.

    PubMed

    Zhen, Donghu; Liu, Lijuan; Guan, Conghui; Zhao, Nan; Tang, Xulei

    2015-02-01

    Vitamin D deficiency has reached epidemic proportions; this deficiency has been associated with osteoporosis and certain lifestyle factors in adults. This relationship is not well documented among the Lanzhou population in northwest China. This study sought to determine the prevalence of vitamin D deficiency and its risk factors in addition to its relationship with osteoporosis in a Chinese population living in Lanzhou. This cross-sectional study involved 2942 men and 7158 women aged 40-75years who were randomly selected from 3 communities in the Lanzhou urban district and examined medically. Levels of 25-hydroxy-vitamin D [25(OH)D] and other parameters were measured according to detailed inclusion criteria. Vitamin D deficiency was defined as serum 25(OH)D levels below 20ng/mL. Calcaneus bone mineral density (BMD) was measured by quantitative ultrasound (QUS). The prevalence of vitamin D deficiency (25(OH)D levels <20ng/mL) was present in 75.2% of the entire study population. Vitamin D deficiency was more prevalent in women (79.7%) than in men (64%; P<0.001). Multiple logistic regression analysis revealed that the significant predictors of vitamin D deficiency included coronary heart disease (CHD), obesity, dyslipidemia, older age, female sex, and smoking (all P<0.05), whereas tea intake, moderate physical activity, milk intake, vitamin D supplementation and sun exposure were protective (all P<0.05). No significant difference in calcaneus BMD measured by QUS was noted between subjects with <20ng/mL and ≥20ng/mL vitamin D levels (0.53±0.13 vs. 0.54±0.13; P=0.089). The risk of having osteoporosis did not increase when vitamin D levels decreased from ≥20ng/mL to <20ng/mL after multiple adjustments (OR=1.00; 95% CI 0.85-1.16; P=0.357). Vitamin D deficiency is prevalent in the middle-aged and elderly northwestern Chinese population and is largely attributed to CHD, obesity, dyslipidemia, older age, female sex, and smoking. Reduced 25(OH)D levels are not associated with an increased osteoporosis risk. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Photo-acoustic excitation and detection of guided ultrasonic waves in bone samples covered by a soft coating layer

    NASA Astrophysics Data System (ADS)

    Zhao, Zuomin; Moilanen, Petro; Karppinen, Pasi; Määttä, Mikko; Karppinen, Timo; Hæggström, Edward; Timonen, Jussi; Myllylä, Risto

    2012-12-01

    Photo-acoustic (PA) excitation was combined with skeletal quantitative ultrasound (QUS) for multi-mode ultrasonic assessment of human long bones. This approach permits tailoring of the ultrasonic excitation and detection so as to efficiently detect the fundamental flexural guided wave (FFGW) through a coating of soft tissue. FFGW is a clinically relevant indicator of cortical thickness. An OPO laser with tunable optical wavelength, was used to excite a photo-acoustic source in the shaft of a porcine femur. Ultrasonic signals were detected by a piezoelectric transducer, scanning along the long axis of the bone, 20-50 mm away from the source. Five femurs were measured without and with a soft coating. The coating was made of an aqueous gelatin-intralipid suspension that optically and acoustically mimicked real soft tissue. An even coating thickness was ensured by using a specific mold. The optical wave length of the source (1250 nm) was tuned to maximize the amplitude of FFGW excitation at 50 kHz frequency. The experimentally determined FFGW phase velocity in the uncoated samples was consistent with that of the fundamental antisymmetric Lamb mode (A0). Using appropriate signal processing, FFGW was also identified in the coated bone samples, this time with a phase velocity consistent with that theoretically predicted for the first mode of a fluid-solid bilayer waveguide (BL1). Our results suggest that photo-acoustic quantitative ultrasound enables assessment of the thickness-sensitive FFGW in bone through a layer of soft tissue. Photo-acoustic characterization of the cortical bone thickness may thus become possible.

  5. The BPAQ: a bone-specific physical activity assessment instrument.

    PubMed

    Weeks, B K; Beck, B R

    2008-11-01

    A newly developed bone-specific physical activity questionnaire (BPAQ) was compared with other common measures of physical activity for its ability to predict parameters of bone strength in healthy, young adults. The BPAQ predicted indices of bone strength at clinically relevant sites in both men and women, while other measures did not. Only certain types of physical activity (PA) are notably osteogenic. Most methods to quantify levels of PA fail to account for bone relevant loading. Our aim was to examine the ability of several methods of PA assessment and a new bone-specific measure to predict parameters of bone strength in healthy adults. We recruited 40 men and women (mean age 24.5). Subjects completed the modifiable activity questionnaire, Bouchard 3-day activity record, a recently published bone loading history questionnaire (BLHQ), and wore a pedometer for 14 days. We also administered our bone-specific physical activity questionnaire (BPAQ). Calcaneal broadband ultrasound attenuation (BUA) (QUS-2, Quidel) and densitometric measures (XR-36, Norland) were examined. Multiple regression and correlation analyses were performed on the data. The current activity component of BPAQ was a significant predictor of variance in femoral neck bone mineral density (BMD), lumbar spine BMD, and whole body BMD (R(2) = 0.36-0.68, p < 0.01) for men, while the past activity component of BPAQ predicted calcaneal BUA (R(2) = 0.48, p = 0.001) for women. The BPAQ predicted indices of bone strength at skeletal sites at risk of osteoporotic fracture while other PA measurement tools did not.

  6. Multi-Scale Ballistic Material Modeling of Cross-Plied Compliant Composites

    DTIC Science & Technology

    2009-01-01

    PERFORMING ORGANIZATION REPORT NUMBER 19a. NAME OF RESPONSIBLE PERSON 19b. TELEPHONE NUMBER Mica Grujicic 864-656-5639 3. DATES COVERED (From - To...Autodyn [ANSYS/Autodyn version 11.0, User Documentation, Century Dynamics Inc. a subsidiary of ANSYS Inc. (2007)] and ABA- QUS /Explicit [ABAQUS...matrix, Fig. 3(b). Bonding between the matrix and the filaments is represented using 7056 ‘‘cohesive” elements, (ABA- QUS /Explicit designation COH3D6

  7. Osteopenia is associated with glycemic levels and blood pressure in Chinese postmenopausal women: a cross-sectional study.

    PubMed

    Sun, Qihong; Zheng, Yu; Chen, Kang; Yan, Wenhua; Lu, Juming; Dou, Jingtao; Lv, Zhaohui; Wang, Baoan; Gu, Weijun; Ba, Jianming; Mu, Yiming

    2017-02-01

    The aim of present study was to explore the relationships between osteopenia and dyslipidemia, glycemic levels or blood pressure in postmenopausal Chinese women. A total of 4080 women aged 42-85 years were enrolled in this cross-sectional study, which was nested in an ongoing longitudinal (REACTION) study. Calcaneus quantitative ultrasound (QUS) was performed and QUS T score was calculated to assess bone mineral density. Osteopenia was defined as a T score ≤-1.0. The relationship between osteopenia and dyslipidemia, glycemic levels or blood pressure was investigated. The prevalence of osteopenia was significantly lower in subjects with systolic blood pressure (SBP) ≥140 mmHg, fasting blood glucose (FBG) ≥8.0 mmol/L, postprandial blood glucose (PBG) ≥15.0 mmol/L, hemoglobin A1c (HbA1C) 6.5-7.5 %, HbA1C ≥7.5 %. These relationships remained significant after controlling for multiple factors. Moreover, significant trend between osteopenia and SBP, FBG, PBG and HbA1C was observed in women. In contrast, no significant associations between osteopenia and diastolic blood pressure (DBP), total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) were found, and no significant trend relationship between osteopenia and DBP, TC, TG, HDL-C, LDL-C was found in postmenopausal Chinese women. The present study showed a relationship between SBP, FBG, PBG, HbA1C and osteopenia in postmenopausal Chinese women, while no significant relationship was observed between dyslipidemia, DBP and osteopenia, even after controlling for multiple confounding factors.

  8. Bone properties in child and adolescent male hockey and soccer players.

    PubMed

    Falk, Bareket; Braid, Sarah; Moore, Michael; Yao, Matthew; Sullivan, Phil; Klentrou, Nota

    2010-07-01

    Children and adolescents who train extensively in high-impact, weight-bearing activities have enhanced bone mineral density. The purpose of this study was to evaluate bone strength, as reflected by quantitative ultrasound (QUS, Sunlight Omniscence), of child (10-12 yrs old) and adolescent (14-16 yrs old) male soccer and hockey players in comparison with age-matched controls. The groups included 30 child (CH) and 31 adolescent (AH) hockey players, 26 child (CS) and 30 adolescent (AS) soccer players, as well as 34 child (CC) and 31 adolescent (AC) healthy, non-athletic, age-matched controls. All athletes trained at an elite level year-round, with no difference in training volume between groups. Ultrasound speed of sound (SOS) was measured at the distal-radius and mid-tibia. In both age groups, hockey players were the heaviest and had the highest fat-free mass. No differences were found among groups in total energy intake, calcium or vitamin D intake. Radial and tibial SOS increased with age. Hockey players had higher radial SOS in both age groups (children: CH:3763+/-74, CS:3736+/-77, CC:3721+/-88 m/s; adolescents: AH:3809+/-105, AS:3767+/-85, AC:3760+/-94 m/s). Tibial SOS was higher in soccer players compared with controls. In spite of the higher body mass and fat-free mass in hockey players, their tibial SOS was similar to the non-athletes in both age groups. These findings support previous suggestions of sport-specific effects on bone strength. However, they need to be corroborated with longitudinal or prospective intervention studies. Copyright 2009 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  9. Manufacture and characterization of breast tissue phantoms for emulating benign lesions

    NASA Astrophysics Data System (ADS)

    Villamarín, J. A.; Rojas, M. A.; Potosi, O. M.; Narváez-Semanate, J. L.; Gaviria, C.

    2017-11-01

    Phantoms elaboration has turned a very important field of study during the last decades due to its applications in medicine. These objects are capable of emulating or mimicking acoustically biological tissues in which parameters like speed of sound (SOS) and attenuation are successfully attained. However, these materials are expensive depending on their characteristics (USD 460.00 - 6000.00) and is difficult to have precise measurements because of their composition. This paper presents the elaboration and characterization of low cost ( USD $25.00) breast phantoms which emulate histological normality and pathological conditions in order to support algorithm calibration procedures in imaging diagnosis. Quantitative ultrasound (QUS) was applied to estimate SOS and attenuation values for breast tissue (background) and benign lesions (fibroadenoma and cysts). Results showed values of the SOS and attenuation for the background between 1410 - 1450 m/s and 0.40 - 0.55 dB/cm at 1 MHz sampling frequency, respectively. On the other hand, the SOS obtained for the lesions ranges from 1350 to 1700 m/s and attenuation values between 0.50 - 1.80 dB/cm at 1 MHz. Finally, the fabricated phantoms allowed for obtaining ultrasonograms comparable with real ones whose acoustic parameters are in agree with those reported in the literature.

  10. Low Magnitude Mechanical Signals Reduce Risk-Factors for Fracture during 90-Day Bed Rest

    NASA Technical Reports Server (NTRS)

    Muir, J. W.; Xia, Y.; Holquin, N.; Judex, S.; Qin, Y.; Evans, H.; Lang, T.; Rubin, C.

    2007-01-01

    Long duration spaceflight leads to multiple deleterious changes to the musculoskeletal system, where loss of bone density, an order of magnitude more severe than that which follows the menopause, combined with increased instability, conspire to elevate the risk of bone fracture due to falls on return to gravitational fields. Here, a ground-based analog for spaceflight is used to evaluate the efficacy of a low-magnitude mechanical intervention, VIBE (Vibrational Inhibition of Bone Erosion), as a potential countermeasure to preserve musculoskeletal integrity in the face of disuse. Twenty-six subjects consented to ninety days of six-degree head-down tilt bed-rest. 18 completed the 90d protocol, 8 of which received daily 10-minute exposure to 30 Hz, 0.3g VIBE, applied in the supine position using a vest elastically coupled to the vibrating platform. The shoulder harness induced a load of 60% of the subjects body weight. At baseline and 90d, Qualitative Ultrasound Scans (QUS) of the calcaneus and CT-scans of the hip and spine were performed to measure changes in bone density. Postural control (PC) was assessed through center of pressure (COP) recordings while subjects stood on a force platform for 4 minutes of quiet stance with eyes closed, and again with eyes opened. As compared to control bedrest subjects,

  11. Reduced bone mineral density in glycogen storage disease type III: evidence for a possible connection between metabolic imbalance and bone homeostasis.

    PubMed

    Melis, Daniela; Rossi, Alessandro; Pivonello, Rosario; Del Puente, Antonio; Pivonello, Claudia; Cangemi, Giuliana; Negri, Mariarosaria; Colao, Annamaria; Andria, Generoso; Parenti, Giancarlo

    2016-05-01

    Glycogen storage disease type III (GSDIII) is an inborn error of carbohydrate metabolism caused by deficient activity of glycogen debranching enzyme (GDE). It is characterized by liver, cardiac muscle and skeletal muscle involvement. The presence of systemic complications such as growth retardation, ovarian polycystosis, diabetes mellitus and osteopenia/osteoporosis has been reported. The pathogenesis of osteopenia/osteoporosis is still unclear. The aim of the current study was to evaluate the bone mineral density (BMD) in GSDIII patients and the role of metabolic and endocrine factors and physical activity on bone status. Nine GSDIII patients were enrolled (age 2-20years) and compared to eighteen age and sex matched controls. BMD was evaluated by Dual-emission-X-ray absorptiometry (DXA) and Quantitative ultrasound (QUS). Clinical and biochemical parameters of endocrine system function and bone metabolism were analyzed. Serum levels of the metabolic control markers were evaluated. Physical activity was evaluated by administering the International Physical Activity Questionnaire (IPAQ). GSDIII patients showed reduced BMD detected at both DXA and QUS, decreased serum levels of IGF-1, free IGF-1, insulin, calcitonin, osteocalcin (OC) and increased serum levels of C-terminal cross-linking telopeptide of type I collagen (CTX). IGF-1 serum levels inversely correlated with AST and ALT serum levels. DXA Z-score inversely correlated with cholesterol and triglycerides serum levels and directly correlated with IGF-1/IGFBP3 molar ratio. No difference in physical activity was observed between GSDIII patients and controls. Our data confirm the presence of reduced BMD in GSDIII. On the basis of the results, we hypothesized that metabolic imbalance could be the key factor leading to osteopenia, acting through different mechanisms: chronic hyperlipidemia, reduced IGF-1, Insulin and OC serum levels. Thus, the mechanism of osteopenia/osteoporosis in GSDIII is probably multifactorial and we speculate on the factors involved in its pathogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Quantitative photoacoustic assessment of ex-vivo lymph nodes of colorectal cancer patients

    NASA Astrophysics Data System (ADS)

    Sampathkumar, Ashwin; Mamou, Jonathan; Saegusa-Beercroft, Emi; Chitnis, Parag V.; Machi, Junji; Feleppa, Ernest J.

    2015-03-01

    Staging of cancers and selection of appropriate treatment requires histological examination of multiple dissected lymph nodes (LNs) per patient, so that a staggering number of nodes require histopathological examination, and the finite resources of pathology facilities create a severe processing bottleneck. Histologically examining the entire 3D volume of every dissected node is not feasible, and therefore, only the central region of each node is examined histologically, which results in severe sampling limitations. In this work, we assess the feasibility of using quantitative photoacoustics (QPA) to overcome the limitations imposed by current procedures and eliminate the resulting under sampling in node assessments. QPA is emerging as a new hybrid modality that assesses tissue properties and classifies tissue type based on multiple estimates derived from spectrum analysis of photoacoustic (PA) radiofrequency (RF) data and from statistical analysis of envelope-signal data derived from the RF signals. Our study seeks to use QPA to distinguish cancerous from non-cancerous regions of dissected LNs and hence serve as a reliable means of imaging and detecting small but clinically significant cancerous foci that would be missed by current methods. Dissected lymph nodes were placed in a water bath and PA signals were generated using a wavelength-tunable (680-950 nm) laser. A 26-MHz, f-2 transducer was used to sense the PA signals. We present an overview of our experimental setup; provide a statistical analysis of multi-wavelength classification parameters (mid-band fit, slope, intercept) obtained from the PA signal spectrum generated in the LNs; and compare QPA performance with our established quantitative ultrasound (QUS) techniques in distinguishing metastatic from non-cancerous tissue in dissected LNs. QPA-QUS methods offer a novel general means of tissue typing and evaluation in a broad range of disease-assessment applications, e.g., cardiac, intravascular, musculoskeletal, endocrine-gland, etc.

  13. Development and validation of the ORACLE score to predict risk of osteoporosis.

    PubMed

    Richy, Florent; Deceulaer, Fréderic; Ethgen, Olivier; Bruyère, Olivier; Reginster, Jean-Yves

    2004-11-01

    To develop and validate a composite index, the Osteoporosis Risk Assessment by Composite Linear Estimate (ORACLE), that includes risk factors and ultrasonometric outcomes to screen for osteoporosis. Two cohorts of postmenopausal women aged 45 years and older participated in the development (n = 407) and the validation (n = 202) of ORACLE. Their bone mineral density was determined by dual energy x-ray absorptiometry and quantitative ultrasonometry (QUS), and their historical and clinical risk factors were assessed (January to June 2003). Logistic regression analysis was used to select significant predictors of bone mineral density, whereas receiver operating characteristic (ROC) analysis was used to assess the discriminatory performance of ORACLE. The final logistic regression model retained 4 biometric or historical variables and 1 ultrasonometric outcome. The ROC areas under the curves (AUCs) for ORACLE were 84% for the prediction of osteoporosis and 78% for low bone mass. A sensitivity of 90% corresponded to a specificity of 50% for identification of women at risk of developing osteoporosis. The corresponding positive and negative predictive values were 86% and 54%, respectively, in the development cohort. In the validation cohort, the AUCs for identification of osteoporosis and low bone mass were 81% and 76% for ORACLE, 69% and 64% for QUS T score, 71% and 68% for QUS ultrasonometric bone profile index, and 76% and 75% for Osteoporosis Self-assessment Tool, respectively. ORACLE had the best discriminatory performance in identifying osteoporosis compared with the other approaches (P < .05). ORACLE exhibited the highest discriminatory properties compared with ultrasonography alone or other previously validated risk indices. It may be helpful to enhance the predictive value of QUS.

  14. A cross-sectional study for estimation of associations between education level and osteoporosis in a Chinese men sample.

    PubMed

    Yu, Cai-Xia; Zhang, Xiu-Zhen; Zhang, Keqin; Tang, Zihui

    2015-12-09

    The main aim of this study was to evaluate the association between education level and osteoporosis (OP) in general Chinese Men. We conducted a large-scale, community-based, cross-sectional study to investigate the association by using self-report questionnaire to assess education levels. The data of 1092 men were available for analysis in this study. Multiple regression models controlling for confounding factors to include education level were performed to explore the relationship between education level and OP. Positive correlations between education level and T-score of quantitative bone ultrasound (QUS-T score) were reported (β = 0.108, P value < 0.001). Multiple regression analysis indicated that the education level was independently and significantly associated with OP (P < 0.1 for all models). The men with lower education level had a higher prevalence of OP. The education level was independently and significantly associated with OP. The prevalence of OP was more frequent in Chinese men with lower education level. ClinicalTrials.gov Identifier: NCT02451397 ; date of registration: 05/28/2015).

  15. Effects of Fok-I polymorphism in vitamin D receptor gene on serum 25-hydroxyvitamin D, bone-specific alkaline phosphatase and calcaneal quantitative ultrasound parameters in young adults.

    PubMed

    Tanabe, Rieko; Kawamura, Yuka; Tsugawa, Naoko; Haraikawa, Mayu; Sogabe, Natsuko; Okano, Toshio; Hosoi, Takayuki; Goseki-Sone, Masae

    2015-01-01

    Several genes have been implicated as genetic determinants of osteoporosis. Vitamin D receptor (VDR) is an intracellular hormone receptor that specifically binds to the biologically active form of vitamin D, 1-alpha, 25- dihydroxyvitamin D3 [1, 25(OH)2D], and mediates its effects. One of the most frequently studied single nucleotide polymorphisms is the restriction fragment length polymorphism (RFLP) Fok-I (rs2228570). The presence of a Fok-I site, designated f, allows protein translation to initiate from the first ATG. An allele lacking the site (ATG>ACG: designated F), initiates from a second ATG site. In the present study, we explored the effect of the VDR Fok-I genotype on associations among serum bone-specific alkaline phosphatase (ALP), 25- hydroxyvitamin D3 [25(OH)D], 1, 25(OH)2D, and the dietary nutrient intake in healthy young Japanese subjects (n=193). Dietary nutrient intakes were calculated based on 3-day food records before the day of blood examinations. Quantitative ultrasound (QUS) parameters at the right calcaneus (heel bone) were measured. The allele frequencies were 0.622 for the F allele and 0.378 for the f allele in all subjects. Grouped by the VDR genotype, a significant positive correlation between the levels of serum bone-specific ALP and 25(OH)D was observed in the FF-type (p=0.005), but not in the ff-type. In addition, there was a significant positive correlation between the level of serum 25(OH)D and osteo-sono assessment index (OSI) in the FF-type (p=0.008), but not in the ff-type. These results suggest that the level of circulating 25(OH)D is an important factor when assessing the VDR Fok-I polymorphism to prevent osteoporosis.

  16. Identification of homogeneous genetic architecture of multiple genetically correlated traits by block clustering of genome-wide associations.

    PubMed

    Gupta, Mayetri; Cheung, Ching-Lung; Hsu, Yi-Hsiang; Demissie, Serkalem; Cupples, L Adrienne; Kiel, Douglas P; Karasik, David

    2011-06-01

    Genome-wide association studies (GWAS) using high-density genotyping platforms offer an unbiased strategy to identify new candidate genes for osteoporosis. It is imperative to be able to clearly distinguish signal from noise by focusing on the best phenotype in a genetic study. We performed GWAS of multiple phenotypes associated with fractures [bone mineral density (BMD), bone quantitative ultrasound (QUS), bone geometry, and muscle mass] with approximately 433,000 single-nucleotide polymorphisms (SNPs) and created a database of resulting associations. We performed analysis of GWAS data from 23 phenotypes by a novel modification of a block clustering algorithm followed by gene-set enrichment analysis. A data matrix of standardized regression coefficients was partitioned along both axes--SNPs and phenotypes. Each partition represents a distinct cluster of SNPs that have similar effects over a particular set of phenotypes. Application of this method to our data shows several SNP-phenotype connections. We found a strong cluster of association coefficients of high magnitude for 10 traits (BMD at several skeletal sites, ultrasound measures, cross-sectional bone area, and section modulus of femoral neck and shaft). These clustered traits were highly genetically correlated. Gene-set enrichment analyses indicated the augmentation of genes that cluster with the 10 osteoporosis-related traits in pathways such as aldosterone signaling in epithelial cells, role of osteoblasts, osteoclasts, and chondrocytes in rheumatoid arthritis, and Parkinson signaling. In addition to several known candidate genes, we also identified PRKCH and SCNN1B as potential candidate genes for multiple bone traits. In conclusion, our mining of GWAS results revealed the similarity of association results between bone strength phenotypes that may be attributed to pleiotropic effects of genes. This knowledge may prove helpful in identifying novel genes and pathways that underlie several correlated phenotypes, as well as in deciphering genetic and phenotypic modularity underlying osteoporosis risk. Copyright © 2011 American Society for Bone and Mineral Research.

  17. LRP5 coding polymorphisms influence the variation of peak bone mass in a normal population of French-Canadian women.

    PubMed

    Giroux, Sylvie; Elfassihi, Latifa; Cardinal, Guy; Laflamme, Nathalie; Rousseau, François

    2007-05-01

    Bone mineral density has a strong genetic component but it is also influenced by environmental factors making it a complex trait to study. LRP5 gene was previously shown to be involved in rare diseases affecting bone mass. Mutations associated with gain-of-function were described as well as loss-of-function mutations. Following this discovery, many frequent LRP5 polymorphisms were tested against the variation of BMD in the normal population. Heel bone parameters (SOS, BUA) were measured by right calcaneal QUS in 5021 healthy French-Canadian women and for 2104 women, BMD evaluated by DXA at two sites was available (femoral neck (FN) and lumbar spine (LS)). Among women with QUS measures and those with DXA measures, 26.5% and 32.8% respectively were premenopausal, 9.2% and 10.7% were perimenopausal and 64.2% and 56.5% were postmenopausal. About a third of the peri- and postmenopausal women never received hormone therapy. Two single nucleotide coding polymorphisms (Val667Met and Ala1330Val) in LRP5 gene were genotyped by allele-specific PCR. All bone measures were tested individually for associations with each polymorphism by analysis of covariance with adjustment for non genetic risk factors. Furthermore, haplotype analysis was performed to take into account the strong linkage disequilibrium between the two polymorphisms. The two LRP5 polymorphisms were found to be associated with all five bone measures (L2L4 and femoral neck DXA as well as heel SOS, BUA and stiffness index) in the whole sample. Premenopausal women drove the association as expected from the proposed role of LRP5 in peak bone mass. Our results suggest that the Val667Met polymorphism is the causative variant but this remains to be functionally proven.

  18. Cost-effectiveness of osteoporosis screening strategies for hip fracture prevention in older Chinese people: a decision tree modeling study in the Mr. OS and Ms. OS cohort in Hong Kong.

    PubMed

    Su, Y; Lai, F T T; Yip, B H K; Leung, J C S; Kwok, T C Y

    2018-05-17

    Despite the high costs of hip fracture, many governments provide limited support for osteoporosis screening. We demonstrated that osteoporosis screening by dual-energy X-ray absorptiometry (DXA) with or without pre-screening by Fracture Risk Assessment Tool (FRAX) or calcaneal ultrasound are more cost-effective than no screening in Chinese people aged 65 or over in Hong Kong. To examine the cost-effective potential osteoporosis screening strategies for hip fracture prevention in Hong Kong. Decision tree models were constructed to evaluate the cost per quality-adjusted life years (QALYs) of the different osteoporosis screening strategies followed by subsequent 5-year treatment with alendronate compared to no screening (but treat if a hip fracture occurs). The multiple osteoporosis screening strategies were composed of alternative tests and initiation age groups were evaluated with a 10-year horizon, and treatment were assigned if central dual-energy X-ray absorptiometry (DXA) T-score (at either the hip or spine) is - 2.5 or less. Strategies included DXA for all people and pre-screening with the Fracture Risk Assessment Tool (FRAX) at specific thresholds or by calcaneal quantitative ultrasonography (QUS) before taking DXA examination. All the model inputs were based on the Mr. OS and Ms. OS Hong Kong cohort; data are obtained from the Social Welfare Department or the published literature. All of the screening strategies, including the universal screening with DXA and the pre-screening with FRAX or QUS before DXA, were consistently more cost-effective than no screening for people aged 65 years old or over. One-way sensitivity analysis with a more optimistic assumption on treatment adherence or inclusion of other major osteoporotic fractures did not change the results materially. Probabilistic sensitivity analyses showed a dominant role of pre-screening with FRAX followed by subsequent osteoporosis drug treatment in people aged 70 years old or over in Hong Kong. Osteoporosis screening strategies based on DXA with or without pre-screening are more cost-effective compared to no screening for Chinese people aged 65 or over in Hong Kong.

  19. Nutrition and Osteoporosis: Preliminary data of Campania Region of European PERsonalised ICT Supported Service for Independent Living and Active Ageing

    PubMed Central

    Vuolo, L.; Barrea, L.; Savanelli, MC; Savastano, S.; Rubino, M.; Scarano, E.; Soprano, M.; Illario, M.; Colao, A.; Di Somma, C.

    2015-01-01

    Background: Bone impairment and malnutrition are associated with significant disability and mortality. PERSSILAA is an European project developing health services to detect and prevent frailty in older adults by addressing cognitive, physical and nutritional. Methods: Subjects underwent anthropometric measurements, calcaneal quantitative ultrasound (QUS) scan and PREDIMED (PREvención con DIeta MEDiterránea) questionnaire. Aim: To investigate the association between adherence to the Mediterranean Diet (MD) and bone health. Results: 87 subjects (4 males and 83 females) 70.1±4.9 aged, were examined. Mean Body Mass Index (BMI) was 28.7±4.7(kg/m2): in particular 28 subjects (32.2%) resulted obese, 42 (48.3%) overweight, and only 17 (19.5%) with normal weight. Mean T score was −1.2±1.2: in particular 13 subjects (14.9%) resulted osteoporotic; 43 (49.5%) osteopenic; and 31 (35.6%) with normal bone mineral density. Regarding adherence to MD, 9 subjects (10.3%) were poorly adherent; 41 (47.2%) average adherent; 37 (42.5%) highly adherent. T-score was associated with PREDIMED score and osteoporotic subjects presented the lowest PREDIMED score (5.8±2.2). Conclusions: These preliminary data show a significant correlation between the adherence to the MD and bone health parameters. The association between MD and bone health highlights the potential beneficial effects of nutritional interventions promoting a Mediterranean food pattern, as safe adjuvant treatment in ageing. PMID:27042428

  20. Nutrition and Osteoporosis: Preliminary data of Campania Region of European PERsonalised ICT Supported Service for Independent Living and Active Ageing.

    PubMed

    Vuolo, L; Barrea, L; Savanelli, M C; Savastano, S; Rubino, M; Scarano, E; Soprano, M; Illario, M; Colao, A; Di Somma, C

    2015-12-01

    Bone impairment and malnutrition are associated with significant disability and mortality. PERSSILAA is an European project developing health services to detect and prevent frailty in older adults by addressing cognitive, physical and nutritional. Subjects underwent anthropometric measurements, calcaneal quantitative ultrasound (QUS) scan and PREDIMED (PREvención con DIeta MEDiterránea) questionnaire. To investigate the association between adherence to the Mediterranean Diet (MD) and bone health. 87 subjects (4 males and 83 females) 70.1±4.9 aged, were examined. Mean Body Mass Index (BMI) was 28.7±4.7(kg/m(2)): in particular 28 subjects (32.2%) resulted obese, 42 (48.3%) overweight, and only 17 (19.5%) with normal weight. Mean T score was -1.2±1.2: in particular 13 subjects (14.9%) resulted osteoporotic; 43 (49.5%) osteopenic; and 31 (35.6%) with normal bone mineral density. Regarding adherence to MD, 9 subjects (10.3%) were poorly adherent; 41 (47.2%) average adherent; 37 (42.5%) highly adherent. T-score was associated with PREDIMED score and osteoporotic subjects presented the lowest PREDIMED score (5.8±2.2). These preliminary data show a significant correlation between the adherence to the MD and bone health parameters. The association between MD and bone health highlights the potential beneficial effects of nutritional interventions promoting a Mediterranean food pattern, as safe adjuvant treatment in ageing.

  1. Influence of pregnancy on bone density: a risk factor for osteoporosis? Measurements of the calcaneus by ultrasonometry.

    PubMed

    Kraemer, Bernhard; Schneider, Silke; Rothmund, Ralf; Fehm, Tanja; Wallwiener, Diethelm; Solomayer, Erich-Franz

    2012-04-01

    There are conflicting opinions in the literature about whether pregnancy influences maternal bone density or osteoporosis development. The study aim was to investigate whether there is a significant alteration in maternal bone density during normal pregnancy. Bone mass of 200 pregnant women aged 22-42 years was measured twice with quantitative ultrasonometry (QUS) of the heel (Os calcaneum). The first measurement was performed between the 10th and 22nd week of pregnancy, follow-up of 149 women took place 0-9 days postpartum. A questionnaire focusing on data affecting bone metabolism and bone turnover was handed out at the first visit. Median reduction in speed of sound (SOS) was 11 m/s at follow-up indicating a decline of the stiffness during pregnancy. No significant correlation was found between lactation period and the obtained values for stiffness, SOS, T score and Z score. For broadband ultrasonographic attenuation, there was a statistically significant difference (p < 0.05) between women who had and had not breastfed. Parameters from patients with a family history of osteoporosis (n = 30) compared to patients without did not reveal statistical significance during pregnancy. Glucocorticoid therapy, nicotine consumption, physical exercise and nutrition was not statistically significant (p > 0.05). SOS value of women with a twin pregnancy was different over the study period (p < 0.05). A reduction in bone mass is possible during pregnancy. Routine evaluation of the bone density in all pregnant women does not seem to be justified; however, it is reasonable in women who present with risk factors. These women could be screened with QUS.

  2. Bone mineral density and bone turnover among young women in Chiang Mai, Thailand.

    PubMed

    Iwasaki, Eriko; Morakote, Nuntana; Chaovistsaree, Somsak; Matsuo, Hiroya

    2014-03-12

    The present study was carried out to investigate the influence of lifestyle on bone mineral density (BMD) and bone turnover among young women in Chiang Mai, Thailand. A total of 177 young women affiliated with Chiang Mai University hospital were enrolled. Firstly, questionnaires about their lifestyle and the Osteoporosis Knowledge Test (OKT) were examined. The measurement of BMD was assessed by Quantitative Ultrasound (QUS). Secondly, based on the measurement of BMD, the subjects were divided into 2 groups, a Low BMD group (L group: less than YAM-1.0SD) and a Normal BMD group (N group: more than YAM-1.0SD). L group (n=23) and N group (n=23) were examined using Osteocalcine (OC), type 1 collagen cross-linked N-telopeptide (NTx) and undercarboxylated osteocalcin (ucOC) as bone turnover markers, and serum Ca, 1,25-(OH)2Vitamin D, Vitamin K1 and Vitamin K2 (MK-4) as bone turnover related factors. Based on the results, the percentage of Low BMD group was 23.2%. Concerning lifestyle and BMD, the BMD of the low cheese intake group was 99.7± 17.0 and the BMD of the high cheese intake one was 110.0± 23.3 (p<0.05). The BMD of the fracture experience group was 82.5± 11.6 and the BMD of no-fracture group was 103.3± 19.6 (p<0.05). These were significant differences in ucOC and 1,25-(OH)2Vitamin D between L and N groups (p<0.05). It was suggested that BMI, food and fracture experience might affect BMD level and suppression of bone formation might have contributed to the low BMD group among young women in Chiang Mai, Thailand.

  3. Thyrotropin serum levels are differentially associated with biochemical markers of bone turnover and stiffness in women and men: results from the SHIP cohorts.

    PubMed

    Tsourdi, E; Wallaschofski, H; Rauner, M; Nauck, M; Pietzner, M; Rettig, R; Ittermann, T; Völzke, H; Völker, U; Hofbauer, L C; Hannemann, A

    2016-02-01

    In two large German population-based cohorts, we showed positive associations between serum thyrotropin (TSH) concentrations and the Fracture Risk Assessment score (FRAX) in men and positive associations between TSH concentrations and bone turnover markers in women. The role of thyroid hormones on bone stiffness and turnover is poorly defined. Existing studies are confounded by differences in design and small sample size. We assessed the association between TSH serum concentrations and bone stiffness and turnover in the SHIP cohorts, which are two population-based cohorts from a region in Northern Germany comprising 2654 men and women and 3261 men and women, respectively. We calculated the bone stiffness index using quantitative ultrasound (QUS) at the calcaneus, employed FRAX score for assessment of major osteoporotic fractures, and measured bone turnover markers, N-terminal propeptide of type I procollagen (P1NP), bone-specific alkaline phosphatase (BAP), osteocalcin, and type I collagen cross-linked C-telopeptide (CTX) in all subjects and sclerostin in a representative subgroup. There was no association between TSH concentrations and the stiffness index in both genders. In men, TSH correlated positively with the FRAX score both over the whole TSH range (p < 0.01) and within the reference TSH range (p < 0.01). There were positive associations between TSH concentrations and P1NP, BAP, osteocalcin, and CTX (p < 0.01) in women but not in men. There was no significant association between TSH and sclerostin levels. TSH serum concentrations are associated with gender-specific changes in bone turnover and stiffness.

  4. WE-EF-210-05: Diagnosis and Quantification of Liver Steatosis with Quantitative Ultrasound Backscatter Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andre, M; University of California, San Diego, San Diego, CA; Heba, E

    2015-06-15

    Purpose: Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the United States, affects 30% of adult Americans and may progress to more serious diseases. Liver biopsy is the standard method for diagnosing NAFLD. MRI can accurately diagnose and quantify hepatic steatosis but is expensive. Sonography with qualitative interpretation by radiologists is lower cost, more accessible but less sensitive for detection. The objective of this study, using MRI proton density fat fraction (PDFF) as reference, is to assess the accuracy for diagnosing and quantifying steatosis with two quantitative US parameters-- backscatter coefficient (BSC) andmore » attenuation coefficient (AC)--derived from RF signals using the calibration phantom technique. Methods: We performed a prospective, cross-sectional analysis of a cohort of adults (n=204) with NAFLD (MRI-PDFF≥5%) and without NAFLD (controls). Subjects underwent MRI-PDFF and BSC and AC US analyses of the liver on the same day. Patients were randomly assigned to training (n=102, mean age 51±17 years, mean body mass index 31±7 kg/m{sup 2}) and validation (n=102, mean age 49±17 years, body mass index 30±6 kg/m{sup 2}) groups; 69% of patients in each group had NAFLD. Results: BSC provided AUC 0.98 (95% CI 0.95–1.00, p<0.0001) for diagnosis of NAFLD; the optimal BSC cut-off provided sensitivity, specificity, positive and negative predictive values (PPV, NPV) of 87%, 91%, 95%, and 76%, respectively. AC provided AUC 0.89 (95% CI 0.81–0.96, p<0.0001) for diagnosis of steatosis; the optimal AC cut-off provided sensitivity, specificity, PPV, NPV of 80%, 84%, 92%, and 66%, respectively. BSC and AC both correlated significantly with MRI-PDFF (P<0.0001). Conclusion: QUS BSC and AC can accurately diagnose and quantify hepatic steatosis, using MRI-PDFF as reference. With further validation, QUS may emerge as an inexpensive, widely available tool for NAFLD assessment. General support: NIH R01 CA111289, K23 -DK090303, AmerGastroAssoc Found, TF Williams Scholarship, S3000 scanner loaned by Siemens, Sucampo, JA Hartford Found, Atlantic Philanthropies Amer Gastroenterological Assoc. Agencies had no role in design/conduct of study, collection, management, analysis or interpretation of the data; preparation, review, or approval of the manuscript.« less

  5. Seasonal change in bone, muscle and fat in professional rugby league players and its relationship to injury: a cohort study

    PubMed Central

    Georgeson, Erin C; Weeks, Benjamin K; McLellan, Chris; Beck, Belinda R

    2012-01-01

    Objectives To examine the anthropometric characteristics of an Australian National Rugby League team and identify the relationship to type and incidence of injuries sustained during a professional season. It was hypothesised that body composition would not change discernibly across a season and that injury would be negatively related to preseason bone and muscle mass. Design A repeated measure, prospective, observational, cohort study. Setting Griffith University, Gold Coast, Australia. Participants 37 professional male Australian National Rugby League players, 24.3 (3.8) years of age were recruited for preseason 1 testing, of whom 25 were retested preseason 2. Primary and secondary outcome measures Primary outcome measures included biometrics; body composition (bone, muscle and fat mass; dual-energy x-ray absorptiometry; XR800, Norland Medical Systems, Inc); bone geometry and strength (peripheral quantitative CT; XCT 3000, Stratec); calcaneal broadband ultrasound attenuation (BUA; QUS-2, Quidel); diet and physical activity history. Secondary outcome measures included player injuries across a single playing season. Results Lean mass decreased progressively throughout the season (pre=81.45(7.76) kg; post=79.89(6.72) kg; p≤0.05), while whole body (WB) bone mineral density (BMD) increased until mid-season (pre=1.235(0.087) g/cm2; mid=1.296(0.093) g/cm2; p≤0.001) then decreased thereafter (post=1.256(0.100); p≤0.001). Start-of-season WB BMD, fat and lean mass, weight and tibial mass measured at the 38% site predicted bone injury incidence, but no other relationship was observed between body composition and injury. Conclusions Significant anthropometric changes were observed in players across a professional rugby league season, including an overall loss of muscle and an initial increase, followed by a decrease in bone mass. Strong relationships between anthropometry and incidence of injury were not observed. Long-term tracking of large rugby league cohorts is indicated to obtain more injury data in order to examine anthropometric relationships with greater statistical power. PMID:23135539

  6. The Consequences of GHRH-R Haplo-Insufficiency for Bone Quality and Insulin resistance

    PubMed Central

    Gois-Jr, Miburge B.; Salvatori, Roberto; Aguiar-Oliveira, Manuel H.; Pereira, Francisco A.; Oliveira, Carla R. P.; Oliveira-Neto, Luiz A.; Pereira, Rossana M. C.; Souza, Anita H.O.; Melo, Enaldo V.; de Paula, Francisco J. A.

    2011-01-01

    OBJECTIVE Growth hormone (GH)/insulin like growth factor (IGF) axis and insulin are key determinants of bone remodeling. Homozygous mutations in the GH releasing hormone receptor (GHRHR) gene (GHRHR) are a frequent cause of genetic isolated GHD (IGHD). Heterozygosity for GHRHR mutation causes changes in body composition and possibly an increase in insulin sensitivity, but its effects on bone quality are still unknown. The objective of this study was to assess the bone quality and metabolism and its correlation with insulin sensitivity in subjects heterozygous for a null mutation in the GHRHR. PATIENTS AND METHODS A cross-sectional study was performed on 76 normal subjects (68.4% females) (N/N) and 64 individuals (64.1% females) heterozygous for a mutation in the GHRHR (MUT/N). Anthropometric features, quantitative ultrasound (QUS) of the heel, bone markers (osteocalcin and CrossLaps), IGF-I, glucose, and insulin were measured and homeostasis model assessment of insulin resistance (HOMAIR) was calculated. RESULTS There were no differences in age or height between the two groups, but weight (p = 0.007) and BMI (p = 0.001) were lower in MUT/N. There were no differences in serum levels of IGF-I, glucose, T score, or absolute values of stiffness and osteocalcin, but insulin (p = 0.01), HOMAIR (p = 0.01) and CrossLaps (p = 0.01) were lower in MUT/N. There was no correlation between osteocalcin and glucose, osteocalcin and HOMAIR in the140 individuals as a whole or in the separate MUT/N or N/N groups. CONCLUSIONS The present study suggests that one allele mutation in the GHRHR gene has a greater impact on energy metabolism than on bone quality. PMID:21995288

  7. Lifelong risk factors for osteoporosis and fractures in elderly women with low body mass index--a population-based study.

    PubMed

    Korpelainen, R; Korpelainen, J; Heikkinen, J; Väänänen, K; Keinänen-Kiukaanniemi, S

    2006-08-01

    Low body weight is associated with an increased risk for osteoporosis and fractures, but the contribution of other lifestyle related factors have not been previously studied within lean elderly women. The present study evaluated the association between lifelong lifestyle factors and bone density, falls and postmenopausal fractures in elderly women with low body mass index (BMI). A population-based sample of 1,222 women aged 70 to 73 years was stratified by BMI tertiles, and all 407 women in the lowest tertile participated. Data on falls and postmenopausal fractures, physical activity, functional capacity, calcium intake, smoking, alcohol intake and medical factors at different ages were obtained by a questionnaire. Calcaneum bone mass as broadband ultrasound attenuation (BUA) was assessed with a quantitative ultrasound (QUS) device, and bone mineral density (BMD) at the distal radius was measured with a dual-energy X-ray absorptiometry (DXA). Low current physical activity was associated with lower calcaneum BUA and factors associated with higher BUA were body weight, low lifetime occupational physical activity, hormone replacement and type 2 diabetes. Weight, type 2 diabetes and thiatzide use were associated with higher radius BMD. The final multivariate model consisted of four independent factors associated with fractures: low lifetime habitual physical activity (OR 3.7, 95% CI 1.9-7.1), diabetes (OR 0.2, 95% CI 0.1-1.0), living alone (OR 1.7, 95% CI 1.0-3.0) and calcaneum BUA (1.8, 95% CI 1.3-2.4). Poor functional ability and symptoms of depression were associated with recent falling. In elderly women with low BMI, lifelong physical activity may protect from fractures, while low calcaneum bone mass and living unpartnered appear to be associated with an increased risk for fractures. Poor functional ability and presence of depression may be associated with risk of falling. Type 2 diabetes may modify the risk of low bone mass and low-trauma postmenopausal fractures. Albeit that the results of this study need to be confirmed in prospective follow-up studies, multifactorial program with the emphasis on physical and social activation in the primary care setting for preventing falls and fractures in lean elderly women is recommended.

  8. Assessment of Lactose-Free Diet on the Phalangeal Bone Mineral Status in Italian Adolescents Affected by Adult-Type Hypolactasia

    PubMed Central

    Tagliati, Sylvie; Saccomandi, Daniela; Brusaferro, Andrea; Busoli, Laura; Scala, Andrea; Malaventura, Cristina; Borgna-Pignatti, Caterina

    2018-01-01

    Adult-type hypolactasia (ATH) is a clinical syndrome of primary lactase deficiency. A lactose-free diet is advisable to avoid the symptoms linked to the condition, but this potentially creates problems for optimal bone mineralization due to reduced calcium intake. To evaluate the effect of the lactose-free diet on the bone mineral status (BMS), we compared the phalangeal BMS of adolescents with ATH to that of peers on a normal diet. Also, we analyzed the correlations between BMS and dietary behavior, physical exercise, and calcium and vitamin D intake. A total of 102 cases and 102 healthy controls filled out a diet record and underwent phalangeal Quantitative Ultrasound (QUS). No difference in BMS was observed. The time spent on lactose-free diet (4.8 ± 3.1 years) was inversely correlated to the BMS. More than 98% of cases consumed lactose-free milk, but calcium and vitamin D intake were significantly lower. Calcium intake was correlated to physical exercise but not to BMS. Our results suggest that a lactose-free diet does not affect the phalangeal BMS of adolescents with primary lactase deficiency when their diet includes lactose-free cow’s milk. However, there is still a significantly lower calcium intake than in the population reference. The inverse correlation observed between the BMS and the time spent on a lactose-free diet suggests that a long-term follow-up is advisable. PMID:29723971

  9. Semi-automatic system for ultrasonic measurement of texture

    DOEpatents

    Thompson, R. Bruce; Wormley, Samuel J.

    1991-09-17

    A means and method for ultrasonic measurement of texture non-destructively and efficiently. Texture characteristics are derived by transmitting ultrasound energy into the material, measuring the time it takes to be received by ultrasound receiving means, and calculating velocity of the ultrasound energy from the timed measurements. Textured characteristics can then be derived from the velocity calculations. One or more sets of ultrasound transmitters and receivers are utilized to derive velocity measurements in different angular orientations through the material and in different ultrasound modes. An ultrasound transmitter is utilized to direct ultrasound energy to the material and one or more ultrasound receivers are utilized to receive the same. The receivers are at a predetermined fixed distance from the transmitter. A control means is utilized to control transmission of the ultrasound, and a processing means derives timing, calculation of velocity and derivation of texture characteristics.

  10. Semi-automatic system for ultrasonic measurement of texture

    DOEpatents

    Thompson, R.B.; Wormley, S.J.

    1991-09-17

    A means and method are disclosed for ultrasonic measurement of texture nondestructively and efficiently. Texture characteristics are derived by transmitting ultrasound energy into the material, measuring the time it takes to be received by ultrasound receiving means, and calculating velocity of the ultrasound energy from the timed measurements. Textured characteristics can then be derived from the velocity calculations. One or more sets of ultrasound transmitters and receivers are utilized to derive velocity measurements in different angular orientations through the material and in different ultrasound modes. An ultrasound transmitter is utilized to direct ultrasound energy to the material and one or more ultrasound receivers are utilized to receive the same. The receivers are at a predetermined fixed distance from the transmitter. A control means is utilized to control transmission of the ultrasound, and a processing means derives timing, calculation of velocity and derivation of texture characteristics. 5 figures.

  11. Ultrasound Metrology in Mexico: a round robin test for medical diagnostics

    NASA Astrophysics Data System (ADS)

    Amezola Luna, R.; López Sánchez, A. L.; Elías Juárez, A. A.

    2011-02-01

    This paper presents preliminary statistical results from an on-going imaging medical ultrasound study, of particular relevance for gynecology and obstetrics areas. Its scope is twofold, firstly to compile the medical ultrasound infrastructure available in cities of Queretaro-Mexico, and second to promote the use of traceable measurement standards as a key aspect to assure quality of ultrasound examinations performed by medical specialists. The experimental methodology is based on a round robin test using an ultrasound phantom for medical imaging. The physician, using its own ultrasound machine, couplant and facilities, measures the size and depth of a set of pre-defined reflecting and absorbing targets of the reference phantom, which simulate human illnesses. Measurements performed give the medical specialist an objective feedback regarding some performance characteristics of their ultrasound examination systems, such as measurement system accuracy, dead zone, axial resolution, depth of penetration and anechoic targets detection. By the end of March 2010, 66 entities with medical ultrasound facilities, from both public and private institutions, have performed measurements. A network of medical ultrasound calibration laboratories in Mexico, with traceability to The International System of Units via national measurement standards, may indeed contribute to reduce measurement deviations and thus attain better diagnostics.

  12. Shifting Policy Postures of Indonesia and Thailand: Responding to the China Challenge

    DTIC Science & Technology

    2015-09-01

    maritime power. Based on the maritime axis doctrine , Jokowi’s focus on five key areas—maritime culture, maritime food sovereignty, maritime...reasserting its authority over its maritime sovereignty, and enhancing its status as a regional middle power.161 With Jokowi’s maritime axis doctrine ...no. 1 (May 2015), http://csis.org/files/publication/1501qus_seasia.pdf. 161 Rendi A. Witular, “Jokowi Launches Maritime Doctrine to the World

  13. Potential effects of groundwater and surface water contamination in an urban area, Qus City, Upper Egypt

    NASA Astrophysics Data System (ADS)

    Abdalla, Fathy; Khalil, Ramadan

    2018-05-01

    The potential effects of anthropogenic activities, in particular, unsafe sewage disposal practices, on shallow groundwater in an unconfined aquifer and on surface water were evaluated within an urban area by the use of hydrogeological, hydrochemical, and bacteriological analyses. Physicochemical and bacteriological data was obtained from forty-five sampling points based on33 groundwater samples from variable depths and 12 surface water samples. The pollution sources are related to raw sewage and wastewater discharges, agricultural runoff, and wastewater from the nearby Paper Factory. Out of the 33 groundwater samples studied, 17 had significant concentrations of NO3-, Cl- and SO42-, and high bacteria counts. Most of the water samples from the wells contained high Fe, Mn, Pb, Zn, Cd, and Cr. The majority of surface water samples presented high NO3- concentrations and high bacteria counts. A scatter plot of HCO3- versus Ca indicates that 58% of the surface water samples fall within the extreme contamination zone, while the others are within the mixing zone; whereas 94% of groundwater samples showed evidence of mixing between groundwater and wastewater. The bacteriological assessment showed that all measured surface and groundwater samples contained Escherichia coli and total coliform bacteria. A risk map delineated four classes of contamination, namely, those sampling points with high (39.3%), moderate (36.3%), low (13.3%), and very low (11.1%) levels of contamination. Most of the highest pollution points were in the middle part of the urban area, which suffers from unmanaged sewage and industrial effluents. Overall, the results demonstrate that surface and groundwater in Qus City are at high risk of contamination by wastewater since the water table is shallow and there is a lack of a formal sanitation network infrastructure. The product risk map is a useful tool for prioritizing zones that require immediate mitigation and monitoring.

  14. Ultrasonic Wave Properties in Bone Axis Direction of Bovine Cortical Bone

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kazufumi; Yaoi, Yuichiro; Yamato, Yu; Yanagitan, Takahiko; Matsukawa, Mami; Yamazaki, Kaoru

    2008-05-01

    Quantitative ultrasonography (QUS) is a good method for measuring elastic properties of bone in vivo. Bovine cortical bone has two typical microstructures, plexiform and Haversian. In this study, the relationship between the speed of sound (SOS) and the hydroxyapatite (HAp) crystallite orientation in the axial direction was investigated in two different aged bovine cortical bones. The dependence of attenuation on anatomical position was also investigated. Two ring-permanent hyphen shaped cortical bone samples were obtained from 36- and 24-month-old bovine femurs. SOS was measured with a conventional ultrasonic pulse system. The integrated intensity of the (0002) peak obtained by X-ray diffraction was determine to evaluate the amount of preferred orientation. Regardless of the age of the bovine femurs, a significant correlation between SOS and the preferred orientation of HAp crystallites was observed in parts of the plexiform structure, and the gradient of the relationship showed a similar tendency. Attenuation seemed to depend on bone microstructure.

  15. Diaphragm breathing movement measurement using ultrasound and radiographic imaging: a concurrent validity.

    PubMed

    Noh, Dong K; Lee, Jae J; You, Joshua H

    2014-01-01

    Recent ultrasound imaging evidence asserts that the diaphragm is an important multifunctional muscle to control breathing as well as stabilize the core and posture in humans. However, the validity and accuracy of ultrasound for the measurement of dynamic diaphragm movements during breathing and functional core activities have not been determined. The specific aim of this study was to validate the accuracy of ultrasound imaging measurements of diaphragm movements by concurrently comparing these measurements to the gold standard of radiographic imaging measurements. A total of 14 asymptomatic adults (9 males, 5 females; mean age =28.4 ± 3.0 years) were recruited to participate in the study. Ultrasound and radiographic images were used concurrently to determine diaphragm movement (inspiration, expiration, and excursion) during tidal breathing. Pearson correlation analysis showed strong correlations, ranging from r=0.78 to r=0.83, between ultrasound and radiographic imaging measurements of the diaphragm during inhalation, exhalation, and excursion. These findings suggest that ultrasound imaging measurement is useful to accurately evaluate diaphragm movements during tidal breathing. Clinically, ultrasound imaging measurements can be used to diagnose and treat diaphragm movement impairments in individuals with neuromuscular disorders including spinal cord injuries, stroke, and multiple sclerosis.

  16. Diabetes and Obesity as Independent Risk Factors for Osteoporosis: Updated Results from the ROIS/EMEROS Registry in a Population of Five Thousand Post-Menopausal Women Living in a Region Characterized by Heavy Environmental Pressure.

    PubMed

    Neglia, Cosimo; Argentiero, Alberto; Chitano, Giovanna; Agnello, Nadia; Ciccarese, Roberta; Vigilanza, Antonella; Pantile, Valerio; Argentiero, Domenico; Quarta, Raffaele; Rivezzi, Matteo; Di Tanna, Gian Luca; Di Somma, Carolina; Migliore, Alberto; Iolascon, Giovanni; Gimigliano, Francesca; Distante, Alessandro; Piscitelli, Prisco

    2016-11-01

    Objectives : We aimed to analyze bone mineralization and the effect of different risk factors for osteoporosis in postmenopausal women. Methods : We found 4909 postmenopausal subjects within ≥10,000 records from the ROIS/EMEROS (Ionian and Salento Osteoporosis Registry/Euro Mediterranean Registry of Osteoporosis) registry, a population study carried out in an area characterized by heavy environmental pressure between Brindisi and Taranto from 2009 to 2016. All subjects were assessed via phalangeal quantitative ultrasound (QUS) to evaluate their bone mineralization (assessed via amplitude dependent speed of sound (AD-SoS)) and the association between demineralization and the presence of other conditions or risk factors. Results : Mean age was 64 ± 9.5 years and mean body mass index (BMI) was 28.7 ± 3.5 kg/m². Pearson correlation analyses revealed a negative association between bone mineralization (AD-SoS) and BMI ( p < 0.001). By using multivariate logistic regression analysis, we observed significant values of odds ratios (ORs) of osteoporosis (adjusted for age, physical activity, and the use of drugs known to increase the risk of fractures) in subjects with diabetes and obesity: 1.39 (confidence interval (CI): 1.05-1.83) and 1.46 (CI: 1.20-1.78), respectively. A statistically significant linear trend of higher ORs of osteoporosis was found for increasing values of BMI. Conclusions : Our study confirmed the high impact of obesity and type 1 and type 2 diabetes on osteoporosis.

  17. Diabetes and Obesity as Independent Risk Factors for Osteoporosis: Updated Results from the ROIS/EMEROS Registry in a Population of Five Thousand Post-Menopausal Women Living in a Region Characterized by Heavy Environmental Pressure

    PubMed Central

    Neglia, Cosimo; Argentiero, Alberto; Chitano, Giovanna; Agnello, Nadia; Ciccarese, Roberta; Vigilanza, Antonella; Pantile, Valerio; Argentiero, Domenico; Quarta, Raffaele; Rivezzi, Matteo; Di Tanna, Gian Luca; Di Somma, Carolina; Migliore, Alberto; Iolascon, Giovanni; Gimigliano, Francesca; Distante, Alessandro; Piscitelli, Prisco

    2016-01-01

    Objectives: We aimed to analyze bone mineralization and the effect of different risk factors for osteoporosis in postmenopausal women. Methods: We found 4909 postmenopausal subjects within ≥10,000 records from the ROIS/EMEROS (Ionian and Salento Osteoporosis Registry/Euro Mediterranean Registry of Osteoporosis) registry, a population study carried out in an area characterized by heavy environmental pressure between Brindisi and Taranto from 2009 to 2016. All subjects were assessed via phalangeal quantitative ultrasound (QUS) to evaluate their bone mineralization (assessed via amplitude dependent speed of sound (AD-SoS)) and the association between demineralization and the presence of other conditions or risk factors. Results: Mean age was 64 ± 9.5 years and mean body mass index (BMI) was 28.7 ± 3.5 kg/m2. Pearson correlation analyses revealed a negative association between bone mineralization (AD-SoS) and BMI (p < 0.001). By using multivariate logistic regression analysis, we observed significant values of odds ratios (ORs) of osteoporosis (adjusted for age, physical activity, and the use of drugs known to increase the risk of fractures) in subjects with diabetes and obesity: 1.39 (confidence interval (CI): 1.05–1.83) and 1.46 (CI: 1.20–1.78), respectively. A statistically significant linear trend of higher ORs of osteoporosis was found for increasing values of BMI. Conclusions: Our study confirmed the high impact of obesity and type 1 and type 2 diabetes on osteoporosis. PMID:27809297

  18. Comparison of translabial three-dimensional ultrasound with magnetic resonance imaging for measurement of levator hiatal biometry at rest.

    PubMed

    Vergeldt, T F M; Notten, K J B; Stoker, J; Fütterer, J J; Beets-Tan, R G; Vliegen, R F A; Schweitzer, K J; Mulder, F E M; van Kuijk, S M J; Roovers, J P W R; Kluivers, K B; Weemhoff, M

    2016-05-01

    To compare translabial three-dimensional (3D) ultrasound with magnetic resonance imaging (MRI) for the measurement of levator hiatal biometry at rest in women with pelvic organ prolapse, and to determine the interobserver reliability between two independent observers for ultrasound and MRI measurements. Data were derived from a multicenter prospective cohort study in which women scheduled for conventional anterior colporrhaphy underwent translabial 3D ultrasound and MRI prior to surgery. Intraclass correlation coefficients (ICCs) were calculated to estimate interobserver reliability between two independent observers and determine the agreement between ultrasound and MRI measurements. Bland-Altman plots were created to assess the agreement between ultrasound and MRI measurements. Data from 139 women from nine hospitals were included in the study. The interobserver reliability of ultrasound assessment at rest, during Valsalva maneuver and during contraction and of MRI assessment at rest were moderate or good. The agreement between ultrasound and MRI for the measurement of levator hiatal biometry at rest was moderate, with ICCs of 0.52 (95%CI, 0.32-0.66) for levator hiatal area, 0.44 (95%CI, 0.21-0.60) for anteroposterior diameter and 0.44 (95%CI, 0.22-0.60) for transverse diameter. Levator hiatal biometry measurements were statistically significantly larger on MRI than on translabial 3D ultrasound. The agreement between translabial 3D ultrasound and MRI for measurement of the levator hiatus at rest in women with pelvic organ prolapse was only moderate. The results of translabial 3D ultrasound and MRI should therefore not be used interchangeably in daily practice or in clinical research. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.

  19. Measurement of fetal head descent using the 'angle of progression' on transperineal ultrasound imaging is reliable regardless of fetal head station or ultrasound expertise.

    PubMed

    Dückelmann, A M; Bamberg, C; Michaelis, S A M; Lange, J; Nonnenmacher, A; Dudenhausen, J W; Kalache, K D

    2010-02-01

    To assess whether ultrasound experience or fetal head station affects the reliability of measurement of fetal head descent using the angle of progression on intrapartum ultrasound images obtained by a single experienced operator, and to determine reliability of measurements when images were acquired by different operators with variable ultrasound experience. One experienced obstetrician performed 44 transperineal ultrasound examinations of women at term and in prolonged second stage of labor with the fetus in the occipitoanterior position. Three midwives without ultrasound experience, three obstetricians with < 5 years' experience and three obstetricians with > 10 years' experience measured fetal head descent based on the angle of progression in the images obtained. The angle of progression was measured by two obstetricians in independent ultrasound examinations of 24 laboring women at term with the fetus in the cephalic position to allow assessment of the reliability of image acquisition. Intraclass correlation coefficients (ICCs) with 95% confidence interval (CI) were used to evaluate interobserver reliability and Bland-Altman analysis was used to assess interobserver agreement. In total, 444 measurements were performed and compared. Interobserver reliability with respect to offline image analysis was substantial (overall ICC, 0.72; 95% CI, 0.63-0.81). ICCs were 0.82 (95% CI, 0.70-0.89), 0.81 (95% CI, 0.71-0.88) and 0.61 (95% CI, 0.43-074) for observers with > 10 years', < 5 years' and no ultrasound experience, respectively. There were no significant differences between ICCs among observer groups according to ultrasound experience. Fetal head station did not affect reliability. Bland-Altman analysis indicated reasonable agreement between measurements obtained by two different operators with > 10 years' and < 5 years' ultrasound experience (bias, -1.09 degrees ; 95% limits of agreement, -8.76 to 6.58). The reliability of measurement of the angle of progression following separate image acquisition by two experienced operators was similar to the reliability of offline image analysis (ICC, 0.86; 95% CI, 0.70-0.93). Measurement of the angle of progression on transperineal ultrasound imaging is reliable regardless of fetal head station or the clinician's level of ultrasound experience.

  20. Measuring Femoral Torsion In Vivo Using Freehand 3-D Ultrasound Imaging.

    PubMed

    Passmore, Elyse; Pandy, Marcus G; Graham, H Kerr; Sangeux, Morgan

    2016-02-01

    Despite variation in bone geometry, muscle and joint function is often investigated using generic musculoskeletal models. Patient-specific bone geometry can be obtained from computerised tomography, which involves ionising radiation, or magnetic resonance imaging (MRI), which is costly and time consuming. Freehand 3-D ultrasound provides an alternative to obtain bony geometry. The purpose of this study was to determine the accuracy and repeatability of 3-D ultrasound in measuring femoral torsion. Measurements of femoral torsion were performed on 10 healthy adults using MRI and 3-D ultrasound. Measurements of femoral torsion from 3-D ultrasound were, on average, smaller than those from MRI (mean difference = 1.8°; 95% confidence interval: -3.9°, 7.5°). MRI and 3-D ultrasound had Bland and Altman repeatability coefficients of 3.1° and 3.7°, respectively. Accurate measurements of femoral torsion were obtained with 3-D ultrasound offering the potential to acquire patient-specific bone geometry for musculoskeletal modelling. Three-dimensional ultrasound is non-invasive and relatively inexpensive and can be integrated into gait analysis. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  1. Evaluation of knee cartilage thickness: A comparison between ultrasound and magnetic resonance imaging methods.

    PubMed

    Schmitz, Randy J; Wang, Hsin-Min; Polprasert, Daniel R; Kraft, Robert A; Pietrosimone, Brian G

    2017-03-01

    Establishing clinically accessible measures of cartilage health is critical for assessing effectiveness of protocols to reduce risk of osteoarthritis (OA) development and progression. Cartilage thickness is one important measure in describing both OA development and progression. The objective was to determine the relationship between ultrasound and MRI measures of cartilage thickness in the medial femoral condyle. Mean cartilage thicknesses of the left medial femoral cartilage were measured via T1 weighted MRI and ultrasound imaging from transverse, anterior, middle, and posterior medial femoral regions in 10 healthy females (Mean±Std Dev) (1.66±0.08m, 59.5±8.3kg, 21.6±1.4years) and nine healthy males (1.80±0.08m, 79.1±6.2kg, 21.7±1.5years). Pearson correlations examined relationships between MRI and ultrasound measures. Bland-Altman plots evaluated agreement between the imaging modalities. Transverse ultrasound thickness measures were significantly positively correlated with MRI middle (r=.67, P≤.05) and posterior thicknesses (r=.49, P≤.05) while the middle and posterior longitudinal ultrasound measures were significantly correlated to their respective MRI regions (r=.67, P≤.05 & r=.59 P≤.05, respectively). There was poor absolute agreement between correlated measures with ultrasound thickness measures being between 1.9 and 2.8mm smaller than MRI measures. These results suggest that ultrasound may be a viable clinical tool to assess relative cartilage thickness in the middle and posterior medial femoral regions. However, the absolute validity of the ultrasound measure is called into question due to the larger MRI-based thickness measures. Level IV. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Spinal curvature measurement by tracked ultrasound snapshots.

    PubMed

    Ungi, Tamas; King, Franklin; Kempston, Michael; Keri, Zsuzsanna; Lasso, Andras; Mousavi, Parvin; Rudan, John; Borschneck, Daniel P; Fichtinger, Gabor

    2014-02-01

    Monitoring spinal curvature in adolescent kyphoscoliosis requires regular radiographic examinations; however, the applied ionizing radiation increases the risk of cancer. Ultrasound imaging is favored over radiography because it does not emit ionizing radiation. Therefore, we tested an ultrasound system for spinal curvature measurement, with the help of spatial tracking of the ultrasound transducer. Tracked ultrasound was used to localize vertebral transverse processes as landmarks along the spine to measure curvature angles. The method was tested in two scoliotic spine models by localizing the same landmarks using both ultrasound and radiographic imaging and comparing the angles obtained. A close correlation was found between tracked ultrasound and radiographic curvature measurements. Differences between results of the two methods were 1.27 ± 0.84° (average ± SD) in an adult model and 0.96 ± 0.87° in a pediatric model. Our results suggest that tracked ultrasound may become a more tolerable and more accessible alternative to radiographic spine monitoring in adolescent kyphoscoliosis. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  3. Comparison of portable and conventional ultrasound imaging in spinal curvature measurement

    NASA Astrophysics Data System (ADS)

    Yan, Christina; Tabanfar, Reza; Kempston, Michael; Borschneck, Daniel; Ungi, Tamas; Fichtinger, Gabor

    2016-03-01

    PURPOSE: In scoliosis monitoring, tracked ultrasound has been explored as a safer imaging alternative to traditional radiography. The use of ultrasound in spinal curvature measurement requires identification of vertebral landmarks, but bones have reduced visibility in ultrasound imaging and high quality ultrasound machines are often expensive and not portable. In this work, we investigate the image quality and measurement accuracy of a low cost and portable ultrasound machine in comparison to a standard ultrasound machine in scoliosis monitoring. METHODS: Two different kinds of ultrasound machines were tested on three human subjects, using the same position tracker and software. Spinal curves were measured in the same reference coordinate system using both ultrasound machines. Lines were defined by connecting two symmetric landmarks identified on the left and right transverse process of the same vertebrae, and spinal curvature was defined as the transverse process angle between two such lines, projected on the coronal plane. RESULTS: Three healthy volunteers were scanned by both ultrasound configurations. Three experienced observers localized transverse processes as skeletal landmarks and obtained transverse process angles in images obtained from both ultrasounds. The mean difference per transverse process angle measured was 3.00 +/-2.1°. 94% of transverse processes visualized in the Sonix Touch were also visible in the Telemed. Inter-observer error in the Telemed was 4.5° and 4.3° in the Sonix Touch. CONCLUSION: Price, convenience and accessibility suggest the Telemed to be a viable alternative in scoliosis monitoring, however further improvements in measurement protocol and image noise reduction must be completed before implementing the Telemed in the clinical setting.

  4. Cognitive load predicts point-of-care ultrasound simulator performance.

    PubMed

    Aldekhyl, Sara; Cavalcanti, Rodrigo B; Naismith, Laura M

    2018-02-01

    The ability to maintain good performance with low cognitive load is an important marker of expertise. Incorporating cognitive load measurements in the context of simulation training may help to inform judgements of competence. This exploratory study investigated relationships between demographic markers of expertise, cognitive load measures, and simulator performance in the context of point-of-care ultrasonography. Twenty-nine medical trainees and clinicians at the University of Toronto with a range of clinical ultrasound experience were recruited. Participants answered a demographic questionnaire then used an ultrasound simulator to perform targeted scanning tasks based on clinical vignettes. Participants were scored on their ability to both acquire and interpret ultrasound images. Cognitive load measures included participant self-report, eye-based physiological indices, and behavioural measures. Data were analyzed using a multilevel linear modelling approach, wherein observations were clustered by participants. Experienced participants outperformed novice participants on ultrasound image acquisition. Ultrasound image interpretation was comparable between the two groups. Ultrasound image acquisition performance was predicted by level of training, prior ultrasound training, and cognitive load. There was significant convergence between cognitive load measurement techniques. A marginal model of ultrasound image acquisition performance including prior ultrasound training and cognitive load as fixed effects provided the best overall fit for the observed data. In this proof-of-principle study, the combination of demographic and cognitive load measures provided more sensitive metrics to predict ultrasound simulator performance. Performance assessments which include cognitive load can help differentiate between levels of expertise in simulation environments, and may serve as better predictors of skill transfer to clinical practice.

  5. Acoustic pressure measurement of pulsed ultrasound using acousto-optic diffraction

    NASA Astrophysics Data System (ADS)

    Jia, Lecheng; Chen, Shili; Xue, Bin; Wu, Hanzhong; Zhang, Kai; Yang, Xiaoxia; Zeng, Zhoumo

    2018-01-01

    Compared with continuous ultrasound wave, pulsed ultrasound has been widely used in ultrasound imaging. The aim of this work is to show the applicability of acousto-optic diffraction on pulsed ultrasound transducer. In this paper, acoustic pressure of two ultrasound transducers is measured based on Raman-Nath diffraction. The frequencies of transducers are 5MHz and 10MHz. The pulse-echo method and simulation data are used to evaluate the results. The results show that the proposed method is capable to measure the absolute sound pressure. We get a sectional view of acoustic pressure using a displacement platform as an auxiliary. Compared with the traditional sound pressure measurement methods, the proposed method is non-invasive with high sensitivity and spatial resolution.

  6. Measurement of tissue viscoelasticity with ultrasound

    NASA Astrophysics Data System (ADS)

    Greenleaf, J. F.; Alizad, A.

    2017-02-01

    Tissue properties such as elasticity and viscosity have been shown to be related to such tissue conditions as contraction, edema, fibrosis, and fat content among others. Magnetic Resonance Elastography has shown outstanding ability to measure the elasticity and in some cases the viscosity of tissues, especially in the liver, providing the ability to stage fibrotic liver disease similarly to biopsy. We discuss ultrasound methods of measuring elasticity and viscosity in tissues. Many of these methods are becoming widely available in the extant ultrasound machines distributed throughout the world. Some of the methods to be discussed are in the developmental stage. The advantages of the ultrasound methods are that the imaging instruments are widely available and that many of the viscoelastic measurements can be made during a short addition to the normal ultrasound examination time. In addition, the measurements can be made by ultrasound repetitively and quickly allowing evaluation of dynamic physiologic function in circumstances such as muscle contraction or artery relaxation. Measurement of viscoelastic tissue mechanical properties will become a consistent part of clinical ultrasound examinations in our opinion.

  7. Use Of New Industrial Coatings for the U.S. Navy Waterfront Structures

    DTIC Science & Technology

    2008-01-01

    as a coating for the interior and exterior of piping systems, which either are located in harsh environments or are transporting substances with...SSPC SP 10 Surfaces) (5). SyslCm Coating Sys\\~m A Zinc -rich urethane/MIOa·filled urethane/urethane 314/315/314 B Zinc -rich urethane/MIO-filled...urethanc/MIO-urethane 336/3361336 C Zinc -rich urethancl1vfiO & Alb-fined urethaneiMIO-fiIled 337/3401336 ,1 MicaceQus iron oxide. b Aluminum. urethane

  8. The comparison of measurement between ultrasound and computed tomography for abnormal degenerative facet joints: A STROBE-compliant article.

    PubMed

    Shi, Wen; Tian, Dan; Liu, Da; Yin, Jing; Huang, Ying

    2017-08-01

    Besides the study on examining facet joints of lumbar spine by ultrasound in normal population, there has not been any related report about examining normal facet joints of lumbar spine by ultrasound so far. This study was aimed to explore the feasibility of ultrasound assessment of lumber spine facet joints by comparing ultrasound measure values of normal and degenerative lumber spine facet joints, and by comparing measure values of ultrasound and computed tomography (CT) of degenerative lumber spine facet joints.This study included 15 patients who had chronic low back pain because of degenerative change in lumbar vertebrae, and 19 volunteers who did not have low back pain or pain in the lower limb. The ultrasound measure values (height [H] and width [W]) of normal and degenerative lumber spine facet joints were compared. And the differentiation between measure values (H and W) of ultrasound and CT of degenerative lumber spine facet joints was also analyzed.The ultrasound clearly showed abnormal facet joints lesion, which was characterized by hyperostosis on the edge of joints, bone destruction under joints, and thinner or thicker articular cartilage. There were significant differences between the ultrasound measure values of the normal (H: 1.26 ± 0.03 cm, W: 0.18 ± 0.01 cm) and abnormal facet joints (H: 1.43 ± 0.05 cm, W: 0.15 ± 0.02 cm) (all P < .05). However, there were no significant differences between the measure values of the ultrasound (H: 1.43 ± 0.17 cm, W: 0.15 ± 0.03 cm) and CT (H: 1.42 ± 0.16, W: 0.14 ± 0.03) of the degenerative lumber spine facet joints (all P > .05).Ultrasound can clearly show the structure of facet joints of lumbar spine. It is precise and feasible to assess facet joints of lumbar spine by ultrasound. This study has important significance for the diagnosis of lumbar facet joint degeneration.

  9. An Examination of Ultrasound Measured Tissue Perfusion on Breast Cancer

    DTIC Science & Technology

    1998-12-01

    is similar to those of the study by Ivey et al. [9] in which high intensity fields were used to produce cavitation bubbles for ultrasound contrast...ft * * AD AWARD NUMBER DAMD17-94-J-4144 TITLE: ^ Examination of Ultrasound Measured Tissue Perfusion on Breast Cancer...Examination of Ultrasound Measured Tissue Perfusion on Breast Cancer 3. REPORT TYPE AND DATES COVERED Final (1 Jun 94 - 30 Nov 98) 5. FUNDING

  10. Can Ultrasound Accurately Assess Ischiofemoral Space Dimensions? A Validation Study.

    PubMed

    Finnoff, Jonathan T; Johnson, Adam C; Hollman, John H

    2017-04-01

    Ischiofemoral impingement is a potential cause of hip and buttock pain. It is evaluated commonly with magnetic resonance imaging (MRI). To our knowledge, no study previously has evaluated the ability of ultrasound to measure the ischiofemoral space (IFS) dimensions reliably. To determine whether ultrasound could accurately measure the IFS dimensions when compared with the gold standard imaging modality of MRI. A methods comparison study. Sports medicine center within a tertiary-care institution. A total of 5 male and 5 female asymptomatic adult subjects (age mean = 29.2 years, range = 23-35 years; body mass index mean = 23.5, range = 19.5-26.6) were recruited to participate in the study. Subjects were secured in a prone position on a MRI table with their hips in a neutral position. Their IFS dimensions were then acquired in a randomized order using diagnostic ultrasound and MRI. The main outcome measurements were the IFS dimensions acquired with ultrasound and MRI. The mean IFS dimensions measured with ultrasound was 29.5 mm (standard deviation [SD] 4.99 mm, standard error mean 1.12 mm), whereas those obtained with MRI were 28.25 mm (SD 5.91 mm, standard error mean 1.32 mm). The mean difference between the ultrasound and MRI measurements was 1.25 mm, which was not statistically significant (SD 3.71 mm, standard error mean 3.71 mm, 95% confidence interval -0.49 mm to 2.98 mm, t 19 = 1.506, P = .15). The Bland-Altman analysis indicated that the 95% limits of agreement between the 2 measurement was -6.0 to 8.5 mm, indicating that there was no systematic bias between the ultrasound and MRI measurements. Our findings suggest that the IFS measurements obtained with ultrasound are very similar to those obtained with MRI. Therefore, when evaluating individuals with suspected ischiofemoral impingement, one could consider using ultrasound to measure their IFS dimensions. III. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  11. Design of a Thermoacoustic Sensor for Low Intensity Ultrasound Measurements Based on an Artificial Neural Network.

    PubMed

    Xing, Jida; Chen, Jie

    2015-06-23

    In therapeutic ultrasound applications, accurate ultrasound output intensities are crucial because the physiological effects of therapeutic ultrasound are very sensitive to the intensity and duration of these applications. Although radiation force balance is a benchmark technique for measuring ultrasound intensity and power, it is costly, difficult to operate, and compromised by noise vibration. To overcome these limitations, the development of a low-cost, easy to operate, and vibration-resistant alternative device is necessary for rapid ultrasound intensity measurement. Therefore, we proposed and validated a novel two-layer thermoacoustic sensor using an artificial neural network technique to accurately measure low ultrasound intensities between 30 and 120 mW/cm2. The first layer of the sensor design is a cylindrical absorber made of plexiglass, followed by a second layer composed of polyurethane rubber with a high attenuation coefficient to absorb extra ultrasound energy. The sensor determined ultrasound intensities according to a temperature elevation induced by heat converted from incident acoustic energy. Compared with our previous one-layer sensor design, the new two-layer sensor enhanced the ultrasound absorption efficiency to provide more rapid and reliable measurements. Using a three-dimensional model in the K-wave toolbox, our simulation of the ultrasound propagation process demonstrated that the two-layer design is more efficient than the single layer design. We also integrated an artificial neural network algorithm to compensate for the large measurement offset. After obtaining multiple parameters of the sensor characteristics through calibration, the artificial neural network is built to correct temperature drifts and increase the reliability of our thermoacoustic measurements through iterative training about ten seconds. The performance of the artificial neural network method was validated through a series of experiments. Compared to our previous design, the new design reduced sensing time from 20 s to 12 s, and the sensor's average error from 3.97 mW/cm2 to 1.31 mW/cm2 respectively.

  12. Design of a Thermoacoustic Sensor for Low Intensity Ultrasound Measurements Based on an Artificial Neural Network

    PubMed Central

    Xing, Jida; Chen, Jie

    2015-01-01

    In therapeutic ultrasound applications, accurate ultrasound output intensities are crucial because the physiological effects of therapeutic ultrasound are very sensitive to the intensity and duration of these applications. Although radiation force balance is a benchmark technique for measuring ultrasound intensity and power, it is costly, difficult to operate, and compromised by noise vibration. To overcome these limitations, the development of a low-cost, easy to operate, and vibration-resistant alternative device is necessary for rapid ultrasound intensity measurement. Therefore, we proposed and validated a novel two-layer thermoacoustic sensor using an artificial neural network technique to accurately measure low ultrasound intensities between 30 and 120 mW/cm2. The first layer of the sensor design is a cylindrical absorber made of plexiglass, followed by a second layer composed of polyurethane rubber with a high attenuation coefficient to absorb extra ultrasound energy. The sensor determined ultrasound intensities according to a temperature elevation induced by heat converted from incident acoustic energy. Compared with our previous one-layer sensor design, the new two-layer sensor enhanced the ultrasound absorption efficiency to provide more rapid and reliable measurements. Using a three-dimensional model in the K-wave toolbox, our simulation of the ultrasound propagation process demonstrated that the two-layer design is more efficient than the single layer design. We also integrated an artificial neural network algorithm to compensate for the large measurement offset. After obtaining multiple parameters of the sensor characteristics through calibration, the artificial neural network is built to correct temperature drifts and increase the reliability of our thermoacoustic measurements through iterative training about ten seconds. The performance of the artificial neural network method was validated through a series of experiments. Compared to our previous design, the new design reduced sensing time from 20 s to 12 s, and the sensor’s average error from 3.97 mW/cm2 to 1.31 mW/cm2 respectively. PMID:26110412

  13. Agreement and reliability of pelvic floor measurements during contraction using three-dimensional pelvic floor ultrasound and virtual reality.

    PubMed

    Speksnijder, L; Rousian, M; Steegers, E A P; Van Der Spek, P J; Koning, A H J; Steensma, A B

    2012-07-01

    Virtual reality is a novel method of visualizing ultrasound data with the perception of depth and offers possibilities for measuring non-planar structures. The levator ani hiatus has both convex and concave aspects. The aim of this study was to compare levator ani hiatus volume measurements obtained with conventional three-dimensional (3D) ultrasound and with a virtual reality measurement technique and to establish their reliability and agreement. 100 symptomatic patients visiting a tertiary pelvic floor clinic with a normal intact levator ani muscle diagnosed on translabial ultrasound were selected. Datasets were analyzed using a rendered volume with a slice thickness of 1.5 cm at the level of minimal hiatal dimensions during contraction. The levator area (in cm(2)) was measured and multiplied by 1.5 to get the levator ani hiatus volume in conventional 3D ultrasound (in cm(3)). Levator ani hiatus volume measurements were then measured semi-automatically in virtual reality (cm(3) ) using a segmentation algorithm. An intra- and interobserver analysis of reliability and agreement was performed in 20 randomly chosen patients. The mean difference between levator ani hiatus volume measurements performed using conventional 3D ultrasound and virtual reality was 0.10 (95% CI, - 0.15 to 0.35) cm(3). The intraclass correlation coefficient (ICC) comparing conventional 3D ultrasound with virtual reality measurements was > 0.96. Intra- and interobserver ICCs for conventional 3D ultrasound measurements were > 0.94 and for virtual reality measurements were > 0.97, indicating good reliability for both. Levator ani hiatus volume measurements performed using virtual reality were reliable and the results were similar to those obtained with conventional 3D ultrasonography. Copyright © 2012 ISUOG. Published by John Wiley & Sons, Ltd.

  14. A Microfluidics-based Pulpal Arteriole Blood Flow Phantom for Validation of Doppler Ultrasound Devices in Pulpal Blood Flow Velocity Measurement.

    PubMed

    Kim, Dohyun; Park, Sung-Ho

    2016-11-01

    Recently, Doppler ultrasound has been used for the measurement of pulpal blood flow in human teeth. However, the reliability of this method has not been verified. In this study, we developed a model to simulate arteriole blood flow within the dental pulp by using microfluidics. This arteriole simulator, or flow phantom, was used to determine the reliability of measurements obtained by using a Doppler ultrasound device. A microfluidic chip was fabricated by using the soft lithography technique, and blood-mimicking fluid was pumped through the channel by a microfluidic system. A Doppler ultrasound device was used for the measurement of flow velocity. The peak, mean, and minimal flow velocities obtained from the phantom and the Doppler ultrasound device were compared by using linear regression analysis and Pearson correlation coefficient. Bland-Altman analyses were performed to evaluate the velocity differences between the flow generated by the phantom and the flow measurements made with the Doppler ultrasound device. The microfluidic system was able to generate the flow profiles as intended, and the fluid flow could be monitored and controlled by the software program. There were excellent linear correlations between the peak, mean, and minimal flow velocities of the phantom and those of the Doppler ultrasound device (r = 0.94-0.996, P < .001). However, the velocities were overestimated by the Doppler ultrasound device. This phantom provides opportunities for research and education involving the Doppler ultrasound technique in dentistry. Although Doppler ultrasound can be an effective tool for the measurement of pulpal blood flow velocity, it is essential to validate and calibrate the device before clinical use. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Development of Ultrasound to Measure In-Vivo Dynamic Cervical Spine Intervertebral Disc Mechanics

    DTIC Science & Technology

    2016-01-01

    Award Number: W81XWH-13-1-0050 TITLE: Development of Ultrasound to Measure In-vivo Dynamic Cervical Spine Intervertebral Disc Mechanics PRINCIPAL...CONTRACT NUMBER W81XWH-13-1-0050 Development of Ultrasound to Measure In-vivo Dynamic Cervical Spine Intervertebral Disc Mechanics 5b. GRANT NUMBER 5c...elasticity during compression or tension. As a portable, low cost imaging modality, the dual ultrasound system quantified cervical spine IVD displacement and

  16. High pulse repetition frequency ultrasound system for ex vivo measurement of mechanical properties of crystalline lenses with laser-induced microbubble interrogated by acoustic radiation force

    PubMed Central

    Yoon, Sangpil; Aglyamov, Salavat; Karpiouk, Andrei; Emelianov, Stanislav

    2012-01-01

    A high pulse repetition frequency ultrasound system for ex vivo measurement of mechanical properties of animal crystalline lens was developed and validated. We measured the bulk displacement of laser-induced microbubbles created at different positions within the lens using nanosecond laser pulses. An impulsive acoustic radiation force was applied to the microbubble, and spatio-temporal measurements of the microbubble displacement were assessed using a custom-made high pulse repetition frequency ultrasound system consisting of two 25 MHz focused ultrasound transducers. One of these transducers was used to emit a train of ultrasound pulses and another transducer was used to receive the ultrasound echoes reflected from the microbubble. The developed system was operating at 1 MHz pulse repetition frequency. Based on measured motion of the microbubble, the Young’s moduli of surrounding tissue were reconstructed and the values were compared with those measured using indentation test. Measured values of Young’s moduli of 4 bovine lenses ranged from 2.6±0.1 to 26±1.4 kPa and there was good agreement between the two methods. Therefore, our studies, utilizing the high pulse repetition frequency ultrasound system, suggest that the developed approach can be used to assess the mechanical properties of ex vivo crystalline lenses. Furthermore, the potential of the presented approach for in vivo measurements is discussed. PMID:22797709

  17. Diffusing-wave spectroscopy in an inhomogeneous object: Local viscoelastic spectra from ultrasound-assisted measurement of correlation decay arising from the ultrasound focal volume

    NASA Astrophysics Data System (ADS)

    Chandran, R. Sriram; Sarkar, Saikat; Kanhirodan, Rajan; Roy, Debasish; Vasu, Ram Mohan

    2014-07-01

    We demonstrate diffusing-wave spectroscopy (DWS) in a localized region of a viscoelastically inhomogeneous object by measurement of the intensity autocorrelation [g2(τ)] that captures only the decay introduced by the temperature-induced Brownian motion in the region. The region is roughly specified by the focal volume of an ultrasound transducer which introduces region specific mechanical vibration owing to insonification. Essential characteristics of the localized non-Markovian dynamics are contained in the decay of the modulation depth [M(τ)], introduced by the ultrasound forcing in the focal volume selected, on g2(τ). The modulation depth M (τi) at any delay time τi can be measured by short-time Fourier transform of g2(τ) and measurement of the magnitude of the spectrum at the ultrasound drive frequency. By following the established theoretical framework of DWS, we are able to connect the decay in M (τ) to the mean-squared displacement (MSD) of scattering centers and the MSD to G*(ω), the complex viscoelastic spectrum. A two-region composite polyvinyl alcohol phantom with different viscoelastic properties is selected for demonstrating local DWS-based recovery of G*(ω) corresponding to these regions from the measured region specific M (τi)vsτi. The ultrasound-assisted measurement of MSD is verified by simulating, using a generalized Langevin equation (GLE), the dynamics of the particles in the region selected as well as by the usual DWS experiment without the ultrasound. It is shown that whereas the MSD obtained by solving the GLE without the ultrasound forcing agreed with its experimental counterpart covering small and large values of τ, the match was good only in the initial transients in regard to experimental measurements with ultrasound.

  18. Multimedia systems in ultrasound image boundary detection and measurements

    NASA Astrophysics Data System (ADS)

    Pathak, Sayan D.; Chalana, Vikram; Kim, Yongmin

    1997-05-01

    Ultrasound as a medical imaging modality offers the clinician a real-time of the anatomy of the internal organs/tissues, their movement, and flow noninvasively. One of the applications of ultrasound is to monitor fetal growth by measuring biparietal diameter (BPD) and head circumference (HC). We have been working on automatic detection of fetal head boundaries in ultrasound images. These detected boundaries are used to measure BPD and HC. The boundary detection algorithm is based on active contour models and takes 32 seconds on an external high-end workstation, SUN SparcStation 20/71. Our goal has been to make this tool available within an ultrasound machine and at the same time significantly improve its performance utilizing multimedia technology. With the advent of high- performance programmable digital signal processors (DSP), the software solution within an ultrasound machine instead of the traditional hardwired approach or requiring an external computer is now possible. We have integrated our boundary detection algorithm into a programmable ultrasound image processor (PUIP) that fits into a commercial ultrasound machine. The PUIP provides both the high computing power and flexibility needed to support computationally-intensive image processing algorithms within an ultrasound machine. According to our data analysis, BPD/HC measurements made on PUIP lie within the interobserver variability. Hence, the errors in the automated BPD/HC measurements using the algorithm are on the same order as the average interobserver differences. On PUIP, it takes 360 ms to measure the values of BPD/HC on one head image. When processing multiple head images in sequence, it takes 185 ms per image, thus enabling 5.4 BPD/HC measurements per second. Reduction in the overall execution time from 32 seconds to a fraction of a second and making this multimedia system available within an ultrasound machine will help this image processing algorithm and other computer-intensive imaging applications become a practical tool for the sonographers in the feature.

  19. Ultrasound Elastography: The New Frontier in Direct Measurement of Muscle Stiffness

    PubMed Central

    Brandenburg, Joline E.; Eby, Sarah F.; Song, Pengfei; Zhao, Heng; Brault, Jeffrey S.; Chen, Shigao; An, Kai-Nan

    2014-01-01

    The use of brightness-mode ultrasound and Doppler ultrasound in physical medicine and rehabilitation has increased dramatically. The continuing evolution of ultrasound technology has also produced ultrasound elastography, a cutting-edge technology that can directly measure the mechanical properties of tissue, including muscle stiffness. Its real-time and direct measurements of muscle stiffness can aid the diagnosis and rehabilitation of acute musculoskeletal injuries and chronic myofascial pain. It can also help monitor outcomes of interventions affecting muscle in neuromuscular and musculoskeletal diseases, and it can better inform the functional prognosis. This technology has implications for even broader use of ultrasound in physical medicine and rehabilitation practice, but more knowledge about its uses and limitations is essential to its appropriate clinical implementation. In this review, we describe different ultrasound elastography techniques for studying muscle stiffness, including strain elastography, acoustic radiation force impulse imaging, and shear-wave elastography. We discuss the basic principles of these techniques, including the strengths and limitations of their measurement capabilities. We review the current muscle research, discuss physiatric clinical applications of these techniques, and note directions for future research. PMID:25064780

  20. Relationships among ultrasonic and mechanical properties of cancellous bone in human calcaneus in vitro.

    PubMed

    Wear, Keith A; Nagaraja, Srinidhi; Dreher, Maureen L; Sadoughi, Saghi; Zhu, Shan; Keaveny, Tony M

    2017-10-01

    Clinical bone sonometers applied at the calcaneus measure broadband ultrasound attenuation and speed of sound. However, the relation of ultrasound measurements to bone strength is not well-characterized. Addressing this issue, we assessed the extent to which ultrasonic measurements convey in vitro mechanical properties in 25 human calcaneal cancellous bone specimens (approximately 2×4×2cm). Normalized broadband ultrasound attenuation, speed of sound, and broadband ultrasound backscatter were measured with 500kHz transducers. To assess mechanical properties, non-linear finite element analysis, based on micro-computed tomography images (34-micron cubic voxel), was used to estimate apparent elastic modulus, overall specimen stiffness, and apparent yield stress, with models typically having approximately 25-30 million elements. We found that ultrasound parameters were correlated with mechanical properties with R=0.70-0.82 (p<0.001). Multiple regression analysis indicated that ultrasound measurements provide additional information regarding mechanical properties beyond that provided by bone quantity alone (p≤0.05). Adding ultrasound variables to linear regression models based on bone quantity improved adjusted squared correlation coefficients from 0.65 to 0.77 (stiffness), 0.76 to 0.81 (apparent modulus), and 0.67 to 0.73 (yield stress). These results indicate that ultrasound can provide complementary (to bone quantity) information regarding mechanical behavior of cancellous bone. Published by Elsevier Inc.

  1. On the reproducibility of expert-operated and robotic ultrasound acquisitions.

    PubMed

    Kojcev, Risto; Khakzar, Ashkan; Fuerst, Bernhard; Zettinig, Oliver; Fahkry, Carole; DeJong, Robert; Richmon, Jeremy; Taylor, Russell; Sinibaldi, Edoardo; Navab, Nassir

    2017-06-01

    We present the evaluation of the reproducibility of measurements performed using robotic ultrasound imaging in comparison with expert-operated sonography. Robotic imaging for interventional procedures may be a valuable contribution, but requires reproducibility for its acceptance in clinical routine. We study this by comparing repeated measurements based on robotic and expert-operated ultrasound imaging. Robotic ultrasound acquisition is performed in three steps under user guidance: First, the patient is observed using a 3D camera on the robot end effector, and the user selects the region of interest. This allows for automatic planning of the robot trajectory. Next, the robot executes a sweeping motion following the planned trajectory, during which the ultrasound images and tracking data are recorded. As the robot is compliant, deviations from the path are possible, for instance due to patient motion. Finally, the ultrasound slices are compounded to create a volume. Repeated acquisitions can be performed automatically by comparing the previous and current patient surface. After repeated image acquisitions, the measurements based on acquisitions performed by the robotic system and expert are compared. Within our case series, the expert measured the anterior-posterior, longitudinal, transversal lengths of both of the left and right thyroid lobes on each of the 4 healthy volunteers 3 times, providing 72 measurements. Subsequently, the same procedure was performed using the robotic system resulting in a cumulative total of 144 clinically relevant measurements. Our results clearly indicated that robotic ultrasound enables more repeatable measurements. A robotic ultrasound platform leads to more reproducible data, which is of crucial importance for planning and executing interventions.

  2. Assessment of pelvic floor muscle contraction with palpation, perineometry and transperineal ultrasound: a cross-sectional study.

    PubMed

    Volløyhaug, I; Mørkved, S; Salvesen, Ø; Salvesen, K Å

    2016-06-01

    To study the correlation between palpation, perineometry and transperineal ultrasound for assessment of pelvic floor muscle contraction and to define a contraction scale for ultrasound measurements. This was a cross-sectional study of 608 women examined with palpation of pelvic floor muscle contraction, using the Modified Oxford Scale, and measurement of the vaginal squeeze pressure with a vaginal balloon connected to a fiber-optic microtip transducer (perineometry). Transperineal ultrasound was used for measurements of levator hiatal area and anteroposterior (AP) diameter in the plane of minimal hiatal dimensions, at rest and on contraction. The pelvic floor muscle contraction was expressed as the percentage difference between values at rest and on contraction. Spearman's rank was used to test for correlation between the different methods of assessment. Significant correlations were found between all assessment methods (P < 0.001). Palpation correlated with perineometry (rs = 0.74) and with proportional change in hiatal area (rs = 0.67) and AP diameter (rs = 0.69) on ultrasound. Perineometry correlated with proportional change in hiatal area (rs = 0.60) and AP diameter (rs = 0.66) on ultrasound. We defined a contraction scale based on the proportional change in AP diameter. In this population, a change in AP diameter of < 7% corresponded to absence of contractions, 7-18% corresponded to weak contractions, 18-35% corresponded to normal contractions and > 35% corresponded to strong contractions. We found moderate to strong correlation between ultrasound measurements, palpation and perineometry for assessing pelvic floor muscle contraction. The proportional change in levator hiatal AP diameter was the ultrasound measurement with strongest correlation to palpation and perineometry and formed the basis for the contraction scale for ultrasound measurements. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.

  3. A high pulse repetition frequency ultrasound system for the ex vivo measurement of mechanical properties of crystalline lenses with laser-induced microbubbles interrogated by acoustic radiation force.

    PubMed

    Yoon, Sangpil; Aglyamov, Salavat; Karpiouk, Andrei; Emelianov, Stanislav

    2012-08-07

    A high pulse repetition frequency ultrasound system for an ex vivo measurement of mechanical properties of an animal crystalline lens was developed and validated. We measured the bulk displacement of laser-induced microbubbles created at different positions within the lens using nanosecond laser pulses. An impulsive acoustic radiation force was applied to the microbubble, and spatio-temporal measurements of the microbubble displacement were assessed using a custom-made high pulse repetition frequency ultrasound system consisting of two 25 MHz focused ultrasound transducers. One of these transducers was used to emit a train of ultrasound pulses and another transducer was used to receive the ultrasound echoes reflected from the microbubble. The developed system was operating at 1 MHz pulse repetition frequency. Based on the measured motion of the microbubble, Young's moduli of surrounding tissue were reconstructed and the values were compared with those measured using the indentation test. Measured values of Young's moduli of four bovine lenses ranged from 2.6 ± 0.1 to 26 ± 1.4 kPa, and there was good agreement between the two methods. Therefore, our studies, utilizing the high pulse repetition frequency ultrasound system, suggest that the developed approach can be used to assess the mechanical properties of ex vivo crystalline lenses. Furthermore, the potential of the presented approach for in vivo measurements is discussed.

  4. Proof of principle in vitro study of a prototype ultrasound technology to size stone fragments during ureteroscopy.

    PubMed

    Sorensen, Mathew D; Teichman, Joel M H; Bailey, Michael R

    2009-07-01

    Proof-of-principle in vitro experiments evaluated a prototype ultrasound technology to size kidney stone fragments. Nineteen human stones were measured using manual calipers. A 10-MHz, 1/8'' (10F) ultrasound transducer probe pinged each stone on a kidney tissue phantom submerged in water using two methods. In Method 1, the instrument was aligned such that the ultrasound pulse traveled through the stone. In Method 2, the instrument was aligned partially over the stone such that the ultrasound pulse traveled through water. For Method 1, the correlation between caliper- and ultrasound-determined stone size was r(2) = 0.71 (P < 0.0001). All but two stone measurements were accurate and precise to within 1 mm. For Method 2, the correlation was r(2) = 0.99 (P < 0.0001), and measurements were accurate and precise to within 0.25 mm. The prototype technology and either method measured stone size with good accuracy and precision. This technology may be possible to incorporate into ureteroscopy.

  5. An ultrasound wearable system for the monitoring and acceleration of fracture healing in long bones.

    PubMed

    Protopappas, Vasilios C; Baga, Dina A; Fotiadis, Dimitrios I; Likas, Aristidis C; Papachristos, Athanasios A; Malizos, Konstantinos N

    2005-09-01

    An ultrasound wearable system for remote monitoring and acceleration of the healing process in fractured long bones is presented. The so-called USBone system consists of a pair of ultrasound transducers, implanted into the fracture region, a wearable device and a centralized unit. The wearable device is responsible to carry out ultrasound measurements using the axial-transmission technique and initiate therapy sessions of low-intensity pulsed ultrasound. The acquired measurements and other data are wirelessly transferred from the patient-site to the centralized unit, which is located in a clinical setting. The evaluation of the system on an animal tibial osteotomy model is also presented. A dataset was constructed for monitoring purposes consisting of serial ultrasound measurements, follow-up radiographs, quantitative computed tomography-based densitometry and biomechanical data. The animal study demonstrated the ability of the system to collect ultrasound measurements in an effective and reliable fashion and participating orthopaedic surgeons accepted the system for future clinical application. Analysis of the acquired measurements showed that the pattern of evolution of the ultrasound velocity through healing bones over the postoperative period monitors a dynamic healing process. Furthermore, the ultrasound velocity of radiographically healed bones returns to 80% of the intact bone value, whereas the correlation coefficient of the velocity with the material and mechanical properties of the healing bone ranges from 0.699 to 0.814. The USBone system constitutes the first telemedicine system for the out-hospital management of patients sustained open fractures and treated with external fixation devices.

  6. Development of the Fetal Vermis: New Biometry Reference Data and Comparison of 3 Diagnostic Modalities-3D Ultrasound, 2D Ultrasound, and MR Imaging.

    PubMed

    Katorza, E; Bertucci, E; Perlman, S; Taschini, S; Ber, R; Gilboa, Y; Mazza, V; Achiron, R

    2016-07-01

    Normal biometry of the fetal posterior fossa rules out most major anomalies of the cerebellum and vermis. Our aim was to provide new reference data of the fetal vermis in 4 biometric parameters by using 3 imaging modalities, 2D ultrasound, 3D ultrasound, and MR imaging, and to assess the relation among these modalities. A retrospective study was conducted between June 2011 and June 2013. Three different imaging modalities were used to measure vermis biometry: 2D ultrasound, 3D ultrasound, and MR imaging. The vermian parameters evaluated were the maximum superoinferior diameter, maximum anteroposterior diameter, the perimeter, and the surface area. Statistical analysis was performed to calculate centiles for gestational age and to assess the agreement among the 3 imaging modalities. The number of fetuses in the study group was 193, 172, and 151 for 2D ultrasound, 3D ultrasound, and MR imaging, respectively. The mean and median gestational ages were 29.1 weeks, 29.5 weeks (range, 21-35 weeks); 28.2 weeks, 29.05 weeks (range, 21-35 weeks); and 32.1 weeks, 32.6 weeks (range, 27-35 weeks) for 2D ultrasound, 3D ultrasound, and MR imaging, respectively. In all 3 modalities, the biometric measurements of the vermis have shown a linear growth with gestational age. For all 4 biometric parameters, the lowest results were those measured by MR imaging, while the highest results were measured by 3D ultrasound. The inter- and intraobserver agreement was excellent for all measures and all imaging modalities. Limits of agreement were considered acceptable for clinical purposes for all parameters, with excellent or substantial agreement defined by the intraclass correlation coefficient. Imaging technique-specific reference data should be used for the assessment of the fetal vermis in pregnancy. © 2016 by American Journal of Neuroradiology.

  7. Measurement of corneal tangent modulus using ultrasound indentation.

    PubMed

    Wang, Li-Ke; Huang, Yan-Ping; Tian, Lei; Kee, Chea-Su; Zheng, Yong-Ping

    2016-09-01

    Biomechanical properties are potential information for the diagnosis of corneal pathologies. An ultrasound indentation probe consisting of a load cell and a miniature ultrasound transducer as indenter was developed to detect the force-indentation relationship of the cornea. The key idea was to utilize the ultrasound transducer to compress the cornea and to ultrasonically measure the corneal deformation with the eyeball overall displacement compensated. Twelve corneal silicone phantoms were fabricated with different stiffness for the validation of measurement with reference to an extension test. In addition, fifteen fresh porcine eyes were measured by the developed system in vitro. The tangent moduli of the corneal phantoms calculated using the ultrasound indentation data agreed well with the results from the tensile test of the corresponding phantom strips (R(2)=0.96). The mean tangent moduli of the porcine corneas measured by the proposed method were 0.089±0.026MPa at intraocular pressure (IOP) of 15mmHg and 0.220±0.053MPa at IOP of 30mmHg, respectively. The coefficient of variation (CV) and intraclass correlation coefficient (ICC) of tangent modulus were 14.4% and 0.765 at 15mmHg, and 8.6% and 0.870 at 30mmHg, respectively. The preliminary study showed that ultrasound indentation could be applied to the measurement of corneal tangent modulus with good repeatability and improved measurement accuracy compared to conventional surface displacement-based measurement method. The ultrasound indentation can be a potential tool for the corneal biomechanical properties measurement in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. An ergonomic, instrumented ultrasound probe for 6-axis force/torque measurement.

    PubMed

    Gilbertson, Matthew W; Anthony, Brian W

    2013-01-01

    An ergonomic, instrumented ultrasound probe has been developed for medical imaging applications. The device, which fits compactly in the hand of sonographers and permits rapid attachment & removal of the ultrasound probe, measures ultrasound probe-to-patient contact forces and torques in all six axes. The device was used to measure contact forces and torques applied by ten professional sonographers on five patients during thirty-six abdominal exams. Of the three contact forces, those applied along the probe axis were found to be largest, averaging 7.0N. Measurement noise was quantified for each axis, and found to be small compared with the axial force. Understanding the range of forces applied during ultrasound imaging enables the design of more accurate robotic imaging systems and could also improve understanding of the correlation between contact force and sonographer fatigue and injury.

  9. Ultrasound elastography: the new frontier in direct measurement of muscle stiffness.

    PubMed

    Brandenburg, Joline E; Eby, Sarah F; Song, Pengfei; Zhao, Heng; Brault, Jeffrey S; Chen, Shigao; An, Kai-Nan

    2014-11-01

    The use of brightness-mode ultrasound and Doppler ultrasound in physical medicine and rehabilitation has increased dramatically. The continuing evolution of ultrasound technology has also produced ultrasound elastography, a cutting-edge technology that can directly measure the mechanical properties of tissue, including muscle stiffness. Its real-time and direct measurements of muscle stiffness can aid the diagnosis and rehabilitation of acute musculoskeletal injuries and chronic myofascial pain. It can also help monitor outcomes of interventions affecting muscle in neuromuscular and musculoskeletal diseases, and it can better inform the functional prognosis. This technology has implications for even broader use of ultrasound in physical medicine and rehabilitation practice, but more knowledge about its uses and limitations is essential to its appropriate clinical implementation. In this review, we describe different ultrasound elastography techniques for studying muscle stiffness, including strain elastography, acoustic radiation force impulse imaging, and shear-wave elastography. We discuss the basic principles of these techniques, including the strengths and limitations of their measurement capabilities. We review the current muscle research, discuss physiatric clinical applications of these techniques, and note directions for future research. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  10. Cognitive load imposed by ultrasound-facilitated teaching does not adversely affect gross anatomy learning outcomes.

    PubMed

    Jamniczky, Heather A; Cotton, Darrel; Paget, Michael; Ramji, Qahir; Lenz, Ryan; McLaughlin, Kevin; Coderre, Sylvain; Ma, Irene W Y

    2017-03-01

    Ultrasonography is increasingly used in medical education, but its impact on learning outcomes is unclear. Adding ultrasound may facilitate learning, but may also potentially overwhelm novice learners. Based upon the framework of cognitive load theory, this study seeks to evaluate the relationship between cognitive load associated with using ultrasound and learning outcomes. The use of ultrasound was hypothesized to facilitate learning in anatomy for 161 novice first-year medical students. Using linear regression analyses, the relationship between reported cognitive load on using ultrasound and learning outcomes as measured by anatomy laboratory examination scores four weeks after ultrasound-guided anatomy training was evaluated in consenting students. Second anatomy examination scores of students who were taught anatomy with ultrasound were compared with historical controls (those not taught with ultrasound). Ultrasound's perceived utility for learning was measured on a five-point scale. Cognitive load on using ultrasound was measured on a nine-point scale. Primary outcome was the laboratory examination score (60 questions). Learners found ultrasound useful for learning. Weighted factor score on "image interpretation" was negatively, but insignificantly, associated with examination scores [F (1,135) = 0.28, beta = -0.22; P = 0.61]. Weighted factor score on "basic knobology" was positively and insignificantly associated with scores; [F (1,138) = 0.27, beta = 0.42; P = 0.60]. Cohorts exposed to ultrasound had significantly higher scores than historical controls (82.4% ± SD 8.6% vs. 78.8% ± 8.5%, Cohen's d = 0.41, P < 0.001). Using ultrasound to teach anatomy does not negatively impact learning and may improve learning outcomes. Anat Sci Educ 10: 144-151. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.

  11. Assessment of ultrasound modulation of near infrared light on the quantification of scattering coefficient.

    PubMed

    Singh, M Suheshkumar; Yalavarthy, Phaneendra K; Vasu, R M; Rajan, K

    2010-07-01

    To assess the effect of ultrasound modulation of near infrared (NIR) light on the quantification of scattering coefficient in tissue-mimicking biological phantoms. A unique method to estimate the phase of the modulated NIR light making use of only time averaged intensity measurements using a charge coupled device camera is used in this investigation. These experimental measurements from tissue-mimicking biological phantoms are used to estimate the differential pathlength, in turn leading to estimation of optical scattering coefficient. A Monte-Carlo model based numerical estimation of phase in lieu of ultrasound modulation is performed to verify the experimental results. The results indicate that the ultrasound modulation of NIR light enhances the effective scattering coefficient. The observed effective scattering coefficient enhancement in tissue-mimicking viscoelastic phantoms increases with increasing ultrasound drive voltage. The same trend is noticed as the ultrasound modulation frequency approaches the natural vibration frequency of the phantom material. The contrast enhancement is less for the stiffer (larger storage modulus) tissue, mimicking tumor necrotic core, compared to the normal tissue. The ultrasound modulation of the insonified region leads to an increase in the effective number of scattering events experienced by NIR light, increasing the measured phase, causing the enhancement in the effective scattering coefficient. The ultrasound modulation of NIR light could provide better estimation of scattering coefficient. The observed local enhancement of the effective scattering coefficient, in the ultrasound focal region, is validated using both experimental measurements and Monte-Carlo simulations.

  12. Clinical workflow for spinal curvature measurement with portable ultrasound

    NASA Astrophysics Data System (ADS)

    Tabanfar, Reza; Yan, Christina; Kempston, Michael; Borschneck, Daniel; Ungi, Tamas; Fichtinger, Gabor

    2016-03-01

    PURPOSE: Spinal curvature monitoring is essential in making treatment decisions in scoliosis. Monitoring entails radiographic examinations, however repeated ionizing radiation exposure has been shown to increase cancer risk. Ultrasound does not emit ionizing radiation and is safer for spinal curvature monitoring. We investigated a clinical sonography protocol and challenges associated with position-tracked ultrasound in spinal curvature measurement in scoliosis. METHODS: Transverse processes were landmarked along each vertebra using tracked ultrasound snapshots. The transverse process angle was used to determine the orientation of each vertebra. We tested our methodology on five patients in a local pediatric scoliosis clinic, comparing ultrasound to radiographic curvature measurements. RESULTS: Despite strong correlation between radiographic and ultrasound curvature angles in phantom studies, we encountered new challenges in the clinical setting. Our main challenge was differentiating transverse processes from ribs and other structures during landmarking. We observed up to 13° angle variability for a single vertebra and a 9.85° +/- 10.81° difference between ultrasound and radiographic Cobb angles for thoracic curvatures. Additionally, we were unable to visualize anatomical landmarks in the lumbar region where soft tissue depth was 25-35mm. In volunteers with large Cobb angles (greater than 40° thoracic and 60° lumbar), we observed spinal protrusions resulting in incomplete probe-skin contact and partial ultrasound images not suitable for landmarking. CONCLUSION: Spinal curvature measurement using tracked ultrasound is viable on phantom spine models. In the clinic, new challenges were encountered which must be resolved before a universal sonography protocol can be developed.

  13. Ultrasound use for body composition and carcass quality assessment in cattle and lambs

    USDA-ARS?s Scientific Manuscript database

    Genetic evaluation for carcass quality traits has evolved over time, in large part due to introduction of new technology such as ultrasound measures of body composition. Ultrasound measured body composition traits emulate important carcass traits, are very informative for selection purposes, are ac...

  14. Reproducibility and interoperator reliability of obtaining images and measurements of the cervix and uterus with brachytherapy treatment applicators in situ using transabdominal ultrasound.

    PubMed

    van Dyk, Sylvia; Garth, Margaret; Oates, Amanda; Kondalsamy-Chennakesavan, Srinivas; Schneider, Michal; Bernshaw, David; Narayan, Kailash

    2016-01-01

    To validate interoperator reliability of brachytherapy radiation therapists (RTs) in obtaining an ultrasound image and measuring the cervix and uterine dimensions using transabdominal ultrasound. Patients who underwent MRI with applicators in situ after the first insertion were included in the study. Imaging was performed by three RTs (RT1, RT2, and RT3) with varying degrees of ultrasound experience. All RTs were required to obtain a longitudinal planning image depicting the applicator in the uterine canal and measure the cervix and uterus. The MRI scan, taken 1 hour after the ultrasound, was used as the reference standard against which all measurements were compared. Measurements were analyzed with intraclass correlation coefficient and Bland-Altman plots. All RTs were able to obtain a suitable longitudinal image for each patient in the study. Mean differences (SD) between MRI and ultrasound measurements obtained by RTs ranged from 3.5 (3.6) to 4.4 (4.23) mm and 0 (3.0) to 0.9 (2.5) mm on the anterior and posterior surface of the cervix, respectively. Intraclass correlation coefficient for absolute agreement between MRI and RTs was >0.9 for all posterior measurement points in the cervix and ranged from 0.41 to 0.92 on the anterior surface. Measurements were not statistically different between RTs at any measurement point. RTs with variable training attained high levels of interoperator reliability when using transabdominal ultrasound to obtain images and measurements of the uterus and cervix with brachytherapy applicators in situ. Access to training and use of a well-defined protocol assist in achieving these high levels of reliability. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  15. Reproducibility of abdominal fat assessment by ultrasound and computed tomography

    PubMed Central

    Mauad, Fernando Marum; Chagas-Neto, Francisco Abaeté; Benedeti, Augusto César Garcia Saab; Nogueira-Barbosa, Marcello Henrique; Muglia, Valdair Francisco; Carneiro, Antonio Adilton Oliveira; Muller, Enrico Mattana; Elias Junior, Jorge

    2017-01-01

    Objective: To test the accuracy and reproducibility of ultrasound and computed tomography (CT) for the quantification of abdominal fat in correlation with the anthropometric, clinical, and biochemical assessments. Materials and Methods: Using ultrasound and CT, we determined the thickness of subcutaneous and intra-abdominal fat in 101 subjects-of whom 39 (38.6%) were men and 62 (61.4%) were women-with a mean age of 66.3 years (60-80 years). The ultrasound data were correlated with the anthropometric, clinical, and biochemical parameters, as well as with the areas measured by abdominal CT. Results: Intra-abdominal thickness was the variable for which the correlation with the areas of abdominal fat was strongest (i.e., the correlation coefficient was highest). We also tested the reproducibility of ultrasound and CT for the assessment of abdominal fat and found that CT measurements of abdominal fat showed greater reproducibility, having higher intraobserver and interobserver reliability than had the ultrasound measurements. There was a significant correlation between ultrasound and CT, with a correlation coefficient of 0.71. Conclusion: In the assessment of abdominal fat, the intraobserver and interobserver reliability were greater for CT than for ultrasound, although both methods showed high accuracy and good reproducibility. PMID:28670024

  16. Reproducibility of abdominal fat assessment by ultrasound and computed tomography.

    PubMed

    Mauad, Fernando Marum; Chagas-Neto, Francisco Abaeté; Benedeti, Augusto César Garcia Saab; Nogueira-Barbosa, Marcello Henrique; Muglia, Valdair Francisco; Carneiro, Antonio Adilton Oliveira; Muller, Enrico Mattana; Elias Junior, Jorge

    2017-01-01

    To test the accuracy and reproducibility of ultrasound and computed tomography (CT) for the quantification of abdominal fat in correlation with the anthropometric, clinical, and biochemical assessments. Using ultrasound and CT, we determined the thickness of subcutaneous and intra-abdominal fat in 101 subjects-of whom 39 (38.6%) were men and 62 (61.4%) were women-with a mean age of 66.3 years (60-80 years). The ultrasound data were correlated with the anthropometric, clinical, and biochemical parameters, as well as with the areas measured by abdominal CT. Intra-abdominal thickness was the variable for which the correlation with the areas of abdominal fat was strongest (i.e., the correlation coefficient was highest). We also tested the reproducibility of ultrasound and CT for the assessment of abdominal fat and found that CT measurements of abdominal fat showed greater reproducibility, having higher intraobserver and interobserver reliability than had the ultrasound measurements. There was a significant correlation between ultrasound and CT, with a correlation coefficient of 0.71. In the assessment of abdominal fat, the intraobserver and interobserver reliability were greater for CT than for ultrasound, although both methods showed high accuracy and good reproducibility.

  17. Comparative evaluation of ultrasound scanner accuracy in distance measurement

    NASA Astrophysics Data System (ADS)

    Branca, F. P.; Sciuto, S. A.; Scorza, A.

    2012-10-01

    The aim of the present study is to develop and compare two different automatic methods for accuracy evaluation in ultrasound phantom measurements on B-mode images: both of them give as a result the relative error e between measured distances, performed by 14 brand new ultrasound medical scanners, and nominal distances, among nylon wires embedded in a reference test object. The first method is based on a least squares estimation, while the second one applies the mean value of the same distance evaluated at different locations in ultrasound image (same distance method). Results for both of them are proposed and explained.

  18. Validation of an ultrasound dilution technology for cardiac output measurement and shunt detection in infants and children.

    PubMed

    Lindberg, Lars; Johansson, Sune; Perez-de-Sa, Valeria

    2014-02-01

    To validate cardiac output measurements by ultrasound dilution technology (COstatus monitor) against those obtained by a transit-time ultrasound technology with a perivascular flow probe and to investigate ultrasound dilution ability to estimate pulmonary to systemic blood flow ratio in children. Prospective observational clinical trial. Pediatric cardiac operating theater in a university hospital. In 21 children (6.1 ± 2.6 kg, mean ± SD) undergoing heart surgery, cardiac output was simultaneously recorded by ultrasound dilution (extracorporeal arteriovenous loop connected to existing arterial and central venous catheters) and a transit-time ultrasound probe applied to the ascending aorta, and when possible, the main pulmonary artery. The pulmonary to systemic blood flow ratio estimated from ultrasound dilution curve analysis was compared with that estimated from transit-time ultrasound technology. Bland-Altman analysis of the whole cohort (90 pairs, before and after surgery) showed a bias between transit-time ultrasound (1.01 ± 0.47 L/min) and ultrasound dilution technology (1.03 ± 0.51 L/min) of -0.02 L/min, limits of agreement -0.3 to 0.3 L/min, and percentage error of 31%. In children with no residual shunts, the bias was -0.04 L/min, limits of agreement -0.28 to 0.2 L/min, and percentage error 19%. The pooled co efficient of variation was for the whole cohort 3.5% (transit-time ultrasound) and 6.3% (ultrasound dilution), and in children without shunt, it was 2.9% (transit-time ultrasound) and 4% (ultrasound dilution), respectively. Ultrasound dilution identified the presence of shunts (pulmonary to systemic blood flow ≠ 1) with a sensitivity of 100% and a specificity of 92%. Mean pulmonary to systemic blood flow ratio by transit-time ultrasound was 2.6 ± 1.0 and by ultrasound dilution 2.2 ± 0.7 (not significant). The COstatus monitor is a reliable technique to measure cardiac output in children with high sensitivity and specificity for detecting the presence of shunts.

  19. Medical Imaging with Ultrasound: Some Basic Physics.

    ERIC Educational Resources Information Center

    Gosling, R.

    1989-01-01

    Discussed are medical applications of ultrasound. The physics of the wave nature of ultrasound including its propagation and production, return by the body, spatial and contrast resolution, attenuation, image formation using pulsed echo ultrasound techniques, measurement of velocity and duplex scanning are described. (YP)

  20. Airborne ultrasound applied to anthropometry--physical and technical principles.

    PubMed

    Lindström, K; Mauritzson, L; Benoni, G; Willner, S

    1983-01-01

    Airborne ultrasound has been utilized for remote measurement of distance, direction, size, form, volume and velocity. General anthropometrical measurements are performed with a newly constructed real-time linear array scanner. To make full use of the method, we expect a rapid development of high-frequency ultrasound transducers for use in air.

  1. Calibration and Evaluation of Ultrasound Thermography Using Infrared Imaging.

    PubMed

    Hsiao, Yi-Sing; Deng, Cheri X

    2016-02-01

    Real-time monitoring of the spatiotemporal evolution of tissue temperature is important to ensure safe and effective treatment in thermal therapies including hyperthermia and thermal ablation. Ultrasound thermography has been proposed as a non-invasive technique for temperature measurement, and accurate calibration of the temperature-dependent ultrasound signal changes against temperature is required. Here we report a method that uses infrared thermography for calibration and validation of ultrasound thermography. Using phantoms and cardiac tissue specimens subjected to high-intensity focused ultrasound heating, we simultaneously acquired ultrasound and infrared imaging data from the same surface plane of a sample. The commonly used echo time shift-based method was chosen to compute ultrasound thermometry. We first correlated the ultrasound echo time shifts with infrared-measured temperatures for material-dependent calibration and found that the calibration coefficient was positive for fat-mimicking phantom (1.49 ± 0.27) but negative for tissue-mimicking phantom (-0.59 ± 0.08) and cardiac tissue (-0.69 ± 0.18°C-mm/ns). We then obtained the estimation error of the ultrasound thermometry by comparing against the infrared-measured temperature and revealed that the error increased with decreased size of the heated region. Consistent with previous findings, the echo time shifts were no longer linearly dependent on temperature beyond 45°C-50°C in cardiac tissues. Unlike previous studies in which thermocouples or water bath techniques were used to evaluate the performance of ultrasound thermography, our results indicate that high-resolution infrared thermography is a useful tool that can be applied to evaluate and understand the limitations of ultrasound thermography methods. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  2. Design and implementation of a smartphone-based portable ultrasound pulsed-wave Doppler device for blood flow measurement.

    PubMed

    Huang, Chih-Chung; Lee, Po-Yang; Chen, Pay-Yu; Liu, Ting-Yu

    2012-01-01

    Blood flow measurement using Doppler ultrasound has become a useful tool for diagnosing cardiovascular diseases and as a physiological monitor. Recently, pocket-sized ultrasound scanners have been introduced for portable diagnosis. The present paper reports the implementation of a portable ultrasound pulsed-wave (PW) Doppler flowmeter using a smartphone. A 10-MHz ultrasonic surface transducer was designed for the dynamic monitoring of blood flow velocity. The directional baseband Doppler shift signals were obtained using a portable analog circuit system. After hardware processing, the Doppler signals were fed directly to a smartphone for Doppler spectrogram analysis and display in real time. To the best of our knowledge, this is the first report of the use of this system for medical ultrasound Doppler signal processing. A Couette flow phantom, consisting of two parallel disks with a 2-mm gap, was used to evaluate and calibrate the device. Doppler spectrograms of porcine blood flow were measured using this stand-alone portable device under the pulsatile condition. Subsequently, in vivo portable system verification was performed by measuring the arterial blood flow of a rat and comparing the results with the measurement from a commercial ultrasound duplex scanner. All of the results demonstrated the potential for using a smartphone as a novel embedded system for portable medical ultrasound applications. © 2012 IEEE

  3. Medical Ultrasound Imaging.

    ERIC Educational Resources Information Center

    Hughes, Stephen

    2001-01-01

    Explains the basic principles of ultrasound using everyday physics. Topics include the generation of ultrasound, basic interactions with material, and the measurement of blood flow using the Doppler effect. (Author/MM)

  4. Focused ultrasound thermal therapy system with ultrasound image guidance and temperature measurement feedback.

    PubMed

    Lin, Kao-Han; Young, Sun-Yi; Hsu, Ming-Chuan; Chan, Hsu; Chen, Yung-Yaw; Lin, Win-Li

    2008-01-01

    In this study, we developed a focused ultrasound (FUS) thermal therapy system with ultrasound image guidance and thermocouple temperature measurement feedback. Hydraulic position devices and computer-controlled servo motors were used to move the FUS transducer to the desired location with the measurement of actual movement by linear scale. The entire system integrated automatic position devices, FUS transducer, power amplifier, ultrasound image system, and thermocouple temperature measurement into a graphical user interface. For the treatment procedure, a thermocouple was implanted into a targeted treatment region in a tissue-mimicking phantom under ultrasound image guidance, and then the acoustic interference pattern formed by image ultrasound beam and low-power FUS beam was employed as image guidance to move the FUS transducer to have its focal zone coincident with the thermocouple tip. The thermocouple temperature rise was used to determine the sonication duration for a suitable thermal lesion as a high power was turned on and ultrasound image was used to capture the thermal lesion formation. For a multiple lesion formation, the FUS transducer was moved under the acoustic interference guidance to a new location and then it sonicated with the same power level and duration. This system was evaluated and the results showed that it could perform two-dimensional motion control to do a two-dimensional thermal therapy with a small localization error 0.5 mm. Through the user interface, the FUS transducer could be moved to heat the target region with the guidance of ultrasound image and acoustic interference pattern. The preliminary phantom experimental results demonstrated that the system could achieve the desired treatment plan satisfactorily.

  5. Ultrasound-enhanced localized chemotherapy of drug-sensitive and multidrug resistant tumors

    NASA Astrophysics Data System (ADS)

    Rapoport, Natalya Y.; Gao, Zhonggao; Kamaev, Pavel; Christensen, Douglas A.

    2006-05-01

    A new modality of targeted tumor chemotherapy is based on the drug encapsulation in polymeric nanoparticles followed by a localized release at the tumor site triggered by focused ultrasound. Effect of 1 MHz and 3 MHz unfocused ultrasound applied locally to the tumor on the Doxorubicin (DOX) biodistribution and tumor growth rates was measured for ovarian carcinoma tumors in nu/nu mice. The bioeffects of ultrasound were investigated on the systemic and cellular levels. Growth rates of A2780 ovarian carcinoma tumors were substantially reduced by combining micellar drug delivery with tumor irradiation. Ultrasound effect was not thermal as manifested by intratumoral temperature measurements during sonication. Biodistribution studies showed that ultrasound did not enhance micelle extravasation. Main mechanisms of the ultrasound-enhanced chemotherapy included (i) passive targeting of drug-loaded micelles to the tumor interstitium; (ii) ultrasound-triggered localized drug release from micelles in the tumor volume; (iii) enhanced micelle and drug diffusion through the tumor interstitium; and (iv) ultrasound-triggered cell membrane damage resulting in the enhanced micelle and drug uptake by tumor cells.

  6. Challenges and regulatory considerations in the acoustic measurement of high-frequency (>20 MHz) ultrasound.

    PubMed

    Nagle, Samuel M; Sundar, Guru; Schafer, Mark E; Harris, Gerald R; Vaezy, Shahram; Gessert, James M; Howard, Samuel M; Moore, Mary K; Eaton, Richard M

    2013-11-01

    This article examines the challenges associated with making acoustic output measurements at high ultrasound frequencies (>20 MHz) in the context of regulatory considerations contained in the US Food and Drug Administration industry guidance document for diagnostic ultrasound devices. Error sources in the acoustic measurement, including hydrophone calibration and spatial averaging, nonlinear distortion, and mechanical alignment, are evaluated, and the limitations of currently available acoustic measurement instruments are discussed. An uncertainty analysis of acoustic intensity and power measurements is presented, and an example uncertainty calculation is done on a hypothetical 30-MHz high-frequency ultrasound system. This analysis concludes that the estimated measurement uncertainty of the acoustic intensity is +73%/-86%, and the uncertainty in the mechanical index is +37%/-43%. These values exceed the respective levels in the Food and Drug Administration guidance document of 30% and 15%, respectively, which are more representative of the measurement uncertainty associated with characterizing lower-frequency ultrasound systems. Recommendations made for minimizing the measurement uncertainty include implementing a mechanical positioning system that has sufficient repeatability and precision, reconstructing the time-pressure waveform via deconvolution using the hydrophone frequency response, and correcting for hydrophone spatial averaging.

  7. In-Situ Acoustic Measurements of Temperature Profile in Extreme Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skliar, Mikhail

    2015-03-31

    A gasifier’s temperature is the primary characteristic that must be monitored to ensure its performance and the longevity of its refractory. One of the key technological challenges impacting the reliability and economics of coal and biomass gasification is the lack of temperature sensors that are capable of providing accurate, reliable, and long-life performance in an extreme gasification environment. This research has proposed, demonstrated, and validated a novel approach that uses a noninvasive ultrasound method that provides real-time temperature distribution monitoring across the refractory, especially the hot face temperature of the refractory. The essential idea of the ultrasound measurements of segmentalmore » temperature distribution is to use an ultrasound propagation waveguide across a refractory that has been engineered to contain multiple internal partial reflectors at known locations. When an ultrasound excitation pulse is introduced on the cold side of the refractory, it will be partially reflected from each scatterer in the US propagation path in the refractory wall and returned to the receiver as a train of partial echoes. The temperature in the corresponding segment can be determined based on recorded ultrasonic waveform and experimentally defined relationship between the speed of sound and temperature. The ultrasound measurement method offers a powerful solution to provide continuous real time temperature monitoring for the occasions that conventional thermal, optical and other sensors are infeasible, such as the impossibility of insertion of temperature sensor, harsh environment, unavailable optical path, and more. Our developed ultrasound system consists of an ultrasound engineered waveguide, ultrasound transducer/receiver, and data acquisition, logging, interpretation, and online display system, which is simple to install on the existing units with minimal modification on the gasifier or use with new units. This system has been successfully tested with a 100 kW pilot scale down flow oxyfuel combustor, capturing in real time temperature changes during all relevant combustion process changes. The ultrasound measurements have excellent agreement with thermo- couple measurements, and appear to be more sensitive to temperature changes before the thermocouples response, which is believed to be the first demonstration of ultrasound measurements segmental temperature distribution across refractories.« less

  8. Uncertainty evaluation of dead zone of diagnostic ultrasound equipment

    NASA Astrophysics Data System (ADS)

    Souza, R. M.; Alvarenga, A. V.; Braz, D. S.; Petrella, L. I.; Costa-Felix, R. P. B.

    2016-07-01

    This paper presents a model for evaluating measurement uncertainty of a feature used in the assessment of ultrasound images: dead zone. The dead zone was measured by two technicians of the INMETRO's Laboratory of Ultrasound using a phantom and following the standard IEC/TS 61390. The uncertainty model was proposed based on the Guide to the Expression of Uncertainty in Measurement. For the tested equipment, results indicate a dead zone of 1.01 mm, and based on the proposed model, the expanded uncertainty was 0.17 mm. The proposed uncertainty model contributes as a novel way for metrological evaluation of diagnostic imaging by ultrasound.

  9. Development of Ultrasound to Measure In-vivo Dynamic Cervical Spine Intervertebral Disc Mechanics

    DTIC Science & Technology

    2015-01-01

    1 AD_________ Award Number: W81XWH-13-1-0050 TITLE: Development of Ultrasound to Measure In-vivo Dynamic Cervical Spine Intervertebral Disc...COVERED 27 Dec 2013 - 26 Dec 2014 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Development of Ultrasound to Measure In-vivo Dynamic Cervical Spine...Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Neck pain is pervasive problems in military population

  10. An automated in vitro model for the evaluation of ultrasound modalities measuring myocardial deformation

    PubMed Central

    2010-01-01

    Background Echocardiography is the method of choice when one wishes to examine myocardial function. Qualitative assessment of the 2D grey scale images obtained is subjective, and objective methods are required. Speckle Tracking Ultrasound is an emerging technology, offering an objective mean of quantifying left ventricular wall motion. However, before a new ultrasound technology can be adopted in the clinic, accuracy and reproducibility needs to be investigated. Aim It was hypothesized that the collection of ultrasound sample data from an in vitro model could be automated. The aim was to optimize an in vitro model to allow for efficient collection of sample data. Material & Methods A tissue-mimicking phantom was made from water, gelatin powder, psyllium fibers and a preservative. Sonomicrometry crystals were molded into the phantom. The solid phantom was mounted in a stable stand and cyclically compressed. Peak strain was then measured by Speckle Tracking Ultrasound and sonomicrometry. Results We succeeded in automating the acquisition and analysis of sample data. Sample data was collected at a rate of 200 measurement pairs in 30 minutes. We found good agreement between Speckle Tracking Ultrasound and sonomicrometry in the in vitro model. Best agreement was 0.83 ± 0.70%. Worst agreement was -1.13 ± 6.46%. Conclusions It has been shown possible to automate a model that can be used for evaluating the in vitro accuracy and precision of ultrasound modalities measuring deformation. Sonomicrometry and Speckle Tracking Ultrasound had acceptable agreement. PMID:20822532

  11. Measurement methods to assess diastasis of the rectus abdominis muscle (DRAM): A systematic review of their measurement properties and meta-analytic reliability generalisation.

    PubMed

    van de Water, A T M; Benjamin, D R

    2016-02-01

    Systematic literature review. Diastasis of the rectus abdominis muscle (DRAM) has been linked with low back pain, abdominal and pelvic dysfunction. Measurement is used to either screen or to monitor DRAM width. Determining which methods are suitable for screening and monitoring DRAM is of clinical value. To identify the best methods to screen for DRAM presence and monitor DRAM width. AMED, Embase, Medline, PubMed and CINAHL databases were searched for measurement property studies of DRAM measurement methods. Population characteristics, measurement methods/procedures and measurement information were extracted from included studies. Quality of all studies was evaluated using 'quality rating criteria'. When possible, reliability generalisation was conducted to provide combined reliability estimations. Thirteen studies evaluated measurement properties of the 'finger width'-method, tape measure, calipers, ultrasound, CT and MRI. Ultrasound was most evaluated. Methodological quality of these studies varied widely. Pearson's correlations of r = 0.66-0.79 were found between calipers and ultrasound measurements. Calipers and ultrasound had Intraclass Correlation Coefficients (ICC) of 0.78-0.97 for test-retest, inter- and intra-rater reliability. The 'finger width'-method had weighted Kappa's of 0.73-0.77 for test-retest reliability, but moderate agreement (63%; weighted Kappa = 0.53) between raters. Comparing calipers and ultrasound, low measurement error was found (above the umbilicus), and the methods had good agreement (83%; weighted Kappa = 0.66) for discriminative purposes. The available information support ultrasound and calipers as adequate methods to assess DRAM. For other methods limited measurement information of low to moderate quality is available and further evaluation of their measurement properties is required. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Calibration and Evaluation of Ultrasound Thermography using Infrared Imaging

    PubMed Central

    Hsiao, Yi-Sing; Deng, Cheri X.

    2015-01-01

    Real-time monitoring of the spatiotemporal evolution of tissue temperature is important to ensure safe and effective treatment in thermal therapies including hyperthermia and thermal ablation. Ultrasound thermography has been proposed as a non-invasive technique for temperature measurement, and accurate calibration of the temperature-dependent ultrasound signal changes against temperature is required. Here we report a method that uses infrared (IR) thermography for calibration and validation of ultrasound thermography. Using phantoms and cardiac tissue specimens subjected to high-intensity focused ultrasound (HIFU) heating, we simultaneously acquired ultrasound and IR imaging data from the same surface plane of a sample. The commonly used echo time shift-based method was chosen to compute ultrasound thermometry. We first correlated the ultrasound echo time shifts with IR-measured temperatures for material-dependent calibration and found that the calibration coefficient was positive for fat-mimicking phantom (1.49 ± 0.27) but negative for tissue-mimicking phantom (− 0.59 ± 0.08) and cardiac tissue (− 0.69 ± 0.18 °C-mm/ns). We then obtained the estimation error of the ultrasound thermometry by comparing against the IR measured temperature and revealed that the error increased with decreased size of the heated region. Consistent with previous findings, the echo time shifts were no longer linearly dependent on temperature beyond 45 – 50 °C in cardiac tissues. Unlike previous studies where thermocouples or water-bath techniques were used to evaluate the performance of ultrasound thermography, our results show that high resolution IR thermography provides a useful tool that can be applied to evaluate and understand the limitations of ultrasound thermography methods. PMID:26547634

  13. Site-specific ultrasound reflection properties and superficial collagen content of bovine knee articular cartilage

    NASA Astrophysics Data System (ADS)

    Laasanen, Mikko S.; Saarakkala, Simo; Töyräs, Juha; Rieppo, Jarno; Jurvelin, Jukka S.

    2005-07-01

    Previous quantitative 2D-ultrasound imaging studies have demonstrated that the ultrasound reflection measurement of articular cartilage surface sensitively detects degradation of the collagen network, whereas digestion of cartilage proteoglycans has no significant effect on the ultrasound reflection. In this study, the first aim was to characterize the ability of quantitative 2D-ultrasound imaging to detect site-specific differences in ultrasound reflection and backscattering properties of cartilage surface and cartilage-bone interface at visually healthy bovine knee (n = 30). As a second aim, we studied factors controlling ultrasound reflection properties of an intact cartilage surface. The ultrasound reflection coefficient was determined in time (R) and frequency domains (IRC) at medial femoral condyle, lateral patello-femoral groove, medial tibial plateau and patella using a 20 MHz ultrasound imaging instrument. Furthermore, cartilage surface roughness was quantified by calculating the ultrasound roughness index (URI). The superficial collagen content of the cartilage was determined using a FT-IRIS-technique. A significant site-dependent variation was shown in cartilage thickness, ultrasound reflection parameters, URI and superficial collagen content. As compared to R and IRC, URI was a more sensitive parameter in detecting differences between the measurement sites. Ultrasound reflection parameters were not significantly related to superficial collagen content, whereas the correlation between R and URI was high. Ultrasound reflection at the cartilage-bone interface showed insignificant site-dependent variation. The current results suggest that ultrasound reflection from the intact cartilage surface is mainly dependent on the cartilage surface roughness and the collagen content has a less significant role.

  14. Consistent evaluation of an ultrasound-guided surgical navigation system by utilizing an active validation platform

    NASA Astrophysics Data System (ADS)

    Kim, Younsu; Kim, Sungmin; Boctor, Emad M.

    2017-03-01

    An ultrasound image-guided needle tracking systems have been widely used due to their cost-effectiveness and nonionizing radiation properties. Various surgical navigation systems have been developed by utilizing state-of-the-art sensor technologies. However, ultrasound transmission beam thickness causes unfair initial evaluation conditions due to inconsistent placement of the target with respect to the ultrasound probe. This inconsistency also brings high uncertainty and results in large standard deviations for each measurement when we compare accuracy with and without the guidance. To resolve this problem, we designed a complete evaluation platform by utilizing our mid-plane detection and time of flight measurement systems. The evaluating system uses a PZT element target and an ultrasound transmitting needle. In this paper, we evaluated an optical tracker-based surgical ultrasound-guided navigation system whereby the optical tracker tracks marker frames attached on the ultrasound probe and the needle. We performed ten needle trials of guidance experiment with a mid-plane adjustment algorithm and with a B-mode segmentation method. With the midplane adjustment, the result showed a mean error of 1.62+/-0.72mm. The mean error increased to 3.58+/-2.07mm without the mid-plane adjustment. Our evaluation system can reduce the effect of the beam-thickness problem, and measure ultrasound image-guided technologies consistently with a minimal standard deviation. Using our novel evaluation system, ultrasound image-guided technologies can be compared under equal initial conditions. Therefore, the error can be evaluated more accurately, and the system provides better analysis on the error sources such as ultrasound beam thickness.

  15. [Anterior segment tumor imaging: advantages of ultrasound (10, 20 and 50 MHz) and optical coherence tomography].

    PubMed

    Siahmed, K; Berges, O; Desjardins, L; Lumbroso, L; Brasseur, G

    2004-02-01

    Detail the role of different imaging techniques for diagnosis of tumors of the iris. Sixty-one tumors of the iris were explored using ultrasound at 10 and 20MHz (Cinescan, BVI Quantel Medical) and 50MHz (UBM, Paradigm) and optical coherence tomography (OCT) (Humphrey Zeiss). Ultrasound should be used at frequencies of 20MHz or greater to precisely characterize, localize and measure a lesion. Ultrasound biomicroscopy (UBM) is inadequate to measure large tumors (extending toward the back of the ciliary body), because of the transducer and the considerably lower image quality caused by the lesion. Ultrasound alone cannot characterize a solid lesion, and moreover cannot differentiate benign and malignant lesions. Clinical notions are also important in diagnosis and patient management. OCT recognizes whether a lesion is liquid or solid in certain cases. With a tumor that seems solid, a 50MHz examination must be done rapidly, and if the entire lesion is difficult to see, a 20MHz ultrasound should be used. With a protruding iris, high-frequency ultrasound and OCT differentiate a cystic lesion from a solid mass, but only BMU provides a precise measurement and regular surveillance capabilities.

  16. Ultrasound is a reproducible and valid tool for measuring scar height in children with burn scars: A cross-sectional study of the psychometric properties and utility of the ultrasound and 3D camera.

    PubMed

    Simons, M; Kee, E Gee; Kimble, R; Tyack, Z

    2017-08-01

    The aim of this study was to investigate the reproducibility and validity of measuring scar height in children using ultrasound and 3D camera. Using a cross-sectional design, children with discrete burn scars were included. Reproducibility was tested using Intraclass Correlation Coefficient (ICC) for reliability, and percentage agreement within 1mm between test and re-test, standard error of measurement (SEM), smallest detectable change (SDC) and Bland Altman limits of agreement for agreement. Concurrent validity was tested using Spearman's rho for support of pre-specified hypotheses. Forty-nine participants (55 scars) were included. For ultrasound, test-retest and inter-rater reproducibility of scar thickness was acceptable for scarred skin (ICC=0.95, SDC=0.06cm and ICC=0.82, SDC=0.14cm). The ultrasound picked up changes of <1mm. Inter-rater reproducibility of maximal scar height using the 3D camera was acceptable (ICC=0.73, SDC=0.55cm). Construct validity of the ultrasound was supported with a strong correlation between the measure of scar thickness and observer ratings of thickness using the POSAS (ρ=0.61). Construct validity of the 3D camera was also supported with a moderate correlation (ρ=0.37) with the same measure using maximal scar height. The ultrasound is capable of detecting smaller changes or differences in scar thickness than the 3D camera, in children with burn scars. However agreement as part of reproducibility was lower than expected between raters for the ultrasound. Improving the accuracy of scar relocation may go some way to address agreement. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  17. Improvement of Shear Wave Motion Detection Using Harmonic Imaging in Healthy Human Liver.

    PubMed

    Amador, Carolina; Song, Pengfei; Meixner, Duane D; Chen, Shigao; Urban, Matthew W

    2016-05-01

    Quantification of liver elasticity is a major application of shear wave elasticity imaging (SWEI) to non-invasive assessment of liver fibrosis stages. SWEI measurements can be highly affected by ultrasound image quality. Ultrasound harmonic imaging has exhibited a significant improvement in ultrasound image quality as well as for SWEI measurements. This was previously illustrated in cardiac SWEI. The purpose of this study was to evaluate liver shear wave particle displacement detection and shear wave velocity (SWV) measurements with fundamental and filter-based harmonic ultrasound imaging. In a cohort of 17 patients with no history of liver disease, a 2.9-fold increase in maximum shear wave displacement, a 0.11 m/s decrease in the overall interquartile range and median SWV and a 17.6% increase in the success rate of SWV measurements were obtained when filter-based harmonic imaging was used instead of fundamental imaging. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  18. Passive Markers for Tracking Surgical Instruments in Real-Time 3-D Ultrasound Imaging

    PubMed Central

    Stoll, Jeffrey; Ren, Hongliang; Dupont, Pierre E.

    2013-01-01

    A family of passive echogenic markers is presented by which the position and orientation of a surgical instrument can be determined in a 3-D ultrasound volume, using simple image processing. Markers are attached near the distal end of the instrument so that they appear in the ultrasound volume along with the instrument tip. They are detected and measured within the ultrasound image, thus requiring no external tracking device. This approach facilitates imaging instruments and tissue simultaneously in ultrasound-guided interventions. Marker-based estimates of instrument pose can be used in augmented reality displays or for image-based servoing. Design principles for marker shapes are presented that ensure imaging system and measurement uniqueness constraints are met. An error analysis is included that can be used to guide marker design and which also establishes a lower bound on measurement uncertainty. Finally, examples of marker measurement and tracking algorithms are presented along with experimental validation of the concepts. PMID:22042148

  19. Comparison of central corneal thickness measurement using ultrasonic pachymetry, rotating Scheimpflug camera, and scanning-slit topography.

    PubMed

    Sedaghat, Mohammad Reza; Daneshvar, Ramin; Kargozar, Abbas; Derakhshan, Akbar; Daraei, Mona

    2010-12-01

    To evaluate and compare central corneal thickness measurements using rotating Scheimpflug camera, scanning-slit topography, and ultrasound pachymetry in virgin, healthy corneas. Prospective, observational, cross-sectional study. Central corneal thickness in 157 healthy eyes of 157 patients without ocular abnormalities other than refractive errors was measured, in a sequential order, once with rotating Scheimpflug camera and scanning-slit topography and 3 times with ultrasound pachymetry as the last part of examination. All measurements were performed by a single experienced examiner. The results from scanning-slit topography are given with and without correction for "acoustic correction factor" of 0.92. The average measurements of central corneal thickness by rotating Scheimpflug imaging, scanning-slit pachymetry, and ultrasound were 537.15 ± 32.98 μm, 542.06 ± 39.04 μm, and 544.07 ± 34.75 μm, respectively. The mean differences between modalities were 6.92 μm between rotating Scheimpflug and ultrasound (P < .0001), 2.01 μm between corrected scanning-slit and ultrasound (P = .204), and 4.91 μm between corrected scanning-slit and rotating Scheimpflug imaging (P = .001). According to Bland-Altman analysis, highest agreement was between ultrasonic and rotating Scheimpflug pachymetry. In the assessment of normal corneas, rotating Scheimpflug topography measures central corneal thickness values with higher agreement to ultrasound pachymetry. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Ceramic membrane ultrafiltration of natural surface water with ultrasound enhanced backwashing.

    PubMed

    Boley, A; Narasimhan, K; Kieninger, M; Müller, W-R

    2010-01-01

    Ultrafiltration membrane cleaning with ultrasound enhanced backwashing was investigated with two ceramic membrane systems in parallel. One of them was subjected to ultrasound during backwashing, the other acted as a reference system. The feed water was directly taken from a creek with a sedimentation process as only pre-treatment. The cleaning performance was improved with ultrasound but after 3 weeks of operation damages occurred on the membranes. These effects were studied with online measurements of flux, trans-membrane-pressure and temperature, but also with integrity tests, turbidity measurements and visual examination.

  1. Biliary lithotripsy can be enhanced with proper ultrasound probe position.

    PubMed

    Affronti, J; Flournoy, T; Akers, S; Baillie, J

    1992-04-01

    We have demonstrated in our in vitro system that an extracorporeal lithotripter utilizing a movable ultrasound probe can fragment gallstones more effectively when the ultrasound probe is not partially blocking shock waves. Using a pressure transducer we measured the pressures in the focal volume of a Wolf Piezolith 2300 lithotripter with the ultrasound probe fully extended and fully retracted. We also chose 12 pairs of twin gallstones, each taken from the same gallbladder. One stone from each pair was subjected to shock waves while the ultrasound probe was fully extended and the other treated while the probe was fully retracted. Shock wave pressures (which are converted to a measurable voltage output by our transducer) were clearly lower when the ultrasound probe was extended (5.45 volts; SEM = 0.10 volts) as compared to when the ultrasound scanner was retracted (6.7 volts: SEM = 0.08 volts). Significantly more shock waves were required to completely fragment stones when the ultrasound scanner was extended than when it was retracted (p = 0.01 using the nonparametric Wilcoxon's signed rank test). These results show that, in the lithotripter tested, an extended in-line ultrasound scanner can partially block shock waves. Retraction of an extendible ultrasound probe may enhance stone fragmentation when operating at the highest shock wave intensity.

  2. Validity of measurement of shear modulus by ultrasound shear wave elastography in human pennate muscle.

    PubMed

    Miyamoto, Naokazu; Hirata, Kosuke; Kanehisa, Hiroaki; Yoshitake, Yasuhide

    2015-01-01

    Ultrasound shear wave elastography is becoming a valuable tool for measuring mechanical properties of individual muscles. Since ultrasound shear wave elastography measures shear modulus along the principal axis of the probe (i.e., along the transverse axis of the imaging plane), the measured shear modulus most accurately represents the mechanical property of the muscle along the fascicle direction when the probe's principal axis is parallel to the fascicle direction in the plane of the ultrasound image. However, it is unclear how the measured shear modulus is affected by the probe angle relative to the fascicle direction in the same plane. The purpose of the present study was therefore to examine whether the angle between the principal axis of the probe and the fascicle direction in the same plane affects the measured shear modulus. Shear modulus in seven specially-designed tissue-mimicking phantoms, and in eleven human in-vivo biceps brachii and medial gastrocnemius were determined by using ultrasound shear wave elastography. The probe was positioned parallel or 20° obliquely to the fascicle across the B-mode images. The reproducibility of shear modulus measurements was high for both parallel and oblique conditions. Although there was a significant effect of the probe angle relative to the fascicle on the shear modulus in human experiment, the magnitude was negligibly small. These findings indicate that the ultrasound shear wave elastography is a valid tool for evaluating the mechanical property of pennate muscles along the fascicle direction.

  3. Whole breast tissue characterization with ultrasound tomography

    NASA Astrophysics Data System (ADS)

    Duric, Neb; Littrup, Peter; Li, Cuiping; Roy, Olivier; Schmidt, Steve; Seamans, John; Wallen, Andrea; Bey-Knight, Lisa

    2015-03-01

    A number of clinical trials have shown that screening ultrasound, supplemental to mammography, detects additional cancers in women with dense breasts. However, labor intensity, operator dependence and high recall rates have limited adoption. This paper describes the use of ultrasound tomography for whole-breast tissue stiffness measurements as a first step toward addressing the issue of high recall rates. The validation of the technique using an anthropomorphic phantom is described. In-vivo applications are demonstrated on 13 breast masses, indicating that lesion stiffness correlates with lesion type as expected. Comparison of lesion stiffness measurements with standard elastography was available for 11 masses and showed a strong correlation between the 2 measures. It is concluded that ultrasound tomography can map out the 3 dimensional distribution of tissue stiffness over the whole breast. Such a capability is well suited for screening where additional characterization may improve the specificity of screening ultrasound, thereby lowering barriers to acceptance.

  4. Quantitative muscle ultrasound and quadriceps strength in patients with post-polio syndrome.

    PubMed

    Bickerstaffe, Alice; Beelen, Anita; Zwarts, Machiel J; Nollet, Frans; van Dijk, Johannes P

    2015-01-01

    We investigated whether muscle ultrasound can distinguish muscles affected by post-polio syndrome (PPS) from healthy muscles and whether severity of ultrasound abnormalities is associated with muscle strength. Echo intensity, muscle thickness, and isometric strength of the quadriceps muscles were measured in 48 patients with PPS and 12 healthy controls. Patients with PPS had significantly higher echo intensity and lower muscle thickness than healthy controls. In patients, both echo intensity and muscle thickness were associated independently with muscle strength. A combined measure of echo intensity and muscle thickness was more strongly related to muscle strength than either parameter alone. Quantitative ultrasound distinguishes healthy muscles from those affected by PPS, and measures of muscle quality and quantity are associated with muscle strength. Hence, ultrasound could be a useful tool for assessing disease severity and monitoring changes resulting from disease progression or clinical intervention in patients with PPS. © 2014 Wiley Periodicals, Inc.

  5. The measurement of ultrasound scattering from individual micron-sized objects and its application in single cell scattering.

    PubMed

    Falou, Omar; Rui, Min; El Kaffas, Ahmed; Kumaradas, J Carl; Kolios, Michael C

    2010-08-01

    The measurement of the ultrasound backscatter from individual micron-sized objects such as cells is required for various applications such as tissue characterization. However, performing such a measurement remains a challenge. For example, the presence of air bubbles in a suspension of cells during the measurements may lead to the incorrect interpretation of the acoustic signals. This work introduces a technique for measuring the ultrasound backscatter from individual micron-sized objects by combining a microinjection system with a co-registered optical microscope and an ultrasound imaging device. This allowed the measurement of the ultrasound backscatter response from a single object under optical microscope guidance. The optical and ultrasonic data were used to determine the size of the object and to deduce its backscatter responses, respectively. In order to calibrate the system, the backscatter frequency responses from polystyrene microspheres were measured and compared to theoretical predictions. A very good agreement was found between the measured backscatter responses of individual microspheres and theoretical predictions of an elastic sphere. The backscatter responses from single OCI-AML-5 cells were also investigated. It was found that the backscatter responses from AML cells are best modeled using the fluid sphere model. The advantages, limitations, and future applications of the developed technique are discussed.

  6. Preterm or not--an evaluation of estimates of gestational age in a cohort of women from Rural Papua New Guinea.

    PubMed

    Karl, Stephan; Li Wai Suen, Connie S N; Unger, Holger W; Ome-Kaius, Maria; Mola, Glen; White, Lisa; Wangnapi, Regina A; Rogerson, Stephen J; Mueller, Ivo

    2015-01-01

    Knowledge of accurate gestational age is required for comprehensive pregnancy care and is an essential component of research evaluating causes of preterm birth. In industrialised countries gestational age is determined with the help of fetal biometry in early pregnancy. Lack of ultrasound and late presentation to antenatal clinic limits this practice in low-resource settings. Instead, clinical estimators of gestational age are used, but their accuracy remains a matter of debate. In a cohort of 688 singleton pregnancies from rural Papua New Guinea, delivery gestational age was calculated from Ballard score, last menstrual period, symphysis-pubis fundal height at first visit and quickening as well as mid- and late pregnancy fetal biometry. Published models using sequential fundal height measurements and corrected last menstrual period to estimate gestational age were also tested. Novel linear models that combined clinical measurements for gestational age estimation were developed. Predictions were compared with the reference early pregnancy ultrasound (<25 gestational weeks) using correlation, regression and Bland-Altman analyses and ranked for their capability to predict preterm birth using the harmonic mean of recall and precision (F-measure). Average bias between reference ultrasound and clinical methods ranged from 0-11 days (95% confidence levels: 14-42 days). Preterm birth was best predicted by mid-pregnancy ultrasound (F-measure: 0.72), and neuromuscular Ballard score provided the least reliable preterm birth prediction (F-measure: 0.17). The best clinical methods to predict gestational age and preterm birth were last menstrual period and fundal height (F-measures 0.35). A linear model combining both measures improved prediction of preterm birth (F-measure: 0.58). Estimation of gestational age without ultrasound is prone to significant error. In the absence of ultrasound facilities, last menstrual period and fundal height are among the more reliable clinical measures. This study underlines the importance of strengthening ultrasound facilities and developing novel ways to estimate gestational age.

  7. Effect of dissolved oxygen level of water on ultrasonic power measured using calorimetry

    NASA Astrophysics Data System (ADS)

    Uchida, Takeyoshi; Yoshioka, Masahiro; Horiuchi, Ryuzo

    2018-07-01

    Ultrasonic therapeutic equipment, which exposes the human body to high-power ultrasound, is used in clinical practice to treat cancer. However, the safety of high-power ultrasound has been questioned because the equipment affects not only cancer cells but also normal cells. To evaluate the safety of ultrasound, it is necessary to accurately measure the ultrasonic power of the equipment. This is because ultrasonic power is a key quantity related to the thermal hazard of ultrasound. However, precise techniques for measuring ultrasonic power in excess of 15 W are yet to be established. We have been studying calorimetry as a precise measurement technique. In this study, we investigated the effect of the dissolved oxygen (DO) level of water on ultrasonic power by calorimetry. The results show that the measured ultrasonic power differed significantly between water samples of different DO levels. This difference in ultrasonic power arose from acoustic cavitation.

  8. Monitoring of Lactic Fermentation Process by Ultrasonic Technique

    NASA Astrophysics Data System (ADS)

    Alouache, B.; Touat, A.; Boutkedjirt, T.; Bennamane, A.

    The non-destructive control by using ultrasound techniques has become of great importance in food industry. In this work, Ultrasound has been used for quality control and monitoring the fermentation stages of yogurt, which is a highly consumed product. On the contrary to the physico-chemical methods, where the measurement instruments are directly introduced in the sample, ultrasound techniques have the advantage of being non-destructive and contactless, thus reducing the risk of contamination. Results obtained in this study by using ultrasound seem to be in good agreement with those obtained by physico-chemical methods such as acidity measurement by using a PH-meter instrument. This lets us to conclude that ultrasound method may be an alternative for a healthy control of yoghurt fermentation process.

  9. Nondestructive evaluation of hydrogel mechanical properties using ultrasound

    PubMed Central

    Walker, Jason M.; Myers, Ashley M.; Schluchter, Mark D.; Goldberg, Victor M.; Caplan, Arnold I.; Berilla, Jim A.; Mansour, Joseph M.; Welter, Jean F.

    2012-01-01

    The feasibility of using ultrasound technology as a noninvasive, nondestructive method for evaluating the mechanical properties of engineered weight-bearing tissues was evaluated. A fixture was designed to accurately and reproducibly position the ultrasound transducer normal to the test sample surface. Agarose hydrogels were used as phantoms for cartilage to explore the feasibility of establishing correlations between ultrasound measurements and commonly used mechanical tissue assessments. The hydrogels were fabricated in 1–10% concentrations with a 2–10 mm thickness. For each concentration and thickness, six samples were created, for a total of 216 gel samples. Speed of sound was determined from the time difference between peak reflections and the known height of each sample. Modulus was computed from the speed of sound using elastic and poroelastic models. All ultrasonic measurements were made using a 15 MHz ultrasound transducer. The elastic modulus was also determined for each sample from a mechanical unconfined compression test. Analytical comparison and statistical analysis of ultrasound and mechanical testing data was carried out. A correlation between estimates of compressive modulus from ultrasonic and mechanical measurements was found, but the correlation depended on the model used to estimate the modulus from ultrasonic measurements. A stronger correlation with mechanical measurements was found using the poroelastic rather than the elastic model. Results from this preliminary testing will be used to guide further studies of native and engineered cartilage. PMID:21773854

  10. Examples of Radiation-Emitting Products

    MedlinePlus

    ... Ultrasonography • Doppler ultrasound • Color doppler ultrasound • Hyperthermia • Diathermy/physical therapy • Bone healing • Lithotripsy • Phacoemulsifier • Needle guide • Bone density measuring • Geriatric bath (ultrasound) • Hearing aid • Many scientific uses • Nondestructive ...

  11. Acoustic holography as a metrological tool for characterizing medical ultrasound sources and fields

    PubMed Central

    Sapozhnikov, Oleg A.; Tsysar, Sergey A.; Khokhlova, Vera A.; Kreider, Wayne

    2015-01-01

    Acoustic holography is a powerful technique for characterizing ultrasound sources and the fields they radiate, with the ability to quantify source vibrations and reduce the number of required measurements. These capabilities are increasingly appealing for meeting measurement standards in medical ultrasound; however, associated uncertainties have not been investigated systematically. Here errors associated with holographic representations of a linear, continuous-wave ultrasound field are studied. To facilitate the analysis, error metrics are defined explicitly, and a detailed description of a holography formulation based on the Rayleigh integral is provided. Errors are evaluated both for simulations of a typical therapeutic ultrasound source and for physical experiments with three different ultrasound sources. Simulated experiments explore sampling errors introduced by the use of a finite number of measurements, geometric uncertainties in the actual positions of acquired measurements, and uncertainties in the properties of the propagation medium. Results demonstrate the theoretical feasibility of keeping errors less than about 1%. Typical errors in physical experiments were somewhat larger, on the order of a few percent; comparison with simulations provides specific guidelines for improving the experimental implementation to reduce these errors. Overall, results suggest that holography can be implemented successfully as a metrological tool with small, quantifiable errors. PMID:26428789

  12. Diagnostic image quality in gynaecological ultrasound: Who should measure it, what should we measure and how?

    PubMed Central

    Knapp, Karen

    2013-01-01

    Assessment of diagnostic image quality in gynaecological ultrasound is an important aspect of imaging department quality assurance. This may be addressed through audit, but who should undertake the audit, what should be measured and how, remains contentious. The aim of this study was to identify whether peer audit is a suitable method of assessing the diagnostic quality of gynaecological ultrasound images. Nineteen gynaecological ultrasound studies were independently assessed by six sonographers utilising a pilot version of an audit tool. Outcome measures were levels of inter-rater agreement using different data collection methods (binary scores, Likert scale, continuous scale), effect of ultrasound study difficulty on study score and whether systematic differences were present between reviewers of different clinical grades and length of experience. Inter-rater agreement ranged from moderate to good depending on the data collection method. A continuous scale gave the highest level of inter-rater agreement with an intra-class correlation coefficient of 0.73. A strong correlation (r = 0.89) between study difficulty and study score was yielded. Length of clinical experience between reviewers had no effect on the audit scores, but individuals of a higher clinical grade gave significantly lower scores than those of a lower grade (p = 0.04). Peer audit is a promising tool in the assessment of ultrasound image quality. Continuous scales seem to be the best method of data collection implying a strong element of heuristically driven decision making by reviewing ultrasound practitioners. PMID:27433192

  13. Ultrasound measures of tendon thickness: Intra-rater, Inter-rater and Inter-machine reliability.

    PubMed

    Del Baño-Aledo, María Elena; Martínez-Payá, Jacinto Javier; Ríos-Díaz, José; Mejías-Suárez, Silvia; Serrano-Carmona, Sergio; de Groot-Ferrando, Ana

    2017-01-01

    Ultrasound imaging is often used by physiotherapists and other healthcare professionals but the reliability of image acquisition with different ultrasound machines is unknown. The objective was to compare the intra-rater, inter-rater and intermachine reliability of thickness measurements of the plantar fascia (PF), Achilles tendon (AT), patellar tendon (PT) and elbow common extensor tendon (ECET) with musculoskeletal ultrasound imaging (MSUS). Tendon thickness was measured in four anatomical structures (14 participants, 28 images per tendon) by two sonographers and with two different ultrasound machines. Intraclass Correlation Coefficients (ICCs) and Bland-Altman plots were calculated. The standard error of measurement (SEM) and minimum detectable difference (MDD) were calculated. Inter-rater reliability was excellent for AT (ICC=0.98; 95% CI= 0.96-0.99) and very good for PT (ICC=0.85; 95% CI = 0.67-0.93) and ECET (ICC=0.81; 95% CI= 0.72-0.94). Reliability for PF was moderate, with an ICC of 0.63 (CI 95%= 0.20-0.83). Bland-Altman plot for inter-machine reliability showed a mean difference of 1 m for PF measurements and a mean difference of 4 m and 20 m for AT and PT. The relative SEMs were below 7% and the MDCs were below 0.7 mm. The MSUS reliability in measuring thickness of the four tendons is confirmed by the homogeneous readings intra sonographers, between operators and between different machines. Level of evidence: Tendon thickness can be measured reliably on different ultrasound devices, which is an important step forward in the use of this technique in daily clinical practice and research. III.

  14. VALIDATION OF ULTRASOUND AS A NONINVASIVE TOOL TO MEASURE SUBCUTANEOUS FAT DEPTH IN LEATHERBACK SEA TURTLES (DERMOCHELYS CORIACEA).

    PubMed

    Harris, Heather S; Benson, Scott R; James, Michael C; Martin, Kelly J; Stacy, Brian A; Daoust, Pierre-Yves; Rist, Paul M; Work, Thierry M; Balazs, George H; Seminoff, Jeffrey A

    2016-03-01

    Leatherback turtles (Dermochelys coriacea) undergo substantial cyclical changes in body condition between foraging and nesting. Ultrasonography has been used to measure subcutaneous fat as an indicator of body condition in many species but has not been applied in sea turtles. To validate this technique in leatherback turtles, ultrasound images were obtained from 36 live-captured and dead-stranded immature and adult turtles from foraging and nesting areas in the Pacific and Atlantic oceans. Ultrasound measurements were compared with direct measurements from surgical biopsy or necropsy. Tissue architecture was confirmed histologically in a subset of turtles. The dorsal shoulder region provided the best site for differentiation of tissues. Maximum fat depth values with the front flipper in a neutral (45-90°) position demonstrated good correlation with direct measurements. Ultrasound-derived fat measurements may be used in the future for quantitative assessment of body condition as an index of health in this critically endangered species.

  15. Assessment of Spectral Doppler in Preclinical Ultrasound Using a Small-Size Rotating Phantom

    PubMed Central

    Yang, Xin; Sun, Chao; Anderson, Tom; Moran, Carmel M.; Hadoke, Patrick W.F.; Gray, Gillian A.; Hoskins, Peter R.

    2013-01-01

    Preclinical ultrasound scanners are used to measure blood flow in small animals, but the potential errors in blood velocity measurements have not been quantified. This investigation rectifies this omission through the design and use of phantoms and evaluation of measurement errors for a preclinical ultrasound system (Vevo 770, Visualsonics, Toronto, ON, Canada). A ray model of geometric spectral broadening was used to predict velocity errors. A small-scale rotating phantom, made from tissue-mimicking material, was developed. True and Doppler-measured maximum velocities of the moving targets were compared over a range of angles from 10° to 80°. Results indicate that the maximum velocity was overestimated by up to 158% by spectral Doppler. There was good agreement (<10%) between theoretical velocity errors and measured errors for beam-target angles of 50°–80°. However, for angles of 10°–40°, the agreement was not as good (>50%). The phantom is capable of validating the performance of blood velocity measurement in preclinical ultrasound. PMID:23711503

  16. Validation of ultrasound as a noninvasive tool to measure subcutaneous fat depth in leatherback sea turtles (Dermochelys coriacea)

    USGS Publications Warehouse

    Harris, Heather S.; Benson, Scott R.; James, Michael C.; Martin, Kelly J.; Stacy, Brian A.; Daoust, Pierre-Yves; Rist, Paul M.; Work, Thierry M.; Balazs, George H.; Seminoff, Jeffrey A.

    2016-01-01

    Leatherback turtles (Dermochelys coriacea) undergo substantial cyclical changes in body condition between foraging and nesting. Ultrasonography has been used to measure subcutaneous fat as an indicator of body condition in many species but has not been applied in sea turtles. To validate this technique in leatherback turtles, ultrasound images were obtained from 36 live-captured and dead-stranded immature and adult turtles from foraging and nesting areas in the Pacific and Atlantic oceans. Ultrasound measurements were compared with direct measurements from surgical biopsy or necropsy. Tissue architecture was confirmed histologically in a subset of turtles. The dorsal shoulder region provided the best site for differentiation of tissues. Maximum fat depth values with the front flipper in a neutral (45–90°) position demonstrated good correlation with direct measurements. Ultrasound-derived fat measurements may be used in the future for quantitative assessment of body condition as an index of health in this critically endangered species.

  17. Temporal comparison of ultrasound vs. auscultation and capnography in verification of endotracheal tube placement.

    PubMed

    Pfeiffer, P; Rudolph, S S; Børglum, J; Isbye, D L

    2011-11-01

    This study compared the time consumption of bilateral lung ultrasound with auscultation and capnography for verifying endotracheal intubation. A prospective, paired, and investigator-blinded study carried out in the operating theatre. Twenty-five adult patients requiring endotracheal intubation were included. During intubation, transtracheal ultrasound was performed to visualize passage of the endotracheal tube. During bag ventilation, bilateral lung ultrasound was performed for the detection of lung sliding as a sign of ventilation simultaneous with capnography and auscultation of the epigastrium and chest. Primary outcome measure was time difference to confirmed endotracheal intubation between ultrasound and auscultation alone. Secondary outcome measure was time difference between ultrasound and auscultation combined with capnography. Both methods verified endotracheal tube placement in all patients. In 68% of patients, endotracheal tube placement was visualized by real-time transtracheal ultrasound. Comparing ultrasound with the combination of auscultation and capnography, there was a significant difference between the two methods. Median time for ultrasound was 40 s [interquartile range (IQR) 35-48 s] vs. 48 s (IQR 45-53 s), P < 0.0001. Mean difference was -7.1 s in favour of ultrasound [95% confidence interval (CI) -9.4--4.8 s]. No significant difference was found between ultrasound compared with auscultation alone. Median time for auscultation alone was 42 s (IQR 37-47 s), P = 0.6, with a mean difference of -0.88 s in favour of ultrasound (95% CI -4.2-2.5 s). Verification of endotracheal tube placement with ultrasound is as fast as auscultation alone and faster than the standard method of auscultation and capnography. © 2011 The Authors. Acta Anaesthesiologica Scandinavica © 2011 The Acta Anaesthesiologica Scandinavica Foundation.

  18. Ophthalmic applications of laser-generated ultrasound

    NASA Astrophysics Data System (ADS)

    Payne, Peter A.; Sadr, Ali; Rosen, Emanuel S.; Dewhurst, Richard J.

    2000-06-01

    Laser-generated ultrasound has found a number of niche applications in non-destructive testing and evaluation and there is now a growing trend to examine potential applications for materials characterization in medicine. Conventional ultrasound techniques for measuring various important dimensions within the eye are in extensive use. However, one problem remains outstanding, which is that the dimensions of the cornea, anterior chamber and lens can be measured using a high frequency, high resolution transducer, but the dimensions of the overall eyeball (i.e., cornea to retina) have to be measured with a lower frequency transducer in order to achieve the necessary penetration. We have conducted a number of in vitro studies using bovine eyes to determine whether the use of laser induced ultrasound would be able to overcome the aforementioned problem. The results of these measurements will be presented, together with a discussion of the many difficulties that remain to be overcome. In addition, our studies involve the potential use of laser ultrasound to quantify the degree of cataract formation, both primary and secondary. This paper will also consider the work accomplished to data in this area.

  19. Apoptosis Induction in Cancer Cells by Ultrasound Exposure

    NASA Astrophysics Data System (ADS)

    Watanabe, Akihiro; Kawai, Kazuaki; Sato, Toshio; Nishimura, Hiroyuki; Kawashima, Norimichi; Takeuchi, Shinichi

    2004-05-01

    The methods of suppressing cancer cell proliferation by ultrasound exposure were investigated to develop a new minimally invasive cancer treatment. A stainless-steel diaphragm with a bolt-clamped Langevin-type transducer (BLT) was attached to the bottom of a water tank in the ultrasound exposure system used in this study. Cancer cells of a mouse T lymphoma (EL-4) in a flask were exposed to ultrasound under various conditions of exposure time, ultrasound frequency, ultrasound waveform, and so forth. The number of cancer cells exposed to ultrasound decreased during the culturing process. In this study, it was proved by electrophoresis, enzyme activity measurement and morphological observation that cancer cell proliferation can be suppressed by apoptosis induction in cancer cells by ultrasound exposure.

  20. Semiautomated thyroid volumetry using 3D CT: prospective comparison with measurements obtained using 2D ultrasound, 2D CT, and water displacement method of specimen.

    PubMed

    Lee, Sun Jin; Chong, Semin; Kang, Kyung Ho; Hur, Joonho; Hong, Byung-Woo; Kim, Hyun Jung; Kim, Soo Jin

    2014-11-01

    The objective of our study was to measure thyroid volumes using semiautomated 3D CT and to compare the 3D CT volumes with volumes measured using 2D ultrasound, 2D CT, and the water displacement method. In 47 patients, 2D ultrasound volumes and 2D CT volumes of the thyroid gland were estimated using the ellipsoid volume formula, and 3D CT volumes were calculated using semiautomated reconstructive techniques. All volume data were compared with thyroid specimen volumes obtained using the water displacement method and were statistically analyzed using the one-way ANOVA, the Pearson correlation coefficient (R), linear regression, and the concordance correlation coefficient (CCC). The processing time of semiautomated 3D CT thyroid volumetry was measured. The paired mean differences ± SD between the three imaging-determined volumes and the specimen volumes were 0.8 ± 3.1 mL for 2D ultrasound, 4.0 ± 4.7 mL for 2D CT, and 0.2 ± 2.5 mL for 3D CT. A significant difference in the mean thyroid volume was found between 2D CT and specimen volumes (p = 0.016) compared with the other pairs (p = 0.937 for 2D ultrasound mean volume vs specimen mean volume, and p = 0.999 for 3D CT mean volume vs specimen mean volume). Between specimen volume and 2D ultrasound volume, specimen volume and 2D CT volume, and specimen volume and 3D CT volume, R values were 0.885, 0.724, and 0.929, respectively, and CCC values were 0.876, 0.598, and 0.925, respectively. The mean processing time of semiautomated 3D CT thyroid volumetry was 7.0 minutes. Thyroid volumes measured using 2D ultrasound or semiautomated 3D CT are substantially close to thyroid specimen volumes measured using the water displacement method. Semiautomated 3D CT thyroid volumetry can provide a more reliable measure of thyroid volume than 2D ultrasound.

  1. Quantitative assessment of tumor angiogenesis using real-time motion-compensated contrast-enhanced ultrasound imaging

    PubMed Central

    Pysz, Marybeth A.; Guracar, Ismayil; Foygel, Kira; Tian, Lu; Willmann, Jürgen K.

    2015-01-01

    Purpose To develop and test a real-time motion compensation algorithm for contrast-enhanced ultrasound imaging of tumor angiogenesis on a clinical ultrasound system. Materials and methods The Administrative Institutional Panel on Laboratory Animal Care approved all experiments. A new motion correction algorithm measuring the sum of absolute differences in pixel displacements within a designated tracking box was implemented in a clinical ultrasound machine. In vivo angiogenesis measurements (expressed as percent contrast area) with and without motion compensated maximum intensity persistence (MIP) ultrasound imaging were analyzed in human colon cancer xenografts (n = 64) in mice. Differences in MIP ultrasound imaging signal with and without motion compensation were compared and correlated with displacements in x- and y-directions. The algorithm was tested in an additional twelve colon cancer xenograft-bearing mice with (n = 6) and without (n = 6) anti-vascular therapy (ASA-404). In vivo MIP percent contrast area measurements were quantitatively correlated with ex vivo microvessel density (MVD) analysis. Results MIP percent contrast area was significantly different (P < 0.001) with and without motion compensation. Differences in percent contrast area correlated significantly (P < 0.001) with x- and y-displacements. MIP percent contrast area measurements were more reproducible with motion compensation (ICC = 0.69) than without (ICC = 0.51) on two consecutive ultrasound scans. Following anti-vascular therapy, motion-compensated MIP percent contrast area significantly (P = 0.03) decreased by 39.4 ± 14.6 % compared to non-treated mice and correlated well with ex vivo MVD analysis (Rho = 0.70; P = 0.05). Conclusion Real-time motion-compensated MIP ultrasound imaging allows reliable and accurate quantification and monitoring of angiogenesis in tumors exposed to breathing-induced motion artifacts. PMID:22535383

  2. Quantitative assessment of tumor angiogenesis using real-time motion-compensated contrast-enhanced ultrasound imaging.

    PubMed

    Pysz, Marybeth A; Guracar, Ismayil; Foygel, Kira; Tian, Lu; Willmann, Jürgen K

    2012-09-01

    To develop and test a real-time motion compensation algorithm for contrast-enhanced ultrasound imaging of tumor angiogenesis on a clinical ultrasound system. The Administrative Institutional Panel on Laboratory Animal Care approved all experiments. A new motion correction algorithm measuring the sum of absolute differences in pixel displacements within a designated tracking box was implemented in a clinical ultrasound machine. In vivo angiogenesis measurements (expressed as percent contrast area) with and without motion compensated maximum intensity persistence (MIP) ultrasound imaging were analyzed in human colon cancer xenografts (n = 64) in mice. Differences in MIP ultrasound imaging signal with and without motion compensation were compared and correlated with displacements in x- and y-directions. The algorithm was tested in an additional twelve colon cancer xenograft-bearing mice with (n = 6) and without (n = 6) anti-vascular therapy (ASA-404). In vivo MIP percent contrast area measurements were quantitatively correlated with ex vivo microvessel density (MVD) analysis. MIP percent contrast area was significantly different (P < 0.001) with and without motion compensation. Differences in percent contrast area correlated significantly (P < 0.001) with x- and y-displacements. MIP percent contrast area measurements were more reproducible with motion compensation (ICC = 0.69) than without (ICC = 0.51) on two consecutive ultrasound scans. Following anti-vascular therapy, motion-compensated MIP percent contrast area significantly (P = 0.03) decreased by 39.4 ± 14.6 % compared to non-treated mice and correlated well with ex vivo MVD analysis (Rho = 0.70; P = 0.05). Real-time motion-compensated MIP ultrasound imaging allows reliable and accurate quantification and monitoring of angiogenesis in tumors exposed to breathing-induced motion artifacts.

  3. The use of three-dimensional ultrasound does not improve training in fetal biometric measurements.

    PubMed

    Chan, Lin W; Ting, Yuen H; Lao, Terence T; Chau, Macy M C; Fung, Tak Y; Leung, Tak Y; Sahota, Daljit S; Lau, Tze K

    2011-09-01

    To investigate whether three-dimensional (3D) technology offers any advantage over two-dimensional (2D) ultrasound in fetal biometric measurement training. Ten midwives with no hands-on experience in ultrasound were randomized to receive training on 2D or 3D ultrasound fetal biometry assessment. Midwives were taught how to obtain fetal biometric measurements (biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC), and femur length (FL)) by a trainer. Subsequently, each midwife measured the parameters on another 10 fetuses. The same set of measurements was repeated by the trainer. The percentage deviation between the midwives' and the trainer's measurements was determined and compared between training groups. Time required for completion was recorded. Frozen images were reviewed by another sonographer to assess the image quality using a standardized scoring system. The median time for the complete set of measurements was significantly shorter in the 2D than in 3D group (13.4 min versus 17.8 min, P = 0.03). The mean percentage deviations did not reach statistical significance between the two groups except for FL (3.83% in 2D group versus 2.23% in 3D group (P = 0.046)). There were no significant differences in the quality scores. This study showed that the only demonstrable advantage of 3D ultrasound was a slightly more accurate measurement of FL, at the expense of a significantly longer time required.

  4. Evaluation of Columbia, USMARC Composite, Suffolk, and Texel rams as terminal sires in an extensive rangeland production system: VII. Accuracy of ultrasound predictors and their association with carcass weight, yield, and value.

    PubMed

    Notter, D R; Mousel, M R; Leeds, T D; Zerby, H N; Moeller, S J; Lewis, G S; Taylor, J B

    2014-06-01

    Use of lamb BW or chilled carcass weights (CCW), live-animal ultrasound or direct carcass measurements of backfat thickness (BF; mm) and LM area (LMA; cm(2)), and carcass body wall thickness (BWall; mm) to predict carcass yield and value was evaluated using 512 crossbred lambs produced over 3 yr by mating Columbia, U.S. Meat Animal Research Center Composite, Suffolk, and Texel rams to adult Rambouillet ewes. Lambs were harvested at 3 BW endpoints within each year. The predictive value of 3 to 5 additional linear measurements of live-animal or carcass size and shape was also evaluated. Residual correlations (adjusted for effects of year, breed, and harvest group) between ultrasound and direct measurements were 0.69 for BF and 0.65 for LMA. Increasing ultrasound or carcass LMA had positive effects (P < 0.001) on yield of chilled carcass (i.e., on dressing percentage) and, at comparable CCW, on weight of high-value cuts (rack, loin, leg, and sirloin) before trimming (HVW), weight of trimmed high-value cuts (trimmed rack and loin and trimmed boneless leg and sirloin; TrHVW), and carcass value before (CVal) and after (TrCVal) trimming of high-value cuts. By contrast, ultrasound and direct measures of BF had positive effects on yields of CCW and on HVW and CVal but large negative effects on TrHVW and TrCVal. After adjusting for BW at scanning, increases of 1 mm in ultrasound BF or 1 cm(2) in ultrasound LMA were associated with changes of US$-0.32 (P < 0.10) and $1.62 (P < 0.001), respectively, in TrCVal. Carcass BWall was generally superior to carcass BF as a predictor of TrHVW and TrCVal. Carcass LMA was superior to ultrasound LMA but carcass BF was inferior to ultrasound BF for prediction of carcass yield and value. Increasing LMA thus would be expected to improve carcass yield and value. Addition of linear measurements of live-animal or carcass size and shape to the prediction model reduced residual SD (RSD) for TrHVW and TrCVal by 0.4 to 2.2%, but subsequent removal of ultrasound or direct measures of BF and LMA from the prediction model increased RSD by 7.4 to 12.2%. Measurements of CCW, LMA, BF, and BWall would thus be appropriate to support programs for value-based marketing of lamb carcasses and are superior to systems based only on measurements of size and shape in unribbed carcasses.

  5. Manual B-mode versus automated radio-frequency carotid intima-media thickness measurements.

    PubMed

    Dogan, Soner; Plantinga, Yvonne; Dijk, Joke M; van der Graaf, Yolanda; Grobbee, Diederick E; Bots, Michiel L

    2009-10-01

    Carotid intima-media thickness (CIMT) serves as an indicator of atherosclerosis and cardiovascular risk. Manual measurements of B-mode ultrasound images are the most applied method. Automated measurements with radiofrequency (RF) ultrasound have been suggested as an alternative. The aim of this study was to compare these methods in terms of risk-factor relations and associations with future events. Data from participants of the Second Manifestations of Arterial Disease (SMART) study were used. Far wall common CIMT was measured online with manual B-mode and automated RF ultrasound. Measurements were performed by a group of 6 sonographers. Risk-factor information was obtained. All participants were followed for the occurrence of vascular events (mean follow-up, 2.1 years). CIMT was related to risk factors with linear regression models and to future events with Cox proportional-hazards models. Data were available for 2,146 participants. Agreement between the methods was modest (intraclass correlation coefficient = 0.34). Risk-factor relations with age and systolic blood pressure were stronger for B-mode than for RF ultrasound. Association with future events was better for B-mode than for RF ultrasound (vascular death, 1.27 vs 1.00; ischemic stroke, 1.45 vs 1.03). In participants with CIMT < 0.9 mm (without plaque), the intraclass correlation between the measures was 0.50. In addition, in that subgroup, RF ultrasound showed a stronger association with future events than B-mode ultrasound (all events, 1.59 vs 1.09; vascular death, 1.72 vs 0.93; coronary ischemic events, 1.65 vs 1.05). The preference for either B-mode or RF measurements may be driven by the type of study population, the expected presence of local atherosclerotic abnormalities, and the main aim of the study (assessing risk factors or events). However, in this study, as in many others, the B-mode approach was shown to be robust in risk-factor relations and the prediction of events.

  6. Comparison of postoperative refractive outcomes: IOLMaster® versus immersion ultrasound.

    PubMed

    Whang, Woong-Joo; Jung, Byung-Ju; Oh, Tae-Hoon; Byun, Yong-Soo; Joo, Choun-Ki

    2012-01-01

    To compare the postoperative refractive outcomes between IOLMaster biometry (Carl Zeiss Meditec, Inc., Dublin, CA) and immersion ultrasound biometry for axial length measurements. Refractive outcomes in 354 eyes were compared using the IOLMaster and the immersion ultrasound biometry. Predicted refraction was determined using manual keratometry and the SRK-T formula with personalized A-constant. The axial lengths measured using the IOLMaster and immersion ultrasound were 24.49 ± 2.11 and 24.46 ± 2.11 mm, respectively, and the difference was significant (P < .05). The mean errors were 0.000 ± 0.578 D with the IOLMaster, and 0.000 ± 0.599 D with the immersion ultrasound, but the difference was not significant. The mean absolute error was smaller with the IOLMaster than with immersion ultrasound (0.463 ± 0.341 vs 0.479 ± 0.359 D), but the difference was not significant. IOLMaster biometry yields highly accurate results in cataract surgery. However, if the IOLMaster is unavailable, immersion ultrasound biometry with personalized intraocular lens constants is an acceptable alternative. Copyright 2012, SLACK Incorporated.

  7. Air-coupled ultrasound stimulated optical vibrometry for resonance analysis of rubber tubes

    PubMed Central

    Zhang, Xiaoming; Kinnick, Randall R.; Greenleaf, James F.

    2008-01-01

    Air-coupled ultrasound stimulated optical vibrometry is proposed to generate and detect the resonances of a rubber tube in air. Amplitude-modulated (AM) focused ultrasound radiation force from a broadband air-coupled ultrasound transducer with center frequency of 500 kHz is used to generate a low frequency vibration in the tube. The resonances of several modes of the tube are measured with a laser vibrometer of 633 nm wavelength. A wave propagation approach is used to calculate the resonances of the tube from its known material properties. Theoretical and experimental resonance frequencies agree within 5%. This method may be useful in measuring the in vitro elastic properties of arteries from the resonance measurements in air. It may also be helpful in better understanding the coupling effects of surrounding tissue and interior blood on the vessel wall by measuring the resonance of the vessel in vitro and in vivo. PMID:18499208

  8. Air-coupled ultrasound stimulated optical vibrometry for resonance analysis of rubber tubes.

    PubMed

    Zhang, Xiaoming; Kinnick, Randall R; Greenleaf, James F

    2009-01-01

    Air-coupled ultrasound stimulated optical vibrometry is proposed to generate and detect the resonances of a rubber tube in air. Amplitude-modulated (AM) focused ultrasound radiation force from a broadband air-coupled ultrasound transducer with center frequency of 500 kHz is used to generate a low frequency vibration in the tube. The resonances of several modes of the tube are measured with a laser vibrometer of 633 nm wavelength. A wave propagation approach is used to calculate the resonances of the tube from its known material properties. Theoretical and experimental resonance frequencies agree within 5%. This method may be useful in measuring the in vitro elastic properties of arteries from the resonance measurements in air. It may also be helpful to better understand the coupling effects of the surrounding tissue and interior blood on the vessel wall by measuring the resonance of the vessel in vitro and in vivo.

  9. Propogation loss with frequency of ultrasound guided waves in a composite metal-honeycomb structure

    NASA Astrophysics Data System (ADS)

    Saxena, Indu F.; Baid, Harsh K.; Guzman, Narciso; Kempen, Lothar U.; Mal, Ajit

    2009-05-01

    Non-destructive testing of critical structural components is time consuming, while necessary for maintaining safe operation. Large aerospace structures, such as the vertical stabilizers of aircraft undergo inspection at regular intervals for damage diagnostics. However, conventional techniques for damage detection and identification before repair can be scheduled are conducted off-line and therefore can take weeks. The use of guided ultrasound waves is being investigated to expedite damage detection in composites. We measure the frequency dependent loss of ultrasonic guided waves for a structure comprising a boron-nitride composite skin sandwiching an aluminum honeycomb. A wide range of ultrasound frequencies propagate as measured using PZTs, with the lowest attenuation observed about 200-250 kHz. These measurements are confirmed using optical fiber Bragg grating arrays used as ultrasound transducers.

  10. Low-amplitude non-linear volume vibrations of single microbubbles measured with an "acoustical camera".

    PubMed

    Renaud, Guillaume; Bosch, Johan G; Van Der Steen, Antonius F W; De Jong, Nico

    2014-06-01

    Contrast-enhanced ultrasound imaging is based on the detection of non-linear vibrational responses of a contrast agent after its intravenous administration. Improving contrast-enhanced images requires an accurate understanding of the vibrational response to ultrasound of the lipid-coated gas microbubbles that constitute most ultrasound contrast agents. Variations in the volume of microbubbles provide the most efficient radiation of ultrasound and, therefore, are the most important bubble vibrations for medical diagnostic ultrasound imaging. We developed an "acoustical camera" that measures the dynamic volume change of individual microbubbles when excited by a pressure wave. In the work described here, the technique was applied to the characterization of low-amplitude non-linear behaviors of BR14 microbubbles (Bracco Research, Geneva, Switzerland). The amplitude dependence of the resonance frequency and the damping, the prevalence of efficient subharmonic and ultraharmonic vibrations and the amplitude dependence of the response at the fundamental frequency and at the second harmonic frequency were investigated. Because of the large number of measurements, we provide a statistical characterization of the low-amplitude non-linear properties of the contrast agent. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. Correlation between ultrasound velocity and densitometry in fresh and demineralized cortical bone

    PubMed Central

    de Mesquita, Alessandro Queiroz; Barbieri, Giuliano; Barbieri, Claudio Henrique

    2016-01-01

    OBJECTIVE: To compare ultrasound propagation velocity with densitometry in the diaphyseal compact cortical bone of whole sheep metatarsals. METHODS: The transverse ultrasound velocity and bone mineral density of 5-cm-long diaphyseal bone segments were first measured. The bone segments were then divided into four groups of 15 segments each and demineralized in an aqueous 0.5 N hydrochloric acid solution for 6, 12, 24 or 36 hours. All measurements were repeated after demineralization for each time duration and the values measured before and after demineralization were compared. RESULTS: Ultrasound velocity and bone mineral density decreased with demineralization time, and most differences in the pre- and post-demineralization values within each group and between groups were significant: A moderate correlation coefficient (r=0.75956) together with a moderate agreement was determined between both post-demineralization parameters, detected by the Bland-Altman method. CONCLUSION: We conclude that both ultrasound velocity and bone mineral density decrease as a result of demineralization, thus indicating that bone mineral content is of great importance for maintaining the acoustic parameters of cortical bone, as observed for cancellous bone. Ultrasound velocity can be used to evaluate both compact cortical bone quality and bone mineral density. PMID:27982167

  12. Correlation between ultrasound velocity and densitometry in fresh and demineralized cortical bone.

    PubMed

    Mesquita, Alessandro Queiroz de; Barbieri, Giuliano; Barbieri, Claudio Henrique

    2016-11-01

    To compare ultrasound propagation velocity with densitometry in the diaphyseal compact cortical bone of whole sheep metatarsals. The transverse ultrasound velocity and bone mineral density of 5-cm-long diaphyseal bone segments were first measured. The bone segments were then divided into four groups of 15 segments each and demineralized in an aqueous 0.5 N hydrochloric acid solution for 6, 12, 24 or 36 hours. All measurements were repeated after demineralization for each time duration and the values measured before and after demineralization were compared. Ultrasound velocity and bone mineral density decreased with demineralization time, and most differences in the pre- and post-demineralization values within each group and between groups were significant: A moderate correlation coefficient (r=0.75956) together with a moderate agreement was determined between both post-demineralization parameters, detected by the Bland-Altman method. We conclude that both ultrasound velocity and bone mineral density decrease as a result of demineralization, thus indicating that bone mineral content is of great importance for maintaining the acoustic parameters of cortical bone, as observed for cancellous bone. Ultrasound velocity can be used to evaluate both compact cortical bone quality and bone mineral density.

  13. Split-screen display system and standardized methods for ultrasound image acquisition and multi-frame data processing

    NASA Technical Reports Server (NTRS)

    Selzer, Robert H. (Inventor); Hodis, Howard N. (Inventor)

    2011-01-01

    A standardized acquisition methodology assists operators to accurately replicate high resolution B-mode ultrasound images obtained over several spaced-apart examinations utilizing a split-screen display in which the arterial ultrasound image from an earlier examination is displayed on one side of the screen while a real-time "live" ultrasound image from a current examination is displayed next to the earlier image on the opposite side of the screen. By viewing both images, whether simultaneously or alternately, while manually adjusting the ultrasound transducer, an operator is able to bring into view the real-time image that best matches a selected image from the earlier ultrasound examination. Utilizing this methodology, dynamic material properties of arterial structures, such as IMT and diameter, are measured in a standard region over successive image frames. Each frame of the sequence has its echo edge boundaries automatically determined by using the immediately prior frame's true echo edge coordinates as initial boundary conditions. Computerized echo edge recognition and tracking over multiple successive image frames enhances measurement of arterial diameter and IMT and allows for improved vascular dimension measurements, including vascular stiffness and IMT determinations.

  14. Non-Contact Optical Ultrasound Concept for Biomedical Imaging

    DTIC Science & Technology

    2016-11-03

    Non -Contact Optical Ultrasound Concept for Biomedical Imaging Robert Haupt1, Charles Wynn1, Jonathan Fincke2, Shawn Zhang2, Brian Anthony2...results. Lastly, we present imaging capabilities using a non -contact laser ultrasound proof-of-concept system. Two and three dimensional time... non -contact, standoff optical ultrasound has the potential to provide a fixed reference measurement capability that minimizes operator variability as

  15. The Use of B-Mode Ultrasound for Measuring Subcutaneous Fat Thickness on the Upper Arms.

    ERIC Educational Resources Information Center

    Weiss, Lawrence W.; Clark, Frank C.

    1985-01-01

    A study was carried out to investigate the potential use of B-mode ultrasound for measuring subcutaneous fat thickness at two arm sites. B-mode sonograms and skinfold measurements were found to be highly correlated for both men and women. (Author/MT)

  16. Non-ionizing real-time ultrasonography in implant and oral surgery: A feasibility study.

    PubMed

    Chan, Hsun-Liang; Wang, Hom-Lay; Fowlkes, Jeffery Brian; Giannobile, William V; Kripfgans, Oliver D

    2017-03-01

    Ultrasound imaging has potential to complement radiographic imaging modalities in implant and oral surgery given that it is non-ionizing and provides instantaneous images of anatomical structures. For application in oral and dental imaging, its qualities are dependent on its ability to accurately capture these complex structures. Therefore, the aim of this feasibility study was to investigate ultrasound to image soft tissue, hard tissue surface topography and specific vital structures. A clinical ultrasound scanner, paired with two 14-MHz transducers of different sizes (one for extraoral and the other for intraoral scans), was used to scan the following structures on a fresh cadaver: (i) the facial bone surface and soft tissue of maxillary anterior teeth, (ii) the greater palatine foramen; (iii) the mental foramen and (iv) the lingual nerve. Multiple measurements relevant to these structures were made on the ultrasound images and compared to those on cone-beam computed tomography (CBCT) scans and/or direct measurements. Ultrasound imaging could delineate hard tissue surfaces, including enamel, root dentin and bone as well as soft tissue with high resolution (110 μm wavelength). The greater palatine foramen, mental foramen and lingual nerve were clearly shown in ultrasound images. Merging ultrasound and CBCT images demonstrated overall spatial accuracy of ultrasound images, which was corroborated by data gathered from direct measurements. For the first time, this study provides proof-of-concept evidence that ultrasound can be a real-time and non-invasive alternative for the evaluation of oral and dental anatomical structures relevant for implant and oral surgery. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Ultrasound measurements of live and carcass traits in Tswana goat kids raised under semi-intensive system in South-eastern Botswana.

    PubMed

    Monau, Phetogo Ineeleng; Nsoso, Shalaulani James; Waugh, Esau Emmanuel; Sharma, Surender Pal

    2013-03-01

    The aim of this study was to characterise ultrasound measurements of live and carcass traits in intact males, females and castrated Tswana goat kids from birth to 12 months of age raised under semi-intensive system in South-eastern Botswana. Measurements were recorded in 15 castrates, 15 intact males and 15 female Tswana goat kids randomly selected at birth. Ultrasonic fat and muscle depths were measured at the first, third/fourth, sixth/seventh, ninth/tenth and 12th/13th thoracic; first, third and fifth lumbar and first, second/third and fourth/fifth sternal vertebrae, fortnightly for the first 6 months and then monthly for the remaining 6 months. The animals were stunned and humanely slaughtered at 12 months of age, and ultrasound and shatterproof ruler were used to measure fat and muscle depths on the carcasses at similar sites as on live animals. A real-time B-mode ultrasound scanner fitted with LV2-1 probe operating at 7.5 MHz (Explorer V5 Vet Laptop B-Ultrasonic Scanner UMC Technology Development Co., Ltd, China) was used to predict ultrasound measurements on live animals and their carcasses. Data were analysed using general linear model in statistical analysis system. Muscle depth measurements increased significantly (p < 0.05) with age in all sites of measurements. However, there was no significant difference between the sexes at different sites of muscle depth measurements at the same age. Muscle depth at the sternal vertebrae was significantly deeper (almost 55 mm at 12 months of age) than 16 mm at thoracic and 16 mm at lumbar vertebrae at 12 and 8 months of age, respectively. No subcutaneous fat depth measurements were recorded in the lumbar vertebrae (0.00 ± 0.00) and the thoracic (0.00 ± 0.00) regions in all sex groups. However, fourth and fifth sternal vertebrae showed considerably deeper amount of subcutaneous fat suitable for taking fat measurements as age increases (2.07 ± 0.23 mm females, 1.50 ± 0.43 mm intact males and 1.80 ± 0.38 mm castrates) at 12 months of age. All correlations between live and carcass ultrasound measurements and also between ultrasound carcass and ruler measurements were very high (r (2) = 0.96 to 1.00) for all the sexes indicating that live ultrasound measurements are suitable for use in this meat breed. More research is needed to evaluate the relationships between live ultrasonic measurements and carcass yield in the different sexes of Tswana goat kids.

  18. Time-resolved flowmetering of gas-liquid two-phase pipe flow by ultrasound pulse Doppler method

    NASA Astrophysics Data System (ADS)

    Murai, Yuichi; Tasaka, Yuji; Takeda, Yasushi

    2012-03-01

    Ultrasound pulse Doppler method is applied for componential volumetric flow rate measurement in multiphase pipe flow consisted of gas and liquid phases. The flowmetering is realized with integration of measured velocity profile over the cross section of the pipe within liquid phase. Spatio-temporal position of interface is detected also with the same ultrasound pulse, which further gives cross sectional void fraction. A series of experimental demonstration was shown by applying this principle of measurement to air-water two-phase flow in a horizontal tube of 40 mm in diameter, of which void fraction ranges from 0 to 90% at superficial velocity from 0 to 15 m/s. The measurement accuracy is verified with a volumetric type flowmeter. We also analyze the accuracy of area integration of liquid velocity distribution for many different patterns of ultrasound measurement lines assigned on the cross section of the tube. The present method is also identified to be pulsation sensor of flow rate that fluctuates with complex gas-liquid interface behavior.

  19. Strain measurement of abdominal aortic aneurysm with real-time 3D ultrasound speckle tracking.

    PubMed

    Bihari, P; Shelke, A; Nwe, T H; Mularczyk, M; Nelson, K; Schmandra, T; Knez, P; Schmitz-Rixen, T

    2013-04-01

    Abdominal aortic aneurysm rupture is caused by mechanical vascular tissue failure. Although mechanical properties within the aneurysm vary, currently available ultrasound methods assess only one cross-sectional segment of the aorta. This study aims to establish real-time 3-dimensional (3D) speckle tracking ultrasound to explore local displacement and strain parameters of the whole abdominal aortic aneurysm. Validation was performed on a silicone aneurysm model, perfused in a pulsatile artificial circulatory system. Wall motion of the silicone model was measured simultaneously with a commercial real-time 3D speckle tracking ultrasound system and either with laser-scan micrometry or with video photogrammetry. After validation, 3D ultrasound data were collected from abdominal aortic aneurysms of five patients and displacement and strain parameters were analysed. Displacement parameters measured in vitro by 3D ultrasound and laser scan micrometer or video analysis were significantly correlated at pulse pressures between 40 and 80 mmHg. Strong local differences in displacement and strain were identified within the aortic aneurysms of patients. Local wall strain of the whole abdominal aortic aneurysm can be analysed in vivo with real-time 3D ultrasound speckle tracking imaging, offering the prospect of individual non-invasive rupture risk analysis of abdominal aortic aneurysms. Copyright © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  20. Sonographic physical diagnosis 101: teaching senior medical students basic ultrasound scanning skills using a compact ultrasound system.

    PubMed

    Angtuaco, Teresita L; Hopkins, Robert H; DuBose, Terry J; Bursac, Zoran; Angtuaco, Michael J; Ferris, Ernest J

    2007-06-01

    This project was designed to test the feasibility of introducing ultrasound to senior medical students as a primary diagnostic tool in the evaluation of patients. Specifically, its aim was to determine if it is possible for medical students untrained in sonography to gain basic competence in performing abdominal ultrasound with limited didactic and hands-on instructions. Registered sonographers provided the students with hands-on instructions on the use of a compact ultrasound system. They were likewise shown how to evaluate specific organs and perform measurements. The results of the student measurements and those obtained by the sonographers were compared. There was close correlation between the results obtained by sonographers and students on both normal and abnormal findings. This supports the concept that medical students can be taught basic ultrasound skills with limited didactic and hands-on instructions with the potential of using these skills in the patient clinics as an adjunct to routine physical diagnosis.

  1. Comparison of measurements of the uterus and cervix obtained by magnetic resonance and transabdominal ultrasound imaging to identify the brachytherapy target in patients with cervix cancer.

    PubMed

    van Dyk, Sylvia; Kondalsamy-Chennakesavan, Srinivas; Schneider, Michal; Bernshaw, David; Narayan, Kailash

    2014-03-15

    To compare measurements of the uterus and cervix obtained with magnetic resonance imaging (MRI) and transabdominal ultrasound to determine whether ultrasound can identify the brachytherapy target and be used to guide conformal brachytherapy planning and treatment for cervix cancer. Consecutive patients undergoing curative treatment with radiation therapy between January 2007 and March 2012 were included in the study. Intrauterine applicators were inserted into the uterine canal while patients were anesthetized. Images were obtained by MRI and transabdominal ultrasound in the longitudinal axis of the uterus with the applicator in treatment position. Measurements were taken at the anterior and posterior surface of the uterus at 2.0-cm intervals along the applicator, from the external os to the tip of the applicator. Data were analyzed using Bland Altman plots examining bias and 95% limits of agreement. A total of 192 patients contributed 1668 measurements of the cervix and uterus. Mean (± SD) differences of measurements between imaging modalities at the anterior and posterior uterine surface ranged from 1.5 (± 3.353) mm to 3.7 (± 3.856) mm, and -1.46 (± 3.308) mm to 0.47 (± 3.502) mm, respectively. The mean differences were less than 3 mm in the cervix. The mean differences were less than 1.5 mm at all measurement points on the posterior surface. Differences in the measurements of the cervix and uterus obtained by MRI and ultrasound were within clinically acceptable limits. Transabdominal ultrasound can be substituted for MRI in defining the target volume for conformal brachytherapy treatment of cervix cancer. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  2. Exploration Analysis of Carbon Dioxide Levels and Ultrasound Measures of the Eye During ISS Missions

    NASA Technical Reports Server (NTRS)

    Young, M.; Mason, S.; Schaefer, C.; Wear, M. L.; Sargsyan, A.; Garcia, K.; Coble, C.; Gruschkus, S.; Law, J.; Alexander, D.; hide

    2016-01-01

    Enhanced screening for the Visual Impairment/Intracranial Pressure (VIIP) Syndrome, including in-flight ultrasound, was implemented in 2010 to better characterize the changes in vision observed in some long-duration crewmembers. Suggested possible risk factors for VIIP include cardiovascular changes, diet, anatomical and genetic factors, and environmental conditions. As a potent vasodilator, carbon dioxide (CO (sub 2)), which is chronically elevated on the International Space Station (ISS) relative to typical indoor and outdoor ambient levels on Earth, seems a plausible contributor to VIIP. In an effort to understand the possible associations between CO (sub 2) and VIIP, this study analyzes the relationship between ambient CO (sub 2) levels on ISS and ultrasound measures of the eye obtained from ISS fliers. CO (sub 2) measurements will be pulled directly from Operational Data Reduction Complex for the Lab and Node 3 major constituent analyzers (MCAs) on ISS or from sensors located in the European Columbus module, as available. CO (sub 2) measures between ultrasound sessions will be summarized using standard time series class metrics in MATLAB including time-weighted means and variances. Cumulative CO (sub 2) exposure metrics will also be developed. Regression analyses will be used to quantify the relationships between the CO (sub 2) metrics and specific ultrasound measures. Generalized estimating equations will adjust for the repeated measures within individuals. Multiple imputation techniques will be used to adjust for any possible biases in missing data for either CO (sub 2) or ultrasound measures. These analyses will elucidate the possible relationship between CO (sub 2) and changes in vision and also inform future analysis of inflight VIIP data.

  3. Comparison of Central Corneal Thickness Between Fourier-Domain OCT, Very High-Frequency Digital Ultrasound, and Scheimpflug Imaging Systems.

    PubMed

    Yap, Timothy E; Archer, Timothy J; Gobbe, Marine; Reinstein, Dan Z

    2016-02-01

    To compare corneal thickness measurements between three imaging systems. In this retrospective study of 81 virgin and 58 post-laser refractive surgery corneas, central and minimum corneal thickness were measured using optical coherence tomography (OCT), very high-frequency digital ultrasound (VHF digital ultrasound), and a Scheimpflug imaging system. Agreement between methods was analyzed using mean differences (bias) (OCT - VHF digital ultrasound, OCT - Scheimpflug, VHF digital ultrasound - Scheimpflug) and Bland-Altman analysis with 95% limits of agreement (LoA). Virgin cornea mean central corneal thickness was 508.3 ± 33.2 µm (range: 434 to 588 µm) for OCT, 512.7 ± 32.2 µm (range: 440 to 587 µm) for VHF digital ultrasound, and 530.2 ± 32.6 µm (range: 463 to 612 µm) for Scheimpflug imaging. OCT and VHF digital ultrasound showed the closest agreement with a bias of -4.37 µm, 95% LoA ±12.6 µm. Least agreement was between OCT and Scheimpflug imaging with a bias of -21.9 µm, 95% LoA ±20.7 µm. Bias between VHF digital ultrasound and Scheimpflug imaging was -17.5 µm, 95% LoA ±19.0 µm. In post-laser refractive surgery corneas, mean central corneal thickness was 417.9 ± 47.1 µm (range: 342 to 557 µm) for OCT, 426.3 ± 47.1 µm (range: 363 to 563 µm) for VHF digital ultrasound, and 437.0 ± 48.5 µm (range: 359 to 571 µm) for Scheimpflug imaging. Closest agreement was between OCT and VHF digital ultrasound with a bias of -8.45 µm, 95% LoA ±13.2 µm. Least agreement was between OCT and Scheimpflug imaging with a bias of -19.2 µm, 95% LoA ±19.2 µm. Bias between VHF digital ultrasound and Scheimpflug imaging was -10.7 µm, 95% LoA ±20.0 µm. No relationship was observed between difference in central corneal thickness measurements and mean central corneal thickness. Results were similar for minimum corneal thickness. Central and minimum corneal thickness was measured thinnest by OCT and thickest by Scheimpflug imaging in both groups. A clinically significant bias existed between Scheimpflug imaging and the other two modalities. Copyright 2016, SLACK Incorporated.

  4. Development of a Duplex Ultrasound Simulator and Preliminary Validation of Velocity Measurements in Carotid Artery Models.

    PubMed

    Zierler, R Eugene; Leotta, Daniel F; Sansom, Kurt; Aliseda, Alberto; Anderson, Mark D; Sheehan, Florence H

    2016-07-01

    Duplex ultrasound scanning with B-mode imaging and both color Doppler and Doppler spectral waveforms is relied upon for diagnosis of vascular pathology and selection of patients for further evaluation and treatment. In most duplex ultrasound applications, classification of disease severity is based primarily on alterations in blood flow velocities, particularly the peak systolic velocity (PSV) obtained from Doppler spectral waveforms. We developed a duplex ultrasound simulator for training and assessment of scanning skills. Duplex ultrasound cases were prepared from 2-dimensional (2D) images of normal and stenotic carotid arteries by reconstructing the common carotid, internal carotid, and external carotid arteries in 3 dimensions and computationally simulating blood flow velocity fields within the lumen. The simulator displays a 2D B-mode image corresponding to transducer position on a mannequin, overlaid by color coding of velocity data. A spectral waveform is generated according to examiner-defined settings (depth and size of the Doppler sample volume, beam steering, Doppler beam angle, and pulse repetition frequency or scale). The accuracy of the simulator was assessed by comparing the PSV measured from the spectral waveforms with the true PSV which was derived from the computational flow model based on the size and location of the sample volume within the artery. Three expert examiners made a total of 36 carotid artery PSV measurements based on the simulated cases. The PSV measured by the examiners deviated from true PSV by 8% ± 5% (N = 36). The deviation in PSV did not differ significantly between artery segments, normal and stenotic arteries, or examiners. To our knowledge, this is the first simulation of duplex ultrasound that can create and display real-time color Doppler images and Doppler spectral waveforms. The results demonstrate that an examiner can measure PSV from the spectral waveforms using the settings on the simulator with a mean absolute error in the velocity measurement of less than 10%. With the addition of cases with a range of pathologies, this duplex ultrasound simulator will be a useful tool for training health-care providers in vascular ultrasound applications and for assessing their skills in an objective and quantitative manner. © The Author(s) 2016.

  5. Fetal head detection and measurement in ultrasound images by an iterative randomized Hough transform

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Tan, Jinglu; Floyd, Randall C.

    2004-05-01

    This paper describes an automatic method for measuring the biparietal diameter (BPD) and head circumference (HC) in ultrasound fetal images. A total of 217 ultrasound images were segmented by using a K-Mean classifier, and the head skull was detected in 214 of the 217 cases by an iterative randomized Hough transform developed for detection of incomplete curves in images with strong noise without user intervention. The automatic measurements were compared with conventional manual measurements by sonographers and a trained panel. The inter-run variations and differences between the automatic and conventional measurements were small compared with published inter-observer variations. The results showed that the automated measurements were as reliable as the expert measurements and more consistent. This method has great potential in clinical applications.

  6. A Preliminary Study on the Possibility of Using Ultrasound in Driver Assistance Systems

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroshi; Honda, Hirohiko

    This paper presents a preliminary study on the possibility of using ultrasound in driver assistance systems. Subjects' lap time in a driving video game was measured as an index of their performance of driving operations under acoustic conditions with and without an ultrasound signal at 23kHz, 70dB. The results show that the performance characteristics of the subjects changed when the ultrasound signal was presented. Ultrasound signal tends to concentrate on handling the vehicle and decreasing an attention to check the over speed driving, as a second task. We prove the possibility to apply ultrasound signal to control operator's attention and behavior.

  7. Anthropomorphic cardiac ultrasound phantom.

    PubMed

    Smith, S W; Rinaldi, J E

    1989-10-01

    A new phantom is described which simulates the human cardiac anatomy for applications in ultrasound imaging, ultrasound Doppler, and color-flow Doppler imaging. The phantom consists of a polymer left ventricle which includes a prosthetic mitral and aortic valve and is connected to a mock circulatory loop. Aerated tap water serves as a blood simulating fluid and ultrasound contrast medium within the circulatory loop. The left ventricle is housed in a Lexan ultrasound visualization chamber which includes ultrasound viewing ports and acoustic absorbers. A piston pump connected to the visualization chamber by a single port pumps degassed water within the chamber which in turn pumps the left ventricle. Real-time ultrasound images and Doppler studies measure flow patterns through the valves and within the left ventricle.

  8. Registration of surface structures using airborne focused ultrasound.

    PubMed

    Sundström, N; Börjesson, P O; Holmer, N G; Olsson, L; Persson, H W

    1991-01-01

    A low-cost measuring system, based on a personal computer combined with standard equipment for complex measurements and signal processing, has been assembled. Such a system increases the possibilities for small hospitals and clinics to finance advanced measuring equipment. A description of equipment developed for airborne ultrasound together with a personal computer-based system for fast data acquisition and processing is given. Two air-adapted ultrasound transducers with high lateral resolution have been developed. Furthermore, a few results for fast and accurate estimation of signal arrival time are presented. The theoretical estimation models developed are applied to skin surface profile registrations.

  9. Estimation of gonad volume, fecundity, and reproductive stage of shovelnose sturgeon using sonography and endoscopy with application to the endangered pallid sturgeon

    USGS Publications Warehouse

    Bryan, J.L.; Wildhaber, M.L.; Papoulias, D.M.; DeLonay, A.J.; Tillitt, D.E.; Annis, M.L.

    2007-01-01

    Most species of sturgeon are declining in the Mississippi River Basin of North America including pallid (Scaphirhynchus albus F. and R.) and shovelnose sturgeons (S. platorynchus R.). Understanding the reproductive cycle of sturgeon in the Mississippi River Basin is important in evaluating the status and viability of sturgeon populations. We used non-invasive, non-lethal methods for examining internal reproductive organs of shovelnose and pallid sturgeon. We used an ultrasound to measure egg diameter, fecundity, and gonad volume; endoscope was used to visually examine the gonad. We found the ultrasound to accurately measure the gonad volume, but it underestimated egg diameter by 52%. After correcting for the measurement error, the ultrasound accurately measured the gonad volume but it was higher than the true gonad volume for stages I and II. The ultrasound underestimated the fecundity of shovelnose sturgeon by 5%. The ultrasound fecundity was lower than the true fecundity for stage III and during August. Using the endoscope, we viewed seven different egg color categories. Using a model selection procedure, the presence of four egg categories correctly predicted the reproductive stage ± one reproductive stage of shovelnose sturgeon 95% of the time. For pallid sturgeon, the ultrasound overestimated the density of eggs by 49% and the endoscope was able to view eggs in 50% of the pallid sturgeon. Individually, the ultrasound and endoscope can be used to assess certain reproductive characteristics in sturgeon. The use of both methods at the same time can be complementary depending on the parameter measured. These methods can be used to track gonad characteristics, including measuring Gonadosomatic Index in individuals and/or populations through time, which can be very useful when associating gonad characteristics with environmental spawning triggers or with repeated examinations of individual fish throughout the reproductive cycle.

  10. Developing an ultrasound correlation velocimetry system

    NASA Astrophysics Data System (ADS)

    Surup, Gerrit; White, Christopher; UNH Team

    2011-11-01

    The process of building an ultrasound correlation velocimetry (UCV) system by integrating a commercial medical ultrasound with a PC running commercial PIV software is described and preliminary validation measurements in pipe flow using UCV and optical particle image velocimetry (PIV) are reported. In principles of operation, UCV is similar to the technique of PIV, differing only in the image acquisition process. The benefits of UCV are that it does not require optical access to the flow field and can be used for measuring flows of opaque fluids. While the limitations of UVC are the inherently low frame rates (limited by the imaging capabilities of the commercial ultrasound system) and low spatial resolution, which limits the range of velocities and transient flow behavior that can be measured. The support of the NSF (CBET0846359, grant monitor Horst Henning Winter) is gratefully acknowledged.

  11. Prognostic value of three-dimensional ultrasound for fetal hydronephrosis

    PubMed Central

    WANG, JUNMEI; YING, WEIWEN; TANG, DAXING; YANG, LIMING; LIU, DONGSHENG; LIU, YUANHUI; PAN, JIAOE; XIE, XING

    2015-01-01

    The present study evaluated the prognostic value of three-dimensional ultrasound for fetal hydronephrosis. Pregnant females with fetal hydronephrosis were enrolled and a novel three-dimensional ultrasound indicator, renal parenchymal volume/kidney volume, was introduced to predict the postnatal prognosis of fetal hydronephrosis in comparison with commonly used ultrasound indicators. All ultrasound indicators of fetal hydronephrosis could predict whether postnatal surgery was required for fetal hydronephrosis; however, the predictive performance of renal parenchymal volume/kidney volume measurements as an individual indicator was the highest. In conclusion, ultrasound is important in predicting whether postnatal surgery is required for fetal hydronephrosis, and the three-dimensional ultrasound indicator renal parenchymal volume/kidney volume has a high predictive performance. Furthermore, the majority of cases of fetal hydronephrosis spontaneously regress subsequent to birth, and the regression time is closely associated with ultrasound indicators. PMID:25667626

  12. Relationships among dual-energy X-ray absorptiometry (DXA), bioelectrical impedance (BIA), and ultrasound measurements of body composition of swine

    USDA-ARS?s Scientific Manuscript database

    In three separate studies (156 pigs total), DXA, BIA, and ultrasound were compared as methods for measuring live body composition of pigs at 60 and 100-110 kg BWt. DXA measured total body fat and lean content, BIA measurements of resistance (Rs) and reactance (Xc) were used to calculate total body l...

  13. Noncontact modal analysis of a pipe organ reed using airborne ultrasound stimulated vibrometry

    NASA Astrophysics Data System (ADS)

    Huber, Thomas M.; Fatemi, Mostafa; Kinnick, Randall R.; Greenleaf, James F.

    2004-05-01

    The goal of this experiment was to excite and measure, in a noncontact manner, the vibrational modes of the reed from a reed organ pipe. To perform ultrasound stimulated excitation, two ultrasound beams in air of different frequencies were directed at the reed; the audio-range beat frequency between these ultrasound beams induced vibrations. The resulting vibrational deflection shapes were measured with a scanning vibrometer. The modes of any relatively small object can be studied in air using this technique. For a 36 mm by 7 mm clamped brass reed cantilever, displacements and velocites of 5 μ and 4 mm/s could be imparted at the fundamental frequency of 145 Hz. Using the same ultrasound transducer, excitation across the entire range of audio frequencies was obtained, which was not possible using audio excitation with a speaker. Since the beam was focused on the reed, ultrasound stimulated excitation eliminated background effects observed during mechanical shaker excitation, such as vibrations of clamps and supports. We will discuss the results obtained using single, dual, and confocal ultrasound transducers in AM and unmodulated CW modes, along with results obtained using a mechanical shaker and audio excitation using a speaker.

  14. Ultrasound Assessment of Human Meniscus.

    PubMed

    Viren, Tuomas; Honkanen, Juuso T; Danso, Elvis K; Rieppo, Lassi; Korhonen, Rami K; Töyräs, Juha

    2017-09-01

    The aim of the present study was to evaluate the applicability of ultrasound imaging to quantitative assessment of human meniscus in vitro. Meniscus samples (n = 26) were harvested from 13 knee joints of non-arthritic human cadavers. Subsequently, three locations (anterior, center and posterior) from each meniscus were imaged with two ultrasound transducers (frequencies 9 and 40 MHz), and quantitative ultrasound parameters were determined. Furthermore, partial-least-squares regression analysis was applied for ultrasound signal to determine the relations between ultrasound scattering and meniscus integrity. Significant correlations between measured and predicted meniscus compositions and mechanical properties were obtained (R 2  = 0.38-0.69, p < 0.05). The relationship between conventional ultrasound parameters and integrity of the meniscus was weaker. To conclude, ultrasound imaging exhibited a potential for evaluation of meniscus integrity. Higher ultrasound frequency combined with multivariate analysis of ultrasound backscattering was found to be the most sensitive for evaluation of meniscus integrity. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  15. [Efficacy and problems of bladder volume measurement using portable three dimensional ultrasound scanning device--in particular, on measuring bladder volume lower than 100ml].

    PubMed

    Oh-Oka, Hitoshi; Nose, Ryuichiro

    2005-09-01

    Using a portable three dimensional ultrasound scanning device (The Bladder Scan BVI6100, Diagnostic Ultrasound Corporation), we examined measured values of bladder volume, especially focusing on volume lower than 100 ml. A total of 100 patients (male: 66, female: 34) were enrolled in the study. We made a comparison study between the measured value (the average of three measurements of bladder urine volume after a trial in male and female modes) using BVI6100, and the actual measured value of the sample obtained by urethral catheterization in each patient. We examined the factors which could increase the error rate. We also introduced the effective techniques to reduce measurement errors. The actual measured values in all patients correlated well with the average value of three measurements after a trial in a male mode of the BVI6100. The correlation coefficient was 0.887, the error rate was--4.6 +/- 24.5%, and the average coefficient of variation was 15.2. It was observed that the measurement result using the BVI6100 is influenced by patient side factors (extracted edges between bladder wall and urine, thickened bladder wall, irregular bladder wall, flattened rate of bladder, mistaking prostate for bladder in male, mistaking bladder for uterus in a female mode, etc.) or examiner side factors (angle between BVI and abdominal wall, compatibility between abdominal wall and ultrasound probe, controlling deflection while using probe, etc). When appropriate patients are chosen and proper measurement is performed, BVI6100 provides significantly higher accuracy in determining bladder volume, compared with existing abdominal ultrasound methods. BVI6100 is a convenient and extremely effective device also for the measurement of bladder urine over 100 ml.

  16. [Clinical auxiliary diagnosis value of high frequency ultrasonographic measurements of the thickness of transverse carpal ligaments in carpal tunnel syndrome patients].

    PubMed

    Xu, L; Chen, F M; Wang, L; Zhang, P X; Jiang, X R

    2016-04-18

    To evaluate the meaning and value of high-frequency ultrasound in the diagnosis of carpal tunnel syndrome (CTS). In this study, 48 patients (unilateral hand) with CTS were analyzed. The thickness of transverse carpal ligaments at the pisiform bone was measured using high-frequency ultrasound. Open carpal tunnel release procedure was performed in the 48 CTS patients, and the thickness of transverse carpal ligaments at the hamate hook bone measured using vernier caliper under direct vision. The accuracy of thickness of transverse carpal ligaments was evaluated using high-frequency ultrasound. high-frequency ultrasound measurement of thickness of transverse carpal ligaments at the hamate hook bone and pisiform bone, and determination of the diagnostic threshold measurement index using receiver operating characteristic (ROC) curve, sensitivity and specificity were performed and the correlation between the thickness of transverse carpal ligaments and nerve conduction study (NCS) analyzed. The thickness of transverse carpal ligaments in the CTS patients were (0.42±0.08) cm (high-frequency ultrasound) and (0.41±0.06) cm (operation) at hamate hook bone, and there was no significant difference between the two ways (t=0.672, P>0.05). The optimal cut-off value of the transverse carpal ligaments at hamate hook bone was 0.385 cm, the sensitivity 0.775, and the specificity 0.788. The optimal cut-off value of the transverse carpal ligaments at the pisiform bone was 0.315 cm, the sensitivity 0.950, and the specificity 1.000. The transverse carpal ligaments thickness and wrist-index finger sensory nerve conduction velocity (SCV), wrist-middle finger SCV showed a negative correlation. High frequency ultrasound measurements of thickness of transverse carpal ligaments is a valuable method for the diagnosis of CTS.

  17. Nucleation in food colloids

    NASA Astrophysics Data System (ADS)

    Povey, Malcolm J. W.

    2016-12-01

    Nucleation in food colloids has been studied in detail using ultrasound spectroscopy. Our data show that classical nucleation theory (CNT) remains a sound basis from which to understand nucleation in food colloids and analogous model systems using n-alkanes. Various interpretations and modifications of CNT are discussed with regard to their relevance to food colloids. Much of the evidence presented is based on the ultrasound velocity spectrometry measurements which has many advantages for the study of nucleating systems compared to light scattering and NMR due to its sensitivity at low solid contents and its ability to measure true solid contents in the nucleation and early crystal growth stages. Ultrasound attenuation spectroscopy also responds to critical fluctuations in the induction region. We show, however, that a periodic pressure fluctuation such as a quasi-continuous (as opposed to a pulse comprising only a few pressure cycles) ultrasound field can alter the nucleation process, even at very low acoustic intensity. Thus care must be taken when using ultrasound techniques that the measurements do not alter the studied processes. Quasi-continuous ultrasound fields may enhance or suppress nucleation and the criteria to determine such effects are derived. The conclusions of this paper are relevant to colloidal systems in foods, pharmaceuticals, agro-chemicals, cosmetics, and personal products.

  18. Ultrasound Image Despeckling Using Stochastic Distance-Based BM3D.

    PubMed

    Santos, Cid A N; Martins, Diego L N; Mascarenhas, Nelson D A

    2017-06-01

    Ultrasound image despeckling is an important research field, since it can improve the interpretability of one of the main categories of medical imaging. Many techniques have been tried over the years for ultrasound despeckling, and more recently, a great deal of attention has been focused on patch-based methods, such as non-local means and block-matching collaborative filtering (BM3D). A common idea in these recent methods is the measure of distance between patches, originally proposed as the Euclidean distance, for filtering additive white Gaussian noise. In this paper, we derive new stochastic distances for the Fisher-Tippett distribution, based on well-known statistical divergences, and use them as patch distance measures in a modified version of the BM3D algorithm for despeckling log-compressed ultrasound images. State-of-the-art results in filtering simulated, synthetic, and real ultrasound images confirm the potential of the proposed approach.

  19. [Feasibility and accuracy of ultrasound-guided methodology in the examination of lumbar spine facet joints].

    PubMed

    Wen, Chuan-Bing; Li, Yong-Zhong; Tang, Qin-Qin; Sun, Lin; Xiao, Hong; Yang, Bang-Xiang; Song, Li; Liu, Hui

    2013-03-01

    To investigate the feasibility, accuracy of B ultrasound in the examination of joint space of lumbar spine facet joints compared with CT scan. Ten healthy adult volunteers were enrolled. The joint space of lumbar facet joints was measured by ultrasound. To identify the spinal levels, the posterior parasagittal sonograms were obtained at levels L1 to S1. The lumbar facet joints were delineated with the help of transverse sonograms at each level. Meanwhile, the lumbar facet joints were evaluated by spiral CT on the same plane, reformatted to 1-mm axial slices. A total of 88 lumbar facet joints from L1 to S1 were clearly visualized in the 10 volunteers. Both ultrasound and CT measurements showed the same average depth and lateral distance of lumbar facet joint space (P > 0.05). The lumbar facet joint space can be accurately demonstrated by ultrasound.

  20. Effect of mild pressure applied by the ultrasound transducer on fetal cephalic measurements at 20-24 weeks' gestation.

    PubMed

    Kliper, Yael; Ben-Ami, Moshe; Perlitz, Yuri

    2014-01-01

    The aim of this study was to assess the effect of mild pressure applied on the abdominal wall by the ultrasound transducer on fetal cephalic indices. We examined by ultrasound 60 fetuses of healthy women, at 20-24 weeks of pregnancy, during routine prenatal evaluation. For every fetus biparietal diameter and head circumference were measured, with and without applying mild pressure by the ultrasound transducer. The weight and gestational age (GA) were calculated. The pressure applied by the transducer had a significant effect on the cephalic indices and on the weight and GA evaluations (p < 0.001). Fetal positioning significantly affected the impact that applied pressure had on head circumference and on the weight evaluation derived from it (p < 0.05). Applied pressure by an abdominal ultrasound probe affects cephalic indices and the derived weight and GA estimations. This may lead to incorrect diagnoses or hide pathological findings. The effect of applied pressure depends on fetal positioning. The examiner must be aware of this effect when evaluating the results of the measurements.

  1. Acoustically active injection catheter guided by ultrasound: navigation tests in acutely ischemic porcine hearts.

    PubMed

    Belohlavek, Marek; Katayama, Minako; Zarbatany, David; Fortuin, F David; Fatemi, Mostafa; Nenadic, Ivan Z; McMahon, Eileen M

    2014-07-01

    Catheters are increasingly used therapeutically and investigatively. With complex usage comes a need for more accurate intracardiac localization than traditional guidance can provide. An injection catheter navigated by ultrasound was designed and then tested in an open-chest model of acute ischemia in eight pigs. The catheter is made "acoustically active" by a piezo-electric crystal near its tip, electronically controlled, vibrating in the audio frequency range and uniquely identifiable using pulsed-wave Doppler. Another "target" crystal was sutured to the epicardium within the ischemic region. Sonomicrometry was used to measure distances between the two crystals and then compared with measurements from 2-D echocardiographic images. Complete data were obtained from seven pigs, and the correlation between sonomicrometry and ultrasound measurements was excellent (p < 0.0001, ρ = 0.9820), as was the intraclass correlation coefficient (0.96) between two observers. These initial experimental results suggest high accuracy of ultrasound navigation of the acoustically active catheter prototype located inside the beating left ventricle. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  2. Evaluation of a recently developed noncontact specular microscope in comparison with conventional pachymetry devices.

    PubMed

    Módis, László; Szalai, Eszter; Németh, Gábor; Berta, András

    2010-01-01

    The study was conducted to assess the central corneal thickness (CCT) of the healthy cornea with a recently developed noncontact specular microscope (EM-3000; Tomey) and compare the results with those measured with a contact specular microscope and an ultrasound pachymeter. Agreement between measurements taken by 2 investigators was also studied. The right eyes of 41 healthy individuals who had negative history of contact lens wear, ophthalmic disease, or ocular surgery were examined. The CCT was determined sequentially with a noncontact specular microscope, a contact specular microscope (EM-1000; Tomey), and an ultrasound pachymeter (AL-2000; Tomey). Each evaluation with the specular microscopes was performed by 2 independent operators. A significant difference was detected in pachymetry measurements among the 3 instruments (p=0.01; analysis of variance). The mean CCT values were lower measured with the ultrasound pachymeter (537+/-30 microm) than the contact endothelial microscope (543+/-37 microm, p=0.17, Student t-test) and the noncontact microscope (549+/-33 microm, p<0.0001) (operator 1). There was no statistically significant difference in CCT measurements between the 2 endothelial microscopes (p=0.19). We found significant correlations (p<0.0001) in thickness measurements between each pair of instruments (r=0.91, noncontact microscopy and ultrasound pachymetry; r=0.74, noncontact and contact microscopy; r=0.72, contact microscopy and ultrasound pachymetry; Spearman rank correlation). The strong correlations among the 3 pachymetry devices suggest that the tested instruments provide reliable measurements; however, they cannot be used interchangeably.

  3. Comparison of extraction methods for quantifying vitamin E from animal tissues.

    PubMed

    Xu, Zhimin

    2008-12-01

    Four extraction methods: (1) solvent (SOL), (2) ultrasound assisted solvent (UA), (3) saponification and solvent (SP), and (4) saponification and ultrasound assisted solvent (SP-UA), were used in sample preparation for quantifying vitamin E (tocopherols) in chicken liver and plasma samples. The extraction yields of SOL, UA, SP, and SP-UA methods obtained by adding delta-tocopherol as internal reference were 95%, 104%, 65%, and 62% for liver and 98%, 103%, 97%, and 94% for plasma, respectively. The methods with saponification significantly affected the stabilities of tocopherols in liver samples. The measured values of alpha- and gamma-tocopherols using the solvent only extraction (SOL) method were much lower than that using any of the other extraction methods. This indicated that less of the tocopherols in those samples were in a form that could be extracted directly by solvent. The measured value of alpha-tocopherol in the liver sample using the ultrasound assisted solvent (UA) method was 1.5-2.5 times of that obtained from the saponification and solvent (SP) method. The differences in measured values of tocopherols in the plasma samples by using the two methods were not significant. However, the measured value of the saponification and ultrasound assisted solvent (SP-UA) method was lower than either the saponification and solvent (SP) or the ultrasound assisted solvent (UA) method. Also, the reproducibility of the ultrasound assisted solvent (UA) method was greater than any of the saponification methods. Compared with the traditional saponification method, the ultrasound assisted solvent method could effectively extract tocopherols from sample matrix without any chemical degradation reactions, especially for complex animal tissue such as liver.

  4. Comparison of longitudinal excursion of a nerve-phantom model using quantitative ultrasound imaging and motion analysis system methods: A convergent validity study.

    PubMed

    Paquette, Philippe; El Khamlichi, Youssef; Lamontagne, Martin; Higgins, Johanne; Gagnon, Dany H

    2017-08-01

    Quantitative ultrasound imaging is gaining popularity in research and clinical settings to measure the neuromechanical properties of the peripheral nerves such as their capability to glide in response to body segment movement. Increasing evidence suggests that impaired median nerve longitudinal excursion is associated with carpal tunnel syndrome. To date, psychometric properties of longitudinal nerve excursion measurements using quantitative ultrasound imaging have not been extensively investigated. This study investigates the convergent validity of the longitudinal nerve excursion by comparing measures obtained using quantitative ultrasound imaging with those determined with a motion analysis system. A 38-cm long rigid nerve-phantom model was used to assess the longitudinal excursion in a laboratory environment. The nerve-phantom model, immersed in a 20-cm deep container filled with a gelatin-based solution, was moved 20 times using a linear forward and backward motion. Three light-emitting diodes were used to record nerve-phantom excursion with a motion analysis system, while a 5-cm linear transducer allowed simultaneous recording via ultrasound imaging. Both measurement techniques yielded excellent association ( r  = 0.99) and agreement (mean absolute difference between methods = 0.85 mm; mean relative difference between methods = 7.48 %). Small discrepancies were largely found when larger excursions (i.e. > 10 mm) were performed, revealing slight underestimation of the excursion by the ultrasound imaging analysis software. Quantitative ultrasound imaging is an accurate method to assess the longitudinal excursion of an in vitro nerve-phantom model and appears relevant for future research protocols investigating the neuromechanical properties of the peripheral nerves.

  5. Synergistic effect of ultrasound and PEI on DNA transfection in vitro

    PubMed Central

    Deshpande, Mangesh C.; Prausnitz, Mark R.

    2007-01-01

    Ultrasound and poly(ethylenimine) (PEI) have each separately been shown to increase DNA transfection efficiency. This study tested the hypothesis that the combination of ultrasound and PEI can have a synergistic effect to increase DNA transfection. This in vitro study assessed transfection efficiency of two different DNA plasmids encoding green fluorescent protein and firefly luciferase in two different cells types, a primary culture of human aortic smooth muscle cells and an immortal line of human prostrate cancer cells. We found that ultrasound sonication increased transfection up to 18-fold, DNA complexation with PEI increased transfection up to 90-fold, and the combination of ultrasound and PEI synergistically increased transfection up to 200-fold, which resulted in reporter gene expression by 34% of cells. Kinetic measurements found that the effects of ultrasound alone acted quickly, whereas increased transfection by PEI either alone or in combination with ultrasound strongly benefited from a 4-h incubation with the DNA plasmid after sonication. Although serum reduced absolute expression levels, it did not affect the relative increase in transfection when ultrasound was added to PEI enhancement. Flow cytometry measurements showed that sonication increased intracellular uptake of labelled DNA complexed to PEI by 55% relative to PEI complexation alone. Electrophoresis assay showed no damage to DNA or PEI-DNA complexes after sonication. Overall, these results suggest that the combination of ultrasound and PEI can have a synergistic effect to increase DNA transfection. PMID:17258835

  6. Inter- and intratester reliability values of ultrasound imaging measurements of diaphragm movement in the thoracic and thoracolumbar curves in adolescent idiopathic scoliosis.

    PubMed

    Noh, Dong Koog; Koh, Jae-Hyun; You, Joshua Sung-H

    2016-01-01

    The purpose of this study was to determine intertester and intratester reliability of ultrasound measurements of bilateral diaphragm excursions in the thoracic and thoracolumbar spinal curves of 31 females with adolescent idiopathic scoliosis (AIS) (mean age = 14.1 ± 1.8 years). Subjects were tested during tidal breathing using real-time ultrasound imaging with a 3.5 MHz curvilinear transducer. There were no significant differences in intratester and intertester reliability values in bilateral diaphragmatic excursions measured at the thoracolumbar spinal curve, whereas significant differences were observed in measurements taken at the thoracic spinal curve (p < 0.05). Overall, the intertester and intratester reliabilities of the thoracic and thoracolumbar curves in AIS ranged from 0.764 to 0.998. These findings suggest that ultrasound imaging is highly reliable between and within testers and is useful to precisely discriminate pathological diaphragm movement in idiopathic thoracic scoliosis and idiopathic thoracolumbar scoliosis.

  7. Characterization of Pressure Fields of Focused Transducers at TÜBİTAK UME

    NASA Astrophysics Data System (ADS)

    Karaböce, B.; Şahin, A.; İnce, A. T.; Skarlatos, Y.

    Field radiated by HIFU (High Intensity Focused Ultrasound) has been investigated by measuring its pressure field and mapping in 2-D and 3-D. A new ultrasound pressure measurement system has been designed and constructed at TÜBİTAK UME (The Scientific and Technological Research Council of Turkey, the National Metrology Institute). System consists of a water tank, positioning system, measurement devices and a controlling program. The hydrophone was attached to a 3-axis, computer-controlled positioning system for alignment with the ultrasound source. The signal was captured and analyzed by the commercially available LabVIEW 8.1 software. The measurements of the ultrasound field were carried out with a needle hydrophone. For each waveform, p, p+ and p-pressures have been calculated. Wave behaviors produced by the KZK model and from experiments look like similar in general. In p, p+, p- the focal point, zero point after the primary peak (focus) and extremum points in the near field well match.

  8. A concept for non-invasive temperature measurement during injection moulding processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopmann, Christian; Spekowius, Marcel, E-mail: spekowius@ikv.rwth-aachen.de; Wipperfürth, Jens

    2016-03-09

    Current models of the injection moulding process insufficiently consider the thermal interactions between melt, solidified material and the mould. A detailed description requires a deep understanding of the underlying processes and a precise observation of the temperature. Because todays measurement concepts do not allow a non-invasive analysis it is necessary to find new measurement techniques for temperature measurements during the manufacturing process. In this work we present the idea of a set up for a tomographic ultrasound measurement of the temperature field inside a plastics melt. The goal is to identify a concept that can be installed on a specializedmore » mould for the injection moulding process. The challenges are discussed and the design of a prototype is shown. Special attention is given to the spatial arrangement of the sensors. Besides the design of a measurement set up a reconstruction strategy for the ultrasound signals is required. We present an approach in which an image processing algorithm can be used to calculate a temperature distribution from the ultrasound scans. We discuss a reconstruction strategy in which the ultrasound signals are converted into a spartial temperature distribution by using pvT curves that are obtained by dilatometer measurements.« less

  9. Office-based ultrasound screening for abdominal aortic aneurysm

    PubMed Central

    Blois, Beau

    2012-01-01

    Abstract Objective To assess the efficacy of an office-based, family physician–administered ultrasound examination to screen for abdominal aortic aneurysm (AAA). Design A prospective observational study. Consecutive patients were approached by nonphysician staff. Setting Rural family physician offices in Grand Forks and Revelstoke, BC. Participants The Canadian Society for Vascular Surgery screening recommendations for AAA were used to help select patients who were at risk of AAA. All men 65 years of age or older were included. Women 65 years of age or older were included if they were current smokers or had diabetes, hypertension, a history of coronary artery disease, or a family history of AAA. Main outcome measures A focused “quick screen,” which measured the maximal diameter of the abdominal aorta using point-of-care ultrasound technology, was performed in the office by a resident physician trained in emergency ultrasonography. Each patient was then booked for a criterion standard scan (ie, a conventional abdominal ultrasound scan performed by a technician and interpreted by a radiologist). The maximal abdominal aortic diameter measured by ultrasound in the office was compared with that measured by the criterion standard method. The time to screen each patient was recorded. Results Forty-five patients were included in data analysis; 62% of participants were men. The mean age was 73 years. The mean pairwise difference between the office-based ultrasound scan and the criterion standard scan was not statistically significant. The mean absolute difference between the 2 scans was 0.20 cm (95% CI 0.15 to 0.25 cm). Correlation between the scans was 0.81. The office-based ultrasound scan had both a sensitivity and a specificity of 100%. The mean time to screen each patient was 212 seconds (95% CI 194 to 230 seconds). Conclusion Abdominal aortic aneurysm screening can be safely performed in the office by family physicians who are trained to use point-of-care ultrasound technology. The screening test can be completed within the time constraints of a busy family practice office visit. The benefit of screening for AAA in rural patients might be great if local diagnostic ultrasound service and emergent transport to a vascular surgeon are not available. PMID:22518906

  10. Diagnostic Accuracy and Clinical Implications of Translabial Ultrasound for the Assessment of Levator Ani Defects and Levator Ani Biometry in Women With Pelvic Organ Prolapse: A Systematic Review.

    PubMed

    Notten, Kim J B; Vergeldt, Tineke F M; van Kuijk, Sander M J; Weemhoff, Mirjam; Roovers, Jan-Paul W R

    The aim of this study was to assess the diagnostic accuracy and clinical implications of translabial 3-dimensional (3D) ultrasound for the assessment of levator ani defects and biometry in women with pelvic organ prolapse (POP). We performed a systematic literature search through computerized databases including MEDLINE (via PubMed), EMBASE (via OvidSP), and the Cochrane Library using both medical subject headings and text terms from January 1, 2003, to December 25, 2015.We included articles that reported on POP status and diagnostic accuracy measurements with translabial 3D ultrasound or transperineal ultrasound for the detection of levator ani defects or for measuring pelvic floor biometry, that is, levator ani hiatus, or reported on the clinical relevance of using translabial 3D ultrasound for levator ani defects or measuring pelvic floor biometry in women with POP. Thirty-one articles were selected in accordance with parts of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines that can be applied to studies of diagnostic accuracy. Twenty-two articles (71%) are coauthored by 1 expert in this field. Detecting levator ani defects with translabial 3D ultrasound compared with magnetic resonance imaging showed a moderate to good agreement, whereas measuring hiatal biometry on translabial 3D ultrasound compared with magnetic resonance imaging showed a moderate to very good agreement.The interobserver agreement for diagnosing levator ani defects and measuring the levator hiatal area showed a moderate to very good agreement. Furthermore, levator ani defects increase the risk of cystocele and uterine prolapse, and levator ani defects are associated with recurrent POP.Finally, a larger hiatus was associated with POP and recurrent POP. Translabial 3D ultrasound is reproducible for diagnosing levator ani defects and ballooning hiatus. Both levator ani defects and a larger hiatal area are, in a selected population of patients with pelvic floor dysfunction, associated with POP and recurrent POP. More research is needed concerning external validation because most data in this article are coauthored by 1 expert in this field.

  11. Ultrasound Elasticity Imaging System with Chirp-Coded Excitation for Assessing Biomechanical Properties of Elasticity Phantom

    PubMed Central

    Chun, Guan-Chun; Chiang, Hsing-Jung; Lin, Kuan-Hung; Li, Chien-Ming; Chen, Pei-Jarn; Chen, Tainsong

    2015-01-01

    The biomechanical properties of soft tissues vary with pathological phenomenon. Ultrasound elasticity imaging is a noninvasive method used to analyze the local biomechanical properties of soft tissues in clinical diagnosis. However, the echo signal-to-noise ratio (eSNR) is diminished because of the attenuation of ultrasonic energy by soft tissues. Therefore, to improve the quality of elastography, the eSNR and depth of ultrasound penetration must be increased using chirp-coded excitation. Moreover, the low axial resolution of ultrasound images generated by a chirp-coded pulse must be increased using an appropriate compression filter. The main aim of this study is to develop an ultrasound elasticity imaging system with chirp-coded excitation using a Tukey window for assessing the biomechanical properties of soft tissues. In this study, we propose an ultrasound elasticity imaging system equipped with a 7.5-MHz single-element transducer and polymethylpentene compression plate to measure strains in soft tissues. Soft tissue strains were analyzed using cross correlation (CC) and absolution difference (AD) algorithms. The optimal parameters of CC and AD algorithms used for the ultrasound elasticity imaging system with chirp-coded excitation were determined by measuring the elastographic signal-to-noise ratio (SNRe) of a homogeneous phantom. Moreover, chirp-coded excitation and short pulse excitation were used to measure the elasticity properties of the phantom. The elastographic qualities of the tissue-mimicking phantom were assessed in terms of Young’s modulus and elastographic contrast-to-noise ratio (CNRe). The results show that the developed ultrasound elasticity imaging system with chirp-coded excitation modulated by a Tukey window can acquire accurate, high-quality elastography images. PMID:28793718

  12. Short- and longtime stability of therapeutic ultrasound reference sources for dosimetry and exposimetry purposes

    NASA Astrophysics Data System (ADS)

    Haller, J.; Wilkens, V.

    2017-03-01

    The objective of this work was to create highly stable therapeutic ultrasound fields with well-known exposimetry and dosimetry parameters that are reproducible and hence predictable with well-known uncertainties. Such well- known and reproducible fields would allow validation and secondary calibrations of different measuring capabilities, which is already a widely accepted strategy for diagnostic fields. For this purpose, a reference setup was established that comprises two therapeutic ultrasound sources (one High-Intensity Therapeutic Ultrasound (HITU) source and one physiotherapy-like source), standard rf electronics for signal creation, and computer-controlled feedback to stabilize the input voltage. The short- and longtime stability of the acoustic output were evaluated - for the former, measurements over typical laboratory measurement time periods (i.e. some seconds or minutes) of the input voltage stability with and without feedback control were performed. For the latter, measurements of typical acoustical exposimetry parameters were performed bimonthly over one year. The measurement results show that the short- and the longtime stability of the reference setup are very good and that it is especially significantly improved in comparison to a setup without any feedback control.

  13. Ultrasound transmission measurements for tensile strength evaluation of tablets.

    PubMed

    Simonaho, Simo-Pekka; Takala, T Aleksi; Kuosmanen, Marko; Ketolainen, Jarkko

    2011-05-16

    Ultrasound transmission measurements were performed to evaluate the tensile strength of tablets. Tablets consisting of one ingredient were compressed from dibasic calcium phosphate dehydrate, two grades of microcrystalline cellulose and two grades of lactose monohydrate powders. From each powder, tablets with five different tensile strengths were directly compressed. Ultrasound transmission measurements were conducted on every tablet at frequencies of 2.25 MHz, 5 MHz and 10 MHz and the speed of sound was calculated from the acquired waveforms. The tensile strength of the tablets was determined using a diametrical mechanical testing machine and compared to the calculated speed of sound values. It was found that the speed of sound increased with the tensile strength for the tested excipients. There was a good correlation between the speed of sound and tensile strength. Moreover, based on the statistical tests, the groups with different tensile strengths can be differentiated from each other by measuring the speed of sound. Thus, the ultrasound transmission measurement technique is a potentially useful method for non-destructive and fast evaluation of the tensile strength of tablets. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Effect of ultrasound on electrochemical chloride extraction from mortar

    NASA Astrophysics Data System (ADS)

    Chen, Yiqun; Yao, Wu; Zuo, Junqing

    2018-03-01

    In this paper, the effect of auxiliary ultrasound on electrochemical chloride extraction (ECE) was studied. The chloride removal efficiency was investigated by examining the chloride content with ultrasound-assisted ECE and changing the introducing time of ultrasound. The experimental results showed that removal of chloride ions was noted to be more effective in ECE treatment assisted with ultrasound treatment (UT). In addition, the lower w/c ratio led to more distinct effect of ultrasonic cavitation on chloride removal. Electrochemical behaviors measured with different treatment revealed that UT treatment was effective on moderating the corrosion condition. Microstructural analyses revealed a significant alteration in composition and morphology of cementitious phases with UT treatment. Pull-out tests indicated that ultrasound had a certain negative impact on the bond strength. Although the effect of introducing ultrasound in the first 2 weeks or the last 2 weeks on the extraction efficiency was not obvious, intermittent ultrasound could not only ensure the chloride extraction efficiency, but also reduce the adverse effect of ultrasound on the bond strength.

  15. Use of ultrasound scanning and body condition score to evaluate composition traits in mature beef cows

    USDA-ARS?s Scientific Manuscript database

    The experiment was designed to validate the use of ultrasound to evaluate body composition in mature beef cows. Both precision and accuracy of measurement were assessed. Cull cows (n = 87) selected for highly variable fatness were used. Two experienced ultrasound technicians scanned and assigned ...

  16. Prospective Controlled Study of Buttock Fat Transfer Using Ultrasound and Photographic Measurements

    PubMed Central

    2016-01-01

    Background: Buttock fat transfer is now the preferred method for gluteal augmentation. However, its efficacy has not been well-documented using measurements. Methods: Twenty-five consecutive patients underwent buttock fat transfer performed by the author. Twenty-one patients returned for measurements ≥3 months after surgery (inclusion rate, 84%). A separate group of 25 patients undergoing cosmetic surgery without buttock fat transfer served as controls. All patients underwent superwet liposuction using total intravenous anesthesia and no prone positioning. A closed filtration system was used to collect the fat. Subcutaneous fat thickness was assessed using ultrasound imaging. Measurements were made on standardized photographs. The data were controlled for change in body mass index. Clinical data were also evaluated. Results: The mean fat volume injected per buttock was 287 mL (range, 70–550 mL). Ultrasound measurements detected a significant increase in the subcutaneous fat thickness (P ≤ 0.001), with mean increments of 0.66 cm for the right buttock and 0.86 cm for the left buttock and no significant change for control patients. The mean calculated fat retention, based on the measured surface area injected, was 66%. Photographic measurements of buttock projection revealed a significant increase in treated patients (P < 0.01) and no significant change in control patients. There were no clinical complications at either recipient or donor sites and no evidence of oily cysts on ultrasound examinations. Conclusions: Photographic and ultrasound measurements, and clinical findings, confirm that buttock fat transfer effectively and safely increases buttock projection. PMID:27579222

  17. Noncontact modal analysis of a pipe organ reed using airborne ultrasound stimulated vibrometry.

    PubMed

    Huber, Thomas M; Fatemi, Mostafa; Kinnick, Randy; Greenleaf, James

    2006-04-01

    The goal of this study was to excite and measure, in a noncontact manner, the vibrational modes of the reed from a reed organ pipe. To perform ultrasound stimulated excitation, the audio-range difference frequency between a pair of ultrasound beams produced a radiation force that induced vibrations. The resulting vibrational deflection shapes were measured with a scanning laser vibrometer. The resonances of any relatively small object can be studied in air using this technique. For a 36 mm x 6 mm brass reed, displacements and velocities in excess of 5 microm and 4 mm/s could be imparted at the fundamental frequency of 145 Hz. Using the same ultrasound transducer, excitation across the entire range of audio frequencies was obtained. Since the beam was focused on the reed, ultrasound stimulated excitation eliminated background effects observed during mechanical shaker excitation, such as vibrations of clamps and supports. The results obtained using single, dual and confocal ultrasound transducers in AM and two-beam modes, along with results obtained using a mechanical shaker and audio excitation using a speaker are discussed.

  18. No effect of prolonged pulsed high frequency ultrasound imaging of the basilar membrane on cochlear function or hair cell survival found in an initial study.

    PubMed

    Landry, Thomas G; Bance, Manohar L; Adamson, Robert B; Brown, Jeremy A

    2018-06-01

    Miniature high frequency ultrasound devices show promise as tools for clinical middle ear and basal cochlea imaging and vibrometry. However, before clinical use it is important to verify that the ultrasound exposure does not damage the cochlea. In this initial study, electrophysiological responses of the cochlea were measured for a range of stimulus frequencies in both ears of anesthetized chinchillas, before and after exposing the organ of Corti region of one ear to pulsed focused ultrasound for 30 min. Measurements were again taken after an 11 day survival period. Cochlear tissue was examined with a confocal microscope for signs of damage to the cochlear hair cells. No significant change in response thresholds due to exposure was found, and no signs of ultrasound-induced tissue damage were observed, although one animal (out of ten) did have a region of extensive tissue damage in the exposed cochlea. However, after further analysis this was concluded to be not likely a result of the ultrasound exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. In Vitro Investigation of the Individual Contributions of Ultrasound-Induced Stable and Inertial Cavitation in Targeted Drug Delivery.

    PubMed

    Gourevich, Dana; Volovick, Alexander; Dogadkin, Osnat; Wang, Lijun; Mulvana, Helen; Medan, Yoav; Melzer, Andreas; Cochran, Sandy

    2015-07-01

    Ultrasound-mediated targeted drug delivery is a therapeutic modality under development with the potential to treat cancer. Its ability to produce local hyperthermia and cell poration through cavitation non-invasively makes it a candidate to trigger drug delivery. Hyperthermia offers greater potential for control, particularly with magnetic resonance imaging temperature measurement. However, cavitation may offer reduced treatment times, with real-time measurement of ultrasonic spectra indicating drug dose and treatment success. Here, a clinical magnetic resonance imaging-guided focused ultrasound surgery system was used to study ultrasound-mediated targeted drug delivery in vitro. Drug uptake into breast cancer cells in the vicinity of ultrasound contrast agent was correlated with occurrence and quantity of stable and inertial cavitation, classified according to subharmonic spectra. During stable cavitation, intracellular drug uptake increased by a factor up to 3.2 compared with the control. Reported here are the value of cavitation monitoring with a clinical system and its subsequent employment for dose optimization. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  20. Consideration on suppression of cancer cell proliferation by ultrasound exposure using sonochemical and biological measurements

    NASA Astrophysics Data System (ADS)

    Watanabe, A.; Nishimura, H.; Kawashima, N.; Takeuchi, S.

    2004-01-01

    The suppression methods of cancer cells proliferation using ultrasound exposure are investigated to develop a new minimally invasive cancer treatment method. A stainless steel vibrating plate with a Langevin type transducer is attached to the bottom of a water tank of the ultrasound exposure system used in this study. Ultrasound was irradiated to cancer cells of mouse T lymphoma (EL-4) in a flask. A decreasing tendency of the number of viable cancer cells exposed to ultrasound of 150 kHz and acoustic intensity ISPTP of 750 mW/cm2 was confirmed in the culturing process. Then, the suppression mechanism of cancer cell proliferation by ultrasound exposure was considered through confirmation of apoptosis and necrosis with the exposed cancer cells by electrophoresis and enzyme activity measurements. It was found that the apoptosis was induced on the cancer cells after ultrasound exposure. We confirmed the generation of hydroxyl radical in water in the water tank by ESR device. When the hydroxyl radicals were scavenged by adding ethanol to the culture medium for cancer cells, the apoptosis was not induced and proliferation was not suppressed. Therefore, we found that generation of activated oxygen in the culturing medium by ultrasound exposure was caused to apoptosis induction and suppression of cancer cell proliferation. We will present the results of above consideration in this conference.

  1. Automatic segmentation of vessels in in-vivo ultrasound scans

    NASA Astrophysics Data System (ADS)

    Tamimi-Sarnikowski, Philip; Brink-Kjær, Andreas; Moshavegh, Ramin; Arendt Jensen, Jørgen

    2017-03-01

    Ultrasound has become highly popular to monitor atherosclerosis, by scanning the carotid artery. The screening involves measuring the thickness of the vessel wall and diameter of the lumen. An automatic segmentation of the vessel lumen, can enable the determination of lumen diameter. This paper presents a fully automatic segmentation algorithm, for robustly segmenting the vessel lumen in longitudinal B-mode ultrasound images. The automatic segmentation is performed using a combination of B-mode and power Doppler images. The proposed algorithm includes a series of preprocessing steps, and performs a vessel segmentation by use of the marker-controlled watershed transform. The ultrasound images used in the study were acquired using the bk3000 ultrasound scanner (BK Ultrasound, Herlev, Denmark) with two transducers "8L2 Linear" and "10L2w Wide Linear" (BK Ultrasound, Herlev, Denmark). The algorithm was evaluated empirically and applied to a dataset of in-vivo 1770 images recorded from 8 healthy subjects. The segmentation results were compared to manual delineation performed by two experienced users. The results showed a sensitivity and specificity of 90.41+/-11.2 % and 97.93+/-5.7% (mean+/-standard deviation), respectively. The amount of overlap of segmentation and manual segmentation, was measured by the Dice similarity coefficient, which was 91.25+/-11.6%. The empirical results demonstrated the feasibility of segmenting the vessel lumen in ultrasound scans using a fully automatic algorithm.

  2. Regional repeatability measures of corneal thickness: Orbscan II and ultrasound.

    PubMed

    Jonuscheit, Sven; Doughty, Michael J

    2007-01-01

    To compare repeatability of the measures of corneal thickness obtained by slit-scanning light method (Orbscan II) with those obtained by an ultrasound pachymeter, with special interest in the peripheral region of the cornea. On 24 normal adults, aged 20 to 58 years (average 36 years) with up to -8.5 DS refractive error, three measures of corneal thickness were taken using Orbscan II and then by ultrasound pachymetry (under topical anesthesia with benoxinate 0.4%). The Orbscan central sample zone of 1 mm was selected, or the numerical maps were used to extract single point data along the horizontal corneal meridian to the nasal and temporal sides out to 4.5 mm. Ultrasound readings were taken from the central cornea and at the periphery just inside the limbus (4.5 mm from center) with a 2.4-mm diameter probe. For a central 1-mm diameter zone, the coefficient of variation (CV) for three consecutive corneal thickness measures was 0.81%+/-0.44%, but was marginally higher (p=0.004), if just the central single point data was taken with Orbscan (0.86%+/-0.45%). Similar repeatability was noted for the numerical output across the temporal side along the horizontal meridian out to 2.5 mm from the center, but farther out to 4 mm and on the nasal side the repeatability was slightly less and around 1.0% (p<0.001). Orbscan point readings of thickness could only sometimes be obtained at 4.5 mm temporally (with a poorer CV of 1.32%) and very rarely at 4.5 mm on the nasal side. No absolute differences in Orbscan repeatability were noted when comparing emmetropic with myopic subjects (p>or=0.5). Ultrasound pachymetry readings across the central zone were repeatable to 0.82%+/-0.67%. When measured with the edge of the ultrasound probe just touching the limbus, the repeatability of ultrasound readings was 1.37%+/-1.10% temporally and 1.49%+/-1.02% nasally, but neither was statistically worse that the most peripheral readings for Orbscan (p>or=0.210). However, it was also noted that the absolute values of corneal thickness, even with the application of the 0.92 acoustic factor, were 0.010 mm greater for Orbscan at the center and 0.040 mm in the corneal periphery. Orbscan II provides the clinician with a repeatable noninvasive method of measuring corneal thickness that is not necessarily any better than ultrasound pachymetry, and should not be considered as interchangeable with that for ultrasound.

  3. Ultrasound Imaging in Teaching Cardiac Physiology

    ERIC Educational Resources Information Center

    Johnson, Christopher D.; Montgomery, Laura E. A.; Quinn, Joe G.; Roe, Sean M.; Stewart, Michael T.; Tansey, Etain A.

    2016-01-01

    This laboratory session provides hands-on experience for students to visualize the beating human heart with ultrasound imaging. Simple views are obtained from which students can directly measure important cardiac dimensions in systole and diastole. This allows students to derive, from first principles, important measures of cardiac function, such…

  4. A multimodal instrument for real-time in situ study of ultrasound and cavitation mediated drug delivery.

    PubMed

    Bian, Shuning; Seth, Anjali; Daly, Dan; Carlisle, Robert; Stride, Eleanor

    2017-03-01

    The development of a multimodal instrument capable of real-time in situ measurements of cavitation activity and effect in tissue mimicking phantoms during ultrasound and cavitation mediated drug delivery experiments is described here. The instrument features an acoustic arm that can expose phantoms to high-intensity focused-ultrasound while measuring cavitation activity and an optical arm that monitors cavitation effect using confocal microscopy. This combination of modalities allows real-time in situ characterisation of drug delivery in tissue and tissue mimicking phantoms during ultrasound and cavitation mediated drug delivery experiments. A representative result, obtained with a tissue mimicking phantom and acoustically activated droplets, is presented here as a demonstration of the instrument's capabilities and potential applications.

  5. Relationship between severity of shoulder subluxation and soft-tissue injury in hemiplegic stroke patients.

    PubMed

    Huang, Shih-Wei; Liu, Sen-Yung; Tang, Hao-Wei; Wei, Ta-Sen; Wang, Wei-Te; Yang, Chao-Pin

    2012-09-01

    The aims of this study were: (i) to determine whether the severity of post-hemiplegic shoulder subluxation in stroke patients correlates with soft-tissue injury; and (ii) to determine the shoulder subluxation measurement cut-off points that are indications for further ultrasound examination for soft-tissue injuries in these patients. Cross-sectional study. A total of 39 stroke patients with shoulder subluxation. Shoulder subluxation was evaluated by physical examination, radiography and ultrasound. Soft-tissue injuries were assessed by ultrasound. Subluxation parameters were entered into stepwise logistic regression analyses to predict biceps and supraspinatus tendonitis. With the assumption that shoulder subluxation can be a predisposing factor for tendonitis, receiver operating characteristic curves for shoulder subluxation parameters of the affected side were used to determine cut-off points for optimal sensitivity and specificity of biceps and supraspinatus tendonitis. Shoulder subluxation lateral distance, measured by physical examination, is a predictor for supraspinatus tendonitis (odds ratio = 34.9, p = 0.036). Further ultrasound investigation for soft-tissue injury is indicated when subluxation lateral distance, measured by physical examination is ≥ 2.25 cm or, measured by radiographic examination, ≥ 3.18 cm for lateral distance, ≥ 3.08 cm for vertical distance, or ≥ 2.65 cm for horizontal distance. When post-hemiplegic shoulder subluxation measurements exceed the above-mentioned cut-off points in physical or radiographic examinations, further ultrasound evaluation for soft-tissue injury is recommended.

  6. A multitechnique evaluation of topical corticosteroid treatment.

    PubMed

    Josse, G; Rouvrais, C; Mas, A; Haftek, M; Delalleau, A; Ferraq, Y; Ossant, F; George, J; Lagarde, J M; Schmitt, A M

    2009-02-01

    Corticosteroids are widely prescribed for systemic or local treatment of inflammatory autoimmune disorders. Long-term therapy is associated with side effects and causes cutaneous atrophy of the epidermis and the dermis. The present study aims to evaluate with several noninvasive techniques, the skin modifications observed during corticosteroids treatment. The potential of skin mechanical measurement and ultrasound radio frequency (RF) signal analysis are proposed as new measures more closely related to the functional impairments. Thirteen young healthy women volunteers had two applications per day on one arm of topical Clobetasol propionate 0.05% for 28 days, and they were followed for 28 days more. Skin modifications were studied by high-frequency ultrasound imaging, ultrasound RF signal analysis, optical coherence tomography and by the suction test. For all the techniques, a statistically significant change is observed with treatment. Large variations, around 30%, are observed for all techniques, but less for ultrasound imaging (10%). Dermis and epidermis thickness presented stable measurements on the nontreated zone. At the end of the study, measures returned to normal. The dynamic is mainly observed within the first 14 days of treatment and within the first 14 days after its cessation. Similar dynamics of skin modification during corticosteroid treatment was observed with very different techniques. Moreover, the potential of RF ultrasound analysis and mechanical skin measurement for characterizing skin structural and functional impairments has been evaluated.

  7. Ultrasound influence on the activation step before electroless coating.

    PubMed

    Touyeras, F; Hihn, J Y; Delalande, S; Viennet, R; Doche, M L

    2003-10-01

    This paper is devoted to the electroless plating of non-conductive substrates under ultrasound at 530 kHz. The ultrasonic irradiation is applied to the activation and to the plating steps. Effects are measured by following the final copper thickness obtained in 1 h of plating time, easily correlated to the average plating rate. It appears that ultrasound has a strong influence on the plating rates enhancement, and assumptions can be made that this increase could be linked to the catalyst cleaning. This is confirmed by XPS measurements.

  8. Ultrasonographic Measures of Volume Responsiveness

    DTIC Science & Technology

    2017-02-01

    variation, focused rapid echocardiographic evaluation , FREE, point-of-care ultrasound, POCUS, cardiac ultrasound 16. SECURITY CLASSIFICATION OF: 17...in small populations of medical patients on standard ventilator setting. There are very few studies directly comparing measures, or evaluating the...function are assessed as part of the FREE. Several predicative measures described below were assessed in the pre-TTE evaluation (Table 1). 4.2.1

  9. Endovascular ultrasound for renal sympathetic denervation in patients with therapy-resistant hypertension not responding to radiofrequency renal sympathetic denervation.

    PubMed

    Stiermaier, Thomas; Okon, Thomas; Fengler, Karl; Mueller, Ulrike; Hoellriegel, Robert; Schuler, Gerhard; Desch, Steffen; Lurz, Philipp

    2016-06-12

    Recent studies have reported a considerable number of non-responders after renal sympathetic de-nervation (RSD) with radiofrequency technology. Here we report our results of repeat RSD using ultrasound in these patients. A cohort study was performed in patients who underwent ultrasound RSD after non-response to RSD with radiofrequency. Non-response was defined as mean daytime systolic blood pressure ≥140 mmHg and/or a reduction of ≤10 mmHg in ambulatory blood pressure measurement (ABPM) ≥6 months after radiofrequency denervation. ABPM was recorded at baseline, post radiofrequency RSD as well as at three and six months post ultrasound RSD. A total of 24 non-responders underwent retreatment with the ultrasound device at a mean 15.3±8.2 months after radiofrequency RSD. Ultrasound RSD was performed successfully in all patients without severe adverse events. Mean daytime systolic blood pressure changed from 161.7±14.6 mmHg at baseline to 158.5±9.5 mmHg post radiofrequency RSD and to 150.5±10.4 mmHg and 151.6±11.0 mmHg at three and six months, respectively, post ultrasound RSD (p<0.01 with repeated measures analysis of variance). The main results of post hoc testing were as follows: baseline versus post radiofrequency RSD, p=0.83; baseline versus three months post ultrasound RSD, p=0.01; and baseline versus six months post ultrasound RSD, p=0.04. Ultrasound RSD appears to be safe and an effective therapeutic approach in patients not responding to previous RSD with radiofrequency technology.

  10. A multimodal image guiding system for Navigated Ultrasound Bronchoscopy (EBUS): A human feasibility study

    PubMed Central

    Hofstad, Erlend Fagertun; Amundsen, Tore; Langø, Thomas; Bakeng, Janne Beate Lervik; Leira, Håkon Olav

    2017-01-01

    Background Endobronchial ultrasound transbronchial needle aspiration (EBUS-TBNA) is the endoscopic method of choice for confirming lung cancer metastasis to mediastinal lymph nodes. Precision is crucial for correct staging and clinical decision-making. Navigation and multimodal imaging can potentially improve EBUS-TBNA efficiency. Aims To demonstrate the feasibility of a multimodal image guiding system using electromagnetic navigation for ultrasound bronchoschopy in humans. Methods Four patients referred for lung cancer diagnosis and staging with EBUS-TBNA were enrolled in the study. Target lymph nodes were predefined from the preoperative computed tomography (CT) images. A prototype convex probe ultrasound bronchoscope with an attached sensor for position tracking was used for EBUS-TBNA. Electromagnetic tracking of the ultrasound bronchoscope and ultrasound images allowed fusion of preoperative CT and intraoperative ultrasound in the navigation software. Navigated EBUS-TBNA was used to guide target lymph node localization and sampling. Navigation system accuracy was calculated, measured by the deviation between lymph node position in ultrasound and CT in three planes. Procedure time, diagnostic yield and adverse events were recorded. Results Preoperative CT and real-time ultrasound images were successfully fused and displayed in the navigation software during the procedures. Overall navigation accuracy (11 measurements) was 10.0 ± 3.8 mm, maximum 17.6 mm, minimum 4.5 mm. An adequate sample was obtained in 6/6 (100%) of targeted lymph nodes. No adverse events were registered. Conclusions Electromagnetic navigated EBUS-TBNA was feasible, safe and easy in this human pilot study. The clinical usefulness was clearly demonstrated. Fusion of real-time ultrasound, preoperative CT and electromagnetic navigational bronchoscopy provided a controlled guiding to level of target, intraoperative overview and procedure documentation. PMID:28182758

  11. Towards Dynamic Contrast Specific Ultrasound Tomography

    NASA Astrophysics Data System (ADS)

    Demi, Libertario; van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2016-10-01

    We report on the first study demonstrating the ability of a recently-developed, contrast-enhanced, ultrasound imaging method, referred to as cumulative phase delay imaging (CPDI), to image and quantify ultrasound contrast agent (UCA) kinetics. Unlike standard ultrasound tomography, which exploits changes in speed of sound and attenuation, CPDI is based on a marker specific to UCAs, thus enabling dynamic contrast-specific ultrasound tomography (DCS-UST). For breast imaging, DCS-UST will lead to a more practical, faster, and less operator-dependent imaging procedure compared to standard echo-contrast, while preserving accurate imaging of contrast kinetics. Moreover, a linear relation between CPD values and ultrasound second-harmonic intensity was measured (coefficient of determination = 0.87). DCS-UST can find clinical applications as a diagnostic method for breast cancer localization, adding important features to multi-parametric ultrasound tomography of the breast.

  12. Towards Dynamic Contrast Specific Ultrasound Tomography.

    PubMed

    Demi, Libertario; Van Sloun, Ruud J G; Wijkstra, Hessel; Mischi, Massimo

    2016-10-05

    We report on the first study demonstrating the ability of a recently-developed, contrast-enhanced, ultrasound imaging method, referred to as cumulative phase delay imaging (CPDI), to image and quantify ultrasound contrast agent (UCA) kinetics. Unlike standard ultrasound tomography, which exploits changes in speed of sound and attenuation, CPDI is based on a marker specific to UCAs, thus enabling dynamic contrast-specific ultrasound tomography (DCS-UST). For breast imaging, DCS-UST will lead to a more practical, faster, and less operator-dependent imaging procedure compared to standard echo-contrast, while preserving accurate imaging of contrast kinetics. Moreover, a linear relation between CPD values and ultrasound second-harmonic intensity was measured (coefficient of determination = 0.87). DCS-UST can find clinical applications as a diagnostic method for breast cancer localization, adding important features to multi-parametric ultrasound tomography of the breast.

  13. Towards Dynamic Contrast Specific Ultrasound Tomography

    PubMed Central

    Demi, Libertario; Van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2016-01-01

    We report on the first study demonstrating the ability of a recently-developed, contrast-enhanced, ultrasound imaging method, referred to as cumulative phase delay imaging (CPDI), to image and quantify ultrasound contrast agent (UCA) kinetics. Unlike standard ultrasound tomography, which exploits changes in speed of sound and attenuation, CPDI is based on a marker specific to UCAs, thus enabling dynamic contrast-specific ultrasound tomography (DCS-UST). For breast imaging, DCS-UST will lead to a more practical, faster, and less operator-dependent imaging procedure compared to standard echo-contrast, while preserving accurate imaging of contrast kinetics. Moreover, a linear relation between CPD values and ultrasound second-harmonic intensity was measured (coefficient of determination = 0.87). DCS-UST can find clinical applications as a diagnostic method for breast cancer localization, adding important features to multi-parametric ultrasound tomography of the breast. PMID:27703251

  14. Correlation transfer and diffusion of ultrasound-modulated multiply scattered light.

    PubMed

    Sakadzić, Sava; Wang, Lihong V

    2006-04-28

    We develop a temporal correlation transfer equation (CTE) and a temporal correlation diffusion equation (CDE) for ultrasound-modulated multiply scattered light. These equations can be applied to an optically scattering medium with embedded optically scattering and absorbing objects to calculate the power spectrum of light modulated by a nonuniform ultrasound field. We present an analytical solution based on the CDE and Monte Carlo simulation results for light modulated by a cylinder of ultrasound in an optically scattering slab. We further validate with experimental measurements the numerical calculations for an actual ultrasound field. The CTE and CDE are valid for moderate ultrasound pressures and on a length scale comparable with the optical transport mean-free path. These equations should be applicable to a wide spectrum of conditions for ultrasound-modulated optical tomography of soft biological tissues.

  15. A Multidimensional Investigation of Children's /r/ Productions: Perceptual, Ultrasound, and Acoustic Measures

    ERIC Educational Resources Information Center

    Klein, Harriet B.; McAllister Byun, Tara; Davidson, Lisa; Grigos, Maria I.

    2013-01-01

    Purpose: This study explored relationships among perceptual, ultrasound, and acoustic measurements of children's correct and misarticulated /r/ sounds. Longitudinal data documenting changes across these parameters were collected from 2 children who acquired /r/ over a period of intervention and were compared with data from children with typical…

  16. Ultrasound determination of rotator cuff tear repairability

    PubMed Central

    Tse, Andrew K; Lam, Patrick H; Walton, Judie R; Hackett, Lisa

    2015-01-01

    Background Rotator cuff repair aims to reattach the torn tendon to the greater tuberosity footprint with suture anchors. The present study aimed to assess the diagnostic accuracy of ultrasound in predicting rotator cuff tear repairability and to assess which sonographic and pre-operative features are strongest in predicting repairability. Methods The study was a retrospective analysis of measurements made prospectively in a cohort of 373 patients who had ultrasounds of their shoulder and underwent rotator cuff repair. Measurements of rotator cuff tear size and muscle atrophy were made pre-operatively by ultrasound to enable prediction of rotator cuff repairability. Tears were classified following ultrasound as repairable or irreparable, and were correlated with intra-operative repairability. Results Ultrasound assessment of rotator cuff tear repairability has a sensitivity of 86% (p < 0.0001) and a specificity of 67% (p < 0.0001). The strongest predictors of rotator cuff repairability were tear size (p < 0.001) and age (p = 0.004). Sonographic assessments of tear size ≥4 cm2 or anteroposterior tear length ≥25 mm indicated an irreparable rotator cuff tear. Conclusions Ultrasound assessment is accurate in predicting rotator cuff tear repairability. Tear size or anteroposterior tear length and age were the best predictors of repairability. PMID:27582996

  17. Ultrasonic wave propagation in trabecular bone predicted by the stratified model

    NASA Technical Reports Server (NTRS)

    Lin, W.; Qin, Y. X.; Rubin, C.

    2001-01-01

    The objective of this study was to investigate ultrasound propagation in trabecular bone by considering the wave reflection and transmission in a multilayered medium. The use of ultrasound to identify those at risk of osteoporosis is a promising diagnostic method providing a measure of bone mineral density (BMD). A stratified model was proposed to study the effect of transmission and reflection of ultrasound wave within the trabecular architecture on the relationship between ultrasound and BMD. The results demonstrated that ultrasound velocity in trabecular bone was highly correlated with the bone apparent density (r=0.97). Moreover, a consistent pattern of the frequency dependence of ultrasound attenuation coefficient has been observed between simulation using this model and experimental measurement of trabecular bone. The normalized broadband ultrasound attenuation (nBUA) derived from the simulation results revealed that nBUA was nonlinear with respect to trabecular porosity and BMD. The curve of the relationship between nBUA and BMD was parabolic in shape, and the peak magnitude of nBUA was observed at approximately 60% of bone porosity. These results agreed with the published experimental data and demonstrated that according to the stratified model, reflection and transmission were important factors in the ultrasonic propagation through the trabecular bone.

  18. Ultrasound during mid-gestation: Agreement with physical foetal and placental measurements and use in predicting gestational age in sheep.

    PubMed

    Jones, A K; Gately, R E; McFadden, K K; Hoffman, M L; Pillai, S M; Zinn, S A; Govoni, K E; Reed, S A

    2017-08-01

    To determine the effects of poor maternal nutrition and litter size on foetal growth during mid-gestation, pregnant ewes (n = 82) were fed 100%, 60% or 140% of NRC TDN beginning at day 30.2 ± 0.2 of gestation. Transabdominal ultrasound was performed weekly between day 46.0 ± 0.4 and 86.0 ± 0.7 to monitor foetal heart width (HW), umbilical diameter (UMB), rib width (RW) and placentome outer (OD) and inner diameter (ID). Data were analysed with repeated-measures using the mixed procedure for effects of maternal diet, litter size and gestation, and equations predictive of gestational age were generated using the regression procedure. To determine the agreement of ultrasound measurement and actual size, ewes (n = 20-21) were euthanized at day 45 or 90 to obtain corresponding postmortem measurements for Bland-Altman analysis. The HW, UMB and placentome OD and ID increased with gestation (p < .0001) but were unaffected by maternal diet or litter size (p ≥ .12). Ultrasound underestimated postmortem measurements of HW (14.8%), UMB (7.3%), placentome OD (4.5%) and ID (37.3%) at day 90 of gestation. Ultrasound underestimated RW at day 45 (7.7%) but overestimated RW (23.8%) at day 90, indicating inconsistent bias when reporting RW by ultrasound. Combining the HW, UMB, RW and placentome OD generated the strongest equation predictive of gestational age (R 2  = .91). These findings indicate that during mid-gestation, maternal diet or litter size did not affect HW, UMB or placentome diameters and these factors can be used to estimate gestational age. © 2017 Blackwell Verlag GmbH.

  19. Biometric measurements in highly myopic eyes.

    PubMed

    Shen, Peiyang; Zheng, Yingfeng; Ding, Xiaohu; Liu, Bin; Congdon, Nathan; Morgan, Ian; He, Mingguang

    2013-02-01

    To assess the repeatability and accuracy of optical biometry (Lenstar LS900 optical low-coherence reflectometry [OLCR] and IOLMaster partial coherence interferometry [PCI]) and applanation ultrasound biometry in highly myopic eyes. Division of Preventive Ophthalmology, Zhongshan Ophthalmic Center, Guangzhou, China. Comparative evaluation of diagnostic technology. Biometric measurements were taken in highly myopic subjects with a spherical equivalent (SE) of -6.00 diopters (D) or higher and an axial length (AL) longer than 25.0 mm. Measurements of AL and anterior chamber depth (ACD) obtained by OLCR were compared with those obtained by PCI and applanation A-scan ultrasound. Right eyes were analyzed. Repeatability was evaluated using the coefficient of variation (CoV) and agreement, using Bland-Altman analyses. The mean SE was -11.20 D ± 4.65 (SD). The CoVs for repeated AL measurements using OLCR, PCI, and applanation ultrasound were 0.06%, 0.07%, and 0.20%, respectively. The limits of agreement (LoA) for AL were 0.11 mm between OLCR and PCI, 1.01 mm between OLCR and applanation ultrasound, and 1.03 mm between PCI and ultrasound. The ACD values were 0.29 mm, 0.53 mm, and 0.51 mm, respectively. These repeatability and agreement results were comparable in eyes with extreme myopia (AL ≥ 27.0 mm) or posterior staphyloma. The mean radius of corneal curvature was similar between OLCR and PCI (7.66 ± 0.24 mm versus 7.64 ± 0.25 mm), with an LoA of 0.12 mm. Optical biometry provided more repeatable and precise measurements of biometric parameters, including AL and ACD, than applanation ultrasound biometry in highly myopic eyes. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  20. Feasibility of A-mode ultrasound attenuation as a monitoring method of local hyperthermia treatment.

    PubMed

    Manaf, Noraida Abd; Aziz, Maizatul Nadwa Che; Ridzuan, Dzulfadhli Saffuan; Mohamad Salim, Maheza Irna; Wahab, Asnida Abd; Lai, Khin Wee; Hum, Yan Chai

    2016-06-01

    Recently, there is an increasing interest in the use of local hyperthermia treatment for a variety of clinical applications. The desired therapeutic outcome in local hyperthermia treatment is achieved by raising the local temperature to surpass the tissue coagulation threshold, resulting in tissue necrosis. In oncology, local hyperthermia is used as an effective way to destroy cancerous tissues and is said to have the potential to replace conventional treatment regime like surgery, chemotherapy or radiotherapy. However, the inability to closely monitor temperature elevations from hyperthermia treatment in real time with high accuracy continues to limit its clinical applicability. Local hyperthermia treatment requires real-time monitoring system to observe the progression of the destroyed tissue during and after the treatment. Ultrasound is one of the modalities that have great potential for local hyperthermia monitoring, as it is non-ionizing, convenient and has relatively simple signal processing requirement compared to magnetic resonance imaging and computed tomography. In a two-dimensional ultrasound imaging system, changes in tissue microstructure during local hyperthermia treatment are observed in terms of pixel value analysis extracted from the ultrasound image itself. Although 2D ultrasound has shown to be the most widely used system for monitoring hyperthermia in ultrasound imaging family, 1D ultrasound on the other hand could offer a real-time monitoring and the method enables quantitative measurement to be conducted faster and with simpler measurement instrument. Therefore, this paper proposes a new local hyperthermia monitoring method that is based on one-dimensional ultrasound. Specifically, the study investigates the effect of ultrasound attenuation in normal and pathological breast tissue when the temperature in tissue is varied between 37 and 65 °C during local hyperthermia treatment. Besides that, the total protein content measurement was also conducted to investigate the relationship between attenuation and tissue denaturation level at different temperature ranges. The tissues were grouped according to their histology results, namely normal tissue with large predominance of cells (NPC), cancer tissue with large predominance of cells (CPC) and cancer with high collagen fiber content (CHF). The result shows that the attenuation coefficient of ultrasound measured following the local hyperthermia treatment increases with the increment of collagen fiber content in tissue as the CHF attenuated ultrasound at the highest rate, followed by NPC and CPC. Additionally, the attenuation increment is more pronounced at the temperature over 55 °C. This describes that the ultrasound wave experienced more energy loss when it propagates through a heated tissue as the tissue structure changes due to protein coagulation effect. Additionally, a significant increase in the sensitivity of attenuation to protein denaturation is also observed with the highest sensitivity obtained in monitoring NPC. Overall, it is concluded that one-dimensional ultrasound can be used as a monitoring method of local hyperthermia since its attenuation is very sensitive to the changes in tissue microstructure during hyperthermia.

  1. Association between breed composition, phenotypic residual feed intake, temperament, ELISA scores for paratuberculosis, and ultrasound carcass traits in an Angus-Brahman multibreed herd.

    USDA-ARS?s Scientific Manuscript database

    Ultrasound carcass measurements are an important tool for preliminary assessment of carcass worth in beef cattle. Breed composition, phenotypic residual feed intake (RFI), temperament, and subclinical paratuberculosis in dams may affect calf ultrasound traits. The objective was to evaluate the assoc...

  2. Ultrasound of the small joints of the hands and feet: current status

    PubMed Central

    2007-01-01

    The aim of this article was to review the current status of ultrasound imaging of patients with rheumatological disorders of the hands and feet. Ultrasound machines with high-resolution surface probes are readily available in most radiology departments and can be used to address important clinical questions posed by the rheumatologist and sports and rehabilitation physician. There is increasing evidence that ultrasound detects synovitis that is silent to clinical examination. Detection and classification of synovitis and the early detection of bone erosions are important in clinical decision making. Ultrasound has many advantages over other imaging techniques with which it is compared, particularly magnetic resonance. The ability to carry out a rapid assessment of many widely spaced joints, coupled with clinical correlation, the ability to move and stress musculoskeletal structures and the use of ultrasound to guide therapy accurately are principal amongst these. The use of colour flow Doppler studies provides a measure of neovascularisation within the synovial lining of joints and tendons, and within tendons themselves, that is not available with other imaging techniques. Disadvantages compared to MRI include small field of view, poor image presentation, and difficulty in demonstrating cartilage and deep joints in their entirety. Contrast-enhanced magnetic resonance provides a better measure of capillary permeability and extracellular fluid than does ultrasound. The ability to image simultaneously multiple small joints in the hands and feet and their enhancement characteristics cannot be matched with ultrasound, though future developments in 3-D ultrasound may narrow this gap. Magnetic resonance provides a more uniform and reproducible image for long-term follow-up studies. PMID:17712556

  3. FloWave.US: validated, open-source, and flexible software for ultrasound blood flow analysis.

    PubMed

    Coolbaugh, Crystal L; Bush, Emily C; Caskey, Charles F; Damon, Bruce M; Towse, Theodore F

    2016-10-01

    Automated software improves the accuracy and reliability of blood velocity, vessel diameter, blood flow, and shear rate ultrasound measurements, but existing software offers limited flexibility to customize and validate analyses. We developed FloWave.US-open-source software to automate ultrasound blood flow analysis-and demonstrated the validity of its blood velocity (aggregate relative error, 4.32%) and vessel diameter (0.31%) measures with a skeletal muscle ultrasound flow phantom. Compared with a commercial, manual analysis software program, FloWave.US produced equivalent in vivo cardiac cycle time-averaged mean (TAMean) velocities at rest and following a 10-s muscle contraction (mean bias <1 pixel for both conditions). Automated analysis of ultrasound blood flow data was 9.8 times faster than the manual method. Finally, a case study of a lower extremity muscle contraction experiment highlighted the ability of FloWave.US to measure small fluctuations in TAMean velocity, vessel diameter, and mean blood flow at specific time points in the cardiac cycle. In summary, the collective features of our newly designed software-accuracy, reliability, reduced processing time, cost-effectiveness, and flexibility-offer advantages over existing proprietary options. Further, public distribution of FloWave.US allows researchers to easily access and customize code to adapt ultrasound blood flow analysis to a variety of vascular physiology applications. Copyright © 2016 the American Physiological Society.

  4. Cumulative phase delay imaging - A new contrast enhanced ultrasound modality

    NASA Astrophysics Data System (ADS)

    Demi, Libertario; van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2015-10-01

    Recently, a new acoustic marker for ultrasound contrast agents (UCAs) has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental pressure wave field components is in fact observable for ultrasound propagating through UCAs. This phenomenon is absent in the case of tissue nonlinearity and is dependent on insonating pressure and frequency, UCA concentration, and propagation path length through UCAs. In this paper, ultrasound images based on this marker are presented. The ULA-OP research platform, in combination with a LA332 linear array probe (Esaote, Firenze Italy), were used to image a gelatin phantom containing a PVC plate (used as a reflector) and a cylindrical cavity measuring 7 mm in diameter (placed in between the observation point and the PVC plate). The cavity contained a 240 µL/L SonoVueO® UCA concentration. Two insonating frequencies (3 MHz and 2.5 MHz) were used to scan the gelatine phantom. A mechanical index MI = 0.07, measured in water at the cavity location with a HGL-0400 hydrophone (Onda, Sunnyvale, CA), was utilized. Processing the ultrasound signals backscattered from the plate, ultrasound images were generated in a tomographic fashion using the filtered back-projection method. As already observed in previous studies, significantly higher CPD values are measured when imaging at a frequency of 2.5 MHz, as compared to imaging at 3 MHz. In conclusion, these results confirm the applicability of the discussed CPD as a marker for contrast imaging. Comparison with standard contrast-enhanced ultrasound imaging modalities will be the focus of future work.

  5. System and method for improving ultrasound image acquisition and replication for repeatable measurements of vascular structures

    NASA Technical Reports Server (NTRS)

    Selzer, Robert H. (Inventor); Hodis, Howard N. (Inventor)

    2006-01-01

    High resolution B-mode ultrasound images of the common carotid artery are obtained with an ultrasound transducer using a standardized methodology. Subjects are supine with the head counter-rotated 45 degrees using a head pillow. The jugular vein and carotid artery are located and positioned in a vertical stacked orientation. The transducer is rotated 90 degrees around the centerline of the transverse image of the stacked structure to obtain a longitudinal image while maintaining the vessels in a stacked position. A computerized methodology assists operators to accurately replicate images obtained over several spaced-apart examinations. The methodology utilizes a split-screen display in which the arterial ultrasound image from an earlier examination is displayed on one side of the screen while a real-time live ultrasound image from a current examination is displayed next to the earlier image on the opposite side of the screen. By viewing both images, whether simultaneously or alternately, while manually adjusting the ultrasound transducer, an operator is able to bring into view the real-time image that best matches a selected image from the earlier ultrasound examination. Utilizing this methodology, measurement of vascular dimensions such as carotid arterial IMT and diameter, the coefficient of variation is substantially reduced to values approximating from about 1.0% to about 1.25%. All images contain anatomical landmarks for reproducing probe angulation, including visualization of the carotid bulb, stacking of the jugular vein above the carotid artery, and initial instrumentation settings, used at a baseline measurement are maintained during all follow-up examinations.

  6. Agreement and reliability of pelvic floor measurements during rest and on maximum Valsalva maneuver using three-dimensional translabial ultrasound and virtual reality imaging.

    PubMed

    Speksnijder, L; Oom, D M J; Koning, A H J; Biesmeijer, C S; Steegers, E A P; Steensma, A B

    2016-08-01

    Imaging of the levator ani hiatus provides valuable information for the diagnosis and follow-up of patients with pelvic organ prolapse (POP). This study compared measurements of levator ani hiatal volume during rest and on maximum Valsalva, obtained using conventional three-dimensional (3D) translabial ultrasound and virtual reality imaging. Our objectives were to establish their agreement and reliability, and their relationship with prolapse symptoms and POP quantification (POP-Q) stage. One hundred women with an intact levator ani were selected from our tertiary clinic database. Information on clinical symptoms were obtained using standardized questionnaires. Ultrasound datasets were analyzed using a rendered volume with a slice thickness of 1.5 cm, at the level of minimal hiatal dimensions, during rest and on maximum Valsalva. The levator area (in cm(2) ) was measured and multiplied by 1.5 to obtain the levator ani hiatal volume (in cm(3) ) on conventional 3D ultrasound. Levator ani hiatal volume (in cm(3) ) was measured semi-automatically by virtual reality imaging using a segmentation algorithm. Twenty patients were chosen randomly to analyze intra- and interobserver agreement. The mean difference between levator hiatal volume measurements on 3D ultrasound and by virtual reality was 1.52 cm(3) (95% CI, 1.00-2.04 cm(3) ) at rest and 1.16 cm(3) (95% CI, 0.56-1.76 cm(3) ) during maximum Valsalva (P < 0.001). Both intra- and interobserver intraclass correlation coefficients were ≥ 0.96 for conventional 3D ultrasound and > 0.99 for virtual reality. Patients with prolapse symptoms or POP-Q Stage ≥ 2 had significantly larger hiatal measurements than those without symptoms or POP-Q Stage < 2. Levator ani hiatal volume at rest and on maximum Valsalva is significantly smaller when using virtual reality compared with conventional 3D ultrasound; however, this difference does not seem clinically important. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.

  7. Randomized, controlled trial of biofeedback with anal manometry, transanal ultrasound, or pelvic floor retraining with digital guidance alone in the treatment of mild to moderate fecal incontinence.

    PubMed

    Solomon, Michael J; Pager, Chet K; Rex, Jenny; Roberts, Rachael; Manning, Jane

    2003-06-01

    A prospective, three-armed, randomized, controlled trial was performed to assess whether pelvic floor exercises with biofeedback using anal manometry or transanal ultrasound are superior to pelvic floor exercises with feedback from digital examination alone in terms of continence, quality of life, physiologic sphincter strength, and compliance. Its secondary objectives were to assess whether there are any differences in these outcomes between biofeedback with transanal ultrasound vs. anal manometry and to correlate the physiologic measures with clinical outcome. One hundred twenty patients with mild to moderate fecal incontinence were randomized into one of three treatment groups: biofeedback with anal manometry, biofeedback with transanal ultrasound, or pelvic floor exercises with feedback from digital examination alone. Commencing one week after an initial 45-minute assessment session, patients attended monthly treatments for a total of five sessions. Each session lasted 30 minutes and involved sphincter exercises with biofeedback that involved instrumentation or digital examination alone, and patients were encouraged to perform identical exercises twice per day between outpatient visits. One hundred two patients (85 percent) completed the four-month treatment program. Across all treatment allocations, patients experienced modest but highly significant improvements in all nine outcome measures during treatment, with 70 percent of all patients perceiving improvement in symptom severity and 69 percent of patients reporting improved quality of life. With the possible exception of isotonic fatigue time, there were no significant differences between the three treatment groups in compliance, physiologic sphincter strength, and clinical or quality-of-life measures. Correlations between physiologic measures and clinical outcomes were much stronger with ultrasound-based measures than with manometry. Although patients in this study who completed pelvic floor exercises with feedback from digital examination achieved no additional benefit from biofeedback and measurement with transanal ultrasound or manometry, it may be that the guidance received through digital examination alone offered patients in the pelvic floor exercise group an effective biofeedback mechanism. Contrary to our hypothesis, the use of transanal ultrasound offered no benefit over manometry, but the use of ultrasound for isotonic fatigue time and isometric fatigue contractions provided potentially important physiologic measures that require further study. This study has confirmed, through a large sample of patients, that pelvic floor retraining programs are an effective treatment for improving physiologic, clinical, and quality-of-life parameters in the short term.

  8. Automatic segmentation and classification of gestational sac based on mean sac diameter using medical ultrasound image

    NASA Astrophysics Data System (ADS)

    Khazendar, Shan; Farren, Jessica; Al-Assam, Hisham; Sayasneh, Ahmed; Du, Hongbo; Bourne, Tom; Jassim, Sabah A.

    2014-05-01

    Ultrasound is an effective multipurpose imaging modality that has been widely used for monitoring and diagnosing early pregnancy events. Technology developments coupled with wide public acceptance has made ultrasound an ideal tool for better understanding and diagnosing of early pregnancy. The first measurable signs of an early pregnancy are the geometric characteristics of the Gestational Sac (GS). Currently, the size of the GS is manually estimated from ultrasound images. The manual measurement involves multiple subjective decisions, in which dimensions are taken in three planes to establish what is known as Mean Sac Diameter (MSD). The manual measurement results in inter- and intra-observer variations, which may lead to difficulties in diagnosis. This paper proposes a fully automated diagnosis solution to accurately identify miscarriage cases in the first trimester of pregnancy based on automatic quantification of the MSD. Our study shows a strong positive correlation between the manual and the automatic MSD estimations. Our experimental results based on a dataset of 68 ultrasound images illustrate the effectiveness of the proposed scheme in identifying early miscarriage cases with classification accuracies comparable with those of domain experts using K nearest neighbor classifier on automatically estimated MSDs.

  9. The Role of Acoustic Cavitation in Ultrasound-triggered Drug Release from Echogenic Liposomes

    NASA Astrophysics Data System (ADS)

    Kopechek, Jonathan A.

    Cardiovascular disease (CVD) is the leading cause of death in the United States and globally. CVD-related mortality, including coronary heart disease, heart failure, or stroke, generally occurs due to atherosclerosis, a condition in which plaques build up within arterial walls, potentially causing blockage or rupture. Targeted therapies are needed to achieve more effective treatments. Echogenic liposomes (ELIP), which consist of a lipid membrane surrounding an aqueous core, have been developed to encapsulate a therapeutic agent and/or gas bubbles for targeted delivery and ultrasound image enhancement. Under certain conditions ultrasound can cause nonlinear bubble growth and collapse, known as "cavitation." Cavitation activity has been associated with enhanced drug delivery across cellular membranes. However, the mechanisms of ultrasound-mediated drug release from ELIP have not been previously investigated. Thus, the objective of this dissertation is to elucidate the role of acoustic cavitation in ultrasound-mediated drug release from ELIP. To determine the acoustic and physical properties of ELIP, the frequency-dependent attenuation and backscatter coefficients were measured between 3 and 30 MHz. The results were compared to a theoretical model by measuring the ELIP size distribution in order to determine properties of the lipid membrane. It was found that ELIP have a broad size distribution and can provide enhanced ultrasound image contrast across a broad range of clinically-relevant frequencies. Calcein, a hydrophilic fluorescent dye, and papaverine, a lipophilic vasodilator, were separately encapsulated in ELIP and exposed to color Doppler ultrasound pulses from a clinical diagnostic ultrasound scanner in a flow system. Spectrophotometric techniques (fluorescence and absorbance measurements) were used to detect calcein or papaverine release. As a positive control, Triton X-100 (a non-ionic detergent) was added to ELIP samples not exposed to ultrasound in order to release encapsulated agents completely. Also, sham samples without Triton X-100 or ultrasound exposure were used as negative controls. Color Doppler ultrasound did not release encapsulated calcein or papaverine from ELIP even though there was a complete loss of echogenicity. In subsequent experiments, calcein and rosiglitazone, a hydrophobic anti-diabetic drug, were separately encapsulated in ELIP and exposed to pulsed Doppler ultrasound in a flow system while monitoring cavitation. Samples were exposed to ultrasound pressures above and below cavitation thresholds. In addition, Triton X-100 was used for positive control samples and sham samples were also tested without ultrasound exposure. Adding Triton X-100 resulted in complete release of encapsulated calcein or rosiglitzone. However, Doppler ultrasound exposure did not induce calcein or rosiglitazone release from ELIP in the flow system even when there was persistent cavitation activity and a loss of echogenicity. The results of this dissertation indicate that cavitation of encapsulated bubbles in ELIP solutions is not sufficient to induce drug release. It is possible that ultrasoundmediated thermal processes may have a stronger effect on ELIP permeability than cavitation activity. Perhaps ultrasound-triggered drug release will be possible by improving the ELIP formulation or encapsulating a different gas instead of air. However, cavitation is not a reliable indicator of ultrasound-mediated drug release with the ELIP formulations used in this dissertation.

  10. Effects of ultrasound implementation on physical examination learning and teaching during the first year of medical education.

    PubMed

    Dinh, Vi Am; Frederick, Jon; Bartos, Rebekah; Shankel, Tamara M; Werner, Leonard

    2015-01-01

    Increasing emphasis has been placed on point-of-care ultrasound in medical school. The overall effects of ultrasound curriculum implementation on the traditional physical examination skills of medical students are still unknown. We studied the effects on the Objective Standardized Clinical Examination (OSCE) scores of year 1 medical students before and after ultrasound curriculum implementation. An ultrasound curriculum was incorporated into the physical diagnosis course for year 1 medical students in the 2012-2013 academic year. We performed a prospective observational study comparing traditional OSCE scores of year 1 medical students exposed to the ultrasound curriculum (post-ultrasound) versus historic year 1 medical student controls (pre-ultrasound) with no ultrasound exposure. Questionnaire data were also obtained from year 1 medical students and physical diagnosis faculty to assess attitudes toward ultrasound implementation. The final overall OSCE scores were graded with a 5-point Likert-type scale from unsatisfactory to outstanding. There was a significant increase in outstanding scores in the post-ultrasound compared to the pre-ultrasound group (27.0% versus 10.9%; P< .001). The post-ultrasound group had significantly (P< .05) increased first-time pass rates on blood pressure measurements, the abdominal examination, and professionalism. Student and physical diagnosis faculty questionnaire data showed an overall positive response, with most agreeing or strongly agreeing that ultrasound should be included in the future year 1 medical student curriculum. Ultrasound implementation into a physical diagnosis curriculum for year 1 medical students is feasible and may improve their overall traditional physical examination skills. © 2015 by the American Institute of Ultrasound in Medicine.

  11. Elasticity mapping of tissue mimicking phantoms by remote palpation with a focused ultrasound beam and intensity autocorrelation measurements

    NASA Astrophysics Data System (ADS)

    Usha Devi, C.; Bharat Chandran, R. S.; Vasu, R. M.; Sood, A. K.

    2007-05-01

    We use a focused ultrasound beam to load a region of interest (ROI) in a tissue-mimicking phantom and read out the vibration amplitude of phantom particles from the modulation depth in the intensity autocorrelation of a coherent light beam that intercepted the ROI. The modulation depth, which is also affected by the local light absorption coefficient, which is employed in ultrasound assisted optical tomography, to read out absorption coefficient is greatly influenced by the vibration amplitude, depends to a great extend on local elasticity. We scan a plane in an elastography phantom with an inhomogeneous inclusion, in elasticity with the focused ultrasound and from the measured modulation depth variation create a qualitative map of the elasticity variation in the interrogated plane.

  12. Nucleation kinetics from metastable zone widths for sonocrystallization of l-phenylalanine.

    PubMed

    Hazi Mastan, T; Lenka, Maheswata; Sarkar, Debasis

    2017-05-01

    This study investigates the effect of ultrasound on metastable zone width (MSZW) during crystallization of l-phenylalanine from aqueous solution. The solubility of l-phenylalanine in water was measured gravimetrically in the temperature range of 293.15-333.15K. The MSZW was measured by conventional polythermal method for four different cooling rates at five different saturation temperatures in absence and presence of ultrasound. The MSZW increased with increase in cooling rates and decreased with increase in saturation temperature. The application of ultrasound considerably reduced the MSZW for all the experiments. The obtained MSZW data are analysed using four different approaches to calculate various nucleation parameters. In presence of ultrasound, the apparent nucleation order decreased and nucleation rate constant increased significantly. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Estimation of Measurement Characteristics of Ultrasound Fetal Heart Rate Monitor

    NASA Astrophysics Data System (ADS)

    Noguchi, Yasuaki; Mamune, Hideyuki; Sugimoto, Suguru; Yoshida, Atsushi; Sasa, Hidenori; Kobayashi, Hisaaki; Kobayashi, Mitsunao

    1995-05-01

    Ultrasound fetal heart rate monitoring is very useful to determine the status of the fetus because it is noninvasive. In order to ensure the accuracy of the fetal heart rate (FHR) obtained from the ultrasound Doppler data, we measure the fetal electrocardiogram (ECG) directly and obtain the Doppler data simultaneously. The FHR differences of the Doppler data from the direct ECG data are concentrated at 0 bpm (beats per minute), and are practically symmetrical. The distribution is found to be very close to the Student's t distribution by the test of goodness of fit with the chi-square test. The spectral density of the FHR differences shows the white noise spectrum without any dominant peaks. Furthermore, the f-n (n>1) fluctuation is observed both with the ultrasound Doppler FHR and with the direct ECG FHR. Thus, it is confirmed that the FHR observation and observation of the f-n (n>1) fluctuation using the ultrasound Doppler FHR are as useful as the direct ECG.

  14. Use of ultrasound in the evaluation of trophoblastic disease and its response to therapy. [Comparison with HCG radioimmunoassay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Requard, C.K.; Mettler, F.A. Jr.

    1980-05-01

    Thirty-nine patients with trophoblastic disease were studied to determine the usefulness of ultrasound in identifying risk patterns and response to therapy. Serial measurements of serum human chorionic gonadotropin-beta subunit (HCG-BSU) were compared with ultrasonographic uterine and theca lutein cyst volumes. In 16 patients ultrasound demonstrated theca lutein cysts, many of which were not palpable on physical examination. Although there was a significant decrease in uterine volume and a change in the sonographic pattern following evacuation, volume slowly returned to normal over a period of several months. Persistent trophoblastic disease was more accurately detected by HCG-BSU measurements than by ultrasound. Persistentmore » disease developed in 44% of those patients who had theca lutein cysts and in 22% of those without cysts. Patients with theca lutein cysts did not consistently have higher HCG-BSU levels than patients without cysts, and it is concluded that ultrasound is the best method for detecting these cysts.« less

  15. Comparison Between Neck and Shoulder Stiffness Determined by Shear Wave Ultrasound Elastography and a Muscle Hardness Meter.

    PubMed

    Akagi, Ryota; Kusama, Saki

    2015-08-01

    The goals of this study were to compare neck and shoulder stiffness values determined by shear wave ultrasound elastography with those obtained with a muscle hardness meter and to verify the correspondence between objective and subjective stiffness in the neck and shoulder. Twenty-four young men and women participated in the study. Their neck and shoulder stiffness was determined at six sites. Before the start of the measurements, patients rated their present subjective symptoms of neck and shoulder stiffness on a 6-point verbal scale. At all measurement sites, the correlation coefficients between the values of muscle hardness indices determined by the muscle hardness meter and shear wave ultrasound elastography were not significant. Furthermore, individuals' subjective neck and shoulder stiffness did not correspond to their objective symptoms. These results suggest that the use of shear wave ultrasound elastography is essential to more precisely assess neck and shoulder stiffness. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  16. Focusing of ferroelectret air-coupled ultrasound transducers

    NASA Astrophysics Data System (ADS)

    Gaal, Mate; Bartusch, Jürgen; Dohse, Elmar; Schadow, Florian; Köppe, Enrico

    2016-02-01

    Air-coupled ultrasound has been applied increasingly as a non-destructive testing method for lightweight construction in recent years. It is particularly appropriate for composite materials being used in automotive and aviation industry. Air-coupled ultrasound transducers mostly consist of piezoelectric materials and matching layers. However, their fabrication is challenging and their signal-to-noise ratio often not sufficient for many testing requirements. To enhance the efficiency, air-coupled ultrasound transducers made of cellular polypropylene have been developed. Because of its small density and sound velocity, this piezoelectric ferroelectret matches the small acoustic impedance of air much better than matching layers applied in conventional transducers. In our contribution, we present two different methods of spherical focusing of ferroelectret transducers for the further enhancement of their performance in NDT applications. Measurements on carbon-fiber-reinforced polymer (CFRP) samples and on metal adhesive joints performed with commercially available focused air-coupled ultrasound transducers are compared to measurements executed with self-developed focused ferroelectret transducers.

  17. In vivo facial soft tissue thicknesses of adult Australians.

    PubMed

    Stephan, Carl N; Preisler, Rory

    2018-01-01

    Facial soft tissue thicknesses (FSTT) set important quantitative guides in craniofacial identification, but so far Australian FSTTs have only been published for supine cadavers. This study aimed to use B-mode ultrasound to measure FSTTs in living Australians (N=63 participants; n 1 =52 [x¯=21 years, s=2 years]; and n 2 =11 [x¯=54years, s=13years]) using 14 craniometric landmarks with participants in both upright and supine positions. The multiple pre-existing Australian cadaver investigations (n=7 reporting FSTT means and 6 of these reporting raw datasets) enabled living and cadaveric samples drawn from the same parent population to be compared. By using a non-invasive and safe imaging method (no ionising radiation) repeated measurements could be taken in the in vivo participants to gauge measurement reliability (and compare to pre-existing reliability for cadaver measurements): mean r-TEM=12%; max r-TEM=25%. In terms of changes between upright and supine positions (as measured by B-mode ultrasound) only 2 of 14 measured landmarks had FSTT changes in excess of 1mm. Comparisons of the in vivo ultrasound data to pre-existing needle puncture studies demonstrated that mean B-mode ultrasound measurements were very similar to cadaver values. Contrary to popular thought, but in keeping with the findings of prior meta-analyses, cadaver FSTT data are good proxies to living subjects, at least as measured by ultrasound. To increase sample sizes and triangulate upon ground truth FSTT values, weighted grand means combining all Australian samples were calculated (n range=280-385) and compared to the multi-group 2018 adult T-Tables (max. n=10,333). Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Comparison of grey scale median (GSM) measurement in ultrasound images of human carotid plaques using two different softwares.

    PubMed

    Östling, Gerd; Persson, Margaretha; Hedblad, Bo; Gonçalves, Isabel

    2013-11-01

    Grey scale median (GSM) measured on ultrasound images of carotid plaques has been used for several years now in research to find the vulnerable plaque. Centres have used different software and also different methods for GSM measurement. This has resulted in a wide range of GSM values and cut-off values for the detection of the vulnerable plaque. The aim of this study was to compare the values obtained with two different softwares, using different standardization methods, for the measurement of GSM on ultrasound images of carotid human plaques. GSM was measured with Adobe Photoshop(®) and with Artery Measurement System (AMS) on duplex ultrasound images of 100 consecutive medium- to large-sized carotid plaques of the Beta-blocker Cholesterol-lowering Asymptomatic Plaque Study (BCAPS). The mean values of GSM were 35·2 ± 19·3 and 55·8 ± 22·5 for Adobe Photoshop(®) and AMS, respectively. Mean difference was 20·45 (95% CI: 19·17-21·73). Although the absolute values of GSM differed, the agreement between the two measurements was good, correlation coefficient 0·95. A chi-square test revealed a kappa value of 0·68 when studying quartiles of GSM. The intra-observer variability was 1·9% for AMS and 2·5% for Adobe Photoshop. The difference between softwares and standardization methods must be taken into consideration when comparing studies. To avoid these problems, researcher should come to a consensus regarding software and standardization method for GSM measurement on ultrasound images of plaque in the arteries. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  19. Acoustic Response of Microbubbles Derived from Phase-Change Nanodroplet

    NASA Astrophysics Data System (ADS)

    Kawabata, Ken-ichi; Asami, Rei; Azuma, Takashi; Umemura, Shin-ichiro

    2010-07-01

    An in vitro feasibility test for a novel ultrasound therapy using a type of superheated perfluorocarbon droplet, phase-change nanodroplet (PCND), was performed in gel phantoms with the goal of high selectivity and low invasiveness. Measurements of broadband signal emission revealed that a triggering ultrasound pulse (peak negative pressure of 2.4 MPa) reduces the pressure threshold for cavitation induced by a subsequent ultrasound exposure at an order of magnitude from 2.4 to 0.2 MPa. The maximum allowed interval between the two ultrasound exposures for inducing cavitation with 100- and 1,000-cycle triggering ultrasound was about 100 and 500 ms, respectively. The echo signal increases induced by the triggering ultrasound with 100- and 1000-cycles were enhanced and suppressed by the subsequent ultrasound exposure, respectively. This different behavior seemed to be due to the presence of enlarged free bubbles, which should be avoided for the localization of therapeutic effects.

  20. [Size of testes and epididymes in boys up to 17 years of life assessed by ultrasound method and method of external linear measurements].

    PubMed

    Osemlak, Paweł

    2011-01-01

    1. Determination of the size of testes and epididymes on the right and left side, in healthy boys in various age groups with use of non-invasive ultrasound examination method and the method of external linear measurements. 2. Determination of age, when intensive growth of testicular and epididymal size starts. 3. Determination whether there are statistically significant differences between the size of the right and the left testis, as well as between the right and left epididymis. 4. Evaluation of the ultrasound method and method of external linear measurements in their use for scientific investigations. 309 boys, aged from 1 day to 17 years of life, treated in the Clinical Department of Paediatric Surgery and Traumatology of the Medical University in Lublin from 2009 to 2010 due to diseases needed to be treated surgically, but not the scrotum, were examined in this study. No pathologies influencing the development of genital organs were found in these boys. Dimension of the testes was studied with ultrasound method and with method of external linear measurements. Dimension of epididymes was only examined with ultrasound method. In every age group the author calculated mean arithmetical values for: testiscular length, thickness, width and volume, as well as epididymal depth and basis. With consideration of standard deviation (X+/-1 SD) it was possible to define the range of dimension of healthy testes and epididymes and their change with age. Final dimensions of the right and left testis as well as of the right and left epididymis were compared. Dimensions of the testis on the same side of body acquired with the ultrasound method and acquired with the method of external linear measurements were compared. Statistical work-up with Wilcoxon test for two dependent groups was implemented. Ultrasound evaluation pointed to intensive 2.5-times increase in testicular length and width, and 2-times increase in testicular thickness in boys aged 10 to 17 years. Mean volume of neonatal testis is 0.35 ml. From 10th year of life, the testicular volume increases 10-times from 1.36 ml to 12.83 ml in 17th year of life. Depth of epididymis measured with ultrasound method is always greater than its basis. Both these dimensions increase quickly from the 10th year of life. Measurements done with the caliper on the average overestimate testicular length by 5.7 mm, its thickness by 2.9 mm and its width by 1.4 mm, comparing with ultrasound method. There were no statistically important differences between dimension of the right and left testis. Differences between dimension of the right and left epididymis are statistically significant. 1. Age is the main factor influencing testicular size in boys. 2. Intensive growth of testes starts in the 10th year of life, of epididymes in 12th year of life. 3. Testicular volume is the most precise description of its size. There are no statisticallysignificant differences between volume of the right and left testis. Differences between dimension, described by the depth and basis of the right and left epididymis are statistically significant. 4. Ultrasound method and method of external linear measurements with the caliper have similar diagnostic value in comparing the size of both testes. 5. Measurements of testicular size with ultrasound method have much greater value for detail evaluation than the method of external linear measurements with the caliper, which does not regard thickness of the skin and testicular coats, as well as the epididymal head which is often situated on the upper end of the testis.

  1. Refining enamel thickness measurements from B-mode ultrasound images.

    PubMed

    Hua, Jeremy; Chen, Ssu-Kuang; Kim, Yongmin

    2009-01-01

    Dental erosion has been growing increasingly prevalent with the rise in consumption of heavy starches, sugars, coffee, and acidic beverages. In addition, various disorders, such as Gastroenterological Reflux Disease (GERD), have symptoms of rapid rates of tooth erosion. The measurement of enamel thickness would be important for dentists to assess the progression of enamel loss from all forms of erosion, attrition, and abrasion. Characterizing enamel loss is currently done with various subjective indexes that can be interpreted in different ways by different dentists. Ultrasound has been utilized since the 1960s to determine internal tooth structure, but with mixed results. Via image processing and enhancement, we were able to refine B-mode dental ultrasound images for more accurate enamel thickness measurements. The mean difference between the measured thickness of the occlusal enamel from ultrasound images and corresponding gold standard CT images improved from 0.55 mm to 0.32 mm with image processing (p = 0.033). The difference also improved from 0.62 to 0.53 mm at the buccal/lingual enamel surfaces, but not significantly (p = 0.38).

  2. Application of ultrasound-tagged photons for measurement of amplitude of vibration of tissue caused by ultrasound: theory, simulation, and experiments.

    PubMed

    Devi, C Usha; Vasu, R M; Sood, A K

    2006-01-01

    We investigate the modulation of an optical field caused by its interaction with an ultrasound beam in a tissue mimicking phantom. This modulation appears as a modulation in the intensity autocorrelation, which is measured by a photon counting correlator. The factors contributing to the modulation are: 1. amplitude of vibration of the particles of the tissue, 2. refractive index modulation, and 3. absorption coefficient in the region of the tissue intercepted by the ultrasound beam and light. We show in this work that a significant part of the contribution to this modulation comes from displacement of the tissue particles, which in turn is governed by the elastic properties of the tissue. We establish, both through simulations and experiments using an optical elastography phantom, the effects of the elasticity and absorption coefficient variations on the modulation of intensity autocorrelation. In the case where there is no absorption coefficient variation, we suggest that the depth of modulation can be calibrated to measure the displacement of tissue particles that, in turn, can be used to measure the tissue elasticity.

  3. The Role of Ultrasound Imaging of Callus Formation in the Treatment of Long Bone Fractures in Children.

    PubMed

    Wawrzyk, Magdalena; Sokal, Jan; Andrzejewska, Ewa; Przewratil, Przemysław

    2015-01-01

    In the process of diagnosis and treatment of fractures, an X-ray study is typically performed. In modern medicine very important is the development of new diagnostic methods without adverse effects on the body. One of such techniques is ultrasound imaging. It has a high value in imaging most areas of the body, including the musculoskeletal system. Reports on the use of ultrasound in the evaluation of the callus are rare and this could be a method equivalent to or even better than standard radiographs. The aim of the study was to analyze the correlation of ultrasound with radiographs in imaging of callus formation after fractures of long bones in children and to analyze the correlation of vascular resistance index (RI) and the degree of vascularization of the callus with a subjective radiological assessment of the bone union quality. The prospective study was planned to qualify 50 children treated for long bones fractures of the arm, forearm, thigh and lower leg. Ultrasound diagnosis was carried out using a Philips iU22 camera equipped with a linear probe with 17-5-MHz resolution and MSK Superficial program. During ultrasound examination measurements of the callus were performed. Using the Power Doppler callus vascularity was visualized and vascular resistance index (RI) was measured. The same measurements were made within the corresponding area of the healthy limb. The results obtained by ultrasound were compared with radiograph measurements and with the subjective assessment of the callus quality. Preliminary results were developed on a group of 24 patients, where 28 fractured bones and 28 corresponding healthy bones were examined. Fifteen boys and 9 girls participated in the study. The average age at injury was, respectively, 11 and 9 years. In both groups fractures without displacement were the most frequent. A similar frequency was observed in fractures requiring reposition and subperiosteal fractures. In contrast, fractures with a slight displacement of the fragments, were 3 times more common in girls. Statistical analysis of the measurements of length and width of the callus demonstrated that the differences between results obtained in the ultrasound in comparison with X-rays were not statistically significant. Moreover, preliminary results showed a significantly higher degree of vascularization of the callus than of the healthy periosteum. Preliminary results indicate the high efficacy of ultrasound in the evaluation of callus formation after fractures of long bones in children and the possibility of its alternative use to X-ray examinations.

  4. HOCUS: The Haskins optically-corrected ultrasound system for measuring speech articulation

    NASA Astrophysics Data System (ADS)

    Whalen, D. H.; Iskarous, Khalil; Tiede, Mark K.; Ostry, David J.

    2004-05-01

    The tongue is the most important supralaryngeal articulator for speech, yet, because it is typically out of view, its movements have been difficult to quantify. Here is described a new combination of techniques involving ultrasound in conjunction with an optoelectric motion measurement system (Optotrak). Combining these, the movements of the tongue are imaged and simultaneously corrected for motion of the head and of the ultrasound transceiver. Optotrak's infrared-emitting diodes are placed on the transceiver and the speakers head in order to localize the ultrasound image of the tongue relative to the hard palate. The palate can be imaged with ultrasound by having the ultrasound signal penetrate a water bolus held against the palate by the tongue. This trace is coregistered with the head and potentially with the same talker's sagittal MR image, to provide additional information on the unimaged remainder of the tract. The tongue surface, from the larynx to near the tip, can then be localized in relationship to the hard palate. The result is a fairly complete view of the tongue within the vocal tract at sampling rates appropriate for running speech. A comparison with other imaging vocal tract systems will be presented. [Work supported by NIH Grant DC-02717.

  5. Monitoring high-intensity focused ultrasound (HIFU) therapy using radio frequency ultrasound backscatter to quantify heating

    NASA Astrophysics Data System (ADS)

    Kaczkowski, Peter J.; Anand, Ajay

    2005-09-01

    The spatial distribution and temporal history of tissue temperature is an essential indicator of thermal therapy progress, and treatment safety and efficacy. Magnetic resonance methods provide the gold standard noninvasive measurement of temperature but are costly and cumbersome compared to the therapy itself. We have been developing the use of ultrasound backscattering for real-time temperature estimation; ultrasonic methods have been limited to relatively low temperature rise, primarily due to lack of sensitivity at protein denaturation temperatures (50-70°C). Through validation experiments on gel phantoms and ex vivo tissue we show that temperature rise can be accurately mapped throughout the therapeutic temperature range using a new BioHeat Transfer Equation (BHTE) model-constrained inverse approach. Speckle-free temperature and thermal dose maps are generated using the ultrasound calibrated model over the imaged region throughout therapy delivery and post-treatment cooling periods. Results of turkey breast tissue experiments are presented for static HIFU exposures, in which the ultrasound calibrated BHTE temperature maps are shown to be very accurate (within a degree) using independent thermocouple measurements. This new temperature monitoring method may speed clinical adoption of ultrasound-guided HIFU therapy. [Work supported by Army MRMC.

  6. Plantar fasciitis (fasciosis) treatment outcome study: plantar fascia thickness measured by ultrasound and correlated with patient self-reported improvement.

    PubMed

    Fabrikant, Jerry M; Park, Tae Soon

    2011-06-01

    Ultrasound, well recognized as an effective diagnostic tool, reveals a thickening of the plantar fascia in patients with plantar fasciitis/fasciosis disease. The authors hypothesized that ultrasound would also reveal a decrease in the plantar fascia thickness for patients undergoing treatment for the disease, a hypothesis that, heretofore, had been only tested on a limited number of subjects. They conducted a more statistically significant study that found that clinical treatment with injection and biomechanical correction does indeed diminish plantar fascia thickness as shown on ultrasound. The study also revealed that patients experience the most heightened plantar fascia tenderness toward the end of the day, and improvement in their symptomatic complaints were associated with a reduction in plantar fascia thickness. As a result, the authors conclude that office-based ultrasound can help diagnose and confirm plantar fasciitis/fasciosis through the measurement of the plantar fascia thickness. Because of the advantages of ultrasound--that it is non-invasive with greater patient acceptance, cost effective and radiation-free--the imaging tool should be considered and implemented early in the diagnosis and treatment of plantar fasciitis/fasciosis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. 3D ultrasound imaging in image-guided intervention.

    PubMed

    Fenster, Aaron; Bax, Jeff; Neshat, Hamid; Cool, Derek; Kakani, Nirmal; Romagnoli, Cesare

    2014-01-01

    Ultrasound imaging is used extensively in diagnosis and image-guidance for interventions of human diseases. However, conventional 2D ultrasound suffers from limitations since it can only provide 2D images of 3-dimensional structures in the body. Thus, measurement of organ size is variable, and guidance of interventions is limited, as the physician is required to mentally reconstruct the 3-dimensional anatomy using 2D views. Over the past 20 years, a number of 3-dimensional ultrasound imaging approaches have been developed. We have developed an approach that is based on a mechanical mechanism to move any conventional ultrasound transducer while 2D images are collected rapidly and reconstructed into a 3D image. In this presentation, 3D ultrasound imaging approaches will be described for use in image-guided interventions.

  8. In-vivo investigation of material quality of bone tissue by measuring apparent phalangeal ultrasound transmission velocity.

    PubMed

    Kann, P; Schulz, U; Klaus, D; Piepkorn, B; Beyer, J

    1995-01-01

    The square of ultrasound transmission velocity in a material is related to the modulus of elasticity, which is known to be an indicator of stability in bone. The aim of our study was to use ultrasound transmission velocity to obtain information about the material properties of bone tissue, keeping other factors possibly influencing ultrasound transmission as constant as possible. Apparent phalangeal ultrasound transmission velocity (APU) measured in 54 isolated, fresh pig phalanges was shown to be independent of bone mineral density (BMD) measured by SPA. Fastest sound transmission led exclusively through cortical bone so that intertrabecular connectivity in spongious bone could not influence the result. In humans APU was measured in the mediolateral direction at the midphalanx of the middle finger. In 53 healthy subjects (15-81 years old; 27 women, 26 men), there was a decrease of APU with age (r = -0.30, p < 0.05). Further, when comparing the results of both hands intraindividually almost identical values indicated constant intraindividual architecture of bone at this location. There was no evidence for a relation of APU to physical load comparing dominant and nondominant hand and relating the results to subjectively estimated physical load. In a second group of 43 perimenopausal women (47-60 years old), APU, which again decreased with age (r = -0.33, p < 0.05), was found not to be correlated to BMD measured by SPA at the distal forearm (cortical bone).(ABSTRACT TRUNCATED AT 250 WORDS)

  9. The relationship between experimental geometry, heat rate, and ultrasound wave speed measurement while observing phase changes in highly attenuative materials

    NASA Astrophysics Data System (ADS)

    Moore, David G.; Stair, Sarah L.; Jack, David A.

    2018-04-01

    Ultrasound techniques are capable of monitoring changes in the time-of-flight as a material is exposed to different thermal environments. The focus of the present study is to identify the phase of a material via ultrasound compression wave measurements in a through transmission experimental setup as the material is heated from a solid to a liquid and then allowed to re-solidify. The present work seeks to expand upon the authors' previous research, which proved this through transmission phase monitoring technique was possible, by considering different experimental geometries. The relationship between geometry, the measured speed of sound, and the temperature profile is presented. The use of different volumes helps in establishing a baseline understanding of which aspects of the experiment are geometry dependent and which are independent. The present study also investigates the relationship between the heating rate observed in the experiment and the measured speed of sound. The trends identified between the experimental geometry, heat rate and ultrasound wave speed measurement assist in providing a baseline understanding of the applicability of this technique to various industries, including the polymer industry and the oil industry.

  10. A new imaging technique based on resonance for arterial vessels

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoming; Fatemi, Mostafa; Greenleaf, James F.

    2003-04-01

    Vibro-acoustography is a new noncontact imaging method based on the radiation force of ultrasound. We extend this technique for imaging of arterial vessels based on vibration resonance. The arterial vessel is excited remotely by ultrasound at a resonant frequency, at which the vibration of the vessel as well as its transmission to the body surface are large enough to be measured. By scanning the ultrasound beam across the vessel plane and measuring the vibration at one single point on the body or vessel surface, an image of the interior artery can be mapped. Theory is developed that predicts the measured velocity is proportional to the value of the mode shape at resonance. Experimental studies were carried out on a silicone tube embedded in a cylindrical gel phantom of large radius, which simulates a large artery and the surrounding body. The fundamental frequency was measured at which the ultrasound transducer scanned across the tube plane with velocity measurement at one single point on the tube or on the phantom by laser. The images obtained show clearly the interior tube and the modal shape of the tube. The present technique offers a new imaging method for arterial vessels.

  11. The Relationship Between Experimental Geometry Heat Rate and Ultrasound Wave Speed Measurement While Observing Phase Changes in Highly Attenuative Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, David G.; Stair, Sarah Louise; Jack, David A.

    Ultrasound techniques are capable of monitoring changes in the time-of-flight as a material is exposed to different thermal environments. The focus of the present study is to identify the phase of a material via ultrasound compression wave measurements in a through transmission experimental setup as the material is heated from a solid to a liquid and then allowed to re-solidify. The present work seeks to expand upon the authors’ previous research, which proved this through transmission phase monitoring technique was possible, by considering different experimental geometries. The relationship between geometry, the measured speed of sound, and the temperature profile ismore » presented. The use of different volumes helps in establishing a baseline understanding of which aspects of the experiment are geometry dependent and which are independent. The present study also investigates the relationship between the heating rate observed in the experiment and the measured speed of sound. Lastly, the trends identified between the experimental geometry, heat rate and ultrasound wave speed measurement assist in providing a baseline understanding of the applicability of this technique to various industries, including the polymer industry and the oil industry.« less

  12. The Relationship Between Experimental Geometry Heat Rate and Ultrasound Wave Speed Measurement While Observing Phase Changes in Highly Attenuative Materials

    DOE PAGES

    Moore, David G.; Stair, Sarah Louise; Jack, David A.

    2018-04-01

    Ultrasound techniques are capable of monitoring changes in the time-of-flight as a material is exposed to different thermal environments. The focus of the present study is to identify the phase of a material via ultrasound compression wave measurements in a through transmission experimental setup as the material is heated from a solid to a liquid and then allowed to re-solidify. The present work seeks to expand upon the authors’ previous research, which proved this through transmission phase monitoring technique was possible, by considering different experimental geometries. The relationship between geometry, the measured speed of sound, and the temperature profile ismore » presented. The use of different volumes helps in establishing a baseline understanding of which aspects of the experiment are geometry dependent and which are independent. The present study also investigates the relationship between the heating rate observed in the experiment and the measured speed of sound. Lastly, the trends identified between the experimental geometry, heat rate and ultrasound wave speed measurement assist in providing a baseline understanding of the applicability of this technique to various industries, including the polymer industry and the oil industry.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyk, Sylvia van, E-mail: sylvia.vandyk@petermac.org; Kondalsamy-Chennakesavan, Srinivas; Schneider, Michal

    Purpose: To compare measurements of the uterus and cervix obtained with magnetic resonance imaging (MRI) and transabdominal ultrasound to determine whether ultrasound can identify the brachytherapy target and be used to guide conformal brachytherapy planning and treatment for cervix cancer. Methods and Materials: Consecutive patients undergoing curative treatment with radiation therapy between January 2007 and March 2012 were included in the study. Intrauterine applicators were inserted into the uterine canal while patients were anesthetized. Images were obtained by MRI and transabdominal ultrasound in the longitudinal axis of the uterus with the applicator in treatment position. Measurements were taken at themore » anterior and posterior surface of the uterus at 2.0-cm intervals along the applicator, from the external os to the tip of the applicator. Data were analyzed using Bland Altman plots examining bias and 95% limits of agreement. Results: A total of 192 patients contributed 1668 measurements of the cervix and uterus. Mean (±SD) differences of measurements between imaging modalities at the anterior and posterior uterine surface ranged from 1.5 (±3.353) mm to 3.7 (±3.856) mm, and −1.46 (±3.308) mm to 0.47 (±3.502) mm, respectively. The mean differences were less than 3 mm in the cervix. The mean differences were less than 1.5 mm at all measurement points on the posterior surface. Conclusion: Differences in the measurements of the cervix and uterus obtained by MRI and ultrasound were within clinically acceptable limits. Transabdominal ultrasound can be substituted for MRI in defining the target volume for conformal brachytherapy treatment of cervix cancer.« less

  14. Ultrasound Imaging of Muscle Contraction of the Tibialis Anterior in Patients with Facioscapulohumeral Dystrophy.

    PubMed

    Gijsbertse, Kaj; Goselink, Rianne; Lassche, Saskia; Nillesen, Maartje; Sprengers, André; Verdonschot, Nico; van Alfen, Nens; de Korte, Chris

    2017-11-01

    A need exists for biomarkers to diagnose, quantify and longitudinally follow facioscapulohumeral muscular dystrophy (FSHD) and many other neuromuscular disorders. Furthermore, the pathophysiological mechanisms leading to muscle weakness in most neuromuscular disorders are not completely understood. Dynamic ultrasound imaging (B-mode image sequences) in combination with speckle tracking is an easy, applicable and patient-friendly imaging tool to visualize and quantify muscle deformation. This dynamic information provides insight in the pathophysiological mechanisms and may help to distinguish the various stages of diseased muscle in FSHD. In this proof-of-principle study, we applied a speckle tracking technique to 2-D ultrasound image sequences to quantify the deformation of the tibialis anterior muscle in patients with FSHD and in healthy controls. The resulting deformation patterns were compared with muscle ultrasound echo intensity analysis (a measure of fat infiltration and dystrophy) and clinical outcome measures. Of the four FSHD patients, two patients had severe peroneal weakness and two patients had mild peroneal weakness on clinical examination. We found a markedly varied muscle deformation pattern between these groups: patients with severe peroneal weakness showed a different motion pattern of the tibialis anterior, with overall less displacement of the central tendon region, while healthy patients showed a non-uniform displacement pattern, with the central aponeurosis showing the largest displacement. Hence, dynamic muscle ultrasound of the tibialis anterior muscle in patients with FSHD revealed a distinctively different tissue deformation pattern among persons with and without tibialis anterior weakness. These findings could clarify the understanding of the pathophysiology of muscle weakness in FSHD patients. In addition, the change in muscle deformation shows good correlation with clinical measures and quantitative muscle ultrasound measurements. In conclusion, dynamic ultrasound in combination with speckle tracking allows the study of the effects of muscle pathology in relation to strength, force transmission and movement generation. Although further research is required, this technique can develop into a biomarker to quantify muscle disease severity. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  15. A system for real-time measurement of the brachial artery diameter in B-mode ultrasound images.

    PubMed

    Gemignani, Vincenzo; Faita, Francesco; Ghiadoni, Lorenzo; Poggianti, Elisa; Demi, Marcello

    2007-03-01

    The measurement of the brachial artery diameter is frequently used in clinical studies for evaluating the flow-mediated dilation and, in conjunction with the blood pressure value, for assessing arterial stiffness. This paper presents a system for computing the brachial artery diameter in real-time by analyzing B-mode ultrasound images. The method is based on a robust edge detection algorithm which is used to automatically locate the two walls of the vessel. The measure of the diameter is obtained with subpixel precision and with a temporal resolution of 25 samples/s, so that the small dilations induced by the cardiac cycle can also be retrieved. The algorithm is implemented on a standalone video processing board which acquires the analog video signal from the ultrasound equipment. Results are shown in real-time on a graphical user interface. The system was tested both on synthetic ultrasound images and in clinical studies of flow-mediated dilation. Accuracy, robustness, and intra/inter observer variability of the method were evaluated.

  16. Non-Contact Laser Based Ultrasound Evaluation of Canned Foods

    NASA Astrophysics Data System (ADS)

    Shelton, David

    2005-03-01

    Laser-Based Ultrasound detection was used to measure the velocity of compression waves transmitted through canned foods. Condensed broth, canned pasta, and non-condensed soup were evaluated in these experiments. Homodyne adaptive optics resulted in measurements that were more accurate than the traditional heterodyne method, as well as yielding a 10 dB gain in signal to noise. A-Scans measured the velocity of ultrasound sent through the center of the can and were able to distinguish the quantity of food stuff in its path, as well as distinguish between meat and potato. B-Scans investigated the heterogeneity of the sample’s contents. The evaluation of canned foods was completely non-contact and would be suitable for continuous monitoring in production. These results were verified by conducting the same experiments with a contact piezo transducer. Although the contact method yields a higher signal to noise ratio than the non-contact method, Laser-Based Ultrasound was able to detect surface waves the contact transducer could not.

  17. Ultrasound imaging transducer motion during clinical maneuvers: respiration, active straight leg raise test and abdominal drawing in.

    PubMed

    Whittaker, Jackie L; Warner, Martin B; Stokes, Maria J

    2010-08-01

    Clinical use of ultrasound imaging by physiotherapists is increasing; however, the clinical setting may be problematic due to variability inherent in the environment. As transducer motion interferes with accurate measurement, this study aimed to measure handheld transducer motion, relative to the pelvis, during a clinical simulation involving typical maneuvers employed in a physiotherapy assessment of the lumbopelvic region. Transducer motion about three axes and through one plane was measured (Vicon, Oxford, UK) on 12 participants during three clinical maneuvers at four abdominal imaging sites. Data were grouped and means used to determine discrepancies in transducer and pelvic motion for each imaging site/maneuver combination. None of the conditions produced large transducer motions relative to the pelvis and all findings were within previously established guidelines for acceptable amounts of transducer motion. These findings suggest that an ultrasound transducer can be held relatively stationary in a clinical setting, for the maneuvers tested. Copyright 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  18. Reliability of measuring sciatic and tibial nerve movement with diagnostic ultrasound during a neural mobilisation technique.

    PubMed

    Ellis, Richard; Hing, Wayne; Dilley, Andrew; McNair, Peter

    2008-08-01

    Diagnostic ultrasound provides a technique whereby real-time, in vivo analysis of peripheral nerve movement is possible. This study measured sciatic nerve movement during a "slider" neural mobilisation technique (ankle dorsiflexion/plantar flexion and cervical extension/flexion). Transverse and longitudinal movement was assessed from still ultrasound images and video sequences by using frame-by-frame cross-correlation software. Sciatic nerve movement was recorded in the transverse and longitudinal planes. For transverse movement, at the posterior midthigh (PMT) the mean value of lateral sciatic nerve movement was 3.54 mm (standard error of measurement [SEM] +/- 1.18 mm) compared with anterior-posterior/vertical (AP) movement of 1.61 mm (SEM +/- 0.78 mm). At the popliteal crease (PC) scanning location, lateral movement was 6.62 mm (SEM +/- 1.10 mm) compared with AP movement of 3.26 mm (SEM +/- 0.99 mm). Mean longitudinal sciatic nerve movement at the PMT was 3.47 mm (SEM +/- 0.79 mm; n = 27) compared with the PC of 5.22 mm (SEM +/- 0.05 mm; n = 3). The reliability of ultrasound measurement of transverse sciatic nerve movement was fair to excellent (Intraclass correlation coefficient [ICC] = 0.39-0.76) compared with excellent (ICC = 0.75) for analysis of longitudinal movement. Diagnostic ultrasound presents a reliable, noninvasive, real-time, in vivo method for analysis of sciatic nerve movement.

  19. Application of a Sub-set of Skinfold Sites for Ultrasound Measurement of Subcutaneous Adiposity and Percentage Body Fat Estimation in Athletes.

    PubMed

    O'Neill, D C; Cronin, O; O'Neill, S B; Woods, T; Keohane, D M; Molloy, M G; Falvey, E C

    2016-05-01

    Body composition assessment is an integral feature of elite sport as optimization facilitates successful performance. This study aims to refine the use of B-mode ultrasound in the assessment of athlete body composition by determining suitable sites for measurement. 67 elite athletes recruited from the Human Performance Laboratory, University College Cork, Ireland, underwent dual measurement of body composition. Subcutaneous adipose tissue thickness at 7 anatomical sites were measured using ultrasound and compared to percentage body fat values determined using Dual-Energy X-ray Absorptiometry. Multiple linear regressions were performed and an equation to predict percentage body fat was derived. The present study found subcutaneous adipose tissue depths at the triceps, biceps, anterior thigh and supraspinale sites correlated significantly with percentage body fat by X-ray absorptiometry (all p<0.05). Summation of the depths at these locations correlated strongly with percentage body fat by Dual-Energy X-ray Absorptiometry (R²=0.879). The triceps, biceps, anterior thigh and supraspinale sites are suitable anatomical landmarks for the estimation of %BF using B-mode ultrasound. Use of B-mode ultrasound in the assessment of athlete body composition confers many benefits including lack of ionising radiation and its potential to be used as a portable field tool. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Learning process for performing and analyzing 3D/4D transperineal ultrasound imaging and interobserver reliability study.

    PubMed

    Siafarikas, F; Staer-Jensen, J; Braekken, I H; Bø, K; Engh, M Ellström

    2013-03-01

    To evaluate the learning process for acquiring three- and four-dimensional (3D/4D) transperineal ultrasound volumes of the levator hiatus (LH) dimensions at rest, during pelvic floor muscle (PFM) contraction and on Valsalva maneuver, and for analyzing the ultrasound volumes, as well as to perform an interobserver reliability study between two independent ultrasound examiners. This was a prospective study including 22 women. We monitored the learning process of an inexperienced examiner (IE) performing 3D/4D transperineal ultrasonography and analyzing the volumes. The examination included acquiring volumes during three PFM contractions and three Valsalva maneuvers. LH dimensions were determined in the axial plane. The learning process was documented by estimating agreement between the IE and an experienced examiner (E) using the intraclass correlation coefficient. Agreement was calculated in blocks of 10 ultrasound examinations and analyzed volumes. After the learning process was complete the interobserver reliability for the technique was calculated between these two independent examiners. For offline analysis of the first 10 ultrasound volumes obtained by E, good to very good agreement between E and IE was achieved for all LH measurements except for the left and right levator-urethra gap and pubic arc. For the next 10 analyzed volumes, agreement improved for all LH measurements. Volumes that had been obtained by IE and E were then re-evaluated by IE, and good to very good agreement was found for all LH measurements indicating consistency in volume acquisition. The interobserver reliability study showed excellent ICC values (ICC, 0.81-0.97) for all LH measurements except the pubic arc (ICC = 0.67). 3D/4D transperineal ultrasound is a reliable technique that can be learned in a short period of time. Copyright © 2012 ISUOG. Published by John Wiley & Sons, Ltd.

  1. Temperature measurement by thermal strain imaging with diagnostic power ultrasound, with potential for thermal index determination.

    PubMed

    Liang, Hai-Dong; Zhou, Li-Xia; Wells, Peter N T; Halliwell, Michael

    2009-05-01

    Over the years, there has been a substantial increase in acoustic exposure in diagnostic ultrasound as new imaging modalities with higher intensities and frame rates have been introduced; and more electronic components have been packed into the probe head, so that there is a tendency for it to become hotter. With respect to potential thermal effects, including those which may be hazardous occurring during ultrasound scanning, there is a correspondingly growing need for in vivo techniques to guide the operator as to the actual temperature rise occurring in the examined tissues. Therefore, an in vivo temperature estimator would be of considerable practical value. The commonly-used method of tissue thermal index (TI) measurement with a hydrophone in water could underestimate the actual value of TI (in one report by as much as 2.9 times). To obtain meaningful results, it is necessary to map the temperature elevation in 2-D (or 3-D) space. We present methodology, results and validation of a 2-D spatial and temporal thermal strain ultrasound temperature estimation technique in phantoms, and its apparently novel application in tracking the evolution of heat deposition at diagnostic exposure levels. The same ultrasound probe is used for both transmission and reception. The displacement and thermal strain estimation methods are similar to those used in high-intensity focused ultrasound thermal monitoring. The use of radiofrequency signals permits the application of cross correlation as a similarity measurement for tracking feature displacement. The displacement is used to calculate the thermal strain directly related to the temperature rise. Good agreement was observed between the temperature rise and the ultrasound power and scan duration. Thermal strain up to 1.4% was observed during 4000-s scan. Based on the results obtained for the temperature range studied in this work, the technique demonstrates potential for applicability in phantom (and possibly in vivo tissue) temperature measurement for the determination of TI.

  2. An augmented Lagrangian trust region method for inclusion boundary reconstruction using ultrasound/electrical dual-modality tomography

    NASA Astrophysics Data System (ADS)

    Liang, Guanghui; Ren, Shangjie; Dong, Feng

    2018-07-01

    The ultrasound/electrical dual-modality tomography utilizes the complementarity of ultrasound reflection tomography (URT) and electrical impedance tomography (EIT) to improve the speed and accuracy of image reconstruction. Due to its advantages of no-invasive, no-radiation and low-cost, ultrasound/electrical dual-modality tomography has attracted much attention in the field of dual-modality imaging and has many potential applications in industrial and biomedical imaging. However, the data fusion of URT and EIT is difficult due to their different theoretical foundations and measurement principles. The most commonly used data fusion strategy in ultrasound/electrical dual-modality tomography is incorporating the structured information extracted from the URT into the EIT image reconstruction process through a pixel-based constraint. Due to the inherent non-linearity and ill-posedness of EIT, the reconstructed images from the strategy suffer from the low resolution, especially at the boundary of the observed inclusions. To improve this condition, an augmented Lagrangian trust region method is proposed to directly reconstruct the shapes of the inclusions from the ultrasound/electrical dual-modality measurements. In the proposed method, the shape of the target inclusion is parameterized by a radial shape model whose coefficients are used as the shape parameters. Then, the dual-modality shape inversion problem is formulated by an energy minimization problem in which the energy function derived from EIT is constrained by an ultrasound measurements model through an equality constraint equation. Finally, the optimal shape parameters associated with the optimal inclusion shape guesses are determined by minimizing the constrained cost function using the augmented Lagrangian trust region method. To evaluate the proposed method, numerical tests are carried out. Compared with single modality EIT, the proposed dual-modality inclusion boundary reconstruction method has a higher accuracy and is more robust to the measurement noise.

  3. Eyes as fenestrations to the ears: a novel mechanism for high-frequency and ultrasonic hearing.

    PubMed

    Lenhardt, Martin L

    2007-01-01

    Intense airborne ultrasound has been associated with hearing loss, tinnitus, and various nonauditory subjective effects, such as headaches, dizziness, and fullness in the ear. Yet, when people detect ultrasonic components in music, ultrasound adds to the pleasantness of the perception and evokes changes in the brain as measured in electroencephalograms, behavior, and imaging. How does the airborne ultrasound get into the ear to create such polar-opposite human effects? Surprisingly, ultrasound passes first through the eyes; thus, the eye becomes but another window into the inner ear.

  4. Therapeutic ultrasound for acute ankle sprains.

    PubMed

    van den Bekerom, Michel Pj; van der Windt, Daniëlle Awm; Ter Riet, Gerben; van der Heijden, Geert J; Bouter, Lex M

    2011-06-15

    Ultrasound is used in the treatment of a wide variety of musculoskeletal disorders, which include acute ankle sprains. This is an update of a Cochrane review first published in 1999, and previously updated in 2004. To evaluate the effects of ultrasound therapy in the treatment of acute ankle sprains. We searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register (September 2010), the Cochrane Central Register of Controlled Trials (The Cochrane Library 2010, Issue 3), MEDLINE (1966 to September 2010), EMBASE (1983 to September 2010), CINAHL (1982 to 2004), and PEDro - the Physiotherapy Evidence Database (accessed 01/06/09). We also searched the Cochrane Rehabilitation and Related Therapies Field database, reference lists of articles, and contacted colleagues.The WHO International Clinical Trials Registry Platform was searched for ongoing trials. Randomised or quasi-randomised trials were included if the following conditions were met: at least one study group was treated with therapeutic ultrasound; participants had acute lateral ankle sprains; and outcome measures included general improvement, pain, swelling, functional disability, or range of motion. Two authors independently performed study selection, and assessed the risk of bias and extracted data. Risk ratios and risk differences together with 95% confidence intervals were calculated for dichotomous outcomes and mean differences together with 95% confidence intervals for continuous outcome measures. Limited pooling of data was undertaken where there was clinical homogeneity in terms of participants, treatments, outcomes, and follow-up time points. Six trials were included, involving 606 participants. Five trials included comparisons of ultrasound therapy with sham ultrasound; and three trials included single comparisons of ultrasound with three other treatments. The assessment of risk of bias was hampered by poor reporting of trial methods and results. None of the five placebo-controlled trials (sham ultrasound) demonstrated statistically significant differences between true and sham ultrasound therapy for any outcome measure at one to four weeks of follow-up. The pooled risk ratio for general improvement at one week was 1.04 (random-effects model, 95% confidence interval 0.92 to 1.17) for active versus sham ultrasound. The differences between intervention groups were generally small, between zero and six per cent, for most dichotomous outcomes. The evidence from the five small placebo-controlled trials included in this review does not support the use of ultrasound in the treatment of acute ankle sprains. The potential treatment effects of ultrasound appear to be generally small and of probably of limited clinical importance, especially in the context of the usually short-term recovery period for these injuries. However, the available evidence is insufficient to rule out the possibility that there is an optimal dosage schedule for ultrasound therapy that may be of benefit.

  5. Location of the Central Venous Catheter Tip With Bedside Ultrasound in Young Children: Can We Eliminate the Need for Chest Radiography?

    PubMed

    Alonso-Quintela, Paula; Oulego-Erroz, Ignacio; Rodriguez-Blanco, Silvia; Muñiz-Fontan, Manoel; Lapeña-López-de Armentia, Santiago; Rodriguez-Nuñez, Antonio

    2015-11-01

    To compare the use of bedside ultrasound and chest radiography to verify central venous catheter tip positioning. Prospective observational study. PICU of a university hospital. Patients aged 0-14 who required a central venous catheter. None. Central venous catheter tip location was confirmed by ultrasound and chest radiography. Central venous catheters were classified as intra-atrial or extra-atrial according to their positions in relation to the cavoatrial junction. Central venous catheters located outside the vena cava were considered malpositioned. The distance between the catheter tip and the cavoatrial junction was measured. The time elapsed from image capture to interpretation was recorded. Fifty-one central venous catheters in 40 patients were analyzed. Chest radiography and ultrasound results agreed 94% of the time (κ coefficient, 0.638; p < 0.001) in determining intra-atrial and extra-atrial locations and 92% of the time in determining the diagnosis of central venous catheter malposition (κ coefficient, 0.670; p < 0.001). Chest radiography indicated a greater distance between the central venous catheter tip and the cavoatrial junction than measured by ultrasound, with a mean difference of 0.38 cm (95% CI, +0.27, +0.48 cm). Three central venous catheters were classified as extra-atrial by chest radiography but as intra-atrial by ultrasound. To locate the central venous catheter tip, ultrasound required less time than chest radiography (22.96 min [20.43 min] vs 2.23 min [1.06 min]; p < 0.001). Bedside ultrasound showed a good agreement with chest radiography in detecting central venous catheter tip location and revealing incorrect positions. Ultrasound could be a preferable method for routine verification of central venous catheter tip and can contribute to increased patient safety.

  6. Descriptive Cadaveric Study Comparing the Accuracy of Ultrasound Versus Fluoroscopic Guidance for First Sacral Transforaminal Injections: A Comparison Study.

    PubMed

    Thompson, Bradley F; Pingree, Matthew J; Qu, Wenchun; Murthy, Naveen S; Lachman, Nirusha; Hurdle, Mark Friedrich

    2018-04-01

    Ultrasound is rarely used for guiding lumbosacral epidural steroid injections due to its technical limitations. For example, sonographic imaging lacks the ability to confirm epidural spread and identify vascular uptake. The perceived risk that these limitations pose to human subjects has precluded any large scale clinical trials to date. To compare the accuracy of ultrasound versus fluoroscopic guidance for first sacral transforaminal epidural injections. Cadaveric comparative study using dichotomous outcomes. A fluoroscopy suite and anatomic laboratory at an academic medical center. Four unembalmed adult human cadavers with no history of spinal surgery. Eight sites were injected twice by one interventionalist, using fluoroscopic and ultrasound guidance. In the fluoroscopy arm, contrast spread was assessed using computed tomography. In the ultrasound arm, latex spread was assessed using gross anatomic dissection. Any visible evidence of epidural spread constituted a positive result. Comparison of the success of obtaining epidural contrast flow was the primary outcome measure. Secondary outcome measures included average duration, rate of intravascular uptake, and quantity of intravascular uptake. All injections performed in both the ultrasound arm and the fluoroscopy arm had positive epidural spread. The average duration was 3.03 minutes with fluoroscopy and 4.76 minutes with ultrasound. The rate of intravascular uptake was 37.5% with fluoroscopy and 50% with ultrasound. Within the ultrasound arm, greater intravascular spread and duration variability were recorded. Although ultrasonography can provide reliable image guidance for cannulating the first sacral foramen in cadavers, it would have limited clinical utility due to its inability to visualize relevant neurovascular structures deep to the osseus roof and exclude intravascular uptake. IV. Copyright © 2018 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  7. TU-A-9A-06: Semi-Automatic Segmentation of Skin Cancer in High-Frequency Ultrasound Images: Initial Comparison with Histology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Y; Li, X; Fishman, K

    Purpose: In skin-cancer radiotherapy, the assessment of skin lesion is challenging, particularly with important features such as the depth and width hard to determine. The aim of this study is to develop interative segmentation method to delineate tumor boundary using high-frequency ultrasound images and to correlate the segmentation results with the histopathological tumor dimensions. Methods: We analyzed 6 patients who comprised a total of 10 skin lesions involving the face, scalp, and hand. The patient’s various skin lesions were scanned using a high-frequency ultrasound system (Episcan, LONGPORT, INC., PA, U.S.A), with a 30-MHz single-element transducer. The lateral resolution was 14.6more » micron and the axial resolution was 3.85 micron for the ultrasound image. Semiautomatic image segmentation was performed to extract the cancer region, using a robust statistics driven active contour algorithm. The corresponding histology images were also obtained after tumor resection and served as the reference standards in this study. Results: Eight out of the 10 lesions are successfully segmented. The ultrasound tumor delineation correlates well with the histology assessment, in all the measurements such as depth, size, and shape. The depths measured by the ultrasound have an average of 9.3% difference comparing with that in the histology images. The remaining 2 cases suffered from the situation of mismatching between pathology and ultrasound images. Conclusion: High-frequency ultrasound is a noninvasive, accurate and easy-accessible modality to image skin cancer. Our segmentation method, combined with high-frequency ultrasound technology, provides a promising tool to estimate the extent of the tumor to guide the radiotherapy procedure and monitor treatment response.« less

  8. Ultrasound comparison of external and internal neck anatomy with the LMA Unique.

    PubMed

    Lee, Steven M; Wojtczak, Jacek A; Cattano, Davide

    2017-12-01

    Internal neck anatomy landmarks and their relation after placement of an extraglottic airway devices have not been studied extensively by the use of ultrasound. Based on our group experience with external landmarks as well as internal landmarks evaluation with other techniques, we aimed use ultrasound to analyze the internal neck anatomy landmarks and the related changes due to the placement of the Laryngeal Mask Airway Unique. Observational pilot investigation. Non-obese adult patients with no evidence of airway anomalies, were recruited. External neck landmarks were measured based on a validated and standardized method by tape. Eight internal anatomical landmarks, reciprocal by the investigational hypothesis to the external landmarks, were also measured by ultrasound guidance. The internal landmarks were re-measured after optimal placement and inflation of the extraglottic airway devices cuff Laryngeal Mask Airway Unique. Six subjects were recruited. Ultrasound measurements of hyoid-mental distance, thyroid-cricoid distance, thyroid height, and thyroid width were found to be significantly ( p < 0.05) overestimated using a tape measure. Sagittal neck landmark distances such as thyroid height, sternal-mental distance, and thyroid-cricoid distance significantly decreased after placement of the Laryngeal Mask Airway Unique. The laryngeal mask airway Unique resulted in significant changes in internal neck anatomy. The induced changes and respective specific internal neck anatomy landmarks could help to design devices that would modify their shape accordingly to areas of greatest displacement. Also, while external neck landmark measurements overestimate their respective internal neck landmarks, as we previously reported, the concordance of each measurement and their respective conversion factor could continue to be of help in sizing extraglottic airway devices. Due to the pilot nature of the study, more investigations are warranted.

  9. Effect of anisotropy on stress-induced electrical potentials in bovine bone using ultrasound irradiation

    NASA Astrophysics Data System (ADS)

    Matsukawa, S.; Makino, T.; Mori, S.; Koyama, D.; Takayanagi, S.; Mizuno, K.; Yanagitani, T.; Matsukawa, M.

    2017-04-01

    The bone fracture healing mechanism of the low-intensity pulsed ultrasound technique is not yet clearly understood. In our previous study, the electrical potentials induced in bone were successfully measured by focusing on piezoelectricity in the MHz range. Bone is composed of collagen and hydroxyapatite and has strong anisotropy. The purpose of this study is to investigate the effects of bone anisotropy on the electrical potentials induced by ultrasound irradiation. For this study, ultrasound bone transducers were fabricated using cortical bovine bone plates as piezoelectric devices. An ultrasound of 7.4 kPapeak-peak (i.e., the peak-to-peak pressure value) was used to irradiate the side surface of each bone plate. Electrical potentials induced in the bone plate were then measured by varying the wave propagation direction in the plate. The peak-to-peak values of these ultrasonically induced electrical potentials were found to vary with changes in the ultrasound propagation direction in the bone sample. The potential was maximized at an inclination of approximately 45° to the bone axis but was minimized around the three orthogonal directions. These maxima and minima ranged from 28 to 33 μVpeak-peak and from 5 to 12 μVpeak-peak, respectively. Additionally, our ultrasound results indicated a change in polarity due to bone anisotropy in the MHz range.

  10. Flow velocity vector fields by ultrasound particle imaging velocimetry: in vitro comparison with optical flow velocimetry.

    PubMed

    Westerdale, John; Belohlavek, Marek; McMahon, Eileen M; Jiamsripong, Panupong; Heys, Jeffrey J; Milano, Michele

    2011-02-01

    We performed an in vitro study to assess the precision and accuracy of particle imaging velocimetry (PIV) data acquired using a clinically available portable ultrasound system via comparison with stereo optical PIV. The performance of ultrasound PIV was compared with optical PIV on a benchmark problem involving vortical flow with a substantial out-of-plane velocity component. Optical PIV is capable of stereo image acquisition, thus measuring out-of-plane velocity components. This allowed us to quantify the accuracy of ultrasound PIV, which is limited to in-plane acquisition. The system performance was assessed by considering the instantaneous velocity fields without extracting velocity profiles by spatial averaging. Within the 2-dimensional correlation window, using 7 time-averaged frames, the vector fields were found to have correlations of 0.867 in the direction along the ultrasound beam and 0.738 in the perpendicular direction. Out-of-plane motion of greater than 20% of the in-plane vector magnitude was found to increase the SD by 11% for the vectors parallel to the ultrasound beam direction and 8.6% for the vectors perpendicular to the beam. The results show a close correlation and agreement of individual velocity vectors generated by ultrasound PIV compared with optical PIV. Most of the measurement distortions were caused by out-of-plane velocity components.

  11. Using ultrasound to quantify tongue shape and movement characteristics.

    PubMed

    Zharkova, Natalia

    2013-01-01

    Objective : Previous experimental studies have demonstrated abnormal lingual articulatory patterns characterizing cleft palate speech. Most articulatory information to date has been collected using electropalatography, which records the location and size of tongue-palate contact but not the tongue shape. The latter type of data can be provided by ultrasound. The present paper aims to describe ultrasound tongue imaging as a potential tool for quantitative analysis of tongue function in speakers with cleft palate. A description of the ultrasound technique as applied to analyzing tongue movements is given, followed by the requirements for quantitative analysis. Several measures are described, and example calculations are provided. Measures : Two measures aim to quantify overuse of tongue dorsum in cleft palate articulations. Crucially for potential clinical applications, these measures do not require head-to-transducer stabilization because both are based on a single tongue curve. The other three measures compare sets of tongue curves, with the aim to quantify the dynamics of tongue displacement, token-to-token variability in tongue position, and the extent of separation between tongue curves for different speech sounds. Conclusions : All measures can be used to compare tongue function in speakers with cleft palate before and after therapy, as well as to assess their performance against that in typical speakers and to help in selecting more effective treatments.

  12. Transient permeabilization of cell membranes by ultrasound-exposed microbubbles is related to formation of hydrogen peroxide.

    PubMed

    Juffermans, L J M; Dijkmans, P A; Musters, R J P; Visser, C A; Kamp, O

    2006-10-01

    In the present study, we addressed the interactions among ultrasound, microbubbles, and living cells as well as consequent arising bioeffects. We specifically investigated whether hydrogen peroxide (H(2)O(2)) is involved in transient permeabilization of cell membranes in vitro after ultrasound exposure at low diagnostic power, in the presence of stable oscillating microbubbles, by measuring the generation of H(2)O(2) and Ca(2+) influx. Ultrasound, in the absence or presence of SonoVue microbubbles, was applied to H9c2 cells at 1.8 MHz with a mechanical index (MI) of 0.1 or 0.5 during 10 s. This was repeated every minute, for a total of five times. The production of H(2)O(2) was measured intracellularly with CM-H(2)DCFDA. Cell membrane permeability was assessed by measuring real-time changes in intracellular Ca(2+) concentration with fluo-4 using live-cell fluorescence microscopy. Ultrasound, in the presence of microbubbles, caused a significant increase in intracellular H(2)O(2) at MI 0.1 of 50% and MI 0.5 of 110% compared with control (P < 0.001). Furthermore, we found increases in intracellular Ca(2+) levels at both MI 0.1 and MI 0.5 in the presence of microbubbles, which was not detected in the absence of extracellular Ca(2+). In addition, in the presence of catalase, Ca(2+) influx immediately following ultrasound exposure was completely blocked at MI 0.1 (P < 0.01) and reduced by 50% at MI 0.5 (P < 0.001). Finally, cell viability was not significantly affected, not even 24 h later. These results implicate a role for H(2)O(2) in transient permeabilization of cell membranes induced by ultrasound-exposed microbubbles.

  13. Assessment of a Novel Point-of-Care Ultrasound Curriculum's Effect on Competency Measures in Family Medicine Graduate Medical Education.

    PubMed

    Bornemann, Paul

    2017-06-01

    Point-of-care ultrasound has been shown to decrease the use of expensive diagnostic studies and improve quality outcome measures. Currently, there is a large desire for training in family medicine residencies, but very few programs have established curricula. We sought to develop a family medicine residency curriculum and evaluate it with tools we developed. We wanted our curriculum to be easy to adopt by other residency programs, even if they did not have many well-trained ultrasound faculty. We developed a curriculum in the form of a 4-week rotation in a family medicine residency program. It consisted of self-study videos, hands-on training, and image review. We followed residents in postgraduate years 1 to 3 over a 12-month period. We developed tools, including a knowledge exam, to test image interpretation and clinical decision making, an observed structured clinical exam to assess scanning skills, and a survey to assess perceptions of point-of-care ultrasound in family medicine. The assessments were administered before and after each resident's rotation. Seventeen residents completed the rotation. The average knowledge test score improved significantly, from 62 to 84%. The average observed structured clinical exam scores also improved significantly, from 41 to 85%. The average perception survey scores improved slightly from 4.4 to 4.6. We developed a point-of-care ultrasound curriculum for family medicine residency programs that improves measures of resident attitude, skills, and knowledge. This curriculum can be adopted by residency programs with few faculty members who are experienced in ultrasound. © 2017 by the American Institute of Ultrasound in Medicine.

  14. Imaging Performance of a Handheld Ultrasound System With Real-Time Computer-Aided Detection of Lumbar Spine Anatomy: A Feasibility Study.

    PubMed

    Tiouririne, Mohamed; Dixon, Adam J; Mauldin, F William; Scalzo, David; Krishnaraj, Arun

    2017-08-01

    The aim of this study was to evaluate the imaging performance of a handheld ultrasound system and the accuracy of an automated lumbar spine computer-aided detection (CAD) algorithm in the spines of human subjects. This study was approved by the institutional review board of the University of Virginia. The authors designed a handheld ultrasound system with enhanced bone image quality and fully automated CAD of lumbar spine anatomy. The imaging performance was evaluated by imaging the lumbar spines of 68 volunteers with body mass index between 18.5 and 48 kg/m. The accuracy, sensitivity, and specificity of the lumbar spine CAD algorithm were assessed by comparing the algorithm's results to ground-truth segmentations of neuraxial anatomy provided by radiologists. The lumbar spine CAD algorithm detected the epidural space with a sensitivity of 94.2% (95% confidence interval [CI], 85.1%-98.1%) and a specificity of 85.5% (95% CI, 81.7%-88.6%) and measured its depth with an error of approximately ±0.5 cm compared with measurements obtained manually from the 2-dimensional ultrasound images. The spine midline was detected with a sensitivity of 93.9% (95% CI, 85.8%-97.7%) and specificity of 91.3% (95% CI, 83.6%-96.9%), and its lateral position within the ultrasound image was measured with an error of approximately ±0.3 cm. The bone enhancement imaging mode produced images with 5.1- to 10-fold enhanced bone contrast when compared with a comparable handheld ultrasound imaging system. The results of this study demonstrate the feasibility of CAD for assisting with real-time interpretation of ultrasound images of the lumbar spine at the bedside.

  15. Comparison of axial length, anterior chamber depth and intraocular lens power between IOLMaster and ultrasound in normal, long and short eyes.

    PubMed

    Dong, Jing; Zhang, Yaqin; Zhang, Haining; Jia, Zhijie; Zhang, Suhua; Wang, Xiaogang

    2018-01-01

    To compare the axial length (AL), anterior chamber depth (ACD) and intraocular lens power (IOLP) of IOLMaster and Ultrasound in normal, long and short eyes. Seventy-four normal eyes (≥ 22 mm and ≤ 25 mm), 74 long eyes (> 25 mm) and 78 short eyes (< 22 mm) underwent AL and ACD measurements with both devices in the order of IOLMaster followed by Ultrasound. The IOLP were calculated using a free online LADAS IOL formula calculator. The difference in AL and IOLP between IOLMaster and Ultrasound was statistically significant when all three groups were combined. The difference in ACD between IOLMaster and Ultrasound was statistically significant in the normal group (P<0.001) and short eye group (P<0.001) but not the long eye group (P = 0.465). For the IOLP difference between IOLMaster and Ultrasound in the normal group, the percentage of IOLP differences <|0.5|D, ≥|0.5|D<|0.75|D, ≥|0.75|D<|1.0|D, and ≥|1.0|D were 90.5%, 8.1%, 1.4% and 0%, respectively. For the long eye group, they were 90.5%, 5.4%, 4.1% and 0%, respectively. For the short eye group, they were 61.5%, 23.1%, 10.3%, and 5.1%, respectively. IOLMaster and Ultrasound have statistically significant differences in AL measurements and IOLP (using LADAS formula) for normal, long eye and short eye. The two instruments agree regarding ACD measurements for the long eye group, but differ for the normal and short eye groups. Moreover, the high percentage of IOLP differences greater than |0.5|D in the short eye group is noteworthy.

  16. Spectrophotometer and ultrasound evaluation of late toxicity following breast-cancer radiotherapy

    PubMed Central

    Yoshida, E. J.; Chen, H.; Torres, M. A.; Curran, W. J.; Liu, T.

    2011-01-01

    Purpose: Radiation-induced normal-tissue toxicities are common, complex, and distressing side effects that affect 90% of patients receiving breast-cancer radiotherapy and 40% of patients post radiotherapy. In this study, the authors investigated the use of spectrophotometry and ultrasound to quantitatively measure radiation-induced skin discoloration and subcutaneous-tissue fibrosis. The study’s purpose is to determine whether skin discoloration correlates with the development of fibrosis in breast-cancer radiotherapy.Methods : Eighteen breast-cancer patients were enrolled in our initial study. All patients were previously treated with a standard course of radiation, and the median follow-up time was 22 months. The treated and untreated breasts were scanned with a spectrophotometer and an ultrasound. Two spectrophotometer parameters—melanin and erythema indices—were used to quantitatively assess skin discoloration. Two ultrasound parameters—skin thickness and Pearson coefficient of the hypodermis—were used to quantitatively assess severity of fibrosis. These measurements were correlated with clinical assessments (RTOG late morbidity scores).Results: Significant measurement differences between the treated and contralateral breasts were observed among all patients: 27.3% mean increase in skin thickness (p < 0.001), 34.1% mean decrease in Pearson coefficient (p < 0.001), 27.3% mean increase in melanin (p < 0.001), and 22.6% mean increase in erythema (p < 0.001). All parameters except skin thickness correlated with RTOG scores. A moderate correlation exists between melanin and erythema; however, spectrophotometer parameters do not correlate with ultrasound parameters.Conclusions: Spectrophotometry and quantitative ultrasound are objective tools that assess radiation-induced tissue injury. Spectrophotometer parameters did not correlate with those of quantitative ultrasound suggesting that skin discoloration cannot be used as a marker for subcutaneous fibrosis. These tools may prove useful for the reduction of radiation morbidities and improvement of patient quality of life. PMID:21992389

  17. Spectrophotometer and ultrasound evaluation of late toxicity following breast-cancer radiotherapy.

    PubMed

    Yoshida, E J; Chen, H; Torres, M A; Curran, W J; Liu, T

    2011-10-01

    Radiation-induced normal-tissue toxicities are common, complex, and distressing side effects that affect 90% of patients receiving breast-cancer radiotherapy and 40% of patients post radiotherapy. In this study, the authors investigated the use of spectrophotometry and ultrasound to quantitatively measure radiation-induced skin discoloration and subcutaneous-tissue fibrosis. The study's purpose is to determine whether skin discoloration correlates with the development of fibrosis in breast-cancer radiotherapy. Eighteen breast-cancer patients were enrolled in our initial study. All patients were previously treated with a standard course of radiation, and the median follow-up time was 22 months. The treated and untreated breasts were scanned with a spectrophotometer and an ultrasound. Two spectrophotometer parameters-melanin and erythema indices-were used to quantitatively assess skin discoloration. Two ultrasound parameters-skin thickness and Pearson coefficient of the hypodermis-were used to quantitatively assess severity of fibrosis. These measurements were correlated with clinical assessments (RTOG late morbidity scores). Significant measurement differences between the treated and contralateral breasts were observed among all patients: 27.3% mean increase in skin thickness (p < 0.001), 34.1% mean decrease in Pearson coefficient (p < 0.001), 27.3% mean increase in melanin (p < 0.001), and 22.6% mean increase in erythema (p < 0.001). All parameters except skin thickness correlated with RTOG scores. A moderate correlation exists between melanin and erythema; however, spectrophotometer parameters do not correlate with ultrasound parameters. Spectrophotometry and quantitative ultrasound are objective tools that assess radiation-induced tissue injury. Spectrophotometer parameters did not correlate with those of quantitative ultrasound suggesting that skin discoloration cannot be used as a marker for subcutaneous fibrosis. These tools may prove useful for the reduction of radiation morbidities and improvement of patient quality of life.

  18. Cumulative phase delay imaging - A new contrast enhanced ultrasound modality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demi, Libertario, E-mail: l.demi@tue.nl; Sloun, Ruud J. G. van; Mischi, Massimo

    Recently, a new acoustic marker for ultrasound contrast agents (UCAs) has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental pressure wave field components is in fact observable for ultrasound propagating through UCAs. This phenomenon is absent in the case of tissue nonlinearity and is dependent on insonating pressure and frequency, UCA concentration, and propagation path length through UCAs. In this paper, ultrasound images based on this marker are presented. The ULA-OP research platform, in combination with a LA332 linear array probe (Esaote, Firenze Italy), were used to image a gelatin phantom containing a PVC platemore » (used as a reflector) and a cylindrical cavity measuring 7 mm in diameter (placed in between the observation point and the PVC plate). The cavity contained a 240 µL/L SonoVueO{sup ®} UCA concentration. Two insonating frequencies (3 MHz and 2.5 MHz) were used to scan the gelatine phantom. A mechanical index MI = 0.07, measured in water at the cavity location with a HGL-0400 hydrophone (Onda, Sunnyvale, CA), was utilized. Processing the ultrasound signals backscattered from the plate, ultrasound images were generated in a tomographic fashion using the filtered back-projection method. As already observed in previous studies, significantly higher CPD values are measured when imaging at a frequency of 2.5 MHz, as compared to imaging at 3 MHz. In conclusion, these results confirm the applicability of the discussed CPD as a marker for contrast imaging. Comparison with standard contrast-enhanced ultrasound imaging modalities will be the focus of future work.« less

  19. Cassava flour slurry as a low-cost alternative to commercially available gel for obstetrical ultrasound: a blinded non-inferiority trial comparison of image quality.

    PubMed

    Aziz, A; Dar, P; Hughes, F; Solorzano, C; Muller, M M; Salmon, C; Salmon, M; Benfield, N

    2018-01-12

    To evaluate the quality of ultrasound images obtained with cassava flour slurry (CFS) compared with conventional gel in order to determine objectively whether CFS could be a true low-cost alternative. Blinded non-inferiority trial. Obstetrical ultrasound unit in an academic medical centre. Women with a singleton pregnancy, undergoing anatomy ultrasounds. Thirty pregnant women had standard biometry measures obtained with CFS and conventional gel. Images were compared side-by-side in random order by two blinded sonologists and rated for image resolution, detail and total image quality using a 10-cm visual analogue scale. Ratings were compared using paired t-tests. Participant and sonographer experience was measured using five-point Likert scales. Image resolution, detail, and total image quality. Participant experience of gel regarding irritation, messiness, and ease of removal. We found no significant difference between perceived image quality obtained with CFS (mean = 6.2, SD = 1.2) and commercial gel (mean = 6.4, SD = 1.2) [t (28) = -1.1; P = 0.3]. Images were not rated significantly differently for either reviewer in any measure, any standardized image or any view of a specific anatomic structure. All five sonographers rated CFS as easy to obtain clear images and easy for patient and machine cleanup. Only one participant reported itching with CFS. CFS produces comparable image quality to commercial ultrasound gel. The dissemination of these results and the simple CFS recipe could significantly increase access to ultrasound for screening, monitoring and diagnostic purposes in resource-limited settings. This study was internally funded by our department. Low-cost homemade cassava flour slurry creates images equal to commercial ultrasound gel, improving access. © 2018 Royal College of Obstetricians and Gynaecologists.

  20. Endometriosis on the uterosacral ligament: a marker of ureteral involvement.

    PubMed

    Lima, Raquel; Abdalla-Ribeiro, Helizabet; Nicola, Ana Luisa; Eras, Aline; Lobao, Anna; Ribeiro, Paulo Ayroza

    2017-06-01

    To evaluate the association between ultrasound measurements of endometriosis nodules on the uterosacral ligament (USL) and the risk of ureteral involvement, as well as to assess whether associations with other ultrasound variables increase the sensitivity and specificity of the diagnosis of ureteral endometriosis. Cross-sectional, observational study. University hospital. Four hundred sixty-three women with deep infiltrating endometriosis (DIE). Patients diagnosed with DIE underwent transvaginal ultrasound endometriosis mapping before laparoscopic surgery for full excision of endometriotic lesions. Preoperative ultrasound evaluation, intra- and postoperative assessment, and anatomopathologic confirmation. Of the 463 patients who participated in the study, 111 (23.97%) presented with endometriosis nodules with USL involvement on ultrasound examination conducted by a single radiologist. Receiver operating characteristic curve analysis showed that the size of the USL nodule had a statistically significant association with ipsilateral ureteral involvement. After multivariate logistic regression, the variables reduction in ovarian mobility, ureteral changes on the right side, size of the USL nodule, and presence of endometrioma on the left side were significantly associated with a ureteral endometriosis nodule. However, the combined result for the variables cited was worse than the diagnostic analysis using only the size of the USL nodule. Uterosacral ligament nodules with ultrasound measurements of 1.75 cm and 1.95 cm on the right and left sides, respectively, significantly increase the risk of ureteral involvement. Even with the association of other ultrasound variables, there was no improvement in sensitivity. Therefore, USL nodule size is a key measure for therapeutic planning and consent of the patient. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  1. A novel fluoride anion modified gelatin nanogel system for ultrasound-triggered drug release.

    PubMed

    Wu, Daocheng; Wan, Mingxi

    2008-01-01

    Controlled drug release, especially tumor-targeted drug release, remains a great challenge. Here, we prepare a novel fluoride anion-modified gelatin nanogel system and investigate its characteristics of ultrasound-triggered drug release. Adriamycin gelatin nanogel modified with fluoride anion (ADM-GNMF) was prepared by a modified co-precipitation method with fluoride anion and sodium sulfate. The loading and encapsulation efficiency of the anti-neoplastic agent adriamycin (ADM) were measured by high performance liquid chromatography (HPLC). The size and shape of ADM-GNMF were determined by electron microscopy and photo-correlation spectroscopy. The size distribution and drug release efficiency of ADM-GNMF, before and after sonication, were measured by two designed measuring devices that consisted of either a submicron particle size analyzer and an ultrasound generator as well as an ultrasound generator, automatic sampler, and HPLC. The ADM-GNMF was stable in solution with an average diameter of 46+/-12 nm; the encapsulation and loading efficiency of adriamycin were 87.2% and 6.38%, respectively. The ultrasound-triggered drug release and size change were most efficient at a frequency of 20 kHz, power density of 0.4w/cm2, and a 1~2 min duration. Under this ultrasound-triggered condition, 51.5% of drug in ADM-GNMF was released within 1~2 min, while the size of ADM-GNMF changed from 46 +/- 12 nm to 1212 +/- 35 nm within 1~2 min of sonication and restored to its previous size in 2~3 min after the ultrasound stopped. In contrast, 8.2% of drug in ADM-GNMF was released within 2~3 min without sonication, and only negligible size changes were found. The ADM-GNMF system efficiently released the encompassed drug in response to ultrasound, offering a novel and promising controlled drug release system for targeted therapy for cancer or other diseases.

  2. A high-frequency transimpedance amplifier for CMOS integrated 2D CMUT array towards 3D ultrasound imaging.

    PubMed

    Huang, Xiwei; Cheong, Jia Hao; Cha, Hyouk-Kyu; Yu, Hongbin; Je, Minkyu; Yu, Hao

    2013-01-01

    One transimpedance amplifier based CMOS analog front-end (AFE) receiver is integrated with capacitive micromachined ultrasound transducers (CMUTs) towards high frequency 3D ultrasound imaging. Considering device specifications from CMUTs, the TIA is designed to amplify received signals from 17.5MHz to 52.5MHz with center frequency at 35MHz; and is fabricated in Global Foundry 0.18-µm 30-V high-voltage (HV) Bipolar/CMOS/DMOS (BCD) process. The measurement results show that the TIA with power-supply 6V can reach transimpedance gain of 61dBΩ and operating frequency from 17.5MHz to 100MHz. The measured input referred noise is 27.5pA/√Hz. Acoustic pulse-echo testing is conducted to demonstrate the receiving functionality of the designed 3D ultrasound imaging system.

  3. An Imaging Model Incorporating Ultrasonic Transducer Properties for Three-Dimensional Optoacoustic Tomography

    PubMed Central

    Wang, Kun; Ermilov, Sergey A.; Su, Richard; Brecht, Hans-Peter; Oraevsky, Alexander A.; Anastasio, Mark A.

    2010-01-01

    Optoacoustic Tomography (OAT) is a hybrid imaging modality that combines the advantages of optical and ultrasound imaging. Most existing reconstruction algorithms for OAT assume that the ultrasound transducers employed to record the measurement data are point-like. When transducers with large detecting areas and/or compact measurement geometries are utilized, this assumption can result in conspicuous image blurring and distortions in the reconstructed images. In this work, a new OAT imaging model that incorporates the spatial and temporal responses of an ultrasound transducer is introduced. A discrete form of the imaging model is implemented and its numerical properties are investigated. We demonstrate that use of the imaging model in an iterative reconstruction method can improve the spatial resolution of the optoacoustic images as compared to those reconstructed assuming point-like ultrasound transducers. PMID:20813634

  4. Ultrasound Imaging Velocimetry: a review

    NASA Astrophysics Data System (ADS)

    Poelma, Christian

    2017-01-01

    Whole-field velocity measurement techniques based on ultrasound imaging (a.k.a. `ultrasound imaging velocimetry' or `echo-PIV') have received significant attention from the fluid mechanics community in the last decade, in particular because of their ability to obtain velocity fields in flows that elude characterisation by conventional optical methods. In this review, an overview is given of the history, typical components and challenges of these techniques. The basic principles of ultrasound image formation are summarised, as well as various techniques to estimate flow velocities; the emphasis is on correlation-based techniques. Examples are given for a wide range of applications, including in vivo cardiovascular flow measurements, the characterisation of sediment transport and the characterisation of complex non-Newtonian fluids. To conclude, future opportunities are identified. These encompass not just optimisation of the accuracy and dynamic range, but also extension to other application areas.

  5. Model based inversion of ultrasound data in composites

    NASA Astrophysics Data System (ADS)

    Roberts, R. A.

    2018-04-01

    Work is reported on model-based defect characterization in CFRP composites. The work utilizes computational models of ultrasound interaction with defects in composites, to determine 1) the measured signal dependence on material and defect properties (forward problem), and 2) an assessment of defect properties from analysis of measured ultrasound signals (inverse problem). Work is reported on model implementation for inspection of CFRP laminates containing multi-ply impact-induced delamination, in laminates displaying irregular surface geometry (roughness), as well as internal elastic heterogeneity (varying fiber density, porosity). Inversion of ultrasound data is demonstrated showing the quantitative extraction of delamination geometry and surface transmissivity. Additionally, data inversion is demonstrated for determination of surface roughness and internal heterogeneity, and the influence of these features on delamination characterization is examined. Estimation of porosity volume fraction is demonstrated when internal heterogeneity is attributed to porosity.

  6. Localization of the transverse processes in ultrasound for spinal curvature measurement

    NASA Astrophysics Data System (ADS)

    Kamali, Shahrokh; Ungi, Tamas; Lasso, Andras; Yan, Christina; Lougheed, Matthew; Fichtinger, Gabor

    2017-03-01

    PURPOSE: In scoliosis monitoring, tracked ultrasound has been explored as a safer imaging alternative to traditional radiography. The use of ultrasound in spinal curvature measurement requires identification of vertebral landmarks such as transverse processes, but as bones have reduced visibility in ultrasound imaging, skeletal landmarks are typically segmented manually, which is an exceedingly laborious and long process. We propose an automatic algorithm to segment and localize the surface of bony areas in the transverse process for scoliosis in ultrasound. METHODS: The algorithm uses cascade of filters to remove low intensity pixels, smooth the image and detect bony edges. By applying first differentiation, candidate bony areas are classified. The average intensity under each area has a correlation with the possibility of a shadow, and areas with strong shadow are kept for bone segmentation. The segmented images are used to reconstruct a 3-D volume to represent the whole spinal structure around the transverse processes. RESULTS: A comparison between the manual ground truth segmentation and the automatic algorithm in 50 images showed 0.17 mm average difference. The time to process all 1,938 images was about 37 Sec. (0.0191 Sec. / Image), including reading the original sequence file. CONCLUSION: Initial experiments showed the algorithm to be sufficiently accurate and fast for segmentation transverse processes in ultrasound for spinal curvature measurement. An extensive evaluation of the method is currently underway on images from a larger patient cohort and using multiple observers in producing ground truth segmentation.

  7. Ultrasonic Measurement Of Silicon-Growth Interface

    NASA Technical Reports Server (NTRS)

    Heyser, Richard C.

    1988-01-01

    Position of interface between silicon melt and growing ribbon of silicon measured with aid of reflected ultrasound, according to proposal. Reflections reveal characteristics of ribbon and melt. Ultrasound pulses travel through rods to silicon ribbon growing by dendritic-web process. Rods return reflections of pulses to sonic transducers. Isolate transducers thermally, but not acoustically, from hot silicon melt.

  8. Office-based ultrasound screening for abdominal aortic aneurysm.

    PubMed

    Blois, Beau

    2012-03-01

    To assess the efficacy of an office-based, family physician–administered ultrasound examination to screen for abdominal aortic aneurysm (AAA). A prospective observational study. Consecutive patients were approached by nonphysician staff. Rural family physician offices in Grand Forks and Revelstoke, BC. The Canadian Society for Vascular Surgery screening recommendations for AAA were used to help select patients who were at risk of AAA. All men 65 years of age or older were included. Women 65 years of age or older were included if they were current smokers or had diabetes, hypertension, a history of coronary artery disease, or a family history of AAA. A focused “quick screen”, which measured the maximal diameter of the abdominal aorta using point-of-care ultrasound technology, was performed in the office by a resident physician trained in emergency ultrasonography. Each patient was then booked for a criterion standard scan (i.e., a conventional abdominal ultrasound scan performed by a technician and interpreted by a radiologist). The maximal abdominal aortic diameter measured by ultrasound in the office was compared with that measured by the criterion standard method. The time to screen each patient was recorded. Forty-five patients were included in data analysis; 62% of participants were men. The mean age was 73 years. The mean pairwise difference between the office-based ultrasound scan and the criterion standard scan was not statistically significant. The mean absolute difference between the 2 scans was 0.20 cm (95% CI 0.15 to 0.25 cm). Correlation between the scans was 0.81. The office-based ultrasound scan had both a sensitivity and a specificity of 100%. The mean time to screen each patient was 212 seconds (95% CI 194 to 230 seconds). Abdominal aortic aneurysm screening can be safely performed in the office by family physicians who are trained to use point-of- care ultrasound technology. The screening test can be completed within the time constraints of a busy family practice office visit. The benefit of screening for AAA in rural patients might be great if local diagnostic ultrasound service and emergent transport to a vascular surgeon are not available.

  9. Inter-rater reliability of postnatal ultrasound interpretation in infants with congenital hydronephrosis.

    PubMed

    Vemulakonda, V M; Wilcox, D T; Torok, M R; Hou, A; Campbell, J B; Kempe, A

    2015-09-01

    The most common measurements of hydronephrosis are the anterior-posterior (AP) diameter and the Society for Fetal Urology (SFU) grading systems. To date, the inter-rater reliability (IRR) of these measures has not been compared in the postnatal period. The objectives of this study were to compare the IRR of the AP diameter and the SFU grading system in infants and to determine whether ultrasound findings other than pelvicalyceal dilation are associated with higher SFU grades. Initial postnatal ultrasounds of infants seen from February 1, 2011, to January 31, 2012, with a primary diagnosis of congenital hydronephrosis were included for review. Ultrasound images were de-identified and reviewed by four pediatric urologists. IRR was calculated using the intraclass correlation (ICC) measure. A paired t test was used to compare ICCs. Associations between SFU grade and other ultrasound findings were tested using Chi-square or Fisher's exact tests. A total of 112 kidneys in 56 patients were reviewed. IRR of the SFU grading system was high (right kidney ICC = 0.83, left kidney ICC = 0.85); however, IRR of AP diameter measurement was higher (right kidney ICC = 00.97, left kidney ICC = 0.98; p < 0.001). Renal asymmetry (p < 0.001), echogenicity (p < 0.001), and parenchymal thinning (p < 0.001) were significantly associated with SFU grade 4 hydronephrosis on bivariable and multivariable analysis. The SFU grading system is associated with excellent IRR, although the AP diameter appears to have higher IRR. Physicians may consider ultrasound findings that are not explicitly included in the SFU system when assigning hydronephrosis grade, which may lead to variability in use of this classification system.

  10. ULTRASOUND-ENHANCED rt-PA THROMBOLYSIS IN AN EX VIVO PORCINE CAROTID ARTERY MODEL

    PubMed Central

    Hitchcock, Kathryn E.; Ivancevich, Nikolas M.; Haworth, Kevin J.; Caudell Stamper, Danielle N.; Vela, Deborah C.; Sutton, Jonathan T.; Pyne-Geithman, Gail J.; Holland, Christy K.

    2014-01-01

    Ultrasound is known to enhance recombinant tissue plasminogen activator (rt-PA) thrombolysis. In this study, occlusive porcine whole blood clots were placed in flowing plasma within living porcine carotid arteries. Ultrasonically induced stable cavitation was investigated as an adjuvant to rt-PA thrombolysis. Aged, retracted clots were exposed to plasma alone, plasma containing rt-PA (7.1 ± 3.8 μg/mL) or plasma with rt-PA and Definity® ultrasound contrast agent (0.79 ± 0.47 μL/mL) with and without 120-kHz continuous wave ultrasound at a peak-to-peak pressure amplitude of 0.44 MPa. An insonation scheme was formulated to promote and maximize stable cavitation activity by incorporating ultrasound quiescent periods that allowed for the inflow of Definity®-rich plasma. Cavitation was measured with a passive acoustic detector throughout thrombolytic treatment. Thrombolytic efficacy was measured by comparing clot mass before and after treatment. Average mass loss for clots exposed to rt-PA and Definity® without ultrasound (n = 7) was 34%, and with ultrasound (n = 6) was 83%, which constituted a significant difference (p < 0.0001). Without Definity® there was no thrombolytic enhancement by ultrasound exposure alone at this pressure amplitude (n = 5, p < 0.0001). In the low-oxygen environment of the ischemic artery, significant loss of endothelium occurred but no correlation was observed between arterial tissue damage and treatment type. Acoustic stable cavitation nucleated by an infusion of Definity® enhances rt-PA thrombolysis without apparent treatment-related damage in this ex vivo porcine carotid artery model. PMID:21723448

  11. Feasibility of a focused ultrasound training programme for medical undergraduate students.

    PubMed

    Wong, Ivan; Jayatilleke, Thilina; Kendall, Richard; Atkinson, Paul

    2011-03-01

    Although ultrasound is a core skill for many clinical specialties, UK medical schools are not currently required to teach this skill. The College of Emergency Medicine (CEM) has championed the use of ultrasound to answer focused clinical questions in emergency settings. We have designed and piloted an ultrasound training course for undergraduate medical students addressing one important indication: ultrasound assessment of the abdominal aorta. Fourteen clinical students, who had no prior experience of using ultrasound, received focused ultrasound training in the form of didactic instruction, a short bedside practical workshop and self-directed learning over a 20-day period. At the end of this period, the students were assessed by a structured viva and an observed structured clinical examination (OSCE) used for accreditation by the CEM. The primary endpoint was the number of students who passed the assessment. The secondary endpoint was the accuracy of the students' anatomical measurements. Thirteen of the 14 (93%) students completed the training and assessment. Eight of the 13 (62%) students passed both the viva and OSCE, and were deemed to have achieved the CEM standard. The measurements by the competent students were not statistically different from those of experienced practitioners. We have shown for the first time that it is feasible to train inexperienced undergraduate students to scan the abdominal aorta to a professional standard using a focused training course. It is time for the medical education community to address whether focused ultrasound training should accompany traditional clinical skills, such as using a stethoscope, in UK medical school curricula. © Blackwell Publishing Ltd 2011.

  12. Augmentation of limb perfusion and reversal of tissue ischemia produced by ultrasound-mediated microbubble cavitation.

    PubMed

    Belcik, J Todd; Mott, Brian H; Xie, Aris; Zhao, Yan; Kim, Sajeevani; Lindner, Nathan J; Ammi, Azzdine; Linden, Joel M; Lindner, Jonathan R

    2015-04-01

    Ultrasound can increase tissue blood flow, in part, through the intravascular shear produced by oscillatory pressure fluctuations. We hypothesized that ultrasound-mediated increases in perfusion can be augmented by microbubble contrast agents that undergo ultrasound-mediated cavitation and sought to characterize the biological mediators. Contrast ultrasound perfusion imaging of hindlimb skeletal muscle and femoral artery diameter measurement were performed in nonischemic mice after unilateral 10-minute exposure to intermittent ultrasound alone (mechanical index, 0.6 or 1.3) or ultrasound with lipid microbubbles (2×10(8) IV). Studies were also performed after inhibiting shear- or pressure-dependent vasodilator pathways, and in mice with hindlimb ischemia. Ultrasound alone produced a 2-fold increase (P<0.05) in muscle perfusion regardless of ultrasound power. Ultrasound-mediated augmentation in flow was greater with microbubbles (3- and 10-fold higher than control for mechanical index 0.6 and 1.3, respectively; P<0.05), as was femoral artery dilation. Inhibition of endothelial nitric oxide synthase attenuated flow augmentation produced by ultrasound and microbubbles by 70% (P<0.01), whereas inhibition of adenosine-A2a receptors and epoxyeicosatrienoic acids had minimal effect. Limb nitric oxide production and muscle phospho-endothelial nitric oxide synthase increased in a stepwise fashion by ultrasound and ultrasound with microbubbles. In mice with unilateral hindlimb ischemia (40%-50% reduction in flow), ultrasound (mechanical index, 1.3) with microbubbles increased perfusion by 2-fold to a degree that was greater than the control nonischemic limb. Increases in muscle blood flow during high-power ultrasound are markedly amplified by the intravascular presence of microbubbles and can reverse tissue ischemia. These effects are most likely mediated by cavitation-related increases in shear and activation of endothelial nitric oxide synthase. © 2015 American Heart Association, Inc.

  13. AUGMENTATION OF LIMB PERFUSION AND REVERSAL OF TISSUE ISCHEMIA PRODUCED BY ULTRASOUND-MEDIATED MICROBUBBLE CAVITATION

    PubMed Central

    Belcik, J. Todd; Mott, Brian H.; Xie, Aris; Zhao, Yan; Kim, Sajeevani; Lindner, Nathan J.; Ammi, Azzdine; Linden, Joel M.; Lindner, Jonathan R.

    2015-01-01

    Background Ultrasound can increase tissue blood flow in part through the intravascular shear produced by oscillatory pressure fluctuations. We hypothesized that ultrasound-mediated increases in perfusion can be augmented by microbubble contrast agents that undergo ultrasound-mediated cavitation, and sought to characterize the biologic mediators. Methods and Results Contrast ultrasound perfusion imaging of hindlimb skeletal muscle and femoral artery diameter measurement were performed in non-ischemic mice after unilateral 10 min exposure to intermittent ultrasound alone (mechanical index [MI] 0.6 or 1.3) or ultrasound with lipid microbubbles (2×108 I.V.). Studies were also performed after inhibiting shear- or pressure-dependent vasodilator pathways, and in mice with hindlimb ischemia. Ultrasound alone produced a 2-fold increase (p<0.05) in muscle perfusion regardless of ultrasound power. Ultrasound-mediated augmentation in flow was greater with microbubbles (3-fold and 10-fold higher than control for MI 0.6 and 1.3, respectively; p<0.05), as was femoral artery dilation. Inhibition of endothelial nitric oxide synthase (eNOS) attenuated flow augmentation produced by ultrasound and microbubbles by 70% (p<0.01), whereas inhibition of adenosine-A2a receptors and epoxyeicosatrienoic acids had minimal effect. Limb nitric oxide (NO) production and muscle phospho-eNOS increased in a stepwise fashion by ultrasound and ultrasound with microbubbles. In mice with unilateral hindlimb ischemia (40–50% reduction in flow), ultrasound (MI 1.3) with microbubbles increased perfusion by 2-fold to a degree that was greater than the control non-ischemic limb. Conclusions Increases in muscle blood flow during high-power ultrasound are markedly amplified by the intravascular presence of microbubbles and can reverse tissue ischemia. These effects are most likely mediated by cavitation-related increases in shear and activation of eNOS. PMID:25834183

  14. Measurement of carotid pulse wave velocity using ultrafast ultrasound imaging in hypertensive patients.

    PubMed

    Li, Xiaopeng; Jiang, Jue; Zhang, Hong; Wang, Hua; Han, Donggang; Zhou, Qi; Gao, Ya; Yu, Shanshan; Qi, Yanhua

    2017-04-01

    The study aimed to assess the utility of ultrafast ultrasound imaging for evaluation of carotid pulse wave velocity (PWV) in newly diagnosed hypertension patients. This prospective non-randomized study enrolled 90 hypertensive patients in our hospital from September to December 2013 as a hypertension group. An age- and sex-matched cohort of 50 healthy adults in our hospital from September to December 2013 was also included in the study as a control group. Carotid PWV at the beginning and at the end of systole (PWV-BS and PWV-ES, respectively) and intima-media thickness (IMT) were measured by ultrafast ultrasound imaging technology. The associations of PWV-BS, PWV-ES, and IMT with hypertension stage were evaluated by Spearman correlation analysis. PWV-BS and PWV-ES in the hypertension group were significantly elevated compared with those in control group. Different hypertension stages significantly differed in PWV-BS and PWV-ES. PWV-BS and PWV-ES appeared to increase with the hypertension stage. Moreover, IMT, PWV-BS, and PWV-ES were positively correlated with the hypertension stage in hypertensive patients. Ultrafast ultrasound imaging was a valid and convenient method for the measurement of carotid PWV in hypertensive patients. Ultrafast ultrasound imaging might be recommended as a promising alternative method for early detection of arterial abnormality in clinical practice.

  15. Ultrasound cavitation versus cryolipolysis for non-invasive body contouring.

    PubMed

    Mahmoud ELdesoky, Mohamed Taher; Mohamed Abutaleb, Enas ELsayed; Mohamed Mousa, Gihan Samir

    2015-08-24

    The demand for non-surgical and non-invasive devices is continuous and increasing. Such devices have gradually gained ground in the reduction of localised fat and the improvement of body contouring. The study aimed to compare the effects of ultrasound cavitation and cryolipolysis on localised abdominal fat. In total, 60 participants with a body mass index (BMI) over 30 kg/m 2 , whose age ranged between 25 and 45 years, were included. The participants were randomly assigned to three groups of 20 each, using ultrasound cavitation and diet, cryolipolysis and diet, and diet only (the control group), respectively. Measures were bodyweight, BMI, waist circumference and suprailiac skinfold were measured at the beginning of the study and 2 months later. The three groups showed significant improvements in all measured variables after 2 months. There was no statistically significant difference in bodyweight or in BMI among the groups after treatment. However, the groups using ultrasound cavitation and cryolipolysis showed better post-treatment improvement than the diet-only group in waist circumference and suprailiac skinfold. There was no statistically significant difference post-treatment between the cavitation and cryolipolysis groups in waist circumference or suprailiac skinfold. Both ultrasound cavitation and cryolipolysis are safe and effective for the reduction of abdominal fat thickness and for abdominal contouring. © 2015 The Australasian College of Dermatologists.

  16. Evaluation of contrast-enhanced power Doppler imaging for measuring blood flow

    NASA Astrophysics Data System (ADS)

    Ansaloni, Sara; Arger, Peter H.; Cary, Ted W.; Sehgal, Chandra M.

    2005-04-01

    Power Doppler ultrasound enhanced by microbubble contrast agent has been used to image tissue vascularity and blood flow for the assessment of antivascular therapies. We have proposed a multigating technique that measures bubble concentration as a function of ultrasound exposure for deriving tumor blood flow and vascularity.1 Techniques using ultrasound contrast agent are known to be sensitive to the choice of imaging parameters like mechanical index and tissue attenuation. In this paper, the roles of mechanical index (MI) and tissue attenuation were evaluated experimentally in a rubber tubing flow phantom connected to a mixing chamber and a variable speed pump. The contrast was injected in the mixing chamber and the flow rate was measured using power Doppler imaging. The measurements were repeated at different MIs (0.1 to 1.3), and at different levels of attenuation, obtained with solutions of glycerol-water (10-20%). True flow was measured by collecting liquid flowing out of the phantom over a fixed duration. At low MI (<0.5), the grayscale and Doppler signal were weak, making these images unsuitable for analysis. At higher MI (> 0.8), there was a well-defined enhancement by contrast agent resulting in reproducible flow measurements at variable MIs. A balance between the number of bubbles destroyed and the echo they generate must be achieved for optimal imaging. The increased attenuation of ultrasound by the overlying medium did not influence the flow measurements.

  17. Measurement of the ultrasound attenuation and dispersion in whole human blood and its components from 0-70 MHz.

    PubMed

    Treeby, Bradley E; Zhang, Edward Z; Thomas, Alison S; Cox, Ben T

    2011-02-01

    The ultrasound attenuation coefficient and dispersion from 0-70 MHz in whole human blood and its components (red blood cells and plasma) at 37°C is reported. The measurements are made using a fixed path substitution technique that exploits optical mechanisms for the generation and detection of ultrasound. This allows the measurements to cover a broad frequency range with a single source and receiver. The measured attenuation coefficient and dispersion in solutions of red blood cells and physiological saline for total haemoglobin concentrations of 10, 15 and 20 g/dL are presented. The attenuation coefficient and dispersion in whole human blood taken from four healthy volunteers by venipuncture is also reported. The power law dependence of the attenuation coefficient is shown to vary across the measured frequency range. This is due to the varying frequency dependence of the different mechanisms responsible for the attenuation. The attenuation coefficient measured at high frequencies is found to be significantly higher than that predicted by historical power law parameters. A review of the attenuation mechanisms in blood along with previously reported experimental measurements is given. Values for the sound speed and density in the tested samples are also presented. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  18. A comparison between the patella and the calcaneus using ultrasound velocity and attenuation as predictors of bone mineral density

    NASA Astrophysics Data System (ADS)

    Han, S. M.; Davis, J.

    1997-10-01

    The bone mineral density (BMD), ultrasound velocity (UV) and attenuation were examined in sixteen matched sets of human patellae and calcanei. For the sixteen calcanei, BMD was strongly correlated with all ultrasound parameters. Calcaneal UV appeared to be inferior to attenuation in the ability to predict BMD. For the sixteen patellae, the average UV was found to be greater in the superior/inferior direction than in the anterior/posterior and medial/lateral directions. It was found that patella BMD was significantly correlated with each of three directional ultrasound velocities. The relationship between BMD and ultrasound attenuation parameters was not significant in the patella. A comparative study of the two different bone sets demonstrated that the BMDs of the patella and calcaneus were significantly correlated with each other. Ultrasound velocity of calcaneus, measured in the medial/lateral direction, was not significantly associated with any of three directional ultrasound velocities in the patella. Similarly, ultrasound attenuation parameters of calcaneus were not significantly correlated with those of patella. The present study also demonstrated evidence that when predicting BMDs at their respective sites using ultrasound, the calcaneus appeared to be superior to the patella.

  19. Implementation of a 4-Year Point-of-Care Ultrasound Curriculum in a Liaison Committee on Medical Education-Accredited US Medical School.

    PubMed

    Wilson, Sean P; Mefford, Jason M; Lahham, Shadi; Lotfipour, Shahram; Subeh, Mohammad; Maldonado, Gracie; Spann, Sophie; Fox, John C

    2017-02-01

    The established benefits of point-of-care ultrasound have given rise to multiple new and innovative curriculums to incorporate ultrasound teaching into medical education. This study sought to measure the educational success of a comprehensive and integrated 4-year point-of-care ultrasound curriculum. We integrated a curriculum consisting of traditional didactics combined with asynchronous learning modules and hands-on practice on live models with skilled sonographers into all 4 years of education at a Liaison Committee on Medical Education-accredited US Medical School. Each graduating student was administered an exit examination with 48 questions that corresponded to ultrasound milestones. Ninety-five percent (n = 84) of fourth-year medical students completed the exit examination. The mean score was 79.5% (SD, 10.2%), with mean scores on the ultrasound physics and anatomy subsections being 77.1% (SD, 11.0%) and 85.9% (SD, 21.0%), respectively. A comprehensive 4-year point-of-care ultrasound curriculum integrated into medical school may successfully equip graduating medical students with a fundamental understanding of ultrasound physics, anatomy, and disease recognition. © 2016 by the American Institute of Ultrasound in Medicine.

  20. Complete elastic constants of α-BaB2O4: Schaefer-Bergmann acousto-optic diffraction and resonant ultrasound spectroscopy.

    PubMed

    Pfeiffer, Jonathan B; Wagner, Kelvin H; Kaufman, Yaniv; Ledbetter, Hassel; Soos, Jolanta; Diestler, Mark

    2016-10-01

    Both Schaefer-Bergmann diffraction and resonant ultrasound spectroscopy were used to measure the six independent elastic-stiffness coefficients of the trigonal, non-piezoelectric crystal α-BaB 2 O 4 . The two measurement sets resulted in a root-mean-square variance of 1.2%. This paper provides a detailed analysis of the two different measurement techniques and discusses the similarities and differences.

  1. Metatarsophalangeal joint extension changes ultrasound measurements for plantar fascia thickness.

    PubMed

    Granado, Michael J; Lohman, Everett B; Gordon, Keith E; Daher, Noha S

    2018-01-01

    Ultrasound is an inexpensive method for quantifying plantar fascia thickness, especially in those with plantar fasciitis. Ultrasound has also been used to assess the effectiveness of various treatments for plantar fasciitis by comparing plantar fascia thickness before and after an intervention period. While a plantar fascia thickness over 4 mm via ultrasound has been proposed to be consistent with plantar fasciitis, some researchers believe the 4 mm plantar fascia thickness level to be a dubious guideline for diagnosing plantar fasciitis due to the lack of standardization of the measurement process for plantar fascia thickness. In particular, no universal guidelines exist on the positioning of the metatarsophalangeal (MTP) joints during the procedure and the literature also has inconsistent protocols. The purpose of this study is to investigate and compare the influence of MTP joint extension on plantar fascia thickness in healthy participants and those with unilateral plantar fasciitis. The plantar fascia thickness of forty participants (20 with unilateral plantar fasciitis and 20 control) was measured via ultrasound three times at three different MTP joint positions: 1) at rest, 2) 30° of extension from the plantar surface, and 3) maximal extension possible. The plantar fascia became significantly thinner as MTP joint extension increased in both the plantar fasciitis group ( p  < 0.001) and the control group ( p  < 0.001). In the plantar fasciitis group, the involved plantar fascia was 1.2 to 1.3 mm thicker (p < 0.001) than the uninvolved side depending on the MTP joint position. In the control group, the difference in plantar fascia thickness between the two sides was less than 0.1 mm ( p  < 0.92) at any MTP joint position. MTP joint position can influence the ultrasound measurement of plantar fascia thickness. It is recommended that plantar fascia thickness measurements be performed with the toes at rest. If MTP joints must be extended, then the toes should be extended maximally and then noted to ensure subsequent ultrasound procedures are repeated. Standardizing the position of the MTP joints is not only important for attaining the most accurate thickness measurement of the plantar fascia, but is also important to researchers who use plantar fascia thickness to determine the effectiveness of various plantar fasciitis interventions.

  2. Effects of red blood cell aggregates dissociation on the estimation of ultrasound speckle image velocimetry.

    PubMed

    Yeom, Eunseop; Nam, Kweon-Ho; Paeng, Dong-Guk; Lee, Sang-Joon

    2014-08-01

    Ultrasound speckle image of blood is mainly attributed by red blood cells (RBCs) which tend to form RBC aggregates. RBC aggregates are separated into individual cells when the shear force is over a certain value. The dissociation of RBC aggregates has an influence on the performance of ultrasound speckle image velocimetry (SIV) technique in which a cross-correlation algorithm is applied to the speckle images to get the velocity field information. The present study aims to investigate the effect of the dissociation of RBC aggregates on the estimation quality of SIV technique. Ultrasound B-mode images were captured from the porcine blood circulating in a mock-up flow loop with varying flow rate. To verify the measurement performance of SIV technique, the centerline velocity measured by the SIV technique was compared with that measured by Doppler spectrograms. The dissociation of RBC aggregates was estimated by using decorrelation of speckle patterns in which the subsequent window was shifted as much as the speckle displacement to compensate decorrelation caused by in-plane loss of speckle patterns. The decorrelation of speckles is considerably increased according to shear rate. Its variations are different along the radial direction. Because the dissociation of RBC aggregates changes ultrasound speckles, the estimation quality of SIV technique is significantly correlated with the decorrelation of speckles. This degradation of measurement quality may be improved by increasing the data acquisition rate. This study would be useful for simultaneous measurement of hemodynamic and hemorheological information of blood flows using only speckle images. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Ultrasound Applied to Subcutaneous Fat Tissue Measurements in International Elite Canoeists.

    PubMed

    Kopinski, S; Engel, T; Cassel, M; Fröhlich, K; Mayer, F; Carlsohn, A

    2015-12-01

    Subcutaneous adipose tissue (SAT) measurements with ultrasound have recently been introduced to assess body fat in elite athletes. However, appropriate protocols and data on various groups of athletes are missing. We investigated intra-rater reliability of SAT measurements using ultrasound in elite canoe athletes. 25 international level canoeists (18 male, 7 female; 23±4 years; 81±11 kg; 1.83±0.09 m; 20±3 training h/wk) were measured on 2 consecutive days. SAT was assessed with B-mode ultrasound at 8 sites (ISAK): triceps, subscapular, biceps, iliac crest, supraspinal, abdominal, front thigh, medial calf, and quantified using image analysis software. Data was analyzed descriptively (mean±SD, [range]). Coefficient of variation (CV%), intraclass correlation coefficient (ICC, 2.1) and absolute (LoA) and ratio limits of agreement (RLoA) were calculated for day-to-day reliability. Mean sum of SAT thickness was 30.0±19.4 mm [8.0, 80.1 mm], with 3.9±1.8 mm [1.2 mm subscapular, 8.0 mm abdominal] for individual sites. CV for the sum of sites was 4.7%, ICC 0.99, LoA 1.7±3.6 mm, RLoA 0.940 ( *  /÷1.155). Measuring SAT with ultrasound has proved to have excellent day-to-day reliability in elite canoe athletes. Recommendations for standardization of the method will further increase accuracy and reproducibility. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Dynamic Contrast-Enhanced Ultrasound Identifies Microcirculatory Alterations in Sepsis-Induced Acute Kidney Injury.

    PubMed

    Lima, Alexandre; van Rooij, Tom; Ergin, Bulent; Sorelli, Michele; Ince, Yasin; Specht, Patricia A C; Mik, Egbert G; Bocchi, Leonardo; Kooiman, Klazina; de Jong, Nico; Ince, Can

    2018-05-15

    We developed quantitative methods to analyze microbubble kinetics based on renal contrast-enhanced ultrasound imaging combined with measurements of sublingual microcirculation on a fixed area to quantify early microvascular alterations in sepsis-induced acute kidney injury. Prospective controlled animal experiment study. Hospital-affiliated animal research institution. Fifteen female pigs. The animals were instrumented with a renal artery flow probe after surgically exposing the kidney. Nine animals were given IV infusion of lipopolysaccharide to induce septic shock, and six were used as controls. Contrast-enhanced ultrasound imaging was performed on the kidney before, during, and after having induced shock. Sublingual microcirculation was measured continuously using the Cytocam on the same spot. Contrast-enhanced ultrasound effectively allowed us to develop new analytical methods to measure dynamic variations in renal microvascular perfusion during shock and resuscitation. Renal microvascular hypoperfusion was quantified by decreased peak enhancement and an increased ratio of the final plateau intensity to peak enhancement. Reduced intrarenal blood flow could be estimated by measuring the microbubble transit times between the interlobar arteries and capillary vessels in the renal cortex. Sublingual microcirculation measured using the Cytocam in a fixed area showed decreased functional capillary density associated with plugged sublingual capillary vessels that persisted during and after fluid resuscitation. In our lipopolysaccharide model, with resuscitation targeted at blood pressure, the contrast-enhanced ultrasound imaging can identify renal microvascular alterations by showing prolonged contrast enhancement in microcirculation during shock, worsened by resuscitation with fluids. Concomitant analysis of sublingual microcirculation mirrored those observed in the renal microcirculation.

  5. A step towards measuring the fetal head circumference with the use of obstetric ultrasound in a low resource setting

    NASA Astrophysics Data System (ADS)

    van den Heuvel, Thomas L. A.; Petros, Hezkiel; Santini, Stefano; de Korte, Chris L.; van Ginneken, Bram

    2017-03-01

    Worldwide, 99% of all maternal deaths occur in low-resource countries. Ultrasound imaging can be used to detect maternal risk factors, but requires a well-trained sonographer to obtain the biometric parameters of the fetus. One of the most important biometric parameters is the fetal Head Circumference (HC). The HC can be used to estimate the Gestational Age (GA) and assess the growth of the fetus. In this paper we propose a method to estimate the fetal HC with the use of the Obstetric Sweep Protocol (OSP). With the OSP the abdomen of pregnant women is imaged with the use of sweeps. These sweeps can be taught to somebody without any prior knowledge of ultrasound within a day. Both the OSP and the standard two-dimensional ultrasound image for HC assessment were acquired by an experienced gynecologist from fifty pregnant women in St. Luke's Hospital in Wolisso, Ethiopia. The reference HC from the standard two-dimensional ultrasound image was compared to both the manually measured HC and the automatically measured HC from the OSP data. The median difference between the estimated GA from the manual measured HC using the OSP and the reference standard was -1.1 days (Median Absolute Deviation (MAD) 7.7 days). The median difference between the estimated GA from the automatically measured HC using the OSP and the reference standard was -6.2 days (MAD 8.6 days). Therefore, it can be concluded that it is possible to estimate the fetal GA with simple obstetric sweeps with a deviation of only one week.

  6. Biaxial Mechanical Testing of Posterior Sclera using High-Resolution Ultrasound Speckle Tracking for Strain Measurements

    PubMed Central

    Cruz-Perez, Benjamin; Tang, Junhua; Morris, Hugh J.; Palko, Joel R.; Pan, Xueliang; Hart, Richard T.; Liu, Jun

    2014-01-01

    This study aimed to characterize the mechanical responses of the sclera, the white outer coat of the eye, under equal-biaxial loading with unrestricted shear. An ultrasound speckle tracking technique was used to measure tissue deformation through sample thickness, expanding the capabilities of surface strain techniques. Eight porcine scleral samples were tested within 72 hours postmortem. High resolution ultrasound scans of scleral cross-sections along the two loading axes were acquired at 25 consecutive biaxial load levels. An additional repeat of the biaxial loading cycle was performed to measure a third normal strain emulating a strain gauge rosette for calculating the in-plane shear. The repeatability of the strain measurements during identical biaxial ramps was evaluated. A correlation-based ultrasound speckle tracking algorithm was used to compute the displacement field and determine the distributive strains in the sample cross-sections. A Fung type constitutive model including a shear term was used to determine the material constants of each individual specimen by fitting the model parameters to the experimental stress-strain data. A non-linear stress-strain response was observed in all samples. The meridian direction had significantly larger strains than the circumferential direction during equal-biaxial loadings (P’s<0.05). The stiffness along the two directions were also significantly different (P=0.02) but highly correlated (R2=0.8). These results showed that the mechanical properties of the porcine sclera were nonlinear and anisotropic under biaxial loading. This work has also demonstrated the feasibility of using ultrasound speckle tracking for strain measurements during mechanical testing. PMID:24438767

  7. An ergonomic handheld ultrasound probe providing contact forces and pose information.

    PubMed

    Yohan Noh; Housden, R James; Gomez, Alberto; Knight, Caroline; Garcia, Francesca; Hongbin Liu; Razavi, Reza; Rhode, Kawal; Althoefer, Kaspar

    2015-08-01

    This paper presents a handheld ultrasound probe which is integrated with sensors to measure force and pose (position/orientation) information. Using an integrated probe like this, one can relate ultrasound images to spatial location and create 3D ultrasound maps. The handheld device can be used by sonographers and also easily be integrated with robot arms for automated sonography. The handheld device is ergonomically designed; rapid attachment and removal of the ultrasound transducer itself is possible using easy-to-operate clip mechanisms. A cable locking mechanism reduces the impact that gravitational and other external forces have (originating from data and power supply cables connected to the probe) on our measurements. Gravitational errors introduced by the housing of the probe are compensated for using knowledge of the housing geometry and the integrated pose sensor that provides us with accurate orientation information. In this paper, we describe the handheld probe with its integrated force/pose sensors and our approach to gravity compensation. We carried out a set of experiments to verify the feasibility of our approach to obtain accurate spatial information of the handheld probe.

  8. Reliability tests and guidelines for B-mode ultrasound assessment of central adiposity.

    PubMed

    Stoner, Lee; Chinn, Victoria; Cornwall, Jon; Meikle, Grant; Page, Rachel; Lambrick, Danielle; Faulkner, James

    2015-11-01

    Ultrasound represents a validated and relatively inexpensive diagnostic device for assessing central adiposity; however, widespread adoption has been impeded by the lack of reliable standard operating procedures. To examine the reliability of, and describe guidelines for, ultrasound-derived recording of intra-abdominal fat thickness (IAT) and maximal preperitoneal fat thickness (PFT). Ultrasound scans were obtained from 20 adults (50% female, 26 ± 7 years, 24·5 kg/m(2) ) on three different mornings. IAT was assessed 2 cm above the umbilicus (transverse plane) measuring from linea alba to: (i) anterior aorta, (ii) posterior aorta and (iii) anterior aspect of the vertebral column. PFT was measured from linea alba to visceral peritoneum in (i) sagittal and (ii) transverse planes, immediately over and inferior to the xiphi-sternum, respectively. For IAT, the criterion intraclass correlation coefficient (ICC) of 0·75 was exceeded for measurements to anterior aorta (0·95), posterior aorta (0·94) and vertebra (0·96). The reliability coefficient expressed as a percentage of the mean (RC%) was lowest (better) for measurement to vertebrae (9·8%). For PFT, mean thickness was comparable for sagittal (1·74 cm) and transverse (1·76 cm) planes; ICC values were also comparable for both planes (0·98 vs. 0·98, respectively), as were RC% (7·5% vs. 7·1%, respectively). IAT assessments to the vertebra were marginally more reliable than those to other structures. While PFT assessments were equally reliable for both measurements planes, precise probe placement was easier for the sagittal plane. Based on these findings, guidelines for the reliable measurement of central adiposity using ultrasound are presented. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.

  9. Investigation of dental samples using a 35MHz focussed ultrasound piezocomposite transducer.

    PubMed

    Hughes, D A; Girkin, J M; Poland, S; Longbottom, C; Button, T W; Elgoyhen, J; Hughes, H; Meggs, C; Cochran, S

    2009-02-01

    Dental erosion and decay are increasingly prevalent but as yet there is no quantitative monitoring tool. Such a tool would allow earlier diagnosis and treatment and ultimately the prevention of more serious disease and pain. Despite ultrasound having been demonstrated as a method of probing the internal structures of teeth more than 40 years ago, development of a clinical tool has been slow. The aim of the study reported here was to investigate the use of a novel high frequency ultrasound transducer and validate it using a known dental technique. A tooth extracted for clinical reasons was sectioned to provide a sample that contained an enamel and dentine layer such that the enamel-dentine junction (EDJ) was of a varying depth. The sample was then submerged in water and a B-scan recorded using a custom-designed piezocomposite ultrasound transducer with a centre frequency of 35 MHz and a -6 dB bandwidth of 24 MHz. The transducer has an axial resolution of 180 microm and a spatial resolution of 110 microm, a significant advance on previous work using lower frequencies. The depth of the EDJ was measured from the resulting data set and compared to measurements from the sequential grinding and imaging (SGI) method. The B-scan showed that the EDJ was of varying depth. Subsequently, the EDJ measurements were found to have a correlation of 0.89 (p<0.01) against the SGI measurements. The results indicate that high frequency ultrasound is capable of measuring enamel thickness to an accuracy of within 10% of the total enamel thickness, whereas currently there is no clinical tool available to measure enamel thickness.

  10. Model based defect characterization in composites

    NASA Astrophysics Data System (ADS)

    Roberts, R.; Holland, S.

    2017-02-01

    Work is reported on model-based defect characterization in CFRP composites. The work utilizes computational models of the interaction of NDE probing energy fields (ultrasound and thermography), to determine 1) the measured signal dependence on material and defect properties (forward problem), and 2) an assessment of performance-critical defect properties from analysis of measured NDE signals (inverse problem). Work is reported on model implementation for inspection of CFRP laminates containing multi-ply impact-induced delamination, with application in this paper focusing on ultrasound. A companion paper in these proceedings summarizes corresponding activity in thermography. Inversion of ultrasound data is demonstrated showing the quantitative extraction of damage properties.

  11. Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues.

    PubMed

    Ramaz, F; Forget, B; Atlan, M; Boccara, A C; Gross, M; Delaye, P; Roosen, G

    2004-11-01

    We present a new and simple method to obtain ultrasound modulated optical tomography images in thick biological tissues with the use of a photorefractive crystal. The technique offers the advantage of spatially adapting the output speckle wavefront by analysing the signal diffracted by the interference pattern between this output field and a reference beam, recorded inside the photorefractive crystal. Averaging out due to random phases of the speckle grains vanishes, and we can use a fast single photodetector to measure the ultrasound modulated optical contrast. This technique offers a promising way to make direct measurements within the decorrelation time scale of living tissues.

  12. Assessment of glenohumeral subluxation in poststroke hemiplegia: comparison between ultrasound and fingerbreadth palpation methods.

    PubMed

    Kumar, Praveen; Mardon, Marianne; Bradley, Michael; Gray, Selena; Swinkels, Annette

    2014-11-01

    Glenohumeral subluxation (GHS) is a common poststroke complication. Treatment of GHS is hampered by the lack of objective, real-time clinical measurements. The aims of this study were: (1) to compare an ultrasound method of GHS measurement with the fingerbreadth palpation method using a receiver operating characteristic curve (ROC) and (2) to report the sensitivity and specificity of this method. A prospective study was conducted. The study was conducted in local hospitals and day centers in the southwest of England. One hundred five patients who had one-sided weakness following a first-time stroke (51 men, 54 women; mean age=71 years, SD=11) and who gave informed consent were enrolled in the study. Ultrasound measurements of acromion-greater tuberosity (AGT) distance were used for the assessment of GHS. Measurements were undertaken on both shoulders by a research physical therapist trained in shoulder ultrasound with the patient seated in a standardized position. Fingerbreadth palpation assessment of GHS was undertaken by a clinical physical therapist based at the hospital, who also visited the day centers. The area under the ROC curve was 0.73 (95% confidence interval [95% CI]=0.63, 0.83), suggesting that the ultrasound method has good agreement compared with the fingerbreadth palpation method. A cutoff point of ≥0.2 cm AGT measurement difference between affected and unaffected shoulders generated a sensitivity of 68% (95% CI=51%, 75%), a specificity of 62% (95% CI=47%, 80%), a positive likelihood ratio of 1.79 (95% CI=1.1, 2.9), and a negative likelihood ratio of 0.55 (95% CI=0.4, 0.8). Clinical therapists involved in the routine care of patients conducted the fingerbreadth palpation method. It is likely that they were aware of the patients' subluxation status. The ultrasound method can detect minor asymmetry (≤0.5 cm) and has the potential advantage over the fingerbreadth palpation method of identifying patients with minor subluxation. © 2014 American Physical Therapy Association.

  13. Augmentation of the In Vivo Elastic Properties Measurement System to Include Bulk Properties

    DTIC Science & Technology

    2015-09-30

    stranded animals. OBJECTIVES The primary objective of this project is to develop an ultrasound -based system for non-invasive determination of in...wherein ultrasound is used to both generate and observe low frequency vibration in soft tissues. While current methods have been successfully applied...pattern. A second ultrasonic transducer monitors the tissue displacement along the ultrasound beam axis, and supports an enhanced embodiment of an

  14. Quantitative assessment of acoustic intensity in the focused ultrasound field using hydrophone and infrared imaging.

    PubMed

    Yu, Ying; Shen, Guofeng; Zhou, Yufeng; Bai, Jingfeng; Chen, Yazhu

    2013-11-01

    With the popularity of ultrasound therapy in clinics, characterization of the acoustic field is important not only to the tolerability and efficiency of ablation, but also for treatment planning. A quantitative method was introduced to assess the intensity distribution of a focused ultrasound beam using a hydrophone and an infrared camera with no prior knowledge of the acoustic and thermal parameters of the absorber or the configuration of the array elements. This method was evaluated in both theoretical simulations and experimental measurements. A three-layer model was developed to calculate the acoustic field in the absorber, the absorbed acoustic energy during the sonication and the consequent temperature elevation. Experiments were carried out to measure the acoustic pressure with the hydrophone and the temperature elevation with the infrared camera. The percentage differences between the derived results and the simulation are <4.1% for on-axis intensity and <21.1% for -6-dB beam width at heating times up to 360 ms in the focal region of three phased-array ultrasound transducers using two different absorbers. The proposed method is an easy, quick and reliable approach to calibrating focused ultrasound transducers with satisfactory accuracy. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  15. Two-tone suppression in the cricket, Eunemobius carolinus (Gryllidae, Nemobiinae)

    NASA Astrophysics Data System (ADS)

    Farris, Hamilton E.; Hoy, Ronald R.

    2002-03-01

    Sounds with frequencies >15 kHz elicit an acoustic startle response (ASR) in flying crickets (Eunemobius carolinus). Although frequencies <15 kHz do not elicit the ASR when presented alone, when presented with ultrasound (40 kHz), low-frequency stimuli suppress the ultrasound-induced startle. Thus, using methods similar to those in masking experiments, we used two-tone suppression to assay sensitivity to frequencies in the audio band. Startle suppression was tuned to frequencies near 5 kHz, the frequency range of male calling songs. Similar to equal loudness contours measured in humans, however, equal suppression contours were not parallel, as the equivalent rectangular bandwidth of suppression tuning changed with increases in ultrasound intensity. Temporal integration of suppressor stimuli was measured using nonsimultaneous presentations of 5-ms pulses of 6 and 40 kHz. We found that no suppression occurs when the suppressing tone is >2 ms after and >5 ms before the ultrasound stimulus, suggesting that stimulus overlap is a requirement for suppression. When considered together with our finding that the intensity of low-frequency stimuli required for suppression is greater than that produced by singing males, the overlap requirement suggests that two-tone suppression functions to limit the ASR to sounds containing only ultrasound and not to broadband sounds that span the audio and ultrasound range.

  16. The Impact of Bubbles on Measurement of Drug Release from Echogenic Liposomes

    PubMed Central

    Kopechek, Jonathan A.; Haworth, Kevin J.; Radhakrishnan, Kirthi; Huang, Shaoling; Klegerman, Melvin E.; McPherson, David D.; Holland, Christy K.

    2013-01-01

    Echogenic liposomes (ELIP) encapsulate gas bubbles and drugs within lipid vesicles, but the mechanisms of ultrasound-mediated drug release from ELIP are not well understood. The effect of cavitation activity on drug release from ELIP was investigated in flowing solutions using two fluorescent molecules: a lipophilic drug (rosiglitazone) and a hydrophilic drug substitute (calcein). ELIP samples were exposed to pulsed Doppler ultrasound from a clinical diagnostic ultrasound scanner at pressures above and below the inertial and stable cavitation thresholds. Control samples were exposed to a surfactant, Triton X-100 (positive control), or to flow alone (negative control). Fluorescence techniques were used to detect release. Encapsulated microbubbles reduced the measured fluorescence intensity and this effect should be considered when assessing drug release from ELIP. The origin of this effect is not specific to ELIP. Release of rosiglitazone or calcein compared to the negative control was only observed with detergent treatment, but not with ultrasound exposure, despite the presence of stable and inertial cavitation activity. Release of rosiglitazone or calcein from ELIP exposed to diagnostic ultrasound was not observed, even in the presence of cavitation activity. Ultrasound-mediated drug delivery strategies with ELIP will thus rely on passage of the drug-loaded liposomes to target tissues. PMID:23357288

  17. Acousto-mechanical and thermal properties of clotted blooda)

    PubMed Central

    Nahirnyak, Volodymyr M.; Yoon, Suk Wang; Holland, Christy K.

    2007-01-01

    The efficacy of ultrasound-assisted thrombolysis as an adjunct treatment of ischemic stroke is being widely investigated. To determine the role of ultrasound hyperthermia in the process of blood clot disruption, the acousto-mechanical and thermal properties of clotted blood were measured in vitro, namely, density, speed of sound, frequency-dependent attenuation, specific heat, and thermal conductivity. The amplitude coefficient of attenuation of the clots was determined for 120 kHz, 1.0 MHz, and 3.5 MHz ultrasound at room temperature (20±2 °C). The attenuation coefficient ranged from 0.10 to 0.30 Np/cm in porcine clots and from 0.09 to 0.23 Np/cm in human clots. The experimentally determined values of specific heat and thermal conductivity for porcine clotted blood are (3.2±0.5)×103 J/kg·K and 0.55±0.13 W/m·K, respectively, and for human clotted blood are (3.5±0.8)×103 J/kg·K and 0.59±0.11 W/m·K, respectively. Measurements of the acousto-mechanical and thermal properties of clotted blood can be helpful in theoretical modeling of ultrasound hyperthermia in ultrasound-assisted thrombolysis and other high-intensity focused ultrasound applications. PMID:16838520

  18. Dissimilar trend of nonlinearity in ultrasound transducers and systems at resonance and non-resonance frequencies.

    PubMed

    Ghasemi, Negareh; Zare, Firuz; Davari, Pooya; Vilathgamuwa, Mahinda; Ghosh, Arindam; Langton, Christian; Weber, Peter

    2017-02-01

    Several factors can affect performance of an ultrasound system such as quality of excitation signal and ultrasound transducer behaviour. Nonlinearity of piezoelectric ultrasound transducers is a key determinant in designing a proper driving power supply. Although, the nonlinearity of piezoelectric transducer impedance has been discussed in different literatures, the trend of the nonlinearity at different frequencies with respect to excitation voltage variations has not been clearly investigated in practice. In this paper, to demonstrate how the nonlinearity behaves, a sandwich piezoceramic transducer was excited at different frequencies. Different excitation signals were generated using a linear power amplifier and a multilevel converter within a range of 30-200V. Empirical relation was developed to express the resistance of the piezoelectric transducer as a nonlinear function of both excitation voltage and resonance frequency. The impedance measurements revealed that at higher voltage ranges, the piezoelectric transducer can be easily saturated. Also, it was shown that for the developed ultrasound system composed of two transducers (one transmitter and one receiver), the output voltage measured across receiver is a function of a voltage across the resistor in the RLC branches and is related to the resonance frequencies of the ultrasound transducer. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Realization of Combined Diagnosis/Treatment System By Ultrasound Strain Measurement-Based Shear Modulus Reconstruction/Imaging Technique Examples With Application on The New Type Interstitial RF Electromagnetic Wave Thermal Therapy

    DTIC Science & Technology

    2001-10-25

    Righetti, J. Ophir, and J. Hazle, “The feasibility of elastographic visualization of HIFU -induced thermal lesions in soft tissues,” Ultrasound in Med...Review article: High intensity focused ultrasound -potential for cancer treatment,” Br. J. Radiol., vol. 68, pp. 1296-1303, 1995. [17] Watkin NA, G...R.. Ter Haar, S. B. Morris, C. R. J. Woodhouse, “The urological applications of focused ultrasound surgery,” Br. J. Urol., vol. 75 (suppl. 1), pp

  20. Imaging of implant needles for real-time HDR-brachytherapy prostate treatment using biplane ultrasound transducers.

    PubMed

    Siebert, Frank-André; Hirt, Markus; Niehoff, Peter; Kovács, György

    2009-08-01

    Ultrasound imaging is becoming increasingly important in prostate brachytherapy. In high-dose-rate (HDR) real-time planning procedures the definition of the implant needles is often performed by transrectal ultrasound. This article describes absolute measurements of the visibility and accuracy of manual detection of implant needle tips and compares measurement results of different biplane ultrasound systems in transversal and longitudinal (i.e., sagittal) ultrasound modes. To obtain a fixed coordinate system and stable conditions the measurements were carried out in a water tank using a dedicated marker system. Needles were manually placed in the phantom until the observer decided by the real-time ultrasound image that the zero position was reached. A comparison of three different ultrasound systems yielded an offset between 0.8 and 3.1 mm for manual detection of the needle tip in ultrasound images by one observer. The direction of the offset was discovered to be in the proximal direction, i.e., the actual needle position was located more distally compared to the ultrasound-based definition. In the second part of the study, the ultrasound anisotropy of trocar implant needles is reported. It was shown that the integrated optical density in a region of interest around the needle tip changes with needle rotation. Three peaks were observed with a phase angle of 120 degrees. Peaks appear not only in transversal but also in longitudinal ultrasound images, with a phase shift of 60 degrees. The third section of this study shows results of observer dependent influences on needle tip detection in sagittal ultrasound images considering needle rotation. These experiments were carried out using the marker system in a water tank. The needle tip was placed exactly at the position z=0 mm. It was found that different users tend to differently interpret the same ultrasound images. The needle tip was manually detected five times in the ultrasound images by three experienced observers at positions (+/- standard deviation) -0.53 +/- 0.16, -0.16 +/- 0.14, and -0.30 +/- 0.16 mm using a gain of 15 dB. The minus sign indicates that the needle tips were detected more proximally than the actual position of the needle tip. When using a gain of -15 dB the mean values of two observers resulted in -0.62 +/- 0.08 and -0.51 +/- 0.12 mm. Additionally an alternative approach to the direct needle tip definition was investigated. Two observers detected the solid part of the needle tip in sagittal images. This solid part, often named as "dead space end," is the distance between the needle tip and the beginning of the hollow part of the implant needle. The dead space end is 6.2 mm for the investigated needle type. Two users found mean values of -6.70 +/- 0.16 and -7.00 +/- 0.06 mm, respectively, for 15 dB gain and -6.90 +/- 0.09 and -7.02 +/- 0.06 mm using the -15 dB gain setting. The results show that ultrasound-based needle tip definition in sagittal viewing mode is accurate. The inter- and intraobserver errors should, however, be taken into account. A lower gain setting of the ultrasound system reduces the intraobserver error.

  1. Non-Invasive Measurement of Intracranial Pressure Pulsation using Ultrasound

    NASA Technical Reports Server (NTRS)

    Ueno, Toshiaki; Ballard, R. E.; Yost, W. T.; Hargens, A. R.

    1997-01-01

    Exposure to microgravity causes a cephalad fluid shift which may elevate intracranial pressure (ICP). Elevation in ICP may affect cerebral hemodynamics in astronauts during space flight. ICP is, however, a difficult parameter to measure due to the invasiveness of currently available techniques. We already reported our development of a non-invasive ultrasound device for measurement of ICP. We recently modified the device so that we might reproducibly estimate ICP changes in association with cardiac cycles. In the first experiment, we measured changes in cranial distance with the ultrasound device in cadavera while changing ICP by infusing saline into the lateral ventricle. In the second experiment, we measured changes in cranial distance in five healthy volunteers while placing them in 60 deg, 30 deg head-up tilt, supine, and 10 deg head-down tilt position. In the cadaver study, fast Fourier transformation revealed that cranial pulsation is clearly associated with ICP pulsation. The ratio of cranial distance and ICP pulsation is 1.3microns/mmHg. In the tilting study, the magnitudes of cranial pulsation are linearly correlated to tilt angles (r=0.87). The ultrasound device has sufficient sensitivity to detect cranial pulsation in association with cardiac cycles. By analyzing the magnitude of cranial pulsation, estimates of ICP during space flight are possible.

  2. Exploratory Analysis of Carbon Dioxide Levels, Ultrasound and Optical Coherence Tomography Measures of the Eye During ISS Missions

    NASA Technical Reports Server (NTRS)

    Schaefer, C.; Young, M.; Mason, S.; Coble, C.; Wear, M. L.; Sargsyan, A.; Garcia, K.; Patel, N.; Gibson, C.; Alexander, D.; hide

    2017-01-01

    Enhanced screening for the Visual Impairment/Intracranial Pressure (VIIP) syndrome has been implemented to better characterize the ocular and vision changes observed in some long-duration crewmembers. This includes implementation of in-flight ultrasound in 2010 and optical coherence tomography (OCT) in 2013. Potential risk factors for VIIP include cardiovascular health, diet, anatomical and genetic factors, and environmental conditions. Carbon dioxide (CO2), a potent vasodilator, is chronically elevated on the International Space Station (ISS) relative to ambient levels on Earth, and is a plausible risk factor for VIIP. In an effort to understand the possible associations between CO2 and VIIP, this study explores the relationship of ambient CO2 levels on ISS compared to inflight ultrasound and OCT measures of the eye obtained from ISS crewmembers. CO2 measurements were aggregated from Operational Data Reduction Complex and Node 3 major constituent analyzers (MCAs) on ISS or from sensors located in the European Columbus module, as available. CO2 levels in the periods between each ultrasound and OCT session are summarized using timeseries metrics, including time-weighted means and variances. Partial least squares regression analyses are used to quantify the complex relationship between specific ultrasound and OCT measures and the CO2 metrics simulataneously. These analyses will enhance our understanding of the possible associations between CO2 levels and structural changes to the eye which will in turn inform future analysis of inflight VIIP data.

  3. Dual-plane ultrasound flow measurements in liquid metals

    NASA Astrophysics Data System (ADS)

    Büttner, Lars; Nauber, Richard; Burger, Markus; Räbiger, Dirk; Franke, Sven; Eckert, Sven; Czarske, Jürgen

    2013-05-01

    An ultrasound measurement system for dual-plane, two-component flow velocity measurements especially in opaque liquids is presented. Present-day techniques for measuring local flow structures in opaque liquids disclose considerable drawbacks concerning line-wise measurement of single ultrasound probes. For studying time-varying flow patterns, conventional ultrasound techniques are either limited by time-consuming mechanical traversing or by the sequential operation of single probes. The measurement system presented within this paper employs four transducer arrays with a total of 100 single elements which allows for flow mapping without mechanical traversing. A high frame rate of several 10 Hz has been achieved due to an efficient parallelization scheme using time-division multiplexing realized by a microcontroller-based electronic switching matrix. The functionality and capability of the measurement system are demonstrated on a liquid metal flow at room temperature inside a cube driven by a rotating magnetic field (RMF). For the first time, the primary and the secondary flow have been studied in detail and simultaneously using a configuration with two crossed measurement planes. The experimental data confirm predictions made by numeric simulation. After a sudden switching on of the RMF, inertial oscillations of the secondary flow were observed by means of a time-resolved measurement with a frame rate of 3.4 Hz. The experiments demonstrate that the presented measurement system is able to investigate complex and transient flow structures in opaque liquids. Due to its ability to study the temporal evolution of local flow structures, the measurement system could provide considerable progress for fluid dynamics research, in particular for applications in the food industry or liquid metal technologies.

  4. Interrogation of a ring-resonator ultrasound sensor using a fiber Mach-Zehnder interferometer.

    PubMed

    Peternella, Fellipe Grillo; Ouyang, Boling; Horsten, Roland; Haverdings, Michael; Kat, Pim; Caro, Jacob

    2017-12-11

    We experimentally demonstrate an interrogation procedure of a ring-resonator ultrasound sensor using a fiber Mach-Zehnder interferometer (MZI). The sensor comprises a silicon ring resonator (RR) located on a silicon-oxide membrane, designed to have its lowest vibrational mode in the MHz range, which is the range of intravascular ultrasound (IVUS) imaging. Ultrasound incident on the membrane excites its vibrational mode and as a result induces a modulation of the resonance wavelength of the RR, which is a measure of the amplitude of the ultrasound waves. The interrogation procedure developed is based on the mathematical description of the interrogator operation presented in Appendix A, where we identify the amplitude of the angular deflection Φ 0 on the circle arc periodically traced in the plane of the two orthogonal interrogator voltages, as the principal sensor signal. Interrogation is demonstrated for two sensors with membrane vibrational modes at 1.3 and 0.77 MHz, by applying continuous wave ultrasound in a wide pressure range. Ultrasound is detected at a pressure as low as 1.2 Pa. Two optical path differences (OPDs) of the MZI are used. Thus, different interference conditions of the optical signals are defined, leading to a higher apparent sensitivity for the larger OPD, which is accompanied by a weaker signal, however. Independent measurements using the modulation method yield a resonance modulation per unit of pressure of 21.4 fm/Pa (sensor #1) and 103.8 fm/Pa (sensor #2).

  5. Sports Ultrasound: Applications Beyond the Musculoskeletal System.

    PubMed

    Finnoff, Jonathan T; Ray, Jeremiah; Corrado, Gianmichael; Kerkhof, Deanna; Hill, John

    2016-09-01

    Traditionally, ultrasound has been used to evaluate musculoskeletal injuries in athletes; however, ultrasound applications extend well beyond musculoskeletal conditions, many of which are pertinent to athletes. Articles were identified in PubMed using the search terms ultrasound, echocardiogram, preparticipation physical examination, glycogen, focused assessment with sonography of trauma, optic nerve, and vocal cord dysfunction. No date restrictions were placed on the literature search. Clinical review. Level 4. Several potential applications of nonmusculoskeletal ultrasound in sports medicine are presented, including extended Focused Assessment with Sonography for Trauma (eFAST), limited echocardiographic screening during preparticipation physical examinations, assessment of muscle glycogen stores, optic nerve sheath diameter measurements in athletes with increased intracranial pressure, and assessment of vocal cord dysfunction in athletes. Ultrasound can potentially be used to assist athletes with monitoring their muscle glycogen stores and the diagnosis of multiple nonmusculoskeletal conditions within sports medicine. © 2016 The Author(s).

  6. Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers

    NASA Astrophysics Data System (ADS)

    Chang, Wei-Yi; Huang, Wenbin; Kim, Jinwook; Li, Sibo; Jiang, Xiaoning

    2015-10-01

    Generation of high power laser ultrasound strongly demands the advanced materials with efficient laser energy absorption, fast thermal diffusion, and large thermoelastic expansion capabilities. In this study, candle soot nanoparticles-polydimethylsiloxane (CSNPs-PDMS) composite was investigated as the functional layer for an optoacoustic transducer with high-energy conversion efficiency. The mean diameter of the collected candle soot carbon nanoparticles is about 45 nm, and the light absorption ratio at 532 nm wavelength is up to 96.24%. The prototyped CSNPs-PDMS nano-composite laser ultrasound transducer was characterized and compared with transducers using Cr-PDMS, carbon black (CB)-PDMS, and carbon nano-fiber (CNFs)-PDMS composites, respectively. Energy conversion coefficient and -6 dB frequency bandwidth of the CSNPs-PDMS composite laser ultrasound transducer were measured to be 4.41 × 10-3 and 21 MHz, respectively. The unprecedented laser ultrasound transduction performance using CSNPs-PDMS nano-composites is promising for a broad range of ultrasound therapy applications.

  7. Has 4D transperineal ultrasound additional value over 2D transperineal ultrasound for diagnosing obstructed defaecation syndrome?

    PubMed

    van Gruting, I M A; Kluivers, K; Sultan, A H; De Bin, R; Stankiewicz, A; Blake, H; Thakar, R

    2018-06-08

    To establish the diagnostic test accuracy of both two-dimensional (2D) and four-dimensional (4D) transperineal ultrasound, to assess if 4D ultrasound imaging provides additional value in the diagnosis of posterior pelvic floor disorders in women with obstructed defaecation syndrome. In this prospective cohort study, 121 consecutive women with obstructed defaecation syndrome were recruited. Symptoms of obstructed defaecation and signs of pelvic organ prolapse were assessed using validated methods. All women underwent both 2D transperineal ultrasound (Pro-focus, 8802 transducer, BK-medical) and 4D transperineal ultrasound (Voluson i, RAB4-8-RS transducer, GE). Imaging analysis was performed by two blinded observers. Pelvic floor disorders were dichotomised into presence or absence according pre-defined cut-off values. In the absence of a reference standard a composite reference standard was created from a combination of results of evacuation proctogram, magnetic resonance imaging and endovaginal ultrasound. Primary outcome measures were diagnostic test characteristics of 2D and 4D transperineal ultrasound for diagnosis or rectocele, enterocele, intussusception and anismus. Secondary outcome measures were interobserver agreement, agreement between the two techniques and correlation of signs and symptoms to imaging findings. For diagnosis of all four posterior pelvic floor disorders there was no difference in sensitivity and specificity between 2D and 4D TPUS (p= 0.131 - 1.000). A good agreement between 2D and 4D TPUS was found for the diagnosis of rectocele (ĸ 0.675) and a moderate agreement for diagnosis of enterocele, intussusception and anismus (ĸ 0.465 - 0.545). There was no difference in rectocele depth measurements between both TPUS techniques (19.9 mm vs 19.0 mm, p=0.802). Inter-observer agreement was comparable for both techniques, however 2D TPUS had an excellent interobserver agreement for diagnosis of enterocele and rectocele depth measurements. Diagnosis of rectocele and enterocele on both 2D and 4D TPUS correlated well with presence of posterior vaginal wall prolapse on clinical examination (OR 1.89 - 2.72). In this group of ODS patients, the imaging findings on both techniques did not correlate with severity of symptoms of ODS (OR 0.82 - 1.08). There is no evidence of a superiority of 4D ultrasound acquisition to dynamic 2D ultrasound acquisition for the diagnosis of posterior pelvic floor disorders. Both 2D and 4D TPUS could be used interchangeably to screen women with symptoms of obstructed defaecation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Videodensitometric Methods for Cardiac Output Measurements

    NASA Astrophysics Data System (ADS)

    Mischi, Massimo; Kalker, Ton; Korsten, Erik

    2003-12-01

    Cardiac output is often measured by indicator dilution techniques, usually based on dye or cold saline injections. Developments of more stable ultrasound contrast agents (UCA) are leading to new noninvasive indicator dilution methods. However, several problems concerning the interpretation of dilution curves as detected by ultrasound transducers have arisen. This paper presents a method for blood flow measurements based on UCA dilution. Dilution curves are determined by real-time densitometric analysis of the video output of an ultrasound scanner and are automatically fitted by the Local Density Random Walk model. A new fitting algorithm based on multiple linear regression is developed. Calibration, that is, the relation between videodensity and UCA concentration, is modelled by in vitro experimentation. The flow measurement system is validated by in vitro perfusion of SonoVue contrast agent. The results show an accurate dilution curve fit and flow estimation with determination coefficient larger than 0.95 and 0.99, respectively.

  9. Tissue Pulsatility Imaging of Cerebral Vasoreactivity during Hyperventilation

    PubMed Central

    Kucewicz, John C.; Dunmire, Barbrina; Giardino, Nicholas D.; Leotta, Daniel F.; Paun, Marla; Dager, Stephen R.; Beach, Kirk W.

    2008-01-01

    Tissue Pulsatility Imaging (TPI) is an ultrasonic technique that is being developed at the University of Washington to measure tissue displacement or strain due to blood flow over the cardiac and respiratory cycles. This technique is based in principle on plethysmography, an older non-ultrasound technology for measuring expansion of a whole limb or body part due to perfusion. TPI adapts tissue Doppler signal processing methods to measure the “plethysmographic” signal from hundreds or thousands of sample volumes in an ultrasound image plane. This paper presents a feasibility study to determine if TPI can be used to assess cerebral vasoreactivity. Ultrasound data were collected transcranially through the temporal acoustic window from four subjects before, during, and after voluntary hyperventilation. In each subject, decreases in tissue pulsatility during hyperventilation were observed that were statistically correlated with the subject’s end-tidal CO2 measurements. PMID:18336991

  10. Exploratory Analysis of Carbon Dioxide Levels, Ultrasound and Optical Coherence Tomography Measures of the Eye During ISS Missions

    NASA Technical Reports Server (NTRS)

    Schaefer, C.; Coble, C.; Mason, S.; Young, M.; Wear, M. L.; Sargsyan, A.; Garcia, K.; Patel, N.; Gibson, C.; Alexander, D.; hide

    2017-01-01

    Carbon dioxide (CO2) levels on board the International Space Station (ISS) have typically averaged 2.3 to 5.3 mmHg, with large fluctuations occurring over periods of hours and days. CO2 has effects on cerebral vascular tone, resulting in vasodilation and alteration of cerebral blood flow (CBF). Increased CBF leads to elevated intracranial pressure (ICP), a factor leading to visual disturbances, headaches, and other central nervous system symptoms. Ultrasound of the optic nerve and optical coherence tomography (OCT) provide surrogate measurements of ICP; in-flight measurements of both were implemented as enhanced screening tools for the Visual Impairment/Intracranial Pressure (VIIP) syndrome. This analysis examines the relationships between ambient CO2 levels on ISS, ultrasound and OCT measures of the eye in an effort to understand how CO2 may possibly be associated with VIIP and to inform future analysis of in-flight VIIP data.

  11. Measurement of glenohumeral joint translation using real-time ultrasound imaging: A physiotherapist and sonographer intra-rater and inter-rater reliability study.

    PubMed

    Rathi, Sangeeta; Taylor, Nicholas F; Gee, Jamie; Green, Rodney A

    2016-12-01

    Ultrasonography is an economical and non-invasive method for measuring real-time joint movements. Although physiotherapists are increasingly using ultrasound imaging for rotator cuff disorders, there is a lack of evidence on their reliability in using ultrasonography to measure glenohumeral translation. The aim of this study was to evaluate the reliability of a physiotherapist in measuring anterior and posterior glenohumeral joint translation with ultrasound. Study design: within day reliability. Anterior and posterior glenohumeral translations were measured at rest, in response to passive accessory motion testing force, and with isometric internal and external rotation in 12 young healthy adults. All the measurements were made in real time by a physiotherapist and an experienced sonographer in two positions (neutral and abducted) and in two views (anterior and posterior). Intra-rater and inter-rater reliability were expressed using intraclass correlation coefficients (ICC) and measurement error (mm). Intra-rater reliability was good for both raters (ICC P : 0.86-0.98; ICC S : 0.85-0.96). The inter-rater reliability between the physiotherapist and sonographer was moderate to good for posterior measurements (ICC 0.50-0.75) and poor to moderate for anterior measurements (ICC 0.31-0.53). For both intra-rater and inter-rater measurements, posterior translation was more reliable than the anterior translation with smaller measurement errors (posterior: 0.1-0.2 mm, anterior: 0.2-0.3 mm). A physiotherapist with minimal training was reliable in measuring glenohumeral joint translations. The ultrasound method was reliable for repeated measurement of both anterior and posterior glenohumeral translations with posterior measurements being more reliable than anterior. This method is recommended for future research to investigate the stabilising role of rotator cuff muscles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Dual-Mode Combined Infra Red and Air-Coupled Ultrasonic Technique for Real-Time Industrial Process Control with Special Reference to the Food Industry

    NASA Astrophysics Data System (ADS)

    Pallav, P.; Hutchins, D. A.; Diamond, G. G.; Gan, T. H.; Hellyer, J. E.

    2008-02-01

    This paper describes the use of air-coupled ultrasound and Near Infra red (NIR) as complimentary techniques for food quality assessment. A major study has been performed, in collaboration with four industrial food companies, to investigate the use of air-coupled ultrasound and NIR to both detect foreign bodies, and to measure certain parameters of interest, such as the amount of a certain additive. The research has demonstrated that air-coupled ultrasound can be used in on-line situations, measuring food materials such as chocolate and cheese. It is also capable of performing measurements on moving sealed metal cans containing food, and is able to detect foreign bodies with the top removed, as encountered just before sealing. NIR has been used as a complimentary technique to test food materials where propagation of air-coupled ultrasound was found to be difficult. This could be due to the presence of air pockets within the food material, as in the case of bread dough.

  13. Shape calibration of a conformal ultrasound therapy array.

    PubMed

    McGough, R J; Cindric, D; Samulski, T V

    2001-03-01

    A conformal ultrasound phased array prototype with 96 elements was recently calibrated for electronic steering and focusing in a water tank. The procedure for calibrating the shape of this 2D therapy array consists of two steps. First, a least squares triangulation algorithm determines the element coordinates from a 21 x 21 grid of time delays. The triangulation algorithm also requires temperature measurements to compensate for variations in the speed of sound. Second, a Rayleigh-Sommerfeld formulation of the acoustic radiation integral is aligned to a second grid of measured pressure amplitudes in a least squares sense. This shape calibration procedure, which is applicable to a wide variety of ultrasound phased arrays, was tested on a square array panel consisting of 7- x 7-mm elements operating at 617 kHz. The simulated fields generated by an array of 96 equivalent elements are consistent with the measured data, even in the fine structure away from the primary focus and sidelobes. These two calibration steps are sufficient for the simulation model to predict successfully the pressure field generated by this conformal ultrasound phased array prototype.

  14. FPGA-based architecture for real-time data reduction of ultrasound signals.

    PubMed

    Soto-Cajiga, J A; Pedraza-Ortega, J C; Rubio-Gonzalez, C; Bandala-Sanchez, M; Romero-Troncoso, R de J

    2012-02-01

    This paper describes a novel method for on-line real-time data reduction of radiofrequency (RF) ultrasound signals. The approach is based on a field programmable gate array (FPGA) system intended mainly for steel thickness measurements. Ultrasound data reduction is desirable when: (1) direct measurements performed by an operator are not accessible; (2) it is required to store a considerable amount of data; (3) the application requires measuring at very high speeds; and (4) the physical space for the embedded hardware is limited. All the aforementioned scenarios can be present in applications such as pipeline inspection where data reduction is traditionally performed on-line using pipeline inspection gauges (PIG). The method proposed in this work consists of identifying and storing in real-time only the time of occurrence (TOO) and the maximum amplitude of each echo present in a given RF ultrasound signal. The method is tested with a dedicated immersion system where a significant data reduction with an average of 96.5% is achieved. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Real-time ultrasound imaging of irreversible electroporation in a porcine liver model adequately characterizes the zone of cellular necrosis.

    PubMed

    Schmidt, Carl R; Shires, Peter; Mootoo, Mary

    2012-02-01

      Irreversible electroporation (IRE) is a largely non-thermal method for the ablation of solid tumours. The ability of ultrasound (US) to measure the size of the IRE ablation zone was studied in a porcine liver model.   Three normal pig livers were treated in vivo with a total of 22 ablations using IRE. Ultrasound was used within minutes after ablation and just prior to liver harvest at either 6 h or 24 h after the procedure. The area of cellular necrosis was measured after staining with nitroblue tetrazolium and the percentage of cell death determined by histomorphometry.   Visible changes in the hepatic parenchyma were apparent by US after all 22 ablations using IRE. The mean maximum diameter of the ablation zone measured by US during the procedure was 20.1 ± 2.7 mm. This compared with a mean cellular necrosis zone maximum diameter of 20.3 ± 2.9 mm as measured histologically. The mean percentage of dead cells within the ablation zone was 77% at 6 h and 98% at 24 h after ablation.   Ultrasound is a useful modality for measuring the ablation zone within minutes of applying IRE to normal liver tissue. The area of parenchymal change measured by US correlates with the area of cellular necrosis. © 2011 International Hepato-Pancreato-Biliary Association.

  16. Comparison of immersion ultrasound, partial coherence interferometry, and low coherence reflectometry for ocular biometry in cataract patients.

    PubMed

    Montés-Micó, Robert; Carones, Francesco; Buttacchio, Antonietta; Ferrer-Blasco, Teresa; Madrid-Costa, David

    2011-09-01

    To compare ocular biometry parameters measured with immersion ultrasound, partial coherence interferometry, and low coherence reflectometry in cataract patients. Measurements of axial length and anterior chamber depth were analyzed and compared using immersion ultrasound, partial coherence interferometry, and low coherence reflectometry. Keratometry (K), flattest axis, and white-to-white measurements were compared between partial coherence interferometry and low coherence reflectometry. Seventy-eight cataract (LOCS II range: 1 to 3) eyes of 45 patients aged between 42 and 90 years were evaluated. A subanalysis as a function of cataract degree was done for axial length and anterior chamber depth between techniques. No statistically significant differences were noted for the study cohort or within each cataract degree among the three techniques for axial length and anterior chamber depth (P>.05, ANOVA test). Measurements between techniques were highly correlated for axial length (R=0.99) and anterior chamber depth (R=0.90 to 0.96) for all methods. Keratometry, flattest axis, and white-to-white measurements were comparable (paired t test, P>.1) and correlated well between partial coherence interferometry and low coherence reflectometry (K1 [R=0.95), K2 [R=0.97], flattest axis [R=0.95], and white-to-white [R=0.92]). Immersion ultrasound, partial coherence interferometry, and low coherence reflectometry provided comparable ocular biometry measurements in cataractous eyes. Copyright 2011, SLACK Incorporated.

  17. Comparison of central corneal thickness measurements using ultrasound pachymetry, ultrasound biomicroscopy, and the Artemis-2 VHF scanner in normal eyes

    PubMed Central

    Al-Farhan, Haya M; Al-Otaibi, Wafa’a Majed

    2012-01-01

    Purpose To compare the precision of central corneal thickness (CCT) measurements taken with the handheld ultrasound pachymeter (USP), ultrasound biomicroscopy (UBM), and the Artemis-2 very high frequency ultrasound scanner (VHFUS) on normal subjects. Design Prospective study. Methods One eye from each of 61 normal subjects was randomly selected for this study. The measurements of the CCT were taken with the USP, VHFUS, and UBM. Results were compared statistically using repeated-measures analysis of variance (ANOVA), Pearson’s correlation coefficient, and limits of agreement. Results The average CCT (± standard deviation) was 530.1 ± 30.5 μm, 554.9 ± 31.7 μm, and 559.5 ± 30.7 μm for UBM, VHFUS, and USP respectively. The intraobserver repeatability analyses of variance are not significant for USP, UBM, and VHFUS. P-values were 0.17, 0.19, and 0.37 respectively. Repeated-measures ANOVA showed a significant difference between the three different methods of measuring CCT (P = 0.0001). The ANOVA test revealed no statistically significant difference between USP and VHFUS (P > 0.05), yet statistical significant differences with UBM versus USP and UBM versus VHFUS (P < 0.001). There were high correlations between the three instruments (P < 0.0001). The mean differences (and upper/lower limits of agreement) for CCT measurements were 29.4 ± 14.3 (2.7/56), 4.6 ± 8.6 (−14.7/23.8), and −24.8 ± 13.1 (−50.4/0.8) for USP versus UBM, USP versus VHFUS, and UBM versus VHFUS, respectively. Conclusion The UBM produces CCT measurements that vary significantly from those returned by the USP and the VHFUS, suggesting that the UBM may not be used interchangeably with either equipment for monitoring the CCT in the clinical setting. PMID:22848145

  18. Functional assessment of the diaphragm by speckle tracking ultrasound during inspiratory loading.

    PubMed

    Oppersma, Eline; Hatam, Nima; Doorduin, Jonne; van der Hoeven, Johannes G; Marx, Gernot; Goetzenich, Andreas; Fritsch, Sebastian; Heunks, Leo M A; Bruells, Christian S

    2017-11-01

    Assessment of diaphragmatic effort is challenging, especially in critically ill patients in the phase of weaning. Fractional thickening during inspiration assessed by ultrasound has been used to estimate diaphragm effort. It is unknown whether more sophisticated ultrasound techniques such as speckle tracking are superior in the quantification of inspiratory effort. This study evaluates the validity of speckle tracking ultrasound to quantify diaphragm contractility. Thirteen healthy volunteers underwent a randomized stepwise threshold loading protocol of 0-50% of the maximal inspiratory pressure. Electric activity of the diaphragm and transdiaphragmatic pressures were recorded. Speckle tracking ultrasound was used to assess strain and strain rate as measures of diaphragm tissue deformation and deformation velocity, respectively. Fractional thickening was assessed by measurement of diaphragm thickness at end-inspiration and end-expiration. Strain and strain rate increased with progressive loading of the diaphragm. Both strain and strain rate were highly correlated to transdiaphragmatic pressure (strain r 2  = 0.72; strain rate r 2  = 0.80) and diaphragm electric activity (strain r 2  = 0.60; strain rate r 2  = 0.66). We conclude that speckle tracking ultrasound is superior to conventional ultrasound techniques to estimate diaphragm contractility under inspiratory threshold loading. NEW & NOTEWORTHY Transdiaphragmatic pressure using esophageal and gastric balloons is the gold standard to assess diaphragm effort. However, this technique is invasive and requires expertise, and the interpretation may be complex. We report that speckle tracking ultrasound can be used to detect stepwise increases in diaphragmatic effort. Strain and strain rate were highly correlated with transdiaphragmatic pressure, and therefore, diaphragm electric activity and speckle tracking might serve as reliable tools to quantify diaphragm effort in the future. Copyright © 2017 the American Physiological Society.

  19. Ultrasound-enhanced rt-PA thrombolysis in an ex vivo porcine carotid artery model.

    PubMed

    Hitchcock, Kathryn E; Ivancevich, Nikolas M; Haworth, Kevin J; Caudell Stamper, Danielle N; Vela, Deborah C; Sutton, Jonathan T; Pyne-Geithman, Gail J; Holland, Christy K

    2011-08-01

    Ultrasound is known to enhance recombinant tissue plasminogen activator (rt-PA) thrombolysis. In this study, occlusive porcine whole blood clots were placed in flowing plasma within living porcine carotid arteries. Ultrasonically induced stable cavitation was investigated as an adjuvant to rt-PA thrombolysis. Aged, retracted clots were exposed to plasma alone, plasma containing rt-PA (7.1 ± 3.8 μg/mL) or plasma with rt-PA and Definity® ultrasound contrast agent (0.79 ± 0.47 μL/mL) with and without 120-kHz continuous wave ultrasound at a peak-to-peak pressure amplitude of 0.44 MPa. An insonation scheme was formulated to promote and maximize stable cavitation activity by incorporating ultrasound quiescent periods that allowed for the inflow of Definity®-rich plasma. Cavitation was measured with a passive acoustic detector throughout thrombolytic treatment. Thrombolytic efficacy was measured by comparing clot mass before and after treatment. Average mass loss for clots exposed to rt-PA and Definity® without ultrasound (n = 7) was 34%, and with ultrasound (n = 6) was 83%, which constituted a significant difference (p < 0.0001). Without Definity® there was no thrombolytic enhancement by ultrasound exposure alone at this pressure amplitude (n = 5, p < 0.0001). In the low-oxygen environment of the ischemic artery, significant loss of endothelium occurred but no correlation was observed between arterial tissue damage and treatment type. Acoustic stable cavitation nucleated by an infusion of Definity® enhances rt-PA thrombolysis without apparent treatment-related damage in this ex vivo porcine carotid artery model. Copyright © 2011. Published by Elsevier Inc.

  20. US Emergency Department Trends in Imaging for Pediatric Nontraumatic Abdominal Pain.

    PubMed

    Niles, Lauren M; Goyal, Monika K; Badolato, Gia M; Chamberlain, James M; Cohen, Joanna S

    2017-10-01

    To describe national emergency department (ED) trends in computed tomography (CT) and ultrasound imaging for the evaluation of pediatric nontraumatic abdominal pain from 2007 through 2014. We used data from the National Hospital Ambulatory Medical Care Survey to measure trends in CT and ultrasound use among children with nontraumatic abdominal pain. We performed multivariable logistic regression to measure the strength of the association of ED type (pediatric versus general ED) with CT and ultrasound use adjusting for potential confounding variables. Of an estimated 21.1 million ED visits for nontraumatic abdominal pain, 14.6% (95% confidence interval [CI], 13.2%-16.0%) had CT imaging only, 10.9% (95% CI, 9.7%-12.1%) had ultrasound imaging only, and 1.9% (95% CI, 1.4%-2.4%) received both CT and ultrasound. The overall use of CT and ultrasound did not significantly change over the study period ( P trend .63 and .90, respectively). CT use was lower among children treated in pediatric EDs compared with general EDs (adjusted odds ratio 0.34; 95% CI, 0.17-0.69). Conversely, ultrasound use was higher among children treated in pediatric EDs compared with general EDs (adjusted odds ratio 2.14; 95% CI, 1.29-3.55). CT imaging for pediatric patients with nontraumatic abdominal pain has plateaued since 2007 after the steady increase seen in the preceding 9 years. Among this population, an increased likelihood of CT imaging was demonstrated in general EDs compared with pediatric EDs, in which there was a higher likelihood of ultrasound imaging. Dissemination of pediatric-focused radiology protocols to general EDs may help optimize radiation exposure in children. Copyright © 2017 by the American Academy of Pediatrics.

  1. Portable Ultrasound Imaging of the Brain for Use in Forward Battlefield Areas

    DTIC Science & Technology

    2011-03-01

    ultrasound measurement of skull thickness and sound speed, phase correction of beam distortion, the tomographic reconstruction algorithm, and the final...produce a coherent imaging source. We propose a corrective technique that will use ultrasound-based phased -array beam correction [3], optimized...not expected to be a significant factor in the ability to phase -correct the imaging beam . In addition to planning (2.2.1), the data is also be used

  2. Meta-analysis of Pentacam vs. ultrasound pachymetry in central corneal thickness measurement in normal, post-LASIK or PRK, and keratoconic or keratoconus-suspect eyes.

    PubMed

    Wu, Wenjing; Wang, Yan; Xu, Lulu

    2014-01-01

    The aim of this meta-analysis is to evaluate the central corneal thickness (CCT) measurement differences between Pentacam (Oculus Inc., Germany) and Ultrasound Pachymetry (USP) in normal (unoperated eyes , myopic and astigmatic eyes without corneal disease or topographic irregularity), after laser in situ keratomileusis (LASIK) or photorefractive keratectomy (PRK), and keratoconic or keratoconus suspected eyes. We assess whether Pentacam and USP have similar CCT differences in normal, thinner corneas after LASIK or PRK procedures, and kerotoconic or keratoconus suspected eyes. Data sources, including PubMed, Medline, EMBASE, and Cochrane Central Registry of Controlled Trials on the Cochrane Library, were searched to find the relevant studies. Primary outcome measures were CCT measurement between Pentacam and USP. Three groups of eyes were analyzed: normal; LASIK or PRK eyes; and keratoconus suspected or keratoconic eyes. Nineteen studies describing 1,908 eyes were enrolled in the normal group. Pentacam results were 1.47 μm ,95 % confidence interval (CI) -2.32 to 5.27, higher than USP without statistically significant difference (P = 0.45). Nine studies with total 539 eyes were included in the corneas after LASIK or PRK. The mean difference in the CCT measurement with Pentacam and ultrasound pachymetry was 1.03 μm, with the 95 % CI -3.36 to 5.42, there was no statistically difference (P = 0.64). Four studies with a total of 185 eyes were included in the keratoconic eyes or keratoconus-suspect group, however,the mean difference was -6.33 μm (95 % CI -9.17 to-3.49), which was statistically different between Pentacam and ultrasound pachymetry in the CCT measurement (P < 0.0001). Pentacam offers similar CCT results to ultrasound pachymetry in normal eyes, thinner corneas after LASIK or PRK procedures. However, in keratoconic or keratoconus-suspect eyes, Pentacam slightly underestimates the central corneal thickness than does ultrasound pachymetry, which may result from the difficulty in fixation of keratoconic eyes, misalignment of Pentacam and the variation of ultrasonic velocity due to the histological deformation.

  3. Technical Note: A new phantom design for routine testing of Doppler ultrasound.

    PubMed

    Grice, J V; Pickens, D R; Price, R R

    2016-07-01

    The objective of this project is to demonstrate the principle and operation for a simple, inexpensive, and highly portable Doppler ultrasound quality assurance (QA) phantom intended for routine QA testing. A prototype phantom has been designed, fabricated, and evaluated. The phantom described here is powered by gravity alone, requires no external equipment for operation, and produces a stable fluid velocity useful for quality assurance. Many commercially available Doppler ultrasound testing systems can suffer from issues such as a lengthy setup, prohibitive cost, nonportable size, or difficulty in use. This new phantom design aims to address some of these problems and create a phantom appropriate for assessing Doppler ultrasound stability. The phantom was fabricated using a 3D printer. The basic design of the phantom is to provide gravity-powered flow of a Doppler fluid between two reservoirs. The printed components were connected with latex tubing and then seated in a tissue mimicking gel. Spectral Doppler waveforms were sampled to evaluate variations in the data, and the phantom was evaluated using high frame rate video to find an alternate measure of mean fluid velocity flowing in the phantom. The current system design maintains stable flow from one reservoir to the other for approximately 7 s. Color Doppler imaging of the phantom was found to be qualitatively consistent with laminar flow. Using pulsed spectral Doppler, the average fluid velocity from a sample volume approximately centered in the synthetic vessel was measured to be 56 cm/s with a standard deviation of 3.2 cm/s across 118 measurements. An independent measure of the average fluid velocity was measured to be 51.9 cm/s with a standard deviation of 0.7 cm/s over 4 measurements. The developed phantom provides stable fluid flow useful for frequent clinical Doppler ultrasound testing and attempts to address several obstacles facing Doppler phantom testing. Such an ultrasound phantom can make routine testing more approachable for institutions that wish to initiate a Doppler QA program or complement a previously existing QA program.

  4. Using low-frequency ultrasound to improve the optical clearing of porcine skin

    NASA Astrophysics Data System (ADS)

    Zhong, Huiqing; Guo, Zhouyi; Wei, Huajiang; Zhang, Zude; Zeng, Changchun; Zhai, Juan; He, Yonghong

    2008-12-01

    The glycerol used as an enhancer for tissue optical clearing technique has been researched. However, using it and a physical way of ultrasound enhance optical clearing of tissue reported a few. We researched that the ultrasound whether can improve the optical clearing of dealt with 80% glycerol tissue. The fresh porcine skins divided into four groups. The first group was not dealt with by ultrasound and 80% glycerol, the second group was dealt with by only ultrasound, the third group was dealt with by 80% glycerol and no by ultrasound, and the fourth group was dealt with by both 80% glycerol and ultrasound. And we measured changes in optical scattering of the porcine skins under treatment with OCT. From the OCT images show that the fourth group changed very faster than the other's during the 0~15 min. And it can be clearly seen that there is a significant improvement in the light penetration depth and imaging contrast in a shorter time. It is possible that the low-frequency ultrasound can make disordering of the stratum corneum lipids of the porcine skin (because the cavitation has happened), and improve the speed of 80% glycerol through the stratum corneum of skin. These results proved that using 80% glycerol with the ultrasound can better improve the optical clearing of tissue.

  5. Ultrasound elastography: principles, techniques, and clinical applications.

    PubMed

    Dewall, Ryan J

    2013-01-01

    Ultrasound elastography is an emerging set of imaging modalities used to image tissue elasticity and are often referred to as virtual palpation. These techniques have proven effective in detecting and assessing many different pathologies, because tissue mechanical changes often correlate with tissue pathological changes. This article reviews the principles of ultrasound elastography, many of the ultrasound-based techniques, and popular clinical applications. Originally, elastography was a technique that imaged tissue strain by comparing pre- and postcompression ultrasound images. However, new techniques have been developed that use different excitation methods such as external vibration or acoustic radiation force. Some techniques track transient phenomena such as shear waves to quantitatively measure tissue elasticity. Clinical use of elastography is increasing, with applications including lesion detection and classification, fibrosis staging, treatment monitoring, vascular imaging, and musculoskeletal applications.

  6. Preoperative ultrasound measurements predict the feasibility of gallbladder extraction during transgastric natural orifice translumenal endoscopic surgery cholecystectomy.

    PubMed

    Santos, Byron F; Auyang, Edward D; Hungness, Eric S; Desai, Kush R; Chan, Edward S; van Beek, Darren B; Wang, Edward C; Soper, Nathaniel J

    2011-04-01

    Extraction of a gallbladder through an endoscopic overtube during natural orifice translumenal endoscopic surgery (NOTES) transgastric cholecystectomy avoids potential injury to the esophagus. This study examined the rate of successful gallbladder specimen extraction through an overtube and hypothesized that preoperative ultrasound findings could predict successful specimen passage. Gallbladder specimens from patients undergoing laparoscopic cholecystectomy were measured, and an attempt was made to pull the specimens through a commercially available overtube with an inner diameter of 16.7-mm. A radiologist blinded to the outcomes reviewed the available preoperative ultrasound measurements from these patients. Ultrasound dimensions including gallbladder length, width, and depth; wall thickness; common bile duct diameter; and size of the largest gallstone (LGS) were recorded. Multiple logistic regression analysis was performed to determine whether ultrasound findings and patient characteristics (age, body mass index [BMI], and sex) could predict the ability of a specimen to pass through the overtube. Of 57 patients, 44 (77%) who had preoperative ultrasounds available for electronic review were included in the final analysis. Gallstones were present in 35 (79%) of these 44 patients. Intraoperative gallbladder perforation occurred in 18 (41%) of the 44 patients, and 16 (36%) of the 44 gallbladders could be extracted through the overtube. Measurement of LGS was possible for 23 patients, and indeterminate gallstone size (IGS) was determined for 12 patients. The rate for passage of perforated versus intact gallbladders was similar (40% vs. 23%; p = 0.054). The LGS (odds ratio [OR], 1.17; 95% confidence interval [CI], 1.02-1.33; p = 0.021) and IGS (OR, 22.97; 95% CI, 1.99-265.63; p = 0.025) predicted failed passage on multivariate logistic regression analysis. The passage rate was 80% for LGS smaller than 10 mm or no stones present, 18% for LGS 10 mm or larger, and 8% for IGS (p < 0.001). A majority of cholecystectomy specimens cannot pass through an endoscopic overtube. Preoperative ultrasound findings can predict successful specimen extraction. An IGS or a gallstone 10 mm or larger should be considered a relative contraindication to transgastric NOTES cholecystectomy.

  7. Preoperative prediction of lymph node metastasis and deep stromal invasion in women with invasive cervical cancer: prospective multicenter study using 2D and 3D ultrasound.

    PubMed

    Pálsdóttir, K; Fischerova, D; Franchi, D; Testa, A; Di Legge, A; Epstein, E

    2015-04-01

    To determine how various objective two-dimensional (2D) and three-dimensional (3D) ultrasound parameters allow prediction of deep stromal tumor invasion and lymph node involvement, in comparison to subjective ultrasound assessment, in women scheduled for surgery for cervical cancer. This was a prospective multicenter trial including 104 women with cervical cancer at FIGO Stages IA2-IIB, verified histologically. Patients scheduled for surgery underwent a preoperative ultrasound examination. The value of various 2D (size, color score) and 3D (volume, vascular indices) ultrasound parameters was compared to that of subjective assessment in the prediction of deep stromal tumor invasion and lymph node involvement. Histology obtained from radical hysterectomy or trachelectomy and pelvic lymphadenectomy was considered as the gold standard for assessment. All women underwent pelvic lymphadenectomy, with 99 (95%) undergoing subsequent radical surgery; five underwent only pelvic lymphadenectomy because of the presence of a positive sentinel lymph node. Women with deep stromal invasion or lymph node involvement had significantly larger tumors (diameter and volume) but there was no correlation with vascular indices measured on 3D ultrasound. Subjective evaluation was superior (AUC, 0.93; sensitivity, 90.5%; specificity, 97.2%) in the prediction of deep stromal invasion when compared to any objective measurement technique, with maximal tumor diameter at 20.5-mm cut-off (AUC, 0.83; sensitivity, 90.5%; specificity, 61.1%) and 3D tumor volume at 9.1-mm(3) cut-off (AUC, 0.85; sensitivity, 79.4%; specificity, 83.3%) providing the best performance among the objective parameters. Both subjective assessment and objective measurements were poorly predictive of lymph node involvement. In women with cervical cancer, subjective ultrasound evaluation allowed better prediction of deep stromal invasion than did objective measurements; however, neither subjective evaluation nor objective parameters were adequate to predict lymph node involvement. 3D vascular indices were ineffective in the prediction of advanced stages of the disease. Copyright © 2014 ISUOG. Published by John Wiley & Sons Ltd.

  8. Standard B-Mode Ultrasound Measures Local Carotid Artery Characteristics as Reliably as Radiofrequency Phase Tracking in Symptomatic Carotid Artery Patients.

    PubMed

    Steinbuch, Jeire; Hoeks, Arnold P G; Hermeling, Evelien; Truijman, Martine T B; Schreuder, Floris H B M; Mess, Werner H

    2016-02-01

    Local arterial stiffness can be assessed with high accuracy and precision by measuring arterial distension on the basis of phase tracking of radiofrequency ultrasound signals acquired at a high frame rate. However, in clinical practice, B-mode ultrasound registrations are made at a low frame rate (20-50 Hz). We compared the accuracy and intra-subject precision of edge tracking and phase tracking distension in symptomatic carotid artery patients. B-mode ultrasound recordings (40 mm, 37 fps) and radiofrequency recordings (31 lines covering 29 mm, 300 fps) were acquired from the left common carotid artery of 30 patients (aged 45-88 y) with recent cerebrovascular events. To extract the distension, semi-automatic echo edge and phase tracking algorithms were applied to B-mode and radiofrequency recordings, respectively. Both methods exhibited a similar intra-subject precision for distension (standard deviation = 44 μm and 47 μm, p = 0.66) and mean distension (difference: -6 ± 69 μm, p = 0.67). Intra-subject distension inhomogeneity tends to be larger for edge tracking (difference: 15 ± 35 μm, p = 0.04). Standard B-mode scanners are suitable for measuring local artery characteristics in symptomatic carotid artery patients with good precision and accuracy. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  9. Reproducibility of ECG-gated ultrasound diameter assessment of small abdominal aortic aneurysms.

    PubMed

    Bredahl, K; Eldrup, N; Meyer, C; Eiberg, J E; Sillesen, H

    2013-03-01

    No standardised ultrasound procedure to obtain reliable growth estimates for abdominal aortic aneurysms (AAA) is currently available. We investigated the feasibility and reproducibility of a novel approach controlling for a combination of vessel wall delineation and cardiac cycle variation. Prospective comparative study. Consecutive patients (N = 27) with an AAA, attending their 6-month control as part of a medical treatment trial, were scanned twice by two ultrasound operators. Then, all ultrasound recordings were transferred to a core facility and analysed by a third person. The AAA diameter was determined in four different ways: from the leading edge of adventitia on the anterior wall to either the leading edge of the adventitia (method A) or leading edge of the intima (method B) on the posterior wall, with both measurements performed in systole and diastole. Inter-operator reproducibility was ± 3 mm for all methods applied. There was no difference in outcome between methods A and B; likewise, end-diastolic measurement did not improve reproducibility in preference to peak-systolic measurement. The use of a standardised ultrasound protocol including ECG-gating and subsequent off-line reading with minute calliper placement reduces variability. This may be of use in developing protocols to better detect even small AAA growth rates during clinical trials. Copyright © 2012 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  10. A method to validate quantitative high-frequency power doppler ultrasound with fluorescence in vivo video microscopy.

    PubMed

    Pinter, Stephen Z; Kim, Dae-Ro; Hague, M Nicole; Chambers, Ann F; MacDonald, Ian C; Lacefield, James C

    2014-08-01

    Flow quantification with high-frequency (>20 MHz) power Doppler ultrasound can be performed objectively using the wall-filter selection curve (WFSC) method to select the cutoff velocity that yields a best-estimate color pixel density (CPD). An in vivo video microscopy system (IVVM) is combined with high-frequency power Doppler ultrasound to provide a method for validation of CPD measurements based on WFSCs in mouse testicular vessels. The ultrasound and IVVM systems are instrumented so that the mouse remains on the same imaging platform when switching between the two modalities. In vivo video microscopy provides gold-standard measurements of vascular diameter to validate power Doppler CPD estimates. Measurements in four image planes from three mice exhibit wide variation in the optimal cutoff velocity and indicate that a predetermined cutoff velocity setting can introduce significant errors in studies intended to quantify vascularity. Consistent with previously published flow-phantom data, in vivo WFSCs exhibited three characteristic regions and detectable plateaus. Selection of a cutoff velocity at the right end of the plateau yielded a CPD close to the gold-standard vascular volume fraction estimated using IVVM. An investigator can implement the WFSC method to help adapt cutoff velocity to current blood flow conditions and thereby improve the accuracy of power Doppler for quantitative microvascular imaging. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. Complete Placenta Previa: Ultrasound Biometry and Surgical Outcomes

    PubMed Central

    Wortman, Alison C.; Schaefer, Stephanie L.; McIntire, Donald D.; Sheffield, Jeanne S.; Twickler, Diane M.

    2018-01-01

    Objective  To evaluate the relationship between surgical outcomes and ultrasound measurement of placental extension beyond the cervical os in women with placenta previa. Study Design  This is a retrospective cohort study of singleton pregnancies with placenta previa undergoing third-trimester ultrasound and delivering at our institution from 2002 through 2011. For study purposes, an investigator measured placental extension, defined as the placental distance from the internal os across the placenta continuing out to the lowest placental edge. If morbidly adherent placentation was suspected, women were excluded. Receiver operating characteristic (ROC) curves were developed for pertinent surgical outcomes, and multivariate analysis was performed to determine the placental extension with the best predictive discriminatory zone. Results  In total, 157 women had placenta previa, ultrasound, and delivery data: 86 (55%) had a placental extension of <40 mm, and 71 (45%) had a placental extension of ≥40 mm. Women with placental extension of ≥40 mm had increased surgical time, blood loss > 2,000 mL, blood transfusion, and rate of peripartum hysterectomy. After multivariate analysis, only peripartum hysterectomy and surgical time > 90 minutes remained significant, p ≤ 0.05 and p ≤ 0.01, respectively. Conclusion  In women with placenta previa, the placental extension ultrasound measurement of ≥40 mm is a predictor of adverse surgical outcomes. PMID:29686936

  12. Complete Placenta Previa: Ultrasound Biometry and Surgical Outcomes.

    PubMed

    Wortman, Alison C; Schaefer, Stephanie L; McIntire, Donald D; Sheffield, Jeanne S; Twickler, Diane M

    2018-04-01

    Objective  To evaluate the relationship between surgical outcomes and ultrasound measurement of placental extension beyond the cervical os in women with placenta previa. Study Design  This is a retrospective cohort study of singleton pregnancies with placenta previa undergoing third-trimester ultrasound and delivering at our institution from 2002 through 2011. For study purposes, an investigator measured placental extension, defined as the placental distance from the internal os across the placenta continuing out to the lowest placental edge. If morbidly adherent placentation was suspected, women were excluded. Receiver operating characteristic (ROC) curves were developed for pertinent surgical outcomes, and multivariate analysis was performed to determine the placental extension with the best predictive discriminatory zone. Results  In total, 157 women had placenta previa, ultrasound, and delivery data: 86 (55%) had a placental extension of <40 mm, and 71 (45%) had a placental extension of ≥40 mm. Women with placental extension of ≥40 mm had increased surgical time, blood loss > 2,000 mL, blood transfusion, and rate of peripartum hysterectomy. After multivariate analysis, only peripartum hysterectomy and surgical time > 90 minutes remained significant, p ≤ 0.05 and p ≤ 0.01, respectively. Conclusion  In women with placenta previa, the placental extension ultrasound measurement of ≥40 mm is a predictor of adverse surgical outcomes.

  13. Effect of Heat Generation of Ultrasound Transducer on Ultrasonic Power Measured by Calorimetric Method

    NASA Astrophysics Data System (ADS)

    Uchida, Takeyoshi; Kikuchi, Tsuneo

    2013-07-01

    Ultrasonic power is one of the key quantities closely related to the safety of medical ultrasonic equipment. An ultrasonic power standard is required for establishment of safety. Generally, an ultrasonic power standard below approximately 20 W is established by the radiation force balance (RFB) method as the most accurate measurement method. However, RFB is not suitable for high ultrasonic power because of thermal damage to the absorbing target. Consequently, an alternative method to RFB is required. We have been developing a measurement technique for high ultrasonic power by the calorimetric method. In this study, we examined the effect of heat generation of an ultrasound transducer on ultrasonic power measured by the calorimetric method. As a result, an excessively high ultrasonic power was measured owing to the effect of heat generation from internal loss in the transducer. A reference ultrasound transducer with low heat generation is required for a high ultrasonic power standard established by the calorimetric method.

  14. Comparison of Central Corneal Thickness Measurements Obtained by RTVue OCT, Lenstar, Sirius Topography, and Ultrasound Pachymetry in Healthy Subjects.

    PubMed

    Şimşek, Ali; Bilak, Şemsettin; Güler, Mete; Çapkin, Musa; Bilgin, Burak; Reyhan, Ali Hakim

    2016-01-01

    To compare central corneal thickness (CCT) measurement results obtained by RTVue OCT, Lenstar, Sirius topography, and ultrasound pachymetry (UP) (OcuScan RxP Ophthalmic Ultrasound System, Alcon Laboratories) in healthy subjects. 256 eyes of 128 healthy subjects were included in the study. CCT measurements were obtained from the eyes for each subject using the UP, Lenstar, Sirius topography, and RTVue OCT instruments. Ultrasound pachymetry measurements were performed after the eyes were anesthetized with one drop of 0.5% proparacaine hydrochloride and were performed at the same day after 15 minutes after previous measurements. Of 128 participants, 84 were male and 44 were female with a mean age of 33.15 ± 12.95 years (ranging from 18 to 75 years). The mean CCTs for UP, Lenstar, Sirius topography, and RTVue OCT were 535.60 ± 35.15 (440,00-668,00); 532.63 ± 34.44 (449,00-650,00); 526.05 ± 36.45 (314,00-640,00); 525.89 ± 33.21 (437,00-646,00) µm, respectively. The mean CCT measurements were statistically different among the three groups (p = 0.002). CCT measurements obtained using RTVue-OCT were significantly thinner than those obtained using UP (p = 0.009). Sirius CCT measurements were also thinner than UP (p = 0.011). Mean CCT measurements between UP and Lenstar were similar (p = 0.769). Measurements with Lenstar (r = 0.849), Sirius topography (r = 0.883), and RTVue OCT (0.949) were highly correlated with UP measurements. RTVue OCT and Sirius topography significantly underestimated the CCT compared with UP. Although highly correlated, the measurement values with these devices are not directly interchangeable in clinical practice.

  15. What is ultrasound?

    PubMed

    Leighton, Timothy G

    2007-01-01

    This paper is based on material presented at the start of a Health Protection Agency meeting on ultrasound and infrasound. In answering the question 'what is ultrasound?', it shows that the simple description of a wave which transports mechanical energy through the local vibration of particles at frequencies of 20 kHz or more, with no net transport of the particles themselves, can in every respect be misleading or even incorrect. To explain the complexities responsible for this, the description of ultrasound is first built up from the fundamental properties of these local particle vibrations. This progresses through an exposition of the characteristics of linear waves, in order to explain the propensity for, and properties of, the nonlinear propagation which occurs in many practical ultrasonic fields. Given the Health Protection environment which framed the original presentation, explanation and examples are given of how these complexities affect issues of practical importance. These issues include the measurement and description of fields and exposures, and the ability of ultrasound to affect tissue (through microstreaming, streaming, cavitation, heating, etc.). It is noted that there are two very distinct regimes, in terms of wave characteristics and potential for bioeffect. The first concerns the use of ultrasound in liquids/solids, for measurement or material processing. For biomedical applications (where these two processes are termed diagnosis and therapy, respectively), the issue of hazard has been studied in depth, although this has not been done to such a degree for industrial uses of ultrasound in liquids/solids (sonar, non-destructive testing, ultrasonic processing etc.). However, in the second regime, that of the use of ultrasound in air, although the waves in question tend to be of much lower intensities than those used in liquids/solids, there is a greater mismatch between the extent to which hazard has been studied, and the growth in commercial applications for airborne ultrasound.

  16. An uncovered risk factor of sonothrombolysis: Substantial fluctuation of ultrasound transmittance through the human skull.

    PubMed

    Wang, Zuojun; Komatsu, Teppei; Mitsumura, Hidetaka; Nakata, Norio; Ogawa, Takeki; Iguchi, Yasuyuki; Yokoyama, Masayuki

    2017-05-01

    Sonothrombolysis is one of the most feasible methods for enhancing clot lysis with a recombinant tissue plasminogen activator (rt-PA) in cases of acute ischemic strokes. For safe and efficient clinical practices of sonothrombolysis, accurate estimation of ultrasound transmittance through the human skull is critical. Previously, we reported substantial and periodic fluctuation of ultrasound transmittance through a bone-phantom plate following changes to ultrasound frequency, the thickness of the bone-phantom plate, and the distance between a transducer and the bone-phantom plate. In the present study, we clarify the transmittance behavior of medium-frequency ultrasound (from 400kHz to 600kHz) through the human skull, and examine reduction of the transmittance fluctuation. For the study, we measured transmittance of sinusoidal ultrasound waves at 400kHz, 500kHz, and 600kHz at 13 temple spots on 3 human skulls by changing the distance between a transducer and the skull bone, and found substantial and periodic fluctuation in the transmittance behaviors for these sinusoidal voltage excitations. Degrees of the fluctuation varied depending on the measurement spots. A fluctuation ratio between the maximum transmittance and the minimum transmittance reached 3 in some spots. This large transmittance fluctuation is considered to be a risk factor for sonothrombolysis therapies. We examined a modulated ultrasound wave to reduce the fluctuation, and succeeded in obtaining considerable reduction. The average fluctuation ratios for 400-kHz, 500-kHz, and 600-kHz waves were 2.38, 2.38, and 2.07, respectively. We successfully reduced the ratio to 1.72 by using a periodic selection of random frequency (PSRF)-type of modulation wave. The thus obtained results indicate that attention to the fluctuation in ultrasound transmittance through the skull is necessary for safe and effective sonothrombolysis therapies, and that modulated ultrasound waves constitute a powerful method for reducing the risk of fluctuation. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Imaging of idle breast implants with ultrasound-strain elastography- A first experimental study to establish criteria for accurate imaging of idle implants via ultrasound-strain elastography.

    PubMed

    Kuehlmann, Britta; Prantl, Lukas; Michael Jung, Ernst

    2016-01-01

    To investigate whether there are fundamental sonographic and elastographic criteria to precisely assess different surfaces and fillings of idle breast implants and to determine their most distinctive parameters. This was a comparative study of different unused breast implant materials, neighter in animals nor in humans. This knowledge should be transferred in vivo to develop an objective measurement tool. Nine idle breast implants-silicone and polyurethane (PU)-were examined in an experimental study by using ultrasound B-mode with tissue harmonic imaging (THI), speckle reduction imaging (SRI, level 0-4), cross-beam (CB, low, medium, high), photopic and the colour coded ultrasound-strain elastography with a multifrequency probe (9-15 MHz).Using a standardised protocol the implants' centre as well as the edge were analysed by one experienced examiner. Two independent readers performed analysis and evaluation. For image interpretation a score was created (score 0:inadequate image, score 5:best image quality). The highest score result for the centre was achieved by using ultrasound with B-mode in addition with CB level medium, SRI level 2, THI and photopic (mean:3.22±SD:1.56), but without any statistic significant difference (t-value = 0.71). With elastography the implants' edge in general was represented without disruptive artefacts (3.89±0.60) with statistic significant difference (t-value = 5.29). Implants filled with inner cohesive silicone gel II° showed best imaging conditions for their centre via ultrasound (5±0) as well as for their edge via elastography (4.50±0.71). Ultrasound-strain elastography and high resolution ultrasound represent a valuable measurement tool to evaluate different properties of idle breast implants. These modified ultrasound examinations could be an additional help for clinical investigations and be correlated with Baker's Classification.

  18. Characterization of enzymatically induced degradation of articular cartilage using high frequency ultrasound

    NASA Astrophysics Data System (ADS)

    Töyräs, J.; Rieppo, J.; Nieminen, M. T.; Helminen, H. J.; Jurvelin, J. S.

    1999-11-01

    Ultrasound may provide a quantitative technique for the characterization of cartilage changes typical of early osteoarthrosis. In this study, specific changes in bovine articular cartilage were induced using collagenase and chondroitinase ABC, enzymes that selectively degrade collagen fibril network and digest proteoglycans, respectively. Changes in cartilage structure and properties were quantified using high frequency ultrasound, microscopic analyses and mechanical indentation tests. The ultrasound reflection coefficient of the physiological saline-cartilage interface (R1) decreased significantly (-96.4%, p<0.01) in the collagenase digested cartilage compared to controls. Also a significantly lower ultrasound velocity (-6.2%, p<0.01) was revealed after collagenase digestion. After chondroitinase ABC digestion, a new acoustic interface at the depth of the enzyme penetration front was detected. Cartilage thickness, as determined with ultrasound, showed a high, linear correlation (R = 0.943, n = 60, average difference 0.073 mm (4.0%)) with the thickness measured by the needle-probe method. Both enzymes induced a significant decrease in the Young's modulus of cartilage (p<0.01). Our results indicate that high frequency ultrasound provides a sensitive technique for the analysis of cartilage structure and properties. Possibly ultrasound may be utilized in vivo as a quantitative probe during arthroscopy.

  19. Assessment of Curve Flexibility on Scoliotic Surgical Candidates Using Ultrasound Imaging Method.

    PubMed

    Zheng, Rui; Hill, Doug; Hedden, Douglas; Moreau, Marc; Le, Lawrence H; Raso, Jim; Lou, Edmond

    2017-05-01

    The ultrasound imaging method was implemented to assess the spinal curve flexibility of scoliotic surgical candidates, or how much correction it can achieve while patients are bending or lying down. Fifteen participants were recruited. Pre-operative radiographs and ultrasound images in both standing and bending positions were acquired. The post-operative standing radiographs were obtained 1 wk after surgery. Two raters (RZ, EL) measured the ultrasound images twice, 1 wk apart. A curve correction index (C I ) was developed to estimate the curve flexibility. The C I from the pre-operative bending radiograph, ultrasound and post-operative radiograph were 0.51 ± 0.18; R1: 0.74 ± 0.08 vs R2: 0.72 ± 0.09 and 0.60 ± 0.10, respectively. The correlation of C I between ultrasound and post-operative radiography was slightly higher than the pre-operative bending and post-operative radiography. This pilot study demonstrated the bending ultrasound method is a promising supplemental tool to assess curve flexibility before surgical intervention for scoliotic surgical candidates. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  20. Ultrasound-enhanced bioscouring of greige cotton: regression analysis of process factors

    USDA-ARS?s Scientific Manuscript database

    Ultrasound-enhanced bioscouring process factors for greige cotton fabric are examined using custom experimental design utilizing statistical principles. An equation is presented which predicts bioscouring performance based upon percent reflectance values obtained from UV-Vis measurements of rutheniu...

  1. A continuous-wave ultrasound system for displacement amplitude and phase measurement.

    PubMed

    Finneran, James J; Hastings, Mardi C

    2004-06-01

    A noninvasive, continuous-wave ultrasonic technique was developed to measure the displacement amplitude and phase of mechanical structures. The measurement system was based on a method developed by Rogers and Hastings ["Noninvasive vibration measurement system and method for measuring amplitude of vibration of tissue in an object being investigated," U.S. Patent No. 4,819,643 (1989)] and expanded to include phase measurement. A low-frequency sound source was used to generate harmonic vibrations in a target of interest. The target was simultaneously insonified by a low-power, continuous-wave ultrasonic source. Reflected ultrasound was phase modulated by the target motion and detected with a separate ultrasonic transducer. The target displacement amplitude was obtained directly from the received ultrasound frequency spectrum by comparing the carrier and sideband amplitudes. Phase information was obtained by demodulating the received signal using a double-balanced mixer and low-pass filter. A theoretical model for the ultrasonic receiver field is also presented. This model coupled existing models for focused piston radiators and for pulse-echo ultrasonic fields. Experimental measurements of the resulting receiver fields compared favorably with theoretical predictions.

  2. A novel method for accurate needle-tip identification in trans-rectal ultrasound-based high-dose-rate prostate brachytherapy.

    PubMed

    Zheng, Dandan; Todor, Dorin A

    2011-01-01

    In real-time trans-rectal ultrasound (TRUS)-based high-dose-rate prostate brachytherapy, the accurate identification of needle-tip position is critical for treatment planning and delivery. Currently, needle-tip identification on ultrasound images can be subject to large uncertainty and errors because of ultrasound image quality and imaging artifacts. To address this problem, we developed a method based on physical measurements with simple and practical implementation to improve the accuracy and robustness of needle-tip identification. Our method uses measurements of the residual needle length and an off-line pre-established coordinate transformation factor, to calculate the needle-tip position on the TRUS images. The transformation factor was established through a one-time systematic set of measurements of the probe and template holder positions, applicable to all patients. To compare the accuracy and robustness of the proposed method and the conventional method (ultrasound detection), based on the gold-standard X-ray fluoroscopy, extensive measurements were conducted in water and gel phantoms. In water phantom, our method showed an average tip-detection accuracy of 0.7 mm compared with 1.6 mm of the conventional method. In gel phantom (more realistic and tissue-like), our method maintained its level of accuracy while the uncertainty of the conventional method was 3.4mm on average with maximum values of over 10mm because of imaging artifacts. A novel method based on simple physical measurements was developed to accurately detect the needle-tip position for TRUS-based high-dose-rate prostate brachytherapy. The method demonstrated much improved accuracy and robustness over the conventional method. Copyright © 2011 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  3. Influence of anthropometric parameters on ultrasound measurements of Os calcis.

    PubMed

    Hans, D; Schott, A M; Arlot, M E; Sornay, E; Delmas, P D; Meunier, P J

    1995-01-01

    Few data have been published concerning the influence of height, weight and body mass index (BMI) on broadband ultrasound attenuation (BUA), speed of sound (SOS) and Lunar "stiffness" index, and always in small population samples. The first ain of the present cross-sectional study was to determine whether anthropometric factors have a significant influence on ultrasound measurements. The second objective was to establish whether these parameters have real effect on whether their influence is due only to measurement errors. We measured, in 271 healthy French women (mean age 77 +/- 11 years; range 31-97 years), the following parameters: age, height, weight, lean and fat body mass, heel width, foot length, knee height and external malleolus (HEM). Simple linear regression analyses between ultrasound and anthropometric parameters were performed. Age, height, and heel width were significant predictors of SOS; age, height, weight, foot length, heel width, HEM, fat mass and lean mass were significant predictors of BUA; age, height, weight, heel width, HEM, fat mass and lean mass were significant predictors of stiffness. In the multiple regression analysis, once the analysis had been adjusted for age, only heel width was a significant predictor for SOS (p = 0.0007), weight for BUA (p = 0.0001), and weight (p = 0.0001) and heel width (p = 0.004) for the stiffness index. Besides their statistical meaning, the regression coefficients have a more clinically relevant interpretation which is developed in the text. These results confirm the influence of anthropometric factors on the ultrasonic parameter values, because BUA and SOS were in part dependent on heel width and weight. The influence of the position of the transducer on the calcaneus should be taken into account to optimize the methods of measurement using ultrasound.

  4. Heated Ultrasound Gel and Patient Satisfaction with Bedside Ultrasound Studies: The HUGS Trial

    PubMed Central

    Krainin, Benjamin M.; Thaut, Lane C.; April, Michael D.; Curtis, Ryan A.; Kaelin, Andrea L.; Hardy, Garrett B.; Weymouth, Wells L.; Srichandra, Jonathan; Chin, Eric J.; Summers, Shane M.

    2017-01-01

    Introduction Our goal was to determine if heated gel for emergency department (ED) bedside ultrasonography improves patient satisfaction compared to room-temperature gel. Methods We randomized a convenience sample of ED patients determined by their treating physician to require a bedside ultrasound (US) study to either heated gel (102.0° F) or room-temperature gel (82.3° F). Investigators performed all US examinations. We informed all subjects that the study entailed investigation into various measures to improve patient satisfaction with ED US examinations but did not inform them of our specific focus on gel temperature. Investigators wore heat-resistant gloves while performing the examinations to blind themselves to the gel temperature. After completion of the US, subjects completed a survey including the primary outcome measure of patient satisfaction as measured on a 100-mm visual analogue scale (VAS). A secondary outcome was patient perceptions of sonographer professionalism measured by an ordinal scale (1–5). Results We enrolled 124 subjects; 120 completed all outcome measures. Of these, 59 underwent randomization to US studies with room-temperature gel and 61 underwent randomization to heated US gel. Patient 100-mm VAS satisfaction scores were 83.9 among patients undergoing studies with room-temperature gel versus 87.6 among subjects undergoing studies with heated gel (effect size 3.7, 95% confidence interval −1.3–8.6). There were similarly no differences between the two arms with regard to patient perceptions of sonographer professionalism. Conclusion The use of heated ultrasound gel appears to have no material impact on the satisfaction of ED patients undergoing bedside ultrasound studies. PMID:29085538

  5. Two-dimensional Shear Wave Elastography on Conventional Ultrasound Scanners with Time Aligned Sequential Tracking (TAST) and Comb-push Ultrasound Shear Elastography (CUSE)

    PubMed Central

    Song, Pengfei; Macdonald, Michael C.; Behler, Russell H.; Lanning, Justin D.; Wang, Michael H.; Urban, Matthew W.; Manduca, Armando; Zhao, Heng; Callstrom, Matthew R.; Alizad, Azra; Greenleaf, James F.; Chen, Shigao

    2014-01-01

    Two-dimensional (2D) shear wave elastography presents 2D quantitative shear elasticity maps of tissue, which are clinically useful for both focal lesion detection and diffuse disease diagnosis. Realization of 2D shear wave elastography on conventional ultrasound scanners, however, is challenging due to the low tracking pulse-repetition-frequency (PRF) of these systems. While some clinical and research platforms support software beamforming and plane wave imaging with high PRF, the majority of current clinical ultrasound systems do not have the software beamforming capability, which presents a critical challenge for translating the 2D shear wave elastography technique from laboratory to clinical scanners. To address this challenge, this paper presents a Time Aligned Sequential Tracking (TAST) method for shear wave tracking on conventional ultrasound scanners. TAST takes advantage of the parallel beamforming capability of conventional systems and realizes high PRF shear wave tracking by sequentially firing tracking vectors and aligning shear wave data in the temporal direction. The Comb-push Ultrasound Shear Elastography (CUSE) technique was used to simultaneously produce multiple shear wave sources within the field-of-view (FOV) to enhance shear wave signal-to-noise-ratio (SNR) and facilitate robust reconstructions of 2D elasticity maps. TAST and CUSE were realized on a conventional ultrasound scanner (the General Electric LOGIQ E9). A phantom study showed that the shear wave speed measurements from the LOGIQ E9 were in good agreement to the values measured from other 2D shear wave imaging technologies. An inclusion phantom study showed that the LOGIQ E9 had comparable performance to the Aixplorer (Supersonic Imagine) in terms of bias and precision in measuring different sized inclusions. Finally, in vivo case analysis of a breast with a malignant mass, and a liver from a healthy subject demonstrated the feasibility of using the LOGIQ E9 for in vivo 2D shear wave elastography. These promising results indicate that the proposed technique can enable the implementation of 2D shear wave elastography on conventional ultrasound scanners and potentially facilitate wider clinical applications with shear wave elastography. PMID:25643079

  6. Ultrasonographic analysis versus histopathologic evaluation of carotid advanced atherosclerotic stenosis in an experimental rabbit model.

    PubMed

    Mehrad, Hossein; Mokhtari-Dizaji, Manijhe; Ghanaati, Hossein; Shahbazfar, Amir-Ali; Salehnia, Mojdeh

    2012-08-01

    Advanced carotid atherosclerosis with severe stenosis (>70%) is a major clinical risk factor for ischemic stroke. Our ability to test new protocols for the treatment of atherosclerotic stenosis in humans is limited for obvious ethical reasons; therefore, a suitable animal model is required. The aim of this study was to generate an easily reproducible and inexpensive experimental rabbit carotid model of advanced atherosclerosis with morphological similarities to the human disease and the subsequent assessment of the reliability of B-mode ultrasound technology in the study of lumen area stenosis in this model. Briefly, New Zealand white rabbits underwent primary perivascular cold injury at the right common carotid artery followed by a 1.5% cholesterol-rich diet injury for eight weeks. All of the rabbits' arteries were imaged by B-mode ultrasound weekly, after which the rabbits were sacrificed, and their vessels were processed for histopathology. Ultrasound longitudinal view images from three cardiac cycles were processed by a new computerized analyzing method based on dynamic programming and maximum gradient algorithm for measurement of instantaneous changes in arterial wall thickness and lumen diameter in sequential ultrasound images. Histopathology results showed progressive changes, from the lipid-laden cells and fibrous connective tissue proliferation in neointimal layer, up to the fibro-lipid plaque formation, resulting in vessel wall thickening, remodeling and lumen stenosis. The B-mode ultrasound images and the histologic measurements showed an increase in the mean wall thickness and the lumen area stenosis within eight weeks. Quantitative and morphometric analysis of the mean wall thickness and the lumen area stenosis percentage showed a significant correlation between the B-mode ultrasound and the histological measurements at each time point (R = 0.989 and R = 0.995, p < 0.05, respectively). In conclusion, we successfully produced advanced atherosclerosis in the rabbit carotid artery that is similar to the condition seen in patients. This condition in rabbits can be properly assessed by B-mode ultrasound image processing. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  7. A resonance-free nano-film airborne ultrasound emitter

    NASA Astrophysics Data System (ADS)

    Daschewski, Maxim; Harrer, Andrea; Prager, Jens; Kreutzbruck, Marc; Beck, Uwe; Lange, Thorid; Weise, Matthias

    2013-01-01

    In this contribution we present a novel thermo-acoustic approach for the generation of broad band airborne ultrasound and investigate the applicability of resonance-free thermo-acoustic emitters for very short high pressure airborne ultrasound pulses. We report on measurements of thermo-acoustic emitter consisting of a 30 nm thin metallic film on a usual soda-lime glass substrate, generating sound pressure values of more than 140 dB at 60 mm distance from the transducer and compare the results with conventional piezoelectric airborne ultrasound transducers. Our experimental investigations show that such thermo-acoustic devices can be used as broad band emitters using pulse excitation.

  8. Ultrasound Imaging of Breastfeeding--A Window to the Inside: Methodology, Normal Appearances, and Application.

    PubMed

    Geddes, Donna T; Sakalidis, Vanessa S

    2016-05-01

    Ultrasound imaging has been employed as a noninvasive technique to explore the sucking dynamics of the breastfeeding infant over the past 40 years. Recent improvements in the resolution of ultrasound images have allowed a more detailed description of the tongue movements during sucking, identification of oral structures, and measurements of nipple position and tongue motion. Several different scanning planes can be used and each show sucking from a different perspective. Ultrasound techniques and image anatomy are described in detail in this review and provide the basis for implementation in the objective assessment of breastfeeding. © The Author(s) 2016.

  9. The spectroscopy analyses of PpIX by ultrasound irradiation and its sonotoxicity in vitro.

    PubMed

    Wang, Pan; Wang, Xiaobing; Zhang, Kun; Gao, Kaili; Song, Ming; Liu, Quanhong

    2013-07-01

    Protoporphyrin IX (PpIX) has been used as a sensitizer in photodynamic therapy (PDT) as well as in sonodynamic therapy (SDT). The photo-bleaching of PpIX has been well investigated in many experimental systems and some photo-products have also been identified in PDT. But until now, little information has been reported about the sono-damage of PpIX in SDT. So, the present study was to investigate changes of PpIX properties before and after different ultrasound treatment, and the potential interactions between PpIX, ultrasound and the irradiated cells. In cell-free system, the absorption and fluorescence spectra of PpIX in different solutions were measured by ultraviolet spectrometer and fluorescence spectrophotometer, respectively. The terephthalic acid dosimetry was applied to evaluate the efficiency of ultrasound cavitation by monitoring hydroxyl radical (OH) production on the thermolysis of H2O in the ultrasound field. In in vitro study, confocal microscopy was applied to detect the sub-cellular localization of PpIX in S180 cells before and after ultrasound exposure. Flow cytometry was used to detect the reactive oxygen species (ROS) generation during PpIX-SDT. MTT assay was performed to evaluate the cell viability of S180 cells after SDT treatment with or without ROS scavengers. The results show that PpIX displayed different spectral patterns in different solutions. PpIX was decomposed by ultrasound exposure as measured by the decreased absorption and fluorescence peak values in RPMI-1640 medium. In addition, the decomposition of PpIX was found to be simultaneously accompanied by OH production with increasing output power from ultrasound generator. PpIX at 1μg/ml significantly enhanced the ultrasound induced cavitation as measured by OH generation, and which was greatly eliminated by NaN3, histidine, mannitol, EDTA and catalase, but not by SOD. The in vitro study indicates more PpIX entered into S180 cells after ultrasound exposure. And, the extra-cellular PpIX play an important role in the enhanced cell killing of PpIX-SDT. SDT induced obvious ROS generation in S180 cells, which could be mostly inhibited by the general ROS scavenge NAC (N-acetylcysteine). Other scavengers such as NaN3, histidine, mannitol all partially prevented the SDT induced cell viability loss of S180 cells, suggesting OH, (1)O2 might be involved during the process. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. The volume of the cerebellum in the second semester of gestation.

    PubMed

    Vulturar, Damiana; Fărcăşanu, Alexandru; Turcu, Flaviu; Boitor, Dan; Crivii, Carmen

    2018-01-01

    The cerebellum ("little brain"), the largest part of hind brain, lies in the posterior cranial fossa, beneath the occipital lobe and dorsal to the brainstem. It develops over a long period: it is one of the first structures in the brain to begin to differentiate, but one of the last to mature. The use of ultrasonography has significantly improved the evaluation of fetal growth and development and has permitted prenatal diagnosis of a variety of congenital malformations.The aim of our study was to evaluate the cerebellar growth and development using 2 different measuring techniques: microMRI and ultrasound technique. The cerebellum measurements were related to gestational age. We used 14 human fetuses corresponding to 15-28 gestational weeks, immersed in a 9% formalin solution. Magnetic Resonance Imaging (MRI) was performed by employing a Bruker BioSpec 70/16USR scanner (Bruker BioSpin MRI GmbH, Ettlingen, Germany), operated at 7.04 Tesla for cerebellar volume measurement. Ultrasonographic measurements of the cerebellum diameter were performed on 14 pregnant women, 15 - 28 gestational weeks. Ultrasound scan used 5-10 MHZ for transvaginal approach. Taking into consideration the values of the cerebellum dimensions and considering the general shape of the cerebellum as a transverse ellipsoid, the volume of the cerebellum was calculated by a mathematical formula for ellipsoid volume. The study correlates the measurements from the microMRI study with the ultrasounds data and the results are superposable. Both established the exponential volume growth after the 22-23 GW. We used the ellipsoid volume formula for the cerebellar volume using the half of the three diameters of the cerebellum determined by ultrasound measurements:Cerebellar Volume = Ellipsoid volume = 3/4 π r1 r2 r3. There is a linear correlation between the microMRI measurements and ultrasound determinations. Based on all collected data we could apply an easy formula to calculate the volume of cerebellum, a useful criterion in the evaluation of the cerebellar development and the appreciation of the gestational age.

  11. Determination of the acoustic output of a harmonic scalpel.

    PubMed

    Koch, Christian; Borys, Michael; Fedtke, Thomas; Richter, Utz; Pöhl, Bernd

    2002-11-01

    The acoustic output of a harmonic scalpel was experimentally determined, and both the airborne ultrasound and the ultrasound transmitted in water were taken into account. The sound pressure level of airborne ultrasound was measured with a microphone and an artificial head, so that the free-field value and the sound level at the entrance at the bottom of the cavum conchae of the ear could be determined. The derived output power in water was obtained from a hydrophone measurement. The results were strongly influenced by cavitation effects, and it is shown that the power values with and without cavitation differ by more than a factor of 5. The measurement of acoustic output parameters forms the basis for describing the performance of the devices and for an assessment of the risk of harmful bioeffects on both the operator and the patient.

  12. Characterization of the Lung Parenchyma Using Ultrasound Multiple Scattering.

    PubMed

    Mohanty, Kaustav; Blackwell, John; Egan, Thomas; Muller, Marie

    2017-05-01

    The purpose of the study described here was to showcase the application of ultrasound to quantitative characterization of the micro-architecture of the lung parenchyma to predict the extent of pulmonary edema. The lung parenchyma is a highly complex and diffusive medium for which ultrasound techniques have remained qualitative. The approach presented here is based on ultrasound multiple scattering and exploits the complexity of ultrasound propagation in the lung structure. The experimental setup consisted of a linear transducer array with an 8-MHz central frequency placed in contact with the lung surface. The diffusion constant D and transport mean free path L* of the lung parenchyma were estimated by separating the incoherent and coherent intensities in the near field and measuring the growth of the incoherent diffusive halo over time. Significant differences were observed between the L* values obtained in healthy and edematous rat lungs in vivo. In the control rat lung, L* was found to be 332 μm (±48.8 μm), whereas in the edematous lung, it was 1040 μm (±90 μm). The reproducibility of the measurements of L* and D was tested in vivo and in phantoms made of melamine sponge with varying air volume fractions. Two-dimensional finite difference time domain numerical simulations were carried out on rabbit lung histology images with varying degrees of lung collapse. Significant correlations were observed between air volume fraction and L* in simulation (r = -0.9542, p < 0.0117) and sponge phantom (r = -0.9932, p < 0.0068) experiments. Ex vivo measurements of a rat lung in which edema was simulated by adding phosphate-buffered saline revealed a linear relationship between the fluid volume fraction and L*. These results illustrate the potential of methods based on ultrasound multiple scattering for the quantitative characterization of the lung parenchyma. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  13. Quantitative Ultrasound: Transition from the Laboratory to the Clinic

    NASA Astrophysics Data System (ADS)

    Hall, Timothy

    2014-03-01

    There is a long history of development and testing of quantitative methods in medical ultrasound. From the initial attempts to scan breasts with ultrasound in the early 1950's, there was a simultaneous attempt to classify tissue as benign or malignant based on the appearance of the echo signal on an oscilloscope. Since that time, there has been substantial improvement in the ultrasound systems used, the models to describe wave propagation in random media, the methods of signal detection theory, and the combination of those models and methods into parameter estimation techniques. One particularly useful measure in ultrasonics is the acoustic differential scattering cross section per unit volume in the special case of the 180° (as occurs in pulse-echo ultrasound imaging) which is known as the backscatter coefficient. The backscatter coefficient, and parameters derived from it, can be used to objectively measure quantities that are used clinically to subjectively describe ultrasound images. For example, the ``echogenicity'' (relative ultrasound image brightness) of the renal cortex is commonly compared to that of the liver. Investigating the possibility of liver disease, it is assumed the renal cortex echogenicity is normal. Investigating the kidney, it is assumed the liver echogenicity is normal. Objective measures of backscatter remove these assumptions. There is a 30-year history of accurate estimates of acoustic backscatter coefficients with laboratory systems. Twenty years ago that ability was extended to clinical imaging systems with array transducers. Recent studies involving multiple laboratories and a variety of clinical imaging systems has demonstrated system-independent estimates of acoustic backscatter coefficients in well-characterized media (agreement within about 1.5dB over about a 1-decade frequency range). Advancements that made this possible, transition of this and similar capabilities into medical practice and the prospects for quantitative image-based biomarkers will be discussed. This work was supported, in part, by NIH grants R01CA140271 and R01HD072077.

  14. Portable bladder ultrasound: an evidence-based analysis.

    PubMed

    2006-01-01

    The aim of this review was to assess the clinical utility of portable bladder ultrasound. TARGET POPULATION AND CONDITION Data from the National Population Health Survey indicate prevalence rates of urinary incontinence are 2.5% in women and 1.4 % in men in the general population. Prevalence of urinary incontinence is higher in women than men and prevalence increases with age. Identified risk factors for urinary incontinence include female gender, increasing age, urinary tract infections (UTI), poor mobility, dementia, smoking, obesity, consuming alcohol and caffeine beverages, physical activity, pregnancy, childbirth, forceps and vacuum-assisted births, episiotomy, abdominal resection for colorectal cancer, and hormone replacement therapy. For the purposes of this review, incontinence populations will be stratified into the following; the elderly, urology patients, postoperative patients, rehabilitation settings, and neurogenic bladder populations. Urinary incontinence is defined as any involuntary leakage of urine. Incontinence can be classified into diagnostic clinical types that are useful in planning evaluation and treatment. The major types of incontinence are stress (physical exertion), urge (overactive bladder), mixed (combined urge and stress urinary incontinence), reflex (neurological impairment of the central nervous system), overflow (leakage due to full bladder), continuous (urinary tract abnormalities), congenital incontinence, and transient incontinence (temporary incontinence). Postvoid residual (PVR) urine volume, which is the amount of urine in the bladder immediately after urination, represents an important component in continence assessment and bladder management to provide quantitative feedback to the patient and continence care team regarding the effectiveness of the voiding technique. Although there is no standardized definition of normal PVR urine volume, measurements greater than 100 mL to 150 mL are considered an indication for urinary retention, requiring intermittent catheterization, whereas a PVR urine volume of 100 mL to 150 mL or less is generally considered an acceptable result of bladder training. Urinary retention has been associated with poor outcomes including UTI, bladder overdistension, and higher hospital mortality rates. The standard method of determining PVR urine volumes is intermittent catheterization, which is associated with increased risk of UTI, urethral trauma and discomfort. Portable bladder ultrasound products are transportable ultrasound devices that use automated technology to register bladder volume digitally, including PVR volume, and provide three-dimensional images of the bladder. The main clinical use of portable bladder ultrasound is as a diagnostic aid. Health care professionals (primarily nurses) administer the device to measure PVR volume and prevent unnecessary catheterization. An adjunctive use of the bladder ultrasound device is to visualize the placement and removal of catheters. Also, portable bladder ultrasound products may improve the diagnosis and differentiation of urological problems and their management and treatment, including the establishment of voiding schedules, study of bladder biofeedback, fewer UTIs, and monitoring of potential urinary incontinence after surgery or trauma. To determine the effectiveness and clinical utility of portable bladder ultrasound as reported in the published literature, the Medical Advisory Secretariat used its standard search strategy to retrieve international health technology assessments and English-language journal articles from selected databases. Nonsystematic reviews, nonhuman studies, case reports, letters, editorials, and comments were excluded. Of the 4 included studies that examined the clinical utility of portable bladder ultrasound in the elderly population, all found the device to be acceptable. One study reported that the device underestimated catheterized bladder volume In patients with urology problems, 2 of the 3 studies concerning portable bladder ultrasound found the device acceptable to use. However, one study did not find the device as accurate for small PVR volume as for catheterization and another found that the device overestimated catheterized bladder volume. In the remaining study, the authors reported that when the device's hand-held ultrasound transducers (scanheads) were aimed improperly, bladders were missed, or lateral borders of bladders were missed resulting in partial bladder volume measurements and underestimation of PVR measurements. They concluded that caution should be used in interpreting PVR volume measured by portable bladder ultrasound machines and that catheterization may be the preferred assessment modality if an accurate PVR measurement is necessary. All 3 studies with post-operative populations found portable bladder ultrasound use to be reasonably acceptable. Two studies reported that the device overestimated catheter-derived bladder volumes, one by 7% and the other by 21 mL. The third study reported the opposite, that the device underestimated catheter bladder volume by 39 mL but that the results remained acceptable In rehabilitation settings, 2 studies found portable bladder ultrasound to underestimate catheter-derived bladder volumes; yet, both authors concluded that the mean errors were within acceptable limits. In patients with neurogenic bladder problems, 2 studies found portable bladder ultrasound to be an acceptable alternative to catheterization despite the fact that it was not as accurate as catheterization for obtaining bladder volumes. Lastly, examinations concerning avoidance of negative health outcomes showed that, after use of the portable bladder ultrasound, unnecessary catheterizations and UTIs were decreased. Unnecessary catheterizations avoided ranged from 16% to 47% in the selected articles. Reductions in UTI ranged from 38% to 72%. In sum, all but one study advocated the use of portable bladder ultrasound as an alternative to catheterization. An economic analysis estimating the budget-impact of BladderScan in complex continuing care facilities was completed. The analysis results indicated a $192,499 (Cdn) cost-savings per year per facility and a cost-savings of $2,887,485 (Cdn) for all 15 CCC facilities. No economic analysis was completed for long-term care and acute care facilities due to lack of data. Rapid diffusion of portable bladder ultrasound technology is expected. Recently, the IC5 project on improving continence care in Ontario's complex continuing care centres piloted portable bladder ultrasound at 12 sites. Preliminary results were promising. Many physicians and health care facilities already have portable bladder ultrasound devices. However, portable bladder ultrasound devices for PVR measurement are not in use at most health care facilities in Ontario and Canada. The Verathon Corporation (Bothell, Wisconsin, United States), which patents BladderScan, is the sole licensed manufacturer of the portable bladder ultrasound in Canada. Field monopoly may influence the rising costs of portable bladder ultrasound, particularly when faced with rapid expansion of the technology. Several thousand residents of Ontario would benefit from portable bladder ultrasound. The number of residents of Ontario that would benefit from the technology is difficult to quantify, because the incidence and prevalence of incontinence are grossly under-reported. However, long-term care and complex continuing care institutions would benefit greatly from portable bladder ultrasound, as would numerous rehabilitation units, postsurgical care units, and urology clinics. The cost of the portable bladder ultrasound devices ranges from $17,698.90 to $19,565.95 (Cdn) (total purchase price per unit as quoted by the manufacturer). Additional training packages, batteries and battery chargers, software, gel pads, and yearly warranties are additional costs. Studies indicate that portable bladder ultrasound is a cost-effective technology, because it avoids costs associated with catheterization equipment, saves nursing time, and reduces catheter-related complications and UTIs. The use of portable bladder ultrasound device will affect the patient directly in terms of health outcomes. Its use avoids the trauma related to the urinary tract that catheterization inflicts, and does not result in UTIs. In addition, patients prefer it, because it preserves dignity and reduces discomfort.

  15. Portable Bladder Ultrasound

    PubMed Central

    2006-01-01

    Executive Summary Objective The aim of this review was to assess the clinical utility of portable bladder ultrasound. Clinical Need: Target Population and Condition Data from the National Population Health Survey indicate prevalence rates of urinary incontinence are 2.5% in women and 1.4 % in men in the general population. Prevalence of urinary incontinence is higher in women than men and prevalence increases with age. Identified risk factors for urinary incontinence include female gender, increasing age, urinary tract infections (UTI), poor mobility, dementia, smoking, obesity, consuming alcohol and caffeine beverages, physical activity, pregnancy, childbirth, forceps and vacuum-assisted births, episiotomy, abdominal resection for colorectal cancer, and hormone replacement therapy. For the purposes of this review, incontinence populations will be stratified into the following; the elderly, urology patients, postoperative patients, rehabilitation settings, and neurogenic bladder populations. Urinary incontinence is defined as any involuntary leakage of urine. Incontinence can be classified into diagnostic clinical types that are useful in planning evaluation and treatment. The major types of incontinence are stress (physical exertion), urge (overactive bladder), mixed (combined urge and stress urinary incontinence), reflex (neurological impairment of the central nervous system), overflow (leakage due to full bladder), continuous (urinary tract abnormalities), congenital incontinence, and transient incontinence (temporary incontinence). Postvoid residual (PVR) urine volume, which is the amount of urine in the bladder immediately after urination, represents an important component in continence assessment and bladder management to provide quantitative feedback to the patient and continence care team regarding the effectiveness of the voiding technique. Although there is no standardized definition of normal PVR urine volume, measurements greater than 100 mL to 150 mL are considered an indication for urinary retention, requiring intermittent catheterization, whereas a PVR urine volume of 100 mL to 150 mL or less is generally considered an acceptable result of bladder training. Urinary retention has been associated with poor outcomes including UTI, bladder overdistension, and higher hospital mortality rates. The standard method of determining PVR urine volumes is intermittent catheterization, which is associated with increased risk of UTI, urethral trauma and discomfort. The Technology Being Reviewed Portable bladder ultrasound products are transportable ultrasound devices that use automated technology to register bladder volume digitally, including PVR volume, and provide three-dimensional images of the bladder. The main clinical use of portable bladder ultrasound is as a diagnostic aid. Health care professionals (primarily nurses) administer the device to measure PVR volume and prevent unnecessary catheterization. An adjunctive use of the bladder ultrasound device is to visualize the placement and removal of catheters. Also, portable bladder ultrasound products may improve the diagnosis and differentiation of urological problems and their management and treatment, including the establishment of voiding schedules, study of bladder biofeedback, fewer UTIs, and monitoring of potential urinary incontinence after surgery or trauma. Review Strategy To determine the effectiveness and clinical utility of portable bladder ultrasound as reported in the published literature, the Medical Advisory Secretariat used its standard search strategy to retrieve international health technology assessments and English-language journal articles from selected databases. Nonsystematic reviews, nonhuman studies, case reports, letters, editorials, and comments were excluded. Summary of Findings Of the 4 included studies that examined the clinical utility of portable bladder ultrasound in the elderly population, all found the device to be acceptable. One study reported that the device underestimated catheterized bladder volume In patients with urology problems, 2 of the 3 studies concerning portable bladder ultrasound found the device acceptable to use. However, one study did not find the device as accurate for small PVR volume as for catheterization and another found that the device overestimated catheterized bladder volume. In the remaining study, the authors reported that when the device’s hand-held ultrasound transducers (scanheads) were aimed improperly, bladders were missed, or lateral borders of bladders were missed resulting in partial bladder volume measurements and underestimation of PVR measurements. They concluded that caution should be used in interpreting PVR volume measured by portable bladder ultrasound machines and that catheterization may be the preferred assessment modality if an accurate PVR measurement is necessary. All 3 studies with post-operative populations found portable bladder ultrasound use to be reasonably acceptable. Two studies reported that the device overestimated catheter-derived bladder volumes, one by 7% and the other by 21 mL. The third study reported the opposite, that the device underestimated catheter bladder volume by 39 mL but that the results remained acceptable In rehabilitation settings, 2 studies found portable bladder ultrasound to underestimate catheter-derived bladder volumes; yet, both authors concluded that the mean errors were within acceptable limits. In patients with neurogenic bladder problems, 2 studies found portable bladder ultrasound to be an acceptable alternative to catheterization despite the fact that it was not as accurate as catheterization for obtaining bladder volumes. Lastly, examinations concerning avoidance of negative health outcomes showed that, after use of the portable bladder ultrasound, unnecessary catheterizations and UTIs were decreased. Unnecessary catheterizations avoided ranged from 16% to 47% in the selected articles. Reductions in UTI ranged from 38% to 72%. In sum, all but one study advocated the use of portable bladder ultrasound as an alternative to catheterization. Economic Analysis An economic analysis estimating the budget-impact of BladderScan in complex continuing care facilities was completed. The analysis results indicated a $192,499 (Cdn) cost-savings per year per facility and a cost-savings of $2,887,485 (Cdn) for all 15 CCC facilities. No economic analysis was completed for long-term care and acute care facilities due to lack of data. Considerations for Policy Development Rapid diffusion of portable bladder ultrasound technology is expected. Recently, the IC5 project on improving continence care in Ontario’s complex continuing care centres piloted portable bladder ultrasound at 12 sites. Preliminary results were promising. Many physicians and health care facilities already have portable bladder ultrasound devices. However, portable bladder ultrasound devices for PVR measurement are not in use at most health care facilities in Ontario and Canada. The Verathon Corporation (Bothell, Wisconsin, United States), which patents BladderScan, is the sole licensed manufacturer of the portable bladder ultrasound in Canada. Field monopoly may influence the rising costs of portable bladder ultrasound, particularly when faced with rapid expansion of the technology. Several thousand residents of Ontario would benefit from portable bladder ultrasound. The number of residents of Ontario that would benefit from the technology is difficult to quantify, because the incidence and prevalence of incontinence are grossly under-reported. However, long-term care and complex continuing care institutions would benefit greatly from portable bladder ultrasound, as would numerous rehabilitation units, postsurgical care units, and urology clinics. The cost of the portable bladder ultrasound devices ranges from $17,698.90 to $19,565.95 (Cdn) (total purchase price per unit as quoted by the manufacturer). Additional training packages, batteries and battery chargers, software, gel pads, and yearly warranties are additional costs. Studies indicate that portable bladder ultrasound is a cost-effective technology, because it avoids costs associated with catheterization equipment, saves nursing time, and reduces catheter-related complications and UTIs. The use of portable bladder ultrasound device will affect the patient directly in terms of health outcomes. Its use avoids the trauma related to the urinary tract that catheterization inflicts, and does not result in UTIs. In addition, patients prefer it, because it preserves dignity and reduces discomfort. PMID:23074481

  16. Design and characterization of a high-power ultrasound driver with ultralow-output impedance

    NASA Astrophysics Data System (ADS)

    Lewis, George K.; Olbricht, William L.

    2009-11-01

    We describe a pocket-sized ultrasound driver with an ultralow-output impedance amplifier circuit (less than 0.05 Ω) that can transfer more than 99% of the voltage from a power supply to the ultrasound transducer with minimal reflections. The device produces high-power acoustical energy waves while operating at lower voltages than conventional ultrasound driving systems because energy losses owing to mismatched impedance are minimized. The peak performance of the driver is measured experimentally with a PZT-4, 1.54 MHz, piezoelectric ceramic, and modeled using an adjusted Mason model over a range of transducer resonant frequencies. The ultrasound driver can deliver a 100 Vpp (peak to peak) square-wave signal across 0-8 MHz ultrasound transducers in 5 ms bursts through continuous wave operation, producing acoustic powers exceeding 130 W. Effects of frequency, output impedance of the driver, and input impedance of the transducer on the maximum acoustic output power of piezoelectric transducers are examined. The small size, high power, and efficiency of the ultrasound driver make this technology useful for research, medical, and industrial ultrasonic applications.

  17. Thoracic ultrasound: Potential new tool for physiotherapists in respiratory management. A narrative review.

    PubMed

    Le Neindre, Aymeric; Mongodi, Silvia; Philippart, François; Bouhemad, Bélaïd

    2016-02-01

    The use of diagnostic ultrasound by physiotherapists is not a new concept; it is frequently performed in musculoskeletal physiotherapy. Physiotherapists currently lack accurate, reliable, sensitive, and valid measurements for the assessment of the indications and effectiveness of chest physiotherapy. Thoracic ultrasound may be a promising tool for the physiotherapist and could be routinely performed at patients' bedsides to provide real-time and accurate information on the status of pleura, lungs, and diaphragm; this would allow for assessment of lung aeration from interstitial syndrome to lung consolidation with much better accuracy than chest x-rays or auscultation. Diaphragm excursion and contractility may also be assessed by ultrasound. This narrative review refers to lung and diaphragm ultrasound semiology and describes how physiotherapists could use this tool in their clinical decision-making processes in various cases of respiratory disorders. The use of thoracic ultrasound semiology alongside typical examinations may allow for the guiding, monitoring, and evaluating of chest physiotherapy treatments. Thoracic ultrasound is a potential new tool for physiotherapists. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. An interventional multispectral photoacoustic imaging platform for the guidance of minimally invasive procedures

    NASA Astrophysics Data System (ADS)

    Xia, Wenfeng; Nikitichev, Daniil I.; Mari, Jean Martial; West, Simeon J.; Ourselin, Sebastien; Beard, Paul C.; Desjardins, Adrien E.

    2015-07-01

    Precise and efficient guidance of medical devices is of paramount importance for many minimally invasive procedures. These procedures include fetal interventions, tumor biopsies and treatments, central venous catheterisations and peripheral nerve blocks. Ultrasound imaging is commonly used for guidance, but it often provides insufficient contrast with which to identify soft tissue structures such as vessels, tumors, and nerves. In this study, a hybrid interventional imaging system that combines ultrasound imaging and multispectral photoacoustic imaging for guiding minimally invasive procedures was developed and characterized. The system provides both structural information from ultrasound imaging and molecular information from multispectral photoacoustic imaging. It uses a commercial linear-array ultrasound imaging probe as the ultrasound receiver, with a multimode optical fiber embedded in a needle to deliver pulsed excitation light to tissue. Co-registration of ultrasound and photoacoustic images is achieved with the use of the same ultrasound receiver for both modalities. Using tissue ex vivo, the system successfully discriminated deep-located fat tissue from the surrounding muscle tissue. The measured photoacoustic spectrum of the fat tissue had good agreement with the lipid spectrum in literature.

  19. Design and characterization of a high-power ultrasound driver with ultralow-output impedance.

    PubMed

    Lewis, George K; Olbricht, William L

    2009-11-01

    We describe a pocket-sized ultrasound driver with an ultralow-output impedance amplifier circuit (less than 0.05 ohms) that can transfer more than 99% of the voltage from a power supply to the ultrasound transducer with minimal reflections. The device produces high-power acoustical energy waves while operating at lower voltages than conventional ultrasound driving systems because energy losses owing to mismatched impedance are minimized. The peak performance of the driver is measured experimentally with a PZT-4, 1.54 MHz, piezoelectric ceramic, and modeled using an adjusted Mason model over a range of transducer resonant frequencies. The ultrasound driver can deliver a 100 V(pp) (peak to peak) square-wave signal across 0-8 MHz ultrasound transducers in 5 ms bursts through continuous wave operation, producing acoustic powers exceeding 130 W. Effects of frequency, output impedance of the driver, and input impedance of the transducer on the maximum acoustic output power of piezoelectric transducers are examined. The small size, high power, and efficiency of the ultrasound driver make this technology useful for research, medical, and industrial ultrasonic applications.

  20. Effect of ultrasound sonication on electroplating of iridium.

    PubMed

    Ohsaka, Takashi; Isaka, Motohiro; Hirano, Katsuhiko; Ohishi, Tomoji

    2008-04-01

    Effect of ultrasound sonication was examined on the electroplating of iridium in aqueous hexabromoiridate(III) solution. The electrodeposits were evaluated by observing the defects of the iridium deposits by means of voltammetry, in which the current-potential curves of the iridium deposits on copper were measured. Applying ultrasound sonication to the electroplating of iridium decreased the defects including the cracks in the deposit whenever the glycerol as the additives was contained or not in the electrolyte.

  1. [The role of ultrasonography exam in orbital-ocular tumors].

    PubMed

    Ciocâlteu, Alina Mihaela; Ardeleanu, S; Checheriţă, I A

    2011-01-01

    Ophthalmology is one of the specialties that have particularly benefited from the contribution of ultrasonography exam as a method of investigation. Ultrasonography is very much essential for diagnostic to complement other clinical and laboratory investigations, providing images in real time. The basic principle of diagnostic ultrasound is to study and to interpret the changes they undergo when crossing ultrasonic waves diverse biological properties different sound, and such injuries can be traced in the dynamics or can be documented on photographic paper and thus can diagnose correct certain eye diseases. The indications for performing ultrasound consist in: measurement of distances and volumes, examine difficult or inaccessible case of opaque media; ophthalmoscopic view of a mass lesion, examine the orbit or optic nerve. The advantages of ultrasound for orbital-ocular tumors are represented by the fact that ultrasound is a noninvasive method, safe, well tolerated, less expensive that the advantage of determining the position and distance from structures ocular tumor. High frequency ultrasound provides excellent resolution of 0-1 to 0.01 mm, and serial scans allow tracking progress and measuring lesion diameters tumor while allowing monitoring and evaluation of stereotactic radiation treatments applied to small tumors. In conclusion ultrasound allows not only early diagnosis of eye tumors, but accurate assessment of the proposed therapy and of the evolution of detected mass lesions or tumors.

  2. Thickening of the inferior glenohumeral capsule: an ultrasound sign for shoulder capsular contracture.

    PubMed

    Michelin, Paul; Delarue, Yohann; Duparc, Fabrice; Dacher, Jean Nicolas

    2013-10-01

    The aim of this retrospective study was to measure the inferior glenohumeral capsule thickness of shoulders clinically affected by capsular contracture by comparison to the contralateral asymptomatic side. Bilateral shoulder ultrasound (US) examinations of 20 patients with clinically or MRI proven unilateral capsular contracture were retrospectively assessed. Inferior capsule evaluation was performed with a transducer placed within the axilla in maximally abducted shoulders. Measurements were symmetrically performed orthogonally to the inferior glenohumeral ligament (IGHL) in the axial plane; the coronal plane was used to ensure the tension of the IGHL. The significance of any difference in thickening was assessed with the Mann-Whitney test. The average thickness was 4.0 mm in shoulders with capsular contracture vs. 1.3 mm in asymptomatic contralateral shoulders (P < 0.0001). Twenty per cent of patients with capsular contracture and inferior capsule thickness increase showed US features of other painful diseases of the rotator cuff. The thickness of the inferior capsule is measurable through ultrasound examination and appears to be increased in shoulders with capsular contracture. Exploration of the inferior aspect of the shoulder joint could be added to shoulder US examination protocols for capsular contracture assessment even if other rotator cuff abnormalities are diagnosed by US. • Ultrasound is increasingly used to diagnose shoulder problems. • The thickness of the inferior glenohumeral ligament is measurable in the axilla. • The inferior glenohumeral ligament appears thickened in shoulders with capsular contracture. • Capsular contracture ultrasound features can be associated with other rotator cuff problems.

  3. An examination of polyvinylidene fluoride capacitive sensors as ultrasound transducer for imaging applications

    NASA Astrophysics Data System (ADS)

    Reyes-Ramírez, B.; García-Segundo, C.; García-Valenzuela, A.

    2014-05-01

    We investigate theoretically and experimentally the performance of low-noise capacitive sensors based on polyvinylidene fluoride (PVDF) piezoelectric films to sense water-borne ultrasound signals for their use in photoacoustic tomography. We derive a mechanical-to-electrical transfer function of a piezoelectric capacitor sensor of infinite lateral dimensions and arbitrary thickness assuming that an ultrasound wave is normally incident. Then, we analyse the response for obliquely incident ultrasound waves on sensors of large but finite area and derive an expression for the angle dependence of the sensor's response. We also present experimental different measurements with home-made sensors and compare with our theoretical model. We present measurements of the sensors' response to harmonic signals of variable frequency in the range from 0.5 to 50 MHz and of the angular-dependence factor at 6 MHz. Additionally, because of the scope of interest in these kinds of sensors, we also tested the sensors' response for photoacoustic perturbations. These are generated by laser pulses from directly impinging on the sensor and from ultrasound perturbations produced on neoprene by the same kind of laser pulses and then travelling through water to the sensor.

  4. An ultrasonic measurement for in vitro depth-dependent equilibrium strains of articular cartilage in compression

    NASA Astrophysics Data System (ADS)

    Zheng, Y. P.; Mak, A. F. T.; Lau, K. P.; Qin, L.

    2002-09-01

    The equilibrium depth-dependent biomechanical properties of articular cartilage were measured using an ultrasound-compression method. Ten cylindrical bovine patella cartilage-bone specimens were tested in compression followed by a period of force-relaxation. A 50 MHz focused ultrasound beam was transmitted into the cartilage specimen through a remaining bone layer and a small hole at the centre of a specimen platform. The ultrasound echoes reflected or scattered within the articular cartilage were collected using the same transducer. The displacements of the tissues at different depths of the articular cartilage were derived from the ultrasound echo signals recorded during the compression and the subsequent force-relaxation. For two steps of 0.1 mm compression, the average strain at the superficial 0.2 mm thick layer (0.35 +/- 0.09) was significantly (p < 0.05) larger than that at the subsequent 0.2 mm thick layer (0.05 +/- 0.07) and that at deeper layers (0.01 +/- 0.02). It was demonstrated that the compressive biomechanical properties of cartilage were highly depth-dependent. The results suggested that the ultrasound-compression method could be a useful tool for the study of the depth-dependent biomechanical properties of articular cartilage.

  5. A cMUT probe for ultrasound-guided focused ultrasound targeted therapy.

    PubMed

    Gross, Dominique; Coutier, Caroline; Legros, Mathieu; Bouakaz, Ayache; Certon, Dominique

    2015-06-01

    Ultrasound-mediated targeted therapy represents a promising strategy in the arsenal of modern therapy. Capacitive micromachined ultrasonic transducer (cMUT) technology could overcome some difficulties encountered by traditional piezoelectric transducers. In this study, we report on the design, fabrication, and characterization of an ultrasound-guided focused ultrasound (USgFUS) cMUT probe dedicated to preclinical evaluation of targeted therapy (hyperthermia, thermosensitive liposomes activation, and sonoporation) at low frequency (1 MHz) with simultaneous ultrasonic imaging and guidance (15 to 20 MHz). The probe embeds two types of cMUT arrays to perform the modalities of targeted therapy and imaging respectively. The wafer-bonding process flow employed for the manufacturing of the cMUTs is reported. One of its main features is the possibility of implementing two different gap heights on the same wafer. All the design and characterization steps of the devices are described and discussed, starting from the array design up to the first in vitro measurements: optical (microscopy) and electrical (impedance) measurements, arrays' electroacoustic responses, focused pressure field mapping (maximum peak-to-peak pressure = 2.5 MPa), and the first B-scan image of a wire-target phantom.

  6. Comparable ultrasound measurements of ten anatomical specimens of infant hip joints by the methods of Graf and Terjesen.

    PubMed

    Falliner, A; Hahne, H J; Hedderich, J; Brossmann, J; Hassenpflug, J

    2004-04-01

    To define which sonographic section planes relative to the acetabular inlet plane will produce analyzable images with the methods of Graf and Terjesen. Anatomical specimens of infant hip joints were investigated in a water bath using the methods of Graf and Terjesen. Acetabular position was varied in defined increments with respect to the ultrasound beam. The alpha angles and the femoral head coverage (FHC) were measured. To obtain images analyzable by the two methods, the ultrasound beam had to intersect with the acetabular inlet plane at defined angles. The acetabular notch had to be anteriorly rotated from the ultrasound beam plane by at least 20 degrees. Beam entry within a 50 degrees sector posterior to the perpendicular on the inlet plane resulted in analyzable images. The stepwise multiple linear regression analysis showed that alpha angles and FHC were much affected by the coronal-plane transducer tilt. The fact that caudal tilts of the transducer are associated with reduced alpha angles and FHC values should be kept in mind in clinical ultrasound investigations. It is recommended that the transducer should be put on the greater trochanter perpendicular to the transverse axis of the body.

  7. Multispectral photoacoustic characterization of ICG and porcine blood using an LED-based photoacoustic imaging system

    NASA Astrophysics Data System (ADS)

    Shigeta, Yusuke; Sato, Naoto; Kuniyil Ajith Singh, Mithun; Agano, Toshitaka

    2018-02-01

    Photoacoustic imaging is a hybrid biomedical imaging modality that has emerged over the last decade. In photoacoustic imaging, pulsed-light absorbed by the target emits ultrasound that can be detected using a conventional ultrasound array. This ultrasound data can be used to reconstruct the location and spatial details of the intrinsic/extrinsic light absorbers in the tissue. Recently we reported on the development of a multi-wavelength high frame-rate LED-based photoacoustic/ultrasound imaging system (AcousticX). In this work, we photoacoustically characterize the absorption spectrum of ICG and porcine blood using LED arrays with multiple wavelengths (405, 420, 470, 520, 620, 660, 690, 750, 810, 850, 925, 980 nm). Measurements were performed in a simple reflection mode configuration in which LED arrays where fixed on both sides of the linear array ultrasound probe. Phantom used consisted of micro-test tubes filled with ICG and porcine blood, which were placed in a tank filled with water. The photoacoustic spectrum obtained from our measurements matches well with the reference absorption spectrum. These results demonstrate the potential capability of our system in performing clinical/pre-clinical multispectral photoacoustic imaging.

  8. Comparison of ultrasound B-mode, strain imaging, acoustic radiation force impulse displacement and shear wave velocity imaging using real time clinical breast images

    NASA Astrophysics Data System (ADS)

    Manickam, Kavitha; Machireddy, Ramasubba Reddy; Raghavan, Bagyam

    2016-04-01

    It has been observed that many pathological process increase the elastic modulus of soft tissue compared to normal. In order to image tissue stiffness using ultrasound, a mechanical compression is applied to tissues of interest and local tissue deformation is measured. Based on the mechanical excitation, ultrasound stiffness imaging methods are classified as compression or strain imaging which is based on external compression and Acoustic Radiation Force Impulse (ARFI) imaging which is based on force generated by focused ultrasound. When ultrasound is focused on tissue, shear wave is generated in lateral direction and shear wave velocity is proportional to stiffness of tissues. The work presented in this paper investigates strain elastography and ARFI imaging in clinical cancer diagnostics using real time patient data. Ultrasound B-mode imaging, strain imaging, ARFI displacement and ARFI shear wave velocity imaging were conducted on 50 patients (31 Benign and 23 malignant categories) using Siemens S2000 machine. True modulus contrast values were calculated from the measured shear wave velocities. For ultrasound B-mode, ARFI displacement imaging and strain imaging, observed image contrast and Contrast to Noise Ratio were calculated for benign and malignant cancers. Observed contrast values were compared based on the true modulus contrast values calculated from shear wave velocity imaging. In addition to that, student unpaired t-test was conducted for all the four techniques and box plots are presented. Results show that, strain imaging is better for malignant cancers whereas ARFI imaging is superior than strain imaging and B-mode for benign lesions representations.

  9. Preliminary results demonstrating the impact of Mediterranean diet on bone health.

    PubMed

    Savanelli, Maria Cristina; Barrea, Luigi; Macchia, Paolo Emidio; Savastano, Silvia; Falco, Andrea; Renzullo, Andrea; Scarano, Elisabetta; Nettore, Immacolata Cristina; Colao, Annamaria; Di Somma, Carolina

    2017-04-24

    Nutrition is an environmental factor affecting bone health. Nutrition is considered essential to achieve and maintain optimal bone mass. Mediterranean diet (MD) has shown to prevent bone disease. Aim of this study is to investigate the relationship between bone health status and adherence the MD. Four-hundred eighteen healthy people (105 males and 313 females, age 50 ± 14 years) were recruited in the outdoor hospital of the "Campus Salute Onlus" held in Piazza del Plebiscito in Naples, October 17-20th 2013 and 09-11th October 2014. All subjects underwent clinical assessment, calcaneal quantitative ultrasound (QUS) scanner and PREvención con DIeta MEDiterránea (PREDIMED) questionnaire. Globally, prevalence of osteoporosis and osteopenia were 7.7 and 46.0%, respectively. The majority of subjects (60.5%) had an average score (score 6-9) of adherence to MD. The T-score showed positive correlation with PREDIMED score (r = 0.250, p < 0.001). The higher T-scores were positively associated with a higher consumption of extra-virgin olive oil (EVOO), vegetables, fruits, legumes, and fish and negatively associated with consumption of red meat. The higher T-scores were positively associated with the highest odds of PREDIMED scores (higher adherence) (OR 6.91, IC 6.27-7.61, p < 0.001). Multiple regression analysis models indicated that, among the single food items investigated, high T-score can be predicted by consumption of EVOO (p < 0.001), fish (p < 0.001) and fruit (p = 0.002) intake. A PREDIMED score of 3 was found to be predictive for a low T-score (α = 0.05, R-squared index = 0.417). The results demonstrate a positive correlation between bone health status and adherence to MD, suggesting that a high adherence to MD promotes bone health. The observations here reported confirmed that a specific dietary approach, such as MD, can represent a modifiable environmental factor for osteoporosis' prevention.

  10. Tissue identification by ultrasound

    NASA Technical Reports Server (NTRS)

    Lecroissette, D. H.; Heyser, R. C.; Gammell, P. M.; Wilson, R. L.

    1978-01-01

    The ultrasonic properties of animal and human soft tissue were measured over the frequency range of 1.5 to 10.0 MHz. The method employed a swept-frequency, coherent technique known as time delay spectrometry. Measurements of attenuation versus frequency on liver, backfat, kidney, pancreas, spleen, breast, and other tissue were made. Considerable attention was paid to tissue handling and in determining the effects of fixing on the attenuation of ultrasound in the tissue.

  11. Automated 3D ultrasound measurement of the angle of progression in labor.

    PubMed

    Montaguti, Elisa; Rizzo, Nicola; Pilu, Gianluigi; Youssef, Aly

    2018-01-01

    To assess the feasibility and reliability of an automated technique for the assessment of the angle of progression (AoP) in labor by using three-dimensional (3D) ultrasound. AoP was assessed by using 3D transperineal ultrasound by two operators in 52 women in active labor to evaluate intra- and interobserver reproducibility. Furthermore, intermethod agreement between automated and manual techniques on 3D images, and between automated technique on 3D vs 2D images were evaluated. Automated measurements were feasible in all cases. Automated measurements were considered acceptable in 141 (90.4%) out of the 156 on the first assessments and in all 156 after repeating measurements for unacceptable evaluations. The automated technique on 3D images demonstrated good intra- and interobserver reproducibility. The 3D-automated technique showed a very good agreement with the 3D manual technique. Notably, AoP calculated with the 3D automated technique were significantly wider in comparison with those measured manually on 3D images (133 ± 17° vs 118 ± 21°, p = 0.013). The assessment of the angle of progression through 3D ultrasound is highly reproducible. However, automated software leads to a systematic overestimation of AoP in comparison with the standard manual technique thus hindering its use in clinical practice in its present form.

  12. Ultrasound visual feedback in articulation therapy following partial glossectomy.

    PubMed

    Blyth, Katrina M; Mccabe, Patricia; Madill, Catherine; Ballard, Kirrie J

    2016-01-01

    Disordered speech is common following treatment for tongue cancer, however there is insufficient high quality evidence to guide clinical decision making about treatment. This study investigated use of ultrasound tongue imaging as a visual feedback tool to guide tongue placement during articulation therapy with two participants following partial glossectomy. A Phase I multiple baseline design across behaviors was used to investigate therapeutic effect of ultrasound visual feedback during speech rehabilitation. Percent consonants correct and speech intelligibility at sentence level were used to measure acquisition, generalization and maintenance of speech skills for treated and untreated related phonemes, while unrelated phonemes were tested to demonstrate experimental control. Swallowing and oromotor measures were also taken to monitor change. Sentence intelligibility was not a sensitive measure of speech change, but both participants demonstrated significant change in percent consonants correct for treated phonemes. One participant also demonstrated generalization to non-treated phonemes. Control phonemes along with swallow and oromotor measures remained stable throughout the study. This study establishes therapeutic benefit of ultrasound visual feedback in speech rehabilitation following partial glossectomy. Readers will be able to explain why and how tongue cancer surgery impacts on articulation precision. Readers will also be able to explain the acquisition, generalization and maintenance effects in the study. Copyright © 2016. Published by Elsevier Inc.

  13. [The correlation between sonar morphological measurements and plasma levels of oestradiol and oestriol in early pregnancy (author's transl)].

    PubMed

    Luyx, A; De Hertogh, R; Foldesi, A; Rousseau, P

    1979-03-01

    53 cases of pregnancy complicated by bleeding between the 7th and 16th week have been studied by repeated estimations of non-conjugated plasma oestradiol and oestriol carried out at the same time as ultrasound morphological measurements were performed. 24 pregnancies went on to term while 29 met with the loss of the fetus. In each case where the outcome was favourable the plasma oestriol and oestradiol levels were comparable to those found in 95 control pregnant women whose pregnancies progressed normally. In 26 cases where the outcome was unfavourable the levels were too low and corresponded to an ultrasound picture that was abnormal or revealed absence of heart beat. In 3 cases the first levels of oestradiol and oestriol seemed to be normal. Later, when failure of growth of the embryo and absence of heart beat were found, a considerable drop in the levels of oestradiol and of oestriol in the blood was also revealed. This study shows a good correlation between hormone levels and ultrasound findings in pregnancies complicated by bleeding. All the same, the prognostic value of hormone measurements as compared with ultrasound measurements has not yet been established, and needs analysis of a far greater number of cases of a similar type.

  14. A vibration model for frequency analysis of arterial tubes with tissue

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoming; Fatemi, Mostafa; Greenleaf, James F.

    2003-04-01

    Vibro-acoustography is a new noncontact imaging method based on the radiation force of ultrasound. We extend this technique for tissue characterization of arterial tubes by vibration techniques. The arterial tube can be excited remotely by ultrasound at its resonant frequencies where the vibration and acoustic emission of the tube can be measurable. From these resonant frequencies, the material properties of the arterial tube can be found. A theory for a tube with tissue is formulated using first-order shear deformation theory to include the effects of transverse shear deformation and rotary inertia. A wave propagation approach is applied for easy handling of the boundary conditions. Experimental studies were carried out on a silicone tube embedded in a cylindrical gel phantom. A confocal transducer is used to produce the radiation force of ultrasound for exciting the tube-phantom structure. The vibration of the tube and the phantom are measured with a laser vibrometry system. The fundamental mode of a tube-phantom structure is well excited by the radiation force of ultrasound, and was measured to be 81.8 Hz, which is close to the theoretical prediction of 83.3 Hz. Both excitation and measurement are remote and noncontact, important attributes for future study of arteries.

  15. Poster - 09: A MATLAB-based Program for Automated Quality Assurance of a Prostate Brachytherapy Ultrasound System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poon, Justin; Sabondjian, Eric; Sankreacha, Raxa

    Purpose: A robust Quality Assurance (QA) program is essential for prostate brachytherapy ultrasound systems due to the importance of imaging accuracy during treatment and planning. Task Group 128 of the American Association of Physicists in Medicine has recommended a set of QA tests covering grayscale visibility, depth of penetration, axial and lateral resolution, distance measurement, area measurement, volume measurement, and template/electronic grid alignment. Making manual measurements on the ultrasound system can be slow and inaccurate, so a MATLAB program was developed for automation of the described tests. Methods: Test images were acquired using a BK Medical Flex Focus 400 ultrasoundmore » scanner and 8848 transducer with the CIRS Brachytherapy QA Phantom – Model 045A. For each test, the program automatically segments the inputted image(s), makes the appropriate measurements, and indicates if the test passed or failed. The program was tested by analyzing two sets of images, where the measurements from the first set were used as baseline values. Results: The program successfully analyzed the images for each test and determined if any action limits were exceeded. All tests passed – the measurements made by the program were consistent and met the requirements outlined by Task Group 128. Conclusions: The MATLAB program we have developed can be used for automated QA of an ultrasound system for prostate brachytherapy. The GUI provides a user-friendly way to analyze images without the need for any manual measurement, potentially removing intra- and inter-user variability for more consistent results.« less

  16. Effect of Transducer Orientation on Errors in Ultrasound Image-Based Measurements of Human Medial Gastrocnemius Muscle Fascicle Length and Pennation

    PubMed Central

    Gandevia, Simon C.; Herbert, Robert D.

    2016-01-01

    Ultrasound imaging is often used to measure muscle fascicle lengths and pennation angles in human muscles in vivo. Theoretically the most accurate measurements are made when the transducer is oriented so that the image plane aligns with muscle fascicles and, for measurements of pennation, when the image plane also intersects the aponeuroses perpendicularly. However this orientation is difficult to achieve and usually there is some degree of misalignment. Here, we used simulated ultrasound images based on three-dimensional models of the human medial gastrocnemius, derived from magnetic resonance and diffusion tensor images, to describe the relationship between transducer orientation and measurement errors. With the transducer oriented perpendicular to the surface of the leg, the error in measurement of fascicle lengths was about 0.4 mm per degree of misalignment of the ultrasound image with the muscle fascicles. If the transducer is then tipped by 20°, the error increases to 1.1 mm per degree of misalignment. For a given degree of misalignment of muscle fascicles with the image plane, the smallest absolute error in fascicle length measurements occurs when the transducer is held perpendicular to the surface of the leg. Misalignment of the transducer with the fascicles may cause fascicle length measurements to be underestimated or overestimated. Contrary to widely held beliefs, it is shown that pennation angles are always overestimated if the image is not perpendicular to the aponeurosis, even when the image is perfectly aligned with the fascicles. An analytical explanation is provided for this finding. PMID:27294280

  17. Effect of Transducer Orientation on Errors in Ultrasound Image-Based Measurements of Human Medial Gastrocnemius Muscle Fascicle Length and Pennation.

    PubMed

    Bolsterlee, Bart; Gandevia, Simon C; Herbert, Robert D

    2016-01-01

    Ultrasound imaging is often used to measure muscle fascicle lengths and pennation angles in human muscles in vivo. Theoretically the most accurate measurements are made when the transducer is oriented so that the image plane aligns with muscle fascicles and, for measurements of pennation, when the image plane also intersects the aponeuroses perpendicularly. However this orientation is difficult to achieve and usually there is some degree of misalignment. Here, we used simulated ultrasound images based on three-dimensional models of the human medial gastrocnemius, derived from magnetic resonance and diffusion tensor images, to describe the relationship between transducer orientation and measurement errors. With the transducer oriented perpendicular to the surface of the leg, the error in measurement of fascicle lengths was about 0.4 mm per degree of misalignment of the ultrasound image with the muscle fascicles. If the transducer is then tipped by 20°, the error increases to 1.1 mm per degree of misalignment. For a given degree of misalignment of muscle fascicles with the image plane, the smallest absolute error in fascicle length measurements occurs when the transducer is held perpendicular to the surface of the leg. Misalignment of the transducer with the fascicles may cause fascicle length measurements to be underestimated or overestimated. Contrary to widely held beliefs, it is shown that pennation angles are always overestimated if the image is not perpendicular to the aponeurosis, even when the image is perfectly aligned with the fascicles. An analytical explanation is provided for this finding.

  18. Irinotecan delivery by microbubble-assisted ultrasound - A pilot preclinical study

    NASA Astrophysics Data System (ADS)

    Escoffre, Jean-Michel; Novell, Anthony; Serrière, Sophie; Bouakaz, Ayache

    2012-11-01

    Irinotecan is conventionally used for the treatment of colorectal cancer. However, its administration is associated with severe side effects. Targeted drug delivery using ultrasound (US) combined with microbubbles offers new opportunities to increase the therapeutic effectiveness of antitumor treatment and to reduce toxic exposure to healthy tissues. The objective of this study is to investigate the safety and efficacy of in-vivo delivery of irinotecan by microbubble-assisted US in human glioblastoma model (U-87 MG). In order to validate the potential of this new method in-vivo, subcutaneous tumors were implanted in the flank of nude mouse and treated when they reached a volume of 100 mm3. In the first study, the measured volumes with caliper and anatomic ultrasound imaging were compared for the monitoring and the quantification of tumor growth during 27 days. Ultrasound imaging measurements were positively correlated to caliper measurements. The tumor treatment consisted of an i.v. injection of irinotecan (20 mg/kg) followed one hour later by i.v. administration of MM1 microbubble and an US insonation using a single-element transducer operating at 1MHz (400 kPa, 10 kHz PRF 40% DC, 3 min). The therapeutic efficacy was evaluated for 39 days by measuring the tumor volume before and after treatment using a caliper and based on ultrasound images using an 18 MHz probe (Vevo 2100). Our results showed that anatomical ultrasound imaging was as efficient as caliper for the monitoring and the quantification of tumor growth. Moreover, irinotecan delivery by sonoporation induced a significant decrease of glioblastoma tumor volume and an increase of tumor-doubling time compared to the tumor treated by irinotecan alone. In conclusion, this novel therapeutic approach has promising features since it can be used to reduce the injected drug dose and to achieve a better therapeutic efficacy.

  19. Ultrasound-Guided Intratendinous Injections With Platelet-Rich Plasma or Autologous Whole Blood for Treatment of Proximal Hamstring Tendinopathy: A Double-Blind Randomized Controlled Trial.

    PubMed

    Davenport, Kathleen L; Campos, Jose Santiago; Nguyen, Joseph; Saboeiro, Gregory; Adler, Ronald S; Moley, Peter J

    2015-08-01

    To compare the effects of ultrasound-guided platelet-rich plasma (PRP) and whole blood (WB) injections in patients with chronic hamstring tendinopathy. In a prospective double-blind randomized controlled trial, PRP or WB was injected under ultrasound guidance into the proximal hamstring tendon in a cohort of patients with clinically suspected hamstring tendinosis. Questionnaires were administered before injection and 2, 6, and 12 weeks and 6 months after injection. Pain and function outcomes were measured via the Modified Harris Hip Score (MHHS), Hip Outcome Scores for activities of daily living (ADL) and sport-specific function, and International Hip Outcome Tool 33 (IHOT-33). Diagnostic ultrasound was used to compare preinjection and 6-month postinjection tendon appearances. The WB group showed greater improvements in pain and function over the PRP group before 12 weeks, whereas the PRP group showed improved outcomes over WB at 6 months. None of these between-group outcome measures, except 6-week IHOT-33, showed statistical significance. Comparing preinjection and 6-month scores, the PRP group showed significant improvements in ADL (P = .018) and IHOT-33 (P = .28) scores, whereas the WB group showed no significant improvements from baseline. The WB group showed significantly decreased pain with 15-minute sitting (P= .008) at 6 months. Ultrasound imaging showed no significant differences between PRP and WB group tendon appearances. Both PRP and WB groups showed improvements in all outcome measures at 6 months. The PRP group showed significant improvements in 6-month ADL and IHOT-33 scores. The WB group reached significance in 15-minute sitting pain. No significant between-group differences were observed at any time point. © 2015 by the American Institute of Ultrasound in Medicine.

  20. Comparison of a pocket-size ultrasound device with a premium ultrasound machine: diagnostic value and time required in bedside ultrasound examination.

    PubMed

    Stock, Konrad Friedrich; Klein, Bettina; Steubl, Dominik; Lersch, Christian; Heemann, Uwe; Wagenpfeil, Stefan; Eyer, Florian; Clevert, Dir-Andre

    2015-10-01

    Time savings and clinical accuracy of a new miniature ultrasound device was investigated utilizing comparison with conventional high-end ultrasound instruments. Our objective was to determine appropriate usage and limitations of this diagnostic tool in internal medicine. We investigated 28 patients from the internal-medicine department. Patients were examined with the Acuson P10 portable device and a Sonoline Antares instrument in a cross-over design. All investigations were carried out at the bedside; the results were entered on a standardized report form. The time for the ultrasound examination (transfer time, setting up and disassembly, switching on and off, and complete investigation time) was recorded separately. Mean time for overall examination per patient with the portable ultrasound device was shorter (25.0 ± 4.5 min) than with the high-end machine (29.4 ± 4.4 min; p < 0.001). When measuring the size of liver, spleen, and kidneys, the values obtained differed significantly between portable device and the high-end instrument. In our study, we identified 113 pathological ultrasound findings with the high-end ultrasound machine, while 82 pathological findings (73%) were concordantly detected with the portable ultrasound device. The main diagnostic strengths of the portable device were in the detection of ascites (sensitivity 80%), diagnosis of fatty liver, and identification of severe parenchymal liver damage. The clinical utility of portable ultrasound machines is limited. There will be clinical roles for distinct clinical questions such as detection of ascites or pleural effusion when used by experienced examiners. However, sensitivity in detecting multiple pathologies is not comparable to high-end ultrasound machines.

  1. A high precision ultrasonic system for vibration measurements

    NASA Astrophysics Data System (ADS)

    Young, M. S.; Li, Y. C.

    1992-11-01

    A microcomputer-aided ultrasonic system that can be used to measure the vibratory displacements of an object is presented. A pair of low cost 40-kHz ultrasonic transducers is used to transmit ultrasound toward an object and receive the ultrasound reflected from the object. The relative motion of the object modulates the phase angle difference between the transmitted and received ultrasound signals. A single-chip microcomputer-based phase detector was designed to record and analyze the phase shift information which is then sent to a PC-AT microcomputer for processing. We have developed an ingenious method to reconstruct the relative motion of an object from the acquired data of the phase difference changes. A digital plotter based experiment was also designed for testing the performance of the whole system. The measured accuracy of the system in the reported experiments is within +/- 0.4 mm and the theoretical maximal measurable speed of the object is 89.6 cm/s. The main advantages of this ultrasonic vibration measurement system are high resolution, low cost, noncontact measurement, and easy installation.

  2. The influence of dairy consumption and physical activity on ultrasound bone measurements in Flemish children.

    PubMed

    De Smet, Stephanie; Michels, Nathalie; Polfliet, Carolien; D'Haese, Sara; Roggen, Inge; De Henauw, Stefaan; Sioen, Isabelle

    2015-03-01

    The study's aim was to analyse whether children's bone status, assessed by calcaneal ultrasound measurements, is influenced by dairy consumption and objectively measured physical activity (PA). Moreover, the interaction between dairy consumption and PA on bone mass was studied. Participants of this cross-sectional study were 306 Flemish children (6-12 years). Body composition was measured with air displacement plethysmography (BodPod), dairy consumption with a Food Frequency Questionnaire, PA with an accelerometer (only in 234 of the 306 children) and bone mass with quantitative ultrasound, quantifying speed of sound (SOS), broadband ultrasound attenuation (BUA) and Stiffness Index (SI). Regression analyses were used to study the associations between dairy consumption, PA, SOS, BUA and SI. Total dairy consumption and non-cheese dairy consumption were positively associated with SOS and SI, but no significant association could be demonstrated with BUA. In contrast, milk consumption, disregarding other dairy products, had no significant effect on calcaneal bone measurements. PA [vigorous PA, moderate to vigorous physical activity (MVPA) and counts per minute] was positively associated and sedentary time was negatively associated with BUA and SI, but no significant influence on SOS could be detected. Dairy consumption and PA (sedentary time and MVPA) did not show any interaction influencing bone measurements. In conclusion, even at young age, PA and dairy consumption positively influence bone mass. Promoting PA and dairy consumption in young children may, therefore, maximize peak bone mass, an important protective factor against osteoporosis later in life.

  3. Double-scattering/reflection in a Single Nanoparticle for Intensified Ultrasound Imaging

    PubMed Central

    Zhang, Kun; Chen, Hangrong; Guo, Xiasheng; Zhang, Dong; Zheng, Yuanyi; Zheng, Hairong; Shi, Jianlin

    2015-01-01

    Ultrasound contrast agents (UCAs) designed by the conventional composition-based strategy, often suffer from relatively low ultrasound utilization efficiency. In this report, a structure-based design concept of double-scattering/reflection in a single nanoparticle for enhancing ultrasound imaging has been proposed. To exemplify this concept, a rattle-type mesoporous silica nanostructure (MSN) with two contributing interfaces has been employed as the ideal model. Contributed by double-scattering/reflection interfaces, the rattle-type MSN, as expected, performs much better in in vitro and in vivo ultrasound imaging than the other two nanostructures (solid and hollow) containing only one scattering/reflection interface. More convincingly, related acoustic measurements and simulation calculations also confirm this design concept. Noticeably, the rattle-type MSN has also been demonstrated capable of improving intracellular ultrasound molecular imaging. As a universal method, the structure-design concept can extend to guide the design of new generation UCAs with many other compositions and similar structures (e.g., heterogeneous rattle-type, double-shelled). PMID:25739832

  4. Ultrasound-Guided Percutaneous Tenotomy of Biceps Tendon: Technical Feasibility on Cadavers.

    PubMed

    Sconfienza, Luca Maria; Mauri, Giovanni; Messina, Carmelo; Aliprandi, Alberto; Secchi, Francesco; Sardanelli, Francesco; Randelli, Pietro Simone

    2016-10-01

    We tested the technical feasibility of ultrasound-guided percutaneous tenotomy of the long head of the biceps tendon (LHBT) in cadavers. Both shoulders of two fresh cadavers were scanned anteriorly to evaluate the extra-articular portion of the LHBT. Under ultrasound monitoring, a scalpel was advanced obliquely up to touch the superficial medial side of the LHBT, cutting it until the tendon was not visible anymore. Ultrasound evaluation was repeated after the procedure, and anatomic dissection was performed. The procedure was 100% feasible: four cuts were made to completely sever the tendon; the duration was less than 1 min. Skin incision measured 5 mm in two cases and 6 mm in two cases. Anatomic dissection confirmed complete tendon cut in all cases with proximal and distal tendon stumps very close to each other. Ultrasound-guided percutaneous LHBT tenotomy was 100% technically feasible in cadavers with a quick procedure and minimal cutaneous incision. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  5. Mechanotransduction of Ultrasound is Frequency Dependent Below the Cavitation Threshold

    PubMed Central

    Louw, Tobias M.; Budhiraja, Gaurav; Viljoen, Hendrik J.; Subramanian, Anuradha

    2013-01-01

    This study provides evidence that low-intensity ultrasound directly affects nuclear processes, and the magnitude of the effect varies with frequency. In particular, we show that the transcriptional induction of first load-inducible genes, which is independent of new protein synthesis, is frequency dependent. Bovine chondrocytes were exposed to low-intensity below the cavitational threshold) ultrasound at 2,5 and 8 MHz. Ultrasound elevated the expression of early response genes c-Fos, c-Jun and c-Myc, maximized at 5 MHz. The phosphorylated ERK inhibitor PD98059 abrogated any increase in c-series gene expression, suggesting that signaling occurs via the MAPPK/ERK pathway. However, phosphorylated ERK levels did not change with ultrasound frequency, indicating that processes downstream of ERK phosphorylation (such as nuclear transport and chromatin reorganization) respond to ultrasound with frequency dependence. A quantitative, biphasic mathematical model based on Biot theory predicted that cytoplasmic and nuclear stress is maximized at 5.2 ± 0.8 MHz for a chondrocyte, confirming experimental measurements. PMID:23562015

  6. Ultrasound in gas-liquid systems: effects on solubility and mass transfer.

    PubMed

    Laugier, F; Andriantsiferana, C; Wilhelm, A M; Delmas, H

    2008-09-01

    The effect of ultrasound on the pseudo-solubility of nitrogen in water and on gas-liquid mass transfer kinetics has been investigated in an autoclave reactor equipped with a gas induced impeller. In order to use organic liquids and to investigate the effect of pressure, gas-liquid mass transfer coefficient was calculated from the evolution of autoclave pressure during gas absorption to avoid any side-effects of ultrasound on the concentrations measurements. Ultrasound effect on the apparent solubility is very low (below 12%). Conversely ultrasound greatly improves gas-liquid mass transfer, especially below gas induction speed, this improvement being boosted by pressure. In typical conditions of organic synthesis: 323 K, 1100 rpm, 10 bar, k(L).a is multiplied by 11 with ultrasound (20 kHz/62.6 W). The impact of sonication is much higher on gassing out than on gassing in. In the same conditions, this enhancement is at least five times higher for degassing.

  7. Double-scattering/reflection in a single nanoparticle for intensified ultrasound imaging.

    PubMed

    Zhang, Kun; Chen, Hangrong; Guo, Xiasheng; Zhang, Dong; Zheng, Yuanyi; Zheng, Hairong; Shi, Jianlin

    2015-03-05

    Ultrasound contrast agents (UCAs) designed by the conventional composition-based strategy, often suffer from relatively low ultrasound utilization efficiency. In this report, a structure-based design concept of double-scattering/reflection in a single nanoparticle for enhancing ultrasound imaging has been proposed. To exemplify this concept, a rattle-type mesoporous silica nanostructure (MSN) with two contributing interfaces has been employed as the ideal model. Contributed by double-scattering/reflection interfaces, the rattle-type MSN, as expected, performs much better in in vitro and in vivo ultrasound imaging than the other two nanostructures (solid and hollow) containing only one scattering/reflection interface. More convincingly, related acoustic measurements and simulation calculations also confirm this design concept. Noticeably, the rattle-type MSN has also been demonstrated capable of improving intracellular ultrasound molecular imaging. As a universal method, the structure-design concept can extend to guide the design of new generation UCAs with many other compositions and similar structures (e.g., heterogeneous rattle-type, double-shelled).

  8. Use of positive reinforcement conditioning to monitor pregnancy in an unanesthetized snow leopard (Uncia uncia) via transabdominal ultrasound.

    PubMed

    Broder, Jacqueline M; Macfadden, Annabell J; Cosens, Lindsay M; Rosenstein, Diana S; Harrison, Tara M

    2008-01-01

    Closely monitoring snow leopard (Uncia uncia) fetal developments via transabdominal ultrasound, with minimal stress to the animal, was the goal of this project. The staff at Potter Park Zoo has used the principles of habituation, desensitization, and positive reinforcement to train a female snow leopard (U. uncia). Ultrasound examinations were preformed on an unanesthetized feline at 63 and 84 days. The animal remained calm and compliant throughout both procedures. Fetuses were observed and measured on both occasions. The absence of anesthesia eliminated components of psychologic and physiologic stress associated with sedation. This was the first recorded instance of transabdominal ultrasound being carried out on an unanesthetized snow leopard. It documents the feasibility of detecting pregnancy and monitoring fetal development via ultrasound. Zoo Biol 27:78-85, 2008. (c) 2007 Wiley-Liss, Inc.

  9. Towards deep brain monitoring with superficial EEG sensors plus neuromodulatory focused ultrasound

    PubMed Central

    Darvas, F; Mehić, E; Caler, CJ; Ojemann, JG; Mourad, PD

    2017-01-01

    Noninvasive recordings of electrophysiological activity have limited anatomical specificity and depth. We hypothesized that spatially tagging a small volume of brain with a unique electroencephalogram (EEG) signal induced by pulsed focused ultrasound (pFU) could overcome those limitations. As a first step towards testing this hypothesis, we applied transcranial ultrasound (2 MHz, 200 microsecond-long pulses applied at 1050 Hz for one second at a spatial peak temporal average intensity of 1.4 W/cm2) to the brains of anesthetized rats while simultaneously recording EEG signals. We observed a significant 1050 Hz electrophysiological signal only when ultrasound was applied to living brain. Moreover, amplitude demodulation of the EEG signal at 1050 Hz yielded measurement of gamma band (>30 Hz) brain activity consistent with direct measurements of that activity. These results represent preliminary support for use of pFU as a spatial tagging mechanism for non-invasive EEG-based mapping of deep brain activity with high spatial resolution. PMID:27181686

  10. Development of ultrasound focusing discrete array for air-coupled ultrasound generation

    NASA Astrophysics Data System (ADS)

    Korobov, Alexander I.; Izosimova, Maria Y.; Toschov, Sergey A.

    2010-01-01

    The technique and results of synthesis of ultrasound focusing discrete arrays for air-coupled ultrasound generation are presented. One of the arrays is an antenna 22 cm in diameter. It consists of 60 transmitters of Murata Company. The resonant frequency of each transmitter is 40 kHz, diameter is 16 mm. The transmitters were placed in first four Fresnel zones. Each of the zones was emitting with anti-phases. Position data and pressure field in focus were calculated using Rayleigh integral. Parameters of made array were measured using method of air-coupled vibrometry with laser scanning vibrometer. Measured parameters (operating frequency is 40 ± 1 kHz, focal distance is 308 mm, size of focal spot is 16.3 mm, and pressure in focus is about 150 dB) are in good agreement with calculated data. The examples of use of designed arrays for noncontact non-destructive diagnostics of some structural materials are reported. Work supported by RFBR.

  11. Feasibility of dynamic cardiac ultrasound transmission via mobile phone for basic emergency teleconsultation.

    PubMed

    Lim, Tae Ho; Choi, Hyuk Joong; Kang, Bo Seung

    2010-01-01

    We assessed the feasibility of using a camcorder mobile phone for teleconsulting about cardiac echocardiography. The diagnostic performance of evaluating left ventricle (LV) systolic function was measured by three emergency medicine physicians. A total of 138 short echocardiography video sequences (from 70 subjects) was selected from previous emergency room ultrasound examinations. The measurement of LV ejection fraction based on the transmitted video displayed on a mobile phone was compared with the original video displayed on the LCD monitor of the ultrasound machine. The image quality was evaluated using the double stimulation impairment scale (DSIS). All observers showed high sensitivity. There was an improvement in specificity with the observer's increasing experience of cardiac ultrasound. Although the image quality of video on the mobile phone was lower than that of the original, a receiver operating characteristic (ROC) analysis indicated that there was no significant difference in diagnostic performance. Immediate basic teleconsulting of echocardiography movies is possible using current commercially-available mobile phone systems.

  12. Measuring Ultrasonic Backscatter in the Presence of Nonlinear Propagation

    NASA Astrophysics Data System (ADS)

    Stiles, Timothy; Guerrero, Quinton

    2011-11-01

    A goal of medical ultrasound is the formation of quantitative ultrasound images in which contrast is determined by acoustic or physical properties of tissue rather than relative echo amplitude. Such images could greatly enhance early detection of many diseases, including breast cancer and liver cirrhosis. Accurate determination of the ultrasonic backscatter coefficient from patients remains a difficult task. One reason for this difficulty is the inherent nonlinear propagation of ultrasound at high intensities used for medical imaging. The backscatter coefficient from several tissue-mimicking samples were measured using the planar reflector method. In this method, the power spectrum from a sample is compared to the power spectrum of an optically flat sample of quartz. The results should be independent of incident pressure amplitude. Results demonstrate that backscatter coefficients can vary by more than an order of magnitude when ultrasound pressure varies from 0.1 MPa to 1.5 MPa at 5.0 MHz. A new method that incorporates nonlinear propagation is proposed to explain these discrepancies.

  13. Ultrasound Velocity Measurements in High-Chromium Steel Under Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Lunev, Aleksey; Bochkareva, Anna; Barannikova, Svetlana; Zuev, Lev

    2016-04-01

    In the present study, the variation of the propagation velocity of ultrasound in the plastic deformation of corrosion-resistant high-chromium steel 40X13 with ferrite-carbide (delivery status), martensitic (quenched) and sorbitol (after high-temperature tempering) structures have beem studied/ It is found that each state shows its view of the loading curve. In the delivery state diagram loading is substantially parabolic throughout, while in the martensitic state contains only linear strain hardening step and in the sorbitol state the plastic flow curve is three-step. The velocity of ultrasonic surface waves (Rayleigh waves) was measured simultaneously with the registration of the loading curve in the investigated steel in tension. It is shown that the dependence of the velocity of ultrasound in active loading is determined by the law of plastic flow, that is, the staging of the corresponding diagram of loading. Structural state of the investigated steel is not only changing the type of the deformation curve under uniaxial tension, but also changes the nature of ultrasound speed of deformation.

  14. Feasibility of Dual Optics/Ultrasound Imaging and Contrast Media for the Detection and Characterization of Prostate Cancer

    DTIC Science & Technology

    2009-03-01

    acousto - optic effect will be used to only modulate light (at the ultrasound frequency) which propagates through a small ultrasound focal zone. This...DOD Idea Development Award is concerned with the development of a novel acousto - optic detection idea based on quadrature measurements with a gain...perform acousto - optic molecular imaging of prostate cancer with incoherent photons using endogenous contrast, e.g. hypoxia, and with fluorescent probes and microbubbles for increased specificity and signal enhancement.

  15. Effect of ultrasound sonication on clonogenic survival and mitochondria of ovarian cancer cells in the presence of methylene blue.

    PubMed

    Xiang, Junyan; Leung, Albert Wingnang; Xu, Chuanshan

    2014-10-01

    This study aimed to investigate the effect of ultrasound sonication in the presence of methylene blue on clonogenic survival and mitochondria of ovarian cancer cells. Human ovarian cancer HO-8910 cells, which were incubated with different concentrations of methylene blue for 1 hour, were exposed to an ultrasonic wave for 5 seconds with intensity of 0.46 W/cm(2). Clonogenic survival of HO-8910 cells after ultrasound sonication was measured by a colony-forming unit assay. Mitochondrial structural changes were observed on transmission electron microscopy, and the mitochondrial membrane potential was evaluated by confocal laser-scanning microscopy with rhodamine 123 staining. The colony-forming units of HO-8910 cells decreased considerably after ultrasound sonication in the presence of methylene blue. Transmission electron microscopy showed slightly enlarged mitochondria in the ultrasound-treated cells in the absence of methylene blue; however, seriously damaged mitochondria, even with almost complete disappearance of cristae, were found in the cells treated by ultrasound sonication in the presence of methylene blue. The mitochondrial membrane potential collapsed significantly when HO-8910 cells were treated by ultrasound sonication in the presence of methylene blue (P < .05). Ultrasound sonication in the presence of methylene blue markedly damaged mitochondrial structure and function and decreased clonogenic survival of HO-8910 cells. © 2014 by the American Institute of Ultrasound in Medicine.

  16. Feasibility Assessment of Shear Wave Elastography to Rotator Cuff Muscle

    PubMed Central

    Itoigawa, Yoshiaki; Sperling, John W.; Steinmann, Scott P.; Chen, Qingshan; Song, Pengfei; Chen, Shigao; Itoi, Eiji; Hatta, Taku; An, Kai-Nan

    2017-01-01

    Introduction Pre -surgical measurement of supraspinatus muscle extensibility would be important for rotator cuff repair. The purpose of the present study was to explore the potential feasibility of a shear wave ultrasound electrograph (SWE) based method, combined with B-mode ultrasound, to non-invasively measure in vivo stiffness of supraspinatus muscle, and thus obtaining the key information on supraspinatus muscle extensibility. Materials and Methods Our investigation consisted of 2 steps. First, we evaluated orientation of the supraspinatus muscle fiber on cadaveric shoulders without rotator cuff tear in order to optimize the ultrasound probe positions for SWE imaging. Second, we investigated the feasibility of quantifying the normal supraspinatus muscle stiffness by SWE in vivo. Results The supraspinatus muscle was divided into four anatomical regions, namely anterior superficial (AS), posterior superficial (PS), anterior deep (AD) and posterior deep (PD) regions. SWE was evaluated at each of these regions. SWE stiffness on AD, AS, PD, and PS were measured as 40.0±12.4, 34.0±9.9, 32.7±12.7, 39.1±15.7 kPa, respectively. Conclusions SWE combined with B-Mode ultrasound image may be a feasible method to quantify local tissue stiffness of the rotator cuff muscles. PMID:25557287

  17. Ultrasound guided electrical impedance tomography for 2D free-interface reconstruction

    NASA Astrophysics Data System (ADS)

    Liang, Guanghui; Ren, Shangjie; Dong, Feng

    2017-07-01

    The free-interface detection problem is normally seen in industrial or biological processes. Electrical impedance tomography (EIT) is a non-invasive technique with advantages of high-speed and low cost, and is a promising solution for free-interface detection problems. However, due to the ill-posed and nonlinear characteristics, the spatial resolution of EIT is low. To deal with the issue, an ultrasound guided EIT is proposed to directly reconstruct the geometric configuration of the target free-interface. In the method, the position of the central point of the target interface is measured by a pair of ultrasound transducers mounted at the opposite side of the objective domain, and then the position measurement is used as the prior information for guiding the EIT-based free-interface reconstruction. During the process, a constrained least squares framework is used to fuse the information from different measurement modalities, and the Lagrange multiplier-based Levenberg-Marquardt method is adopted to provide the iterative solution of the constraint optimization problem. The numerical results show that the proposed ultrasound guided EIT method for the free-interface reconstruction is more accurate than the single modality method, especially when the number of valid electrodes is limited.

  18. Laser Sources for Generation of Ultrasound

    NASA Technical Reports Server (NTRS)

    Wagner, James W.

    1996-01-01

    Two laser systems have been built and used to demonstrate enhancements beyond current technology used for laser-based generation and detection of ultrasound. The first system consisted of ten Nd:YAG laser cavities coupled electronically and optically to permit sequential bursts of up to ten laser pulses directed either at a single point or configured into a phased array of sources. Significant enhancements in overall signal-to-noise ratio for laser ultrasound incorporating this new source system was demonstrated, using it first as a source of narrowband ultrasound and secondly as a phased array source producing large enhanced signal displacements. A second laser system was implemented using ultra fast optical pulses from a Ti:Sapphire laser to study a new method for making laser generated ultrasonic measurements of thin films with thicknesses on the order of hundreds of angstroms. Work by prior investigators showed that such measurements could be made based upon fluctuations in the reflectivity of thin films when they are stressed by an arriving elastic pulse. Research performed using equipment purchased under this program showed that a pulsed interferometric system could be used as well as a piezoreflective detection system to measure pulse arrivals even in thin films with very low piezoreflective coefficients.

  19. A simulation technique for 3D MR-guided acoustic radiation force imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payne, Allison, E-mail: apayne@ucair.med.utah.edu; Bever, Josh de; Farrer, Alexis

    2015-02-15

    Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation forcemore » field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison with experimentally obtained 3D displacement data in homogeneous gelatin phantoms using a 3D MR-ARFI sequence. The agreement of the experimentally measured and simulated results demonstrates the potential to use MR-ARFI displacement data in MRgFUS therapies.« less

  20. Imaging Performance of Quantitative Transmission Ultrasound

    PubMed Central

    Lenox, Mark W.; Wiskin, James; Lewis, Matthew A.; Darrouzet, Stephen; Borup, David; Hsieh, Scott

    2015-01-01

    Quantitative Transmission Ultrasound (QTUS) is a tomographic transmission ultrasound modality that is capable of generating 3D speed-of-sound maps of objects in the field of view. It performs this measurement by propagating a plane wave through the medium from a transmitter on one side of a water tank to a high resolution receiver on the opposite side. This information is then used via inverse scattering to compute a speed map. In addition, the presence of reflection transducers allows the creation of a high resolution, spatially compounded reflection map that is natively coregistered to the speed map. A prototype QTUS system was evaluated for measurement and geometric accuracy as well as for the ability to correctly determine speed of sound. PMID:26604918

Top