Sample records for ultrasound tissue characterization

  1. Quantitative Ultrasound for Nondestructive Characterization of Engineered Tissues and Biomaterials

    PubMed Central

    Dalecki, Diane; Mercado, Karla P.; Hocking, Denise C.

    2015-01-01

    Non-invasive, non-destructive technologies for imaging and quantitatively monitoring the development of artificial tissues are critical for the advancement of tissue engineering. Current standard techniques for evaluating engineered tissues, including histology, biochemical assays and mechanical testing, are destructive approaches. Ultrasound is emerging as a valuable tool for imaging and quantitatively monitoring the properties of engineered tissues and biomaterials longitudinally during fabrication and post-implantation. Ultrasound techniques are rapid, non-invasive, non-destructive and can be easily integrated into sterile environments necessary for tissue engineering. Furthermore, high-frequency quantitative ultrasound techniques can enable volumetric characterization of the structural, biological, and mechanical properties of engineered tissues during fabrication and post-implantation. This review provides an overview of ultrasound imaging, quantitative ultrasound techniques, and elastography, with representative examples of applications of these ultrasound-based techniques to the field of tissue engineering. PMID:26581347

  2. Whole breast tissue characterization with ultrasound tomography

    NASA Astrophysics Data System (ADS)

    Duric, Neb; Littrup, Peter; Li, Cuiping; Roy, Olivier; Schmidt, Steve; Seamans, John; Wallen, Andrea; Bey-Knight, Lisa

    2015-03-01

    A number of clinical trials have shown that screening ultrasound, supplemental to mammography, detects additional cancers in women with dense breasts. However, labor intensity, operator dependence and high recall rates have limited adoption. This paper describes the use of ultrasound tomography for whole-breast tissue stiffness measurements as a first step toward addressing the issue of high recall rates. The validation of the technique using an anthropomorphic phantom is described. In-vivo applications are demonstrated on 13 breast masses, indicating that lesion stiffness correlates with lesion type as expected. Comparison of lesion stiffness measurements with standard elastography was available for 11 masses and showed a strong correlation between the 2 measures. It is concluded that ultrasound tomography can map out the 3 dimensional distribution of tissue stiffness over the whole breast. Such a capability is well suited for screening where additional characterization may improve the specificity of screening ultrasound, thereby lowering barriers to acceptance.

  3. Ultrasound Imaging Techniques for Spatiotemporal Characterization of Composition, Microstructure, and Mechanical Properties in Tissue Engineering.

    PubMed

    Deng, Cheri X; Hong, Xiaowei; Stegemann, Jan P

    2016-08-01

    Ultrasound techniques are increasingly being used to quantitatively characterize both native and engineered tissues. This review provides an overview and selected examples of the main techniques used in these applications. Grayscale imaging has been used to characterize extracellular matrix deposition, and quantitative ultrasound imaging based on the integrated backscatter coefficient has been applied to estimating cell concentrations and matrix morphology in tissue engineering. Spectral analysis has been employed to characterize the concentration and spatial distribution of mineral particles in a construct, as well as to monitor mineral deposition by cells over time. Ultrasound techniques have also been used to measure the mechanical properties of native and engineered tissues. Conventional ultrasound elasticity imaging and acoustic radiation force imaging have been applied to detect regions of altered stiffness within tissues. Sonorheometry and monitoring of steady-state excitation and recovery have been used to characterize viscoelastic properties of tissue using a single transducer to both deform and image the sample. Dual-mode ultrasound elastography uses separate ultrasound transducers to produce a more potent deformation force to microscale characterization of viscoelasticity of hydrogel constructs. These ultrasound-based techniques have high potential to impact the field of tissue engineering as they are further developed and their range of applications expands.

  4. Developing High-Frequency Quantitative Ultrasound Techniques to Characterize Three-Dimensional Engineered Tissues

    NASA Astrophysics Data System (ADS)

    Mercado, Karla Patricia E.

    Tissue engineering holds great promise for the repair or replacement of native tissues and organs. Further advancements in the fabrication of functional engineered tissues are partly dependent on developing new and improved technologies to monitor the properties of engineered tissues volumetrically, quantitatively, noninvasively, and nondestructively over time. Currently, engineered tissues are evaluated during fabrication using histology, biochemical assays, and direct mechanical tests. However, these techniques destroy tissue samples and, therefore, lack the capability for real-time, longitudinal monitoring. The research reported in this thesis developed nondestructive, noninvasive approaches to characterize the structural, biological, and mechanical properties of 3-D engineered tissues using high-frequency quantitative ultrasound and elastography technologies. A quantitative ultrasound technique, using a system-independent parameter known as the integrated backscatter coefficient (IBC), was employed to visualize and quantify structural properties of engineered tissues. Specifically, the IBC was demonstrated to estimate cell concentration and quantitatively detect differences in the microstructure of 3-D collagen hydrogels. Additionally, the feasibility of an ultrasound elastography technique called Single Tracking Location Acoustic Radiation Force Impulse (STL-ARFI) imaging was demonstrated for estimating the shear moduli of 3-D engineered tissues. High-frequency ultrasound techniques can be easily integrated into sterile environments necessary for tissue engineering. Furthermore, these high-frequency quantitative ultrasound techniques can enable noninvasive, volumetric characterization of the structural, biological, and mechanical properties of engineered tissues during fabrication and post-implantation.

  5. Ultrasound Tissue Characterization of Vulnerable Atherosclerotic Plaque

    PubMed Central

    Picano, Eugenio; Paterni, Marco

    2015-01-01

    A thrombotic occlusion of the vessel fed by ruptured coronary atherosclerotic plaque may result in unstable angina, myocardial infarction or death, whereas embolization from a plaque in carotid arteries may result in transient ischemic attack or stroke. The atherosclerotic plaque prone to such clinical events is termed high-risk or vulnerable plaque, and its identification in humans before it becomes symptomatic has been elusive to date. Ultrasonic tissue characterization of the atherosclerotic plaque is possible with different techniques—such as vascular, transesophageal, and intravascular ultrasound—on a variety of arterial segments, including carotid, aorta, and coronary districts. The image analysis can be based on visual, video-densitometric or radiofrequency methods and identifies three distinct textural patterns: hypo-echoic (corresponding to lipid- and hemorrhage-rich plaque), iso- or moderately hyper-echoic (fibrotic or fibro-fatty plaque), and markedly hyperechoic with shadowing (calcific plaque). Hypoechoic or dishomogeneous plaques, with spotty microcalcification and large plaque burden, with plaque neovascularization and surface irregularities by contrast-enhanced ultrasound, are more prone to clinical complications than hyperechoic, extensively calcified, homogeneous plaques with limited plaque burden, smooth luminal plaque surface and absence of neovascularization. Plaque ultrasound morphology is important, along with plaque geometry, in determining the atherosclerotic prognostic burden in the individual patient. New quantitative methods beyond backscatter (to include speed of sound, attenuation, strain, temperature, and high order statistics) are under development to evaluate vascular tissues. Although not yet ready for widespread clinical use, tissue characterization is listed by the American Society of Echocardiography roadmap to 2020 as one of the most promising fields of application in cardiovascular ultrasound imaging, offering unique

  6. Fuzzy similarity measures for ultrasound tissue characterization

    NASA Astrophysics Data System (ADS)

    Emara, Salem M.; Badawi, Ahmed M.; Youssef, Abou-Bakr M.

    1995-03-01

    Computerized ultrasound tissue characterization has become an objective means for diagnosis of diseases. It is difficult to differentiate diffuse liver diseases, namely cirrhotic and fatty liver from a normal one, by visual inspection from the ultrasound images. The visual criteria for differentiating diffused diseases is rather confusing and highly dependent upon the sonographer's experience. The need for computerized tissue characterization is thus justified to quantitatively assist the sonographer for accurate differentiation and to minimize the degree of risk from erroneous interpretation. In this paper we used the fuzzy similarity measure as an approximate reasoning technique to find the maximum degree of matching between an unknown case defined by a feature vector and a family of prototypes (knowledge base). The feature vector used for the matching process contains 8 quantitative parameters (textural, acoustical, and speckle parameters) extracted from the ultrasound image. The steps done to match an unknown case with the family of prototypes (cirr, fatty, normal) are: Choosing the membership functions for each parameter, then obtaining the fuzzification matrix for the unknown case and the family of prototypes, then by the linguistic evaluation of two fuzzy quantities we obtain the similarity matrix, then by a simple aggregation method and the fuzzy integrals we obtain the degree of similarity. Finally, we find that the similarity measure results are comparable to the neural network classification techniques and it can be used in medical diagnosis to determine the pathology of the liver and to monitor the extent of the disease.

  7. Quantitative Evaluation of Atherosclerotic Plaque Using Ultrasound Tissue Characterization.

    NASA Astrophysics Data System (ADS)

    Yigiter, Ersin

    Evaluation of therapeutic methods directed toward interrupting and/or delaying atherogenesis is impeded by the lack of a reliable, non-invasive means for monitoring progression or regression of disease. The ability to characterize the predominant component of plaque may be very valuable in the study of this disease's natural history. The earlier the lesion, the more likely is lipid to be the predominant component. Progression of plaque is usually by way of overgrowth of fibrous tissues around the fatty pool. Calcification is usually a feature of the older or complicated lesion. To explore the feasibility of using ultrasound to characterize plaque we have conducted measurements of the acoustical properties of various atherosclerotic lesions found in freshly excised samples of human abdominal aorta. Our objective has been to determine whether or not the acoustical properties of plaque correlate with the type and/or chemical composition of plaque and, if so, to define a measurement scheme which could be done in-vivo and non-invasively. Our current data base consists of individual tissue samples from some 200 different aortas. Since each aorta yields between 10 to 30 tissue samples for study, we have data on some 4,468 different lesions or samples. Measurements of the acoustical properties of plaque were found to correlate well with the chemical composition of plaque. In short, measurements of impedance and attenuation seem sufficient to classify plaque as to type and to composition. Based on the in-vitro studies, the parameter of attenuation was selected as a means of classifying the plaque. For these measurements, an intravascular ultrasound scanner was modified according to our specifications. Signal processing algorithms were developed which would analyze the complex ultrasound waveforms and estimate tissue properties such as attenuation. Various methods were tried to estimate the attenuation from the pulse-echo backscattered signal. Best results were obtained by

  8. Ultrasound tissue analysis and characterization

    NASA Astrophysics Data System (ADS)

    Kaufhold, John; Chan, Ray C.; Karl, William C.; Castanon, David A.

    1999-07-01

    On the battlefield of the future, it may become feasible for medics to perform, via application of new biomedical technologies, more sophisticated diagnoses and surgery than is currently practiced. Emerging biomedical technology may enable the medic to perform laparoscopic surgical procedures to remove, for example, shrapnel from injured soldiers. Battlefield conditions constrain the types of medical image acquisition and interpretation which can be performed. Ultrasound is the only viable biomedical imaging modality appropriate for deployment on the battlefield -- which leads to image interpretation issues because of the poor quality of ultrasound imagery. To help overcome these issues, we develop and implement a method of image enhancement which could aid non-experts in the rapid interpretation and use of ultrasound imagery. We describe an energy minimization approach to finding boundaries in medical images and show how prior information on edge orientation can be incorporated into this framework to detect tissue boundaries oriented at a known angle.

  9. High-resolution vascular tissue characterization in mice using 55MHz ultrasound hybrid imaging.

    PubMed

    Mahmoud, Ahmed M; Sandoval, Cesar; Teng, Bunyen; Schnermann, Jurgen B; Martin, Karen H; Mustafa, S Jamal; Mukdadi, Osama M

    2013-03-01

    Ultrasound and Duplex ultrasonography in particular are routinely used to diagnose cardiovascular disease (CVD), which is the leading cause of morbidity and mortality worldwide. However, these techniques may not be able to characterize vascular tissue compositional changes due to CVD. This work describes an ultrasound-based hybrid imaging technique that can be used for vascular tissue characterization and the diagnosis of atherosclerosis. Ultrasound radiofrequency (RF) data were acquired and processed in time, frequency, and wavelet domains to extract six parameters including time integrated backscatter (T(IB)), time variance (T(var)), time entropy (T(E)), frequency integrated backscatter (F(IB)), wavelet root mean square value (W(rms)), and wavelet integrated backscatter (W(IB)). Each parameter was used to reconstruct an image co-registered to morphological B-scan. The combined set of hybrid images were used to characterize vascular tissue in vitro and in vivo using three mouse models including control (C57BL/6), and atherosclerotic apolipoprotein E-knockout (APOE-KO) and APOE/A(1) adenosine receptor double knockout (DKO) mice. The technique was tested using high-frequency ultrasound including single-element (center frequency=55 MHz) and commercial array (center frequency=40 MHz) systems providing superior spatial resolutions of 24 μm and 40 μm, respectively. Atherosclerotic vascular lesions in the APOE-KO mouse exhibited the highest values (contrast) of -10.11±1.92 dB, -12.13±2.13 dB, -7.54±1.45 dB, -5.10±1.06 dB, -5.25±0.94 dB, and -10.23±2.12 dB in T(IB), T(var), T(E), F(IB), W(rms), W(IB) hybrid images (n=10, p<0.05), respectively. Control segments of normal vascular tissue showed the lowest values of -20.20±2.71 dB, -22.54±4.54 dB, -14.94±2.05 dB, -9.64±1.34 dB, -10.20±1.27 dB, and -19.36±3.24 dB in same hybrid images (n=6, p<0.05). Results from both histology and optical images showed good agreement with ultrasound findings within a maximum

  10. High-resolution vascular tissue characterization in mice using 55 MHz ultrasound hybrid imaging

    PubMed Central

    Mahmoud, Ahmed M.; Sandoval, Cesar; Teng, Bunyen; Schnermann, Jurgen B.; Martin, Karen H.; Mustafa, S. Jamal; Mukdadi, Osama M.

    2012-01-01

    Ultrasound and Duplex ultrasonography in particular are routinely used to diagnose cardiovascular disease (CVD), which is the leading cause of morbidity and mortality worldwide. However, these techniques may not be able to characterize vascular tissue compositional changes due to CVD. This work describes an ultrasound-based hybrid imaging technique that can be used for vascular tissue characterization and the diagnosis of atherosclerosis. Ultrasound radiofrequency (RF) data were acquired and processed in time, frequency, and wavelet domains to extract six parameters including time integrated backscatter (TIB), time variance (Tvar), time entropy (TE), frequency integrated backscatter (FIB), wavelet root mean square value (Wrms), and wavelet integrated backscatter (WIB). Each parameter was used to reconstruct an image co-registered to morphological B-scan. The combined set of hybrid images were used to characterize vascular tissue in vitro and in vivo using three mouse models including control (C57BL/6), and atherosclerotic apolipoprotein E-knockout (APOE-KO) and APOE/A1 adenosine receptor double knockout (DKO) mice. The technique was tested using high-frequency ultrasound including single-element (center frequency = 55 MHz) and commercial array (center frequency = 40 MHz) systems providing superior spatial resolutions of 24 μm and 40 μm, respectively. Atherosclerotic vascular lesions in the APOE-KO mouse exhibited the highest values (contrast) of −10.11 ± 1.92 dB, −12.13 ± 2.13 dB, −7.54 ± 1.45 dB, −5.10 ± 1.06 dB, −5.25 ± 0.94 dB, and −10.23 ± 2.12 dB in TIB, Tvar, TE, FIB, Wrms, WIB hybrid images (n = 10, p < 0.05), respectively. Control segments of normal vascular tissue showed the lowest values of −20.20 ± 2.71 dB, −22.54 ± 4.54 dB, −14.94 ± 2.05 dB, −9.64 ± 1.34 dB, −10.20 ± 1.27 dB, and −19.36 ± 3.24 dB in same hybrid images (n = 6, p < 0.05). Results from both histology and optical images showed good agreement with

  11. Small-window parametric imaging based on information entropy for ultrasound tissue characterization

    PubMed Central

    Tsui, Po-Hsiang; Chen, Chin-Kuo; Kuo, Wen-Hung; Chang, King-Jen; Fang, Jui; Ma, Hsiang-Yang; Chou, Dean

    2017-01-01

    Constructing ultrasound statistical parametric images by using a sliding window is a widely adopted strategy for characterizing tissues. Deficiency in spatial resolution, the appearance of boundary artifacts, and the prerequisite data distribution limit the practicability of statistical parametric imaging. In this study, small-window entropy parametric imaging was proposed to overcome the above problems. Simulations and measurements of phantoms were executed to acquire backscattered radiofrequency (RF) signals, which were processed to explore the feasibility of small-window entropy imaging in detecting scatterer properties. To validate the ability of entropy imaging in tissue characterization, measurements of benign and malignant breast tumors were conducted (n = 63) to compare performances of conventional statistical parametric (based on Nakagami distribution) and entropy imaging by the receiver operating characteristic (ROC) curve analysis. The simulation and phantom results revealed that entropy images constructed using a small sliding window (side length = 1 pulse length) adequately describe changes in scatterer properties. The area under the ROC for using small-window entropy imaging to classify tumors was 0.89, which was higher than 0.79 obtained using statistical parametric imaging. In particular, boundary artifacts were largely suppressed in the proposed imaging technique. Entropy enables using a small window for implementing ultrasound parametric imaging. PMID:28106118

  12. Small-window parametric imaging based on information entropy for ultrasound tissue characterization

    NASA Astrophysics Data System (ADS)

    Tsui, Po-Hsiang; Chen, Chin-Kuo; Kuo, Wen-Hung; Chang, King-Jen; Fang, Jui; Ma, Hsiang-Yang; Chou, Dean

    2017-01-01

    Constructing ultrasound statistical parametric images by using a sliding window is a widely adopted strategy for characterizing tissues. Deficiency in spatial resolution, the appearance of boundary artifacts, and the prerequisite data distribution limit the practicability of statistical parametric imaging. In this study, small-window entropy parametric imaging was proposed to overcome the above problems. Simulations and measurements of phantoms were executed to acquire backscattered radiofrequency (RF) signals, which were processed to explore the feasibility of small-window entropy imaging in detecting scatterer properties. To validate the ability of entropy imaging in tissue characterization, measurements of benign and malignant breast tumors were conducted (n = 63) to compare performances of conventional statistical parametric (based on Nakagami distribution) and entropy imaging by the receiver operating characteristic (ROC) curve analysis. The simulation and phantom results revealed that entropy images constructed using a small sliding window (side length = 1 pulse length) adequately describe changes in scatterer properties. The area under the ROC for using small-window entropy imaging to classify tumors was 0.89, which was higher than 0.79 obtained using statistical parametric imaging. In particular, boundary artifacts were largely suppressed in the proposed imaging technique. Entropy enables using a small window for implementing ultrasound parametric imaging.

  13. Coregistered three-dimensional ultrasound and photoacoustic imaging system for ovarian tissue characterization

    PubMed Central

    Aguirre, Andres; Guo, Puyun; Gamelin, John; Yan, Shikui; Sanders, Mary M.; Brewer, Molly; Zhu, Quing

    2009-01-01

    Ovarian cancer has the highest mortality of all gynecologic cancers, with a five-year survival rate of only 30% or less. Current imaging techniques are limited in sensitivity and specificity in detecting early stage ovarian cancer prior to its widespread metastasis. New imaging techniques that can provide functional and molecular contrasts are needed to reduce the high mortality of this disease. One such promising technique is photoacoustic imaging. We develop a 1280-element coregistered 3-D ultrasound and photoacoustic imaging system based on a 1.75-D acoustic array. Volumetric images over a scan range of 80 deg in azimuth and 20 deg in elevation can be achieved in minutes. The system has been used to image normal porcine ovarian tissue. This is an important step toward better understanding of ovarian cancer optical properties obtained with photoacoustic techniques. To the best of our knowledge, such data are not available in the literature. We present characterization measurements of the system and compare coregistered ultrasound and photoacoustic images of ovarian tissue to histological images. The results show excellent coregistration of ultrasound and photoacoustic images. Strong optical absorption from vasculature, especially highly vascularized corpora lutea and low absorption from follicles, is demonstrated. PMID:19895116

  14. Algorithms and Results of Eye Tissues Differentiation Based on RF Ultrasound

    PubMed Central

    Jurkonis, R.; Janušauskas, A.; Marozas, V.; Jegelevičius, D.; Daukantas, S.; Patašius, M.; Paunksnis, A.; Lukoševičius, A.

    2012-01-01

    Algorithms and software were developed for analysis of B-scan ultrasonic signals acquired from commercial diagnostic ultrasound system. The algorithms process raw ultrasonic signals in backscattered spectrum domain, which is obtained using two time-frequency methods: short-time Fourier and Hilbert-Huang transformations. The signals from selected regions of eye tissues are characterized by parameters: B-scan envelope amplitude, approximated spectral slope, approximated spectral intercept, mean instantaneous frequency, mean instantaneous bandwidth, and parameters of Nakagami distribution characterizing Hilbert-Huang transformation output. The backscattered ultrasound signal parameters characterizing intraocular and orbit tissues were processed by decision tree data mining algorithm. The pilot trial proved that applied methods are able to correctly classify signals from corpus vitreum blood, extraocular muscle, and orbit tissues. In 26 cases of ocular tissues classification, one error occurred, when tissues were classified into classes of corpus vitreum blood, extraocular muscle, and orbit tissue. In this pilot classification parameters of spectral intercept and Nakagami parameter for instantaneous frequencies distribution of the 1st intrinsic mode function were found specific for corpus vitreum blood, orbit and extraocular muscle tissues. We conclude that ultrasound data should be further collected in clinical database to establish background for decision support system for ocular tissue noninvasive differentiation. PMID:22654643

  15. Investigation of Post-mortem Tissue Effects Using Long-time Decorrelation Ultrasound

    NASA Astrophysics Data System (ADS)

    Csány, Gergely; Balogh, Lajos; Gyöngy, Miklós

    Decorrelation ultrasound is being increasingly used to investigate long-term biological phenomena. In the current work, ultrasound image sequences of mice who did not survive anesthesia (in a separate investigation) were analyzed and post-mortem tissue effects were observed via decorrelation calculation. A method was developed to obtain a quantitative parameter characterizing the rate of decorrelation. The results show that ultrasound decorrelation imaging is an effective method of observing post-mortem tissue effects and point to further studies elucidating the mechanism behind these effects.

  16. Tissue mimicking materials for dental ultrasound

    PubMed Central

    Singh, Rahul S.; Culjat, Martin O.; Grundfest, Warren S.; Brown, Elliott R.; White, Shane N.

    2008-01-01

    While acoustic tissue mimicking materials have been explored for a variety of soft and hard biological tissues, no dental hard tissue mimicking materials have been characterized. Tooth phantoms are necessary to better understand acoustic phenomenology within the tooth environment and to accelerate the advancement of dental ultrasound imaging systems. In this study, soda lime glass and dental composite were explored as surrogates for human enamel and dentin, respectively, in terms of compressional velocity, attenuation, and acoustic impedance. The results suggest that a tooth phantom consisting of glass and composite can effectively mimic the acoustic behavior of a natural human tooth. PMID:18396919

  17. Tissue mimicking simulations for temporal enhanced ultrasound-based tissue typing

    NASA Astrophysics Data System (ADS)

    Bayat, Sharareh; Imani, Farhad; Gerardo, Carlos D.; Nir, Guy; Azizi, Shekoofeh; Yan, Pingkun; Tahmasebi, Amir; Wilson, Storey; Iczkowski, Kenneth A.; Lucia, M. Scott; Goldenberg, Larry; Salcudean, Septimiu E.; Mousavi, Parvin; Abolmaesumi, Purang

    2017-03-01

    Temporal enhanced ultrasound (TeUS) is an imaging approach where a sequence of temporal ultrasound data is acquired and analyzed for tissue typing. Previously, in a series of in vivo and ex vivo studies we have demonstrated that, this approach is effective for detecting prostate and breast cancers. Evidences derived from our experiments suggest that both ultrasound-signal related factors such as induced heat and tissue-related factors such as the distribution and micro-vibration of scatterers lead to tissue typing information in TeUS. In this work, we simulate mechanical micro-vibrations of scatterers in tissue-mimicking phantoms that have various scatterer densities reflecting benign and cancerous tissue structures. Finite element modeling (FEM) is used for this purpose where the vertexes are scatterers representing cell nuclei. The initial positions of scatterers are determined by the distribution of nuclei segmented from actual digital histology scans of prostate cancer patients. Subsequently, we generate ultrasound images of the simulated tissue structure using the Field II package resulting in a temporal enhanced ultrasound. We demonstrate that the micro-vibrations of scatterers are captured by temporal ultrasound data and this information can be exploited for tissue typing.

  18. Development and characterization of a tissue-mimicking material for high-intensity focused ultrasound.

    PubMed

    King, Randy L; Liu, Yunbo; Maruvada, Subha; Herman, Bruce A; Wear, Keith A; Harris, Gerald R

    2011-07-01

    A tissue-mimicking material (TMM) for the acoustic and thermal characterization of high-intensity focused ultrasound (HIFU) devices has been developed. The material is a high-temperature hydrogel matrix (gellan gum) combined with different sizes of aluminum oxide particles and other chemicals. The ultrasonic properties (attenuation coefficient, speed of sound, acoustical impedance, and the thermal conductivity and diffusivity) were characterized as a function of temperature from 20 to 70°C. The backscatter coefficient and nonlinearity parameter B/A were measured at room temperature. Importantly, the attenuation coefficient has essentially linear frequency dependence, as is the case for most mammalian tissues at 37°C. The mean value is 0.64f(0.95) dB·cm(-1) at 20°C, based on measurements from 2 to 8 MHz. Most of the other relevant physical parameters are also close to the reported values, although backscatter signals are low compared with typical human soft tissues. Repeatable and consistent temperature elevations of 40°C were produced under 20-s HIFU exposures in the TMM. This TMM is appropriate for developing standardized dosimetry techniques, validating numerical models, and determining the safety and efficacy of HIFU devices.

  19. Measurement of tissue viscoelasticity with ultrasound

    NASA Astrophysics Data System (ADS)

    Greenleaf, J. F.; Alizad, A.

    2017-02-01

    Tissue properties such as elasticity and viscosity have been shown to be related to such tissue conditions as contraction, edema, fibrosis, and fat content among others. Magnetic Resonance Elastography has shown outstanding ability to measure the elasticity and in some cases the viscosity of tissues, especially in the liver, providing the ability to stage fibrotic liver disease similarly to biopsy. We discuss ultrasound methods of measuring elasticity and viscosity in tissues. Many of these methods are becoming widely available in the extant ultrasound machines distributed throughout the world. Some of the methods to be discussed are in the developmental stage. The advantages of the ultrasound methods are that the imaging instruments are widely available and that many of the viscoelastic measurements can be made during a short addition to the normal ultrasound examination time. In addition, the measurements can be made by ultrasound repetitively and quickly allowing evaluation of dynamic physiologic function in circumstances such as muscle contraction or artery relaxation. Measurement of viscoelastic tissue mechanical properties will become a consistent part of clinical ultrasound examinations in our opinion.

  20. Fuzzy logic algorithm for quantitative tissue characterization of diffuse liver diseases from ultrasound images.

    PubMed

    Badawi, A M; Derbala, A S; Youssef, A M

    1999-08-01

    Computerized ultrasound tissue characterization has become an objective means for diagnosis of liver diseases. It is difficult to differentiate diffuse liver diseases, namely cirrhotic and fatty liver by visual inspection from the ultrasound images. The visual criteria for differentiating diffused diseases are rather confusing and highly dependent upon the sonographer's experience. This often causes a bias effects in the diagnostic procedure and limits its objectivity and reproducibility. Computerized tissue characterization to assist quantitatively the sonographer for the accurate differentiation and to minimize the degree of risk is thus justified. Fuzzy logic has emerged as one of the most active area in classification. In this paper, we present an approach that employs Fuzzy reasoning techniques to automatically differentiate diffuse liver diseases using numerical quantitative features measured from the ultrasound images. Fuzzy rules were generated from over 140 cases consisting of normal, fatty, and cirrhotic livers. The input to the fuzzy system is an eight dimensional vector of feature values: the mean gray level (MGL), the percentile 10%, the contrast (CON), the angular second moment (ASM), the entropy (ENT), the correlation (COR), the attenuation (ATTEN) and the speckle separation. The output of the fuzzy system is one of the three categories: cirrhosis, fatty or normal. The steps done for differentiating the pathologies are data acquisition and feature extraction, dividing the input spaces of the measured quantitative data into fuzzy sets. Based on the expert knowledge, the fuzzy rules are generated and applied using the fuzzy inference procedures to determine the pathology. Different membership functions are developed for the input spaces. This approach has resulted in very good sensitivities and specificity for classifying diffused liver pathologies. This classification technique can be used in the diagnostic process, together with the history

  1. Noninvasive Tissue Characterization of Lung Tumors Using Integrated Backscatter Intravascular Ultrasound: An Ex Vivo Comparative Study With Pathological Diagnosis.

    PubMed

    Ito, Fumitaka; Kawasaki, Masanori; Ohno, Yasushi; Toyoshi, Sayaka; Morishita, Megumi; Kaito, Daizo; Yanase, Komei; Funaguchi, Norihiko; Asano, Masahiro; Endo, Junki; Mori, Hidenori; Kobayashi, Kazuhiro; Nishigaki, Kazuhiko; Miyazaki, Tatsuhiko; Takemura, Genzou; Minatoguchi, Shinya

    2016-05-01

    Endobronchial ultrasonography (EBUS) facilitates a lung cancer diagnosis. However, qualitative tissue characterization of lung tumors is difficult using EBUS. Integrated backscatter (IBS) is an ultrasound technique that calculates the power of the ultrasound signal to characterize tissue components in coronary arteries. We hypothesized that qualitative diagnosis of lung tumors is possible using the IBS technique. The aim of the present study was to elucidate whether the IBS technique can be used in lung tissue diagnoses. Thirty-five consecutive patients who underwent surgery for lung cancer were prospectively enrolled. Surgical specimens of the lung and the tumor tissue were obtained, and the IBS values were measured within 48 h after surgery. Histologic images of lung and tumor tissues were compared with IBS values, and the relative interstitial area according to results of Masson's trichrome staining were determined by using an imaging processor. The IBS values in tumor tissue were significantly lower than those in normal lung tissue (-50.9 ± 2.6 dB and -47.6 ± 2.6 dB, respectively; P < .001). The IBS values of adenocarcinomas associated with a good 5-year survival rate were higher than those of non-adenocarcinomas (-48.1 ± 1.6 dB and -52.6 ± 1.4 dB; P < .001). There were significant correlations between the IBS values and the relative interstitial area or micro air area in tumor (r = 0.53 and r = 0.67; P < .01). After combining normal lung tissue and adenocarcinomas with a good prognosis, the sensitivity and specificity for establishing the presence of lung tumors were 84% and 85%. Qualitative diagnosis of lung tumors was possible, with a sensitivity of 84% and a specificity of 85%, using the ultrasound IBS technique. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  2. Ex Vivo characterization of canine liver tissue viscoelasticity after high-intensity focused ultrasound ablation.

    PubMed

    Shahmirzadi, Danial; Hou, Gary Y; Chen, Jiangang; Konofagou, Elisa E

    2014-02-01

    The potential of elasticity imaging to detect high-intensity focused ultrasound (HIFU) lesions on the basis of their distinct biomechanical properties is promising. However, information on the quantitative mechanical properties of the tissue and the optimal intensity at which to determine the best contrast parameters is scarce. In this study, fresh canine livers were ablated using combinations of ISPTA intensities of 5.55, 7.16 and 9.07 kW/cm(2) and durations of 10 and 30 s ex vivo, resulting in six groups of ablated tissues. Biopsy samples were then interrogated using dynamic shear mechanical testing within the range of 0.1-10 Hz to characterize the tissue's post-ablation viscoelastic properties. All mechanical parameters were found to be frequency dependent. Compared with unablated cases, all six groups of ablated tissues had statistically significant higher complex shear modulus and shear viscosity. However, among the ablated groups, both complex shear modulus and shear viscosity were found to monotonically increase in groups 1-4 (5.55 kW/cm(2) for 10 s, 7.16 kW/cm(2) for 10 s, 9.07 kW/cm(2) for 10 s, and 5.55 kW/cm(2) for 30 s, respectively), but to decrease in groups 5 and 6 (7.16 kW/cm(2) for 30 s, and 9.07 kW/cm(2) for 30 s, respectively). For groups 5 and 6, the temperature was expected to exceed the boiling point, and therefore, the decreased stiffening could be due to the compromised integrity of the tissue microstructure. Future studies will entail estimation tissue mechanical properties in vivo and perform real-time monitoring of tissue alterations during ablation. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  3. Interlaced photoacoustic and ultrasound imaging system with real-time coregistration for ovarian tissue characterization

    NASA Astrophysics Data System (ADS)

    Alqasemi, Umar; Li, Hai; Yuan, Guangqian; Kumavor, Patrick; Zanganeh, Saeid; Zhu, Quing

    2014-07-01

    Coregistered ultrasound (US) and photoacoustic imaging are emerging techniques for mapping the echogenic anatomical structure of tissue and its corresponding optical absorption. We report a 128-channel imaging system with real-time coregistration of the two modalities, which provides up to 15 coregistered frames per second limited by the laser pulse repetition rate. In addition, the system integrates a compact transvaginal imaging probe with a custom-designed fiber optic assembly for in vivo detection and characterization of human ovarian tissue. We present the coregistered US and photoacoustic imaging system structure, the optimal design of the PC interfacing software, and the reconfigurable field programmable gate array operation and optimization. Phantom experiments of system lateral resolution and axial sensitivity evaluation, examples of the real-time scanning of a tumor-bearing mouse, and ex vivo human ovaries studies are demonstrated.

  4. Creation and Characterization of an Ultrasound and CT Phantom for Non-invasive Ultrasound Thermometry Calibration

    PubMed Central

    Lai, Chun-Yen; Kruse, Dustin E.; Ferrara, Katherine W.; Caskey, Charles F.

    2014-01-01

    Ultrasound thermometry provides noninvasive two-dimensional (2-D) temperature monitoring, and in this paper, we have investigated the use of computed tomography (CT) radiodensity to characterize tissues to improve the accuracy of ultrasound thermometry. Agarose-based tissue-mimicking phantoms were created with glyceryl trioleate (a fat-mimicking material) concentration of 0, 10, 20, 30, 40, and 50%. The speed of sound (SOS) of the phantoms was measured over a temperature range of 22.1–41.1°C. CT images of the phantoms were acquired by a clinical dedicated breast CT scanner, followed by calculation of the Hounsfield units (HU). The phantom was heated with a therapeutic acoustic pulse (1.54 MHz), while RF data were acquired with a 10-MHz linear-array transducer. 2-D speckle tracking was used to calculate the thermal strain offline. The tissue dependent thermal strain parameter required for ultrasound thermometry was analyzed and correlated with CT radiodensity, followed by validation of the temperature prediction. Results showed that the change in SOS with the temperature increase was opposite in sign between the 0–10% and 20–50% trioleate phantoms. The inverse of the tissue dependent thermal strain parameter of the phantoms was correlated with the CT radiodensity (R2 = 0.99). A blinded ultrasound thermometry study on phantoms with a trioleate range of 5–35% demonstrated the capability to estimate the tissue dependent thermal strain parameter and estimate temperature with error less than ~1°C. In conclusion, CT radiodensity may provide a method for improving ultrasound thermometry in heterogeneous tissues. PMID:24107918

  5. Novel Applications of Ultrasound Technology to Visualize and Characterize Myofascial Trigger Points and Surrounding Soft Tissue

    PubMed Central

    Sikdar, Siddhartha; Shah, Jay P.; Gebreab, Tadesse; Yen, Ru-Huey; Gilliams, Elizabeth; Danoff, Jerome; Gerber, Lynn H.

    2009-01-01

    enlarged arterioles) near A-MTrPs showed retrograde flow in diastole indicating a highly resistive vascular bed. A-MTrP sites were more likely to have higher BFS compared to L-MTrPs (p<0.021). Conclusions Preliminary findings show that, under the conditions of this investigation, US imaging techniques can be used to distinguish myofascial tissue containing MTrPs from normal myofascial tissue (lacking trigger points). Ultrasound enables visualization and some characterization of MTrPs and adjacent soft tissue. PMID:19887205

  6. Tissue identification by ultrasound

    NASA Technical Reports Server (NTRS)

    Lecroissette, D. H.; Heyser, R. C.; Gammell, P. M.; Wilson, R. L.

    1978-01-01

    The ultrasonic properties of animal and human soft tissue were measured over the frequency range of 1.5 to 10.0 MHz. The method employed a swept-frequency, coherent technique known as time delay spectrometry. Measurements of attenuation versus frequency on liver, backfat, kidney, pancreas, spleen, breast, and other tissue were made. Considerable attention was paid to tissue handling and in determining the effects of fixing on the attenuation of ultrasound in the tissue.

  7. Tissue Bioeffects during Ultrasound-mediated Drug Delivery

    NASA Astrophysics Data System (ADS)

    Sutton, Jonathan

    Ultrasound has been developed as both a valuable diagnostic tool and a potent promoter of beneficial tissue bioeffects for the treatment of cardiovascular disease. Vascular effects can be mediated by mechanical oscillations of circulating microbubbles, or ultrasound contrast agents, which may also encapsulate and shield a therapeutic agent in the bloodstream. Oscillating microbubbles can create stresses directly on nearby tissue or induce fluid effects that effect drug penetration into vascular tissue, lyse thrombi, or direct drugs to optimal locations for delivery. These investigations have spurred continued research into alternative therapeutic applications, such as bioactive gas delivery. This dissertation addresses a fundamental hypothesis in biomedical ultrasound: ultrasound-mediated drug delivery is capable of increasing the penetration of drugs across different physiologic barriers within the cardiovascular system, such as the vascular endothelium, blood clots, and smooth muscle cells.

  8. Photoacoustic characterization of ovarian tissue

    NASA Astrophysics Data System (ADS)

    Aguirre, Andres; Gamelin, John; Guo, Puyun; Yan, Shikui; Sanders, Mary; Brewer, Molly; Zhu, Quing

    2009-02-01

    Ovarian cancer has the highest mortality of all gynecologic cancers with a five-year survival rate of only 30%. Because current imaging techniques (ultrasound, CT, MRI, PET) are not capable of detecting ovarian cancer early, most diagnoses occur in later stages (III/IV). Thus many women are not correctly diagnosed until the cancer becomes widely metastatic. On the other hand, while the majority of women with a detectable ultrasound abnormality do not harbor a cancer, they all undergo unnecessary oophorectomy. Hence, new imaging techniques that can provide functional and molecular contrasts are needed for improving the specificity of ovarian cancer detection and characterization. One such technique is photoacoustic imaging, which has great potential to reveal early tumor angiogenesis through intrinsic optical absorption contrast from hemoglobin or extrinsic contrast from conjugated agents binding to appropriate molecular receptors. To better understand the cancer disease process of ovarian tissue using photoacoustic imaging, it is necessary to first characterize the properties of normal ovarian tissue. We have imaged ex-vivo ovarian tissue using a 3D co-registered ultrasound and photoacoustic imaging system. The system is capable of volumetric imaging by means of electronic focusing. Detecting and visualizing small features from multiple viewing angles is possible without the need for any mechanical movement. The results show strong optical absorption from vasculature, especially highly vascularized corpora lutea, and low absorption from follicles. We will present correlation of photoacoustic images from animals with histology. Potential application of this technology would be the noninvasive imaging of the ovaries for screening or diagnostic purposes.

  9. Measurement of Mechanical Properties of Soft Tissue with Ultrasound Vibrometry

    NASA Astrophysics Data System (ADS)

    Nenadich, I.; Bernal, M.; Greenleaf, J. F.

    The cardiovascular diseases atherosclerosis, coronary artery disease, hypertension and heart failure have been related to stiffening of vessels and myocardium. Noninvasive measurements of mechanical properties of cardiovascular tissue would facilitate detection and treatment of disease in early stages, thus reducing mortality and possibly reducing cost of treatment. While techniques capable of measuring tissue elasticity have been reported, the knowledge of both elasticity and viscosity is necessary to fully characterize mechanical properties of soft tissues. In this article, we summarize the Shearwave Dispersion Ultrasound Vibrometry (SDUV) method developed by our group and report on advances made in characterizing stiffness of large vessels and myocardium. The method uses radiation forceFadiation force to excite shear waves in soft tissue and pulse echo ultrasound to measure the motion. The speed of propagation of shear waves at different frequencies is used to generate dispersions curves for excised porcine left-ventricular free-wall myocardium and carotid arteries. An antisymmetric Lamb wave model was fitted to the LV myocardium dispersion curves to obtain elasticity and viscosity moduli. The results suggest that the speed of shear wave propagation in four orthogonal directions on the surface of the excised myocardium is similar. These studies show that the SDUV method has potential for clinical application in noninvasive quantification of elasticity and viscosity of vessels and myocardium.

  10. Guiding tissue regeneration with ultrasound in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Dalecki, Diane; Comeau, Eric S.; Raeman, Carol H.; Child, Sally Z.; Hobbs, Laura; Hocking, Denise C.

    2015-05-01

    Developing new technologies that enable the repair or replacement of injured or diseased tissues is a major focus of regenerative medicine. This paper will discuss three ultrasound technologies under development in our laboratories to guide tissue regeneration both in vitro and in vivo. A critical obstacle in tissue engineering is the need for rapid and effective tissue vascularization strategies. To address this challenge, we are developing acoustic patterning techniques for microvascular tissue engineering. Acoustic radiation forces associated with ultrasound standing wave fields provide a rapid, non-invasive approach to spatially pattern cells in three dimensions without affecting cell viability. Acoustic patterning of endothelial cells leads to the rapid formation of microvascular networks throughout the volumes of three-dimensional hydrogels, and the morphology of the resultant microvessel networks can be controlled by design of the ultrasound field. A second technology under development uses ultrasound to noninvasively control the microstructure of collagen fibers within engineered tissues. The microstructure of extracellular matrix proteins provides signals that direct cell functions critical to tissue regeneration. Thus, controlling collagen microfiber structure with ultrasound provides a noninvasive approach to regulate the mechanical properties of biomaterials and control cellular responses. The third technology employs therapeutic ultrasound to enhance the healing of chronic wounds. Recent studies demonstrate increased granulation tissue thickness and collagen deposition in murine dermal wounds exposed to pulsed ultrasound. In summary, ultrasound technologies offer noninvasive approaches to control cell behaviors and extracellular matrix organization and thus hold great promise to advance tissue regeneration in vitro and in vivo.

  11. Classification of kidney and liver tissue using ultrasound backscatter data

    NASA Astrophysics Data System (ADS)

    Aalamifar, Fereshteh; Rivaz, Hassan; Cerrolaza, Juan J.; Jago, James; Safdar, Nabile; Boctor, Emad M.; Linguraru, Marius G.

    2015-03-01

    Ultrasound (US) tissue characterization provides valuable information for the initialization of automatic segmentation algorithms, and can further provide complementary information for diagnosis of pathologies. US tissue characterization is challenging due to the presence of various types of image artifacts and dependence on the sonographer's skills. One way of overcoming this challenge is by characterizing images based on the distribution of the backscatter data derived from the interaction between US waves and tissue. The goal of this work is to classify liver versus kidney tissue in 3D volumetric US data using the distribution of backscatter US data recovered from end-user displayed Bmode image available in clinical systems. To this end, we first propose the computation of a large set of features based on the homodyned-K distribution of the speckle as well as the correlation coefficients between small patches in 3D images. We then utilize the random forests framework to select the most important features for classification. Experiments on in-vivo 3D US data from nine pediatric patients with hydronephrosis showed an average accuracy of 94% for the classification of liver and kidney tissues showing a good potential of this work to assist in the classification and segmentation of abdominal soft tissue.

  12. Characterization of in vitro healthy and pathological human liver tissue periodicity using backscattered ultrasound signals.

    PubMed

    Machado, Christiano Bittencourt; Pereira, Wagner Coelho de Albuquerque; Meziri, Mahmoud; Laugier, Pascal

    2006-05-01

    This work studied the periodicity of in vitro healthy and pathologic liver tissue, using backscattered ultrasound (US) signals. It utilized the mean scatterer spacing (MSS) as a parameter of tissue characterization, estimated by three methods: the spectral autocorrelation (SAC), the singular spectrum analysis (SSA) and the quadratic transformation method (SIMON). The liver samples were classified in terms of tissue status using the METAVIR scoring system. Twenty tissue samples were classified in four groups: F0, F1, F3 and F4 (five samples for each). The Kolmogorov-Smirnov test (applied on group pairs) resulted as nonsignificant (p > 0.05) for two pairs only: F1/F3 (for SSA) and F3/F4 (for SAC). A discriminant analysis was applied using as parameters the MSS mean (MSS) and standard deviation (sigmaMSS), the estimates histogram mode (mMSS), and the speed of US (mc(foie)) in the medium, to evaluate the degree of discrimination among healthy and pathologic tissues. The better accuracy (Ac) with SAC (80%) was with parameter group (MSS, sigmaMSS, mc(foie)), achieving a sensitivity (Ss) of 92.3% and a specificity (Sp) of 57.1%. For SSA, the group with all four parameters showed an Ac of 75%, an Ss of 78.6% and an Sp of 66.70%. SIMON obtained the best Ac of all (85%) with group (MSS, mMSS, mc(foie)), an Ss of 100%, but with an Sp of 50%.

  13. Ex Vivo Characterization of Canine Liver Tissue Viscoelasticity Following High Intensity Focused Ultrasound (HIFU) Ablation

    PubMed Central

    Shahmirzadi, Danial; Hou, Gary Y.; Chen, Jiangang; Konofagou, Elisa E.

    2014-01-01

    Elasticity imaging has shown great promise in detecting High Intensity Focused Ultrasound (HIFU) lesions based on their distinct biomechanical properties. However, quantitative mechanical properties of the tissue and the optimal intensity for obtaining the best contrast parameters remain scarce. In this study, fresh canine livers were ablated using combinations of ISPTA intensities of 5.55, 7.16 and 9.07 kW/cm2 and time durations of 10 and 30 s ex vivo; leading to six groups of ablated tissues. Biopsy samples were then interrogated using dynamic shear mechanical testing within the range of 0.1-10 Hz to characterize the post-ablation tissue viscoelastic properties. All mechanical parameters were found to be frequency dependent. Compared to the unablated cases, all six groups of ablated tissues showed statistically-significant higher complex shear modulus and shear viscosity. However, among the ablated groups, both complex shear modulus and shear viscosity were found to monotonically increase in groups 1-4 (5.55 kW/cm2 for 10 s, 7.16 kW/cm2 for 10 s, 9.07 kW/cm2 & 10 s, and 5.55 kW/cm2 & 30 s, respectively), but decrease in groups 5 and 6 (7.16 kW/cm2 for 30 s, and 9.07 kW/cm2 for 30 s, respectively). For groups 5 and 6, the temperature was expected to exceed the boiling point, and therefore, the decreased stiffening could be due to the compromised integrity of the tissue microstructure. Future studies are needed to estimate the tissue mechanical properties in vivo and perform real-time monitoring of tissue alterations during ablation. PMID:24315395

  14. Development of a High-Throughput Ultrasound Technique for the Analysis of Tissue Engineering Constructs

    PubMed Central

    Stukel, Jessica; Goss, Monika; Zhou, Haoyan; Zhou, Wenda; Willits, Rebecca; Exner, Agata A.

    2015-01-01

    Development of hydrogel-based tissue engineering constructs is growing at a rapid rate, yet translation to patient use has been sluggish. Years of costly preclinical tests are required to predict clinical performance and safety of these devices. The tests are invasive, destructive to the samples and, in many cases, are not representative of the ultimate in vivo scenario. Biomedical imaging has the potential to facilitate biomaterial development by enabling longitudinal noninvasive device characterization directly in situ. Among the various available imaging modalities, ultrasound stands out as an excellent candidate due to low cost, wide availability, and a favorable safety profile. The overall goal of this work was to demonstrate the utility of clinical ultrasound in longitudinal characterization of 3D hydrogel matrices supporting cell growth. Specifically, we developed a quantitative technique using clinical B-mode ultrasound to differentiate collagen content and fibroblast density within poly(ethylene glycol) (PEG) hydrogels and validated it in an in vitro phantom environment. By manipulating the hydrogel gelation, differences in ultrasound signal intensity were found between gels with collagen fibers and those with non-fiber forming collagen, indicating that the technique was sensitive to the configuration of the protein. At a collagen density of 2.5 mg/mL collagen, fiber forming collagen had a significantly increased signal intensity of 14.90± 2.58*10−5 a.u. compared to non-fiber forming intensity at 2.74± 0.36*10−5 a.u. Additionally, differences in intensity were found between living and fixed fibroblasts, with an increased signal intensity detected in living cells (5 ± 0.8*10−5 a.u. in 1 day live cells compared to 2.26 ± 0.39*10−5 a.u. in fixed cells at a concentration of 1*106 cells/mL in gels containing collagen). Overall, there was a linear correlation >0.90 for ultrasound intensity with increasing cell density. Results demonstrate the

  15. Varying ultrasound power level to distinguish surgical instruments and tissue.

    PubMed

    Ren, Hongliang; Anuraj, Banani; Dupont, Pierre E

    2018-03-01

    We investigate a new framework of surgical instrument detection based on power-varying ultrasound images with simple and efficient pixel-wise intensity processing. Without using complicated feature extraction methods, we identified the instrument with an estimated optimal power level and by comparing pixel values of varying transducer power level images. The proposed framework exploits the physics of ultrasound imaging system by varying the transducer power level to effectively distinguish metallic surgical instruments from tissue. This power-varying image-guidance is motivated from our observations that ultrasound imaging at different power levels exhibit different contrast enhancement capabilities between tissue and instruments in ultrasound-guided robotic beating-heart surgery. Using lower transducer power levels (ranging from 40 to 75% of the rated lowest ultrasound power levels of the two tested ultrasound scanners) can effectively suppress the strong imaging artifacts from metallic instruments and thus, can be utilized together with the images from normal transducer power levels to enhance the separability between instrument and tissue, improving intraoperative instrument tracking accuracy from the acquired noisy ultrasound volumetric images. We performed experiments in phantoms and ex vivo hearts in water tank environments. The proposed multi-level power-varying ultrasound imaging approach can identify robotic instruments of high acoustic impedance from low-signal-to-noise-ratio ultrasound images by power adjustments.

  16. Non-invasive and Non-destructive Characterization of Tissue Engineered Constructs Using Ultrasound Imaging Technologies: A Review.

    PubMed

    Kim, Kang; Wagner, William R

    2016-03-01

    With the rapid expansion of biomaterial development and coupled efforts to translate such advances toward the clinic, non-invasive and non-destructive imaging tools to evaluate implants in situ in a timely manner are critically needed. The required multi-level information is comprehensive, including structural, mechanical, and biological changes such as scaffold degradation, mechanical strength, cell infiltration, extracellular matrix formation and vascularization to name a few. With its inherent advantages of non-invasiveness and non-destructiveness, ultrasound imaging can be an ideal tool for both preclinical and clinical uses. In this review, currently available ultrasound imaging technologies that have been applied in vitro and in vivo for tissue engineering and regenerative medicine are discussed and some new emerging ultrasound technologies and multi-modality approaches utilizing ultrasound are introduced.

  17. Non-invasive and non-destructive characterization of tissue engineered constructs using ultrasound imaging technologies: a review

    PubMed Central

    Kim, Kang; Wagner, William R.

    2015-01-01

    With the rapid expansion of biomaterial development and coupled efforts to translate such advances toward the clinic, non-invasive and non-destructive imaging tools to evaluate implants in situ in a timely manner are critically needed. The required multilevel information is comprehensive, including structural, mechanical, and biological changes such as scaffold degradation, mechanical strength, cell infiltration, extracellular matrix formation and vascularization to name a few. With its inherent advantages of non-invasiveness and non-destructiveness, ultrasound imaging can be an ideal tool for both preclinical and clinical uses. In this review, currently available ultrasound imaging technologies that have been applied in vitro and in vivo for tissue engineering and regenerative medicine are discussed and some new emerging ultrasound technologies and multi-modality approaches utilizing ultrasound are introduced. PMID:26518412

  18. Ultrasound wave propagation in tissue and scattering from microbubbles for echo particle image velocimetry technique.

    PubMed

    Mukdadi, Osama; Shandas, Robin

    2004-01-01

    Nonlinear wave propagation in tissue can be employed for tissue harmonic imaging, ultrasound surgery, and more effective tissue ablation for high intensity focused ultrasound (HIFU). Wave propagation in soft tissue and scattering from microbubbles (ultrasound contrast agents) are modeled to improve detectability, signal-to-noise ratio, and contrast harmonic imaging used for echo particle image velocimetry (Echo-PIV) technique. The wave motion in nonlinear material (tissue) is studied using KZK-type parabolic evolution equation. This model considers ultrasound beam diffraction, attenuation, and tissue nonlinearity. Time-domain numerical model is based on that originally developed by Lee and Hamilton [J. Acoust. Soc. Am 97:906-917 (1995)] for axi-symmetric acoustic field. The initial acoustic waveform emitted from the transducer is assumed to be a broadband wave modulated by Gaussian envelope. Scattering from microbubbles seeded in the blood stream is characterized. Hence, we compute the pressure field impinges the wall of a coated microbubble; the dynamics of oscillating microbubble can be modeled using Rayleigh-Plesset-type equation. Here, the continuity and the radial-momentum equation of encapsulated microbubbles are used to account for the lipid layer surrounding the microbubble. Numerical results show the effects of tissue and microbubble nonlinearities on the propagating pressure wave field. These nonlinearities have a strong influence on the waveform distortion and harmonic generation of the propagating and scattering waves. Results also show that microbubbles have stronger nonlinearity than tissue, and thus improves S/N ratio. These theoretical predictions of wave phenomena provide further understanding of biomedical imaging technique and provide better system design.

  19. An Examination of Ultrasound Measured Tissue Perfusion on Breast Cancer

    DTIC Science & Technology

    1998-12-01

    is similar to those of the study by Ivey et al. [9] in which high intensity fields were used to produce cavitation bubbles for ultrasound contrast...ft * * AD AWARD NUMBER DAMD17-94-J-4144 TITLE: ^ Examination of Ultrasound Measured Tissue Perfusion on Breast Cancer...Examination of Ultrasound Measured Tissue Perfusion on Breast Cancer 3. REPORT TYPE AND DATES COVERED Final (1 Jun 94 - 30 Nov 98) 5. FUNDING

  20. Brief reports: regional anesthesia needles can introduce ultrasound gel into tissues.

    PubMed

    Belavy, David

    2010-09-01

    Anesthesiologists may insert needles through ultrasound gel when performing ultrasound-guided regional anesthesia. In this study, it was determined whether needles carry gel into tissues. Ultrasound gel dyed blue was applied to pork rashers. Tuohy and short-bevel needles were passed through the gel and pork. The needles were then assessed for the presence of ultrasound gel. All needles, including those with stylets, carried gel and tissue within the lumen. Ultrasound gel may be injected around (and perhaps in) nerves during regional anesthesia procedures. Studies are needed to determine the implications of this practice.

  1. Comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination

    NASA Astrophysics Data System (ADS)

    Marks, Fay A.; Tomlinson, Harold W.; Brooksby, Glen W.

    1993-09-01

    A new technique called Ultrasound Tagging of Light (UTL) for imaging breast tissue is described. In this approach, photon localization in turbid tissue is achieved by cross- modulating a laser beam with focussed, pulsed ultrasound. Light which passes through the ultrasound focal spot is `tagged' with the frequency of the ultrasound pulse. The experimental system uses an Argon-Ion laser, a single PIN photodetector, and a 1 MHz fixed-focus pulsed ultrasound transducer. The utility of UTL as a photon localization technique in scattering media is examined using tissue phantoms consisting of gelatin and intralipid. In a separate study, in vivo optical reflectance spectrophotometry was performed on human breast tumors implanted intramuscularly and subcutaneously in nineteen nude mice. The validity of applying a quadruple wavelength breast cancer discrimination metric (developed using breast biopsy specimens) to the in vivo condition was tested. A scatter diagram for the in vivo model tumors based on this metric is presented using as the `normal' controls the hands and fingers of volunteers. Tumors at different growth stages were studied; these tumors ranged in size from a few millimeters to two centimeters. It is expected that when coupled with a suitable photon localization technique like UTL, spectral discrimination methods like this one will prove useful in the detection of breast cancer by non-ionizing means.

  2. Effects of ultrasound and ultrasound contrast agent on vascular tissue

    PubMed Central

    2012-01-01

    Background Ultrasound (US) imaging can be enhanced using gas-filled microbubble contrast agents. Strong echo signals are induced at the tissue-gas interface following microbubble collapse. Applications include assessment of ventricular function and virtual histology. Aim While ultrasound and US contrast agents are widely used, their impact on the physiological response of vascular tissue to vasoactive agents has not been investigated in detail. Methods and results In the present study, rat dorsal aortas were treated with US via a clinical imaging transducer in the presence or absence of the US contrast agent, Optison. Aortas treated with both US and Optison were unable to contract in response to phenylephrine or to relax in the presence of acetylcholine. Histology of the arteries was unremarkable. When the treated aortas were stained for endothelial markers, a distinct loss of endothelium was observed. Importantly, terminal deoxynucleotidyl transferase mediated dUTP nick-end-labeling (TUNEL) staining of treated aortas demonstrated incipient apoptosis in the endothelium. Conclusions Taken together, these ex vivo results suggest that the combination of US and Optison may alter arterial integrity and promote vascular injury; however, the in vivo interaction of Optison and ultrasound remains an open question. PMID:22805356

  3. Controlled Ultrasound Tissue Erosion

    PubMed Central

    Xu, Zhen; Ludomirsky, Achiau; Eun, Lucy Y.; Hall, Timothy L.; Tran, Binh C.; Fowlkes, J. Brian; Cain, Charles A.

    2009-01-01

    The ability of ultrasound to produce highly controlled tissue erosion was investigated. This study is motivated by the need to develop a noninvasive procedure to perforate the neonatal atrial septum as the first step in treatment of hypoplastic left heart syndrome. A total of 232 holes were generated in 40 pieces of excised porcine atrial wall by a 788 kHz single-element transducer. The effects of various parameters [e.g., pulse repetition frequency (PRF), pulse duration (PD), and gas content of liquid] on the erosion rate and energy efficiency were explored. An Isppa of 9000 W/cm2, PDs of 3, 6, 12, and 24 cycles; PRFs between 1.34 kHz and 66.7 kHz; and gas saturation of 40–55% and 79–85% were used. The results show that very short pulses delivered at certain PRFs could maximize the erosion rate and energy efficiency. We show that well-defined perforations can be precisely located in the atrial wall through the controlled ultrasound tissue erosion (CUTE) process. A preliminary in vivo experiment was conducted on a canine subject, and the atrial septum was perforated using CUTE. PMID:15244286

  4. Development of a High-Throughput Ultrasound Technique for the Analysis of Tissue Engineering Constructs.

    PubMed

    Stukel, Jessica M; Goss, Monika; Zhou, Haoyan; Zhou, Wenda; Willits, Rebecca Kuntz; Exner, Agata A

    2016-03-01

    Development of hydrogel-based tissue engineering constructs is growing at a rapid rate, yet translation to patient use has been sluggish. Years of costly preclinical tests are required to predict clinical performance and safety of these devices. The tests are invasive, destructive to the samples and, in many cases, are not representative of the ultimate in vivo scenario. Biomedical imaging has the potential to facilitate biomaterial development by enabling longitudinal noninvasive device characterization directly in situ. Among the various available imaging modalities, ultrasound stands out as an excellent candidate due to low cost, wide availability, and a favorable safety profile. The overall goal of this work was to demonstrate the utility of clinical ultrasound in longitudinal characterization of 3D hydrogel matrices supporting cell growth. Specifically, we developed a quantitative technique using clinical B-mode ultrasound to differentiate collagen content and fibroblast density within poly(ethylene glycol) (PEG) hydrogels and validated it in an in vitro phantom environment. By manipulating the hydrogel gelation, differences in ultrasound signal intensity were found between gels with collagen fibers and those with non-fiber forming collagen, indicating that the technique was sensitive to the configuration of the protein. At a collagen density of 2.5 mg/mL collagen, fiber forming collagen had a significantly increased signal intensity of 14.90 ± 2.58 × 10(-5) a.u. compared to non-fiber forming intensity at 2.74 ± 0.36 × 10(-5) a.u. Additionally, differences in intensity were found between living and fixed fibroblasts, with an increased signal intensity detected in living cells (5.00 ± 0.80 × 10(-5) a.u. in 1 day live cells compared to 2.26 ± 0.39 × 10(-5) a.u.in fixed cells at a concentration of 1 × 10(6) cells/mL in gels containing collagen). Overall, there was a linear correlation >0.90 for ultrasound intensity with increasing

  5. Differential diagnosis between benign and malignant soft tissue tumors utilizing ultrasound parameters.

    PubMed

    Morii, Takeshi; Kishino, Tomonori; Shimamori, Naoko; Motohashi, Mitsue; Ohnishi, Hiroaki; Honya, Keita; Aoyagi, Takayuki; Tajima, Takashi; Ichimura, Shoichi

    2018-01-01

    Preoperative discrimination between benign and malignant soft tissue tumors is critical for the prevention of excess application of magnetic resonance imaging and biopsy as well as unplanned resection. Although ultrasound, including power Doppler imaging, is an easy, noninvasive, and cost-effective modality for screening soft tissue tumors, few studies have investigated reliable discrimination between benign and malignant soft tissue tumors. To establish a modality for discrimination between benign and malignant soft tissue tumors using ultrasound, we extracted the significant risk factors for malignancy based on ultrasound information from 40 malignant and 56 benign pathologically diagnosed soft tissue tumors and established a scoring system based on these risk factors. The maximum size, tumor margin, and vascularity evaluated using ultrasound were extracted as significant risk factors. Using the odds ratio from a multivariate regression model, a scoring system was established. Receiver operating characteristic analyses revealed a high area under the curve value (0.85), confirming the accuracy of the scoring system. Ultrasound is a useful modality for establishing the differential diagnosis between benign and malignant soft tissue tumors.

  6. AUGMENTATION OF LIMB PERFUSION AND REVERSAL OF TISSUE ISCHEMIA PRODUCED BY ULTRASOUND-MEDIATED MICROBUBBLE CAVITATION

    PubMed Central

    Belcik, J. Todd; Mott, Brian H.; Xie, Aris; Zhao, Yan; Kim, Sajeevani; Lindner, Nathan J.; Ammi, Azzdine; Linden, Joel M.; Lindner, Jonathan R.

    2015-01-01

    Background Ultrasound can increase tissue blood flow in part through the intravascular shear produced by oscillatory pressure fluctuations. We hypothesized that ultrasound-mediated increases in perfusion can be augmented by microbubble contrast agents that undergo ultrasound-mediated cavitation, and sought to characterize the biologic mediators. Methods and Results Contrast ultrasound perfusion imaging of hindlimb skeletal muscle and femoral artery diameter measurement were performed in non-ischemic mice after unilateral 10 min exposure to intermittent ultrasound alone (mechanical index [MI] 0.6 or 1.3) or ultrasound with lipid microbubbles (2×108 I.V.). Studies were also performed after inhibiting shear- or pressure-dependent vasodilator pathways, and in mice with hindlimb ischemia. Ultrasound alone produced a 2-fold increase (p<0.05) in muscle perfusion regardless of ultrasound power. Ultrasound-mediated augmentation in flow was greater with microbubbles (3-fold and 10-fold higher than control for MI 0.6 and 1.3, respectively; p<0.05), as was femoral artery dilation. Inhibition of endothelial nitric oxide synthase (eNOS) attenuated flow augmentation produced by ultrasound and microbubbles by 70% (p<0.01), whereas inhibition of adenosine-A2a receptors and epoxyeicosatrienoic acids had minimal effect. Limb nitric oxide (NO) production and muscle phospho-eNOS increased in a stepwise fashion by ultrasound and ultrasound with microbubbles. In mice with unilateral hindlimb ischemia (40–50% reduction in flow), ultrasound (MI 1.3) with microbubbles increased perfusion by 2-fold to a degree that was greater than the control non-ischemic limb. Conclusions Increases in muscle blood flow during high-power ultrasound are markedly amplified by the intravascular presence of microbubbles and can reverse tissue ischemia. These effects are most likely mediated by cavitation-related increases in shear and activation of eNOS. PMID:25834183

  7. Augmentation of limb perfusion and reversal of tissue ischemia produced by ultrasound-mediated microbubble cavitation.

    PubMed

    Belcik, J Todd; Mott, Brian H; Xie, Aris; Zhao, Yan; Kim, Sajeevani; Lindner, Nathan J; Ammi, Azzdine; Linden, Joel M; Lindner, Jonathan R

    2015-04-01

    Ultrasound can increase tissue blood flow, in part, through the intravascular shear produced by oscillatory pressure fluctuations. We hypothesized that ultrasound-mediated increases in perfusion can be augmented by microbubble contrast agents that undergo ultrasound-mediated cavitation and sought to characterize the biological mediators. Contrast ultrasound perfusion imaging of hindlimb skeletal muscle and femoral artery diameter measurement were performed in nonischemic mice after unilateral 10-minute exposure to intermittent ultrasound alone (mechanical index, 0.6 or 1.3) or ultrasound with lipid microbubbles (2×10(8) IV). Studies were also performed after inhibiting shear- or pressure-dependent vasodilator pathways, and in mice with hindlimb ischemia. Ultrasound alone produced a 2-fold increase (P<0.05) in muscle perfusion regardless of ultrasound power. Ultrasound-mediated augmentation in flow was greater with microbubbles (3- and 10-fold higher than control for mechanical index 0.6 and 1.3, respectively; P<0.05), as was femoral artery dilation. Inhibition of endothelial nitric oxide synthase attenuated flow augmentation produced by ultrasound and microbubbles by 70% (P<0.01), whereas inhibition of adenosine-A2a receptors and epoxyeicosatrienoic acids had minimal effect. Limb nitric oxide production and muscle phospho-endothelial nitric oxide synthase increased in a stepwise fashion by ultrasound and ultrasound with microbubbles. In mice with unilateral hindlimb ischemia (40%-50% reduction in flow), ultrasound (mechanical index, 1.3) with microbubbles increased perfusion by 2-fold to a degree that was greater than the control nonischemic limb. Increases in muscle blood flow during high-power ultrasound are markedly amplified by the intravascular presence of microbubbles and can reverse tissue ischemia. These effects are most likely mediated by cavitation-related increases in shear and activation of endothelial nitric oxide synthase. © 2015 American Heart

  8. Ultrasonic atomization of tissue and its role in tissue fractionation by high intensity focused ultrasound

    PubMed Central

    Simon, Julianna C.; Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Wang, Yak-Nam; Crum, Lawrence A.; Bailey, Michael R.

    2012-01-01

    Atomization and fountain formation is a well-known phenomenon that occurs when a focused ultrasound wave in liquid encounters an air interface. High intensity focused ultrasound (HIFU) has been shown to fractionate tissue into submicron-size fragments in a process termed boiling histotripsy, wherein the focused ultrasound wave superheats the tissue at the focus, producing a millimetre-size boiling or vapour bubble in several milliseconds. Yet the question of how this millimetre-size boiling bubble creates submicron-size tissue fragments remains. The hypothesis of this work is that tissue can behave as a liquid such that it forms a fountain and atomization within the vapour bubble produced in boiling histotripsy. We describe an experiment, in which a 2-MHz HIFU transducer (maximum in situ intensity of 24,000 W/cm2) was aligned with an air-tissue interface meant to simulate the boiling bubble. Atomization and fountain formation were observed with high-speed photography and resulted in tissue erosion. Histological examination of the atomized tissue showed whole and fragmented cells and nuclei. Air-liquid interfaces were also filmed. Our conclusion was that HIFU can fountain and atomize tissue. Although this process does not entirely mimic what was observed in liquids, it does explain many aspects of tissue fractionation in boiling histotripsy. PMID:23159812

  9. Quantitative Ultrasound Backscatter for Pulsed Cavitational Ultrasound Therapy—Histotripsy

    PubMed Central

    Wang, Tzu-Yin; Xu, Zhen; Winterroth, Frank; Hall, Timothy L.; Fowlkes, J. Brian; Rothman, Edward D.; Roberts, William W.; Cain, Charles A.

    2011-01-01

    Histotripsy is a well-controlled ultrasonic tissue ablation technology that mechanically and progressively fractionates tissue structures using cavitation. The fractionated tissue volume can be monitored with ultrasound imaging because a significant ultrasound backscatter reduction occurs. This paper correlates the ultrasound backscatter reduction with the degree of tissue fractionation characterized by the percentage of remaining normal-appearing cell nuclei on histology. Different degrees of tissue fractionation were generated in vitro in freshly excised porcine kidneys by varying the number of therapeutic ultrasound pulses from 100 to 2000 pulses per treatment location. All ultrasound pulses were 15 cycles at 1 MHz delivered at 100 Hz pulse repetition frequency and 19 MPa peak negative pressure. The results showed that the normalized backscatter intensity decreased exponentially with increasing number of pulses. Correspondingly, the percentage of normal appearing nuclei in the treated area decreased exponentially as well. A linear correlation existed between the normalized backscatter intensity and the percentage of normal appearing cell nuclei in the treated region. This suggests that the normalized backscatter intensity may be a potential quantitative real-time feedback parameter for histotripsy-induced tissue fractionation. This quantitative feedback may allow the prediction of local clinical outcomes, i.e., when a tissue volume has been sufficiently treated. PMID:19750596

  10. Quantitative ultrasound backscatter for pulsed cavitational ultrasound therapy- histotripsy.

    PubMed

    Wang, Tzu-yin; Xu, Zhen; Winterroth, Frank; Hall, Timothy L; Fowlkes, J Brian; Rothman, Edward D; Roberts, William W; Cain, Charles A

    2009-05-01

    Histotripsy is a well-controlled ultrasonic tissue ablation technology that mechanically and progressively fractionates tissue structures using cavitation. The fractionated tissue volume can be monitored with ultrasound imaging because a significant ultrasound backscatter reduction occurs.This paper correlates the ultrasound backscatter reduction with the degree of tissue fractionation characterized by the percentage of remaining normal-appearing cell nuclei on histology.Different degrees of tissue fractionation were generated in vitro in freshly excised porcine kidneys by varying the number of therapeutic ultrasound pulses from 100 to 2000 pulses per treatment location. All ultrasound pulses were 15 cycles at 1 MHz delivered at 100 Hz pulse repetition frequency and 19 MPa peak negative pressure. The results showed that the normalized backscatter intensity decreased exponentially with increasing number of pulses. Correspondingly, the percentage of normal appearing nuclei in the treated area decreased exponentially as well. A linear correlation existed between the normalized backscatter intensity and the percentage of normal appearing cell nuclei in the treated region. This suggests that the normalized backscatter intensity may be a potential quantitative real-time feedback parameter for histotripsy-induced tissue fractionation. This quantitative feedback may allow the prediction of local clinical outcomes, i.e., when a tissue volume has been sufficiently treated.

  11. Therapeutic Ultrasound Enhancement of Drug Delivery to Soft Tissues

    NASA Astrophysics Data System (ADS)

    Lewis, George; Wang, Peng; Lewis, George; Olbricht, William

    2009-04-01

    Effects of exposure to 1.58 MHz focused ultrasound on transport of Evans Blue Dye (EBD) in soft tissues are investigated when an external pressure gradient is applied to induce convective flow through the tissue. The magnitude of the external pressure gradient is chosen to simulate conditions in brain parenchyma during convection-enhanced drug delivery (CED) to the brain. EBD uptake and transport are measured in equine brain, avian muscle and agarose brain-mimicking phantoms. Results show that ultrasound enhances EBD uptake and transport, and the greatest enhancement occurs when the external pressure gradient is applied. The results suggest that exposure of the brain parenchyma to ultrasound could enhance penetration of material infused into the brain during CED therapy.

  12. Automatic tissue characterization from ultrasound imagery

    NASA Astrophysics Data System (ADS)

    Kadah, Yasser M.; Farag, Aly A.; Youssef, Abou-Bakr M.; Badawi, Ahmed M.

    1993-08-01

    In this work, feature extraction algorithms are proposed to extract the tissue characterization parameters from liver images. Then the resulting parameter set is further processed to obtain the minimum number of parameters representing the most discriminating pattern space for classification. This preprocessing step was applied to over 120 pathology-investigated cases to obtain the learning data for designing the classifier. The extracted features are divided into independent training and test sets and are used to construct both statistical and neural classifiers. The optimal criteria for these classifiers are set to have minimum error, ease of implementation and learning, and the flexibility for future modifications. Various algorithms for implementing various classification techniques are presented and tested on the data. The best performance was obtained using a single layer tensor model functional link network. Also, the voting k-nearest neighbor classifier provided comparably good diagnostic rates.

  13. Nonlinear absorption in biological tissue for high intensity focused ultrasound.

    PubMed

    Liu, Xiaozhou; Li, Junlun; Gong, Xiufen; Zhang, Dong

    2006-12-22

    In recent years the propagation of the high intensity focused ultrasound (HIFU) in biological tissue is an interesting area due to its potential applications in non-invasive treatment of disease. The base principle of these applications is the heat effect generated by ultrasound absorption. In order to control therapeutic efficiency, it is important to evaluate the heat generation in biological tissue irradiated by ultrasound. In his paper, based on the Khokhlov-Zabolotkaya-Kuznetsov (KZK) equation in frequency-domain, the numerical simulations of nonlinear absorption in biological tissues for high intensity focused ultrasound are performed. We find that ultrasound thermal transfer effect will be enhanced with the increasing of initial acoustic intensity due to the high harmonic generation. The concept of extra absorption factor is introduced to describe nonlinear absorption in biological tissue for HIFU. The theoretical results show that the heat deposition induced by the nonlinear theory can be nearly two times as large as that predicated by linear theory. Then, the influence of the diffraction effect on the position of the focus in HIFU is investigated. It is shown that the sound focus moves toward the transducer compared with the geometry focus because of the diffraction of the sound wave. The position of the maximum heat deposition is shifted to the geometry focus with the increase of initial acoustic intensity because the high harmonics are less diffraction. Finally, the temperature in the porcine fat tissue changing with the time is predicated by Pennes' equation and the experimental results verify the nonlinear theoretical prediction.

  14. Observation of a cavitation cloud in tissue using correlation between ultrafast ultrasound images.

    PubMed

    Prieur, Fabrice; Zorgani, Ali; Catheline, Stefan; Souchon, Rémi; Mestas, Jean-Louis; Lafond, Maxime; Lafon, Cyril

    2015-07-01

    The local application of ultrasound is known to improve drug intake by tumors. Cavitating bubbles are one of the contributing effects. A setup in which two ultrasound transducers are placed confocally is used to generate cavitation in ex vivo tissue. As the transducers emit a series of short excitation bursts, the evolution of the cavitation activity is monitored using an ultrafast ultrasound imaging system. The frame rate of the system is several thousands of images per second, which provides several tens of images between consecutive excitation bursts. Using the correlation between consecutive images for speckle tracking, a decorrelation of the imaging signal appears due to the creation, fast movement, and dissolution of the bubbles in the cavitation cloud. By analyzing this area of decorrelation, the cavitation cloud can be localized and the spatial extent of the cavitation activity characterized.

  15. Effects of ultrasound frequency and tissue stiffness on the histotripsy intrinsic threshold for cavitation.

    PubMed

    Vlaisavljevich, Eli; Lin, Kuang-Wei; Maxwell, Adam; Warnez, Matthew T; Mancia, Lauren; Singh, Rahul; Putnam, Andrew J; Fowlkes, Brian; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2015-06-01

    Histotripsy is an ultrasound ablation method that depends on the initiation of a cavitation bubble cloud to fractionate soft tissue. Previous work has indicated that a cavitation cloud can be formed by a single pulse with one high-amplitude negative cycle, when the negative pressure amplitude directly exceeds a pressure threshold intrinsic to the medium. We hypothesize that the intrinsic threshold in water-based tissues is determined by the properties of the water inside the tissue, and changes in tissue stiffness or ultrasound frequency will have a minimal impact on the histotripsy intrinsic threshold. To test this hypothesis, the histotripsy intrinsic threshold was investigated both experimentally and theoretically. The probability of cavitation was measured by subjecting tissue phantoms with adjustable mechanical properties and ex vivo tissues to a histotripsy pulse of 1-2 cycles produced by 345-kHz, 500-kHz, 1.5-MHz and 3-MHz histotripsy transducers. Cavitation was detected and characterized by passive cavitation detection and high-speed photography, from which the probability of cavitation was measured versus pressure amplitude. The results revealed that the intrinsic threshold (the negative pressure at which probability = 0.5) is independent of stiffness for Young's moduli (E) <1 MPa, with only a small increase (∼2-3 MPa) in the intrinsic threshold for tendon (E = 380 MPa). Additionally, results for all samples revealed only a small increase of ∼2-3 MPa when the frequency was increased from 345 kHz to 3 MHz. The intrinsic threshold was measured to be between 24.7 and 30.6 MPa for all samples and frequencies tested in this study. Overall, the results of this study indicate that the intrinsic threshold to initiate a histotripsy bubble cloud is not significantly affected by tissue stiffness or ultrasound frequency in the hundreds of kilohertz to megahertz range. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier

  16. Pulmonary ultrasound elastography: a feasibility study with phantoms and ex-vivo tissue

    NASA Astrophysics Data System (ADS)

    Nguyen, Man Minh; Xie, Hua; Paluch, Kamila; Stanton, Douglas; Ramachandran, Bharat

    2013-03-01

    Elastography has become widely used for minimally invasive diagnosis in many tumors as seen with breast, liver and prostate. Among different modalities, ultrasound-based elastography stands out due to its advantages including being safe, real-time, and relatively low-cost. While lung cancer is the leading cause of cancer mortality among both men and women, the use of ultrasound elastography for lung cancer diagnosis has hardly been investigated due to the limitations of ultrasound in air. In this work, we investigate the use of static-compression based endobronchial ultrasound elastography by a 3D trans-oesophageal echocardiography (TEE) transducer for lung cancer diagnosis. A water-filled balloon was designed to 1) improve the visualization of endobronchial ultrasound and 2) to induce compression via pumping motion inside the trachea and bronchiole. In a phantom study, we have successfully generated strain images indicating the stiffness difference between the gelatin background and agar inclusion. A similar strain ratio was confirmed with Philips ultrasound strain-based elastography product. For ex-vivo porcine lung study, different tissue ablation methods including chemical injection, Radio Frequency (RF) ablation, and direct heating were implemented to achieve tumor-mimicking tissue. Stiff ablated lung tissues were obtained and detected with our proposed method. These results suggest the feasibility of pulmonary elastography to differentiate stiff tumor tissue from normal tissue.

  17. Mechanics of ultrasound elastography

    PubMed Central

    Li, Guo-Yang

    2017-01-01

    Ultrasound elastography enables in vivo measurement of the mechanical properties of living soft tissues in a non-destructive and non-invasive manner and has attracted considerable interest for clinical use in recent years. Continuum mechanics plays an essential role in understanding and improving ultrasound-based elastography methods and is the main focus of this review. In particular, the mechanics theories involved in both static and dynamic elastography methods are surveyed. They may help understand the challenges in and opportunities for the practical applications of various ultrasound elastography methods to characterize the linear elastic, viscoelastic, anisotropic elastic and hyperelastic properties of both bulk and thin-walled soft materials, especially the in vivo characterization of biological soft tissues. PMID:28413350

  18. Characterization of Contrast Agent Microbubbles for Ultrasound Imaging and Therapy Research.

    PubMed

    Mulvana, Helen; Browning, Richard J; Luan, Ying; de Jong, Nico; Tang, Meng-Xing; Eckersley, Robert J; Stride, Eleanor

    2017-01-01

    The high efficiency with which gas microbubbles can scatter ultrasound compared with the surrounding blood pool or tissues has led to their widespread employment as contrast agents in ultrasound imaging. In recent years, their applications have been extended to include super-resolution imaging and the stimulation of localized bio-effects for therapy. The growing exploitation of contrast agents in ultrasound and in particular these recent developments have amplified the need to characterize and fully understand microbubble behavior. The aim in doing so is to more fully exploit their utility for both diagnostic imaging and potential future therapeutic applications. This paper presents the key characteristics of microbubbles that determine their efficacy in diagnostic and therapeutic applications and the corresponding techniques for their measurement. In each case, we have presented information regarding the methods available and their respective strengths and limitations, with the aim of presenting information relevant to the selection of appropriate characterization methods. First, we examine methods for determining the physical properties of microbubble suspensions and then techniques for acoustic characterization of both suspensions and single microbubbles. The next section covers characterization of microbubbles as therapeutic agents, including as drug carriers for which detailed understanding of their surface characteristics and drug loading capacity is required. Finally, we discuss the attempts that have been made to allow comparison across the methods employed by various groups to characterize and describe their microbubble suspensions and promote wider discussion and comparison of microbubble behavior.

  19. Validation of Ultrasound Elastography Imaging for Nondestructive Characterization of Stiffer Biomaterials.

    PubMed

    Zhou, Haoyan; Goss, Monika; Hernandez, Christopher; Mansour, Joseph M; Exner, Agata

    2016-05-01

    Ultrasound elastography (UE) has been widely used as a "digital palpation" tool to characterize tissue mechanical properties in the clinic. UE benefits from the capability of noninvasively generating 2-D elasticity encoded maps. This spatial distribution of elasticity can be especially useful in the in vivo assessment of tissue engineering scaffolds and implantable drug delivery platforms. However, the detection limitations have not been fully characterized and thus its true potential has not been completely discovered. Characterization studies have focused primarily on the range of moduli corresponding to soft tissues, 20-600 kPa. However, polymeric biomaterials used in biomedical applications such as tissue scaffolds, stents, and implantable drug delivery devices can be much stiffer. In order to explore UE's potential to assess mechanical properties of biomaterials in a broader range of applications, this work investigated the detection limit of UE strain imaging beyond soft tissue range. To determine the detection limit, measurements using standard mechanical testing and UE on the same polydimethylsiloxane samples were compared and statistically evaluated. The broadest detection range found based on the current optimized setup is between 47 kPa and 4 MPa which exceeds the modulus of normal soft tissue suggesting the possibility of using this technique for stiffer materials' mechanical characterization. The detectable difference was found to be as low as 157 kPa depending on sample stiffness and experimental setup.

  20. Radio Frequency Ultrasound Time Series Signal Analysis to Evaluate High-intensity Focused Ultrasound Lesion Formation Status in Tissue.

    PubMed

    Mobasheri, Saeedeh; Behnam, Hamid; Rangraz, Parisa; Tavakkoli, Jahan

    2016-01-01

    High-intensity focused ultrasound (HIFU) is a novel treatment modality used by scientists and clinicians in the recent decades. This modality has had a great and significant success as a noninvasive surgery technique applicable in tissue ablation therapy and cancer treatment. In this study, radio frequency (RF) ultrasound signals were acquired and registered in three stages of before, during, and after HIFU exposures. Different features of RF time series signals including the sum of amplitude spectrum in the four quarters of the frequency range, the slope, and intercept of the best-fit line to the entire power spectrum and the Shannon entropy were utilized to distinguish between the HIFU-induced thermal lesion and the normal tissue. We also examined the RF data, frame by frame to identify exposure effects on the formation and characteristics of a HIFU thermal lesion at different time steps throughout the treatment. The results obtained showed that the spectrum frequency quarters and the slope and intercept of the best fit line to the entire power spectrum both increased two times during the HIFU exposures. The Shannon entropy, however, decreased after the exposures. In conclusion, different characteristics of RF time series signal possess promising features that can be used to characterize ablated and nonablated tissues and to distinguish them from each other in a quasi-quantitative fashion.

  1. Effects of Ultrasound Frequency and Tissue Stiffness on the Histotripsy Intrinsic Threshold for Cavitation

    PubMed Central

    Vlaisavljevich, Eli; Lin, Kuang-Wei; Maxwell, Adam; Warnez, Matthew; Mancia, Lauren; Singh, Rahul; Putnam, Andrew J.; Fowlkes, Brian; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2015-01-01

    Histotripsy is an ultrasound ablation method that depends on the initiation of a cavitation bubble cloud to fractionate soft tissue. Previous work has demonstrated a cavitation cloud can be formed by a single pulse with one high amplitude negative cycle, when the negative pressure amplitude directly exceeds a pressure threshold intrinsic to the medium. We hypothesize that the intrinsic threshold in water-based tissues is determined by the properties of the water inside the tissue and changes in tissue stiffness or ultrasound frequency will have a minimal impact on the histotripsy intrinsic threshold. To test this hypothesis, the histotripsy intrinsic threshold was investigated both experimentally and theoretically. The probability of cavitation was measured by subjecting tissue phantoms with adjustable mechanical properties and ex vivo tissues to a histotripsy pulse of 1–2 cycles produced by 345 kHz, 500 kHz, 1.5 MHz, and 3 MHz histotripsy transducers. Cavitation was detected and characterized by passive cavitation detection and high-speed photography, from which the probability of cavitation was measured vs. pressure amplitude. The results demonstrated that the intrinsic threshold (the negative pressure at which probability=0.5) is independent of stiffness for Young’s moduli (E) < 1 MPa with only a small increase (~2–3 MPa) in the intrinsic threshold for tendon (E=380 MPa). Additionally, results for all samples showed only a small increase of ~2–3 MPa when the frequency was increased from 345 kHz to 3 MHz. The intrinsic threshold was measured to be between 24.7–30.6 MPa for all samples and frequencies tested in this study. Overall, the results of this study indicate that the intrinsic threshold to initiate a histotripsy bubble cloud is not significantly impacted by tissue stiffness or ultrasound frequency in hundreds of kHz to MHz range. PMID:25766571

  2. Ultrasound therapy applicators for controlled thermal modification of tissue

    NASA Astrophysics Data System (ADS)

    Burdette, E. Clif; Lichtenstiger, Carol; Rund, Laurie; Keralapura, Mallika; Gossett, Chad; Stahlhut, Randy; Neubauer, Paul; Komadina, Bruce; Williams, Emery; Alix, Chris; Jensen, Tor; Schook, Lawrence; Diederich, Chris J.

    2011-03-01

    Heat therapy has long been used for treatments in dermatology and sports medicine. The use of laser, RF, microwave, and more recently, ultrasound treatment, for psoriasis, collagen reformation, and skin tightening has gained considerable interest over the past several years. Numerous studies and commercial devices have demonstrated the efficacy of these methods for treatment of skin disorders. Despite these promising results, current systems remain highly dependent on operator skill, and cannot effectively treat effectively because there is little or no control of the size, shape, and depth of the target zone. These limitations make it extremely difficult to obtain consistent treatment results. The purpose of this study was to determine the feasibility for using acoustic energy for controlled dose delivery sufficient to produce collagen modification for the treatment of skin tissue in the dermal and sub-dermal layers. We designed and evaluated a curvilinear focused ultrasound device for treating skin disorders such as psoriasis, stimulation of wound healing, tightening of skin through shrinkage of existing collagen and stimulation of new collagen formation, and skin cancer. Design parameters were examined using acoustic pattern simulations and thermal modeling. Acute studies were performed in 201 freshly-excised samples of young porcine underbelly skin tissue and 56 in-vivo treatment areas in 60- 80 kg pigs. These were treated with ultrasound (9-11MHz) focused in the deep dermis. Dose distribution was analyzed and gross pathology assessed. Tissue shrinkage was measured based on fiducial markers and video image registration and analyzed using NIH Image-J software. Comparisons were made between RF and focused ultrasound for five energy ranges. In each experimental series, therapeutic dose levels (60degC) were attained at 2-5mm depth. Localized collagen changes ranged from 1-3% for RF versus 8-15% for focused ultrasound. Therapeutic ultrasound applied at high

  3. Ultrasound screening of periarticular soft tissue abnormality around metal-on-metal bearings.

    PubMed

    Nishii, Takashi; Sakai, Takashi; Takao, Masaki; Yoshikawa, Hideki; Sugano, Nobuhiko

    2012-06-01

    Although metal hypersensitivity or pseudotumors are concerns for metal-on-metal (MoM) bearings, detailed pathologies of patterns, severity, and incidence of periprosthetic soft tissue lesions are incompletely understood. We examined the potential of ultrasound for screening of periarticular soft tissue lesions around MoM bearings. Ultrasound examinations were conducted in 88 hips (79 patients) with MoM hip resurfacings or MoM total hip arthroplasties with a large femoral head. Four qualitative ultrasound patterns were shown, including normal pattern in 69 hips, joint-expansion pattern in 11 hips, cystic pattern in 5 hips, and mass pattern in 3 hips. Hips with the latter 3 abnormal patterns showed significantly higher frequency of clinical symptoms, without significant differences of sex, duration of implantation, head sizes, and cup abduction/anteversion angles, compared with hips with normal pattern. Ultrasound examination provides sensitive screening of soft tissue reactions around MoM bearings and may be useful in monitoring progression and defining treatment for periarticular soft tissue abnormalities. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Temperature dependence of acoustic harmonics generated by nonlinear ultrasound beam propagation in ex vivo tissue and tissue-mimicking phantoms.

    PubMed

    Maraghechi, Borna; Kolios, Michael C; Tavakkoli, Jahan

    2015-01-01

    Hyperthermia is a cancer treatment technique that could be delivered as a stand-alone modality or in conjunction with chemotherapy or radiation therapy. Noninvasive and real-time temperature monitoring of the heated tissue improves the efficacy and safety of the treatment. A temperature-sensitive acoustic parameter is required for ultrasound-based thermometry. In this paper the amplitude and the energy of the acoustic harmonics of the ultrasound backscattered signal are proposed as suitable parameters for noninvasive ultrasound thermometry. A commercial high frequency ultrasound imaging system was used to generate and detect acoustic harmonics in tissue-mimicking gel phantoms and ex vivo bovine muscle tissues. The pressure amplitude and the energy content of the backscattered fundamental frequency (p1 and E1), the second (p2 and E2) and the third (p3 and E3) harmonics were detected in pulse-echo mode. Temperature was increased from 26° to 46 °C uniformly through both samples. The amplitude and the energy content of the harmonics and their ratio were measured and analysed as a function of temperature. The average p1, p2 and p3 increased by 69%, 100% and 283%, respectively as the temperature was elevated from 26° to 46 °C in tissue samples. In the same experiment the average E1, E2 and E3 increased by 163%, 281% and 2257%, respectively. A similar trend was observed in tissue-mimicking gel phantoms. The findings suggest that the harmonics generated due to nonlinear ultrasound beam propagation are highly sensitive to temperature and could potentially be used for noninvasive ultrasound tissue thermometry.

  5. A tissue phantom for visualization and measurement of ultrasound-induced cavitation damage.

    PubMed

    Maxwell, Adam D; Wang, Tzu-Yin; Yuan, Lingqian; Duryea, Alexander P; Xu, Zhen; Cain, Charles A

    2010-12-01

    Many ultrasound studies involve the use of tissue-mimicking materials to research phenomena in vitro and predict in vivo bioeffects. We have developed a tissue phantom to study cavitation-induced damage to tissue. The phantom consists of red blood cells suspended in an agarose hydrogel. The acoustic and mechanical properties of the gel phantom were found to be similar to soft tissue properties. The phantom's response to cavitation was evaluated using histotripsy. Histotripsy causes breakdown of tissue structures by the generation of controlled cavitation using short, focused, high-intensity ultrasound pulses. Histotripsy lesions were generated in the phantom and kidney tissue using a spherically focused 1-MHz transducer generating 15 cycle pulses, at a pulse repetition frequency of 100 Hz with a peak negative pressure of 14 MPa. Damage appeared clearly as increased optical transparency of the phantom due to rupture of individual red blood cells. The morphology of lesions generated in the phantom was very similar to that generated in kidney tissue at both macroscopic and cellular levels. Additionally, lesions in the phantom could be visualized as hypoechoic regions on a B-mode ultrasound image, similar to histotripsy lesions in tissue. High-speed imaging of the optically transparent phantom was used to show that damage coincides with the presence of cavitation. These results indicate that the phantom can accurately mimic the response of soft tissue to cavitation and provide a useful tool for studying damage induced by acoustic cavitation. Copyright © 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  6. Biological effects of low frequency high intensity ultrasound application on ex vivo human adipose tissue.

    PubMed

    Palumbo, P; Cinque, B; Miconi, G; La Torre, C; Zoccali, G; Vrentzos, N; Vitale, A R; Leocata, P; Lombardi, D; Lorenzo, C; D'Angelo, B; Macchiarelli, G; Cimini, A; Cifone, M G; Giuliani, M

    2011-01-01

    In the present work the effects of a new low frequency, high intensity ultrasound technology on human adipose tissue ex vivo were studied. In particular, we investigated the effects of both external and surgical ultrasound-irradiation (10 min) by evaluating, other than sample weight loss and fat release, also histological architecture alteration as well apoptosis induction. The influence of saline buffer tissue-infiltration on the effects of ultrasound irradiation was also examined. The results suggest that, in our experimental conditions, both transcutaneous and surgical ultrasound exposure caused a significant weight loss and fat release. This effect was more relevant when the ultrasound intensity was set at 100 % (~2.5 W/cm², for external device; ~19-21 W/cm2, for surgical device) compared to 70 % (~1.8 W/cm² for external device; ~13-14 W/cm2 for surgical device). Of note, the effectiveness of ultrasound was much higher when the tissue samples were previously infiltrated with saline buffer, in accordance with the knowledge that ultrasonic waves in aqueous solution better propagate with a consequently more efficient cavitation process. Moreover, the overall effects of ultrasound irradiation did not appear immediately after treatment but persisted over time, being significantly more relevant at 18 h from the end of ultrasound irradiation. Evaluation of histological characteristics of ultrasound-irradiated samples showed a clear alteration of adipose tissue architecture as well a prominent destruction of collagen fibers which were dependent on ultrasound intensity and most relevant in saline buffer-infiltrated samples. The structural changes of collagen bundles present between the lobules of fat cells were confirmed through scanning electron microscopy (SEM) which clearly demonstrated how ultrasound exposure induced a drastic reduction in the compactness of the adipose connective tissue and an irregular arrangement of the fibers with a consequent alteration in

  7. Technical characterization of an ultrasound source for noninvasive thermoablation by high-intensity focused ultrasound.

    PubMed

    Köhrmann, K U; Michel, M S; Steidler, A; Marlinghaus, E; Kraut, O; Alken, P

    2002-08-01

    To develop a generator for high-intensity focused ultrasound (HIFU, a method of delivering ultrasonic energy with resultant heat and tissue destruction to a tight focus at a selected depth within the body), designed for extracorporeal coupling to allow various parenchymal organs to be treated. The ultrasound generated by a cylindrical piezo-ceramic element is focused at a depth of 10 cm using a parabolic reflector with a diameter of 10 cm. A diagnostic B-mode ultrasonographic transducer is integrated into the source to allow the focus to be located in the target area. The field distribution of the sound pressure was measured in degassed water using a needle hydrophone. An ultrasound-force balance was used to determine the acoustic power. These measurements allowed the spatially averaged sound intensity to be calculated. The morphology and extent of tissue necrosis induced by HIFU was examined on an ex-vivo kidney model. The two-dimensional field distribution resulted in an approximately ellipsoidal focus of 32 x 4 mm (- 6 dB). The spatially maximum averaged sound intensity was 8591 W/cm2 at an electrical power of 400 W. The lesion caused to the ex-vivo kidney at this maximum generator power with a pulse duration of 2 s was a clearly delineated ellipsoidal coagulation necrosis up to 8.8 x 2.3 mm (length x width) and with central liquefied necrosis of 7.9 x 1.9 mm. This newly developed ultrasound generator with a focal length of 10 cm can induce clear necrosis in parenchymal tissue. Because of its specific configuration and the available power range of the ultrasound generator, there is potential for therapeutic noninvasive ablation of tissue deep within a patient's body.

  8. Probability of cavitation for single ultrasound pulses applied to tissues and tissue-mimicking materials.

    PubMed

    Maxwell, Adam D; Cain, Charles A; Hall, Timothy L; Fowlkes, J Brian; Xu, Zhen

    2013-03-01

    In this study, the negative pressure values at which inertial cavitation consistently occurs in response to a single, two-cycle, focused ultrasound pulse were measured in several media relevant to cavitation-based ultrasound therapy. The pulse was focused into a chamber containing one of the media, which included liquids, tissue-mimicking materials, and ex vivo canine tissue. Focal waveforms were measured by two separate techniques using a fiber-optic hydrophone. Inertial cavitation was identified by high-speed photography in optically transparent media and an acoustic passive cavitation detector. The probability of cavitation (P(cav)) for a single pulse as a function of peak negative pressure (p(-)) followed a sigmoid curve, with the probability approaching one when the pressure amplitude was sufficient. The statistical threshold (defined as P(cav) = 0.5) was between p(-) = 26 and 30 MPa in all samples with high water content but varied between p(-) = 13.7 and >36 MPa in other media. A model for radial cavitation bubble dynamics was employed to evaluate the behavior of cavitation nuclei at these pressure levels. A single bubble nucleus with an inertial cavitation threshold of p(-) = 28.2 megapascals was estimated to have a 2.5 nm radius in distilled water. These data may be valuable for cavitation-based ultrasound therapy to predict the likelihood of cavitation at various pressure levels and dimensions of cavitation-induced lesions in tissue. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  9. A generalized gamma mixture model for ultrasonic tissue characterization.

    PubMed

    Vegas-Sanchez-Ferrero, Gonzalo; Aja-Fernandez, Santiago; Palencia, Cesar; Martin-Fernandez, Marcos

    2012-01-01

    Several statistical models have been proposed in the literature to describe the behavior of speckles. Among them, the Nakagami distribution has proven to very accurately characterize the speckle behavior in tissues. However, it fails when describing the heavier tails caused by the impulsive response of a speckle. The Generalized Gamma (GG) distribution (which also generalizes the Nakagami distribution) was proposed to overcome these limitations. Despite the advantages of the distribution in terms of goodness of fitting, its main drawback is the lack of a closed-form maximum likelihood (ML) estimates. Thus, the calculation of its parameters becomes difficult and not attractive. In this work, we propose (1) a simple but robust methodology to estimate the ML parameters of GG distributions and (2) a Generalized Gama Mixture Model (GGMM). These mixture models are of great value in ultrasound imaging when the received signal is characterized by a different nature of tissues. We show that a better speckle characterization is achieved when using GG and GGMM rather than other state-of-the-art distributions and mixture models. Results showed the better performance of the GG distribution in characterizing the speckle of blood and myocardial tissue in ultrasonic images.

  10. A Generalized Gamma Mixture Model for Ultrasonic Tissue Characterization

    PubMed Central

    Palencia, Cesar; Martin-Fernandez, Marcos

    2012-01-01

    Several statistical models have been proposed in the literature to describe the behavior of speckles. Among them, the Nakagami distribution has proven to very accurately characterize the speckle behavior in tissues. However, it fails when describing the heavier tails caused by the impulsive response of a speckle. The Generalized Gamma (GG) distribution (which also generalizes the Nakagami distribution) was proposed to overcome these limitations. Despite the advantages of the distribution in terms of goodness of fitting, its main drawback is the lack of a closed-form maximum likelihood (ML) estimates. Thus, the calculation of its parameters becomes difficult and not attractive. In this work, we propose (1) a simple but robust methodology to estimate the ML parameters of GG distributions and (2) a Generalized Gama Mixture Model (GGMM). These mixture models are of great value in ultrasound imaging when the received signal is characterized by a different nature of tissues. We show that a better speckle characterization is achieved when using GG and GGMM rather than other state-of-the-art distributions and mixture models. Results showed the better performance of the GG distribution in characterizing the speckle of blood and myocardial tissue in ultrasonic images. PMID:23424602

  11. Real-time three-dimensional ultrasound-assisted axillary plexus block defines soft tissue planes.

    PubMed

    Clendenen, Steven R; Riutort, Kevin; Ladlie, Beth L; Robards, Christopher; Franco, Carlo D; Greengrass, Roy A

    2009-04-01

    Two-dimensional (2D) ultrasound is commonly used for regional block of the axillary brachial plexus. In this technical case report, we described a real-time three-dimensional (3D) ultrasound-guided axillary block. The difference between 2D and 3D ultrasound is similar to the difference between plain radiograph and computer tomography. Unlike 2D ultrasound that captures a planar image, 3D ultrasound technology acquires a 3D volume of information that enables multiple planes of view by manipulating the image without movement of the ultrasound probe. Observation of the brachial plexus in cross-section demonstrated distinct linear hyperechoic tissue structures (loose connective tissue) that initially inhibited the flow of the local anesthesia. After completion of the injection, we were able to visualize the influence of arterial pulsation on the spread of the local anesthesia. Possible advantages of this novel technology over current 2D methods are wider image volume and the capability to manipulate the planes of the image without moving the probe.

  12. Effect of bone-soft tissue friction on ultrasound axial shear strain elastography.

    PubMed

    Tang, Songyuan; Chaudhry, Anuj; Kim, Namhee; Reddy, J N; Righetti, Raffaella

    2017-07-12

    Bone-soft tissue friction is an important factor affecting several musculoskeletal disorders, frictional syndromes and the ability of a bone fracture to heal. However, this parameter is difficult to determine using non-invasive imaging modalities, especially in clinical settings. Ultrasound axial shear strain elastography is a non-invasive imaging modality that has been used in the recent past to estimate the bonding between different tissue layers. As most elastography methods, axial shear strain elastography is primarily used in soft tissues. More recently, this technique has been proposed to assess the bone-soft tissue interface. In this paper, we investigate the effect of a variation in bone-soft tissue friction coefficient in the resulting axial shear strain elastograms. Finite element poroelastic models of bone specimens exhibiting different bone-soft tissue friction coefficients were created and mechanically analyzed. These models were then imported to an ultrasound elastography simulation module to assess the presence of axial shear strain patterns. In vitro experiments were performed to corroborate selected simulation results. The results of this study show that the normalized axial shear strain estimated at the bone-soft tissue interface is statistically correlated to the bone-soft tissue coefficient of friction. This information may prove useful to better interpret ultrasound elastography results obtained in bone-related applications and, possibly, monitor bone healing.

  13. Effect of bone-soft tissue friction on ultrasound axial shear strain elastography

    NASA Astrophysics Data System (ADS)

    Tang, Songyuan; Chaudhry, Anuj; Kim, Namhee; Reddy, J. N.; Righetti, Raffaella

    2017-08-01

    Bone-soft tissue friction is an important factor affecting several musculoskeletal disorders, frictional syndromes and the ability of a bone fracture to heal. However, this parameter is difficult to determine using non-invasive imaging modalities, especially in clinical settings. Ultrasound axial shear strain elastography is a non-invasive imaging modality that has been used in the recent past to estimate the bonding between different tissue layers. As most elastography methods, axial shear strain elastography is primarily used in soft tissues. More recently, this technique has been proposed to assess the bone-soft tissue interface. In this paper, we investigate the effect of a variation in bone-soft tissue friction coefficient in the resulting axial shear strain elastograms. Finite element poroelastic models of bone specimens exhibiting different bone-soft tissue friction coefficients were created and mechanically analyzed. These models were then imported to an ultrasound elastography simulation module to assess the presence of axial shear strain patterns. In vitro experiments were performed to corroborate selected simulation results. The results of this study show that the normalized axial shear strain estimated at the bone-soft tissue interface is statistically correlated to the bone-soft tissue coefficient of friction. This information may prove useful to better interpret ultrasound elastography results obtained in bone-related applications and, possibly, monitor bone healing.

  14. Ultrasound Elastography for Estimation of Regional Strain of Multilayered Hydrogels and Tissue-Engineered Cartilage

    PubMed Central

    Chung, Chen-Yuan; Heebner, Joseph; Baskaran, Harihara; Welter, Jean F.; Mansour, Joseph M.

    2015-01-01

    Tissue-engineered (TE) cartilage constructs tend to develop inhomogeneously, thus, to predict the mechanical performance of the tissue, conventional biomechanical testing, which yields average material properties, is of limited value. Rather, techniques for evaluating regional and depth-dependent properties of TE cartilage, preferably non-destructively, are required. The purpose of this study was to build upon our previous results and to investigate the feasibility of using ultrasound elastography to non-destructively assess the depth-dependent biomechanical characteristics of TE cartilage while in a sterile bioreactor. As a proof-of-concept, and to standardize an assessment protocol, a well-characterized three-layered hydrogel construct was used as a surrogate for TE cartilage, and was studied under controlled incremental compressions. The strain field of the construct predicted by elastography was then validated by comparison with a poroelastic finite-element analysis (FEA). On average, the differences between the strains predicted by elastography and the FEA were within 10%. Subsequently engineered cartilage tissue was evaluated in the same test fixture. Results from these examinations showed internal regions where the local strain was 1–2 orders of magnitude greater than that near the surface. These studies document the feasibility of using ultrasound to evaluate the mechanical behaviors of maturing TE constructs in a sterile environment. PMID:26077987

  15. A novel transcutaneous, non-focused ultrasound energy delivering device is able to induce subcutaneous adipose tissue destruction in an animal model.

    PubMed

    Levi, Assi; Amitai, Dan Ben; Lapidoth, Moshe

    2017-01-01

    The understanding that adipocytes are greatly influenced by thermal changes combined with the advancement of non-invasive ultrasound technologies have led to the application of ultrasound as an energy source to induce thermal fat destruction. While application of high intensity focused, ultrasound energy have been widely explored, there is far less information regarding the effects of non-focused ultrasound on adipose tissue. The purpose of this study was to characterize the effects of a novel transcutaneous, multi-elements, non-focused ultrasound energy regimen in an animal model, as a proof-of-concept of its potential to treat non-invasive subcutaneous benign tumors. The non-invasive transcutaneous ultrasound system prototype (LUMENIS, Ltd., Yoqneam, Israel) was applied to thermally induce adipocytes' death. During treatment, the ultrasound energy was transmitted into the subcutaneous adipose tissue (SAT) of 12 domestic adult female pigs. Two modes of operation (long and short), which differ in both the acoustic energy applied to the tissue and in their time durations (i.e., differ in their power settings), were used in this study. Efficacy and safety assessments included: Temperature measurement of skin and subcutaneous adipose tissue (SAT) visual inspection and ultrasound imaging of the thermally affected areas, histopathological assessment of tissue samples using hematoxylin & eosin, and Masson's trichrome stains and in situ cell death detection kit for apoptosis assessment. The long and short treatment modes led to a 13.2°C and 17.8°C rise from baseline, respectively, in the SAT, whereas skin surface temperature was practically unaffected. Visual, ultrasonographic, and histopathological evaluation of the treated area showed SAT ablation. No treatment-related changes were observed in the epidermis, dermis subcutaneous muscle and nerves, or in livers and kidneys of treated animals. Additionally, no significant changes from baseline in blood- and urine

  16. Quantification of ultrasonic texture intra-heterogeneity via volumetric stochastic modeling for tissue characterization.

    PubMed

    Al-Kadi, Omar S; Chung, Daniel Y F; Carlisle, Robert C; Coussios, Constantin C; Noble, J Alison

    2015-04-01

    Intensity variations in image texture can provide powerful quantitative information about physical properties of biological tissue. However, tissue patterns can vary according to the utilized imaging system and are intrinsically correlated to the scale of analysis. In the case of ultrasound, the Nakagami distribution is a general model of the ultrasonic backscattering envelope under various scattering conditions and densities where it can be employed for characterizing image texture, but the subtle intra-heterogeneities within a given mass are difficult to capture via this model as it works at a single spatial scale. This paper proposes a locally adaptive 3D multi-resolution Nakagami-based fractal feature descriptor that extends Nakagami-based texture analysis to accommodate subtle speckle spatial frequency tissue intensity variability in volumetric scans. Local textural fractal descriptors - which are invariant to affine intensity changes - are extracted from volumetric patches at different spatial resolutions from voxel lattice-based generated shape and scale Nakagami parameters. Using ultrasound radio-frequency datasets we found that after applying an adaptive fractal decomposition label transfer approach on top of the generated Nakagami voxels, tissue characterization results were superior to the state of art. Experimental results on real 3D ultrasonic pre-clinical and clinical datasets suggest that describing tumor intra-heterogeneity via this descriptor may facilitate improved prediction of therapy response and disease characterization. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Ultrasound Technologies for the Spatial Patterning of Cells and Extracellular Matrix Proteins and the Vascularization of Engineered Tissue

    NASA Astrophysics Data System (ADS)

    Garvin, Kelley A.

    Technological advancements in the field of tissue engineering could save the lives of thousands of organ transplant patients who die each year while waiting for donor organs. Currently, two of the primary challenges preventing tissue engineers from developing functional replacement tissues and organs are the need to recreate complex cell and extracellular microenvironments and to vascularize the tissue to maintain cell viability and function. Ultrasound is a form of mechanical energy that can noninvasively and nondestructively interact with tissues at the cell and protein level. In this thesis, novel ultrasound-based technologies were developed for the spatial patterning of cells and extracellular matrix proteins and the vascularization of three-dimensional engineered tissue constructs. Acoustic radiation forces associated with ultrasound standing wave fields were utilized to noninvasively control the spatial organization of cells and cell-bound extracellular matrix proteins within collagen-based engineered tissue. Additionally, ultrasound induced thermal mechanisms were exploited to site-specifically pattern various extracellular matrix collagen microstructures within a single engineered tissue construct. Finally, ultrasound standing wave field technology was used to promote the rapid and extensive vascularization of three-dimensional tissue constructs. As such, the ultrasound technologies developed in these studies have the potential to provide the field of tissue engineering with novel strategies to spatially pattern cells and extracellular matrix components and to vascularize engineered tissue, and thus, could advance the fabrication of functional replacement tissues and organs in the field of tissue engineering.

  18. Physics of tissue harmonic imaging by ultrasound

    NASA Astrophysics Data System (ADS)

    Jing, Yuan

    Tissue Harmonic Imaging (THI) is an imaging modality that is currently deployed on diagnostic ultrasound scanners. In THI the amplitude of the ultrasonic pulse that is used to probe the tissue is large enough that the pulse undergoes nonlinear distortion as it propagates into the tissue. One result of the distortion is that as the pulse propagates energy is shifted from the fundamental frequency of the source pulse into its higher harmonics. These harmonics will scatter off objects in the tissue and images formed from the scattered higher harmonics are considered to have superior quality to the images formed from the fundamental frequency. Processes that have been suggested as possibly responsible for the improved imaging in THI include: (1) reduced sensitivity to reverberation, (2) reduced sensitivity to aberration, and (3) reduction in side lobes. By using a combination of controlled experiments and numerical simulations, these three reasons have been investigated. A single element transducer and a clinical ultrasound scanner with a phased array transducer were used to image a commercial tissue-mimicking phantom with calibrated targets. The higher image quality achieved with THI was quantified in terms of spatial resolution and "clutter" signals. A three-dimensional model of the forward propagation of nonlinear sound beams in media with arbitrary spatial properties (a generalized KZK equation) was developed. A time-domain code for solving the KZK equation was validated with measurements of the acoustic field generated by the single element transducer and the phased array transducer. The code was used to investigate the impact of aberration using tissue-like media with three-dimensional variations in all acoustic properties. The three-dimensional maps of tissue properties were derived from the datasets available through the Visible Female project. The experiments and simulations demonstrated that second harmonic imaging (1) suffers less clutter associated with

  19. Probability of cavitation for single ultrasound pulses applied to tissues and tissue-mimicking materials

    PubMed Central

    Maxwell, Adam D.; Cain, Charles A.; Hall, Timothy L.; Fowlkes, J. Brian; Xu, Zhen

    2012-01-01

    In this article, the negative pressure values at which inertial cavitation consistently occurs in response to a single, 2-cycle, focused ultrasound pulse were measured in several media relevant to cavitation-based ultrasound therapy. The pulse was focused into a chamber containing one of the media, which included liquids, tissue-mimicking materials, and ex-vivo canine tissue. Focal waveforms were measured by two separate techniques using a fiber-optic hydrophone. Inertial cavitation was identified by high-speed photography in optically transparent media and an acoustic passive cavitation detector. The probability of cavitation (Pcav) for a single pulse as a function of peak negative pressure (p−) followed a sigmoid curve, with the probability approaching 1 when the pressure amplitude was sufficient. The statistical threshold (defined as Pcav = 0.5) was between p− = 26.0–30.0 MPa in all samples with a high water content, but varied between p− = 13.7 to > 36 MPa for other media. A model for radial cavitation bubble dynamics was employed to evaluate the behavior of cavitation nuclei at these pressure levels. A single bubble nucleus with an inertial cavitation threshold of p− = 28.2 MPa was estimated to have a 2.5 nm radius in distilled water. These data may be valuable for cavitation-based ultrasound therapy to predict the likelihood of cavitation at different pressure levels and dimensions of cavitation-induced lesions in tissue. PMID:23380152

  20. Laser-enhanced thermal effect of moderate intensity focused ultrasound on bio-tissues

    NASA Astrophysics Data System (ADS)

    Zhao, JinYu; Zhang, ShuYi; Shui, XiuJi; Fan, Li

    2017-09-01

    For avoiding extra-damage to healthy tissues surrounding the focal point during high intensity focused ultrasound (HIFU) treatment in medical therapy, to reduce the ultrasonic intensity outside the focal point is expected. Thus, the heating processes induced by moderate intensity focused ultrasound (MIFU) and enhanced by combined irradiation of laser pulses for bio-tissues are studied in details. For fresh bio-tissues, the enhanced thermal effects by pulsed laser combined with MIFU irradiation are observed experimentally. To explore the mechanisms of these effects, several tissue-mimicking materials composed of agar mixed with graphite powders are prepared and studied for comparison, but the laser-enhanced thermal effects in these mimicking materials are much less than that in the fresh bio-tissues. Therefore, it is suggested that the laser-enhanced thermal effects may be mainly attributed to bio-activities and related photo-bio-chemical effects of fresh tissues.

  1. Characterization of coronary plaque regions in intravascular ultrasound images using a hybrid ensemble classifier.

    PubMed

    Hwang, Yoo Na; Lee, Ju Hwan; Kim, Ga Young; Shin, Eun Seok; Kim, Sung Min

    2018-01-01

    The purpose of this study was to propose a hybrid ensemble classifier to characterize coronary plaque regions in intravascular ultrasound (IVUS) images. Pixels were allocated to one of four tissues (fibrous tissue (FT), fibro-fatty tissue (FFT), necrotic core (NC), and dense calcium (DC)) through processes of border segmentation, feature extraction, feature selection, and classification. Grayscale IVUS images and their corresponding virtual histology images were acquired from 11 patients with known or suspected coronary artery disease using 20 MHz catheter. A total of 102 hybrid textural features including first order statistics (FOS), gray level co-occurrence matrix (GLCM), extended gray level run-length matrix (GLRLM), Laws, local binary pattern (LBP), intensity, and discrete wavelet features (DWF) were extracted from IVUS images. To select optimal feature sets, genetic algorithm was implemented. A hybrid ensemble classifier based on histogram and texture information was then used for plaque characterization in this study. The optimal feature set was used as input of this ensemble classifier. After tissue characterization, parameters including sensitivity, specificity, and accuracy were calculated to validate the proposed approach. A ten-fold cross validation approach was used to determine the statistical significance of the proposed method. Our experimental results showed that the proposed method had reliable performance for tissue characterization in IVUS images. The hybrid ensemble classification method outperformed other existing methods by achieving characterization accuracy of 81% for FFT and 75% for NC. In addition, this study showed that Laws features (SSV and SAV) were key indicators for coronary tissue characterization. The proposed method had high clinical applicability for image-based tissue characterization. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Endoscopic Ultrasound Elastography: Current Clinical Use in Pancreas.

    PubMed

    Mondal, Utpal; Henkes, Nichole; Patel, Sandeep; Rosenkranz, Laura

    2016-08-01

    Elastography is a newer technique for the assessment of tissue elasticity using ultrasound. Cancerous tissue is known to be stiffer (hence, less elastic) than corresponding healthy tissue, and as a result, could be identified in an elasticity-based imaging. Ultrasound elastography has been used in the breast, thyroid, and cervix to differentiate malignant from benign neoplasms and to guide or avoid unnecessary biopsies. In the liver, elastography has enabled a noninvasive and reliable estimate of fibrosis. Endoscopic ultrasound has become a robust diagnostic and therapeutic tool for the management of pancreatic diseases. The addition of elastography to endoscopic ultrasound enabled further characterization of pancreas lesions, and several European and Asian studies have reported encouraging results. The current clinical role of endoscopic ultrasound elastography in the management of pancreas disorders and related literature are reviewed.

  3. Deep tissue penetration of nanoparticles using pulsed-high intensity focused ultrasound

    NASA Astrophysics Data System (ADS)

    You, Dong Gil; Yoon, Hong Yeol; Jeon, Sangmin; Um, Wooram; Son, Sejin; Park, Jae Hyung; Kwon, Ick Chan; Kim, Kwangmeyung

    2017-11-01

    Recently, ultrasound (US)-based drug delivery strategies have received attention to improve enhanced permeation and retention (EPR) effect-based passive targeting efficiency of nanoparticles in vitro and in vivo conditions. Among the US treatment techniques, pulsed-high intensity focused ultrasound (pHIFU) have specialized for improving tissue penetration of various macromolecules and nanoparticles without irreversible tissue damages. In this study, we have demonstrated that pHIFU could be utilized to improve tissue penetration of fluorescent dye-labeled glycol chitosan nanoparticles (FCNPs) in femoral tissue of mice. pHIFU could improve blood flow of the targeted-blood vessel in femoral tissue. In addition, tissue penetration of FCNPs was specifically increased 5.7-, 8- and 9.3-folds than that of non-treated (0 W pHIFU) femoral tissue, when the femoral tissue was treated with 10, 20 and 50 W of pHIFU, respectively. However, tissue penetration of FCNPs was significantly reduced after 3 h post-pHIFU treatment (50 W). Because overdose (50 W) of pHIFU led to irreversible tissue damages, including the edema and chapped red blood cells. These overall results support that pHIFU treatment can enhance the extravasation and tissue penetration of FCNPs as well as induce irreversible tissue damages. We expect that our results can provide advantages to optimize pHIFU-mediated delivery strategy of nanoparticles for further clinical applications.

  4. The Speed of Sound and Attenuation of an IEC Agar-Based Tissue-Mimicking Material for High Frequency Ultrasound Applications

    PubMed Central

    Sun, Chao; Pye, Stephen D.; Browne, Jacinta E.; Janeczko, Anna; Ellis, Bill; Butler, Mairead B.; Sboros, Vassilis; Thomson, Adrian J.W.; Brewin, Mark P.; Earnshaw, Charles H.; Moran, Carmel M.

    2012-01-01

    This study characterized the acoustic properties of an International Electromechanical Commission (IEC) agar-based tissue mimicking material (TMM) at ultrasound frequencies in the range 10–47 MHz. A broadband reflection substitution technique was employed using two independent systems at 21°C ± 1°C. Using a commercially available preclinical ultrasound scanner and a scanning acoustic macroscope, the measured speeds of sound were 1547.4 ± 1.4 m∙s−1 and 1548.0 ± 6.1 m∙s−1, respectively, and were approximately constant over the frequency range. The measured attenuation (dB∙cm−1) was found to vary with frequency f (MHz) as 0.40f + 0.0076f2. Using this polynomial equation and extrapolating to lower frequencies give values comparable to those published at lower frequencies and can estimate the attenuation of this TMM in the frequency range up to 47 MHz. This characterisation enhances understanding in the use of this TMM as a tissue equivalent material for high frequency ultrasound applications. PMID:22502881

  5. Material characterization using ultrasound tomography

    NASA Astrophysics Data System (ADS)

    Falardeau, Timothe; Belanger, Pierre

    2018-04-01

    Characterization of material properties can be performed using a wide array of methods e.g. X-ray diffraction or tensile testing. Each method leads to a limited set of material properties. This paper is interested in using ultrasound tomography to map speed of sound inside a material sample. The velocity inside the sample is directly related to its elastic properties. Recent develop-ments in ultrasound diffraction tomography have enabled velocity mapping of high velocity contrast objects using a combination of bent-ray time-of-flight tomography and diffraction tomography. In this study, ultrasound diffraction tomography was investigated using simulations in human bone phantoms. A finite element model was developed to assess the influence of the frequency, the number of transduction positions and the distance from the sample as well as to adapt the imaging algorithm. The average velocity in both regions of the bone phantoms were within 5% of the true value.

  6. Application of ultrasound-tagged photons for measurement of amplitude of vibration of tissue caused by ultrasound: theory, simulation, and experiments.

    PubMed

    Devi, C Usha; Vasu, R M; Sood, A K

    2006-01-01

    We investigate the modulation of an optical field caused by its interaction with an ultrasound beam in a tissue mimicking phantom. This modulation appears as a modulation in the intensity autocorrelation, which is measured by a photon counting correlator. The factors contributing to the modulation are: 1. amplitude of vibration of the particles of the tissue, 2. refractive index modulation, and 3. absorption coefficient in the region of the tissue intercepted by the ultrasound beam and light. We show in this work that a significant part of the contribution to this modulation comes from displacement of the tissue particles, which in turn is governed by the elastic properties of the tissue. We establish, both through simulations and experiments using an optical elastography phantom, the effects of the elasticity and absorption coefficient variations on the modulation of intensity autocorrelation. In the case where there is no absorption coefficient variation, we suggest that the depth of modulation can be calibrated to measure the displacement of tissue particles that, in turn, can be used to measure the tissue elasticity.

  7. Ultrasound tissue characterization does not differentiate genotype, but indexes ejection fraction deterioration in becker muscular dystrophy.

    PubMed

    Giglio, Vincenzo; Puddu, Paolo Emilio; Holland, Mark R; Camastra, Giovanni; Ansalone, Gerardo; Ricci, Enzo; Mela, Julia; Sciarra, Federico; Di Gennaro, Marco

    2014-12-01

    The aims of the study were, first, to assess whether myocardial ultrasound tissue characterization (UTC) in Becker muscular dystrophy (BMD) can be used to differentiate between patients with deletions and those without deletions; and second, to determine whether UTC is helpful in diagnosing the evolution of left ventricular dysfunction, a precursor of dilated cardiomyopathy. Both cyclic variation of integrated backscatter and calibrated integrated backscatter (cIBS) were assessed in 87 patients with BMD and 70 controls. The average follow-up in BMD patients was 48 ± 12 mo. UTC analysis was repeated only in a subgroup of 40 BMD patients randomly selected from the larger overall group (15 with and 25 without left ventricular dysfunction). Discrimination between BMD patients with and without dystrophin gene deletion was not possible on the basis of UTC data: average cvIBS was 5.2 ± 1.2 and 5.5 ± 1.4 dB, and average cIBS was 29.9 ± 4.7 and 29.6 ± 5.8, respectively, significantly different (p < 0.001) only from controls (8.6 ± 0.5 and 24.6 ± 1.2 dB). In patients developing left ventricular dysfunction during follow-up, cIBS increased to 31.3 ± 5.4 dB, but not significantly (p = 0.08). The highest cIBS values (34.6 ± 5.3 dB, p < 0.09 vs. baseline, p < 0.01 vs BMD patients without left ventricular dysfunction) were seen in the presence of severe left ventricular dysfunction. Multivariate statistics indicated that an absolute change of 6 dB in cIBS is associated with a high probability of left ventricular dysfunction. UTC analysis does not differentiate BMD patients with or without dystrophin gene deletion, but may be useful in indexing left ventricular dysfunction during follow-up. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  8. Investigation of optimal method for inducing harmonic motion in tissue using a linear ultrasound phased array--a simulation study.

    PubMed

    Heikkilä, Janne; Hynynen, Kullervo

    2006-04-01

    Many noninvasive ultrasound techniques have been developed to explore mechanical properties of soft tissues. One of these methods, Localized Harmonic Motion Imaging (LHMI), has been proposed to be used for ultrasound surgery monitoring. In LHMI, dynamic ultrasound radiation-force stimulation induces displacements in a target that can be measured using pulse-echo imaging and used to estimate the elastic properties of the target. In this initial, simulation study, the use of a one-dimensional phased array is explored for the induction of the tissue motion. The study compares three different dual-frequency and amplitude-modulated single-frequency methods for the inducing tissue motion. Simulations were computed in a homogeneous soft-tissue volume. The Rayleigh integral was used in the simulations of the ultrasound fields and the tissue displacements were computed using a finite-element method (FEM). The simulations showed that amplitude-modulated sonication using a single frequency produced the largest vibration amplitude of the target tissue. These simulations demonstrate that the properties of the tissue motion are highly dependent on the sonication method and that it is important to consider the full three-dimensional distribution of the ultrasound field for controlling the induction of tissue motion.

  9. Biomechanical properties of the forefoot plantar soft tissue as measured by an optical coherence tomography-based air-jet indentation system and tissue ultrasound palpation system.

    PubMed

    Chao, Clare Y L; Zheng, Yong-Ping; Huang, Yan-Ping; Cheing, Gladys L Y

    2010-07-01

    The forefoot medial plantar area withstand high plantar pressure during locomotion, and is a common site that develops foot lesion problems among elderly people. The aims of the present study were to (1) determine the correlation between the biomechanical properties of forefoot medial plantar soft tissue measured by a newly developed optical coherence tomography-based air-jet indentation system and by tissue ultrasound palpation system, and (2) to compare the biomechanical properties of plantar soft tissues of medial forefoot between a young and old adult group. Thirty healthy subjects were classified as the young or older group. The biomechanical properties of plantar soft tissues measured at the forefoot by the air-jet indentation system and tissue ultrasound palpation system were performed, and the correlation of the findings obtained in the two systems were compared. A strong positive correlation was obtained from the findings in the two systems (r=0.88, P<0.001). The forefoot plantar soft tissue of the older group was significantly stiffer at the second metatarsal head and thinner at both metatarsal heads than that of the young group (all P<0.05). The stiffness coefficient at the second metatarsal head was 28% greater than that at the first metatarsal head in both study groups. Older subjects showed a loss of elasticity and reduced thickness in their forefoot plantar soft tissue, with the second metatarsal head displaying stiffer and thicker plantar tissue than the first metatarsal head. The air-jet indentation system is a useful instrument for characterizing the biomechanical properties of soft tissue. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. Torsional Ultrasound Sensor Optimization for Soft Tissue Characterization

    PubMed Central

    Melchor, Juan; Muñoz, Rafael; Rus, Guillermo

    2017-01-01

    Torsion mechanical waves have the capability to characterize shear stiffness moduli of soft tissue. Under this hypothesis, a computational methodology is proposed to design and optimize a piezoelectrics-based transmitter and receiver to generate and measure the response of torsional ultrasonic waves. The procedure employed is divided into two steps: (i) a finite element method (FEM) is developed to obtain a transmitted and received waveform as well as a resonance frequency of a previous geometry validated with a semi-analytical simplified model and (ii) a probabilistic optimality criteria of the design based on inverse problem from the estimation of robust probability of detection (RPOD) to maximize the detection of the pathology defined in terms of changes of shear stiffness. This study collects different options of design in two separated models, in transmission and contact, respectively. The main contribution of this work describes a framework to establish such as forward, inverse and optimization procedures to choose a set of appropriate parameters of a transducer. This methodological framework may be generalizable for other different applications. PMID:28617353

  11. Tissue Viscoelasticity Imaging Using Vibration and Ultrasound Coupler Gel

    NASA Astrophysics Data System (ADS)

    Yamakawa, Makoto; Shiina, Tsuyoshi

    2012-07-01

    In tissue diagnosis, both elasticity and viscosity are important indexes. Therefore, we propose a method for evaluating tissue viscoelasticity by applying vibration that is usually performed in elastography and using an ultrasound coupler gel with known viscoelasticity. In this method, we use three viscoelasticity parameters based on the coupler strain and tissue strain: the strain ratio as an elasticity parameter, and the phase difference and the normalized hysteresis loop area as viscosity parameters. In the agar phantom experiment, using these viscoelasticity parameters, we were able to estimate the viscoelasticity distribution of the phantom. In particular, the strain ratio and the phase difference were robust to strain estimation error.

  12. Automatic Robotic Steering of Flexible Needles from 3D Ultrasound Images in Phantoms and Ex Vivo Biological Tissue.

    PubMed

    Mignon, Paul; Poignet, Philippe; Troccaz, Jocelyne

    2018-05-29

    Robotic control of needle bending aims at increasing the precision of percutaneous procedures. Ultrasound feedback is preferable for its clinical ease of use, cost and compactness but raises needle detection issues. In this paper, we propose a complete system dedicated to robotized guidance of a flexible needle under 3D ultrasound imaging. This system includes a medical robot dedicated to transperineal needle positioning and insertion, a rapid path planning for needle steering using bevel-tip needle natural curvature in tissue, and an ultrasound-based automatic needle detection algorithm. Since ultrasound-based automatic needle steering is often made difficult by the needle localization in biological tissue, we quantify the benefit of using flexible echogenic needles for robotized guidance under 3D ultrasound. The "echogenic" term refers to the etching of microstructures on the needle shaft. We prove that these structures improve needle visibility and detection robustness in ultrasound images. We finally present promising results when reaching targets using needle steering. The experiments were conducted with various needles in different media (synthetic phantoms and ex vivo biological tissue). For instance, with nitinol needles the mean accuracy is 1.2 mm (respectively 3.8 mm) in phantoms (resp. biological tissue).

  13. Acoustic characterization of high intensity focused ultrasound fields: A combined measurement and modeling approach

    PubMed Central

    Canney, Michael S.; Bailey, Michael R.; Crum, Lawrence A.; Khokhlova, Vera A.; Sapozhnikov, Oleg A.

    2008-01-01

    Acoustic characterization of high intensity focused ultrasound (HIFU) fields is important both for the accurate prediction of ultrasound induced bioeffects in tissues and for the development of regulatory standards for clinical HIFU devices. In this paper, a method to determine HIFU field parameters at and around the focus is proposed. Nonlinear pressure waveforms were measured and modeled in water and in a tissue-mimicking gel phantom for a 2 MHz transducer with an aperture and focal length of 4.4 cm. Measurements were performed with a fiber optic probe hydrophone at intensity levels up to 24 000 W∕cm2. The inputs to a Khokhlov–Zabolotskaya–Kuznetsov-type numerical model were determined based on experimental low amplitude beam plots. Strongly asymmetric waveforms with peak positive pressures up to 80 MPa and peak negative pressures up to 15 MPa were obtained both numerically and experimentally. Numerical simulations and experimental measurements agreed well; however, when steep shocks were present in the waveform at focal intensity levels higher than 6000 W∕cm2, lower values of the peak positive pressure were observed in the measured waveforms. This underrepresentation was attributed mainly to the limited hydrophone bandwidth of 100 MHz. It is shown that a combination of measurements and modeling is necessary to enable accurate characterization of HIFU fields. PMID:19062878

  14. Interstitial Matrix Prevents Therapeutic Ultrasound From Causing Inertial Cavitation in Tumescent Subcutaneous Tissue.

    PubMed

    Koulakis, John P; Rouch, Joshua; Huynh, Nhan; Dubrovsky, Genia; Dunn, James C Y; Putterman, Seth

    2018-01-01

    We search for cavitation in tumescent subcutaneous tissue of a live pig under application of pulsed, 1-MHz ultrasound at 8 W cm -2 spatial peak and pulse-averaged intensity. We find no evidence of broadband acoustic emission indicative of inertial cavitation. These acoustic parameters are representative of those used in external-ultrasound-assisted lipoplasty and in physical therapy and our null result brings into question the role of cavitation in those applications. A comparison of broadband acoustic emission from a suspension of ultrasound contrast agent in bulk water with a suspension injected subcutaneously indicates that the interstitial matrix suppresses cavitation and provides an additional mechanism behind the apparent lack of in-vivo cavitation to supplement the absence of nuclei explanation offered in the literature. We also find a short-lived cavitation signal in normal, non-tumesced tissue that disappears after the first pulse, consistent with cavitation nuclei depletion in vivo. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  15. Methods for characterizing convective cryoprobe heat transfer in ultrasound gel phantoms.

    PubMed

    Etheridge, Michael L; Choi, Jeunghwan; Ramadhyani, Satish; Bischof, John C

    2013-02-01

    While cryosurgery has proven capable in treating of a variety of conditions, it has met with some resistance among physicians, in part due to shortcomings in the ability to predict treatment outcomes. Here we attempt to address several key issues related to predictive modeling by demonstrating methods for accurately characterizing heat transfer from cryoprobes, report temperature dependent thermal properties for ultrasound gel (a convenient tissue phantom) down to cryogenic temperatures, and demonstrate the ability of convective exchange heat transfer boundary conditions to accurately describe freezing in the case of single and multiple interacting cryoprobe(s). Temperature dependent changes in the specific heat and thermal conductivity for ultrasound gel are reported down to -150 °C for the first time here and these data were used to accurately describe freezing in ultrasound gel in subsequent modeling. Freezing around a single and two interacting cryoprobe(s) was characterized in the ultrasound gel phantom by mapping the temperature in and around the "iceball" with carefully placed thermocouple arrays. These experimental data were fit with finite-element modeling in COMSOL Multiphysics, which was used to investigate the sensitivity and effectiveness of convective boundary conditions in describing heat transfer from the cryoprobes. Heat transfer at the probe tip was described in terms of a convective coefficient and the cryogen temperature. While model accuracy depended strongly on spatial (i.e., along the exchange surface) variation in the convective coefficient, it was much less sensitive to spatial and transient variations in the cryogen temperature parameter. The optimized fit, convective exchange conditions for the single-probe case also provided close agreement with the experimental data for the case of two interacting cryoprobes, suggesting that this basic characterization and modeling approach can be extended to accurately describe more complicated

  16. Ultrasound Imaging of DNA-Damage Effects in Live Cultured Cells and in Brain Tissue.

    PubMed

    Tadayyon, Hadi; Gangeh, Mehrdad J; Vlad, Roxana; Kolios, Michael C; Czarnota, Gregory J

    2017-01-01

    High-frequency ultrasound (>20 MHz) spectroscopy can be used to detect noninvasively DNA damage in cell samples in vitro, and in live tissue both ex vivo and in vivo. This chapter focuses on the former two aspects. Experimental evidence suggests that morphological changes that occur in cells undergoing apoptosis result in changes in frequency-dependent ultrasound backscatter. With advances in research, ultrasound spectroscopy is advancing the boundaries of fast, label-free, noninvasive DNA damage detection technology with potential use in personalized medicine and early therapy response monitoring. Depending on the desired resolution, parametric ultrasound images can be computed and displayed within minutes to hours after ultrasound examination for cell death.

  17. Advanced Ultrasound Technologies for Diagnosis and Therapy.

    PubMed

    Rix, Anne; Lederle, Wiltrud; Theek, Benjamin; Lammers, Twan; Moonen, Chrit; Schmitz, Georg; Kiessling, Fabian

    2018-05-01

    Ultrasound is among the most rapidly advancing imaging techniques. Functional methods such as elastography have been clinically introduced, and tissue characterization is improved by contrast-enhanced scans. Here, novel superresolution techniques provide unique morphologic and functional insights into tissue vascularization. Functional analyses are complemented by molecular ultrasound imaging, to visualize markers of inflammation and angiogenesis. The full potential of diagnostic ultrasound may become apparent by integrating these multiple imaging features in radiomics approaches. Emerging interest in ultrasound also results from its therapeutic potential. Various applications of tumor ablation with high-intensity focused ultrasound are being clinically evaluated, and its performance strongly benefits from the integration into MRI. Additionally, oscillating microbubbles mediate sonoporation to open biologic barriers, thus improving the delivery of drugs or nucleic acids that are coadministered or coformulated with microbubbles. This article provides an overview of recent developments in diagnostic and therapeutic ultrasound, highlighting multiple innovation tracks and their translational potential. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  18. Ultrasound characterization of middle ear effusion.

    PubMed

    Seth, Rahul; Discolo, Christopher M; Palczewska, Grazyna M; Lewandowski, Jan J; Krakovitz, Paul R

    2013-01-01

    To further enhance and assess the ability to characterize middle ear effusion (MEE) using non-invasive ultrasound technology. This is a prospective unblinded comparison study. Fifty-six children between the ages of 6 months and 17 years scheduled to undergo bilateral myringotomy with pressure equalization tube placement were enrolled. With the child anesthetized, the probe was placed into the external ear canal after sterile water was inserted. Ultrasound recordings of middle ear contents were analyzed by computer algorithm. Middle ear fluid was collected during myringotomy and analyzed for bacterial culture and viscosity. Ultrasound waveforms yielded a computer algorithm interpretation of middle ear contents in 66% of ears tested. When a result was obtained, the sensitivity and specificity for successfully characterizing middle ear fluid content as either void of fluid, thick fluid (mucoid), or thin fluid (serous or purulent) were at least 94%. Mucoid effusions had higher measured viscosity values (P=.002). Viscosity measures were compared to culture result, and those with low viscosity (thin consistency) had a higher likelihood of having a positive culture (P=.048). The device sensitivity and specificity for fluid detection were 94% or greater among interpretable waveforms (66% of those tested). Although this technology provides important information of the middle ear effusion presence and characteristic, further technological improvements are needed. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Ultrasound Characterization of Middle Ear Effusion

    PubMed Central

    Seth, Rahul; Discolo, Christopher M; Palczewska, Grazyna M; Lewandowski, Jan J; Krakovitz, Paul R

    2012-01-01

    Purpose To further enhance and assess the ability to characterize middle ear effusion (MEE) using non-invasive ultrasound technology. Materials and Methods This is a prospective unblinded comparison study. Fifty-six children between the ages of 6 months and 17 years scheduled to undergo bilateral myringotomy with pressure equalization tube placement were enrolled. With the child anesthetized, the probe was placed into the external ear canal after sterile water was inserted. Ultrasound recordings of middle ear contents were analyzed by computer algorithm. Middle ear fluid was collected during myringotomy and analyzed for bacterial culture and viscosity. Results Ultrasound waveforms yielded a computer algorithm interpretation of middle ear contents in 66% of ears tested. When a result was obtained, the sensitivity and specificity for successfully characterizing middle ear fluid content as either void of fluid, thick fluid (mucoid), or thin fluid (serous or purulent) was at least 94%. Mucoid effusions had higher measured viscosity values (P=0.002). Viscosity measures were compared to culture result, and those with low viscosity (thin consistency) had a higher likelihood of having a positive culture (P=0.048). Conclusion The device sensitivity and specificity for fluid detection was 94% or greater among interpretable waveforms (66% of those tested). Although this technology provides important information of the middle ear effusion presence and characteristic, further technological improvements are needed. PMID:23084430

  20. Evaluation of multimodality imaging using image fusion with ultrasound tissue elasticity imaging in an experimental animal model.

    PubMed

    Paprottka, P M; Zengel, P; Cyran, C C; Ingrisch, M; Nikolaou, K; Reiser, M F; Clevert, D A

    2014-01-01

    To evaluate the ultrasound tissue elasticity imaging by comparison to multimodality imaging using image fusion with Magnetic Resonance Imaging (MRI) and conventional grey scale imaging with additional elasticity-ultrasound in an experimental small-animal-squamous-cell carcinoma-model for the assessment of tissue morphology. Human hypopharynx carcinoma cells were subcutaneously injected into the left flank of 12 female athymic nude rats. After 10 days (SD ± 2) of subcutaneous tumor growth, sonographic grey scale including elasticity imaging and MRI measurements were performed using a high-end ultrasound system and a 3T MR. For image fusion the contrast-enhanced MRI DICOM data set was uploaded in the ultrasonic device which has a magnetic field generator, a linear array transducer (6-15 MHz) and a dedicated software package (GE Logic E9), that can detect transducers by means of a positioning system. Conventional grey scale and elasticity imaging were integrated in the image fusion examination. After successful registration and image fusion the registered MR-images were simultaneously shown with the respective ultrasound sectional plane. Data evaluation was performed using the digitally stored video sequence data sets by two experienced radiologist using a modified Tsukuba Elasticity score. The colors "red and green" are assigned for an area of soft tissue, "blue" indicates hard tissue. In all cases a successful image fusion and plan registration with MRI and ultrasound imaging including grey scale and elasticity imaging was possible. The mean tumor volume based on caliper measurements in 3 dimensions was ~323 mm3. 4/12 rats were evaluated with Score I, 5/12 rates were evaluated with Score II, 3/12 rates were evaluated with Score III. There was a close correlation in the fused MRI with existing small necrosis in the tumor. None of the scored II or III lesions was visible by conventional grey scale. The comparison of ultrasound tissue elasticity imaging enables a

  1. Singular value decomposition of received ultrasound signal to separate tissue, blood flow, and cavitation signals

    NASA Astrophysics Data System (ADS)

    Ikeda, Hayato; Nagaoka, Ryo; Lafond, Maxime; Yoshizawa, Shin; Iwasaki, Ryosuke; Maeda, Moe; Umemura, Shin-ichiro; Saijo, Yoshifumi

    2018-07-01

    High-intensity focused ultrasound is a noninvasive treatment applied by externally irradiating ultrasound to the body to coagulate the target tissue thermally. Recently, it has been proposed as a noninvasive treatment for vascular occlusion to replace conventional invasive treatments. Cavitation bubbles generated by the focused ultrasound can accelerate the effect of thermal coagulation. However, the tissues surrounding the target may be damaged by cavitation bubbles generated outside the treatment area. Conventional methods based on Doppler analysis only in the time domain are not suitable for monitoring blood flow in the presence of cavitation. In this study, we proposed a novel filtering method based on the differences in spatiotemporal characteristics, to separate tissue, blood flow, and cavitation by employing singular value decomposition. Signals from cavitation and blood flow were extracted automatically using spatial and temporal covariance matrices.

  2. Review of Quantitative Ultrasound: Envelope Statistics and Backscatter Coefficient Imaging and Contributions to Diagnostic Ultrasound.

    PubMed

    Oelze, Michael L; Mamou, Jonathan

    2016-02-01

    Conventional medical imaging technologies, including ultrasound, have continued to improve over the years. For example, in oncology, medical imaging is characterized by high sensitivity, i.e., the ability to detect anomalous tissue features, but the ability to classify these tissue features from images often lacks specificity. As a result, a large number of biopsies of tissues with suspicious image findings are performed each year with a vast majority of these biopsies resulting in a negative finding. To improve specificity of cancer imaging, quantitative imaging techniques can play an important role. Conventional ultrasound B-mode imaging is mainly qualitative in nature. However, quantitative ultrasound (QUS) imaging can provide specific numbers related to tissue features that can increase the specificity of image findings leading to improvements in diagnostic ultrasound. QUS imaging can encompass a wide variety of techniques including spectral-based parameterization, elastography, shear wave imaging, flow estimation, and envelope statistics. Currently, spectral-based parameterization and envelope statistics are not available on most conventional clinical ultrasound machines. However, in recent years, QUS techniques involving spectral-based parameterization and envelope statistics have demonstrated success in many applications, providing additional diagnostic capabilities. Spectral-based techniques include the estimation of the backscatter coefficient (BSC), estimation of attenuation, and estimation of scatterer properties such as the correlation length associated with an effective scatterer diameter (ESD) and the effective acoustic concentration (EAC) of scatterers. Envelope statistics include the estimation of the number density of scatterers and quantification of coherent to incoherent signals produced from the tissue. Challenges for clinical application include correctly accounting for attenuation effects and transmission losses and implementation of QUS on

  3. Review of quantitative ultrasound: envelope statistics and backscatter coefficient imaging and contributions to diagnostic ultrasound

    PubMed Central

    Oelze, Michael L.; Mamou, Jonathan

    2017-01-01

    Conventional medical imaging technologies, including ultrasound, have continued to improve over the years. For example, in oncology, medical imaging is characterized by high sensitivity, i.e., the ability to detect anomalous tissue features, but the ability to classify these tissue features from images often lacks specificity. As a result, a large number of biopsies of tissues with suspicious image findings are performed each year with a vast majority of these biopsies resulting in a negative finding. To improve specificity of cancer imaging, quantitative imaging techniques can play an important role. Conventional ultrasound B-mode imaging is mainly qualitative in nature. However, quantitative ultrasound (QUS) imaging can provide specific numbers related to tissue features that can increase the specificity of image findings leading to improvements in diagnostic ultrasound. QUS imaging techniques can encompass a wide variety of techniques including spectral-based parameterization, elastography, shear wave imaging, flow estimation and envelope statistics. Currently, spectral-based parameterization and envelope statistics are not available on most conventional clinical ultrasound machines. However, in recent years QUS techniques involving spectral-based parameterization and envelope statistics have demonstrated success in many applications, providing additional diagnostic capabilities. Spectral-based techniques include the estimation of the backscatter coefficient, estimation of attenuation, and estimation of scatterer properties such as the correlation length associated with an effective scatterer diameter and the effective acoustic concentration of scatterers. Envelope statistics include the estimation of the number density of scatterers and quantification of coherent to incoherent signals produced from the tissue. Challenges for clinical application include correctly accounting for attenuation effects and transmission losses and implementation of QUS on clinical

  4. Acoustic Radiation Force Elasticity Imaging in Diagnostic Ultrasound

    PubMed Central

    Doherty, Joshua R.; Trahey, Gregg E.; Nightingale, Kathryn R.; Palmeri, Mark L.

    2013-01-01

    The development of ultrasound-based elasticity imaging methods has been the focus of intense research activity since the mid-1990s. In characterizing the mechanical properties of soft tissues, these techniques image an entirely new subset of tissue properties that cannot be derived with conventional ultrasound techniques. Clinically, tissue elasticity is known to be associated with pathological condition and with the ability to image these features in vivo, elasticity imaging methods may prove to be invaluable tools for the diagnosis and/or monitoring of disease. This review focuses on ultrasound-based elasticity imaging methods that generate an acoustic radiation force to induce tissue displacements. These methods can be performed non-invasively during routine exams to provide either qualitative or quantitative metrics of tissue elasticity. A brief overview of soft tissue mechanics relevant to elasticity imaging is provided, including a derivation of acoustic radiation force, and an overview of the various acoustic radiation force elasticity imaging methods. PMID:23549529

  5. Acoustic radiation force elasticity imaging in diagnostic ultrasound.

    PubMed

    Doherty, Joshua R; Trahey, Gregg E; Nightingale, Kathryn R; Palmeri, Mark L

    2013-04-01

    The development of ultrasound-based elasticity imaging methods has been the focus of intense research activity since the mid-1990s. In characterizing the mechanical properties of soft tissues, these techniques image an entirely new subset of tissue properties that cannot be derived with conventional ultrasound techniques. Clinically, tissue elasticity is known to be associated with pathological condition and with the ability to image these features in vivo; elasticity imaging methods may prove to be invaluable tools for the diagnosis and/or monitoring of disease. This review focuses on ultrasound-based elasticity imaging methods that generate an acoustic radiation force to induce tissue displacements. These methods can be performed noninvasively during routine exams to provide either qualitative or quantitative metrics of tissue elasticity. A brief overview of soft tissue mechanics relevant to elasticity imaging is provided, including a derivation of acoustic radiation force, and an overview of the various acoustic radiation force elasticity imaging methods.

  6. Controlled tissue emulsification produced by high intensity focused ultrasound shock waves and millisecond boiling

    PubMed Central

    Khokhlova, Tatiana D.; Canney, Michael S.; Khokhlova, Vera A.; Sapozhnikov, Oleg A.; Crum, Lawrence A.; Bailey, Michael R.

    2011-01-01

    In high intensity focused ultrasound (HIFU) applications, tissue may be thermally necrosed by heating, emulsified by cavitation, or, as was recently discovered, emulsified using repetitive millisecond boiling caused by shock wave heating. Here, this last approach was further investigated. Experiments were performed in transparent gels and ex vivo bovine heart tissue using 1, 2, and 3 MHz focused transducers and different pulsing schemes in which the pressure, duty factor, and pulse duration were varied. A previously developed derating procedure to determine in situ shock amplitudes and the time-to-boil was refined. Treatments were monitored using B-mode ultrasound. Both inertial cavitation and boiling were observed during exposures, but emulsification occurred only when shocks and boiling were present. Emulsified lesions without thermal denaturation were produced with shock amplitudes sufficient to induce boiling in less than 20 ms, duty factors of less than 0.02, and pulse lengths shorter than 30 ms. Higher duty factors or longer pulses produced varying degrees of thermal denaturation combined with mechanical emulsification. Larger lesions were obtained using lower ultrasound frequencies. The results show that shock wave heating and millisecond boiling is an effective and reliable way to emulsify tissue while monitoring the treatment with ultrasound. PMID:22088025

  7. The use of intraoral ultrasound in the characterization of minor salivary gland malignancy: report of two cases

    PubMed Central

    Brown, Jackie; Rudralingam, Meena

    2016-01-01

    It is generally accepted that ultrasound is now the first line of imaging of palpable lumps of the neck. Standardized protocols exist for the evaluation of thyroid, salivary gland and nodal disease, and sonography is increasingly being used in the characterization of intraoral soft tissue lesions. Here, we present two cases where intraoral sonography was invaluable in the early detection of oral malignancy. PMID:26954288

  8. Monitoring of tissue heating with medium intensity focused ultrasound via four dimensional optoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Oyaga Landa, Francisco Javier; Ronda Penacoba, Silvia; Deán-Ben, Xosé Luís.; Montero de Espinosa, Francisco; Razansky, Daniel

    2018-02-01

    Medium intensity focused ultrasound (MIFU) holds promise in important clinical applications. Generally, the aim in MIFU is to stimulate physiological mechanisms that reinforce healing responses, avoiding reaching temperatures that can cause permanent tissue damage. The outcome of interventions is then strongly affected by the temperature distribution in the treated region, and accurate monitoring represents a significant clinical need. In this work, we showcase the capacities of 4D optoacoustic imaging to monitor tissue heating during MIFU. The proposed method allows localizing the ultrasound focus, estimating the peak temperature and measuring the size of the heat-affected volume. Calibration experiments in a tissue-mimicking phantom demonstrate that the optoacoustically-estimated temperature accurately matches thermocouple readings. The good performance of the suggested approach in real tissues is further showcased in experiments with bovine muscle samples.

  9. Laser-generated ultrasound for high-precision cutting of tissue-mimicking gels (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lee, Taehwa; Luo, Wei; Li, Qiaochu; Guo, L. Jay

    2017-03-01

    Laser-generated focused ultrasound has shown great promise in precisely treating cells and tissues by producing controlled micro-cavitation within the acoustic focal volume (<100 um). However, the previous demonstration used cells and tissues cultured on glass substrates. The glass substrates were found to be critical to cavitation, because ultrasound amplitude doubles due to the reflection from the substrate, thus allowing for reaching pressure amplitude to cavitation threshold. In other words, without the sound reflecting substrate, pressure amplitude may not be strong enough to create cavitation, thus limiting its application to only cultured biomaterials on the rigid substrates. By using laser-generated focused ultrasound without relying on sound-reflecting substrates, we demonstrate free-field cavitation in water and its application to high-precision cutting of tissue-mimicking gels. In the absence of a rigid boundary, strong pressure for cavitation was enabled by recently optimized photoacoustic lens with increased focal gain (>30 MPa, negative pressure amplitude). By moving cavitation spots along pre-defined paths through a motorized stage, tissue-mimicking gels of different elastic moduli were cut into different shapes (rectangle, triangle, and circle), leaving behind the same shape of holes, whose sizes are less than 1 mm. The cut line width is estimated to be less than 50 um (corresponding to localized cavitation region), allowing for accurate cutting. This novel approach could open new possibility for in-vivo treatment of diseased tissues in a high-precision manner (i.e., high-precision invisible sonic scalpel).

  10. Advanced Hemophilic Arthropathy: Sensitivity of Soft Tissue Discrimination With Musculoskeletal Ultrasound.

    PubMed

    von Drygalski, Annette; Moore, Randy E; Nguyen, Sonha; Barnes, Richard F W; Volland, Lena M; Hughes, Tudor H; Du, Jiang; Chang, Eric Y

    2018-01-24

    Point-of-care musculoskeletal ultrasound (US) is increasingly used by hemophilia providers to guide management; however, pathologic tissue differentiation with US is uncertain. We sought to determine the extent to which point-of-care musculoskeletal US can identify and discriminate pathologic soft tissue changes in hemophilic arthropathy. Thirty-six adult patients with hemophilia A/B were prospectively enrolled. Point-of-care musculoskeletal US examinations were performed on arthropathic joints (16 knees, 10 ankles, and 10 elbows) using standard views by a musculoskeletal US-trained and certified hematologist, who recorded abnormal intra-articular soft tissue accumulation. Within 3 days, magnetic resonance imaging was performed using conventional and multiecho ultrashort echo time sequences. Soft tissue identification (synovial proliferation with or without hemosiderin, fat, and/or blood products) was performed by a musculoskeletal radiologist. Findings obtained with both imaging modalities were compared and correlated in a blinded fashion. There was perfect agreement between the modalities on the presence of abnormal soft tissue (34 of 36 cases). However, musculoskeletal US was unable to discriminate between coagulated blood, synovium, intrasynovial or extrasynovial fat tissue, or hemosiderin deposits because of wide variations in echogenicity. Musculoskeletal US is valuable for point-of-care imaging to determine the presence of soft tissue accumulation in discrete areas. However, because of limitations of musculoskeletal US in discriminating the nature of pathologic soft tissues and detecting hemosiderin, magnetic resonance imaging will be required if such discrimination is clinically important. © 2018 by the American Institute of Ultrasound in Medicine.

  11. Photoacoustic and ultrasound imaging of cancellous bone tissue.

    PubMed

    Yang, Lifeng; Lashkari, Bahman; Tan, Joel W Y; Mandelis, Andreas

    2015-07-01

    We used ultrasound (US) and photoacoustic (PA) imaging modalities to characterize cattle trabecular bones. The PA signals were generated with an 805-nm continuous wave laser used for optimally deep optical penetration depth. The detector for both modalities was a 2.25-MHz US transducer with a lateral resolution of ~1 mm at its focal point. Using a lateral pixel size much larger than the size of the trabeculae, raster scanning generated PA images related to the averaged values of the optical and thermoelastic properties, as well as density measurements in the focal volume. US backscatter yielded images related to mechanical properties and density in the focal volume. The depth of interest was selected by time-gating the signals for both modalities. The raster scanned PA and US images were compared with microcomputed tomography (μCT) images averaged over the same volume to generate similar spatial resolution as US and PA. The comparison revealed correlations between PA and US modalities with the mineral volume fraction of the bone tissue. Various features and properties of these modalities such as detectable depth, resolution, and sensitivity are discussed.

  12. [Application of ultrasound-enhanced gene and drug delivery to the ocular tissue].

    PubMed

    Sonoda, Shozo; Yamashita, Toshifumi; Suzuki, Ryo; Maruyama, Kazuo; Sakamoto, Taiji

    2013-01-01

    Visual images provide an immensely rich source of information about the external world. Eye has characteristic structure sensory cells are arranged along the eye wall, and is filled inside with vitreous body. In recent years, intravitreal injection of anti-vascular endothelial growth factor (VEGF) agent had widely spread, and numerous number of patients who suffered ocular angiogenic disease such as diabetic retinopathy, age-related macular degeneration and retinal vascular occlusion for the disease, were treated and spared the blindness. Vitreous cavity was regarded as reservoir of drug, intravitreal injection is thought a sort of drug delivery. However, with regard to the administration of a selective drug deliver, it has not yet been solved. Our aim is to establish a new method of gene transfer, drug delivery using low-energy ultrasound to the eye, to date, we confirmed drug and gene deliver to the ocular tissue such as cornea, conjunctiva and retina with high efficiency. In addition, tissue damage was minimal. We have also shown that ultrasound irradiation with combination of a microbubbles or bubble liposome could be introduced drug and gene more effectively. Based on these knowledge, we will focus on development of a new device for intraocular ultrasound exposure and potential for therapeutic application of ultrasound to humans retinal disease such as retinal artery obstruction.

  13. Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues.

    PubMed

    Ramaz, F; Forget, B; Atlan, M; Boccara, A C; Gross, M; Delaye, P; Roosen, G

    2004-11-01

    We present a new and simple method to obtain ultrasound modulated optical tomography images in thick biological tissues with the use of a photorefractive crystal. The technique offers the advantage of spatially adapting the output speckle wavefront by analysing the signal diffracted by the interference pattern between this output field and a reference beam, recorded inside the photorefractive crystal. Averaging out due to random phases of the speckle grains vanishes, and we can use a fast single photodetector to measure the ultrasound modulated optical contrast. This technique offers a promising way to make direct measurements within the decorrelation time scale of living tissues.

  14. Multiple high-intensity focused ultrasound probes for kidney-tissue ablation.

    PubMed

    Häcker, Axel; Chauhan, Sunita; Peters, Kristina; Hildenbrand, Ralf; Marlinghaus, Ernst; Alken, Peter; Michel, Maurice Stephan

    2005-10-01

    To investigate kidney-tissue ablation by high-intensity focused ultrasound (HIFU) using multiple and single probes. Ultrasound beams (1.75 MHz) produced by a piezoceramic element (focal distance 80 mm) were focused at the center of renal parenchyma. One of the three probes (mounted on a jig) could also be used for comparison with a single probe at comparable power ratings. Lesion dimensions were examined in perfused and unperfused ex vivo porcine kidneys at different power levels (40, 60, and 80 W) and treatment times (4, 6, and 8 seconds). At identical power levels, the lesions induced by multiple probes were larger than those induced by a single probe. Lesion size increased with increasing pulse duration and generator power. The sizes and shapes of the lesions were predictably repeatable in all samples. Lesions in perfused kidneys were smaller than those in unperfused kidneys. Ex vivo, kidney-tissue ablation by means of multiple HIFU probes offers significant advantages over single HIFU probes in respect of lesion size and formation. These advantages need to be confirmed by tests in vivo at higher energy levels.

  15. Backscattering analysis of high frequency ultrasonic imaging for ultrasound-guided breast biopsy

    NASA Astrophysics Data System (ADS)

    Cummins, Thomas; Akiyama, Takahiro; Lee, Changyang; Martin, Sue E.; Shung, K. Kirk

    2017-03-01

    A new ultrasound-guided breast biopsy technique is proposed. The technique utilizes conventional ultrasound guidance coupled with a high frequency embedded ultrasound array located within the biopsy needle to improve the accuracy in breast cancer diagnosis.1 The array within the needle is intended to be used to detect micro- calcifications indicative of early breast cancers such as ductal carcinoma in situ (DCIS). Backscattering analysis has the potential to characterize tissues to improve localization of lesions. This paper describes initial results of the application of backscattering analysis of breast biopsy tissue specimens and shows the usefulness of high frequency ultrasound for the new biopsy related technique. Ultrasound echoes of ex-vivo breast biopsy tissue specimens were acquired by using a single-element transducer with a bandwidth from 41 MHz to 88 MHz utilizing a UBM methodology, and the backscattering coefficients were calculated. These values as well as B-mode image data were mapped in 2D and matched with each pathology image for the identification of tissue type for the comparison to the pathology images corresponding to each plane. Microcalcifications were significantly distinguished from normal tissue. Adenocarcinoma was also successfully differentiated from adipose tissue. These results indicate that backscattering analysis is able to quantitatively distinguish tissues into normal and abnormal, which should help radiologists locate abnormal areas during the proposed ultrasound-guided breast biopsy with high frequency ultrasound.

  16. Objective breast tissue image classification using Quantitative Transmission ultrasound tomography

    NASA Astrophysics Data System (ADS)

    Malik, Bilal; Klock, John; Wiskin, James; Lenox, Mark

    2016-12-01

    Quantitative Transmission Ultrasound (QT) is a powerful and emerging imaging paradigm which has the potential to perform true three-dimensional image reconstruction of biological tissue. Breast imaging is an important application of QT and allows non-invasive, non-ionizing imaging of whole breasts in vivo. Here, we report the first demonstration of breast tissue image classification in QT imaging. We systematically assess the ability of the QT images’ features to differentiate between normal breast tissue types. The three QT features were used in Support Vector Machines (SVM) classifiers, and classification of breast tissue as either skin, fat, glands, ducts or connective tissue was demonstrated with an overall accuracy of greater than 90%. Finally, the classifier was validated on whole breast image volumes to provide a color-coded breast tissue volume. This study serves as a first step towards a computer-aided detection/diagnosis platform for QT.

  17. Acoustic Radiation Force-Induced Creep-Recovery (ARFICR): A Noninvasive Method to Characterize Tissue Viscoelasticity.

    PubMed

    Amador Carrascal, Carolina; Chen, Shigao; Urban, Matthew W; Greenleaf, James F

    2018-01-01

    Ultrasound shear wave elastography is a promising noninvasive, low cost, and clinically viable tool for liver fibrosis staging. Current shear wave imaging technologies on clinical ultrasound scanners ignore shear wave dispersion and use a single group velocity measured over the shear wave bandwidth to estimate tissue elasticity. The center frequency and bandwidth of shear waves induced by acoustic radiation force depend on the ultrasound push beam (push duration, -number, etc.) and the viscoelasticity of the medium, and therefore are different across scanners from different vendors. As a result, scanners from different vendors may give different tissue elasticity measurements within the same patient. Various methods have been proposed to evaluate shear wave dispersion to better estimate tissue viscoelasticity. A rheological model such as the Kelvin-Voigt model is typically fitted to the shear wave dispersion to solve for the elasticity and viscosity of tissue. However, these rheological models impose strong assumptions about frequency dependence of elasticity and viscosity. Here, we propose a new method called Acoustic Radiation Force Induced Creep-Recovery (ARFICR) capable of quantifying rheological model-independent measurements of elasticity and viscosity for more robust tissue health assessment. In ARFICR, the creep-recovery time signal at the focus of the push beam is used to calculate the relative elasticity and viscosity (scaled by an unknown constant) over a wide frequency range. Shear waves generated during the ARFICR measurement are also detected and used to calculate the shear wave velocity at its center frequency, which is then used to calibrate the relative elasticity and viscosity to absolute elasticity and viscosity. In this paper, finite-element method simulations and experiments in tissue mimicking phantoms are used to validate and characterize the extent of viscoelastic quantification of ARFICR. The results suggest that ARFICR can measure tissue

  18. Characterizing tissue microstructure using an ultrasound system-independent spatial autocorrelation function

    NASA Astrophysics Data System (ADS)

    Dong, Fang

    1999-09-01

    The research described in this dissertation is related to characterization of tissue microstructure using a system- independent spatial autocorrelation function (SAF). The function was determined using a reference phantom method, which employed a well-defined ``point- scatterer'' reference phantom to account for instrumental factors. The SAF's were estimated for several tissue-mimicking (TM) phantoms and fresh dog livers. Both phantom tests and in vitro dog liver measurements showed that the reference phantom method is relatively simple and fairly accurate, providing the bandwidth of the measurement system is sufficient for the size of the scatterer being involved in the scattering process. Implementation of this method in clinical scanner requires that distortions from patient's body wall be properly accounted for. The SAF's were estimated for two phantoms with body-wall-like distortions. The experimental results demonstrated that body wall distortions have little effect if echo data are acquired from a large scattering volume. One interesting application of the SAF is to form a ``scatterer size image''. The scatterer size image may help providing diagnostic tools for those diseases in which the tissue microstructure is different from the normal. Another method, the BSC method, utilizes information contained in the frequency dependence of the backscatter coefficient to estimate the scatterer size. The SAF technique produced accurate scatterer size images of homogeneous TM phantoms and the BSC method was capable of generating accurate size images for heterogeneous phantoms. In the scatterer size image of dog kidneys, the contrast-to-noise-ratio (CNR) between renal cortex and medulla was improved dramatically compared to the gray- scale image. The effect of nonlinear propagation was investigated by using a custom-designed phantom with overlaying TM fat layer. The results showed that the correlation length decreased when the transmitting power increased. The

  19. Development of a bedside viable ultrasound protocol to quantify appendicular lean tissue mass

    PubMed Central

    Paris, Michael T.; Lafleur, Benoit; Dubin, Joel A.

    2017-01-01

    Abstract Background Ultrasound is a non‐invasive and readily available tool that can be prospectively applied at the bedside to assess muscle mass in clinical settings. The four‐site protocol, which images two anatomical sites on each quadriceps, may be a viable bedside method, but its ability to predict musculature has not been compared against whole‐body reference methods. Our primary objectives were to (i) compare the four‐site protocol's ability to predict appendicular lean tissue mass from dual‐energy X‐ray absorptiometry; (ii) optimize the predictability of the four‐site protocol with additional anatomical muscle thicknesses and easily obtained covariates; and (iii) assess the ability of the optimized protocol to identify individuals with low lean tissue mass. Methods This observational cross‐sectional study recruited 96 university and community dwelling adults. Participants underwent ultrasound scans for assessment of muscle thickness and whole‐body dual‐energy X‐ray absorptiometry scans for assessment of appendicular lean tissue. Ultrasound protocols included (i) the nine‐site protocol, which images nine anterior and posterior muscle groups in supine and prone positions, and (ii) the four‐site protocol, which images two anterior sites on each quadriceps muscle group in a supine position. Results The four‐site protocol was strongly associated (R 2 = 0.72) with appendicular lean tissue mass, but Bland–Altman analysis displayed wide limits of agreement (−5.67, 5.67 kg). Incorporating the anterior upper arm muscle thickness, and covariates age and sex, alongside the four‐site protocol, improved the association (R 2 = 0.91) with appendicular lean tissue and displayed narrower limits of agreement (−3.18, 3.18 kg). The optimized protocol demonstrated a strong ability to identify low lean tissue mass (area under the curve = 0.89). Conclusions The four‐site protocol can be improved with the addition of the anterior upper

  20. Interstitial ablation and imaging of soft tissue using miniaturized ultrasound arrays

    NASA Astrophysics Data System (ADS)

    Makin, Inder R. S.; Gallagher, Laura A.; Mast, T. Douglas; Runk, Megan M.; Faidi, Waseem; Barthe, Peter G.; Slayton, Michael H.

    2004-05-01

    A potential alternative to extracorporeal, noninvasive HIFU therapy is minimally invasive, interstitial ultrasound ablation that can be performed laparoscopically or percutaneously. Research in this area at Guided Therapy Systems and Ethicon Endo-Surgery has included development of miniaturized (~3 mm diameter) linear ultrasound arrays capable of high power for bulk tissue ablation as well as broad bandwidth for imaging. An integrated control system allows therapy planning and automated treatment guided by real-time interstitial B-scan imaging. Image quality, challenging because of limited probe dimensions and channel count, is aided by signal processing techniques that improve image definition and contrast. Simulations of ultrasonic heat deposition, bio-heat transfer, and tissue modification provide understanding and guidance for development of treatment strategies. Results from in vitro and in vivo ablation experiments, together with corresponding simulations, will be described. Using methods of rotational scanning, this approach is shown to be capable of clinically relevant ablation rates and volumes.

  1. Histological and Ultrastructural Effects of Ultrasound-induced Cavitation on Human Skin Adipose Tissue.

    PubMed

    Bani, Daniele; Quattrini Li, Alessandro; Freschi, Giancarlo; Russo, Giulia Lo

    2013-09-01

    In aesthetic medicine, the most promising techniques for noninvasive body sculpturing purposes are based on ultrasound-induced fat cavitation. Liporeductive ultrasound devices afford clinically relevant subcutaneous fat pad reduction without significant adverse reactions. This study aims at evaluating the histological and ultrastructural changes induced by ultrasound cavitation on the different cell components of human skin. Control and ultrasound-treated ex vivo abdominal full-thickness skin samples and skin biopsies from patients pretreated with or without ultrasound cavitation were studied histologically, morphometrically, and ultrastructurally to evaluate possible changes in adipocyte size and morphology. Adipocyte apoptosis and triglyceride release were also assayed. Clinical evaluation of the effects of 4 weekly ultrasound vs sham treatments was performed by plicometry. Compared with the sham-treated control samples, ultrasound cavitation induced a statistically significant reduction in the size of the adipocytes (P < 0.001), the appearance of micropores and triglyceride leakage and release in the conditioned medium (P < 0.05 at 15 min), or adipose tissue interstitium, without appreciable changes in microvascular, stromal, and epidermal components and in the number of apoptotic adipocytes. Clinically, the ultrasound treatment caused a significant reduction of abdominal fat. This study further strengthens the current notion that noninvasive transcutaneous ultrasound cavitation is a promising and safe technology for localized reduction of fat and provides experimental evidence for its specific mechanism of action on the adipocytes.

  2. Medical ultrasound - From inner space to outer space

    NASA Technical Reports Server (NTRS)

    Rooney, J. A.

    1984-01-01

    During the last decade, medical ultrasound has rapidly become a widely accepted imaging modality used in many medical specialties. It has the advantages that it is noninvasive, does not use ionizing radiation, is relatively inexpensive and is easy to use. Future trends in ultrasound include expanded areas of use, advanced signal processing and digital image analysis including tissue characterization and three-dimensional reconstructions.

  3. Localized Ablation of Thyroid Tissue by High-Intensity Focused Ultrasound: an Alternative to Surgery?

    NASA Astrophysics Data System (ADS)

    Esnault, Olivier; Franc, Brigitte; Chapelon, Jean-Yves; Lacoste, Francois

    2006-05-01

    PURPOSE: The aim of this study was to evaluate the feasibility of using a High-intensity focused ultrasound (HIFU) device to obtain a localised destruction of the thyroid with no damage to adjacent tissues. MATERIALS AND METHODS: The ewe model was used because its thyroid gland is easily accessible with ultrasound. The animals were anaesthetised with 10 mg / kg IV injection of Penthothal. The HIFU pulses were generated by a 3-MHz spherical transducer under ultrasound guidance. Macroscopic and microscopic tissue lesions were identified after formalin fixation of the anterior part of the ewe's neck. RESULTS: After determining the optimal instrument settings to obtain localized thyroid ablation, the repeatability of the method was evaluated using a HIFU prototype designed specifically for human use: in 13 ewes (26 treated lobes), an average of 20 (range: 14-27) ultrasound pulses (pulse duration: 3 s) per lobe covering a mean volume of 0.5 cm3 (range: 0.3-0.7 cm3) were delivered. The ewes were sacrificed 2-5 weeks after treatment delivery. No damage to the nerves, trachea, esophagus or muscle was observed. Only 3 ewes suffered superficial skin burns. The desired thyroid lesions were obtained in 25/26 treated lobes, as demonstrated by fibrotic tissues, which replaced necrotic areas. CONCLUSION: These results obtained in the ewe model show that thyroid lesions of defined volume can be induced safely and suggest that the HIFU device is now ready for human trials.

  4. Prostate tissue ablation with MRI guided transurethral therapeutic ultrasound and intraoperative assessment of the integrity of the neurovascular bundle

    NASA Astrophysics Data System (ADS)

    Sammet, Steffen; Partanen, Ari; Yousuf, Ambereen; Wardrip, Craig; Niekrasz, Marek; Antic, Tatjana; Razmaria, Aria; Sokka, Sham; Karczmar, Gregory; Oto, Aytekin

    2017-03-01

    OBJECTIVES: Evaluation of the precision of prostate tissue ablation with MRI guided therapeuticultrasound by intraoperative objective assessment of the neurovascular bundle in canines in-vivo. METHODS: In this ongoing IACUC approved study, eight male canines were scanned in a clinical 3T Achieva MRI scanner (Philips) before, during, and after ultrasound therapy with a prototype MR-guided ultrasound therapy system (Philips). The system includes a therapy console to plan treatment, to calculate real-time temperature maps, and to control ultrasound exposures with temperature feedback. Atransurethral ultrasound applicator with eight transducer elements was used to ablate canine prostate tissue in-vivo. Ablated prostate tissue volumes were compared to the prescribed target volumes to evaluate technical effectiveness. The ablated volumes determined by MRI (T1, T2, diffusion, dynamic contrast enhanced and 240 CEM43 thermal dose maps) were compared to H&E stained histological slides afterprostatectomy. Potential nerve damage of the neurovascular bundle was objectively assessed intraoperativelyduring prostatectomy with a CaverMap Surgical Aid nerve stimulator (Blue Torch Medical Technologies). RESULTS: Transurethral MRI -guided ultrasound therapy can effectively ablate canine prostate tissue invivo. Coronal MR-imaging confirmed the correct placement of the HIFU transducer. MRI temperature maps were acquired during HIFU treatment, and subsequently used for calculating thermal dose. Prescribed target volumes corresponded to the 240 CEM43 thermal dose maps during HIFU treatment in all canines. Ablated volumes on high resolution anatomical, diffusion weighted, and contrast enhanced MR images matched corresponding histological slides after prostatectomy. MRI guidance with realtime temperature monitoring showed no damage to surrounding tissues, especially to the neurovascular bundle (assessed intra-operatively with a nerve stimulator) or to the rectum wall. CONCLUSIONS: Our study

  5. Monitoring of tissue ablation using time series of ultrasound RF data.

    PubMed

    Imani, Farhad; Wu, Mark Z; Lasso, Andras; Burdette, Everett C; Daoud, Mohammad; Fitchinger, Gabor; Abolmaesumi, Purang; Mousavi, Parvin

    2011-01-01

    This paper is the first report on the monitoring of tissue ablation using ultrasound RF echo time series. We calcuate frequency and time domain features of time series of RF echoes from stationary tissue and transducer, and correlate them with ablated and non-ablated tissue properties. We combine these features in a nonlinear classification framework and demonstrate up to 99% classification accuracy in distinguishing ablated and non-ablated regions of tissue, in areas as small as 12mm2 in size. We also demonstrate significant improvement of ablated tissue classification using RF time series compared to the conventional approach of using single RF scan lines. The results of this study suggest RF echo time series as a promising approach for monitoring ablation, and capturing the changes in the tissue microstructure as a result of heat-induced necrosis.

  6. Biophysical characterization of low-frequency ultrasound interaction with dental pulp stem cells

    PubMed Central

    2013-01-01

    Background Low-intensity ultrasound is considered an effective non-invasive therapy to stimulate hard tissue repair, in particular to accelerate delayed non-union bone fracture healing. More recently, ultrasound has been proposed as a therapeutic tool to repair and regenerate dental tissues. Our recent work suggested that low-frequency kilohertz-range ultrasound is able to interact with dental pulp cells which could have potential to stimulate dentine reparative processes and hence promote the viability and longevity of teeth. Methods In this study, the biophysical characteristics of low-frequency ultrasound transmission through teeth towards the dental pulp were explored. We conducted cell culture studies using an odontoblast-like/dental pulp cell line, MDPC-23. Half of the samples underwent ultrasound exposure while the other half underwent ‘sham treatment’ where the transducer was submerged into the medium but no ultrasound was generated. Ultrasound was applied directly to the cell cultures using a therapeutic ultrasound device at a frequency of 45 kHz with intensity settings of 10, 25 and 75 mW/cm2 for 5 min. Following ultrasound treatment, the odontoblast-like cells were detached from the culture using a 0.25% Trypsin/EDTA solution, and viable cell numbers were counted. Two-dimensional tooth models based on μ-CT 2D images of the teeth were analyzed using COMSOL as the finite element analysis platform. This was used to confirm experimental results and to demonstrate the potential theory that with the correct combination of frequency and intensity, a tooth can be repaired using small doses of ultrasound. Frequencies in the 30 kHz–1 MHz range were analyzed. For each frequency, pressure/intensity plots provided information on how the intensity changes at each point throughout the propagation path. Spatial peak temporal average (SPTA) intensity was calculated and related to existing optimal spatial average temporal average (SATA) intensity deemed effective

  7. Temperature distributions in tissues during local hyperthermia by stationary or steered beams of unfocused or focused ultrasound.

    PubMed Central

    Lele, P. P.; Parker, K. J.

    1982-01-01

    Temperature distributions resulting from insonation with stationary or steered beams of unfocused or focused ultrasound were measured in tissue-equivalent phantom, beef muscle in vitro, dog muscle mass, and transplanted murine tumours in vivo. Arrays of 4 to 6 thermocouples stepped through the volume of interest under computer control were used to measure the steady-state temperatures at 600 to 800 locations in both in vitro and in vivo experiments. The results were confirmed in spontaneous tumours in dog patients using fewer multi-thermocouple probes. Plane wave ultrasound was found to result in spatially non-uniform hyperthermia even in superficial tumours. The region of maximum temperature rise was small in extent and was situated at a depth which varied in the different models from 0.5 to 1.0 cm. Neither its location nor its extent could be varied by spatial manipulations of the transducer or by changing the insonation parameters except the ultrasonic frequency. A second region of hyperthermia was produced at depth by reflective heating if an ultrasonically reflective target, such as bone or air-containing tissue, was located below the target tissue. On the other hand, using available steered, focused ultrasound techniques, tumours (whether situated superficially or at depth) could be heated to a uniform, controllable temperature without undesirable temperature elevation in surrounding normal tissues. The use of steered, focused ultrasound permits deposition of energy to be tailored to the specific needs of each individual tumour. The small size of the focal region enables heating of tumours even when located near ultrasound reflecting targets. PMID:6950746

  8. Thermal contribution of compact bone to intervening tissue-like media exposed to planar ultrasound

    NASA Astrophysics Data System (ADS)

    Moros, Eduardo G.; Novak, Petr; Straube, William L.; Kolluri, Prashant; Yablonskiy, Dmitriy A.; Myerson, Robert J.

    2004-03-01

    The presence of bone in the ultrasound beam path raises concerns, both in diagnostic and therapeutic applications, because significant temperature elevations may be induced at nearby soft tissue-bone interfaces due the facts that ultrasound is (i) highly absorbed in bone and (ii) reflected at soft tissue-bone interfaces in various degrees depending on angle of incidence. Consequently, in ultrasonic thermal therapy, the presence of bone in the ultrasound beam path is considered a major disadvantage and it is usually avoided. However, based on clinical experience and previous theoretical studies, we hypothesized that the presence of bone in superficial unfocused ultrasound hyperthermia can actually be exploited to induce more uniform and enhanced (with respect to the no-bone situation) temperature distributions in superficial target volumes. In particular, we hypothesize that the presence of underlying bone in superficial target volume enhances temperature elevation not only by additional direct power deposition from acoustic reflection, but also from thermal diffusion from the underlying bone. Here we report laboratory results that corroborate previous computational studies and strengthen the above-stated hypothesis. Three different temperature measurement techniques, namely, thermometric (using fibre-optic temperature probes), thermographic (using an infrared camera) and magnetic resonance imaging (using proton resonance frequency shifts), were used in high-power short-exposure, and in low-power extended-exposure, experiments using a 19 mm diameter planar transducer operating at 1.0 and 3.3 MHz (frequencies of clinical relevance). The measurements were performed on three technique-specific phantoms (with and without bone inclusions) and experimental set-ups that resembled possible superficial ultrasound hyperthermia clinical situations. Results from all three techniques were in general agreement and clearly showed that significantly higher heating rates (greater

  9. Processing ultrasound backscatter to monitor high-intensity focused ultrasound (HIFU) therapy

    NASA Astrophysics Data System (ADS)

    Kaczkowski, Peter J.; Anand, Ajay; Bailey, Michael R.

    2005-09-01

    The development of new noninvasive surgical methods such as HIFU for the treatment of cancer and internal bleeding requires simultaneous development of new sensing approaches to guide, monitor, and assess the therapy. Ultrasound imaging using echo amplitude has long been used to map tissue morphology for diagnostic interpretation by the clinician. New quantitative ultrasonic methods that rely on amplitude and phase processing for tissue characterization are being developed for monitoring of ablative therapy. We have been developing the use of full wave ultrasound backscattering for real-time temperature estimation, and to image changes in tissue backscatter spectrum as therapy progresses. Both approaches rely on differential processing of the backscatter signal in time, and precise measurement of phase differences. Noise and artifacts from motion and nonstationary speckle statistics are addressed by constraining inversions for tissue parameters with physical models. We present results of HIFU experiments with static point and scanned HIFU exposures in which temperature rise can be accurately mapped using a new heat transfer equation (HTE) model-constrained inverse approach. We also present results of a recently developed spectral imaging method that elucidates microbubble-mediated nonlinearity not visible as a change in backscatter amplitude. [Work supported by Army MRMC.

  10. Development of a Multi-modal Tissue Diagnostic System Combining High Frequency Ultrasound and Photoacoustic Imaging with Lifetime Fluorescence Spectroscopy

    PubMed Central

    Sun, Yang; Stephens, Douglas N.; Park, Jesung; Sun, Yinghua; Marcu, Laura; Cannata, Jonathan M.; Shung, K. Kirk

    2010-01-01

    We report the development and validate a multi-modal tissue diagnostic technology, which combines three complementary techniques into one system including ultrasound backscatter microscopy (UBM), photoacoustic imaging (PAI), and time-resolved laser-induced fluorescence spectroscopy (TR-LIFS). UBM enables the reconstruction of the tissue microanatomy. PAI maps the optical absorption heterogeneity of the tissue associated with structure information and has the potential to provide functional imaging of the tissue. Examination of the UBM and PAI images allows for localization of regions of interest for TR-LIFS evaluation of the tissue composition. The hybrid probe consists of a single element ring transducer with concentric fiber optics for multi-modal data acquisition. Validation and characterization of the multi-modal system and ultrasonic, photoacoustic, and spectroscopic data coregistration were conducted in a physical phantom with properties of ultrasound scattering, optical absorption, and fluorescence. The UBM system with the 41 MHz ring transducer can reach the axial and lateral resolution of 30 and 65 μm, respectively. The PAI system with 532 nm excitation light from a Nd:YAG laser shows great contrast for the distribution of optical absorbers. The TR-LIFS system records the fluorescence decay with the time resolution of ~300 ps and a high sensitivity of nM concentration range. Biological phantom constructed with different types of tissues (tendon and fat) was used to demonstrate the complementary information provided by the three modalities. Fluorescence spectra and lifetimes were compared to differentiate chemical composition of tissues at the regions of interest determined by the coregistered high resolution UBM and PAI image. Current results demonstrate that the fusion of these techniques enables sequentially detection of functional, morphological, and compositional features of biological tissue, suggesting potential applications in diagnosis of tumors

  11. Development of a Multi-modal Tissue Diagnostic System Combining High Frequency Ultrasound and Photoacoustic Imaging with Lifetime Fluorescence Spectroscopy.

    PubMed

    Sun, Yang; Stephens, Douglas N; Park, Jesung; Sun, Yinghua; Marcu, Laura; Cannata, Jonathan M; Shung, K Kirk

    2008-01-01

    We report the development and validate a multi-modal tissue diagnostic technology, which combines three complementary techniques into one system including ultrasound backscatter microscopy (UBM), photoacoustic imaging (PAI), and time-resolved laser-induced fluorescence spectroscopy (TR-LIFS). UBM enables the reconstruction of the tissue microanatomy. PAI maps the optical absorption heterogeneity of the tissue associated with structure information and has the potential to provide functional imaging of the tissue. Examination of the UBM and PAI images allows for localization of regions of interest for TR-LIFS evaluation of the tissue composition. The hybrid probe consists of a single element ring transducer with concentric fiber optics for multi-modal data acquisition. Validation and characterization of the multi-modal system and ultrasonic, photoacoustic, and spectroscopic data coregistration were conducted in a physical phantom with properties of ultrasound scattering, optical absorption, and fluorescence. The UBM system with the 41 MHz ring transducer can reach the axial and lateral resolution of 30 and 65 μm, respectively. The PAI system with 532 nm excitation light from a Nd:YAG laser shows great contrast for the distribution of optical absorbers. The TR-LIFS system records the fluorescence decay with the time resolution of ~300 ps and a high sensitivity of nM concentration range. Biological phantom constructed with different types of tissues (tendon and fat) was used to demonstrate the complementary information provided by the three modalities. Fluorescence spectra and lifetimes were compared to differentiate chemical composition of tissues at the regions of interest determined by the coregistered high resolution UBM and PAI image. Current results demonstrate that the fusion of these techniques enables sequentially detection of functional, morphological, and compositional features of biological tissue, suggesting potential applications in diagnosis of tumors

  12. Low-intensity pulsed ultrasound in dentofacial tissue engineering.

    PubMed

    Tanaka, Eiji; Kuroda, Shingo; Horiuchi, Shinya; Tabata, Akira; El-Bialy, Tarek

    2015-04-01

    Oral and maxillofacial diseases affect millions of people worldwide and hence tissue engineering can be considered an interesting and clinically relevant approach to regenerate orofacial tissues after being affected by different diseases. Among several innovations for tissue regeneration, low-intensity pulsed ultrasound (LIPUS) has been used extensively in medicine as a therapeutic, operative, and diagnostic tool. LIPUS is accepted to promote bone fracture repair and regeneration. Furthermore, the effect of LIPUS on soft tissues regeneration has been paid much attention, and many studies have performed to evaluate the potential use of LIPUS to tissue engineering soft tissues. The present article provides an overview about the status of LIPUS stimulation as a tool to be used to enhance regeneration/tissue engineering. This review consists of five parts. Part 1 is a brief introduction of the acoustic description of LIPUS and mechanical action. In Part 2, biological problems in dentofacial tissue engineering are proposed. Part 3 explores biologic mechanisms of LIPUS to cells and tissues in living body. In Part 4, the effectiveness of LIPUS on cell metabolism and tissue regeneration in dentistry are summarized. Finally, Part 5 relates the possibility of clinical application of LIPUS in orthodontics. The present review brings out better understanding of the bioeffect of LIPUS therapy on orofacial tissues which is essential to the successful integration of management remedies for tissue regeneration/engineering. To develop an evidence-based approach to clinical management and treatment of orofacial degenerative diseases using LIPUS, we would like to be in full pursuit of LIPUS biotherapy. Still, there are many challenges for this relatively new strategy, but the up to date achievements using it promises to go far beyond the present possibilities.

  13. Pulsed Magneto-motive Ultrasound Imaging Using Ultrasmall Magnetic Nanoprobes

    PubMed Central

    Mehrmohammadi, Mohammad; Oh, Junghwan; Mallidi, Srivalleesha; Emelianov, Stanislav Y.

    2011-01-01

    Nano-sized particles are widely regarded as a tool to study biologic events at the cellular and molecular levels. However, only some imaging modalities can visualize interaction between nanoparticles and living cells. We present a new technique, pulsed magneto-motive ultrasound imaging, which is capable of in vivo imaging of magnetic nanoparticles in real time and at sufficient depth. In pulsed magneto-motive ultrasound imaging, an external high-strength pulsed magnetic field is applied to induce the motion within the magnetically labeled tissue and ultrasound is used to detect the induced internal tissue motion. Our experiments demonstrated a sufficient contrast between normal and iron-laden cells labeled with ultrasmall magnetic nanoparticles. Therefore, pulsed magneto-motive ultrasound imaging could become an imaging tool capable of detecting magnetic nanoparticles and characterizing the cellular and molecular composition of deep-lying structures. PMID:21439255

  14. Intrauterine photoacoustic and ultrasound imaging probe

    NASA Astrophysics Data System (ADS)

    Miranda, Christopher; Barkley, Joel; Smith, Barbara S.

    2018-04-01

    Intrauterine photoacoustic and ultrasound imaging are probe-based imaging modalities with translational potential for use in detecting endometrial diseases. This deep-tissue imaging probe design allows for the retrofitting of commercially available endometrial sampling curettes. The imaging probe presented here has a 2.92-mm diameter and approximate length of 26 cm, which allows for entry into the human endometrial cavity, making it possible to use photoacoustic imaging and high-resolution ultrasound to characterize the uterus. We demonstrate the imaging probes' ability to provide structural information of an excised pig uterus using ultrasound imaging and detect photoacoustic signals at a radial depth of 1 cm.

  15. A μCT-based investigation of the influence of tissue modulus variation, anisotropy and inhomogeneity on ultrasound propagation in trabecular bone.

    PubMed

    Pan, Wenlei; Shen, Yi; van Lenthe, G Harry

    2016-07-01

    Ultrasound propagation is widely used in the diagnosis of osteoporosis by providing information on bone mechanical quality. When it loses calcium, the tissue properties will first decrease. However, limited research about the influence of tissue properties on ultrasound propagation have been done due to the cumbersome experiment. The goal of this study was to explore the relationships between tissue modulus (Es) and speed of sound (SOS) through numerical simulations, and to study the influence of Es on the acoustical behavior in characterizing the local structural anisotropy and inhomogeneity. In this work, three-dimensional finite element (FE) simulations were performed on a cubic high-resolution (15μm) bovine trabecular bone sample (4×4×4mm(3), BV/TV=0.18) mapped from micro-computed tomography. Ultrasound excitations of 50kHz, 500kHz and 2MHz were applied in three orthogonal axes and the first arriving signal (FAS) was collected to quantify wave velocity. In this study, a strong power law relationship between Es and SOS was measured with estimated exponential index β=2.08-3.44 for proximal-distal (PD), anterior-posterior (AP) and medial-lateral (ML), respectively (all R(2)>0.95). For various Es, a positive dispersion of sound speed with respect to sound frequency was observed and the velocity dispersion magnitude (VDM) was measured. Also, with Es=15GPa in three orientations, the SOS in PD axis is 2009±120m/s, faster than that of AP (1762±106m/s) and ML (1798±132m/s) (f=2MHz) directions. Besides, the standard deviation of SOS increases with the sound frequency and the Es in all directions except for that at 50kHz. For the mechanical properties, the apparent modulus with certain Es was highest in the longitudinal direction compared with the transverse directions. It indicates that the tissue modulus combining with anisotropy and inhomogeneity has great influence on ultrasound propagation. Simulation results agree well with theoretical and experimental

  16. Development of a bedside viable ultrasound protocol to quantify appendicular lean tissue mass.

    PubMed

    Paris, Michael T; Lafleur, Benoit; Dubin, Joel A; Mourtzakis, Marina

    2017-10-01

    Ultrasound is a non-invasive and readily available tool that can be prospectively applied at the bedside to assess muscle mass in clinical settings. The four-site protocol, which images two anatomical sites on each quadriceps, may be a viable bedside method, but its ability to predict musculature has not been compared against whole-body reference methods. Our primary objectives were to (i) compare the four-site protocol's ability to predict appendicular lean tissue mass from dual-energy X-ray absorptiometry; (ii) optimize the predictability of the four-site protocol with additional anatomical muscle thicknesses and easily obtained covariates; and (iii) assess the ability of the optimized protocol to identify individuals with low lean tissue mass. This observational cross-sectional study recruited 96 university and community dwelling adults. Participants underwent ultrasound scans for assessment of muscle thickness and whole-body dual-energy X-ray absorptiometry scans for assessment of appendicular lean tissue. Ultrasound protocols included (i) the nine-site protocol, which images nine anterior and posterior muscle groups in supine and prone positions, and (ii) the four-site protocol, which images two anterior sites on each quadriceps muscle group in a supine position. The four-site protocol was strongly associated (R 2  = 0.72) with appendicular lean tissue mass, but Bland-Altman analysis displayed wide limits of agreement (-5.67, 5.67 kg). Incorporating the anterior upper arm muscle thickness, and covariates age and sex, alongside the four-site protocol, improved the association (R 2  = 0.91) with appendicular lean tissue and displayed narrower limits of agreement (-3.18, 3.18 kg). The optimized protocol demonstrated a strong ability to identify low lean tissue mass (area under the curve = 0.89). The four-site protocol can be improved with the addition of the anterior upper arm muscle thickness, sex, and age when predicting appendicular lean tissue mass

  17. Harmonic motion imaging for focused ultrasound (HMIFU): a fully integrated technique for sonication and monitoring of thermal ablation in tissues.

    PubMed

    Maleke, C; Konofagou, E E

    2008-03-21

    FUS (focused ultrasound), or HIFU (high-intensity-focused ultrasound) therapy, a minimally or non-invasive procedure that uses ultrasound to generate thermal necrosis, has been proven successful in several clinical applications. This paper discusses a method for monitoring thermal treatment at different sonication durations (10 s, 20 s and 30 s) using the amplitude-modulated (AM) harmonic motion imaging for focused ultrasound (HMIFU) technique in bovine liver samples in vitro. The feasibility of HMI for characterizing mechanical tissue properties has previously been demonstrated. Here, a confocal transducer, combining a 4.68 MHz therapy (FUS) and a 7.5 MHz diagnostic (pulse-echo) transducer, was used. The therapy transducer was driven by a low-frequency AM continuous signal at 25 Hz, producing a stable harmonic radiation force oscillating at the modulation frequency. A pulser/receiver was used to drive the pulse-echo transducer at a pulse repetition frequency (PRF) of 5.4 kHz. Radio-frequency (RF) signals were acquired using a standard pulse-echo technique. The temperature near the ablation region was simultaneously monitored. Both RF signals and temperature measurements were obtained before, during and after sonication. The resulting axial tissue displacement was estimated using one-dimensional cross correlation. When temperature at the focal zone was above 48 degrees C during heating, the coagulation necrosis occurred and tissue damage was irreversible. The HMI displacement profiles in relation to the temperature and sonication durations were analyzed. At the beginning of heating, the temperature at the focus increased sharply, while the tissue stiffness decreased resulting in higher HMI displacements. This was confirmed by an increase of 0.8 microm degrees C(-1)(r=0.93, p<.005). After sustained heating, the tissue became irreversibly stiffer, followed by an associated decrease in the HMI displacement (-0.79 microm degrees C(-1), r=-0.92, p<0.001). Repeated

  18. Modeling transversely isotropic, viscoelastic, incompressible tissue-like materials with application in ultrasound shear wave elastography

    NASA Astrophysics Data System (ADS)

    Qiang, Bo; Brigham, John C.; Aristizabal, Sara; Greenleaf, James F.; Zhang, Xiaoming; Urban, Matthew W.

    2015-02-01

    In this paper, we propose a method to model the shear wave propagation in transversely isotropic, viscoelastic and incompressible media. The targeted application is ultrasound-based shear wave elastography for viscoelasticity measurements in anisotropic tissues such as the kidney and skeletal muscles. The proposed model predicts that if the viscoelastic parameters both across and along fiber directions can be characterized as a Voigt material, then the spatial phase velocity at any angle is also governed by a Voigt material model. Further, with the aid of Taylor expansions, it is shown that the spatial group velocity at any angle is close to a Voigt type for weakly attenuative materials within a certain bandwidth. The model is implemented in a finite element code by a time domain explicit integration scheme and shear wave simulations are conducted. The results of the simulations are analyzed to extract the shear wave elasticity and viscosity for both the spatial phase and group velocities. The estimated values match well with theoretical predictions. The proposed theory is further verified by an ex vivo tissue experiment measured in a porcine skeletal muscle by an ultrasound shear wave elastography method. The applicability of the Taylor expansion to analyze the spatial velocities is also discussed. We demonstrate that the approximations from the Taylor expansions are subject to errors when the viscosities across or along the fiber directions are large or the maximum frequency considered is beyond the bandwidth defined by radii of convergence of the Taylor expansions.

  19. Ultrasound: biological effects and industrial hygiene concerns.

    PubMed

    Wiernicki, C; Karoly, W J

    1985-09-01

    Due to the increased use of high intensity ultrasonic devices, there is now a greater risk of worker exposure to ultrasonic radiation than there was in the past. Exposure to high power ultrasound may produce adverse biological effects. High power ultrasound, characterized by high intensity outputs at frequencies of 20-100 kHz, has a wide range of applications throughout industry. Future applications may involve equipment with higher energy outputs. Contact ultrasound, i.e., no airspace between the energy source and the biological tissue, is significantly more hazardous than exposure to airborne ultrasound because air transmits less than one percent of the energy. This paper discusses biological effects associated with overexposure to ultrasound, exposure standards proposed for airborne and contact ultrasound, industrial hygiene controls that can be employed to minimize exposure, and the instrumentation that is required for evaluating exposures.

  20. Non-invasive pulsed cavitational ultrasound for fetal tissue ablation: feasibility study in a fetal sheep model.

    PubMed

    Kim, Y; Gelehrter, S K; Fifer, C G; Lu, J C; Owens, G E; Berman, D R; Williams, J; Wilkinson, J E; Ives, K A; Xu, Z

    2011-04-01

    Currently available fetal intervention techniques rely on invasive procedures that carry inherent risks. A non-invasive technique for fetal intervention could potentially reduce the risk of fetal and obstetric complications. Pulsed cavitational ultrasound therapy (histotripsy) is an ablation technique that mechanically fractionates tissue at the focal region using extracorporeal ultrasound. In this study, we investigated the feasibility of using histotripsy as a non-invasive approach to fetal intervention in a sheep model. The experiments involved 11 gravid sheep at 102-129 days of gestation. Fetal kidney, liver, lung and heart were exposed to ultrasound pulses (< 10 µs) delivered by an external 1-MHz focused ultrasound transducer at a 0.2-1-kHz pulse-repetition rate and 10-16 MPa peak negative pressure. Procedures were monitored and guided by real-time ultrasound imaging. Treated organs were examined by gross and histological inspection for location and degree of tissue injury. Hyperechoic, cavitating bubble clouds were successfully generated in 19/31 (61%) treatment attempts in 27 fetal organs beneath up to 8 cm of overlying tissue and fetal bones. Histological assessment confirmed lesion locations and sizes corresponding to regions where cavitation was monitored, with no lesions found when cavitation was absent. Inability to generate cavitation was primarily associated with increased depth to target and obstructing structures such as fetal limbs. Extracorporeal histotripsy therapy successfully created targeted lesions in fetal sheep organs without significant damage to overlying structures. With further improvements, histotripsy may evolve into a viable technique for non-invasive fetal intervention procedures. Copyright © 2011 ISUOG. Published by John Wiley & Sons, Ltd.

  1. Study of Tissue Phantoms, Tissues, and Contrast Agent with the Biophotoacoustic Radar and Comparison to Ultrasound Imaging for Deep Subsurface Imaging

    NASA Astrophysics Data System (ADS)

    Alwi, R.; Telenkov, S.; Mandelis, A.; Gu, F.

    2012-11-01

    In this study, the imaging capability of our wide-spectrum frequency-domain photoacoustic (FD-PA) imaging alias "photoacoustic radar" methodology for imaging of soft tissues is explored. A practical application of the mathematical correlation processing method with relatively long (1 ms) frequency-modulated optical excitation is demonstrated for reconstruction of the spatial location of the PA sources. Image comparison with ultrasound (US) modality was investigated to see the complementarity between the two techniques. The obtained results with a phased array probe on tissue phantoms and their comparison to US images demonstrated that the FD-PA technique has strong potential for deep subsurface imaging with excellent contrast and high signal-to-noise ratio. FD-PA images of blood vessels in a human wrist and an in vivo subcutaneous tumor in a rat model are presented. As in other imaging modalities, the employment of contrast agents is desirable to improve the capability of medical diagnostics. Therefore, this study also evaluated and characterized the use of Food and Drug Administration (FDA)-approved superparamagnetic iron oxide nanoparticles (SPION) as PA contrast agents.

  2. Ultrasound skin tightening.

    PubMed

    Minkis, Kira; Alam, Murad

    2014-01-01

    Ultrasound skin tightening is a noninvasive, nonablative method that allows for energy deposition into the deep dermal and subcutaneous tissue while avoiding epidermal heating. Ultrasound coagulation is confined to arrays of 1-mm(3) zones that include the superficial musculoaponeurotic system and connective tissue. This technology gained approval from the Food and Drug Administration as the first energy-based skin "lifting" device, specifically for lifting lax tissue on the neck, submentum, and eyebrows. Ultrasound has the unique advantage of direct visualization of treated structures during treatment. Ultrasound is a safe and efficacious treatment for mild skin tightening and lifting. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. The effect of the shape and size of gold seeds irradiated with ultrasound on the bio-heat transfer in tissue.

    PubMed

    Gkigkitzis, Ioannis; Austerlitz, Carlos; Haranas, Ioannis; Campos, Diana

    2015-01-01

    The aim of this report is to propose a new methodology to treat prostate cancer with macro-rod-shaped gold seeds irradiated with ultrasound and develop a new computational method for temperature and thermal dose control of hyperthermia therapy induced by the proposed procedure. A computer code representation, based on the bio-heat diffusion equation, was developed to calculate the heat deposition and temperature elevation patterns in a gold rod and in the tissue surrounding it as a result of different therapy durations and ultrasound power simulations. The numerical results computed provide quantitative information on the interaction between high-energy ultrasound, gold seeds and biological tissues and can replicate the pattern observed in experimental studies. The effect of differences in shapes and sizes of gold rod targets irradiated with ultrasound is calculated and the heat enhancement and the bio-heat transfer in tissue are analyzed.

  4. Characterization of the Lung Parenchyma Using Ultrasound Multiple Scattering.

    PubMed

    Mohanty, Kaustav; Blackwell, John; Egan, Thomas; Muller, Marie

    2017-05-01

    The purpose of the study described here was to showcase the application of ultrasound to quantitative characterization of the micro-architecture of the lung parenchyma to predict the extent of pulmonary edema. The lung parenchyma is a highly complex and diffusive medium for which ultrasound techniques have remained qualitative. The approach presented here is based on ultrasound multiple scattering and exploits the complexity of ultrasound propagation in the lung structure. The experimental setup consisted of a linear transducer array with an 8-MHz central frequency placed in contact with the lung surface. The diffusion constant D and transport mean free path L* of the lung parenchyma were estimated by separating the incoherent and coherent intensities in the near field and measuring the growth of the incoherent diffusive halo over time. Significant differences were observed between the L* values obtained in healthy and edematous rat lungs in vivo. In the control rat lung, L* was found to be 332 μm (±48.8 μm), whereas in the edematous lung, it was 1040 μm (±90 μm). The reproducibility of the measurements of L* and D was tested in vivo and in phantoms made of melamine sponge with varying air volume fractions. Two-dimensional finite difference time domain numerical simulations were carried out on rabbit lung histology images with varying degrees of lung collapse. Significant correlations were observed between air volume fraction and L* in simulation (r = -0.9542, p < 0.0117) and sponge phantom (r = -0.9932, p < 0.0068) experiments. Ex vivo measurements of a rat lung in which edema was simulated by adding phosphate-buffered saline revealed a linear relationship between the fluid volume fraction and L*. These results illustrate the potential of methods based on ultrasound multiple scattering for the quantitative characterization of the lung parenchyma. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc

  5. Ultrasound-guided three-dimensional needle steering in biological tissue with curved surfaces

    PubMed Central

    Abayazid, Momen; Moreira, Pedro; Shahriari, Navid; Patil, Sachin; Alterovitz, Ron; Misra, Sarthak

    2015-01-01

    In this paper, we present a system capable of automatically steering a bevel-tipped flexible needle under ultrasound guidance toward a physical target while avoiding a physical obstacle embedded in gelatin phantoms and biological tissue with curved surfaces. An ultrasound pre-operative scan is performed for three-dimensional (3D) target localization and shape reconstruction. A controller based on implicit force control is developed to align the transducer with curved surfaces to assure the maximum contact area, and thus obtain an image of sufficient quality. We experimentally investigate the effect of needle insertion system parameters such as insertion speed, needle diameter and bevel angle on target motion to adjust the parameters that minimize the target motion during insertion. A fast sampling-based path planner is used to compute and periodically update a feasible path to the target that avoids obstacles. We present experimental results for target reconstruction and needle insertion procedures in gelatin-based phantoms and biological tissue. Mean targeting errors of 1.46 ± 0.37 mm, 1.29 ± 0.29 mm and 1.82 ± 0.58 mm are obtained for phantoms with inclined, curved and combined (inclined and curved) surfaces, respectively, for insertion distance of 86–103 mm. The achieved targeting errors suggest that our approach is sufficient for targeting lesions of 3 mm radius that can be detected using clinical ultrasound imaging systems. PMID:25455165

  6. Paraffin-gel tissue-mimicking material for ultrasound-guided needle biopsy phantom.

    PubMed

    Vieira, Sílvio L; Pavan, Theo Z; Junior, Jorge E; Carneiro, Antonio A O

    2013-12-01

    Paraffin-gel waxes have been investigated as new soft tissue-mimicking materials for ultrasound-guided breast biopsy training. Breast phantoms were produced with a broad range of acoustical properties. The speed of sound for the phantoms ranged from 1425.4 ± 0.6 to 1480.3 ± 1.7 m/s at room temperature. The attenuation coefficients were easily controlled between 0.32 ± 0.27 dB/cm and 2.04 ± 0.65 dB/cm at 7.5 MHz, depending on the amount of carnauba wax added to the base material. The materials do not suffer dehydration and provide adequate needle penetration, with a Young's storage modulus varying between 14.7 ± 0.2 kPa and 34.9 ± 0.3 kPa. The phantom background material possesses long-term stability and can be employed in a supine position without changes in geometry. These results indicate that paraffin-gel waxes may be promising materials for training radiologists in ultrasound biopsy procedures. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  7. Joint learning of ultrasonic backscattering statistical physics and signal confidence primal for characterizing atherosclerotic plaques using intravascular ultrasound.

    PubMed

    Sheet, Debdoot; Karamalis, Athanasios; Eslami, Abouzar; Noël, Peter; Chatterjee, Jyotirmoy; Ray, Ajoy K; Laine, Andrew F; Carlier, Stephane G; Navab, Nassir; Katouzian, Amin

    2014-01-01

    Intravascular Ultrasound (IVUS) is a predominant imaging modality in interventional cardiology. It provides real-time cross-sectional images of arteries and assists clinicians to infer about atherosclerotic plaques composition. These plaques are heterogeneous in nature and constitute fibrous tissue, lipid deposits and calcifications. Each of these tissues backscatter ultrasonic pulses and are associated with a characteristic intensity in B-mode IVUS image. However, clinicians are challenged when colocated heterogeneous tissue backscatter mixed signals appearing as non-unique intensity patterns in B-mode IVUS image. Tissue characterization algorithms have been developed to assist clinicians to identify such heterogeneous tissues and assess plaque vulnerability. In this paper, we propose a novel technique coined as Stochastic Driven Histology (SDH) that is able to provide information about co-located heterogeneous tissues. It employs learning of tissue specific ultrasonic backscattering statistical physics and signal confidence primal from labeled data for predicting heterogeneous tissue composition in plaques. We employ a random forest for the purpose of learning such a primal using sparsely labeled and noisy samples. In clinical deployment, the posterior prediction of different lesions constituting the plaque is estimated. Folded cross-validation experiments have been performed with 53 plaques indicating high concurrence with traditional tissue histology. On the wider horizon, this framework enables learning of tissue-energy interaction statistical physics and can be leveraged for promising clinical applications requiring tissue characterization beyond the application demonstrated in this paper. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Optimal conditions for tissue perforation using high intensity focused ultrasound

    NASA Astrophysics Data System (ADS)

    Mochizuki, Takashi; Kihara, Taizo; Ogawa, Kouji; Tanabe, Ryoko; Yosizawa, Shin; Umemura, Shin-ichiro; Kakimoto, Takashi; Yamashita, Hiromasa; Chiba, Toshio

    2012-10-01

    To perforate tissue lying deep part in body, a large size transducer was assembled by combining four spherical-shaped transducers, and the optimal conditions for tissue perforation have studied using ventricle muscle of chicken as a target. The ex vivo experiments showed that ventricle muscle was successfully perforated both when it was exposed to High Intensity Focused Ultrasound (HIFU) directly and when it was exposed to HIFU through atrial muscle layer. Moreover, it was shown that calculated acoustic power distributions are well similar to the perforation patterns, and that the acoustic energy distributes very complexly near the focus. Lastly, perforation on the living rabbit bladder wall was demonstrated as a preliminary in vivo experiment.

  9. In vivo quantification of motion in liver parenchyma and its application in shistosomiasis tissue characterization

    NASA Astrophysics Data System (ADS)

    Badawi, Ahmed M.; Hashem, Ahmed M.; Youssef, Abou-Bakr M.; Abdel-Wahab, Mohamed F.

    1995-03-01

    Schistosomiasis is a major problem in Egypt, despite an active control program it is estimated to exist in about 1/3 of the population. Deposition of less functioning fibrous tissues in the liver is the major contributory factor to the hepatic pathology. Fibrous tissues consist of a complex array of connective matrix material and a variety of collagen isotopes. As a result of an increased stromal density (collagen content), the parenchyma became more ectogenic and less elastic (hard). In this study we investigated the effect of cardiac mechanical impulses from the heart and aorta on the kinetics of the liver parenchyma. Under conditions of controlled patient movements and suspended respiration, a 30 frame per second of 588 X 512 ultrasound images (cineloop, 32 pels per cm) are captured from an aTL ultrasound machine then digitized. The image acquisition is triggered by the R wave of the ECG of the patient. The motion that has a forced oscillation form in the liver parenchyma is quantified by tracking of small box (20 - 30 pels) in 16 directions for all the successive 30 frames. The tracking was done using block matching techniques (the max correlation between boxes in time, frequency domains, and the minimum SAD (sum absolute difference) between boxes). The motion is quantified for many regions at different positions within the liver parenchyma for 80 cases of variable degrees of schisto., cirrhotic livers, and for normal livers. The velocity of the tissue is calculated from the displacement (quantified motion), time between frames, and the scan time for the ultrasound scanner. We found that the motion in liver parenchyma is small in the order of very few millimeters, and the attenuation of the mechanical wave for one ECG cycle is higher in the schisto. and cirrhotic livers than in the normal ones. Finally quantification of motion in liver parenchyma due to cardiac impulses under controlled limb movement and respiration may be of value in the characterization of

  10. [Control parameters for high-intensity focused ultrasound (HIFU) for tissue ablation in the ex-vivo kidney].

    PubMed

    Köhrmann, K U; Michel, M S; Steidler, A; Marlinghaus, E H; Kraut, O; Alken, P

    2002-01-01

    Therapeutic application of contactless thermoablation by high-intensity focused ultrasound (HIFU) demands precise physical definition of focal size and determination of control parameters. Our objective was to define the focal expansion of a new ultrasound generator and to evaluate the extent of tissue ablation under variable generator parameters in an ex vivo model. Axial and transversal distribution of ultrasound intensity in the area of the focal point was calculated by needle hydrophone. The extent of tissue necrosis after focused ultrasound was assessed in an ex vivo porcine kidney model applying generator power up to 400 Watt and pulse duration up to 8 s. The measurement of field distribution revealed a physical focal size of 32 x 4 mm. Sharp demarcation between coagulation necrosis and intact tissue was observed in our tissue model. Lesion size was kept under control by variation of both generator power and impulse duration. At a constant impulse duration of 2 s, generator power of 100 W remained below the threshold doses for induction of a reproducible lesion. An increase in power up to 200 W and 400 W, respectively, induced lesions with diameters up to 11.2 x 3 mm. Constant total energy (generator power x impulse duration) led to a larger lesion size under higher generator power. It is possible to induce sharply demarcated, reproducible thermonecrosis, which can be regulated by generator power and impulse duration, by means of a cylindrical piezo element with a paraboloid reflector at a focal distance of 10 cm. The variation of generator power was an especially suitable control parameter for the inducement of a defined lesion size.

  11. High-resolution harmonic motion imaging (HR-HMI) for tissue biomechanical property characterization

    PubMed Central

    Ma, Teng; Qian, Xuejun; Chiu, Chi Tat; Yu, Mingyue; Jung, Hayong; Tung, Yao-Sheng; Shung, K. Kirk

    2015-01-01

    appears to be a promising ultrasound-only technology for characterizing tissue biomechanical properties at the microstructural level to improve the image-based diseases diagnosis in multiple clinical applications. PMID:25694960

  12. High-resolution harmonic motion imaging (HR-HMI) for tissue biomechanical property characterization.

    PubMed

    Ma, Teng; Qian, Xuejun; Chiu, Chi Tat; Yu, Mingyue; Jung, Hayong; Tung, Yao-Sheng; Shung, K Kirk; Zhou, Qifa

    2015-02-01

    Elastography, capable of mapping the biomechanical properties of biological tissues, serves as a useful technique for clinicians to perform disease diagnosis and determine stages of many diseases. Many acoustic radiation force (ARF) based elastography, including acoustic radiation force impulse (ARFI) imaging and harmonic motion imaging (HMI), have been developed to remotely assess the elastic properties of tissues. However, due to the lower operating frequencies of these approaches, their spatial resolutions are insufficient for revealing stiffness distribution on small scale applications, such as cancerous tumor margin detection, atherosclerotic plaque composition analysis and ophthalmologic tissue characterization. Though recently developed ARF-based optical coherence elastography (OCE) methods open a new window for the high resolution elastography, shallow imaging depths significantly limit their usefulness in clinics. The aim of this study is to develop a high-resolution HMI method to assess the tissue biomechanical properties with acceptable field of view (FOV) using a 4 MHz ring transducer for efficient excitation and a 40 MHz needle transducer for accurate detection. Under precise alignment of two confocal transducers, the high-resolution HMI system has a lateral resolution of 314 µm and an axial resolution of 
147 µm with an effective FOV of 2 mm in depth. The performance of this high resolution imaging system was validated on the agar-based tissue mimicking phantoms with different stiffness distributions. These data demonstrated the imaging system's improved resolution and sensitivity on differentiating materials with varying stiffness. In addition, ex vivo imaging of a human atherosclerosis coronary artery demonstrated the capability of high resolution HMI in identifying layer-specific structures and characterizing atherosclerotic plaques based on their stiffness differences. All together high resolution HMI appears to be a promising ultrasound

  13. Medical ultrasound: imaging of soft tissue strain and elasticity

    PubMed Central

    Wells, Peter N. T.; Liang, Hai-Dong

    2011-01-01

    After X-radiography, ultrasound is now the most common of all the medical imaging technologies. For millennia, manual palpation has been used to assist in diagnosis, but it is subjective and restricted to larger and more superficial structures. Following an introduction to the subject of elasticity, the elasticity of biological soft tissues is discussed and published data are presented. The basic physical principles of pulse-echo and Doppler ultrasonic techniques are explained. The history of ultrasonic imaging of soft tissue strain and elasticity is summarized, together with a brief critique of previously published reviews. The relevant techniques—low-frequency vibration, step, freehand and physiological displacement, and radiation force (displacement, impulse, shear wave and acoustic emission)—are described. Tissue-mimicking materials are indispensible for the assessment of these techniques and their characteristics are reported. Emerging clinical applications in breast disease, cardiology, dermatology, gastroenterology, gynaecology, minimally invasive surgery, musculoskeletal studies, radiotherapy, tissue engineering, urology and vascular disease are critically discussed. It is concluded that ultrasonic imaging of soft tissue strain and elasticity is now sufficiently well developed to have clinical utility. The potential for further research is examined and it is anticipated that the technology will become a powerful mainstream investigative tool. PMID:21680780

  14. Determining temperature distribution in tissue in the focal plane of the high (>100 W/cm(2)) intensity focused ultrasound beam using phase shift of ultrasound echoes.

    PubMed

    Karwat, Piotr; Kujawska, Tamara; Lewin, Peter A; Secomski, Wojciech; Gambin, Barbara; Litniewski, Jerzy

    2016-02-01

    In therapeutic applications of High Intensity Focused Ultrasound (HIFU) the guidance of the HIFU beam and especially its focal plane is of crucial importance. This guidance is needed to appropriately target the focal plane and hence the whole focal volume inside the tumor tissue prior to thermo-ablative treatment and beginning of tissue necrosis. This is currently done using Magnetic Resonance Imaging that is relatively expensive. In this study an ultrasound method, which calculates the variations of speed of sound in the locally heated tissue volume by analyzing the phase shifts of echo-signals received by an ultrasound scanner from this very volume is presented. To improve spatial resolution of B-mode imaging and minimize the uncertainty of temperature estimation the acoustic signals were transmitted and received by 8 MHz linear phased array employing Synthetic Transmit Aperture (STA) technique. Initially, the validity of the algorithm developed was verified experimentally in a tissue-mimicking phantom heated from 20.6 to 48.6 °C. Subsequently, the method was tested using a pork loin sample heated locally by a 2 MHz pulsed HIFU beam with focal intensity ISATA of 129 W/cm(2). The temperature calibration of 2D maps of changes in the sound velocity induced by heating was performed by comparison of the algorithm-determined changes in the sound velocity with the temperatures measured by thermocouples located in the heated tissue volume. The method developed enabled ultrasound temperature imaging of the heated tissue volume from the very inception of heating with the contrast-to-noise ratio of 3.5-12 dB in the temperature range 21-56 °C. Concurrently performed, conventional B-mode imaging revealed CNR close to zero dB until the temperature reached 50 °C causing necrosis. The data presented suggest that the proposed method could offer an alternative to MRI-guided temperature imaging for prediction of the location and extent of the thermal lesion prior to applying the

  15. Effects of tissue stiffness, ultrasound frequency, and pressure on histotripsy-induced cavitation bubble behavior.

    PubMed

    Vlaisavljevich, Eli; Lin, Kuang-Wei; Warnez, Matthew T; Singh, Rahul; Mancia, Lauren; Putnam, Andrew J; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2015-03-21

    Histotripsy is an ultrasound ablation method that controls cavitation to fractionate soft tissue. In order to effectively fractionate tissue, histotripsy requires cavitation bubbles to rapidly expand from nanometer-sized initial nuclei into bubbles often larger than 50 µm. Using a negative pressure high enough to initiate a bubble cloud and expand bubbles to a sufficient size, histotripsy has been shown capable of completely fractionating soft tissue into acelluar debris resulting in effective tissue removal. Previous work has shown that the histotripsy process is affected by tissue mechanical properties with stiffer tissues showing increased resistance to histotripsy fractionation, which we hypothesize to be caused by impeded bubble expansion in stiffer tissues. In this study, the hypothesis that increases in tissue stiffness cause a reduction in bubble expansion was investigated both theoretically and experimentally. High speed optical imaging was used to capture a series of time delayed images of bubbles produced inside mechanically tunable agarose tissue phantoms using histotripsy pulses produced by 345 kHz, 500 kHz, 1.5 MHz, and 3 MHz histotripsy transducers. The results demonstrated a significant decrease in maximum bubble radius (Rmax) and collapse time (tc) with both increasing Young's modulus and increasing frequency. Furthermore, results showed that Rmax was not increased by raising the pressure above the intrinsic threshold. Finally, this work demonstrated the potential of using a dual-frequency strategy to modulate the expansion of histotripsy bubbles. Overall, the results of this study improve our understanding of how tissue stiffness and ultrasound parameters affect histotripsy-induced bubble behavior and provide a rational basis to tailor acoustic parameters for treatment of the specific tissues of interest.

  16. Effects of tissue stiffness, ultrasound frequency, and pressure on histotripsy-induced cavitation bubble behavior

    NASA Astrophysics Data System (ADS)

    Vlaisavljevich, Eli; Lin, Kuang-Wei; Warnez, Matthew T.; Singh, Rahul; Mancia, Lauren; Putnam, Andrew J.; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2015-03-01

    Histotripsy is an ultrasound ablation method that controls cavitation to fractionate soft tissue. In order to effectively fractionate tissue, histotripsy requires cavitation bubbles to rapidly expand from nanometer-sized initial nuclei into bubbles often larger than 50 µm. Using a negative pressure high enough to initiate a bubble cloud and expand bubbles to a sufficient size, histotripsy has been shown capable of completely fractionating soft tissue into acelluar debris resulting in effective tissue removal. Previous work has shown that the histotripsy process is affected by tissue mechanical properties with stiffer tissues showing increased resistance to histotripsy fractionation, which we hypothesize to be caused by impeded bubble expansion in stiffer tissues. In this study, the hypothesis that increases in tissue stiffness cause a reduction in bubble expansion was investigated both theoretically and experimentally. High speed optical imaging was used to capture a series of time delayed images of bubbles produced inside mechanically tunable agarose tissue phantoms using histotripsy pulses produced by 345 kHz, 500 kHz, 1.5 MHz, and 3 MHz histotripsy transducers. The results demonstrated a significant decrease in maximum bubble radius (Rmax) and collapse time (tc) with both increasing Young’s modulus and increasing frequency. Furthermore, results showed that Rmax was not increased by raising the pressure above the intrinsic threshold. Finally, this work demonstrated the potential of using a dual-frequency strategy to modulate the expansion of histotripsy bubbles. Overall, the results of this study improve our understanding of how tissue stiffness and ultrasound parameters affect histotripsy-induced bubble behavior and provide a rational basis to tailor acoustic parameters for treatment of the specific tissues of interest.

  17. Real-Time Monitoring Of Regional Tissue Elasticity During FUS Focused Ultrasound Therapy Using Harmonic Motion Imaging

    NASA Astrophysics Data System (ADS)

    Maleke, Caroline; Pernot, Mathieu; Konofagou, Elisa

    2006-05-01

    The feasibility of the Harmonic Motion Imaging (HMI) technique for simultaneous monitoring and generation of focused ultrasound therapy using two separate focused ultrasound transducer elements has previously been shown. In this study, a new HMI technique is described that images tissue displacement induced by a harmonic radiation force induced using a single focused ultrasound element. First, wave propagation simulation models were used to compare the use of a single Amplitude-Modulated (AM) focused beam versus two overlapping focused beams as previously implemented for HMI. Simulation results indicated that, unlike in the two-beam configuration, the AM beam produced a consistent, stable focus for the applied harmonic radiation force. The AM beam thus offered the unique advantage of sustaining the application of the spatially-invariant radiation force. Experiments were then performed on gelatin gel phantoms and tissue in vitro bovine liver. The radiation force was generated by a 4.68 MHz focused transducer using a low-frequency Amplitude-Modulated (AM) RF-signal. RF data were acquired at 7.5 MHz with a PRF of 6.5 kHz and displacements were estimated using a 1D cross-correlation algorithm on successive RF signals. Furthermore, taking advantage of the real-time capability of our method, the change in the elastic properties was monitored during focused ultrasound (FUS) ablation of tissue in vitro bovine liver. Based on the harmonic displacements, their temperature-dependence, and the calculated acoustic radiation force, the change in the relative, regional stiffness could be monitored during heating and ablation, both using the displacement amplitude and the resulting phase shift change of the displacement relative to the radiation force temporal profile. In conclusion, the feasibility of using an AM radiation force for HMI for simultaneous monitoring and treatment during ultrasound therapy was demonstrated in phantoms and tissues in vitro. Further study of this

  18. Stable phantom materials for ultrasound and optical imaging.

    PubMed

    Cabrelli, Luciana C; Pelissari, Pedro I B G B; Deana, Alessandro M; Carneiro, Antonio A O; Pavan, Theo Z

    2017-01-21

    Phantoms mimicking the specific properties of biological tissues are essential to fully characterize medical devices. Water-based materials are commonly used to manufacture phantoms for ultrasound and optical imaging techniques. However, these materials have disadvantages, such as easy degradation and low temporal stability. In this study, we propose an oil-based new tissue-mimicking material for ultrasound and optical imaging, with the advantage of presenting low temporal degradation. A styrene-ethylene/butylene-styrene (SEBS) copolymer in mineral oil samples was made varying the SEBS concentration between 5%-15%, and low-density polyethylene (LDPE) between 0%-9%. Acoustic properties, such as the speed of sound and the attenuation coefficient, were obtained using frequencies ranging from 1-10 MHz, and were consistent with that of soft tissues. These properties were controlled varying SEBS and LDPE concentration. To characterize the optical properties of the samples, the diffuse reflectance and transmittance were measured. Scattering and absorption coefficients ranging from 400 nm-1200 nm were calculated for each compound. SEBS gels are a translucent material presenting low optical absorption and scattering coefficients in the visible region of the spectrum, but the presence of LDPE increased the turbidity. Adding LDPE increased the absorption and scattering of the phantom materials. Ultrasound and photoacoustic images of a heterogeneous phantom made of LDPE/SEBS containing a spherical inclusion were obtained. Annatto dye was added to the inclusion to enhance the optical absorbance. The results suggest that copolymer gels are promising for ultrasound and optical imaging, making them also potentially useful for photoacoustic imaging.

  19. Stable phantom materials for ultrasound and optical imaging

    NASA Astrophysics Data System (ADS)

    Cabrelli, Luciana C.; Pelissari, Pedro I. B. G. B.; Deana, Alessandro M.; Carneiro, Antonio A. O.; Pavan, Theo Z.

    2017-01-01

    Phantoms mimicking the specific properties of biological tissues are essential to fully characterize medical devices. Water-based materials are commonly used to manufacture phantoms for ultrasound and optical imaging techniques. However, these materials have disadvantages, such as easy degradation and low temporal stability. In this study, we propose an oil-based new tissue-mimicking material for ultrasound and optical imaging, with the advantage of presenting low temporal degradation. A styrene-ethylene/butylene-styrene (SEBS) copolymer in mineral oil samples was made varying the SEBS concentration between 5%-15%, and low-density polyethylene (LDPE) between 0%-9%. Acoustic properties, such as the speed of sound and the attenuation coefficient, were obtained using frequencies ranging from 1-10 MHz, and were consistent with that of soft tissues. These properties were controlled varying SEBS and LDPE concentration. To characterize the optical properties of the samples, the diffuse reflectance and transmittance were measured. Scattering and absorption coefficients ranging from 400 nm-1200 nm were calculated for each compound. SEBS gels are a translucent material presenting low optical absorption and scattering coefficients in the visible region of the spectrum, but the presence of LDPE increased the turbidity. Adding LDPE increased the absorption and scattering of the phantom materials. Ultrasound and photoacoustic images of a heterogeneous phantom made of LDPE/SEBS containing a spherical inclusion were obtained. Annatto dye was added to the inclusion to enhance the optical absorbance. The results suggest that copolymer gels are promising for ultrasound and optical imaging, making them also potentially useful for photoacoustic imaging.

  20. High-intensity-focused-ultrasound (HIFU) induced homeostasis and tissue ablation

    NASA Astrophysics Data System (ADS)

    Chauhan, Sunita; Michel, M. S.; Alken, Peter; Kohrmann, K. U.; Haecker, Axel

    2003-06-01

    At high intensity levels, ultrasound energy focused into remote tissue targets in human body has shown to produce thermal necrosis in circumscribed regions with sub-millimeter accuracy. The non-invasive modality known as HIFU has enormous potential for thermal ablation of cancers/tumors of the human body without any adverse effects in the surrounding normal tissue. In this paper, empirical results for parametric assessment and interdependence of several exposure variables are presented for producing thermal necrosis as well as hemostasis. Multiple HIFU transducers in selective spatial configuration have been deployed using a suitably designed experiemntal harness, with and without motorized jig scanning. The pre-planning and on-line procedure for treatment and specified instrumentation is described. Custom designed 25mm aperture HIFU probes resonating at 2 MHz focused at 64 and 80 mm are used. Results have been obtained in ex-vivo animal tissue and in vitro biological phantoms for hemostasis.

  1. Ultrasound measurement apparatus for liquids characterization

    NASA Astrophysics Data System (ADS)

    Vieira, R. C.; Costa-Felix, R. P. B.

    2018-03-01

    The present paper discloses the validation of an experimental ultrasound apparatus and method for liquids characterization. The research aims to stablish a simple, reliable, accurate and portable way to identify contaminants in hydrocarbon substances, such as adulteration in gasoline. The results depicted so far demonstrated a general uncertainty of speed of sound assessment less than 10 m s-1, and distance accuracy of less than 1%. Those figures are good enough for an in-site device to evaluate possible contamination of fuels or other liquids.

  2. Mechanical Model Analysis for Quantitative Evaluation of Liver Fibrosis Based on Ultrasound Tissue Elasticity Imaging

    NASA Astrophysics Data System (ADS)

    Shiina, Tsuyoshi; Maki, Tomonori; Yamakawa, Makoto; Mitake, Tsuyoshi; Kudo, Masatoshi; Fujimoto, Kenji

    2012-07-01

    Precise evaluation of the stage of chronic hepatitis C with respect to fibrosis has become an important issue to prevent the occurrence of cirrhosis and to initiate appropriate therapeutic intervention such as viral eradication using interferon. Ultrasound tissue elasticity imaging, i.e., elastography can visualize tissue hardness/softness, and its clinical usefulness has been studied to detect and evaluate tumors. We have recently reported that the texture of elasticity image changes as fibrosis progresses. To evaluate fibrosis progression quantitatively on the basis of ultrasound tissue elasticity imaging, we introduced a mechanical model of fibrosis progression and simulated the process by which hepatic fibrosis affects elasticity images and compared the results with those clinical data analysis. As a result, it was confirmed that even in diffuse diseases like chronic hepatitis, the patterns of elasticity images are related to fibrous structural changes caused by hepatic disease and can be used to derive features for quantitative evaluation of fibrosis stage.

  3. Non-invasive assessment of negative pressure wound therapy using high frequency diagnostic ultrasound: oedema reduction and new tissue accumulation.

    PubMed

    Young, Stephen R; Hampton, Sylvie; Martin, Robin

    2013-08-01

    Tissue oedema plays an important role in the pathology of chronic and traumatic wounds. Negative pressure wound therapy (NPWT) is thought to contribute to active oedema reduction, yet few studies have showed this effect. In this study, high frequency diagnostic ultrasound at 20 MHz with an axial resolution of 60 µm was used to assess the effect of NPWT at - 80 mmHg on pressure ulcers and the surrounding tissue. Wounds were monitored in four patients over a 3-month period during which changes in oedema and wound bed thickness (granulation tissue) were measured non-invasively. The results showed a rapid reduction of periwound tissue oedema in all patients with levels falling by a mean of 43% after 4 days of therapy. A 20% increase in the thickness of the wound bed was observed after 7 days due to new granulation tissue formation. Ultrasound scans through the in situ gauze NPWT filler also revealed the existence of macrodeformation in the tissue produced by the negative pressure. These preliminary studies suggest that non-invasive assessment using high frequency diagnostic ultrasound could be a valuable tool in clinical studies of NPWT. © 2012 The Authors. International Wound Journal © 2012 John Wiley & Sons Ltd and Medicalhelplines.com Inc.

  4. Numerical simulation of ultrasound-thermotherapy combining nonlinear wave propagation with broadband soft-tissue absorption.

    PubMed

    Ginter, S

    2000-07-01

    Ultrasound (US) thermotherapy is used to treat tumours, located deep in human tissue, by heat. It features by the application of high intensity focused ultrasound (HIFU), high local temperatures of about 90 degrees C and short treating time of a few seconds. Dosage of the therapy remains a problem. To get it under control, one has to know the heat source, i.e. the amount of absorbed US power, which shows nonlinear influences. Therefore, accurate simulations are essential. In this paper, an improved simulation model is introduced which enables accurate investigations of US thermotherapy. It combines nonlinear US propagation effects, which lead to generation of higher harmonics, with a broadband frequency-power law absorption typical for soft tissue. Only the combination of both provides a reliable calculation of the generated heat. Simulations show the influence of nonlinearities and broadband damping for different source signals on the absorbed US power density distribution.

  5. Acoustic characterization of Thiel liver for magnetic resonance-guided focused ultrasound treatment.

    PubMed

    Karakitsios, Ioannis; Joy, Joyce; Mihcin, Senay; Melzer, Andreas

    2017-04-01

    The purpose of this work was to measure the essential acoustic parameters, i.e., acoustic impedance, reflection coefficient, attenuation coefficient, of Thiel embalmed human and animal liver. The Thiel embalmed tissue can be a promising, pre-clinical model to study liver treatment with Magnetic Resonance-guided Focused Ultrasound (MRgFUS). Using a single-element transducer and the contact pulse-echo method, the acoustic parameters, i.e., acoustic impedance, reflection coefficient and attenuation coefficient of Thiel embalmed human and animal liver were measured. The Thiel embalmed livers had higher impedance, similar reflection and lower attenuation compared to the fresh tissue. Embalming liver with Thiel fluid affects its acoustic properties. During MRgFUS sonication of a Thiel organ, more focused ultrasound (FUS) will be backscattered by the organ, and higher acoustic powers are required to reach coagulation levels (temperatures >56 °C).

  6. Optical fiber sensor for the detection of laser-generated ultrasound in arterial tissues

    NASA Astrophysics Data System (ADS)

    Beard, Paul C.; Mills, Timothy N.

    1995-02-01

    Theoretical and experimental aspects of an extrinsic Fabry-Perot optical fiber ultrasound sensor for use in a photoacoustic-guided laser angioplasty system are described. The sensor has been characterized using laser generated thermoelastic waves as a source of wideband ultrasound. A system sensitivity of 25 mV/MPa and an acoustic noise floor of 2 Pa/Hz1/2 are reported using a transparent polymer film as the sensing element. The system demonstrates the required bandwidth for sensing thermoelastic waves containing frequency components up to 20 MHz.

  7. Ultrasound microscope: the new field in ultrasound diagnostics

    NASA Astrophysics Data System (ADS)

    Novyc'kyy, Victor V.; Lushchyk, Ulyana B.

    2001-06-01

    A device which is a new stage in the development of medical equipment has been developed. The device works as an ultrasound microscope in vivo and provides 4 up to 32 colored histological image. It gives possibility to estimate tissue acoustic density with the help of 4 up to 32 gradation coloring different tissues and enables tissue microcirculation visualization. With the help of the device a doctor can objectify fatty hepatitis and cirrhosis, edema of different organs and tissues as well as microcirculation in organs and tissues (e.g. muscles, myocard and bone system). New promising applications of ultrasound systems in diagnostics and for choosing individual treatment tactics, with pathogenesis being taken into account, may be developed with the help of the device.

  8. Abdominal Tumor Characterization and Recognition Using Superior-Order Cooccurrence Matrices, Based on Ultrasound Images

    PubMed Central

    Mitrea, Delia; Mitrea, Paulina; Nedevschi, Sergiu; Badea, Radu; Lupsor, Monica; Socaciu, Mihai; Golea, Adela; Hagiu, Claudia; Ciobanu, Lidia

    2012-01-01

    The noninvasive diagnosis of the malignant tumors is an important issue in research nowadays. Our purpose is to elaborate computerized, texture-based methods for performing computer-aided characterization and automatic diagnosis of these tumors, using only the information from ultrasound images. In this paper, we considered some of the most frequent abdominal malignant tumors: the hepatocellular carcinoma and the colonic tumors. We compared these structures with the benign tumors and with other visually similar diseases. Besides the textural features that proved in our previous research to be useful in the characterization and recognition of the malignant tumors, we improved our method by using the grey level cooccurrence matrix and the edge orientation cooccurrence matrix of superior order. As resulted from our experiments, the new textural features increased the malignant tumor classification performance, also revealing visual and physical properties of these structures that emphasized the complex, chaotic structure of the corresponding tissue. PMID:22312411

  9. Photoacoustic characterization of human ovarian tissue

    NASA Astrophysics Data System (ADS)

    Aguirre, Andres; Ardeshirpour, Yasaman; Sanders, Mary M.; Brewer, Molly; Zhu, Quing

    2010-02-01

    Ovarian cancer has a five-year survival rate of only 30%, which represents the highest mortality of all gynecologic cancers. The reason for that is that the current imaging techniques are not capable of detecting ovarian cancer early. Therefore, new imaging techniques, like photoacoustic imaging, that can provide functional and molecular contrasts are needed for improving the specificity of ovarian cancer detection and characterization. Using a coregistered photoacoustic and ultrasound imaging system we have studied thirty-one human ovaries ex vivo, including normal and diseased. In order to compare the photoacoustic imaging results from all the ovaries, a new parameter using the RF data has been derived. The preliminary results show higher optical absorption for abnormal and malignant ovaries than for normal postmenopausal ones. To estimate the quantitative optical absorption properties of the ovaries, additional ultrasound-guided diffuse optical tomography images have been acquired. Good agreement between the two techniques has been observed. These results demonstrate the potential of a co-registered photoacoustic and ultrasound imaging system for the diagnosis of ovarian cancer.

  10. Boiling histotripsy lesion characterization on a clinical magnetic resonance imaging-guided high intensity focused ultrasound system

    PubMed Central

    Eranki, Avinash; Farr, Navid; Partanen, Ari; V. Sharma, Karun; Chen, Hong; Rossi, Christopher T.; Kothapalli, Satya V. V. N.; Oetgen, Matthew; Kim, AeRang; H. Negussie, Ayele; Woods, David; J. Wood, Bradford; C. W. Kim, Peter; S. Yarmolenko, Pavel

    2017-01-01

    Purpose High intensity focused ultrasound (HIFU) is a non-invasive therapeutic technique that can thermally ablate tumors. Boiling histotripsy (BH) is a HIFU approach that can emulsify tissue in a few milliseconds. Lesion volume and temperature effects for different BH sonication parameters are currently not well characterized. In this work, lesion volume, temperature distribution, and area of lethal thermal dose were characterized for varying BH sonication parameters in tissue-mimicking phantoms (TMP) and demonstrated in ex vivo tissues. Methods The following BH sonication parameters were varied using a clinical MR-HIFU system (Sonalleve V2, Philips, Vantaa, Finland): acoustic power, number of cycles/pulse, total sonication time, and pulse repetition frequency (PRF). A 3×3×3 pattern was sonicated inside TMP’s and ex vivo tissues. Post sonication, lesion volumes were quantified using 3D ultrasonography and temperature and thermal dose distributions were analyzed offline. Ex vivo tissues were sectioned and stained with H&E post sonication to assess tissue damage. Results Significant increase in lesion volume was observed while increasing the number of cycles/pulse and PRF. Other sonication parameters had no significant effect on lesion volume. Temperature full width at half maximum at the end of sonication increased significantly with all parameters except total sonication time. Positive correlation was also found between lethal thermal dose and lesion volume for all parameters except number of cycles/pulse. Gross pathology of ex vivo tissues post sonication displayed either completely or partially damaged tissue at the focal region. Surrounding tissues presented sharp boundaries, with little or no structural damage to adjacent critical structures such as bile duct and nerves. Conclusion Our characterization of effects of HIFU sonication parameters on the resulting lesion demonstrates the ability to control lesion morphologic and thermal characteristics with a

  11. Thermal fixation of swine liver tissue after magnetic resonance-guided high-intensity focused ultrasound ablation.

    PubMed

    Courivaud, Frédéric; Kazaryan, Airazat M; Lund, Alice; Orszagh, Vivian C; Svindland, Aud; Marangos, Irina Pavlik; Halvorsen, Per Steinar; Jebsen, Peter; Fosse, Erik; Hol, Per Kristian; Edwin, Bjørn

    2014-07-01

    The aim of this study was to investigate experimental conditions for efficient and controlled in vivo liver tissue ablation by magnetic resonance (MR)-guided high-intensity focused ultrasound (HIFU) in a swine model, with the ultimate goal of improving clinical treatment outcome. Histological changes were examined both acutely (four animals) and 1 wk after treatment (five animals). Effects of acoustic power and multiple sonication cycles were investigated. There was good correlation between target size and observed ablation size by thermal dose calculation, post-procedural MR imaging and histopathology, when temperature at the focal point was kept below 90°C. Structural histopathology investigations revealed tissue thermal fixation in ablated regions. In the presence of cavitation, mechanical tissue destruction occurred, resulting in an ablation larger than the target. Complete extra-corporeal MR-guided HIFU ablation in the liver is feasible using high acoustic power. Nearby large vessels were preserved, which makes MR-guided HIFU promising for the ablation of liver tumors adjacent to large veins. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  12. Ultrasound in Radiology: from Anatomic, Functional, Molecular Imaging to Drug Delivery and Image-Guided Therapy

    PubMed Central

    Klibanov, Alexander L.; Hossack, John A.

    2015-01-01

    During the past decade, ultrasound has expanded medical imaging well beyond the “traditional” radiology setting - a combination of portability, low cost and ease of use makes ultrasound imaging an indispensable tool for radiologists as well as for other medical professionals who need to obtain imaging diagnosis or guide a therapeutic intervention quickly and efficiently. Ultrasound combines excellent ability for deep penetration into soft tissues with very good spatial resolution, with only a few exceptions (i.e. those involving overlying bone or gas). Real-time imaging (up to hundreds and thousands frames per second) enables guidance of therapeutic procedures and biopsies; characterization of the mechanical properties of the tissues greatly aids with the accuracy of the procedures. The ability of ultrasound to deposit energy locally brings about the potential for localized intervention encompassing: tissue ablation, enhancing penetration through the natural barriers to drug delivery in the body and triggering drug release from carrier micro- and nanoparticles. The use of microbubble contrast agents brings the ability to monitor and quantify tissue perfusion, and microbubble targeting with ligand-decorated microbubbles brings the ability to obtain molecular biomarker information, i.e., ultrasound molecular imaging. Overall, ultrasound has become the most widely used imaging modality in modern medicine; it will continue to grow and expand. PMID:26200224

  13. A Necrotizing Fasciitis Fake Out on Point-of-Care Ultrasound-Watch the Shadow.

    PubMed

    Thom, Christopher; Warlaumont, Mary

    2017-04-01

    Point-of-care ultrasound has an increasing role in characterizing soft-tissue infections and has been described previously in the evaluation of necrotizing fasciitis (NF). The identification of air within the soft tissues can be very suggestive of NF in the correct clinical context. A 78-year-old male presented to the emergency department with extensive lower-extremity redness and edema. A point-of-care ultrasound revealed hyperechoic areas within the soft tissues consistent with air, and the patient was taken to surgery and found to have NF. A 60-year-old female presented to the emergency department with physical examination findings consistent with severe cellulitis and associated sepsis. A point-of-care ultrasound revealed hyperechoic areas within the soft tissue that were very similar to the prior case. An emergent surgical consultation was placed due to concern for soft-tissue air and NF. However, these hyperechoic areas were found to be subcutaneous calcifications on subsequent imaging. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Air within the soft tissue is easy to identify on point-of-care ultrasound and can expedite surgical evaluation in cases of suspected NF. Calcifications can mimic the appearance of air on ultrasound and the distinction between these objects can often be made based on the echotexture of the posterior acoustic shadow. Attention to the posterior acoustic shadow can facilitate correct identification of various structures and pathologies in a variety of clinical settings. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Ultrasound Applied to Subcutaneous Fat Tissue Measurements in International Elite Canoeists.

    PubMed

    Kopinski, S; Engel, T; Cassel, M; Fröhlich, K; Mayer, F; Carlsohn, A

    2015-12-01

    Subcutaneous adipose tissue (SAT) measurements with ultrasound have recently been introduced to assess body fat in elite athletes. However, appropriate protocols and data on various groups of athletes are missing. We investigated intra-rater reliability of SAT measurements using ultrasound in elite canoe athletes. 25 international level canoeists (18 male, 7 female; 23±4 years; 81±11 kg; 1.83±0.09 m; 20±3 training h/wk) were measured on 2 consecutive days. SAT was assessed with B-mode ultrasound at 8 sites (ISAK): triceps, subscapular, biceps, iliac crest, supraspinal, abdominal, front thigh, medial calf, and quantified using image analysis software. Data was analyzed descriptively (mean±SD, [range]). Coefficient of variation (CV%), intraclass correlation coefficient (ICC, 2.1) and absolute (LoA) and ratio limits of agreement (RLoA) were calculated for day-to-day reliability. Mean sum of SAT thickness was 30.0±19.4 mm [8.0, 80.1 mm], with 3.9±1.8 mm [1.2 mm subscapular, 8.0 mm abdominal] for individual sites. CV for the sum of sites was 4.7%, ICC 0.99, LoA 1.7±3.6 mm, RLoA 0.940 ( *  /÷1.155). Measuring SAT with ultrasound has proved to have excellent day-to-day reliability in elite canoe athletes. Recommendations for standardization of the method will further increase accuracy and reproducibility. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Characterization of Mechanical Properties of Tissue Scaffolds by Phase Contrast Imaging and Finite Element Modeling.

    PubMed

    Bawolin, Nahshon K; Dolovich, Allan T; Chen, Daniel X B; Zhang, Chris W J

    2015-08-01

    In tissue engineering, the cell and scaffold approach has shown promise as a treatment to regenerate diseased and/or damaged tissue. In this treatment, an artificial construct (scaffold) is seeded with cells, which organize and proliferate into new tissue. The scaffold itself biodegrades with time, leaving behind only newly formed tissue. The degradation qualities of the scaffold are critical during the treatment period, since the change in the mechanical properties of the scaffold with time can influence cell behavior. To observe in time the scaffold's mechanical properties, a straightforward method is to deform the scaffold and then characterize scaffold deflection accordingly. However, experimentally observing the scaffold deflection is challenging. This paper presents a novel study on characterization of mechanical properties of scaffolds by phase contrast imaging and finite element modeling, which specifically includes scaffold fabrication, scaffold imaging, image analysis, and finite elements (FEs) modeling of the scaffold mechanical properties. The innovation of the work rests on the use of in-line phase contrast X-ray imaging at 20 KeV to characterize tissue scaffold deformation caused by ultrasound radiation forces and the use of the Fourier transform to identify movement. Once deformation has been determined experimentally, it is then compared with the predictions given by the forward solution of a finite element model. A consideration of the number of separate loading conditions necessary to uniquely identify the material properties of transversely isotropic and fully orthotropic scaffolds is also presented, along with the use of an FE as a form of regularization.

  16. Characterization of enzymatically induced degradation of articular cartilage using high frequency ultrasound

    NASA Astrophysics Data System (ADS)

    Töyräs, J.; Rieppo, J.; Nieminen, M. T.; Helminen, H. J.; Jurvelin, J. S.

    1999-11-01

    Ultrasound may provide a quantitative technique for the characterization of cartilage changes typical of early osteoarthrosis. In this study, specific changes in bovine articular cartilage were induced using collagenase and chondroitinase ABC, enzymes that selectively degrade collagen fibril network and digest proteoglycans, respectively. Changes in cartilage structure and properties were quantified using high frequency ultrasound, microscopic analyses and mechanical indentation tests. The ultrasound reflection coefficient of the physiological saline-cartilage interface (R1) decreased significantly (-96.4%, p<0.01) in the collagenase digested cartilage compared to controls. Also a significantly lower ultrasound velocity (-6.2%, p<0.01) was revealed after collagenase digestion. After chondroitinase ABC digestion, a new acoustic interface at the depth of the enzyme penetration front was detected. Cartilage thickness, as determined with ultrasound, showed a high, linear correlation (R = 0.943, n = 60, average difference 0.073 mm (4.0%)) with the thickness measured by the needle-probe method. Both enzymes induced a significant decrease in the Young's modulus of cartilage (p<0.01). Our results indicate that high frequency ultrasound provides a sensitive technique for the analysis of cartilage structure and properties. Possibly ultrasound may be utilized in vivo as a quantitative probe during arthroscopy.

  17. Implementation of a rotational ultrasound biomicroscopy system equipped with a high-frequency angled needle transducer--ex vivo ultrasound imaging of porcine ocular posterior tissues.

    PubMed

    Bok, Tae-Hoon; Kim, Juho; Bae, Jinho; Lee, Chong Hyun; Paeng, Dong-Guk

    2014-09-24

    The mechanical scanning of a single element transducer has been mostly utilized for high-frequency ultrasound imaging. However, it requires space for the mechanical motion of the transducer. In this paper, a rotational scanning ultrasound biomicroscopy (UBM) system equipped with a high-frequency angled needle transducer is designed and implemented in order to minimize the space required. It was applied to ex vivo ultrasound imaging of porcine posterior ocular tissues through a minimal incision hole of 1 mm in diameter. The retina and sclera for the one eye were visualized in the relative rotating angle range of 270°~330° and at a distance range of 6~7 mm, whereas the tissues of the other eye were observed in relative angle range of 160°~220° and at a distance range of 7.5~9 mm. The layer between retina and sclera seemed to be bent because the distance between the transducer tip and the layer was varied while the transducer was rotated. Certin features of the rotation system such as the optimal scanning angle, step angle and data length need to be improved for ensure higher accuracy and precision. Moreover, the focal length should be considered for the image quality. This implementation represents the first report of a rotational scanning UBM system.

  18. The effect of adjunctive noncontact low frequency ultrasound on deep tissue pressure injury.

    PubMed

    Honaker, Jeremy S; Forston, Michael R; Davis, Emily A; Weisner, Michelle M; Morgan, Jennifer A; Sacca, Emily

    2016-11-01

    The optimal treatment for deep tissue pressure injuries has not been determined. Deep tissue pressure injuries represent a more ominous early stage pressure injury that may evolve into full thickness ulceration despite implementing the standard of care for pressure injury. A longitudinal prospective historical case control study design was used to determine the effectiveness of noncontact low frequency ultrasound plus standard of care (treatment group) in comparison to standard of care (control group) in reducing deep tissue pressure injury severity, total surface area, and final pressure injury stage. The Honaker Suspected Deep Tissue Injury Severity Scale (range 3-18[more severe]) was used to determine deep tissue pressure injury severity at enrollment (Time 1) and discharge (Time 2). A total of 60 subjects (Treatment = 30; Control= 30) were enrolled in the study. In comparison to the control group mean deep tissue pressure injury total surface area change at Time 2 (0.3 cm 2 ), the treatment group had a greater decrease (8.8 cm 2 ) that was significant (t = 2.41, p = 0.014, r 2  = 0.10). In regards to the Honaker Suspected Deep Tissue Injury Severity Scale scores, the treatment group had a significantly lower score (7.6) in comparison to the control group (11.9) at time 2, with a mean difference of 4.6 (t = 6.146, p = 0.0001, r 2  = 0.39). When considering the final pressure ulcer stage at Time 2, the control group were mostly composed of unstageable pressure ulcer (57%) and deep tissue pressure injury severity (27%). In contrast, the treatment group final pressure ulcer stages were less severe and were mostly composed of stage 2 pressure injury (50%) and deep tissue pressure injury severity (23%) were the most common at time 2. The results of this study have shown that deep tissue pressure injury severity treated with noncontact low frequency ultrasound within 5 days of onset and in conjunction with standard of care may improve

  19. The effect of electronically steering a phased array ultrasound transducer on near-field tissue heating.

    PubMed

    Payne, Allison; Vyas, Urvi; Todd, Nick; de Bever, Joshua; Christensen, Douglas A; Parker, Dennis L

    2011-09-01

    This study presents the results obtained from both simulation and experimental techniques that show the effect of mechanically or electronically steering a phased array transducer on proximal tissue heating. The thermal response of a nine-position raster and a 16-mm diameter circle scanning trajectory executed through both electronic and mechanical scanning was evaluated in computer simulations and experimentally in a homogeneous tissue-mimicking phantom. Simulations were performed using power deposition maps obtained from the hybrid angular spectrum (HAS) method and applying a finite-difference approximation of the Pennes' bioheat transfer equation for the experimentally used transducer and also for a fully sampled transducer to demonstrate the effect of acoustic window, ultrasound beam overlap and grating lobe clutter on near-field heating. Both simulation and experimental results show that electronically steering the ultrasound beam for the two trajectories using the 256-element phased array significantly increases the thermal dose deposited in the near-field tissues when compared with the same treatment executed through mechanical steering only. In addition, the individual contributions of both beam overlap and grating lobe clutter to the near-field thermal effects were determined through comparing the simulated ultrasound beam patterns and resulting temperature fields from mechanically and electronically steered trajectories using the 256-randomized element phased array transducer to an electronically steered trajectory using a fully sampled transducer with 40 401 phase-adjusted sample points. Three distinctly different three distinctly different transducers were simulated to analyze the tradeoffs of selected transducer design parameters on near-field heating. Careful consideration of design tradeoffs and accurate patient treatment planning combined with thorough monitoring of the near-field tissue temperature will help to ensure patient safety during an MRg

  20. Bedside ultrasound of the soft tissue of the face: a case of early Ludwig's angina.

    PubMed

    Gaspari, Romolo J

    2006-10-01

    A case is reported of a 38-year-old man presenting with early Ludwig's angina. It is difficult to differentiate superficial from deep infections of the face and neck by physical examination alone. The diagnosis of this condition with bedside soft tissue ultrasound of the face is described. Ludwig's angina is an uncommon infection of the deep tissues of the face and neck that usually evolves from more superficial infections such as dental abscesses.

  1. Hot topics in biomedical ultrasound: ultrasound therapy and its integration with ultrasonic imaging

    NASA Astrophysics Data System (ADS)

    Everbach, E. Carr

    2005-09-01

    Since the development of biomedical ultrasound imaging from sonar after WWII, there has been a clear divide between ultrasonic imaging and ultrasound therapy. While imaging techniques are designed to cause as little change as possible in the tissues through which ultrasound propagates, ultrasound therapy typically relies upon heating or acoustic cavitation to produce a desirable therapeutic effect. Concerns over the increasingly high acoustic outputs of diagnostic ultrasound scanners prompted the adoption of the Mechanical Index (MI) and Thermal Index (TI) in the early 1990s. Therapeutic applications of ultrasound, meanwhile, have evolved from deep tissue heating in sports medicine to include targeted drug delivery, tumor and plaque ablation, cauterization via high intensity focused ultrasound (HIFU), and accelerated dissolution of blood clots. The integration of ultrasonic imaging and therapy in one device is just beginning, but the promise of improved patient outcomes is balanced by regulatory and practical impediments.

  2. Models of temporal enhanced ultrasound data for prostate cancer diagnosis: the impact of time-series order

    NASA Astrophysics Data System (ADS)

    Nahlawi, Layan; Goncalves, Caroline; Imani, Farhad; Gaed, Mena; Gomez, Jose A.; Moussa, Madeleine; Gibson, Eli; Fenster, Aaron; Ward, Aaron D.; Abolmaesumi, Purang; Mousavi, Parvin; Shatkay, Hagit

    2017-03-01

    Recent studies have shown the value of Temporal Enhanced Ultrasound (TeUS) imaging for tissue characterization in transrectal ultrasound-guided prostate biopsies. Here, we present results of experiments designed to study the impact of temporal order of the data in TeUS signals. We assess the impact of variations in temporal order on the ability to automatically distinguish benign prostate-tissue from malignant tissue. We have previously used Hidden Markov Models (HMMs) to model TeUS data, as HMMs capture temporal order in time series. In the work presented here, we use HMMs to model malignant and benign tissues; the models are trained and tested on TeUS signals while introducing variation to their temporal order. We first model the signals in their original temporal order, followed by modeling the same signals under various time rearrangements. We compare the performance of these models for tissue characterization. Our results show that models trained over the original order-preserving signals perform statistically significantly better for distinguishing between malignant and benign tissues, than those trained on rearranged signals. The performance degrades as the amount of temporal-variation increases. Specifically, accuracy of tissue characterization decreases from 85% using models trained on original signals to 62% using models trained and tested on signals that are completely temporally-rearranged. These results indicate the importance of order in characterization of tissue malignancy from TeUS data.

  3. Method of and Apparatus for Histological Human Tissue Characterization Using Ultrasound

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H. (Inventor); TalEr, George A. (Inventor)

    1999-01-01

    A method and apparatus for determining important histological characteristics of tissue, including a determination of the tissue's health. Electrical pulses are converted into meaningful numerical representations through the use of Fourier Transforms. These numerical representations are then used to determine important histological characteristics of tissue. This novel invention does not require rectification and thus provides for detailed information from the ultrasonic scan.

  4. Method of and Apparatus for Histological Human Tissue Characterization Using Ultrasound

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H. (Inventor); Taler, George A. (Inventor)

    1998-01-01

    A method and apparatus for determining important histological characteristics of tissue, including a determination of the tissue's health is discussed. Electrical pulses are converted into meaningful numerical representations through the use of Fourier Transforms. These numerical representations are then used to determine important histological characteristics of tissue. This novel invention does not require rectification and thus provides for detailed information from the ultrasonic scan.

  5. Improved heating efficiency with High-Intensity Focused Ultrasound using a new ultrasound source excitation.

    PubMed

    Bigelow, Timothy A

    2009-01-01

    High-Intensity Focused Ultrasound (HIFU) is quickly becoming one of the best methods to thermally ablate tissue noninvasively. Unlike RF or Laser ablation, the tissue can be destroyed without inserting any probes into the body minimizing the risk of secondary complications such as infections. In this study, the heating efficiency of HIFU sources is improved by altering the excitation of the ultrasound source to take advantage of nonlinear propagation. For ultrasound, the phase velocity of the ultrasound wave depends on the amplitude of the wave resulting in the generation of higher harmonics. These higher harmonics are more efficiently converted into heat in the body due to the frequency dependence of the ultrasound absorption in tissue. In our study, the generation of the higher harmonics by nonlinear propagation is enhanced by transmitting an ultrasound wave with both the fundamental and a higher harmonic component included. Computer simulations demonstrated up to a 300% increase in temperature increase compared to transmitting at only the fundamental for the same acoustic power transmitted by the source.

  6. Bubble dynamics in viscoelastic soft tissue in high-intensity focal ultrasound thermal therapy.

    PubMed

    Zilonova, E; Solovchuk, M; Sheu, T W H

    2018-01-01

    The present study is aimed to investigate bubble dynamics in a soft tissue, to which HIFU's continuous harmonic pulse is applied by introducing a viscoelastic cavitation model. After a comparison of some existing cavitation models, we decided to employ Gilmore-Akulichev model. This chosen cavitation model should be coupled with the Zener viscoelastic model in order to be able to simulate soft tissue features such as elasticity and relaxation time. The proposed Gilmore-Akulichev-Zener model was investigated for exploring cavitation dynamics. The parametric study led us to the conclusion that the elasticity and viscosity both damp bubble oscillations, whereas the relaxation effect depends mainly on the period of the ultrasound wave. The similar influence of elasticity, viscosity and relaxation time on the temperature inside the bubble can be observed. Cavitation heat source terms (corresponding to viscous damping and pressure wave radiated by bubble collapse) were obtained based on the proposed model to examine the cavitation significance during the treatment process. Their maximum values both overdominate the acoustic ultrasound term in HIFU applications. Elasticity was revealed to damp a certain amount of deposited heat for both cavitation terms. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A Comparison of Real-time Feedback and Tissue Response to Ultrasound-Guided High Intensity Focused Ultrasound (HIFU) Ablation using Scanned Track Exposure Regimes

    NASA Astrophysics Data System (ADS)

    Gray, Robert H. R.; Leslie, Thomas A.; Civale, John; Kennedy, James E.; ter Haar, Gail

    2007-05-01

    Real time ultrasound monitoring of tissue ablation in clinical HIFU treatments currently depends on the observation of the appearance of new hyperechoic regions within the target volume, allowing visually directed treatment. These grey-scale changes are attributed to the formation of gas or vapour bubbles. In this study, scanned track lesions have been formed in ex vivo bovine liver samples at a range of ablative intensities (free field spatial peak intensities 7 - 47 kW cm-2), and tracking speeds (1-2 mms-1). Their appearance on conventional B-mode ultrasound images has been assessed using digital imaging techniques over the first 60 seconds following HIFU exposure. The size of the lesion as seen on the ultrasound scan is compared to the macroscopic size of the lesion at dissection. It is seen that the lesion size is highly dependent on the intensity and scanning speed of the transducer. Reliable lesions can be created using scanned tracks at the lowest powers, with increased numbers of cycles, and grey-scale changes correlated strongly with the histological findings. Although not a highly sensitive indication of ablated area, ultrasound monitoring of treatment is highly specific thus confirming its clinical utility.

  8. Detection and characterization of murine colitis and carcinogenesis by molecularly targeted contrast-enhanced ultrasound

    PubMed Central

    Brückner, Markus; Heidemann, Jan; Nowacki, Tobias M; Cordes, Friederike; Stypmann, Jörg; Lenz, Philipp; Gohar, Faekah; Lügering, Andreas; Bettenworth, Dominik

    2017-01-01

    AIM To study mucosal addressin cellular adhesion molecule-1 (MAdCAM-1) and vascular endothelial growth factor (VEGF)-targeted contrast enhanced ultrasound (CEUS) for the assessment of murine colitis and carcinogenesis. METHODS C57BL/6 mice were challenged with 3% dextran sodium-sulfate (DSS) for three, six or nine days to study the development of acute colitis. Ultrasound was performed with and without the addition of unspecific contrast agents. MAdCAM-1-targeted contrast agent was used to detect and quantify MAdCAM-1 expression. Inflammatory driven colorectal azoxymethane (AOM)/DSS-induced carcinogenesis was examined on day 42 and 84 using VEGF-targeted contrast agent. Highly specific tissue echogenicity was quantified using specialized software. Sonographic findings were correlated to tissue staining, western blot analysis and immunohistochemistry to quantify the degree of inflammation and stage of carcinogenesis. RESULTS Native ultrasound detected increased general bowel wall thickening that correlated with more progressed and more severe DSS-colitis (healthy mice: 0.3 mm ± 0.03 vs six days DSS: 0.5 mm ± 0.2 vs nine days DSS: 0.6 mm ± 0.2, P < 0.05). Moreover, these sonographic findings correlated well with clinical parameters such as weight loss (r2 = 0.74) and histological damage (r2 = 0.86) (P < 0.01). In acute DSS-induced murine colitis, CEUS targeted against MAdCAM-1 detected and differentiated stages of mild, moderate and severe colitis via calculation of mean pixel contrast intensity in decibel (9.6 dB ± 1.6 vs 12.9 dB ± 1.4 vs 18 dB ± 3.33, P < 0.05). Employing the AOM/DSS-induced carcinogenesis model, tumor development was monitored by CEUS targeted against VEGF and detected a significantly increased echogenicity in tumors as compared to adjacent healthy mucosa (healthy mucosa, 1.6 dB ± 1.4 vs 42 d, 18.2 dB ± 3.3 vs 84 d, 18.6 dB ± 4.9, P < 0.01). Tissue echogenicity strongly correlated with histological analysis and immunohistochemistry

  9. Detection and characterization of murine colitis and carcinogenesis by molecularly targeted contrast-enhanced ultrasound.

    PubMed

    Brückner, Markus; Heidemann, Jan; Nowacki, Tobias M; Cordes, Friederike; Stypmann, Jörg; Lenz, Philipp; Gohar, Faekah; Lügering, Andreas; Bettenworth, Dominik

    2017-04-28

    To study mucosal addressin cellular adhesion molecule-1 (MAdCAM-1) and vascular endothelial growth factor (VEGF)-targeted contrast enhanced ultrasound (CEUS) for the assessment of murine colitis and carcinogenesis. C57BL/6 mice were challenged with 3% dextran sodium-sulfate (DSS) for three, six or nine days to study the development of acute colitis. Ultrasound was performed with and without the addition of unspecific contrast agents. MAdCAM-1-targeted contrast agent was used to detect and quantify MAdCAM-1 expression. Inflammatory driven colorectal azoxymethane (AOM)/DSS-induced carcinogenesis was examined on day 42 and 84 using VEGF-targeted contrast agent. Highly specific tissue echogenicity was quantified using specialized software. Sonographic findings were correlated to tissue staining, western blot analysis and immunohistochemistry to quantify the degree of inflammation and stage of carcinogenesis. Native ultrasound detected increased general bowel wall thickening that correlated with more progressed and more severe DSS-colitis (healthy mice: 0.3 mm ± 0.03 vs six days DSS: 0.5 mm ± 0.2 vs nine days DSS: 0.6 mm ± 0.2, P < 0.05). Moreover, these sonographic findings correlated well with clinical parameters such as weight loss ( r 2 = 0.74) and histological damage ( r 2 = 0.86) ( P < 0.01). In acute DSS-induced murine colitis, CEUS targeted against MAdCAM-1 detected and differentiated stages of mild, moderate and severe colitis via calculation of mean pixel contrast intensity in decibel (9.6 dB ± 1.6 vs 12.9 dB ± 1.4 vs 18 dB ± 3.33, P < 0.05). Employing the AOM/DSS-induced carcinogenesis model, tumor development was monitored by CEUS targeted against VEGF and detected a significantly increased echogenicity in tumors as compared to adjacent healthy mucosa (healthy mucosa, 1.6 dB ± 1.4 vs 42 d, 18.2 dB ± 3.3 vs 84 d, 18.6 dB ± 4.9, P < 0.01). Tissue echogenicity strongly correlated with histological analysis and immunohistochemistry findings (VEGF

  10. A Dual-Modality System for Both Multi-Color Ultrasound-Switchable Fluorescence and Ultrasound Imaging

    PubMed Central

    Kandukuri, Jayanth; Yu, Shuai; Cheng, Bingbing; Bandi, Venugopal; D’Souza, Francis; Nguyen, Kytai T.; Hong, Yi; Yuan, Baohong

    2017-01-01

    Simultaneous imaging of multiple targets (SIMT) in opaque biological tissues is an important goal for molecular imaging in the future. Multi-color fluorescence imaging in deep tissues is a promising technology to reach this goal. In this work, we developed a dual-modality imaging system by combining our recently developed ultrasound-switchable fluorescence (USF) imaging technology with the conventional ultrasound (US) B-mode imaging. This dual-modality system can simultaneously image tissue acoustic structure information and multi-color fluorophores in centimeter-deep tissue with comparable spatial resolutions. To conduct USF imaging on the same plane (i.e., x-z plane) as US imaging, we adopted two 90°-crossed ultrasound transducers with an overlapped focal region, while the US transducer (the third one) was positioned at the center of these two USF transducers. Thus, the axial resolution of USF is close to the lateral resolution, which allows a point-by-point USF scanning on the same plane as the US imaging. Both multi-color USF and ultrasound imaging of a tissue phantom were demonstrated. PMID:28165390

  11. Tissue classification using depth-dependent ultrasound time series analysis: in-vitro animal study

    NASA Astrophysics Data System (ADS)

    Imani, Farhad; Daoud, Mohammad; Moradi, Mehdi; Abolmaesumi, Purang; Mousavi, Parvin

    2011-03-01

    Time series analysis of ultrasound radio-frequency (RF) signals has been shown to be an effective tissue classification method. Previous studies of this method for tissue differentiation at high and clinical-frequencies have been reported. In this paper, analysis of RF time series is extended to improve tissue classification at the clinical frequencies by including novel features extracted from the time series spectrum. The primary feature examined is the Mean Central Frequency (MCF) computed for regions of interest (ROIs) in the tissue extending along the axial axis of the transducer. In addition, the intercept and slope of a line fitted to the MCF-values of the RF time series as a function of depth have been included. To evaluate the accuracy of the new features, an in vitro animal study is performed using three tissue types: bovine muscle, bovine liver, and chicken breast, where perfect two-way classification is achieved. The results show statistically significant improvements over the classification accuracies with previously reported features.

  12. Fusion of Ultrasound Tissue-Typing Images with Multiparametric MRI for Image-guided Prostate Cancer Radiation Therapy

    DTIC Science & Technology

    2014-10-01

    work under the guidance of an outstanding mentor team at Emory Winship Cancer Institute. I took three courses ( Medical Health Physics, Radiation...and Late Normal-Tissue Toxicity in Breast- Cancer Radiotherapy”, Medical Physics, 40(6):379, 2013. 5. Yang X, Liu T, Curran W and Torres M...Analysis for Normal-tissue Toxicity: A Prospective Ultrasound Study of Acute Toxicity in Breast- Cancer Radiotherapy", Medical Physics 41 (6), 482-482

  13. Methods of Soft Tissue Emulsification Using a Mechanism of Ultrasonic Atomization Inside Gas or Vapor Cavities and Associated Systems and Devices

    NASA Technical Reports Server (NTRS)

    Bailey, Michael R. (Inventor); Simon, Julianna C. (Inventor); Crum, Lawrence A. (Inventor); Khokhlova, Vera A. (Inventor); Wang, Yak-Nam (Inventor); Sapozhnikov, Oleg A. (Inventor); Khokhlova, Tatiana D. (Inventor)

    2016-01-01

    The present technology is directed to methods of soft tissue emulsification using a mechanism of ultrasonic atomization inside gas or vapor cavities, and associated systems and devices. In several embodiments, for example, a method of non-invasively treating tissue includes pulsing ultrasound energy from the ultrasound source toward the target site in tissue. The ultrasound source is configured to emit high intensity focused ultrasound (HIFU) waves. The target site comprises a pressure-release interface of a gas or vapor cavity located within the tissue. The method continues by generating shock waves in the tissue to induce a lesion in the tissue at the target site. The method additionally includes characterizing the lesion based on a degree of at least one of a mechanical or thermal ablation of the tissue.

  14. High-intensity focused ultrasound for ex vivo kidney tissue ablation: influence of generator power and pulse duration.

    PubMed

    Häcker, Axel; Köhrmann, Kai Uwe; Knoll, Thomas; Langbein, Sigrun; Steidler, Annette; Kraut, Oliver; Marlinghaus, Ernst; Alken, Peter; Michel, Maurice Stephan

    2004-11-01

    The therapeutic application of noninvasive tissue ablation by high-intensity focused ultrasound (HIFU) requires precise physical definition of the focal size and determination of control parameters. The objective of this study was to measure the extent of ex-vivo porcine kidney tissue ablation at variable generator parameters and to identify parameters to control lesion size. The ultrasound waves generated by a cylindrical piezoceramic element (1.04 MHz) were focused at a depth of 100 mm using a parabolic reflector (diameter 100 mm). A needle hydrophone was used to measure the field distribution of the sound pressure. The morphology and extent of tissue necrosis were examined at generator powers of up to 400 W (P(el)) and single pulse durations of as long as 8 seconds. The two-dimensional field distribution resulted in an approximately ellipsoidal focus of 32 x 4 mm (-6 dB). A sharp demarcation between coagulation necrosis and intact tissue was observed. Lesion size was controlled by both the variation of generator power and the pulse duration. At a constant pulse duration of 2 seconds, a generator power of 100 W remained below the threshold doses for inducing a reproducible lesion. An increase in power to as high as 400 W induced lesions with average dimensions of as much as 11.2 x 3 mm. At constant total energy (generator power x pulse duration), lesion size increased at higher generator power. This ultrasound generator can induce defined and reproducible necrosis in ex-vivo kidney tissue. Lesion size can be controlled by adjusting the generator power and pulse duration. Generator power, in particular, turned out to be a suitable control parameter for obtaining a lesion of a defined size.

  15. Needle Steering in Biological Tissue using Ultrasound-based Online Curvature Estimation

    PubMed Central

    Moreira, Pedro; Patil, Sachin; Alterovitz, Ron; Misra, Sarthak

    2014-01-01

    Percutaneous needle insertions are commonly performed for diagnostic and therapeutic purposes. Accurate placement of the needle tip is important to the success of many needle procedures. The current needle steering systems depend on needle-tissue-specific data, such as maximum curvature, that is unavailable prior to an interventional procedure. In this paper, we present a novel three-dimensional adaptive steering method for flexible bevel-tipped needles that is capable of performing accurate tip placement without previous knowledge about needle curvature. The method steers the needle by integrating duty-cycled needle steering, online curvature estimation, ultrasound-based needle tracking, and sampling-based motion planning. The needle curvature estimation is performed online and used to adapt the path and duty cycling. We evaluated the method using experiments in a homogenous gelatin phantom, a two-layer gelatin phantom, and a biological tissue phantom composed of a gelatin layer and in vitro chicken tissue. In all experiments, virtual obstacles and targets move in order to represent the disturbances that might occur due to tissue deformation and physiological processes. The average targeting error using our new adaptive method is 40% lower than using the conventional non-adaptive duty-cycled needle steering method. PMID:26229729

  16. Tuning acoustic and mechanical properties of materials for ultrasound phantoms and smart substrates for cell cultures.

    PubMed

    Cafarelli, A; Verbeni, A; Poliziani, A; Dario, P; Menciassi, A; Ricotti, L

    2017-02-01

    Materials with tailored acoustic properties are of great interest for both the development of tissue-mimicking phantoms for ultrasound tests and smart scaffolds for ultrasound mediated tissue engineering and regenerative medicine. In this study, we assessed the acoustic properties (speed of sound, acoustic impedance and attenuation coefficient) of three different materials (agarose, polyacrylamide and polydimethylsiloxane) at different concentrations or cross-linking levels and doped with different concentrations of barium titanate ceramic nanoparticles. The selected materials, besides different mechanical features (stiffness from few kPa to 1.6MPa), showed a wide range of acoustic properties (speed of sound from 1022 to 1555m/s, acoustic impedance from 1.02 to 1.67MRayl and attenuation coefficient from 0.2 to 36.5dB/cm), corresponding to ranges in which natural soft tissues can fall. We demonstrated that this knowledge can be used to build tissue-mimicking phantoms for ultrasound-based medical procedures and that the mentioned measurements enable to stimulate cells with a highly controlled ultrasound dose, taking into account the attenuation due to the cell-supporting scaffold. Finally, we were able to correlate for the first time the bioeffect on human fibroblasts, triggered by piezoelectric barium titanate nanoparticles activated by low-intensity pulsed ultrasound, with a precise ultrasound dose delivered. These results may open new avenues for the development of both tissue-mimicking materials for ultrasound phantoms and smart triggerable scaffolds for tissue engineering and regenerative medicine. This study reports for the first time the results of a systematic acoustic characterization of agarose, polyacrylamide and polydimethylsiloxane at different concentrations and cross-linking extents and doped with different concentrations of barium titanate nanoparticles. These results can be used to build tissue-mimicking phantoms, useful for many ultrasound

  17. Ultrasound elastography: principles, techniques, and clinical applications.

    PubMed

    Dewall, Ryan J

    2013-01-01

    Ultrasound elastography is an emerging set of imaging modalities used to image tissue elasticity and are often referred to as virtual palpation. These techniques have proven effective in detecting and assessing many different pathologies, because tissue mechanical changes often correlate with tissue pathological changes. This article reviews the principles of ultrasound elastography, many of the ultrasound-based techniques, and popular clinical applications. Originally, elastography was a technique that imaged tissue strain by comparing pre- and postcompression ultrasound images. However, new techniques have been developed that use different excitation methods such as external vibration or acoustic radiation force. Some techniques track transient phenomena such as shear waves to quantitatively measure tissue elasticity. Clinical use of elastography is increasing, with applications including lesion detection and classification, fibrosis staging, treatment monitoring, vascular imaging, and musculoskeletal applications.

  18. Ultrasound physics and instrumentation for pathologists.

    PubMed

    Lieu, David

    2010-10-01

    Interest in pathologist-performed ultrasound-guided fine-needle aspiration is increasing. Educational courses discuss clinical ultrasound and biopsy techniques but not ultrasound physics and instrumentation. To review modern ultrasound physics and instrumentation to help pathologists understand the basis of modern ultrasound. A review of recent literature and textbooks was performed. Ultrasound physics and instrumentation are the foundations of clinical ultrasound. The key physical principle is the piezoelectric effect. When stimulated by an electric current, certain crystals vibrate and produce ultrasound. A hand-held transducer converts electricity into ultrasound, transmits it into tissue, and listens for reflected ultrasound to return. The returning echoes are converted into electrical signals and used to create a 2-dimensional gray-scale image. Scanning at a high frequency improves axial resolution but has low tissue penetration. Electronic focusing moves the long-axis focus to depth of the object of interest and improves lateral resolution. The short-axis focus in 1-dimensional transducers is fixed, which results in poor elevational resolution away from the focal zone. Using multiple foci improves lateral resolution but degrades temporal resolution. The sonographer can adjust the dynamic range to change contrast and bring out subtle masses. Contrast resolution is limited by processing speed, monitor resolution, and gray-scale perception of the human eye. Ultrasound is an evolving field. New technologies include miniaturization, spatial compound imaging, tissue harmonics, and multidimensional transducers. Clinical cytopathologists who understand ultrasound physics, instrumentation, and clinical ultrasound are ready for the challenges of cytopathologist-performed ultrasound-guided fine-needle aspiration and core-needle biopsy in the 21st century.

  19. Ultrasound coefficient of nonlinearity imaging.

    PubMed

    van Sloun, Ruud; Demi, Libertario; Shan, Caifeng; Mischi, Massimo

    2015-07-01

    Imaging the acoustical coefficient of nonlinearity, β, is of interest in several healthcare interventional applications. It is an important feature that can be used for discriminating tissues. In this paper, we propose a nonlinearity characterization method with the goal of locally estimating the coefficient of nonlinearity. The proposed method is based on a 1-D solution of the nonlinear lossy Westerfelt equation, thereby deriving a local relation between β and the pressure wave field. Based on several assumptions, a β imaging method is then presented that is based on the ratio between the harmonic and fundamental fields, thereby reducing the effect of spatial amplitude variations of the speckle pattern. By testing the method on simulated ultrasound pressure fields and an in vitro B-mode ultrasound acquisition, we show that the designed algorithm is able to estimate the coefficient of nonlinearity, and that the tissue types of interest are well discriminable. The proposed imaging method provides a new approach to β estimation, not requiring a special measurement setup or transducer, that seems particularly promising for in vivo imaging.

  20. Dynamic Analysis of Irradiation of High Intensity Focused Ultrasound (HIFU) to Achieve a Living Tissue Perforation

    NASA Astrophysics Data System (ADS)

    Mochizuki, Takashi; Kitazumi, Gontaro; Katsuike, Yasumasa; Hotta, Sayo; Maruyama, Hirotaka; Chiba, Toshio

    2010-03-01

    It is well known that tissue perforation is performed by the shock waves generated by the collapse of micro bubbles due to HIFU irradiation. However, the angle-dependency between the HIFU irradiation beam and the tissue membrane has not been studied in detail so far. The objective of this study was to investigate the HIFU parameters which were the most effective in perforating the tissues with the heart beating, especially the angle dependency of the beam with the observation using high speed video camera. The result shows that the ultrasound beam should be at right angle to the membrane to perforate the tissue membrane effectively.

  1. Ultrasound in Arthritis.

    PubMed

    Sudoł-Szopińska, Iwona; Schueller-Weidekamm, Claudia; Plagou, Athena; Teh, James

    2017-09-01

    Ultrasound is currently performed in everyday rheumatologic practice. It is used for early diagnosis, to monitor treatment results, and to diagnose remission. The spectrum of pathologies seen in arthritis with ultrasound includes early inflammatory features and associated complications. This article discusses the spectrum of ultrasound features of arthritides seen in rheumatoid arthritis and other connective tissue diseases in adults, such as Sjögren syndrome, lupus erythematosus, dermatomyositis, polymyositis, and juvenile idiopathic arthritis. Ultrasound findings in spondyloarthritis, osteoarthritis, and crystal-induced diseases are presented. Ultrasound-guided interventions in patients with arthritis are listed, and the advantages and disadvantages of ultrasound are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Study on the refractive index matching effect of ultrasound on optical clearing of bio-tissues based on the derivative total reflection method.

    PubMed

    Zeng, Huanhuan; Wang, Jin; Ye, Qing; Deng, Zhichao; Mei, Jianchun; Zhou, Wenyuan; Zhang, Chunping; Tian, Jianguo

    2014-10-01

    In recent years, the tissue optical clearing (OC) technique in the biomedicine field has drawn lots of attention. Various physical and chemical methods have been introduced to improve the efficacy of OC. In this study, the effect of the combination of glycerol and ultrasound treatment on OC of in vitro porcine muscle tissues has been investigated. The refractive index (RI) matching mechanism of OC was directly observed based on the derivative total reflection method. A theoretical model was used to simulate the proportion of tissue fluid in the illuminated area. Moreover, the total transmittance spectra have been obtained by a spectrometer over the range from 450 nm to 700 nm. The administration of glycerol and ultrasound has led to an increase of the RI of background medium and a more RI matching environment was achieved. The experimental results support the validity of the ultrasound treatment for OC. The RI matching mechanism has been firstly quantitatively analyzed based on the derivative total reflection method.

  3. Characterization of nonlinear ultrasound fields of 2D therapeutic arrays

    PubMed Central

    Yuldashev, Petr V.; Kreider, Wayne; Sapozhnikov, Oleg A.; Farr, Navid; Partanen, Ari; Bailey, Michael R.; Khokhlova, Vera

    2015-01-01

    A current trend in high intensity focused ultrasound (HIFU) technologies is to use 2D focused phased arrays that enable electronic steering of the focus, beamforming to avoid overheating of obstacles (such as ribs), and better focusing through inhomogeneities of soft tissue using time reversal methods. In many HIFU applications, the acoustic intensity in situ can reach thousands of W/cm2 leading to nonlinear propagation effects. At high power outputs, shock fronts develop in the focal region and significantly alter the bioeffects induced. Clinical applications of HIFU are relatively new and challenges remain for ensuring their safety and efficacy. A key component of these challenges is the lack of standard procedures for characterizing nonlinear HIFU fields under operating conditions. Methods that combine low-amplitude pressure measurements and nonlinear modeling of the pressure field have been proposed for axially symmetric single element transducers but have not yet been validated for the much more complex 3D fields generated by therapeutic arrays. Here, the method was tested for a clinical HIFU source comprising a 256-element transducer array. A numerical algorithm based on the Westervelt equation was used to enable 3D full-diffraction nonlinear modeling. With the acoustic holography method, the magnitude and phase of the acoustic field were measured at a low power output and used to determine the pattern of vibrations at the surface of the array. This pattern was then scaled to simulate a range of intensity levels near the elements up to 10 W/cm2. The accuracy of modeling was validated by comparison with direct measurements of the focal waveforms using a fiber-optic hydrophone. Simulation results and measurements show that shock fronts with amplitudes up to 100 MPa were present in focal waveforms at clinically relevant outputs, indicating the importance of strong nonlinear effects in ultrasound fields generated by HIFU arrays. PMID:26203345

  4. Viscoelastic Property Measurement in Thin Tissue Constructs Using Ultrasound

    PubMed Central

    Liu, Dalong; Ebbini, Emad S.

    2010-01-01

    We present a dual-element concave ultrasound transducer system for generating and tracking of localized tissue displacements in thin tissue constructs on rigid substrates. The system is comprised of a highly focused PZT-4 5-MHz acoustic radiation force (ARF) transducer and a confocal 25-MHz polyvinylidene fluoride imaging transducer. This allows for the generation of measurable displacements in tissue samples on rigid substrates with thickness values down to 500 µm. Impulse-like and longer duration sine-modulated ARF pulses are possible with intermittent M-mode data acquisition for displacement tracking. The operations of the ARF and imaging transducers are strictly synchronized using an integrated system for arbitrary waveform generation and data capture with a shared timebase. This allows for virtually jitter-free pulse-echo data well suited for correlation-based speckle tracking. With this technique we could faithfully capture the entire dynamics of the tissue axial deformation at pulse-repetition frequency values up to 10 kHz. Spatio-temporal maps of tissue displacements in response to a variety of modulated ARF beams were produced in tissue-mimicking elastography phantoms on rigid substrates. The frequency response was measured for phantoms with different modulus and thickness values. The frequency response exhibited resonant behavior with the resonance frequency being inversely proportional to the sample thickness. This resonant behavior can be used in obtaining high-contrast imaging using magnitude and phase response to sinusoidally modulated ARF beams. Furthermore, a second order forced harmonic oscillator (FHO) model was shown to capture this resonant behavior. Based on the FHO model, we used the extended Kalman filter (EKF) for tracking the apparent modulus and viscosity of samples subjected to dc and sinusoidally modulated ARF. The results show that the stiffness (apparent modulus) term in the FHO is largely time-invariant and can be estimated robustly

  5. A theoretical and experimental investigation of nonlinear propagation of ultrasound through tissue mimicking media

    NASA Astrophysics Data System (ADS)

    Rielly, Matthew Robert

    An existing numerical model (known as the Bergen code) is used to investigate finite amplitude ultrasound propagation through multiple layers of tissue-like media. This model uses a finite difference method to solve the nonlinear parabolic KZK wave equation. The code is modified to include an arbitrary frequency dependence of absorption and transmission effects for wave propagation across a plane interface at normal incidence. In addition the code is adapted to calculate the total intensity loss associated with the absorption of the fundamental and nonlinearly generated harmonics. Measurements are also taken of the axial nonlinear pressure field generated from a circular focused, 2.25 MHz source, through single and multiple layered tissue mimicking fluids, for source pressures in the range from 13 kPa to 310 kPa. Two tissue mimicking fluids are developed to provide acoustic properties similar to amniotic fluid and a typical soft tissue. The values of the nonlinearity parameter, sound velocity and frequency dependence of attenuation for both fluids are presented, and the measurement procedures employed to obtain these characteristics are described in detail. These acoustic parameters, together with the measured source conditions are used as input to the numerical model, allowing the experimental conditions to be simulated. Extensive comparisons are made between the model's predictions and the axial pressure field measurements. Results are presented in the frequency domain showing the fundamental and three subsequent harmonic amplitudes on axis, as a function of axial distance. These show that significant nonlinear distortion can occur through media with characteristics typical of tissue. Time domain waveform comparisons are also made. An excellent agreement is found between theory and experiment indicating that the model can be used to predict nonlinear ultrasound propagation through multiple layers of tissue-like media. The numerical code is also used to model the

  6. Comb-push Ultrasound Shear Elastography (CUSE): A Novel Method for Two-dimensional Shear Elasticity Imaging of Soft Tissues

    PubMed Central

    Song, Pengfei; Zhao, Heng; Manduca, Armando; Urban, Matthew W.; Greenleaf, James F.; Chen, Shigao

    2012-01-01

    Fast and accurate tissue elasticity imaging is essential in studying dynamic tissue mechanical properties. Various ultrasound shear elasticity imaging techniques have been developed in the last two decades. However, to reconstruct a full field-of-view 2D shear elasticity map, multiple data acquisitions are typically required. In this paper, a novel shear elasticity imaging technique, comb-push ultrasound shear elastography (CUSE), is introduced in which only one rapid data acquisition (less than 35 ms) is needed to reconstruct a full field-of-view 2D shear wave speed map (40 mm × 38 mm). Multiple unfocused ultrasound beams arranged in a comb pattern (comb-push) are used to generate shear waves. A directional filter is then applied upon the shear wave field to extract the left-to-right (LR) and right-to-left (RL) propagating shear waves. Local shear wave speed is recovered using a time-of-flight method based on both LR and RL waves. Finally a 2D shear wave speed map is reconstructed by combining the LR and RL speed maps. Smooth and accurate shear wave speed maps are reconstructed using the proposed CUSE method in two calibrated homogeneous phantoms with different moduli. Inclusion phantom experiments demonstrate that CUSE is capable of providing good contrast (contrast-to-noise-ratio ≥ 25 dB) between the inclusion and background without artifacts and is insensitive to inclusion positions. Safety measurements demonstrate that all regulated parameters of the ultrasound output level used in CUSE sequence are well below the FDA limits for diagnostic ultrasound. PMID:22736690

  7. Implementation of a Rotational Ultrasound Biomicroscopy System Equipped with a High-Frequency Angled Needle Transducer — Ex Vivo Ultrasound Imaging of Porcine Ocular Posterior Tissues

    PubMed Central

    Bok, Tae-Hoon; Kim, Juho; Bae, Jinho; Lee, Chong Hyun; Paeng, Dong-Guk

    2014-01-01

    The mechanical scanning of a single element transducer has been mostly utilized for high-frequency ultrasound imaging. However, it requires space for the mechanical motion of the transducer. In this paper, a rotational scanning ultrasound biomicroscopy (UBM) system equipped with a high-frequency angled needle transducer is designed and implemented in order to minimize the space required. It was applied to ex vivo ultrasound imaging of porcine posterior ocular tissues through a minimal incision hole of 1 mm in diameter. The retina and sclera for the one eye were visualized in the relative rotating angle range of 270° ∼ 330° and at a distance range of 6 ∼ 7 mm, whereas the tissues of the other eye were observed in relative angle range of 160° ∼ 220° and at a distance range of 7.5 ∼ 9 mm. The layer between retina and sclera seemed to be bent because the distance between the transducer tip and the layer was varied while the transducer was rotated. Certin features of the rotation system such as the optimal scanning angle, step angle and data length need to be improved for ensure higher accuracy and precision. Moreover, the focal length should be considered for the image quality. This implementation represents the first report of a rotational scanning UBM system. PMID:25254305

  8. Temperature Changes During Therapeutic Ultrasound in the Precooled Human Gastrocnemius Muscle

    PubMed Central

    Rimington, Stephanie J.; Draper, David O.; Durrant, Earlene; Fellingham, Gilbert

    1994-01-01

    Therapeutic ultrasound is frequently employed as a deep heating rehabilitation modality. It is administered in one of three ways: a) ultrasound with no preceding treatment, b) ultrasound on preheated tissues, or c) ultrasound on precooled tissues. The purpose of this study was to investigate the effect of ultrasound treatments on the tissue temperature rise of precooled human gastrocnemius muscle. Sixteen male subjects had a 23-gauge hypodermic needle microprobe inserted 3 cm deep into the medial aspect of their anesthetized gastrocnemius muscles. Data were gathered on each subject for one of two randomly assigned treatments: a) ultrasound treatment on precooled tissue, or b) ultrasound with no preceding treatment. Each treatment consisted of ultrasound delivered topically at 1.5 watts/cm2 in a continuous mode for 10 minutes. Ultrasound was applied in an overlapping longitudinal motion at 4 cm/s, with temperature readings recorded at 30-second intervals. We discovered a difference between the two treatment methods [t(14) = 16.26, p < .0001]. Ultrasound alone increased tissue temperature an average of 2°C, whereas ultrasound preceded by 15 minutes of ice did not increase tissue temperature even to the original baseline level. We concluded that, at a depth of 3 cm, ultrasound alone provided a greater heating effect than ultrasound preceded by an ice treatment. PMID:16558295

  9. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light

    PubMed Central

    Wang, Ying Min; Judkewitz, Benjamin; DiMarzio, Charles A.; Yang, Changhuei

    2012-01-01

    Fluorescence imaging is one of the most important research tools in biomedical sciences. However, scattering of light severely impedes imaging of thick biological samples beyond the ballistic regime. Here we directly show focusing and high-resolution fluorescence imaging deep inside biological tissues by digitally time-reversing ultrasound-tagged light with high optical gain (~5×105). We confirm the presence of a time-reversed optical focus along with a diffuse background—a corollary of partial phase conjugation—and develop an approach for dynamic background cancellation. To illustrate the potential of our method, we image complex fluorescent objects and tumour microtissues at an unprecedented depth of 2.5 mm in biological tissues at a lateral resolution of 36 μm×52 μm and an axial resolution of 657 μm. Our results set the stage for a range of deep-tissue imaging applications in biomedical research and medical diagnostics. PMID:22735456

  10. Spatial and Temporal Controlled Tissue Heating on a Modified Clinical Ultrasound Scanner for Generating Mild Hyperthermia in Tumors

    PubMed Central

    Kruse, Dustin E.; Lai, Chun-Yen; Stephens, Douglas N.; Sutcliffe, Patrick; Paoli, Eric E.; Barnes, Stephen H.; Ferrara, Katherine W.

    2009-01-01

    A new system is presented for generating controlled tissue heating with a clinical ultrasound scanner, and initial in vitro and in vivo results are presented that demonstrate both transient and sustained heating in the mild-hyperthermia range of 37–42ºC. The system consists of a Siemens Antares™ ultrasound scanner, a custom dual-frequency 3-row transducer array and an external temperature feedback control system. The transducer has 2 outer rows that operate at 1.5 MHz for tissue heating and a center row that operates at 5 MHz for B-mode imaging to guide the therapy. We compare the field maps obtained using a hydrophone against calculations of the ultrasound beam based on monochromatic and linear assumptions. Using the finite-difference time-domain (FDTD) method, we compare predicted time-dependent thermal profiles to measured profiles for soy tofu as a tissue-mimicking phantom. In vitro results show differential heating of 6ºC for chicken breast and tofu. In vivo tests of the system were performed on three mice bearing Met-1 tumors, which is a model of aggressive, metastatic and highly vascular breast cancer. In superficially implanted tumors, we demonstrate controlled heating to 42ºC. We show that the system is able to maintain the temperature to within 0.1ºC of the desired temperature both in vitro and in vivo. PMID:20064754

  11. Ultrasound detection of cavitation as a phenomenon common to intervention devices causing tissue ablation

    NASA Astrophysics Data System (ADS)

    Bach, David S.; Armstrong, William F.; Erbel, Raimund; Ellis, Stephen G.; Sousa, Joao; Rosenschein, Uri

    1992-08-01

    Cavitation previously has been observed in association with ultrasonic angioplasty and high- frequency rotational atherectomy. This study evaluates the production of cavitation accompanying the use of several catheter-based devices under development or in current use in the practice of interventional cardiology. Catheters were examined in an in vitro model, and cavitation was evaluated using standard ultrasound imaging equipment. Cavitation was detected with each of the devices that effects tissue ablation, but not tissue resection. Devices produced characteristic patterns of cavitation dependent on the mode of energy release of the device. The size, but not the intensity, of the cavitation effect was proportional to the energy output of the devices. The precise role of cavitation in the mechanism of tissue ablation remains uncertain.

  12. Combined chirp coded tissue harmonic and fundamental ultrasound imaging for intravascular ultrasound: 20–60 MHz phantom and ex vivo results

    PubMed Central

    Park, Jinhyoung; Li, Xiang; Zhou, Qifa; Shung, K. Kirk

    2013-01-01

    The application of chirp coded excitation to pulse inversion tissue harmonic imaging can increase signal to noise ratio. On the other hand, the elevation of range side lobe level, caused by leakages of the fundamental signal, has been problematic in mechanical scanners which are still the most prevalent in high frequency intravascular ultrasound imaging. Fundamental chirp coded excitation imaging can achieve range side lobe levels lower than –60 dB with Hanning window, but it yields higher side lobes level than pulse inversion chirp coded tissue harmonic imaging (PI-CTHI). Therefore, in this paper a combined pulse inversion chirp coded tissue harmonic and fundamental imaging mode (CPI-CTHI) is proposed to retain the advantages of both chirp coded harmonic and fundamental imaging modes by demonstrating 20–60 MHz phantom and ex vivo results. A simulation study shows that the range side lobe level of CPI-CTHI is 16 dB lower than PI-CTHI, assuming that the transducer translates incident positions by 50 μm when two beamlines of pulse inversion pair are acquired. CPI-CTHI is implemented for a proto-typed intravascular ultrasound scanner capable of combined data acquisition in real-time. A wire phantom study shows that CPI-CTHI has a 12 dB lower range side lobe level and a 7 dB higher echo signal to noise ratio than PI-CTHI, while the lateral resolution and side lobe level are 50 μm finer and –3 dB less than fundamental chirp coded excitation imaging respectively. Ex vivo scanning of a rabbit trachea demonstrates that CPI-CTHI is capable of visualizing blood vessels as small as 200 μm in diameter with 6 dB better tissue contrast than either PI-CTHI or fundamental chirp coded excitation imaging. These results clearly indicate that CPI-CTHI may enhance tissue contrast with less range side lobe level than PI-CTHI. PMID:22871273

  13. Estimating needle tip deflection in biological tissue from a single transverse ultrasound image: application to brachytherapy.

    PubMed

    Rossa, Carlos; Sloboda, Ron; Usmani, Nawaid; Tavakoli, Mahdi

    2016-07-01

    This paper proposes a method to predict the deflection of a flexible needle inserted into soft tissue based on the observation of deflection at a single point along the needle shaft. We model the needle-tissue as a discretized structure composed of several virtual, weightless, rigid links connected by virtual helical springs whose stiffness coefficient is found using a pattern search algorithm that only requires the force applied at the needle tip during insertion and the needle deflection measured at an arbitrary insertion depth. Needle tip deflections can then be predicted for different insertion depths. Verification of the proposed method in synthetic and biological tissue shows a deflection estimation error of [Formula: see text]2 mm for images acquired at 35 % or more of the maximum insertion depth, and decreases to 1 mm for images acquired closer to the final insertion depth. We also demonstrate the utility of the model for prostate brachytherapy, where in vivo needle deflection measurements obtained during early stages of insertion are used to predict the needle deflection further along the insertion process. The method can predict needle deflection based on the observation of deflection at a single point. The ultrasound probe can be maintained at the same position during insertion of the needle, which avoids complications of tissue deformation caused by the motion of the ultrasound probe.

  14. Monitoring tissue inflammation and responses to drug treatments in early stages of mice bone fracture using 50 MHz ultrasound

    PubMed Central

    Chen, Yen-Chu; Lin, Yi-Hsun; Wang, Shyh-Hau; Lin, Shih-Ping; Shung, K. Kirk; Wu, Chia-Ching

    2014-01-01

    Bone fracture induces moderate inflammatory responses that are regulated by cyclooxygenase-2 (COX-2) or 5-lipoxygenase (5-LO) for initiating tissue repair and bone formation. Only a handful of non-invasive techniques focus on monitoring acute inflammation of injured bone currently exists. In the current study, we monitored in vivo inflammation levels during the initial 2 weeks of the inflammatory stage after mouse bone fracture utilizing 50 MHz ultrasound. The acquired ultrasonic images were correlated well with histological examinations. After the bone fracture in the tibia, dynamic changes in the soft tissue at the medial-posterior compartment near the fracture site were monitored by ultrasound on the days of 0, 2, 4, 7, and 14. The corresponding echogenicity increased on the 2nd, 4th, and 7th day, and subsequently declined to basal levels after the 14th day. An increase of cell death was identified by the positive staining of deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) assay and was consistent with ultrasound measurements. The increases of both COX-2 and Leukotriene B4 receptor 1 (BLT1, 5- LO-relative receptor), which are regulators for tissue inflammation, in the immunohistochemistry staining revealed their involvement in bone fracture injury. Monitoring the inflammatory response to various non-steroidal anti-inflammatory drugs (NSAIDs) treatments was investigated by treating injured mice with a daily oral intake of aspirin (Asp), indomethacin (IND), and a selective COX-2 inhibitor (SC-236). The Asp treatment significantly reduced fracture-increased echogenicity (hyperechogenicity, p < 0.05) in ultrasound images as well as inhibited cell death, and expression of COX-2 and BLT1. In contrast, treatment with IND or SC-236 did not reduce the hyperechogenicity, as confirmed by cell death (TUNEL) and expression levels of COX-2 or BLT1. Taken together, the current study reports the feasibility of a noninvasive ultrasound method capable of monitoring

  15. Fusion of multi-parametric MRI and temporal ultrasound for characterization of prostate cancer: in vivo feasibility study

    NASA Astrophysics Data System (ADS)

    Imani, Farhad; Ghavidel, Sahar; Abolmaesumi, Purang; Khallaghi, Siavash; Gibson, Eli; Khojaste, Amir; Gaed, Mena; Moussa, Madeleine; Gomez, Jose A.; Romagnoli, Cesare; Cool, Derek W.; Bastian-Jordan, Matthew; Kassam, Zahra; Siemens, D. Robert; Leveridge, Michael; Chang, Silvia; Fenster, Aaron; Ward, Aaron D.; Mousavi, Parvin

    2016-03-01

    Recently, multi-parametric Magnetic Resonance Imaging (mp-MRI) has been used to improve the sensitivity of detecting high-risk prostate cancer (PCa). Prior to biopsy, primary and secondary cancer lesions are identified on mp-MRI. The lesions are then targeted using TRUS guidance. In this paper, for the first time, we present a fused mp-MRI-temporal-ultrasound framework for characterization of PCa, in vivo. Cancer classification results obtained using temporal ultrasound are fused with those achieved using consolidated mp-MRI maps determined by multiple observers. We verify the outcome of our study using histopathology following deformable registration of ultrasound and histology images. Fusion of temporal ultrasound and mp-MRI for characterization of the PCa results in an area under the receiver operating characteristic curve (AUC) of 0.86 for cancerous regions with Gleason scores (GSs)>=3+3, and AUC of 0.89 for those with GSs>=3+4.

  16. All-optical photoacoustic microscopy (AOPAM) system for remote characterization of biological tissues

    NASA Astrophysics Data System (ADS)

    Sampathkumar, Ashwin; Chitnis, Parag V.; Silverman, Ronald H.

    2014-03-01

    Conventional photoacoustic microscopy (PAM) employs light pulses to produce a photoacoustic (PA) effect and detects the resulting acoustic waves using an ultrasound transducer acoustically coupled to the target. The resolution of conventional PAM is limited by the sensitivity and bandwidth of the ultrasound transducer. We investigated a versatile, all-optical PAM (AOPAM) system for characterizing in vivo as well as ex vivo biological specimens. The system employs non-contact interferometric detection of PA signals that overcomes limitations of conventional PAM. A 532-nm pump laser with a pulse duration of 5 ns excites the PA effect in tissue. Resulting acoustic waves produce surface displacements that are sensed using a 532-nm continuous-wave (CW) probe laser in a Michelson interferometer with a 1- GHz bandwidth. The pump and probe beams are coaxially focused using a 50X objective giving a diffraction-limited spot size of 0.48 μm. The phase-encoded probe beam is demodulated using homodyne methods. The detected timedomain signal is time reversed using k-space wave-propagation methods to produce a spatial distribution of PA sources in the target tissue. A minimum surface-displacement sensitivity of 0.19 pm was measured. PA-induced surface displacements are very small; therefore, they impose stringent detection requirements and determine the feasibility of implementing an all-optical PAM in biomedical applications. 3D PA images of ex vivo porcine retina specimens were generated successfully. We believe the AOPAM system potentially is well suited for assessing retinal diseases and other near-surface biomedical applications such as sectionless histology and evaluation of skin burns and pressure or friction ulcers.

  17. Localization of focused-ultrasound beams in a tissue phantom, using remote thermocouple arrays.

    PubMed

    Hariharan, Prasanna; Dibaji, Seyed Ahmad Reza; Banerjee, Rupak K; Nagaraja, Srinidhi; Myers, Matthew R

    2014-12-01

    In focused-ultrasound procedures such as vessel cauterization or clot lysis, targeting accuracy is critical. To investigate the targeting accuracy of the focused-ultrasound systems, tissue phantoms embedded with thermocouples can be employed. This paper describes a method that utilizes an array of thermocouples to localize the focused ultrasound beam. All of the thermocouples are located away from the beam, so that thermocouple artifacts and sensor interference are minimized. Beam propagation and temperature rise in the phantom are simulated numerically, and an optimization routine calculates the beam location that produces the best agreement between the numerical temperature values and those measured with thermocouples. The accuracy of the method was examined as a function of the array characteristics, including the number of thermocouples in the array and their orientation. For exposures with a 3.3-MHz source, the remote-thermocouple technique was able to predict the focal position to within 0.06 mm. Once the focal location is determined using the localization method, temperatures at desired locations (including the focus) can be estimated from remote thermocouple measurements by curve fitting an analytical solution to the heat equation. Temperature increases in the focal plane were predicted to within 5% agreement with measured values using this method.

  18. Elasticity mapping of tissue mimicking phantoms by remote palpation with a focused ultrasound beam and intensity autocorrelation measurements

    NASA Astrophysics Data System (ADS)

    Usha Devi, C.; Bharat Chandran, R. S.; Vasu, R. M.; Sood, A. K.

    2007-05-01

    We use a focused ultrasound beam to load a region of interest (ROI) in a tissue-mimicking phantom and read out the vibration amplitude of phantom particles from the modulation depth in the intensity autocorrelation of a coherent light beam that intercepted the ROI. The modulation depth, which is also affected by the local light absorption coefficient, which is employed in ultrasound assisted optical tomography, to read out absorption coefficient is greatly influenced by the vibration amplitude, depends to a great extend on local elasticity. We scan a plane in an elastography phantom with an inhomogeneous inclusion, in elasticity with the focused ultrasound and from the measured modulation depth variation create a qualitative map of the elasticity variation in the interrogated plane.

  19. Microultrasound characterisation of ex vivo porcine tissue for ultrasound capsule endoscopy

    NASA Astrophysics Data System (ADS)

    Lay, H. S.; Cox, B. F.; Sunoqrot, M.; Démoré, C. E. M.; Näthke, I.; Gomez, T.; Cochran, S.

    2017-01-01

    Gastrointestinal (GI) disease development and progression is often characterised by cellular and tissue architectural changes within the mucosa and sub-mucosa layers. Current clinical capsule endoscopy and other approaches are heavily reliant on optical techniques which cannot detect disease progression below the surface layer of the tissue. To enhance the ability of clinicians to detect cellular changes earlier and more confidently, both quantitative and qualitative microultrasound (μUS) techniques are investigated in healthy ex vivo porcine GI tissue. This work is based on the use of single-element, focussed μUS transducers made with micromoulded piezocomposite operating at around 48 MHz. To explore the possibility that μUS can detect Crohn’s disease and other inflammatory bowel diseases, ex vivo porcine small bowel tissue samples were cannulised and perfused with phosphate-buffered saline followed by various dilutions of polystyrene microspheres. Comparison with fluorescent imaging showed that the microspheres had infiltrated the microvasculature of the samples and that μUS was able to successfully detect this as a mimic of inflammation. Samples without microspheres were analysed using quantitative ultrasound to assess mechanical properties. Attenuation coefficients of 1.78 ± 0.66 dB/mm and 1.92 ± 0.77 dB/mm were obtained from reference samples which were surgically separated from the muscle layer. Six intact samples were segmented using a software algorithm and the acoustic impedance, Z, for varying tissue thicknesses, and backscattering coefficient, BSC, were calculated using the reference attenuation values and tabulated.

  20. High-Resolution Ultrasound-Switchable Fluorescence Imaging in Centimeter-Deep Tissue Phantoms with High Signal-To-Noise Ratio and High Sensitivity via Novel Contrast Agents.

    PubMed

    Cheng, Bingbing; Bandi, Venugopal; Wei, Ming-Yuan; Pei, Yanbo; D'Souza, Francis; Nguyen, Kytai T; Hong, Yi; Yuan, Baohong

    2016-01-01

    For many years, investigators have sought after high-resolution fluorescence imaging in centimeter-deep tissue because many interesting in vivo phenomena-such as the presence of immune system cells, tumor angiogenesis, and metastasis-may be located deep in tissue. Previously, we developed a new imaging technique to achieve high spatial resolution in sub-centimeter deep tissue phantoms named continuous-wave ultrasound-switchable fluorescence (CW-USF). The principle is to use a focused ultrasound wave to externally and locally switch on and off the fluorophore emission from a small volume (close to ultrasound focal volume). By making improvements in three aspects of this technique: excellent near-infrared USF contrast agents, a sensitive frequency-domain USF imaging system, and an effective signal processing algorithm, for the first time this study has achieved high spatial resolution (~ 900 μm) in 3-centimeter-deep tissue phantoms with high signal-to-noise ratio (SNR) and high sensitivity (3.4 picomoles of fluorophore in a volume of 68 nanoliters can be detected). We have achieved these results in both tissue-mimic phantoms and porcine muscle tissues. We have also demonstrated multi-color USF to image and distinguish two fluorophores with different wavelengths, which might be very useful for simultaneously imaging of multiple targets and observing their interactions in the future. This work has opened the door for future studies of high-resolution centimeter-deep tissue fluorescence imaging.

  1. Microscale Characterization of the Viscoelastic Properties of Hydrogel Biomaterials using Dual-Mode Ultrasound Elastography

    PubMed Central

    Hong, Xiaowei; Stegemann, Jan P.; Deng, Cheri X.

    2016-01-01

    Characterization of the microscale mechanical properties of biomaterials is a key challenge in the field of mechanobiology. Dual-mode ultrasound elastography (DUE) uses high frequency focused ultrasound to induce compression in a sample, combined with interleaved ultrasound imaging to measure the resulting deformation. This technique can be used to non-invasively perform creep testing on hydrogel biomaterials to characterize their viscoelastic properties. DUE was applied to a range of hydrogel constructs consisting of either hydroxyapatite (HA)-doped agarose, HA-collagen, HA-fibrin, or preosteoblast-seeded collagen constructs. DUE provided spatial and temporal mapping of local and bulk displacements and strains at high resolution. Hydrogel materials exhibited characteristic creep behavior, and the maximum strain and residual strain were both material- and concentration-dependent. Burger’s viscoelastic model was used to extract characteristic parameters describing material behavior. Increased protein concentration resulted in greater stiffness and viscosity, but did not affect the viscoelastic time constant of acellular constructs. Collagen constructs exhibited significantly higher modulus and viscosity than fibrin constructs. Cell-seeded collagen constructs became stiffer with altered mechanical behavior as they developed over time. Importantly, DUE also provides insight into the spatial variation of viscoelastic properties at sub-millimeter resolution, allowing interrogation of the interior of constructs. DUE presents a novel technique for non-invasively characterizing hydrogel materials at the microscale, and therefore may have unique utility in the study of mechanobiology and the characterization of hydrogel biomaterials. PMID:26928595

  2. Microscale characterization of the viscoelastic properties of hydrogel biomaterials using dual-mode ultrasound elastography.

    PubMed

    Hong, Xiaowei; Stegemann, Jan P; Deng, Cheri X

    2016-05-01

    Characterization of the microscale mechanical properties of biomaterials is a key challenge in the field of mechanobiology. Dual-mode ultrasound elastography (DUE) uses high frequency focused ultrasound to induce compression in a sample, combined with interleaved ultrasound imaging to measure the resulting deformation. This technique can be used to non-invasively perform creep testing on hydrogel biomaterials to characterize their viscoelastic properties. DUE was applied to a range of hydrogel constructs consisting of either hydroxyapatite (HA)-doped agarose, HA-collagen, HA-fibrin, or preosteoblast-seeded collagen constructs. DUE provided spatial and temporal mapping of local and bulk displacements and strains at high resolution. Hydrogel materials exhibited characteristic creep behavior, and the maximum strain and residual strain were both material- and concentration-dependent. Burger's viscoelastic model was used to extract characteristic parameters describing material behavior. Increased protein concentration resulted in greater stiffness and viscosity, but did not affect the viscoelastic time constant of acellular constructs. Collagen constructs exhibited significantly higher modulus and viscosity than fibrin constructs. Cell-seeded collagen constructs became stiffer with altered mechanical behavior as they developed over time. Importantly, DUE also provides insight into the spatial variation of viscoelastic properties at sub-millimeter resolution, allowing interrogation of the interior of constructs. DUE presents a novel technique for non-invasively characterizing hydrogel materials at the microscale, and therefore may have unique utility in the study of mechanobiology and the characterization of hydrogel biomaterials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Non-rigid registration for fusion of carotid vascular ultrasound and MRI volumetric datasets

    NASA Astrophysics Data System (ADS)

    Chan, R. C.; Sokka, S.; Hinton, D.; Houser, S.; Manzke, R.; Hanekamp, A.; Reddy, V. Y.; Kaazempur-Mofrad, M. R.; Rasche, V.

    2006-03-01

    In carotid plaque imaging, MRI provides exquisite soft-tissue characterization, but lacks the temporal resolution for tissue strain imaging that real-time 3D ultrasound (3DUS) can provide. On the other hand, real-time 3DUS currently lacks the spatial resolution of carotid MRI. Non-rigid alignment of ultrasound and MRI data is essential for integrating complementary morphology and biomechanical information for carotid vascular assessment. We assessed non-rigid registration for fusion of 3DUS and MRI carotid data based on deformable models which are warped to maximize voxel similarity. We performed validation in vitro using isolated carotid artery imaging. These samples were subjected to soft-tissue deformations during 3DUS and were imaged in a static configuration with standard MR carotid pulse sequences. Registration of the source ultrasound sequences to the target MR volume was performed and the mean absolute distance between fiducials within the ultrasound and MR datasets was measured to determine inter-modality alignment quality. Our results indicate that registration errors on the order of 1mm are possible in vitro despite the low-resolution of current generation 3DUS transducers. Registration performance should be further improved with the use of higher frequency 3DUS prototypes and efforts are underway to test those probes for in vivo 3DUS carotid imaging.

  4. Automatic bone detection and soft tissue aware ultrasound-CT registration for computer-aided orthopedic surgery.

    PubMed

    Wein, Wolfgang; Karamalis, Athanasios; Baumgartner, Adrian; Navab, Nassir

    2015-06-01

    The transfer of preoperative CT data into the tracking system coordinates within an operating room is of high interest for computer-aided orthopedic surgery. In this work, we introduce a solution for intra-operative ultrasound-CT registration of bones. We have developed methods for fully automatic real-time bone detection in ultrasound images and global automatic registration to CT. The bone detection algorithm uses a novel bone-specific feature descriptor and was thoroughly evaluated on both in-vivo and ex-vivo data. A global optimization strategy aligns the bone surface, followed by a soft tissue aware intensity-based registration to provide higher local registration accuracy. We evaluated the system on femur, tibia and fibula anatomy in a cadaver study with human legs, where magnetically tracked bone markers were implanted to yield ground truth information. An overall median system error of 3.7 mm was achieved on 11 datasets. Global and fully automatic registration of bones aquired with ultrasound to CT is feasible, with bone detection and tracking operating in real time for immediate feedback to the surgeon.

  5. Photoacoustic-guided ultrasound therapy with a dual-mode ultrasound array

    NASA Astrophysics Data System (ADS)

    Prost, Amaury; Funke, Arik; Tanter, Mickaël; Aubry, Jean-François; Bossy, Emmanuel

    2012-06-01

    Photoacoustics has recently been proposed as a potential method to guide and/or monitor therapy based on high-intensity focused ultrasound (HIFU). We experimentally demonstrate the creation of a HIFU lesion at the location of an optical absorber, by use of photoacoustic signals emitted by the absorber detected on a dual mode transducer array. To do so, a dedicated ultrasound array intended to both detect photoacoustic waves and emit HIFU with the same elements was used. Such a dual-mode array provides automatically coregistered reference frames for photoacoustic detection and HIFU emission, a highly desired feature for methods involving guidance or monitoring of HIFU by use of photoacoustics. The prototype is first characterized in terms of both photoacoustic and HIFU performances. The probe is then used to perform an idealized scenario of photoacoustic-guided therapy, where photoacoustic signals generated by an absorbing thread embedded in a piece of chicken breast are used to automatically refocus a HIFU beam with a time-reversal mirror and necrose the tissue at the location of the absorber.

  6. Analysis of ultrasound pulse-echo images for characterization of muscle disease

    NASA Astrophysics Data System (ADS)

    Leeman, Sidney; Heckmatt, John Z.

    1996-04-01

    This study aims to extract quantifiable indices characterizing ultrasound propagation and scattering in skeletal muscle, from data acquired using a real-time linear array scanner in a paediatric muscle clinic, in order to establish early diagnosis of Duchenne muscular dystrophy in young children, as well as to chart the progressive severity of the disease. Approximately 40 patients with gait disorders, aged between 1 and 11 years, were scanned with a real-time linear array ultrasound scanner, at 5 MHz. A control group consisted of approximately 50 boys, in the same age range, with no evidence or history of muscle disease. Results show that ultrasound quantitative methods can provide a tight clustering of normal data, and also provide a basis for charting the degree of change in diseased muscle. The most significant (quantitative) parameters derive from the frequency of the attenuation and the muscle echogenicity. The approach provides a discrimination method that is more sensitive than visual assessment of the corresponding image by even an experienced observer. There are also indications that the need for traumatic muscle biopsy may be obviated in some cases.

  7. Ultrasound excited thermography: an efficient tool for the characterization of vertical cracks

    NASA Astrophysics Data System (ADS)

    Mendioroz, A.; Celorrio, R.; Salazar, A.

    2017-11-01

    Ultrasound excited thermography has gained a renewed interest in the last two decades as a nondestructive testing technique aimed at detecting and characterizing surface breaking and shallow subsurface discontinuities. It is based on measurement of the IR radiation emitted by the specimen surface to detect temperature rises produced by the heating of defects under high amplitude ultrasound excitation and is primarily addressed to flaws with contacting faces, such as kissing cracks or tight delaminations. The simplicity of application and the ability to detect small cracks in challenging media makes it an attractive emerging technology, which is still in a development stage. However, it has proven to provide an opportunity for the quantitative characterization of defects, mainly of vertical cracks. In this review, we present the principles of the technique and the different experimental implementations, we put it in context with other nondestructive tests and we summarize the work done in order to improve defect detectability and test reliability, with the final goal of determining the probability of detection. Then we review the contributions aimed at characterizing vertical cracks, i.e. retrieving the geometry and location of the crack from surface temperature data, generated by ultrasonic excitation.

  8. Modelling and characterisation of a ultrasound-actuated needle for improved visibility in ultrasound-guided regional anaesthesia and tissue biopsy.

    PubMed

    Kuang, Y; Hilgers, A; Sadiq, M; Cochran, S; Corner, G; Huang, Z

    2016-07-01

    Clear needle visualisation is recognised as an unmet need for ultrasound guided percutaneous needle procedures including regional anaesthesia and tissue biopsy. With inadequate needle visibility, these procedures may result in serious complications or a failed operation. This paper reports analysis of the modal behaviour of a previously proposed ultrasound-actuated needle configuration, which may overcome this problem by improving needle visibility in colour Doppler imaging. It uses a piezoelectric transducer to actuate longitudinal resonant modes in needles (outer diameter 0.8-1.2mm, length>65mm). The factors that affect the needle's vibration mode are identified, including the needle length, the transducer's resonance frequency and the gripping position. Their effects are investigated using finite element modelling, with the conclusions validated experimentally. The actuated needle was inserted into porcine tissue up to 30mm depth and its visibility was observed under colour Doppler imaging. The piezoelectric transducer is able to generate longitudinal vibration with peak-to-peak amplitude up to 4μm at the needle tip with an actuating voltage of 20Vpp. Actuated in longitudinal vibration modes (distal mode at 27.6kHz and transducer mode at 42.2kHz) with a drive amplitude of 12-14Vpp, a 120mm needle is delineated as a coloured line in colour Doppler images, with both needle tip and shaft visualised. The improved needle visibility is maintained while the needle is advanced into the tissue, thus allowing tracking of the needle position in real time. Moreover, the needle tip is highlighted by strong coloured artefacts around the actuated needle generated by its flexural vibration. A limitation of the technique is that the transducer mode requires needles of specific lengths so that the needle's resonance frequency matches the transducer. This may restrict the choice of needle lengths in clinical applications. Copyright © 2016 The Authors. Published by Elsevier B

  9. Acoustic radiation force impulse (ARFI) imaging: Characterizing the mechanical properties of tissues using their transient response to localized force

    NASA Astrophysics Data System (ADS)

    Nightingale, Kathryn R.; Palmeri, Mark L.; Congdon, Amy N.; Frinkely, Kristin D.; Trahey, Gregg E.

    2004-05-01

    Acoustic radiation force impulse (ARFI) imaging utilizes brief, high energy, focused acoustic pulses to generate radiation force in tissue, and conventional diagnostic ultrasound methods to detect the resulting tissue displacements in order to image the relative mechanical properties of tissue. The magnitude and spatial extent of the applied force is dependent upon the transmit beam parameters and the tissue attenuation. Forcing volumes are on the order of 5 mm3, pulse durations are less than 1 ms, and tissue displacements are typically several microns. Images of tissue displacement reflect local tissue stiffness, with softer tissues (e.g., fat) displacing farther than stiffer tissues (e.g., muscle). Parametric images of maximum displacement, time to peak displacement, and recovery time provide information about tissue material properties and structure. In both in vivo and ex vivo data, structures shown in matched B-mode images are in good agreement with those shown in ARFI images, with comparable resolution. Potential clinical applications under investigation include soft tissue lesion characterization, assessment of focal atherosclerosis, and imaging of thermal lesion formation during tissue ablation procedures. Results from ongoing studies will be presented. [Work supported by NIH Grant R01 EB002132-03, and the Whitaker Foundation. System support from Siemens Medical Solutions USA, Inc.

  10. Ultrasound-guided synovial biopsy

    PubMed Central

    Sitt, Jacqueline C M; Wong, Priscilla

    2016-01-01

    Ultrasound-guided needle biopsy of synovium is an increasingly performed procedure with a high diagnostic yield. In this review, we discuss the normal synovium, as well as the indications, technique, tissue handling and clinical applications of ultrasound-guided synovial biopsy. PMID:26581578

  11. Development of a Tissue-Mimicking Phantom for Evaluating the Focusing Performance of High Intensity Focused Ultrasound

    NASA Astrophysics Data System (ADS)

    Zongyu, Jing; Faqi, Li; Jiangzhong, Zou; Zhibiao, Wang

    2006-05-01

    Objectives: To develop a tissue mimicking phantom which can be used to evaluate the focusing performance of the HIFU transducer, and the phantom should has the same acoustic characteristic and thermotics characteristic as the biological tissue. Materials and methods: The tissue mimicking phantom was made from water, gelatin, fresh biologic tissue Its ultrasonic parameters (attenuation coefficient) of the phantom was measured by the method of radiation pressure, and thermotics parameters of the phantom, including thermal conductivity, specific heat/fusion point et al were tested under the Measurement meter. The HIFU biological effect of the phantom was evaluated under the Model JC focused ultrasound tumor therapeutic system, developed and produced by Chongqing HIFU Technology Co. Ltd (working frequency: 0.7MHz; acoustic power: 200W; focal distance: 135mm; Acoustic focal region: 3×3×25 cubic mm). Results: The self-made phantom is sable, has smooth and glossy appearance, well-distributed construction, and good elasticity. We measured the followed values for acoustic and thermal properties: density 1049±2 kg/m3; attenuation 0.532±0.017 dB/cm (0.8 MHz), 0.612±0.021 dB/cm (1.0 MHz); thermal conductivity 0.76±0.08 W/m/-°C; specific heat 3653±143 J/kg-°C; fusion point154±8°C. The BFR induced in the phantom after HIFU exposure was stable in its size and appearance. Conclusion: We produced and improved one tissue mimicking phantom successfully which had semblable ultrasound and thermphysical properties like the soft tissue, and can replace the bovine liver to investigate the HIFU biological effect and to detect the focusing performance of the HIFU energy transducer. The research was supported by Chongqing University of Medical Science (CX200320).

  12. Acoustic holography as a metrological tool for characterizing medical ultrasound sources and fields

    PubMed Central

    Sapozhnikov, Oleg A.; Tsysar, Sergey A.; Khokhlova, Vera A.; Kreider, Wayne

    2015-01-01

    Acoustic holography is a powerful technique for characterizing ultrasound sources and the fields they radiate, with the ability to quantify source vibrations and reduce the number of required measurements. These capabilities are increasingly appealing for meeting measurement standards in medical ultrasound; however, associated uncertainties have not been investigated systematically. Here errors associated with holographic representations of a linear, continuous-wave ultrasound field are studied. To facilitate the analysis, error metrics are defined explicitly, and a detailed description of a holography formulation based on the Rayleigh integral is provided. Errors are evaluated both for simulations of a typical therapeutic ultrasound source and for physical experiments with three different ultrasound sources. Simulated experiments explore sampling errors introduced by the use of a finite number of measurements, geometric uncertainties in the actual positions of acquired measurements, and uncertainties in the properties of the propagation medium. Results demonstrate the theoretical feasibility of keeping errors less than about 1%. Typical errors in physical experiments were somewhat larger, on the order of a few percent; comparison with simulations provides specific guidelines for improving the experimental implementation to reduce these errors. Overall, results suggest that holography can be implemented successfully as a metrological tool with small, quantifiable errors. PMID:26428789

  13. Manufacture and characterization of breast tissue phantoms for emulating benign lesions

    NASA Astrophysics Data System (ADS)

    Villamarín, J. A.; Rojas, M. A.; Potosi, O. M.; Narváez-Semanate, J. L.; Gaviria, C.

    2017-11-01

    Phantoms elaboration has turned a very important field of study during the last decades due to its applications in medicine. These objects are capable of emulating or mimicking acoustically biological tissues in which parameters like speed of sound (SOS) and attenuation are successfully attained. However, these materials are expensive depending on their characteristics (USD 460.00 - 6000.00) and is difficult to have precise measurements because of their composition. This paper presents the elaboration and characterization of low cost ( USD $25.00) breast phantoms which emulate histological normality and pathological conditions in order to support algorithm calibration procedures in imaging diagnosis. Quantitative ultrasound (QUS) was applied to estimate SOS and attenuation values for breast tissue (background) and benign lesions (fibroadenoma and cysts). Results showed values of the SOS and attenuation for the background between 1410 - 1450 m/s and 0.40 - 0.55 dB/cm at 1 MHz sampling frequency, respectively. On the other hand, the SOS obtained for the lesions ranges from 1350 to 1700 m/s and attenuation values between 0.50 - 1.80 dB/cm at 1 MHz. Finally, the fabricated phantoms allowed for obtaining ultrasonograms comparable with real ones whose acoustic parameters are in agree with those reported in the literature.

  14. Characterization of tissue-simulating phantom materials for ultrasound-guided needle procedures

    NASA Astrophysics Data System (ADS)

    Buchanan, Susan; Moore, John; Lammers, Deanna; Baxter, John; Peters, Terry

    2012-02-01

    Needle biopsies are standard protocols that are commonly performed under ultrasound (US) guidance or computed tomography (CT)1. Vascular access such as central line insertions, and many spinal needle therapies also rely on US guidance. Phantoms for these procedures are crucial as both training tools for clinicians and research tools for developing new guidance systems. Realistic imaging properties and material longevity are critical qualities for needle guidance phantoms. However, current commercially available phantoms for use with US guidance have many limitations, the most detrimental of which include harsh needle tracks obfuscating US images and a membrane comparable to human skin that does not allow seepage of inner media. To overcome these difficulties, we tested a variety of readily available media and membranes to evaluate optimal materials to fit our current needs. It was concluded that liquid hand soap was the best medium, as it instantly left no needle tracks, had an acceptable depth of US penetration and portrayed realistic imaging conditions, while because of its low leakage, low cost, acceptable durability and transparency, the optimal membrane was 10 gauge vinyl.

  15. In vitro study of the effects of ultrasound-mediated glycerol on optical attenuation of human normal and cancerous esophageal tissues with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Q.; Wei, H. J.; Yang, H. Q.; Guo, Z. Y.; Xie, S. S.; Gu, H. M.; Guo, X.; Zhu, Z. G.

    2013-06-01

    Previous studies from our group have demonstrated that glucose solution can induce optical clearing enhancement of esophageal tissues with optical coherence tomography (OCT). The aims of this study were to evaluate the optical clearing effects of ultrasound-mediated optical clearing agents (OCAs) and to find more effective methods to distinguish human normal esophageal tissues (NE) and cancerous esophageal tissues (CE). Here we used the OCT technique to investigate the optical attenuation of NE and CE in vitro after treatment with 30% glycerol alone and glycerol combined with ultrasound, respectively. Experimental results showed that the averaged attenuation coefficient of CE was significantly larger than that of NE. The maximal decreases of averaged attenuation coefficients of NE and CE were approximately 48.7% and 36.2% after treatment with 30% glycerol alone, and they were significantly lower than those treated with 30% glycerol and ultrasound (57.5% in NE and 44.8% in CE). Moreover, after treatment with 30% glycerol alone, the averaged attenuation coefficients of NE and CE reached their minima in about 80 min and 65 min, respectively. The times were much shorter in NE and CE after treatment with glycerol with ultrasound, being about 62 min and 50 min, respectively. The results suggest that there is a significant difference in the optical properties of NE and CE, and that OCT with an ultrasound-OCAs combination has the ability to distinguish CE from NE.

  16. High-Resolution Ultrasound-Switchable Fluorescence Imaging in Centimeter-Deep Tissue Phantoms with High Signal-To-Noise Ratio and High Sensitivity via Novel Contrast Agents

    PubMed Central

    Cheng, Bingbing; Bandi, Venugopal; Wei, Ming-Yuan; Pei, Yanbo; D’Souza, Francis; Nguyen, Kytai T.; Hong, Yi; Yuan, Baohong

    2016-01-01

    For many years, investigators have sought after high-resolution fluorescence imaging in centimeter-deep tissue because many interesting in vivo phenomena—such as the presence of immune system cells, tumor angiogenesis, and metastasis—may be located deep in tissue. Previously, we developed a new imaging technique to achieve high spatial resolution in sub-centimeter deep tissue phantoms named continuous-wave ultrasound-switchable fluorescence (CW-USF). The principle is to use a focused ultrasound wave to externally and locally switch on and off the fluorophore emission from a small volume (close to ultrasound focal volume). By making improvements in three aspects of this technique: excellent near-infrared USF contrast agents, a sensitive frequency-domain USF imaging system, and an effective signal processing algorithm, for the first time this study has achieved high spatial resolution (~ 900 μm) in 3-centimeter-deep tissue phantoms with high signal-to-noise ratio (SNR) and high sensitivity (3.4 picomoles of fluorophore in a volume of 68 nanoliters can be detected). We have achieved these results in both tissue-mimic phantoms and porcine muscle tissues. We have also demonstrated multi-color USF to image and distinguish two fluorophores with different wavelengths, which might be very useful for simultaneously imaging of multiple targets and observing their interactions in the future. This work has opened the door for future studies of high-resolution centimeter-deep tissue fluorescence imaging. PMID:27829050

  17. Calibration and Evaluation of Ultrasound Thermography using Infrared Imaging

    PubMed Central

    Hsiao, Yi-Sing; Deng, Cheri X.

    2015-01-01

    Real-time monitoring of the spatiotemporal evolution of tissue temperature is important to ensure safe and effective treatment in thermal therapies including hyperthermia and thermal ablation. Ultrasound thermography has been proposed as a non-invasive technique for temperature measurement, and accurate calibration of the temperature-dependent ultrasound signal changes against temperature is required. Here we report a method that uses infrared (IR) thermography for calibration and validation of ultrasound thermography. Using phantoms and cardiac tissue specimens subjected to high-intensity focused ultrasound (HIFU) heating, we simultaneously acquired ultrasound and IR imaging data from the same surface plane of a sample. The commonly used echo time shift-based method was chosen to compute ultrasound thermometry. We first correlated the ultrasound echo time shifts with IR-measured temperatures for material-dependent calibration and found that the calibration coefficient was positive for fat-mimicking phantom (1.49 ± 0.27) but negative for tissue-mimicking phantom (− 0.59 ± 0.08) and cardiac tissue (− 0.69 ± 0.18 °C-mm/ns). We then obtained the estimation error of the ultrasound thermometry by comparing against the IR measured temperature and revealed that the error increased with decreased size of the heated region. Consistent with previous findings, the echo time shifts were no longer linearly dependent on temperature beyond 45 – 50 °C in cardiac tissues. Unlike previous studies where thermocouples or water-bath techniques were used to evaluate the performance of ultrasound thermography, our results show that high resolution IR thermography provides a useful tool that can be applied to evaluate and understand the limitations of ultrasound thermography methods. PMID:26547634

  18. Assessment and characterization of in situ rotator cuff biomechanics

    NASA Astrophysics Data System (ADS)

    Trent, Erika A.; Bailey, Lane; Mefleh, Fuad N.; Raikar, Vipul P.; Shanley, Ellen; Thigpen, Charles A.; Dean, Delphine; Kwartowitz, David M.

    2013-03-01

    Rotator cuff disease is a degenerative disorder that is a common, costly, and often debilitating, ranging in severity from partial thickness tear, which may cause pain, to total rupture, leading to loss in function. Currently, clinical diagnosis and determination of disease extent relies primarily on subjective assessment of pain, range of motion, and possibly X-ray or ultrasound images. The final treatment plan however is at the discretion of the clinician, who often bases their decision on personal experiences, and not quantitative standards. The use of ultrasound for the assessment of tissue biomechanics is established, such as in ultrasound elastography, where soft tissue biomechanics are measured. Few studies have investigated the use of ultrasound elastography in the characterization of musculoskeletal biomechanics. To assess tissue biomechanics we have developed a device, which measures the force applied to the underlying musculotendentious tissue while simultaneously obtaining the related ultrasound images. In this work, the musculotendinous region of the infraspinatus of twenty asymptomatic male organized baseball players was examined to access the variability in tissue properties within a single patient and across a normal population. Elastic moduli at percent strains less than 15 were significantly different than those above 15 percent strain within the normal population. No significant difference in tissue properties was demonstrated within a single patient. This analysis demonstrated elastic moduli are variable across individuals and incidence. Therefore threshold elastic moduli will likely be a function of variation in local-tissue moduli as opposed to a specific global value.

  19. Basic physics of ultrasound imaging.

    PubMed

    Aldrich, John E

    2007-05-01

    The appearance of ultrasound images depends critically on the physical interactions of sound with the tissues in the body. The basic principles of ultrasound imaging and the physical reasons for many common artifacts are described.

  20. Detecting changes in ultrasound backscattered statistics by using Nakagami parameters: Comparisons of moment-based and maximum likelihood estimators.

    PubMed

    Lin, Jen-Jen; Cheng, Jung-Yu; Huang, Li-Fei; Lin, Ying-Hsiu; Wan, Yung-Liang; Tsui, Po-Hsiang

    2017-05-01

    The Nakagami distribution is an approximation useful to the statistics of ultrasound backscattered signals for tissue characterization. Various estimators may affect the Nakagami parameter in the detection of changes in backscattered statistics. In particular, the moment-based estimator (MBE) and maximum likelihood estimator (MLE) are two primary methods used to estimate the Nakagami parameters of ultrasound signals. This study explored the effects of the MBE and different MLE approximations on Nakagami parameter estimations. Ultrasound backscattered signals of different scatterer number densities were generated using a simulation model, and phantom experiments and measurements of human liver tissues were also conducted to acquire real backscattered echoes. Envelope signals were employed to estimate the Nakagami parameters by using the MBE, first- and second-order approximations of MLE (MLE 1 and MLE 2 , respectively), and Greenwood approximation (MLE gw ) for comparisons. The simulation results demonstrated that, compared with the MBE and MLE 1 , the MLE 2 and MLE gw enabled more stable parameter estimations with small sample sizes. Notably, the required data length of the envelope signal was 3.6 times the pulse length. The phantom and tissue measurement results also showed that the Nakagami parameters estimated using the MLE 2 and MLE gw could simultaneously differentiate various scatterer concentrations with lower standard deviations and reliably reflect physical meanings associated with the backscattered statistics. Therefore, the MLE 2 and MLE gw are suggested as estimators for the development of Nakagami-based methodologies for ultrasound tissue characterization. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Acoustic characterization of ultrasound contrast microbubbles and echogenic liposomes: Applications to imaging and drug-delivery

    NASA Astrophysics Data System (ADS)

    Paul, Shirshendu

    Micron- to nanometer - sized ultrasound agents, like encapsulated microbubbles and echogenic liposomes (ELIPs), are being actively developed for possible clinical implementations in diagnostic imaging and ultrasound mediated drug/gene delivery. The primary objective of this thesis is to characterize the acoustic behavior of and the ultrasound-mediated contents release from these contrast agents for developing multi-functional ultrasound contrast agents. Subharmonic imaging using contrast microbubbles can improve image quality by providing a higher signal to noise ratio. However, the design and development of contrast microbubbles with favorable subharmonic behavior requires accurate mathematical models capable of predicting their nonlinear dynamics. To this goal, 'strain-softening' viscoelastic interfacial models of the encapsulation were developed and subsequently utilized to simulate the dynamics of encapsulated microbubbles. A hierarchical two-pronged approach of modeling --- a model is applied to one set of experimental data to obtain the model parameters (material characterization), and then the model is validated against a second independent experiment --- is demonstrated in this thesis for two lipid coated (SonazoidRTM and DefinityRTM) and a few polymer (polylactide) encapsulated microbubbles. The proposed models were successful in predicting several experimentally observed behaviors e.g., low subharmonic thresholds and "compression-only" radial oscillations. Results indicate that neglecting the polydisperse size distribution of contrast agent suspensions, a common practice in the literature, can lead to inaccurate results. In vitro experimental investigation of the dependence of subharmonic response from these microbubbles on the ambient pressure is also in conformity with the recent numerical investigations, showing both increase or decrease under appropriate excitation conditions. Experimental characterization of the ELIPs and polymersomes was performed

  2. Classification algorithm of ovarian tissue based on co-registered ultrasound and photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Li, Hai; Kumavor, Patrick D.; Alqasemi, Umar; Zhu, Quing

    2014-03-01

    Human ovarian tissue features extracted from photoacoustic spectra data, beam envelopes and co-registered ultrasound and photoacoustic images are used to characterize cancerous vs. normal processes using a support vector machine (SVM) classifier. The centers of suspicious tumor areas are estimated from the Gaussian fitting of the mean Radon transforms of the photoacoustic image along 0 and 90 degrees. Normalized power spectra are calculated using the Fourier transform of the photoacoustic beamformed data across these suspicious areas, where the spectral slope and 0-MHz intercepts are extracted. Image statistics, envelope histogram fitting and maximum output of 6 composite filters of cancerous or normal patterns along with other previously used features are calculated to compose a total of 17 features. These features are extracted from 169 datasets of 19 ex vivo ovaries. Half of the cancerous and normal datasets are randomly chosen to train a SVM classifier with polynomial kernel and the remainder is used for testing. With 50 times data resampling, the SVM classifier, for the training group, gives 100% sensitivity and 100% specificity. For the testing group, it gives 89.68+/- 6.37% sensitivity and 93.16+/- 3.70% specificity. These results are superior to those obtained earlier by our group using features extracted from photoacoustic raw data or image statistics only.

  3. The Subharmonic Behavior and Thresholds of High Frequency Ultrasound Contrast Agents

    NASA Astrophysics Data System (ADS)

    Allen, John

    2016-11-01

    Ultrasound contrast agents are encapsulated micro-bubbles used for diagnostic and therapeutic biomedical ultrasound. The agents oscillate nonlinearly about their equilibrium radii upon sufficient acoustic forcing and produce unique acoustic signatures that allow them to be distinguished from scattering from the surrounding tissue. The subharmonic response occurs below the fundamental and is associated with an acoustic pressure threshold. Subharmonic imaging using ultrasound contrast agents has been established for clinical applications at standard diagnostic frequencies typically below 20 MHz. However, for emerging applications of high frequency applications (above 20 MHz) subharmonic imaging is an area of on-going research. The effects of attenuation from tissue are more significant and the characterization of agents is not as well understood. Due to specificity and control production, polymer agents are useful for high frequency applications. In this study, we highlight novel measurement techniques to measure and characterize the mechanical properties of the shell of polymer contrast agents. The definition of the subharmonic threshold is investigated with respect to mono-frequency and chirp forcing waveforms which have been used to achieve optimal subharmonic content in the backscattered signal. Time frequency analysis using the Empirical Mode Decomposition (EMD) and the Hilbert-Huang transform facilitates a more sensitive and robust methodology for characterization of subharmonic content with respect to non-stationary forcing. A new definition of the subharmonic threshold is proposed with respect to the energy content of the associated adaptive basis decomposition. Additional studies with respect to targeted agent behavior and cardiovascular disease are discussed. NIH, ONR.

  4. Polyplex-microbubble hybrids for ultrasound-guided plasmid DNA delivery to solid tumors.

    PubMed

    Sirsi, Shashank R; Hernandez, Sonia L; Zielinski, Lukasz; Blomback, Henning; Koubaa, Adel; Synder, Milo; Homma, Shunichi; Kandel, Jessica J; Yamashiro, Darrell J; Borden, Mark A

    2012-01-30

    Microbubble ultrasound contrast agents are being developed as image-guided gene carriers for targeted delivery in vivo. In this study, novel polyplex-microbubbles were synthesized, characterized and evaluated for systemic circulation and tumor transfection. Branched polyethylenimine (PEI; 25 kDa) was modified with polyethylene glycol (PEG; 5 kDa), thiolated and covalently attached to maleimide groups on lipid-coated microbubbles. The PEI-microbubbles demonstrated increasingly positive surface charge and DNA loading capacity with increasing maleimide content. The in vivo ultrasound contrast persistence of PEI-microbubbles was measured in the healthy mouse kidney, and a two-compartment pharmacokinetic model accounting for free and adherent microbubbles was developed to describe the anomalous time-intensity curves. The model suggested that PEI loading dramatically reduced free circulation and increased nonspecific adhesion to the vasculature. However, DNA loading to form polyplex-microbubbles increased circulation in the bloodstream and decreased nonspecific adhesion. PEI-microbubbles coupled to a luciferase bioluminescence reporter plasmid DNA were shown to transfect tumors implanted in the mouse kidney. Site-specific delivery was achieved using ultrasound applied over the tumor area following bolus injection of the DNA/PEI-microbubbles. In vivo imaging showed over 10-fold higher bioluminescence from the tumor region compared to untreated tissue. Ex vivo analysis of excised tumors showed greater than 40-fold higher expression in tumor tissue than non-sonicated control (heart) tissue. These results suggest that the polyplex-microbubble platform offers improved control of DNA loading and packaging suitable for ultrasound-guided tissue transfection. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. A novel technology using transscleral ultrasound to deliver protein loaded nanoparticles.

    PubMed

    Huang, Di; Wang, Lili; Dong, Yixuan; Pan, Xin; Li, Ge; Wu, Chuanbin

    2014-09-01

    This study was designed to investigate the feasibility of silk fibroin nanoparticles (SFNs) for sustained drug delivery in transscleral ultrasound. Fluorescein isothiocynate labeled bovine serum albumin (FITC-BSA, MW 66.45 kDa) was chosen as a model macromolecular protein drug and SFNs were used as nano-carrier systems suitable for ocular drug delivery. Drug loaded nanoparticles (FITC-BSA-SFNs) were first prepared and characterized. In vitro transscleral study under ultrasound exposure (1MHz, 0.5 W/cm(2), 5 min continuous wave) using isolated sclera of rabbit was performed. The posterior eye segment of rabbit was examined for adverse effect by slit-lamp and histology. It was found that FITC-BSA-SFNs possessed sustained release, bioadhesive, and co-permeation characteristics. The ultrasound application significantly improved the penetration efficiency of FITC-BSA-SFNs as compared with passive delivery, meanwhile caused no damages to the ocular tissue and particles themselves. The distribution profile of SFNs revealed rapid and lasting adhesion on the outer scleral tissues, followed by migration into the interior up to one week after treatment. This research suggested a novel non-invasive transscleral administration of macromolecular protein drugs using SFN carriers combining with ultrasound technology. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. 3D ultrafast ultrasound imaging in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-07

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra--and inter-observer variability.

  7. Laser-induced tissue fluorescence in radiofrequency tissue-fusion characterization.

    PubMed

    Su, Lei; Fonseca, Martina B; Arya, Shobhit; Kudo, Hiromi; Goldin, Robert; Hanna, George B; Elson, Daniel S

    2014-01-01

    Heat-induced tissue fusion is an important procedure in modern surgery and can greatly reduce trauma, complications, and mortality during minimally invasive surgical blood vessel anastomosis, but it may also have further benefits if applied to other tissue types such as small and large intestine anastomoses. We present a tissue-fusion characterization technology using laser-induced fluorescence spectroscopy, which provides further insight into tissue constituent variations at the molecular level. In particular, an increase of fluorescence intensity in 450- to 550-nm range for 375- and 405-nm excitation suggests that the collagen cross-linking in fused tissues increased. Our experimental and statistical analyses showed that, by using fluorescence spectral data, good fusion could be differentiated from other cases with an accuracy of more than 95%. This suggests that the fluorescence spectroscopy could be potentially used as a feedback control method in online tissue-fusion monitoring.

  8. Renal denervation by intravascular ultrasound: Preliminary in vivo study

    NASA Astrophysics Data System (ADS)

    Sinelnikov, Yegor; McClain, Steve; Zou, Yong; Smith, David; Warnking, Reinhard

    2012-10-01

    Ultrasound denervation has recently become a subject of intense research in connection with the treatment of complex medical conditions including neurological conditions, development of pain management, reproduction of skin sensation, neuropathic pain and spasticity. The objective of this study is to investigate the use of intravascular ultrasound to produce nerve damage in renal sympathetic nerves without significant injury to the renal artery. This technique may potentially be used to treat various medical conditions, such as hypertension. The study was approved by the Institutional Animal Care and Use Committee. Ultrasound was applied to renal nerves of the swine model for histopathological evaluation. Therapeutic ultrasound energy was delivered circumferentially by an intravascular catheter maneuvered into the renal arteries. Fluoroscopic imaging was conducted pre-and post-ultrasound treatment. Animals were recovered and euthanized up to 30 hours post procedure, followed by necropsy and tissue sample collection. Histopathological examination showed evidence of extensive damage to renal nerves, characterized by nuclear pyknosis, hyalinization of stroma and multifocal hemorrhages, with little or no damage to renal arteries. This study demonstrates the feasibility of intravascular ultrasound as a minimally invasive renal denervation technique. Further studies are necessary to evaluate the long-term safety and efficacy of this technique and its related clinical significance.

  9. Ultrasound Guidance and Monitoring of Laser-Based Fat Removal

    PubMed Central

    Shah, Jignesh; Thomsen, Sharon; Milner, Thomas E.; Emelianov, Stanislav Y.

    2009-01-01

    Background and Objectives We report on a study to investigate feasibility of utilizing ultrasound imaging to guide laser removal of subcutaneous fat. Ultrasound imaging can be used to identify the tissue composition and to monitor the temperature increase in response to laser irradiation. Study Design/Materials and Methods Laser heating was performed on ex vivo porcine subcutaneous fat through the overlying skin using a continuous wave laser operating at 1,210 nm optical wavelength. Ultrasound images were recorded using a 10 MHz linear array-based ultrasound imaging system. Results Ultrasound imaging was utilized to differentiate between water-based and lipid-based regions within the porcine tissue and to identify the dermis-fat junction. Temperature maps during the laser exposure in the skin and fatty tissue layers were computed. Conclusions Results of our study demonstrate the potential of using ultrasound imaging to guide laser fat removal. PMID:19065554

  10. Tissue ablation after 120W greenlight laser vaporization and bipolar plasma vaporization of the prostate: a comparison using transrectal three-dimensional ultrasound volumetry

    NASA Astrophysics Data System (ADS)

    Kranzbühler, Benedikt; Gross, Oliver; Fankhauser, Christian D.; Hefermehl, Lukas J.; Poyet, Cédric; Largo, Remo; Müntener, Michael; Seifert, Hans-Helge; Zimmermann, Matthias; Sulser, Tullio; Müller, Alexander; Hermanns, Thomas

    2012-02-01

    Introduction and objectives: Greenlight laser vaporization (LV) of the prostate is characterized by simultaneous vaporization and coagulation of prostatic tissue resulting in tissue ablation together with excellent hemostasis during the procedure. It has been reported that bipolar plasma vaporization (BPV) of the prostate might be an alternative for LV. So far, it has not been shown that BPV is as effective as LV in terms of tissue ablation or hemostasis. We performed transrectal three-dimensional ultrasound investigations to compare the efficiency of tissue ablation between LV and BPV. Methods: Between 11.2009 and 5.2011, 50 patients underwent pure BPV in our institution. These patients were matched with regard to the pre-operative prostate volume to 50 LV patients from our existing 3D-volumetry-database. Transrectal 3D ultrasound and planimetric volumetry of the prostate were performed pre-operatively, after catheter removal, 6 weeks and 6 months. Results: Median pre-operative prostate volume was not significantly different between the two groups (45.3ml vs. 45.4ml; p=1.0). After catheter removal, median absolute volume reduction (BPV 12.4ml, LV 6.55ml) as well as relative volume reduction (27.8% vs. 16.4%) were significantly higher in the BPV group (p<0.001). After six weeks (42.9% vs. 33.3%) and six months (47.2% vs. 39.7%), relative volume reduction remained significantly higher in the BPV group (p<0.001). Absolute volume reduction was non-significantly higher in the BPV group after six weeks (18.4ml, 13.8ml; p=0.051) and six months (20.8ml, 18ml; p=0.3). Clinical outcome parameters improved significantly in both groups without relevant differences between the groups. Conclusions: Both vaporization techniques result in efficient tissue ablation with initial prostatic swelling. BPV seems to be superior due to a higher relative volume reduction. This difference had no clinical impact after a follow-up of 6M.

  11. Considering Angle Selection When Using Ultrasound Electrode Displacement Elastography to Evaluate Radiofrequency Ablation of Tissues

    PubMed Central

    Li, Qiang; Chen, Pin-Yu; Wang, Chiao-Yin; Liu, Hao-Li; Teng, Jianfu

    2014-01-01

    Percutaneous radiofrequency ablation (RFA) is a minimally invasive treatment to thermally destroy tumors. Ultrasound-based electrode-displacement elastography is an emerging technique for evaluating the region of RFA-induced lesions. The angle between the imaging probe and the RFA electrode can influence electrode-displacement elastography when visualizing the ablation zone. We explored the angle effect on electrode-displacement elastography to measure the ablation zone. Phantoms embedded with meatballs were fabricated and then ablated using an RFA system to simulate RFA-induced lesions. For each phantom, a commercial ultrasound scanner with a 7.5 MHz linear probe was used to acquire raw image data at different angles, ranging from 30° to 90° at increments of 10°, to construct electrode-displacement images and facilitate comparisons with tissue section images. The results revealed that the ablation regions detected using electrode-displacement elastography were highly correlated with those from tissue section images when the angle was between 30° and 60°. However, the boundaries of lesions were difficult to distinguish, when the angle was larger than 60°. The experimental findings suggest that angle selection should be considered to achieve reliable electrode-displacement elastography to describe ablation zones. PMID:24971347

  12. Correlates of mammographic density in B-mode ultrasound and real time elastography.

    PubMed

    Jud, Sebastian Michael; Häberle, Lothar; Fasching, Peter A; Heusinger, Katharina; Hack, Carolin; Faschingbauer, Florian; Uder, Michael; Wittenberg, Thomas; Wagner, Florian; Meier-Meitinger, Martina; Schulz-Wendtland, Rüdiger; Beckmann, Matthias W; Adamietz, Boris R

    2012-07-01

    The aim of our study involved the assessment of B-mode imaging and elastography with regard to their ability to predict mammographic density (MD) without X-rays. Women, who underwent routine mammography, were prospectively examined with additional B-mode ultrasound and elastography. MD was assessed quantitatively with a computer-assisted method (Madena). The B-mode and elastography images were assessed by histograms with equally sized gray-level intervals. Regression models were built and cross validated to examine the ability to predict MD. The results of this study showed that B-mode imaging and elastography were able to predict MD. B-mode seemed to give a more accurate prediction. R for B-mode image and elastography were 0.67 and 0.44, respectively. Areas in the B-mode images that correlated with mammographic dense areas were either dark gray or of intermediate gray levels. Concerning elastography only the gray levels that represent extremely stiff tissue correlated positively with MD. In conclusion, ultrasound seems to be able to predict MD. Easy and cheap utilization of regular breast ultrasound machines encourages the use of ultrasound in larger case-control studies to validate this method as a breast cancer risk predictor. Furthermore, the application of ultrasound for breast tissue characterization could enable comprehensive research concerning breast cancer risk and breast density in young and pregnant women.

  13. Imaging monitored loosening of dense fibrous tissues using high-intensity pulsed ultrasound

    NASA Astrophysics Data System (ADS)

    Yeh, Chia-Lun; Li, Pai-Chi; Shih, Wen-Pin; Huang, Pei-Shin; Kuo, Po-Ling

    2013-10-01

    Pulsed high-intensity focused ultrasound (HIFU) is proposed as a new alternative treatment for contracture of dense fibrous tissue. It is hypothesized that the pulsed-HIFU can release the contracted tissues by attenuating tensile stiffness along the fiber axis, and that the stiffness reduction can be quantitatively monitored by change of B-mode images. Fresh porcine tendons and ligaments were adapted to an ex vivo model and insonated with pulsed-HIFU for durations ranging from 5 to 30 min. The pulse length was 91 µs with a repetition frequency of 500 Hz, and the peak rarefactional pressure was 6.36 MPa. The corresponding average intensities were kept around 1606 W cm-2 for ISPPA and 72.3 W cm-2 for ISPTA. B-mode images of the tissues were acquired before and after pulsed-HIFU exposure, and the changes in speckle intensity and organization were analyzed. The tensile stiffness of the HIFU-exposed tissues along the longitudinal axis was examined using a stretching machine. Histology examinations were performed by optical and transmission electron microscopy. Pulsed-HIFU exposure significantly decreased the tensile stiffness of the ligaments and tendons. The intensity and organization of tissue speckles in the exposed region were also decreased. The speckle changes correlated well with the degree of stiffness alteration. Histology examinations revealed that pulsed-HIFU exposure probably damages tissues via a cavitation-mediated mechanism. Our results suggest that pulsed-HIFU with a low duty factor is a promising tool for developing new treatment strategies for orthopedic disorders.

  14. Ultrasound phase contrast thermal imaging with reflex transmission imaging methods in tissue phantoms

    PubMed Central

    Farny, Caleb H.; Clement, Gregory T.

    2009-01-01

    Thermal imaging measurements using ultrasound phase contrast have been performed in tissue phantoms heated with a focused ultrasound source. Back projection and reflex transmission imaging principles were employed to detect sound speed-induced changes in the phase caused by an increase in the temperature. The temperature was determined from an empirical relationship for the temperature dependence on sound speed. The phase contrast was determined from changes in the sound field measured with a hydrophone scan conducted before and during applied heating. The lengthy scanning routine used to mimic a large two-dimensional array required a steady-state temperature distribution within the phantom. The temperature distribution in the phantom was validated with magnetic resonance (MR) thermal imaging measurements. The peak temperature was found to agree within 1°C with MR and good agreement was found between the temperature profiles. The spatial resolution was 0.3 × 0.3 × 0.3 mm, comparing favorably with the 0.625 × 0.625 × 1.5 mm MR spatial resolution. PMID:19683380

  15. Tissue velocity imaging of coronary artery by rotating-type intravascular ultrasound.

    PubMed

    Saijo, Yoshifumi; Tanaka, Akira; Owada, Naoki; Akino, Yoshihisa; Nitta, Shinichi

    2004-04-01

    Intravascular ultrasound (IVUS) provides not only the dimensions of coronary artery but the information of tissue components. In catheterization laboratory, soft and hard plaques are classified by visual inspection of echo intensity. So-called soft plaque contains lipid core or thrombus and it is believed to be more vulnerable than a hard plaque. However, it is not simple to analyze the echo signals quantitatively. When we look at a reflection signal, the intensity is affected by the distance of the object, the medium between transducer and objects and the fluctuation caused by rotation of IVUS probe. The time of flight is also affected by the sound speed of the medium and Doppler shift caused by tissue motion but usually those can be neglected. Thus, the analysis of RF signal in time domain can be more quantitative than intensity of RF signal. In the present study, a novel imaging technique called "intravascular tissue velocity imaging" was developed for searching a vulnerable plaque. Radio-frequency (RF) signal from a clinically used IVUS apparatus was digitized at 500 MSa/s and stored in a workstation. First, non-uniform rotation was corrected by maximizing the correlation coefficient of circumferential RF signal distribution in two consecutive frames. Then, the correlation and displacement were calculated by analyzing the radial difference of RF signal. Tissue velocity was determined by the displacement and the frame rate. The correlation image of normal and atherosclerotic coronary arteries clearly showed the internal and external borders of arterial wall. Soft plaque with low echo area in the intima showed high velocity while the calcified lesion showed the very low tissue velocity. This technique provides important information on tissue character of coronary artery.

  16. Design and implementation of therapeutic ultrasound generating circuit for dental tissue formation and tooth-root healing.

    PubMed

    Woon Tiong Ang; Scurtescu, C; Wing Hoy; El-Bialy, T; Ying Yin Tsui; Jie Chen

    2010-02-01

    Biological tissue healing has recently attracted a great deal of research interest in various medical fields. Trauma to teeth, deep and root caries, and orthodontic treatment can all lead to various degrees of root resorption. In our previous study, we showed that low-intensity pulsed ultrasound (LIPUS) enhances the growth of lower incisor apices and accelerates their rate of eruption in rabbits by inducing dental tissue growth. We also performed clinical studies and demonstrated that LIPUS facilitates the healing of orthodontically induced teeth-root resorption in humans. However, the available LIPUS devices are too large to be used comfortably inside the mouth. In this paper, the design and implementation of a low-power LIPUS generator is presented. The generator is the core of the final intraoral device for preventing tooth root loss and enhancing tooth root tissue healing. The generator consists of a power-supply subsystem, an ultrasonic transducer, an impedance-matching circuit, and an integrated circuit composed of a digital controller circuitry and the associated driver circuit. Most of our efforts focus on the design of the impedance-matching circuit and the integrated system-on-chip circuit. The chip was designed and fabricated using 0.8- ¿m high-voltage technology from Dalsa Semiconductor, Inc. The power supply subsystem and its impedance-matching network are implemented using discrete components. The LIPUS generator was tested and verified to function as designed and is capable of producing ultrasound power up to 100 mW in the vicinity of the transducer's resonance frequency at 1.5 MHz. The power efficiency of the circuitry, excluding the power supply subsystem, is estimated at 70%. The final products will be tailored to the exact size of teeth or biological tissue, which is needed to be used for stimulating dental tissue (dentine and cementum) healing.

  17. Unified quantitative characterization of epithelial tissue development

    PubMed Central

    Guirao, Boris; Rigaud, Stéphane U; Bosveld, Floris; Bailles, Anaïs; López-Gay, Jesús; Ishihara, Shuji; Sugimura, Kaoru

    2015-01-01

    Understanding the mechanisms regulating development requires a quantitative characterization of cell divisions, rearrangements, cell size and shape changes, and apoptoses. We developed a multiscale formalism that relates the characterizations of each cell process to tissue growth and morphogenesis. Having validated the formalism on computer simulations, we quantified separately all morphogenetic events in the Drosophila dorsal thorax and wing pupal epithelia to obtain comprehensive statistical maps linking cell and tissue scale dynamics. While globally cell shape changes, rearrangements and divisions all significantly participate in tissue morphogenesis, locally, their relative participations display major variations in space and time. By blocking division we analyzed the impact of division on rearrangements, cell shape changes and tissue morphogenesis. Finally, by combining the formalism with mechanical stress measurement, we evidenced unexpected interplays between patterns of tissue elongation, cell division and stress. Our formalism provides a novel and rigorous approach to uncover mechanisms governing tissue development. DOI: http://dx.doi.org/10.7554/eLife.08519.001 PMID:26653285

  18. Reproducibility of Ultrasound-Guided High Intensity Focused Ultrasound (HIFU) Thermal Lesions in Minimally-Invasive Brain Surgery

    NASA Astrophysics Data System (ADS)

    Zahedi, Sulmaz

    This study aims to prove the feasibility of using Ultrasound-Guided High Intensity Focused Ultrasound (USg-HIFU) to create thermal lesions in neurosurgical applications, allowing for precise ablation of brain tissue, while simultaneously providing real time imaging. To test the feasibility of the system, an optically transparent HIFU compatible tissue-mimicking phantom model was produced. USg-HIFU was then used for ablation of the phantom, with and without targets. Finally, ex vivo lamb brain tissue was imaged and ablated using the USg-HIFU system. Real-time ultrasound images and videos obtained throughout the ablation process showing clear lesion formation at the focal point of the HIFU transducer. Post-ablation gross and histopathology examinations were conducted to verify thermal and mechanical damage in the ex vivo lamb brain tissue. Finally, thermocouple readings were obtained, and HIFU field computer simulations were conducted to verify findings. Results of the study concluded reproducibility of USg-HIFU thermal lesions for neurosurgical applications.

  19. Breast tumour visualization using 3D quantitative ultrasound methods

    NASA Astrophysics Data System (ADS)

    Gangeh, Mehrdad J.; Raheem, Abdul; Tadayyon, Hadi; Liu, Simon; Hadizad, Farnoosh; Czarnota, Gregory J.

    2016-04-01

    Breast cancer is one of the most common cancer types accounting for 29% of all cancer cases. Early detection and treatment has a crucial impact on improving the survival of affected patients. Ultrasound (US) is non-ionizing, portable, inexpensive, and real-time imaging modality for screening and quantifying breast cancer. Due to these attractive attributes, the last decade has witnessed many studies on using quantitative ultrasound (QUS) methods in tissue characterization. However, these studies have mainly been limited to 2-D QUS methods using hand-held US (HHUS) scanners. With the availability of automated breast ultrasound (ABUS) technology, this study is the first to develop 3-D QUS methods for the ABUS visualization of breast tumours. Using an ABUS system, unlike the manual 2-D HHUS device, the whole patient's breast was scanned in an automated manner. The acquired frames were subsequently examined and a region of interest (ROI) was selected in each frame where tumour was identified. Standard 2-D QUS methods were used to compute spectral and backscatter coefficient (BSC) parametric maps on the selected ROIs. Next, the computed 2-D parameters were mapped to a Cartesian 3-D space, interpolated, and rendered to provide a transparent color-coded visualization of the entire breast tumour. Such 3-D visualization can potentially be used for further analysis of the breast tumours in terms of their size and extension. Moreover, the 3-D volumetric scans can be used for tissue characterization and the categorization of breast tumours as benign or malignant by quantifying the computed parametric maps over the whole tumour volume.

  20. Nonlinear acoustics in biomedical ultrasound

    NASA Astrophysics Data System (ADS)

    Cleveland, Robin O.

    2015-10-01

    Ultrasound is widely used to image inside the body; it is also used therapeutically to treat certain medical conditions. In both imaging and therapy applications the amplitudes employed in biomedical ultrasound are often high enough that nonlinear acoustic effects are present in the propagation: the effects have the potential to be advantageous in some scenarios but a hindrance in others. In the case of ultrasound imaging the nonlinearity produces higher harmonics that result in images of greater quality. However, nonlinear effects interfere with the imaging of ultrasound contrast agents (typically micron sized bubbles with a strong nonlinear response of their own) and nonlinear effects also result in complications when derating of pressure measurements in water to in situ values in tissue. High intensity focused ultrasound (HIFU) is emerging as a non-invasive therapeutic modality which can result in thermal ablation of tissue. For thermal ablation, the extra effective attenuation resulting from nonlinear effects can result in enhanced heating of tissue if shock formation occurs in the target region for ablation - a highly desirable effect. However, if nonlinearity is too strong it can also result in undesired near-field heating and reduced ablation in the target region. The disruption of tissue (histotripsy) and fragmentation of kidney stones (lithotripsy) exploits shock waves to produce mechanically based effects, with minimal heating present. In these scenarios it is necessary for the waves to be of sufficient amplitude that a shock exists when the waveform reaches the target region. This talk will discuss how underlying nonlinear phenomenon act in all the diagnostic and therapeutic applications described above.

  1. Automated 3D Ultrasound Image Segmentation to Aid Breast Cancer Image Interpretation

    PubMed Central

    Gu, Peng; Lee, Won-Mean; Roubidoux, Marilyn A.; Yuan, Jie; Wang, Xueding; Carson, Paul L.

    2015-01-01

    Segmentation of an ultrasound image into functional tissues is of great importance to clinical diagnosis of breast cancer. However, many studies are found to segment only the mass of interest and not all major tissues. Differences and inconsistencies in ultrasound interpretation call for an automated segmentation method to make results operator-independent. Furthermore, manual segmentation of entire three-dimensional (3D) ultrasound volumes is time-consuming, resource-intensive, and clinically impractical. Here, we propose an automated algorithm to segment 3D ultrasound volumes into three major tissue types: cyst/mass, fatty tissue, and fibro-glandular tissue. To test its efficacy and consistency, the proposed automated method was employed on a database of 21 cases of whole breast ultrasound. Experimental results show that our proposed method not only distinguishes fat and non-fat tissues correctly, but performs well in classifying cyst/mass. Comparison of density assessment between the automated method and manual segmentation demonstrates good consistency with an accuracy of 85.7%. Quantitative comparison of corresponding tissue volumes, which uses overlap ratio, gives an average similarity of 74.54%, consistent with values seen in MRI brain segmentations. Thus, our proposed method exhibits great potential as an automated approach to segment 3D whole breast ultrasound volumes into functionally distinct tissues that may help to correct ultrasound speed of sound aberrations and assist in density based prognosis of breast cancer. PMID:26547117

  2. Automated 3D ultrasound image segmentation for assistant diagnosis of breast cancer

    NASA Astrophysics Data System (ADS)

    Wang, Yuxin; Gu, Peng; Lee, Won-Mean; Roubidoux, Marilyn A.; Du, Sidan; Yuan, Jie; Wang, Xueding; Carson, Paul L.

    2016-04-01

    Segmentation of an ultrasound image into functional tissues is of great importance to clinical diagnosis of breast cancer. However, many studies are found to segment only the mass of interest and not all major tissues. Differences and inconsistencies in ultrasound interpretation call for an automated segmentation method to make results operator-independent. Furthermore, manual segmentation of entire three-dimensional (3D) ultrasound volumes is time-consuming, resource-intensive, and clinically impractical. Here, we propose an automated algorithm to segment 3D ultrasound volumes into three major tissue types: cyst/mass, fatty tissue, and fibro-glandular tissue. To test its efficacy and consistency, the proposed automated method was employed on a database of 21 cases of whole breast ultrasound. Experimental results show that our proposed method not only distinguishes fat and non-fat tissues correctly, but performs well in classifying cyst/mass. Comparison of density assessment between the automated method and manual segmentation demonstrates good consistency with an accuracy of 85.7%. Quantitative comparison of corresponding tissue volumes, which uses overlap ratio, gives an average similarity of 74.54%, consistent with values seen in MRI brain segmentations. Thus, our proposed method exhibits great potential as an automated approach to segment 3D whole breast ultrasound volumes into functionally distinct tissues that may help to correct ultrasound speed of sound aberrations and assist in density based prognosis of breast cancer.

  3. Calibration and Evaluation of Ultrasound Thermography Using Infrared Imaging.

    PubMed

    Hsiao, Yi-Sing; Deng, Cheri X

    2016-02-01

    Real-time monitoring of the spatiotemporal evolution of tissue temperature is important to ensure safe and effective treatment in thermal therapies including hyperthermia and thermal ablation. Ultrasound thermography has been proposed as a non-invasive technique for temperature measurement, and accurate calibration of the temperature-dependent ultrasound signal changes against temperature is required. Here we report a method that uses infrared thermography for calibration and validation of ultrasound thermography. Using phantoms and cardiac tissue specimens subjected to high-intensity focused ultrasound heating, we simultaneously acquired ultrasound and infrared imaging data from the same surface plane of a sample. The commonly used echo time shift-based method was chosen to compute ultrasound thermometry. We first correlated the ultrasound echo time shifts with infrared-measured temperatures for material-dependent calibration and found that the calibration coefficient was positive for fat-mimicking phantom (1.49 ± 0.27) but negative for tissue-mimicking phantom (-0.59 ± 0.08) and cardiac tissue (-0.69 ± 0.18°C-mm/ns). We then obtained the estimation error of the ultrasound thermometry by comparing against the infrared-measured temperature and revealed that the error increased with decreased size of the heated region. Consistent with previous findings, the echo time shifts were no longer linearly dependent on temperature beyond 45°C-50°C in cardiac tissues. Unlike previous studies in which thermocouples or water bath techniques were used to evaluate the performance of ultrasound thermography, our results indicate that high-resolution infrared thermography is a useful tool that can be applied to evaluate and understand the limitations of ultrasound thermography methods. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  4. Multimodal imaging of vascular grafts using time-resolved fluorescence and ultrasound

    NASA Astrophysics Data System (ADS)

    Fatakdawala, Hussain; Griffiths, Leigh G.; Wong, Maelene L.; Humphrey, Sterling; Marcu, Laura

    2015-02-01

    The translation of engineered tissues into clinic requires robust monitoring of tissue development, both in vitro and in vivo. Traditional methods for the same are destructive, inefficient in time and cost and do not allow time-lapse measurements from the same sample or animal. This study reports on the ability of time-resolved fluorescence and ultrasound measurements for non-destructive characterization of explanted tissue engineered vascular grafts. Results show that TRFS and FLIm are able to assess alterations in luminal composition namely elastin, collagen and cellular (hyperplasia) content via changes in fluorescence lifetime values between normal and grafted tissue. These observations are complemented by structural changes observed in UBM pertaining to graft integration and intimal thickness over the grafted region. These results encourage the future application of a catheter-based technique that combines these imaging modalities for non-destructive characterization of vascular grafts in vivo.

  5. Focused Ultrasound Steering for Harmonic Motion Imaging.

    PubMed

    Han, Yang; Payen, Thomas; Wang, Shutao; Konofagou, Elisa

    2018-02-01

    Harmonic motion imaging (HMI) is a radiation-force-based ultrasound elasticity imaging technique, which is designed for both tissue relative stiffness imaging and reliable high-intensity focused ultrasound treatment monitoring. The objective of this letter is to develop and demonstrate the feasibility of 2-D focused ultrasound (FUS) beam steering for HMI using a 93-element, FUS phased array. HMI with steered FUS beam was acquired in tissue-mimicking phantoms. The HMI displacement was imaged within the steering range of ±1.7 mm laterally and ±2 mm axially. Using the steered FUS beam, HMI can be used to image a larger tissue volume with higher efficiency and without requiring mechanical movement of the transducer.

  6. Interrogating the viscoelastic properties of tissue using viscoelastic response (VISR) ultrasound

    NASA Astrophysics Data System (ADS)

    Selzo, Mallory Renee

    Affecting approximately 1 in 3,500 newborn males, Duchenne muscular dystrophy (DMD) is one of the most common lethal genetic disorders in humans. Boys with DMD suffer progressive loss of muscle strength and function, leading to wheelchair dependence, cardiac and respiratory compromise, and death during young adulthood. There are currently no treatments that can halt or reverse the disease progression, and translating prospective treatments into clinical trials has been delayed by inadequate outcome measures. Current outcome measures, such as functional and muscle strength assessments, lack sensitivity to individual muscles, require subjective effort of the child, and are impacted by normal childhood growth and development. The goal of this research is to develop Viscoelastic Response (VisR) ultrasound which can be used to delineate compositional changes in muscle associated with DMD. In VisR, acoustic radiation force (ARF) is used to produce small, localized displacements within the muscle. Using conventional ultrasound to track the motion, the displacement response of the tissue can be evaluated against a mechanical model. In order to develop signal processing techniques and assess mechanical models, finite element method simulations are used to model the response of a viscoelastic material to ARF excitations. Results are then presented demonstrating VisR differentiation of viscoelastic changes with progressive dystrophic degeneration in a dog model of DMD. Finally, clinical feasibility of VisR imaging is demonstrated in two boys with DMD.

  7. Endoscopic ultrasound-guided techniques for diagnosing pancreatic mass lesions: Can we do better?

    PubMed Central

    Storm, Andrew C; Lee, Linda S

    2016-01-01

    The diagnostic approach to a possible pancreatic mass lesion relies first upon various non-invasive imaging modalities, including computed tomography, ultrasound, and magnetic resonance imaging techniques. Once a suspect lesion has been identified, tissue acquisition for characterization of the lesion is often paramount in developing an individualized therapeutic approach. Given the high prevalence and mortality associated with pancreatic cancer, an ideal approach to diagnosing pancreatic mass lesions would be safe, highly sensitive, and reproducible across various practice settings. Tools, in addition to radiologic imaging, currently employed in the initial evaluation of a patient with a pancreatic mass lesion include serum tumor markers, endoscopic retrograde cholangiopancreatography, and endoscopic ultrasound-guided fine needle aspiration (EUS-FNA). EUS-FNA has grown to become the gold standard in tissue diagnosis of pancreatic lesions. PMID:27818584

  8. Characterization of bone tissue using microstrip antennas.

    PubMed

    Barros, Jannayna D; de Oliveira, Jose Josemar; da Silva, Sandro G

    2010-01-01

    The use of electromagnetic waves in the characterization of biological tissues has been conducted since the nineteenth century after the confirmation that electric and magnetic fields can interact with biological materials. In this paper, electromagnetic waves are used to characterize tissues with different levels of bone mass. In this way, one antenna array on microstrip lines was used. It can be seen that bones with different mass has different behavior in microwave frequencies.

  9. Monitoring high-intensity focused ultrasound (HIFU) therapy using radio frequency ultrasound backscatter to quantify heating

    NASA Astrophysics Data System (ADS)

    Kaczkowski, Peter J.; Anand, Ajay

    2005-09-01

    The spatial distribution and temporal history of tissue temperature is an essential indicator of thermal therapy progress, and treatment safety and efficacy. Magnetic resonance methods provide the gold standard noninvasive measurement of temperature but are costly and cumbersome compared to the therapy itself. We have been developing the use of ultrasound backscattering for real-time temperature estimation; ultrasonic methods have been limited to relatively low temperature rise, primarily due to lack of sensitivity at protein denaturation temperatures (50-70°C). Through validation experiments on gel phantoms and ex vivo tissue we show that temperature rise can be accurately mapped throughout the therapeutic temperature range using a new BioHeat Transfer Equation (BHTE) model-constrained inverse approach. Speckle-free temperature and thermal dose maps are generated using the ultrasound calibrated model over the imaged region throughout therapy delivery and post-treatment cooling periods. Results of turkey breast tissue experiments are presented for static HIFU exposures, in which the ultrasound calibrated BHTE temperature maps are shown to be very accurate (within a degree) using independent thermocouple measurements. This new temperature monitoring method may speed clinical adoption of ultrasound-guided HIFU therapy. [Work supported by Army MRMC.

  10. Pathological changes in the subsynovial connective tissue increase with self-reported carpal tunnel syndrome symptoms.

    PubMed

    Tat, Jimmy; Wilson, Katherine E; Keir, Peter J

    2015-05-01

    Fibrosis and thickening of the subysnovial connective tissue are the most common pathological findings in carpal tunnel syndrome. The relationship between subsynovial connective tissue characteristics and self-reported carpal tunnel syndrome symptoms was assessed. Symptoms were characterized using the Boston Carpal Tunnel Questionnaire and Katz hand diagram in twenty-two participants (11 with symptoms, 11 with no symptoms). Using ultrasound, the thickness of the subsynovial connective tissue was measured using a thickness ratio (subsynovial thickness/tendon thickness) and gliding function was assessed using a shear strain index ((Displacement(tendon)-Displacement(subsynovial))/Displacement(tendon)x 100). For gliding function, participants performed 10 repeated flexion-extension cycles of the middle finger at a rate of one cycle per second. Participants with symptoms had a 38.5% greater thickness ratio and 39.2% greater shear strain index compared to participants without symptoms (p<0.05). Ultrasound detected differences the SSCT in symptomatic group that was characterized by low self-reported symptom severity scores. This study found ultrasound useful for measuring structural and functional changes in the SSCT that could provide insight in the early pathophysiology associated with carpal tunnel syndrome symptoms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Material characterization and defect inspection in ultrasound images

    NASA Astrophysics Data System (ADS)

    Zmola, Carl; Segal, Andrew C.; Lovewell, Brian; Mahdavieh, Jacob; Ross, Joseph; Nash, Charles

    1992-08-01

    The use of ultrasonic imaging to analyze defects and characterize materials is critical in the development of non-destructive testing and non-destructive evaluation (NDT/NDE) tools for manufacturing. To develop better quality control and reliability in the manufacturing environment advanced image processing techniques are useful. For example, through the use of texture filtering on ultrasound images, we have been able to filter characteristic textures from highly textured C-scan images of materials. The materials have highly regular characteristic textures which are of the same resolution and dynamic range as other important features within the image. By applying texture filters and adaptively modifying their filter response, we have examined a family of filters for removing these textures.

  12. Phase-space topography characterization of nonlinear ultrasound waveforms.

    PubMed

    Dehghan-Niri, Ehsan; Al-Beer, Helem

    2018-03-01

    Fundamental understanding of ultrasound interaction with material discontinuities having closed interfaces has many engineering applications such as nondestructive evaluation of defects like kissing bonds and cracks in critical structural and mechanical components. In this paper, to analyze the acoustic field nonlinearities due to defects with closed interfaces, the use of a common technique in nonlinear physics, based on a phase-space topography construction of ultrasound waveform, is proposed. The central idea is to complement the "time" and "frequency" domain analyses with the "phase-space" domain analysis of nonlinear ultrasound waveforms. A nonlinear time series method known as pseudo phase-space topography construction is used to construct equivalent phase-space portrait of measured ultrasound waveforms. Several nonlinear models are considered to numerically simulate nonlinear ultrasound waveforms. The phase-space response of the simulated waveforms is shown to provide different topographic information, while the frequency domain shows similar spectral behavior. Thus, model classification can be substantially enhanced in the phase-space domain. Experimental results on high strength aluminum samples show that the phase-space transformation provides a unique detection and classification capabilities. The Poincaré map of the phase-space domain is also used to better understand the nonlinear behavior of ultrasound waveforms. It is shown that the analysis of ultrasound nonlinearities is more convenient and informative in the phase-space domain than in the frequency domain. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Anterolateral ankle impingement: findings and diagnostic accuracy with ultrasound imaging.

    PubMed

    McCarthy, C L; Wilson, D J; Coltman, T P

    2008-03-01

    The objective was to evaluate the findings and diagnostic accuracy of ultrasound in antero-lateral ankle impingement (ALI) with clinical and arthroscopic correlation. Seventeen elite footballers with chronic ankle pain were referred for ultrasound with a clinical diagnosis of ALI (n = 8) or a control condition (n = 9; lateral mechanical instability, osteochondral defect, intra-articular bodies and osteoarthritis). Ultrasound examination included the antero-lateral gutter for abnormal synovial tissue (synovitic lesion), lateral ligament integrity, tibiotalar joint and osseous spurs of the distal tibia and talus. Ultrasound findings were correlated with subsequent arthroscopic appearance. Ultrasound examination detected a synovitic mass in the antero-lateral gutter in all 8 footballers with clinical ALI (100%) and in 2 patients with a control diagnosis (22%). Arthroscopic correlation of antero-lateral synovitis and fibrosis was present in all 10 cases (100%). The synovitic lesion was seen at ultrasound as a nodular soft tissue mass of mixed echogenicity within the antero-lateral gutter, which extruded anteriorly with manual compression of the distal fibula against the tibia. Increased blood supply was detected using power Doppler imaging in only 1 patient. The synovitic lesion measured >10 mm in its maximum dimension in 7 footballers with clinical ALI and <10 mm in the control group. Additional ultrasound findings in patients with abnormal antero-lateral synovial tissue included an anterior talofibular ligament injury in all patients (n = 10), a tibiotalar joint effusion (n = 6) and osseous spurs (n = 4). Antero-lateral synovitic tissue was accurately identified at ultrasound in the absence of an effusion (n = 4). No synovitic lesion was detected at ultrasound or arthroscopy in the remaining 7 patients with a control diagnosis. Ultrasound is accurate in detecting synovitic lesions within the antero-lateral gutter, demonstrating associated ligamentous injuries and in

  14. Computational exploration of wave propagation and heating from transcranial focused ultrasound for neuromodulation

    NASA Astrophysics Data System (ADS)

    Mueller, Jerel K.; Ai, Leo; Bansal, Priya; Legon, Wynn

    2016-10-01

    Objective. While ultrasound is largely established for use in diagnostic imaging, its application for neuromodulation is relatively new and crudely understood. The objective of the present study was to investigate the effects of tissue properties and geometry on the wave propagation and heating in the context of transcranial neuromodulation. Approach. A computational model of transcranial-focused ultrasound was constructed and validated against empirical data. The models were then incrementally extended to investigate a number of issues related to the use of ultrasound for neuromodulation, including the effect on wave propagation of variations in geometry of skull and gyral anatomy as well as the effect of multiple tissue and media layers, including scalp, skull, CSF, and gray/white matter. In addition, a sensitivity analysis was run to characterize the influence of acoustic properties of intracranial tissues. Finally, the heating associated with ultrasonic stimulation waveforms designed for neuromodulation was modeled. Main results. The wave propagation of a transcranially focused ultrasound beam is significantly influenced by the cranial domain. The half maximum acoustic beam intensity profiles are insensitive overall to small changes in material properties, though the inclusion of sulci in models results in greater peak intensity values compared to a model without sulci (1%-30% greater). Finally, heating using currently employed stimulation parameters in humans is highest in bone (0.16 °C) and is negligible in brain (4.27 × 10-3 °C) for a 0.5 s exposure. Significance. Ultrasound for noninvasive neuromodulation holds great promise and appeal for its non-invasiveness, high spatial resolution and deep focal lengths. Here we show gross brain anatomy and biological material properties to have limited effect on ultrasound wave propagation and to result in safe heating levels in the skull and brain.

  15. Computational exploration of wave propagation and heating from transcranial focused ultrasound for neuromodulation.

    PubMed

    Mueller, Jerel K; Ai, Leo; Bansal, Priya; Legon, Wynn

    2016-10-01

    While ultrasound is largely established for use in diagnostic imaging, its application for neuromodulation is relatively new and crudely understood. The objective of the present study was to investigate the effects of tissue properties and geometry on the wave propagation and heating in the context of transcranial neuromodulation. A computational model of transcranial-focused ultrasound was constructed and validated against empirical data. The models were then incrementally extended to investigate a number of issues related to the use of ultrasound for neuromodulation, including the effect on wave propagation of variations in geometry of skull and gyral anatomy as well as the effect of multiple tissue and media layers, including scalp, skull, CSF, and gray/white matter. In addition, a sensitivity analysis was run to characterize the influence of acoustic properties of intracranial tissues. Finally, the heating associated with ultrasonic stimulation waveforms designed for neuromodulation was modeled. The wave propagation of a transcranially focused ultrasound beam is significantly influenced by the cranial domain. The half maximum acoustic beam intensity profiles are insensitive overall to small changes in material properties, though the inclusion of sulci in models results in greater peak intensity values compared to a model without sulci (1%-30% greater). Finally, heating using currently employed stimulation parameters in humans is highest in bone (0.16 °C) and is negligible in brain (4.27 × 10(-3) °C) for a 0.5 s exposure. Ultrasound for noninvasive neuromodulation holds great promise and appeal for its non-invasiveness, high spatial resolution and deep focal lengths. Here we show gross brain anatomy and biological material properties to have limited effect on ultrasound wave propagation and to result in safe heating levels in the skull and brain.

  16. Aesthetic ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Barthe, Peter G.; Slayton, Michael H.

    2012-10-01

    Ultrasound provides key benefits in aesthetic surgery compared to laser and RF based energy sources. We present results of research, development, pre-clinical and clinical studies, regulatory clearance and commercialization of a revolutionary non-invasive aesthetic ultrasound imaging and therapy system. Clinical applications for this platform include non-invasive face-lifts, brow-lifts, and neck-lifts achieved through fractionated treatment of the superficial musculoaponeurotic system (SMAS) and subcutaneous tissue. Treatment consists of placing a grid of micro-coagulative lesions on the order of 1 mm3 at depths in skin of 1 to 6 mm, source energy levels of 0.1 to 3 J, and spacing on the order of 1.5 mm, from 4 to 10 MHz dual-mode image/treat transducers. System details are described, as well as a regulatory pathway consisting of acoustic and bioheat simulations, source characterization (hydrophone, radiation force, and Schlieren), pre-clinical studies (porcine skin ex vivo, in vivo, and human cadaver), human safety studies (treat and resect) and efficacy trials which culminated in FDA clearance (2009) under a new device classification and world-wide usage. Clinical before and after photographs are presented which validate the clinical approach.

  17. Acoustic characterization and pharmacokinetic analyses of new nanobubble ultrasound contrast agents.

    PubMed

    Wu, Hanping; Rognin, Nicolas G; Krupka, Tianyi M; Solorio, Luis; Yoshiara, Hiroki; Guenette, Gilles; Sanders, Christopher; Kamiyama, Naohisa; Exner, Agata A

    2013-11-01

    In contrast to the clinically used microbubble ultrasound contrast agents, nanoscale bubbles (or nanobubbles) may potentially extravasate into tumors that exhibit more permeable vasculature, facilitating targeted molecular imaging and drug delivery. Our group recently presented a simple strategy using the non-ionic surfactant Pluronic as a size control excipient to produce nanobubbles with a mean diameter of 200 nm that exhibited stability and echogenicity on par with microbubbles. The objective of this study was to carry out an in-depth characterization of nanobubble properties as compared with Definity microbubbles, both in vitro and in vivo. Through use of a tissue-mimicking phantom, in vitro experiments measured the echogenicity of the contrast agent solutions and the contrast agent dissolution rate over time. Nanobubbles were found to be more echogenic than Definity microbubbles at three different harmonic frequencies (8, 6.2 and 3.5 MHz). Definity microbubbles also dissolved 1.67 times faster than nanobubbles. Pharmacokinetic studies were then performed in vivo in a subcutaneous human colorectal adenocarcinoma (LS174T) in mice. The peak enhancement and decay rates of contrast agents after bolus injection in the liver, kidney and tumor were analyzed. No significant differences were observed in peak enhancement between the nanobubble and Definity groups in the three tested regions (tumor, liver and kidney). However, the decay rates of nanobubbles in tumor and kidney were significantly slower than those of Definity in the first 200-s fast initial phase. There were no significant differences in the decay rates in the liver in the initial phase or in three regions of interest in the terminal phase. Our results suggest that the stability and acoustic properties of the new nanobubble contrast agents are superior to those of the clinically used Definity microbubbles. The slower washout of nanobubbles in tumors suggests potential entrapment of the bubbles within

  18. Real-Time Tissue Change Monitoring on the Sonablate® 500 during High Intensity Focused Ultrasound (HIFU) Treatment of Prostate Cancer

    NASA Astrophysics Data System (ADS)

    Chen, Wo-Hsing; Sanghvi, Narendra T.; Carlson, Roy; Uchida, Toyoaki

    2011-09-01

    Sonablate® 500 (SB-500) HIFU devices have been successfully used to treat prostate cancer non-invasively. In addition, Visually Directed HIFU with the SB-500 has demonstrated higher efficacy. Visually Directed HIFU works by displaying hyperechoic changes on the B-mode ultrasound images. However, small changes in the grey-scale images are not detectable by Visually Directed HIFU. To detect all tissue changes reliably, the SB-500 was enhanced with quantitative, real-time Tissue Change Monitoring (TCM) software. TCM uses pulse-echo ultrasound backscattered RF signals in 2D to estimate changes in the tissue properties caused by HIFU. The RF signal energy difference is calculated in selected frequency bands (pre and post HIFU) for each treatment site. The results are overlaid on the real-time ultrasound image in green, yellow and orange to represent low, medium and high degree of change in backscattered energy levels. The color mapping scheme was derived on measured temperature and backscattered RF signals from in vitro chicken tissue experiments. The TCM software was installed and tested in a clinical device to obtain human RF data. Post HIFU contrast enhanced MRI scans verified necrotic regions of the prostate. The color mapping success rate at higher HIFU power levels was 94% in the initial clinical test. Based on these results, TCM software has been released for wider usage. The clinical studies with TCM in Japan and The Bahamas have provided the following PSA (ng/ml) results. Japan (n = 97), PSA pre-treatment/post-treatment; minimum 0.7/0.0, maximum 76.0/4.73, median 6.89/0.07, standard deviation 11.19/0.62. The Bahamas (n = 59), minimum 0.4/0.0, maximum 13.0/1.4, median 4.7/0.1, standard deviation 2.8/0.3.

  19. In-vivo investigation of material quality of bone tissue by measuring apparent phalangeal ultrasound transmission velocity.

    PubMed

    Kann, P; Schulz, U; Klaus, D; Piepkorn, B; Beyer, J

    1995-01-01

    The square of ultrasound transmission velocity in a material is related to the modulus of elasticity, which is known to be an indicator of stability in bone. The aim of our study was to use ultrasound transmission velocity to obtain information about the material properties of bone tissue, keeping other factors possibly influencing ultrasound transmission as constant as possible. Apparent phalangeal ultrasound transmission velocity (APU) measured in 54 isolated, fresh pig phalanges was shown to be independent of bone mineral density (BMD) measured by SPA. Fastest sound transmission led exclusively through cortical bone so that intertrabecular connectivity in spongious bone could not influence the result. In humans APU was measured in the mediolateral direction at the midphalanx of the middle finger. In 53 healthy subjects (15-81 years old; 27 women, 26 men), there was a decrease of APU with age (r = -0.30, p < 0.05). Further, when comparing the results of both hands intraindividually almost identical values indicated constant intraindividual architecture of bone at this location. There was no evidence for a relation of APU to physical load comparing dominant and nondominant hand and relating the results to subjectively estimated physical load. In a second group of 43 perimenopausal women (47-60 years old), APU, which again decreased with age (r = -0.33, p < 0.05), was found not to be correlated to BMD measured by SPA at the distal forearm (cortical bone).(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Non-contact, Ultrasound-based Indentation Method for Measuring Elastic Properties of Biological Tissues Using Harmonic Motion Imaging (HMI)

    PubMed Central

    Vappou, Jonathan; Hou, Gary Y.; Marquet, Fabrice; Shahmirzadi, Danial; Grondin, Julien; Konofagou, Elisa E.

    2015-01-01

    Noninvasive measurement of mechanical properties of biological tissues in vivo could play a significant role in improving the current understanding of tissue biomechanics. In this study, we propose a method for measuring elastic properties non-invasively by using internal indentation as generated by Harmonic Motion Imaging (HMI). In HMI, an oscillating acoustic radiation force is produced by a focused ultrasound transducer at the focal region, and the resulting displacements are estimated by tracking RF signals acquired by an imaging transducer. In this study, the focal spot region was modeled as a rigid cylindrical piston that exerts an oscillatory, uniform internal force to the underlying tissue. The HMI elastic modulus EHMI was defined as the ratio of the applied force to the axial strain measured by 1D ultrasound imaging. The accuracy and the precision of the EHMI estimate were assessed both numerically and experimentally in polyacrylamide tissue-mimicking phantoms. Initial feasibility of this method in soft tissues was also shown in canine liver specimens in vitro. Very good correlation and agreement was found between the actual Young’s modulus and the HMI modulus in the numerical study (r2>0.99, relative error <10%) and on polyacrylamide gels (r2=0.95, relative error <24%). The average HMI modulus on five liver samples was found to EHMI=2.62±0.41 kPa, compared to EMechTesting=4.2±2.58 kPa measured by rheometry. This study has demonstrated for the first time the initial feasibility of a non-invasive, model-independent method to estimate local elastic properties of biological tissues at a submillimeter scale using an internal indentation-like approach. Ongoing studies include in vitro experiments in a larger number of samples and feasibility testing in in vivo models as well as pathological human specimens. PMID:25776065

  1. High-frequency ultrasound M-mode monitoring of HIFU ablation in cardiac tissue

    NASA Astrophysics Data System (ADS)

    Kumon, R. E.; Gudur, M. S. R.; Zhou, Y.; Deng, C. X.

    2012-10-01

    Effective real-time HIFU lesion detection is important for expanded use of HIFU in interventional electrophysiology (e.g., epicardial ablation of cardiac arrhythmia). The goal of this study was to investigate rapid, high-frequency M-mode ultrasound imaging for monitoring spatiotemporal changes in tissue during HIFU application. The HIFU application (4.33 MHz, 1000 Hz PRF, 50% duty cycle, 1 s exposure, 6100 W/cm2) was perpendicularly applied to porcine cardiac tissue with a high-frequency imaging system (Visualsonics Vevo 770, 55 MHz, 4.5 mm focal distance) confocally aligned. Radiofrequency (RF) M-mode data (1 kHz PRF, 4 s × 7 mm) was acquired before, during, and after HIFU treatment. Gross lesions were compared with M-mode data to correlate lesion and cavity formation. Integrated backscatter, echo-decorrelation parameters, and their cumulative extrema over time were analyzed for automatically identifying lesion width and bubble formation. Cumulative maximum integrated backscatter showed the best results for identifying the final lesion width, and a criterion based on line-to-line decorrelation was proposed for identification of transient bubble activity.

  2. TU-F-12A-09: GLCM Texture Analysis for Normal-Tissue Toxicity: A Prospective Ultrasound Study of Acute Toxicity in Breast-Cancer Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, T; Yang, X; Curran, W

    2014-06-15

    Purpose: To evaluate the morphologic and structural integrity of the breast glands using sonographic textural analysis, and identify potential early imaging signatures for radiation toxicity following breast-cancer radiotherapy (RT). Methods: Thirty-eight patients receiving breast RT participated in a prospective ultrasound imaging study. Each participant received 3 ultrasound scans: 1 week before RT (baseline), and at 6-week and 3-month follow-ups. Patients were imaged with a 10-MHz ultrasound on the four quadrant of the breast. A second order statistical method of texture analysis, called gray level co-occurrence matrix (GLCM), was employed to assess RT-induced breast-tissue toxicity. The region of interest (ROI) wasmore » 28 mm × 10 mm in size at a 10 mm depth under the skin. Twenty GLCM sonographic features, ratios of the irradiated breast and the contralateral breast, were used to quantify breast-tissue toxicity. Clinical assessment of acute toxicity was conducted using the RTOG toxicity scheme. Results: Ninety-seven ultrasound studies (776 images) were analyzed; and 5 out of 20 sonographic features showed significant differences (p < 0.05) among the baseline scans, the acute toxicity grade 1 and 2 groups. These sonographic features quantified the degree of tissue damage through homogeneity, heterogeneity, randomness, and symmetry. Energy ratio value decreased from 108±0.05 (normal) to 0.99±0.05 (Grade 1) and 0.84±0.04 (Grade 2); Entropy ratio value increased from 1.01±0.01 to 1.02±0.01 and 1.04±0.01; Contrast ratio value increased from 1.03±0.03 to 1.07±0.06 and 1.21±0.09; Variance ratio value increased from 1.06±0.03 to 1.20±0.04 and 1.42±0.10; Cluster Prominence ratio value increased from 0.98±0.02 to 1.01±0.04 and 1.25±0.07. Conclusion: This work has demonstrated that the sonographic features may serve as imaging signatures to assess radiation-induced normal tissue damage. While these findings need to be validated in a larger cohort, they

  3. Prediction and Measurement of Temperature Rise Induced by High Intensity Focused Ultrasound in a Tissue-Mimicking Phantom

    NASA Astrophysics Data System (ADS)

    Lee, Kang Il

    2018-06-01

    The present study aims to predict the temperature rise induced by high intensity focused ultrasound (HIFU) in soft tissues to assess tissue damage during HIFU thermal therapies. With the help of a MATLAB-based software package developed for HIFU simulation, the HIFU field was simulated by solving the axisymmetric Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation from the frequency-domain perspective, and the HIFU-induced temperature rise in a tissue-mimicking phantom was simulated by solving Pennes' bioheat transfer (BHT) equation. In order to verify the simulation results, we performed in-vitro heating experiments on a tissue-mimicking phantom by using a 1.1-MHz, single-element, spherically focused HIFU transducer. The temperature rise near the focal spot obtained from the HIFU simulator was in good agreement with that from the in-vitro experiments. This confirms that the HIFU simulator based on the KZK and the BHT equations captures the HIFU-induced temperature rise in soft tissues well enough to make it suitable for HIFU treatment planning.

  4. High-contrast fast Fourier transform acousto-optical tomography of phantom tissues with a frequency-chirp modulation of the ultrasound.

    PubMed

    Forget, Benoît-Claude; Ramaz, François; Atlan, Michaël; Selb, Juliette; Boccara, Albert-Claude

    2003-03-01

    We report new results on acousto-optical tomography in phantom tissues using a frequency chirp modulation and a CCD camera. This technique allows quick recording of three-dimensional images of the optical contrast with a two-dimensional scan of the ultrasound source in a plane perpendicular to the ultrasonic path. The entire optical contrast along the ultrasonic path is concurrently obtained from the capture of a film sequence at a rate of 200 Hz. This technique reduces the acquisition time, and it enhances the axial resolution and thus the contrast, which are usually poor owing to the large volume of interaction of the ultrasound perturbation.

  5. Opto-acoustic breast imaging with co-registered ultrasound

    NASA Astrophysics Data System (ADS)

    Zalev, Jason; Clingman, Bryan; Herzog, Don; Miller, Tom; Stavros, A. Thomas; Oraevsky, Alexander; Kist, Kenneth; Dornbluth, N. Carol; Otto, Pamela

    2014-03-01

    We present results from a recent study involving the ImagioTM breast imaging system, which produces fused real-time two-dimensional color-coded opto-acoustic (OA) images that are co-registered and temporally inter- leaved with real-time gray scale ultrasound using a specialized duplex handheld probe. The use of dual optical wavelengths provides functional blood map images of breast tissue and tumors displayed with high contrast based on total hemoglobin and oxygen saturation of the blood. This provides functional diagnostic information pertaining to tumor metabolism. OA also shows morphologic information about tumor neo-vascularity that is complementary to the morphological information obtained with conventional gray scale ultrasound. This fusion technology conveniently enables real-time analysis of the functional opto-acoustic features of lesions detected by readers familiar with anatomical gray scale ultrasound. We demonstrate co-registered opto-acoustic and ultrasonic images of malignant and benign tumors from a recent clinical study that provide new insight into the function of tumors in-vivo. Results from the Feasibility Study show preliminary evidence that the technology may have the capability to improve characterization of benign and malignant breast masses over conventional diagnostic breast ultrasound alone and to improve overall accuracy of breast mass diagnosis. In particular, OA improved speci city over that of conventional diagnostic ultrasound, which could potentially reduce the number of negative biopsies performed without missing cancers.

  6. All-optical pulse-echo ultrasound probe for intravascular imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Colchester, Richard J.; Noimark, Sacha; Mosse, Charles A.; Zhang, Edward Z.; Beard, Paul C.; Parkin, Ivan P.; Papakonstantinou, Ioannis; Desjardins, Adrien E.

    2016-02-01

    High frequency ultrasound probes such as intravascular ultrasound (IVUS) and intracardiac echocardiography (ICE) catheters can be invaluable for guiding minimally invasive medical procedures in cardiology such as coronary stent placement and ablation. With current-generation ultrasound probes, ultrasound is generated and received electrically. The complexities involved with fabricating these electrical probes can result in high costs that limit their clinical applicability. Additionally, it can be challenging to achieve wide transmission bandwidths and adequate wideband reception sensitivity with small piezoelectric elements. Optical methods for transmitting and receiving ultrasound are emerging as alternatives to their electrical counterparts. They offer several distinguishing advantages, including the potential to generate and detect the broadband ultrasound fields (tens of MHz) required for high resolution imaging. In this study, we developed a miniature, side-looking, pulse-echo ultrasound probe for intravascular imaging, with fibre-optic transmission and reception. The axial resolution was better than 70 microns, and the imaging depth in tissue was greater than 1 cm. Ultrasound transmission was performed by photoacoustic excitation of a carbon nanotube/polydimethylsiloxane composite material; ultrasound reception, with a fibre-optic Fabry-Perot cavity. Ex vivo tissue studies, which included healthy swine tissue and diseased human tissue, demonstrated the strong potential of this technique. To our knowledge, this is the first study to achieve an all-optical pulse-echo ultrasound probe for intravascular imaging. The potential for performing all-optical B-mode imaging (2D and 3D) with virtual arrays of transmit/receive elements, and hybrid imaging with pulse-echo ultrasound and photoacoustic sensing are discussed.

  7. Determination of Tissue Thermal Conductivity by Measuring and Modeling Temperature Rise Induced in Tissue by Pulsed Focused Ultrasound

    PubMed Central

    Kujawska, Tamara; Secomski, Wojciech; Kruglenko, Eleonora; Krawczyk, Kazimierz; Nowicki, Andrzej

    2014-01-01

    A tissue thermal conductivity (Ks) is an important parameter which knowledge is essential whenever thermal fields induced in selected organs are predicted. The main objective of this study was to develop an alternative ultrasonic method for determining Ks of tissues in vitro suitable for living tissues. First, the method involves measuring of temperature-time T(t) rises induced in a tested tissue sample by a pulsed focused ultrasound with measured acoustic properties using thermocouples located on the acoustic beam axis. Measurements were performed for 20-cycle tone bursts with a 2 MHz frequency, 0.2 duty-cycle and 3 different initial pressures corresponding to average acoustic powers equal to 0.7 W, 1.4 W and 2.1 W generated from a circular focused transducer with a diameter of 15 mm and f-number of 1.7 in a two-layer system of media: water/beef liver. Measurement results allowed to determine position of maximum heating located inside the beef liver. It was found that this position is at the same axial distance from the source as the maximum peak-peak pressure calculated for each nonlinear beam produced in the two-layer system of media. Then, the method involves modeling of T(t) at the point of maximum heating and fitting it to the experimental data by adjusting Ks. The averaged value of Ks determined by the proposed method was found to be 0.5±0.02 W/(m·°C) being in good agreement with values determined by other methods. The proposed method is suitable for determining Ks of some animal tissues in vivo (for example a rat liver). PMID:24743838

  8. Shock-induced heating and millisecond boiling in gels and tissue due to high intensity focused ultrasound

    PubMed Central

    Canney, Michael S.; Khokhlova, Vera A.; Bessonova, Olga V.; Bailey, Michael R.; Crum, Lawrence A.

    2009-01-01

    Nonlinear propagation causes high intensity ultrasound waves to distort and generate higher harmonics, which are more readily absorbed and converted to heat than the fundamental frequency. Although such nonlinear effects have previously been investigated and found not to significantly alter high intensity focused ultrasound (HIFU) treatments, two results reported here change this paradigm. One is that at clinically relevant intensity levels, HIFU waves not only become distorted but form shock waves in tissue. The other is that the generated shock waves heat the tissue to boiling in much less time than predicted for undistorted or weakly distorted waves. In this study, a 2-MHz HIFU source operating at peak intensities up to 25,000 W/cm2 was used to heat transparent tissue-mimicking phantoms and ex vivo bovine liver samples. Initiation of boiling was detected using high-speed photography, a 20-MHz passive cavitation detector, and fluctuation of the drive voltage at the HIFU source. The time to boil obtained experimentally was used to quantify heating rates and was compared to calculations using weak shock theory and the shock amplitudes obtained from nonlinear modeling and from measurements with a fiber optic hydrophone. As observed experimentally and predicted by calculations, shocked focal waveforms produced boiling in as little as 3 ms and the time to initiate boiling was sensitive to small changes in HIFU output. Nonlinear heating due to shock waves is therefore important to HIFU and clinicians should be aware of the potential for very rapid boiling since it alters treatments. PMID:20018433

  9. [Ultrasound dissection in laparoscopic cholecystectomy].

    PubMed

    Horstmann, R; Kern, M; Joosten, U; Hohlbach, G

    1993-01-01

    An ultrasound dissector especially developed for laparoscopic surgery was used during laparoscopic cholecystectomy on 34 patients. The ultrasound power, the volume of suction and irrigation could be determined individually at the generator and activated during the operation with a foot pedal. With the dissector it was possible to fragmentate, emulgate and aspirate simultaneously fat tissue as well as infected edematous structures. The cystic artery and cystic duct, small vessels, lymphatic and connective tissue were not damaged. Therefore this system seems to be excellent for the preparation of Calot's trigonum and blunt dissection of the gallbladder out of its bed, particularly in fatty, acute or chronic infected tissue. No complications were observed within the peri- and postoperative period.

  10. An ultrasound transient elastography system with coded excitation.

    PubMed

    Diao, Xianfen; Zhu, Jing; He, Xiaonian; Chen, Xin; Zhang, Xinyu; Chen, Siping; Liu, Weixiang

    2017-06-28

    Ultrasound transient elastography technology has found its place in elastography because it is safe and easy to operate. However, it's application in deep tissue is limited. The aim of this study is to design an ultrasound transient elastography system with coded excitation to obtain greater detection depth. The ultrasound transient elastography system requires tissue vibration to be strictly synchronous with ultrasound detection. Therefore, an ultrasound transient elastography system with coded excitation was designed. A central component of this transient elastography system was an arbitrary waveform generator with multi-channel signals output function. This arbitrary waveform generator was used to produce the tissue vibration signal, the ultrasound detection signal and the synchronous triggering signal of the radio frequency data acquisition system. The arbitrary waveform generator can produce different forms of vibration waveform to induce different shear wave propagation in the tissue. Moreover, it can achieve either traditional pulse-echo detection or a phase-modulated or a frequency-modulated coded excitation. A 7-chip Barker code and traditional pulse-echo detection were programmed on the designed ultrasound transient elastography system to detect the shear wave in the phantom excited by the mechanical vibrator. Then an elasticity QA phantom and sixteen in vitro rat livers were used for performance evaluation of the two detection pulses. The elasticity QA phantom's results show that our system is effective, and the rat liver results show the detection depth can be increased more than 1 cm. In addition, the SNR (signal-to-noise ratio) is increased by 15 dB using the 7-chip Barker coded excitation. Applying 7-chip Barker coded excitation technique to the ultrasound transient elastography can increase the detection depth and SNR. Using coded excitation technology to assess the human liver, especially in obese patients, may be a good choice.

  11. Development of an ultrasound microscope combined with optical microscope for multiparametric characterization of a single cell.

    PubMed

    Arakawa, Mototaka; Shikama, Joe; Yoshida, Koki; Nagaoka, Ryo; Kobayashi, Kazuto; Saijo, Yoshifumi

    2015-09-01

    Biomechanics of the cell has been gathering much attention because it affects the pathological status in atherosclerosis and cancer. In the present study, an ultrasound microscope system combined with optical microscope for characterization of a single cell with multiple ultrasound parameters was developed. The central frequency of the transducer was 375 MHz and the scan area was 80 × 80 μm with up to 200 × 200 sampling points. An inverted optical microscope was incorporated in the design of the system, allowing for simultaneous optical observations of cultured cells. Two-dimensional mapping of multiple ultrasound parameters, such as sound speed, attenuation, and acoustic impedance, as well as the thickness, density, and bulk modulus of specimen/cell under investigation, etc., was realized by the system. Sound speed and thickness of a 3T3-L1 fibroblast cell were successfully obtained by the system. The ultrasound microscope system combined with optical microscope further enhances our understanding of cellular biomechanics.

  12. CT and Ultrasound Guided Stereotactic High Intensity Focused Ultrasound (HIFU)

    NASA Astrophysics Data System (ADS)

    Wood, Bradford J.; Yanof, J.; Frenkel, V.; Viswanathan, A.; Dromi, S.; Oh, K.; Kruecker, J.; Bauer, C.; Seip, R.; Kam, A.; Li, K. C. P.

    2006-05-01

    To demonstrate the feasibility of CT and B-mode Ultrasound (US) targeted HIFU, a prototype coaxial focused ultrasound transducer was registered and integrated to a CT scanner. CT and diagnostic ultrasound were used for HIFU targeting and monitoring, with the goals of both thermal ablation and non-thermal enhanced drug delivery. A 1 megahertz coaxial ultrasound transducer was custom fabricated and attached to a passive position-sensing arm and an active six degree-of-freedom robotic arm via a CT stereotactic frame. The outer therapeutic transducer with a 10 cm fixed focal zone was coaxially mounted to an inner diagnostic US transducer (2-4 megahertz, Philips Medical Systems). This coaxial US transducer was connected to a modified commercial focused ultrasound generator (Focus Surgery, Indianapolis, IN) with a maximum total acoustic power of 100 watts. This pre-clinical paradigm was tested for ability to heat tissue in phantoms with monitoring and navigation from CT and live US. The feasibility of navigation via image fusion of CT with other modalities such as PET and MRI was demonstrated. Heated water phantoms were tested for correlation between CT numbers and temperature (for ablation monitoring). The prototype transducer and integrated CT/US imaging system enabled simultaneous multimodality imaging and therapy. Pre-clinical phantom models validated the treatment paradigm and demonstrated integrated multimodality guidance and treatment monitoring. Temperature changes during phantom cooling corresponded to CT number changes. Contrast enhanced or non-enhanced CT numbers may potentially be used to monitor thermal ablation with HIFU. Integrated CT, diagnostic US, and therapeutic focused ultrasound bridges a gap between diagnosis and therapy. Preliminary results show that the multimodality system may represent a relatively inexpensive, accessible, and simple method of both targeting and monitoring HIFU effects. Small animal pre-clinical models may be translated to large

  13. In vivo characterization of tissue thermal properties of the kidney during local hyperthermia induced by MR-guided high-intensity focused ultrasound.

    PubMed

    Cornelis, François; Grenier, Nicolas; Moonen, Chrit T; Quesson, Bruno

    2011-08-01

    The purpose of this study was to evaluate quantitatively in vivo the tissue thermal properties during high-intensity focused ultrasound (HIFU) heating. For this purpose, a total of 52 localized sonications were performed in the kidneys of six pigs with HIFU monitored in real time by volumetric MR thermometry. The kidney perfusion was modified by modulation of the flow in the aorta by insertion of an inflatable angioplasty balloon. The resulting temperature data were analyzed using the bio-heat transfer model in order to validate the model under in vivo conditions and to estimate quantitatively the absorption (α), thermal diffusivity (D) and perfusion (w(b)) of renal tissue. An excellent correspondence was observed between the bio-heat transfer model and the experimental data. The absorption and thermal diffusivity were independent of the flow, with mean values (± standard deviation) of 20.7 ± 5.1 mm(3) K J(-1) and 0.23 ± 0.11 mm(2) s(-1), respectively, whereas the perfusion decreased significantly by 84% (p < 0.01) with arterial flow (mean values of w(b) of 0.06 ± 0.02 and 0.008 ± 0.007 mL(-1) mL s(-1)), as predicted by the model. The quantitative analysis of the volumetric temperature distribution during nondestructive HIFU sonication allows the determination of the thermal parameters, and may therefore improve the quality of the planning of noninvasive therapy with MR-guided HIFU. Copyright © 2010 John Wiley & Sons, Ltd.

  14. Influence of Scan Duration on Pulmonary Capillary Hemorrhage Induced by Diagnostic Ultrasound.

    PubMed

    Miller, Douglas L; Dong, Zhihong; Dou, Chunyan; Raghavendran, Krishnan

    2016-08-01

    Diagnostic ultrasound can induce pulmonary capillary hemorrhage (PCH) in rats and display this as "comet tail" artifacts (CTAs) after a time delay. To test the hypothesis that no PCH occurs for brief scans, anesthetized rats were scanned using a 6-MHz linear array for different durations. PCH was characterized by ultrasound CTAs, micro-computed tomography (μCT), and measurements of fixed lung tissue. The μCT images revealed regions of PCH, sometimes penetrating the entire depth of a lobe, which were reflected in the fixed tissue measurements. At -3 dB of power, PCH was substantial for 300-s scans, but not significant for 25-s scans. At 0 dB, PCH was not strongly dependent on scan durations of 300 to 10 s. Contrary to the hypothesis, CTAs were not evident during most 10-s scans (p > 0.05), but PCH was significant (p = 0.02), indicating that PCH could occur without evidence of the injury in the images. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  15. Numerical Study on Focusing of Ultrasounds in Microbubble-enhanced HIFU

    NASA Astrophysics Data System (ADS)

    Matsumoto, Yoichiro; Okita, Kohei; Takagi, Shu

    2011-11-01

    The injection of microbubbles into the target tissue enhances tissue heating in High-Intensity Focused Ultrasound therapy, via inertial cavitation. The control of the inertial cavitation is required to achieve the efficient tissue ablation. Microbubbles between a transducer and a target disturb the ultrasound propagation depending on the conditions. A method to clear such microbubbles has been proposed by Kajiyama et al. [Physics Procedia 3 (2010) 305-314]. In the method, the irradiation of intense ultrasounds with a burst waveform fragmentize microbubbles in the pathways before the irradiation of ultrasounds for tissue heating. The vitro experiment using a gel containing microbubbles has showed that the method enables to heat the target correctly by controlling the microbubble distribution. Following the experiment, we simulate the focusing of ultrasounds through a mixture containing microbubbles with considering the size and number density distributions in space. The numerical simulation shows that the movement of the heating region from the transducer side to the target by controlling the microbubble distributions. The numerical results elucidate well the experimental ones.

  16. Ultrasound microbubble-mediated transfection of NF-κB decoy oligodeoxynucleotide into gingival tissues inhibits periodontitis in rats in vivo

    PubMed Central

    Yamaguchi, Hiroyuki; Hosomichi, Jun; Suzuki, Jun-ichi; Hatano, Kasumi; Usumi-Fujita, Risa; Shimizu, Yasuhiro; Kaneko, Sawa; Ono, Takashi

    2017-01-01

    Periodontitis is a chronic infectious disease for which the fundamental treatment is to reduce the load of subgingival pathogenic bacteria by debridement. However, previous investigators attempted to implement a nuclear factor kappa B (NF-κB) decoy oligodeoxynucleotide (ODN) as a suppressor of periodontitis progression. Although we recently reported the effectiveness of the ultrasound-microbubble method as a tool for transfecting the NF-κB decoy ODN into healthy rodent gingival tissue, this technique has not yet been applied to the pathological gingiva of periodontitis animal models. Therefore, the aim of this study was to investigate the effectiveness of the technique in transfecting the NF-κB decoy ODN into rats with ligature-induced periodontitis. Micro computed tomography (micro-CT) analysis demonstrated a significant reduction in alveolar bone loss following treatment with the NF-κB decoy ODN in the experimental group. RT-PCR showed that NF-κB decoy ODN treatment resulted in significantly reduced expression of inflammatory cytokine transcripts within rat gingival tissues. Thus, we established a transcutaneous transfection model of NF-κB decoy ODN treatment of periodontal tissues using the ultrasound-microbubble technique. Our findings suggest that the NF-κB decoy ODN could be used as a significant suppressor of gingival inflammation and periodontal disease progression. PMID:29091721

  17. Hadamard-Encoded Multipulses for Contrast-Enhanced Ultrasound Imaging.

    PubMed

    Gong, Ping; Song, Pengfei; Chen, Shigao

    2017-11-01

    The development of contrast-enhanced ultrasound (CEUS) imaging offers great opportunities for new ultrasound clinical applications such as myocardial perfusion imaging and abdominal lesion characterization. In CEUS imaging, the contrast agents (i.e., microbubbles) are utilized to improve the contrast between blood and tissue based on their high nonlinearity under low ultrasound pressure. In this paper, we propose a new CEUS pulse sequence by combining Hadamard-encoded multipulses (HEM) with fundamental frequency bandpass filter (i.e., filter centered on transmit frequency). HEM consecutively emits multipulses encoded by a second-order Hadamard matrix in each of the two transmission events (i.e., pulse-echo events), as opposed to conventional CEUS methods which emit individual pulses in two separate transmission events (i.e., pulse inversion (PI), amplitude modulation (AM), and PIAM). In HEM imaging, the microbubble responses can be improved by the longer transmit pulse, and the tissue harmonics can be suppressed by the fundamental frequency filter, leading to significantly improved contrast-to-tissue ratio (CTR) and signal-to-noise ratio (SNR). In addition, the fast polarity change between consecutive coded pulse emissions excites strong nonlinear microbubble echoes, further enhancing the CEUS image quality. The spatial resolution of HEM image is compromised as compared to other microbubble imaging methods due to the longer transmit pulses and the lower imaging frequency (i.e., fundamental frequency). However, the resolution loss was shown to be negligible and could be offset by the significantly enhanced CTR, SNR, and penetration depth. These properties of HEM can potentially facilitate robust CEUS imaging for many clinical applications, especially for deep abdominal organs and heart.

  18. High-frequency ultrasound imaging for breast cancer biopsy guidance

    PubMed Central

    Cummins, Thomas; Yoon, Changhan; Choi, Hojong; Eliahoo, Payam; Kim, Hyung Ham; Yamashita, Mary W.; Hovanessian-Larsen, Linda J.; Lang, Julie E.; Sener, Stephen F.; Vallone, John; Martin, Sue E.; Kirk Shung, K.

    2015-01-01

    Abstract. Image-guided core needle biopsy is the current gold standard for breast cancer diagnosis. Microcalcifications, an important radiographic finding on mammography suggestive of early breast cancer such as ductal carcinoma in situ, are usually biopsied under stereotactic guidance. This procedure, however, is uncomfortable for patients and requires the use of ionizing radiation. It would be preferable to biopsy microcalcifications under ultrasound guidance since it is a faster procedure, more comfortable for the patient, and requires no radiation. However, microcalcifications cannot reliably be detected with the current standard ultrasound imaging systems. This study is motivated by the clinical need for real-time high-resolution ultrasound imaging of microcalcifications, so that biopsies can be accurately performed under ultrasound guidance. We have investigated how high-frequency ultrasound imaging can enable visualization of microstructures in ex vivo breast tissue biopsy samples. We generated B-mode images of breast tissue and applied the Nakagami filtering technique to help refine image output so that microcalcifications could be better assessed during ultrasound-guided core biopsies. We describe the preliminary clinical results of high-frequency ultrasound imaging of ex vivo breast biopsy tissue with microcalcifications and without Nakagami filtering and the correlation of these images with the pathology examination by hematoxylin and eosin stain and whole slide digital scanning. PMID:26693167

  19. Parametric approaches to micro-scale characterization of tissue volumes in vivo and ex vivo: Imaging microvasculature, attenuation, birefringence, and stiffness (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sampson, David D.; Chin, Lixin; Gong, Peijun; Wijesinghe, Philip; Es'haghian, Shaghayegh; Allen, Wesley M.; Klyen, Blake R.; Kirk, Rodney W.; Kennedy, Brendan F.; McLaughlin, Robert A.

    2016-03-01

    INVITED TALK Advances in imaging tissue microstructure in living subjects, or in freshly excised tissue with minimum preparation and processing, are important for future diagnosis and surgical guidance in the clinical setting, particularly for application to cancer. Whilst microscopy methods continue to advance on the cellular scale and medical imaging is well established on the scale of the whole tumor or organ, it is attractive to consider imaging the tumor environment on the micro-scale, between that of cells and whole tissues. Such a scenario is ideally suited to optical coherence tomography (OCT), with the twin attractions of requiring little or no tissue preparation, and in vivo capability. OCT's intrinsic scattering contrast reveals many morphological features of tumors, but is frequently ineffective in revealing other important aspects, such as microvasculature, or in reliably distinguishing tumor from uninvolved stroma. To address these shortcomings, we are developing several advances on the basic OCT approach. We are exploring speckle fluctuations to image tissue microvasculature and we have been developing several parametric approaches to tissue micro-scale characterization. Our approaches extract, from a three-dimensional OCT data set, a two-dimensional image of an optical parameter, such as attenuation or birefringence, or a mechanical parameter, such as stiffness, that aids in characterizing the tissue. This latter method, termed optical coherence elastography, parallels developments in ultrasound and magnetic resonance imaging. Parametric imaging of birefringence and of stiffness both show promise in addressing the important issue of differentiating cancer from uninvolved stroma in breast tissue.

  20. Microbubbles in Ultrasound-Triggered Drug and Gene Delivery

    PubMed Central

    Hernot, Sophie; Klibanov, Alexander L.

    2008-01-01

    Ultrasound contrast agents, in the form of gas-filled microbubbles, are becoming popular in perfusion monitoring; they are employed as molecular imaging agents. Microbubbles are manufactured from biocompatible materials, they can be injected intravenously, and some are approved for clinical use. Microbubbles can be destroyed by ultrasound irradiation. This destruction phenomenon can be applied to targeted drug delivery and enhancement of drug action. The ultrasonic field can be focused at the target tissues and organs; thus, selectivity of the treatment can be improved, reducing undesirable side effects. Microbubbles enhance ultrasound energy deposition in the tissues and serve as cavitation nuclei, increasing intracellular drug delivery. DNA delivery and successful tissue transfection is observed in the areas of the body where ultrasound is applied after intravascular administration of microbubbles and plasmid DNA. Accelerated blood clot dissolution in the areas of insonation by cooperative action of thrombolytic agents and microbubbles is demonstrated in several clinical trials. PMID:18486268

  1. Mechanical characterization of human brain tissue.

    PubMed

    Budday, S; Sommer, G; Birkl, C; Langkammer, C; Haybaeck, J; Kohnert, J; Bauer, M; Paulsen, F; Steinmann, P; Kuhl, E; Holzapfel, G A

    2017-01-15

    Mechanics are increasingly recognized to play an important role in modulating brain form and function. Computational simulations are a powerful tool to predict the mechanical behavior of the human brain in health and disease. The success of these simulations depends critically on the underlying constitutive model and on the reliable identification of its material parameters. Thus, there is an urgent need to thoroughly characterize the mechanical behavior of brain tissue and to identify mathematical models that capture the tissue response under arbitrary loading conditions. However, most constitutive models have only been calibrated for a single loading mode. Here, we perform a sequence of multiple loading modes on the same human brain specimen - simple shear in two orthogonal directions, compression, and tension - and characterize the loading-mode specific regional and directional behavior. We complement these three individual tests by combined multiaxial compression/tension-shear tests and discuss effects of conditioning and hysteresis. To explore to which extent the macrostructural response is a result of the underlying microstructural architecture, we supplement our biomechanical tests with diffusion tensor imaging and histology. We show that the heterogeneous microstructure leads to a regional but not directional dependence of the mechanical properties. Our experiments confirm that human brain tissue is nonlinear and viscoelastic, with a pronounced compression-tension asymmetry. Using our measurements, we compare the performance of five common constitutive models, neo-Hookean, Mooney-Rivlin, Demiray, Gent, and Ogden, and show that only the isotropic modified one-term Ogden model is capable of representing the hyperelastic behavior under combined shear, compression, and tension loadings: with a shear modulus of 0.4-1.4kPa and a negative nonlinearity parameter it captures the compression-tension asymmetry and the increase in shear stress under superimposed

  2. Attenuation measuring ultrasound shearwave elastography and in vivo application in post-transplant liver patients

    NASA Astrophysics Data System (ADS)

    Nenadic, Ivan Z.; Qiang, Bo; Urban, Matthew W.; Zhao, Heng; Sanchez, William; Greenleaf, James F.; Chen, Shigao

    2017-01-01

    Ultrasound and magnetic resonance elastography techniques are used to assess mechanical properties of soft tissues. Tissue stiffness is related to various pathologies such as fibrosis, loss of compliance, and cancer. One way to perform elastography is measuring shear wave velocity of propagating waves in tissue induced by intrinsic motion or an external source of vibration, and relating the shear wave velocity to tissue elasticity. All tissues are inherently viscoelastic and ignoring viscosity biases the velocity-based estimates of elasticity and ignores a potentially important parameter of tissue health. We present attenuation measuring ultrasound shearwave elastography (AMUSE), a technique that independently measures both shear wave velocity and attenuation in tissue and therefore allows characterization of viscoelasticity without using a rheological model. The theoretical basis for AMUSE is first derived and validated in finite element simulations. AMUSE is validated against the traditional methods for assessing shear wave velocity (phase gradient) and attenuation (amplitude decay) in tissue mimicking phantoms and excised tissue. The results agreed within one standard deviation. AMUSE was used to measure shear wave velocity and attenuation in 15 transplanted livers in patients with potential acute rejection, and the results were compared with the biopsy findings in a preliminary study. The comparison showed excellent agreement and suggests that AMUSE can be used to separate transplanted livers with acute rejection from livers with no rejection.

  3. Multimodality Instrument for Tissue Characterization

    NASA Technical Reports Server (NTRS)

    Mah, Robert W. (Inventor); Andrews, Russell J. (Inventor)

    2000-01-01

    A system with multimodality instrument for tissue identification includes a computer-controlled motor driven heuristic probe with a multisensory tip is discussed. For neurosurgical applications, the instrument is mounted on a stereotactic frame for the probe to penetrate the brain in a precisely controlled fashion. The resistance of the brain tissue being penetrated is continually monitored by a miniaturized strain gauge attached to the probe tip. Other modality sensors may be mounted near the probe tip to provide real-time tissue characterizations and the ability to detect the proximity of blood vessels, thus eliminating errors normally associated with registration of pre-operative scans, tissue swelling, elastic tissue deformation, human judgement, etc., and rendering surgical procedures safer, more accurate, and efficient. A neural network, program adaptively learns the information on resistance and other characteristic features of normal brain tissue during the surgery and provides near real-time modeling. A fuzzy logic interface to the neural network program incorporates expert medical knowledge in the learning process. Identification of abnormal brain tissue is determined by the detection of change and comparison with previously learned models of abnormal brain tissues. The operation of the instrument is controlled through a user friendly graphical interface. Patient data is presented in a 3D stereographics display. Acoustic feedback of selected information may optionally be provided. Upon detection of the close proximity to blood vessels or abnormal brain tissue, the computer-controlled motor immediately stops probe penetration.

  4. Ultrasound Elastography: Review of Techniques and Clinical Applications

    PubMed Central

    Sigrist, Rosa M.S.; Liau, Joy; Kaffas, Ahmed El; Chammas, Maria Cristina; Willmann, Juergen K.

    2017-01-01

    Elastography-based imaging techniques have received substantial attention in recent years for non-invasive assessment of tissue mechanical properties. These techniques take advantage of changed soft tissue elasticity in various pathologies to yield qualitative and quantitative information that can be used for diagnostic purposes. Measurements are acquired in specialized imaging modes that can detect tissue stiffness in response to an applied mechanical force (compression or shear wave). Ultrasound-based methods are of particular interest due to its many inherent advantages, such as wide availability including at the bedside and relatively low cost. Several ultrasound elastography techniques using different excitation methods have been developed. In general, these can be classified into strain imaging methods that use internal or external compression stimuli, and shear wave imaging that use ultrasound-generated traveling shear wave stimuli. While ultrasound elastography has shown promising results for non-invasive assessment of liver fibrosis, new applications in breast, thyroid, prostate, kidney and lymph node imaging are emerging. Here, we review the basic principles, foundation physics, and limitations of ultrasound elastography and summarize its current clinical use and ongoing developments in various clinical applications. PMID:28435467

  5. A Wearable Goggle Navigation System for Dual-Mode Optical and Ultrasound Localization of Suspicious Lesions: Validation Studies Using Tissue-Simulating Phantoms and an Ex Vivo Human Breast Tissue Model.

    PubMed

    Zhang, Zeshu; Pei, Jing; Wang, Dong; Gan, Qi; Ye, Jian; Yue, Jian; Wang, Benzhong; Povoski, Stephen P; Martin, Edward W; Hitchcock, Charles L; Yilmaz, Alper; Tweedle, Michael F; Shao, Pengfei; Xu, Ronald X

    2016-01-01

    Surgical resection remains the primary curative treatment for many early-stage cancers, including breast cancer. The development of intraoperative guidance systems for identifying all sites of disease and improving the likelihood of complete surgical resection is an area of active ongoing research, as this can lead to a decrease in the need of subsequent additional surgical procedures. We develop a wearable goggle navigation system for dual-mode optical and ultrasound imaging of suspicious lesions. The system consists of a light source module, a monochromatic CCD camera, an ultrasound system, a Google Glass, and a host computer. It is tested in tissue-simulating phantoms and an ex vivo human breast tissue model. Our experiments demonstrate that the surgical navigation system provides useful guidance for localization and core needle biopsy of simulated tumor within the tissue-simulating phantom, as well as a core needle biopsy and subsequent excision of Indocyanine Green (ICG)-fluorescing sentinel lymph nodes. Our experiments support the contention that this wearable goggle navigation system can be potentially very useful and fully integrated by the surgeon for optimizing many aspects of oncologic surgery. Further engineering optimization and additional in vivo clinical validation work is necessary before such a surgical navigation system can be fully realized in the everyday clinical setting.

  6. A Wearable Goggle Navigation System for Dual-Mode Optical and Ultrasound Localization of Suspicious Lesions: Validation Studies Using Tissue-Simulating Phantoms and an Ex Vivo Human Breast Tissue Model

    PubMed Central

    Wang, Dong; Gan, Qi; Ye, Jian; Yue, Jian; Wang, Benzhong; Povoski, Stephen P.; Martin, Edward W.; Hitchcock, Charles L.; Yilmaz, Alper; Tweedle, Michael F.; Shao, Pengfei; Xu, Ronald X.

    2016-01-01

    Surgical resection remains the primary curative treatment for many early-stage cancers, including breast cancer. The development of intraoperative guidance systems for identifying all sites of disease and improving the likelihood of complete surgical resection is an area of active ongoing research, as this can lead to a decrease in the need of subsequent additional surgical procedures. We develop a wearable goggle navigation system for dual-mode optical and ultrasound imaging of suspicious lesions. The system consists of a light source module, a monochromatic CCD camera, an ultrasound system, a Google Glass, and a host computer. It is tested in tissue-simulating phantoms and an ex vivo human breast tissue model. Our experiments demonstrate that the surgical navigation system provides useful guidance for localization and core needle biopsy of simulated tumor within the tissue-simulating phantom, as well as a core needle biopsy and subsequent excision of Indocyanine Green (ICG)—fluorescing sentinel lymph nodes. Our experiments support the contention that this wearable goggle navigation system can be potentially very useful and fully integrated by the surgeon for optimizing many aspects of oncologic surgery. Further engineering optimization and additional in vivo clinical validation work is necessary before such a surgical navigation system can be fully realized in the everyday clinical setting. PMID:27367051

  7. Photoacoustic and ultrasound dual-modality imaging of human peripheral joints

    NASA Astrophysics Data System (ADS)

    Xu, Guan; Rajian, Justin R.; Girish, Gandikota; Kaplan, Mariana J.; Fowlkes, J. Brian; Carson, Paul L.; Wang, Xueding

    2013-01-01

    A photoacoustic (PA) and ultrasound (US) dual modality system, for imaging human peripheral joints, is introduced. The system utilizes a commercial US unit for both US control imaging and PA signal acquisition. Preliminary in vivo evaluation of the system, on normal volunteers, revealed that this system can recover both the structural and functional information of intra- and extra-articular tissues. Confirmed by the control US images, the system, on the PA mode, can differentiate tendon from surrounding soft tissue based on the endogenous optical contrast. Presenting both morphological and pathological information in joint, this system holds promise for diagnosis and characterization of inflammatory joint diseases such as rheumatoid arthritis.

  8. Assessment of FUS-Tissue Interactions In Vivo

    NASA Astrophysics Data System (ADS)

    Haritonova, Alyona V.

    Focused ultrasound (FUS) has been proposed for a variety of minimally invasive therapeutic applications, including tumor ablation, neuromodulation, targeted drug delivery and blood brain barrier opening. To date, FUS beams have been primarily monitored through MR and ultrasound diagnostic imaging modalities. The recent introduction of real-time dual-mode ultrasound array (DMUA) systems offers a new paradigm for the guidance of therapeutic focused ultrasound. The DMUA approach allows for inherent registration between the therapeutic and imaging coordinate systems. In this thesis we investigated the use of ultrasound-based thermography to assess FUS-tissue interactions. Specifically, we focused on two aspects of image-guided therapy: 1) monitoring and localization of FUS-tissue interactions, and 2) tissue damage assessment. Towards this end, we presented first experimental results of ultrasound-guided transcranial FUS in a rat brain, both ex vivo and in vivo. DMUA imaging was used to monitor and localize FUS-tissue thermal interactions in real-time. The transcranial echo data allowed for a reliable estimation of temperature change in brain tissue, which had never been done before using ultrasound image guidance. Despite some measurable distortion and loss in focusing gain, transcranial FUS beams at 3.2 MHz were localized axially and laterally. This confirms the results obtained using DMUA-based transcranial ultrasound thermography. A high degree of focusing with the DMUA was then successfully leveraged to perform localized tissue damage assessment in both ex vivo and in vivo. The experimental results presented in this thesis demonstrate some of the unique aspects of image guidance using DMUAs, especially when FUS is subject to significant distortions as in transcranial applications.

  9. Geometric reconstruction using tracked ultrasound strain imaging

    NASA Astrophysics Data System (ADS)

    Pheiffer, Thomas S.; Simpson, Amber L.; Ondrake, Janet E.; Miga, Michael I.

    2013-03-01

    The accurate identification of tumor margins during neurosurgery is a primary concern for the surgeon in order to maximize resection of malignant tissue while preserving normal function. The use of preoperative imaging for guidance is standard of care, but tumor margins are not always clear even when contrast agents are used, and so margins are often determined intraoperatively by visual and tactile feedback. Ultrasound strain imaging creates a quantitative representation of tissue stiffness which can be used in real-time. The information offered by strain imaging can be placed within a conventional image-guidance workflow by tracking the ultrasound probe and calibrating the image plane, which facilitates interpretation of the data by placing it within a common coordinate space with preoperative imaging. Tumor geometry in strain imaging is then directly comparable to the geometry in preoperative imaging. This paper presents a tracked ultrasound strain imaging system capable of co-registering with preoperative tomograms and also of reconstructing a 3D surface using the border of the strain lesion. In a preliminary study using four phantoms with subsurface tumors, tracked strain imaging was registered to preoperative image volumes and then tumor surfaces were reconstructed using contours extracted from strain image slices. The volumes of the phantom tumors reconstructed from tracked strain imaging were approximately between 1.5 to 2.4 cm3, which was similar to the CT volumes of 1.0 to 2.3 cm3. Future work will be done to robustly characterize the reconstruction accuracy of the system.

  10. Real-time assessment of tissue hypoxia in vivo with combined photoacoustics and high-frequency ultrasound.

    PubMed

    Gerling, Marco; Zhao, Ying; Nania, Salvatore; Norberg, K Jessica; Verbeke, Caroline S; Englert, Benjamin; Kuiper, Raoul V; Bergström, Asa; Hassan, Moustapha; Neesse, Albrecht; Löhr, J Matthias; Heuchel, Rainer L

    2014-01-01

    In preclinical cancer studies, non-invasive functional imaging has become an important tool to assess tumor development and therapeutic effects. Tumor hypoxia is closely associated with tumor aggressiveness and is therefore a key parameter to be monitored. Recently, photoacoustic (PA) imaging with inherently co-registered high-frequency ultrasound (US) has reached preclinical applicability, allowing parallel collection of anatomical and functional information. Dual-wavelength PA imaging can be used to quantify tissue oxygen saturation based on the absorbance spectrum differences between hemoglobin and deoxyhemoglobin. A new bi-modal PA/US system for small animal imaging was employed to test feasibility and reliability of dual-wavelength PA for measuring relative tissue oxygenation. Murine models of pancreatic and colon cancer were imaged, and differences in tissue oxygenation were compared to immunohistochemistry for hypoxia in the corresponding tissue regions. Functional studies proved feasibility and reliability of oxygenation detection in murine tissue in vivo. Tumor models exhibited different levels of hypoxia in localized regions, which positively correlated with immunohistochemical staining for hypoxia. Contrast-enhanced imaging yielded complementary information on tissue perfusion using the same system. Bimodal PA/US imaging can be utilized to reliably detect hypoxic tumor regions in murine tumor models, thus providing the possibility to collect anatomical and functional information on tumor growth and treatment response live in longitudinal preclinical studies.

  11. Prediction of Difficult Laryngoscopy in Obese Patients by Ultrasound Quantification of Anterior Neck Soft Tissue1

    PubMed Central

    Ezri, T.; Gewürtz, G.; Sessler, D.I.; Medalion, B.; Szmuk, P.; Hagberg, C.; Susmallian, S.

    2005-01-01

    Prediction of difficult laryngoscopy in obese patients is challenging. In 50 morbidly obese patients, we quantified the neck soft tissue from skin to anterior aspect of trachea at the vocal cords using ultrasound. Thyromental distance <6 cm, mouth opening <4 cm, limited neck mobility, Mallampati score >2, abnormal upper teeth, neck circumference >45 cm, and sleep apnoea were considered predictors of difficult laryngoscopy. Of the nine (18%) difficult laryngoscopy cases, seven had obstructive sleep apnoea history; whereas, only 2 of the 41 easy laryngoscopy patients did (P<0.001). Difficult laryngoscopy patients had larger neck circumference [50 (3.8) vs. 43.5 (2.2) cm; P<0.001] and more pre-tracheal soft tissue [28 (2.7) mm vs. 17.5 (1.8) mm; P<0.001] [mean (SD)]. Soft tissue values completely separated difficult and easy laryngoscopies. None of the other predictors correlated with difficult laryngoscopy. Thus, an abundance of pretracheal soft tissue at the level of vocal cords is a good predictor of difficult laryngoscopy in obese patients. PMID:14616599

  12. Morphometric analysis of high-intensity focused ultrasound-induced lipolysis on cadaveric abdominal and thigh skin.

    PubMed

    Lee, Sugun; Kim, Hee-Jin; Park, Hyun Jun; Kim, Hyoung Moon; Lee, So Hyun; Cho, Sung Bin

    2017-07-01

    Non-focused ultrasound and high-intensity focused ultrasound (HIFU) devices induce lipolysis by generating acoustic cavitation and coagulation necrosis in targeted tissues. We aimed to investigate the morphometric characteristics of immediate tissue reactions induced by 2 MHz, 13-mm focused HIFU via two-dimensional ultrasound images and histologic evaluation of cadaveric skin from the abdomen and thigh. Acoustic fields of a 2 MHz, 38-mm HIFU transducer were characterized by reconstruction of the fields using acoustic intensity measurement. Additionally, abdominal and thigh tissues from a fresh cadaver were treated with a HIFU device for a single, two, and three pulses at the pulse energy of 130 J/cm 2 and a penetration depth of 13 mm. Acoustic intensity measurement revealed characteristic focal zones of significant thermal injury at the depth of 38 mm. In both the abdomen and thigh tissue, round to oval ablative thermal injury zones (TIZs) were visualized in subcutaneous fat layers upon treatment with a single pulse of HIFU treatment. Two to three HIFU pulses generated larger and more remarkable ablative zones throughout subcutaneous fat layers. Finally, experimental treatment in a tumescent infiltration-like setting induced larger HIFU-induced TIZs of an oval or columnar shape, compared to non-tumescent settings. Although neither acoustic intensity measurement nor cadaveric tissue exactly reflects in vivo HIFU-induced reactions in human tissue, we believe that our data will help guide further in vivo studies in investigating the therapeutic efficacy and safety of HIFU-induced lipolysis.

  13. High intensity focused ultrasound (HIFU) in tumor therapy.

    PubMed

    Sequeiros, Roberto Blanco; Joronen, Kirsi; Komar, Gaber; Koskinen, Seppo K

    HIFU (high intensity focused ultrasound) is a method in which high-frequency ultrasound is focused on a tissue in order to achieve a thermal effect and the subsequent percutaneously ablation, or tissue modulation. HIFU is non-invasive and results in an immediate tissue destruction effect corresponding to surgery, either percutaneously or through body cavities. HIFU can be utilized in the treatment of both benign and malignant tumors. In neurological diseases, focused HIFU can be used in the treatment of disorders of the basal ganglia.

  14. Myocardial Tissue Characterization by Magnetic Resonance Imaging

    PubMed Central

    Ferreira, Vanessa M.; Piechnik, Stefan K.; Robson, Matthew D.; Neubauer, Stefan

    2014-01-01

    Cardiac magnetic resonance (CMR) imaging is a well-established noninvasive imaging modality in clinical cardiology. Its unsurpassed accuracy in defining cardiac morphology and function and its ability to provide tissue characterization make it well suited for the study of patients with cardiac diseases. Late gadolinium enhancement was a major advancement in the development of tissue characterization techniques, allowing the unique ability of CMR to differentiate ischemic heart disease from nonischemic cardiomyopathies. Using T2-weighted techniques, areas of edema and inflammation can be identified in the myocardium. A new generation of myocardial mapping techniques are emerging, enabling direct quantitative assessment of myocardial tissue properties in absolute terms. This review will summarize recent developments involving T1-mapping and T2-mapping techniques and focus on the clinical applications and future potential of these evolving CMR methodologies. PMID:24576837

  15. A 100-200 MHz ultrasound biomicroscope.

    PubMed

    Knspik, D A; Starkoski, B; Pavlin, C J; Foster, F S

    2000-01-01

    The development of higher frequency ultrasound imaging systems affords a unique opportunity to visualize living tissue at the microscopic level. This work was undertaken to assess the potential of ultrasound imaging in vivo using the 100-200 MHz range. Spherically focused lithium niobate transducers were fabricated. The properties of a 200 MHz center frequency device are described in detail. This transducer showed good sensitivity with an insertion loss of 18 dB at 200 MHz. Resolution of 14 /spl mu/m in the lateral direction and 12 /spl mu/m in the axial direction was achieved with f/1.14 focusing. A linear mechanical scan system and a scan converter were used to generate B-scan images at a frame rate up to 12 frames per second. System performance in B-mode imaging is limited by frequency dependent attenuation in tissues. An alternative technique, zone-focus image collection, was investigated to extend depth of field. Images of coronary arteries, the eye, and skin are presented along with some preliminary correlations with histology. These results demonstrate the feasibility of ultrasound biomicroscopy In the 100-200 MHz range. Further development of ultrasound backscatter imaging at frequencies up to and above 200 MHz will contribute valuable information about tissue microstructure.

  16. Estimation and imaging of breast lesions using a two-layer tissue structure by ultrasound-guided optical tomography

    PubMed Central

    Xu, Yan; Zhu, Quing

    2015-01-01

    Abstract. A new two-step estimation and imaging method is developed for a two-layer breast tissue structure consisting of a breast tissue layer and a chest wall underneath. First, a smaller probe with shorter distance source-detector pairs was used to collect the reflected light mainly from the breast tissue layer. Then, a larger probe with 9×14 source-detector pairs and a centrally located ultrasound transducer was used to collect reflected light from the two-layer tissue structure. The data collected from the smaller probe were used to estimate breast tissue optical properties. With more accurate estimation of the average breast tissue properties, the second layer properties can be assessed from data obtained from the larger probe. Using this approach, the unknown variables have been reduced from four to two and the estimated bulk tissue optical properties are more accurate and robust. In addition, a two-step reconstruction using a genetic algorithm and conjugate gradient method is implemented to simultaneously reconstruct the absorption and reduced scattering maps of targets inside a two-layer tissue structure. Simulations and phantom experiments have been performed to validate the new reconstruction method, and a clinical example is given to demonstrate the feasibility of this approach. PMID:26046722

  17. Feasibility of A-mode ultrasound attenuation as a monitoring method of local hyperthermia treatment.

    PubMed

    Manaf, Noraida Abd; Aziz, Maizatul Nadwa Che; Ridzuan, Dzulfadhli Saffuan; Mohamad Salim, Maheza Irna; Wahab, Asnida Abd; Lai, Khin Wee; Hum, Yan Chai

    2016-06-01

    Recently, there is an increasing interest in the use of local hyperthermia treatment for a variety of clinical applications. The desired therapeutic outcome in local hyperthermia treatment is achieved by raising the local temperature to surpass the tissue coagulation threshold, resulting in tissue necrosis. In oncology, local hyperthermia is used as an effective way to destroy cancerous tissues and is said to have the potential to replace conventional treatment regime like surgery, chemotherapy or radiotherapy. However, the inability to closely monitor temperature elevations from hyperthermia treatment in real time with high accuracy continues to limit its clinical applicability. Local hyperthermia treatment requires real-time monitoring system to observe the progression of the destroyed tissue during and after the treatment. Ultrasound is one of the modalities that have great potential for local hyperthermia monitoring, as it is non-ionizing, convenient and has relatively simple signal processing requirement compared to magnetic resonance imaging and computed tomography. In a two-dimensional ultrasound imaging system, changes in tissue microstructure during local hyperthermia treatment are observed in terms of pixel value analysis extracted from the ultrasound image itself. Although 2D ultrasound has shown to be the most widely used system for monitoring hyperthermia in ultrasound imaging family, 1D ultrasound on the other hand could offer a real-time monitoring and the method enables quantitative measurement to be conducted faster and with simpler measurement instrument. Therefore, this paper proposes a new local hyperthermia monitoring method that is based on one-dimensional ultrasound. Specifically, the study investigates the effect of ultrasound attenuation in normal and pathological breast tissue when the temperature in tissue is varied between 37 and 65 °C during local hyperthermia treatment. Besides that, the total protein content measurement was also

  18. Using low-frequency ultrasound to improve the optical clearing of porcine skin

    NASA Astrophysics Data System (ADS)

    Zhong, Huiqing; Guo, Zhouyi; Wei, Huajiang; Zhang, Zude; Zeng, Changchun; Zhai, Juan; He, Yonghong

    2008-12-01

    The glycerol used as an enhancer for tissue optical clearing technique has been researched. However, using it and a physical way of ultrasound enhance optical clearing of tissue reported a few. We researched that the ultrasound whether can improve the optical clearing of dealt with 80% glycerol tissue. The fresh porcine skins divided into four groups. The first group was not dealt with by ultrasound and 80% glycerol, the second group was dealt with by only ultrasound, the third group was dealt with by 80% glycerol and no by ultrasound, and the fourth group was dealt with by both 80% glycerol and ultrasound. And we measured changes in optical scattering of the porcine skins under treatment with OCT. From the OCT images show that the fourth group changed very faster than the other's during the 0~15 min. And it can be clearly seen that there is a significant improvement in the light penetration depth and imaging contrast in a shorter time. It is possible that the low-frequency ultrasound can make disordering of the stratum corneum lipids of the porcine skin (because the cavitation has happened), and improve the speed of 80% glycerol through the stratum corneum of skin. These results proved that using 80% glycerol with the ultrasound can better improve the optical clearing of tissue.

  19. Emerging Non-Cancer Applications of Therapeutic Ultrasound

    PubMed Central

    O’Reilly, Meaghan A.; Hynynen, Kullervo

    2015-01-01

    Ultrasound therapy has been investigated for over half a century. Ultrasound can act on tissue through a variety of mechanisms, including thermal, shockwave and cavitation mechanisms, and through these can elicit different responses. Ultrasound therapy can provide a non-invasive or minimally invasive treatment option, and ultrasound technology has advanced to the point where devices can be developed to investigate a wide range of applications. This review focuses on non-cancer, clinical applications of therapeutic ultrasound, with an emphasis on treatments that have recently reached clinical investigations, and preclinical research programs that have great potential to impact patient care. PMID:25792225

  20. Molecular imaging with targeted contrast ultrasound.

    PubMed

    Piedra, Mark; Allroggen, Achim; Lindner, Jonathan R

    2009-01-01

    Molecular imaging with contrast-enhanced ultrasound uses targeted microbubbles that are retained in diseased tissue. The resonant properties of these microbubbles produce acoustic signals in an ultrasound field. The microbubbles are targeted to diseased tissue by using certain chemical constituents in the microbubble shell or by attaching disease-specific ligands such as antibodies to the microbubble. In this review, we discuss the applications of this technique to pathological states in the cerebrovascular system including atherosclerosis, tumor angiogenesis, ischemia, intravascular thrombus, and inflammation. Copyright 2009 S. Karger AG, Basel.

  1. Low-Energy Ultrasound Treatment Improves Regional Tumor Vessel Infarction by Retargeted Tissue Factor.

    PubMed

    Brand, Caroline; Dencks, Stefanie; Schmitz, Georg; Mühlmeister, Mareike; Stypmann, Jörg; Ross, Rebecca; Hintelmann, Heike; Schliemann, Christoph; Müller-Tidow, Carsten; Mesters, Rolf M; Berdel, Wolfgang E; Schwöppe, Christian

    2015-07-01

    To enhance the regional antitumor activity of the vascular-targeting agent truncated tissue factor (tTF)-NGR by combining the therapy with low-energy ultrasound (US) treatment. For the in vitro US exposure of human umbilical vein endothelial cells (HUVECs), cells were put in the focus of a US transducer. For analysis of the US-induced phosphatidylserine (PS) surface concentration on HUVECs, flow cytometry was used. To demonstrate the differences in the procoagulatory efficacy of TF-derivative tTF-NGR on binding to HUVECs with a low versus high surface concentration of PS, we performed factor X activation assays. For low-energy US pretreatment, HT1080 fibrosarcoma xenotransplant-bearing nude mice were treated by tumor-regional US-mediated stimulation (ie, destruction) of microbubbles. The therapy cohorts received the tumor vessel-infarcting tTF-NGR protein with or without US pretreatment (5 minutes after US stimulation via intraperitoneal injection on 3 consecutive days). Combination therapy experiments with xenotransplant-bearing nude mice significantly increased the antitumor activity of tTF-NGR by regional low-energy US destruction of vascular microbubbles in tumor vessels shortly before application of tTF-NGR (P < .05). Mechanistic studies proved the upregulation of anionic PS on the outer leaflet of the lipid bilayer of endothelial cell membranes by low-energy US and a consecutive higher potential of these preapoptotic endothelial cells to activate coagulation via tTF-NGR and coagulation factor X as being a basis for this synergistic activity. Combining retargeted tTF to tumor vessels with proapoptotic stimuli for the tumor vascular endothelium increases the antitumor effects of tumor vascular infarction. Ultrasound treatment may thus be useful in this respect for regional tumor therapy. © 2015 by the American Institute of Ultrasound in Medicine.

  2. Non-contact, ultrasound-based indentation method for measuring elastic properties of biological tissues using harmonic motion imaging (HMI).

    PubMed

    Vappou, Jonathan; Hou, Gary Y; Marquet, Fabrice; Shahmirzadi, Danial; Grondin, Julien; Konofagou, Elisa E

    2015-04-07

    Noninvasive measurement of mechanical properties of biological tissues in vivo could play a significant role in improving the current understanding of tissue biomechanics. In this study, we propose a method for measuring elastic properties non-invasively by using internal indentation as generated by harmonic motion imaging (HMI). In HMI, an oscillating acoustic radiation force is produced by a focused ultrasound transducer at the focal region, and the resulting displacements are estimated by tracking radiofrequency signals acquired by an imaging transducer. In this study, the focal spot region was modeled as a rigid cylindrical piston that exerts an oscillatory, uniform internal force to the underlying tissue. The HMI elastic modulus EHMI was defined as the ratio of the applied force to the axial strain measured by 1D ultrasound imaging. The accuracy and the precision of the EHMI estimate were assessed both numerically and experimentally in polyacrylamide tissue-mimicking phantoms. Initial feasibility of this method in soft tissues was also shown in canine liver specimens in vitro. Very good correlation and agreement was found between the measured Young's modulus and the HMI modulus in the numerical study (r(2) > 0.99, relative error <10%) and on polyacrylamide gels (r(2) = 0.95, relative error <24%). The average HMI modulus on five liver samples was found to EHMI = 2.62  ±  0.41 kPa, compared to EMechTesting = 4.2  ±  2.58 kPa measured by rheometry. This study has demonstrated for the first time the initial feasibility of a non-invasive, model-independent method to estimate local elastic properties of biological tissues at a submillimeter scale using an internal indentation-like approach. Ongoing studies include in vitro experiments in a larger number of samples and feasibility testing in in vivo models as well as pathological human specimens.

  3. Diagnostic and interventional musculoskeletal ultrasound: part 2. Clinical applications.

    PubMed

    Smith, Jay; Finnoff, Jonathan T

    2009-02-01

    Musculoskeletal ultrasound involves the use of high-frequency sound waves to image soft tissues and bony structures in the body for the purposes of diagnosing pathology or guiding real-time interventional procedures. Recently, an increasing number of physicians have integrated musculoskeletal ultrasound into their practices to facilitate patient care. Technological advancements, improved portability, and reduced costs continue to drive the proliferation of ultrasound in clinical medicine. This increased interest creates a need for education pertaining to all aspects of musculoskeletal ultrasound. The primary purpose of this article is to review diagnostic ultrasound technology and its potential clinical applications in the evaluation and treatment of patients with neurological and musculoskeletal disorders. After reviewing this article, physicians should be able to (1) list the advantages and disadvantages of ultrasound compared to other available imaging modalities; (2) describe how ultrasound machines produce images using sound waves; (3) discuss the steps necessary to acquire and optimize an ultrasound image; (4) understand the difference ultrasound appearances of tendons, nerves, muscles, ligaments, blood vessels, and bones; and (5) identify multiple applications for diagnostic and interventional musculoskeletal ultrasound. Part 2 of this 2-part article will focus on the clinical applications of musculoskeletal ultrasound in clinical practice, including the ultrasonographic appearance of normal and abnormal tissues as well as specific diagnostic and interventional applications in major body regions.

  4. Neonatal Cranial Ultrasound: Are Current Safety Guidelines Appropriate?

    PubMed

    Lalzad, Assema; Wong, Flora; Schneider, Michal

    2017-03-01

    Ultrasound can lead to thermal and mechanical effects in interrogated tissues. We reviewed the literature to explore the evidence on ultrasound heating on fetal and neonatal neural tissue. The results of animal studies have suggested that ultrasound exposure of the fetal or neonatal brain may lead to a significant temperature elevation at the bone-brain interface above current recommended safety thresholds. Temperature increases between 4.3 and 5.6°C have been recorded. Such temperature elevations can potentially affect neuronal structure and function and may also affect behavioral and cognitive function, such as memory and learning. However, the majority of these studies were carried out more than 25 y ago using non-diagnostic equipment with power outputs much lower than those of modern machines. New studies to address the safety issues of cranial ultrasound are imperative to provide current clinical guidelines and safety recommendations. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  5. Post-processing of polymer foam tissue scaffolds with high power ultrasound: a route to increased pore interconnectivity, pore size and fluid transport.

    PubMed

    Watson, N J; Johal, R K; Glover, Z; Reinwald, Y; White, L J; Ghaemmaghami, A M; Morgan, S P; Rose, F R A J; Povey, M J W; Parker, N G

    2013-12-01

    The aim of this work is to demonstrate that the structural and fluidic properties of polymer foam tissue scaffolds, post-fabrication but prior to the introduction of cells, can be engineered via exposure to high power ultrasound. Our analysis is supported by measurements of fluid uptake during insonification and imaging of the scaffold microstructure via X-ray computed tomography, scanning electron microscopy and acoustic microscopy. The ultrasonic treatment is performed with a frequency of 30 kHz, average intensities up to 80,000 Wm(-2) and exposure times up to 20 h. The treatment is found to increase the mean pore size by over 10%. More striking is the improvement in fluid uptake: for scaffolds with only 40% water uptake via standard immersion techniques, we can routinely achieve full saturation of the scaffold over approximately one hour of exposure. These desirable modifications occur with negligible loss of scaffold integrity and mass, and are optimized when the ultrasound treatment is coupled to a pre-wetting stage with ethanol. Our findings suggest that high power ultrasound is highly targeted towards flow obstructions in the scaffold architecture, thereby providing an efficient means to promote pore interconnectivity and fluid transport in thick foam tissue scaffolds. © 2013.

  6. The Application of Ultrasound in 3D Bio-Printing.

    PubMed

    Zhou, Yufeng

    2016-05-05

    Three-dimensional (3D) bioprinting is an emerging and promising technology in tissue engineering to construct tissues and organs for implantation. Alignment of self-assembly cell spheroids that are used as bioink could be very accurate after droplet ejection from bioprinter. Complex and heterogeneous tissue structures could be built using rapid additive manufacture technology and multiple cell lines. Effective vascularization in the engineered tissue samples is critical in any clinical application. In this review paper, the current technologies and processing steps (such as printing, preparation of bioink, cross-linking, tissue fusion and maturation) in 3D bio-printing are introduced, and their specifications are compared with each other. In addition, the application of ultrasound in this novel field is also introduced. Cells experience acoustic radiation force in ultrasound standing wave field (USWF) and then accumulate at the pressure node at low acoustic pressure. Formation of cell spheroids by this method is within minutes with uniform size and homogeneous cell distribution. Neovessel formation from USWF-induced endothelial cell spheroids is significant. Low-intensity ultrasound could enhance the proliferation and differentiation of stem cells. Its use is at low cost and compatible with current bioreactor. In summary, ultrasound application in 3D bio-printing may solve some challenges and enhance the outcomes.

  7. Displacement analysis of diagnostic ultrasound backscatter: A methodology for characterizing, modeling, and monitoring high intensity focused ultrasound therapy

    PubMed Central

    Speyer, Gavriel; Kaczkowski, Peter J.; Brayman, Andrew A.; Crum, Lawrence A.

    2010-01-01

    Accurate monitoring of high intensity focused ultrasound (HIFU) therapy is critical for widespread clinical use. Pulse-echo diagnostic ultrasound (DU) is known to exhibit temperature sensitivity through relative changes in time-of-flight between two sets of radio frequency (RF) backscatter measurements, one acquired before and one after therapy. These relative displacements, combined with knowledge of the exposure protocol, material properties, heat transfer, and measurement noise statistics, provide a natural framework for estimating the administered heating, and thereby therapy. The proposed method, termed displacement analysis, identifies the relative displacements using linearly independent displacement patterns, or modes, each induced by a particular time-varying heating applied during the exposure interval. These heating modes are themselves linearly independent. This relationship implies that a linear combination of displacement modes aligning the DU measurements is the response to an identical linear combination of heating modes, providing the heating estimate. Furthermore, the accuracy of coefficient estimates in this approximation is determined a priori, characterizing heating, thermal dose, and temperature estimates for any given protocol. Predicted performance is validated using simulations and experiments in alginate gel phantoms. Evidence for a spatially distributed interaction between temperature and time-of-flight changes is presented. PMID:20649206

  8. Noninvasive detection of intimal xanthoma using combined ultrasound, strain rate and photoacoustic imaging.

    PubMed

    Graf, Iulia M; Kim, Seungsoo; Wang, Bo; Smalling, Richard; Emelianov, Stanislav

    2012-03-01

    The structure, composition and mechanics of carotid artery are good indicators of early progressive atherosclerotic lesions. The combination of three imaging modalities (ultrasound, strain rate and photoacoustic imaging) which could provide corroborative information about the named arterial properties could enhance the characterization of intimal xanthoma. The experiments were performed using a New Zealand white rabbit model of atherosclerosis. The aorta excised from an atherosclerotic rabbit was scanned ex vivo using the three imaging techniques: (1) ultrasound imaging of the longitudinal section: standard ultrasound B-mode (74Hz frame rate); (2) strain rate imaging: the artery was flushed with blood and a 1.5Hz physiologic pulsation was induced, while the ultrasound data were recorded at higher frame rate (296Hz); (3) photoacoustic imaging: the artery was irradiated with nanosecond pulsed laser light of low fluence in the 1210-1230nm wavelength range and the photoacoustic data was recorded at 10Hz frame rate. Post processing algorithms based on cross-correlation and optical absorption variation were implemented to derive strain rate and spectroscopic photoacoustic images, respectively. Based on the spatio-temporal variation in displacement of different regions within the arterial wall, strain rate imaging reveals differences in tissue mechanical properties. Additionally, spectroscopic photoacoustic imaging can spatially resolve the optical absorption properties of arterial tissue and identify the location of lipid pools. The study demonstrates that ultrasound, strain rate and photoacoustic imaging can be used to simultaneously evaluate the structure, the mechanics and the composition of atherosclerotic lesions to improve the assessment of plaque vulnerability. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. The effect of nonlinear propagation on heating of tissue: A numerical model of diagnostic ultrasound beams

    NASA Astrophysics Data System (ADS)

    Cahill, Mark D.; Humphrey, Victor F.; Doody, Claire

    2000-07-01

    Thermal safety indices for diagnostic ultrasound beams are calculated under the assumption that the sound propagates under linear conditions. A non-axisymmetric finite difference model is used to solve the KZK equation, and so to model the beam of a diagnostic scanner in pulsed Doppler mode. Beams from both a uniform focused rectangular source and a linear array are considered. Calculations are performed in water, and in attenuating media with tissue-like characteristics. Attenuating media are found to exhibit significant nonlinear effects for finite-amplitude beams. The resulting loss of intensity by the beam is then used as the source term in a model of tissue heating to estimate the maximum temperature rises. These are compared with the thermal indices, derived from the properties of the water-propagated beams.

  10. Hybrid Photoacoustic/Ultrasound Tomograph for Real-Time Finger Imaging.

    PubMed

    Oeri, Milan; Bost, Wolfgang; Sénégond, Nicolas; Tretbar, Steffen; Fournelle, Marc

    2017-10-01

    We report a target-enclosing, hybrid tomograph with a total of 768 elements based on capacitive micromachined ultrasound transducer technology and providing fast, high-resolution 2-D/3-D photoacoustic and ultrasound tomography tailored to finger imaging. A freely programmable ultrasound beamforming platform sampling data at 80 MHz was developed to realize plane wave transmission under multiple angles. A multiplexing unit enables the connection and control of a large number of elements. Fast image reconstruction is provided by GPU processing. The tomograph is composed of four independent and fully automated movable arc-shaped transducers, allowing imaging of all three finger joints. The system benefits from photoacoustics, yielding high optical contrast and enabling visualization of finger vascularization, and ultrasound provides morphologic information on joints and surrounding tissue. A diode-pumped, Q-switched Nd:YAG laser and an optical parametric oscillator are used to broaden the spectrum of emitted wavelengths to provide multispectral imaging. Custom-made optical fiber bundles enable illumination of the region of interest in the plane of acoustic detection. Precision in positioning of the probe in motion is ensured by use of a motor-driven guide slide. The current position of the probe is encoded by the stage and used to relate ultrasound and photoacoustic signals to the corresponding region of interest of the suspicious finger joint. The system is characterized in phantoms and a healthy human finger in vivo. The results obtained promise to provide new opportunities in finger diagnostics and establish photoacoustic/ultrasound-tomography in medical routine. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. Oil-based gel phantom for ultrasound and optical imaging

    NASA Astrophysics Data System (ADS)

    Cabrelli, Luciana C.; Pelissari, Pedro I. B. G. B.; Aggarwal, Lucimara P.; Deana, Alessandro M.; Carneiro, Antonio A. O.; Pavan, Theo. Z.

    2015-06-01

    Water-based materials are commonly used in phantoms for ultrasound and optical imaging techniques. However, these materials have disadvantages such as easy degradation and low temporal stability. In this study, we propose an oil-based new tissue mimicking material for ultrasound and optical imaging, with the advantage of presenting low temporal degradation. Styrene-Ethylene/Butylene-Styrene (SEBS) copolymer in mineral oil samples were made varying the SEBS concentration between 5-15%, and low-density polyethylene (LDPE) between 0-9%. Acoustic properties such as speed of sound and attenuation coefficient were obtained by the substitution technique with frequencies ranging from 2.25-10 MHz, and were consistent to that of soft tissue. These properties were controlled varying SEBS and LDPE concentration; speed of sound from 1445-1480 m/s, and attenuation from 0.86-11.31 dB/cm were observed. SEBS gels with 0% of LDPE were optically transparent, presenting low optical absorption and scattering coefficients in the visible region of the spectrum. In order to fully characterize the optical properties of the samples, the reflectances of the surfaces were measured, along with the absorption. Scattering and absorption coefficients ranging from 400 nm to 1200 nm were calculated for each compound. The results showed that the presence of LDPE increased absorption and scattering of the phantoms. The results suggest the copolymer gels are promising for ultrasound and optical imaging, what make them also potentially useful for photoacoustic imaging.

  12. Multimodality instrument for tissue characterization

    NASA Technical Reports Server (NTRS)

    Mah, Robert W. (Inventor); Andrews, Russell J. (Inventor)

    2004-01-01

    A system with multimodality instrument for tissue identification includes a computer-controlled motor driven heuristic probe with a multisensory tip. For neurosurgical applications, the instrument is mounted on a stereotactic frame for the probe to penetrate the brain in a precisely controlled fashion. The resistance of the brain tissue being penetrated is continually monitored by a miniaturized strain gauge attached to the probe tip. Other modality sensors may be mounted near the probe tip to provide real-time tissue characterizations and the ability to detect the proximity of blood vessels, thus eliminating errors normally associated with registration of pre-operative scans, tissue swelling, elastic tissue deformation, human judgement, etc., and rendering surgical procedures safer, more accurate, and efficient. A neural network program adaptively learns the information on resistance and other characteristic features of normal brain tissue during the surgery and provides near real-time modeling. A fuzzy logic interface to the neural network program incorporates expert medical knowledge in the learning process. Identification of abnormal brain tissue is determined by the detection of change and comparison with previously learned models of abnormal brain tissues. The operation of the instrument is controlled through a user friendly graphical interface. Patient data is presented in a 3D stereographics display. Acoustic feedback of selected information may optionally be provided. Upon detection of the close proximity to blood vessels or abnormal brain tissue, the computer-controlled motor immediately stops probe penetration. The use of this system will make surgical procedures safer, more accurate, and more efficient. Other applications of this system include the detection, prognosis and treatment of breast cancer, prostate cancer, spinal diseases, and use in general exploratory surgery.

  13. The Role of Anthropomorphic Phantoms in Diagnostic Ultrasound Imaging for Disease Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, L. M.; King, D. M.; Browne, J. E.

    2009-04-19

    An anthropomorhic phantom is an object that can mimic a region of the human anatomy. Anthropomorphic phantoms have a variety of roles in diagnostic ultrasound. These roles include quality assurance testing of ultrasound machines, calibration and testing of new imaging techniques, training of sonographers, and--most importantly--use as a tool to obtain a better understanding of disease progression in the relevant anatomy. To be anthropomorphic a phantom must accurately mimic the body in terms of its ultrasonic and mechanical properties, as well as anatomically. The acoustic properties are speed of sound, attenuation, and backscatter. The mechanical properties are elasticity and density.more » Phantoms are constructed from tissue-mimicking materials (TMMs). TMMs are prepared from a variety of ingredients, such as gelatine, agar, safflower oil, and glass beads. These ingredients are then boiled and cooled under controlled conditions to produce a solid TMM. To determine if the TMM has the correct acoustic properties, acoustic measurements are performed using a scanning acoustic macroscope. Mechanical measurements are also performed to test the elasticity and density properties. TMMs with the correct properties are subsequently put through a series of moulding procedures to produce the anthropomorphic phantom.« less

  14. Flexible Integration of Both High Imaging Resolution and High Power Arrays for Ultrasound-Induced Thermal Strain Imaging (US-TSI)

    PubMed Central

    Stephens, Douglas N.; Mahmoud, Ahmed M.; Ding, Xuan; Lucero, Steven; Dutta, Debaditya; Yu, Francois T.H.; Chen, Xucai

    2013-01-01

    Ultrasound-induced thermal strain imaging (US-TSI) for carotid artery plaque detection requires both high imaging resolution (<100 μm) and sufficient US induced heating to elevate the tissue temperature (~1-3°C within 1-3 cardiac cycles) in order to produce a noticeable change in sound speed in the targeted tissues. Since the optimization of both imaging and heating in a monolithic array design is particularly expensive and inflexible, a new integrated approach is presented that utilizes independent ultrasound arrays to meet the requirements for this particular application. This work demonstrates a new approach in dual-array construction. A 3D printed manifold was built to support both a high resolution 20 MHz commercial imaging array and 6 custom heating elements operating in the 3.5-4 MHz range. For the application of US-TSI on carotid plaque characterization, the tissue target site is 20 to 30 mm deep, with a typical target volume of 2 mm (elevation) × 8 mm (azimuthal) × 5 mm (depth). The custom heating array performance was fully characterized for two design variants (flat and spherical apertures), and can easily deliver 30 W of total acoustic power to produce intensities greater than 15 W/cm2 in tissue target region. PMID:24297029

  15. Enabling real-time ultrasound imaging of soft tissue mechanical properties by simplification of the shear wave motion equation.

    PubMed

    Engel, Aaron J; Bashford, Gregory R

    2015-08-01

    Ultrasound based shear wave elastography (SWE) is a technique used for non-invasive characterization and imaging of soft tissue mechanical properties. Robust estimation of shear wave propagation speed is essential for imaging of soft tissue mechanical properties. In this study we propose to estimate shear wave speed by inversion of the first-order wave equation following directional filtering. This approach relies on estimation of first-order derivatives which allows for accurate estimations using smaller smoothing filters than when estimating second-order derivatives. The performance was compared to three current methods used to estimate shear wave propagation speed: direct inversion of the wave equation (DIWE), time-to-peak (TTP) and cross-correlation (CC). The shear wave speed of three homogeneous phantoms of different elastic moduli (gelatin by weight of 5%, 7%, and 9%) were measured with each method. The proposed method was shown to produce shear speed estimates comparable to the conventional methods (standard deviation of measurements being 0.13 m/s, 0.05 m/s, and 0.12 m/s), but with simpler processing and usually less time (by a factor of 1, 13, and 20 for DIWE, CC, and TTP respectively). The proposed method was able to produce a 2-D speed estimate from a single direction of wave propagation in about four seconds using an off-the-shelf PC, showing the feasibility of performing real-time or near real-time elasticity imaging with dedicated hardware.

  16. Integrated sensor biopsy device for real time tissue metabolism analysis

    NASA Astrophysics Data System (ADS)

    Delgado Alonso, Jesus; Lieberman, Robert A.; DiCarmine, Paul M.; Berry, David; Guzman, Narciso; Marpu, Sreekar B.

    2018-02-01

    Current methods for guiding cancer biopsies rely almost exclusively on images derived from X-ray, ultrasound, or magnetic resonance, which essentially characterize suspected lesions based only on tissue density. This paper presents a sensor integrated biopsy device for in situ tissue analysis that will enable biopsy teams to measure local tissue chemistry in real time during biopsy procedures, adding a valuable new set of parameters to augment and extend conventional image guidance. A first demonstrator integrating three chemical and biochemical sensors was tested in a mice strain that is a spontaneous breast cancer model. In all cases, the multisensory probe was able to discriminate between healthy tissue, the edge of the tumor, and total insertion inside the cancer tissue, recording real-time information about tissue metabolism.

  17. Diffuse Optical Characterization of the Healthy Human Thyroid Tissue and Two Pathological Case Studies

    PubMed Central

    Lindner, Claus; Johansson, Johannes; Weigel, Udo M.; Halperin, Irene; Hanzu, Felicia A.; Durduran, Turgut

    2016-01-01

    The in vivo optical and hemodynamic properties of the healthy (n = 22) and pathological (n = 2) human thyroid tissue were measured non-invasively using a custom time-resolved spectroscopy (TRS) and diffuse correlation spectroscopy (DCS) system. Medical ultrasound was used to guide the placement of the hand-held hybrid optical probe. TRS measured the absorption and reduced scattering coefficients (μa, μs′) at three wavelengths (690, 785 and 830 nm) to derive total hemoglobin concentration (THC) and oxygen saturation (StO2). DCS measured the microvascular blood flow index (BFI). Their dependencies on physiological and clinical parameters and positions along the thyroid were investigated and compared to the surrounding sternocleidomastoid muscle. The THC in the thyroid ranged from 131.9 μM to 144.8 μM, showing a 25–44% increase compared to the surrounding sternocleidomastoid muscle tissue. The blood flow was significantly higher in the thyroid (BFIthyroid = 16.0 × 10-9 cm2/s) compared to the muscle (BFImuscle = 7.8 × 10-9 cm2/s), while StO2 showed a small (StO2, muscle = 63.8% to StO2, thyroid = 68.4%), yet significant difference. Two case studies with thyroid nodules underwent the same measurement protocol prior to thyroidectomy. Their THC and BFI reached values around 226.5 μM and 62.8 × 10-9 cm2/s respectively showing a clear contrast to the nodule-free thyroid tissue as well as the general population. The initial characterization of the healthy and pathologic human thyroid tissue lays the ground work for the future investigation on the use of diffuse optics in thyroid cancer screening. PMID:26815533

  18. Quantitative Imaging of Young's Modulus of Soft Tissues from Ultrasound Water Jet Indentation: A Finite Element Study

    PubMed Central

    Lu, Min-Hua; Mao, Rui; Lu, Yin; Liu, Zheng; Wang, Tian-Fu; Chen, Si-Ping

    2012-01-01

    Indentation testing is a widely used approach to evaluate mechanical characteristics of soft tissues quantitatively. Young's modulus of soft tissue can be calculated from the force-deformation data with known tissue thickness and Poisson's ratio using Hayes' equation. Our group previously developed a noncontact indentation system using a water jet as a soft indenter as well as the coupling medium for the propagation of high-frequency ultrasound. The novel system has shown its ability to detect the early degeneration of articular cartilage. However, there is still lack of a quantitative method to extract the intrinsic mechanical properties of soft tissue from water jet indentation. The purpose of this study is to investigate the relationship between the loading-unloading curves and the mechanical properties of soft tissues to provide an imaging technique of tissue mechanical properties. A 3D finite element model of water jet indentation was developed with consideration of finite deformation effect. An improved Hayes' equation has been derived by introducing a new scaling factor which is dependent on Poisson's ratios v, aspect ratio a/h (the radius of the indenter/the thickness of the test tissue), and deformation ratio d/h. With this model, the Young's modulus of soft tissue can be quantitatively evaluated and imaged with the error no more than 2%. PMID:22927890

  19. Ultrasound Imaging of the Musculoskeletal System.

    PubMed

    Cook, Cristi R

    2016-05-01

    Musculoskeletal ultrasound is a rapidly growing field within veterinary medicine. Ultrasound for musculoskeletal disorders has been commonly used in equine and human medicine and is becoming more commonly performed in small animal patients due to the increase in the recognition of soft tissue injuries. Ultrasound is widely available, cost-effective, but technically difficult to learn. Advantages of musculoskeletal ultrasound are the opposite limb is commonly used for comparison to evaluate symmetry of the tendinous structures and the ease of repeat examinations to assess healing. The article discusses the major areas of shoulder, stifle, iliopsoas, gastrocnemius, and musculoskeletal basics. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Characterization of Different Microbubbles in Assisting Focused Ultrasound-Induced Blood-Brain Barrier Opening

    NASA Astrophysics Data System (ADS)

    Wu, Sheng-Kai; Chu, Po-Chun; Chai, Wen-Yen; Kang, Shih-Tsung; Tsai, Chih-Hung; Fan, Ching-Hsiang; Yeh, Chih-Kuang; Liu, Hao-Li

    2017-04-01

    Microbubbles (MBs) serve as a critical catalyst to amplify local cavitation in CNS capillary lumen to facilitate focused ultrasound (FUS) to transiently open the blood-brain barrier (BBB). However, limited understanding is available regarding the effect of different microbubbles to induce BBB opening. The aim of this study is to characterize different MBs on their effect in FUS-induced BBB opening. Three MBs, SonoVue, Definity, and USphere, were tested, with 0.4-MHz FUS exposure at 0.62-1.38 of mechanical index (MI) on rats. Evans blue, dynamic contrast-enhanced (DCE) MRI and small-animal ultrasound imaging were used as surrogates to allow molecule-penetrated quantification, BBB-opened observation, and MBs circulation/persistence. Cavitation activity was measured via the passive cavitation detection (PCD) setup to correlate with the exposure level and the histological effect. Under given and identical MB concentrations, the three MBs induced similar and equivalent BBB-opening effects and persistence. In addition, a treatment paradigm by adapting exposure time is proposed to compensate MB decay to retain the persistence of BBB-opening efficiency in multiple FUS exposures. The results potentially improve understanding of the equivalence among MBs in focused ultrasound CNS drug delivery, and provide an effective strategy for securing persistence in this treatment modality.

  1. Molecular mechanisms of the effect of ultrasound on the fibrinolysis of clots

    PubMed Central

    Chernysh, Irina N.; Everbach, E. Carr; Purohit, Prashant K.; Weisel, John W.

    2016-01-01

    Summary Background Ultrasound accelerates tissue-type plasminogen activator (t-PA)-induced fibrinolysis of clots in vitro and in vivo. Objective To identify mechanisms for the enhancement of t-PA-induced fibrinolysis of clots. Methods Turbidity is an accurate and convenient method, not previously used, to follow the effects of ultrasound. Deconvolution microscopy was used to determine changes in structure, while fluorescence recovery after photobleaching was used to characterize the kinetics of binding/unbinding and transport. Results The ultrasound pulse repetition frequency affected clot lysis times, but there were no thermal effects. Ultrasound in the absence of t-PA produced a slight but consistent decrease in turbidity, suggesting a decrease in fibrin diameter due solely to the action of the ultrasound, likely caused by an increase in protofibril tension because of vibration from ultrasound. Changes in fibrin network structure during lysis with ultrasound were visualized in real time by deconvolution microscopy, revealing that the network becomes unstable when 30–40% of the protein in the network was digested, whereas without ultrasound, the fibrin network was digested gradually and retained structural integrity. Fluorescence recovery after photobleaching during lysis revealed that the off-rate of oligomers from digesting fibers was not much affected but the number of binding/unbinding sites was increased. Conclusions Ultrasound causes a decrease in the diameter of the fibers due to tension as a result of vibration, leading to increased binding sites for plasmin(ogen)/t-PA. The positive feedback of this structural change together with increased mixing/transport of t-PA/plasmin(ogen) is likely to account for the observed enhancement of fibrinolysis by ultrasound. PMID:25619618

  2. Assessment of ultrasound modulation of near infrared light on the quantification of scattering coefficient.

    PubMed

    Singh, M Suheshkumar; Yalavarthy, Phaneendra K; Vasu, R M; Rajan, K

    2010-07-01

    To assess the effect of ultrasound modulation of near infrared (NIR) light on the quantification of scattering coefficient in tissue-mimicking biological phantoms. A unique method to estimate the phase of the modulated NIR light making use of only time averaged intensity measurements using a charge coupled device camera is used in this investigation. These experimental measurements from tissue-mimicking biological phantoms are used to estimate the differential pathlength, in turn leading to estimation of optical scattering coefficient. A Monte-Carlo model based numerical estimation of phase in lieu of ultrasound modulation is performed to verify the experimental results. The results indicate that the ultrasound modulation of NIR light enhances the effective scattering coefficient. The observed effective scattering coefficient enhancement in tissue-mimicking viscoelastic phantoms increases with increasing ultrasound drive voltage. The same trend is noticed as the ultrasound modulation frequency approaches the natural vibration frequency of the phantom material. The contrast enhancement is less for the stiffer (larger storage modulus) tissue, mimicking tumor necrotic core, compared to the normal tissue. The ultrasound modulation of the insonified region leads to an increase in the effective number of scattering events experienced by NIR light, increasing the measured phase, causing the enhancement in the effective scattering coefficient. The ultrasound modulation of NIR light could provide better estimation of scattering coefficient. The observed local enhancement of the effective scattering coefficient, in the ultrasound focal region, is validated using both experimental measurements and Monte-Carlo simulations.

  3. Effect of ultrasound radiation force on the choroid.

    PubMed

    Silverman, Ronald H; Urs, Raksha; Lloyd, Harriet O

    2013-01-10

    While visualization of the retina and choroid has made great progress, functional imaging techniques have been lacking. Our aim was to utilize acoustic radiation force impulse (ARFI) response to probe functional properties of these tissues. A single element 18-MHz ultrasound transducer was focused upon the retina of the rabbit eye. The procedure was performed with the eye proptosed and with the eye seated normally in the orbit. The transducer was excited to emit ARFI over a 10-ms period with a 25% duty cycle. Phase resolved pulse/echo data were acquired before, during, and following ARFI. In the proptosed eye, ARFI exposure produced tissue displacements ranging from 0 to 10 μm, and an immediate increase in choroidal echo amplitude to over 6 dB, decaying to baseline after about 1 second. In the normally seated eye, ultrasound phase shifts consistent with flow were observed in the choroid, but enhanced backscatter following ARFI rarely occurred. ARFI-induced displacements of about 10 μm were observed at the choroidal margins. Larger displacements occurred within the choroid and in orbital tissues. We hypothesize that elevated intraocular pressure occurring during proptosis induced choroidal ischemia and that acoustic radiation force produced a transient local decompression and reperfusion. With the eye normally seated, choroidal flow was observed and little alteration in backscatter resulted from exposure. Clinical application of this technique may provide new insights into diseases characterized by altered choroidal hemodynamics, including maculopathies, diabetic retinopathy, and glaucoma.

  4. Combined Ultrasound and MR Imaging to Guide Focused Ultrasound Therapies in the Brain

    PubMed Central

    Arvanitis, Costas D.; Livingstone, Margaret S.; McDannold, Nathan

    2013-01-01

    Purpose Several emerging therapies with potential for use in the brain harness effects produced by acoustic cavitation – the interaction between ultrasound and microbubbles either generated during sonication or introduced into the vasculature. Systems developed for transcranial MRI-guided focused ultrasound (MRgFUS) thermal ablation can enable their clinical translation, but methods for real-time monitoring and control are currently lacking. Acoustic emissions produced during sonication can provide information about the location, strength, and type of the microbubble oscillations within the ultrasound field, and they can be mapped in real-time using passive imaging approaches. Here, we tested whether such mapping can be achieved transcranially within a clinical brain MRgFUS system. Materials and Methods We integrated an ultrasound imaging array into the hemisphere transducer of the MRgFUS device. Passive cavitation maps were obtained during sonications combined with a circulating microbubble agent at 20 targets in the cingulate cortex in three macaques. The maps were compared with MRI-evident tissue effects. Results The system successfully mapped microbubble activity during both stable and inertial cavitation, which was correlated with MRI-evident transient blood-brain barrier disruption and vascular damage, respectively. The location of this activity was coincident with the resulting tissue changes within the expected resolution limits of the system. Conclusion While preliminary, these data clearly demonstrate, for the first time, that is possible to construct maps of stable and inertial cavitation transcranially, in a large animal model, and under clinically relevant conditions. Further, these results suggest that this hybrid ultrasound/MRI approach can provide comprehensive guidance for targeted drug delivery via blood-brain barrier disruption and other emerging ultrasound treatments, facilitating their clinical translation. We anticipate it will also prove to

  5. Combined ultrasound and MR imaging to guide focused ultrasound therapies in the brain

    NASA Astrophysics Data System (ADS)

    Arvanitis, Costas D.; Livingstone, Margaret S.; McDannold, Nathan

    2013-07-01

    Several emerging therapies with potential for use in the brain, harness effects produced by acoustic cavitation—the interaction between ultrasound and microbubbles either generated during sonication or introduced into the vasculature. Systems developed for transcranial MRI-guided focused ultrasound (MRgFUS) thermal ablation can enable their clinical translation, but methods for real-time monitoring and control are currently lacking. Acoustic emissions produced during sonication can provide information about the location, strength and type of the microbubble oscillations within the ultrasound field, and they can be mapped in real-time using passive imaging approaches. Here, we tested whether such mapping can be achieved transcranially within a clinical brain MRgFUS system. We integrated an ultrasound imaging array into the hemisphere transducer of the MRgFUS device. Passive cavitation maps were obtained during sonications combined with a circulating microbubble agent at 20 targets in the cingulate cortex in three macaques. The maps were compared with MRI-evident tissue effects. The system successfully mapped microbubble activity during both stable and inertial cavitation, which was correlated with MRI-evident transient blood-brain barrier disruption and vascular damage, respectively. The location of this activity was coincident with the resulting tissue changes within the expected resolution limits of the system. While preliminary, these data clearly demonstrate, for the first time, that it is possible to construct maps of stable and inertial cavitation transcranially, in a large animal model, and under clinically relevant conditions. Further, these results suggest that this hybrid ultrasound/MRI approach can provide comprehensive guidance for targeted drug delivery via blood-brain barrier disruption and other emerging ultrasound treatments, facilitating their clinical translation. We anticipate that it will also prove to be an important research tool that will

  6. Nonthermal ablation in the rat brain using focused ultrasound and an ultrasound contrast agent: long-term effects

    PubMed Central

    McDannold, Nathan; Zhang, Yongzhi; Vykhodtseva, Natalia

    2016-01-01

    OBJECTIVE Thermal ablation with transcranial MRI-guided focused ultrasound (FUS) is currently under investigation as a less invasive alternative to radiosurgery and resection. A major limitation of the method is that its use is currently restricted to centrally located brain targets. The combination of FUS and a microbubble-based ultrasound contrast agent greatly reduces the ultrasound exposure level needed to ablate brain tissue and could be an effective means to increase the “treatment envelope” for FUS in the brain. This method, however, ablates tissue through a different mechanism: destruction of the microvasculature. It is not known whether nonthermal FUS ablation in substantial volumes of tissue can safely be performed without unexpected effects. The authors investigated this question by ablating volumes in the brains of normal rats. METHODS Overlapping sonications were performed in rats (n = 15) to ablate a volume in 1 hemisphere per animal. The sonications (10-msec bursts at 1 Hz for 60 seconds; peak negative pressure 0.8 MPa) were combined with the ultrasound contrast agent Optison (100 μl/kg). The rats were followed with MRI for 4–9 weeks after FUS, and the brains were examined with histological methods. RESULTS Two weeks after sonication and later, the lesions appeared as cyst-like areas in T2-weighted MR images that were stable over time. Histological examination demonstrated well-defined lesions consisting of a cyst-like cavity that remained lined by astrocytic tissue. Some white matter structures within the sonicated area were partially intact. CONCLUSIONS The results of this study indicate that nonthermal FUS ablation can be used to safely ablate tissue volumes in the brain without unexpected delayed effects. The findings are encouraging for the use of this ablation method in the brain. PMID:26848919

  7. A vibration model for frequency analysis of arterial tubes with tissue

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoming; Fatemi, Mostafa; Greenleaf, James F.

    2003-04-01

    Vibro-acoustography is a new noncontact imaging method based on the radiation force of ultrasound. We extend this technique for tissue characterization of arterial tubes by vibration techniques. The arterial tube can be excited remotely by ultrasound at its resonant frequencies where the vibration and acoustic emission of the tube can be measurable. From these resonant frequencies, the material properties of the arterial tube can be found. A theory for a tube with tissue is formulated using first-order shear deformation theory to include the effects of transverse shear deformation and rotary inertia. A wave propagation approach is applied for easy handling of the boundary conditions. Experimental studies were carried out on a silicone tube embedded in a cylindrical gel phantom. A confocal transducer is used to produce the radiation force of ultrasound for exciting the tube-phantom structure. The vibration of the tube and the phantom are measured with a laser vibrometry system. The fundamental mode of a tube-phantom structure is well excited by the radiation force of ultrasound, and was measured to be 81.8 Hz, which is close to the theoretical prediction of 83.3 Hz. Both excitation and measurement are remote and noncontact, important attributes for future study of arteries.

  8. Epidermoid cyst of the breast: Mammography, ultrasound, MRI.

    PubMed

    Wynne, Elisabeth; Louie, Adeline

    2011-01-01

    Epidermal cysts are common cysts located cutaneously or subcutaneously in the head, neck, and trunk. However, deep epidermal cysts of the breast are very rare, and are frequently associated with traumatic implantation. We present the case of a 62-year-old woman with a palpable mass in the right breast. The patient was evaluated using mammography, ultrasound, and MRI, which uniquely characterized the mass and revealed a second mass. Histological analysis revealed fragments of an epidermoid cyst. The origin of the cysts and location deep within the breast tissue likely were due to a previous bilateral-reduction mammoplasty.

  9. An Ultrasound Surface Wave Technique for Assessing Skin and Lung Diseases.

    PubMed

    Zhang, Xiaoming; Zhou, Boran; Kalra, Sanjay; Bartholmai, Brian; Greenleaf, James; Osborn, Thomas

    2018-02-01

    Systemic sclerosis (SSc) is a multi-organ connective tissue disease characterized by immune dysregulation and organ fibrosis. Severe organ involvement, especially of the skin and lung, is the cause of morbidity and mortality in SSc. Interstitial lung disease (ILD) includes multiple lung disorders in which the lung tissue is fibrotic and stiffened. The purpose of this study was to translate ultrasound surface wave elastography (USWE) for assessing patients with SSc and/or ILD via measuring surface wave speeds of both skin and superficial lung tissue. Forty-one patients with both SSc and ILD and 30 healthy patients were enrolled in this study. An external harmonic vibration was used to generate the wave propagation on the skin or lung. Three excitation frequencies of 100, 150 and 200 Hz were used. An ultrasound probe was used to measure the wave propagation in the tissue non-invasively. Surface wave speeds were measured on the forearm and upper arm of both left and right arm, as well as the upper and lower lungs, through six intercostal spaces of patients and healthy patients. Viscoelasticity of the skin was calculated by the wave speed dispersion with frequency using the Voigt model. The magnitudes of surface wave speed and viscoelasticity of patients' skin were significantly higher than those of healthy patients (p <0.0001) for each location and each frequency. The surface wave speeds of patients' lung were significantly higher than those of healthy patients (p <0.0001) for each location and each frequency. USWE is a non-invasive and non-ionizing technique for measuring both skin and lung surface wave speed and may be useful for quantitative assessment of SSc and/or ILD. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  10. Tissue ablation accelerated by peripheral scanning mode with high-intensity focused ultrasound: a study on isolated porcine liver perfusion.

    PubMed

    Bu, Rui; Yin, Li; Yang, Han; Wang, Qi; Wu, Feng; Zou, Jian Zhong

    2013-08-01

    The aims of this study were to investigate the feasibility of accelerated tissue ablation using a peripheral scanning mode with high-intensity focused ultrasound (HIFU) and to explore the effect of flow rate on total energy consumption of the target tissues. Using a model of isolated porcine liver perfusion via the portal vein and hepatic artery, we conducted a scanning protocol along the periphery of the target tissues using linear-scanned HIFU to carefully adjust the varying focal depth, generator power, scanning velocity and line-by-line interval over the entire ablation range. Porcine livers were divided into four ablation groups: group 1, n = 12, with dual-vessel perfusion; group 2, n = 11, with portal vein perfusion alone; group 3, n = 10, with hepatic artery perfusion alone; and group 4, n = 11, control group with no-flow perfusion. The samples were cut open consecutively at a thickness of 3 mm, and the actual ablation ranges were calculated along the periphery of the target tissues after triphenyl tetrazolium chloride staining. Total energy consumption was calculated as the sum of the energy requirements at various focal depths in each group. On the basis of the pre-supposed scanning protocol, the peripheral region of the target tissue formed a complete coagulation necrosis barrier in each group with varying dose combinations, and the volume of the peripheral necrotic area did not differ significantly among the four groups (p > 0.05). Furthermore, total energy consumption in each group significantly decreased with the corresponding decrease in flow rate (p < 0.01). This study revealed that the complete peripheral necrosis barrier within the target tissues can defined using linear-scanned HIFU in an isolated porcine liver perfusion model. Additionally, the flow rate in the major hepatic vessels may play an important role in the use of the peripheral ablation mode, and this novel mode of ablation may enhance the therapeutic efficacy and tolerability of the

  11. Ultrasound of the Brachial Plexus.

    PubMed

    Griffith, James F

    2018-07-01

    Examination of the brachial plexus with ultrasound is efficient because it allows many parts of the brachial plexus as well as the surrounding soft tissues to be assessed with high spatial resolution. The key to performing good ultrasound of the brachial plexus is being familiar with the anatomy and the common variants. That makes it possible to concentrate solely on the ultrasound appearances free of simultaneously wondering about the anatomy. Ultrasound of the brachial plexus is particularly good for assessing nerve sheath tumor, perineural fibrosis, metastases, some inflammatory neuropathies, neuralgic amyotrophy, and posttraumatic sequalae. It is limited in the assessment of thoracic outlet syndrome and in the acute/subacute trauma setting. This review addresses the anatomy, ultrasound technique, as well as pathology of the brachial plexus from the cervical foramina to the axilla. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  12. Nonlinear optical microscopy and ultrasound imaging of human cervical structure

    PubMed Central

    Reusch, Lisa M.; Feltovich, Helen; Carlson, Lindsey C.; Hall, Gunnsteinn; Campagnola, Paul J.; Eliceiri, Kevin W.

    2013-01-01

    Abstract. The cervix softens and shortens as its collagen microstructure rearranges in preparation for birth, but premature change may lead to premature birth. The global preterm birth rate has not decreased despite decades of research, likely because cervical microstructure is poorly understood. Our group has developed a multilevel approach to evaluating the human cervix. We are developing quantitative ultrasound (QUS) techniques for noninvasive interrogation of cervical microstructure and corroborating those results with high-resolution images of microstructure from second harmonic generation imaging (SHG) microscopy. We obtain ultrasound measurements from hysterectomy specimens, prepare the tissue for SHG, and stitch together several hundred images to create a comprehensive view of large areas of cervix. The images are analyzed for collagen orientation and alignment with curvelet transform, and registered with QUS data, facilitating multiscale analysis in which the micron-scale SHG images and millimeter-scale ultrasound data interpretation inform each other. This novel combination of modalities allows comprehensive characterization of cervical microstructure in high resolution. Through a detailed comparative study, we demonstrate that SHG imaging both corroborates the quantitative ultrasound measurements and provides further insight. Ultimately, a comprehensive understanding of specific microstructural cervical change in pregnancy should lead to novel approaches to the prevention of preterm birth. PMID:23412434

  13. Nonlinear optical microscopy and ultrasound imaging of human cervical structure

    NASA Astrophysics Data System (ADS)

    Reusch, Lisa M.; Feltovich, Helen; Carlson, Lindsey C.; Hall, Gunnsteinn; Campagnola, Paul J.; Eliceiri, Kevin W.; Hall, Timothy J.

    2013-03-01

    The cervix softens and shortens as its collagen microstructure rearranges in preparation for birth, but premature change may lead to premature birth. The global preterm birth rate has not decreased despite decades of research, likely because cervical microstructure is poorly understood. Our group has developed a multilevel approach to evaluating the human cervix. We are developing quantitative ultrasound (QUS) techniques for noninvasive interrogation of cervical microstructure and corroborating those results with high-resolution images of microstructure from second harmonic generation imaging (SHG) microscopy. We obtain ultrasound measurements from hysterectomy specimens, prepare the tissue for SHG, and stitch together several hundred images to create a comprehensive view of large areas of cervix. The images are analyzed for collagen orientation and alignment with curvelet transform, and registered with QUS data, facilitating multiscale analysis in which the micron-scale SHG images and millimeter-scale ultrasound data interpretation inform each other. This novel combination of modalities allows comprehensive characterization of cervical microstructure in high resolution. Through a detailed comparative study, we demonstrate that SHG imaging both corroborates the quantitative ultrasound measurements and provides further insight. Ultimately, a comprehensive understanding of specific microstructural cervical change in pregnancy should lead to novel approaches to the prevention of preterm birth.

  14. High-intensity therapeutic ultrasound: metrological requirements versus clinical usage

    NASA Astrophysics Data System (ADS)

    Aubry, J.-F.

    2012-10-01

    High-intensity therapeutic ultrasound (HITU) is an appealing non-invasive, non-ionizing therapeutic modality with a wide range of tissue interactions ranging from transient permeabilization of cell membranes to thermal ablation. The ability to guide and monitor the treatment with an associated ultrasonic or magnetic resonance imaging device has resulted in a dramatic rise in the clinical use of therapeutic ultrasound in the past two decades. Nevertheless, the range of clinical applications and the number of patients treated has grown at a much higher pace than the definition of standards. In this paper the metrological requirements of the therapeutic beams are reviewed and are compared with the current clinical use of image-guided HITU mostly based on a practical approach. Liver therapy, a particularly challenging clinical application, is discussed to highlight the differences between some complex clinical situations and the experimental conditions of the metrological characterization of ultrasonic transducers.

  15. Improved Contrast-Enhanced Ultrasound Imaging With Multiplane-Wave Imaging.

    PubMed

    Gong, Ping; Song, Pengfei; Chen, Shigao

    2018-02-01

    Contrast-enhanced ultrasound (CEUS) imaging has great potential for use in new ultrasound clinical applications such as myocardial perfusion imaging and abdominal lesion characterization. In CEUS imaging, contrast agents (i.e., microbubbles) are used to improve contrast between blood and tissue because of their high nonlinearity under low ultrasound pressure. However, the quality of CEUS imaging sometimes suffers from a low signal-to-noise ratio (SNR) in deeper imaging regions when a low mechanical index (MI) is used to avoid microbubble disruption, especially for imaging at off-resonance transmit frequencies. In this paper, we propose a new strategy of combining CEUS sequences with the recently proposed multiplane-wave (MW) compounding method to improve the SNR of CEUS in deeper imaging regions without increasing MI or sacrificing frame rate. The MW-CEUS method emits multiple Hadamard-coded CEUS pulses in each transmission event (i.e., pulse-echo event). The received echo signals first undergo fundamental bandpass filtering (i.e., the filter is centered on the transmit frequency) to eliminate the microbubble's second-harmonic signals because they cannot be encoded by pulse inversion. The filtered signals are then Hadamard decoded and realigned in fast time to recover the signals as they would have been obtained using classic CEUS pulses, followed by designed recombination to cancel the linear tissue responses. The MW-CEUS method significantly improved contrast-to-tissue ratio and SNR of CEUS imaging by transmitting longer coded pulses. The image resolution was also preserved. The microbubble disruption ratio and motion artifacts in MW-CEUS were similar to those of classic CEUS imaging. In addition, the MW-CEUS sequence can be adapted to other transmission coding formats. These properties of MW-CEUS can potentially facilitate CEUS imaging for many clinical applications, especially assessing deep abdominal organs or the heart.

  16. Ultrasound elastography in diagnosis and follow-up for patients with chronic recurrent parotitis.

    PubMed

    Zengel, Pamela; Reichel, Christoph Andreas; Vincek, Teresa; Clevert, Dirk André

    2017-01-01

    Chronic recurrent parotitis (CRP) is a non-obstructive disease with episodes characterized by painful swelling of the parotid gland. It presents in both a juvenile and an adult form, with no clear information on its actual origin. Diagnosis is based on patient medical history and ultrasound examination but is frequently not correctly identified. Acoustic Radiation Force Impulse Imaging (ARFI) is a novel ultrasound elastography technology that has recently been implemented in the diagnostic work-up of patients with malignancies. This study aimed to answer whether ARFI can reasonably be employed in the initial examination and follow-up during therapy in patients with CRP. Mechanical tissue properties of the salivary glands were analyzed by ARFI in 37 parotid glands of patients with CRP. Having integrated ARFI into our diagnostic protocol for CRP, affected parotid glands were found to exhibit lower tissue elasticity compared to both healthy contralateral glands in the same individuals as well as those of healthy individuals. Most importantly, this method enabled us to quantitatively assess the patient benefit of therapy regarding the recovery of the glands' diseased parenchyma. ARFI provides a quick, easy, and reliable diagnostic tool for the assessment of disease severity and progression in patients with CRP that can be seamlessly implemented into preexisting ultrasound protocols.

  17. Acoustically-Responsive Scaffolds: Control of Growth Factor Release for Tissue Regeneration Using Ultrasound

    NASA Astrophysics Data System (ADS)

    Moncion, Alexander

    Administration of exogenous growth factors (GFs) is a proposed method of stimulating tissue regeneration. Conventional administration routes, such as at-site or systemic injections, have yielded problems with efficacy and/or safety, thus hindering the translation of GF-based regenerative techniques. Hydrogel scaffolds are commonly used as biocompatible delivery vehicles for GFs. Yet hydrogels do not afford spatial or temporal control of GF release - two critical parameters for tissue regeneration. Controlled delivery of GFs is critical for angiogenesis, which is a crucial process in tissue engineering that provides oxygen and nutrients to cells within an implanted hydrogel scaffold. Angiogenesis requires multiple GFs that are presented with distinct spatial and temporal profiles. Thus, controlled release of GFs with spatiotemporal modulation would significantly improve tissue regeneration by recapitulating endogenous GF presentation. In order to achieve this goal, we have developed acoustically-responsive scaffolds (ARSs), which are fibrin hydrogels doped with sonosensitive perfluorocarbon (PFC) emulsions capable of encapsulating various payloads. Focused, mega-Hertz range, ultrasound (US) can modulate the release of a payload non-invasively and in an on-demand manner from ARSs via physical mechanisms termed acoustic droplet vaporization (ADV) and inertial cavitation (IC). This work presents the relationship between the ADV/IC thresholds and various US and hydrogel parameters. These physical mechanisms were used for the controlled release of fluorescent dextran in vitro and in vivo to determine the ARS and US parameters that yielded optimal payload release. The optimal ARS and US parameters were used to demonstrate the controlled release of basic fibroblast growth factor from an in vivo subcutaneous implant model - leading to enhanced angiogenesis and perfusion. Additionally, different acoustic parameters and PFCs were tested and optimized to demonstrate the

  18. Integrated photoacoustic, ultrasound and fluorescence platform for diagnostic medical imaging-proof of concept study with a tissue mimicking phantom.

    PubMed

    James, Joseph; Murukeshan, Vadakke Matham; Woh, Lye Sun

    2014-07-01

    The structural and molecular heterogeneities of biological tissues demand the interrogation of the samples with multiple energy sources and provide visualization capabilities at varying spatial resolution and depth scales for obtaining complementary diagnostic information. A novel multi-modal imaging approach that uses optical and acoustic energies to perform photoacoustic, ultrasound and fluorescence imaging at multiple resolution scales from the tissue surface and depth is proposed in this paper. The system comprises of two distinct forms of hardware level integration so as to have an integrated imaging system under a single instrumentation set-up. The experimental studies show that the system is capable of mapping high resolution fluorescence signatures from the surface, optical absorption and acoustic heterogeneities along the depth (>2cm) of the tissue at multi-scale resolution (<1µm to <0.5mm).

  19. Clinical responses to focused ultrasound applied to women with vulval intraepithelial neoplasia.

    PubMed

    Jia, Ying; Wu, Jin; Xu, Man; Tang, Liangdan; Li, Chengzhi; Luo, Ming; Lou, Meng

    2014-11-01

    Focused ultrasound waves penetrate superficial tissues and are aimed toward the target tissues at specific depths to exert their biological effects. Focused ultrasound has been applied for a number of clinical indications, including vulval dystrophies and low-grade vulval disease. This study aimed to assess the efficacy and safety of focused ultrasound treatment of high-grade vulval intraepithelial neoplasia (VIN). Eighteen women with high-grade VIN were recruited and treated with focused ultrasound. During each posttreatment follow-up, the safety of, side effects of, and clinical responses to focused ultrasound were evaluated by a standardized protocol, including symptoms, clinical appearance, and histologic findings. All patients completed the designed follow-ups. In most cases, superficial mild to moderate swelling and blisters were seen in the focused ultrasound-treated skin but not in adjacent normal skin. Of the 18 patients, 16 showed complete histologic regression and resolution of symptoms 6 months after treatment. Of the other 2 patients, 1 showed complete regression after a second focused ultrasound treatment. The other patient did not respond to the focused ultrasound treatment and underwent a partial vulvectomy 6 months after treatment. None of the patients developed invasive carcinoma of the vulva during the follow-up period. One patient had local pruritus that was not alleviated by anti-inflammatory medication and local care. The complete responses observed in women with high-grade VIN treated by focused ultrasound, together with the preservation of adjacent normal tissue, suggest that focused ultrasound may be considered for treatment of high-grade VIN. © 2014 by the American Institute of Ultrasound in Medicine.

  20. [Ultrasound biomicroscopy of conjunctival lesions].

    PubMed

    Buchwald, Hans-Jürgen; Müller, Andreas; Spraul, Christoph W; Lang, Gerhard K

    2003-01-01

    The value of ultrasound biomicroscopy in the diagnosis of conjunctival lesions is not well established. For the examination of conjunctival lesions, we used an ultrasound biomicroscope (Humphrey, Zeiss, Oberkochen) with a high frequency transducer (30 MHz). Between January 2000 and August 2001, 28 patients (16 female, 12-male) with conjunctival lesions, aged 9 to 81 years, were available for this study. Histological examination of the excised tissue displayed the presence of a compound naevus (8/28), cysts (6/28), inflammatory processes (3/28), granulomatous processes (2/28), lymphomas (2/28), foreign bodies (2/28), a pterygium (2/28), a malignant melanoma (1/28), a primary acquired melanosis (1/28), and a conjunctival amyloidosis (1/28). Using ultrasound biomicroscopy we were able to demonstrate a cystic tumour in the six patients (21 %) with a cyst of the conjunctiva. In patients suffering from solid tumours of the conjunctiva the definite diagnosis could not be made with ultrasound biomicroscopy alone. The eight patients with compound naevus displayed a somewhat heterogeneous sonographic structure within the tumour. In the patient with a foreign body we were able to demonstrate posterior shadowing of the underlying tissue. For evaluation of conjunctival lesions caused by a cyst or a solid tumour, ultrasound biomicroscopy may be an additional diagnostic tool, e. g. for assessing the margins of the tumour. However, up to now it is not possible to differentiate between different lesions solely by means of ultrasonography.

  1. Registration of 3D ultrasound computer tomography and MRI for evaluation of tissue correspondences

    NASA Astrophysics Data System (ADS)

    Hopp, T.; Dapp, R.; Zapf, M.; Kretzek, E.; Gemmeke, H.; Ruiter, N. V.

    2015-03-01

    3D Ultrasound Computer Tomography (USCT) is a new imaging method for breast cancer diagnosis. In the current state of development it is essential to correlate USCT with a known imaging modality like MRI to evaluate how different tissue types are depicted. Due to different imaging conditions, e.g. with the breast subject to buoyancy in USCT, a direct correlation is demanding. We present a 3D image registration method to reduce positioning differences and allow direct side-by-side comparison of USCT and MRI volumes. It is based on a two-step approach including a buoyancy simulation with a biomechanical model and free form deformations using cubic B-Splines for a surface refinement. Simulation parameters are optimized patient-specifically in a simulated annealing scheme. The method was evaluated with in-vivo datasets resulting in an average registration error below 5mm. Correlating tissue structures can thereby be located in the same or nearby slices in both modalities and three-dimensional non-linear deformations due to the buoyancy are reduced. Image fusion of MRI volumes and USCT sound speed volumes was performed for intuitive display. By applying the registration to data of our first in-vivo study with the KIT 3D USCT, we could correlate several tissue structures in MRI and USCT images and learn how connective tissue, carcinomas and breast implants observed in the MRI are depicted in the USCT imaging modes.

  2. Nondestructive mechanical characterization of developing biological tissues using inflation testing.

    PubMed

    Oomen, P J A; van Kelle, M A J; Oomens, C W J; Bouten, C V C; Loerakker, S

    2017-10-01

    One of the hallmarks of biological soft tissues is their capacity to grow and remodel in response to changes in their environment. Although it is well-accepted that these processes occur at least partly to maintain a mechanical homeostasis, it remains unclear which mechanical constituent(s) determine(s) mechanical homeostasis. In the current study a nondestructive mechanical test and a two-step inverse analysis method were developed and validated to nondestructively estimate the mechanical properties of biological tissue during tissue culture. Nondestructive mechanical testing was achieved by performing an inflation test on tissues that were cultured inside a bioreactor, while the tissue displacement and thickness were nondestructively measured using ultrasound. The material parameters were estimated by an inverse finite element scheme, which was preceded by an analytical estimation step to rapidly obtain an initial estimate that already approximated the final solution. The efficiency and accuracy of the two-step inverse method was demonstrated on virtual experiments of several material types with known parameters. PDMS samples were used to demonstrate the method's feasibility, where it was shown that the proposed method yielded similar results to tensile testing. Finally, the method was applied to estimate the material properties of tissue-engineered constructs. Via this method, the evolution of mechanical properties during tissue growth and remodeling can now be monitored in a well-controlled system. The outcomes can be used to determine various mechanical constituents and to assess their contribution to mechanical homeostasis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Characterization of Ultrasound Energy Diffusion Due to Small-Size Damage on an Aluminum Plate Using Piezoceramic Transducers

    PubMed Central

    Lu, Guangtao; Feng, Qian; Li, Yourong; Wang, Hao; Song, Gangbing

    2017-01-01

    During the propagation of ultrasonic waves in structures, there is usually energy loss due to ultrasound energy diffusion and dissipation. The aim of this research is to characterize the ultrasound energy diffusion that occurs due to small-size damage on an aluminum plate using piezoceramic transducers, for the future purpose of developing a damage detection algorithm. The ultrasonic energy diffusion coefficient is related to the damage distributed in the medium. Meanwhile, the ultrasonic energy dissipation coefficient is related to the inhomogeneity of the medium. Both are usually employed to describe the characteristics of ultrasound energy diffusion. The existence of multimodes of Lamb waves in metallic plate structures results in the asynchronous energy transport of different modes. The mode of Lamb waves has a great influence on ultrasound energy diffusion as a result, and thus has to be chosen appropriately. In order to study the characteristics of ultrasound energy diffusion in metallic plate structures, an experimental setup of an aluminum plate with a through-hole, whose diameter varies from 0.6 mm to 1.2 mm, is used as the test specimen with the help of piezoceramic transducers. The experimental results of two categories of damages at different locations reveal that the existence of damage changes the energy transport between the actuator and the sensor. Also, when there is only one dominate mode of Lamb wave excited in the structure, the ultrasound energy diffusion coefficient decreases approximately linearly with the diameter of the simulated damage. Meanwhile, the ultrasonic energy dissipation coefficient increases approximately linearly with the diameter of the simulated damage. However, when two or more modes of Lamb waves are excited, due to the existence of different group velocities between the different modes, the energy transport of the different modes is asynchronous, and the ultrasonic energy diffusion is not strictly linear with the size of

  4. Mechanical Characterization of the Vessel Wall by Data Assimilation of Intravascular Ultrasound Studies

    PubMed Central

    Maso Talou, Gonzalo D.; Blanco, Pablo J.; Ares, Gonzalo D.; Guedes Bezerra, Cristiano; Lemos, Pedro A.; Feijóo, Raúl A.

    2018-01-01

    Atherosclerotic plaque rupture and erosion are the most important mechanisms underlying the sudden plaque growth, responsible for acute coronary syndromes and even fatal cardiac events. Advances in the understanding of the culprit plaque structure and composition are already reported in the literature, however, there is still much work to be done toward in-vivo plaque visualization and mechanical characterization to assess plaque stability, patient risk, diagnosis and treatment prognosis. In this work, a methodology for the mechanical characterization of the vessel wall plaque and tissues is proposed based on the combination of intravascular ultrasound (IVUS) imaging processing, data assimilation and continuum mechanics models within a high performance computing (HPC) environment. Initially, the IVUS study is gated to obtain volumes of image sequences corresponding to the vessel of interest at different cardiac phases. These sequences are registered against the sequence of the end-diastolic phase to remove transversal and longitudinal rigid motions prescribed by the moving environment due to the heartbeat. Then, optical flow between the image sequences is computed to obtain the displacement fields of the vessel (each associated to a certain pressure level). The obtained displacement fields are regarded as observations within a data assimilation paradigm, which aims to estimate the material parameters of the tissues within the vessel wall. Specifically, a reduced order unscented Kalman filter is employed, endowed with a forward operator which amounts to address the solution of a hyperelastic solid mechanics model in the finite strain regime taking into account the axially stretched state of the vessel, as well as the effect of internal and external forces acting on the arterial wall. Due to the computational burden, a HPC approach is mandatory. Hence, the data assimilation and computational solid mechanics computations are parallelized at three levels: (i) a Kalman

  5. Multispectral tissue characterization for intestinal anastomosis optimization.

    PubMed

    Cha, Jaepyeong; Shademan, Azad; Le, Hanh N D; Decker, Ryan; Kim, Peter C W; Kang, Jin U; Krieger, Axel

    2015-10-01

    Intestinal anastomosis is a surgical procedure that restores bowel continuity after surgical resection to treat intestinal malignancy, inflammation, or obstruction. Despite the routine nature of intestinal anastomosis procedures, the rate of complications is high. Standard visual inspection cannot distinguish the tissue subsurface and small changes in spectral characteristics of the tissue, so existing tissue anastomosis techniques that rely on human vision to guide suturing could lead to problems such as bleeding and leakage from suturing sites. We present a proof-of-concept study using a portable multispectral imaging (MSI) platform for tissue characterization and preoperative surgical planning in intestinal anastomosis. The platform is composed of a fiber ring light-guided MSI system coupled with polarizers and image analysis software. The system is tested on ex vivo porcine intestine tissue, and we demonstrate the feasibility of identifying optimal regions for suture placement.

  6. Effect of modulated ultrasound parameters on ultrasound-induced thrombolysis.

    PubMed

    Soltani, Azita; Volz, Kim R; Hansmann, Doulas R

    2008-12-07

    The potential of ultrasound to enhance enzyme-mediated thrombolysis by application of constant operating parameters (COP) has been widely demonstrated. In this study, the effect of ultrasound with modulated operating parameters (MOP) on enzyme-mediated thrombolysis was investigated. The MOP protocol was applied to an in vitro model of thrombolysis. The results were compared to a COP with the equivalent soft tissue thermal index (TIS) over the duration of ultrasound exposure of 30 min (p < 0.14). To explore potential differences in the mechanism responsible for ultrasound-induced thrombolysis, a perfusion model was used to measure changes in average fibrin pore size of clot before, after and during exposure to MOP and COP protocols and cavitational activity was monitored in real time for both protocols using a passive cavitation detection system. The relative lysis enhancement by each COP and MOP protocol compared to alteplase alone yielded values of 33.69 +/- 12.09% and 63.89 +/- 15.02% in a thrombolysis model, respectively (p < 0.007). Both COP and MOP protocols caused an equivalent significant increase in average clot pore size of 2.09 x 10(-2) +/- 0.01 microm and 1.99 x 10(-2) +/- 0.004 microm, respectively (p < 0.74). No signatures of inertial or stable cavitation were observed for either acoustic protocol. In conclusion, due to mechanisms other than cavitation, application of ultrasound with modulated operating parameters has the potential to significantly enhance the relative lysis enhancement compared to application of ultrasound with constant operating parameters.

  7. Computer-Aided Characterization and Diagnosis of Diffuse Liver Diseases Based on Ultrasound Imaging: A Review.

    PubMed

    Bharti, Puja; Mittal, Deepti; Ananthasivan, Rupa

    2016-04-19

    Diffuse liver diseases, such as hepatitis, fatty liver, and cirrhosis, are becoming a leading cause of fatality and disability all over the world. Early detection and diagnosis of these diseases is extremely important to save lives and improve effectiveness of treatment. Ultrasound imaging, a noninvasive diagnostic technique, is the most commonly used modality for examining liver abnormalities. However, the accuracy of ultrasound-based diagnosis depends highly on expertise of radiologists. Computer-aided diagnosis systems based on ultrasound imaging assist in fast diagnosis, provide a reliable "second opinion" for experts, and act as an effective tool to measure response of treatment on patients undergoing clinical trials. In this review, we first describe appearance of liver abnormalities in ultrasound images and state the practical issues encountered in characterization of diffuse liver diseases that can be addressed by software algorithms. We then discuss computer-aided diagnosis in general with features and classifiers relevant to diffuse liver diseases. In later sections of this paper, we review the published studies and describe the key findings of those studies. A concise tabular summary comparing image database, features extraction, feature selection, and classification algorithms presented in the published studies is also exhibited. Finally, we conclude with a summary of key findings and directions for further improvements in the areas of accuracy and objectiveness of computer-aided diagnosis. © The Author(s) 2016.

  8. Ablation of clinically relevant kidney tissue volumes by high-intensity focused ultrasound: Preliminary results of standardized ex-vivo investigations.

    PubMed

    Häcker, Axel; Peters, Kristina; Knoll, Thomas; Marlinghaus, Ernst; Alken, Peter; Jenne, Jürgen W; Michel, Maurice Stephan

    2006-11-01

    To investigate strategies to achieve confluent kidney-tissue ablation by high-intensity focused ultrasound (HIFU). Our model of the perfused ex-vivo porcine kidney was used. Tissue ablation was performed with an experimental HIFU device (Storz Medical, Kreuzlingen, Switzerland). Lesion-to-lesion interaction was investigated by varying the lesion distance (5 to 2.5 mm), generator power (300, 280, and 260 W), cooling time (10, 20, and 30 seconds), and exposure time (4, 3, and 2 seconds). The lesion rows were analyzed grossly and by histologic examination (hematoxylin-eosin and nicotinamide adenine dinucleotide staining). It was possible to achieve complete homogeneous ablation of a clinically relevant tissue volume but only by meticulous adjustment of the exposure parameters. Minimal changes in these parameters caused changes in lesion formation with holes within the lesions and lesion-to-lesion interaction. Our preliminary results show that when using this new device, HIFU can ablate a large tissue volume homogeneously in perfused ex-vivo porcine tissue under standardized conditions with meticulous adjustment of exposure parameters. Further investigations in vivo are necessary to test whether large tissue volumes can be ablated completely and reliably despite the influence of physiologic tissue and organ movement.

  9. Needle tip visibility in 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Arif, Muhammad; Moelker, Adriaan; van Walsum, Theo

    2017-03-01

    Needle visibility is of crucial importance for ultrasound guided interventional procedures. However, several factors, such as shadowing by bone or gas and tissue echogenic properties similar to needles, may compromise needle visibility. Additionally, small angle between the ultrasound beam and the needle, as well as small gauged needles may reduce visibility. Variety in needle tips design may also affect needle visibility. Whereas several studies have investigated needle visibility in 2D ultrasound imaging, no data is available for 3D ultrasound imaging, a modality that has great potential for image guidance interventions1. In this study, we evaluated needle visibility using a 3D ultrasound transducer. We examined different needles in a tissue mimicking liver phantom at three angles (200, 550 and 900) and quantify their visibility. The liver phantom was made by 5% polyvinyl alcohol solution containing 1% Silica gel particles to act as ultrasound scattering particles. We used four needles; two biopsy needles (Quick core 14G and 18G), one Ablation needle (Radiofrequency Ablation 17G), and Initial puncture needle (IP needle 17G). The needle visibility was quantified by calculating contrast to noise ratio. The results showed that the visibility for all needles were almost similar at large angles. However the difference in visibility at lower angles is more prominent. Furthermore, the visibility increases with the increase in angle of ultrasound beam with needles.

  10. High Definition Confocal Imaging Modalities for the Characterization of Tissue-Engineered Substitutes.

    PubMed

    Mayrand, Dominique; Fradette, Julie

    2018-01-01

    Optimal imaging methods are necessary in order to perform a detailed characterization of thick tissue samples from either native or engineered tissues. Tissue-engineered substitutes are featuring increasing complexity including multiple cell types and capillary-like networks. Therefore, technical approaches allowing the visualization of the inner structural organization and cellular composition of tissues are needed. This chapter describes an optical clearing technique which facilitates the detailed characterization of whole-mount samples from skin and adipose tissues (ex vivo tissues and in vitro tissue-engineered substitutes) when combined with spectral confocal microscopy and quantitative analysis on image renderings.

  11. Simulating thermal effects of MR-guided focused ultrasound in cortical bone and its surrounding tissue.

    PubMed

    Hudson, Thomas J; Looi, Thomas; Pichardo, Samuel; Amaral, Joao; Temple, Michael; Drake, James M; Waspe, Adam C

    2018-02-01

    Magnetic resonance-guided focused ultrasound (MRgFUS) is emerging as a treatment alternative for osteoid osteoma and painful bone metastases. This study describes a new simulation platform that predicts the distribution of heat generated by MRgFUS when applied to bone tissue. Calculation of the temperature distribution was performed using two mathematical models. The first determined the propagation and absorption of acoustic energy through each medium, and this was performed using a multilayered approximation of the Rayleigh integral method. The ultrasound energy distribution derived from these equations could then be converted to heat energy, and the second mathematical model would then use the heat generated to determine the final temperature distribution using a finite-difference time-domain application of Pennes' bio-heat transfer equation. Anatomical surface geometry was generated using a modified version of a mesh-based semiautomatic segmentation algorithm, and both the acoustic and thermodynamic models were calculated using a parallelized algorithm running on a graphics processing unit (GPU) to greatly accelerate computation time. A series of seven porcine experiments were performed to validate the model, comparing simulated temperatures to MR thermometry and assessing spatial, temporal, and maximum temperature accuracy in the soft tissue. The parallelized algorithm performed acoustic and thermodynamic calculations on grids of over 10 8 voxels in under 30 s for a simulated 20 s of heating and 40 s of cooling, with a maximum time per calculated voxel of less than 0.3 μs. Accuracy was assessed by comparing the soft tissue thermometry to the simulation in the soft tissue adjacent to bone using four metrics. The maximum temperature difference between the simulation and thermometry in a region of interest around the bone was measured to be 5.43 ± 3.51°C average absolute difference and a percentage difference of 16.7%. The difference in heating location

  12. Endoscopic ultrasound for the characterization and staging of rectal cancer. Current state of the method. Technological advances and perspectives.

    PubMed

    Gersak, Mariana M; Badea, Radu; Graur, Florin; Hajja, Nadim Al; Furcea, Luminita; Dudea, Sorin M

    2015-06-01

    Endoscopic ultrasound is the most accurate type of examination for the assessment of rectal tumors. Over the years, the method has advanced from gray-scale examination to intravenous contrast media administration and to different types of elastography. The multimodal approach of tumors (transrectal, transvaginal) is adapted to each case. 3D ultrasound is useful for spatial representation and precise measurement of tumor formations, using CT/MR image reconstruction; color elastography is useful for tumor characterization and staging; endoscopic ultrasound using intravenous contrast agents can help study the amount of contrast agent targeted at the level of the tumor formations and contrast wash-in/wash-out time, based on the curves displayed on the device. The transvaginal approach often allows better visualization of the tumor than the transrectal approach. Performing the procedure with the rectal ampulla distended with contrast agent may be seen as an optimization of the examination methodology. All these aspects are additional methods for gray-scale endoscopic ultrasound, capable of increasing diagnostic accuracy. This paper aims at reviewing the progress of transrectal and transvaginal ultrasound, generically called endoscopic ultrasound, for rectal tumor diagnosis and staging, with emphasis on the current state of the method and its development trends.

  13. Ultrasound elastographic techniques in focal liver lesions

    PubMed Central

    Conti, Clara Benedetta; Cavalcoli, Federica; Fraquelli, Mirella; Conte, Dario; Massironi, Sara

    2016-01-01

    Elastographic techniques are new ultrasound-based imaging techniques developed to estimate tissue deformability/stiffness. Several ultrasound elastographic approaches have been developed, such as static elastography, transient elastography and acoustic radiation force imaging methods, which include point shear wave and shear wave imaging elastography. The application of these methods in clinical practice aims at estimating the mechanical tissues properties. One of the main settings for the application of these tools has been liver stiffness assessment in chronic liver disease, which has been studied mainly using transient elastography. Another field of application for these techniques is the assessment of focal lesions, detected by ultrasound in organs such as pancreas, prostate, breast, thyroid, lymph nodes. Considering the frequency and importance of the detection of focal liver lesions through routine ultrasound, some studies have also aimed to assess the role that elestography can play in studying the stiffness of different types of liver lesions, in order to predict their nature and thus offer valuable non-invasive methods for the diagnosis of liver masses. PMID:26973405

  14. Ultrasound elastographic techniques in focal liver lesions.

    PubMed

    Conti, Clara Benedetta; Cavalcoli, Federica; Fraquelli, Mirella; Conte, Dario; Massironi, Sara

    2016-03-07

    Elastographic techniques are new ultrasound-based imaging techniques developed to estimate tissue deformability/stiffness. Several ultrasound elastographic approaches have been developed, such as static elastography, transient elastography and acoustic radiation force imaging methods, which include point shear wave and shear wave imaging elastography. The application of these methods in clinical practice aims at estimating the mechanical tissues properties. One of the main settings for the application of these tools has been liver stiffness assessment in chronic liver disease, which has been studied mainly using transient elastography. Another field of application for these techniques is the assessment of focal lesions, detected by ultrasound in organs such as pancreas, prostate, breast, thyroid, lymph nodes. Considering the frequency and importance of the detection of focal liver lesions through routine ultrasound, some studies have also aimed to assess the role that elestography can play in studying the stiffness of different types of liver lesions, in order to predict their nature and thus offer valuable non-invasive methods for the diagnosis of liver masses.

  15. Microbubbles and ultrasound: a bird's eye view.

    PubMed

    Kaul, Sanjiv

    2004-01-01

    Gas-filled microbubbles were initially used as ultrasound contrast agent because of their intravascular rheology, which is similar to that of red blood cells. Their transit through tissue can thus be quantified with ultrasound. More recently, these bubbles have been successfully used for molecular imaging by incorporating ligands on their surfaces that will adhere to cellular and other components within the microvasculature and can be detected by ultrasound. These bubbles have also been used for delivery of genes and drugs which can be released locally by disruption of the bubbles with high-energy ultrasound. Finally, bioeffects produced by localized ultrasound disruption of microbubbles have been shown to induce angiogenesis. This brief review will provide a bird's eye view of these applications.

  16. Bowel Thickening in Crohn's Disease: Fibrosis or Inflammation? Diagnostic Ultrasound Imaging Tools.

    PubMed

    Coelho, Rosa; Ribeiro, Helena; Maconi, Giovanni

    2017-01-01

    The high frequency of intestinal strictures in patients with Crohn's disease and the different treatment approaches specific for each type of stenosis make the differentiation between fibrotic and inflammatory strictures crucial in management of the disease. However, there is no standardized approach to evaluate and discriminate intestinal strictures, and until now, there was no established cross-sectional imaging modality to detect fibrosis. New techniques, such as contrast-enhanced ultrasound and sonoelastography allow the assessment of vascularization and mechanical properties of stenotic bowel tissue, respectively. These techniques have shown great potential to characterize strictures in Crohn's disease. The aim of this review is to sum up the current knowledge on bowel ultrasound tools to discriminate inflammatory from fibrotic stenosis in Crohn's disease considering the most recent published studies in the field.

  17. The Role of Anthropomorphic Phantoms in Diagnostic Ultrasound Imaging for Disease Characterization (abstract)

    NASA Astrophysics Data System (ADS)

    Cannon, L. M.; King, D. M.; Browne, J. E.

    2009-04-01

    An anthropomorhic phantom is an object that can mimic a region of the human anatomy. Anthropomorphic phantoms have a variety of roles in diagnostic ultrasound. These roles include quality assurance testing of ultrasound machines, calibration and testing of new imaging techniques, training of sonographers, and-most importantly-use as a tool to obtain a better understanding of disease progression in the relevant anatomy. To be anthropomorphic a phantom must accurately mimic the body in terms of its ultrasonic and mechanical properties, as well as anatomically. The acoustic properties are speed of sound, attenuation, and backscatter. The mechanical properties are elasticity and density. Phantoms are constructed from tissue-mimicking materials (TMMs). TMMs are prepared from a variety of ingredients, such as gelatine, agar, safflower oil, and glass beads. These ingredients are then boiled and cooled under controlled conditions to produce a solid TMM. To determine if the TMM has the correct acoustic properties, acoustic measurements are performed using a scanning acoustic macroscope. Mechanical measurements are also performed to test the elasticity and density properties. TMMs with the correct properties are subsequently put through a series of moulding procedures to produce the anthropomorphic phantom.

  18. Endoscopic ultrasound elastography: Current status and future perspectives

    PubMed Central

    Cui, Xin-Wu; Chang, Jian-Min; Kan, Quan-Cheng; Chiorean, Liliana; Ignee, Andre; Dietrich, Christoph F

    2015-01-01

    Elastography is a new ultrasound modality that provides images and measurements related to tissue stiffness. Endoscopic ultrasound (EUS) has played an important role in the diagnosis and management of numerous abdominal and mediastinal diseases. Elastography by means of EUS examination can assess the elasticity of tumors in the proximity of the digestive tract that are hard to reach with conventional transcutaneous ultrasound probes, such as pancreatic masses and mediastinal or abdominal lymph nodes, thus improving the diagnostic yield of the procedure. Results from previous studies have promised benefits for EUS elastography in the differential diagnosis of lymph nodes, as well as for assessing masses with pancreatic or gastrointestinal (GI) tract locations. It is important to mention that EUS elastography is not considered a modality that can replace biopsy. However, it may be a useful adjunct, improving the accuracy of EUS-fine needle aspiration biopsy (EUS-FNAB) by selecting the most suspicious area to be targeted. Even more, it may be useful for guiding further clinical management when EUS-FNAB is negative or inconclusive. In the present paper we will discuss the current knowledge of EUS elastography, including the technical aspects, along with its applications in the differential diagnosis between benign and malignant solid pancreatic masses and lymph nodes, as well as its aid in the differentiation between normal pancreatic tissues and chronic pancreatitis. Moreover, the emergent indication and future perspectives are summarized, such as the benefit of EUS elastography in EUS-guided fine needle aspiration biopsy, and its uses for characterization of lesions in liver, biliary tract, adrenal glands and GI tract. PMID:26715804

  19. Photoacoustic resonance spectroscopy for biological tissue characterization

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Feng, Xiaohua; Zheng, Yuanjin; Ohl, Claus-Dieter

    2014-06-01

    By "listening to photons," photoacoustics allows the probing of chromosomes in depth beyond the optical diffusion limit. Here we report the photoacoustic resonance effect induced by multiburst modulated laser illumination, which is theoretically modeled as a damped mass-string oscillator and a resistor-inductor-capacitor (RLC) circuit. Through sweeping the frequency of multiburst modulated laser, the photoacoustic resonance effect is observed experimentally on phantoms and porcine tissues. Experimental results demonstrate different spectra for each phantom and tissue sample to show significant potential for spectroscopic analysis, fusing optical absorption and mechanical vibration properties. Unique RLC circuit parameters are extracted to quantitatively characterize phantom and biological tissues.

  20. Multispectral tissue characterization for intestinal anastomosis optimization

    PubMed Central

    Cha, Jaepyeong; Shademan, Azad; Le, Hanh N. D.; Decker, Ryan; Kim, Peter C. W.; Kang, Jin U.; Krieger, Axel

    2015-01-01

    Abstract. Intestinal anastomosis is a surgical procedure that restores bowel continuity after surgical resection to treat intestinal malignancy, inflammation, or obstruction. Despite the routine nature of intestinal anastomosis procedures, the rate of complications is high. Standard visual inspection cannot distinguish the tissue subsurface and small changes in spectral characteristics of the tissue, so existing tissue anastomosis techniques that rely on human vision to guide suturing could lead to problems such as bleeding and leakage from suturing sites. We present a proof-of-concept study using a portable multispectral imaging (MSI) platform for tissue characterization and preoperative surgical planning in intestinal anastomosis. The platform is composed of a fiber ring light-guided MSI system coupled with polarizers and image analysis software. The system is tested on ex vivo porcine intestine tissue, and we demonstrate the feasibility of identifying optimal regions for suture placement. PMID:26440616

  1. Acoustic Characterization of a Vessel-on-a-Chip Microfluidic System for Ultrasound-Mediated Drug Delivery.

    PubMed

    Beekers, Ines; van Rooij, Tom; Verweij, Martin D; Versluis, Michel; de Jong, Nico; Trietsch, Sebastiaan J; Kooiman, Klazina

    2018-04-01

    Ultrasound in the presence of gas-filled microbubbles can be used to enhance local uptake of drugs and genes. To study the drug delivery potential and its underlying physical and biological mechanisms, an in vitro vessel model should ideally include 3-D cell culture, perfusion flow, and membrane-free soft boundaries. Here, we propose an organ-on-a-chip microfluidic platform to study ultrasound-mediated drug delivery: the OrganoPlate. The acoustic propagation into the OrganoPlate was determined to assess the feasibility of controlled microbubble actuation, which is required to study the microbubble-cell interaction for drug delivery. The pressure field in the OrganoPlate was characterized non-invasively by studying experimentally the well-known response of microbubbles and by simulating the acoustic wave propagation in the system. Microbubble dynamics in the OrganoPlate were recorded with the Brandaris 128 ultrahigh-speed camera (17 million frames/s) and a control experiment was performed in an OptiCell, an in vitro monolayer cell culture chamber that is conventionally used to study ultrasound-mediated drug delivery. When insonified at frequencies between 1 and 2 MHz, microbubbles in the OrganoPlate experienced larger oscillation amplitudes resulting from higher local pressures. Microbubbles responded similarly in both systems when insonified at frequencies between 2 and 4 MHz. Numerical simulations performed with a 3-D finite-element model of ultrasound propagation into the OrganoPlate and the OptiCell showed the same frequency-dependent behavior. The predictable and homogeneous pressure field in the OrganoPlate demonstrates its potential to develop an in vitro 3-D cell culture model, well suited to study ultrasound-mediated drug delivery.

  2. Acoustic radiation force due to arbitrary incident fields on spherical particles in soft tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treweek, Benjamin C., E-mail: btreweek@utexas.edu; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.

    Acoustic radiation force is of interest in a wide variety of biomedical applications ranging from tissue characterization (e.g. elastography) to tissue treatment (e.g. high intensity focused ultrasound, kidney stone fragment removal). As tissue mechanical properties are reliable indicators of tissue health, the former is the focus of the present contribution. This is accomplished through an investigation of the acoustic radiation force on a spherical scatterer embedded in tissue. Properties of both the scatterer and the surrounding tissue are important in determining the magnitude and the direction of the force. As these properties vary, the force computation shows changes in magnitudemore » and direction, which may enable more accurate noninvasive determination of tissue properties.« less

  3. Acoustic radiation force due to arbitrary incident fields on spherical particles in soft tissue

    NASA Astrophysics Data System (ADS)

    Treweek, Benjamin C.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2015-10-01

    Acoustic radiation force is of interest in a wide variety of biomedical applications ranging from tissue characterization (e.g. elastography) to tissue treatment (e.g. high intensity focused ultrasound, kidney stone fragment removal). As tissue mechanical properties are reliable indicators of tissue health, the former is the focus of the present contribution. This is accomplished through an investigation of the acoustic radiation force on a spherical scatterer embedded in tissue. Properties of both the scatterer and the surrounding tissue are important in determining the magnitude and the direction of the force. As these properties vary, the force computation shows changes in magnitude and direction, which may enable more accurate noninvasive determination of tissue properties.

  4. Ultrasound Elasticity Imaging System with Chirp-Coded Excitation for Assessing Biomechanical Properties of Elasticity Phantom

    PubMed Central

    Chun, Guan-Chun; Chiang, Hsing-Jung; Lin, Kuan-Hung; Li, Chien-Ming; Chen, Pei-Jarn; Chen, Tainsong

    2015-01-01

    The biomechanical properties of soft tissues vary with pathological phenomenon. Ultrasound elasticity imaging is a noninvasive method used to analyze the local biomechanical properties of soft tissues in clinical diagnosis. However, the echo signal-to-noise ratio (eSNR) is diminished because of the attenuation of ultrasonic energy by soft tissues. Therefore, to improve the quality of elastography, the eSNR and depth of ultrasound penetration must be increased using chirp-coded excitation. Moreover, the low axial resolution of ultrasound images generated by a chirp-coded pulse must be increased using an appropriate compression filter. The main aim of this study is to develop an ultrasound elasticity imaging system with chirp-coded excitation using a Tukey window for assessing the biomechanical properties of soft tissues. In this study, we propose an ultrasound elasticity imaging system equipped with a 7.5-MHz single-element transducer and polymethylpentene compression plate to measure strains in soft tissues. Soft tissue strains were analyzed using cross correlation (CC) and absolution difference (AD) algorithms. The optimal parameters of CC and AD algorithms used for the ultrasound elasticity imaging system with chirp-coded excitation were determined by measuring the elastographic signal-to-noise ratio (SNRe) of a homogeneous phantom. Moreover, chirp-coded excitation and short pulse excitation were used to measure the elasticity properties of the phantom. The elastographic qualities of the tissue-mimicking phantom were assessed in terms of Young’s modulus and elastographic contrast-to-noise ratio (CNRe). The results show that the developed ultrasound elasticity imaging system with chirp-coded excitation modulated by a Tukey window can acquire accurate, high-quality elastography images. PMID:28793718

  5. An ultrasound-guided fluorescence tomography system: design and specification

    NASA Astrophysics Data System (ADS)

    D'Souza, Alisha V.; Flynn, Brendan P.; Kanick, Stephen C.; Torosean, Sason; Davis, Scott C.; Maytin, Edward V.; Hasan, Tayyaba; Pogue, Brian W.

    2013-03-01

    An ultrasound-guided fluorescence molecular tomography system is under development for in vivo quantification of Protoporphyrin IX (PpIX) during Aminolevulinic Acid - Photodynamic Therapy (ALA-PDT) of Basal Cell Carcinoma. The system is designed to combine fiber-based spectral sampling of PPIX fluorescence emission with co-registered ultrasound images to quantify local fluorophore concentration. A single white light source is used to provide an estimate of the bulk optical properties of tissue. Optical data is obtained by sequential illumination of a 633nm laser source at 4 linear locations with parallel detection at 5 locations interspersed between the sources. Tissue regions from segmented ultrasound images, optical boundary data, white light-informed optical properties and diffusion theory are used to estimate the fluorophore concentration in these regions. Our system and methods allow interrogation of both superficial and deep tissue locations up to PpIX concentrations of 0.025ug/ml.

  6. The effects of Magnetic Resonance Imaging-guided High-Intensity Focused Ultrasound ablation on human cadaver breast tissue.

    PubMed

    Merckel, Laura G; Deckers, Roel; Baron, Paul; Bleys, Ronald L A W; van Diest, Paul J; Moonen, Chrit T W; Mali, Willem P Th M; van den Bosch, Maurice A A J; Bartels, Lambertus W

    2013-10-05

    Magnetic Resonance Imaging-guided High-Intensity Focused Ultrasound (MR-HIFU) is a promising technique for non-invasive breast tumor ablation. The purpose of this study was to investigate the effects of HIFU ablation and thermal exposure on ex vivo human breast tissue. HIFU ablations were performed in three unembalmed cadaveric breast specimens using a clinical MR-HIFU system. Sonications were performed in fibroglandular and adipose tissue. During HIFU ablation, time-resolved anatomical MR images were acquired to monitor macroscopic tissue changes. Furthermore, the breast tissue temperature was measured using a thermocouple to investigate heating and cooling under HIFU exposure. After HIFU ablation, breast tissue samples were excised and prepared for histopathological analysis. In addition, thermal exposure experiments were performed to distinguish between different levels of thermal damage using immunohistochemical staining. Irreversible macroscopic deformations up to 3.7 mm were observed upon HIFU ablation both in fibroglandular and in adipose tissue. No relationship was found between the sonication power or the maximum tissue temperature and the size of the deformations. Temperature measurements after HIFU ablation showed a slow decline in breast tissue temperature. Histopathological analysis of sonicated regions demonstrated ablated tissue and morphologically complete cell death. After thermal exposure, samples exposed to three different temperatures could readily be distinguished. In conclusion, the irreversible macroscopic tissue deformations in ex vivo human breast tissue observed during HIFU ablation suggest that it might be relevant to monitor tissue deformations during MR-HIFU treatments. Furthermore, the slow decrease in breast tissue temperature after HIFU ablation increases the risk of heat accumulation between successive sonications. Since cell death was inflicted after already 5 minutes at 75°C, MR-HIFU may find a place in non-invasive treatment of

  7. Combined photothermal therapy and magneto-motive ultrasound imaging using multifunctional nanoparticles

    NASA Astrophysics Data System (ADS)

    Mehrmohammadi, Mohammad; Ma, Li L.; Chen, Yun-Sheng; Qu, Min; Joshi, Pratixa; Chen, Raeanna M.; Johnston, Keith P.; Emelianov, Stanislav

    2010-02-01

    Photothermal therapy is a laser-based non-invasive technique for cancer treatment. Photothermal therapy can be enhanced by employing metal nanoparticles that absorb the radiant energy from the laser leading to localized thermal damages. Targeting of nanoparticles leads to more efficient uptake and localization of photoabsorbers thus increasing the effectiveness of the treatment. Moreover, efficient targeting can reduce the required dosage of photoabsorbers; thereby reducing the side effects associated with general systematic administration of nanoparticles. Magnetic nanoparticles, due to their small size and response to an external magnetic field gradient have been proposed for targeted drug delivery. In this study, we investigate the applicability of multifunctional nanoparticles (e.g., magneto-plasmonic nanoparticles) and magneto-motive ultrasound imaging for image-guided photothermal therapy. Magneto-motive ultrasound imaging is an ultrasound based imaging technique capable of detecting magnetic nanoparticles indirectly by utilizing a high strength magnetic field to induce motion within the magnetically labeled tissue. The ultrasound imaging is used to detect the internal tissue motion. Due to presence of the magnetic component, the proposed multifunctional nanoparticles along with magneto-motive ultrasound imaging can be used to detect the presence of the photo absorbers. Clearly the higher concentration of magnetic carriers leads to a monotonic increase in magneto-motive ultrasound signal. Thus, magnetomotive ultrasound can determine the presence of the hybrid agents and provide information about their location and concentration. Furthermore, the magneto-motive ultrasound signal can indicate the change in tissue elasticity - a parameter that is expected to change significantly during the photothermal therapy. Therefore, a comprehensive guidance and assessment of the photothermal therapy may be feasible through magneto-motive ultrasound imaging and

  8. Optical characterization of tissue mimicking phantoms by a vertical double integrating sphere system

    NASA Astrophysics Data System (ADS)

    Han, Yilin; Jia, Qiumin; Shen, Shuwei; Liu, Guangli; Guo, Yuwei; Zhou, Ximing; Chu, Jiaru; Zhao, Gang; Dong, Erbao; Allen, David W.; Lemaillet, Paul; Xu, Ronald

    2016-03-01

    Accurate characterization of absorption and scattering properties for biologic tissue and tissue-simulating materials enables 3D printing of traceable tissue-simulating phantoms for medical spectral device calibration and standardized medical optical imaging. Conventional double integrating sphere systems have several limitations and are suboptimal for optical characterization of liquid and soft materials used in 3D printing. We propose a vertical double integrating sphere system and the associated reconstruction algorithms for optical characterization of phantom materials that simulate different human tissue components. The system characterizes absorption and scattering properties of liquid and solid phantom materials in an operating wavelength range from 400 nm to 1100 nm. Absorption and scattering properties of the phantoms are adjusted by adding titanium dioxide powder and India ink, respectively. Different material compositions are added in the phantoms and characterized by the vertical double integrating sphere system in order to simulate the human tissue properties. Our test results suggest that the vertical integrating sphere system is able to characterize optical properties of tissue-simulating phantoms without precipitation effect of the liquid samples or wrinkling effect of the soft phantoms during the optical measurement.

  9. Efficacy of High Frequency Ultrasound in Localization and Characterization of Orbital Lesions

    PubMed Central

    Gurushankar, G; Bhimarao; Kadakola, Bindushree

    2015-01-01

    Background The complicated anatomy of orbit and the wide spectrum of pathological conditions present a formidable challenge for early diagnosis, which is critical for management. Ultrasonography provides a detailed cross sectional anatomy of the entire globe with excellent topographic visualization and real time display of the moving organ. Objectives of the study To evaluate the efficacy of high frequency Ultrasound in localization of orbital diseases and to characterize various orbital pathologies sonologically. Materials and Methods Hundred eyes of 85 patients were examined with ultrasound using linear high frequency probe (5 to 17 MHz) of PHILPS IU22 ultrasound system. Sonological diagnosis was made based on location, acoustic characteristics, kinetic properties and Doppler flow dynamics. Final diagnosis was made based on clinical & laboratory findings/higher cross-sectional imaging/surgery & histopathology (as applicable). Diagnostic accuracy of ultrasonography was evaluated and compared with final diagnosis. Results The distinction between ocular and extraocular pathologies was made in 100% of cases. The overall sensitivity, specificity, NPV and accuracy of ultrasonography were 94.2%, 98.8%, 92.2% & 94.9% respectively for diagnosis of ocular pathologies and 94.2%, 99.2%, 95.9% & 95.2% respectively for extra ocular pathologies. Conclusion Ultrasonography is a readily available, simple, cost effective, non ionizing and non invasive modality with overall high diagnostic accuracy in localising and characterising orbital pathologies. It has higher spatial and temporal resolution compared to CT/MRI. However, CT/MRI may be indicated in certain cases for the evaluation of calcifications, bony involvement, extension to adjacent structures and intracranial extension. PMID:26500977

  10. Towards enabling ultrasound guidance in cervical cancer high-dose-rate brachytherapy

    NASA Astrophysics Data System (ADS)

    Wong, Adrian; Sojoudia, Samira; Gaudet, Marc; Yap, Wan Wan; Chang, Silvia D.; Abolmaesumi, Purang; Aquino-Parsons, Christina; Moradi, Mehdi

    2014-03-01

    MRI and Computed Tomography (CT) are used in image-based solutions for guiding High Dose Rate (HDR) brachytherapy treatment of cervical cancer. MRI is costly and CT exposes the patients to ionizing radiation. Ultrasound, on the other hand, is affordable and safe. The long-term goal of our work is to enable the use of multiparametric ultrasound imaging in image-guided HDR for cervical cancer. In this paper, we report the development of enabling technology for ultrasound guidance and tissue typing. We report a system to obtain the 3D freehand transabdominal ultrasound RF signals and B-mode images of the uterus, and a method for registration of ultrasound to MRI. MRI and 3D ultrasound images of the female pelvis were registered by contouring the uterus in the two modalities, creating a surface model, followed by rigid and B-spline deformable registration. The resulting transformation was used to map the location of the tumor from the T2-weighted MRI to ultrasound images and to determine cancerous and normal areas in ultrasound. B-mode images show a contrast for cancer vs. normal tissue. Our study shows the potential and the challenges of ultrasound imaging in guiding cervical cancer treatments.

  11. What is ultrasound?

    PubMed

    Leighton, Timothy G

    2007-01-01

    This paper is based on material presented at the start of a Health Protection Agency meeting on ultrasound and infrasound. In answering the question 'what is ultrasound?', it shows that the simple description of a wave which transports mechanical energy through the local vibration of particles at frequencies of 20 kHz or more, with no net transport of the particles themselves, can in every respect be misleading or even incorrect. To explain the complexities responsible for this, the description of ultrasound is first built up from the fundamental properties of these local particle vibrations. This progresses through an exposition of the characteristics of linear waves, in order to explain the propensity for, and properties of, the nonlinear propagation which occurs in many practical ultrasonic fields. Given the Health Protection environment which framed the original presentation, explanation and examples are given of how these complexities affect issues of practical importance. These issues include the measurement and description of fields and exposures, and the ability of ultrasound to affect tissue (through microstreaming, streaming, cavitation, heating, etc.). It is noted that there are two very distinct regimes, in terms of wave characteristics and potential for bioeffect. The first concerns the use of ultrasound in liquids/solids, for measurement or material processing. For biomedical applications (where these two processes are termed diagnosis and therapy, respectively), the issue of hazard has been studied in depth, although this has not been done to such a degree for industrial uses of ultrasound in liquids/solids (sonar, non-destructive testing, ultrasonic processing etc.). However, in the second regime, that of the use of ultrasound in air, although the waves in question tend to be of much lower intensities than those used in liquids/solids, there is a greater mismatch between the extent to which hazard has been studied, and the growth in commercial

  12. Optimization of contrast-to-tissue ratio by adaptation of transmitted ternary signal in ultrasound pulse inversion imaging.

    PubMed

    Ménigot, Sébastien; Girault, Jean-Marc

    2013-01-01

    Ultrasound contrast imaging has provided more accurate medical diagnoses thanks to the development of innovating modalities like the pulse inversion imaging. However, this latter modality that improves the contrast-to-tissue ratio (CTR) is not optimal, since the frequency is manually chosen jointly with the probe. However, an optimal choice of this command is possible, but it requires precise information about the transducer and the medium which can be experimentally difficult to obtain, even inaccessible. It turns out that the optimization can become more complex by taking into account the kind of generators, since the generators of electrical signals in a conventional ultrasound scanner can be unipolar, bipolar, or tripolar. Our aim was to seek the ternary command which maximized the CTR. By combining a genetic algorithm and a closed loop, the system automatically proposed the optimal ternary command. In simulation, the gain compared with the usual ternary signal could reach about 3.9 dB. Another interesting finding was that, in contrast to what is generally accepted, the optimal command was not a fixed-frequency signal but had harmonic components.

  13. Design and Characterization of an Acoustically and Structurally Matched 3-D-Printed Model for Transcranial Ultrasound Imaging.

    PubMed

    Bai, Chen; Ji, Meiling; Bouakaz, Ayache; Zong, Yujin; Wan, Mingxi

    2018-05-01

    For investigating human transcranial ultrasound imaging (TUI) through the temporal bone, an intact human skull is needed. Since it is complex and expensive to obtain one, it requires that experiments are performed without excision or abrasion of the skull. Besides, to mimic blood circulation for the vessel target, cellulose tubes generally fit the vessel simulation with straight linear features. These issues, which limit experimental studies, can be overcome by designing a 3-D-printed skull model with acoustic and dimensional properties that match a real skull and a vessel model with curve and bifurcation. First, the optimal printing material which matched a real skull in terms of the acoustic attenuation coefficient and sound propagation velocity was identified at 2-MHz frequency, i.e., 7.06 dB/mm and 2168.71 m/s for the skull while 6.98 dB/mm and 2114.72 m/s for the printed material, respectively. After modeling, the average thickness of the temporal bone in the printed skull was about 1.8 mm, while it was to 1.7 mm in the real skull. Then, a vascular phantom was designed with 3-D-printed vessels of low acoustic attenuation (0.6 dB/mm). It was covered with a porcine brain tissue contained within a transparent polyacrylamide gel. After characterizing the acoustic consistency, based on the designed skull model and vascular phantom, vessels with inner diameters of 1 and 0.7 mm were distinguished by resolution enhanced imaging with low frequency. Measurements and imaging results proved that the model and phantom are authentic and viable alternatives, and will be of interest for TUI, high intensity focused ultrasound, or other therapy studies.

  14. Spatial-temporal ultrasound imaging of residual cavitation bubbles around a fluid-tissue interface in histotripsy.

    PubMed

    Hu, Hong; Xu, Shanshan; Yuan, Yuan; Liu, Runna; Wang, Supin; Wan, Mingxi

    2015-05-01

    Cavitation is considered as the primary mechanism of soft tissue fragmentation (histotripsy) by pulsed high-intensity focused ultrasound. The residual cavitation bubbles have a dual influence on the histotripsy pulses: these serve as nuclei for easy generation of new cavitation, and act as strong scatterers causing energy "shadowing." To monitor the residual cavitation bubbles in histotripsy, an ultrafast active cavitation imaging method with relatively high signal-to-noise ratio and good spatial-temporal resolution was proposed in this paper, which combined plane wave transmission, minimum variance beamforming, and coherence factor weighting. The spatial-temporal evolutions of residual cavitation bubbles around a fluid-tissue interface in histotripsy under pulse duration (PD) of 10-40 μs and pulse repetition frequency (PRF) of 0.67-2 kHz were monitored by this method. The integrated bubble area curves inside the tissue interface were acquired from the bubble image sequence, and the formation process of histotripsy damage was estimated. It was observed that the histotripsy efficiency decreased with both longer PDs and higher PRFs. A direct relationship with a coefficient of 1.0365 between histotripsy lesion area and inner residual bubble area was found. These results can assist in monitoring and optimization of the histotripsy treatment further.

  15. Ultrasound elastomicroscopy for articular cartilage: from static to transient and 1D to 2D

    NASA Astrophysics Data System (ADS)

    Zheng, Yongping; Bridal, Sharon L.; Shi, Jun; Saied, Amena; Lu, Minghua; Jaffre, Britta; Mak, Arthur F. T.; Laugier, Pascal; Qin, Ling

    2003-05-01

    Articular cartilage (AC) is a biological weight-bearing tissue covering the ends of articulating bones within synovial joints. Its function very much depends on the unique multi-layered structure and the depth-dependent material properties, which have not been well invetigated nondestructively. In this study, transient depth-dependent material properties of bovine patella cartilage were measured using ultrasound elastomicroscopy methods. A 50 MHz focused ultrasound transducer was used to collect A-mode ultrasound echoes from the articular cartilage during the compression and subsequent force-relaxation. The transient displacements of the cartilage tissues at different depths were calculated from the ultrasound echoes using a cross-correlation technique. It was observed that the strains in the superficial zone were much larger than those in the middle and deep zones as the equilibrium state was approached. The tissues inside the AC layer continued to move during the force-relaxation phase after the compression was completed. This process has been predicted by a biphasic theory. In this study, it has been verified experimentally. It was also observed that the tissue deformations at different depths of AC were much more evenly distributed before force-relaxation. AC specimens were also investigated using a 2D ultrasound elastomicroscopy system that included a 3D translating system for moving the ultrasound transducer over the specimens. B-mode RF ultrasound signals were collected from the specimens under different loading levels applied with a specially designed compressor. Preliminary results demonstrated that the scanning was repeatable with high correlation of radio frequency signals obtained from the same site during different scans when compression level was unchanged (R2 > 0.97). Strains of the AC specimens were mapped using data collected with this ultrasound elastomicroscope. This system can also be potentially used for the assessment of other biological

  16. Biodegradable double-targeted PTX-mPEG-PLGA nanoparticles for ultrasound contrast enhanced imaging and antitumor therapy in vitro.

    PubMed

    Ma, Jing; Shen, Ming; Xu, Chang Song; Sun, Ying; Duan, You Rong; Du, Lian Fang

    2016-11-29

    A porous-structure nano-scale ultrasound contrast agent (UCA) was made of monomethoxypoly (ethylene glycol)-poly (lactic-co-glycolic acid) (mPEG-PLGA), and modified by double-targeted antibody: anti-carcinoembryonic antigen (CEA) and anti-carbohydrate antigen 19-9 (CA19-9), as a double-targeted nanoparticles (NPs). Anti-tumor drug paclitaxel (PTX) was encapsulated in the double-targeted nanoparticles (NPs). The morphor and release curve were characterized. We verified a certain anticancer effect of PTX-NPs through cytotoxicity experiments. The cell uptake result showed much more NPs may be facilitated to ingress the cells or tissues with ultrasound (US) or ultrasound targeted microbubble destruction (UTMD) transient sonoporation in vitro. Ultrasound contrast-enhanced images in vitro and in vivo were investigated. Compared with SonoVue, the NPs prolonged imaging time in rabbit kidneys and tumor of nude mice, which make it possible to further enhance anti-tumor effects by extending retention time in the tumor region. The novel double-targeted NPs with the function of ultrasound contrast enhanced imaging and anti-tumor therapy can be a promising way in clinic.

  17. Feasibility of coded vibration in a vibro-ultrasound system for tissue elasticity measurement.

    PubMed

    Zhao, Jinxin; Wang, Yuanyuan; Yu, Jinhua; Li, Tianjie; Zheng, Yong-Ping

    2016-07-01

    The ability of various methods for elasticity measurement and imaging is hampered by the vibration amplitude on biological tissues. Based on the inference that coded excitation will improve the performance of the cross-correlation function of the tissue displacement waves, the idea of exerting encoded external vibration on tested samples for measuring its elasticity is proposed. It was implemented by integrating a programmable vibration generation function into a customized vibro-ultrasound system to generate Barker coded vibration for elasticity measurement. Experiments were conducted on silicone phantoms and porcine muscles. The results showed that coded excitation of the vibration enhanced the accuracy and robustness of the elasticity measurement especially in low signal-to-noise ratio scenarios. In the phantom study, the measured shear modulus values with coded vibration had an R(2 )= 0.993 linear correlation to that of referenced indentation, while for single-cycle pulse the R(2) decreased to 0.987. In porcine muscle study, the coded vibration also obtained a shear modulus value which is more accurate than the single-cycle pulse by 0.16 kPa and 0.33 kPa at two different depths. These results demonstrated the feasibility and potentiality of the coded vibration for enhancing the quality of elasticity measurement and imaging.

  18. Adaptive lesion formation using dual mode ultrasound array system

    NASA Astrophysics Data System (ADS)

    Liu, Dalong; Casper, Andrew; Haritonova, Alyona; Ebbini, Emad S.

    2017-03-01

    We present the results from an ultrasound-guided focused ultrasound platform designed to perform real-time monitoring and control of lesion formation. Real-time signal processing of echogenicity changes during lesion formation allows for identification of signature events indicative of tissue damage. The detection of these events triggers the cessation or the reduction of the exposure (intensity and/or time) to prevent overexposure. A dual mode ultrasound array (DMUA) is used for forming single- and multiple-focus patterns in a variety of tissues. The DMUA approach allows for inherent registration between the therapeutic and imaging coordinate systems providing instantaneous, spatially-accurate feedback on lesion formation dynamics. The beamformed RF data has been shown to have high sensitivity and specificity to tissue changes during lesion formation, including in vivo. In particular, the beamformed echo data from the DMUA is very sensitive to cavitation activity in response to HIFU in a variety of modes, e.g. boiling cavitation. This form of feedback is characterized by sudden increase in echogenicity that could occur within milliseconds of the application of HIFU (see http://youtu.be/No2wh-ceTLs for an example). The real-time beamforming and signal processing allowing the adaptive control of lesion formation is enabled by a high performance GPU platform (response time within 10 msec). We present results from a series of experiments in bovine cardiac tissue demonstrating the robustness and increased speed of volumetric lesion formation for a range of clinically-relevant exposures. Gross histology demonstrate clearly that adaptive lesion formation results in tissue damage consistent with the size of the focal spot and the raster scan in 3 dimensions. In contrast, uncontrolled volumetric lesions exhibit significant pre-focal buildup due to excessive exposure from multiple full-exposure HIFU shots. Stopping or reducing the HIFU exposure upon the detection of such an

  19. 3D ultrasound Nakagami imaging for radiation-induced vaginal fibrosis

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Rossi, Peter; Shelton, Joseph; Bruner, Debrorah; Tridandapani, Srini; Liu, Tian

    2014-03-01

    Radiation-induced vaginal fibrosis is a debilitating side-effect affecting up to 80% of women receiving radiotherapy for their gynecological (GYN) malignancies. Despite the significant incidence and severity, little research has been conducted to identify the pathophysiologic changes of vaginal toxicity. In a previous study, we have demonstrated that ultrasound Nakagami shape and PDF parameters can be used to quantify radiation-induced vaginal toxicity. These Nakagami parameters are derived from the statistics of ultrasound backscattered signals to capture the physical properties (e.g., arrangement and distribution) of the biological tissues. In this paper, we propose to expand this Nakagami imaging concept from 2D to 3D to fully characterize radiation-induced changes to the vaginal wall within the radiation treatment field. A pilot study with 5 post-radiotherapy GYN patients was conducted using a clinical ultrasound scanner (6 MHz) with a mechanical stepper. A serial of 2D ultrasound images, with radio-frequency (RF) signals, were acquired at 1 mm step size. The 2D Nakagami shape and PDF parameters were calculated from the RF signal envelope with a sliding window, and then 3D Nakagami parameter images were generated from the parallel 2D images. This imaging method may be useful as we try to monitor radiation-induced vaginal injury, and address vaginal toxicities and sexual dysfunction in women after radiotherapy for GYN malignancies.

  20. Fluid dynamics, cavitation, and tip-to-tissue interaction of longitudinal and torsional ultrasound modes during phacoemulsification.

    PubMed

    Zacharias, Jaime; Ohl, Claus-Dieter

    2013-04-01

    To describe the fluidic events that occur in a test chamber during phacoemulsification with longitudinal and torsional ultrasound (US) modalities. Pasteur Ophthalmic Clinic Phacodynamics Laboratory, Santiago, Chile, and Nanyang Technological University, Singapore. Experimental study. Ultra-high-speed videos of a phacoemulsifying tip were recorded while the tip operated in longitudinal and torsional US modalities using variable US power. Two high-speed video cameras were used to record videos up to 625,000 frames per second. A high-intensity spotlight source was used for illumination to engage shadowgraphy techniques. Particle image velocimetry was used to evaluate fluidic patterns while a hyperbaric environmental system allowed the evaluation of cavitation effects. Tip-to-tissue interaction at high speed was evaluated using human cataract fragments. Particle imaging velocimetry showed the following flow patterns for longitudinal and torsional modes at high US powers: forward-directed streaming with longitudinal mode and backward-directed streaming with torsional mode. The ultrasound power threshold for the appearance of cavitation was 60% for longitudinal mode and 80% for torsional mode. Cavitation was suppressed with pressure of 1.0 bar for longitudinal mode and 0.3 bar for torsional mode. Generation of previously unseen stable gaseous microbubbles was noted. Tip-to-tissue interaction analysis showed the presence of cavitation bubbles close to the site of fragmentation with no apparent effect on cutting. High-speed imaging and particle image velocimetry yielded a better understanding and differentiated the fluidic pattern behavior between longitudinal and torsional US during phacoemulsification. These recordings also showed more detailed aspects of cavitation that clarified its role in lens material cutting for both modalities. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  1. Neurosurgical Applications of High-Intensity Focused Ultrasound with Magnetic Resonance Thermometry.

    PubMed

    Colen, Rivka R; Sahnoune, Iman; Weinberg, Jeffrey S

    2017-10-01

    Magnetic resonance guided focused ultrasound surgery (MRgFUS) has potential noninvasive effects on targeted tissue. MRgFUS integrates MRI and focused ultrasound surgery (FUS) into a single platform. MRI enables visualization of the target tissue and monitors ultrasound-induced effects in near real-time during FUS treatment. MRgFUS may serve as an adjunct or replace invasive surgery and radiotherapy for specific conditions. Its thermal effects ablate tumors in locations involved in movement disorders and essential tremors. Its nonthermal effects increase blood-brain barrier permeability to enhance delivery of therapeutics and other molecules. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Multi-depth fractionated aesthetic ultrasound surgery

    NASA Astrophysics Data System (ADS)

    Slayton, Michael H.; Lyke, Stephanie; Barthe, Peter G.

    2017-03-01

    Objective: Aesthetic ultrasound surgery provides the ability to treat at precise, clinically relevant depths with varied lesion size. This represents a major advantage compared to cosmetic laser and RF based energy sources. We present results of pre-clinical and clinical research aimed at establishing the feasibility of three-dimensional fractional deposition of focused ultrasound energy in the first 3mm of skin. Conformal thermal lesions were created in ex-vivo porcine muscle and live human skin in a variety of depths and geometries. Gross pathology demonstrating a three-dimensional pattern of non-intersecting lesions was micro- photographed and characterized in porcine tissue, and followed up to thirty days post treatment in human tissue. Methods: Image/treat transducers from 7.5 to 10 MHz, focal depths of 1 to 3 mm, and energies of 160 to 300 mJ were used to lay down a three-dimensional pattern of non-intersecting thermal lesions in freshly excised porcine muscle tissue. Human skin was treated in vivo at 120 to 360 mJ per lesion. Results were photographed immediately post-treatment and followed up to 30 days. Results: Porcine tissue lesion geometry was measured. Average lesion dimensions approximated by a sphere ranged from 360 micron (±19%) to 520 micron (±23%) varying with the energy settings. Measured depth and distance between the thermal lesions were within ±13% of the focal depth and lesion spacing. In human skin all lesions for all energy settings were completely resolved during the follow-up period. At lower energy settings of 120 mJ and 160 mJ lesions were completely resolved by day 2. Mild erythema and localized swelling were the only transient side effects and resolved within 48 hours or less. Conclusions: In conclusion, skin may be successfully treated in a three-dimensional fractionated manner with predictable and precise deposition of thermal damage. In vivo results demonstrate tolerability and fast resolution with minimal side effects.

  3. Remote ultrasound palpation for robotic interventions using absolute elastography.

    PubMed

    Schneider, Caitlin; Baghani, Ali; Rohling, Robert; Salcudean, Septimiu

    2012-01-01

    Although robotic surgery has addressed many of the challenges presented by minimally invasive surgery, haptic feedback and the lack of knowledge of tissue stiffness is an unsolved problem. This paper presents a system for finding the absolute elastic properties of tissue using a freehand ultrasound scanning technique, which utilizes the da Vinci Surgical robot and a custom 2D ultrasound transducer for intraoperative use. An external exciter creates shear waves in the tissue, and a local frequency estimation method computes the shear modulus. Results are reported for both phantom and in vivo models. This system can be extended to any 6 degree-of-freedom tracking method and any 2D transducer to provide real-time absolute elastic properties of tissue.

  4. Non-Invasive In Vivo Ultrasound Temperature Estimation

    NASA Astrophysics Data System (ADS)

    Bayat, Mahdi

    New emerging technologies in thermal therapy require precise monitoring and control of the delivered thermal dose in a variety of situations. The therapeutic temperature changes in target tissues range from few degrees for releasing chemotherapy drugs encapsulated in the thermosensitive liposomes to boiling temperatures in complete ablation of tumors via cell necrosis. High intensity focused ultrasound (HIFU) has emerged as a promising modality for noninvasive surgery due to its ability to create precise mechanical and thermal effects at the target without affecting surrounding tissues. An essential element in all these procedures, however, is accurate estimation of the target tissue temperature during the procedure to ensure its safety and efficacy. The advent of diagnostic imaging tools for guidance of thermal therapy was a key factor in the clinical acceptance of these minimally invasive or noninvasive methods. More recently, ultrasound and magnetic resonance (MR) thermography techniques have been proposed for guidance, monitoring, and control of noninvasive thermal therapies. MR thermography has shown acceptable sensitivity and accuracy in imaging temperature change and it is currently FDA-approved on clinical HIFU units. However, it suffers from limitations like cost of integration with ultrasound therapy system and slow rate of imaging for real time guidance. Ultrasound, on the other hand, has the advantage of real time imaging and ease of integration with the therapy system. An infinitesimal model for imaging temperature change using pulse-echo ultrasound has been demonstrated, including in vivo small-animal imaging. However, this model suffers from limitations that prevent demonstration in more clinically-relevant settings. One limitation stems from the infinitesimal nature of the model, which results in spatial inconsistencies of the estimated temperature field. Another limitation is the sensitivity to tissue motion and deformation during in vivo, which

  5. Non-contact biomedical photoacoustic and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Rousseau, Guy; Gauthier, Bruno; Blouin, Alain; Monchalin, Jean-Pierre

    2012-06-01

    The detection of ultrasound in photoacoustic tomography (PAT) usually relies on ultrasonic transducers in contact with the biological tissue through a coupling medium. This is a major drawback for important potential applications such as surgery. Here we report the use of a remote optical method, derived from industrial laser-ultrasonics, to detect ultrasound in tissues. This approach enables non-contact PAT (NCPAT) without exceeding laser exposure safety limits. The sensitivity of the method is based on the use of suitably shaped detection laser pulses and a confocal Fabry-Perot interferometer in differential configuration. Reliable image reconstruction is obtained by measuring remotely the surface profile of the tissue with an optical coherence tomography system. The proposed method also allows non-contact ultrasound imaging (US) by applying a second reconstruction algorithm to the data acquired for NCPAT. Endogenous and exogenous inclusions exhibiting optical and acoustic contrasts were detected ex vivo in chicken breast and calf brain specimens. Inclusions down to 0.3 mm in size were detected at depths exceeding 1 cm. The method could expand the scope of photoacoustic and US to in-vivo biomedical applications where contact is impractical.

  6. Contrast imaging in mouse embryos using high-frequency ultrasound.

    PubMed

    Denbeigh, Janet M; Nixon, Brian A; Puri, Mira C; Foster, F Stuart

    2015-03-04

    Ultrasound contrast-enhanced imaging can convey essential quantitative information regarding tissue vascularity and perfusion and, in targeted applications, facilitate the detection and measure of vascular biomarkers at the molecular level. Within the mouse embryo, this noninvasive technique may be used to uncover basic mechanisms underlying vascular development in the early mouse circulatory system and in genetic models of cardiovascular disease. The mouse embryo also presents as an excellent model for studying the adhesion of microbubbles to angiogenic targets (including vascular endothelial growth factor receptor 2 (VEGFR2) or αvβ3) and for assessing the quantitative nature of molecular ultrasound. We therefore developed a method to introduce ultrasound contrast agents into the vasculature of living, isolated embryos. This allows freedom in terms of injection control and positioning, reproducibility of the imaging plane without obstruction and motion, and simplified image analysis and quantification. Late gestational stage (embryonic day (E)16.6 and E17.5) murine embryos were isolated from the uterus, gently exteriorized from the yolk sac and microbubble contrast agents were injected into veins accessible on the chorionic surface of the placental disc. Nonlinear contrast ultrasound imaging was then employed to collect a number of basic perfusion parameters (peak enhancement, wash-in rate and time to peak) and quantify targeted microbubble binding in an endoglin mouse model. We show the successful circulation of microbubbles within living embryos and the utility of this approach in characterizing embryonic vasculature and microbubble behavior.

  7. A photoacoustic tomography and ultrasound combined system for proximal interphalangeal joint imaging

    NASA Astrophysics Data System (ADS)

    Xu, Guan; Rajian, Justin R.; Girish, Gandikota; Wang, Xueding

    2013-03-01

    A photoacoustic (PA) and ultrasound (US) dual modality system for imaging human peripheral joints is introduced. The system utilizes a commercial US unit for both US control imaging and PA signal acquisition. Preliminary in vivo evaluation of the system on normal volunteers revealed that this system can recover both the structural and functional information of intra- and extra-articular tissues. Presenting both morphological and pathological information in joint, this system holds promise for diagnosis and characterization of inflammatory joint diseases such as rheumatoid arthritis.

  8. A super-resolution ultrasound method for brain vascular mapping

    PubMed Central

    O'Reilly, Meaghan A.; Hynynen, Kullervo

    2013-01-01

    Purpose: High-resolution vascular imaging has not been achieved in the brain due to limitations of current clinical imaging modalities. The authors present a method for transcranial ultrasound imaging of single micrometer-size bubbles within a tube phantom. Methods: Emissions from single bubbles within a tube phantom were mapped through an ex vivo human skull using a sparse hemispherical receiver array and a passive beamforming algorithm. Noninvasive phase and amplitude correction techniques were applied to compensate for the aberrating effects of the skull bone. The positions of the individual bubbles were estimated beyond the diffraction limit of ultrasound to produce a super-resolution image of the tube phantom, which was compared with microcomputed tomography (micro-CT). Results: The resulting super-resolution ultrasound image is comparable to results obtained via the micro-CT for small tissue specimen imaging. Conclusions: This method provides superior resolution to deep-tissue contrast ultrasound and has the potential to be extended to provide complete vascular network imaging in the brain. PMID:24320408

  9. Detecting stripe artifacts in ultrasound images.

    PubMed

    Maciak, Adam; Kier, Christian; Seidel, Günter; Meyer-Wiethe, Karsten; Hofmann, Ulrich G

    2009-10-01

    Brain perfusion diseases such as acute ischemic stroke are detectable through computed tomography (CT)-/magnetic resonance imaging (MRI)-based methods. An alternative approach makes use of ultrasound imaging. In this low-cost bedside method, noise and artifacts degrade the imaging process. Especially stripe artifacts show a similar signal behavior compared to acute stroke or brain perfusion diseases. This document describes how stripe artifacts can be detected and eliminated in ultrasound images obtained through harmonic imaging (HI). On the basis of this new method, both proper identification of areas with critically reduced brain tissue perfusion and classification between brain perfusion defects and ultrasound stripe artifacts are made possible.

  10. Ultrasound Doppler method of remote elastometry

    NASA Astrophysics Data System (ADS)

    Timanin, E. M.; Eremin, E. V.; Belyaev, R. V.; Mansfel'd, A. D.

    2015-03-01

    The paper presents the theoretical relations constituting the basis of remote measurements of the shear elasticity of biological tissues using the ultrasound Doppler method. It also describes the hardware-software setup implementing this approach, as well as the results of experiments with these tools on a biological tissue phantom and on human liver in vivo.

  11. The diagnostic capability of laser induced fluorescence in the characterization of excised breast tissues

    NASA Astrophysics Data System (ADS)

    Galmed, A. H.; Elshemey, Wael M.

    2017-08-01

    Differentiating between normal, benign and malignant excised breast tissues is one of the major worldwide challenges that need a quantitative, fast and reliable technique in order to avoid personal errors in diagnosis. Laser induced fluorescence (LIF) is a promising technique that has been applied for the characterization of biological tissues including breast tissue. Unfortunately, only few studies have adopted a quantitative approach that can be directly applied for breast tissue characterization. This work provides a quantitative means for such characterization via introduction of several LIF characterization parameters and determining the diagnostic accuracy of each parameter in the differentiation between normal, benign and malignant excised breast tissues. Extensive analysis on 41 lyophilized breast samples using scatter diagrams, cut-off values, diagnostic indices and receiver operating characteristic (ROC) curves, shows that some spectral parameters (peak height and area under the peak) are superior for characterization of normal, benign and malignant breast tissues with high sensitivity (up to 0.91), specificity (up to 0.91) and accuracy ranking (highly accurate).

  12. Ultrasound -Assisted Gene Transfer to Adipose Tissue-Derived Stem/Progenitor Cells (ASCs)

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yoshitaka; Ueno, Hitomi; Hokari, Rei; Yuan, Wenji; Kuno, Shuichi; Kakimoto, Takashi; Enosawa, Shin; Negishi, Yoichi; Yoshinaka, Kiyoshi; Matsumoto, Yoichiro; Chiba, Toshio; Hayashi, Shuji

    2011-09-01

    In recent years, multilineage adipose tissue-derived stem cells (ASCs) have become increasingly attractive as a promising source for cell transplantation and regenerative medicine. Particular interest has been expressed in the potential to make tissue stem cells, such as ASCs and marrow stromal cells (MSCs), differentiate by gene transfection. Gene transfection using highly efficient viral vectors such as adeno- and sendai viruses have been developed for this purpose. Sonoporation, or ultrasound (US)-assisted gene transfer, is an alternative gene manipulation technique which employs the creation of a jet stream by ultrasonic microbubble cavitation. Sonoporation using non-viral vectors is expected to be a much safer, although less efficient, tool for prospective clinical gene therapy. In this report, we assessed the efficacy of the sonoporation technique for gene transfer to ASCs. We isolated and cultured adipocyets from mouse adipose tissue. ASCs that have the potential to differentiate with transformation into adipocytes or osteoblasts were obtained. Using the US-assisted system, plasmid DNA containing beta-galactosidase (beta-Gal) and green fluorescent protein (GFP) genes were transferred to the ASCs. For this purpose, a Sonopore 4000 (NEPAGENE Co.) and a Sonazoid (Daiichi Sankyo Co.) instrument were used in combination. ASCs were subjected to US (3.1 MHz, 50% duty cycle, burst rate 2.0 Hz, intensity 1.2 W/cm2, exposure time 30 sec). We observed that the gene was more efficiently transferred with increased concentrations of plasmid DNA (5-150 μg/mL). However, further optimization of the US parameters is required, as the gene transfer efficiency was still relatively low. In conclusion, we herein demonstrate that a gene can be transferred to ASCs using our US-assisted system. In regenerative medicine, this system might resolve the current issues surrounding the use of viral vectors for gene transfer.

  13. Carbon nanomaterials as broadband airborne ultrasound transducer

    NASA Astrophysics Data System (ADS)

    Daschewski, M.; Harrer, A.; Prager, J.; Kreutzbruck, M.; Guderian, M.; Meyer-Plath, A.

    2012-05-01

    A method has been developed for the generation of airborne ultrasound using the thermoacoustic principle applied to carbon materials at the micro- and nanoscale. Such materials are shown to be capable to emitting the ultrasound. We tested the acoustic performance of electrospun polyacrylonitrile-derived carbon nanofibers tissues and determined the sound pressure for frequencies up to 350 kHz. The experimental results are compared to analytic calculations.

  14. Toward a real-time system for temporal enhanced ultrasound-guided prostate biopsy.

    PubMed

    Azizi, Shekoofeh; Van Woudenberg, Nathan; Sojoudi, Samira; Li, Ming; Xu, Sheng; Abu Anas, Emran M; Yan, Pingkun; Tahmasebi, Amir; Kwak, Jin Tae; Turkbey, Baris; Choyke, Peter; Pinto, Peter; Wood, Bradford; Mousavi, Parvin; Abolmaesumi, Purang

    2018-03-27

    We have previously proposed temporal enhanced ultrasound (TeUS) as a new paradigm for tissue characterization. TeUS is based on analyzing a sequence of ultrasound data with deep learning and has been demonstrated to be successful for detection of cancer in ultrasound-guided prostate biopsy. Our aim is to enable the dissemination of this technology to the community for large-scale clinical validation. In this paper, we present a unified software framework demonstrating near-real-time analysis of ultrasound data stream using a deep learning solution. The system integrates ultrasound imaging hardware, visualization and a deep learning back-end to build an accessible, flexible and robust platform. A client-server approach is used in order to run computationally expensive algorithms in parallel. We demonstrate the efficacy of the framework using two applications as case studies. First, we show that prostate cancer detection using near-real-time analysis of RF and B-mode TeUS data and deep learning is feasible. Second, we present real-time segmentation of ultrasound prostate data using an integrated deep learning solution. The system is evaluated for cancer detection accuracy on ultrasound data obtained from a large clinical study with 255 biopsy cores from 157 subjects. It is further assessed with an independent dataset with 21 biopsy targets from six subjects. In the first study, we achieve area under the curve, sensitivity, specificity and accuracy of 0.94, 0.77, 0.94 and 0.92, respectively, for the detection of prostate cancer. In the second study, we achieve an AUC of 0.85. Our results suggest that TeUS-guided biopsy can be potentially effective for the detection of prostate cancer.

  15. Hyperemia in plantar fasciitis determined by power Doppler ultrasound.

    PubMed

    McMillan, Andrew M; Landorf, Karl B; Gregg, Julie M; De Luca, Jason; Cotchett, Matthew P; Menz, Hylton B

    2013-12-01

    Cross-sectional observational study. To investigate the presence of soft tissue hyperemia in plantar fasciitis with power Doppler ultrasound. Localized hyperemia is an established feature of tendinopathy, suggesting that neurovascular in-growth may contribute to tendon-associated pain in some patients. The presence of abnormal soft tissue vascularity can be assessed with Doppler ultrasound, and a positive finding can assist with targeted treatment plans. However, very little is known regarding the presence of hyperemia in plantar fasciitis and the ability of routine Doppler ultrasound to identify vascular in-growth in the plantar fascia near its proximal insertion. This observational study included 30 participants with plantar fasciitis unrelated to systemic disease and 30 age- and sex-matched controls. Ultrasound examination was performed with a 13- to 5-MHz linear transducer, and power Doppler images were assessed by 2 blinded investigators. Hyperemia of the plantar fascia was present in 8 of 30 participants with plantar fasciitis and in 2 of 30 controls. The between-group difference for hyperemia, using a 4-point scale, was statistically significant, with participants with plantar fasciitis showing increased Doppler ultrasound signal compared to controls (Mann-Whitney U, P = .03). However, the majority of participants with plantar fasciitis with evidence of hyperemia demonstrated very mild color changes, and only 3 were found to have moderate or marked hyperemia. Mild hyperemia can occur with plantar fasciitis, but most individuals will not exhibit greater soft tissue vascularity when assessed with routine Doppler ultrasound. Clinicians treating plantar fasciitis should not consider a positive Doppler signal as essential for diagnosis of the condition but, rather, as a feature that may help to refine the treatment plan for an individual patient.

  16. A cMUT probe for ultrasound-guided focused ultrasound targeted therapy.

    PubMed

    Gross, Dominique; Coutier, Caroline; Legros, Mathieu; Bouakaz, Ayache; Certon, Dominique

    2015-06-01

    Ultrasound-mediated targeted therapy represents a promising strategy in the arsenal of modern therapy. Capacitive micromachined ultrasonic transducer (cMUT) technology could overcome some difficulties encountered by traditional piezoelectric transducers. In this study, we report on the design, fabrication, and characterization of an ultrasound-guided focused ultrasound (USgFUS) cMUT probe dedicated to preclinical evaluation of targeted therapy (hyperthermia, thermosensitive liposomes activation, and sonoporation) at low frequency (1 MHz) with simultaneous ultrasonic imaging and guidance (15 to 20 MHz). The probe embeds two types of cMUT arrays to perform the modalities of targeted therapy and imaging respectively. The wafer-bonding process flow employed for the manufacturing of the cMUTs is reported. One of its main features is the possibility of implementing two different gap heights on the same wafer. All the design and characterization steps of the devices are described and discussed, starting from the array design up to the first in vitro measurements: optical (microscopy) and electrical (impedance) measurements, arrays' electroacoustic responses, focused pressure field mapping (maximum peak-to-peak pressure = 2.5 MPa), and the first B-scan image of a wire-target phantom.

  17. Development of ultrasound-assisted fluorescence imaging of indocyanine green.

    PubMed

    Morikawa, Hiroyasu; Toyota, Shin; Wada, Kenji; Uchida-Kobayashi, Sawako; Kawada, Norifumi; Horinaka, Hiromichi

    2017-01-01

    Indocyanine green (ICG) accumulation in hepatocellular carcinoma means tumors can be located by fluorescence. However, because of light scattering, it is difficult to detect ICG fluorescence from outside the body. We propose a new fluorescence imaging method that detects changes in the intensity of ICG fluorescence by ultrasound-induced temperature changes. ICG fluorescence intensity decreases as the temperature rises. Therefore, it should theoretically be possible to detect tissue distribution of ICG using ultrasound to heat tissue, moving the point of ultrasound transmission, and monitoring changes in fluorescence intensity. A new probe was adapted for clinical application. It consisted of excitation light from a laser, fluorescence sensing through a light pipe, and heating by ultrasound. We applied the probe to bovine liver to image the accumulation of ICG. ICG emits fluorescence (820 nm) upon light irradiation (783 nm). With a rise in temperature, the fluorescence intensity of ICG decreased by 0.85 %/°C. The distribution of fluorescent ICG was detected using an ultrasonic warming method in a new integrated probe. Modulating fluorescence by changing the temperature using ultrasound can determine where ICG accumulates at a depth, highlighting its potential as a means to locate hepatocellular carcinoma.

  18. The utility of ultrasound in patients with melanoma.

    PubMed

    Uren, Roger F; Sanki, Amira; Thompson, John F

    2007-11-01

    The highest quality gray-scale ultrasound images are obtained with high-frequency transducers; however, such high frequencies do not penetrate more than a few centimeters into body tissue. Fortunately, in patients with melanoma, the structures of interest are close to the skin surface, making them ideal targets for examination with high-resolution ultrasound. These include primary cutaneous melanomas, uveal melanomas and the regional lymph nodes draining the skin that lie in the axilla, groin, neck and other locations. Although ultrasound study of primary melanomas arising in the skin and eye has provided some insights, a major role for ultrasound has evolved recently, to provide early detection of metastatic melanoma in regional lymph nodes. Ultrasound is clearly superior to clinical palpation of the nodes during follow-up and, when combined with guided fine-needle biopsy, allows the earliest possible surgical intervention for regional nodal metastases. In the future the use of ultrasound contrast agents may improve the sensitivity of ultrasound in the detection of very small metastatic deposits.

  19. Multi-slice ultrasound image calibration of an intelligent skin-marker for soft tissue artefact compensation.

    PubMed

    Masum, M A; Pickering, M R; Lambert, A J; Scarvell, J M; Smith, P N

    2017-09-06

    In this paper, a novel multi-slice ultrasound (US) image calibration of an intelligent skin-marker used for soft tissue artefact compensation is proposed to align and orient image slices in an exact H-shaped pattern. Multi-slice calibration is complex, however, in the proposed method, a phantom based visual alignment followed by transform parameters estimation greatly reduces the complexity and provides sufficient accuracy. In this approach, the Hough Transform (HT) is used to further enhance the image features which originate from the image feature enhancing elements integrated into the physical phantom model, thus reducing feature detection uncertainty. In this framework, slice by slice image alignment and calibration are carried out and this provides manual ease and convenience. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Breast ultrasound tomography with two parallel transducer arrays: preliminary clinical results

    NASA Astrophysics Data System (ADS)

    Huang, Lianjie; Shin, Junseob; Chen, Ting; Lin, Youzuo; Intrator, Miranda; Hanson, Kenneth; Epstein, Katherine; Sandoval, Daniel; Williamson, Michael

    2015-03-01

    Ultrasound tomography has great potential to provide quantitative estimations of physical properties of breast tumors for accurate characterization of breast cancer. We design and manufacture a new synthetic-aperture breast ultrasound tomography system with two parallel transducer arrays. The distance of these two transducer arrays is adjustable for scanning breasts with different sizes. The ultrasound transducer arrays are translated vertically to scan the entire breast slice by slice and acquires ultrasound transmission and reflection data for whole-breast ultrasound imaging and tomographic reconstructions. We use the system to acquire patient data at the University of New Mexico Hospital for clinical studies. We present some preliminary imaging results of in vivo patient ultrasound data. Our preliminary clinical imaging results show promising of our breast ultrasound tomography system with two parallel transducer arrays for breast cancer imaging and characterization.

  1. Ultrasound Visualization of Atypical Abscess Ultimately Containing Bot Fly Larva.

    PubMed

    Bovino, Patrick; Cole, John; Scheatzle, Mark

    2016-08-01

    Because of the rise in community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA), presentations to the emergency department for the evaluation of cutaneous abscesses have risen dramatically over the past 2 decades. Soft tissue point of care ultrasound (POCUS) differentiates abscess from cellulitis, determines the size and shape, and characterizes the contents of the abscess. It has been shown to improve medical decision-making and therefore the emergency management of cutaneous abscesses over physical examination alone. We report a case of an unusual nonhealing abscess in an 18-year-old woman with a recent history of foreign travel where soft tissue POCUS identified motion within the abscess pocket. This changed the management of the case, leading to the diagnosis of bot fly myiasis. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Clinicians should entertain a broader differential for an apparent abscess and consider liberal use of soft tissue POCUS in these cases. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Backscatter and attenuation properties of mammalian brain tissues

    NASA Astrophysics Data System (ADS)

    Wijekularatne, Pushpani Vihara

    Traumatic Brain Injury (TBI) is a common category of brain injuries, which contributes to a substantial number of deaths and permanent disability all over the world. Ultrasound technology plays a major role in tissue characterization due to its low cost and portability that could be used to bridge a wide gap in the TBI diagnostic process. This research addresses the ultrasonic properties of mammalian brain tissues focusing on backscatter and attenuation. Orientation dependence and spatial averaging of data were analyzed using the same method resulting from insertion of tissue sample between a transducer and a reference reflector. Apparent backscatter transfer function (ABTF) at 1 to 10 MHz, attenuation coefficient and backscatter coefficient (BSC) at 1 to 5 MHz frequency ranges were measured on ovine brain tissue samples. The resulting ABTF was a monotonically decreasing function of frequency and the attenuation coefficient and BSC generally were increasing functions of frequency, results consistent with other soft tissues such as liver, blood and heart.

  3. Breast ultrasound tomography with two parallel transducer arrays

    NASA Astrophysics Data System (ADS)

    Huang, Lianjie; Shin, Junseob; Chen, Ting; Lin, Youzuo; Gao, Kai; Intrator, Miranda; Hanson, Kenneth

    2016-03-01

    Breast ultrasound tomography is an emerging imaging modality to reconstruct the sound speed, density, and ultrasound attenuation of the breast in addition to ultrasound reflection/beamforming images for breast cancer detection and characterization. We recently designed and manufactured a new synthetic-aperture breast ultrasound tomography prototype with two parallel transducer arrays consisting of a total of 768 transducer elements. The transducer arrays are translated vertically to scan the breast in a warm water tank from the chest wall/axillary region to the nipple region to acquire ultrasound transmission and reflection data for whole-breast ultrasound tomography imaging. The distance of these two ultrasound transducer arrays is adjustable for scanning breasts with different sizes. We use our breast ultrasound tomography prototype to acquire phantom and in vivo patient ultrasound data to study its feasibility for breast imaging. We apply our recently developed ultrasound imaging and tomography algorithms to ultrasound data acquired using our breast ultrasound tomography system. Our in vivo patient imaging results demonstrate that our breast ultrasound tomography can detect breast lesions shown on clinical ultrasound and mammographic images.

  4. Multipulse technique exploiting the intermodulation of ultrasound waves in a nonlinear medium.

    PubMed

    Biagi, Elena; Breschi, Luca; Vannacci, Enrico; Masotti, Leonardo

    2009-03-01

    In recent years, the nonlinear properties of materials have attracted much interest in nondestructive testing and in ultrasound diagnostic applications. Acoustic nonlinear parameters represent an opportunity to improve the information that can be extracted from a medium such as structural organization and pathologic status of tissue. In this paper, a method called pulse subtraction intermodulation (PSI), based on a multipulse technique, is presented and investigated both theoretically and experimentally. This method allows separation of the intermodulation products, which arise when 2 separate frequencies are transmitted in a nonlinear medium, from fundamental and second harmonic components, making them available for improved imaging techniques or signal processing algorithms devoted to tissue characterization. The theory of intermodulation product generation was developed according the Khokhlov-Zabolotskaya-Kuznetsov (KZK) nonlinear propagation equation, which is consistent with experimental results. The description of the proposed method, characterization of the intermodulation spectral contents, and quantitative results coming from in vitro experimentation are reported and discussed in this paper.

  5. [Pharmacokinetics of radiotracers in the ocular tissues exposed to infrasound and ultrasound phonophoreses].

    PubMed

    2006-01-01

    The paper compares the efficiency of infrasound and ultrasound phonophoreses. The efficiency was evaluated on the basis of the rate of radiotracers within the eye after infrasound or ultrasound exposure of the eyeball. The exposure was made after preliminary putting the radiotracer-impregnated application into the bulbar conjunctiva of an animal. Radioactivity was recorded on a Siemens gamma camera in its lifetime. The time course of changes in the radioactivities measured 10, 30, and 60 minutes after termination of exposures strongly suggests its stable increase in the eye exposed to infrasound. At the same time 10 minutes after ultrasound exposure, the increased concentration of a radiotracer in the eye was less than that after infrasound exposure and then it progressively decreased. Thus, having a significant phoretic activity, infrasound, as ultrasound, creates more favorable conditions for long drug storage in the eye.

  6. WE-B-210-02: The Advent of Ultrafast Imaging in Biomedical Ultrasound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanter, M.

    In the last fifteen years, the introduction of plane or diverging wave transmissions rather than line by line scanning focused beams has broken the conventional barriers of ultrasound imaging. By using such large field of view transmissions, the frame rate reaches the theoretical limit of physics dictated by the ultrasound speed and an ultrasonic map can be provided typically in tens of micro-seconds (several thousands of frames per second). Interestingly, this leap in frame rate is not only a technological breakthrough but it permits the advent of completely new ultrasound imaging modes, including shear wave elastography, electromechanical wave imaging, ultrafastmore » doppler, ultrafast contrast imaging, and even functional ultrasound imaging of brain activity (fUltrasound) introducing Ultrasound as an emerging full-fledged neuroimaging modality. At ultrafast frame rates, it becomes possible to track in real time the transient vibrations – known as shear waves – propagating through organs. Such “human body seismology” provides quantitative maps of local tissue stiffness whose added value for diagnosis has been recently demonstrated in many fields of radiology (breast, prostate and liver cancer, cardiovascular imaging, …). Today, Supersonic Imagine company is commercializing the first clinical ultrafast ultrasound scanner, Aixplorer with real time Shear Wave Elastography. This is the first example of an ultrafast Ultrasound approach surpassing the research phase and now widely spread in the clinical medical ultrasound community with an installed base of more than 1000 Aixplorer systems in 54 countries worldwide. For blood flow imaging, ultrafast Doppler permits high-precision characterization of complex vascular and cardiac flows. It also gives ultrasound the ability to detect very subtle blood flow in very small vessels. In the brain, such ultrasensitive Doppler paves the way for fUltrasound (functional ultrasound imaging) of brain activity with

  7. High variability in strain estimation errors when using a commercial ultrasound speckle tracking algorithm on tendon tissue.

    PubMed

    Fröberg, Åsa; Mårtensson, Mattias; Larsson, Matilda; Janerot-Sjöberg, Birgitta; D'Hooge, Jan; Arndt, Anton

    2016-10-01

    Ultrasound speckle tracking offers a non-invasive way of studying strain in the free Achilles tendon where no anatomical landmarks are available for tracking. This provides new possibilities for studying injury mechanisms during sport activity and the effects of shoes, orthotic devices, and rehabilitation protocols on tendon biomechanics. To investigate the feasibility of using a commercial ultrasound speckle tracking algorithm for assessing strain in tendon tissue. A polyvinyl alcohol (PVA) phantom, three porcine tendons, and a human Achilles tendon were mounted in a materials testing machine and loaded to 4% peak strain. Ultrasound long-axis cine-loops of the samples were recorded. Speckle tracking analysis of axial strain was performed using a commercial speckle tracking software. Estimated strain was then compared to reference strain known from the materials testing machine. Two frame rates and two region of interest (ROI) sizes were evaluated. Best agreement between estimated strain and reference strain was found in the PVA phantom (absolute error in peak strain: 0.21 ± 0.08%). The absolute error in peak strain varied between 0.72 ± 0.65% and 10.64 ± 3.40% in the different tendon samples. Strain determined with a frame rate of 39.4 Hz had lower errors than 78.6 Hz as was the case with a 22 mm compared to an 11 mm ROI. Errors in peak strain estimation showed high variability between tendon samples and were large in relation to strain levels previously described in the Achilles tendon. © The Foundation Acta Radiologica 2016.

  8. PRESAGE® as a new calibration method for high intensity focused ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Costa, M.; McErlean, C.; Rivens, I.; Adamovics, J.; Leach, M. O.; ter Haar, G.; Doran, S. J.

    2015-01-01

    High Intensity Focused ultrasound (HIFU) is a non-invasive cancer therapy that makes use of the mainly thermal effects of ultrasound to destroy tissue. In order to achieve reliable treatment planning, it is necessary to characterise the ultrasound source (transducer) and to understand how the wave propagates in tissue and the energy deposition in the focal region. This novel exploratory study investigated how HIFU affects PRESAGE®, an optical phantom used for radiotherapy dosimetry, which is potentially a rapid method of calibrating the transducer. Samples, of two different formulations, were exposed to focused ultrasound and imaged using Optical Computed Tomography. First results showed that, PRESAGE® changes colour on ultrasound exposure (darker green regions were observed) with the alterations being related to the acoustic power and sample composition. Future work will involve quantification of these alterations and understanding how to relate them to the mechanisms of action of HIFU.

  9. Ultrasound Based Method and Apparatus for Stone Detection and to Facilitate Clearance Thereof

    NASA Technical Reports Server (NTRS)

    Bailey, Michael (Inventor); Kaczkowski, Peter (Inventor); Illian, Paul (Inventor); Kucewicz, John (Inventor); Sapozhnikov, Oleg (Inventor); Shah, Anup (Inventor); Dunmire, Barbrina (Inventor); Lu, Wei (Inventor); Owen, Neil (Inventor); Cunitz, Bryan (Inventor)

    2015-01-01

    Described herein are methods and apparatus for detecting stones by ultrasound, in which the ultrasound reflections from a stone are preferentially selected and accentuated relative to the ultrasound reflections from blood or tissue. Also described herein are methods and apparatus for applying pushing ultrasound to in vivo stones or other objects, to facilitate the removal of such in vivo objects.

  10. Semiquantitative Evaluation of Extrasynovial Soft Tissue Inflammation in the Shoulders of Patients with Polymyalgia Rheumatica and Elderly-Onset Rheumatoid Arthritis by Power Doppler Ultrasound.

    PubMed

    Suzuki, Takeshi; Yoshida, Ryochi; Okamoto, Akiko; Seri, Yu

    2017-01-01

    Objectives . To develop a scoring system for evaluating the extrasynovial soft tissue inflammation of the shoulders in patients with polymyalgia rheumatica (PMR) and elderly-onset rheumatoid arthritis with PMR-like onset (pm-EORA) using ultrasound. Methods . We analyzed stored power Doppler (PD) images obtained by the pretreatment examination of 15 PMR patients and 15 pm-EORA patients. A semiquantitative scoring system for evaluating the severity of PD signals adjacent to the anterior aspect of the subscapularis tendon was designed. Results . A four-point scale scoring for the hyperemia on the subscapularis tendon was proposed as follows in brief: 0 = absent or minimal flow, 1 = single vessel dots or short linear-shape signals, 2 = long linear-shape signals or short zone-shape signals, or 3 = long zone-shape signals. This scoring system showed good intra- and interobserver reliability and good correlation to quantitative pixel-counting evaluation. By using it, we demonstrated that inflammation in PMR is dominantly localized in extrasynovial soft tissue as compared with pm-EORA. Conclusions . We proposed a reliable semiquantitative scoring system using ultrasound for the evaluation of extrasynovial soft tissue inflammation of the shoulders in patients with both PMR and pm-EORA. This system is simple to use and can be utilized in future investigations.

  11. High-resolution analysis of the mechanical behavior of tissue

    NASA Astrophysics Data System (ADS)

    Hudnut, Alexa W.; Armani, Andrea M.

    2017-06-01

    The mechanical behavior and properties of biomaterials, such as tissue, have been directly and indirectly connected to numerous malignant physiological states. For example, an increase in the Young's Modulus of tissue can be indicative of cancer. Due to the heterogeneity of biomaterials, it is extremely important to perform these measurements using whole or unprocessed tissue because the tissue matrix contains important information about the intercellular interactions and the structure. Thus, developing high-resolution approaches that can accurately measure the elasticity of unprocessed tissue samples is of great interest. Unfortunately, conventional elastography methods such as atomic force microscopy, compression testing, and ultrasound elastography either require sample processing or have poor resolution. In the present work, we demonstrate the characterization of unprocessed salmon muscle using an optical polarimetric elastography system. We compare the results of compression testing within different samples of salmon skeletal muscle with different numbers of collagen membranes to characterize differences in heterogeneity. Using the intrinsic collagen membranes as markers, we determine the resolution of the system when testing biomaterials. The device reproducibly measures the stiffness of the tissues at variable strains. By analyzing the amount of energy lost by the sample during compression, collagen membranes that are 500 μm in size are detected.

  12. Microbubbles and Ultrasound: A Bird's Eye View.

    PubMed Central

    Kaul, Sanjiv

    2004-01-01

    Gas-filled microbubbles were initially used as ultrasound contrast agent because of their intravascular rheology, which is similar to that of red blood cells. Their transit through tissue can thus be quantified with ultrasound. More recently, these bubbles have been successfully used for molecular imaging by incorporating ligands on their surfaces that will adhere to cellular and other components within the microvasculature and can be detected by ultrasound. These bubbles have also been used for delivery of genes and drugs which can be released locally by disruption of the bubbles with high-energy ultrasound. Finally, bioeffects produced by localized ultrasound disruption of microbubbles have been shown to induce angiogenesis. This brief review will provide a bird's eye view of these applications. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 PMID:17060963

  13. Ultrasound internal tattooing.

    PubMed

    Couture, Olivier; Faivre, Magalie; Pannacci, Nicolas; Babataheri, Avin; Servois, Vincent; Tabeling, Patrick; Tanter, Mickael

    2011-02-01

    The ability of remotely tagging tissues in a controlled and three-dimensional manner during preoperative imaging could greatly help surgeons to identify targets for resection. The authors' objective is to selectively and noninvasively deposit markers under image guidance for such internal tattooing. This study describes the production of new ultrasound-inducible droplets carrying large payloads of fluorescent markers and the in vivo proof of concept of their remote and controlled deposition via focused ultrasound. The droplets are monodispersed multiple emulsions produced in a microfluidic system, consisting of aqueous fluorescein in perfluorocarbon in water. Their conversion (either by vaporization or cavitation) is performed remotely using a clinical ultrasonic imaging probe. When submitted to 5 MHz imaging pulses, the droplets vaporize in vitro at 1.4 MPa peak-negative pressure and eject their content. After several seconds, a brightly fluorescent spot (0.5 mm diameter) is observed at the focus of the transducer. Experiments in the chorioallantoique membrane of chicken eggs and chicken embryo demonstrate that the spot is stable and is easily seen by naked eye. These ultrasound-inducible multiple emulsions could be used to deliver large amounts of contrast agents, chemotherapy, and genetic materials in vivo using a conventional ultrasound scanner.

  14. A Tissue-Mimicking Ultrasound Test Object Using Droplet Vaporization to Create Point Targets

    PubMed Central

    Carneal, Catherine M.; Kripfgans, Oliver D.; Krücker, Jochen; Carson, Paul L.; Fowlkes, J. Brian

    2012-01-01

    Ultrasound test objects containing reference point targets could be useful for evaluating ultrasound systems and phase aberration correction methods. Polyacrylamide gels containing albumin-stabilized droplets (3.6 µm mean diameter) of dodecafluoropentane (DDFP) are being developed for this purpose. Perturbation by ultrasound causes spontaneous vaporization of the superheated droplets to form gas bubbles, a process termed acoustic droplet vaporization (ADV). The resulting bubbles (20 to 160 µm diameter) are small compared with acoustic wavelengths in diagnostic ultrasound and are theoretically suitable for use as point targets (phase errors <20° for typical f-numbers). Bubbles distributed throughout the material are convenient for determining the point spread function in an imaging plane or volume. Cooling the gel causes condensation of the DDFP droplets, which may be useful for storage. Studying ADV in such viscoelastic media could provide insight into potential bioeffects from rapid bubble formation. PMID:21937339

  15. Ultrasound backscatter tensor imaging (BTI): analysis of the spatial coherence of ultrasonic speckle in anisotropic soft tissues.

    PubMed

    Papadacci, Clement; Tanter, Mickael; Pernot, Mathieu; Fink, Mathias

    2014-06-01

    The assessment of fiber architecture is of major interest in the progression of myocardial disease. Recent techniques such as magnetic resonance diffusion tensor imaging (MR-DTI) or ultrasound elastic tensor imaging (ETI) can derive the fiber directions by measuring the anisotropy of water diffusion or tissue elasticity, but these techniques present severe limitations in a clinical setting. In this study, we propose a new technique, backscatter tensor imaging (BTI), which enables determination of the fiber directions in skeletal muscles and myocardial tissues, by measuring the spatial coherence of ultrasonic speckle. We compare the results to ultrasound ETI. Acquisitions were performed using a linear transducer array connected to an ultrasonic scanner mounted on a motorized rotation device with angles from 0° to 355° by 5° increments to image ex vivo bovine skeletal muscle and porcine left ventricular myocardial samples. At each angle, multiple plane waves were transmitted and the backscattered echoes recorded. The coherence factor was measured as the ratio of coherent intensity over incoherent intensity of backscattered echoes. In skeletal muscle, maximal/minimal coherence factor was found for the probe parallel/perpendicular to the fibers. In myocardium, the coherence was assessed across the entire myocardial thickness, and the position of maxima and minima varied transmurally because of the complex fibers distribution. In ETI, the shear wave speed variation with the probe angle was found to follow the coherence variation. Spatial coherence can thus reveal the anisotropy of the ultrasonic speckle in skeletal muscle and myocardium. BTI could be used on any type of ultrasonic scanner with rotating phased-array probes or 2-D matrix probes for noninvasive evaluation of myocardial fibers.

  16. Ultrasound Backscatter Tensor Imaging (BTI): Analysis of the spatial coherence of ultrasonic speckle in anisotropic soft tissues

    PubMed Central

    Papadacci, Clement; Tanter, Mickael; Pernot, Mathieu; Fink, Mathias

    2014-01-01

    The assessment of fiber architecture is of major interest in the progression of myocardial disease. Recent techniques such as Magnetic Resonance (MR) Diffusion Tensor Imaging or Ultrasound Elastic Tensor Imaging (ETI) can derive the fiber directions by measuring the anisotropy of water diffusion or tissue elasticity, but these techniques present severe limitations in clinical setting. In this study, we propose a new technique, the Backscatter Tensor Imaging (BTI) which enables determining the fibers directions in skeletal muscles and myocardial tissues, by measuring the spatial coherence of ultrasonic speckle. We compare the results to ultrasound ETI. Acquisitions were performed using a linear transducer array connected to an ultrasonic scanner mounted on a motorized rotation device with angles from 0° to 355° by 5° increments to image ex vivo bovine skeletal muscle and porcine left ventricular myocardial samples. At each angle, multiple plane waves were transmitted and the backscattered echoes recorded. The coherence factor was measured as the ratio of coherent intensity over incoherent intensity of backscattered echoes. In skeletal muscle, maximal/minimal coherence factor was found for the probe parallel/perpendicular to the fibers. In myocardium, the coherence was assessed across the entire myocardial thickness, and the position of maxima and minima varied transmurally due to the complex fibers distribution. In ETI, the shear wave speed variation with the probe angle was found to follow the coherence variation. Spatial coherence can thus reveal the anisotropy of the ultrasonic speckle in skeletal muscle and myocardium. BTI could be used on any type of ultrasonic scanner with rotative phased-array probes or 2-D matrix probes for non-invasive evaluation of myocardial fibers. PMID:24859662

  17. Impedance-controlled ultrasound probe

    NASA Astrophysics Data System (ADS)

    Gilbertson, Matthew W.; Anthony, Brian W.

    2011-03-01

    An actuated hand-held impedance-controlled ultrasound probe has been developed. The controller maintains a prescribed contact state (force and velocity) between the probe and a patient's body. The device will enhance the diagnostic capability of free-hand elastography and swept-force compound imaging, and also make it easier for a technician to acquire repeatable (i.e. directly comparable) images over time. The mechanical system consists of an ultrasound probe, ball-screw-driven linear actuator, and a force/torque sensor. The feedback controller commands the motor to rotate the ball-screw to translate the ultrasound probe in order to maintain a desired contact force. It was found that users of the device, with the control system engaged, maintain a constant contact force with 15 times less variation than without the controller engaged. The system was used to determine the elastic properties of soft tissue.

  18. [Focused ultrasound therapy: current status and potential applications in neurosurgery].

    PubMed

    Dervishi, E; Aubry, J-F; Delattre, J-Y; Boch, A-L

    2013-12-01

    High Intensity Focused Ultrasound (HIFU) therapy is an innovative approach for tissue ablation, based on high intensity focused ultrasound beams. At the focus, HIFU induces a temperature elevation and the tissue can be thermally destroyed. In fact, this approach has been tested in a number of clinical studies for the treatment of several tumors, primarily the prostate, uterine, breast, bone, liver, kidney and pancreas. For transcranial brain therapy, the skull bone is a major limitation, however, new adaptive techniques of phase correction for focusing ultrasound through the skull have recently been implemented by research systems, paving the way for HIFU therapy to become an interesting alternative to brain surgery and radiotherapy. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  19. Real-time two-dimensional temperature imaging using ultrasound.

    PubMed

    Liu, Dalong; Ebbini, Emad S

    2009-01-01

    We present a system for real-time 2D imaging of temperature change in tissue media using pulse-echo ultrasound. The frontend of the system is a SonixRP ultrasound scanner with a research interface giving us the capability of controlling the beam sequence and accessing radio frequency (RF) data in real-time. The beamformed RF data is streamlined to the backend of the system, where the data is processed using a two-dimensional temperature estimation algorithm running in the graphics processing unit (GPU). The estimated temperature is displayed in real-time providing feedback that can be used for real-time control of the heating source. Currently we have verified our system with elastography tissue mimicking phantom and in vitro porcine heart tissue, excellent repeatability and sensitivity were demonstrated.

  20. Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects.

    PubMed

    Krasovitski, Boris; Frenkel, Victor; Shoham, Shy; Kimmel, Eitan

    2011-02-22

    The purpose of this study was to develop a unified model capable of explaining the mechanisms of interaction of ultrasound and biological tissue at both the diagnostic nonthermal, noncavitational (<100 mW · cm(-2)) and therapeutic, potentially cavitational (>100 mW · cm(-2)) spatial peak temporal average intensity levels. The cellular-level model (termed "bilayer sonophore") combines the physics of bubble dynamics with cell biomechanics to determine the dynamic behavior of the two lipid bilayer membrane leaflets. The existence of such a unified model could potentially pave the way to a number of controlled ultrasound-assisted applications, including CNS modulation and blood-brain barrier permeabilization. The model predicts that the cellular membrane is intrinsically capable of absorbing mechanical energy from the ultrasound field and transforming it into expansions and contractions of the intramembrane space. It further predicts that the maximum area strain is proportional to the acoustic pressure amplitude and inversely proportional to the square root of the frequency (ε A,max ∝ P(A)(0.8f - 0.5) and is intensified by proximity to free surfaces, the presence of nearby microbubbles in free medium, and the flexibility of the surrounding tissue. Model predictions were experimentally supported using transmission electron microscopy (TEM) of multilayered live-cell goldfish epidermis exposed in vivo to continuous wave (CW) ultrasound at cavitational (1 MHz) and noncavitational (3 MHz) conditions. Our results support the hypothesis that ultrasonically induced bilayer membrane motion, which does not require preexistence of air voids in the tissue, may account for a variety of bioeffects and could elucidate mechanisms of ultrasound interaction with biological tissue that are currently not fully understood.

  1. Therapeutic Ultrasound Bypasses Canonical Syndecan-4 Signaling to Activate Rac1*S⃞

    PubMed Central

    Mahoney, Claire M.; Morgan, Mark R.; Harrison, Andrew; Humphries, Martin J.; Bass, Mark D.

    2009-01-01

    The application of pulsed, low intensity ultrasound is emerging as a potent therapy for the treatment of complex bone fractures and tissue damage. Ultrasonic stimuli accelerate fracture healing by up to 40% and enhance tendon and ligament healing by promoting cell proliferation, migration, and matrix synthesis through an unresolved mechanism. Ultrasound treatment also induces closure of nonunion fractures, at a success rate (85% of cases) similar to that of surgical intervention (68-96%) while avoiding the complications associated with surgery. The regulation of cell adhesion necessary for wound healing depends on cooperative engagement of the extracellular matrix receptors, integrin and syndecan, as exemplified by the wound healing defects observed in syndecan- and integrin-knock-out mice. This report distinguishes the influence of ultrasound on signals downstream of the prototypic fibronectin receptors, α5β1 integrin and syndecan-4, which cooperate to regulate Rac1 and RhoA. Ultrasonic stimulation fails to activate integrins or induce cell spreading on poor, electrostatic ligands. By contrast, ultrasound treatment overcomes the necessity of engagement or expression of syndecan-4 during the process of focal adhesion formation, which normally requires simultaneous engagement of both receptors. Ultrasound exerts an influence downstream of syndecan-4 and PKCα to specifically activate Rac1, itself a critical regulator of tissue repair, and to a lesser extent RhoA. The ability of ultrasound to bypass syndecan-4 signaling, which is known to facilitate efficient tissue repair, explains the reduction in healing times observed in ultrasound-treated patients. By substituting for one of the key axes of adhesion-dependent signaling, ultrasound therapy has considerable potential as a clinical technique. PMID:19147498

  2. Onset in abdominal muscles recorded simultaneously by ultrasound imaging and intramuscular electromyography.

    PubMed

    Vasseljen, Ottar; Fladmark, Anne M; Westad, Christian; Torp, Hans G

    2009-04-01

    Delayed onset of muscle activity in abdominal muscles has been related to low back pain. To investigate this in larger clinical trials it would be beneficial if non-invasive and less cumbersome alternatives to intramuscular electromyography (EMG) were available. This study was designed to compare onset of muscle activity recorded by intramuscular EMG to onset of muscle deformations by ultrasound imaging. Muscle deformations were recorded by two ultrasound imaging modes at high time resolution (m-mode and tissue velocity) in separate sessions and compared to simultaneously recorded intramuscular EMG in three abdominal muscles. Tissue velocity imaging was converted to strain rate which measures deformation velocity gradients within small regions, giving information about the rate of local tissue shortening or lengthening along the beam axis. Onsets in transversus abdominis (TrA), obliquus internus abdominis (OI) and obliquus externus abdominis (OE) were recorded during rapid arm flexions in ten healthy subjects. During ultrasound m-mode recordings, the results showed that mean onsets by EMG were detected 7 ms (95% CI of mean difference; +/-4 ms) and 2 ms (95% CI of mean difference; +/-6 ms) before concurrent ultrasound m-mode detected onsets in TrA and OI, respectively. In contrast, OE onset was recorded 54 ms (95% CI of bias; +/-16 ms) later by EMG compared to ultrasound m-mode. The discrepancy of ultrasound m-mode to accurately record onset in OE was practically corrected in the ultrasound-based strain rate recordings. However, this could only be applied on half of the subjects due to the angle dependency between the ultrasound beam and the direction of the contraction in strain rate recordings. The angle dependency needs to be further explored.

  3. Ultrasound-guided drug delivery in cancer

    PubMed Central

    2017-01-01

    Recent advancements in ultrasound and microbubble (USMB) mediated drug delivery technology has shown that this approach can improve spatially confined delivery of drugs and genes to target tissues while reducing systemic dose and toxicity. The mechanism behind enhanced delivery of therapeutics is sonoporation, the formation of openings in the vasculature, induced by ultrasound-triggered oscillations and destruction of microbubbles. In this review, progress and challenges of USMB mediated drug delivery are summarized, with special focus on cancer therapy. PMID:28607323

  4. Dual-Frequency Piezoelectric Transducers for Contrast Enhanced Ultrasound Imaging

    PubMed Central

    Martin, K. Heath; Lindsey, Brooks D.; Ma, Jianguo; Lee, Mike; Li, Sibo; Foster, F. Stuart; Jiang, Xiaoning; Dayton, Paul A.

    2014-01-01

    For many years, ultrasound has provided clinicians with an affordable and effective imaging tool for applications ranging from cardiology to obstetrics. Development of microbubble contrast agents over the past several decades has enabled ultrasound to distinguish between blood flow and surrounding tissue. Current clinical practices using microbubble contrast agents rely heavily on user training to evaluate degree of localized perfusion. Advances in separating the signals produced from contrast agents versus surrounding tissue backscatter provide unique opportunities for specialized sensors designed to image microbubbles with higher signal to noise and resolution than previously possible. In this review article, we describe the background principles and recent developments of ultrasound transducer technology for receiving signals produced by contrast agents while rejecting signals arising from soft tissue. This approach relies on transmitting at a low-frequency and receiving microbubble harmonic signals at frequencies many times higher than the transmitted frequency. Design and fabrication of dual-frequency transducers and the extension of recent developments in transducer technology for dual-frequency harmonic imaging are discussed. PMID:25375755

  5. Dual-frequency piezoelectric transducers for contrast enhanced ultrasound imaging.

    PubMed

    Martin, K Heath; Lindsey, Brooks D; Ma, Jianguo; Lee, Mike; Li, Sibo; Foster, F Stuart; Jiang, Xiaoning; Dayton, Paul A

    2014-11-04

    For many years, ultrasound has provided clinicians with an affordable and effective imaging tool for applications ranging from cardiology to obstetrics. Development of microbubble contrast agents over the past several decades has enabled ultrasound to distinguish between blood flow and surrounding tissue. Current clinical practices using microbubble contrast agents rely heavily on user training to evaluate degree of localized perfusion. Advances in separating the signals produced from contrast agents versus surrounding tissue backscatter provide unique opportunities for specialized sensors designed to image microbubbles with higher signal to noise and resolution than previously possible. In this review article, we describe the background principles and recent developments of ultrasound transducer technology for receiving signals produced by contrast agents while rejecting signals arising from soft tissue. This approach relies on transmitting at a low-frequency and receiving microbubble harmonic signals at frequencies many times higher than the transmitted frequency. Design and fabrication of dual-frequency transducers and the extension of recent developments in transducer technology for dual-frequency harmonic imaging are discussed.

  6. Synergistic advances in diagnostic and therapeutic medical ultrasound

    NASA Astrophysics Data System (ADS)

    Lizzi, Frederic L.

    2003-04-01

    Significant advances are more fully exploiting ultrasound's potential for noninvasive diagnosis and treatment. Therapeutic systems employ intense focused beams to thermally kill cancer cells in, e.g., prostate; to stop bleeding; and to treat specific diseases (e.g., glaucoma). Diagnostic ultrasound techniques can quantitatively image an increasingly broad spectrum of physical tissue attributes. An exciting aspect of this progress is the emerging synergy between these modalities. Advanced diagnostic techniques may contribute at several stages in therapy. For example, treatment planning for small ocular tumors uses 50-MHz, 3-D ultrasonic images with 0.05-mm resolution. Thermal simulations employ these images to evaluate desired and undesired effects using exposure stategies with specially designed treatment beams. Therapy beam positioning can use diagnostic elastography to sense tissue motion induced by radiation pressure from high-intensity treatment beams. Therapy monitoring can sense lesion formation using elastography motion sensing (to detect the increased stiffness in lesions); harmonic imaging (to sense altered nonlinear properties); and spectrum analysis images (depicting changes in the sizes, concentration, and configuration of sub-resolution structures.) Experience from these applications will greatly expand the knowledge of acoustic phenomena in living tissues and should lead to further advances in medical ultrasound.

  7. Detection of tissue coagulation by decorrelation of ultrasonic echo signals in cavitation-enhanced high-intensity focused ultrasound treatment.

    PubMed

    Yoshizawa, Shin; Matsuura, Keiko; Takagi, Ryo; Yamamoto, Mariko; Umemura, Shin-Ichiro

    2016-01-01

    A noninvasive technique to monitor thermal lesion formation is necessary to ensure the accuracy and safety of high-intensity focused ultrasound (HIFU) treatment. The purpose of this study is to ultrasonically detect the tissue change due to thermal coagulation in the HIFU treatment enhanced by cavitation microbubbles. An ultrasound imaging probe transmitted plane waves at a center frequency of 4.5 MHz. Ultrasonic radio-frequency (RF) echo signals during HIFU exposure at a frequency of 1.2 MHz were acquired. Cross-correlation coefficients were calculated between in-phase and quadrature (IQ) data of two B-mode images with an interval time of 50 and 500 ms for the estimation of the region of cavitation and coagulation, respectively. Pathological examination of the coagulated tissue was also performed to compare with the corresponding ultrasonically detected coagulation region. The distribution of minimum hold cross-correlation coefficient between two sets of IQ data with 50-ms intervals was compared with a pulse inversion (PI) image. The regions with low cross-correlation coefficients approximately corresponded to those with high brightness in the PI image. The regions with low cross-correlation coefficients in 500-ms intervals showed a good agreement with those with significant change in histology. The results show that the regions of coagulation and cavitation could be ultrasonically detected as those with low cross-correlation coefficients between RF frames with certain intervals. This method will contribute to improve the safety and accuracy of the HIFU treatment enhanced by cavitation microbubbles.

  8. Recent advances of ultrasound imaging in dentistry--a review of the literature.

    PubMed

    Marotti, Juliana; Heger, Stefan; Tinschert, Joachim; Tortamano, Pedro; Chuembou, Fabrice; Radermacher, Klaus; Wolfart, Stefan

    2013-06-01

    Ultrasonography as an imaging modality in dentistry has been extensively explored in recent years due to several advantages that diagnostic ultrasound provides. It is a non-invasive, inexpensive, painless method and unlike X-ray, it does not cause harmful ionizing radiation. Ultrasound has a promising future as a diagnostic imaging tool in all specialties in dentistry, for both hard and soft tissue detection. The aim of this review is to provide the scientific community and clinicians with an overview of the most recent advances of ultrasound imaging in dentistry. The use of ultrasound is described and discussed in the fields of dental scanning, caries detection, dental fractures, soft tissue and periapical lesions, maxillofacial fractures, periodontal bony defects, gingival and muscle thickness, temporomandibular disorders, and implant dentistry. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. The feasibility of non-contact ultrasound for medical imaging.

    PubMed

    Clement, G T; Nomura, H; Adachi, H; Kamakura, T

    2013-09-21

    High intensity focused ultrasound in air may provide a means for medical and biological imaging without direct coupling of an ultrasound probe. In this study, an approach based on highly focused ultrasound in air is described and the feasibility of the technique is assessed. The overall method is based on the observations that (1) ultrasound in air has superior focusing ability and stronger nonlinear harmonic generation as compared to tissue propagation and (2) a tightly focused field directed into tissue causes point-like spreading that may be regarded as a source for generalized diffraction tomography. Simulations of a spherically-curved transducer are performed, where the transducer's radiation pattern is directed from air into tissue. It is predicted that a focal pressure of 162 dB (2.5 kPa) is sufficient to direct ultrasound through the body, and provide a small but measurable signal (∼1 mPa) upon exit. Based on the simulations, a 20 cm diameter array consisting of 298 transducers is constructed. For this feasibility study, a 40 kHz resonance frequency is selected based on the commercial availability of such transducers. The array is used to focus through water and acrylic phantoms, and the time history of the exiting signal is evaluated. Sufficient data are acquired to demonstrate a low-resolution tomographic reconstruction. Finally, to demonstrate the feasibility to record a signal in vivo, a 75 mm × 55 mm section of a human hand is imaged in a C-mode configuration.

  10. ACOUSTIC CHARACTERIZATION AND PHARAMACOKINETIC ANALYSES OF NEW NANOBUBBLE ULTRASOUND CONTRAST AGENTS

    PubMed Central

    Wu, Hanping; Rognin, Nicolas G.; Krupka, Tianyi M.; Solorio, Luis; Yoshiara, Hiroki; Guenette, Gilles; Sanders, Christoher; Kamiyama, Naohisa; Exner, Agata A.

    2013-01-01

    In contrast to the clinically used microbubble ultrasound contrast agents, nanoscale bubbles (or nanobubbles) may potentially extravasate into tumors that exhibit more permeable vasculature, facilitating targeted molecular imaging and drug delivery. Our group recently presented a simple strategy using the non-ionic surfactant Pluronic as a size control excipient to produce nanobubbles with a mean diameter of 200 nm that exhibited stability and echogenicity on par with microbubbles. The objective of this study was to carry out an in-depth characterization of nanobubble properties as compared with Definity microbubbles, both in vitro and in vivo. Through use of a tissue-mimicking phantom, in vitro experiments measured the echogenicity of the contrast agent solutions and the contrast agent dissolution rate over time. Nanobubbles were found to be more echogenic than Definity microbubbles at three different harmonic frequencies (8, 6.2 and 3.5 MHz). Definity microbubbles also dissolved 1.67 times faster than nanobubbles. Pharmacokinetic studies were then performed in vivo in a subcutaneous human colorectal adenocarcinoma (LS174T) in mice. The peak enhancement and decay rates of contrast agents after bolus injection in the liver, kidney and tumor were analyzed. No significant differences were observed in peak enhancement between the nanobubble and Definity groups in the three tested regions (tumor, liver and kidney). However, the decay rates of nanobubbles in tumor and kidney were significantly slower than those of Definity in the first 200-s fast initial phase. There were no significant differences in the decay rate in the liver in the initial phase or in three regions of interest in the terminal phase. Our results suggest that the stability and acoustic properties of the new nanobubble contrast agents are superior to those of the clinically used Definity microbubbles. The slower washout of nanobubbles in tumors suggests potential entrapment of the bubbles within the

  11. Practice guideline for the performance of breast ultrasound elastography.

    PubMed

    Lee, Su Hyun; Chang, Jung Min; Cho, Nariya; Koo, Hye Ryoung; Yi, Ann; Kim, Seung Ja; Youk, Ji Hyun; Son, Eun Ju; Choi, Seon Hyeong; Kook, Shin Ho; Chung, Jin; Cha, Eun Suk; Park, Jeong Seon; Jung, Hae Kyoung; Ko, Kyung Hee; Choi, Hye Young; Ryu, Eun Bi; Moon, Woo Kyung

    2014-01-01

    Ultrasound (US) elastography is a valuable imaging technique for tissue characterization. Two main types of elastography, strain and shear-wave, are commonly used to image breast tissue. The use of elastography is expected to increase, particularly with the increased use of US for breast screening. Recently, the US elastographic features of breast masses have been incorporated into the 2nd edition of the Breast Imaging Reporting and Data System (BI-RADS) US lexicon as associated findings. This review suggests practical guidelines for breast US elastography in consensus with the Korean Breast Elastography Study Group, which was formed in August 2013 to perform a multicenter prospective study on the use of elastography for US breast screening. This article is focused on the role of elastography in combination with B-mode US for the evaluation of breast masses. Practical tips for adequate data acquisition and the interpretation of elastography results are also presented.

  12. Quantitative assessment of cerebral glucose metabolic rates after blood-brain barrier disruption induced by focused ultrasound using FDG-MicroPET.

    PubMed

    Yang, Feng-Yi; Chang, Wen-Yuan; Chen, Jyh-Cheng; Lee, Lin-Chien; Hung, Yi-Shun

    2014-04-15

    The goal of this study was to evaluate the pharmacokinetics of (18)F-2-fluoro-2-deoxy-d-glucose ((18)F-FDG) and the expression of glucose transporter 1 (GLUT1) protein after blood-brain barrier (BBB) disruption of normal rat brains by focused ultrasound (FUS). After delivery of an intravenous bolus of ~37 MBq (1 mCi) (18)F-FDG, dynamic positron emission tomography scans were performed on rats with normal brains and those whose BBBs had been disrupted by FUS. Arterial blood sampling was collected throughout the scanning procedure. A 2-tissue compartmental model was used to estimate (18)F-FDG kinetic parameters in brain tissues. The rate constants Ki, K1, and k3 were assumed to characterize the uptake, transport, and hexokinase activity, respectively, of (18)F-FDG. The uptake of (18)F-FDG in brains significantly decreased immediately after the blood-brain barrier was disrupted. At the same time, the derived values of Ki, K1, and k3 for the sonicated brains were significantly lower than those for the control brains. In agreement with the reduction in glucose, Western blot analyses confirmed that focused ultrasound exposure significantly reduced the expression of GLUT1 protein in the brains. Furthermore, the effect of focused ultrasound on glucose uptake was transient and reversible 24h after sonication. Our results indicate that focused ultrasound may inhibit GLUT1 expression to decrease the glucose uptake in brain tissue during the period of BBB disruption. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Ultrasound-aided high-resolution biophotonic imaging

    NASA Astrophysics Data System (ADS)

    Wang, Lihong V.

    2003-10-01

    We develop novel biophotonic imaging for early-cancer detection, a grand challenge in cancer research, using nonionizing electromagnetic and ultrasonic waves. Unlike ionizing x-ray radiation, nonionizing electromagnetic waves such as optical waves are safe for biomedical applications and reveal new contrast mechanisms and functional information. For example, our spectroscopic oblique-incidence reflectometry can detect skin cancers based on functional hemoglobin parameters and cell nuclear size with 95% accuracy. Unfortunately, electromagnetic waves in the nonionizing spectral region do not penetrate biological tissue in straight paths as do x-rays. Consequently, high-resolution tomography based on nonionizing electromagnetic waves alone, as demonstrated by our Mueller optical coherence tomography, is limited to superficial tissue imaging. Ultrasonic imaging, on the contrary, furnishes good imaging resolution but has poor contrast in early-stage tumors and has strong speckle artifacts as well. We developed ultrasound-mediated imaging modalities by combining electromagnetic and ultrasonic waves synergistically. The hybrid modalities yield speckle-free electromagnetic-contrast at ultrasonic resolution in relatively large biological tissue. In ultrasound-modulated (acousto)-optical tomography, a focused ultrasonic wave encodes diffuse laser light in scattering biological tissue. In photo-acoustic (thermo-acoustic) tomography, a low-energy laser (RF) pulse induces ultrasonic waves in biological tissue due to thermoelastic expansion.

  14. Clinical combination of multiphoton tomography and high frequency ultrasound imaging for evaluation of skin diseases

    NASA Astrophysics Data System (ADS)

    König, K.; Speicher, M.; Koehler, M. J.; Scharenberg, R.; Elsner, P.; Kaatz, M.

    2010-02-01

    For the first time, high frequency ultrasound imaging, multiphoton tomography, and dermoscopy were combined in a clinical study. Different dermatoses such as benign and malign skin cancers, connective tissue diseases, inflammatory skin diseases and autoimmune bullous skin diseases have been investigated with (i) state-of-the-art and highly sophisticated ultrasound systems for dermatology, (ii) the femtosecond-laser multiphoton tomograph DermaInspectTM and (iii) dermoscopes. Dermoscopy provides two-dimensional color imaging of the skin surface with a magnification up to 70x. Ultrasound images are generated from reflections of the emitted ultrasound signal, based on inhomogeneities of the tissue. These echoes are converted to electrical signals. Depending on the ultrasound frequency the penetration depth varies from about 1 mm to 16 mm in dermatological application. The 100-MHz-ultrasound system provided an axial resolution down to 16 μm and a lateral resolution down to 32 μm. In contrast to the wide-field ultrasound images, multiphoton tomography provided horizontal optical sections of 0.36×0.36 mm2 down to 200 μm tissue depth with submicron resolution. The autofluorescence of mitochondrial coenzymes, melanin, and elastin as well as the secondharmonic- generation signal of the collagen network were imaged. The combination of ultrasound and multiphoton tomography provides a novel opportunity for diagnostics of skin disorders.

  15. Updates on ultrasound research in implant dentistry: a systematic review of potential clinical indications.

    PubMed

    Bhaskar, Vaishnavi; Chan, Hsun-Liang; MacEachern, Mark; Kripfgans, Oliver D

    2018-05-23

    Ultrasonography has shown promising diagnostic value in dental implant imaging research; however, exactly how ultrasound was used and at what stage of implant therapy it can be applied has not been systematically evaluated. Therefore, the aim of this review is to investigate potential indications of ultrasound use in the three implant treatment phases, namely planning, intraoperative and postoperative phase. Eligible manuscripts were searched in major databases with a combination of key words related to the use of ultrasound imaging in implant therapy. An initial search yielded 414 articles, after further review, 28 articles were finally included for this systematic review. Ultrasound was found valuable, though at various development stages, for evaluating (1) soft tissues, (2) hard tissues (3) vital structures and (4) implant stability. B-mode, the main function to image anatomical structures of interest, has been evaluated in pre-clinical and clinical studies. Quantitative ultrasound parameters, e.g. sound speed and amplitude, are being developed to evaluate implant-bone stability, mainly in simulation and pre-clinical studies. Ultrasound could be potentially useful in all 3 treatment phases. In the planning phase, ultrasound could evaluate vital structures, tissue biotype, ridge width/density, and cortical bone thickness. During surgery, it can provide feedback by identifying vital structures and bone boundary. At follow-up visits, it could evaluate marginal bone level and implant stability. Understanding the current status of ultrasound imaging research for implant therapy would be extremely beneficial for accelerating translational research and its use in dental clinics.

  16. Three potential mechanisms for failure of high intensity focused ultrasound ablation in cardiac tissue.

    PubMed

    Laughner, Jacob I; Sulkin, Matthew S; Wu, Ziqi; Deng, Cheri X; Efimov, Igor R

    2012-04-01

    High intensity focused ultrasound (HIFU) has been introduced for treatment of cardiac arrhythmias because it offers the ability to create rapid tissue modification in confined volumes without directly contacting the myocardium. In spite of the benefits of HIFU, a number of limitations have been reported, which hindered its clinical adoption. In this study, we used a multimodal approach to evaluate thermal and nonthermal effects of HIFU in cardiac ablation. We designed a computer controlled system capable of simultaneous fluorescence mapping and HIFU ablation. Using this system, linear lesions were created in isolated rabbit atria (n=6), and point lesions were created in the ventricles of whole-heart (n=6) preparations by applying HIFU at clinical doses (4-16 W). Additionally, we evaluate the gap size in ablation lines necessary for conduction in atrial preparations (n=4). The voltage sensitive dye di-4-ANEPPS was used to assess functional damage produced by HIFU. Optical coherence tomography and general histology were used to evaluate lesion extent. Conduction block was achieved in 1 (17%) of 6 atrial preparations with a single ablation line. Following 10 minutes of rest, 0 (0%) of 6 atrial preparations demonstrated sustained conduction block from a single ablation line. Tissue displacement of 1 to 3 mm was observed during HIFU application due to acoustic radiation force along the lesion line. Additionally, excessive acoustic pressure and high temperature from HIFU generated cavitation, causing macroscopic tissue damage. A minimum gap size of 1.5 mm was found to conduct electric activity. This study identified 3 potential mechanisms responsible for the failure of HIFU ablation in cardiac tissues. Both acoustic radiation force and acoustic cavitation, in conjunction with inconsistent thermal deposition, can increase the risk of lesion discontinuity and result in gap sizes that promote ablation failure.

  17. Diagnostic and interventional musculoskeletal ultrasound: part 1. Fundamentals.

    PubMed

    Smith, Jay; Finnoff, Jonathan T

    2009-01-01

    Musculoskeletal ultrasound involves the use of high-frequency sound waves to image soft tissues and bony structures in the body for the purposes of diagnosing pathology or guiding real-time interventional procedures. Recently, an increasing number of physicians have integrated musculoskeletal ultrasound into their practices to facilitate patient care. Technological advancements, improved portability, and reduced costs continue to drive the proliferation of ultrasound in clinical medicine. This increased interest creates a need for education pertaining to all aspects of musculoskeletal ultrasound. The primary purpose of this article is to review diagnostic ultrasound technology and its potential clinical applications in the evaluation and treatment of patients with neurologic and musculoskeletal disorders. After reviewing this article, physicians should be able to (1) list the advantages and disadvantages of ultrasound compared with other available imaging modalities, (2) describe how ultrasound machines produce images using sound waves, (3) discuss the steps necessary to acquire and optimize an ultrasound image, (4) understand the different ultrasound appearances of tendons, nerves, muscles, ligaments, blood vessels, and bones, and (5) identify multiple applications for diagnostic and interventional musculoskeletal ultrasound in musculoskeletal practice. Part 1 of this 2-part article reviews the fundamentals of clinical ultrasonographic imaging, including relevant physics, equipment, training, image optimization, and scanning principles for diagnostic and interventional purposes.

  18. Towards predictive diagnosis and management of rotator cuff disease: using curvelet transform for edge detection and segmentation of tissue

    NASA Astrophysics Data System (ADS)

    Pai Raikar, Vipul; Kwartowitz, David M.

    2016-04-01

    Degradation and injury of the rotator cuff is one of the most common diseases of the shoulder among the general population. In orthopedic injuries, rotator cuff disease is only second to back pain in terms of overall reduced quality of life for patients. Clinically, this disease is managed via pain and activity assessment and diagnostic imaging using ultrasound and MRI. Ultrasound has been shown to have good accuracy for identification and measurement of rotator cuff tears. In our previous work, we have developed novel, real-time techniques to biomechanically assess the condition of the rotator cuff based on Musculoskeletal Ultrasound. Of the rotator cuff tissues, supraspinatus is the first that sees degradation and is the most commonly affected. In our work, one of the challenges lies in effectively segmenting and characterizing the supraspinatus. We are exploring the possibility of using curvelet transform for improving techniques to segment tissue in ultrasound. Curvelets have been shown to give optimal multi-scale representation of edges in images. They are designed to represent edges and singularities along curves in images which makes them an attractive proposition for use in ultrasound segmentation. In this work, we present a novel approach to the possibility of using curvelet transforms for automatic edge and feature extraction for the supraspinatus.

  19. A multimodal instrument for real-time in situ study of ultrasound and cavitation mediated drug delivery.

    PubMed

    Bian, Shuning; Seth, Anjali; Daly, Dan; Carlisle, Robert; Stride, Eleanor

    2017-03-01

    The development of a multimodal instrument capable of real-time in situ measurements of cavitation activity and effect in tissue mimicking phantoms during ultrasound and cavitation mediated drug delivery experiments is described here. The instrument features an acoustic arm that can expose phantoms to high-intensity focused-ultrasound while measuring cavitation activity and an optical arm that monitors cavitation effect using confocal microscopy. This combination of modalities allows real-time in situ characterisation of drug delivery in tissue and tissue mimicking phantoms during ultrasound and cavitation mediated drug delivery experiments. A representative result, obtained with a tissue mimicking phantom and acoustically activated droplets, is presented here as a demonstration of the instrument's capabilities and potential applications.

  20. Automatic characterization of neointimal tissue by intravascular optical coherence tomography.

    PubMed

    Ughi, Giovanni J; Steigerwald, Kristin; Adriaenssens, Tom; Desmet, Walter; Guagliumi, Giulio; Joner, Michael; D'hooge, Jan

    2014-02-01

    Intravascular optical coherence tomography (IVOCT) is rapidly becoming the method of choice for assessing vessel healing after stent implantation due to its unique axial resolution <20  μm. The amount of neointimal coverage is an important parameter. In addition, the characterization of neointimal tissue maturity is also of importance for an accurate analysis, especially in the case of drug-eluting and bioresorbable stent devices. Previous studies indicated that well-organized mature neointimal tissue appears as a high-intensity, smooth, and homogeneous region in IVOCT images, while lower-intensity signal areas might correspond to immature tissue mainly composed of acellular material. A new method for automatic neointimal tissue characterization, based on statistical texture analysis and a supervised classification technique, is presented. Algorithm training and validation were obtained through the use of 53 IVOCT images supported by histology data from atherosclerotic New Zealand White rabbits. A pixel-wise classification accuracy of 87% and a two-dimensional region-based analysis accuracy of 92% (with sensitivity and specificity of 91% and 93%, respectively) were found, suggesting that a reliable automatic characterization of neointimal tissue was achieved. This may potentially expand the clinical value of IVOCT in assessing the completeness of stent healing and speed up the current analysis methodologies (which are, due to their time- and energy-consuming character, not suitable for application in large clinical trials and clinical practice), potentially allowing for a wider use of IVOCT technology.

  1. Classification of prostate cancer grade using temporal ultrasound: in vivo feasibility study

    NASA Astrophysics Data System (ADS)

    Ghavidel, Sahar; Imani, Farhad; Khallaghi, Siavash; Gibson, Eli; Khojaste, Amir; Gaed, Mena; Moussa, Madeleine; Gomez, Jose A.; Siemens, D. Robert; Leveridge, Michael; Chang, Silvia; Fenster, Aaron; Ward, Aaron D.; Abolmaesumi, Purang; Mousavi, Parvin

    2016-03-01

    Temporal ultrasound has been shown to have high classification accuracy in differentiating cancer from benign tissue. In this paper, we extend the temporal ultrasound method to classify lower grade Prostate Cancer (PCa) from all other grades. We use a group of nine patients with mostly lower grade PCa, where cancerous regions are also limited. A critical challenge is to train a classifier with limited aggressive cancerous tissue compared to low grade cancerous tissue. To resolve the problem of imbalanced data, we use Synthetic Minority Oversampling Technique (SMOTE) to generate synthetic samples for the minority class. We calculate spectral features of temporal ultrasound data and perform feature selection using Random Forests. In leave-one-patient-out cross-validation strategy, an area under receiver operating characteristic curve (AUC) of 0.74 is achieved with overall sensitivity and specificity of 70%. Using an unsupervised learning approach prior to proposed method improves sensitivity and AUC to 80% and 0.79. This work represents promising results to classify lower and higher grade PCa with limited cancerous training samples, using temporal ultrasound.

  2. In vivo demonstration of ultrasound power delivery to charge implanted medical devices via acute and survival porcine studies

    PubMed Central

    Radziemski, Leon; Makin, Inder Raj S.

    2015-01-01

    Animal studies are an important step in proving the utility and safety of an ultrasound based implanted battery recharging system. To this end an Ultrasound Electrical Recharging System (USER™) was developed and tested. Experiments in vitro demonstrated power deliveries at the battery of up to 600 mW through 10 – 15 mm of tissue, 50 mW of power available at tissue depths of up to 50 mm, and the feasibility of using transducers bonded to titanium as used in medical implants. Acute in vivo studies in a porcine model were used to test reliability of power delivery, temperature excursions, and cooling techniques. The culminating five-week survival study involved repeated battery charging, a total of 10.5 hours of ultrasound exposure of the intervening living tissue, with an average RF input to electrical charging efficiency of 20%. This study was potentially the first long term cumulative living-tissue exposure using transcutaneous ultrasound power transmission to an implanted receiver in situ. Histology of the exposed tissue showed changes attributable primarily due to surgical implantation of the prototype device, and no damage due to the ultrasound exposure. The in vivo results are indicative of the potential safe delivery of ultrasound energy for a defined set of source conditions for charging batteries within implants. PMID:26243566

  3. MR thermometry characterization of a hyperthermia ultrasound array designed using the k-space computational method

    PubMed Central

    Al-Bataineh, Osama M; Collins, Christopher M; Park, Eun-Joo; Lee, Hotaik; Smith, Nadine Barrie

    2006-01-01

    Background Ultrasound induced hyperthermia is a useful adjuvant to radiation therapy in the treatment of prostate cancer. A uniform thermal dose (43°C for 30 minutes) is required within the targeted cancerous volume for effective therapy. This requires specific ultrasound phased array design and appropriate thermometry method. Inhomogeneous, acoustical, three-dimensional (3D) prostate models and economical computational methods provide necessary tools to predict the appropriate shape of hyperthermia phased arrays for better focusing. This research utilizes the k-space computational method and a 3D human prostate model to design an intracavitary ultrasound probe for hyperthermia treatment of prostate cancer. Evaluation of the probe includes ex vivo and in vivo controlled hyperthermia experiments using the noninvasive magnetic resonance imaging (MRI) thermometry. Methods A 3D acoustical prostate model was created using photographic data from the Visible Human Project®. The k-space computational method was used on this coarse grid and inhomogeneous tissue model to simulate the steady state pressure wavefield of the designed phased array using the linear acoustic wave equation. To ensure the uniformity and spread of the pressure in the length of the array, and the focusing capability in the width of the array, the equally-sized elements of the 4 × 20 elements phased array were 1 × 14 mm. A probe was constructed according to the design in simulation using lead zerconate titanate (PZT-8) ceramic and a Delrin® plastic housing. Noninvasive MRI thermometry and a switching feedback controller were used to accomplish ex vivo and in vivo hyperthermia evaluations of the probe. Results Both exposimetry and k-space simulation results demonstrated acceptable agreement within 9%. With a desired temperature plateau of 43.0°C, ex vivo and in vivo controlled hyperthermia experiments showed that the MRI temperature at the steady state was 42.9 ± 0.38°C and 43.1 ± 0.80

  4. MR thermometry characterization of a hyperthermia ultrasound array designed using the k-space computational method.

    PubMed

    Al-Bataineh, Osama M; Collins, Christopher M; Park, Eun-Joo; Lee, Hotaik; Smith, Nadine Barrie

    2006-10-25

    Ultrasound induced hyperthermia is a useful adjuvant to radiation therapy in the treatment of prostate cancer. A uniform thermal dose (43 degrees C for 30 minutes) is required within the targeted cancerous volume for effective therapy. This requires specific ultrasound phased array design and appropriate thermometry method. Inhomogeneous, acoustical, three-dimensional (3D) prostate models and economical computational methods provide necessary tools to predict the appropriate shape of hyperthermia phased arrays for better focusing. This research utilizes the k-space computational method and a 3D human prostate model to design an intracavitary ultrasound probe for hyperthermia treatment of prostate cancer. Evaluation of the probe includes ex vivo and in vivo controlled hyperthermia experiments using the noninvasive magnetic resonance imaging (MRI) thermometry. A 3D acoustical prostate model was created using photographic data from the Visible Human Project. The k-space computational method was used on this coarse grid and inhomogeneous tissue model to simulate the steady state pressure wavefield of the designed phased array using the linear acoustic wave equation. To ensure the uniformity and spread of the pressure in the length of the array, and the focusing capability in the width of the array, the equally-sized elements of the 4 x 20 elements phased array were 1 x 14 mm. A probe was constructed according to the design in simulation using lead zerconate titanate (PZT-8) ceramic and a Delrin plastic housing. Noninvasive MRI thermometry and a switching feedback controller were used to accomplish ex vivo and in vivo hyperthermia evaluations of the probe. Both exposimetry and k-space simulation results demonstrated acceptable agreement within 9%. With a desired temperature plateau of 43.0 degrees C, ex vivo and in vivo controlled hyperthermia experiments showed that the MRI temperature at the steady state was 42.9 +/- 0.38 degrees C and 43.1 +/- 0.80 degrees C

  5. Characterization of drinking water treatment sludge after ultrasound treatment.

    PubMed

    Zhou, Zhiwei; Yang, Yanling; Li, Xing; Zhang, Yang; Guo, Xuan

    2015-05-01

    Ultrasonic technology alone or the combination of ultrasound with alkaline or thermal hydrolysis as pretreatment for anaerobic digestion of activated sludge has been extensively documented. However, there are few reports on ultrasound as pretreatment of drinking water treatment sludge (DWTS), and thereby the characteristic variability of sonicated DWTS has not been fully examined. This research presents a lab-scale study on physical, chemical and biological characteristics of a DWTS sample collected from a water plant after ultrasonic treatment via a bath/probe sonoreactor. By doing this work, we provide implications for using ultrasound as pretreatment of enhanced coagulation of recycling sludge, and for the conditioning of water and wastewater mixed sludge by ultrasound combined with polymers. Our results indicate that the most vigorous DWTS disintegration quantified by particles' size reduction and organic solubilization is achieved with 5 W/ml for 30 min ultra-sonication (specific energy of 1590 kWh/kg TS). The Brunauer, Emmett and Teller (BET) specific surface area of sonicated DWTS flocs increase as ultra-sonication prolongs at lower energy densities (0.03 and 1 W/ml), while decrease as ultra-sonication prolongs at higher energy densities (3 and 5 W/ml). Additionally, the pH and zeta potential of sonicated DWTS slightly varies under all conditions observed. A shorter sonication with higher energy density plays a more effective role in restraining microbial activity than longer sonication with lower energy density. Copyright © 2015. Published by Elsevier B.V.

  6. Use of high-resolution ultrasound to measure changes in plantar fascia thickness resulting from tissue creep in runners and walkers.

    PubMed

    Welk, Aaron B; Haun, Daniel W; Clark, Thomas B; Kettner, Norman W

    2015-01-01

    This study sought to use high-resolution ultrasound to measure changes in plantar fascia thickness as a result of tissue creep generated by walking and running. Independent samples of participants were obtained. Thirty-six walkers and 25 runners walked on a treadmill for 10 minutes or ran for 30 minutes, respectively. Standardized measures of the thickness of the plantar fascia were obtained in both groups using high-resolution ultrasound. The mean thickness of the plantar fascia was measured immediately before and after participation. The mean plantar fascia thickness was decreased by 0.06 ± 0.33 mm SD after running and 0.03 ± 0.22 mm SD after walking. The difference between groups was not significant. Although the parameters of this study did not produce significant changes in the plantar fascia thickness, a slightly higher change in the mean thickness of the plantar fascia in the running group deserves further investigation. Copyright © 2015 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  7. Tissue Pulsatility Imaging of Cerebral Vasoreactivity during Hyperventilation

    PubMed Central

    Kucewicz, John C.; Dunmire, Barbrina; Giardino, Nicholas D.; Leotta, Daniel F.; Paun, Marla; Dager, Stephen R.; Beach, Kirk W.

    2008-01-01

    Tissue Pulsatility Imaging (TPI) is an ultrasonic technique that is being developed at the University of Washington to measure tissue displacement or strain due to blood flow over the cardiac and respiratory cycles. This technique is based in principle on plethysmography, an older non-ultrasound technology for measuring expansion of a whole limb or body part due to perfusion. TPI adapts tissue Doppler signal processing methods to measure the “plethysmographic” signal from hundreds or thousands of sample volumes in an ultrasound image plane. This paper presents a feasibility study to determine if TPI can be used to assess cerebral vasoreactivity. Ultrasound data were collected transcranially through the temporal acoustic window from four subjects before, during, and after voluntary hyperventilation. In each subject, decreases in tissue pulsatility during hyperventilation were observed that were statistically correlated with the subject’s end-tidal CO2 measurements. PMID:18336991

  8. Imaging in gynecological disease (9): clinical and ultrasound characteristics of tubal cancer.

    PubMed

    Ludovisi, M; De Blasis, I; Virgilio, B; Fischerova, D; Franchi, D; Pascual, M A; Savelli, L; Epstein, E; Van Holsbeke, C; Guerriero, S; Czekierdowski, A; Zannoni, G; Scambia, G; Jurkovic, D; Rossi, A; Timmerman, D; Valentin, L; Testa, A C

    2014-03-01

    To describe clinical history and ultrasound findings in patients with tubal carcinoma. Patients with a histological diagnosis of tubal cancer who had undergone preoperative ultrasound examination were identified from the databases of 13 ultrasound centers. The tumors were described by the principal investigator at each contributing center on the basis of ultrasound images, ultrasound reports and research protocols (when applicable) using the terms and definitions of the International Ovarian Tumor Analysis (IOTA) group. In addition, three authors reviewed together all available digital ultrasound images and described them using subjective evaluation of gray-scale and color Doppler ultrasound findings. We identified 79 women with a histological diagnosis of primary tubal cancer, 70 of whom (89%) had serous carcinomas and 46 (58%) of whom presented at FIGO stage III. Forty-nine (62%) women were asymptomatic (incidental finding), whilst the remaining 30 complained of abdominal bloating or pain. Fifty-three (67%) tumors were described as solid at ultrasound examination, 14 (18%) as multilocular solid, 10 (13%) as unilocular solid and two (3%) as unilocular. No tumor was described as a multilocular mass. Most tumors (70/79, 89%) were moderately or very well vascularized on color or power Doppler ultrasound. Normal ovarian tissue was identified adjacent to the tumor in 51% (39/77) of cases. Three types of ultrasound appearance were identified as being typical of tubal carcinoma using pattern recognition: a sausage-shaped cystic structure with solid tissue protruding into it like a papillary projection (11/62, 18%); a sausage-shaped cystic structure with a large solid component filling part of the cyst cavity (13/62, 21%); an ovoid or oblong completely solid mass (36/62, 58%). A well vascularized ovoid or sausage-shaped structure, either completely solid or with large solid component(s) in the pelvis, should raise the suspicion of tubal cancer, especially if normal

  9. Focused ultrasound thermal therapy system with ultrasound image guidance and temperature measurement feedback.

    PubMed

    Lin, Kao-Han; Young, Sun-Yi; Hsu, Ming-Chuan; Chan, Hsu; Chen, Yung-Yaw; Lin, Win-Li

    2008-01-01

    In this study, we developed a focused ultrasound (FUS) thermal therapy system with ultrasound image guidance and thermocouple temperature measurement feedback. Hydraulic position devices and computer-controlled servo motors were used to move the FUS transducer to the desired location with the measurement of actual movement by linear scale. The entire system integrated automatic position devices, FUS transducer, power amplifier, ultrasound image system, and thermocouple temperature measurement into a graphical user interface. For the treatment procedure, a thermocouple was implanted into a targeted treatment region in a tissue-mimicking phantom under ultrasound image guidance, and then the acoustic interference pattern formed by image ultrasound beam and low-power FUS beam was employed as image guidance to move the FUS transducer to have its focal zone coincident with the thermocouple tip. The thermocouple temperature rise was used to determine the sonication duration for a suitable thermal lesion as a high power was turned on and ultrasound image was used to capture the thermal lesion formation. For a multiple lesion formation, the FUS transducer was moved under the acoustic interference guidance to a new location and then it sonicated with the same power level and duration. This system was evaluated and the results showed that it could perform two-dimensional motion control to do a two-dimensional thermal therapy with a small localization error 0.5 mm. Through the user interface, the FUS transducer could be moved to heat the target region with the guidance of ultrasound image and acoustic interference pattern. The preliminary phantom experimental results demonstrated that the system could achieve the desired treatment plan satisfactorily.

  10. Evaluation of ultrasound techniques for brain injury detection

    NASA Astrophysics Data System (ADS)

    Mobley, Joel; Kasili, Paul M.; Norton, Stephen J.; Vo-Dinh, Tuan

    1998-05-01

    In this work, we examine the physics underlying wave propagation in the head to evaluate various ultrasonic transducers for use in a brian injury detection device. The results of measurements of the attenuation coefficient and phase velocity for ultrasonic propagation in samples of brain tissue and skull bone from sheep are presented. The material properties are then used to investigate the propagation of ultrasonic pressure fields in the head. The ultrasound fields for three different transducers are calculated for propagation in a simulated brain/skull model. The model is constructed using speed-of-sound and mass density values of the two tissue types. The impact of the attenuation on the ultrasound fields is then examined. Finally, the relevant points drawn from these discussions are summarized. We hope to minimize the confounding effects of the skull by using sub-MHz ultrasound while maintaining the necessary temporal and spatial resolution to successfully detect injury in the brain.

  11. Ultrasound strain imaging using Barker code

    NASA Astrophysics Data System (ADS)

    Peng, Hui; Tie, Juhong; Guo, Dequan

    2017-01-01

    Ultrasound strain imaging is showing promise as a new way of imaging soft tissue elasticity in order to help clinicians detect lesions or cancers in tissues. In this paper, Barker code is applied to strain imaging to improve its quality. Barker code as a coded excitation signal can be used to improve the echo signal-to-noise ratio (eSNR) in ultrasound imaging system. For the Baker code of length 13, the sidelobe level of the matched filter output is -22dB, which is unacceptable for ultrasound strain imaging, because high sidelobe level will cause high decorrelation noise. Instead of using the conventional matched filter, we use the Wiener filter to decode the Barker-coded echo signal to suppress the range sidelobes. We also compare the performance of Barker code and the conventional short pulse in simulation method. The simulation results demonstrate that the performance of the Wiener filter is much better than the matched filter, and Baker code achieves higher elastographic signal-to-noise ratio (SNRe) than the short pulse in low eSNR or great depth conditions due to the increased eSNR with it.

  12. Quantitative Ultrasound Imaging Using Acoustic Backscatter Coefficients.

    NASA Astrophysics Data System (ADS)

    Boote, Evan Jeffery

    Current clinical ultrasound scanners render images which have brightness levels related to the degree of backscattered energy from the tissue being imaged. These images offer the interpreter a qualitative impression of the scattering characteristics of the tissue being examined, but due to the complex factors which affect the amplitude and character of the echoed acoustic energy, it is difficult to make quantitative assessments of scattering nature of the tissue, and thus, difficult to make precise diagnosis when subtle disease effects are present. In this dissertation, a method of data reduction for determining acoustic backscatter coefficients is adapted for use in forming quantitative ultrasound images of this parameter. In these images, the brightness level of an individual pixel corresponds to the backscatter coefficient determined for the spatial position represented by that pixel. The data reduction method utilized rigorously accounts for extraneous factors which affect the scattered echo waveform and has been demonstrated to accurately determine backscatter coefficients under a wide range of conditions. The algorithms and procedures used to form backscatter coefficient images are described. These were tested using tissue-mimicking phantoms which have regions of varying scattering levels. Another phantom has a fat-mimicking layer for testing these techniques under more clinically relevant conditions. Backscatter coefficient images were also formed of in vitro human liver tissue. A clinical ultrasound scanner has been adapted for use as a backscatter coefficient imaging platform. The digital interface between the scanner and the computer used for data reduction are described. Initial tests, using phantoms are presented. A study of backscatter coefficient imaging of in vivo liver was performed using several normal, healthy human subjects.

  13. Multiscale Characterization of Engineered Cardiac Tissue Architecture.

    PubMed

    Drew, Nancy K; Johnsen, Nicholas E; Core, Jason Q; Grosberg, Anna

    2016-11-01

    In a properly contracting cardiac muscle, many different subcellular structures are organized into an intricate architecture. While it has been observed that this organization is altered in pathological conditions, the relationship between length-scales and architecture has not been properly explored. In this work, we utilize a variety of architecture metrics to quantify organization and consistency of single structures over multiple scales, from subcellular to tissue scale as well as correlation of organization of multiple structures. Specifically, as the best way to characterize cardiac tissues, we chose the orientational and co-orientational order parameters (COOPs). Similarly, neonatal rat ventricular myocytes were selected for their consistent architectural behavior. The engineered cells and tissues were stained for four architectural structures: actin, tubulin, sarcomeric z-lines, and nuclei. We applied the orientational metrics to cardiac cells of various shapes, isotropic cardiac tissues, and anisotropic globally aligned tissues. With these novel tools, we discovered: (1) the relationship between cellular shape and consistency of self-assembly; (2) the length-scales at which unguided tissues self-organize; and (3) the correlation or lack thereof between organization of actin fibrils, sarcomeric z-lines, tubulin fibrils, and nuclei. All of these together elucidate some of the current mysteries in the relationship between force production and architecture, while raising more questions about the effect of guidance cues on self-assembly function. These types of metrics are the future of quantitative tissue engineering in cardiovascular biomechanics.

  14. Survey of current practice in clinical transvaginal ultrasound scanning in the UK

    PubMed Central

    Shaw, Adam; Lees, Christoph

    2015-01-01

    During transvaginal ultrasound scanning, the fetus and other sensitive tissues are placed close to the transducer. Heating of these tissues occurs by direct conduction from the transducer and by absorption of ultrasound in the tissue. The extent of any heating will depend on the equipment and settings used, the duration of the scan, imaging modes and other aspects of scanning practice. To ensure that scans are performed with minimum risk, staff should have an appropriate knowledge of safety and follow guidelines issued by professional bodies. An online survey aiming to document current practice in transvaginal ultrasound in the UK was created and distributed to individuals performing this type of scanning. The survey posed questions about the respondents, the departments where scans were performed, the equipment used, knowledge of ultrasound safety, scanning practice and the frequency, duration and mode of transvaginal ultrasound scans for gynaecology, obstetrics and fertility applications. In all, 294 responses were obtained, mostly from sonographers (94%). From the analysis of the responses, it was clear that there was a good understanding of the general meaning of thermal and mechanical index and high awareness of guidelines issued by professional bodies. However, 40% of respondents stated that they rarely or never monitor Thermal or Mechanical indices during scanning. Scanning practice was consistent in terms of the duration of scans, scan protocols followed and use of imaging modes. The results highlight the importance of continued ultrasound safety training and promotion of safety guidelines to users. PMID:27433250

  15. Immediate postpartum ultrasound evaluation for suspected retained placental tissue in patients undergoing manual removal of placenta.

    PubMed

    Weissbach, T; Haikin-Herzberger, E; Bacci-Hugger, K; Shechter-Maor, G; Fejgin, M; Biron-Shental, T

    2015-09-01

    Approximately 1% of term deliveries are complicated by retained products of conception. Untreated, this condition may cause bleeding, infection and intrauterine adhesions. This study assessed whether performing routine bedside uterine ultrasound immediately after manual removal of the placenta reduced the occurrence of undiagnosed, retained products of conception and its associated complications. A retrospective study was conducted using the records of patients who delivered and underwent manual removal of placenta at a single obstetrics center over a 6-year period. The outcomes of patients who were assessed using immediate bedside ultrasound were compared to a similar group who were treated based on clinical evaluation alone. All patients underwent ultrasound examination prior to discharge. Outcome variables included the rate of additional interventions (medical or surgical), abnormal pre-discharge uterine ultrasound findings, postpartum hemorrhage rate, puerperal fever and length of hospital stay. A total of 399 charts were reviewed. Immediate post-procedural ultrasound was performed in 235 patients. The remaining 164 women did not undergo immediate post-procedural ultrasound. All patients underwent an ultrasound examination prior to discharge. Among the patients who had an immediate post-procedural ultrasound, 12 (5.1%) received immediate re-intervention (2 methergine, 6 curettage and 4 manual uterine revision) vs. no intervention in the second group (p<0.001). No statistically significant difference was found between the group of patients who had immediate post-procedural ultrasound and those who did not, in the rates of postpartum hemorrhage (3.1% vs. 0.7%, p=0.13), abnormal ultrasound findings prior to discharge (14.9% vs. 14.8%, p=0.96) or additional late intervention (7.2% vs. 7.9%, p=0.79), respectively. Our findings suggest that immediate, bedside uterine ultrasound examination after manual removal of placenta might not change patient outcomes

  16. A Hertzian contact mechanics based formulation to improve ultrasound elastography assessment of uterine cervical tissue stiffness.

    PubMed

    Briggs, Brandi N; Stender, Michael E; Muljadi, Patrick M; Donnelly, Meghan A; Winn, Virginia D; Ferguson, Virginia L

    2015-06-25

    Clinical practice requires improved techniques to assess human cervical tissue properties, especially at the internal os, or orifice, of the uterine cervix. Ultrasound elastography (UE) holds promise for non-invasively monitoring cervical stiffness throughout pregnancy. However, this technique provides qualitative strain images that cannot be linked to a material property (e.g., Young's modulus) without knowledge of the contact pressure under a rounded transvaginal transducer probe and correction for the resulting non-uniform strain dissipation. One technique to standardize elastogram images incorporates a material of known properties and uses one-dimensional, uniaxial Hooke's law to calculate Young's modulus within the compressed material half-space. However, this method does not account for strain dissipation and the strains that evolve in three-dimensional space. We demonstrate that an analytical approach based on 3D Hertzian contact mechanics provides a reasonable first approximation to correct for UE strain dissipation underneath a round transvaginal transducer probe and thus improves UE-derived estimates of tissue modulus. We validate the proposed analytical solution and evaluate sources of error using a finite element model. As compared to 1D uniaxial Hooke's law, the Hertzian contact-based solution yields significantly improved Young's modulus predictions in three homogeneous gelatin tissue phantoms possessing different moduli. We also demonstrate the feasibility of using this technique to image human cervical tissue, where UE-derived moduli estimations for the uterine cervix anterior lip agreed well with published, experimentally obtained values. Overall, UE with an attached reference standard and a Hertzian contact-based correction holds promise for improving quantitative estimates of cervical tissue modulus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Numerical simulations of clinical focused ultrasound functional neurosurgery

    NASA Astrophysics Data System (ADS)

    Pulkkinen, Aki; Werner, Beat; Martin, Ernst; Hynynen, Kullervo

    2014-04-01

    A computational model utilizing grid and finite difference methods were developed to simulate focused ultrasound functional neurosurgery interventions. The model couples the propagation of ultrasound in fluids (soft tissues) and solids (skull) with acoustic and visco-elastic wave equations. The computational model was applied to simulate clinical focused ultrasound functional neurosurgery treatments performed in patients suffering from therapy resistant chronic neuropathic pain. Datasets of five patients were used to derive the treatment geometry. Eight sonications performed in the treatments were then simulated with the developed model. Computations were performed by driving the simulated phased array ultrasound transducer with the acoustic parameters used in the treatments. Resulting focal temperatures and size of the thermal foci were compared quantitatively, in addition to qualitative inspection of the simulated pressure and temperature fields. This study found that the computational model and the simulation parameters predicted an average of 24 ± 13% lower focal temperature elevations than observed in the treatments. The size of the simulated thermal focus was found to be 40 ± 13% smaller in the anterior-posterior direction and 22 ± 14% smaller in the inferior-superior direction than in the treatments. The location of the simulated thermal focus was off from the prescribed target by 0.3 ± 0.1 mm, while the peak focal temperature elevation observed in the measurements was off by 1.6 ± 0.6 mm. Although the results of the simulations suggest that there could be some inaccuracies in either the tissue parameters used, or in the simulation methods, the simulations were able to predict the focal spot locations and temperature elevations adequately for initial treatment planning performed to assess, for example, the feasibility of sonication. The accuracy of the simulations could be improved if more precise ultrasound tissue properties (especially of the

  18. Characterization and morphology of atherosclerotic plaque of coronary arteries: utility of electron-beam tomography to detect non-calcified plaque: a comparison with conventional coronary angiography and intravascular ultrasound.

    PubMed

    Funabashi, Nobusada; Misumi, Kazuo; Ohnishi, Hiroyuki; Asano, Miki; Komuro, Issei

    2007-01-31

    Electron-beam tomography (EBT) may provide useful information about characterization and morphology of atherosclerotic plaque of coronary arteries. Twenty-six subjects (20 male, 6 female) with suspected coronary heart disease had two routine (r) and one enhanced (e) EBT scans to detect non-calcified plaque (NCP) in the coronary arterial lumen, and were compared with conventional coronary angiograms (CAG) and intravascular ultrasound (IVUS). Three had the sites, which did not have high CT values suggesting calcification in rEBT, nor which was not enhanced by contrast material in eEBT. One had the site with positive CT values that were supposed to be the proliferation intima or organized thrombus and at the corresponding site mixed plaque was observed in the IVUS image. The other two had the site with negative CT values that were supposed to be fat tissue with significant stenosis in CAG. We also made the cross-sectional images of the vessel and the morphology of the NCP, which projected into the lumen, could be evaluated. We could detect the NCP, differentiate fat tissue from soft tissue and evaluate the morphology of the plaque in EBT.

  19. [Prostate cancer detection by assessing stiffness of different tissues using shear wave ultrasound elastog- raphy].

    PubMed

    Glybochko, P V; Alyaev, Yu G; Amosov, A V; Krupinov, G E; Ganzha, T M; Vorobev, A V; Lumpov, I S; Semendyaev, R I

    2016-08-01

    Early detection of prostate cancer (PCa) remains a challenging issue. There are studies underway aimed to develop and implement new methods for prostate cancer screening by tumor imaging and obtaining tissue samples from suspicious areas for morphological examination. One of these new methods is shear wave ultrasound elastography (SWUE). The current literature is lacking sufficient coverage of informativeness and specificity of SWUE in the prostate cancer detection, there is no clear criteria for assessing tissue stiffness at different values of PSA and tumor grade, and in prostate hyperplasia and prostatitis. To evaluate the informativeness and specificity of SWUE compared with other diagnostic methods. SWUE has been used in the Clinic of Urology of Sechenov First MSMU since October 2015. During this period, 302 patients were examined using SWUE. SWUE was performed with Aixplorer ultrasound system (Super Sonic Imagine), which provides a single-stage SWUE imaging with both B-mode and real-time mode. The first group (prospective study) included 134 men aged 47 to 81 years with suspected prostate cancer scheduled to either initial or repeat prostate biopsy. PSA levels ranged from 4 to 24 ng/ml. The second group (retrospective study) comprised 120 men with confirmed prostate cancer and PSA levels between 4 and 90 ng/ml. The third group (the control group), comprised 48 healthy men whose PSA level did not exceed 3 ng/ml. All patients of the groups 1 and 2 underwent a standard comprehensive examination. Patients in group 1 were subsequently subjected to transrectal prostate biopsy guided by localization of areas with abnormal tissue stiffness. PCa was detected in 100 of 134 patients. 217 patients of groups 1 and 2 underwent radical prostatectomy. In 28 of them, the match between the cancer location and differentiation in the removed prostate and SWUE findings before surgery was examined. Contrast-enhanced magnetic resonance imaging of pelvic organs was performed in 63

  20. Ultrasound contrast agents: an overview.

    PubMed

    Cosgrove, David

    2006-12-01

    With the introduction of microbubble contrast agents, diagnostic ultrasound has entered a new era that allows the dynamic detection of tissue flow of both the macro and microvasculature. Underpinning this development is the fact that gases are compressible, and thus the microbubbles expand and contract in the alternating pressure waves of the ultrasound beam, while tissue is almost incompressible. Special software using multiple pulse sequences separates these signals from those of tissue and displays them as an overlay or on a split screen. This can be done at low acoustic pressures (MI<0.3) so that the microbubbles are not destroyed and scanning can continue in real time. The clinical roles of contrast enhanced ultrasound scanning are expanding rapidly. They are established in echocardiography to improve endocardial border detection and are being developed for myocardial perfusion. In radiology, the most important application is the liver, especially for focal disease. The approach parallels that of dynamic CT or MRI but ultrasound has the advantages of high spatial and temporal resolution. Thus, small lesions that can be indeterminate on CT can often be studied with ultrasound, and situations where the flow is very rapid (e.g., focal nodular hyperplasia where the first few seconds of arterial perfusion may be critical to making the diagnosis) are readily studied. Microbubbles linger in the extensive sinusoidal space of normal liver for several minutes whereas they wash out rapidly from metastases, which have a low vascular volume and thus appear as filling defects. The method has been shown to be as sensitive as three-phase CT. Microbubbles have clinical uses in many other applications where knowledge of the microcirculation is important (the macrocirculation can usually be assessed adequately using conventional Doppler though there are a few important situations where the signal boost given by microbubbles is useful, e.g., transcranial Doppler for evaluating

  1. Microfocused ultrasound for skin tightening.

    PubMed

    MacGregor, Jennifer L; Tanzi, Elizabeth L

    2013-03-01

    The demand for noninvasive skin tightening procedures is increasing as patients seek safe and effective alternatives to aesthetic surgical procedures of the face, neck, and body. Over the past decade, radiofrequency and infrared laser devices have been popularized owing to their ability to deliver controlled heat to the dermis, stimulate neocollagenesis, and effect modest tissue tightening with minimal recovery. However, these less invasive approaches are historically associated with inferior efficacy so that surgery still remains the treatment of choice to address moderate to severe tissue laxity. Microfocused ultrasound was recently introduced as a novel energy modality for transcutaneous heat delivery that reaches the deeper subdermal connective tissue in tightly focused zones at consistent programmed depths. The goal is to produce a deeper wound healing response at multiple levels with robust collagen remodeling and a more durable clinical response. The Ulthera device (Ulthera, Inc, Meza, AZ), with refined microfocused ultrasound technology, has been adapted specifically for skin tightening and lifting with little recovery or risk of complications since its introduction in 2009. As clinical parameters are studied and optimized, enhanced efficacy and consistency of clinical improvement is expected.

  2. Correlation transfer and diffusion of ultrasound-modulated multiply scattered light.

    PubMed

    Sakadzić, Sava; Wang, Lihong V

    2006-04-28

    We develop a temporal correlation transfer equation (CTE) and a temporal correlation diffusion equation (CDE) for ultrasound-modulated multiply scattered light. These equations can be applied to an optically scattering medium with embedded optically scattering and absorbing objects to calculate the power spectrum of light modulated by a nonuniform ultrasound field. We present an analytical solution based on the CDE and Monte Carlo simulation results for light modulated by a cylinder of ultrasound in an optically scattering slab. We further validate with experimental measurements the numerical calculations for an actual ultrasound field. The CTE and CDE are valid for moderate ultrasound pressures and on a length scale comparable with the optical transport mean-free path. These equations should be applicable to a wide spectrum of conditions for ultrasound-modulated optical tomography of soft biological tissues.

  3. Quantitative Ultrasound: Transition from the Laboratory to the Clinic

    NASA Astrophysics Data System (ADS)

    Hall, Timothy

    2014-03-01

    There is a long history of development and testing of quantitative methods in medical ultrasound. From the initial attempts to scan breasts with ultrasound in the early 1950's, there was a simultaneous attempt to classify tissue as benign or malignant based on the appearance of the echo signal on an oscilloscope. Since that time, there has been substantial improvement in the ultrasound systems used, the models to describe wave propagation in random media, the methods of signal detection theory, and the combination of those models and methods into parameter estimation techniques. One particularly useful measure in ultrasonics is the acoustic differential scattering cross section per unit volume in the special case of the 180° (as occurs in pulse-echo ultrasound imaging) which is known as the backscatter coefficient. The backscatter coefficient, and parameters derived from it, can be used to objectively measure quantities that are used clinically to subjectively describe ultrasound images. For example, the ``echogenicity'' (relative ultrasound image brightness) of the renal cortex is commonly compared to that of the liver. Investigating the possibility of liver disease, it is assumed the renal cortex echogenicity is normal. Investigating the kidney, it is assumed the liver echogenicity is normal. Objective measures of backscatter remove these assumptions. There is a 30-year history of accurate estimates of acoustic backscatter coefficients with laboratory systems. Twenty years ago that ability was extended to clinical imaging systems with array transducers. Recent studies involving multiple laboratories and a variety of clinical imaging systems has demonstrated system-independent estimates of acoustic backscatter coefficients in well-characterized media (agreement within about 1.5dB over about a 1-decade frequency range). Advancements that made this possible, transition of this and similar capabilities into medical practice and the prospects for quantitative image

  4. Construction of Reference Data for Tissue Characterization of Arterial Wall Based on Elasticity Images

    NASA Astrophysics Data System (ADS)

    Inagaki, Jun; Hasegawa, Hideyuki; Kanai, Hiroshi; Ichiki, Masataka; Tezuka, Fumiaki

    2005-06-01

    Previously, we developed the phased tracking method [H. Kanai et al.: IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43 (1996) 791] for measuring the minute change in thickness during one heartbeat and the elasticity of the arterial wall. By comparing pathological images with elasticity images measured with ultrasound, elasticity distributions for respective tissues in the arterial wall were determined. We have already measured the elasticity distributions for lipids and fibrous tissues (mixtures of smooth-muscle and collagen fiber) [H. Kanai et al.: Circulation 107 (2003) 3018]. In this study, elasticity distributions were measured for blood clots and calcified tissues. We discuss whether these elasticity distributions, which were measuerd in vitro, can be used as reference data for classifying cross-sectional elasticity images measured in vivo into respective tissues. In addition to the measurement of elasticity distributions, correlations between collagen content and elasticity were investigated with respect to fibrous tissue to estimate the collagen and smooth-muscle content based on elasticity. Collagen and smooth-muscle content may be important factors in determining the stability of the fibrous cap of atherosclerotic plaque. Therefore, correlations between elasticity and elements of the tissue in the arterial wall may provide useful information for the noninvasive diagnosis of plaque vulnerability.

  5. Ultrasound in space

    NASA Technical Reports Server (NTRS)

    Martin, David S.; South, Donna A.; Garcia, Kathleen M.; Arbeille, Philippe

    2003-01-01

    Physiology of the human body in space has been a major concern for space-faring nations since the beginning of the space era. Ultrasound (US) is one of the most cost effective and versatile forms of medical imaging. As such, its use in characterizing microgravity-induced changes in physiology is being realized. In addition to the use of US in related ground-based studies, equipment has also been modified to fly in space. This involves alteration to handle the stresses of launch and different power and cooling requirements. Study protocols also have been altered to accommodate the microgravity environment. Ultrasound studies to date have shown a pattern of adaptation to microgravity that includes changes in cardiac chamber sizes and vertebral spacing. Ultrasound has been and will continue to be an important component in the investigation of physiological and, possibly, pathologic changes occurring in space or as a result of spaceflight.

  6. Ultrasound-Mediated Biophotonic Imaging: A Review of Acousto-Optical Tomography and Photo-Acoustic Tomography

    PubMed Central

    Wang, Lihong V.

    2004-01-01

    This article reviews two types of ultrasound-mediated biophotonic imaging–acousto-optical tomography (AOT, also called ultrasound-modulated optical tomography) and photo-acoustic tomography (PAT, also called opto-acoustic or thermo-acoustic tomography)–both of which are based on non-ionizing optical and ultrasonic waves. The goal of these technologies is to combine the contrast advantage of the optical properties and the resolution advantage of ultrasound. In these two technologies, the imaging contrast is based primarily on the optical properties of biological tissues, and the imaging resolution is based primarily on the ultrasonic waves that either are provided externally or produced internally, within the biological tissues. In fact, ultrasonic mediation overcomes both the resolution disadvantage of pure optical imaging in thick tissues and the contrast and speckle disadvantages of pure ultrasonic imaging. In our discussion of AOT, the relationship between modulation depth and acoustic amplitude is clarified. Potential clinical applications of ultrasound-mediated biophotonic imaging include early cancer detection, functional imaging, and molecular imaging. PMID:15096709

  7. Effect of ultrasound frequency on the Nakagami statistics of human liver tissues.

    PubMed

    Tsui, Po-Hsiang; Zhou, Zhuhuang; Lin, Ying-Hsiu; Hung, Chieh-Ming; Chung, Shih-Jou; Wan, Yung-Liang

    2017-01-01

    The analysis of the backscattered statistics using the Nakagami parameter is an emerging ultrasound technique for assessing hepatic steatosis and fibrosis. Previous studies indicated that the echo amplitude distribution of a normal liver follows the Rayleigh distribution (the Nakagami parameter m is close to 1). However, using different frequencies may change the backscattered statistics of normal livers. This study explored the frequency dependence of the backscattered statistics in human livers and then discussed the sources of ultrasound scattering in the liver. A total of 30 healthy participants were enrolled to undergo a standard care ultrasound examination on the liver, which is a natural model containing diffuse and coherent scatterers. The liver of each volunteer was scanned from the right intercostal view to obtain image raw data at different central frequencies ranging from 2 to 3.5 MHz. Phantoms with diffuse scatterers only were also made to perform ultrasound scanning using the same protocol for comparisons with clinical data. The Nakagami parameter-frequency correlation was evaluated using Pearson correlation analysis. The median and interquartile range of the Nakagami parameter obtained from livers was 1.00 (0.98-1.05) for 2 MHz, 0.93 (0.89-0.98) for 2.3 MHz, 0.87 (0.84-0.92) for 2.5 MHz, 0.82 (0.77-0.88) for 3.3 MHz, and 0.81 (0.76-0.88) for 3.5 MHz. The Nakagami parameter decreased with the increasing central frequency (r = -0.67, p < 0.0001). However, the effect of ultrasound frequency on the statistical distribution of the backscattered envelopes was not found in the phantom results (r = -0.147, p = 0.0727). The current results demonstrated that the backscattered statistics of normal livers is frequency-dependent. Moreover, the coherent scatterers may be the primary factor to dominate the frequency dependence of the backscattered statistics in a liver.

  8. Influence of low-intensity pulsed ultrasound on osteogenic tissue regeneration in a periodontal injury model: X-ray image alterations assessed by micro-computed tomography.

    PubMed

    Wang, Yunji; Chai, Zhaowu; Zhang, Yuanyuan; Deng, Feng; Wang, Zhibiao; Song, Jinlin

    2014-08-01

    This study was conducted to evaluate, with micro-computed tomography, the influence of low-intensity pulsed ultrasound on wound-healing in periodontal tissues. Periodontal disease with Class II furcation involvement was surgically produced at the bilateral mandibular premolars in 8 adult male beagle dogs. Twenty-four teeth were randomly assigned among 4 groups (G): G1, periodontal flap surgery; G2, periodontal flap surgery+low-intensity pulsed ultrasound (LIPUS); G3, guided tissue regeneration (GTR) surgery; G4, GTR surgery plus LIPUS. The affected area in the experimental group was exposed to LIPUS. At 6 and 8weeks, the X-ray images of regenerated teeth were referred to micro-CT scanning for 3-D measurement. Bone volume (BV), bone surface (BS), and number of trabeculae (Tb) in G2 and G4 were higher than in G1 and G3 (p<0.05). BV, BS, and Tb.N of the GTR+LIPUS group were higher than in the GTR group. BV, BS, and Tb.N of the LIPUS group were higher than in the periodontal flap surgery group. LIPUS irradiation increased the number, volume, and area of new alveolar bone trabeculae. LIPUS has the potential to promote the repair of periodontal tissue, and may work effectively if combined with GTR. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. WE-G-12A-01: High Intensity Focused Ultrasound Surgery and Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farahani, K; O'Neill, B

    More and more emphasis is being made on alternatives to invasive surgery and the use of ionizing radiation to treat various diseases including cancer. Novel screening, diagnosis, treatment and monitoring of response to treatment are also hot areas of research and new clinical technologies. Ultrasound(US) has gained traction in all of the aforementioned areas of focus. Especially with recent advances in the use of ultrasound to noninvasively treat various diseases/organ systems. This session will focus on covering MR-guided focused ultrasound and the state of the art clinical applications, and the second speaker will survey the more cutting edge technologies e.g.more » Focused Ultrasound (FUS) mediated drug delivery, principles of cavitation and US guided FUS. Learning Objectives: Fundamental physics and physical limitations of US interaction with tissue and nanoparticles The alteration of tissue transport using focused ultrasound US control of nanoparticle drug carriers for targeted release The basic principles of MRI-guided focused ultrasound (MRgFUS) surgery and therapy the current state of the art clinical applications of MRgFUS requirements for quality assurance and treatment planning.« less

  10. Disparity between ultrasound and clinical findings in psoriatic arthritis.

    PubMed

    Husic, Rusmir; Gretler, Judith; Felber, Anja; Graninger, Winfried B; Duftner, Christina; Hermann, Josef; Dejaco, Christian

    2014-08-01

    To investigate the association between psoriatic arthritis (PsA)-specific clinical composite scores and ultrasound-verified pathology as well as comparison of clinical and ultrasound definitions of remission. We performed a prospective study on 70 consecutive PsA patients. Clinical assessments included components of Disease Activity Index for Psoriatic Arthritis (DAPSA) and the Composite Psoriatic Disease Activity Index (CPDAI). Minimal disease activity (MDA) and the following remission criteria were applied: CPDAI joint, entheses and dactylitis domains (CPDAI-JED)=0, DAPSA≤3.3, Boolean's remission definition and physician-judged remission (rem-phys). B-mode and power Doppler (PD-) ultrasound findings were semiquantitatively scored at 68 joints (evaluating synovia, peritendinous tissue, tendons and bony changes) and 14 entheses. Ultrasound remission and minimal ultrasound disease activity (MUDA) were defined as PD-score=0 and PD-score ≤1, respectively, at joints, peritendinous tissue, tendons and entheses. DAPSA but not CPDAI correlated with B-mode and PD-synovitis. Ultrasound signs of enthesitis, dactylitis, tenosynovitis and perisynovitis were not linked with clinical composites. Clinical remission or MDA was observed in 15.7% to 47.1% of PsA patients. Ultrasound remission and MUDA were present in 4.3% and 20.0% of patients, respectively. Joint and tendon-related PD-scores were higher in patients with active versus inactive disease according to CPDAI-JED, DAPSA, Boolean's and rem-phys, whereas no difference was observed regarding enthesitis and perisynovitis. DAPSA≤3.3 (OR 3.9, p=0.049) and Boolean's definition (OR 4.6, p=0.03) were more useful to predict MUDA than other remission criteria. PsA-specific composite scores partially reflect ultrasound findings. DAPSA and Boolean's remission definitions better identify MUDA patients than other clinical criteria. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted

  11. A Targeting Microbubble for Ultrasound Molecular Imaging

    PubMed Central

    Yeh, James Shue-Min; Sennoga, Charles A.; McConnell, Ellen; Eckersley, Robert; Tang, Meng-Xing; Nourshargh, Sussan; Seddon, John M.; Haskard, Dorian O.; Nihoyannopoulos, Petros

    2015-01-01

    Rationale Microbubbles conjugated with targeting ligands are used as contrast agents for ultrasound molecular imaging. However, they often contain immunogenic (strept)avidin, which impedes application in humans. Although targeting bubbles not employing the biotin-(strept)avidin conjugation chemistry have been explored, only a few reached the stage of ultrasound imaging in vivo, none were reported/evaluated to show all three of the following properties desired for clinical applications: (i) low degree of non-specific bubble retention in more than one non-reticuloendothelial tissue; (ii) effective for real-time imaging; and (iii) effective for acoustic quantification of molecular targets to a high degree of quantification. Furthermore, disclosures of the compositions and methodologies enabling reproduction of the bubbles are often withheld. Objective To develop and evaluate a targeting microbubble based on maleimide-thiol conjugation chemistry for ultrasound molecular imaging. Methods and Results Microbubbles with a previously unreported generic (non-targeting components) composition were grafted with anti-E-selectin F(ab’)2 using maleimide-thiol conjugation, to produce E-selectin targeting microbubbles. The resulting targeting bubbles showed high specificity to E-selectin in vitro and in vivo. Non-specific bubble retention was minimal in at least three non-reticuloendothelial tissues with inflammation (mouse heart, kidneys, cremaster). The bubbles were effective for real-time ultrasound imaging of E-selectin expression in the inflamed mouse heart and kidneys, using a clinical ultrasound scanner. The acoustic signal intensity of the targeted bubbles retained in the heart correlated strongly with the level of E-selectin expression (|r|≥0.8), demonstrating a high degree of non-invasive molecular quantification. Conclusions Targeting microbubbles for ultrasound molecular imaging, based on maleimide-thiol conjugation chemistry and the generic composition described

  12. A multi-element high intensity focused ultrasound transducer: Design, fabrication, and testing

    NASA Astrophysics Data System (ADS)

    Vaezy, Shahram; Held, Robert; Miller, Blake; Fleury, Gerard

    2004-05-01

    The goal of this project is to develop an intra-cavity image-guided high intensity focused ultrasound (HIFU) device using piezocomposite technology and commercially available ultrasound imaging. The HIFU array, manufactured by Imasonic Corporation, is an 11-element annular phased array, with a focal length range of 30-60 mm, and operating frequency of 3 MHz (bandwidth of 1 MHz). The imaging probe (C9-5, Philips) is configured such that the focal axis of the HIFU beam was within the image plane. The array includes six complete central rings and five side-truncated peripheral rings, all with the natural radius of curvature of 50 mm. Impedance of all elements is approximately 50 ohms (10% accuracy for real and imaginary parts). Cross coupling between adjacent elements is less than, -40 dB. High power measurements showed more than 75% efficiency, at surface intensity of 2.66 W/cm2. Schlieren imaging showed effective focusing at all focal lengths (30-60 mm). The image-guided HIFU device requires water or hydrogel coupling, and possibly water cooling. The results of the full characterization for lesion formation in tissue-mimicking phantoms and biological tissues will be presented. Possible applications include uterine fibroids, abnormal uterine bleeding, and intraoperative hemostasis of occult hemorrhage.

  13. [Differential diagnostic value of real-time tissue elastography and three dimensional ultrasound imaging in breast lumps].

    PubMed

    Li, M H; Liu, Y; Liu, L S; Li, P X; Chen, Q

    2016-05-24

    To investigate the real-time tissue elastography and 3D contrast-enhanced ultrasonography(CEUS) in breast lumps differential diagnostic value. A total of 126 patients (180 lumps) with breast mass were retrospectively analyzed from December 2012 to December 2014 in Tumor Hospital Affiliated To Xinjiang Medical University.All patients were divided into three groups by using stratified random method.Each group was detected by real-time tissue elastography, 3D CEUS and two joint inspection.Each group of 42 cases (60 lumps) was confirmed by the pathological results as gold standard.Diagnostic sensitivity, specificity and coincidence rate of different methods were compared. The benign masses of ultrasound contrast showed the punctate, linear and nodular enhancement, and the border of enhancement was smooth.The malignant tumors were mainly dominated by uneven and high enhancement. There was no statistical difference in sensitivity, specificity and coincidence rate between elastography group and 3D CEUS group (64.7% vs 73.5%, 69.2% vs 76.9%, 66.7% vs 75.0%, all P>0.05). The sensitivity, specificity and coincidence rate of two joint inspection group were higher than those of elastography group and 3D CEUS group, the differences were statistically significant (97.1%, 92.3% and 98.3% , all P<0.05). 3D CEUS combined with real-time tissue elastography is of high value in the diagnosis of breast masses.

  14. Real-time needle guidance with photoacoustic and laser-generated ultrasound probes

    NASA Astrophysics Data System (ADS)

    Colchester, Richard J.; Mosse, Charles A.; Nikitichev, Daniil I.; Zhang, Edward Z.; West, Simeon; Beard, Paul C.; Papakonstantinou, Ioannis; Desjardins, Adrien E.

    2015-03-01

    Detection of tissue structures such as nerves and blood vessels is of critical importance during many needle-based minimally invasive procedures. For instance, unintentional injections into arteries can lead to strokes or cardiotoxicity during interventional pain management procedures that involve injections in the vicinity of nerves. Reliable detection with current external imaging systems remains elusive. Optical generation and reception of ultrasound allow for depth-resolved sensing and they can be performed with optical fibers that are positioned within needles used in clinical practice. The needle probe developed in this study comprised separate optical fibers for generating and receiving ultrasound. Photoacoustic generation of ultrasound was performed on the distal end face of an optical fiber by coating it with an optically absorbing material. Ultrasound reception was performed using a high-finesse Fabry-Pérot cavity. The sensor data was displayed as an M-mode image with a real-time interface. Imaging was performed on a biological tissue phantom.

  15. In vivo demonstration of ultrasound power delivery to charge implanted medical devices via acute and survival porcine studies.

    PubMed

    Radziemski, Leon; Makin, Inder Raj S

    2016-01-01

    Animal studies are an important step in proving the utility and safety of an ultrasound based implanted battery recharging system. To this end an Ultrasound Electrical Recharging System (USER™) was developed and tested. Experiments in vitro demonstrated power deliveries at the battery of up to 600 mW through 10-15 mm of tissue, 50 mW of power available at tissue depths of up to 50 mm, and the feasibility of using transducers bonded to titanium as used in medical implants. Acute in vivo studies in a porcine model were used to test reliability of power delivery, temperature excursions, and cooling techniques. The culminating five-week survival study involved repeated battery charging, a total of 10.5h of ultrasound exposure of the intervening living tissue, with an average RF input to electrical charging efficiency of 20%. This study was potentially the first long term cumulative living-tissue exposure using transcutaneous ultrasound power transmission to an implanted receiver in situ. Histology of the exposed tissue showed changes attributable primarily due to surgical implantation of the prototype device, and no damage due to the ultrasound exposure. The in vivo results are indicative of the potential safe delivery of ultrasound energy for a defined set of source conditions for charging batteries within implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Cumulative phase delay imaging for contrast-enhanced ultrasound tomography

    NASA Astrophysics Data System (ADS)

    Demi, Libertario; van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2015-11-01

    Standard dynamic-contrast enhanced ultrasound (DCE-US) imaging detects and estimates ultrasound-contrast-agent (UCA) concentration based on the amplitude of the nonlinear (harmonic) components generated during ultrasound (US) propagation through UCAs. However, harmonic components generation is not specific to UCAs, as it also occurs for US propagating through tissue. Moreover, nonlinear artifacts affect standard DCE-US imaging, causing contrast to tissue ratio reduction, and resulting in possible misclassification of tissue and misinterpretation of UCA concentration. Furthermore, no contrast-specific modality exists for DCE-US tomography; in particular speed-of-sound changes due to UCAs are well within those caused by different tissue types. Recently, a new marker for UCAs has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental component is in fact observable for US propagating through UCAs, and is absent in tissue. In this paper, tomographic US images based on CPD are for the first time presented and compared to speed-of-sound US tomography. Results show the applicability of this marker for contrast specific US imaging, with cumulative phase delay imaging (CPDI) showing superior capabilities in detecting and localizing UCA, as compared to speed-of-sound US tomography. Cavities (filled with UCA) which were down to 1 mm in diameter were clearly detectable. Moreover, CPDI is free of the above mentioned nonlinear artifacts. These results open important possibilities to DCE-US tomography, with potential applications to breast imaging for cancer localization.

  17. Cumulative phase delay imaging for contrast-enhanced ultrasound tomography.

    PubMed

    Demi, Libertario; van Sloun, Ruud J G; Wijkstra, Hessel; Mischi, Massimo

    2015-11-07

    Standard dynamic-contrast enhanced ultrasound (DCE-US) imaging detects and estimates ultrasound-contrast-agent (UCA) concentration based on the amplitude of the nonlinear (harmonic) components generated during ultrasound (US) propagation through UCAs. However, harmonic components generation is not specific to UCAs, as it also occurs for US propagating through tissue. Moreover, nonlinear artifacts affect standard DCE-US imaging, causing contrast to tissue ratio reduction, and resulting in possible misclassification of tissue and misinterpretation of UCA concentration. Furthermore, no contrast-specific modality exists for DCE-US tomography; in particular speed-of-sound changes due to UCAs are well within those caused by different tissue types. Recently, a new marker for UCAs has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental component is in fact observable for US propagating through UCAs, and is absent in tissue. In this paper, tomographic US images based on CPD are for the first time presented and compared to speed-of-sound US tomography. Results show the applicability of this marker for contrast specific US imaging, with cumulative phase delay imaging (CPDI) showing superior capabilities in detecting and localizing UCA, as compared to speed-of-sound US tomography. Cavities (filled with UCA) which were down to 1 mm in diameter were clearly detectable. Moreover, CPDI is free of the above mentioned nonlinear artifacts. These results open important possibilities to DCE-US tomography, with potential applications to breast imaging for cancer localization.

  18. Ultrasound assessment of soft tissue augmentation around implants in the aesthetic zone using a connective tissue graft and xenogeneic collagen matrix - 1-year randomised follow-up.

    PubMed

    Puzio, Monika; Błaszczyszyn, Artur; Hadzik, Jakub; Dominiak, Marzena

    2018-05-01

    A comparative, ultrasound evaluation of the thickness of keratinized mucosa (TKT) around implants one year after gingival augmentation (GA) by means of a connective tissue graft (CTG) and the xenogeneic collagen matrix (CMX). A total of 75 bone level tapered implants (Conelog ® Camlog) were inserted in 57 patients in the aesthetic area of both jaws. The patients were divided into 3 groups: control group I- without GA; group II- GA 3 months before implantation, and group III- GA 3 months after implantation. Groups II and III were divided into two subgroups depends on type of material used for GA: (a) CMX (Mucograft ® , Geistlich Pharma AG) and (b) CTG. The patients underwent a clinical and ultrasound examination before, then after 3 and 12 months following GA respectively to evaluate TKT at two points using ultrasound equipment (Pirop ® , Echoson). Point 1 was considered to be in the middle of the line connecting the cemento-enamel junction (CEJ) to the adjacent teeth, and point 2 on the mucogingival junction (MGJ). Three months after GA, the highest increase in gingival thickness was noted in group IIIb (point 1 - 0.95mm, 2 - 1.01mm). However, 12 months after GA the highest gingival thickness was observed in group IIb (point 1 - 1.76mm, 2 - 1.36m) and next IIIb (point 1 - 1.52mm, 2 - 1.15mm). Both CTG and Geistlich Mucograft ® increased TKT, but higher values were noted using CTG augmentation before implantation. An ultrasonic device can be used as a non-invasive, reliable, and reproducible method for evaluating TKT. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Echo decorrelation imaging of ex vivo HIFU and bulk ultrasound ablation using image-treat arrays

    NASA Astrophysics Data System (ADS)

    Fosnight, Tyler R.; Hooi, Fong Ming; Colbert, Sadie B.; Keil, Ryan D.; Barthe, Peter G.; Mast, T. Douglas

    2017-03-01

    In this study, the ability of ultrasound echo decorrelation imaging to map and predict heat-induced cell death was tested using bulk ultrasound thermal ablation, high intensity focused ultrasound (HIFU) thermal ablation, and pulse-echo imaging of ex vivo liver tissue by a custom image-treat array. Tissue was sonicated at 5.0 MHz using either pulses of unfocused ultrasound (N=12) (7.5 s, 50.9-101.8 W/cm2 in situ spatial-peak, temporal-peak intensity) for bulk ablation or focused ultrasound (N=21) (1 s, 284-769 W/cm2 in situ spatial-peak, temporal-peak intensity and focus depth of 10 mm) for HIFU ablation. Echo decorrelation and integrated backscatter (IBS) maps were formed from radiofrequency pulse-echo images captured at 118 frames per second during 5.0 s rest periods, beginning 1.1 s after each sonication pulse. Tissue samples were frozen at -80˚C, sectioned, vitally stained, imaged, and semi-automatically segmented for receiver operating characteristic (ROC) analysis. ROC curves were constructed to assess prediction performance for echo decorrelation and IBS. Logarithmically scaled mean echo decorrelation in non-ablated and ablated tissue regions before and after electronic noise and motion correction were compared. Ablation prediction by echo decorrelation and IBS was significant for both focused and bulk ultrasound ablation. The log10-scaled mean echo decorrelation was significantly greater in regions of ablation for both HIFU and bulk ultrasound ablation. Echo decorrelation due to electronic noise and motion was significantly reduced by correction. These results suggest that ultrasound echo decorrelation imaging is a promising approach for real-time prediction of heat-induced cell death for guidance and monitoring of clinical thermal ablation, including radiofrequency ablation and HIFU.

  20. Feasibility of contrast-enhanced ultrasound-guided biopsy of sentinel lymph nodes in dogs.

    PubMed

    Gelb, Hylton R; Freeman, Lynetta J; Rohleder, Jacob J; Snyder, Paul W

    2010-01-01

    Our goal was to develop and validate a technique to identify the sentinel lymph nodes of the mammary glands of healthy dogs with contrast-enhanced ultrasound, and evaluate the feasibility of obtaining representative samples of a sentinel lymph node under ultrasound guidance using a new biopsy device. Three healthy intact female adult hounds were anesthetized and each received an injection of octafluoropropane-filled lipid microspheres and a separate subcutaneous injection of methylene blue dye around a mammary gland. Ultrasound was then used to follow the contrast agent through the lymphatic channel to the sentinel lymph node. Lymph node biopsy was performed under ultrasound guidance, followed by an excisional biopsy of the lymph nodes and a regional mastectomy procedure. Excised tissues were submitted for histopathologic examination and evaluated as to whether they were representative of the node. The ultrasound contrast agent was easily visualized with ultrasound leading up to the sentinel lymph nodes. Eight normal lymph nodes (two inguinal, one axillary in two dogs; two inguinal in one dog) were identified and biopsied. Lymphoid tissue was obtained from all biopsy specimens. Samples from four of eight lymph nodes contained both cortical and medullary lymphoid tissue. Contrast-enhanced ultrasound can be successfully used to image and guide minimally invasive biopsy of the normal sentinel lymph nodes draining the mammary glands in healthy dogs. Further work is needed to evaluate whether this technique may be applicable in patients with breast cancer or other conditions warranting evaluation of sentinel lymph nodes in animals.