Sample records for ultrasound-based image-guided intensity-modulated

  1. High-Intensity Focused Ultrasound: Current Status for Image-Guided Therapy

    PubMed Central

    Copelan, Alexander; Hartman, Jason; Chehab, Monzer; Venkatesan, Aradhana M.

    2015-01-01

    Image-guided high-intensity focused ultrasound (HIFU) is an innovative therapeutic technology, permitting extracorporeal or endocavitary delivery of targeted thermal ablation while minimizing injury to the surrounding structures. While ultrasound-guided HIFU was the original image-guided system, MR-guided HIFU has many inherent advantages, including superior depiction of anatomic detail and superb real-time thermometry during thermoablation sessions, and it has recently demonstrated promising results in the treatment of both benign and malignant tumors. HIFU has been employed in the management of prostate cancer, hepatocellular carcinoma, uterine leiomyomas, and breast tumors, and has been associated with success in limited studies for palliative pain management in pancreatic cancer and bone tumors. Nonthermal HIFU bioeffects, including immune system modulation and targeted drug/gene therapy, are currently being explored in the preclinical realm, with an emphasis on leveraging these therapeutic effects in the care of the oncology patient. Although still in its early stages, the wide spectrum of therapeutic capabilities of HIFU offers great potential in the field of image-guided oncologic therapy. PMID:26622104

  2. Combined magnetic resonance imaging and ultrasound echography guidance for motion compensated HIFU interventions

    NASA Astrophysics Data System (ADS)

    Ries, Mario; de Senneville, Baudouin Denis; Regard, Yvan; Moonen, Chrit

    2012-11-01

    The objective of this study is to evaluate the feasibility to integrate ultrasound echography as an additional imaging modality for continuous target tracking, while performing simultaneously real-time MR- thermometry to guide a High Intensity Focused Ultrasound (HIFU) ablation. Experiments on a moving phantom were performed with MRI-guided HIFU during continuous ultrasound echography. Real-time US echography-based target tracking during MR-guided HIFU heating was performed with heated area dimensions similar to those obtained for a static target. The combination of both imaging modalities shows great potential for real-time beam steering and MR-thermometry.

  3. Simulation and training of ultrasound supported anaesthesia: a low-cost approach

    NASA Astrophysics Data System (ADS)

    Schaaf, T.; Lamontain, M.; Hilpert, J.; Schilling, F.; Tolxdorff, T.

    2010-03-01

    The use of ultrasound imaging technology during techniques of peripheral nerve blockade offers several clinical benefits. Here we report on a new method to educate residents in ultrasound-guided regional anesthesia. The daily challenge for the anesthesiologists is the 3D angle-depending handling of the stimulation needle and the ultrasound probe while watching the 2D ultrasound image on the monitor. Purpose: Our approach describes how a computer-aided simulation and training set for ultrasound-guided regional anesthesia could be built based on wireless low-cost devices and an interactive simulation of a 2D ultrasound image. For training purposes the injection needle and the ultrasound probe are replaced by wireless Bluetooth-connected 3D tracking devices, which are embedded in WII-mote controllers (Nintendo-Brand). In correlation to the tracked 3D positions of the needle and transducer models the visibility and position of the needle should be simulated in the 2D generated ultrasound image. Conclusion: In future, this tracking and visualization software module could be integrated in a more complex training set, where complex injection paths could be trained based on a 3D segmented model and the training results could be part of a curricular e-learning module.

  4. WE-A-18C-01: Emerging and Innovative Ultrasound Technology in Diagnosis and Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emelianov, S; Oraevsky, A; Stafford, R

    The application of new ultrasound-based technologies in medicine has expanded in recent years. One area of rapid growth has been the combination of ultrasound with other methods of image generation and imaging modalities to produce hybrid approaches for diagnostic imaging and noninvasive therapeutic intervention. The presentations associated with this session will provide an overview of two emerging technologies that are currently being developed and implemented to enhance ultrasound-related diagnostic imaging and therapy: the utilization of optically-induced ultrasound imaging (optoacoustic / photoacoustic imaging) and the use of magnetic resonance imaging to guide the use of high-intensity focused ultrasound for therapeutic applications.more » Learning Objectives: Develop a general understanding of the underlying technologies associated with optoacoustic / photoacoustic tomography and MRguided high-intensity focused ultrasound. Develop an understanding of the current methods of these new ultrasound-based technologies in preclinical research and clinical applications.« less

  5. Ultrasound-modulated optical tomography with intense acoustic bursts.

    PubMed

    Zemp, Roger J; Kim, Chulhong; Wang, Lihong V

    2007-04-01

    Ultrasound-modulated optical tomography (UOT) detects ultrasonically modulated light to spatially localize multiply scattered photons in turbid media with the ultimate goal of imaging the optical properties in living subjects. A principal challenge of the technique is weak modulated signal strength. We discuss ways to push the limits of signal enhancement with intense acoustic bursts while conforming to optical and ultrasonic safety standards. A CCD-based speckle-contrast detection scheme is used to detect acoustically modulated light by measuring changes in speckle statistics between ultrasound-on and ultrasound-off states. The CCD image capture is synchronized with the ultrasound burst pulse sequence. Transient acoustic radiation force, a consequence of bursts, is seen to produce slight signal enhancement over pure ultrasonic-modulation mechanisms for bursts and CCD exposure times of the order of milliseconds. However, acoustic radiation-force-induced shear waves are launched away from the acoustic sample volume, which degrade UOT spatial resolution. By time gating the CCD camera to capture modulated light before radiation force has an opportunity to accumulate significant tissue displacement, we reduce the effects of shear-wave image degradation, while enabling very high signal-to-noise ratios. Additionally, we maintain high-resolution images representative of optical and not mechanical contrast. Signal-to-noise levels are sufficiently high so as to enable acquisition of 2D images of phantoms with one acoustic burst per pixel.

  6. Uterine fibroids: semiquantitative perfusion MR imaging parameters associated with the intraprocedural and immediate postprocedural treatment efficiencies of MR imaging-guided high-intensity focused ultrasound ablation.

    PubMed

    Kim, Young-sun; Kim, Byoung-Gie; Rhim, Hyunchul; Bae, Duk-Soo; Lee, Jeong-Won; Kim, Tae-Joong; Choi, Chel Hun; Lee, Yoo-Young; Lim, Hyo Keun

    2014-11-01

    To determine whether semiquantitative perfusion magnetic resonance (MR) imaging parameters are associated with therapeutic effectiveness of MR imaging-guided high-intensity focused ultrasound ( HIFU high-intensity focused ultrasound ) ablation of uterine fibroids and which semiquantitative perfusion parameters are significant with regard to treatment efficiency. This study was approved by the institutional review board, and informed consent was obtained from all subjects. Seventy-seven women (mean age, 43.3 years) with 119 fibroids (mean diameter, 7.5 cm) treated with MR imaging-guided HIFU high-intensity focused ultrasound ablation were analyzed. The correlation between semiquantitative perfusion MR parameters (peak enhancement, relative peak enhancement, time to peak, wash-in rate, washout rate) and heating and ablation efficiencies (lethal thermal dose volume based on MR thermometry and nonperfused volume based on immediate contrast-enhanced image divided by intended treatment volume) were evaluated by using a linear mixed model on a per-fibroid basis. The specific value of the significant parameter that had a substantial effect on treatment efficiency was determined. The mean peak enhancement, relative peak enhancement, time to peak, wash-in rate, and washout rate of the fibroids were 1293.1 ± 472.8 (range, 570.2-2477.8), 171.4% ± 57.2 (range, 0.6%-370.2%), 137.2 seconds ± 119.8 (range, 20.0-300.0 seconds), 79.5 per second ± 48.2 (range, 12.5-236.7 per second), and 11.4 per second ± 10.1 (range, 0-39.3 per second), respectively. Relative peak enhancement was found to be independently significant for both heating and ablation efficiencies (B = -0.002, P < .001 and B = -0.003, P = .050, respectively). The washout rate was significantly associated with ablation efficiency (B = -0.018, P = .043). Both efficiencies showed the most abrupt transitions at 220% of relative peak enhancement. Relative peak enhancement at semiquantitative perfusion MR imaging was significantly associated with treatment efficiency of MR imaging-guided HIFU high-intensity focused ultrasound ablation of uterine fibroids, and a value of 220% or less is suggested as a screening guideline for more efficient treatment.

  7. Image-Guided Surgery of Primary Breast Cancer Using Ultrasound Phased Arrays

    DTIC Science & Technology

    2004-07-01

    applications using high-intensity focused ultrasound ( HIFU ). We tems, Once the real-time imaging capability is available for have shown that this dual-mode...Arrays Emad S. Ebbini, PI Introduction High-intensity focus ultrasound ( HIFU ) is gaining wider acceptance in noninvasive or minimally invasive targeting of...Methods in Ultrasound Imaging, ISBI 2004, Arlington, VA, April 2004. III. Yao and Ebbini, "Real-Time Monitoring of the Transients of HIFU -Induced Lesions

  8. Image-Guided Surgery of Primary Breast Cancer Using Ultrasound Phased Arrays

    DTIC Science & Technology

    2005-07-01

    dual-mode array is ing high-intensity focused ultrasound ( HIFU ) exhibit non- is used), perhaps a result of rectified diffusion. linear behavior that...applications using high-intensity focused ultrasound ( HIFU ). We tems. Once the real-time imaging capability is available for have shown that this dual-mode...INTRODUCTION two effects lead to echo time-shift that can be estimated High intensity focused ultrasound ( HIFU ) is a and have been shown to be related local

  9. Enhanced Lesion Visualization in Image-Guided Noninvasive Surgery With Ultrasound Phased Arrays

    DTIC Science & Technology

    2001-10-25

    81, 1995. [4] N. Sanghvi et al., “Noninvasive surgery of prostate tissue by high-intensity focused ultrasound ,” IEEE Trans. UFFC, vol. 43, no. 6, pp...ENHANCED LESION VISUALIZATION IN IMAGE-GUIDED NONINVASIVE SURGERY WITH ULTRASOUND PHASED ARRAYS Hui Yao, Pornchai Phukpattaranont and Emad S. Ebbini...Department of Electrical and Computer Engineering University of Minnesota Minneapolis, MN 55455 Abstract- We describe dual-mode ultrasound phased

  10. High Resolution X-Ray Phase Contrast Imaging with Acoustic Tissue-Selective Contrast Enhancement

    DTIC Science & Technology

    2005-06-01

    Ultrasonics Symp 1319 (1999). 17. Sarvazyan, A. P. Shear Wave Elasticity Imaging: A New Ultrasonic Technology of Medical Diagnostics. Ultrasound in...samples using acoustically modulated X-ray phase contrast imaging. 15. SUBJECT TERMS x-ray, ultrasound, phase contrast, imaging, elastography 16...x-rays, phase contrast imaging is based on phase changes as x-rays traverse a body resulting in wave interference that result in intensity changes in

  11. Clinical experience with image-guided radiotherapy in an accelerated partial breast intensity-modulated radiotherapy protocol.

    PubMed

    Leonard, Charles E; Tallhamer, Michael; Johnson, Tim; Hunter, Kari; Howell, Kathryn; Kercher, Jane; Widener, Jodi; Kaske, Terese; Paul, Devchand; Sedlacek, Scot; Carter, Dennis L

    2010-02-01

    To explore the feasibility of fiducial markers for the use of image-guided radiotherapy (IGRT) in an accelerated partial breast intensity modulated radiotherapy protocol. Nineteen patients consented to an institutional review board approved protocol of accelerated partial breast intensity-modulated radiotherapy with fiducial marker placement and treatment with IGRT. Patients (1 patient with bilateral breast cancer; 20 total breasts) underwent ultrasound guided implantation of three 1.2- x 3-mm gold markers placed around the surgical cavity. For each patient, table shifts (inferior/superior, right/left lateral, and anterior/posterior) and minimum, maximum, mean error with standard deviation were recorded for each of the 10 BID treatments. The dose contribution of daily orthogonal films was also examined. All IGRT patients underwent successful marker placement. In all, 200 IGRT treatment sessions were performed. The average vector displacement was 4 mm (range, 2-7 mm). The average superior/inferior shift was 2 mm (range, 0-5 mm), the average lateral shift was 2 mm (range, 1-4 mm), and the average anterior/posterior shift was 3 mm (range, 1 5 mm). This study shows that the use of IGRT can be successfully used in an accelerated partial breast intensity-modulated radiotherapy protocol. The authors believe that this technique has increased daily treatment accuracy and permitted reduction in the margin added to the clinical target volume to form the planning target volume. Copyright 2010 Elsevier Inc. All rights reserved.

  12. Power cavitation-guided blood-brain barrier opening with focused ultrasound and microbubbles

    NASA Astrophysics Data System (ADS)

    Burgess, M. T.; Apostolakis, I.; Konofagou, E. E.

    2018-03-01

    Image-guided monitoring of microbubble-based focused ultrasound (FUS) therapies relies on the accurate localization of FUS-stimulated microbubble activity (i.e. acoustic cavitation). Passive cavitation imaging with ultrasound arrays can achieve this, but with insufficient spatial resolution. In this study, we address this limitation and perform high-resolution monitoring of acoustic cavitation-mediated blood-brain barrier (BBB) opening with a new technique called power cavitation imaging. By synchronizing the FUS transmit and passive receive acquisition, high-resolution passive cavitation imaging was achieved by using delay and sum beamforming with absolute time delays. Since the axial image resolution is now dependent on the duration of the received acoustic cavitation emission, short pulses of FUS were used to limit its duration. Image sets were acquired at high-frame rates for calculation of power cavitation images analogous to power Doppler imaging. Power cavitation imaging displays the mean intensity of acoustic cavitation over time and was correlated with areas of acoustic cavitation-induced BBB opening. Power cavitation-guided BBB opening with FUS could constitute a standalone system that may not require MRI guidance during the procedure. The same technique can be used for other acoustic cavitation-based FUS therapies, for both safety and guidance.

  13. Power cavitation-guided blood-brain barrier opening with focused ultrasound and microbubbles.

    PubMed

    Burgess, M T; Apostolakis, I; Konofagou, E E

    2018-03-15

    Image-guided monitoring of microbubble-based focused ultrasound (FUS) therapies relies on the accurate localization of FUS-stimulated microbubble activity (i.e. acoustic cavitation). Passive cavitation imaging with ultrasound arrays can achieve this, but with insufficient spatial resolution. In this study, we address this limitation and perform high-resolution monitoring of acoustic cavitation-mediated blood-brain barrier (BBB) opening with a new technique called power cavitation imaging. By synchronizing the FUS transmit and passive receive acquisition, high-resolution passive cavitation imaging was achieved by using delay and sum beamforming with absolute time delays. Since the axial image resolution is now dependent on the duration of the received acoustic cavitation emission, short pulses of FUS were used to limit its duration. Image sets were acquired at high-frame rates for calculation of power cavitation images analogous to power Doppler imaging. Power cavitation imaging displays the mean intensity of acoustic cavitation over time and was correlated with areas of acoustic cavitation-induced BBB opening. Power cavitation-guided BBB opening with FUS could constitute a standalone system that may not require MRI guidance during the procedure. The same technique can be used for other acoustic cavitation-based FUS therapies, for both safety and guidance.

  14. High-intensity therapeutic ultrasound: metrological requirements versus clinical usage

    NASA Astrophysics Data System (ADS)

    Aubry, J.-F.

    2012-10-01

    High-intensity therapeutic ultrasound (HITU) is an appealing non-invasive, non-ionizing therapeutic modality with a wide range of tissue interactions ranging from transient permeabilization of cell membranes to thermal ablation. The ability to guide and monitor the treatment with an associated ultrasonic or magnetic resonance imaging device has resulted in a dramatic rise in the clinical use of therapeutic ultrasound in the past two decades. Nevertheless, the range of clinical applications and the number of patients treated has grown at a much higher pace than the definition of standards. In this paper the metrological requirements of the therapeutic beams are reviewed and are compared with the current clinical use of image-guided HITU mostly based on a practical approach. Liver therapy, a particularly challenging clinical application, is discussed to highlight the differences between some complex clinical situations and the experimental conditions of the metrological characterization of ultrasonic transducers.

  15. Casualty Evacuation in the Contemporary Operating Environment

    DTIC Science & Technology

    2002-05-20

    HIFU ), or Focused Ultrasound ( FUS ), can be used to rapidly kill tissue (directly applicable to cancer treatment, for example) and to stop internal...132 Peter Kaczkowski, Development of a High-Intensity Focused Ultrasound System for Image-guided Ultrasound Surgery...spatial dimension, with acquisition and display occurring nearly in real time.135 Recent research has shown that High Intensity Focused Ultrasound

  16. Point-of-Care Ultrasonography Findings and Care Use Among Patients Undergoing Ultrasound-Guided Shoulder Injections.

    PubMed

    Lee, Se Won; Tiu, Timothy; Roberts, Jeremy; Lee, Brian; Bartels, Matthew N; Oh-Park, Mooyeon

    2018-01-01

    The aims of the study were to assess the overall reduction of pain in patients undergoing ultrasound-guided shoulder injections and to characterize the preinjection point-of-care ultrasound findings and use of clinical services postinjection including the use of magnetic resonance imaging and surgeries. Data of 172 patients who underwent ultrasound-guided subacromial subdeltoid injection or glenohumeral joint injection were reviewed for preinjection point-of-care ultrasound findings, change in pain intensity at 2 mos from baseline, and use of care at 6 mos' postinjection. Pain intensity was measured by the numeric rating scale and a dichotomous report of global impression of significant improvement in pain. Responders were defined as those with 50% or more reduction in numeric rating scale or those with global impression of 50% or more improvement. There were 141 responders among the 172 patients analyzed. Full-thickness rotator cuff tears were higher in the ultrasound-guided subacromial subdeltoid injection group when compared with the glenohumeral joint injection group (P = 0.038) and abnormal bicipital tendon findings higher in the glenohumeral joint injection group (P = 0.016). There were no significant differences in specific abnormal U findings between responders versus nonresponders. Twelve patients had a shoulder magnetic resonance imaging and four patients underwent operative interventions after the injection. Overall pain reduction after ultrasound-guided shoulder injections was favorable in the short term. There was no specific preinjection point-of-care ultrasound findings associated with clinical pain reduction after injection. Additional imaging and operative intervention after ultrasound-guided shoulder injections seemed to be relatively low.

  17. High-intensity focused ultrasound (HIFU) array system for image-guided ablative therapy (IGAT)

    NASA Astrophysics Data System (ADS)

    Kaczkowski, Peter J.; Keilman, George W.; Cunitz, Bryan W.; Martin, Roy W.; Vaezy, Shahram; Crum, Lawrence A.

    2003-06-01

    Recent interest in using High Intensity Focused Ultrasound (HIFU) for surgical applications such as hemostasis and tissue necrosis has stimulated the development of image-guided systems for non-invasive HIFU therapy. Seeking an all-ultrasound therapeutic modality, we have developed a clinical HIFU system comprising an integrated applicator that permits precisely registered HIFU therapy delivery and high quality ultrasound imaging using two separate arrays, a multi-channel signal generator and RF amplifier system, and a software program that provides the clinician with a graphical overlay of the ultrasound image and therapeutic protocol controls. Electronic phasing of a 32 element 2 MHz HIFU annular array allows adjusting the focus within the range of about 4 to 12 cm from the face. A central opening in the HIFU transducer permits mounting a commercial medical imaging scanhead (ATL P7-4) that is held in place within a special housing. This mechanical fixture ensures precise coaxial registration between the HIFU transducer and the image plane of the imaging probe. Recent enhancements include development of an acoustic lens using numerical simulations for use with a 5-element array. Our image-guided therapy system is very flexible and enables exploration of a variety of new HIFU therapy delivery and monitoring approaches in the search for safe, effective, and efficient treatment protocols.

  18. Acoustic Hemostasis and Hemorrhage Control in Combat Casualty Care

    DTIC Science & Technology

    2004-12-01

    of Mississippi 1 Coliseum Drive University, MS 38677-1848 ABSTRACT High Intensity Focused Ultrasound ( HIFU ) is a new treatment modality that shows...Intensity Focused Ultrasound ( HIFU ) to this site to induce cauterization and to terminate/control the bleeding. We call this approach “Image-guided...during HIFU exposure to a porcine liver. Fig. 3. Illustration of the use of a hyperechoic region in the ultrasound image to provide HIFU targeting

  19. Using the ATL HDI 1000 to collect demodulated RF data for monitoring HIFU lesion formation

    NASA Astrophysics Data System (ADS)

    Anand, Ajay; Kaczkowski, Peter J.; Daigle, Ron E.; Huang, Lingyun; Paun, Marla; Beach, Kirk W.; Crum, Lawrence A.

    2003-05-01

    The ability to accurately track and monitor the progress of lesion formation during HIFU (High Intensity Focused Ultrasound) therapy is important for the success of HIFU-based treatment protocols. To aid in the development of algorithms for accurately targeting and monitoring formation of HIFU induced lesions, we have developed a software system to perform RF data acquisition during HIFU therapy using a commercially available clinical ultrasound scanner (ATL HDI 1000, Philips Medical Systems, Bothell, WA). The HDI 1000 scanner functions on a software dominant architecture, permitting straightforward external control of its operation and relatively easy access to quadrature demodulated RF data. A PC running a custom developed program sends control signals to the HIFU module via GPIB and to the HDI 1000 via Telnet, alternately interleaving HIFU exposures and RF frame acquisitions. The system was tested during experiments in which HIFU lesions were created in excised animal tissue. No crosstalk between the HIFU beam and the ultrasound imager was detected, thus demonstrating synchronization. Newly developed acquisition modes allow greater user control in setting the image geometry and scanline density, and enables high frame rate acquisition. This system facilitates rapid development of signal-processing based HIFU therapy monitoring algorithms and their implementation in image-guided thermal therapy systems. In addition, the HDI 1000 system can be easily customized for use with other emerging imaging modalities that require access to the RF data such as elastographic methods and new Doppler-based imaging and tissue characterization techniques.

  20. Fast Lesion Mapping during HIFU Treatment Using Harmonic Motion Imaging guided Focused Ultrasound (HMIgFUS) In Vitro and In Vivo

    PubMed Central

    Han, Yang; Wang, Shutao; Payen, Thomas; Konofagou, Elisa

    2017-01-01

    The successful clinical application of High Intensity Focused Ultrasound (HIFU) ablation depends on reliable monitoring of the lesion formation. Harmonic Motion Imaging guided Focused Ultrasound (HMIgFUS) is an ultrasound-based elasticity imaging technique, which monitors HIFU ablation based on the stiffness change of the tissue instead of the echo intensity change in conventional B-mode monitoring, rendering it potentially more sensitive to lesion development. Our group has shown that predicting the lesion location based on the radiation force-excited region is feasible during HMIgFUS. In this study, the feasibility of a fast lesion mapping method is explored to directly monitor the lesion map during HIFU. The HMI lesion map was generated by subtracting the reference HMI image from the present HMI peak-to-peak displacement map to be streamed on the computer display. The dimensions of the HMIgFUS lesions were compared against gross pathology. Excellent agreement was found between the lesion depth (r2 = 0.81, slope = 0.90), width (r2 = 0.85, slope = 1.12) and area (r2 = 0.58, slope = 0.75). In vivo feasibility was assessed in a mouse with a pancreatic tumor. These findings demonstrate that HMIgFUS can successfully map thermal lesion and monitor lesion development in real time in vitro and in vivo. The HMIgFUS technique may therefore constitute a novel clinical tool for HIFU treatment monitoring. PMID:28323638

  1. Autonomous Diagnostic Imaging Performed by Untrained Operators using Augmented Reality as a Form of "Just-in-Time" Training

    NASA Technical Reports Server (NTRS)

    Martin, D. S.; Wang, L.; Laurie, S. S.; Lee, S. M. C.; Fleischer, A. C.; Gibson, C. R.; Stenger, M. B.

    2017-01-01

    We will address the Human Factors and Performance Team, "Risk of performance errors due to training deficiencies" by improving the JIT training materials for ultrasound and OCT imaging by providing advanced guidance in a detailed, timely, and user-friendly manner. Specifically, we will (1) develop an audio-visual tutorial using AR that guides non-experts through an abdominal trauma ultrasound protocol; (2) develop an audio-visual tutorial using AR to guide an untrained operator through the acquisition of OCT images; (3) evaluate the quality of abdominal ultrasound and OCT images acquired by untrained operators using AR guidance compared to images acquired using traditional JIT techniques (laptop-based training conducted before image acquisition); and (4) compare the time required to complete imaging studies using AR tutorials with images acquired using current JIT practices to identify areas for time efficiency improvements. Two groups of subjects will be recruited to participate in this study. Operator-subjects, without previous experience in ultrasound or OCT, will be asked to perform both procedures using either the JIT training with AR technology or the traditional JIT training via laptop. Images acquired by inexperienced operator-subjects will be scored by experts in that imaging modality for diagnostic and research quality; experts will be blinded to the form of JIT used to acquire the images. Operator-subjects also will be asked to submit feedback to improve the training modules used during the scans to improve future training modules. Scanned-subjects will be a small group individuals from whom all images will be acquired.

  2. Autonomous Diagnostic Imaging Performed by Untrained Operator Using Augmented Reality as a Form of "Just-in-Time" Training

    NASA Technical Reports Server (NTRS)

    Martin, David S.; Wang, Lui; Laurie, Steven S.; Lee, Stuart M. C.; Stenger, Michael B.

    2017-01-01

    We will address the Human Factors and Performance Team, "Risk of performance errors due to training deficiencies" by improving the JIT training materials for ultrasound and OCT imaging by providing advanced guidance in a detailed, timely, and user-friendly manner. Specifically, we will (1) develop an audio-visual tutorial using AR that guides non-experts through an abdominal trauma ultrasound protocol; (2) develop an audio-visual tutorial using AR to guide an untrained operator through the acquisition of OCT images; (3) evaluate the quality of abdominal ultrasound and OCT images acquired by untrained operators using AR guidance compared to images acquired using traditional JIT techniques (laptop-based training conducted before image acquisition); and (4) compare the time required to complete imaging studies using AR tutorials with images acquired using current JIT practices to identify areas for time efficiency improvements. Two groups of subjects will be recruited to participate in this study. Operator-subjects, without previous experience in ultrasound or OCT, will be asked to perform both procedures using either the JIT training with AR technology or the traditional JIT training via laptop. Images acquired by inexperienced operator-subjects will be scored by experts in that imaging modality for diagnostic and research quality; experts will be blinded to the form of JIT used to acquire the images. Operator-subjects also will be asked to submit feedback to improve the training modules used during the scans to improve future training modules. Scanned-subjects will be a small group individuals from whom all images will be acquired.

  3. Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablation of liver tumours.

    PubMed

    Wijlemans, J W; Bartels, L W; Deckers, R; Ries, M; Mali, W P Th M; Moonen, C T W; van den Bosch, M A A J

    2012-09-28

    Recent decades have seen a paradigm shift in the treatment of liver tumours from invasive surgical procedures to minimally invasive image-guided ablation techniques. Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a novel, completely non-invasive ablation technique that has the potential to change the field of liver tumour ablation. The image guidance, using MR imaging and MR temperature mapping, provides excellent planning images and real-time temperature information during the ablation procedure. However, before clinical implementation of MR-HIFU for liver tumour ablation is feasible, several organ-specific challenges have to be addressed. In this review we discuss the MR-HIFU ablation technique, the liver-specific challenges for MR-HIFU tumour ablation, and the proposed solutions for clinical translation.

  4. Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablation of liver tumours

    PubMed Central

    Bartels, L.W.; Deckers, R.; Ries, M.; Mali, W.P.Th.M.; Moonen, C.T.W.; van den Bosch, M.A.A.J.

    2012-01-01

    Abstract Recent decades have seen a paradigm shift in the treatment of liver tumours from invasive surgical procedures to minimally invasive image-guided ablation techniques. Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a novel, completely non-invasive ablation technique that has the potential to change the field of liver tumour ablation. The image guidance, using MR imaging and MR temperature mapping, provides excellent planning images and real-time temperature information during the ablation procedure. However, before clinical implementation of MR-HIFU for liver tumour ablation is feasible, several organ-specific challenges have to be addressed. In this review we discuss the MR-HIFU ablation technique, the liver-specific challenges for MR-HIFU tumour ablation, and the proposed solutions for clinical translation. PMID:23022541

  5. Fast lesion mapping during HIFU treatment using harmonic motion imaging guided focused ultrasound (HMIgFUS) in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Han, Yang; Wang, Shutao; Payen, Thomas; Konofagou, Elisa

    2017-04-01

    The successful clinical application of high intensity focused ultrasound (HIFU) ablation depends on reliable monitoring of the lesion formation. Harmonic motion imaging guided focused ultrasound (HMIgFUS) is an ultrasound-based elasticity imaging technique, which monitors HIFU ablation based on the stiffness change of the tissue instead of the echo intensity change in conventional B-mode monitoring, rendering it potentially more sensitive to lesion development. Our group has shown that predicting the lesion location based on the radiation force-excited region is feasible during HMIgFUS. In this study, the feasibility of a fast lesion mapping method is explored to directly monitor the lesion map during HIFU. The harmonic motion imaging (HMI) lesion map was generated by subtracting the reference HMI image from the present HMI peak-to-peak displacement map, as streamed on the computer display. The dimensions of the HMIgFUS lesions were compared against gross pathology. Excellent agreement was found between the lesion depth (r 2  =  0.81, slope  =  0.90), width (r 2  =  0.85, slope  =  1.12) and area (r 2  =  0.58, slope  =  0.75). In vivo feasibility was assessed in a mouse with a pancreatic tumor. These findings demonstrate that HMIgFUS can successfully map thermal lesions and monitor lesion development in real time in vitro and in vivo. The HMIgFUS technique may therefore constitute a novel clinical tool for HIFU treatment monitoring.

  6. Fast lesion mapping during HIFU treatment using harmonic motion imaging guided focused ultrasound (HMIgFUS) in vitro and in vivo.

    PubMed

    Han, Yang; Wang, Shutao; Payen, Thomas; Konofagou, Elisa

    2017-04-21

    The successful clinical application of high intensity focused ultrasound (HIFU) ablation depends on reliable monitoring of the lesion formation. Harmonic motion imaging guided focused ultrasound (HMIgFUS) is an ultrasound-based elasticity imaging technique, which monitors HIFU ablation based on the stiffness change of the tissue instead of the echo intensity change in conventional B-mode monitoring, rendering it potentially more sensitive to lesion development. Our group has shown that predicting the lesion location based on the radiation force-excited region is feasible during HMIgFUS. In this study, the feasibility of a fast lesion mapping method is explored to directly monitor the lesion map during HIFU. The harmonic motion imaging (HMI) lesion map was generated by subtracting the reference HMI image from the present HMI peak-to-peak displacement map, as streamed on the computer display. The dimensions of the HMIgFUS lesions were compared against gross pathology. Excellent agreement was found between the lesion depth (r 2   =  0.81, slope  =  0.90), width (r 2   =  0.85, slope  =  1.12) and area (r 2   =  0.58, slope  =  0.75). In vivo feasibility was assessed in a mouse with a pancreatic tumor. These findings demonstrate that HMIgFUS can successfully map thermal lesions and monitor lesion development in real time in vitro and in vivo. The HMIgFUS technique may therefore constitute a novel clinical tool for HIFU treatment monitoring.

  7. Alzheimer disease in a mouse model: MR imaging-guided focused ultrasound targeted to the hippocampus opens the blood-brain barrier and improves pathologic abnormalities and behavior.

    PubMed

    Burgess, Alison; Dubey, Sonam; Yeung, Sharon; Hough, Olivia; Eterman, Naomi; Aubert, Isabelle; Hynynen, Kullervo

    2014-12-01

    To validate whether repeated magnetic resonance (MR) imaging-guided focused ultrasound treatments targeted to the hippocampus, a brain structure relevant for Alzheimer disease ( AD Alzheimer disease ), could modulate pathologic abnormalities, plasticity, and behavior in a mouse model. All animal procedures were approved by the Animal Care Committee and are in accordance with the Canadian Council on Animal Care. Seven-month-old transgenic (TgCRND8) (Tg) mice and their nontransgenic (non-Tg) littermates were entered in the study. Mice were treated weekly with MR imaging-guided focused ultrasound in the bilateral hippocampus (1.68 MHz, 10-msec bursts, 1-Hz burst repetition frequency, 120-second total duration). After 1 month, spatial memory was tested in the Y maze with the novel arm prior to sacrifice and immunohistochemical analysis. The data were compared by using unpaired t tests and analysis of variance with Tukey post hoc analysis. Untreated Tg mice spent 61% less time than untreated non-Tg mice exploring the novel arm of the Y maze because of spatial memory impairments (P < .05). Following MR imaging-guided focused ultrasound, Tg mice spent 99% more time exploring the novel arm, performing as well as their non-Tg littermates. Changes in behavior were correlated with a reduction of the number and size of amyloid plaques in the MR imaging-guided focused ultrasound-treated animals (P < .01). Further, after MR imaging-guided focused ultrasound treatment, there was a 250% increase in the number of newborn neurons in the hippocampus (P < .01). The newborn neurons had longer dendrites and more arborization after MR imaging-guided focused ultrasound, as well (P < .01). Repeated MR imaging-guided focused ultrasound treatments led to spatial memory improvement in a Tg mouse model of AD Alzheimer disease . The behavior changes may be mediated by decreased amyloid pathologic abnormalities and increased neuronal plasticity. © RSNA, 2014.

  8. Reproducibility of Ultrasound-Guided High Intensity Focused Ultrasound (HIFU) Thermal Lesions in Minimally-Invasive Brain Surgery

    NASA Astrophysics Data System (ADS)

    Zahedi, Sulmaz

    This study aims to prove the feasibility of using Ultrasound-Guided High Intensity Focused Ultrasound (USg-HIFU) to create thermal lesions in neurosurgical applications, allowing for precise ablation of brain tissue, while simultaneously providing real time imaging. To test the feasibility of the system, an optically transparent HIFU compatible tissue-mimicking phantom model was produced. USg-HIFU was then used for ablation of the phantom, with and without targets. Finally, ex vivo lamb brain tissue was imaged and ablated using the USg-HIFU system. Real-time ultrasound images and videos obtained throughout the ablation process showing clear lesion formation at the focal point of the HIFU transducer. Post-ablation gross and histopathology examinations were conducted to verify thermal and mechanical damage in the ex vivo lamb brain tissue. Finally, thermocouple readings were obtained, and HIFU field computer simulations were conducted to verify findings. Results of the study concluded reproducibility of USg-HIFU thermal lesions for neurosurgical applications.

  9. An 11-Channel Radio Frequency Phased Array Coil for Magnetic Resonance Guided High Intensity Focused Ultrasound of the Breast

    PubMed Central

    Minalga, E.; Payne, A.; Merrill, R.; Todd, N.; Vijayakumar, S.; Kholmovski, E.; Parker, D. L.; Hadley, J. R.

    2012-01-01

    In this study, a radio-frequency (RF) phased array coil was built to image the breast in conjunction with a Magnetic Resonance guided High Intensity Focused Ultrasound (MRgHIFU) device designed specifically to treat the breast in a treatment cylinder with reduced water volume. The MRgHIFU breast coil was comprised of a 10-channel phased array coil placed around an MRgHIFU treatment cylinder where nearest-neighbor decoupling was achieved with capacitive decoupling in a shared leg. In addition a single loop coil was placed at the chest wall making a total of 11-channels. The RF coil array design presented in this work was chosen based on ease of implementation, increased visualization into the treatment cylinder, image reconstruction speed, temporal resolution, and resulting signal-to-noise-ratio (SNR) profiles. This work presents a dedicated 11-channel coil for imaging of the breast tissue in the MRgHIFU setup without obstruction of the ultrasound beam and, specifically, compares its performance in SNR, overall imaging time, and temperature measurement accuracy to that of the standard single chest-loop coil typically used in breast MRgHIFU. PMID:22431301

  10. Transvaginal 3D Image-Guided High Intensity Focused Ultrasound Array

    NASA Astrophysics Data System (ADS)

    Held, Robert; Nguyen, Thuc Nghi; Vaezy, Shahram

    2005-03-01

    The goal of this project is to develop a transvaginal image-guided High Intensity Focused Ultrasound (HIFU) device using piezocomposite HIFU array technology, and commercially-available ultrasound imaging. Potential applications include treatment of uterine fibroids and abnormal uterine bleeding. The HIFU transducer was an annular phased array, with a focal length range of 30-60 mm, an elliptically-shaped aperture of 35×60 mm, and an operating frequency of 3 MHz. A pillow-shaped bag with water circulation will be used for coupling the HIFU energy into the tissue. An intra-cavity imaging probe (C9-5, Philips) was integrated with the HIFU array such that the focal axis of the HIFU transducer was within the image plane. The entire device will be covered by a gel-filled condom when inserted in the vaginal cavity. To control it, software packages were developed in the LabView programming environment. An imaging algorithm processed the ultrasound image to remove noise patterns due to the HIFU signal. The device will be equipped with a three-dimensional tracking system, using a six-degrees-of-freedom articulating arm. Necrotic lesions were produced in a tissue-mimicking phantom and a turkey breast sample for all focal lengths. Various HIFU doses allow various necrotic lesion shapes, including thin ellipsoidal, spherical, wide cylindrical, and teardrop-shaped. Software control of the device allows multiple foci to be activated sequentially for desired lesion patterns. Ultrasound imaging synchronization can be achieved using hardware signals obtained from the imaging system, or software signals determined empirically for various imaging probes. The image-guided HIFU device will provide a valuable tool in visualization of uterine fibroid tumors for the purposes of planning and subsequent HIFU treatment of the tumor, all in a 3D environment. The control system allows for various lesions of different shapes to be optimally positioned in the tumor to cover the entire tumor volume. Real-time ultrasound imaging for guidance and monitoring of HIFU treatment provides an effective method for outpatient-based procedures.

  11. In Vivo Targeted, Responsive, and Synergistic Cancer Nanotheranostics by Magnetic Resonance Imaging-Guided Synergistic High-Intensity Focused Ultrasound Ablation and Chemotherapy.

    PubMed

    Tang, Hailin; Guo, Yuan; Peng, Li; Fang, Hui; Wang, Zhigang; Zheng, Yuanyi; Ran, Haitao; Chen, Yu

    2018-05-09

    As one of the most representative noninvasive therapeutic modalities, high-intensity focused ultrasound (HIFU) has shown great promise for cancer therapy, but its low therapeutic efficacy and biosafety significantly hinder further extensive clinical translation and application. In this work, we report on the construction of a multifunctional theranostic nanoplatform to synergistically enhance the HIFU-therapeutic efficacy based on nanomedicine. A targeted and temperature-responsive theranostic nanoplatform (PFH/DOX@PLGA/Fe 3 O 4 -FA) has been designed and fabricated for efficient ultrasound/magnetic resonance dual-modality imaging-guided HIFU/chemo synergistic therapy. Especially, the folate was conjugated onto the surface of the nanoplatform for achieving active targeting to hepatoma cells by receptor-ligand interaction, which facilitates accumulation of the nanoplatforms into the tumor site. The integrated superparamagnetic iron oxide nanoparticles could generate the contrast enhancement in T 2 -weighted magnetic resonance imaging. By virtue of the thermal effect as generated by HIFU, liquid-gas phase transition of perfluorohexane (PFH) in nanocomposites was induced to generate PFH microbubbles, which achieved the contrast-enhanced ultrasound imaging and significantly improved the HIFU ablation efficacy. The loaded anticancer drugs could be released from the nanocomposites in a controllable manner (both pH and HIFU responsiveness). These multifunctional nanocomposites have been demonstrated to efficiently suppress the tumor growth based on the enhanced and synergistic chemotherapy and HIFU ablation, providing an efficient theranostic nanoplatform for cancer treatment.

  12. Expulsion of Fibroids to the Endometrial Cavity after Magnetic Resonance Imaging-guided High Intensity Focused Ultrasound Surgery (MRgFUS) Treatment of Intramural Uterine Fibroids

    PubMed Central

    Jeong, Jae-Hyeok; Hong, Gil Pyo; Kim, Yu-Ri; Hong, Da Gyo; Ha, Jae-Eun; Yeom, Jung In; Kim, Eun-Jeong; Kim, Hyung-Il

    2016-01-01

    Objectives This report seeks to introduce some cases of the patients who received magnetic resonance imaging (MRI)-guided high intensity focused ultrasound (HIFU) surgery (MRgFUS)-based intramural uterine fibroids treatment where the post-MRgFUS intramural uterine fibroids decreased in its volume and protruded towards the endometrial cavity to be expelled by hysteroscopy. Methods Of the 157 patients who had received MRgFUS treatment in the Obstetrics and Gynecology of the Hospital from March, 2015 to February, 2016; this study examined 6 of the cases where, after high intensity focused ultrasound treatment, intramural uterine fibroids protruded towards the endometrial cavity to be removed by hysteroscopic myomectomy. The high intensity focused ultrasound utilized in the cases were Philips Achieva 1.5 Tesla MR (Philips Healthcare, Best, The Netherlands) and Sonalleve HIFU system. Results The volume of fibroids ranged from 26.0 cm3 to 199.5 cm3, averaging 95.6 cm3. The major axis length ranged from 4.0 cm to 8.2 cm, averaging 6.3 cm. Fibroid location in all of the patients was in intramural uterine before treatment but after the high intensity focused ultrasound treatment, the fibroids were observed to protrude towards the endometrial cavity in at least Day 5 or up to Day 73 to allow hysteroscopic myomectomy. Conclusions In some cases, after an intramural uterine fibroid is treated with MRgFUS, fibroid volume is decreased and the fibroid protrudes towards the endometrial cavity. In this case, hysteroscopic myomectomy can be a useful solution. PMID:28119893

  13. Intense acoustic bursts as a signal-enhancement mechanism in ultrasound-modulated optical tomography.

    PubMed

    Kim, Chulhong; Zemp, Roger J; Wang, Lihong V

    2006-08-15

    Biophotonic imaging with ultrasound-modulated optical tomography (UOT) promises ultrasonically resolved imaging in biological tissues. A key challenge in this imaging technique is a low signal-to-noise ratio (SNR). We show significant UOT signal enhancement by using intense time-gated acoustic bursts. A CCD camera captured the speckle pattern from a laser-illuminated tissue phantom. Differences in speckle contrast were observed when ultrasonic bursts were applied, compared with when no ultrasound was applied. When CCD triggering was synchronized with burst initiation, acoustic-radiation-force-induced displacements were detected. To avoid mechanical contrast in UOT images, the CCD camera acquisition was delayed several milliseconds until transient effects of acoustic radiation force attenuated to a satisfactory level. The SNR of our system was sufficiently high to provide an image pixel per acoustic burst without signal averaging. Because of the substantially improved SNR, the use of intense acoustic bursts is a promising signal enhancement strategy for UOT.

  14. Varying ultrasound power level to distinguish surgical instruments and tissue.

    PubMed

    Ren, Hongliang; Anuraj, Banani; Dupont, Pierre E

    2018-03-01

    We investigate a new framework of surgical instrument detection based on power-varying ultrasound images with simple and efficient pixel-wise intensity processing. Without using complicated feature extraction methods, we identified the instrument with an estimated optimal power level and by comparing pixel values of varying transducer power level images. The proposed framework exploits the physics of ultrasound imaging system by varying the transducer power level to effectively distinguish metallic surgical instruments from tissue. This power-varying image-guidance is motivated from our observations that ultrasound imaging at different power levels exhibit different contrast enhancement capabilities between tissue and instruments in ultrasound-guided robotic beating-heart surgery. Using lower transducer power levels (ranging from 40 to 75% of the rated lowest ultrasound power levels of the two tested ultrasound scanners) can effectively suppress the strong imaging artifacts from metallic instruments and thus, can be utilized together with the images from normal transducer power levels to enhance the separability between instrument and tissue, improving intraoperative instrument tracking accuracy from the acquired noisy ultrasound volumetric images. We performed experiments in phantoms and ex vivo hearts in water tank environments. The proposed multi-level power-varying ultrasound imaging approach can identify robotic instruments of high acoustic impedance from low-signal-to-noise-ratio ultrasound images by power adjustments.

  15. A Lipopeptide-Based αvβ₃ Integrin-Targeted Ultrasound Contrast Agent for Molecular Imaging of Tumor Angiogenesis.

    PubMed

    Yan, Fei; Xu, Xiuxia; Chen, Yihan; Deng, Zhiting; Liu, Hongmei; Xu, Jianrong; Zhou, Jie; Tan, Guanghong; Wu, Junru; Zheng, Hairong

    2015-10-01

    The design and fabrication of targeted ultrasound contrast agents are key factors in the success of ultrasound molecular imaging applications. Here, we introduce a transformable αvβ3 integrin-targeted microbubble (MB) by incorporation of iRGD-lipopeptides into the MB membrane for non-invasive ultrasound imaging of tumor angiogenesis. First, the iRGD-lipopeptides were synthesized by conjugating iRGD peptides to distearoylphosphatidylethanolamine-polyethylene glycol 2000-maleimide. The resulting iRGD-lipopeptides were used for fabrication of the iRGD-carrying αvβ3 integrin-targeted MBs (iRGD-MBs). The binding specificity of iRGD-MBs for endothelial cells was found to be significantly stronger than that of control MBs (p < 0.01) under in vitro static and dynamic conditions. The binding of iRGD-MBs on the endothelial cells was competed off by pre-incubation with the anti-αv or anti-β3 antibody (p < 0.01). Ultrasound images taken of mice bearing 4T1 breast tumors after intravenous injections of iRGD-MBs or control MBs revealed strong contrast enhancement within the tumors from iRGD-MBs but not from the control MBs; the mean acoustic signal intensity was 10.71 ± 2.75 intensity units for iRGD-MBs versus 1.13 ± 0.18 intensity units for the control MBs (p < 0.01). The presence of αvβ3 integrin was confirmed by immunofluorescence staining. These data indicate that iRGD-MBs can be used as an ultrasound imaging probe for the non-invasive molecular imaging of tumor angiogenesis, and may have further implications for ultrasound image-guided tumor targeting drug delivery. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. All rights reserved.

  16. Nanobiotechnology-based delivery strategies: New frontiers in brain tumor targeted therapies.

    PubMed

    Mangraviti, Antonella; Gullotti, David; Tyler, Betty; Brem, Henry

    2016-10-28

    Despite recent technological advancements and promising preclinical experiments, brain tumor patients are still met with limited treatment options. Some of the barriers to clinical improvements include the systemic toxicity of cytotoxic compounds, the impedance of the blood brain barrier (BBB), and the lack of therapeutic agents that can selectively target the intracranial tumor environment. To overcome such barriers, a number of chemotherapeutic agents and nucleic acid-based therapies are rapidly being synthesized and tested as new brain tumor-targeted delivery strategies. Novel carriers include liposomal and polymeric nanoparticles, wafers, microchips, microparticle-based nanoplatforms and cells-based vectors. Strong preclinical results suggest that these nanotechnologies are set to transform the therapeutic paradigm for brain tumor treatment. In addition to new tumoricidal agents, parallel work is also being conducted on the BBB front. Preclinical testing of chemical and physical modulation strategies is yielding improved intracranial concentrations. New diagnostic and therapeutic imaging techniques, such as high-intensity focused ultrasound and MRI-guided focused ultrasound, are being used to modulate the BBB in a more precise and non-invasive manner. This review details some of the tremendous advances that are being explored in current brain tumor targeted therapies, including local implant development, nanobiotechnology-based delivery strategies, and techniques of BBB manipulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Light-emitting diode-based multiwavelength diffuse optical tomography system guided by ultrasound

    PubMed Central

    Yuan, Guangqian; Alqasemi, Umar; Chen, Aaron; Yang, Yi; Zhu, Quing

    2014-01-01

    Abstract. Laser diodes are widely used in diffuse optical tomography (DOT) systems but are typically expensive and fragile, while light-emitting diodes (LEDs) are cheaper and are also available in the near-infrared (NIR) range with adequate output power for imaging deeply seated targets. In this study, we introduce a new low-cost DOT system using LEDs of four wavelengths in the NIR spectrum as light sources. The LEDs were modulated at 20 kHz to avoid ambient light. The LEDs were distributed on a hand-held probe and a printed circuit board was mounted at the back of the probe to separately provide switching and driving current to each LED. Ten optical fibers were used to couple the reflected light to 10 parallel photomultiplier tube detectors. A commercial ultrasound system provided simultaneous images of target location and size to guide the image reconstruction. A frequency-domain (FD) laser-diode-based system with ultrasound guidance was also used to compare the results obtained from those of the LED-based system. Results of absorbers embedded in intralipid and inhomogeneous tissue phantoms have demonstrated that the LED-based system provides a comparable quantification accuracy of targets to the FD system and has the potential to image deep targets such as breast lesions. PMID:25473884

  18. An acousto-optic sensor based on resonance grating waveguide structure

    PubMed Central

    Xie, Antonio Jou; Song, Fuchuan; Seo, Sang-Woo

    2014-01-01

    This paper presents an acousto-optic (AO) sensor based on resonance grating waveguide structure. The sensor is fabricated using elastic polymer materials to achieve a good sensitivity to ultrasound pressure waves. Ultrasound pressure waves modify the structural parameters of the sensor and result in the optical resonance shift of the sensor. This converts into a light intensity modulation. A commercial ultrasound transducer at 20 MHz is used to characterize a fabricated sensor and detection sensitivity at different optical source wavelength within a resonance spectrum is investigated. Practical use of the sensor at a fixed optical source wavelength is presented. Ultimately, the geometry of the planar sensor structure is suitable for two-dimensional, optical pressure imaging applications such as pressure wave detection and mapping, and ultrasound imaging. PMID:25045203

  19. Ultrasound Guidance and Monitoring of Laser-Based Fat Removal

    PubMed Central

    Shah, Jignesh; Thomsen, Sharon; Milner, Thomas E.; Emelianov, Stanislav Y.

    2009-01-01

    Background and Objectives We report on a study to investigate feasibility of utilizing ultrasound imaging to guide laser removal of subcutaneous fat. Ultrasound imaging can be used to identify the tissue composition and to monitor the temperature increase in response to laser irradiation. Study Design/Materials and Methods Laser heating was performed on ex vivo porcine subcutaneous fat through the overlying skin using a continuous wave laser operating at 1,210 nm optical wavelength. Ultrasound images were recorded using a 10 MHz linear array-based ultrasound imaging system. Results Ultrasound imaging was utilized to differentiate between water-based and lipid-based regions within the porcine tissue and to identify the dermis-fat junction. Temperature maps during the laser exposure in the skin and fatty tissue layers were computed. Conclusions Results of our study demonstrate the potential of using ultrasound imaging to guide laser fat removal. PMID:19065554

  20. Application of Zernike polynomials towards accelerated adaptive focusing of transcranial high intensity focused ultrasound.

    PubMed

    Kaye, Elena A; Hertzberg, Yoni; Marx, Michael; Werner, Beat; Navon, Gil; Levoy, Marc; Pauly, Kim Butts

    2012-10-01

    To study the phase aberrations produced by human skulls during transcranial magnetic resonance imaging guided focused ultrasound surgery (MRgFUS), to demonstrate the potential of Zernike polynomials (ZPs) to accelerate the adaptive focusing process, and to investigate the benefits of using phase corrections obtained in previous studies to provide the initial guess for correction of a new data set. The five phase aberration data sets, analyzed here, were calculated based on preoperative computerized tomography (CT) images of the head obtained during previous transcranial MRgFUS treatments performed using a clinical prototype hemispherical transducer. The noniterative adaptive focusing algorithm [Larrat et al., "MR-guided adaptive focusing of ultrasound," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(8), 1734-1747 (2010)] was modified by replacing Hadamard encoding with Zernike encoding. The algorithm was tested in simulations to correct the patients' phase aberrations. MR acoustic radiation force imaging (MR-ARFI) was used to visualize the effect of the phase aberration correction on the focusing of a hemispherical transducer. In addition, two methods for constructing initial phase correction estimate based on previous patient's data were investigated. The benefits of the initial estimates in the Zernike-based algorithm were analyzed by measuring their effect on the ultrasound intensity at the focus and on the number of ZP modes necessary to achieve 90% of the intensity of the nonaberrated case. Covariance of the pairs of the phase aberrations data sets showed high correlation between aberration data of several patients and suggested that subgroups can be based on level of correlation. Simulation of the Zernike-based algorithm demonstrated the overall greater correction effectiveness of the low modes of ZPs. The focal intensity achieves 90% of nonaberrated intensity using fewer than 170 modes of ZPs. The initial estimates based on using the average of the phase aberration data from the individual subgroups of subjects was shown to increase the intensity at the focal spot for the five subjects. The application of ZPs to phase aberration correction was shown to be beneficial for adaptive focusing of transcranial ultrasound. The skull-based phase aberrations were found to be well approximated by the number of ZP modes representing only a fraction of the number of elements in the hemispherical transducer. Implementing the initial phase aberration estimate together with Zernike-based algorithm can be used to improve the robustness and can potentially greatly increase the viability of MR-ARFI-based focusing for a clinical transcranial MRgFUS therapy.

  1. Application of Zernike polynomials towards accelerated adaptive focusing of transcranial high intensity focused ultrasound

    PubMed Central

    Kaye, Elena A.; Hertzberg, Yoni; Marx, Michael; Werner, Beat; Navon, Gil; Levoy, Marc; Pauly, Kim Butts

    2012-01-01

    Purpose: To study the phase aberrations produced by human skulls during transcranial magnetic resonance imaging guided focused ultrasound surgery (MRgFUS), to demonstrate the potential of Zernike polynomials (ZPs) to accelerate the adaptive focusing process, and to investigate the benefits of using phase corrections obtained in previous studies to provide the initial guess for correction of a new data set. Methods: The five phase aberration data sets, analyzed here, were calculated based on preoperative computerized tomography (CT) images of the head obtained during previous transcranial MRgFUS treatments performed using a clinical prototype hemispherical transducer. The noniterative adaptive focusing algorithm [Larrat , “MR-guided adaptive focusing of ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(8), 1734–1747 (2010)]10.1109/TUFFC.2010.1612 was modified by replacing Hadamard encoding with Zernike encoding. The algorithm was tested in simulations to correct the patients’ phase aberrations. MR acoustic radiation force imaging (MR-ARFI) was used to visualize the effect of the phase aberration correction on the focusing of a hemispherical transducer. In addition, two methods for constructing initial phase correction estimate based on previous patient's data were investigated. The benefits of the initial estimates in the Zernike-based algorithm were analyzed by measuring their effect on the ultrasound intensity at the focus and on the number of ZP modes necessary to achieve 90% of the intensity of the nonaberrated case. Results: Covariance of the pairs of the phase aberrations data sets showed high correlation between aberration data of several patients and suggested that subgroups can be based on level of correlation. Simulation of the Zernike-based algorithm demonstrated the overall greater correction effectiveness of the low modes of ZPs. The focal intensity achieves 90% of nonaberrated intensity using fewer than 170 modes of ZPs. The initial estimates based on using the average of the phase aberration data from the individual subgroups of subjects was shown to increase the intensity at the focal spot for the five subjects. Conclusions: The application of ZPs to phase aberration correction was shown to be beneficial for adaptive focusing of transcranial ultrasound. The skull-based phase aberrations were found to be well approximated by the number of ZP modes representing only a fraction of the number of elements in the hemispherical transducer. Implementing the initial phase aberration estimate together with Zernike-based algorithm can be used to improve the robustness and can potentially greatly increase the viability of MR-ARFI-based focusing for a clinical transcranial MRgFUS therapy. PMID:23039661

  2. Development of a spherically focused phased array transducer for ultrasonic image-guided hyperthermia

    PubMed Central

    Liu, Jingfei; Foiret, Josquin; Stephens, Douglas N.; Le Baron, Olivier; Ferrara, Katherine W.

    2016-01-01

    A 1.5 MHz prolate spheroidal therapeutic array with 128 circular elements was designed to accommodate standard imaging arrays for ultrasonic image-guided hyperthermia. The implementation of this dual-array system integrates real-time therapeutic and imaging functions with a single ultrasound system (Vantage 256, Verasonics). To facilitate applications involving small animal imaging and therapy the array was designed to have a beam depth of field smaller than 3.5 mm and to electronically steer over distances greater than 1 cm in both the axial and lateral directions. In order to achieve the required f number of 0.69, 1-3 piezocomposite modules were mated within the transducer housing. The performance of the prototype array was experimentally evaluated with excellent agreement with numerical simulation. A focal volume (2.70 mm (axial) × 0.65 mm (transverse) × 0.35 mm (transverse)) defined by the −6 dB focal intensity was obtained to address the dimensions needed for small animal therapy. An electronic beam steering range defined by the −3 dB focal peak intensity (17 mm (axial) × 14 mm (transverse) × 12 mm (transverse)) and −8 dB lateral grating lobes (24 mm (axial) × 18 mm (transverse) × 16 mm (transverse)) was achieved. The combined testing of imaging and therapeutic functions confirmed well-controlled local heating generation and imaging in a tissue mimicking phantom. This dual-array implementation offers a practical means to achieve hyperthermia and ablation in small animal models and can be incorporated within protocols for ultrasound-mediated drug delivery. PMID:27353347

  3. Annular phased-array high-intensity focused ultrasound device for image-guided therapy of uterine fibroids.

    PubMed

    Held, Robert Thomas; Zderic, Vesna; Nguyen, Thuc Nghi; Vaezy, Shahram

    2006-02-01

    An ultrasound (US), image-guided high-intensity focused ultrasound (HIFU) device was developed for noninvasive ablation of uterine fibroids. The HIFU device was an annular phased array, with a focal depth range of 30-60 mm, a natural focus of 50 mm, and a resonant frequency of 3 MHz. The in-house control software was developed to operate the HIFU electronics drive system for inducing tissue coagulation at different distances from the array. A novel imaging algorithm was developed to minimize the HIFU-induced noise in the US images. The device was able to produce lesions in bovine serum albumin-embedded polyacrylamide gels and excised pig liver. The lesions could be seen on the US images as hyperechoic regions. Depths ranging from 30 to 60 mm were sonicated at acoustic intensities of 4100 and 6100 W/cm2 for 15 s each, with the latter producing average lesion volumes at least 63% larger than the former. Tissue sonication patterns that began distal to the transducer produced longer lesions than those that began proximally. The variation in lesion dimensions indicates the possible development of HIFU protocols that increase HIFU throughput and shorten tumor treatment times.

  4. High-intensity focused ultrasound for potential treatment of polycystic ovary syndrome: toward a noninvasive surgery.

    PubMed

    Shehata, Islam A; Ballard, John R; Casper, Andrew J; Hennings, Leah J; Cressman, Erik; Ebbini, Emad S

    2014-02-01

    To investigate the feasibility of using high-intensity focused ultrasound (HIFU), under dual-mode ultrasound arrays (DMUAs) guidance, to induce localized thermal damage inside ovaries without damage to the ovarian surface. Laboratory feasibility study. University-based laboratory. Ex vivo canine and bovine ovaries. DMUA-guided HIFU. Detection of ovarian damage by ultrasound imaging, gross pathology, and histology. It is feasible to induce localized thermal damage inside ovaries without damage to the ovarian surface. DMUA provided sensitive imaging feedback regarding the anatomy of the treated ovaries and the ablation process. Different ablation protocols were tested, and thermal damage within the treated ovaries was histologically characterized. The absence of damage to the ovarian surface may eliminate many of the complications linked to current laparoscopic ovarian drilling (LOD) techniques. HIFU may be used as a less traumatic tool to perform LOD. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  5. Magnetic Resonance-Guided High-Intensity Focused Ultrasound (MR-HIFU) in Treatment of Symptomatic Uterine Myomas

    PubMed Central

    Filipowska, Justyna; Łoziński, Tomasz

    2014-01-01

    Summary Magnetic Resonance-guided High-Intensity Focused Ultrasound (MR-HIFU) is a noninvasive technique for ablation therapy for uterine myomas, where focused ultrasound energy beam generates localized high temperature in the selected area and coagulates chosen tissue, leaving the skin and tissues in between unharmed. Magnetic resonance imaging enables accurate targeting for HIFU as well as temperature monitoring during treatment. MR guidance with 3D anatomical imaging provides reference data for treatment planning, while real-time temperature monitoring aids in controlling ablation process. This review provides basic information regarding methodology, clinical indications for this kind of treatment, expected outcome and patient management during MR-HIFU procedure. The aim of this work is to introduce a new, noninvasive treatment method for uterine leiomyomas and to present a comparison with other currently used methods. PMID:25469176

  6. Magnetic Resonance-Guided High-Intensity Focused Ultrasound (MR-HIFU) in Treatment of Symptomatic Uterine Myomas.

    PubMed

    Filipowska, Justyna; Loziński, Tomasz

    2014-01-01

    Magnetic Resonance-guided High-Intensity Focused Ultrasound (MR-HIFU) is a noninvasive technique for ablation therapy for uterine myomas, where focused ultrasound energy beam generates localized high temperature in the selected area and coagulates chosen tissue, leaving the skin and tissues in between unharmed. Magnetic resonance imaging enables accurate targeting for HIFU as well as temperature monitoring during treatment. MR guidance with 3D anatomical imaging provides reference data for treatment planning, while real-time temperature monitoring aids in controlling ablation process. This review provides basic information regarding methodology, clinical indications for this kind of treatment, expected outcome and patient management during MR-HIFU procedure. The aim of this work is to introduce a new, noninvasive treatment method for uterine leiomyomas and to present a comparison with other currently used methods.

  7. Medical Ultrasound Technology Research and Development at the University of Washington Center for Industrial and Medical Ultrasound

    DTIC Science & Technology

    2003-10-02

    provide a world-class, advanced research center for bioengineering development and graduate education in high-intensity, focused ultrasound ( HIFU ). This...convenient, and robust. These technological enhancements have enabled the development of HIFU arrays and image-guided ultrasound systems for greater... Ultrasound (CIMU). The many disparate facilities and technical capabilities available to CIMU staff and students were integrated and enhanced to

  8. A multi-element high intensity focused ultrasound transducer: Design, fabrication, and testing

    NASA Astrophysics Data System (ADS)

    Vaezy, Shahram; Held, Robert; Miller, Blake; Fleury, Gerard

    2004-05-01

    The goal of this project is to develop an intra-cavity image-guided high intensity focused ultrasound (HIFU) device using piezocomposite technology and commercially available ultrasound imaging. The HIFU array, manufactured by Imasonic Corporation, is an 11-element annular phased array, with a focal length range of 30-60 mm, and operating frequency of 3 MHz (bandwidth of 1 MHz). The imaging probe (C9-5, Philips) is configured such that the focal axis of the HIFU beam was within the image plane. The array includes six complete central rings and five side-truncated peripheral rings, all with the natural radius of curvature of 50 mm. Impedance of all elements is approximately 50 ohms (10% accuracy for real and imaginary parts). Cross coupling between adjacent elements is less than, -40 dB. High power measurements showed more than 75% efficiency, at surface intensity of 2.66 W/cm2. Schlieren imaging showed effective focusing at all focal lengths (30-60 mm). The image-guided HIFU device requires water or hydrogel coupling, and possibly water cooling. The results of the full characterization for lesion formation in tissue-mimicking phantoms and biological tissues will be presented. Possible applications include uterine fibroids, abnormal uterine bleeding, and intraoperative hemostasis of occult hemorrhage.

  9. Image-Guided Intensity-Modulated Radiotherapy for Pancreatic Carcinoma

    PubMed Central

    Fuss, Martin; Wong, Adrian; Fuller, Clifton D.; Salter, Bill J.; Fuss, Cristina; Thomas, Charles R.

    2007-01-01

    Purpose To present the techniques and preliminary outcomes of ultrasound-based image-guided intensity-modulated radiotherapy (IG-IMRT) for pancreatic cancer. Materials and Methods Retrospective analysis of 41 patients treated between November 2000 and March 2005 with IG-IMRT to mean total doses of 55 Gy (range, 45–64 Gy). We analyzed the clinical feasibility of IG-IMRT, dosimetric parameters, and outcomes, including acute gastrointestinal toxicity (RTOG grading). Survival was assessed for adenocarcinoma (n = 35) and other histologies. Results Mean daily image-guidance corrective shifts were 4.8 ± 4.3 mm, 7.5 ± 7.2 mm, and 4.6 ± 5.9 mm along the x-, y-, and z-axes, respectively (mean 3D correction vector, 11.7 ± 8.4 mm). Acute upper gastrointestinal toxicity was grade 0–1 in 22 patients (53.7%), grade 2 in 16 patients (39%), and grade 3 in 3 patients (7.3%). Lower gastrointestinal toxicity was grade 0–1 in 32 patients (78%), grade 2 in 7 patients (17.1%), and grade 4 in 2 patients (4.9%). Treatment was stopped early in 4 patients following administration of 30 to 54 Gy. Median survival for adenocarcinoma histology was 10.3 months (18.6 months in patients alive at analysis; n = 8) with actuarial 1- and 2-year survivals of 38% and 25%, respectively. Conclusion Daily image-guidance during delivery of IMRT for pancreatic carcinoma is clinically feasible. The data presented support the conclusion that safety margin reduction and moderate dose escalation afforded by implementation of these new radiotherapy technologies yields preliminary outcomes at least comparable with published survival data. PMID:19262697

  10. High-intensity focused ultrasound in the treatment of breast tumours.

    PubMed

    Peek, Mirjam C L; Wu, Feng

    2018-01-01

    High-intensity focused ultrasound (HIFU) is a minimally invasive technique that has been used for the treatment of both benign and malignant tumours. With HIFU, an ultrasound (US) beam propagates through soft tissue as a high-frequency pressure wave. The US beam is focused at a small target volume, and due to the energy building up at this site, the temperature rises, causing coagulative necrosis and protein denaturation within a few seconds. HIFU is capable of providing a completely non-invasive treatment without causing damage to the directly adjacent tissues. HIFU can be either guided by US or magnetic resonance imaging (MRI). Guided imaging is used to plan the treatment, detect any movement during the treatment and monitor response in real-time. This review describes the history of HIFU, the HIFU technique, available devices and gives an overview of the published literature in the treatment of benign and malignant breast tumours with HIFU.

  11. 3D ultrasound imaging in image-guided intervention.

    PubMed

    Fenster, Aaron; Bax, Jeff; Neshat, Hamid; Cool, Derek; Kakani, Nirmal; Romagnoli, Cesare

    2014-01-01

    Ultrasound imaging is used extensively in diagnosis and image-guidance for interventions of human diseases. However, conventional 2D ultrasound suffers from limitations since it can only provide 2D images of 3-dimensional structures in the body. Thus, measurement of organ size is variable, and guidance of interventions is limited, as the physician is required to mentally reconstruct the 3-dimensional anatomy using 2D views. Over the past 20 years, a number of 3-dimensional ultrasound imaging approaches have been developed. We have developed an approach that is based on a mechanical mechanism to move any conventional ultrasound transducer while 2D images are collected rapidly and reconstructed into a 3D image. In this presentation, 3D ultrasound imaging approaches will be described for use in image-guided interventions.

  12. Development of a spherically focused phased array transducer for ultrasonic image-guided hyperthermia

    NASA Astrophysics Data System (ADS)

    Liu, Jingfei; Foiret, Josquin; Stephens, Douglas N.; Le Baron, Olivier; Ferrara, Katherine W.

    2016-07-01

    A 1.5 MHz prolate spheroidal therapeutic array with 128 circular elements was designed to accommodate standard imaging arrays for ultrasonic image-guided hyperthermia. The implementation of this dual-array system integrates real-time therapeutic and imaging functions with a single ultrasound system (Vantage 256, Verasonics). To facilitate applications involving small animal imaging and therapy the array was designed to have a beam depth of field smaller than 3.5 mm and to electronically steer over distances greater than 1 cm in both the axial and lateral directions. In order to achieve the required f number of 0.69, 1-3 piezocomposite modules were mated within the transducer housing. The performance of the prototype array was experimentally evaluated with excellent agreement with numerical simulation. A focal volume (2.70 mm (axial)  ×  0.65 mm (transverse)  ×  0.35 mm (transverse)) defined by the  -6 dB focal intensity was obtained to address the dimensions needed for small animal therapy. An electronic beam steering range defined by the  -3 dB focal peak intensity (17 mm (axial)  ×  14 mm (transverse)  ×  12 mm (transverse)) and  -8 dB lateral grating lobes (24 mm (axial)  ×  18 mm (transverse)  ×  16 mm (transverse)) was achieved. The combined testing of imaging and therapeutic functions confirmed well-controlled local heating generation and imaging in a tissue mimicking phantom. This dual-array implementation offers a practical means to achieve hyperthermia and ablation in small animal models and can be incorporated within protocols for ultrasound-mediated drug delivery.

  13. Development of a spherically focused phased array transducer for ultrasonic image-guided hyperthermia.

    PubMed

    Liu, Jingfei; Foiret, Josquin; Stephens, Douglas N; Le Baron, Olivier; Ferrara, Katherine W

    2016-07-21

    A 1.5 MHz prolate spheroidal therapeutic array with 128 circular elements was designed to accommodate standard imaging arrays for ultrasonic image-guided hyperthermia. The implementation of this dual-array system integrates real-time therapeutic and imaging functions with a single ultrasound system (Vantage 256, Verasonics). To facilitate applications involving small animal imaging and therapy the array was designed to have a beam depth of field smaller than 3.5 mm and to electronically steer over distances greater than 1 cm in both the axial and lateral directions. In order to achieve the required f number of 0.69, 1-3 piezocomposite modules were mated within the transducer housing. The performance of the prototype array was experimentally evaluated with excellent agreement with numerical simulation. A focal volume (2.70 mm (axial)  ×  0.65 mm (transverse)  ×  0.35 mm (transverse)) defined by the  -6 dB focal intensity was obtained to address the dimensions needed for small animal therapy. An electronic beam steering range defined by the  -3 dB focal peak intensity (17 mm (axial)  ×  14 mm (transverse)  ×  12 mm (transverse)) and  -8 dB lateral grating lobes (24 mm (axial)  ×  18 mm (transverse)  ×  16 mm (transverse)) was achieved. The combined testing of imaging and therapeutic functions confirmed well-controlled local heating generation and imaging in a tissue mimicking phantom. This dual-array implementation offers a practical means to achieve hyperthermia and ablation in small animal models and can be incorporated within protocols for ultrasound-mediated drug delivery.

  14. Towards enabling ultrasound guidance in cervical cancer high-dose-rate brachytherapy

    NASA Astrophysics Data System (ADS)

    Wong, Adrian; Sojoudia, Samira; Gaudet, Marc; Yap, Wan Wan; Chang, Silvia D.; Abolmaesumi, Purang; Aquino-Parsons, Christina; Moradi, Mehdi

    2014-03-01

    MRI and Computed Tomography (CT) are used in image-based solutions for guiding High Dose Rate (HDR) brachytherapy treatment of cervical cancer. MRI is costly and CT exposes the patients to ionizing radiation. Ultrasound, on the other hand, is affordable and safe. The long-term goal of our work is to enable the use of multiparametric ultrasound imaging in image-guided HDR for cervical cancer. In this paper, we report the development of enabling technology for ultrasound guidance and tissue typing. We report a system to obtain the 3D freehand transabdominal ultrasound RF signals and B-mode images of the uterus, and a method for registration of ultrasound to MRI. MRI and 3D ultrasound images of the female pelvis were registered by contouring the uterus in the two modalities, creating a surface model, followed by rigid and B-spline deformable registration. The resulting transformation was used to map the location of the tumor from the T2-weighted MRI to ultrasound images and to determine cancerous and normal areas in ultrasound. B-mode images show a contrast for cancer vs. normal tissue. Our study shows the potential and the challenges of ultrasound imaging in guiding cervical cancer treatments.

  15. Portable ultrasound in disaster triage: a focused review.

    PubMed

    Wydo, S M; Seamon, M J; Melanson, S W; Thomas, P; Bahner, D P; Stawicki, S P

    2016-04-01

    Ultrasound technology has become ubiquitous in modern medicine. Its applications span the assessment of life-threatening trauma or hemodynamic conditions, to elective procedures such as image-guided peripheral nerve blocks. Sonographers have utilized ultrasound techniques in the pre-hospital setting, emergency departments, operating rooms, intensive care units, outpatient clinics, as well as during mass casualty and disaster management. Currently available ultrasound devices are more affordable, portable, and feature user-friendly interfaces, making them well suited for use in the demanding situation of a mass casualty incident (MCI) or disaster triage. We have reviewed the existing literature regarding the application of sonology in MCI and disaster scenarios, focusing on the most promising and practical ultrasound-based paradigms applicable in these settings.

  16. High-intensity focused ultrasound ablation for treatment of hepatocellular carcinoma and hypersplenism: preliminary study.

    PubMed

    Zhu, Jing; Zhu, Hui; Mei, Zhechuan; Jin, Chengbing; Ran, Lifeng; Zhou, Kun; Yang, Wei; Zhang, Lian; She, Chaokun

    2013-10-01

    The purpose of this work was to preliminarily investigate the efficacy and safety of high-intensity focused ultrasound treatment of hepatocellular carcinoma and hypersplenism. Nine patients with hepatocellular carcinoma complicated by hypersplenism (5 male and 4 female; median age, 56 years; range, 51-66 years) were treated with ultrasound-guided high-intensity focused ultrasound. Complications were recorded. Laboratory examination and magnetic resonance imaging were used to evaluate the efficacy. After high-intensity focused ultrasound treatment, mean spleen ablation ± SD of 28.76% ± 6.1% was discovered; meanwhile, the white blood cell count, platelet count, and liver function of the patients were substantially improved during the follow-up period. In addition, symptoms such as epistaxis and gingival bleeding were ameliorated or even eliminated, and the quality of life was improved. Follow-up imaging showed a nonperfused volume in the spleen and an absence of a tumor blood supply at the treated lesions in the liver. For the first time to our knowledge, high-intensity focused ultrasound ablation was used to treat hepatocellular carcinoma complicated by hypersplenism. High-intensity focused ultrasound may be an effective and safe alternative for treatment of hepatocellular carcinoma complicated by hypersplenism, but further studies are necessary to clarify the mechanisms.

  17. Development of ultrasound-assisted fluorescence imaging of indocyanine green.

    PubMed

    Morikawa, Hiroyasu; Toyota, Shin; Wada, Kenji; Uchida-Kobayashi, Sawako; Kawada, Norifumi; Horinaka, Hiromichi

    2017-01-01

    Indocyanine green (ICG) accumulation in hepatocellular carcinoma means tumors can be located by fluorescence. However, because of light scattering, it is difficult to detect ICG fluorescence from outside the body. We propose a new fluorescence imaging method that detects changes in the intensity of ICG fluorescence by ultrasound-induced temperature changes. ICG fluorescence intensity decreases as the temperature rises. Therefore, it should theoretically be possible to detect tissue distribution of ICG using ultrasound to heat tissue, moving the point of ultrasound transmission, and monitoring changes in fluorescence intensity. A new probe was adapted for clinical application. It consisted of excitation light from a laser, fluorescence sensing through a light pipe, and heating by ultrasound. We applied the probe to bovine liver to image the accumulation of ICG. ICG emits fluorescence (820 nm) upon light irradiation (783 nm). With a rise in temperature, the fluorescence intensity of ICG decreased by 0.85 %/°C. The distribution of fluorescent ICG was detected using an ultrasonic warming method in a new integrated probe. Modulating fluorescence by changing the temperature using ultrasound can determine where ICG accumulates at a depth, highlighting its potential as a means to locate hepatocellular carcinoma.

  18. Ultrasound-mediation of self-illuminating reporters improves imaging resolution in optically scattering media

    PubMed Central

    Ahmad, Junaid; Jayet, Baptiste; Hill, Philip J.; Mather, Melissa L.; Dehghani, Hamid; Morgan, Stephen P.

    2018-01-01

    In vivo imaging of self-illuminating bio-and chemiluminescent reporters is used to observe the physiology of small animals. However, strong light scattering by biological tissues results in poor spatial resolution of the optical imaging, which also degrades the quantitative accuracy. To overcome this challenging problem, focused ultrasound is used to modulate the light from the reporter at the ultrasound frequency. This produces an ultrasound switchable light ‘beacon’ that reduces the influence of light scattering in order to improve spatial resolution. The experimental results demonstrate that apart from light modulation at the ultrasound frequency (AC signal at 3.5 MHz), ultrasound also increases the DC intensity of the reporters. This is shown to be due to a temperature rise caused by insonification that was minimized to be within acceptable mammalian tissue safety thresholds by adjusting the duty cycle of the ultrasound. Line scans of bio-and chemiluminescent objects embedded within a scattering medium were obtained using ultrasound modulated (AC) and ultrasound enhanced (DC) signals. Lateral resolution is improved by a factor of 12 and 7 respectively, as compared to conventional CCD imaging. Two chemiluminescent sources separated by ~10 mm at ~20 mm deep inside a 50 mm thick chicken breast have been successfully resolved with an average signal-to-noise ratio of approximately 8-10 dB. PMID:29675309

  19. Vaginal Pessary for Uterine Repositioning During High-Intensity Focused Ultrasound Ablation of Uterine Leiomyomas

    PubMed Central

    Pulanic, Tajana Klepac; Venkatesan, Aradhana M.; Segars, James; Sokka, Sham; Wood, Bradford J.; Stratton, Pamela

    2015-01-01

    In order to ensure safe magnetic resonance-guided high-intensity focused ultrasound ablation of uterine leiomyomas, ultrasound beam path should be free of intervening scar and bowel. Pre-treatment magnetic resonance imaging of a 9cm long and 7.7cm wide leiomyomatous uterus in a 39-year-old woman with menorrhagia and abdominopelvic pain initially demonstrated a focused ultrasound treatment path without bowel between the uterus and abdominal wall. On the day of ablation, however, multiple loops of bowel were observed in the ultrasound beam path by magnetic resonance imaging. Uterine repositioning was accomplished with a 76 mm donut vaginal pessary which anteverted the fundus and successfully displaced bowel. A vaginal pessary may aid in repositioning an axial or retroverted uterus to enable ablation of uterine leiomyomas. PMID:26584482

  20. Self-contained image mapping of placental vasculature in 3D ultrasound-guided fetoscopy.

    PubMed

    Yang, Liangjing; Wang, Junchen; Ando, Takehiro; Kubota, Akihiro; Yamashita, Hiromasa; Sakuma, Ichiro; Chiba, Toshio; Kobayashi, Etsuko

    2016-09-01

    Surgical navigation technology directed at fetoscopic procedures is relatively underdeveloped compared with other forms of endoscopy. The narrow fetoscopic field of views and the vast vascular network on the placenta make examination and photocoagulation treatment of twin-to-twin transfusion syndrome challenging. Though ultrasonography is used for intraoperative guidance, its navigational ability is not fully exploited. This work aims to integrate 3D ultrasound imaging and endoscopic vision seamlessly for placental vasculature mapping through a self-contained framework without external navigational devices. This is achieved through development, integration, and experimentation of novel navigational modules. Firstly, a framework design that addresses the current limitations based on identified gaps is conceptualized. Secondly, integration of navigational modules including (1) ultrasound-based localization, (2) image alignment, and (3) vision-based tracking to update the scene texture map is implemented. This updated texture map is projected to an ultrasound-constructed 3D model for photorealistic texturing of the 3D scene creating a panoramic view of the moving fetoscope. In addition, a collaborative scheme for the integration of the modular workflow system is proposed to schedule updates in a systematic fashion. Finally, experiments are carried out to evaluate each modular variation and an integrated collaborative scheme of the framework. The modules and the collaborative scheme are evaluated through a series of phantom experiments with controlled trajectories for repeatability. The collaborative framework demonstrated the best accuracy (5.2 % RMS error) compared with all the three single-module variations during the experiment. Validation on an ex vivo monkey placenta shows visual continuity of the freehand fetoscopic panorama. The proposed developed collaborative framework and the evaluation study of the framework variations provide analytical insights for effective integration of ultrasonography and endoscopy. This contributes to the development of navigation techniques in fetoscopic procedures and can potentially be extended to other applications in intraoperative imaging.

  1. MR techniques for guiding high-intensity focused ultrasound (HIFU) treatments.

    PubMed

    Kuroda, Kagayaki

    2018-02-01

    To make full use of the ability of magnetic resonance (MR) to guide high-intensity focused ultrasound (HIFU) treatment, effort has been made to improve techniques for thermometry, motion tracking, and sound beam visualization. For monitoring rapid temperature elevation with proton resonance frequency (PRF) shift, data acquisition and processing can be accelerated with parallel imaging and/or sparse sampling in conjunction with appropriate signal processing methods. Thermometry should be robust against tissue motion, motion-induced magnetic field variation, and susceptibility change. Thus, multibaseline, referenceless, or hybrid techniques have become important. In cases with adipose or bony tissues, for which PRF shift cannot be used, thermometry with relaxation times or signal intensity may be utilized. Motion tracking is crucial not only for thermometry but also for targeting the focus of an ultrasound in moving organs such as the liver, kidney, or heart. Various techniques for motion tracking, such as those based on an anatomical image atlas with optical-flow displacement detection, a navigator echo to seize the diaphragm position, and/or rapid imaging to track vessel positions, have been proposed. Techniques for avoiding the ribcage and near-field heating have also been examined. MR acoustic radiation force imaging (MR-ARFI) is an alternative to thermometry that can identify the location and shape of the focal spot and sound beam path. This technique could be useful for treating heterogeneous tissue regions or performing transcranial therapy. All of these developments, which will be discussed further in this review, expand the applicability of HIFU treatments to a variety of clinical targets while maintaining safety and precision. 2 Technical Efficacy: Stage 4 J. Magn. Reson. Imaging 2018;47:316-331. © 2017 International Society for Magnetic Resonance in Medicine.

  2. Effect of biological characteristics of different types of uterine fibroids, as assessed with T2-weighted magnetic resonance imaging, on ultrasound-guided high-intensity focused ultrasound ablation.

    PubMed

    Zhao, Wen-Peng; Chen, Jin-Yun; Chen, Wen-Zhi

    2015-02-01

    The aims of this study were to assess the effects of the biological characteristics of different types of uterine fibroids, as assessed with T2-weighted magnetic resonance imaging (MRI), on ultrasound-guided high-intensity focused ultrasound (USgHIFU) ablation. Thirty-five patients with 39 symptomatic uterine fibroids who underwent myomectomy or hysterectomy were enrolled. Before surgery, the uterine fibroids were subdivided into hypo-intense, iso-intense, heterogeneous hyper-intense and homogeneous hyper-intense categories based on signal intensity on T2-weighted MRI. Tissue density and moisture content were determined in post-operative samples and normal uterine tissue, the isolated uterine fibroids were subjected to USgHIFU, and the extent of ablation was measured using triphenyltetrazolium chloride. Hematoxylin and eosin staining and sirius red staining were undertaken to investigate the organizational structure of the uterine fibroids. Estrogen and progesterone receptor expression was assayed via immunohistochemical staining. The mean diameter of uterine fibroids was 6.9 ± 2.8 cm. For all uterine fibroids, the average density and moisture content were 10.7 ± 0.7 mg/mL and 75.7 ± 2.4%, respectively; and for the homogeneous hyper-intense fibroids, 10.3 ± 0.5 mg/mL and 76.6 ± 2.3%. The latter subgroup had lower density and higher moisture content compared with the other subgroups. After USgHIFU treatment, the extent of ablation of the hyper-intense fibroids was 102.7 ± 42.1 mm(2), which was significantly less than those of the hypo-intense and heterogeneous hyper-intense fibroids. Hematoxylin and eosin staining and sirius red staining revealed that the homogeneous hyper-intense fibroids had sparse collagen fibers and abundant cells. Immunohistochemistry results revealed that estrogen and progesterone receptors were highly expressed in the homogeneous hyper-intense fibroids. This study revealed that lower density, higher moisture content, sparse collagen fibers, abundant cells and overexpression of estrogen and progesterone receptors are important biological characteristics that resulted in poor efficacy in the treatment of homogeneous hyper-intense fibroids. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  3. Robotic active positioning for magnetic resonance-guided high-intensity focused ultrasound

    NASA Astrophysics Data System (ADS)

    Xiao, Xu; Huang, Zhihong; Volovick, Alexander; Melzer, Andreas

    2012-11-01

    Magnetic resonance (MR) guided High-intensity focused ultrasound (HIFU) is a noninvasive method producing thermal necrosis and cavitation at the position of tumors with high accuracy. Because the typical size of the high-intensity focused ultrasound focus are much smaller than the targeted tumor or other tissues, multiple sonications and focus repositioning become necessary for HIFU treatment. In order to reach a much wider range, manual repositioning or using MR compatible mechanical actuators could be used. The repositioning technique is a time consuming procedure because it needs a series of MR imaging to detect the transducer and markers preplaced on the mechanical devices. We combined an active tracking technique into the MR guided HIFU system. In this work, the robotic system used is the MR-compatible robotics from InnoMotion{trade mark, serif} (IBSMM, Engineering spol. s r.o. / Ltd, Czech) which is originally designed for MR-guided needle biopsy. The precision and positioning speed of the combined robotic HIFU system are evaluated in this study. Compared to the existing MR guided HIFU systems, the combined robotic system with active tracking techniques provides a potential that allows the HIFU treatment to operate in a larger spatial range and with a faster speed.

  4. The Utility of Teleultrasound to Guide Acute Patient Management.

    PubMed

    Becker, Christian; Fusaro, Mario; Patel, Dhruv; Shalom, Isaac; Frishman, William H; Scurlock, Corey

    Ultrasound has evolved into a core bedside tool for diagnostic and management purposes for all subsets of adult and pediatric critically-ill patients. Teleintensive care unit coverage has undergone a similar rapid expansion period throughout the United States. Round-the-clock access to ultrasound equipment is very common in today's intensive care unit, but 24/7 coverage with staff trained to acquire and interpret point-of-care ultrasound in real time is lagging behind equipment availability. Medical trainees and physician extenders require attending level supervision to ensure consistent image acquisition and accurate interpretation. Teleintensivists can extend the utility of ultrasound by supervising and guiding providers without or with only partial training in ultrasound, and also by extending direct trainee ultrasound supervision to time periods when no direct bedside attending supervisor is available, and when treatment decisions otherwise would have been made without supervision and feedback on image acquisition and interpretation. Nursing staff without ultrasound training can also be directed to perform basic ultrasound exams, which may have immediate diagnostic and/or treatment consequences, thereby overcoming access barriers in the absence of physicians or physician extenders. We discuss 4 real-life clinical scenarios in which teleintensivist supervision extended and standardized bedside ultrasound exams to guide management decisions which significantly impacted patient outcomes.

  5. Pediatric Sarcomas Are Targetable by MR-Guided High Intensity Focused Ultrasound (MR-HIFU): Anatomical Distribution and Radiological Characteristics.

    PubMed

    Shim, Jenny; Staruch, Robert M; Koral, Korgun; Xie, Xian-Jin; Chopra, Rajiv; Laetsch, Theodore W

    2016-10-01

    Despite intensive therapy, children with metastatic and recurrent sarcoma or neuroblastoma have a poor prognosis. Magnetic resonance guided high intensity focused ultrasound (MR-HIFU) is a noninvasive technique allowing the delivery of targeted ultrasound energy under MR imaging guidance. MR-HIFU may be used to ablate tumors without ionizing radiation or target chemotherapy using hyperthermia. Here, we evaluated the anatomic locations of tumors to assess the technical feasibility of MR-HIFU therapy for children with solid tumors. Patients with sarcoma or neuroblastoma with available cross-sectional imaging were studied. Tumors were classified based on the location and surrounding structures within the ultrasound beam path as (i) not targetable, (ii) completely or partially targetable with the currently available MR-HIFU system, and (iii) potentially targetable if a respiratory motion compensation technique was used. Of the 121 patients with sarcoma and 61 patients with neuroblastoma, 64% and 25% of primary tumors were targetable at diagnosis, respectively. Less than 20% of metastases at diagnosis or relapse were targetable for both sarcoma and neuroblastoma. Most targetable lesions were located in extremities or in the pelvis. Respiratory motion compensation may increase the percentage of targetable tumors by 4% for sarcomas and 10% for neuroblastoma. Many pediatric sarcomas are localized at diagnosis and are targetable by current MR-HIFU technology. Some children with neuroblastoma have bony tumors targetable by MR-HIFU at relapse, but few newly diagnosed children with neuroblastoma have tumors amenable to MR-HIFU therapy. Clinical trials of MR-HIFU should focus on patients with anatomically targetable tumors. © 2016 Wiley Periodicals, Inc.

  6. Real-time non-rigid target tracking for ultrasound-guided clinical interventions

    NASA Astrophysics Data System (ADS)

    Zachiu, C.; Ries, M.; Ramaekers, P.; Guey, J.-L.; Moonen, C. T. W.; de Senneville, B. Denis

    2017-10-01

    Biological motion is a problem for non- or mini-invasive interventions when conducted in mobile/deformable organs due to the targeted pathology moving/deforming with the organ. This may lead to high miss rates and/or incomplete treatment of the pathology. Therefore, real-time tracking of the target anatomy during the intervention would be beneficial for such applications. Since the aforementioned interventions are often conducted under B-mode ultrasound (US) guidance, target tracking can be achieved via image registration, by comparing the acquired US images to a separate image established as positional reference. However, such US images are intrinsically altered by speckle noise, introducing incoherent gray-level intensity variations. This may prove problematic for existing intensity-based registration methods. In the current study we address US-based target tracking by employing the recently proposed EVolution registration algorithm. The method is, by construction, robust to transient gray-level intensities. Instead of directly matching image intensities, EVolution aligns similar contrast patterns in the images. Moreover, the displacement is computed by evaluating a matching criterion for image sub-regions rather than on a point-by-point basis, which typically provides more robust motion estimates. However, unlike similar previously published approaches, which assume rigid displacements in the image sub-regions, the EVolution algorithm integrates the matching criterion in a global functional, allowing the estimation of an elastic dense deformation. The approach was validated for soft tissue tracking under free-breathing conditions on the abdomen of seven healthy volunteers. Contact echography was performed on all volunteers, while three of the volunteers also underwent standoff echography. Each of the two modalities is predominantly specific to a particular type of non- or mini-invasive clinical intervention. The method demonstrated on average an accuracy of  ˜1.5 mm and submillimeter precision. This, together with a computational performance of 20 images per second make the proposed method an attractive solution for real-time target tracking during US-guided clinical interventions.

  7. Real-time non-rigid target tracking for ultrasound-guided clinical interventions.

    PubMed

    Zachiu, C; Ries, M; Ramaekers, P; Guey, J-L; Moonen, C T W; de Senneville, B Denis

    2017-10-04

    Biological motion is a problem for non- or mini-invasive interventions when conducted in mobile/deformable organs due to the targeted pathology moving/deforming with the organ. This may lead to high miss rates and/or incomplete treatment of the pathology. Therefore, real-time tracking of the target anatomy during the intervention would be beneficial for such applications. Since the aforementioned interventions are often conducted under B-mode ultrasound (US) guidance, target tracking can be achieved via image registration, by comparing the acquired US images to a separate image established as positional reference. However, such US images are intrinsically altered by speckle noise, introducing incoherent gray-level intensity variations. This may prove problematic for existing intensity-based registration methods. In the current study we address US-based target tracking by employing the recently proposed EVolution registration algorithm. The method is, by construction, robust to transient gray-level intensities. Instead of directly matching image intensities, EVolution aligns similar contrast patterns in the images. Moreover, the displacement is computed by evaluating a matching criterion for image sub-regions rather than on a point-by-point basis, which typically provides more robust motion estimates. However, unlike similar previously published approaches, which assume rigid displacements in the image sub-regions, the EVolution algorithm integrates the matching criterion in a global functional, allowing the estimation of an elastic dense deformation. The approach was validated for soft tissue tracking under free-breathing conditions on the abdomen of seven healthy volunteers. Contact echography was performed on all volunteers, while three of the volunteers also underwent standoff echography. Each of the two modalities is predominantly specific to a particular type of non- or mini-invasive clinical intervention. The method demonstrated on average an accuracy of  ∼1.5 mm and submillimeter precision. This, together with a computational performance of 20 images per second make the proposed method an attractive solution for real-time target tracking during US-guided clinical interventions.

  8. Segmentation of tumor ultrasound image in HIFU therapy based on texture and boundary encoding

    NASA Astrophysics Data System (ADS)

    Zhang, Dong; Xu, Menglong; Quan, Long; Yang, Yan; Qin, Qianqing; Zhu, Wenbin

    2015-02-01

    It is crucial in high intensity focused ultrasound (HIFU) therapy to detect the tumor precisely with less manual intervention for enhancing the therapy efficiency. Ultrasound image segmentation becomes a difficult task due to signal attenuation, speckle effect and shadows. This paper presents an unsupervised approach based on texture and boundary encoding customized for ultrasound image segmentation in HIFU therapy. The approach oversegments the ultrasound image into some small regions, which are merged by using the principle of minimum description length (MDL) afterwards. Small regions belonging to the same tumor are clustered as they preserve similar texture features. The mergence is completed by obtaining the shortest coding length from encoding textures and boundaries of these regions in the clustering process. The tumor region is finally selected from merged regions by a proposed algorithm without manual interaction. The performance of the method is tested on 50 uterine fibroid ultrasound images from HIFU guiding transducers. The segmentations are compared with manual delineations to verify its feasibility. The quantitative evaluation with HIFU images shows that the mean true positive of the approach is 93.53%, the mean false positive is 4.06%, the mean similarity is 89.92%, the mean norm Hausdorff distance is 3.62% and the mean norm maximum average distance is 0.57%. The experiments validate that the proposed method can achieve favorable segmentation without manual initialization and effectively handle the poor quality of the ultrasound guidance image in HIFU therapy, which indicates that the approach is applicable in HIFU therapy.

  9. Prostate Cancer Detection and Diagnosis: The Role of MR and its Comparison to other Diagnostic Modalities – A Radiologist's Perspective

    PubMed Central

    Penzkofer, Tobias; Tempany-Afdhal, Clare M.

    2013-01-01

    It is now universally recognized that many prostate cancers are over-diagnosed and over-treated. The European Randomized Study of Screening for Prostate Cancer (ERSPC) from 2009 evidenced that, to save one man from death of prostate cancer, over 1,400 men had to be screened, and 48 had to undergo treatment. Detection of prostate cancer is traditionally based upon digital rectal examination (DRE) and measuring serum prostate specific antigen (PSA), followed by ultrasound guided biopsy. The primary role of imaging for the detection and diagnosis of prostate cancer has been transrectal ultrasound (TRUS) guidance during biopsy. MRI has traditionally been used primarily for staging disease in men with biopsy proven cancer. It is has a well-established role in detecting T3 disease, planning radiation therapy, especially 3D conformal or intensity modulated external beam radiation therapy (IMRT), and planning and guiding interstitial seed implant or brachytherapy. New advances have now established prostate MRI can accurately characterize focal lesions within the gland, an ability that has led to new opportunities for improved cancer detection and guidance for biopsy. There are two new approaches to prostate biopsy are under investigation both use pre-biopsy MRI to define potential targets for sampling and then the biopsy is performed either with direct real-time MR guidance (in-bore) or MR fusion/registration with TRUS images (out-of-bore). In-bore or out-of-bore MRI-guided prostate biopsies have the advantage of using the MR target definition for accurate localization and sampling of targets or suspicious lesions. The out-of-bore method uses combined MRI/TRUS with fusion software that provided target localization and increases the sampling accuracy for TRUS-guided biopsies by integrating prostate MRI information with TRUS. Newer parameters for each imaging modality such as sonoelastography or shear wave elastography (SWE), contrast enhanced US (CEUS) and MRI-elastography, show promise to further enrich data sets. PMID:24000133

  10. MR-guided high-intensity focused ultrasound ablation of breast cancer with a dedicated breast platform.

    PubMed

    Merckel, Laura G; Bartels, Lambertus W; Köhler, Max O; van den Bongard, H J G Desirée; Deckers, Roel; Mali, Willem P Th M; Binkert, Christoph A; Moonen, Chrit T; Gilhuijs, Kenneth G A; van den Bosch, Maurice A A J

    2013-04-01

    Optimizing the treatment of breast cancer remains a major topic of interest. In current clinical practice, breast-conserving therapy is the standard of care for patients with localized breast cancer. Technological developments have fueled interest in less invasive breast cancer treatment. Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a completely noninvasive ablation technique. Focused beams of ultrasound are used for ablation of the target lesion without disrupting the skin and subcutaneous tissues in the beam path. MRI is an excellent imaging method for tumor targeting, treatment monitoring, and evaluation of treatment results. The combination of HIFU and MR imaging offers an opportunity for image-guided ablation of breast cancer. Previous studies of MR-HIFU in breast cancer patients reported a limited efficacy, which hampered the clinical translation of this technique. These prior studies were performed without an MR-HIFU system specifically developed for breast cancer treatment. In this article, a novel and dedicated MR-HIFU breast platform is presented. This system has been designed for safe and effective MR-HIFU ablation of breast cancer. Furthermore, both clinical and technical challenges are discussed, which have to be solved before MR-HIFU ablation of breast cancer can be implemented in routine clinical practice.

  11. Scaled signal intensity of uterine fibroids based on T2-weighted MR images: a potential objective method to determine the suitability for magnetic resonance-guided focused ultrasound surgery of uterine fibroids.

    PubMed

    Park, Hyun; Yoon, Sang-Wook; Sokolov, Amit

    2015-12-01

    Magnetic Resonance-guided Focused Ultrasound Surgery (MRgFUS) is a non-invasive method to treat uterine fibroids. To help determine the patient suitability for MRgFUS, we propose a new objective measure: the scaled signal intensity (SSI) of uterine fibroids in T2 weighted MR images (T2WI). Forty three uterine fibroids in 40 premenopausal women were included in this retrospective study. SSI of each fibroid was measured from the screening T2WI by standardizing its mean signal intensity to a 0-100 scale, using reference intensities of rectus abdominis muscle (0) and subcutaneous fat (100). Correlation between the SSI and the non-perfused volume (NPV) ratio (a measure for treatment success) was calculated. Pre-treatment SSI showed a significant inverse-correlation with post treatment NPV ratio (p < 0.05). When dichotomizing NPV ratio at 45 %, the optimal cut off value of the SSI was found to be 16.0. A fibroid with SSI value 16.0 or less can be expected to have optimal responses. The SSI of uterine fibroids in T2WI can be suggested as an objective parameter to help in patient selection for MRgFUS. • Signal intensity of fibroid in MR images predicts treatment response to MRgFUS. • Signal intensity is standardized into scaled form using adjacent tissues as references. • Fibroids with SSI less than 16.0 are expected to have optimal responses.

  12. Ultrasound-Mediated Biophotonic Imaging: A Review of Acousto-Optical Tomography and Photo-Acoustic Tomography

    PubMed Central

    Wang, Lihong V.

    2004-01-01

    This article reviews two types of ultrasound-mediated biophotonic imaging–acousto-optical tomography (AOT, also called ultrasound-modulated optical tomography) and photo-acoustic tomography (PAT, also called opto-acoustic or thermo-acoustic tomography)–both of which are based on non-ionizing optical and ultrasonic waves. The goal of these technologies is to combine the contrast advantage of the optical properties and the resolution advantage of ultrasound. In these two technologies, the imaging contrast is based primarily on the optical properties of biological tissues, and the imaging resolution is based primarily on the ultrasonic waves that either are provided externally or produced internally, within the biological tissues. In fact, ultrasonic mediation overcomes both the resolution disadvantage of pure optical imaging in thick tissues and the contrast and speckle disadvantages of pure ultrasonic imaging. In our discussion of AOT, the relationship between modulation depth and acoustic amplitude is clarified. Potential clinical applications of ultrasound-mediated biophotonic imaging include early cancer detection, functional imaging, and molecular imaging. PMID:15096709

  13. Non-Invasive Targeted Peripheral Nerve Ablation Using 3D MR Neurography and MRI-Guided High-Intensity Focused Ultrasound (MR-HIFU): Pilot Study in a Swine Model.

    PubMed

    Huisman, Merel; Staruch, Robert M; Ladouceur-Wodzak, Michelle; van den Bosch, Maurice A; Burns, Dennis K; Chhabra, Avneesh; Chopra, Rajiv

    2015-01-01

    Ultrasound (US)-guided high intensity focused ultrasound (HIFU) has been proposed for noninvasive treatment of neuropathic pain and has been investigated in in-vivo studies. However, ultrasound has important limitations regarding treatment guidance and temperature monitoring. Magnetic resonance (MR)-imaging guidance may overcome these limitations and MR-guided HIFU (MR-HIFU) has been used successfully for other clinical indications. The primary purpose of this study was to evaluate the feasibility of utilizing 3D MR neurography to identify and guide ablation of peripheral nerves using a clinical MR-HIFU system. Volumetric MR-HIFU was used to induce lesions in the peripheral nerves of the lower limbs in three pigs. Diffusion-prep MR neurography and T1-weighted images were utilized to identify the target, plan treatment and immediate post-treatment evaluation. For each treatment, one 8 or 12 mm diameter treatment cell was used (sonication duration 20 s and 36 s, power 160-300 W). Peripheral nerves were extracted < 3 hours after treatment. Ablation dimensions were calculated from thermal maps, post-contrast MRI and macroscopy. Histological analysis included standard H&E staining, Masson's trichrome and toluidine blue staining. All targeted peripheral nerves were identifiable on MR neurography and T1-weighted images and could be accurately ablated with a single exposure of focused ultrasound, with peak temperatures of 60.3 to 85.7°C. The lesion dimensions as measured on MR neurography were similar to the lesion dimensions as measured on CE-T1, thermal dose maps, and macroscopy. Histology indicated major hyperacute peripheral nerve damage, mostly confined to the location targeted for ablation. Our preliminary results indicate that targeted peripheral nerve ablation is feasible with MR-HIFU. Diffusion-prep 3D MR neurography has potential for guiding therapy procedures where either nerve targeting or avoidance is desired, and may also have potential for post-treatment verification of thermal lesions without contrast injection.

  14. Passive Markers for Tracking Surgical Instruments in Real-Time 3-D Ultrasound Imaging

    PubMed Central

    Stoll, Jeffrey; Ren, Hongliang; Dupont, Pierre E.

    2013-01-01

    A family of passive echogenic markers is presented by which the position and orientation of a surgical instrument can be determined in a 3-D ultrasound volume, using simple image processing. Markers are attached near the distal end of the instrument so that they appear in the ultrasound volume along with the instrument tip. They are detected and measured within the ultrasound image, thus requiring no external tracking device. This approach facilitates imaging instruments and tissue simultaneously in ultrasound-guided interventions. Marker-based estimates of instrument pose can be used in augmented reality displays or for image-based servoing. Design principles for marker shapes are presented that ensure imaging system and measurement uniqueness constraints are met. An error analysis is included that can be used to guide marker design and which also establishes a lower bound on measurement uncertainty. Finally, examples of marker measurement and tracking algorithms are presented along with experimental validation of the concepts. PMID:22042148

  15. Detection of a Novel Mechanism of Acousto-Optic Modulation of Incoherent Light

    PubMed Central

    Jarrett, Christopher W.; Caskey, Charles F.; Gore, John C.

    2014-01-01

    A novel form of acoustic modulation of light from an incoherent source has been detected in water as well as in turbid media. We demonstrate that patterns of modulated light intensity appear to propagate as the optical shadow of the density variations caused by ultrasound within an illuminated ultrasonic focal zone. This pattern differs from previous reports of acousto-optical interactions that produce diffraction effects that rely on phase shifts and changes in light directions caused by the acoustic modulation. Moreover, previous studies of acousto-optic interactions have mainly reported the effects of sound on coherent light sources via photon tagging, and/or the production of diffraction phenomena from phase effects that give rise to discrete sidebands. We aimed to assess whether the effects of ultrasound modulation of the intensity of light from an incoherent light source could be detected directly, and how the acoustically modulated (AOM) light signal depended on experimental parameters. Our observations suggest that ultrasound at moderate intensities can induce sufficiently large density variations within a uniform medium to cause measurable modulation of the intensity of an incoherent light source by absorption. Light passing through a region of high intensity ultrasound then produces a pattern that is the projection of the density variations within the region of their interaction. The patterns exhibit distinct maxima and minima that are observed at locations much different from those predicted by Raman-Nath, Bragg, or other diffraction theory. The observed patterns scaled appropriately with the geometrical magnification and sound wavelength. We conclude that these observed patterns are simple projections of the ultrasound induced density changes which cause spatial and temporal variations of the optical absorption within the illuminated sound field. These effects potentially provide a novel method for visualizing sound fields and may assist the interpretation of other hybrid imaging methods. PMID:25105880

  16. Ultrasound-guided high-intensity focused ultrasound ablation for treating uterine arteriovenous malformation.

    PubMed

    Yan, X; Zhao, C; Tian, C; Wen, S; He, X; Zhou, Y

    2017-08-01

    To explore HIFU treatment for uterine arteriovenous malformation. A case report. Gynaecological department in a university teaching hospital of China. A patient with uterine arteriovenous malformation. The diagnosis of uterine arteriovenous malformation was made through MRI. Ultrasound-guided high-intensity focused ultrasound (USgHIFU) ablation was performed. HIFU is effective in treating uterine arteriovenous malformation. The patient had reduction of the lesion volume and obvious symptom relief, without significant adverse effects. HIFU can be used as a new treatment option for uterine arteriovenous malformation. Ultrasound-guided high-intensity focused ultrasound ablation is effective in treating uterine arteriovenous malformation. © 2017 Royal College of Obstetricians and Gynaecologists.

  17. A Comparison of Real-time Feedback and Tissue Response to Ultrasound-Guided High Intensity Focused Ultrasound (HIFU) Ablation using Scanned Track Exposure Regimes

    NASA Astrophysics Data System (ADS)

    Gray, Robert H. R.; Leslie, Thomas A.; Civale, John; Kennedy, James E.; ter Haar, Gail

    2007-05-01

    Real time ultrasound monitoring of tissue ablation in clinical HIFU treatments currently depends on the observation of the appearance of new hyperechoic regions within the target volume, allowing visually directed treatment. These grey-scale changes are attributed to the formation of gas or vapour bubbles. In this study, scanned track lesions have been formed in ex vivo bovine liver samples at a range of ablative intensities (free field spatial peak intensities 7 - 47 kW cm-2), and tracking speeds (1-2 mms-1). Their appearance on conventional B-mode ultrasound images has been assessed using digital imaging techniques over the first 60 seconds following HIFU exposure. The size of the lesion as seen on the ultrasound scan is compared to the macroscopic size of the lesion at dissection. It is seen that the lesion size is highly dependent on the intensity and scanning speed of the transducer. Reliable lesions can be created using scanned tracks at the lowest powers, with increased numbers of cycles, and grey-scale changes correlated strongly with the histological findings. Although not a highly sensitive indication of ablated area, ultrasound monitoring of treatment is highly specific thus confirming its clinical utility.

  18. HematoPorphyrin Monomethyl Ether polymer contrast agent for ultrasound/photoacoustic dual-modality imaging-guided synergistic high intensity focused ultrasound (HIFU) therapy

    NASA Astrophysics Data System (ADS)

    Yan, Sijing; Lu, Min; Ding, Xiaoya; Chen, Fei; He, Xuemei; Xu, Chunyan; Zhou, Hang; Wang, Qi; Hao, Lan; Zou, Jianzhong

    2016-08-01

    This study is to prepare a hematoporphyrin monomethyl ether (HMME)-loaded poly(lactic-co-glycolic acid) (PLGA) microcapsules (HMME/PLGA), which could not only function as efficient contrast agent for ultrasound (US)/photoacoustic (PA) imaging, but also as a synergistic agent for high intensity focused ultrasound (HIFU) ablation. Sonosensitizer HMME nanoparticles were integrated into PLGA microcapsules with the double emulsion evaporation method. After characterization, the cell-killing and cell proliferation-inhibiting effects of HMME/PLGA microcapsules on ovarian cancer SKOV3 cells were assessed. The US/PA imaging-enhancing effects and synergistic effects on HIFU were evaluated both in vitro and in vivo. HMME/PLGA microcapsules were highly dispersed with well-defined spherical morphology (357 ± 0.72 nm in diameter, PDI = 0.932). Encapsulation efficiency and drug-loading efficiency were 58.33 ± 0.95% and 4.73 ± 0.15%, respectively. The HMME/PLGA microcapsules remarkably killed the SKOV3 cells and inhibited the cell proliferation, significantly enhanced the US/PA imaging results and greatly enhanced the HIFU ablation effects on ovarian cancer in nude mice by the HMME-mediated sono-dynamic chemistry therapy (SDT). HMME/PLGA microcapsules represent a potential multifunctional contrast agent for HIFU diagnosis and treatment, which might provide a novel strategy for the highly efficient imaging-guided non-invasive HIFU synergistic therapy for cancers by SDT in clinic.

  19. HematoPorphyrin Monomethyl Ether polymer contrast agent for ultrasound/photoacoustic dual-modality imaging-guided synergistic high intensity focused ultrasound (HIFU) therapy

    PubMed Central

    Yan, Sijing; LU, Min; Ding, Xiaoya; Chen, Fei; He, Xuemei; Xu, Chunyan; Zhou, Hang; Wang, Qi; Hao, Lan; Zou, Jianzhong

    2016-01-01

    This study is to prepare a hematoporphyrin monomethyl ether (HMME)-loaded poly(lactic-co-glycolic acid) (PLGA) microcapsules (HMME/PLGA), which could not only function as efficient contrast agent for ultrasound (US)/photoacoustic (PA) imaging, but also as a synergistic agent for high intensity focused ultrasound (HIFU) ablation. Sonosensitizer HMME nanoparticles were integrated into PLGA microcapsules with the double emulsion evaporation method. After characterization, the cell-killing and cell proliferation-inhibiting effects of HMME/PLGA microcapsules on ovarian cancer SKOV3 cells were assessed. The US/PA imaging-enhancing effects and synergistic effects on HIFU were evaluated both in vitro and in vivo. HMME/PLGA microcapsules were highly dispersed with well-defined spherical morphology (357 ± 0.72 nm in diameter, PDI = 0.932). Encapsulation efficiency and drug-loading efficiency were 58.33 ± 0.95% and 4.73 ± 0.15%, respectively. The HMME/PLGA microcapsules remarkably killed the SKOV3 cells and inhibited the cell proliferation, significantly enhanced the US/PA imaging results and greatly enhanced the HIFU ablation effects on ovarian cancer in nude mice by the HMME-mediated sono-dynamic chemistry therapy (SDT). HMME/PLGA microcapsules represent a potential multifunctional contrast agent for HIFU diagnosis and treatment, which might provide a novel strategy for the highly efficient imaging-guided non-invasive HIFU synergistic therapy for cancers by SDT in clinic. PMID:27535093

  20. HematoPorphyrin Monomethyl Ether polymer contrast agent for ultrasound/photoacoustic dual-modality imaging-guided synergistic high intensity focused ultrasound (HIFU) therapy.

    PubMed

    Yan, Sijing; Lu, Min; Ding, Xiaoya; Chen, Fei; He, Xuemei; Xu, Chunyan; Zhou, Hang; Wang, Qi; Hao, Lan; Zou, Jianzhong

    2016-08-18

    This study is to prepare a hematoporphyrin monomethyl ether (HMME)-loaded poly(lactic-co-glycolic acid) (PLGA) microcapsules (HMME/PLGA), which could not only function as efficient contrast agent for ultrasound (US)/photoacoustic (PA) imaging, but also as a synergistic agent for high intensity focused ultrasound (HIFU) ablation. Sonosensitizer HMME nanoparticles were integrated into PLGA microcapsules with the double emulsion evaporation method. After characterization, the cell-killing and cell proliferation-inhibiting effects of HMME/PLGA microcapsules on ovarian cancer SKOV3 cells were assessed. The US/PA imaging-enhancing effects and synergistic effects on HIFU were evaluated both in vitro and in vivo. HMME/PLGA microcapsules were highly dispersed with well-defined spherical morphology (357 ± 0.72 nm in diameter, PDI = 0.932). Encapsulation efficiency and drug-loading efficiency were 58.33 ± 0.95% and 4.73 ± 0.15%, respectively. The HMME/PLGA microcapsules remarkably killed the SKOV3 cells and inhibited the cell proliferation, significantly enhanced the US/PA imaging results and greatly enhanced the HIFU ablation effects on ovarian cancer in nude mice by the HMME-mediated sono-dynamic chemistry therapy (SDT). HMME/PLGA microcapsules represent a potential multifunctional contrast agent for HIFU diagnosis and treatment, which might provide a novel strategy for the highly efficient imaging-guided non-invasive HIFU synergistic therapy for cancers by SDT in clinic.

  1. Endogenous Catalytic Generation of O2 Bubbles for In Situ Ultrasound-Guided High Intensity Focused Ultrasound Ablation.

    PubMed

    Liu, Tianzhi; Zhang, Nan; Wang, Zhigang; Wu, Meiying; Chen, Yu; Ma, Ming; Chen, Hangrong; Shi, Jianlin

    2017-09-26

    High intensity focused ultrasound (HIFU) surgery generally suffers from poor precision and low efficiency in clinical application, especially for cancer therapy. Herein, a multiscale hybrid catalytic nanoreactor (catalase@MONs, abbreviated as C@M) has been developed as a tumor-sensitive contrast and synergistic agent (C&SA) for ultrasound-guided HIFU cancer surgery, by integrating dendritic-structured mesoporous organosilica nanoparticles (MONs) and catalase immobilized in the large open pore channels of MONs. Such a hybrid nanoreactor exhibited sensitive catalytic activity toward H 2 O 2 , facilitating the continuous O 2 gas generation in a relatively mild manner even if incubated with 10 μM H 2 O 2 , which finally led to enhanced ablation in the tissue-mimicking PAA gel model after HIFU exposure mainly resulting from intensified cavitation effect. The C@M nanoparticles could be accumulated within the H 2 O 2 -enriched tumor region through enhanced permeability and retention effect, enabling durable contrast enhancement of ultrasound imaging, and highly efficient tumor ablation under relatively low power of HIFU exposure in vivo. Very different from the traditional perfluorocarbon-based C&SA, such an on-demand catalytic nanoreactor could realize the accurate positioning of tumor without HIFU prestimulation and efficient HIFU ablation with a much safer power output, which is highly desired in clinical HIFU application.

  2. MLESAC Based Localization of Needle Insertion Using 2D Ultrasound Images

    NASA Astrophysics Data System (ADS)

    Xu, Fei; Gao, Dedong; Wang, Shan; Zhanwen, A.

    2018-04-01

    In the 2D ultrasound image of ultrasound-guided percutaneous needle insertions, it is difficult to determine the positions of needle axis and tip because of the existence of artifacts and other noises. In this work the speckle is regarded as the noise of an ultrasound image, and a novel algorithm is presented to detect the needle in a 2D ultrasound image. Firstly, the wavelet soft thresholding technique based on BayesShrink rule is used to denoise the speckle of ultrasound image. Secondly, we add Otsu’s thresholding method and morphologic operations to pre-process the ultrasound image. Finally, the localization of the needle is identified and positioned in the 2D ultrasound image based on the maximum likelihood estimation sample consensus (MLESAC) algorithm. The experimental results show that it is valid for estimating the position of needle axis and tip in the ultrasound images with the proposed algorithm. The research work is hopeful to be used in the path planning and robot-assisted needle insertion procedures.

  3. Thermal fixation of swine liver tissue after magnetic resonance-guided high-intensity focused ultrasound ablation.

    PubMed

    Courivaud, Frédéric; Kazaryan, Airazat M; Lund, Alice; Orszagh, Vivian C; Svindland, Aud; Marangos, Irina Pavlik; Halvorsen, Per Steinar; Jebsen, Peter; Fosse, Erik; Hol, Per Kristian; Edwin, Bjørn

    2014-07-01

    The aim of this study was to investigate experimental conditions for efficient and controlled in vivo liver tissue ablation by magnetic resonance (MR)-guided high-intensity focused ultrasound (HIFU) in a swine model, with the ultimate goal of improving clinical treatment outcome. Histological changes were examined both acutely (four animals) and 1 wk after treatment (five animals). Effects of acoustic power and multiple sonication cycles were investigated. There was good correlation between target size and observed ablation size by thermal dose calculation, post-procedural MR imaging and histopathology, when temperature at the focal point was kept below 90°C. Structural histopathology investigations revealed tissue thermal fixation in ablated regions. In the presence of cavitation, mechanical tissue destruction occurred, resulting in an ablation larger than the target. Complete extra-corporeal MR-guided HIFU ablation in the liver is feasible using high acoustic power. Nearby large vessels were preserved, which makes MR-guided HIFU promising for the ablation of liver tumors adjacent to large veins. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  4. An image registration based ultrasound probe calibration

    NASA Astrophysics Data System (ADS)

    Li, Xin; Kumar, Dinesh; Sarkar, Saradwata; Narayanan, Ram

    2012-02-01

    Reconstructed 3D ultrasound of prostate gland finds application in several medical areas such as image guided biopsy, therapy planning and dose delivery. In our application, we use an end-fire probe rotated about its axis to acquire a sequence of rotational slices to reconstruct 3D TRUS (Transrectal Ultrasound) image. The image acquisition system consists of an ultrasound transducer situated on a cradle directly attached to a rotational sensor. However, due to system tolerances, axis of probe does not align exactly with the designed axis of rotation resulting in artifacts in the 3D reconstructed ultrasound volume. We present a rigid registration based automatic probe calibration approach. The method uses a sequence of phantom images, each pair acquired at angular separation of 180 degrees and registers corresponding image pairs to compute the deviation from designed axis. A modified shadow removal algorithm is applied for preprocessing. An attribute vector is constructed from image intensity and a speckle-insensitive information-theoretic feature. We compare registration between the presented method and expert-corrected images in 16 prostate phantom scans. Images were acquired at multiple resolutions, and different misalignment settings from two ultrasound machines. Screenshots from 3D reconstruction are shown before and after misalignment correction. Registration parameters from automatic and manual correction were found to be in good agreement. Average absolute differences of translation and rotation between automatic and manual methods were 0.27 mm and 0.65 degree, respectively. The registration parameters also showed lower variability for automatic registration (pooled standard deviation σtranslation = 0.50 mm, σrotation = 0.52 degree) compared to the manual approach (pooled standard deviation σtranslation = 0.62 mm, σrotation = 0.78 degree).

  5. Spatio-temporal control of gene expression and cancer treatment using magnetic resonance imaging-guided focused ultrasound.

    PubMed

    Moonen, Chrit T W

    2007-06-15

    Local temperature elevation may be used for tumor ablation, gene expression, drug activation, and gene and/or drug delivery. High-intensity focused ultrasound (HIFU) is the only clinically viable technology that can be used to achieve a local temperature increase deep inside the human body in a noninvasive way. Magnetic resonance imaging (MRI) guidance of the procedure allows in situ target definition and identification of nearby healthy tissue to be spared. In addition, MRI can be used to provide continuous temperature mapping during HIFU for spatial and temporal control of the heating procedure and prediction of the final lesion based on the received thermal dose. The primary purpose of the development of MRI-guided HIFU was to achieve safe noninvasive tissue ablation. The technique has been tested extensively in preclinical studies and is now accepted in the clinic for ablation of uterine fibroids. MRI-guided HIFU for ablation shows conceptual similarities with radiation therapy. However, thermal damage generally shows threshold-like behavior, with necrosis above the critical thermal dose and full recovery below. MRI-guided HIFU is being clinically evaluated in the cancer field. The technology also shows great promise for a variety of advanced therapeutic methods, such as gene therapy. MR-guided HIFU, together with the use of a temperature-sensitive promoter, provides local, physical, and spatio-temporal control of transgene expression. Specially designed contrast agents, together with the combined use of MRI and ultrasound, may be used for local gene and drug delivery.

  6. Tomotherapy as a tool in image-guided radiation therapy (IGRT): current clinical experience and outcomes

    PubMed Central

    Yartsev, S; Kron, T; Van Dyk, J

    2007-01-01

    Modern radiotherapy is characterised by a better target definition through medical imaging accompanied by significantly improved radiation delivery methods, most notably Intensity-Modulate Radiation Therapy (IMRT). However, the treatment can only be as accurate as the positioning of patients for their daily radiotherapy fraction. It is in this context that a number of imaging modalities - ranging from ultrasound to on-board kilovoltage imaging and computed tomography (CT) - have found their way into the treatment room where they verify accurate patient positioning prior to or even during delivery of radiation. Helical tomotherapy (HT) combines IMRT delivery with in-built image guidance using megavoltage CT scanning. This paper discusses the initial experience of different centres with IGRT using HT illustrated by a number of clinical examples from the installation in London in Ontario, Canada, one of the world’s first HT sites. We found that HT allows the delivery of highly conformal radiation dose distributions combined with adequate daily image acquisition. An important feature of this unit is its seamless integration, which also includes a customised inverse treatment planning system and a quality assurance module for individual patients. PMID:21614258

  7. Ultrasonographic percutaneous anatomy of the atlanto-occipital region and indirect ultrasound-guided cisternal puncture in the dog and the cat.

    PubMed

    Etienne, A-L; Audigié, F; Peeters, D; Gabriel, A; Busoni, V

    2015-04-01

    Cisternal puncture in dogs and cats is commonly carried out. This article describes the percutaneous ultrasound anatomy of the cisternal region in the dog and the cat and an indirect technique for ultrasound-guided cisternal puncture. Ultrasound images obtained ex vivo and in vivo were compared with anatomic sections and used to identify the landmarks for ultrasound-guided cisternal puncture. The ultrasound-guided procedure was established in cadavers and then applied in vivo in seven dogs and two cats. The anatomic landmarks for the ultrasound-guided puncture are the cisterna magna, the spinal cord, the two occipital condyles on transverse images, the external occipital crest and the dorsal arch of the first cervical vertebra on longitudinal images. Using these ultrasound anatomic landmarks, an indirect ultrasound-guided technique for cisternal puncture is applicable in the dog and the cat. © 2014 Blackwell Verlag GmbH.

  8. Modeling prostate anatomy from multiple view TRUS images for image-guided HIFU therapy.

    PubMed

    Penna, Michael A; Dines, Kris A; Seip, Ralf; Carlson, Roy F; Sanghvi, Narendra T

    2007-01-01

    Current planning methods for transrectal high-intensity focused ultrasound treatment of prostate cancer rely on manually defining treatment regions in 15-20 sector transrectal ultrasound (TRUS) images of the prostate. Although effective, it is desirable to reduce user interaction time by identifying functionally related anatomic structures (segmenting), then automatically laying out treatment sites using these structures as a guide. Accordingly, a method has been developed to effectively generate solid three-dimensional (3-D) models of the prostate, urethra, and rectal wall from boundary trace data. Modeling the urethra and rectal wall are straightforward, but modeling the prostate is more difficult and has received much attention in the literature. New results presented here are aimed at overcoming many of the limitations of previous approaches to modeling the prostate while using boundary traces obtained via manual tracing in as few as 5 sector and 3 linear images. The results presented here are based on a new type of surface, the Fourier ellipsoid, and the use of sector and linear TRUS images. Tissue-specific 3-D models will ultimately permit finer control of energy deposition and more selective destruction of cancerous regions while sparing critical neighboring structures.

  9. Conformal needle-based ultrasound ablation using EM-tracked conebeam CT image guidance

    NASA Astrophysics Data System (ADS)

    Burdette, E. Clif; Banovac, Filip; Diederich, Chris J.; Cheng, Patrick; Wilson, Emmanuel; Cleary, Kevin R.

    2011-03-01

    Numerous studies have demonstrated the efficacy of interstitial ablative approaches for the treatment of renal and hepatic tumors. Despite these promising results, current systems remain highly dependent on operator skill, and cannot treat many tumors because there is little control of the size and shape of the zone of necrosis, and no control over ablator trajectory within tissue once insertion has taken place. Additionally, tissue deformation and target motion make it extremely difficult to accurately place the ablator device into the target. Irregularly shaped target volumes typically require multiple insertions and several sequential thermal ablation procedures. This study demonstrated feasibility of spatially tracked image-guided conformal ultrasound (US) ablation for percutaneous directional ablation of diseased tissue. Tissue was prepared by suturing the liver within a pig belly and 1mm BBs placed to serve as needle targets. The image guided system used integrated electromagnetic tracking and cone-beam CT (CBCT) with conformable needlebased high-intensity US ablation in the interventional suite. Tomographic images from cone beam CT were transferred electronically to the image-guided tracking system (IGSTK). Paired-point registration was used to register the target specimen to CT images and enable navigation. Path planning is done by selecting the target BB on the GUI of the realtime tracking system and determining skin entry location until an optimal path is selected. Power was applied to create the desired ablation extent within 7-10 minutes at a thermal dose (>300eqm43). The system was successfully used to place the US ablator in planned target locations within ex-vivo kidney and liver through percutaneous access. Targeting accuracy was 3-4 mm. Sectioned specimens demonstrated uniform ablation within the planned target zone. Subsequent experiments were conducted for multiple ablator positions based upon treatment planning simulations. Ablation zones in liver were 73cc, 84cc, and 140cc for 3, 4, and 5 placements, respectively. These experiments demonstrate the feasibility of combining real-time spatially tracked image guidance with directional interstitial ultrasound ablation. Interstitial ultrasound ablation delivered on multiple needles permit the size and shape of the ablation zone to be "sculpted" by modifying the angle and intensity of the active US elements in the array. This paper summarizes the design and development of the first system incorporating thermal treatment planning and integration of a novel interstitial acoustic ablation device with integrated 3D electromagnetic tracking and guidance strategy.

  10. Magnetic Resonance-Guided High-Intensity Focused Ultrasound Ablation of Osteoid Osteoma: A Case Series Report.

    PubMed

    Rovella, Marcello S; Martins, Guilherme L P; Cavalcanti, Conrado F A; Bor-Seng-Shu, Edson; Camargo, Olavo P; Cerri, Giovanni G; Menezes, Marcos R

    2016-04-01

    Osteoid osteoma is painful benign tumor. The aim of this study was to report our initial experience using magnetic resonance-guided focused ultrasound to treat osteoid osteomas. This retrospective single-center study included four patients treated with magnetic resonance-guided focused ultrasound. They presented with severe pain with reduced quality of life and a poor response to clinical treatment. The pre- and post-treatment evaluation comprised computed tomography and magnetic resonance imaging and focused on quality of life and the impact of pain on daily activities. After treatment, three patients had complete pain resolution with no recurrence. One patient had a recurrence of symptoms after 2 wk and underwent a new successful treatment with increased energy levels. On average, 13 sonications were administered (8-18 sonications/treatment) with an average energy of 2,003 J (range: 1,063-3,522 J). Magnetic resonance-guided focused ultrasound appears to be a feasible, tolerable and effective treatment in selected patients with osteoid osteomas. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. Ultrasound - Breast

    MedlinePlus

    ... the patient. Because ultrasound images are captured in real-time, they can show the structure and movement of ... perform an ultrasound-guided biopsy . Because ultrasound provides real-time images, it is often used to guide biopsy ...

  12. MR thermometry analysis of sonication accuracy and safety margin of volumetric MR imaging-guided high-intensity focused ultrasound ablation of symptomatic uterine fibroids.

    PubMed

    Kim, Young-sun; Trillaud, Hervé; Rhim, Hyunchul; Lim, Hyo K; Mali, Willem; Voogt, Marianne; Barkhausen, Jörg; Eckey, Thomas; Köhler, Max O; Keserci, Bilgin; Mougenot, Charles; Sokka, Shunmugavelu D; Soini, Jouko; Nieminen, Heikki J

    2012-11-01

    To evaluate the accuracy of the size and location of the ablation zone produced by volumetric magnetic resonance (MR) imaging-guided high-intensity focused ultrasound ablation of uterine fibroids on the basis of MR thermometric analysis and to assess the effects of a feedback control technique. This prospective study was approved by the institutional review board, and written informed consent was obtained. Thirty-three women with 38 uterine fibroids were treated with an MR imaging-guided high-intensity focused ultrasound system capable of volumetric feedback ablation. Size (diameter times length) and location (three-dimensional displacements) of each ablation zone induced by 527 sonications (with [n=471] and without [n=56] feedback) were analyzed according to the thermal dose obtained with MR thermometry. Prospectively defined acceptance ranges of targeting accuracy were ±5 mm in left-right (LR) and craniocaudal (CC) directions and ±12 mm in anteroposterior (AP) direction. Effects of feedback control in 8- and 12-mm treatment cells were evaluated by using a mixed model with repeated observations within patients. Overall mean sizes of ablation zones produced by 4-, 8-, 12-, and 16-mm treatment cells (with and without feedback) were 4.6 mm±1.4 (standard deviation)×4.4 mm±4.8 (n=13), 8.9 mm±1.9×20.2 mm±6.5 (n=248), 13.0 mm±1.2×29.1 mm±5.6 (n=234), and 18.1 mm±1.4×38.2 mm±7.6 (n=32), respectively. Targeting accuracy values (displacements in absolute values) were 0.9 mm±0.7, 1.2 mm±0.9, and 2.8 mm±2.2 in LR, CC, and AP directions, respectively. Of 527 sonications, 99.8% (526 of 527) were within acceptance ranges. Feedback control had no statistically significant effect on targeting accuracy or ablation zone size. However, variations in ablation zone size were smaller in the feedback control group. Sonication accuracy of volumetric MR imaging-guided high-intensity focused ultrasound ablation of uterine fibroids appears clinically acceptable and may be further improved by feedback control to produce more consistent ablation zones. © RSNA, 2012

  13. Non-rigid registration between 3D ultrasound and CT images of the liver based on intensity and gradient information

    NASA Astrophysics Data System (ADS)

    Lee, Duhgoon; Nam, Woo Hyun; Lee, Jae Young; Ra, Jong Beom

    2011-01-01

    In order to utilize both ultrasound (US) and computed tomography (CT) images of the liver concurrently for medical applications such as diagnosis and image-guided intervention, non-rigid registration between these two types of images is an essential step, as local deformation between US and CT images exists due to the different respiratory phases involved and due to the probe pressure that occurs in US imaging. This paper introduces a voxel-based non-rigid registration algorithm between the 3D B-mode US and CT images of the liver. In the proposed algorithm, to improve the registration accuracy, we utilize the surface information of the liver and gallbladder in addition to the information of the vessels inside the liver. For an effective correlation between US and CT images, we treat those anatomical regions separately according to their characteristics in US and CT images. Based on a novel objective function using a 3D joint histogram of the intensity and gradient information, vessel-based non-rigid registration is followed by surface-based non-rigid registration in sequence, which improves the registration accuracy. The proposed algorithm is tested for ten clinical datasets and quantitative evaluations are conducted. Experimental results show that the registration error between anatomical features of US and CT images is less than 2 mm on average, even with local deformation due to different respiratory phases and probe pressure. In addition, the lesion registration error is less than 3 mm on average with a maximum of 4.5 mm that is considered acceptable for clinical applications.

  14. Line fiducial material and thickness considerations for ultrasound calibration

    NASA Astrophysics Data System (ADS)

    Ameri, Golafsoun; McLeod, A. J.; Baxter, John S. H.; Chen, Elvis C. S.; Peters, Terry M.

    2015-03-01

    Ultrasound calibration is a necessary procedure in many image-guided interventions, relating the position of tools and anatomical structures in the ultrasound image to a common coordinate system. This is a necessary component of augmented reality environments in image-guided interventions as it allows for a 3D visualization where other surgical tools outside the imaging plane can be found. Accuracy of ultrasound calibration fundamentally affects the total accuracy of this interventional guidance system. Many ultrasound calibration procedures have been proposed based on a variety of phantom materials and geometries. These differences lead to differences in representation of the phantom on the ultrasound image which subsequently affect the ability to accurately and automatically segment the phantom. For example, taut wires are commonly used as line fiducials in ultrasound calibration. However, at large depths or oblique angles, the fiducials appear blurred and smeared in ultrasound images making it hard to localize their cross-section with the ultrasound image plane. Intuitively, larger diameter phantoms with lower echogenicity are more accurately segmented in ultrasound images in comparison to highly reflective thin phantoms. In this work, an evaluation of a variety of calibration phantoms with different geometrical and material properties for the phantomless calibration procedure was performed. The phantoms used in this study include braided wire, plastic straws, and polyvinyl alcohol cryogel tubes with different diameters. Conventional B-mode and synthetic aperture images of the phantoms at different positions were obtained. The phantoms were automatically segmented from the ultrasound images using an ellipse fitting algorithm, the centroid of which is subsequently used as a fiducial for calibration. Calibration accuracy was evaluated for these procedures based on the leave-one-out target registration error. It was shown that larger diameter phantoms with lower echogenicity are more accurately segmented in comparison to highly reflective thin phantoms. This improvement in segmentation accuracy leads to a lower fiducial localization error, which ultimately results in low target registration error. This would have a profound effect on calibration procedures and the feasibility of different calibration procedures in the context of image-guided procedures.

  15. Modulated Excitation Imaging System for Intravascular Ultrasound.

    PubMed

    Qiu, Weibao; Wang, Xingying; Chen, Yan; Fu, Qiang; Su, Min; Zhang, Lining; Xia, Jingjing; Dai, Jiyan; Zhang, Yaonan; Zheng, Hairong

    2017-08-01

    Advances in methodologies and tools often lead to new insights into cardiovascular diseases. Intravascular ultrasound (IVUS) is a well-established diagnostic method that provides high-resolution images of the vessel wall and atherosclerotic plaques. High-frequency (>50 MHz) ultrasound enables the spatial resolution of IVUS to approach that of optical imaging methods. However, the penetration depth decreases when using higher imaging frequencies due to the greater acoustic attenuation. An imaging method that improves the penetration depth of high-resolution IVUS would, therefore, be of major clinical importance. Modulated excitation imaging is known to allow ultrasound waves to penetrate further. This paper presents an ultrasound system specifically for modulated-excitation-based IVUS imaging. The system incorporates a high-voltage waveform generator and an image processing board that are optimized for IVUS applications. In addition, a miniaturized ultrasound transducer has been constructed using a Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 single crystal to improve the ultrasound characteristics. The results show that the proposed system was able to provide increases of 86.7% in penetration depth and 9.6 dB in the signal-to-noise ratio for 60 MHz IVUS. In vitro tissue samples were also investigated to demonstrate the performance of the system.

  16. MRI-guided focused ultrasound surgery in musculoskeletal diseases: the hot topics

    PubMed Central

    Napoli, Alessandro; Sacconi, Beatrice; Battista, Giuseppe; Guglielmi, Giuseppe; Catalano, Carlo; Albisinni, Ugo

    2016-01-01

    MRI-guided focused ultrasound surgery (MRgFUS) is a minimally invasive treatment guided by the most sophisticated imaging tool available in today's clinical practice. Both the imaging and therapeutic sides of the equipment are based on non-ionizing energy. This technique is a very promising option as potential treatment for several pathologies, including musculoskeletal (MSK) disorders. Apart from clinical applications, MRgFUS technology is the result of long, heavy and cumulative efforts exploring the effects of ultrasound on biological tissues and function, the generation of focused ultrasound and treatment monitoring by MRI. The aim of this article is to give an updated overview on a “new” interventional technique and on its applications for MSK and allied sciences. PMID:26607640

  17. Circulating Magnetic Microbubbles for Localized Real-Time Control of Drug Delivery by Ultrasonography-Guided Magnetic Targeting and Ultrasound

    PubMed Central

    Chertok, Beata; Langer, Robert

    2018-01-01

    Image-guided and target-selective modulation of drug delivery by external physical triggers at the site of pathology has the potential to enable tailored control of drug targeting. Magnetic microbubbles that are responsive to magnetic and acoustic modulation and visible to ultrasonography have been proposed as a means to realize this drug targeting strategy. To comply with this strategy in vivo, magnetic microbubbles must circulate systemically and evade deposition in pulmonary capillaries, while also preserving magnetic and acoustic activities in circulation over time. Unfortunately, challenges in fabricating magnetic microbubbles with such characteristics have limited progress in this field. In this report, we develop magnetic microbubbles (MagMB) that display strong magnetic and acoustic activities, while also preserving the ability to circulate systemically and evade pulmonary entrapment. Methods: We systematically evaluated the characteristics of MagMB including their pharmacokinetics, biodistribution, visibility to ultrasonography and amenability to magneto-acoustic modulation in tumor-bearing mice. We further assessed the applicability of MagMB for ultrasonography-guided control of drug targeting. Results: Following intravenous injection, MagMB exhibited a 17- to 90-fold lower pulmonary entrapment compared to previously reported magnetic microbubbles and mimicked circulation persistence of the clinically utilized Definity microbubbles (>10 min). In addition, MagMB could be accumulated in tumor vasculature by magnetic targeting, monitored by ultrasonography and collapsed by focused ultrasound on demand to activate drug deposition at the target. Furthermore, drug delivery to target tumors could be enhanced by adjusting the magneto-acoustic modulation based on ultrasonographic monitoring of MagMB in real-time. Conclusions: Circulating MagMB in conjunction with ultrasonography-guided magneto-acoustic modulation may provide a strategy for tailored minimally-invasive control over drug delivery to target tissues. PMID:29290812

  18. Co-registered Frequency-Domain Photoacoustic Radar and Ultrasound System for Subsurface Imaging in Turbid Media

    NASA Astrophysics Data System (ADS)

    Dovlo, Edem; Lashkari, Bahman; Mandelis, Andreas

    2016-03-01

    Frequency-domain photoacoustic radar (FD-PAR) imaging of absorbers in turbid media and their comparison and/or validation as well as co-registration with their corresponding ultrasound (US) images are demonstrated in this paper. Also presented are the FD-PAR tomography and the effects of reducing the number of scan lines (or angles) on image quality, resolution, and contrast. The FD-PAR modality uses intensity-modulated (coded) continuous wave laser sources driven by frequency-swept (chirp) waveforms. The spatial cross-correlation function between the PA response and the reference signal used for laser source modulation produces the reconstructed image. Live animal testing is demonstrated, and images of comparable signal-to-noise ratio, contrast, and spatial resolution were obtained. Various image improvement techniques to further reduce absorber spread and artifacts in the images such as normalization, filtering, and amplification were also investigated. The co-registered image produced from the combined US and PA images provides more information than both images independently. The significance of this work lies in the fact that achieving PA imaging functionality on a commercial ultrasound instrument could accelerate its clinical acceptance and use. This work is aimed at functional PA imaging of small animals in vivo.

  19. Non-Invasive Targeted Peripheral Nerve Ablation Using 3D MR Neurography and MRI-Guided High-Intensity Focused Ultrasound (MR-HIFU): Pilot Study in a Swine Model

    PubMed Central

    Huisman, Merel; Staruch, Robert M.; Ladouceur-Wodzak, Michelle; van den Bosch, Maurice A.; Burns, Dennis K.; Chhabra, Avneesh; Chopra, Rajiv

    2015-01-01

    Purpose Ultrasound (US)-guided high intensity focused ultrasound (HIFU) has been proposed for noninvasive treatment of neuropathic pain and has been investigated in in-vivo studies. However, ultrasound has important limitations regarding treatment guidance and temperature monitoring. Magnetic resonance (MR)-imaging guidance may overcome these limitations and MR-guided HIFU (MR-HIFU) has been used successfully for other clinical indications. The primary purpose of this study was to evaluate the feasibility of utilizing 3D MR neurography to identify and guide ablation of peripheral nerves using a clinical MR-HIFU system. Methods Volumetric MR-HIFU was used to induce lesions in the peripheral nerves of the lower limbs in three pigs. Diffusion-prep MR neurography and T1-weighted images were utilized to identify the target, plan treatment and immediate post-treatment evaluation. For each treatment, one 8 or 12 mm diameter treatment cell was used (sonication duration 20 s and 36 s, power 160–300 W). Peripheral nerves were extracted < 3 hours after treatment. Ablation dimensions were calculated from thermal maps, post-contrast MRI and macroscopy. Histological analysis included standard H&E staining, Masson’s trichrome and toluidine blue staining. Results All targeted peripheral nerves were identifiable on MR neurography and T1-weighted images and could be accurately ablated with a single exposure of focused ultrasound, with peak temperatures of 60.3 to 85.7°C. The lesion dimensions as measured on MR neurography were similar to the lesion dimensions as measured on CE-T1, thermal dose maps, and macroscopy. Histology indicated major hyperacute peripheral nerve damage, mostly confined to the location targeted for ablation. Conclusion Our preliminary results indicate that targeted peripheral nerve ablation is feasible with MR-HIFU. Diffusion-prep 3D MR neurography has potential for guiding therapy procedures where either nerve targeting or avoidance is desired, and may also have potential for post-treatment verification of thermal lesions without contrast injection. PMID:26659073

  20. Registration of 3D fetal neurosonography and MRI☆

    PubMed Central

    Kuklisova-Murgasova, Maria; Cifor, Amalia; Napolitano, Raffaele; Papageorghiou, Aris; Quaghebeur, Gerardine; Rutherford, Mary A.; Hajnal, Joseph V.; Noble, J. Alison; Schnabel, Julia A.

    2013-01-01

    We propose a method for registration of 3D fetal brain ultrasound with a reconstructed magnetic resonance fetal brain volume. This method, for the first time, allows the alignment of models of the fetal brain built from magnetic resonance images with 3D fetal brain ultrasound, opening possibilities to develop new, prior information based image analysis methods for 3D fetal neurosonography. The reconstructed magnetic resonance volume is first segmented using a probabilistic atlas and a pseudo ultrasound image volume is simulated from the segmentation. This pseudo ultrasound image is then affinely aligned with clinical ultrasound fetal brain volumes using a robust block-matching approach that can deal with intensity artefacts and missing features in the ultrasound images. A qualitative and quantitative evaluation demonstrates good performance of the method for our application, in comparison with other tested approaches. The intensity average of 27 ultrasound images co-aligned with the pseudo ultrasound template shows good correlation with anatomy of the fetal brain as seen in the reconstructed magnetic resonance image. PMID:23969169

  1. Non-rigid registration of 3D ultrasound for neurosurgery using automatic feature detection and matching.

    PubMed

    Machado, Inês; Toews, Matthew; Luo, Jie; Unadkat, Prashin; Essayed, Walid; George, Elizabeth; Teodoro, Pedro; Carvalho, Herculano; Martins, Jorge; Golland, Polina; Pieper, Steve; Frisken, Sarah; Golby, Alexandra; Wells, William

    2018-06-04

    The brain undergoes significant structural change over the course of neurosurgery, including highly nonlinear deformation and resection. It can be informative to recover the spatial mapping between structures identified in preoperative surgical planning and the intraoperative state of the brain. We present a novel feature-based method for achieving robust, fully automatic deformable registration of intraoperative neurosurgical ultrasound images. A sparse set of local image feature correspondences is first estimated between ultrasound image pairs, after which rigid, affine and thin-plate spline models are used to estimate dense mappings throughout the image. Correspondences are derived from 3D features, distinctive generic image patterns that are automatically extracted from 3D ultrasound images and characterized in terms of their geometry (i.e., location, scale, and orientation) and a descriptor of local image appearance. Feature correspondences between ultrasound images are achieved based on a nearest-neighbor descriptor matching and probabilistic voting model similar to the Hough transform. Experiments demonstrate our method on intraoperative ultrasound images acquired before and after opening of the dura mater, during resection and after resection in nine clinical cases. A total of 1620 automatically extracted 3D feature correspondences were manually validated by eleven experts and used to guide the registration. Then, using manually labeled corresponding landmarks in the pre- and post-resection ultrasound images, we show that our feature-based registration reduces the mean target registration error from an initial value of 3.3 to 1.5 mm. This result demonstrates that the 3D features promise to offer a robust and accurate solution for 3D ultrasound registration and to correct for brain shift in image-guided neurosurgery.

  2. High-intensity focused ultrasound for the treatment of solid tumor: Chinese clinical experience

    NASA Astrophysics Data System (ADS)

    Takeuchi, Akira; Zhang, Hong; Sun, Kun; Hasumura, Hiromi; Liu, Botao; Fu, Yurui; Yang, Zaocheng

    2006-05-01

    As a non-invasive modality, high-intensity focused ultrasound (HIFU) therapy has been received an interest for the treatment of solid tumor. There are some makers of HIFU for the equipment in China. The Sonic CZ901 is developed from the Mianyang stream that has a great advantage for guiding by color Doppler ultrasound imaging. For the research about possibility of this equipment, we evaluate the clinical usefulness to the solid tumor of HIFU treatment at Wujing general hospital in Beijing. We elucidate the result in 28 cases with benign and malignant tumor (Uterine myoma:16, Benign prostatic hypertrophy:5, Benign breast tumor:2, Breast cancer:1, Retroperitoneal tumor:1, Pheochromocytoma:1, Liver cancer: 2) . After 14˜90days, all cases show the reduction of tumor size (Max.3.2cm, Min.1.6cm, :Mean 2.2cm reduced), and the blood flow of tumor completely reduced in 7/23, partially reduced in16/23. Clinical symptoms disappeared in 7, clearly improved in 14, improved in 7. All treatments had no adverse event except for two cases of liver cancer. They felt an abdominal pain that controllable by medicine and it improved within 6hours. It is concluded that HIFU with guide by ultrasound imaging is very safe, painless and effective as the anti-tumor treatment.

  3. Techniques to Improve Ultrasound-Switchable Fluorescence Imaging

    NASA Astrophysics Data System (ADS)

    Kandukuri, Jayanth

    Novel approaches to the improvement of ultrasound-switchable fluorescence (USF) imaging--a relatively new imaging modality that combines ultrasound and optical imaging techniques--have been proposed for early cancer detection. In USF, a high-intensity focused ultrasound (HIFU) beam is used to induce temperature rise within its acoustic focal region due to which a thermo-sensitive USF contrast agent undergoes a switch in its state by increasing the output of fluorescence photons. By using an increase in fluorescence, one can isolate and quantify the fluorescence properties within the ultrasonic focal area. Therefore, USF is able to provide fluorescence contrast while maintaining ultrasound resolution in tissue. The major challenge of the conventional USF technique is its low axial resolution and its sensitivity (i.e. its signal-to-noise ratio (SNR)). This work focuses on investigating and developing a novel USF system design that can improve the resolution and SNR of USF imaging for biological applications. This work can be divided into two major parts: characterizing the performance of a high-intensity focused ultrasound transducer; and improving the axial resolution and sensitivity of the USF technique. Preliminary investigation was conducted by using an IR camera setup to detect temperature variation and thereby study the performance of the high-intensity focused ultrasound transducer to quantify different parameters of ultrasound-induced temperature focal size (UTFS). Investigations are conducted for the purpose of high-resolution imaging with an emphasis on HIFU-induced thermal focus size, short duration of HIFU-induced temperature increase (to avoid thermal diffusion or conduction), and control of HIFU-induced temperature increase within a few degrees Celsius. Next, the focus was shifted to improving the sensitivity of the ultrasound-switchable fluorescence-imaging technique. In this study, the USF signal is encoded with the modulation frequency of the ultrasound by modulating the induced temperature. Later, two approaches were adopted to modify the USF design to improve the resolution of the conventional USF imaging technique. The first approach aims to improve the axial resolution of conventional USF technique, which involves changing the USF system to adopt a dual-HIFU transducer arrangement (in which the transducers are 90 degree with respect to each other) for use as the heating source. The overlapped region of the two crossed foci (OR-TCF) of the dual-HIFU transducer module is expected to have small thermal size along both lateral and axial directions; thus, it could improve the axial resolution of the USF imaging technique. The second approach aims to demonstrate the improvement of resolution via a single-element HIFU transducer with a high frequency (15 MHz). The high frequency of the ultrasound transducer would have smaller acoustic lateral and axial size and should therefore have smaller thermal size. Thus, both approaches should be able to reduce the focal region of heating and thereby improve the resolution of the USF imaging. Results show that the driving power and exposure time of the HIFU transducer significantly influence the ultrasound-induced temperature focal size (UTFS). Interestingly, a nonlinear acoustic effect was observed at certain variations of the ultrasound exposure power while satisfying the thermal confinement within UTFS. This has been shown to reduce UTFS beyond the acoustic diffraction limit, while the ultrasound-induced thermal energy, which is confined within the focal volume, can induce a desired peak-temperature increase of a few degrees. On other hand, after encoding the HIFU exposure and therefore the detected USF signal with a modulation frequency, the SNR (sensitivity) and full width at half maximum (FWHM) along the lateral direction of the USF image was calculated to be 114 and 0.95 mm for a micro-tube with an inner diameter of 0.31 mm (ID), respectively. In comparison, they are 95 and 1.1 mm when using a non-modulated conventional USF imaging technique. In the case of improving the axial resolution of USF imaging for a similar target size, the dual-HIFU USF design was able to achieve 1.07 and 1.5 mm along lateral (x ) and axial (z) directions, respectively. Adopting the second approach of using single 15 MHz HIFU transducer for USF imaging, the axial resolution was calculated to be 0.67+/-0.02 mm and 1.71+/-0.24 mm along lateral (x) and axial (z) directions, respectively. Thus, high-resolution ultrasound-switchable fluorescence with good sensitivity can be designed for biomedical applications.

  4. Cost-Effectiveness Comparison of Imaging-Guided Prostate Biopsy Techniques: Systematic Transrectal Ultrasound, Direct In-Bore MRI, and Image Fusion.

    PubMed

    Venderink, Wulphert; Govers, Tim M; de Rooij, Maarten; Fütterer, Jurgen J; Sedelaar, J P Michiel

    2017-05-01

    Three commonly used prostate biopsy approaches are systematic transrectal ultrasound guided, direct in-bore MRI guided, and image fusion guided. The aim of this study was to calculate which strategy is most cost-effective. A decision tree and Markov model were developed to compare cost-effectiveness. Literature review and expert opinion were used as input. A strategy was deemed cost-effective if the costs of gaining one quality-adjusted life year (incremental cost-effectiveness ratio) did not exceed the willingness-to-pay threshold of €80,000 (≈$85,000 in January 2017). A base case analysis was performed to compare systematic transrectal ultrasound- and image fusion-guided biopsies. Because of a lack of appropriate literature regarding the accuracy of direct in-bore MRI-guided biopsy, a threshold analysis was performed. The incremental cost-effectiveness ratio for fusion-guided biopsy compared with systematic transrectal ultrasound-guided biopsy was €1386 ($1470) per quality-adjusted life year gained, which was below the willingness-to-pay threshold and thus assumed cost-effective. If MRI findings are normal in a patient with clinically significant prostate cancer, the sensitivity of direct in-bore MRI-guided biopsy has to be at least 88.8%. If that is the case, the incremental cost-effectiveness ratio is €80,000 per quality-adjusted life year gained and thus cost-effective. Fusion-guided biopsy seems to be cost-effective compared with systematic transrectal ultrasound-guided biopsy. Future research is needed to determine whether direct in-bore MRI-guided biopsy is the best pathway; in this study a threshold was calculated at which it would be cost-effective.

  5. Consistent evaluation of an ultrasound-guided surgical navigation system by utilizing an active validation platform

    NASA Astrophysics Data System (ADS)

    Kim, Younsu; Kim, Sungmin; Boctor, Emad M.

    2017-03-01

    An ultrasound image-guided needle tracking systems have been widely used due to their cost-effectiveness and nonionizing radiation properties. Various surgical navigation systems have been developed by utilizing state-of-the-art sensor technologies. However, ultrasound transmission beam thickness causes unfair initial evaluation conditions due to inconsistent placement of the target with respect to the ultrasound probe. This inconsistency also brings high uncertainty and results in large standard deviations for each measurement when we compare accuracy with and without the guidance. To resolve this problem, we designed a complete evaluation platform by utilizing our mid-plane detection and time of flight measurement systems. The evaluating system uses a PZT element target and an ultrasound transmitting needle. In this paper, we evaluated an optical tracker-based surgical ultrasound-guided navigation system whereby the optical tracker tracks marker frames attached on the ultrasound probe and the needle. We performed ten needle trials of guidance experiment with a mid-plane adjustment algorithm and with a B-mode segmentation method. With the midplane adjustment, the result showed a mean error of 1.62+/-0.72mm. The mean error increased to 3.58+/-2.07mm without the mid-plane adjustment. Our evaluation system can reduce the effect of the beam-thickness problem, and measure ultrasound image-guided technologies consistently with a minimal standard deviation. Using our novel evaluation system, ultrasound image-guided technologies can be compared under equal initial conditions. Therefore, the error can be evaluated more accurately, and the system provides better analysis on the error sources such as ultrasound beam thickness.

  6. TU-EF-210-04: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farahani, K.

    The use of therapeutic ultrasound to provide targeted therapy is an active research area that has a broad application scope. The invited talks in this session will address currently implemented strategies and protocols for both hyperthermia and ablation applications using therapeutic ultrasound. The role of both ultrasound and MRI in the monitoring and assessment of these therapies will be explored in both pre-clinical and clinical applications. Katherine Ferrara: High Intensity Focused Ultrasound, Drug Delivery, and Immunotherapy Rajiv Chopra: Translating Localized Doxorubicin Delivery to Pediatric Oncology using MRI-guided HIFU Elisa Konofagou: Real-time Ablation Monitoring and Lesion Quantification using Harmonic Motion Imagingmore » Keyvan Farahani: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy Learning Objectives: Understand the role of ultrasound in localized drug delivery and the effects of immunotherapy when used in conjunction with ultrasound therapy. Understand potential targeted drug delivery clinical applications including pediatric oncology. Understand the technical requirements for performing targeted drug delivery. Understand how radiation-force approaches can be used to both monitor and assess high intensity focused ultrasound ablation therapy. Understand the role of AAPM task groups in ultrasound imaging and therapies. Chopra: Funding from Cancer Prevention and Research Initiative of Texas (CPRIT), Award R1308 Evelyn and M.R. Hudson Foundation; Research Support from Research Contract with Philips Healthcare; COI are Co-founder of FUS Instruments Inc Ferrara: Supported by NIH, UCDavis and California (CIRM and BHCE) Farahani: In-kind research support from Philips Healthcare.« less

  7. Tumor Control Outcomes After Hypofractionated and Single-Dose Stereotactic Image-Guided Intensity-Modulated Radiotherapy for Extracranial Metastases From Renal Cell Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zelefsky, Michael J., E-mail: zelefskm@mskcc.org; Greco, Carlo; Motzer, Robert

    2012-04-01

    Purpose: To report tumor local progression-free outcomes after treatment with single-dose, image-guided, intensity-modulated radiotherapy and hypofractionated regimens for extracranial metastases from renal cell primary tumors. Patients and Methods: Between 2004 and 2010, 105 lesions from renal cell carcinoma were treated with either single-dose, image-guided, intensity-modulated radiotherapy to a prescription dose of 18-24 Gy (median, 24) or hypofractionation (three or five fractions) with a prescription dose of 20-30 Gy. The median follow-up was 12 months (range, 1-48). Results: The overall 3-year actuarial local progression-free survival for all lesions was 44%. The 3-year local progression-free survival for those who received a highmore » single-dose (24 Gy; n = 45), a low single-dose (<24 Gy; n = 14), or hypofractionation regimens (n = 46) was 88%, 21%, and 17%, respectively (high single dose vs. low single dose, p = .001; high single dose vs. hypofractionation, p < .001). Multivariate analysis revealed the following variables were significant predictors of improved local progression-free survival: 24 Gy dose compared with a lower dose (p = .009) and a single dose vs. hypofractionation (p = .008). Conclusion: High single-dose, image-guided, intensity-modulated radiotherapy is a noninvasive procedure resulting in high probability of local tumor control for metastatic renal cell cancer generally considered radioresistant according to the classic radiobiologic ranking.« less

  8. The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population

    PubMed Central

    Illing, R O; Kennedy, J E; Wu, F; ter Haar, G R; Protheroe, A S; Friend, P J; Gleeson, F V; Cranston, D W; Phillips, R R; Middleton, M R

    2005-01-01

    High-intensity focused ultrasound (HIFU) provides a potential noninvasive alternative to conventional therapies. We report our preliminary experience from clinical trials designed to evaluate the safety and feasibility of a novel, extracorporeal HIFU device for the treatment of liver and kidney tumours in a Western population. The extracorporeal, ultrasound-guided Model-JC Tumor Therapy System (HAIFU™ Technology Company, China) has been used to treat 30 patients according to four trial protocols. Patients with hepatic or renal tumours underwent a single therapeutic HIFU session under general anaesthesia. Magnetic resonance imaging 12 days after treatment provided assessment of response. The patients were subdivided into those followed up with further imaging alone or those undergoing surgical resection of their tumours, which enabled both radiological and histological assessment. HIFU exposure resulted in discrete zones of ablation in 25 of 27 evaluable patients (93%). Ablation of liver tumours was achieved more consistently than for kidney tumours (100 vs 67%, assessed radiologically). The adverse event profile was favourable when compared to more invasive techniques. HIFU treatment of liver and kidney tumours in a Western population is both safe and feasible. These findings have significant implications for future noninvasive image-guided tumour ablation. PMID:16189519

  9. MR-Guided Pulsed High-Intensity Focused Ultrasound Enhancement of Gene Therapy Combined With Androgen Deprivation and Radiotherapy for Prostate Cancer Treatment

    DTIC Science & Technology

    2009-09-01

    first statement of work is to determine if high intensity focused ultrasound ( HIFU ) increases the cellular uptake of AS-MDM2, AS-bcl-2 and AS-PKA...Drug Delivery in Prostate Tumor in vivo Using MR Guided Focused Ultrasound (MRg HIFU ). WC, IFMBE Proceedings 25: pp341-344, 2009 6...pharmaceutical agents in the treatment target. In the model system proposed, pulsed high intensity focused ultrasound ( HIFU ) is hypothesized to improve

  10. Clinical Use of High-Intensity Focused Ultrasound (HIFU) for Tumor and Pain Reduction in Advanced Pancreatic Cancer.

    PubMed

    Strunk, H M; Henseler, J; Rauch, M; Mücke, M; Kukuk, G; Cuhls, H; Radbruch, L; Zhang, L; Schild, H H; Marinova, M

    2016-07-01

    Evaluation of ultrasound-guided high-intensity focused ultrasound (HIFU) used for the first time in Germany in patients with inoperable pancreatic cancer for reduction of tumor volume and relief of tumor-associated pain. 15 patients with locally advanced inoperable pancreatic cancer and tumor-related pain symptoms were treated by HIFU (n = 6 UICC stage III, n = 9 UICC stage IV). 13 patients underwent simultaneous standard chemotherapy. Ablation was performed using the JC HIFU system (Chongqing, China HAIFU Company) with an ultrasonic device for real-time imaging. Imaging follow-up (US, CT, MRI) and clinical assessment using validated questionnaires (NRS, BPI) was performed before and up to 15 months after HIFU. Despite biliary or duodenal stents (4/15) and encasement of visceral vessels (15/15), HIFU treatment was performed successfully in all patients. Treatment time and sonication time were 111 min and 1103 s, respectively. The applied total energy was 386 768 J. After HIFU ablation, contrast-enhanced imaging showed devascularization of treated tumor regions with a significant average volume reduction of 63.8 % after 3 months. Considerable pain relief was achieved in 12 patients after HIFU (complete or partial pain reduction in 6 patients). US-guided HIFU with a suitable acoustic pathway can be used for local tumor control and relief of tumor-associated pain in patients with locally advanced pancreatic cancer. • US-guided HIFU allows an additive treatment of unresectable pancreatic cancer.• HIFU can be used for tumor volume reduction.• Using HIFU, a significant reduction of cancer-related pain was achieved.• HIFU provides clinical benefit in patients with pancreatic cancer. Citation Format: • Strunk HM, Henseler J, Rauch M et al. Clinical Use of High-Intensity Focused Ultrasound (HIFU) for Tumor and Pain Reduction in Advanced Pancreatic Cancer. Fortschr Röntgenstr 2016; 188: 662 - 670. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Transmural ultrasound imaging of thermal lesion and action potential changes in perfused canine cardiac wedge preparations by high intensity focused ultrasound ablation.

    PubMed

    Wu, Ziqi; Gudur, Madhu S R; Deng, Cheri X

    2013-01-01

    Intra-procedural imaging is important for guiding cardiac arrhythmia ablation. It is difficult to obtain intra-procedural correlation of thermal lesion formation with action potential (AP) changes in the transmural plane during ablation. This study tested parametric ultrasound imaging for transmural imaging of lesion and AP changes in high intensity focused ultrasound (HIFU) ablation using coronary perfused canine ventricular wedge preparations (n = 13). The preparations were paced from epi/endocardial surfaces and subjected to HIFU application (3.5 MHz, 11 Hz pulse-repetition-frequency, 70% duty cycle, duration 4 s, 3500 W/cm(2)), during which simultaneous optical mapping (1 kframes/s) using di-4-ANEPPS and ultrasound imaging (30 MHz) of the same transmural surface of the wedge were performed. Spatiotemporally correlated AP measurements and ultrasound imaging allowed quantification of the reduction of AP amplitude (APA), shortening of AP duration at 50% repolarization, AP triangulation, decrease of optical AP rise, and change of conduction velocity along tissue depth direction within and surrounding HIFU lesions. The threshold of irreversible change in APA correlating to lesions was determined to be 43 ± 1% with a receiver operating characteristic (ROC) area under curve (AUC) of 0.96 ± 0.01 (n = 13). Ultrasound imaging parameters such as integrated backscatter, Rayleigh (α) and log-normal (σ) parameters, cumulative extrema of σ were tested, with the cumulative extrema of σ performing the best in detecting lesion (ROC AUC 0.89 ± 0.01, n = 13) and change of APA (ROC AUC 0.79 ± 0.03, n = 13). In conclusion, characteristic tissue and AP changes in HIFU ablation were identified and spatiotemporally correlated using optical mapping and ultrasound imaging. Parametric ultrasound imaging using cumulative extrema of σ can detect HIFU lesion and APA reduction.

  12. Transmural Ultrasound Imaging of Thermal Lesion and Action Potential Changes in Perfused Canine Cardiac Wedge Preparations by High Intensity Focused Ultrasound Ablation

    PubMed Central

    Wu, Ziqi; Gudur, Madhu S. R.; Deng, Cheri X.

    2013-01-01

    Intra-procedural imaging is important for guiding cardiac arrhythmia ablation. It is difficult to obtain intra-procedural correlation of thermal lesion formation with action potential (AP) changes in the transmural plane during ablation. This study tested parametric ultrasound imaging for transmural imaging of lesion and AP changes in high intensity focused ultrasound (HIFU) ablation using coronary perfused canine ventricular wedge preparations (n = 13). The preparations were paced from epi/endocardial surfaces and subjected to HIFU application (3.5 MHz, 11 Hz pulse-repetition-frequency, 70% duty cycle, duration 4 s, 3500 W/cm2), during which simultaneous optical mapping (1 kframes/s) using di-4-ANEPPS and ultrasound imaging (30 MHz) of the same transmural surface of the wedge were performed. Spatiotemporally correlated AP measurements and ultrasound imaging allowed quantification of the reduction of AP amplitude (APA), shortening of AP duration at 50% repolarization, AP triangulation, decrease of optical AP rise, and change of conduction velocity along tissue depth direction within and surrounding HIFU lesions. The threshold of irreversible change in APA correlating to lesions was determined to be 43±1% with a receiver operating characteristic (ROC) area under curve (AUC) of 0.96±0.01 (n = 13). Ultrasound imaging parameters such as integrated backscatter, Rayleigh (α) and log-normal (σ) parameters, cumulative extrema of σ were tested, with the cumulative extrema of σ performing the best in detecting lesion (ROC AUC 0.89±0.01, n = 13) and change of APA (ROC AUC 0.79±0.03, n = 13). In conclusion, characteristic tissue and AP changes in HIFU ablation were identified and spatiotemporally correlated using optical mapping and ultrasound imaging. Parametric ultrasound imaging using cumulative extrema of σ can detect HIFU lesion and APA reduction. PMID:24349337

  13. High-Accuracy Ultrasound Contrast Agent Detection Method for Diagnostic Ultrasound Imaging Systems.

    PubMed

    Ito, Koichi; Noro, Kazumasa; Yanagisawa, Yukari; Sakamoto, Maya; Mori, Shiro; Shiga, Kiyoto; Kodama, Tetsuya; Aoki, Takafumi

    2015-12-01

    An accurate method for detecting contrast agents using diagnostic ultrasound imaging systems is proposed. Contrast agents, such as microbubbles, passing through a blood vessel during ultrasound imaging are detected as blinking signals in the temporal axis, because their intensity value is constantly in motion. Ultrasound contrast agents are detected by evaluating the intensity variation of a pixel in the temporal axis. Conventional methods are based on simple subtraction of ultrasound images to detect ultrasound contrast agents. Even if the subject moves only slightly, a conventional detection method will introduce significant error. In contrast, the proposed technique employs spatiotemporal analysis of the pixel intensity variation over several frames. Experiments visualizing blood vessels in the mouse tail illustrated that the proposed method performs efficiently compared with conventional approaches. We also report that the new technique is useful for observing temporal changes in microvessel density in subiliac lymph nodes containing tumors. The results are compared with those of contrast-enhanced computed tomography. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  14. FPGA-Based Reconfigurable Processor for Ultrafast Interlaced Ultrasound and Photoacoustic Imaging

    PubMed Central

    Alqasemi, Umar; Li, Hai; Aguirre, Andrés; Zhu, Quing

    2016-01-01

    In this paper, we report, to the best of our knowledge, a unique field-programmable gate array (FPGA)-based reconfigurable processor for real-time interlaced co-registered ultrasound and photoacoustic imaging and its application in imaging tumor dynamic response. The FPGA is used to control, acquire, store, delay-and-sum, and transfer the data for real-time co-registered imaging. The FPGA controls the ultrasound transmission and ultrasound and photoacoustic data acquisition process of a customized 16-channel module that contains all of the necessary analog and digital circuits. The 16-channel module is one of multiple modules plugged into a motherboard; their beamformed outputs are made available for a digital signal processor (DSP) to access using an external memory interface (EMIF). The FPGA performs a key role through ultrafast reconfiguration and adaptation of its structure to allow real-time switching between the two imaging modes, including transmission control, laser synchronization, internal memory structure, beamforming, and EMIF structure and memory size. It performs another role by parallel accessing of internal memories and multi-thread processing to reduce the transfer of data and the processing load on the DSP. Furthermore, because the laser will be pulsing even during ultrasound pulse-echo acquisition, the FPGA ensures that the laser pulses are far enough from the pulse-echo acquisitions by appropriate time-division multiplexing (TDM). A co-registered ultrasound and photoacoustic imaging system consisting of four FPGA modules (64-channels) is constructed, and its performance is demonstrated using phantom targets and in vivo mouse tumor models. PMID:22828830

  15. FPGA-based reconfigurable processor for ultrafast interlaced ultrasound and photoacoustic imaging.

    PubMed

    Alqasemi, Umar; Li, Hai; Aguirre, Andrés; Zhu, Quing

    2012-07-01

    In this paper, we report, to the best of our knowledge, a unique field-programmable gate array (FPGA)-based reconfigurable processor for real-time interlaced co-registered ultrasound and photoacoustic imaging and its application in imaging tumor dynamic response. The FPGA is used to control, acquire, store, delay-and-sum, and transfer the data for real-time co-registered imaging. The FPGA controls the ultrasound transmission and ultrasound and photoacoustic data acquisition process of a customized 16-channel module that contains all of the necessary analog and digital circuits. The 16-channel module is one of multiple modules plugged into a motherboard; their beamformed outputs are made available for a digital signal processor (DSP) to access using an external memory interface (EMIF). The FPGA performs a key role through ultrafast reconfiguration and adaptation of its structure to allow real-time switching between the two imaging modes, including transmission control, laser synchronization, internal memory structure, beamforming, and EMIF structure and memory size. It performs another role by parallel accessing of internal memories and multi-thread processing to reduce the transfer of data and the processing load on the DSP. Furthermore, because the laser will be pulsing even during ultrasound pulse-echo acquisition, the FPGA ensures that the laser pulses are far enough from the pulse-echo acquisitions by appropriate time-division multiplexing (TDM). A co-registered ultrasound and photoacoustic imaging system consisting of four FPGA modules (64-channels) is constructed, and its performance is demonstrated using phantom targets and in vivo mouse tumor models.

  16. TU-EF-210-03: Real-Time Ablation Monitoring and Lesion Quantification Using Harmonic Motion Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konofagou, E.

    2015-06-15

    The use of therapeutic ultrasound to provide targeted therapy is an active research area that has a broad application scope. The invited talks in this session will address currently implemented strategies and protocols for both hyperthermia and ablation applications using therapeutic ultrasound. The role of both ultrasound and MRI in the monitoring and assessment of these therapies will be explored in both pre-clinical and clinical applications. Katherine Ferrara: High Intensity Focused Ultrasound, Drug Delivery, and Immunotherapy Rajiv Chopra: Translating Localized Doxorubicin Delivery to Pediatric Oncology using MRI-guided HIFU Elisa Konofagou: Real-time Ablation Monitoring and Lesion Quantification using Harmonic Motion Imagingmore » Keyvan Farahani: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy Learning Objectives: Understand the role of ultrasound in localized drug delivery and the effects of immunotherapy when used in conjunction with ultrasound therapy. Understand potential targeted drug delivery clinical applications including pediatric oncology. Understand the technical requirements for performing targeted drug delivery. Understand how radiation-force approaches can be used to both monitor and assess high intensity focused ultrasound ablation therapy. Understand the role of AAPM task groups in ultrasound imaging and therapies. Chopra: Funding from Cancer Prevention and Research Initiative of Texas (CPRIT), Award R1308 Evelyn and M.R. Hudson Foundation; Research Support from Research Contract with Philips Healthcare; COI are Co-founder of FUS Instruments Inc Ferrara: Supported by NIH, UCDavis and California (CIRM and BHCE) Farahani: In-kind research support from Philips Healthcare.« less

  17. TU-EF-210-00: Therapeutic Strategies and Image Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-06-15

    The use of therapeutic ultrasound to provide targeted therapy is an active research area that has a broad application scope. The invited talks in this session will address currently implemented strategies and protocols for both hyperthermia and ablation applications using therapeutic ultrasound. The role of both ultrasound and MRI in the monitoring and assessment of these therapies will be explored in both pre-clinical and clinical applications. Katherine Ferrara: High Intensity Focused Ultrasound, Drug Delivery, and Immunotherapy Rajiv Chopra: Translating Localized Doxorubicin Delivery to Pediatric Oncology using MRI-guided HIFU Elisa Konofagou: Real-time Ablation Monitoring and Lesion Quantification using Harmonic Motion Imagingmore » Keyvan Farahani: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy Learning Objectives: Understand the role of ultrasound in localized drug delivery and the effects of immunotherapy when used in conjunction with ultrasound therapy. Understand potential targeted drug delivery clinical applications including pediatric oncology. Understand the technical requirements for performing targeted drug delivery. Understand how radiation-force approaches can be used to both monitor and assess high intensity focused ultrasound ablation therapy. Understand the role of AAPM task groups in ultrasound imaging and therapies. Chopra: Funding from Cancer Prevention and Research Initiative of Texas (CPRIT), Award R1308 Evelyn and M.R. Hudson Foundation; Research Support from Research Contract with Philips Healthcare; COI are Co-founder of FUS Instruments Inc Ferrara: Supported by NIH, UCDavis and California (CIRM and BHCE) Farahani: In-kind research support from Philips Healthcare.« less

  18. Clinical Consideration of Treatment to Ablate Uterine Fibroids with Magnetic Resonance Imaging-guided High Intensity Focused Ultrasound (MRgFUS): Sonalleve

    PubMed Central

    Jeong, Jae-Hyeok; Hong, Gil Pyo; Kim, Yu-Ri; Ha, Jae-Eun

    2016-01-01

    Objectives Magnetic resonance imaging (MRI)-guided high intensity focused ultrasound surgery (MRgFUS) is a newly emerging non-invasive technique for the treatment of uterine fibroids. The purpose of this study is to review the clinical impact of MRgFUS. Methods This study examined 157 patients. The high intensity focused ultrasound (HIFU) utilized in this study was Philips Achieva 1.5 Tesla MR (Philips Healthcare, Best, the Netherlands) and Sonalleve HIFU system. The patients were followed in post-operative Month 1, Month 3, and Month 6 to investigate any change. Then, these were further classified according to the use of uterine stimulant (oxytocin) in parallel, Funaki Type of uterine fibroid, HIFU intensity, and non-perfused volume (NPV) ratio. Results When the uterine stimulant was utilized, the HIFU intensity was measured at significantly lower levels, compared with the group not using uterine stimulant, and treatment duration was significantly. The NPV ratio was found significantly higher in the group using uterine stimulant. Concerning the correlation between Funaki Type of uterine fibroid and average sonication power, it was found that the closer to Type I, the lower the sonication power, the shorter the treatment duration, and the higher the NPV ratio significantly. Conclusions In this study, it was found that the lower the Funaki Types of uterine fibroids, and the higher the NPV ratio immediately after the operation, the larger the uterine fibroid volume decrease and SSS change were. Also, if uterine stimulant was used in parallel in treatment, treatment duration and HIFU intensity could become shorter and lower. PMID:27617244

  19. PLUS: open-source toolkit for ultrasound-guided intervention systems.

    PubMed

    Lasso, Andras; Heffter, Tamas; Rankin, Adam; Pinter, Csaba; Ungi, Tamas; Fichtinger, Gabor

    2014-10-01

    A variety of advanced image analysis methods have been under the development for ultrasound-guided interventions. Unfortunately, the transition from an image analysis algorithm to clinical feasibility trials as part of an intervention system requires integration of many components, such as imaging and tracking devices, data processing algorithms, and visualization software. The objective of our paper is to provide a freely available open-source software platform-PLUS: Public software Library for Ultrasound-to facilitate rapid prototyping of ultrasound-guided intervention systems for translational clinical research. PLUS provides a variety of methods for interventional tool pose and ultrasound image acquisition from a wide range of tracking and imaging devices, spatial and temporal calibration, volume reconstruction, simulated image generation, and recording and live streaming of the acquired data. This paper introduces PLUS, explains its functionality and architecture, and presents typical uses and performance in ultrasound-guided intervention systems. PLUS fulfills the essential requirements for the development of ultrasound-guided intervention systems and it aspires to become a widely used translational research prototyping platform. PLUS is freely available as open source software under BSD license and can be downloaded from http://www.plustoolkit.org.

  20. Remotely Guided Breast Sonography for Long-Term Space Missions: A Case Report and Discussion.

    PubMed

    Silva-Martinez, Jackelynne P; Sorice Genaro, Andreia; Wen, Hui Annie; Glauber, Naama; Russomano, Thais

    2017-12-01

    Space radiation can cause different types of cancers in crewmembers, especially during long-term space missions. To date, a complete bilateral breast ultrasound has not been performed at the International Space Station (ISS). A breast screening imaging technique could be a useful tool for early identification of breast cancer in astronauts. We hypothesized that breast ultrasound performed by a crewmember while being remotely guided by a specialist from the ground could be an essential tool for medical diagnosis in space. This project aimed to test an ultrasound screening protocol for breast tissue using real-time remotely guided telemedicine techniques. One female volunteer, with no previous medical experience, performed a self-scanned bilateral breast ultrasound exam guided by a remote sonographer. Dynamic ultrasound images were collected using a 25 mm broadband linear array transducer. To simulate fluid shift on the volunteer during microgravity, the bed was tilted -6°. Recorded ultrasound images were analyzed by radiologists, comparing the findings with a gold standard. The experiment demonstrated that real-time remotely guided sonography exam is feasible and can yield meaningful clinical results. This case study showed that remotely guided breast ultrasound can be performed and might become an important tool for diagnosis of breast cancer in space missions. The results cannot be generalized based on one subject, and additional research is warranted in this area in addition to its validation on the ISS. This technique, however, has potential for use as part of preventive medicine procedures for long-term space missions at the ISS, and eventually for human settlements on the Moon and Mars.

  1. Intense focused ultrasound stimulation of the rotator cuff: evaluation of the source of pain in rotator cuff tears and tendinopathy.

    PubMed

    Gellhorn, Alfred C; Gillenwater, Cody; Mourad, Pierre D

    2015-09-01

    The objective of this preliminary study was to evaluate the ability of individual 0.1-s long pulses of intense focused ultrasound (iFU) emitted with a carrier frequency of 2 MHz to evoke diagnostic sensations when applied to patients whose shoulders have rotator cuff tears or tendinopathy. Patients were adults with painful shoulders and clinical and imaging findings consistent with rotator cuff disease. iFU stimulation of the shoulder was performed using B-mode ultrasound coupled with a focused ultrasound transducer that allowed image-guided delivery of precisely localized pulses of energy to different anatomic areas around the rotator cuff. The main outcome measure was iFU spatial average-temporal average intensity (I_SATA), and location required to elicit sensation. In control patients, iFU produced no sensation throughout the range of stimulation intensities (≤2000 W/cm(2) I_SATA). In patients with rotator cuff disease, iFU was able to induce sensation in the tendons of the rotator cuff, the subacromial bursa, and the subchondral bone in patients with chronic shoulder pain and rotator cuff disease, with an average ± standard deviation intensity equaling 680 ± 281 W/cm(2) I_SATA. This result suggests a primary role for these tissues in the pathogenesis of shoulder pain related to rotator cuff tendinopathy. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  2. High-intensity focused ultrasound treatment of placenta accreta after vaginal delivery: a preliminary study.

    PubMed

    Bai, Y; Luo, X; Li, Q; Yin, N; Fu, X; Zhang, H; Qi, H

    2016-04-01

    To evaluate the safety and efficiency of high-intensity focused ultrasound (HIFU) in the treatment of placenta accreta after vaginal delivery. Enrolled into this study between September 2011 and September 2013 were 12 patients who had been diagnosed with placenta accreta following vaginal delivery and who had stable vital signs. All patients were treated using an ultrasound-guided HIFU treatment system. As indication of the effectiveness of the treatment we considered decreased vascular index on color Doppler imaging, decrease in size of residual placenta compared with pretreatment size on assessment by three-dimensional ultrasound with Virtual Organ Computer-aided Analysis, reduced signal intensity and degree of enhancement on magnetic resonance imaging and avoidance of hysterectomy following treatment. To assess the safety of HIFU treatment, we recorded side effects, hemorrhage, infection, sex steroid levels, return of menses and subsequent pregnancy. Patients were followed up in this preliminary study until December 2013. The 12 patients receiving HIFU treatment had an average postpartum hospital stay of 6.8 days and an average period of residual placental involution of 36.9 days. HIFU treatment did not apparently increase the risk of infection or hemorrhage and no patient required hysterectomy. In all patients menstruation recommenced after an average of 80.2 days, and sex steroid levels during the middle luteal phase of the second menstrual cycle were normal. Two patients became pregnant again during the follow-up period. This preliminary study suggests that ultrasound-guided HIFU is a safe and effective non-invasive method to treat placenta accreta patients after vaginal delivery who have stable vital signs and desire to preserve fertility. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.

  3. Bone remodeling after MR imaging-guided high-intensity focused ultrasound ablation: evaluation with MR imaging, CT, Na(18)F-PET, and histopathologic examination in a swine model.

    PubMed

    Bucknor, Matthew D; Rieke, Viola; Seo, Youngho; Horvai, Andrew E; Hawkins, Randall A; Majumdar, Sharmila; Link, Thomas M; Saeed, Maythem

    2015-02-01

    To serially monitor bone remodeling in the swine femur after magnetic resonance (MR) imaging-guided high-intensity focused ultrasound (HIFU) ablation with MR imaging, computed tomography (CT), sodium fluorine 18 (Na(18)F)-positron emission tomography (PET), and histopathologic examination, as a function of sonication energy. Experimental procedures received approval from the local institutional animal care and use committee. MR imaging-guided HIFU was used to create distal and proximal ablations in the right femurs of eight pigs. The energy used at the distal target was higher (mean, 419 J; range, 390-440 J) than that used at the proximal target (mean, 324 J; range, 300-360 J). Imaging was performed before and after ablation with 3.0-T MR imaging and 64-section CT. Animals were reevaluated at 3 and 6 weeks with MR imaging (n = 8), CT (n = 8), Na(18)F-PET (n = 4), and histopathologic examination (n = 4). Three-dimensional ablation lengths were measured on contrast material-enhanced MR images, and bone remodeling in the cortex was measured on CT images. Ablation sizes at MR imaging 3 and 6 weeks after MR imaging-guided HIFU ablation were similar between proximal (low-energy) and distal (high-energy) lesions (average, 8.7 × 21.9 × 16.4 mm). However, distal ablation lesions (n = 8) demonstrated evidence of subperiosteal new bone formation at CT, with a subtle focus of new ossification at 3 weeks and a larger focus of ossification at 6 weeks. New bone formation was associated with increased uptake at Na(18)F-PET in three of four animals; this was confirmed at histopathologic examination in four of four animals. MR imaging-guided HIFU ablation of bone may result in progressive remodeling, with both subcortical necrosis and subperiosteal new bone formation. This may be related to the use of high energies. MR imaging, CT, and PET are suitable noninvasive techniques to monitor bone remodeling after MR imaging-guided HIFU ablation. © RSNA, 2014.

  4. Improving the signal-to-noise ratio in ultrasound-modulated optical tomography by a lock-in amplifier

    NASA Astrophysics Data System (ADS)

    Zhu, Lili; Wu, Jingping; Lin, Guimin; Hu, Liangjun; Li, Hui

    2016-10-01

    With high spatial resolution of ultrasonic location and high sensitivity of optical detection, ultrasound-modulated optical tomography (UOT) is a promising noninvasive biological tissue imaging technology. In biological tissue, the ultrasound-modulated light signals are very weak and are overwhelmed by the strong unmodulated light signals. It is a difficulty and key to efficiently pick out the weak modulated light from strong unmodulated light in UOT. Under the effect of an ultrasonic field, the scattering light intensity presents a periodic variation as the ultrasonic frequency changes. So the modulated light signals would be escape from the high unmodulated light signals, when the modulated light signals and the ultrasonic signal are processed cross correlation operation by a lock-in amplifier and without a chopper. Experimental results indicated that the signal-to-noise ratio of UOT is significantly improved by a lock-in amplifier, and the higher the repetition frequency of pulsed ultrasonic wave, the better the signal-to-noise ratio of UOT.

  5. A single FPGA-based portable ultrasound imaging system for point-of-care applications.

    PubMed

    Kim, Gi-Duck; Yoon, Changhan; Kye, Sang-Bum; Lee, Youngbae; Kang, Jeeun; Yoo, Yangmo; Song, Tai-kyong

    2012-07-01

    We present a cost-effective portable ultrasound system based on a single field-programmable gate array (FPGA) for point-of-care applications. In the portable ultrasound system developed, all the ultrasound signal and image processing modules, including an effective 32-channel receive beamformer with pseudo-dynamic focusing, are embedded in an FPGA chip. For overall system control, a mobile processor running Linux at 667 MHz is used. The scan-converted ultrasound image data from the FPGA are directly transferred to the system controller via external direct memory access without a video processing unit. The potable ultrasound system developed can provide real-time B-mode imaging with a maximum frame rate of 30, and it has a battery life of approximately 1.5 h. These results indicate that the single FPGA-based portable ultrasound system developed is able to meet the processing requirements in medical ultrasound imaging while providing improved flexibility for adapting to emerging POC applications.

  6. Screening Magnetic Resonance Imaging-Based Prediction Model for Assessing Immediate Therapeutic Response to Magnetic Resonance Imaging-Guided High-Intensity Focused Ultrasound Ablation of Uterine Fibroids.

    PubMed

    Kim, Young-sun; Lim, Hyo Keun; Park, Min Jung; Rhim, Hyunchul; Jung, Sin-Ho; Sohn, Insuk; Kim, Tae-Joong; Keserci, Bilgin

    2016-01-01

    The aim of this study was to fit and validate screening magnetic resonance imaging (MRI)-based prediction models for assessing immediate therapeutic responses of uterine fibroids to MRI-guided high-intensity focused ultrasound (MR-HIFU) ablation. Informed consent from all subjects was obtained for our institutional review board-approved study. A total of 240 symptomatic uterine fibroids (mean diameter, 6.9 cm) in 152 women (mean age, 43.3 years) treated with MR-HIFU ablation were retrospectively analyzed (160 fibroids for training, 80 fibroids for validation). Screening MRI parameters (subcutaneous fat thickness [mm], x1; relative peak enhancement [%] in semiquantitative perfusion MRI, x2; T2 signal intensity ratio of fibroid to skeletal muscle, x3) were used to fit prediction models with regard to ablation efficiency (nonperfused volume/treatment cell volume, y1) and ablation quality (grade 1-5, poor to excellent, y2), respectively, using the generalized estimating equation method. Cutoff values for achievement of treatment intent (efficiency >1.0; quality grade 4/5) were determined based on receiver operating characteristic curve analysis. Prediction performances were validated by calculating positive and negative predictive values. Generalized estimating equation analyses yielded models of y1 = 2.2637 - 0.0415x1 - 0.0011x2 - 0.0772x3 and y2 = 6.8148 - 0.1070x1 - 0.0050x2 - 0.2163x3. Cutoff values were 1.312 for ablation efficiency (area under the curve, 0.7236; sensitivity, 0.6882; specificity, 0.6866) and 4.019 for ablation quality (0.8794; 0.7156; 0.9020). Positive and negative predictive values were 0.917 and 0.500 for ablation efficiency and 0.978 and 0.600 for ablation quality, respectively. Screening MRI-based prediction models for assessing immediate therapeutic responses of uterine fibroids to MR-HIFU ablation were fitted and validated, which may reduce the risk of unsuccessful treatment.

  7. High-intensity focused ultrasound ablation assisted using color Doppler imaging for the treatment of hepatocellular carcinomas.

    PubMed

    Fukuda, Hiroyuki; Numata, Kazushi; Nozaki, Akito; Kondo, Masaaki; Morimoto, Manabu; Maeda, Shin; Tanaka, Katsuaki; Ohto, Masao; Ito, Ryu; Ishibashi, Yoshiharu; Oshima, Noriyoshi; Ito, Ayao; Zhu, Hui; Wang, Zhi-Biao

    2013-12-01

    We evaluated the usefulness of color Doppler flow imaging to compensate for the inadequate resolution of the ultrasound (US) monitoring during high-intensity focused ultrasound (HIFU) for the treatment of hepatocellular carcinoma (HCC). US-guided HIFU ablation assisted using color Doppler flow imaging was performed in 11 patients with small HCC (<3 lesions, <3 cm in diameter). The HIFU system (Chongqing Haifu Tech) was used under US guidance. Color Doppler sonographic studies were performed using an HIFU 6150S US imaging unit system and a 2.7-MHz electronic convex probe. The color Doppler images were used because of the influence of multi-reflections and the emergence of hyperecho. In 1 of the 11 patients, multi-reflections were responsible for the poor visualization of the tumor. In 10 cases, the tumor was poorly visualized because of the emergence of a hyperecho. In these cases, the ability to identify the original tumor location on the monitor by referencing the color Doppler images of the portal vein and the hepatic vein was very useful. HIFU treatments were successfully performed in all 11 patients with the assistance of color Doppler imaging. Color Doppler imaging is useful for the treatment of HCC using HIFU, compensating for the occasionally poor visualization provided by B-mode conventional US imaging.

  8. Preliminary study of ergonomic behavior during simulated ultrasound-guided regional anesthesia using a head-mounted display.

    PubMed

    Udani, Ankeet D; Harrison, T Kyle; Howard, Steven K; Kim, T Edward; Brock-Utne, John G; Gaba, David M; Mariano, Edward R

    2012-08-01

    A head-mounted display provides continuous real-time imaging within the practitioner's visual field. We evaluated the feasibility of using head-mounted display technology to improve ergonomics in ultrasound-guided regional anesthesia in a simulated environment. Two anesthesiologists performed an equal number of ultrasound-guided popliteal-sciatic nerve blocks using the head-mounted display on a porcine hindquarter, and an independent observer assessed each practitioner's ergonomics (eg, head turning, arching, eye movements, and needle manipulation) and the overall block quality based on the injectate spread around the target nerve for each procedure. Both practitioners performed their procedures without directly viewing the ultrasound monitor, and neither practitioner showed poor ergonomic behavior. Head-mounted display technology may offer potential advantages during ultrasound-guided regional anesthesia.

  9. A web-based instruction module for interpretation of craniofacial cone beam CT anatomy.

    PubMed

    Hassan, B A; Jacobs, R; Scarfe, W C; Al-Rawi, W T

    2007-09-01

    To develop a web-based module for learner instruction in the interpretation and recognition of osseous anatomy on craniofacial cone-beam CT (CBCT) images. Volumetric datasets from three CBCT systems were acquired (i-CAT, NewTom 3G and AccuiTomo FPD) for various subjects using equipment-specific scanning protocols. The datasets were processed using multiple software to provide two-dimensional (2D) multiplanar reformatted (MPR) images (e.g. sagittal, coronal and axial) and three-dimensional (3D) visual representations (e.g. maximum intensity projection, minimum intensity projection, ray sum, surface and volume rendering). Distinct didactic modules which illustrate the principles of CBCT systems, guided navigation of the volumetric dataset, and anatomic correlation of 3D models and 2D MPR graphics were developed using a hybrid combination of web authoring and image analysis techniques. Interactive web multimedia instruction was facilitated by the use of dynamic highlighting and labelling, and rendered video illustrations, supplemented with didactic textual material. HTML coding and Java scripting were heavily implemented for the blending of the educational modules. An interactive, multimedia educational tool for visualizing the morphology and interrelationships of osseous craniofacial anatomy, as depicted on CBCT MPR and 3D images, was designed and implemented. The present design of a web-based instruction module may assist radiologists and clinicians in learning how to recognize and interpret the craniofacial anatomy of CBCT based images more efficiently.

  10. Safety of ultrasound-guided high-intensity focused ultrasound ablation for diffuse adenomyosis: A retrospective cohort study.

    PubMed

    Feng, Yujie; Hu, Liang; Chen, Wenzhi; Zhang, Rong; Wang, Xi; Chen, Jinyun

    2017-05-01

    To evaluate the safety of ultrasound-guided high-intensity focused ultrasound (HIFU) ablation for patients with diffuse adenomyosis. This was a retrospective cohort study. The data was collected from 417 symptomatic adenomyosis patients who underwent ultrasound-guided HIFU between January 2012 and December 2015 at 1st Affiliated Hospital of Chongqing Medical University, Chongqing, China. Among them were 260 patients with diffuse adenomyosis (Group D) and 157 patients with focal adenomyosis (Group F). All patients underwent contrast-enhanced magnetic resonance imaging (MRI) one week before and the day after HIFU treatment. Successful treatment with HIFU was measured by the non-perfused volume ratio (NPVR). Intraprocedural and postprocedural adverse effects and complications were recorded to assess the safety of the procedure. Patients were followed-up for three months post-treatment. Complications were given a grade A through F according to the SIR Standards. All patients successfully completed the procedure, non-perfused regions appeared in 415 (99.5%) patients. The non-perfused volume ratio (NPVR) of Group D was significantly lower than that of Group F (P<0.05). During the procedure, the odds ratio of skin-burning pain was 1.7 (OR=1.617, 95% CI: 1.103-2.532), when comparing Group D with Group F, while the odds ratio of inguinal pain was equal to 2.0 (OR=2.038, 95% CI: 1.161-3.580), when Group F was compared to Group D. 97 patients (23.3%) received nominal therapy due to complications ([Society of interventional radiology, SIR]-B grade), among them, there were 62 cases (23.8%) in Group D and 35 cases (22.3%) in Group F. No significant difference was found between the two groups (P>0.05) and neither of the reported complications of SIR-C-SIR-F occurred within the two groups. Based on our results, ultrasound-guided HIFU is safe for the treatment of diffuse adenomyosis, and controlling the ablation zone is crucial to ensure patients' safety. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. A serious game for learning ultrasound-guided needle placement skills.

    PubMed

    Chan, Wing-Yin; Qin, Jing; Chui, Yim-Pan; Heng, Pheng-Ann

    2012-11-01

    Ultrasound-guided needle placement is a key step in a lot of radiological intervention procedures such as biopsy, local anesthesia and fluid drainage. To help training future intervention radiologists, we develop a serious game to teach the skills involved. We introduce novel techniques for realistic simulation and integrate game elements for active and effective learning. This game is designed in the context of needle placement training based on the some essential characteristics of serious games. Training scenarios are interactively generated via a block-based construction scheme. A novel example-based texture synthesis technique is proposed to simulate corresponding ultrasound images. Game levels are defined based on the difficulties of the generated scenarios. Interactive recommendation of desirable insertion paths is provided during the training as an adaptation mechanism. We also develop a fast physics-based approach to reproduce the shadowing effect of needles in ultrasound images. Game elements such as time-attack tasks, hints and performance evaluation tools are also integrated in our system. Extensive experiments are performed to validate its feasibility for training.

  12. Development of an endoluminal high-intensity ultrasound applicator for image-guided thermal therapy of pancreatic tumors

    NASA Astrophysics Data System (ADS)

    Adams, Matthew S.; Scott, Serena J.; Salgaonkar, Vasant A.; Jones, Peter D.; Plata-Camargo, Juan C.; Sommer, Graham; Diederich, Chris J.

    2015-03-01

    An ultrasound applicator for endoluminal thermal therapy of pancreatic tumors has been introduced and evaluated through acoustic/biothermal simulations and ex vivo experimental investigations. Endoluminal therapeutic ultrasound constitutes a minimally invasive conformal therapy and is compatible with ultrasound or MR-based image guidance. The applicator would be placed in the stomach or duodenal lumen, and sonication would be performed through the luminal wall into the tumor, with concurrent water cooling of the wall tissue to prevent its thermal injury. A finite-element (FEM) 3D acoustic and biothermal model was implemented for theoretical analysis of the approach. Parametric studies over transducer geometries and frequencies revealed that operating frequencies within 1-3 MHz maximize penetration depth and lesion volume while sparing damage to the luminal wall. Patient-specific FEM models of pancreatic head tumors were generated and used to assess the feasibility of performing endoluminal ultrasound thermal ablation and hyperthermia of pancreatic tumors. Results indicated over 80% of the volume of small tumors (~2 cm diameter) within 35 mm of the duodenum could be safely ablated in under 30 minutes or elevated to hyperthermic temperatures at steady-state. Approximately 60% of a large tumor (~5 cm diameter) model could be safely ablated by considering multiple positions of the applicator along the length of the duodenum to increase coverage. Prototype applicators containing two 3.2 MHz planar transducers were fabricated and evaluated in ex vivo porcine carcass heating experiments under MR temperature imaging (MRTI) guidance. The applicator was positioned in the stomach adjacent to the pancreas, and sonications were performed for 10 min at 5 W/cm2 applied intensity. MRTI indicated over 400C temperature rise in pancreatic tissue with heating penetration extending 3 cm from the luminal wall.

  13. Assessment of FUS-Tissue Interactions In Vivo

    NASA Astrophysics Data System (ADS)

    Haritonova, Alyona V.

    Focused ultrasound (FUS) has been proposed for a variety of minimally invasive therapeutic applications, including tumor ablation, neuromodulation, targeted drug delivery and blood brain barrier opening. To date, FUS beams have been primarily monitored through MR and ultrasound diagnostic imaging modalities. The recent introduction of real-time dual-mode ultrasound array (DMUA) systems offers a new paradigm for the guidance of therapeutic focused ultrasound. The DMUA approach allows for inherent registration between the therapeutic and imaging coordinate systems. In this thesis we investigated the use of ultrasound-based thermography to assess FUS-tissue interactions. Specifically, we focused on two aspects of image-guided therapy: 1) monitoring and localization of FUS-tissue interactions, and 2) tissue damage assessment. Towards this end, we presented first experimental results of ultrasound-guided transcranial FUS in a rat brain, both ex vivo and in vivo. DMUA imaging was used to monitor and localize FUS-tissue thermal interactions in real-time. The transcranial echo data allowed for a reliable estimation of temperature change in brain tissue, which had never been done before using ultrasound image guidance. Despite some measurable distortion and loss in focusing gain, transcranial FUS beams at 3.2 MHz were localized axially and laterally. This confirms the results obtained using DMUA-based transcranial ultrasound thermography. A high degree of focusing with the DMUA was then successfully leveraged to perform localized tissue damage assessment in both ex vivo and in vivo. The experimental results presented in this thesis demonstrate some of the unique aspects of image guidance using DMUAs, especially when FUS is subject to significant distortions as in transcranial applications.

  14. [18F]fluoroethylcholine-PET/CT imaging for radiation treatment planning of recurrent and primary prostate cancer with dose escalation to PET/CT-positive lymph nodes.

    PubMed

    Würschmidt, Florian; Petersen, Cordula; Wahl, Andreas; Dahle, Jörg; Kretschmer, Matthias

    2011-05-01

    At present there is no consensus on irradiation treatment volumes for intermediate to high-risk primary cancers or recurrent disease. Conventional imaging modalities, such as CT, MRI and transrectal ultrasound, are considered suboptimal for treatment decisions. Choline-PET/CT might be considered as the imaging modality in radiooncology to select and delineate clinical target volumes extending the prostate gland or prostate fossa. In conjunction with intensity modulated radiotherapy (IMRT) and imaged guided radiotherapy (IGRT), it might offer the opportunity of dose escalation to selected sites while avoiding unnecessary irradiation of healthy tissues. Twenty-six patients with primary (n = 7) or recurrent (n = 19) prostate cancer received Choline-PET/CT planned 3D conformal or intensity modulated radiotherapy. The median age of the patients was 65 yrs (range 45 to 78 yrs). PET/CT-scans with F18-fluoroethylcholine (FEC) were performed on a combined PET/CT-scanner equipped for radiation therapy planning. The majority of patients had intermediate to high risk prostate cancer. All patients received 3D conformal or intensity modulated and imaged guided radiotherapy with megavoltage cone beam CT. The median dose to primary tumours was 75.6 Gy and to FEC-positive recurrent lymph nodal sites 66,6 Gy. The median follow-up time was 28.8 months. The mean SUV(max) in primary cancer was 5,97 in the prostate gland and 3,2 in pelvic lymph nodes. Patients with recurrent cancer had a mean SUV(max) of 4,38. Two patients had negative PET/CT scans. At 28 months the overall survival rate is 94%. Biochemical relapse free survival is 83% for primary cancer and 49% for recurrent tumours. Distant disease free survival is 100% and 75% for primary and recurrent cancer, respectively. Acute normal tissue toxicity was mild in 85% and moderate (grade 2) in 15%. No or mild late side effects were observed in the majority of patients (84%). One patient had a severe bladder shrinkage (grade 4) after a previous treatment with TUR of the prostate and seed implantation. FEC-PET/CT planning could be helpful in dose escalation to lymph nodal sites of prostate cancer.

  15. Ultrasound-Guided Transesophageal High-Intensity Focused Ultrasound Cardiac Ablation in a Beating Heart: A Pilot Feasibility Study in Pigs.

    PubMed

    Bessiere, Francis; N'djin, W Apoutou; Colas, Elodie Constanciel; Chavrier, Françoise; Greillier, Paul; Chapelon, Jean Yves; Chevalier, Philippe; Lafon, Cyril

    2016-08-01

    Catheter ablation for the treatment of arrhythmia is associated with significant complications and often-repeated procedures. Consequently, a less invasive and more efficient technique is required. Because high-intensity focused ultrasound (HIFU) enables the generation of precise thermal ablations in deep-seated tissues without harming the tissues in the propagation path, it has the potential to be used as a new ablation technique. A system capable of delivering HIFU into the heart by a transesophageal route using ultrasound (US) imaging guidance was developed and tested in vivo in six male pigs. HIFU exposures were performed on atria and ventricles. At the time of autopsy, visual inspection identified thermal lesions in the targeted areas in three of the animals. These lesions were confirmed by histologic analysis (mean size: 5.5 mm(2) × 11 mm(2)). No esophageal thermal injury was observed. One animal presented with bradycardia due to an atrio-ventricular block, which provides real-time confirmation of an interaction between HIFU and the electrical circuits of the heart. Thus, US-guided HIFU has the potential to minimally invasively create myocardial lesions without an intra-cardiac device. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  16. [Contrast-enhanced ultrasound (CEUS) and image fusion for procedures of liver interventions].

    PubMed

    Jung, E M; Clevert, D A

    2018-06-01

    Contrast-enhanced ultrasound (CEUS) is becoming increasingly important for the detection and characterization of malignant liver lesions and allows percutaneous treatment when surgery is not possible. Contrast-enhanced ultrasound image fusion with computed tomography (CT) and magnetic resonance imaging (MRI) opens up further options for the targeted investigation of a modified tumor treatment. Ultrasound image fusion offers the potential for real-time imaging and can be combined with other cross-sectional imaging techniques as well as CEUS. With the implementation of ultrasound contrast agents and image fusion, ultrasound has been improved in the detection and characterization of liver lesions in comparison to other cross-sectional imaging techniques. In addition, this method can also be used for intervention procedures. The success rate of fusion-guided biopsies or CEUS-guided tumor ablation lies between 80 and 100% in the literature. Ultrasound-guided image fusion using CT or MRI data, in combination with CEUS, can facilitate diagnosis and therapy follow-up after liver interventions. In addition to the primary applications of image fusion in the diagnosis and treatment of liver lesions, further useful indications can be integrated into daily work. These include, for example, intraoperative and vascular applications as well applications in other organ systems.

  17. Medical physics practice in the next decade

    PubMed Central

    Paliwal, Bhudatt

    2006-01-01

    Impressive advances in computers and materials science have fueled a broad-based confluence of basic science breakthroughs. These advances are making us reformulate our learning, teaching and credentialing methodologies and research and development frontiers. We are now in the age of molecular medicine. In the entire field of health care, a paradigm shift from population-based solutions to individual specific care is taking place. These trends are reshaping the practice of medical physics. In this short presentation, examples are given to illustrate developments in image-guided intensity-modulated and adaptive helical tomotherapy, enhanced application of intensity modulation radiotherapy (IMRT) using adaptive radiotherapy and conformal avoidance. These advances include improved normal tissue sparing and permit dose reconstruction and verification, thereby allowing significant biologically effective dose escalation and reduced radiation toxicity. The intrinsic capability of helical TomoTherapy for megavoltage CT imaging for IMRT image-guidance is also discussed. Finally developments in motion management are described. PMID:22275799

  18. Prospective evaluation of magnetic resonance imaging guided in-bore prostate biopsy versus systematic transrectal ultrasound guided prostate biopsy in biopsy naïve men with elevated prostate specific antigen.

    PubMed

    Quentin, Michael; Blondin, Dirk; Arsov, Christian; Schimmöller, Lars; Hiester, Andreas; Godehardt, Erhard; Albers, Peter; Antoch, Gerald; Rabenalt, Robert

    2014-11-01

    Magnetic resonance imaging guided biopsy is increasingly performed to diagnose prostate cancer. However, there is a lack of well controlled, prospective trials to support this treatment method. We prospectively compared magnetic resonance imaging guided in-bore biopsy with standard systematic transrectal ultrasound guided biopsy in biopsy naïve men with increased prostate specific antigen. We performed a prospective study in 132 biopsy naïve men with increased prostate specific antigen (greater than 4 ng/ml). After 3 Tesla functional multiparametric magnetic resonance imaging patients were referred for magnetic resonance imaging guided in-bore biopsy of prostate lesions (maximum 3) followed by standard systematic transrectal ultrasound guided biopsy (12 cores). We analyzed the detection rates of prostate cancer and significant prostate cancer (greater than 5 mm total cancer length or any Gleason pattern greater than 3). A total of 128 patients with a mean ± SD age of 66.1 ± 8.1 years met all study requirements. Median prostate specific antigen was 6.7 ng/ml (IQR 5.1-9.0). Transrectal ultrasound and magnetic resonance imaging guided biopsies provided the same 53.1% detection rate, including 79.4% and 85.3%, respectively, for significant prostate cancer. Magnetic resonance imaging and transrectal ultrasound guided biopsies missed 7.8% and 9.4% of clinically significant prostate cancers, respectively. Magnetic resonance imaging biopsy required significantly fewer cores and revealed a higher percent of cancer involvement per biopsy core (each p <0.01). Combining the 2 methods provided a 60.9% detection rate with an 82.1% rate for significant prostate cancer. Magnetic resonance imaging guided in-bore and systematic transrectal ultrasound guided biopsies achieved equally high detection rates in biopsy naïve patients with increased prostate specific antigen. Magnetic resonance imaging guided in-bore biopsies required significantly fewer cores and revealed a significantly higher percent of cancer involvement per biopsy core. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  19. Two-year clinical follow-up after pulmonary vein isolation using high-intensity focused ultrasound (HIFU) and an esophageal temperature-guided safety algorithm.

    PubMed

    Neven, Kars; Metzner, Andreas; Schmidt, Boris; Ouyang, Feifan; Kuck, Karl-Heinz

    2012-03-01

    High-intensity frequency ultrasound (HIFU) can achieve pulmonary vein isolation (PVI), but severe complications have happened. An esophageal temperature (ET)-guided safety algorithm was implemented. We investigated medium-term outcome. After left atrial access, HIFU was applied until complete PVI. The safety algorithm was as follows: ≤3 complete ablations per pulmonary vein, early abortion when ET ≥40.0°C, use of Power Modulation at ET >39.0°C or when after 20 to 30 seconds no change in PV electrograms: to reduce the ablation temperature in the surrounding tissue, acoustic power is switched on and off with a frequency of 1 Hz; in all first ablations, use of Power Modulation after 50% of programmed time. Touch-up radiofrequency ablation when PVI failed. Follow-up included interviews and Holter electrocardiograms. Recurrence was defined as atrial fibrillation (AF) >30 seconds without a blanking period. A total of 28 symptomatic patients (18 males, age 63 years), with paroxysmal AF (n = 19) and persistent AF (n = 9) were included. After a median follow-up of 738 days, 22 of the 28 patients (79%) were free of AF without antiarrhythmic drugs. After 1 repeat procedure with radiofrequency ablation, 5 patients remained free of AF. The complications were as follows: 1 lethal atrial-to-esophageal fistula at day 31, 1 pericardial effusion at day 48, 1 unexplained death at day 49, and 2 persistent phrenic nerve palsies with full recovery within 12 months. Two-year follow-up after PVI using HIFU and an ET-guided safety algorithm shows success rates similar to those of radiofrequency-based procedures but with higher complication rates. Importantly, the ET-guided safety algorithm failed to prevent severe complications. HIFU does not meet safety standards required for the treatment of AF, and this led to a halt of its clinical use. Copyright © 2012 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  20. [Monitoring radiofrequency ablation by ultrasound temperature imaging and elastography under different power intensities].

    PubMed

    Geng, Xiaonan; Li, Qiang; Tsui, Pohsiang; Wang, Chiaoyin; Liu, Haoli

    2013-09-01

    To evaluate the reliability of diagnostic ultrasound-based temperature and elasticity imaging during radiofrequency ablation (RFA) through ex vivo experiments. Procine liver samples (n=7) were employed for RFA experiments with exposures of different power intensities (10 and 50w). The RFA process was monitored by a diagnostic ultrasound imager and the information were postoperatively captured for further temperature and elasticity image analysis. Infrared thermometry was concurrently applied to provide temperature change calibration during the RFA process. Results from this study demonstrated that temperature imaging was valid under 10 W RF exposure (r=0.95), but the ablation zone was no longer consistent with the reference infrared temperature distribution under high RF exposures. The elasticity change could well reflect the ablation zone under a 50 W exposure, whereas under low exposures, the thermal lesion could not be well detected due to the limited range of temperature elevation and incomplete tissue necrosis. Diagnostic ultrasound-based temperature and elastography is valid for monitoring thr RFA process. Temperature estimation can well reflect mild-power RF ablation dynamics, whereas the elastic-change estimation can can well predict the tissue necrosis. This study provide advances toward using diagnostic ultrasound to monitor RFA or other thermal-based interventions.

  1. Recent advances in radiation cancer therapy

    NASA Astrophysics Data System (ADS)

    Ma, C.-M. Charlie

    2007-03-01

    This paper presents the recent advances in radiation therapy techniques for the treatment of cancer. Significant improvement has been made in imaging techniques such as CT, MRI, MRS, PET, ultrasound, etc. that have brought marked advances in tumor target and critical structure delineation for treatment planning and patient setup and target localization for accurate dose delivery in radiation therapy of cancer. Recent developments of novel treatment modalities including intensity-modulated x-ray therapy (IMXT), energy- and intensity modulated electron therapy (MERT) and intensity modulated proton therapy (IMPT) together with the use of advanced image guidance have enabled precise dose delivery for dose escalation and hypofractionation studies that may result in better local control and quality of life. Particle acceleration using laser-induced plasmas has great potential for new cost-effective radiation sources that may have a great impact on the management of cancer using radiation therapy.

  2. Noninvasive Label-Free Detection of Micrometastases in the Lymphatics with Ultrasound-Guided Photoacoustic Imaging

    DTIC Science & Technology

    2015-10-01

    imaging can be used to guide dissection. We have also successfully integrated a programmable ultrasound machine (Verasonics Vantage ) and tunable pulsed...Mobile HE) with the programmable ultrasound machine (Verasonics Vantage ). We have synchronized the signals to enable interleaved acquisition of US

  3. Assistive technology for ultrasound-guided central venous catheter placement.

    PubMed

    Ikhsan, Mohammad; Tan, Kok Kiong; Putra, Andi Sudjana

    2018-01-01

    This study evaluated the existing technology used to improve the safety and ease of ultrasound-guided central venous catheterization. Electronic database searches were conducted in Scopus, IEEE, Google Patents, and relevant conference databases (SPIE, MICCAI, and IEEE conferences) for related articles on assistive technology for ultrasound-guided central venous catheterization. A total of 89 articles were examined and pointed to several fields that are currently the focus of improvements to ultrasound-guided procedures. These include improving needle visualization, needle guides and localization technology, image processing algorithms to enhance and segment important features within the ultrasound image, robotic assistance using probe-mounted manipulators, and improving procedure ergonomics through in situ projections of important information. Probe-mounted robotic manipulators provide a promising avenue for assistive technology developed for freehand ultrasound-guided percutaneous procedures. However, there is currently a lack of clinical trials to validate the effectiveness of these devices.

  4. Nonlinear ultrasound imaging of nanoscale acoustic biomolecules

    NASA Astrophysics Data System (ADS)

    Maresca, David; Lakshmanan, Anupama; Lee-Gosselin, Audrey; Melis, Johan M.; Ni, Yu-Li; Bourdeau, Raymond W.; Kochmann, Dennis M.; Shapiro, Mikhail G.

    2017-02-01

    Ultrasound imaging is widely used to probe the mechanical structure of tissues and visualize blood flow. However, the ability of ultrasound to observe specific molecular and cellular signals is limited. Recently, a unique class of gas-filled protein nanostructures called gas vesicles (GVs) was introduced as nanoscale (˜250 nm) contrast agents for ultrasound, accompanied by the possibilities of genetic engineering, imaging of targets outside the vasculature and monitoring of cellular signals such as gene expression. These possibilities would be aided by methods to discriminate GV-generated ultrasound signals from anatomical background. Here, we show that the nonlinear response of engineered GVs to acoustic pressure enables selective imaging of these nanostructures using a tailored amplitude modulation strategy. Finite element modeling predicted a strongly nonlinear mechanical deformation and acoustic response to ultrasound in engineered GVs. This response was confirmed with ultrasound measurements in the range of 10 to 25 MHz. An amplitude modulation pulse sequence based on this nonlinear response allows engineered GVs to be distinguished from linear scatterers and other GV types with a contrast ratio greater than 11.5 dB. We demonstrate the effectiveness of this nonlinear imaging strategy in vitro, in cellulo, and in vivo.

  5. Performance assessment of HIFU lesion detection by harmonic motion imaging for focused ultrasound (HMIFU): a 3-D finite-element-based framework with experimental validation.

    PubMed

    Hou, Gary Y; Luo, Jianwen; Marquet, Fabrice; Maleke, Caroline; Vappou, Jonathan; Konofagou, Elisa E

    2011-12-01

    Harmonic motion imaging for focused ultrasound (HMIFU) is a novel high-intensity focused ultrasound (HIFU) therapy monitoring method with feasibilities demonstrated in vitro, ex vivo and in vivo. Its principle is based on amplitude-modulated (AM) - harmonic motion imaging (HMI), an oscillatory radiation force used for imaging the tissue mechanical response during thermal ablation. In this study, a theoretical framework of HMIFU is presented, comprising a customized nonlinear wave propagation model, a finite-element (FE) analysis module and an image-formation model. The objective of this study is to develop such a framework to (1) assess the fundamental performance of HMIFU in detecting HIFU lesions based on the change in tissue apparent elasticity, i.e., the increasing Young's modulus, and the HIFU lesion size with respect to the HIFU exposure time and (2) validate the simulation findings ex vivo. The same HMI and HMIFU parameters as in the experimental studies were used, i.e., 4.5-MHz HIFU frequency and 25 Hz AM frequency. For a lesion-to-background Young's modulus ratio of 3, 6 and 9, the FE and estimated HMI displacement ratios were equal to 1.83, 3.69 and 5.39 and 1.65, 3.19 and 4.59, respectively. In experiments, the HMI displacement followed a similar increasing trend of 1.19, 1.28 and 1.78 at 10-s, 20-s and 30-s HIFU exposure, respectively. In addition, moderate agreement in lesion size growth was found in both simulations (16.2, 73.1 and 334.7 mm(2)) and experiments (26.2, 94.2 and 206.2 mm(2)). Therefore, the feasibility of HMIFU for HIFU lesion detection based on the underlying tissue elasticity changes was verified through the developed theoretical framework, i.e., validation of the fundamental performance of the HMIFU system for lesion detection, localization and quantification, was demonstrated both theoretically and ex vivo. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  6. TU-EF-210-01: HIFU, Drug Delivery, and Immunotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrara, K.

    The use of therapeutic ultrasound to provide targeted therapy is an active research area that has a broad application scope. The invited talks in this session will address currently implemented strategies and protocols for both hyperthermia and ablation applications using therapeutic ultrasound. The role of both ultrasound and MRI in the monitoring and assessment of these therapies will be explored in both pre-clinical and clinical applications. Katherine Ferrara: High Intensity Focused Ultrasound, Drug Delivery, and Immunotherapy Rajiv Chopra: Translating Localized Doxorubicin Delivery to Pediatric Oncology using MRI-guided HIFU Elisa Konofagou: Real-time Ablation Monitoring and Lesion Quantification using Harmonic Motion Imagingmore » Keyvan Farahani: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy Learning Objectives: Understand the role of ultrasound in localized drug delivery and the effects of immunotherapy when used in conjunction with ultrasound therapy. Understand potential targeted drug delivery clinical applications including pediatric oncology. Understand the technical requirements for performing targeted drug delivery. Understand how radiation-force approaches can be used to both monitor and assess high intensity focused ultrasound ablation therapy. Understand the role of AAPM task groups in ultrasound imaging and therapies. Chopra: Funding from Cancer Prevention and Research Initiative of Texas (CPRIT), Award R1308 Evelyn and M.R. Hudson Foundation; Research Support from Research Contract with Philips Healthcare; COI are Co-founder of FUS Instruments Inc Ferrara: Supported by NIH, UCDavis and California (CIRM and BHCE) Farahani: In-kind research support from Philips Healthcare.« less

  7. TU-EF-210-02: MRg Hyperthermia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chopra, R.

    2015-06-15

    The use of therapeutic ultrasound to provide targeted therapy is an active research area that has a broad application scope. The invited talks in this session will address currently implemented strategies and protocols for both hyperthermia and ablation applications using therapeutic ultrasound. The role of both ultrasound and MRI in the monitoring and assessment of these therapies will be explored in both pre-clinical and clinical applications. Katherine Ferrara: High Intensity Focused Ultrasound, Drug Delivery, and Immunotherapy Rajiv Chopra: Translating Localized Doxorubicin Delivery to Pediatric Oncology using MRI-guided HIFU Elisa Konofagou: Real-time Ablation Monitoring and Lesion Quantification using Harmonic Motion Imagingmore » Keyvan Farahani: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy Learning Objectives: Understand the role of ultrasound in localized drug delivery and the effects of immunotherapy when used in conjunction with ultrasound therapy. Understand potential targeted drug delivery clinical applications including pediatric oncology. Understand the technical requirements for performing targeted drug delivery. Understand how radiation-force approaches can be used to both monitor and assess high intensity focused ultrasound ablation therapy. Understand the role of AAPM task groups in ultrasound imaging and therapies. Chopra: Funding from Cancer Prevention and Research Initiative of Texas (CPRIT), Award R1308 Evelyn and M.R. Hudson Foundation; Research Support from Research Contract with Philips Healthcare; COI are Co-founder of FUS Instruments Inc Ferrara: Supported by NIH, UCDavis and California (CIRM and BHCE) Farahani: In-kind research support from Philips Healthcare.« less

  8. Optimization of real-time acoustical and mechanical monitoring of high intensity focused ultrasound (HIFU) treatment using harmonic motion imaging for high focused ultrasound (HMIFU).

    PubMed

    Hou, Gary Y; Marquet, Fabrice; Wang, Shutao; Konofagou, Elisa E

    2013-01-01

    Harmonic Motion Imaging (HMI) for Focused Ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in silica, in vitro and in vivo. Its principle is based on emission of an Amplitude-modulated therapeutic ultrasound beam utilizing a therapeutic transducer to induce an oscillatory radiation force while tracking the focal tissue mechanical response during the HIFU treatment using a confocally-aligned diagnostic transducer. In order to translate towards the clinical implementation of HMIFU, a complete assessment study is required in order to investigate the optimal radiation force threshold for reliable monitoring the local tissue mechanical property changes, i.e., the estimation HMIFU displacement under thermal, acoustical, and mechanical effects within focal medium (i.e., boiling, cavitation, and nonlinearity) using biological specimen. In this study, HMIFU technique is applied on HIFU treatment monitoring on freshly excised ex vivo canine liver specimens. In order to perform the multi-characteristic assessment, the diagnostic transducer was operated as either a pulse-echo imager or Passive Cavitation Detector (PCD) to assess the acoustic and mechanical response, while a bare-wire thermocouple was used to monitor the focal temperature change. As the acoustic power of HIFU treatment was ranged from 2.3 to 11.4 W, robust HMI displacement was observed across the entire range. Moreover, an optimized range for high quality displacement monitoring was found to be between 3.6 to 5.2W, where displacement showed an increase followed by significant decrease, indicating a stiffening of focal medium due to thermal lesion formation, while the correlation coefficient was maintained above 0.95.

  9. SU-E-J-04: Integration of Interstitial High Intensity Therapeutic Ultrasound Applicators On a Clinical MRI-Guided High Intensity Focused Ultrasound Treatment Planning Software Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellens, N; Partanen, A; Ghoshal, G

    Purpose: Interstitial high intensity therapeutic ultrasound (HITU) applicators can be used to ablate tissue percutaneously, allowing for minimally-invasive treatment without ionizing radiation [1,2]. The purpose of this study was to evaluate the feasibility and usability of combining multielement interstitial HITU applicators with a clinical magnetic resonance imaging (MRI)-guided focused ultrasound software platform. Methods: The Sonalleve software platform (Philips Healthcare, Vantaa, Finland) combines anatomical MRI for target selection and multi-planar MRI thermometry to provide real-time temperature information. The MRI-compatible interstitial US applicators (Acoustic MedSystems, Savoy, IL, USA) had 1–4 cylindrical US elements, each 1 cm long with either 180° or 360°more » of active surface. Each applicator (4 Fr diameter, enclosed within a 13 Fr flexible catheter) was inserted into a tissue-mimicking agar-silica phantom. Degassed water was circulated around the transducers for cooling and coupling. Based on the location of the applicator, a virtual transducer overlay was added to the software to assist targeting and to allow automatic thermometry slice placement. The phantom was sonicated at 7 MHz for 5 minutes with 6–8 W of acoustic power for each element. MR thermometry data were collected during and after sonication. Results: Preliminary testing indicated that the applicator location could be identified in the planning images and the transducer locations predicted within 1 mm accuracy using the overlay. Ablation zones (thermal dose ≥ 240 CEM43) for 2 active, adjacent US elements ranged from 18 mm × 24 mm (width × length) to 25 mm × 25 mm for the 6 W and 8 W sonications, respectively. Conclusion: The combination of interstitial HITU applicators and this software platform holds promise for novel approaches in minimally-invasive MRI-guided therapy, especially when bony structures or air-filled cavities may preclude extracorporeal HIFU.[1] Diederich et al. IEEE UFFFC 46.5 (1999): 1218.[2] Chopra et al. PMB 50.21 (2005): 4957. Funding support was provided by Philips Healthcare and in-kind support from Acoustic MedSystems Inc. Ari Partanen is a paid employee of Philips Healthcare. Goutam Ghoshal and Everette Clif Burdette are paid employees of Acoustic MedSystems Inc.« less

  10. MR-guided adaptive focusing of therapeutic ultrasound beams in the human head

    PubMed Central

    Marsac, Laurent; Chauvet, Dorian; Larrat, Benoît; Pernot, Mathieu; Robert, B.; Fink, Mathias; Boch, Anne-Laure; Aubry, Jean-François; Tanter, Mickaël

    2012-01-01

    Purpose This study aims to demonstrate, using human cadavers the feasibility of energy-based adaptive focusing of ultrasonic waves using Magnetic Resonance Acoustic Radiation Force Imaging (MR-ARFI) in the framework of non-invasive transcranial High Intensity Focused Ultrasound (HIFU) therapy. Methods Energy-based adaptive focusing techniques were recently proposed in order to achieve aberration correction. We evaluate this method on a clinical brain HIFU system composed of 512 ultrasonic elements positioned inside a full body 1.5 T clinical Magnetic Resonance (MR) imaging system. Cadaver heads were mounted onto a clinical Leksell stereotactic frame. The ultrasonic wave intensity at the chosen location was indirectly estimated by the MR system measuring the local tissue displacement induced by the acoustic radiation force of the ultrasound (US) beams. For aberration correction, a set of spatially encoded ultrasonic waves was transmitted from the ultrasonic array and the resulting local displacements were estimated with the MR-ARFI sequence for each emitted beam. A non-iterative inversion process was then performed in order to estimate the spatial phase aberrations induced by the cadaver skull. The procedure was first evaluated and optimized in a calf brain using a numerical aberrator mimicking human skull aberrations. The full method was then demonstrated using a fresh human cadaver head. Results The corrected beam resulting from the direct inversion process was found to focus at the targeted location with an acoustic intensity 2.2 times higher than the conventional non corrected beam. In addition, this corrected beam was found to give an acoustic intensity 1.5 times higher than the focusing pattern obtained with an aberration correction using transcranial acoustic simulation based on X-ray computed tomography (CT) scans. Conclusion The proposed technique achieved near optimal focusing in an intact human head for the first time. These findings confirm the strong potential of energy-based adaptive focusing of transcranial ultrasonic beams for clinical applications. PMID:22320825

  11. Performance assessment of HIFU lesion detection by Harmonic Motion Imaging for Focused Ultrasound (HMIFU): A 3D finite-element-based framework with experimental validation

    PubMed Central

    Hou, Gary Y.; Luo, Jianwen; Marquet, Fabrice; Maleke, Caroline; Vappou, Jonathan; Konofagou, Elisa E.

    2014-01-01

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a novel high-intensity focused ultrasound (HIFU) therapy monitoring method with feasibilities demonstrated in vitro, ex vivo and in vivo. Its principle is based on Amplitude-modulated (AM) - Harmonic Motion Imaging (HMI), an oscillatory radiation force used for imaging the tissue mechanical response during thermal ablation. In this study, a theoretical framework of HMIFU is presented, comprising a customized nonlinear wave propagation model, a finite-element (FE) analysis module, and an image-formation model. The objective of this study is to develop such a framework in order to 1) assess the fundamental performance of HMIFU in detecting HIFU lesions based on the change in tissue apparent elasticity, i.e., the increasing Young's modulus, and the HIFU lesion size with respect to the HIFU exposure time and 2) validate the simulation findings ex vivo. The same HMI and HMIFU parameters as in the experimental studies were used, i.e., 4.5-MHz HIFU frequency and 25 Hz AM frequency. For a lesion-to-background Young's modulus ratio of 3, 6, and 9, the FE and estimated HMI displacement ratios were equal to 1.83, 3.69, 5.39 and 1.65, 3.19, 4.59, respectively. In experiments, the HMI displacement followed a similar increasing trend of 1.19, 1.28, and 1.78 at 10-s, 20-s, and 30-s HIFU exposure, respectively. In addition, moderate agreement in lesion size growth was also found in both simulations (16.2, 73.1 and 334.7 mm2) and experiments (26.2, 94.2 and 206.2 mm2). Therefore, the feasibility of HMIFU for HIFU lesion detection based on the underlying tissue elasticity changes was verified through the developed theoretical framework, i.e., validation of the fundamental performance of the HMIFU system for lesion detection, localization and quantification, was demonstrated both theoretically and ex vivo. PMID:22036637

  12. WE-EF-210-07: Development of a Minimally Invasive Photo Acoustic Imaging System for Early Prostate Cancer Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sano, M; Yousefi, S; Xing, L

    Purpose: The objective of this work is to design, implement and characterize a catheter-based ultrasound/photoacoustic imaging probe for early-diagnosis of prostate cancer and to aid in image-guided radiation therapy. Methods: The need to image across 6–10cm of tissue to image the whole prostate gland limits the resolution achievable with a transrectal ultrasound approach. In contrast, the urethra bisects the prostate gland, providing a minimally invasive pathway for deploying a high resolution ultrasound transducer. Utilizing a high-frequency (20MHz) ultrasound/photoacoustic probe, high-resolution structural and molecular imaging of the prostate tissue is possible. A custom 3D printed probe containing a high-frequency single-element ultrasoundmore » transducer is utilized. The diameter of the probe is designed to fit inside a Foley catheter and the probe is rotated around the central axis to achieve a circular B-scan. A custom ultrasound amplifier and receiver was set up to trigger the ultrasound pulse transmission and record the reflected signal. The reconstructed images were compared to images generated by traditional 5 MHz ultrasound transducers. Results: The preliminary results using the high-frequency ultrasound probe show that it is possible to resolve finely detailed information in a prostate tissue phantom that was not achievable with previous low-frequency ultrasound systems. Preliminary ultrasound imaging was performed on tissue mimicking phantom and sensitivity and signal-to-noise ratio of the catheter was measured. Conclusion: In order to achieve non-invasive, high-resolution, structural and molecular imaging for early-diagnosis and image-guided radiation therapy of the prostate tissue, a transurethral catheter was designed. Structural/molecular imaging using ultrasound/photoacoustic of the prostate tissue will allow for localization of hyper vascularized areas for early-stage prostate cancer diagnosis.« less

  13. Novel ultrasound-responsive chitosan/perfluorohexane nanodroplets for image-guided smart delivery of an anticancer agent: Curcumin.

    PubMed

    Baghbani, Fatemeh; Chegeni, Mahdieh; Moztarzadeh, Fathollah; Hadian-Ghazvini, Samaneh; Raz, Majid

    2017-05-01

    Ultrasound-responsive nanodroplets are a class of new emerging smart drug delivery systems which provide image-guided nano-therapy of various diseases, especially cancers. Here, we developed multifunctional smart curcumin-loaded chitosan/perfluorohexane nanodroplets for contrast-ultrasound imaging and on-demand drug delivery. The nanodroplets were synthesized via nanoemulsion process. The optimal formulation with the size of 101.2nm and 77.8% curcumin entrapment was chosen for release study and cytotoxicity evaluation. Sonication at the frequency of 1MHz, 2W/cm 2 for 4min triggered the release of 63.5% of curcumin from optimal formulation (Cur-NDs-2). Ultrasound aided release study indicated that the concentration of perfluorohexane and the degree of acoustic droplet vaporization play important role in ultrasound-active drug release. B-mode ultrasound imaging confirmed strong ultrasound contrast of chitosan nanodroplets even at low concentrations via droplet to bubble transition. Finally, cytotoxicity of the ultrasound-responsive nanodroplets in the presence of ultrasound was evaluated in-vitro on 4T1 human breast cancer cells. Cell growth inhibitory effects of curcumin-loaded nanodroplets significantly increased by ultrasound exposure. According to the obtained results, these ultrasound responsive curcumin-loaded chitosan/perfluorohexane nanodroplets have a great potential for imaged-guided cancer therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Needle segmentation using 3D Hough transform in 3D TRUS guided prostate transperineal therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu Wu; Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario N6A 5K8; Yuchi Ming

    Purpose: Prostate adenocarcinoma is the most common noncutaneous malignancy in American men with over 200 000 new cases diagnosed each year. Prostate interventional therapy, such as cryotherapy and brachytherapy, is an effective treatment for prostate cancer. Its success relies on the correct needle implant position. This paper proposes a robust and efficient needle segmentation method, which acts as an aid to localize the needle in three-dimensional (3D) transrectal ultrasound (TRUS) guided prostate therapy. Methods: The procedure of locating the needle in a 3D TRUS image is a three-step process. First, the original 3D ultrasound image containing a needle is cropped;more » the cropped image is then converted to a binary format based on its histogram. Second, a 3D Hough transform based needle segmentation method is applied to the 3D binary image in order to locate the needle axis. The position of the needle endpoint is finally determined by an optimal threshold based analysis of the intensity probability distribution. The overall efficiency is improved through implementing a coarse-fine searching strategy. The proposed method was validated in tissue-mimicking agar phantoms, chicken breast phantoms, and 3D TRUS patient images from prostate brachytherapy and cryotherapy procedures by comparison to the manual segmentation. The robustness of the proposed approach was tested by means of varying parameters such as needle insertion angle, needle insertion length, binarization threshold level, and cropping size. Results: The validation results indicate that the proposed Hough transform based method is accurate and robust, with an achieved endpoint localization accuracy of 0.5 mm for agar phantom images, 0.7 mm for chicken breast phantom images, and 1 mm for in vivo patient cryotherapy and brachytherapy images. The mean execution time of needle segmentation algorithm was 2 s for a 3D TRUS image with size of 264 Multiplication-Sign 376 Multiplication-Sign 630 voxels. Conclusions: The proposed needle segmentation algorithm is accurate, robust, and suitable for 3D TRUS guided prostate transperineal therapy.« less

  15. Uncertainty evaluation of dead zone of diagnostic ultrasound equipment

    NASA Astrophysics Data System (ADS)

    Souza, R. M.; Alvarenga, A. V.; Braz, D. S.; Petrella, L. I.; Costa-Felix, R. P. B.

    2016-07-01

    This paper presents a model for evaluating measurement uncertainty of a feature used in the assessment of ultrasound images: dead zone. The dead zone was measured by two technicians of the INMETRO's Laboratory of Ultrasound using a phantom and following the standard IEC/TS 61390. The uncertainty model was proposed based on the Guide to the Expression of Uncertainty in Measurement. For the tested equipment, results indicate a dead zone of 1.01 mm, and based on the proposed model, the expanded uncertainty was 0.17 mm. The proposed uncertainty model contributes as a novel way for metrological evaluation of diagnostic imaging by ultrasound.

  16. Development of a Cancer Treatment with the Concomitant Use of Low-Intensity Ultrasound: Entering the Age of Simultaneous Diagnosis and Treatment

    PubMed Central

    Emoto, Makoto

    2014-01-01

    In recent years, studies using ultrasound energy for cancer treatment have advanced, thus revealing the enhancement of drug effects by employing low-intensity ultrasound. Furthermore, anti-angiogenesis against tumors is now attracting attention as a new cancer treatment. Therefore, we focused on the biological effects and the enhancement of drug effects brought by this low-intensity ultrasound energy and reported on the efficacy against a uterine sarcoma model, by implementing the basic studies, for the first time, including the concomitant use of low-intensity ultrasound irradiation, as an expected new antiangiogenic therapy for cancer treatment. Furthermore, we have succeeded in simultaneously utilizing low-intensity ultrasound in both diagnosis and treatment, upon real time evaluation of the anti-tumor effects and anti-angiogenesis effects using color Doppler ultrasound imaging. Although the biological effects of ultrasound have not yet been completely clarified, transient stomas were formed (Sonoporation) in cancer cells irradiated by low-intensity ultrasound and it is believed that the penetration effect of drugs is enhanced due to the drug being more charged inside the cell through these stomas. Furthermore, it has become clear that the concomitant therapy of anti-angiogenesis drugs and low-intensity ultrasound blocks the angiogenic factor VEGF produced by cancer cells, inhibits the induction of circulating endothelial progenitor cells in the bone marrow, and expedites angiogenic inhibitor TSP-1. Based on research achievements in recent years, we predict that the current diagnostic device for color Doppler ultrasound imaging will be improved in the near future, bringing with it the arrival of an age of “low-intensity ultrasound treatment that simultaneously enables diagnosis and treatment of cancer in real time.” PMID:26852677

  17. Air-Coupled Vibrometry

    NASA Astrophysics Data System (ADS)

    Döring, D.; Solodov, I.; Busse, G.

    Sound and ultrasound in air are the products of a multitude of different processes and thus can be favorable or undesirable phenomena. Development of experimental tools for non-invasive measurements and imaging of airborne sound fields is of importance for linear and nonlinear nondestructive material testing as well as noise control in industrial or civil engineering applications. One possible solution is based on acousto-optic interaction, like light diffraction imaging. The diffraction approach usually requires a sophisticated setup with fine optical alignment barely applicable in industrial environment. This paper focuses on the application of the robust experimental tool of scanning laser vibrometry, which utilizes commercial off-the-shelf equipment. The imaging technique of air-coupled vibrometry (ACV) is based on the modulation of the optical path length by the acoustic pressure of the sound wave. The theoretical considerations focus on the analysis of acousto-optical phase modulation. The sensitivity of the ACV in detecting vibration velocity was estimated as ~1 mm/s. The ACV applications to imaging of linear airborne fields are demonstrated for leaky wave propagation and measurements of ultrasonic air-coupled transducers. For higher-intensity ultrasound, the classical nonlinear effect of the second harmonic generation was measured in air. Another nonlinear application includes a direct observation of the nonlinear air-coupled emission (NACE) from the damaged areas in solid materials. The source of the NACE is shown to be strongly localized around the damage and proposed as a nonlinear "tag" to discern and image the defects.

  18. Active point out-of-plane ultrasound calibration

    NASA Astrophysics Data System (ADS)

    Cheng, Alexis; Guo, Xiaoyu; Zhang, Haichong K.; Kang, Hyunjae; Etienne-Cummings, Ralph; Boctor, Emad M.

    2015-03-01

    Image-guided surgery systems are often used to provide surgeons with informational support. Due to several unique advantages such as ease of use, real-time image acquisition, and no ionizing radiation, ultrasound is a common intraoperative medical imaging modality used in image-guided surgery systems. To perform advanced forms of guidance with ultrasound, such as virtual image overlays or automated robotic actuation, an ultrasound calibration process must be performed. This process recovers the rigid body transformation between a tracked marker attached to the transducer and the ultrasound image. Point-based phantoms are considered to be accurate, but their calibration framework assumes that the point is in the image plane. In this work, we present the use of an active point phantom and a calibration framework that accounts for the elevational uncertainty of the point. Given the lateral and axial position of the point in the ultrasound image, we approximate a circle in the axial-elevational plane with a radius equal to the axial position. The standard approach transforms all of the imaged points to be a single physical point. In our approach, we minimize the distances between the circular subsets of each image, with them ideally intersecting at a single point. We simulated in noiseless and noisy cases, presenting results on out-of-plane estimation errors, calibration estimation errors, and point reconstruction precision. We also performed an experiment using a robot arm as the tracker, resulting in a point reconstruction precision of 0.64mm.

  19. From the RSNA refresher courses: Image-guided thermal therapy of uterine fibroids.

    PubMed

    Tempany, Clare M

    2007-01-01

    One of the most recent additions to the methods for image-guided therapy is magnetic resonance (MR)-guided focused ultrasound. This method represents a unique closed-loop therapy, with planning, guidance, control, and direct feedback (called MR thermometry), which work together to ensure an effective therapy. The focused ultrasound induces focal tissue destruction by thermocoagulation in a noninvasive manner. MR also enables real-time thermometry to be performed during each and every sonication. These characteristics make MR-guided focused ultrasound an exciting new approach for treating fibroids. Fibroids are diagnosed based on findings from the patient's physical examination supplemented by imaging results. MR imaging is preferred to other imaging modalities because it enables the fibroids and the entire pelvis to be fully examined. After individual fibroids are identified and the target area is defined by the radiologist, the target volume is analyzed in a three-dimensional assessment to ensure the patient's safety. The procedure begins with the delivery of low-power sonication, and the power is gradually increased until the therapeutic dose is reached. After the procedure, postcontrast images are acquired; these should demonstrate tissue necrosis. The results of clinical trials have shown that the treatment is safe, effective, and highly acceptable to patients. RSNA, 2007

  20. Towards Dynamic Contrast Specific Ultrasound Tomography

    NASA Astrophysics Data System (ADS)

    Demi, Libertario; van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2016-10-01

    We report on the first study demonstrating the ability of a recently-developed, contrast-enhanced, ultrasound imaging method, referred to as cumulative phase delay imaging (CPDI), to image and quantify ultrasound contrast agent (UCA) kinetics. Unlike standard ultrasound tomography, which exploits changes in speed of sound and attenuation, CPDI is based on a marker specific to UCAs, thus enabling dynamic contrast-specific ultrasound tomography (DCS-UST). For breast imaging, DCS-UST will lead to a more practical, faster, and less operator-dependent imaging procedure compared to standard echo-contrast, while preserving accurate imaging of contrast kinetics. Moreover, a linear relation between CPD values and ultrasound second-harmonic intensity was measured (coefficient of determination = 0.87). DCS-UST can find clinical applications as a diagnostic method for breast cancer localization, adding important features to multi-parametric ultrasound tomography of the breast.

  1. Towards Dynamic Contrast Specific Ultrasound Tomography.

    PubMed

    Demi, Libertario; Van Sloun, Ruud J G; Wijkstra, Hessel; Mischi, Massimo

    2016-10-05

    We report on the first study demonstrating the ability of a recently-developed, contrast-enhanced, ultrasound imaging method, referred to as cumulative phase delay imaging (CPDI), to image and quantify ultrasound contrast agent (UCA) kinetics. Unlike standard ultrasound tomography, which exploits changes in speed of sound and attenuation, CPDI is based on a marker specific to UCAs, thus enabling dynamic contrast-specific ultrasound tomography (DCS-UST). For breast imaging, DCS-UST will lead to a more practical, faster, and less operator-dependent imaging procedure compared to standard echo-contrast, while preserving accurate imaging of contrast kinetics. Moreover, a linear relation between CPD values and ultrasound second-harmonic intensity was measured (coefficient of determination = 0.87). DCS-UST can find clinical applications as a diagnostic method for breast cancer localization, adding important features to multi-parametric ultrasound tomography of the breast.

  2. Towards Dynamic Contrast Specific Ultrasound Tomography

    PubMed Central

    Demi, Libertario; Van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2016-01-01

    We report on the first study demonstrating the ability of a recently-developed, contrast-enhanced, ultrasound imaging method, referred to as cumulative phase delay imaging (CPDI), to image and quantify ultrasound contrast agent (UCA) kinetics. Unlike standard ultrasound tomography, which exploits changes in speed of sound and attenuation, CPDI is based on a marker specific to UCAs, thus enabling dynamic contrast-specific ultrasound tomography (DCS-UST). For breast imaging, DCS-UST will lead to a more practical, faster, and less operator-dependent imaging procedure compared to standard echo-contrast, while preserving accurate imaging of contrast kinetics. Moreover, a linear relation between CPD values and ultrasound second-harmonic intensity was measured (coefficient of determination = 0.87). DCS-UST can find clinical applications as a diagnostic method for breast cancer localization, adding important features to multi-parametric ultrasound tomography of the breast. PMID:27703251

  3. Ultrasound neuro-modulation chip: activation of sensory neurons in Caenorhabditis elegans by surface acoustic waves.

    PubMed

    Zhou, Wei; Wang, Jingjing; Wang, Kaiyue; Huang, Bin; Niu, Lili; Li, Fei; Cai, Feiyan; Chen, Yan; Liu, Xin; Zhang, Xiaoyan; Cheng, Hankui; Kang, Lijun; Meng, Long; Zheng, Hairong

    2017-05-16

    Ultrasound neuro-modulation has gained increasing attention as a non-invasive method. In this paper, we present an ultrasound neuro-modulation chip, capable of initiating reversal behaviour and activating neurons of C. elegans under the stimulation of a single-shot, short-pulsed ultrasound. About 85.29% ± 6.17% of worms respond to the ultrasound stimulation exhibiting reversal behaviour. Furthermore, the worms can adapt to the ultrasound stimulation with a lower acoustic pulse duration of stimulation. In vivo calcium imaging shows that the activity of ASH, a polymodal sensory neuron in C. elegans, can be directly evoked by the ultrasound stimulation. On the other hand, AFD, a thermal sensitive neuron, cannot be activated by the ultrasound stimulation using the same parameter and the temperature elevation during the stimulation process is relatively small. Consistent with the calcium imaging results, the tax-4 mutants, which are insensitive to temperature increase, do not show a significant difference in avoidance probability compared to the wild type. Therefore, the mechanical effects induced by ultrasound are the main reason for neural and behavioural modulation of C. elegans. With the advantages of confined acoustic energy on the surface, compatible with standard calcium imaging, this neuro-modulation chip could be a powerful tool for revealing the molecular mechanisms of ultrasound neuro-modulation.

  4. Double-scattering/reflection in a Single Nanoparticle for Intensified Ultrasound Imaging

    PubMed Central

    Zhang, Kun; Chen, Hangrong; Guo, Xiasheng; Zhang, Dong; Zheng, Yuanyi; Zheng, Hairong; Shi, Jianlin

    2015-01-01

    Ultrasound contrast agents (UCAs) designed by the conventional composition-based strategy, often suffer from relatively low ultrasound utilization efficiency. In this report, a structure-based design concept of double-scattering/reflection in a single nanoparticle for enhancing ultrasound imaging has been proposed. To exemplify this concept, a rattle-type mesoporous silica nanostructure (MSN) with two contributing interfaces has been employed as the ideal model. Contributed by double-scattering/reflection interfaces, the rattle-type MSN, as expected, performs much better in in vitro and in vivo ultrasound imaging than the other two nanostructures (solid and hollow) containing only one scattering/reflection interface. More convincingly, related acoustic measurements and simulation calculations also confirm this design concept. Noticeably, the rattle-type MSN has also been demonstrated capable of improving intracellular ultrasound molecular imaging. As a universal method, the structure-design concept can extend to guide the design of new generation UCAs with many other compositions and similar structures (e.g., heterogeneous rattle-type, double-shelled). PMID:25739832

  5. Double-scattering/reflection in a single nanoparticle for intensified ultrasound imaging.

    PubMed

    Zhang, Kun; Chen, Hangrong; Guo, Xiasheng; Zhang, Dong; Zheng, Yuanyi; Zheng, Hairong; Shi, Jianlin

    2015-03-05

    Ultrasound contrast agents (UCAs) designed by the conventional composition-based strategy, often suffer from relatively low ultrasound utilization efficiency. In this report, a structure-based design concept of double-scattering/reflection in a single nanoparticle for enhancing ultrasound imaging has been proposed. To exemplify this concept, a rattle-type mesoporous silica nanostructure (MSN) with two contributing interfaces has been employed as the ideal model. Contributed by double-scattering/reflection interfaces, the rattle-type MSN, as expected, performs much better in in vitro and in vivo ultrasound imaging than the other two nanostructures (solid and hollow) containing only one scattering/reflection interface. More convincingly, related acoustic measurements and simulation calculations also confirm this design concept. Noticeably, the rattle-type MSN has also been demonstrated capable of improving intracellular ultrasound molecular imaging. As a universal method, the structure-design concept can extend to guide the design of new generation UCAs with many other compositions and similar structures (e.g., heterogeneous rattle-type, double-shelled).

  6. Noninvasive treatment of deep venous thrombosis using pulsed ultrasound cavitation therapy (histotripsy) in a porcine model.

    PubMed

    Maxwell, Adam D; Owens, Gabe; Gurm, Hitinder S; Ives, Kimberly; Myers, Daniel D; Xu, Zhen

    2011-03-01

    This study evaluated histotripsy as a noninvasive, image-guided method of thrombolysis in a porcine model of deep vein thrombosis. Histotripsy therapy uses short, high-intensity, focused ultrasound pulses to cause mechanical breakdown of targeted soft tissue by acoustic cavitation, which is guided by real-time ultrasound imaging. This is an in vivo feasibility study of histotripsy thrombolysis. Acute thrombi were formed in the femoral vein of juvenile pigs weighing 30-40 kg by balloon occlusion with two catheters and thrombin infusion. A 10-cm-diameter 1-MHz focused transducer was used for therapy. An 8-MHz ultrasound imager was used to align the clot with the therapy focus. Therapy consisted of five cycle pulses delivered at a rate of 1 kHz and peak negative pressure between 14 and 19 MPa. The focus was scanned along the long axis of the vessel to treat the entire visible clot during ultrasound exposure. The targeted region identified by a hyperechoic cavitation bubble cloud was visualized via ultrasound during treatment. Thrombus breakdown was apparent as a decrease in echogenicity within the vessel in 10 of 12 cases and in 7 cases improved flow through the vein as measured by color Doppler. Vessel histology found denudation of vascular endothelium and small pockets of hemorrhage in the vessel adventitia and underlying muscle and fatty tissue, but perforation of the vessel wall was never observed. The results indicate histotripsy has potential for development as a noninvasive treatment for deep vein thrombosis. Copyright © 2011 SIR. Published by Elsevier Inc. All rights reserved.

  7. A multimodality imaging-compatible insertion robot with a respiratory motion calibration module designed for ablation of liver tumors: a preclinical study.

    PubMed

    Li, Dongrui; Cheng, Zhigang; Chen, Gang; Liu, Fangyi; Wu, Wenbo; Yu, Jie; Gu, Ying; Liu, Fengyong; Ren, Chao; Liang, Ping

    2018-04-03

    To test the accuracy and efficacy of the multimodality imaging-compatible insertion robot with a respiratory motion calibration module designed for ablation of liver tumors in phantom and animal models. To evaluate and compare the influences of intervention experience on robot-assisted and ultrasound-controlled ablation procedures. Accuracy tests on rigid body/phantom model with a respiratory movement simulation device and microwave ablation tests on porcine liver tumor/rabbit liver cancer were performed with the robot we designed or with the traditional ultrasound-guidance by physicians with or without intervention experience. In the accuracy tests performed by the physicians without intervention experience, the insertion accuracy and efficiency of robot-assisted group was higher than those of ultrasound-guided group with statistically significant differences. In the microwave ablation tests performed by the physicians without intervention experience, better complete ablation rate was achieved when applying the robot. In the microwave ablation tests performed by the physicians with intervention experience, there was no statistically significant difference of the insertion number and total ablation time between the robot-assisted group and the ultrasound-controlled group. The evaluation by the NASA-TLX suggested that the robot-assisted insertion and microwave ablation process performed by physicians with or without experience were more comfortable. The multimodality imaging-compatible insertion robot with a respiratory motion calibration module designed for ablation of liver tumors could increase the insertion accuracy and ablation efficacy, and minimize the influence of the physicians' experience. The ablation procedure could be more comfortable with less stress with the application of the robot.

  8. Ultrasound wave propagation in tissue and scattering from microbubbles for echo particle image velocimetry technique.

    PubMed

    Mukdadi, Osama; Shandas, Robin

    2004-01-01

    Nonlinear wave propagation in tissue can be employed for tissue harmonic imaging, ultrasound surgery, and more effective tissue ablation for high intensity focused ultrasound (HIFU). Wave propagation in soft tissue and scattering from microbubbles (ultrasound contrast agents) are modeled to improve detectability, signal-to-noise ratio, and contrast harmonic imaging used for echo particle image velocimetry (Echo-PIV) technique. The wave motion in nonlinear material (tissue) is studied using KZK-type parabolic evolution equation. This model considers ultrasound beam diffraction, attenuation, and tissue nonlinearity. Time-domain numerical model is based on that originally developed by Lee and Hamilton [J. Acoust. Soc. Am 97:906-917 (1995)] for axi-symmetric acoustic field. The initial acoustic waveform emitted from the transducer is assumed to be a broadband wave modulated by Gaussian envelope. Scattering from microbubbles seeded in the blood stream is characterized. Hence, we compute the pressure field impinges the wall of a coated microbubble; the dynamics of oscillating microbubble can be modeled using Rayleigh-Plesset-type equation. Here, the continuity and the radial-momentum equation of encapsulated microbubbles are used to account for the lipid layer surrounding the microbubble. Numerical results show the effects of tissue and microbubble nonlinearities on the propagating pressure wave field. These nonlinearities have a strong influence on the waveform distortion and harmonic generation of the propagating and scattering waves. Results also show that microbubbles have stronger nonlinearity than tissue, and thus improves S/N ratio. These theoretical predictions of wave phenomena provide further understanding of biomedical imaging technique and provide better system design.

  9. Ultrasound guided therapeutic injections of the cervical spine and brachial plexus.

    PubMed

    Cormick, Wes

    2014-02-01

    Introduction : Recent applications in ultrasound imaging include ultrasound assessment and ultrasound guided therapeutic injections of the spine and brachial plexus. Discussion : Ultrasound is an ideal modality for these regions as it allows accurate safe and quick injection of single or multiple sites. It has the added advantages of lack of ionising radiation, and can be done without requiring large expensive radiology equipment. Conclusion : Brachial plexus pathology may be present in patients presenting for shoulder symptoms where very little is found at imaging the shoulder. It is important to understand the anatomy and normal variants that may exist to be able to recognise when pathology is present. When pathology is demonstrated it is easy to do a trial of therapy with ultrasound guided injection of steroid around the nerve lesion. This review will outline the normal anatomy and variants and common pathology, which can be amenable to ultrasound guided injection of steroid.

  10. Towards a Reduced-Wire Interface for CMUT-Based Intravascular Ultrasound Imaging Systems

    PubMed Central

    Lim, Jaemyung; Tekes, Coskun; Degertekin, F. Levent; Ghovanloo, Maysam

    2016-01-01

    Having intravascular ultrasound (IVUS) imaging capability on guide wires used in cardiovascular interventions may eliminate the need for separate IVUS catheters and expand the use of IVUS in a larger portion of the vasculature. High frequency capacitive micro machined ultrasonic transducer (CMUT) arrays should be integrated with interface electronics and placed on the guide wire for this purpose. Besides small size, this system-on-a-chip (SoC) front-end should connect to the back-end imaging system with a minimum number of wires to preserve the critical mechanical properties of the guide wire. We present a 40 MHz CMUT array interface SoC, which will eventually use only two wires for power delivery and transmits image data using a combination of analog-to-time conversion (ATC) and an impulse radio ultra-wideband (IR-UWB) wireless link. The proof-of-concept prototype ASIC consumes only 52.8 mW and occupies 4.07 mm2 in a 0.35-μm standard CMOS process. A rectifier and regulator power the rest of the SoC at 3.3 V from a 10 MHz power carrier that is supplied through a 2.4 m micro-coax cable with an overall efficiency of 49.1%. Echo signals from an 8-element CMUT array are amplified by a transimpedance amplifier (TIA) array and down-converted to baseband by quadrature sampling using a 40 MHz clock, derived from the power carrier. The ATC generates pulse-width-modulated (PWM) samples at 2 × 10 MS/s with 6 bit resolution, while the entire system achieved 5.1 ENOB. Preliminary images from the prototype system are presented, and alternative data transmission and possible future directions towards practical implementation are discussed. PMID:27662686

  11. Towards a Reduced-Wire Interface for CMUT-Based Intravascular Ultrasound Imaging Systems.

    PubMed

    Lim, Jaemyung; Tekes, Coskun; Degertekin, F Levent; Ghovanloo, Maysam

    2017-04-01

    Having intravascular ultrasound (IVUS) imaging capability on guide wires used in cardiovascular interventions may eliminate the need for separate IVUS catheters and expand the use of IVUS in a larger portion of the vasculature. High frequency capacitive micro machined ultrasonic transducer (CMUT) arrays should be integrated with interface electronics and placed on the guide wire for this purpose. Besides small size, this system-on-a-chip (SoC) front-end should connect to the back-end imaging system with a minimum number of wires to preserve the critical mechanical properties of the guide wire. We present a 40 MHz CMUT array interface SoC, which will eventually use only two wires for power delivery and transmits image data using a combination of analog-to-time conversion (ATC) and an impulse radio ultra-wideband (IR-UWB) wireless link. The proof-of-concept prototype ASIC consumes only 52.8 mW and occupies 4.07 [Formula: see text] in a 0.35- [Formula: see text] standard CMOS process. A rectifier and regulator power the rest of the SoC at 3.3 V from a 10 MHz power carrier that is supplied through a 2.4 m micro-coax cable with an overall efficiency of 49.1%. Echo signals from an 8-element CMUT array are amplified by a transimpedance amplifier (TIA) array and down-converted to baseband by quadrature sampling using a 40 MHz clock, derived from the power carrier. The ATC generates pulse-width-modulated (PWM) samples at 2 × 10 MS/s with 6 bit resolution, while the entire system achieved 5.1 ENOB. Preliminary images from the prototype system are presented, and alternative data transmission and possible future directions towards practical implementation are discussed.

  12. Echo-Planar Imaging-Based, J-Resolved Spectroscopic Imaging for Improved Metabolite Detection in Prostate Cancer

    DTIC Science & Technology

    2015-10-01

    cancer is through imaging techniques including ultrasound , computed tomography (CT), and magnetic resonance imaging (MRI) with or without the help...performed at least 8 weeks after transrectal ultrasound -guided sextant biopsy. The entire protocol was ap- proved by the Institutional Review Board...volume of interest (VOI) was localized using three slice-selective radiofrequency (RF) pulses (90°–180°–180°) (Fig. 1). The total time for the

  13. Fundamental analysis and ex vivo validation of thermal lesion mapping using harmonic motion imaging for focused ultrasound (HMIFU)

    NASA Astrophysics Data System (ADS)

    Hou, Gary Y.; Luo, Jianwen; Maleke, Caroline; Vappou, Jonathan; Marquet, Fabrice; Konofagou, Elisa E.

    2012-10-01

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a novel high-intensity focused ultrasound (HIFU) therapy monitoring method with feasibilities demonstrated in vitro, ex vivo and in vivo. Its principle is based on Amplitude-modulated (AM) - Harmonic Motion Imaging (HMI), an oscillatory radiation force used for imaging the tissue mechanical response during thermal ablation. In this study, a theoretical framework of HMIFU is presented, comprising a customized nonlinear wave propagation model, a finite-element (FE) analysis module, and an image-formation model. The objective of this study is to develop such a framework in order to 1) assess the fundamental performance of HMIFU in detecting HIFU lesions based on the change in tissue apparent elasticity, i.e., the increasing Young's modulus, and the HIFU lesion size with respect to the HIFU exposure time and 2) validate the simulation findings ex vivo. The same HMI and HMIFU parameters as in the experimental studies were used, i.e., 4.5-MHz HIFU frequency and 25-Hz AM frequency. For a lesion-to-background Young's modulus ratio of 3, 6, and 9, the estimated HMI displacement ratios were equal to 1.65, 3.19, 4.59, respectively. In experiments, the HMI displacement followed a similar increasing trend of 1.19, 1.28, 1.78 at 10-s, 20-s, and 30-s HIFU exposure, respectively. In addition, moderate agreement in lesion size growth was also found in both simulations (16.2, 73.1 and 334.7 mm2) and experiments (26.2, 94.2 and 206.2 mm2). Therefore, the feasibility of HMIFU for HIFU lesion detection based on the underlying tissue elasticity changes was verified through the developed theoretical framework, i.e., validation of the fundamental performance of the HMIFU system for lesion detection, localization and quantification, was demonstrated both theoretically and ex vivo.

  14. Assessment of ultrasound modulation of near infrared light on the quantification of scattering coefficient.

    PubMed

    Singh, M Suheshkumar; Yalavarthy, Phaneendra K; Vasu, R M; Rajan, K

    2010-07-01

    To assess the effect of ultrasound modulation of near infrared (NIR) light on the quantification of scattering coefficient in tissue-mimicking biological phantoms. A unique method to estimate the phase of the modulated NIR light making use of only time averaged intensity measurements using a charge coupled device camera is used in this investigation. These experimental measurements from tissue-mimicking biological phantoms are used to estimate the differential pathlength, in turn leading to estimation of optical scattering coefficient. A Monte-Carlo model based numerical estimation of phase in lieu of ultrasound modulation is performed to verify the experimental results. The results indicate that the ultrasound modulation of NIR light enhances the effective scattering coefficient. The observed effective scattering coefficient enhancement in tissue-mimicking viscoelastic phantoms increases with increasing ultrasound drive voltage. The same trend is noticed as the ultrasound modulation frequency approaches the natural vibration frequency of the phantom material. The contrast enhancement is less for the stiffer (larger storage modulus) tissue, mimicking tumor necrotic core, compared to the normal tissue. The ultrasound modulation of the insonified region leads to an increase in the effective number of scattering events experienced by NIR light, increasing the measured phase, causing the enhancement in the effective scattering coefficient. The ultrasound modulation of NIR light could provide better estimation of scattering coefficient. The observed local enhancement of the effective scattering coefficient, in the ultrasound focal region, is validated using both experimental measurements and Monte-Carlo simulations.

  15. Evaluation metrics for bone segmentation in ultrasound

    NASA Astrophysics Data System (ADS)

    Lougheed, Matthew; Fichtinger, Gabor; Ungi, Tamas

    2015-03-01

    Tracked ultrasound is a safe alternative to X-ray for imaging bones. The interpretation of bony structures is challenging as ultrasound has no specific intensity characteristic of bones. Several image segmentation algorithms have been devised to identify bony structures. We propose an open-source framework that would aid in the development and comparison of such algorithms by quantitatively measuring segmentation performance in the ultrasound images. True-positive and false-negative metrics used in the framework quantify algorithm performance based on correctly segmented bone and correctly segmented boneless regions. Ground-truth for these metrics are defined manually and along with the corresponding automatically segmented image are used for the performance analysis. Manually created ground truth tests were generated to verify the accuracy of the analysis. Further evaluation metrics for determining average performance per slide and standard deviation are considered. The metrics provide a means of evaluating accuracy of frames along the length of a volume. This would aid in assessing the accuracy of the volume itself and the approach to image acquisition (positioning and frequency of frame). The framework was implemented as an open-source module of the 3D Slicer platform. The ground truth tests verified that the framework correctly calculates the implemented metrics. The developed framework provides a convenient way to evaluate bone segmentation algorithms. The implementation fits in a widely used application for segmentation algorithm prototyping. Future algorithm development will benefit by monitoring the effects of adjustments to an algorithm in a standard evaluation framework.

  16. Integration of stereotactic ultrasonic data into an interactive image-guided neurosurgical system

    NASA Astrophysics Data System (ADS)

    Shima, Daniel W.; Galloway, Robert L., Jr.

    1998-06-01

    Stereotactic ultrasound can be incorporated into an interactive, image-guide neurosurgical system by using an optical position sensor to define the location of an intraoperative scanner in physical space. A C-program has been developed that communicates with the OptotrakTM system developed by Northern Digital Inc. to optically track the three-dimensional position and orientation of a fan-shaped area defined with respect to a hand-held probe. (i.e., a virtual B-mode ultrasound fan beam) Volumes of CT and MR head scans from the same patient are registered to a location in physical space using a point-based technique. The coordinates of the virtual fan beam in physical space are continuously calculated and updated on-the-fly. During each program loop, the CT and MR data volumes are reformatted along the same plane and displayed as two fan-shaped images that correspond to the current physical-space location of the virtual fan beam. When the reformatted preoperative tomographic images are eventually paired with a real-time intraoperative ultrasound image, a neurosurgeon will be able to use the unique information of each imaging modality (e.g., the high resolution and tissue contrast of CT and MR and the real-time functionality of ultrasound) in a complementary manner to identify structures in the brain more easily and to guide surgical procedures more effectively.

  17. A multimodal image guiding system for Navigated Ultrasound Bronchoscopy (EBUS): A human feasibility study

    PubMed Central

    Hofstad, Erlend Fagertun; Amundsen, Tore; Langø, Thomas; Bakeng, Janne Beate Lervik; Leira, Håkon Olav

    2017-01-01

    Background Endobronchial ultrasound transbronchial needle aspiration (EBUS-TBNA) is the endoscopic method of choice for confirming lung cancer metastasis to mediastinal lymph nodes. Precision is crucial for correct staging and clinical decision-making. Navigation and multimodal imaging can potentially improve EBUS-TBNA efficiency. Aims To demonstrate the feasibility of a multimodal image guiding system using electromagnetic navigation for ultrasound bronchoschopy in humans. Methods Four patients referred for lung cancer diagnosis and staging with EBUS-TBNA were enrolled in the study. Target lymph nodes were predefined from the preoperative computed tomography (CT) images. A prototype convex probe ultrasound bronchoscope with an attached sensor for position tracking was used for EBUS-TBNA. Electromagnetic tracking of the ultrasound bronchoscope and ultrasound images allowed fusion of preoperative CT and intraoperative ultrasound in the navigation software. Navigated EBUS-TBNA was used to guide target lymph node localization and sampling. Navigation system accuracy was calculated, measured by the deviation between lymph node position in ultrasound and CT in three planes. Procedure time, diagnostic yield and adverse events were recorded. Results Preoperative CT and real-time ultrasound images were successfully fused and displayed in the navigation software during the procedures. Overall navigation accuracy (11 measurements) was 10.0 ± 3.8 mm, maximum 17.6 mm, minimum 4.5 mm. An adequate sample was obtained in 6/6 (100%) of targeted lymph nodes. No adverse events were registered. Conclusions Electromagnetic navigated EBUS-TBNA was feasible, safe and easy in this human pilot study. The clinical usefulness was clearly demonstrated. Fusion of real-time ultrasound, preoperative CT and electromagnetic navigational bronchoscopy provided a controlled guiding to level of target, intraoperative overview and procedure documentation. PMID:28182758

  18. [Image fusion: use in the control of the distribution of prostatic biopsies].

    PubMed

    Mozer, Pierre; Baumann, Michaël; Chevreau, Grégoire; Troccaz, Jocelyne

    2008-02-01

    Prostate biopsies are performed under 2D TransRectal UltraSound (US) guidance by sampling the prostate according to a predefined pattern. Modern image processing tools allow better control of biopsy distribution. We evaluated the accuracy of a single operator performing a pattern of 12 ultrasound-guided biopsies by registering 3D ultrasound control images acquired after each biopsy. For each patient, prostate image alignment was performed automatically with a voxel-based registration algorithm allowing visualization of each biopsy trajectory in a single ultrasound reference volume. On average, the operator reached the target in 60% of all cases. This study shows that it is difficult to accurately reach targets in the prostate using 2D ultrasound. In the near future, real-time fusion of MRI and US images will allow selection of a target in previously acquired MR images and biopsy of this target by US guidance.

  19. Superparamagnetic PLGA-iron oxide microcapsules for dual-modality US/MR imaging and high intensity focused US breast cancer ablation.

    PubMed

    Sun, Yang; Zheng, Yuanyi; Ran, Haitao; Zhou, Yang; Shen, Hongxia; Chen, Yu; Chen, Hangrong; Krupka, Tianyi M; Li, Ao; Li, Pan; Wang, Zhibiao; Wang, Zhigang

    2012-08-01

    Organic/inorganic, hybrid, multifunctional, material-based platforms combine the merits of diverse functionalities of inorganic nanoparticles and the excellent biocompatibility of organic systems. In this work, superparamagnetic poly(lactic-co-glycolic acid) (PLGA) microcapsules (Fe(3)O(4)/PLGA) have been developed, as a proof-of-concept, for the application in ultrasound/magnetic resonance dual-modality biological imaging and enhancing the therapeutic efficiency of high intensity focused ultrasound (HIFU) breast cancer surgery in vitro and in vivo. Hydrophobic Fe(3)O(4) nanoparticles were successfully integrated into PLGA microcapsules by a typical double emulsion evaporation process. In this process, highly dispersed superparamagnetic Fe(3)O(4)/PLGA composite microcapsules with well-defined spherical morphology were obtained with an average diameter of 885.6 nm. The potential of these microcapsules as dual contrast agents for ultrasonography and magnetic resonance imaging were demonstrated in vitro and, also, preliminarily in vivo. Meanwhile, the prepared superparamagnetic composite microcapsules were administrated into rabbits bearing breast cancer model for the evaluation of the in vivo HIFU synergistic ablation efficiency caused by the introduction of such microcapsules. Our results showed that the employment of the composite microcapsules could efficiently enhance ultrasound imaging of cancer, and greatly enhance the HIFU ablation of breast cancer in rabbits. In addition, pathological examination was systematically performed to detect the structural changes of the target tissue caused by HIFU ablation. This finding demonstrated that successful introduction of these superparamagnetic microcapsules into HIFU cancer surgery provided an alternative strategy for the highly efficient imaging-guided non-invasive HIFU synergistic therapy of cancer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Nanobubble Ultrasound Contrast Agents for Enhanced Delivery of Thermal Sensitizer to Tumors Undergoing Radiofrequency Ablation

    PubMed Central

    Perera, Reshani H.; Solorio, Luis; Wu, Hanping; Gangolli, Mihika; Silverman, Eric; Hernandez, Christopher; Peiris, Pubudu M.; Broome, Ann-Marie

    2013-01-01

    Purpose Pluronic has been shown to sensitize various tumor cell lines to chemotherapy and hyperthermia by altering the membrane fluidity, depleting ATP, and modulating the heat shock protein 70 expression. In our prior work, Pluronic was also used to formulate nanosized ultrasound contrast agents. In the current study we evaluate the use of these contrast agents as vehicles for image-guided delivery of Pluronic to improve outcomes of tumor radiofrequency (RF) ablation. Methods Lipid-shelled Pluronic nanobubbles were prepared and examined for size distribution, zeta potential, stability, biodistribution, accumulation of nanobubbles in the tumor, and treatment efficacy. LS174-T xenograft tumor-bearing mice were used to evaluate tumor growth suppression and measure treatment efficacy after RF ablation. Results The average diameter of Pluronic bubbles was 230 nm, and initial bubble echogenicity was 16 dB. In vitro, cells exposed to Pluronic nanobubbles exhibited low cytotoxicity in the absence of ultrasound, even if heat (43°C) was applied. When the cells were exposed to Pluronic nanobubbles, heat, and ultrasound; viability was significantly reduced. In vivo, tumors treated with ultrasound-modulated nanobubbles prior to RF ablation showed a significant reduction in growth compared to the RF alone (P<0.05). Conclusion Lipid and Pluronic-shelled, echogenic nanobubbles combined with ultrasound modulation can serve as an effective theranostic method for sensitization of tumors to RF ablation. PMID:23943542

  1. Nanobubble ultrasound contrast agents for enhanced delivery of thermal sensitizer to tumors undergoing radiofrequency ablation.

    PubMed

    Perera, Reshani H; Solorio, Luis; Wu, Hanping; Gangolli, Mihika; Silverman, Eric; Hernandez, Christopher; Peiris, Pubudu M; Broome, Ann-Marie; Exner, Agata A

    2014-06-01

    Pluronic has been shown to sensitize various tumor cell lines to chemotherapy and hyperthermia by altering the membrane fluidity, depleting ATP, and modulating the heat shock protein 70 expression. In our prior work, Pluronic was also used to formulate nanosized ultrasound contrast agents. In the current study we evaluate the use of these contrast agents as vehicles for image-guided delivery of Pluronic to improve outcomes of tumor radiofrequency (RF) ablation. Lipid-shelled Pluronic nanobubbles were prepared and examined for size distribution, zeta potential, stability, biodistribution, accumulation of nanobubbles in the tumor, and treatment efficacy. LS174-T xenograft tumor-bearing mice were used to evaluate tumor growth suppression and measure treatment efficacy after RF ablation. The average diameter of Pluronic bubbles was 230 nm, and initial bubble echogenicity was 16 dB. In vitro, cells exposed to Pluronic nanobubbles exhibited low cytotoxicity in the absence of ultrasound, even if heat (43 ºC) was applied. When the cells were exposed to Pluronic nanobubbles, heat, and ultrasound; viability was significantly reduced. In vivo, tumors treated with ultrasound-modulated nanobubbles prior to RF ablation showed a significant reduction in growth compared to the RF alone (P<0.05). Lipid and Pluronic-shelled, echogenic nanobubbles combined with ultrasound modulation can serve as an effective theranostic method for sensitization of tumors to RF ablation.

  2. Texture Feature Analysis for Different Resolution Level of Kidney Ultrasound Images

    NASA Astrophysics Data System (ADS)

    Kairuddin, Wan Nur Hafsha Wan; Mahmud, Wan Mahani Hafizah Wan

    2017-08-01

    Image feature extraction is a technique to identify the characteristic of the image. The objective of this work is to discover the texture features that best describe a tissue characteristic of a healthy kidney from ultrasound (US) image. Three ultrasound machines that have different specifications are used in order to get a different quality (different resolution) of the image. Initially, the acquired images are pre-processed to de-noise the speckle to ensure the image preserve the pixels in a region of interest (ROI) for further extraction. Gaussian Low- pass Filter is chosen as the filtering method in this work. 150 of enhanced images then are segmented by creating a foreground and background of image where the mask is created to eliminate some unwanted intensity values. Statistical based texture features method is used namely Intensity Histogram (IH), Gray-Level Co-Occurance Matrix (GLCM) and Gray-level run-length matrix (GLRLM).This method is depends on the spatial distribution of intensity values or gray levels in the kidney region. By using One-Way ANOVA in SPSS, the result indicated that three features (Contrast, Difference Variance and Inverse Difference Moment Normalized) from GLCM are not statistically significant; this concludes that these three features describe a healthy kidney characteristics regardless of the ultrasound image quality.

  3. Use of implanted gold fiducial markers with MV-CBCT image-guided IMRT for pancreatic tumours.

    PubMed

    Packard, Matthew; Gayou, Olivier; Gurram, Krishna; Weiss, Brandon; Thakkar, Shyam; Kirichenko, Alexander

    2015-08-01

    Visualisation of soft tissues such as pancreatic tumours by mega-voltage cone beam CT (MV-CBCT) is frequently difficult and daily localisation is often based on more easily seen adjacent bony anatomy. Fiducial markers implanted into pancreatic tumours serve as surrogates for tumour position and may more accurately represent absolute tumour position. Differences in daily shifts based on alignment to implanted fiducial markers vs. alignment to adjacent bony anatomy were compared. Gold fiducial markers were placed into the pancreatic tumour under endoscopic ultrasound (EUS) guidance in 12 patients. Patients subsequently received image-guided intensity-modulated radiation therapy (IG-IMRT). MV-CBCT was performed prior to each fraction and isocentre shifts were performed based on alignment to the fiducial markers. We retrospectively reviewed archived MV-CBCT datasets and calculated shift differences in the left-right (LR), superior-inferior (SI) and anterior-posterior (AP) axes relative to shifts based on alignment to adjacent bony anatomy. Two hundred forty-three fractions were analysed. The mean absolute difference in isocentre shifts between the fiducial markers and those aligned to bony anatomy was 3.4 mm (range 0-13 mm), 6.3 mm (range 0-21 mm) and 2.6 mm (range 0-12 mm), in LR, SI and AP directions, respectively. The mean three-dimensional vector shift difference between markers vs. bony anatomy alignment was 8.6 mm. These data suggest that fiducial markers used in conjunction with MV-CBCT improve the accuracy of daily target delineation compared with localisation using adjacent bony anatomy and that gold fiducial markers using MV-CBCT alignment are a viable option for target localisation during IG-IMRT. © 2015 The Royal Australian and New Zealand College of Radiologists.

  4. Image-guided endobronchial ultrasound

    NASA Astrophysics Data System (ADS)

    Higgins, William E.; Zang, Xiaonan; Cheirsilp, Ronnarit; Byrnes, Patrick; Kuhlengel, Trevor; Bascom, Rebecca; Toth, Jennifer

    2016-03-01

    Endobronchial ultrasound (EBUS) is now recommended as a standard procedure for in vivo verification of extraluminal diagnostic sites during cancer-staging bronchoscopy. Yet, physicians vary considerably in their skills at using EBUS effectively. Regarding existing bronchoscopy guidance systems, studies have shown their effectiveness in the lung-cancer management process. With such a system, a patient's X-ray computed tomography (CT) scan is used to plan a procedure to regions of interest (ROIs). This plan is then used during follow-on guided bronchoscopy. Recent clinical guidelines for lung cancer, however, also dictate using positron emission tomography (PET) imaging for identifying suspicious ROIs and aiding in the cancer-staging process. While researchers have attempted to use guided bronchoscopy systems in tandem with PET imaging and EBUS, no true EBUS-centric guidance system exists. We now propose a full multimodal image-based methodology for guiding EBUS. The complete methodology involves two components: 1) a procedure planning protocol that gives bronchoscope movements appropriate for live EBUS positioning; and 2) a guidance strategy and associated system graphical user interface (GUI) designed for image-guided EBUS. We present results demonstrating the operation of the system.

  5. Time-dependent change of blood flow in the prostate treated with high-intensity focused ultrasound.

    PubMed

    Shoji, Sunao; Tonooka, Akiko; Hashimoto, Akio; Nakamoto, Masahiko; Tomonaga, Tetsuro; Nakano, Mayura; Sato, Haruhiro; Terachi, Toshiro; Koike, Junki; Uchida, Toyoaki

    2014-09-01

    Avascular areas on contrast-enhanced magnetic resonance imaging have been considered to be areas of localized prostate cancer successfully treated by high-intensity focused ultrasound. However, the optimal timing of magnetic resonance imaging has not been discussed. The thermal effect of high-intensity focused ultrasound is degraded by regional prostatic blood flow. Conversely, the mechanical effect of high-intensity focused ultrasound (cavitation) is not affected by blood flow, and can induce vessel damage. In this series, the longitudinal change of blood flow on contrast-enhanced magnetic resonance imaging was observed from postoperative day 1 to postoperative day 14 in 10 patients treated with high-intensity focused ultrasound. The median rates of increase in the non-enhanced volume of the whole gland, transition zone and peripheral zone from postoperative day 1 to postoperative day 14 were 36%, 39%, and 34%, respectively. In another pathological analysis of the prostate tissue of 17 patients immediately after high-intensity focused ultrasound without neoadjuvant hormonal therapy, we observed diffuse coagulative degeneration and partial non-coagulative prostate tissue around arteries with vascular endothelial cell detachment. These observations on contrast-enhanced magnetic resonance imaging support a time-dependent change of the blood flow in the prostate treated with high-intensity focused ultrasound. Additionally, our pathological findings support the longitudinal changes of these magnetic resonance imaging findings. Further large-scale studies will investigate the most appropriate timing of contrast-enhanced magnetic resonance imaging for evaluation of the effectiveness of high-intensity focused ultrasound for localized prostate cancer. © 2014 The Japanese Urological Association.

  6. Combining transrectal ultrasound and CT for image-guided adaptive brachytherapy of cervical cancer: Proof of concept.

    PubMed

    Nesvacil, Nicole; Schmid, Maximilian P; Pötter, Richard; Kronreif, Gernot; Kirisits, Christian

    To investigate the feasibility of a treatment planning workflow for three-dimensional image-guided cervix cancer brachytherapy, combining volumetric transrectal ultrasound (TRUS) for target definition with CT for dose optimization to organs at risk (OARs), for settings with no access to MRI. A workflow for TRUS/CT-based volumetric treatment planning was developed, based on a customized system including ultrasound probe, stepper unit, and software for image volume acquisition. A full TRUS/CT-based workflow was simulated in a clinical case and compared with MR- or CT-only delineation. High-risk clinical target volume was delineated on TRUS, and OARs were delineated on CT. Manually defined tandem/ring applicator positions on TRUS and CT were used as a reference for rigid registration of the image volumes. Treatment plan optimization for TRUS target and CT organ volumes was performed and compared to MRI and CT target contours. TRUS/CT-based contouring, applicator reconstruction, image fusion, and treatment planning were feasible, and the full workflow could be successfully demonstrated. The TRUS/CT plan fulfilled all clinical planning aims. Dose-volume histogram evaluation of the TRUS/CT-optimized plan (high-risk clinical target volume D 90 , OARs D 2cm³ for) on different image modalities showed good agreement between dose values reported for TRUS/CT and MRI-only reference contours and large deviations for CT-only target parameters. A TRUS/CT-based workflow for full three-dimensional image-guided cervix brachytherapy treatment planning seems feasible and may be clinically comparable to MRI-based treatment planning. Further development to solve challenges with applicator definition in the TRUS volume is required before systematic applicability of this workflow. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, R; Jee, K; Sharp, G

    Purpose: Proton radiography, which images the patients with the same type of particles that they are to be treated with, is a promising approach for image guidance and range uncertainties reduction. This study aimed to realize quality proton radiography by measuring dose rate functions (DRF) in time domain using a single flat panel and retrieve water equivalent path length (WEPL) from them. Methods: An amorphous silicon flat panel (PaxScan™ 4030CB, Varian Medical Systems, Inc., Palo Alto, CA) was placed behind phantoms to measure DRFs from a proton beam modulated by the modulator wheel. To retrieve WEPL and RSP, calibration modelsmore » based on the intensity of DRFs only, root mean square (RMS) of DRFs only and the intensity weighted RMS were tested. The quality of obtained WEPL images (in terms of spatial resolution and level of details) and the accuracy of WEPL were compared. Results: RSPs for most of the Gammex phantom inserts were retrieved within ± 1% errors by calibration models based on the RMS and intensity weighted RMS. The mean percentage error for all inserts was reduced from 1.08% to 0.75% by matching intensity in the calibration model. In specific cases such as the insert with a titanium rod, the calibration model based on RMS only fails while the that based on intensity weighted RMS is still valid. The quality of retrieved WEPL images were significantly improved for calibration models including intensity matching. Conclusion: For the first time, a flat panel, which is readily available in the beamline for image guidance, was tested to acquire quality proton radiography with WEPL accurately retrieved from it. This technique is promising to be applied for image-guided proton therapy as well as patient specific RSP determination to reduce uncertainties of beam ranges.« less

  8. Polyplex-microbubble hybrids for ultrasound-guided plasmid DNA delivery to solid tumors.

    PubMed

    Sirsi, Shashank R; Hernandez, Sonia L; Zielinski, Lukasz; Blomback, Henning; Koubaa, Adel; Synder, Milo; Homma, Shunichi; Kandel, Jessica J; Yamashiro, Darrell J; Borden, Mark A

    2012-01-30

    Microbubble ultrasound contrast agents are being developed as image-guided gene carriers for targeted delivery in vivo. In this study, novel polyplex-microbubbles were synthesized, characterized and evaluated for systemic circulation and tumor transfection. Branched polyethylenimine (PEI; 25 kDa) was modified with polyethylene glycol (PEG; 5 kDa), thiolated and covalently attached to maleimide groups on lipid-coated microbubbles. The PEI-microbubbles demonstrated increasingly positive surface charge and DNA loading capacity with increasing maleimide content. The in vivo ultrasound contrast persistence of PEI-microbubbles was measured in the healthy mouse kidney, and a two-compartment pharmacokinetic model accounting for free and adherent microbubbles was developed to describe the anomalous time-intensity curves. The model suggested that PEI loading dramatically reduced free circulation and increased nonspecific adhesion to the vasculature. However, DNA loading to form polyplex-microbubbles increased circulation in the bloodstream and decreased nonspecific adhesion. PEI-microbubbles coupled to a luciferase bioluminescence reporter plasmid DNA were shown to transfect tumors implanted in the mouse kidney. Site-specific delivery was achieved using ultrasound applied over the tumor area following bolus injection of the DNA/PEI-microbubbles. In vivo imaging showed over 10-fold higher bioluminescence from the tumor region compared to untreated tissue. Ex vivo analysis of excised tumors showed greater than 40-fold higher expression in tumor tissue than non-sonicated control (heart) tissue. These results suggest that the polyplex-microbubble platform offers improved control of DNA loading and packaging suitable for ultrasound-guided tissue transfection. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Functional Image-Guided Radiotherapy Planning in Respiratory-Gated Intensity-Modulated Radiotherapy for Lung Cancer Patients With Chronic Obstructive Pulmonary Disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Tomoki, E-mail: tkkimura@hiroshima-u.ac.jp; Nishibuchi, Ikuno; Murakami, Yuji

    2012-03-15

    Purpose: To investigate the incorporation of functional lung image-derived low attenuation area (LAA) based on four-dimensional computed tomography (4D-CT) into respiratory-gated intensity-modulated radiotherapy (IMRT) or volumetric modulated arc therapy (VMAT) in treatment planning for lung cancer patients with chronic obstructive pulmonary disease (COPD). Methods and Materials: Eight lung cancer patients with COPD were the subjects of this study. LAA was generated from 4D-CT data sets according to CT values of less than than -860 Hounsfield units (HU) as a threshold. The functional lung image was defined as the area where LAA was excluded from the image of the total lung.more » Two respiratory-gated radiotherapy plans (70 Gy/35 fractions) were designed and compared in each patient as follows: Plan A was an anatomical IMRT or VMAT plan based on the total lung; Plan F was a functional IMRT or VMAT plan based on the functional lung. Dosimetric parameters (percentage of total lung volume irradiated with {>=}20 Gy [V20], and mean dose of total lung [MLD]) of the two plans were compared. Results: V20 was lower in Plan F than in Plan A (mean 1.5%, p = 0.025 in IMRT, mean 1.6%, p = 0.044 in VMAT) achieved by a reduction in MLD (mean 0.23 Gy, p = 0.083 in IMRT, mean 0.5 Gy, p = 0.042 in VMAT). No differences were noted in target volume coverage and organ-at-risk doses. Conclusions: Functional IGRT planning based on LAA in respiratory-guided IMRT or VMAT appears to be effective in preserving a functional lung in lung cancer patients with COPD.« less

  10. VEGFR2-Targeted Ultrasound Imaging Agent Enhances the Detection of Ovarian Tumors at Early Stage in Laying Hens, a Preclinical Model of Spontaneous Ovarian Cancer.

    PubMed

    Barua, Animesh; Yellapa, Aparna; Bahr, Janice M; Machado, Sergio A; Bitterman, Pincas; Basu, Sanjib; Sharma, Sameer; Abramowicz, Jacques S

    2015-07-01

    Tumor-associated neoangiogenesis (TAN) is an early event in ovarian cancer (OVCA) development. Increased expression of vascular endothelial growth factor receptor 2 (VEGFR2) by TAN vessels presents a potential target for early detection by ultrasound imaging. The goal of this study was to examine the suitability of VEGFR2-targeted ultrasound contrast agents in detecting spontaneous OVCA in laying hens. Effects of VEGFR2-targeted contrast agents in enhancing the intensity of ultrasound imaging from spontaneous ovarian tumors in hens were examined in a cross-sectional study. Enhancement in the intensity of ultrasound imaging was determined before and after injection of VEGFR2-targeted contrast agents. All ultrasound images were digitally stored and analyzed off-line. Following scanning, ovarian tissues were collected and processed for histology and detection of VEGFR2-expressing microvessels. Enhancement in visualization of ovarian morphology was detected by gray-scale imaging following injection of VEGFR2-targeted contrast agents. Compared with pre-contrast, contrast imaging enhanced the intensities of ultrasound imaging significantly (p < 0.0001) irrespective of the pathological status of ovaries. In contrast to normal hens, the intensity of ultrasound imaging was significantly (p < 0.0001) higher in hens with early stage OVCA and increased further in hens with late stage OVCA. Higher intensities of ultrasound imaging in hens with OVCA were positively correlated with increased (p < 0.0001) frequencies of VEGFR2-expressing microvessels. The results of this study suggest that VEGFR2-targeted contrast agents enhance the visualization of spontaneous ovarian tumors in hens at early and late stages of OVCA. The laying hen may be a suitable model to test new imaging agents and develop targeted therapeutics. © The Author(s) 2014.

  11. Focused Ultrasound Steering for Harmonic Motion Imaging.

    PubMed

    Han, Yang; Payen, Thomas; Wang, Shutao; Konofagou, Elisa

    2018-02-01

    Harmonic motion imaging (HMI) is a radiation-force-based ultrasound elasticity imaging technique, which is designed for both tissue relative stiffness imaging and reliable high-intensity focused ultrasound treatment monitoring. The objective of this letter is to develop and demonstrate the feasibility of 2-D focused ultrasound (FUS) beam steering for HMI using a 93-element, FUS phased array. HMI with steered FUS beam was acquired in tissue-mimicking phantoms. The HMI displacement was imaged within the steering range of ±1.7 mm laterally and ±2 mm axially. Using the steered FUS beam, HMI can be used to image a larger tissue volume with higher efficiency and without requiring mechanical movement of the transducer.

  12. High intensity focused ultrasound (HIFU) focal spot localization using harmonic motion imaging (HMI).

    PubMed

    Han, Yang; Hou, Gary Yi; Wang, Shutao; Konofagou, Elisa

    2015-08-07

    Several ultrasound-based imaging modalities have been proposed for image guidance and monitoring of high-intensity focused ultrasound (HIFU) treatment. However, accurate localization and characterization of the effective region of treatment (focal spot) remain important obstacles in the clinical implementation of HIFU ablation. Harmonic motion imaging for focused ultrasound (HMIFU) is a HIFU monitoring technique that utilizes radiation-force-induced localized oscillatory displacement. HMIFU has been shown to correctly identify the formation and extent of HIFU thermal ablation lesions. However a significant problem remains in identifying the location of the HIFU focus, which is necessary for treatment planning. In this study, the induced displacement was employed to localize the HIFU focal spot inside the tissue prior to treatment. Feasibility was shown with two separate systems. The 1D HMIFU system consisted of a HIFU transducer emitting an amplitude-modulated HIFU beam for mechanical excitation and a confocal single-element, pulse-echo transducer for simultaneous RF acquisition. The 2D HIFU system consists of a HIFU phased array, and a co-axial imaging phased array for simultaneous imaging. Initial feasibility was first performed on tissue-mimicking gelatin phantoms and the focal zone was defined as the region corresponding to the -3dB full width at half maximum of the HMI displacement. Using the same parameters, in vitro experiments were performed in canine liver specimens to compare the defined focal zone with the lesion. In vitro measurements showed good agreement between the HMI predicted focal zone and the induced HIFU lesion location. HMIFU was experimentally shown to be capable of predicting and tracking the focal region in both phantoms and in vitro tissues. The accuracy of focal spot localization was evaluated by comparing with the lesion location in post-ablative tissues, with a R(2) = 0.821 at p < 0.002 in the 2D HMI system. We demonstrated the feasibility of using this HMI-based technique to localize the HIFU focal spot without inducing thermal changes during the planning phase. The focal spot localization method has also been applied on ex vivo human breast tissue ablation and can be fully integrated into any HMI system for planning purposes.

  13. High Intensity Focused Ultrasound (HIFU) Focal Spot Localization Using Harmonic Motion Imaging (HMI)

    PubMed Central

    Han, Yang; Hou, Gary Yi; Wang, Shutao; Konofagou, Elisa

    2015-01-01

    Several ultrasound-based imaging modalities have been proposed for image guidance and monitoring of High-Intensity Focused Ultrasound (HIFU) treatment. However, accurate localization and characterization of the effective region of treatment (focal spot) remain important obstacles in the clinical implementation of HIFU ablation. Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a HIFU monitoring technique that utilizes radiation-force-induced localized oscillatory displacement. HMIFU has been shown to correctly identify the formation and extent of HIFU thermal ablation lesions. However a significant problem remains in identifying the location of the HIFU focus, which is necessary for treatment planning. In this study, the induced displacement was employed to localize the HIFU focal spot inside the tissue prior to treatment. Feasibility was shown with two separate systems. The 1D HMIFU system consisted of a HIFU transducer emitting an amplitude-modulated HIFU beam for mechanical excitation and a confocal single-element, pulse-echo transducer for simultaneous RF acquisition. The 2D HIFU system consists of a HIFU phased array, and a co-axial imaging phased array for simultaneous imaging. Initial feasibility was first performed on tissue-mimicking gelatin phantoms and the focal zone was defined as the region corresponding to the −3 dB full width at half maximum of the HMI displacement. Using the same parameters, in vitro experiments were performed in canine liver specimens to compare the defined focal zone with the lesion. In vitro measurements showed good agreement between the HMI predicted focal zone and the induced HIFU lesion location. HMIFU was experimentally shown to be capable of predicting and tracking the focal region in both phantoms and in vitro tissues. The accuracy of focal spot localization was evaluated by comparing with the lesion location in post-ablative tissues, with a R2 = 0.821 at p<0.002 in the 2D HMI system. We demonstrated the feasibility of using this HMI-based technique to localize the HIFU focal spot without inducing thermal changes during the planning phase. The focal spot localization method has also been applied on ex vivo human breast tissue ablation and can be fully integrated into any HMI system for planning purposes. PMID:26184846

  14. High intensity focused ultrasound (HIFU) focal spot localization using harmonic motion imaging (HMI)

    NASA Astrophysics Data System (ADS)

    Han, Yang; Hou, Gary Yi; Wang, Shutao; Konofagou, Elisa

    2015-08-01

    Several ultrasound-based imaging modalities have been proposed for image guidance and monitoring of high-intensity focused ultrasound (HIFU) treatment. However, accurate localization and characterization of the effective region of treatment (focal spot) remain important obstacles in the clinical implementation of HIFU ablation. Harmonic motion imaging for focused ultrasound (HMIFU) is a HIFU monitoring technique that utilizes radiation-force-induced localized oscillatory displacement. HMIFU has been shown to correctly identify the formation and extent of HIFU thermal ablation lesions. However a significant problem remains in identifying the location of the HIFU focus, which is necessary for treatment planning. In this study, the induced displacement was employed to localize the HIFU focal spot inside the tissue prior to treatment. Feasibility was shown with two separate systems. The 1D HMIFU system consisted of a HIFU transducer emitting an amplitude-modulated HIFU beam for mechanical excitation and a confocal single-element, pulse-echo transducer for simultaneous RF acquisition. The 2D HIFU system consists of a HIFU phased array, and a co-axial imaging phased array for simultaneous imaging. Initial feasibility was first performed on tissue-mimicking gelatin phantoms and the focal zone was defined as the region corresponding to the  -3dB full width at half maximum of the HMI displacement. Using the same parameters, in vitro experiments were performed in canine liver specimens to compare the defined focal zone with the lesion. In vitro measurements showed good agreement between the HMI predicted focal zone and the induced HIFU lesion location. HMIFU was experimentally shown to be capable of predicting and tracking the focal region in both phantoms and in vitro tissues. The accuracy of focal spot localization was evaluated by comparing with the lesion location in post-ablative tissues, with a R2 = 0.821 at p  <  0.002 in the 2D HMI system. We demonstrated the feasibility of using this HMI-based technique to localize the HIFU focal spot without inducing thermal changes during the planning phase. The focal spot localization method has also been applied on ex vivo human breast tissue ablation and can be fully integrated into any HMI system for planning purposes.

  15. Ultrasound guided double injection of blood into cisterna magna: a rabbit model for treatment of cerebral vasospasm.

    PubMed

    Chen, Yongchao; Zhu, Youzhi; Zhang, Yu; Zhang, Zixuan; Lian, Juan; Luo, Fucheng; Deng, Xuefei; Wong, Kelvin K L

    2016-02-06

    Double injection of blood into cisterna magna using a rabbit model results in cerebral vasospasm. An unacceptably high mortality rate tends to limit the application of model. Ultrasound guided puncture can provide real-time imaging guidance for operation. The aim of this paper is to establish a safe and effective rabbit model of cerebral vasospasm after subarachnoid hemorrhage with the assistance of ultrasound medical imaging. A total of 160 New Zealand white rabbits were randomly divided into four groups of 40 each: (1) manual control group, (2) manual model group, (3) ultrasound guided control group, and (4) ultrasound guided model group. The subarachnoid hemorrhage was intentionally caused by double injection of blood into their cisterna magna. Then, basilar artery diameters were measured using magnetic resonance angiography before modeling and 5 days after modeling. The depth of needle entering into cisterna magna was determined during the process of ultrasound guided puncture. The mortality rates in manual control group and model group were 15 and 23 %, respectively. No rabbits were sacrificed in those two ultrasound guided groups. We found that the mortality rate in ultrasound guided groups decreased significantly compared to manual groups. Compared with diameters before modeling, the basilar artery diameters after modeling were significantly lower in manual and ultrasound guided model groups. The vasospasm aggravated and the proportion of severe vasospasms was greater in ultrasound guided model group than that of manual group. In manual model group, no vasospasm was found in 8 % of rabbits. The ultrasound guided double injection of blood into cisterna magna is a safe and effective rabbit model for treatment of cerebral vasospasm.

  16. Temperature measurement by thermal strain imaging with diagnostic power ultrasound, with potential for thermal index determination.

    PubMed

    Liang, Hai-Dong; Zhou, Li-Xia; Wells, Peter N T; Halliwell, Michael

    2009-05-01

    Over the years, there has been a substantial increase in acoustic exposure in diagnostic ultrasound as new imaging modalities with higher intensities and frame rates have been introduced; and more electronic components have been packed into the probe head, so that there is a tendency for it to become hotter. With respect to potential thermal effects, including those which may be hazardous occurring during ultrasound scanning, there is a correspondingly growing need for in vivo techniques to guide the operator as to the actual temperature rise occurring in the examined tissues. Therefore, an in vivo temperature estimator would be of considerable practical value. The commonly-used method of tissue thermal index (TI) measurement with a hydrophone in water could underestimate the actual value of TI (in one report by as much as 2.9 times). To obtain meaningful results, it is necessary to map the temperature elevation in 2-D (or 3-D) space. We present methodology, results and validation of a 2-D spatial and temporal thermal strain ultrasound temperature estimation technique in phantoms, and its apparently novel application in tracking the evolution of heat deposition at diagnostic exposure levels. The same ultrasound probe is used for both transmission and reception. The displacement and thermal strain estimation methods are similar to those used in high-intensity focused ultrasound thermal monitoring. The use of radiofrequency signals permits the application of cross correlation as a similarity measurement for tracking feature displacement. The displacement is used to calculate the thermal strain directly related to the temperature rise. Good agreement was observed between the temperature rise and the ultrasound power and scan duration. Thermal strain up to 1.4% was observed during 4000-s scan. Based on the results obtained for the temperature range studied in this work, the technique demonstrates potential for applicability in phantom (and possibly in vivo tissue) temperature measurement for the determination of TI.

  17. Acoustic Radiation Force Elasticity Imaging in Diagnostic Ultrasound

    PubMed Central

    Doherty, Joshua R.; Trahey, Gregg E.; Nightingale, Kathryn R.; Palmeri, Mark L.

    2013-01-01

    The development of ultrasound-based elasticity imaging methods has been the focus of intense research activity since the mid-1990s. In characterizing the mechanical properties of soft tissues, these techniques image an entirely new subset of tissue properties that cannot be derived with conventional ultrasound techniques. Clinically, tissue elasticity is known to be associated with pathological condition and with the ability to image these features in vivo, elasticity imaging methods may prove to be invaluable tools for the diagnosis and/or monitoring of disease. This review focuses on ultrasound-based elasticity imaging methods that generate an acoustic radiation force to induce tissue displacements. These methods can be performed non-invasively during routine exams to provide either qualitative or quantitative metrics of tissue elasticity. A brief overview of soft tissue mechanics relevant to elasticity imaging is provided, including a derivation of acoustic radiation force, and an overview of the various acoustic radiation force elasticity imaging methods. PMID:23549529

  18. Acoustic radiation force elasticity imaging in diagnostic ultrasound.

    PubMed

    Doherty, Joshua R; Trahey, Gregg E; Nightingale, Kathryn R; Palmeri, Mark L

    2013-04-01

    The development of ultrasound-based elasticity imaging methods has been the focus of intense research activity since the mid-1990s. In characterizing the mechanical properties of soft tissues, these techniques image an entirely new subset of tissue properties that cannot be derived with conventional ultrasound techniques. Clinically, tissue elasticity is known to be associated with pathological condition and with the ability to image these features in vivo; elasticity imaging methods may prove to be invaluable tools for the diagnosis and/or monitoring of disease. This review focuses on ultrasound-based elasticity imaging methods that generate an acoustic radiation force to induce tissue displacements. These methods can be performed noninvasively during routine exams to provide either qualitative or quantitative metrics of tissue elasticity. A brief overview of soft tissue mechanics relevant to elasticity imaging is provided, including a derivation of acoustic radiation force, and an overview of the various acoustic radiation force elasticity imaging methods.

  19. A Single Center Evaluation of the Diagnostic Accuracy of Multiparametric Magnetic Resonance Imaging against Transperineal Prostate Mapping Biopsy: An Analysis of Men with Benign Histology and Insignificant Cancer following Transrectal Ultrasound Biopsy.

    PubMed

    Pal, Raj P; Ahmad, Ros; Trecartan, Shaun; Voss, James; Ahmed, Shaista; Bazo, Alvaro; Lloyd, Jon; Walton, Thomas J

    2018-03-01

    In this study we evaluated the diagnostic performance of transrectal ultrasound guided biopsy and multiparametric magnetic resonance imaging to detect prostate cancer against transperineal prostate mapping biopsy as the reference test. Transrectal ultrasound guided biopsy, multiparametric magnetic resonance imaging and transperineal prostate mapping biopsy were performed in 426 patients between April 2012 and January 2016. Patients initially underwent systematic 12 core transrectal ultrasound guided biopsy followed 3 months later by 1.5 Tesla, high resolution T2, diffusion-weighted, dynamic contrast enhanced multiparametric magnetic resonance imaging. Two specialist uroradiologists blinded to the results of transperineal prostate mapping biopsy allocated a PI-RADS™ (Prostate Imaging-Reporting and Data System) score to each multiparametric magnetic resonance imaging study. Transperineal prostate mapping biopsy with 5 mm interval sampling, which was performed within 6 months of multiparametric magnetic resonance imaging, served as the reference test. Transrectal ultrasound guided biopsy identified 247 of 426 patients with prostate cancer and 179 of 426 with benign histology. Transperineal prostate mapping biopsy detected prostate cancer in 321 of 426 patients. On transperineal prostate mapping biopsy 94 of 179 patients with benign transrectal ultrasound guided biopsy had prostate cancer and 95 of 247 with prostate cancer on transrectal ultrasound guided biopsy were identified with cancer of higher grade. Using a multiparametric magnetic resonance imaging PI-RADS score of 3 or greater to detect significant prostate cancer, defined as any core containing Gleason 4 + 3 or greater prostate cancer on transperineal prostate mapping biopsy, the ROC AUC was 0.754 (95% CI 0.677-0.819) with 87.0% sensitivity (95% CI 77.3-97.0), 55.3% specificity (95% CI 50.2-60.4) and 97.1% negative predictive value (95% CI 94.8-99.4). Multiparametric magnetic resonance imaging is a more accurate diagnostic test than transrectal ultrasound guided biopsy. However, a significant proportion of ISUP (International Society of Urological Pathology) Grade Group 2 prostate cancer remained undetected following multiparametric magnetic resonance imaging. Although multiparametric magnetic resonance imaging could avoid unnecessary biopsy in many patients with ISUP Grade Group 3 or greater prostate cancer, at less stringent definitions of significant cancer a substantial proportion of prostate cancer would remain undetected after multiparametric magnetic resonance imaging. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  20. CT and Ultrasound Guided Stereotactic High Intensity Focused Ultrasound (HIFU)

    NASA Astrophysics Data System (ADS)

    Wood, Bradford J.; Yanof, J.; Frenkel, V.; Viswanathan, A.; Dromi, S.; Oh, K.; Kruecker, J.; Bauer, C.; Seip, R.; Kam, A.; Li, K. C. P.

    2006-05-01

    To demonstrate the feasibility of CT and B-mode Ultrasound (US) targeted HIFU, a prototype coaxial focused ultrasound transducer was registered and integrated to a CT scanner. CT and diagnostic ultrasound were used for HIFU targeting and monitoring, with the goals of both thermal ablation and non-thermal enhanced drug delivery. A 1 megahertz coaxial ultrasound transducer was custom fabricated and attached to a passive position-sensing arm and an active six degree-of-freedom robotic arm via a CT stereotactic frame. The outer therapeutic transducer with a 10 cm fixed focal zone was coaxially mounted to an inner diagnostic US transducer (2-4 megahertz, Philips Medical Systems). This coaxial US transducer was connected to a modified commercial focused ultrasound generator (Focus Surgery, Indianapolis, IN) with a maximum total acoustic power of 100 watts. This pre-clinical paradigm was tested for ability to heat tissue in phantoms with monitoring and navigation from CT and live US. The feasibility of navigation via image fusion of CT with other modalities such as PET and MRI was demonstrated. Heated water phantoms were tested for correlation between CT numbers and temperature (for ablation monitoring). The prototype transducer and integrated CT/US imaging system enabled simultaneous multimodality imaging and therapy. Pre-clinical phantom models validated the treatment paradigm and demonstrated integrated multimodality guidance and treatment monitoring. Temperature changes during phantom cooling corresponded to CT number changes. Contrast enhanced or non-enhanced CT numbers may potentially be used to monitor thermal ablation with HIFU. Integrated CT, diagnostic US, and therapeutic focused ultrasound bridges a gap between diagnosis and therapy. Preliminary results show that the multimodality system may represent a relatively inexpensive, accessible, and simple method of both targeting and monitoring HIFU effects. Small animal pre-clinical models may be translated to large animals and humans for HIFU-induced ablation and drug delivery. Integrated CT-guided focused ultrasound holds promise for tissue ablation, enhancing local drug delivery, and CT thermometry for monitoring ablation in near real-time.

  1. Optical tomography of fluorophores in dense scattering media based on ultrasound-enhanced chemiluminescence

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masaki; Kikuchi, Naoto; Sato, Akihiro

    2015-01-01

    This letter proposes and demonstrates ultrasound-combined optical imaging in dense scattering media. A peroxyoxalate chemiluminescence system that includes fluorophores to chemically excite the pigment is stimulated by ultrasound irradiation with power of less than 0.14 W/cm2. Using focused ultrasound, the chemiluminescence is selectively spatially enhanced, which leads to imaging of the pigment when embedded in a light-scattering medium via scanning of the focal point. The ultrasonically enhanced intensity of the chemiluminescence depends on the base intensity of the chemiluminescence without the applied ultrasound irradiation, which thereby enables quantitative determination of the fluorophore concentration. The authors demonstrate the potential of this method to resolve chemiluminescent targets in a dense scattering medium that is comparable to biological tissue. An image was acquired of a chemiluminescent target that included indocyanine green as the fluorophore embedded at a depth of 20 mm in an Intralipid-10% 200 ml/l solution scattering medium (the reduced scattering coefficient was estimated to be approximately 1.3 mm-1), indicating the potential for expansion of this technique for use in biological applications.

  2. High frequency ultrasound imaging using Fabry-Perot optical etalon

    NASA Astrophysics Data System (ADS)

    Ashkenazi, S.; Witte, R.; O'Donnell, M.

    2005-04-01

    Optical detection of ultrasound provides a unique and appealing way of forming detector arrays (1D or 2D) using either raster beam scanning or simultaneous array detection exploiting wide area illumination. Etalon based optical techniques are of particular interest, due to their relatively high sensitivity resulting from multiple optical reflections within the resonance structure. Detector arrays formed by etalon based techniques are characterized by high element density and small element active area, which enables high resolution imaging at high ultrasonic frequencies (typically 10-50 MHz). In this paper we present an application of an optical etalon structure for very high frequency ultrasound detection (exceeding 100 MHz). A thin polymer Fabry-Perot etalon (10 μm thickness) has been fabricated using spin coating of polymer photoresist on a glass substrate and gold evaporation forming partially reflecting mirrors on both faces of the polymer layer. The optical resonator formed by the etalon structure has a measured Q-factor of 300. The characteristic broadband response of the optical signal was demonstrated by insonifying the etalon using two different ultrasound transducers and recording the resulting intensity modulation of optical reflection from the etalon. A focused 10 MHz transducer was used for the low MHz frequency region, and a 50 MHz focused transducer was used for the high frequency region. The optical reflection signal was compared to the pulse/echo signal detected by the same ultrasound transducer. The measured signal to noise ratio of the optically detected signal is comparable to that of the pulse/echo signal in both low and high frequency ranges. The etalon detector was integrated in a photoacoustic imaging system. High resolution images of phantom targets and biological tissue (nerve cord) were obtained. The additional information of optical absorption obtained by photoacoustic imaging, along with the high resolution detection of the etalon, offer unique advantages for intravascular and neurological imaging devices.

  3. TH-AB-202-05: BEST IN PHYSICS (JOINT IMAGING-THERAPY): First Online Ultrasound-Guided MLC Tracking for Real-Time Motion Compensation in Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ipsen, S; Bruder, R; Schweikard, A

    Purpose: While MLC tracking has been successfully used for motion compensation of moving targets, current real-time target localization methods rely on correlation models with x-ray imaging or implanted electromagnetic transponders rather than direct target visualization. In contrast, ultrasound imaging yields volumetric data in real-time (4D) without ionizing radiation. We report the first results of online 4D ultrasound-guided MLC tracking in a phantom. Methods: A real-time tracking framework was installed on a 4D ultrasound station (Vivid7 dimension, GE) and used to detect a 2mm spherical lead marker inside a water tank. The volumetric frame rate was 21.3Hz (47ms). The marker wasmore » rigidly attached to a motion stage programmed to reproduce nine tumor trajectories (five prostate, four lung). The 3D marker position from ultrasound was used for real-time MLC aperture adaption. The tracking system latency was measured and compensated by prediction for lung trajectories. To measure geometric accuracy, anterior and lateral conformal fields with 10cm circular aperture were delivered for each trajectory. The tracking error was measured as the difference between marker position and MLC aperture in continuous portal imaging. For dosimetric evaluation, 358° VMAT fields were delivered to a biplanar diode array dosimeter using the same trajectories. Dose measurements with and without MLC tracking were compared to a static reference dose using a 3%/3 mm γ-test. Results: The tracking system latency was 170ms. The mean root-mean-square tracking error was 1.01mm (0.75mm prostate, 1.33mm lung). Tracking reduced the mean γ-failure rate from 13.9% to 4.6% for prostate and from 21.8% to 0.6% for lung with high-modulation VMAT plans and from 5% (prostate) and 18% (lung) to 0% with low modulation. Conclusion: Real-time ultrasound tracking was successfully integrated with MLC tracking for the first time and showed similar accuracy and latency as other methods while holding the potential to measure target motion non-invasively. SI was supported by the Graduate School for Computing in Medicine and Life Science, German Excellence Initiative [grant DFG GSC 235/1].« less

  4. Dual-mode transducers for ultrasound imaging and thermal therapy.

    PubMed

    Owen, N R; Chapelon, J Y; Bouchoux, G; Berriet, R; Fleury, G; Lafon, C

    2010-02-01

    Medical imaging is a vital component of high intensity focused ultrasound (HIFU) therapy, which is gaining clinical acceptance for tissue ablation and cancer therapy. Imaging is necessary to plan and guide the application of therapeutic ultrasound, and to monitor the effects it induces in tissue. Because they can transmit high intensity continuous wave ultrasound for treatment and pulsed ultrasound for imaging, dual-mode transducers aim to improve the guidance and monitoring stages. Their primary advantage is implicit registration between the imaging and treatment axes, and so they can help ensure before treatment that the therapeutic beam is correctly aligned with the planned treatment volume. During treatment, imaging signals can be processed in real-time to assess acoustic properties of the tissue that are related to thermal ablation. Piezocomposite materials are favorable for dual-mode transducers because of their improved bandwidth, which in turn improves imaging performance while maintaining high efficiency for treatment. Here we present our experiences with three dual-mode transducers for interstitial applications. The first was an 11-MHz monoelement designed for use in the bile duct. It had a 25x7.5 mm(2) aperture that was cylindrically focused to 10mm. The applicator motion was step-wise rotational for imaging and therapy over a 360 degrees, or smaller, sector. The second transducer had 5-elements, each measuring 3.0x3.8 mm(2) for a total aperture of 3.0x20 mm(2). It operated at 5.6 MHz, was cylindrically focused to 14 mm, and was integrated with a servo-controlled oscillating probe designed for sector imaging and directive therapy in the liver. The last transducer was a 5-MHz, 64-element linear array designed for beam-formed imaging and therapy. The aperture was 3.0x18 mm(2) with a pitch of 0.280 mm. Characterization results included conversion efficiencies above 50%, pulse-echo bandwidths above 50%, surface intensities up to 30 W/cm(2), and axial imaging resolutions to 0.2 mm. The second transducer was evaluated in vivo using porcine liver, where coagulation necrosis was induced up to a depth of 20 mm in 120 s. B-mode and M-mode images displayed a hypoechoic region that agreed well with lesion depth observed by gross histology. These feasibility studies demonstrate that the dual-mode transducers had imaging performance that was sufficient to aid the guidance and monitoring of treatment, and could sustain high intensities to induce coagulation necrosis in vivo.

  5. Two-dimensional mapping of needle visibility with linear and curved array for ultrasound-guided interventional procedure

    NASA Astrophysics Data System (ADS)

    Susanti, Hesty; Suprijanto, Kurniadi, Deddy

    2018-02-01

    Needle visibility in ultrasound-guided technique has been a crucial factor for successful interventional procedure. It has been affected by several factors, i.e. puncture depth, insertion angle, needle size and material, and imaging technology. The influences of those factors made the needle not always well visible. 20 G needles of 15 cm length (Nano Line, facet) were inserted into water bath with variation of insertion angles and depths. Ultrasound measurements are performed with BK-Medical Flex Focus 800 using 12 MHz linear array and 5 MHz curved array in Ultrasound Guided Regional Anesthesia mode. We propose 3 criteria to evaluate needle visibility, i.e. maximum intensity, mean intensity, and the ratio between minimum and maximum intensity. Those criteria were then depicted into representative maps for practical purpose. The best criterion candidate for representing the needle visibility was criterion 1. Generally, the appearance pattern of the needle from this criterion was relatively consistent, i.e. for linear array, it was relatively poor visibility in the middle part of the shaft, while for curved array, it is relatively better visible toward the end of the shaft. With further investigations, for example with the use of tissue-mimicking phantom, the representative maps can be built for future practical purpose, i.e. as a tool for clinicians to ensure better needle placement in clinical application. It will help them to avoid the "dead" area where the needle is not well visible, so it can reduce the risks of vital structures traversing and the number of required insertion, resulting in less patient morbidity. Those simple criteria and representative maps can be utilized to evaluate general visibility patterns of the needle in vast range of needle types and sizes in different insertion media. This information is also important as an early investigation for future research of needle visibility improvement, i.e. the development of beamforming strategies and ultrasound enhanced (echogenic) needle.

  6. Automated tru-cut imaging-guided core needle biopsy of canine orbital neoplasia. A prospective feasibility study

    PubMed Central

    Cirla, A.; Rondena, M.; Bertolini, G.

    2016-01-01

    The purpose of this study was to evaluate the diagnostic value of imaging-guided core needle biopsy for canine orbital mass diagnosis. A second excisional biopsy obtained during surgery or necropsy was used as the reference standard. A prospective feasibility study was conducted in 23 canine orbital masses at a single centre. A complete ophthalmic examination was always followed by orbital ultrasound and computed tomography (CT) examination of the head. All masses were sampled with the patient still on the CT table using ultrasound (US) guided automatic tru-cut device. The most suitable sampling approach to the orbit was chosen each time based on the CT image analysis. One of the following different approaches was used: trans-orbital, trans-conjunctival or trans-masseteric. In all cases, the imaging-guided biopsy provided a sufficient amount of tissue for the histopathological diagnosis, which concurred with the biopsies obtained using the excisional technique. CT examination was essential for morphological diagnosis and provided detailed topographic information that allowed us to choose the safest orbital approach for the biopsy. US guided automatic tru-cut biopsy based on CT images, performed with patient still on the CT table, resulted in a minimally invasive, relatively easy, and accurate diagnostic procedure in dogs with orbital masses. PMID:27540512

  7. Automated tru-cut imaging-guided core needle biopsy of canine orbital neoplasia. A prospective feasibility study.

    PubMed

    Cirla, A; Rondena, M; Bertolini, G

    2016-01-01

    The purpose of this study was to evaluate the diagnostic value of imaging-guided core needle biopsy for canine orbital mass diagnosis. A second excisional biopsy obtained during surgery or necropsy was used as the reference standard. A prospective feasibility study was conducted in 23 canine orbital masses at a single centre. A complete ophthalmic examination was always followed by orbital ultrasound and computed tomography (CT) examination of the head. All masses were sampled with the patient still on the CT table using ultrasound (US) guided automatic tru-cut device. The most suitable sampling approach to the orbit was chosen each time based on the CT image analysis. One of the following different approaches was used: trans-orbital, trans-conjunctival or trans-masseteric. In all cases, the imaging-guided biopsy provided a sufficient amount of tissue for the histopathological diagnosis, which concurred with the biopsies obtained using the excisional technique. CT examination was essential for morphological diagnosis and provided detailed topographic information that allowed us to choose the safest orbital approach for the biopsy. US guided automatic tru-cut biopsy based on CT images, performed with patient still on the CT table, resulted in a minimally invasive, relatively easy, and accurate diagnostic procedure in dogs with orbital masses.

  8. Experimental demonstration of passive acoustic imaging in the human skull cavity using CT-based aberration corrections.

    PubMed

    Jones, Ryan M; O'Reilly, Meaghan A; Hynynen, Kullervo

    2015-07-01

    Experimentally verify a previously described technique for performing passive acoustic imaging through an intact human skull using noninvasive, computed tomography (CT)-based aberration corrections Jones et al. [Phys. Med. Biol. 58, 4981-5005 (2013)]. A sparse hemispherical receiver array (30 cm diameter) consisting of 128 piezoceramic discs (2.5 mm diameter, 612 kHz center frequency) was used to passively listen through ex vivo human skullcaps (n = 4) to acoustic emissions from a narrow-band fixed source (1 mm diameter, 516 kHz center frequency) and from ultrasound-stimulated (5 cycle bursts, 1 Hz pulse repetition frequency, estimated in situ peak negative pressure 0.11-0.33 MPa, 306 kHz driving frequency) Definity™ microbubbles flowing through a thin-walled tube phantom. Initial in vivo feasibility testing of the method was performed. The performance of the method was assessed through comparisons to images generated without skull corrections, with invasive source-based corrections, and with water-path control images. For source locations at least 25 mm from the inner skull surface, the modified reconstruction algorithm successfully restored a single focus within the skull cavity at a location within 1.25 mm from the true position of the narrow-band source. The results obtained from imaging single bubbles are in good agreement with numerical simulations of point source emitters and the authors' previous experimental measurements using source-based skull corrections O'Reilly et al. [IEEE Trans. Biomed. Eng. 61, 1285-1294 (2014)]. In a rat model, microbubble activity was mapped through an intact human skull at pressure levels below and above the threshold for focused ultrasound-induced blood-brain barrier opening. During bursts that led to coherent bubble activity, the location of maximum intensity in images generated with CT-based skull corrections was found to deviate by less than 1 mm, on average, from the position obtained using source-based corrections. Taken together, these results demonstrate the feasibility of using the method to guide bubble-mediated ultrasound therapies in the brain. The technique may also have application in ultrasound-based cerebral angiography.

  9. Experimental demonstration of passive acoustic imaging in the human skull cavity using CT-based aberration corrections

    PubMed Central

    Jones, Ryan M.; O’Reilly, Meaghan A.; Hynynen, Kullervo

    2015-01-01

    Purpose: Experimentally verify a previously described technique for performing passive acoustic imaging through an intact human skull using noninvasive, computed tomography (CT)-based aberration corrections Jones et al. [Phys. Med. Biol. 58, 4981–5005 (2013)]. Methods: A sparse hemispherical receiver array (30 cm diameter) consisting of 128 piezoceramic discs (2.5 mm diameter, 612 kHz center frequency) was used to passively listen through ex vivo human skullcaps (n = 4) to acoustic emissions from a narrow-band fixed source (1 mm diameter, 516 kHz center frequency) and from ultrasound-stimulated (5 cycle bursts, 1 Hz pulse repetition frequency, estimated in situ peak negative pressure 0.11–0.33 MPa, 306 kHz driving frequency) Definity™ microbubbles flowing through a thin-walled tube phantom. Initial in vivo feasibility testing of the method was performed. The performance of the method was assessed through comparisons to images generated without skull corrections, with invasive source-based corrections, and with water-path control images. Results: For source locations at least 25 mm from the inner skull surface, the modified reconstruction algorithm successfully restored a single focus within the skull cavity at a location within 1.25 mm from the true position of the narrow-band source. The results obtained from imaging single bubbles are in good agreement with numerical simulations of point source emitters and the authors’ previous experimental measurements using source-based skull corrections O’Reilly et al. [IEEE Trans. Biomed. Eng. 61, 1285–1294 (2014)]. In a rat model, microbubble activity was mapped through an intact human skull at pressure levels below and above the threshold for focused ultrasound-induced blood–brain barrier opening. During bursts that led to coherent bubble activity, the location of maximum intensity in images generated with CT-based skull corrections was found to deviate by less than 1 mm, on average, from the position obtained using source-based corrections. Conclusions: Taken together, these results demonstrate the feasibility of using the method to guide bubble-mediated ultrasound therapies in the brain. The technique may also have application in ultrasound-based cerebral angiography. PMID:26133635

  10. 3D conformal MRI-guided transurethral ultrasound therapy: results of gel phantom experiments

    NASA Astrophysics Data System (ADS)

    N'Djin, W. A.; Burtnyk, M.; McCormick, S.; Bronskill, M.; Chopra, R.

    2011-09-01

    MRI-guided transurethral ultrasound therapy shows promise for minimally invasive treatment of localized prostate cancer. Previous in-vivo studies demonstrated the feasibility of performing conservative treatments using real-time temperature feedback to control accurately the establishment of coagulative lesions within circumscribed prostate regions. This in-vitro study tested device configuration and control options for achieving full prostate treatments. A multi-channel MRI compatible ultrasound therapy system was evaluated in gel phantoms using 3 canine prostate models. Prostate profiles were 5 mm-step-segmented from T2-weighted MR images performed during previous in-vivo experiments. During ultrasound exposures, each ultrasound element was controlled independently by the 3D controller. Decisions on acoustic power, frequency, and device rotation rate were made in real time based on MR thermometry feedback and prostate radii. Low and high power treatment approaches using maximum acoustic powers of 10 or 20 W.cm-2 were tested as well as single and dual-frequency strategies (4.05/13.10 MHz). The dual-frequency strategy used either the fundamental frequency or the 3rd harmonic component, depending on the prostate radius. The 20 W.cm-2 dual frequency approach was the most efficient configuration in achieving full prostate treatments. Treatment times were about half the duration of those performed with 10 W.cm-2 configurations. Full prostate coagulations were performed in 16.3±6.1 min at a rate of 1.8±0.2 cm3.min-1, and resulted in very little undertreated tissue (<3%). Surrounding organs positioned beyond a safety distance of 1.4±1.0 mm from prostate boundaries were not damaged, particularly rectal wall tissues. In this study, a 3D, MR-thermometry-guided transurethral ultrasound therapy was validated in vitro in a tissue-mimicking phantom for performing full prostate treatment. A dual-frequency configuration with 20 W.cm-2 ultrasound intensity exposure showed good results with direct application to full human prostate treatments.

  11. Optimization of real-time rigid registration motion compensation for prostate biopsies using 2D/3D ultrasound

    NASA Astrophysics Data System (ADS)

    Gillies, Derek J.; Gardi, Lori; Zhao, Ren; Fenster, Aaron

    2017-03-01

    During image-guided prostate biopsy, needles are targeted at suspicious tissues to obtain specimens that are later examined histologically for cancer. Patient motion causes inaccuracies when using MR-transrectal ultrasound (TRUS) image fusion approaches used to augment the conventional biopsy procedure. Motion compensation using a single, user initiated correction can be performed to temporarily compensate for prostate motion, but a real-time continuous registration offers an improvement to clinical workflow by reducing user interaction and procedure time. An automatic motion compensation method, approaching the frame rate of a TRUS-guided system, has been developed for use during fusion-based prostate biopsy to improve image guidance. 2D and 3D TRUS images of a prostate phantom were registered using an intensity based algorithm utilizing normalized cross-correlation and Powell's method for optimization with user initiated and continuous registration techniques. The user initiated correction performed with observed computation times of 78 ± 35 ms, 74 ± 28 ms, and 113 ± 49 ms for in-plane, out-of-plane, and roll motions, respectively, corresponding to errors of 0.5 ± 0.5 mm, 1.5 ± 1.4 mm, and 1.5 ± 1.6°. The continuous correction performed significantly faster (p < 0.05) than the user initiated method, with observed computation times of 31 ± 4 ms, 32 ± 4 ms, and 31 ± 6 ms for in-plane, out-of-plane, and roll motions, respectively, corresponding to errors of 0.2 ± 0.2 mm, 0.6 ± 0.5 mm, and 0.8 ± 0.4°.

  12. An ultrasound-guided fluorescence tomography system: design and specification

    NASA Astrophysics Data System (ADS)

    D'Souza, Alisha V.; Flynn, Brendan P.; Kanick, Stephen C.; Torosean, Sason; Davis, Scott C.; Maytin, Edward V.; Hasan, Tayyaba; Pogue, Brian W.

    2013-03-01

    An ultrasound-guided fluorescence molecular tomography system is under development for in vivo quantification of Protoporphyrin IX (PpIX) during Aminolevulinic Acid - Photodynamic Therapy (ALA-PDT) of Basal Cell Carcinoma. The system is designed to combine fiber-based spectral sampling of PPIX fluorescence emission with co-registered ultrasound images to quantify local fluorophore concentration. A single white light source is used to provide an estimate of the bulk optical properties of tissue. Optical data is obtained by sequential illumination of a 633nm laser source at 4 linear locations with parallel detection at 5 locations interspersed between the sources. Tissue regions from segmented ultrasound images, optical boundary data, white light-informed optical properties and diffusion theory are used to estimate the fluorophore concentration in these regions. Our system and methods allow interrogation of both superficial and deep tissue locations up to PpIX concentrations of 0.025ug/ml.

  13. Determining temperature distribution in tissue in the focal plane of the high (>100 W/cm(2)) intensity focused ultrasound beam using phase shift of ultrasound echoes.

    PubMed

    Karwat, Piotr; Kujawska, Tamara; Lewin, Peter A; Secomski, Wojciech; Gambin, Barbara; Litniewski, Jerzy

    2016-02-01

    In therapeutic applications of High Intensity Focused Ultrasound (HIFU) the guidance of the HIFU beam and especially its focal plane is of crucial importance. This guidance is needed to appropriately target the focal plane and hence the whole focal volume inside the tumor tissue prior to thermo-ablative treatment and beginning of tissue necrosis. This is currently done using Magnetic Resonance Imaging that is relatively expensive. In this study an ultrasound method, which calculates the variations of speed of sound in the locally heated tissue volume by analyzing the phase shifts of echo-signals received by an ultrasound scanner from this very volume is presented. To improve spatial resolution of B-mode imaging and minimize the uncertainty of temperature estimation the acoustic signals were transmitted and received by 8 MHz linear phased array employing Synthetic Transmit Aperture (STA) technique. Initially, the validity of the algorithm developed was verified experimentally in a tissue-mimicking phantom heated from 20.6 to 48.6 °C. Subsequently, the method was tested using a pork loin sample heated locally by a 2 MHz pulsed HIFU beam with focal intensity ISATA of 129 W/cm(2). The temperature calibration of 2D maps of changes in the sound velocity induced by heating was performed by comparison of the algorithm-determined changes in the sound velocity with the temperatures measured by thermocouples located in the heated tissue volume. The method developed enabled ultrasound temperature imaging of the heated tissue volume from the very inception of heating with the contrast-to-noise ratio of 3.5-12 dB in the temperature range 21-56 °C. Concurrently performed, conventional B-mode imaging revealed CNR close to zero dB until the temperature reached 50 °C causing necrosis. The data presented suggest that the proposed method could offer an alternative to MRI-guided temperature imaging for prediction of the location and extent of the thermal lesion prior to applying the final HIFU treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Tissue oxygen monitoring by photoacoustic lifetime imaging (PALI) and its application to image-guided photodynamic therapy (PDT)

    NASA Astrophysics Data System (ADS)

    Shao, Qi; Morgounova, Ekaterina; Ashkenazi, Shai

    2015-03-01

    The oxygen partial pressure (pO2), which results from the balance between oxygen delivery and its consumption, is a key component of the physiological state of a tissue. Images of oxygen distribution can provide essential information for identifying hypoxic tissue and optimizing cancer treatment. Previously, we have reported a noninvasive in vivo imaging modality based on photoacoustic lifetime. The technique maps the excited triplet state of oxygen-sensitive dye, thus reflects the spatial and temporal distribution of tissue oxygen. We have applied PALI on tumor on small animals to identify hypoxia area. We also showed that PALI is able monitor changes of tissue oxygen, in an acute ischemia and breathing modulation model. Here we present our work on developing a treatment/imaging modality (PDT-PALI) that integrates PDT and a combined ultrasound/photoacoustic imaging system. The system provides real-time feedback of three essential parameters namely: tissue oxygen, light penetration in tumor location, and distribution of photosensitizer. Tissue oxygen imaging is performed by applying PALI, which relies on photoacoustic probing of oxygen-dependent, excitation lifetime of Methylene Blue (MB) photosensitizer. Lifetime information can also be used to generate image showing the distribution of photosensitizer. The level and penetration depth of PDT illumination can be deduced from photoacoustic imaging at the same wavelength. All images will be combined with ultrasound B-mode images for anatomical reference.

  15. Dosimetric verification for primary focal hypermetabolism of nasopharyngeal carcinoma patients treated with dynamic intensity-modulated radiation therapy.

    PubMed

    Xin, Yong; Wang, Jia-Yang; Li, Liang; Tang, Tian-You; Liu, Gui-Hong; Wang, Jian-She; Xu, Yu-Mei; Chen, Yong; Zhang, Long-Zhen

    2012-01-01

    To make sure the feasibility with (18F)FDG PET/CT to guided dynamic intensity-modulated radiation therapy (IMRT) for nasopharyngeal carcinoma patients, by dosimetric verification before treatment. Chose 11 patients in III~IVA nasopharyngeal carcinoma treated with functional image-guided IMRT and absolute and relative dosimetric verification by Varian 23EX LA, ionization chamber, 2DICA of I'mRT Matrixx and IBA detachable phantom. Drawing outline and making treatment plan were by different imaging techniques (CT and (18F)FDG PET/CT). The dose distributions of the various regional were realized by SMART. The absolute mean errors of interest area were 2.39%±0.66 using 0.6 cc ice chamber. Results using DTA method, the average relative dose measurements within our protocol (3%, 3 mm) were 87.64% at 300 MU/min in all filed. Dosimetric verification before IMRT is obligatory and necessary. Ionization chamber and 2DICA of I'mRT Matrixx was the effective dosimetric verification tool for primary focal hyper metabolism in functional image-guided dynamic IMRT for nasopharyngeal carcinoma. Our preliminary evidence indicates that functional image-guided dynamic IMRT is feasible.

  16. In-vivo ultrasound and photoacoustic image- guided photothermal cancer therapy using silica-coated gold nanorods.

    PubMed

    Kim, Seungsoo; Chen, Yun-Sheng; Luke, Geoffrey P; Emelianov, Stanislav Y

    2014-05-01

    In nanoparticle-augmented photothermal therapy, evaluating the delivery and spatial distribution of nanoparticles, followed by remote temperature mapping and monitoring, is essential to ensure the optimal therapeutic outcome. The utility of ultrasound and photoacoustic imaging to assist photothermal therapy has been previously demonstrated. Here, using a mouse xenograft tumor model, it is demonstrated in vivo that ultrasound-guided photoacoustic imaging can be used to plan the treatment and to guide the therapy. To evaluate nanoparticle delivery and spatial distribution, three-dimensional ultrasound and spectroscopic photoacoustic imaging of a mouse with a tumor was performed before and after intravenous injection of silica-coated gold nanorods. After injection and sufficient circulation of nanoparticles, photothermal therapy was performed for 5 min using an 808-nm continuous-wave laser. During the photothermal therapy, photoacoustic images were acquired continuously and used to measure the temperature changes within tissue. A heterogeneous distribution of temperature, which was spatially correlated with the measured distribution of nanoparticles, indicated that peak temperatures of 53°C were achieved in the tumor. An Arrhenius thermal damage model determined that this thermal deposition would result in significant cell death. The results of this study suggest that ultrasound and photoacoustic imaging can effectively guide photothermal therapy to achieve the desired thermal treatment.

  17. Temporal regularization of ultrasound-based liver motion estimation for image-guided radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Shea, Tuathan P., E-mail: tuathan.oshea@icr.ac.uk; Bamber, Jeffrey C.; Harris, Emma J.

    Purpose: Ultrasound-based motion estimation is an expanding subfield of image-guided radiation therapy. Although ultrasound can detect tissue motion that is a fraction of a millimeter, its accuracy is variable. For controlling linear accelerator tracking and gating, ultrasound motion estimates must remain highly accurate throughout the imaging sequence. This study presents a temporal regularization method for correlation-based template matching which aims to improve the accuracy of motion estimates. Methods: Liver ultrasound sequences (15–23 Hz imaging rate, 2.5–5.5 min length) from ten healthy volunteers under free breathing were used. Anatomical features (blood vessels) in each sequence were manually annotated for comparison withmore » normalized cross-correlation based template matching. Five sequences from a Siemens Acuson™ scanner were used for algorithm development (training set). Results from incremental tracking (IT) were compared with a temporal regularization method, which included a highly specific similarity metric and state observer, known as the α–β filter/similarity threshold (ABST). A further five sequences from an Elekta Clarity™ system were used for validation, without alteration of the tracking algorithm (validation set). Results: Overall, the ABST method produced marked improvements in vessel tracking accuracy. For the training set, the mean and 95th percentile (95%) errors (defined as the difference from manual annotations) were 1.6 and 1.4 mm, respectively (compared to 6.2 and 9.1 mm, respectively, for IT). For each sequence, the use of the state observer leads to improvement in the 95% error. For the validation set, the mean and 95% errors for the ABST method were 0.8 and 1.5 mm, respectively. Conclusions: Ultrasound-based motion estimation has potential to monitor liver translation over long time periods with high accuracy. Nonrigid motion (strain) and the quality of the ultrasound data are likely to have an impact on tracking performance. A future study will investigate spatial uniformity of motion and its effect on the motion estimation errors.« less

  18. Magnetic resonance guided high-intensity focused ultrasound ablation of musculoskeletal tumors

    PubMed Central

    Avedian, Raffi S.; Gold, Garry; Ghanouni, Pejman; Pauly, Kim Butts

    2015-01-01

    This article reviews the fundamental principles and clinical experimental uses of magnetic resonance guided high-intensity focused ultrasound (MRgHIFU) ablation of musculoskeletal tumors. MRgHIFU is a noninvasive treatment modality that takes advantage of the ability of magnetic resonance to measure tissue temperature and uses this technology to guide high-intensity focused ultrasound waves to a specific focus within the human body that results in heat generation and complete thermal necrosis of the targeted tissue. Adjacent normal tissues are spared because of the accurate delivery of thermal energy, as well as, local blood perfusion that provides a cooling effect. MRgHIFU is approved by the Food and Drug Administration for the treatment of uterine fibroids and is used on an experimental basis to treat breast, prostate, liver, bone, and brain tumors. PMID:26120376

  19. Subsurface PpIX imaging in vivo with ultrasound-guided tomographic spectroscopy: reconstruction vs. born-normalized data

    NASA Astrophysics Data System (ADS)

    Flynn, Brendan P.; D'Souza, Alisha V.; Kanick, Stephen C.; Maytin, Edward; Hasan, Tayyaba; Pogue, Brian W.

    2013-03-01

    Aminolevulinic acid (ALA)-induced Protoporphyrin IX (PpIX)-based photodynamic therapy (PDT) is an effective treatment for skin cancers including basal cell carcinoma (BCC). Topically applied ALA promotes PpIX production preferentially in tumors, and many strategies have been developed to increase PpIX distribution and PDT treatment efficacy at depths > 1mm is not fully understood. While surface imaging techniques provide useful diagnosis, dosimetry, and efficacy information for superficial tumors, these methods cannot interrogate deeper tumors to provide in situ insight into spatial PpIX distributions. We have developed an ultrasound-guided, white-light-informed, tomographics spectroscopy system for the spatial measurement of subsurface PpIX. Detailed imaging system specifications, methodology, and optical-phantom-based characterization will be presented separately. Here we evaluate preliminary in vivo results using both full tomographic reconstruction and by plotting individual tomographic source-detector pair data against US images.

  20. Feasibility of Dual Optics/Ultrasound Imaging and Contrast Media for the Detection and Characterization of Prostate Cancer

    DTIC Science & Technology

    2009-03-01

    acousto - optic effect will be used to only modulate light (at the ultrasound frequency) which propagates through a small ultrasound focal zone. This...DOD Idea Development Award is concerned with the development of a novel acousto - optic detection idea based on quadrature measurements with a gain...perform acousto - optic molecular imaging of prostate cancer with incoherent photons using endogenous contrast, e.g. hypoxia, and with fluorescent probes and microbubbles for increased specificity and signal enhancement.

  1. Observation of skull-guided acoustic waves in a water-immersed murine skull using optoacoustic excitation

    NASA Astrophysics Data System (ADS)

    Estrada, Héctor; Rebling, Johannes; Razansky, Daniel

    2017-02-01

    The skull bone, a curved solid multilayered plate protecting the brain, constitutes a big challenge for the use of ultrasound-mediated techniques in neuroscience. Ultrasound waves incident from water or soft biological tissue are mostly reflected when impinging on the skull. To this end, skull properties have been characterized for both high-intensity focused ultrasound (HIFU) operating in the narrowband far-field regime and optoacoustic imaging applications. Yet, no study has been conducted to characterize the near-field of water immersed skulls. We used the thermoelastic effect with a 532 nm pulsed laser to trigger a wide range of broad-band ultrasound modes in a mouse skull. In order to capture the waves propagating in the near-field, a thin hydrophone was scanned in close proximity to the skull's surface. While Leaky pseudo-Lamb waves and grazing-angle bulk water waves are clearly visible in the spatio-temporal data, we were only able to identify skull-guided acoustic waves after dispersion analysis in the wavenumber-frequency space. The experimental data was found to be in a reasonable agreement with a flat multilayered plate model.

  2. Focused Ultrasound Surgery for Uterine Fibroids

    MedlinePlus

    ... ultrasound surgery, your doctor may perform a pelvic magnetic resonance imaging (MRI) scan before treatment. Focused ultrasound surgery — also called magnetic resonance-guided focused ultrasound surgery or focused ultrasound ...

  3. Preservation of the endometrial enhancement after magnetic resonance imaging-guided high-intensity focused ultrasound ablation of submucosal uterine fibroids.

    PubMed

    Kim, Young-Sun; Kim, Tae-Joong; Lim, Hyo Keun; Rhim, Hyunchul; Jung, Sin-Ho; Ahn, Joong Hyun; Lee, Jeong-Won; Kim, Byoung-Gie

    2017-09-01

    To evaluate the integrity of endometrial enhancement after magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) ablation of submucosal uterine fibroids based on contrast-enhanced MRI findings, and to identify the risk factors for endometrial impairment. In total, 117 submucosal fibroids (diameter: 5.9 ± 3.0 cm) in 101 women (age: 43.6 ± 4.4 years) treated with MR-HIFU ablation were retrospectively analysed. Endometrial integrity was assessed with contrast-enhanced T1-weighted images at immediate (n = 101), 3-month (n = 62) and 12-month (n = 15) follow-ups. Endometrial impairment was classified into grades 0 (continuous endometrium), 1 (pin-point, full-thickness discontinuity), 2 (between grade 1 and 3), or 3 (full-thickness discontinuity >1 cm). Risk factors were assessed with generalized estimating equation (GEE) analysis. Among 117 fibroids, grades 0, 1, 2 and 3 endometrial impairments were observed at initial examination in 56.4%, 24.8%, 13.7% and 4.3%, respectively. Among 37 fibroid cases of endometrial impairment for which follow-ups were conducted, 30 showed improvements at 3- and/or 12-month follow-up. GEE analysis revealed the degree of endometrial protrusion was significantly associated with severity of endometrial injury (P < 0.0001). After MR-HIFU ablation of submucosal fibroids, endometrial enhancement was preserved intact or minimally impaired in most cases. Impaired endometrium, which is more common after treating endometrially-protruded fibroids, may recover spontaneously. • After MR-HIFU ablation for submucosal fibroid, endometrium is mostly preserved/minimally impaired. • Endometrial-protruded submucosal fibroid is susceptible to more severe endometrial impairment. • The impaired endometrium may recover spontaneously at follow-up MR exams.

  4. Integrating Ultrasound Teaching into Preclinical Problem-based Learning

    PubMed Central

    Tshibwabwa, Eli Tumba; Cannon, Jenifer; Rice, James; Kawooya, Michael G; Sanii, Reza; Mallin, Robert

    2016-01-01

    Objectives: The aim is to provide students in the preclinical with ultrasound image interpretation skills. Research question: Are students in smaller groups with access to a combination of lectures and hands-on patient contact most likely to have better ultrasound image interpretation skills, than students in larger groups with only interactive didactic lectures? Methodology: First-year students at the preclinical Program of the College of Medicine, participated in two 2-h introductory interactive ultrasound sessions. The study comprised two cohorts: 2012/2013 students, who were offered large group teaching (LGT) sessions (control group), and 2013/2014 students, who received the intervention in small group learning problem-based learning (PBL) sessions (experimental group). The overall learning objectives were identical for both groups. The success of the module was evaluated using pre- and post-tests as well as students’ feedback. Results: The students in the experimental group showed significantly higher scores in interpretations of images than those in the control group. The experimental group showed achievement of learning outcomes along with higher levels of satisfaction with the module compared to the latter. Conclusion: Posttest knowledge of the basics of ultrasound improved significantly over the pretest in the experimental group. In addition, students’ overall satisfaction of the ultrasound module was shown to be higher for the PBL compared to the LGT groups. Small groups in an interactive and PBL setting along with opportunities for hands-on practice and simultaneous visualization of findings on a high definition screen should enhance preclinical student learning of the basics of ultrasound. Despite the potential of ultrasound as a clinical, teaching and learning tool for students in the preclinical years, standardized recommendations have yet to be created regarding its integration into the curricula within academic institutions and clinical medicine. The interactive and PBL is here to stay at the college of medicine. Further research would be carried out to see if this trend persists in the upcoming vertical system-based curriculum of the college of medicine. PMID:27833780

  5. Monitoring and guidance of HIFU beams with dual-mode ultrasound arrays.

    PubMed

    Ballard, John R; Casper, Andrew J; Ebbini, Emad S

    2009-01-01

    We present experimental results illustrating the unique advantages of dual-mode array (DMUA) systems in monitoring and guidance of high intensity focused ultrasound (HIFU) lesion formation. DMUAs offer a unique paradigm in image-guided surgery; one in which images obtained using the same therapeutic transducer provide feedback for: 1) refocusing the array in the presence of strongly scattering objects, e.g. the ribs, 2) temperature change at the intended location of the HIFU focus, and 3) changes in the echogenicity of the tissue in response to therapeutic HIFU. These forms of feedback have been demonstrated in vitro in preparation for the design and implementation of a real-time system for imaging and therapy with DMUAs. The results clearly demonstrate that DMUA image feedback is spatially accurate and provide sufficient spatial and contrast resolution for identification of high contrast objects like the ribs and significant blood vessels in the path of the HIFU beam.

  6. On Voxel based Iso-Tumor Control Probabilty and Iso-Complication Maps for Selective Boosting and Selective Avoidance Intensity Modulated Radiotherapy.

    PubMed

    Kim, Yusung; Tomé, Wolfgang A

    2008-01-01

    Voxel based iso-Tumor Control Probability (TCP) maps and iso-Complication maps are proposed as a plan-review tool especially for functional image-guided intensity-modulated radiotherapy (IMRT) strategies such as selective boosting (dose painting) and conformal avoidance IMRT. The maps employ voxel-based phenomenological biological dose-response models for target volumes and normal organs. Two IMRT strategies for prostate cancer, namely conventional uniform IMRT delivering an EUD = 84 Gy (equivalent uniform dose) to the entire PTV and selective boosting delivering an EUD = 82 Gy to the entire PTV, are investigated, to illustrate the advantages of this approach over iso-dose maps. Conventional uniform IMRT did yield a more uniform isodose map to the entire PTV while selective boosting did result in a nonuniform isodose map. However, when employing voxel based iso-TCP maps selective boosting exhibited a more uniform tumor control probability map compared to what could be achieved using conventional uniform IMRT, which showed TCP cold spots in high-risk tumor subvolumes despite delivering a higher EUD to the entire PTV. Voxel based iso-Complication maps are presented for rectum and bladder, and their utilization for selective avoidance IMRT strategies are discussed. We believe as the need for functional image guided treatment planning grows, voxel based iso-TCP and iso-Complication maps will become an important tool to assess the integrity of such treatment plans.

  7. Optimizing MR imaging-guided navigation for focused ultrasound interventions in the brain

    NASA Astrophysics Data System (ADS)

    Werner, B.; Martin, E.; Bauer, R.; O'Gorman, R.

    2017-03-01

    MR imaging during transcranial MR imaging-guided Focused Ultrasound surgery (tcMRIgFUS) is challenging due to the complex ultrasound transducer setup and the water bolus used for acoustic coupling. Achievable image quality in the tcMRIgFUS setup using the standard body coil is significantly inferior to current neuroradiologic standards. As a consequence, MR image guidance for precise navigation in functional neurosurgical interventions using tcMRIgFUS is basically limited to the acquisition of MR coordinates of salient landmarks such as the anterior and posterior commissure for aligning a stereotactic atlas. Here, we show how improved MR image quality provided by a custom built MR coil and optimized MR imaging sequences can support imaging-guided navigation for functional tcMRIgFUS neurosurgery by visualizing anatomical landmarks that can be integrated into the navigation process to accommodate for patient specific anatomy.

  8. In-line positioning of ultrasound images using wireless remote display system with tablet computer facilitates ultrasound-guided radial artery catheterization.

    PubMed

    Tsuchiya, Masahiko; Mizutani, Koh; Funai, Yusuke; Nakamoto, Tatsuo

    2016-02-01

    Ultrasound-guided procedures may be easier to perform when the operator's eye axis, needle puncture site, and ultrasound image display form a straight line in the puncture direction. However, such methods have not been well tested in clinical settings because that arrangement is often impossible due to limited space in the operating room. We developed a wireless remote display system for ultrasound devices using a tablet computer (iPad Mini), which allows easy display of images at nearly any location chosen by the operator. We hypothesized that the in-line layout of ultrasound images provided by this system would allow for secure and quick catheterization of the radial artery. We enrolled first-year medical interns (n = 20) who had no prior experience with ultrasound-guided radial artery catheterization to perform that using a short-axis out-of-plane approach with two different methods. With the conventional method, only the ultrasound machine placed at the side of the head of the patient across the targeted forearm was utilized. With the tablet method, the ultrasound images were displayed on an iPad Mini positioned on the arm in alignment with the operator's eye axis and needle puncture direction. The success rate and time required for catheterization were compared between the two methods. Success rate was significantly higher (100 vs. 70 %, P = 0.02) and catheterization time significantly shorter (28.5 ± 7.5 vs. 68.2 ± 14.3 s, P < 0.001) with the tablet method as compared to the conventional method. An ergonomic straight arrangement of the image display is crucial for successful and quick completion of ultrasound-guided arterial catheterization. The present remote display system is a practical method for providing such an arrangement.

  9. Non-invasive therapeutic use of High-Intensity Focused Ultrasound (HIFU) with 3 Tesla Magnetic Resonance Imaging in women with symptomatic uterine fibroids.

    PubMed

    Łoziński, Tomasz; Filipowska, Justyna; Gurynowicz, Grzegorz; Gabriel, Iwona; Czekierdowski, Artur

    2017-01-01

    Benign uterine fibroids are common female genital tract tumors and if symptomatic often require extensive surgery. When tumors are multiple and large or unusually located, the operative treatment may lead to significant morbidity and compromise quality of life. Recovery period after surgical treatment may be complicated by patient's medical condition and wound healing problems. Currently used other non-surgical treatment modalities usually provide only a temporal symptoms relief and may not be efficient in all affected women. In the last decade, minimally invasive treatment of uterine fibroids called Magnetic Resonance guided High-Intensity Focused Ultrasound (MRI HIFU) was introduced. This technique uses thermal ablation simultaneously with MRI imaging of the mass and tissue temperature measurements during the procedure where a focused ultrasound beam is applied externally to destroy tumors located in the human body. Successful application of MRI HIFU has been recently described in patients with various malignancies, such as breast, prostate and hepatocellular cancers as well as soft tissue and bone tumors. This technique is innovative and has been proven to be safe and effective but there are several limitations for treatment. The article highlights the relative advantages and disadvantages of MRI guided HIFU in women with uterine fibroids. The authors also describe high-resolution MRI technique on 3T MRI, along with the approach to interpretation of HIFU results applied to uterine fibroids that has been experienced at one institution.

  10. A suite of phantom-based test methods for assessing image quality of photoacoustic tomography systems

    NASA Astrophysics Data System (ADS)

    Vogt, William C.; Jia, Congxian; Wear, Keith A.; Garra, Brian S.; Pfefer, T. Joshua

    2017-03-01

    As Photoacoustic Tomography (PAT) matures and undergoes clinical translation, objective performance test methods are needed to facilitate device development, regulatory clearance and clinical quality assurance. For mature medical imaging modalities such as CT, MRI, and ultrasound, tissue-mimicking phantoms are frequently incorporated into consensus standards for performance testing. A well-validated set of phantom-based test methods is needed for evaluating performance characteristics of PAT systems. To this end, we have constructed phantoms using a custom tissue-mimicking material based on PVC plastisol with tunable, biologically-relevant optical and acoustic properties. Each phantom is designed to enable quantitative assessment of one or more image quality characteristics including 3D spatial resolution, spatial measurement accuracy, ultrasound/PAT co-registration, uniformity, penetration depth, geometric distortion, sensitivity, and linearity. Phantoms contained targets including high-intensity point source targets and dye-filled tubes. This suite of phantoms was used to measure the dependence of performance of a custom PAT system (equipped with four interchangeable linear array transducers of varying design) on design parameters (e.g., center frequency, bandwidth, element geometry). Phantoms also allowed comparison of image artifacts, including surface-generated clutter and bandlimited sensing artifacts. Results showed that transducer design parameters create strong variations in performance including a trade-off between resolution and penetration depth, which could be quantified with our method. This study demonstrates the utility of phantom-based image quality testing in device performance assessment, which may guide development of consensus standards for PAT systems.

  11. Theoretical Analysis of the Accuracy and Safety of MRI-Guided Transurethral 3-D Conformal Ultrasound Prostate Therapy

    NASA Astrophysics Data System (ADS)

    Burtnyk, Mathieu; Chopra, Rajiv; Bronskill, Michael

    2009-04-01

    MRI-guided transurethral ultrasound therapy is a promising new approach for the treatment of localized prostate cancer. Several studies have demonstrated the feasibility of producing large regions of thermal coagulation adequate for prostate therapy; however, the quantitative assessment of shaping these regions to complex 3-D human prostate geometries has not been fully explored. This study used numerical simulations and twenty manually-segmented pelvic anatomical models derived from high-quality MR images of prostate cancer patients to evaluate the treatment accuracy and safety of 3-D conformal MRI-guided transurethral ultrasound therapy. The simulations incorporated a rotating multi-element planar dual-frequency ultrasound transducer (seventeen 4×3 mm elements) operating at 4.7/9.7 MHz and 10 W/cm2 maximum acoustic power. Results using a novel feedback control algorithm which modulated the ultrasound frequency, power and device rate of rotation showed that regions of thermal coagulation could be shaped to predefined prostate volumes within 1.0 mm across the vast majority of these glands. Treatment times were typically 30 min and remained below 60 min for large 60 cc prostates. With a rectal cooling temperature of 15° C, the rectal wall did not exceed 30EM43 in half of the twenty patient models with only a few 1 mm3 voxels above this threshold in the other cases. At 4.7 MHz, heating of the pelvic bone can become significant when it is located less than 10 mm from the prostate. Numerical simulations show that MRI-guided transurethral ultrasound therapy can thermally coagulate whole prostate glands accurately and safely in 3-D.

  12. High-frequency ultrasound imaging for breast cancer biopsy guidance

    PubMed Central

    Cummins, Thomas; Yoon, Changhan; Choi, Hojong; Eliahoo, Payam; Kim, Hyung Ham; Yamashita, Mary W.; Hovanessian-Larsen, Linda J.; Lang, Julie E.; Sener, Stephen F.; Vallone, John; Martin, Sue E.; Kirk Shung, K.

    2015-01-01

    Abstract. Image-guided core needle biopsy is the current gold standard for breast cancer diagnosis. Microcalcifications, an important radiographic finding on mammography suggestive of early breast cancer such as ductal carcinoma in situ, are usually biopsied under stereotactic guidance. This procedure, however, is uncomfortable for patients and requires the use of ionizing radiation. It would be preferable to biopsy microcalcifications under ultrasound guidance since it is a faster procedure, more comfortable for the patient, and requires no radiation. However, microcalcifications cannot reliably be detected with the current standard ultrasound imaging systems. This study is motivated by the clinical need for real-time high-resolution ultrasound imaging of microcalcifications, so that biopsies can be accurately performed under ultrasound guidance. We have investigated how high-frequency ultrasound imaging can enable visualization of microstructures in ex vivo breast tissue biopsy samples. We generated B-mode images of breast tissue and applied the Nakagami filtering technique to help refine image output so that microcalcifications could be better assessed during ultrasound-guided core biopsies. We describe the preliminary clinical results of high-frequency ultrasound imaging of ex vivo breast biopsy tissue with microcalcifications and without Nakagami filtering and the correlation of these images with the pathology examination by hematoxylin and eosin stain and whole slide digital scanning. PMID:26693167

  13. Delay and Standard Deviation Beamforming to Enhance Specular Reflections in Ultrasound Imaging.

    PubMed

    Bandaru, Raja Sekhar; Sornes, Anders Rasmus; Hermans, Jeroen; Samset, Eigil; D'hooge, Jan

    2016-12-01

    Although interventional devices, such as needles, guide wires, and catheters, are best visualized by X-ray, real-time volumetric echography could offer an attractive alternative as it avoids ionizing radiation; it provides good soft tissue contrast, and it is mobile and relatively cheap. Unfortunately, as echography is traditionally used to image soft tissue and blood flow, the appearance of interventional devices in conventional ultrasound images remains relatively poor, which is a major obstacle toward ultrasound-guided interventions. The objective of this paper was therefore to enhance the appearance of interventional devices in ultrasound images. Thereto, a modified ultrasound beamforming process using conventional-focused transmit beams is proposed that exploits the properties of received signals containing specular reflections (as arising from these devices). This new beamforming approach referred to as delay and standard deviation beamforming (DASD) was quantitatively tested using simulated as well as experimental data using a linear array transducer. Furthermore, the influence of different imaging settings (i.e., transmit focus, imaging depth, and scan angle) on the obtained image contrast was evaluated. The study showed that the image contrast of specular regions improved by 5-30 dB using DASD beamforming compared with traditional delay and sum (DAS) beamforming. The highest gain in contrast was observed when the interventional device was tilted away from being orthogonal to the transmit beam, which is a major limitation in standard DAS imaging. As such, the proposed beamforming methodology can offer an improved visualization of interventional devices in the ultrasound image with potential implications for ultrasound-guided interventions.

  14. Interventional multispectral photoacoustic imaging with a clinical linear array ultrasound probe for guiding nerve blocks

    NASA Astrophysics Data System (ADS)

    Xia, Wenfeng; West, Simeon J.; Nikitichev, Daniil I.; Ourselin, Sebastien; Beard, Paul C.; Desjardins, Adrien E.

    2016-03-01

    Accurate identification of tissue structures such as nerves and blood vessels is critically important for interventional procedures such as nerve blocks. Ultrasound imaging is widely used as a guidance modality to visualize anatomical structures in real-time. However, identification of nerves and small blood vessels can be very challenging, and accidental intra-neural or intra-vascular injections can result in significant complications. Multi-spectral photoacoustic imaging can provide high sensitivity and specificity for discriminating hemoglobin- and lipid-rich tissues. However, conventional surface-illumination-based photoacoustic systems suffer from limited sensitivity at large depths. In this study, for the first time, an interventional multispectral photoacoustic imaging (IMPA) system was used to image nerves in a swine model in vivo. Pulsed excitation light with wavelengths in the ranges of 750 - 900 nm and 1150 - 1300 nm was delivered inside the body through an optical fiber positioned within the cannula of an injection needle. Ultrasound waves were received at the tissue surface using a clinical linear array imaging probe. Co-registered B-mode ultrasound images were acquired using the same imaging probe. Nerve identification was performed using a combination of B-mode ultrasound imaging and electrical stimulation. Using a linear model, spectral-unmixing of the photoacoustic data was performed to provide image contrast for oxygenated and de-oxygenated hemoglobin, water and lipids. Good correspondence between a known nerve location and a lipid-rich region in the photoacoustic images was observed. The results indicate that IMPA is a promising modality for guiding nerve blocks and other interventional procedures. Challenges involved with clinical translation are discussed.

  15. HIFU Monitoring and Control with Dual-Mode Ultrasound Arrays

    NASA Astrophysics Data System (ADS)

    Casper, Andrew Jacob

    The biological effects of high-intensity focused ultrasound (HIFU) have been known and studied for decades. HIFU has been shown capable of treating a wide variety of diseases and disorders. However, despite its demonstrated potential, HIFU has been slow to gain clinical acceptance. This is due, in part, to the difficulty associated with robustly monitoring and controlling the delivery of the HIFU energy. The non-invasive nature of the surgery makes the assessment of treatment progression difficult, leading to long treatment times and a significant risk of under treatment. This thesis research develops new techniques and systems for robustly monitoring HIFU therapies for the safe and efficacious delivery of the intended treatment. Systems and algorithms were developed for the two most common modes of HIFU delivery systems: single-element and phased array applicators. Delivering HIFU with a single element transducer is a widely used technique in HIFU therapies. The simplicity of a single element offers many benefits in terms of cost and overall system complexity. Typical monitoring schemes rely on an external device (e.g. diagnostic ultrasound or MRI) to assess the progression of therapy. The research presented in this thesis explores using the same element to both deliver and monitor the HIFU therapy. The use of a dual-mode ultrasound transducer (DMUT) required the development of an FPGA based single-channel arbitrary waveform generator and high-speed data acquisition unit. Data collected from initial uncontrolled ablations led to the development of monitoring and control algorithms which were implemented directly on the FPGA. Close integration between the data acquisition and arbitrary waveform units allowed for fast, low latency control over the ablation process. Results are presented that demonstrate control of HIFU therapies over a broad range of intensities and in multiple in vitro tissues. The second area of investigation expands the DMUT research to an ultrasound phased-array. The phased-array allows for electronic steering of the HIFU focus and imaging of the acoustic medium. Investigating the dual-mode ultrasound array (DMUA) required the design and construction of a novel ultrasound-guided focused ultrasound (USgFUS) platform. The platform consisted of custom hardware designed for the unique requirements of operating a phased-array in both therapeutic and imaging modes. The platform also required the development of FPGA based signal processing and GPU based beamforming algorithms for online monitoring of the therapy process. The results presented in this thesis represent the first demonstration of a real-time USgFUS platform based around a DMUA. Experimental imaging and therapy results from series of animal experiments, including a 12 animal GLP study, are presented. In addition, in vitro control results, which build upon the DMUT work, are presented.

  16. Ultrasound criteria and guided fine-needle aspiration diagnostic yields in small animal peritoneal, mesenteric and omental disease.

    PubMed

    Feeney, Daniel A; Ober, Christopher P; Snyder, Laura A; Hill, Sara A; Jessen, Carl R

    2013-01-01

    Peritoneal, mesenteric, and omental diseases are important causes of morbidity and mortality in humans and animals, although information in the veterinary literature is limited. The purposes of this retrospective study were to determine whether objectively applied ultrasound interpretive criteria are statistically useful in differentiating among cytologically defined normal, inflammatory, and neoplastic peritoneal conditions in dogs and cats. A second goal was to determine the cytologically interpretable yield on ultrasound-guided, fine-needle sampling of peritoneal, mesenteric, or omental structures. Sonographic criteria agreed upon by the authors were retrospectively and independently applied by two radiologists to the available ultrasound images without knowledge of the cytologic diagnosis and statistically compared to the ultrasound-guided, fine-needle aspiration cytologic interpretations. A total of 72 dogs and 49 cats with abdominal peritoneal, mesenteric, or omental (peritoneal) surface or effusive disease and 17 dogs and 3 cats with no cytologic evidence of inflammation or neoplasia were included. The optimized, ultrasound criteria-based statistical model created independently for each radiologist yielded an equation-based diagnostic category placement accuracy of 63.2-69.9% across the two involved radiologists. Regional organ-associated masses or nodules as well as aggregated bowel and peritoneal thickening were more associated with peritoneal neoplasia whereas localized, severely complex fluid collections were more associated with inflammatory peritoneal disease. The cytologically interpretable yield for ultrasound-guided fine-needle sampling was 72.3% with no difference between species, making this a worthwhile clinical procedure. © 2013 Veterinary Radiology & Ultrasound.

  17. Accuracy of ultrasound-guided nerve blocks of the cervical zygapophysial joints.

    PubMed

    Siegenthaler, Andreas; Mlekusch, Sabine; Trelle, Sven; Schliessbach, Juerg; Curatolo, Michele; Eichenberger, Urs

    2012-08-01

    Cervical zygapophysial joint nerve blocks typically are performed with fluoroscopic needle guidance. Descriptions of ultrasound-guided block of these nerves are available, but only one small study compared ultrasound with fluoroscopy, and only for the third occipital nerve. To evaluate the potential usefulness of ultrasound-guidance in clinical practice, studies that determine the accuracy of this technique using a validated control are essential. The aim of this study was to determine the accuracy of ultrasound-guided nerve blocks of the cervical zygapophysial joints using fluoroscopy as control. Sixty volunteers were studied. Ultrasound-imaging was used to place the needle to the bony target of cervical zygapophysial joint nerve blocks. The levels of needle placement were determined randomly (three levels per volunteer). After ultrasound-guided needle placement and application of 0.2 ml contrast dye, fluoroscopic imaging was performed for later evaluation by a blinded pain physician and considered as gold standard. Raw agreement, chance-corrected agreement κ, and chance-independent agreement Φ between the ultrasound-guided placement and the assessment using fluoroscopy were calculated to quantify accuracy. One hundred eighty needles were placed in 60 volunteers. Raw agreement was 87% (95% CI 81-91%), κ was 0.74 (0.64-0.83), and Φ 0.99 (0.99-0.99). Accuracy varied significantly between the different cervical nerves: it was low for the C7 medial branch, whereas all other levels showed very good accuracy. Ultrasound-imaging is an accurate technique for performing cervical zygapophysial joint nerve blocks in volunteers, except for the medial branch blocks of C7.

  18. Photoacoustic-guided ultrasound therapy with a dual-mode ultrasound array

    NASA Astrophysics Data System (ADS)

    Prost, Amaury; Funke, Arik; Tanter, Mickaël; Aubry, Jean-François; Bossy, Emmanuel

    2012-06-01

    Photoacoustics has recently been proposed as a potential method to guide and/or monitor therapy based on high-intensity focused ultrasound (HIFU). We experimentally demonstrate the creation of a HIFU lesion at the location of an optical absorber, by use of photoacoustic signals emitted by the absorber detected on a dual mode transducer array. To do so, a dedicated ultrasound array intended to both detect photoacoustic waves and emit HIFU with the same elements was used. Such a dual-mode array provides automatically coregistered reference frames for photoacoustic detection and HIFU emission, a highly desired feature for methods involving guidance or monitoring of HIFU by use of photoacoustics. The prototype is first characterized in terms of both photoacoustic and HIFU performances. The probe is then used to perform an idealized scenario of photoacoustic-guided therapy, where photoacoustic signals generated by an absorbing thread embedded in a piece of chicken breast are used to automatically refocus a HIFU beam with a time-reversal mirror and necrose the tissue at the location of the absorber.

  19. Application of ultrasound-tagged photons for measurement of amplitude of vibration of tissue caused by ultrasound: theory, simulation, and experiments.

    PubMed

    Devi, C Usha; Vasu, R M; Sood, A K

    2006-01-01

    We investigate the modulation of an optical field caused by its interaction with an ultrasound beam in a tissue mimicking phantom. This modulation appears as a modulation in the intensity autocorrelation, which is measured by a photon counting correlator. The factors contributing to the modulation are: 1. amplitude of vibration of the particles of the tissue, 2. refractive index modulation, and 3. absorption coefficient in the region of the tissue intercepted by the ultrasound beam and light. We show in this work that a significant part of the contribution to this modulation comes from displacement of the tissue particles, which in turn is governed by the elastic properties of the tissue. We establish, both through simulations and experiments using an optical elastography phantom, the effects of the elasticity and absorption coefficient variations on the modulation of intensity autocorrelation. In the case where there is no absorption coefficient variation, we suggest that the depth of modulation can be calibrated to measure the displacement of tissue particles that, in turn, can be used to measure the tissue elasticity.

  20. Uterine Fibroids: Correlation of T2 Signal Intensity with Semiquantitative Perfusion MR Parameters in Patients Screened for MR-guided High-Intensity Focused Ultrasound Ablation.

    PubMed

    Kim, Young-Sun; Lee, Jeong-Won; Choi, Chel Hun; Kim, Byoung-Gie; Bae, Duk-Soo; Rhim, Hyunchul; Lim, Hyo Keun

    2016-03-01

    To evaluate the relationships between T2 signal intensity and semiquantitative perfusion magnetic resonance (MR) parameters of uterine fibroids in patients who were screened for MR-guided high-intensity focused ultrasound (HIFU) ablation. Institutional review board approval was granted, and informed consents were waived. One hundred seventy most symptom-relevant, nondegenerated uterine fibroids (mean diameter, 7.3 cm; range, 3.0-17.2 cm) in 170 women (mean age, 43.5 years; range, 24-56 years) undergoing screening MR examinations for MR-guided HIFU ablation from October 2009 to April 2014 were retrospectively analyzed. Fibroid signal intensity was assessed as the ratio of the fibroid T2 signal intensity to that of skeletal muscle. Parameters of semiquantitative perfusion MR imaging obtained during screening MR examination (peak enhancement, percentage of relative peak enhancement, time to peak [in seconds], wash-in rate [per seconds], and washout rate [per seconds]) were investigated to assess their relationships with T2 signal ratio by using multiple linear regression analysis. Correlations between T2 signal intensity and independently significant perfusion parameters were then evaluated according to fibroid type by using Spearman correlation test. Multiple linear regression analysis revealed that relative peak enhancement showed an independently significant correlation with T2 signal ratio (Β = 0.004, P < .001). Submucosal intracavitary (n = 20, ρ = 0.275, P = .240) and type III (n = 18, ρ = 0.082, P = .748) fibroids failed to show significant correlations between perfusion and T2 signal intensity, while significant correlations were found for all other fibroid types (ρ = 0.411-0.629, P < .05). In possible candidates for MR-guided HIFU ablation, the T2 signal intensity of nondegenerated uterine fibroids showed an independently significant positive correlation with relative peak enhancement in most cases, except those of submucosal intracavitary or type III fibroids.

  1. Optical tomography of fluorophores in dense scattering media based on ultrasound-enhanced chemiluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Masaki, E-mail: masaki@tohtech.ac.jp; Kikuchi, Naoto; Sato, Akihiro

    This letter proposes and demonstrates ultrasound-combined optical imaging in dense scattering media. A peroxyoxalate chemiluminescence system that includes fluorophores to chemically excite the pigment is stimulated by ultrasound irradiation with power of less than 0.14 W/cm{sup 2}. Using focused ultrasound, the chemiluminescence is selectively spatially enhanced, which leads to imaging of the pigment when embedded in a light-scattering medium via scanning of the focal point. The ultrasonically enhanced intensity of the chemiluminescence depends on the base intensity of the chemiluminescence without the applied ultrasound irradiation, which thereby enables quantitative determination of the fluorophore concentration. The authors demonstrate the potential of thismore » method to resolve chemiluminescent targets in a dense scattering medium that is comparable to biological tissue. An image was acquired of a chemiluminescent target that included indocyanine green as the fluorophore embedded at a depth of 20 mm in an Intralipid-10% 200 ml/l solution scattering medium (the reduced scattering coefficient was estimated to be approximately 1.3 mm{sup −1}), indicating the potential for expansion of this technique for use in biological applications.« less

  2. In vivo MR guided boiling histotripsy in a mouse tumor model evaluated by MRI and histopathology.

    PubMed

    Hoogenboom, Martijn; Eikelenboom, Dylan; den Brok, Martijn H; Veltien, Andor; Wassink, Melissa; Wesseling, Pieter; Dumont, Erik; Fütterer, Jurgen J; Adema, Gosse J; Heerschap, Arend

    2016-06-01

    Boiling histotripsy (BH) is a new high intensity focused ultrasound (HIFU) ablation technique to mechanically fragmentize soft tissue into submicrometer fragments. So far, ultrasound has been used for BH treatment guidance and evaluation. The in vivo histopathological effects of this treatment are largely unknown. Here, we report on an MR guided BH method to treat subcutaneous tumors in a mouse model. The treatment effects of BH were evaluated one hour and four days later with MRI and histopathology, and compared with the effects of thermal HIFU (T-HIFU). The lesions caused by BH were easily detected with T2 w imaging as a hyper-intense signal area with a hypo-intense rim. Histopathological evaluation showed that the targeted tissue was completely disintegrated and that a narrow transition zone (<200 µm) containing many apoptotic cells was present between disintegrated and vital tumor tissue. A high level of agreement was found between T2 w imaging and H&E stained sections, making T2 w imaging a suitable method for treatment evaluation during or directly after BH. After T-HIFU, contrast enhanced imaging was required for adequate detection of the ablation zone. On histopathology, an ablation zone with concentric layers was seen after T-HIFU. In line with histopathology, contrast enhanced MRI revealed that after BH or T-HIFU perfusion within the lesion was absent, while after BH in the transition zone some micro-hemorrhaging appeared. Four days after BH, the transition zone with apoptotic cells was histologically no longer detectable, corresponding to the absence of a hypo-intense rim around the lesion in T2 w images. This study demonstrates the first results of in vivo BH on mouse tumor using MRI for treatment guidance and evaluation and opens the way for more detailed investigation of the in vivo effects of BH. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Dual-mode ultrasound arrays for image-guided targeting of atheromatous plaques

    NASA Astrophysics Data System (ADS)

    Ballard, John R.; Casper, Andrew J.; Liu, Dalong; Haritonova, Alyona; Shehata, Islam A.; Troutman, Mitchell; Ebbini, Emad S.

    2012-11-01

    A feasibility study was undertaken in order to investigate alternative noninvasive treatment options for atherosclerosis. In particular, the aim of this study was to investigate the potential use of Dual-Mode Ultrasound Arrays (DMUAs) for image guided treatment of atheromatous plaques. DMUAs offer a unique treatment paradigm for image-guided surgery allowing for robust image-based identification of tissue targets for localized application of HIFU. In this study we present imaging and therapeutic results form a 3.5 MHz, 64-element fenestrated prototype DMUA for targeting lesions in the femoral artery of familial hypercholesterolemic (FH) swine. Before treatment, diagnostic ultrasound was used to verify the presence of plaque in the femoral artery of the swine. Images obtained with the DMUA and a diagnostic (HST 15-8) transducer housed in the fenestration were analyzed and used for guidance in targeting of the plaque. Discrete therapeutic shots with an estimated focal intensity of 4000-5600 W/cm2 and 500-2000 msec duration were performed at several planes in the plaque. During therapy, pulsed HIFU was interleaved with single transmit focus imaging from the DMUA and M2D imaging from the diagnostic transducer for further analysis of lesion formation. After therapy, the swine's were recovered and later sacrificed after 4 and 7 days for histological analysis of lesion formation. At sacrifice, the lower half of the swine was perfused and the femoral artery with adjoining muscle was fixed and stained with H&E to characterize HIFU-induced lesions. Histology has confirmed that localized thermal lesion formation within the plaque was achieved according to the planned lesion maps. Furthermore, the damage was confined to the plaque tissue without damage to the intima. These results offer the promise of a new treatment potentially suited for vulnerable plaques. The results also provide the first real-time demonstration of DMUA technology in targeting fine tissue structures for precise lesion formation in the presence or arterial pulsation and tissue motion. In this paper, we show results from targeting both proximal and distal sides of the vessel wall with a series of 5 - 7 discrete shots in each plane (typically three planes per plaque). Experiments to demonstrate a full treatment forming contiguous lesion within the target plaque are currently underway.

  4. Fiber Optic Force Sensors for MRI-Guided Interventions and Rehabilitation: A Review

    PubMed Central

    Iordachita, Iulian I.; Tokuda, Junichi; Hata, Nobuhiko; Liu, Xuan; Seifabadi, Reza; Xu, Sheng; Wood, Bradford; Fischer, Gregory S.

    2017-01-01

    Magnetic Resonance Imaging (MRI) provides both anatomical imaging with excellent soft tissue contrast and functional MRI imaging (fMRI) of physiological parameters. The last two decades have witnessed the manifestation of increased interest in MRI-guided minimally invasive intervention procedures and fMRI for rehabilitation and neuroscience research. Accompanying the aspiration to utilize MRI to provide imaging feedback during interventions and brain activity for neuroscience study, there is an accumulated effort to utilize force sensors compatible with the MRI environment to meet the growing demand of these procedures, with the goal of enhanced interventional safety and accuracy, improved efficacy and rehabilitation outcome. This paper summarizes the fundamental principles, the state of the art development and challenges of fiber optic force sensors for MRI-guided interventions and rehabilitation. It provides an overview of MRI-compatible fiber optic force sensors based on different sensing principles, including light intensity modulation, wavelength modulation, and phase modulation. Extensive design prototypes are reviewed to illustrate the detailed implementation of these principles. Advantages and disadvantages of the sensor designs are compared and analyzed. A perspective on the future development of fiber optic sensors is also presented which may have additional broad clinical applications. Future surgical interventions or rehabilitation will rely on intelligent force sensors to provide situational awareness to augment or complement human perception in these procedures. PMID:28652857

  5. High Intensity Focused Ultrasound Monitoring using Harmonic Motion Imaging for Focused Ultrasound (HMIFU) under boiling or slow denaturation conditions

    PubMed Central

    Hou, Gary Y.; Marquet, Fabrice; Wang, Shutao; Apostolakis, Iason-Zacharias; Konofagou, Elisa E.

    2015-01-01

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a recently developed High-Intensity Focused Ultrasound (HIFU) treatment monitoring method that utilizes an amplitude-modulated therapeutic ultrasound beam to induce an oscillatory radiation force at the HIFU focus and estimates the focal tissue displacement to monitor the HIFU thermal treatment. In this study, the performance of HMIFU under acoustic, thermal and mechanical effects were investigated. The performance of HMIFU was assessed in ex vivo canine liver specimens (n=13) under slow denaturation or boiling regimes. Passive Cavitation Detector (PCD) was used to assess the acoustic cavitation activity while a bare-wire thermocouple was used to monitor the focal temperature change. During lesioning with slow denaturation, high quality displacements (correlation coefficient above 0.97) were observed under minimum cavitation noise, indicating tissue the initial-softening-then-stiffening property change. During HIFU with boiling, HMIFU monitored a consistent change in lesion-to-background displacement contrast (0.46±0.37) despite the presence of strong cavitation noise due to boiling during lesion formation. Therefore, HMIFU effectively monitored softening-then-stiffening during lesioning under slow denaturation, and detected lesioning under boiling with a distinct change in displacement contrast under boiling in the presence of cavitation. In conclusion, HMIFU was shown effective in HIFU monitoring and lesioning identification without being significantly affected by cavitation noise. PMID:26168177

  6. WE-EF-210-08: BEST IN PHYSICS (IMAGING): 3D Prostate Segmentation in Ultrasound Images Using Patch-Based Anatomical Feature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, X; Rossi, P; Jani, A

    Purpose: Transrectal ultrasound (TRUS) is the standard imaging modality for the image-guided prostate-cancer interventions (e.g., biopsy and brachytherapy) due to its versatility and real-time capability. Accurate segmentation of the prostate plays a key role in biopsy needle placement, treatment planning, and motion monitoring. As ultrasound images have a relatively low signal-to-noise ratio (SNR), automatic segmentation of the prostate is difficult. However, manual segmentation during biopsy or radiation therapy can be time consuming. We are developing an automated method to address this technical challenge. Methods: The proposed segmentation method consists of two major stages: the training stage and the segmentation stage.more » During the training stage, patch-based anatomical features are extracted from the registered training images with patient-specific information, because these training images have been mapped to the new patient’ images, and the more informative anatomical features are selected to train the kernel support vector machine (KSVM). During the segmentation stage, the selected anatomical features are extracted from newly acquired image as the input of the well-trained KSVM and the output of this trained KSVM is the segmented prostate of this patient. Results: This segmentation technique was validated with a clinical study of 10 patients. The accuracy of our approach was assessed using the manual segmentation. The mean volume Dice Overlap Coefficient was 89.7±2.3%, and the average surface distance was 1.52 ± 0.57 mm between our and manual segmentation, which indicate that the automatic segmentation method works well and could be used for 3D ultrasound-guided prostate intervention. Conclusion: We have developed a new prostate segmentation approach based on the optimal feature learning framework, demonstrated its clinical feasibility, and validated its accuracy with manual segmentation (gold standard). This segmentation technique could be a useful tool for image-guided interventions in prostate-cancer diagnosis and treatment. This research is supported in part by DOD PCRP Award W81XWH-13-1-0269, and National Cancer Institute (NCI) Grant CA114313.« less

  7. Mutual-information-based image to patient re-registration using intraoperative ultrasound in image-guided neurosurgery

    PubMed Central

    Ji, Songbai; Wu, Ziji; Hartov, Alex; Roberts, David W.; Paulsen, Keith D.

    2008-01-01

    An image-based re-registration scheme has been developed and evaluated that uses fiducial registration as a starting point to maximize the normalized mutual information (nMI) between intraoperative ultrasound (iUS) and preoperative magnetic resonance images (pMR). We show that this scheme significantly (p⪡0.001) reduces tumor boundary misalignment between iUS pre-durotomy and pMR from an average of 2.5 mm to 1.0 mm in six resection surgeries. The corrected tumor alignment before dural opening provides a more accurate reference for assessing subsequent intraoperative tumor displacement, which is important for brain shift compensation as surgery progresses. In addition, we report the translational and rotational capture ranges necessary for successful convergence of the nMI registration technique (5.9 mm and 5.2 deg, respectively). The proposed scheme is automatic, sufficiently robust, and computationally efficient (<2 min), and holds promise for routine clinical use in the operating room during image-guided neurosurgical procedures. PMID:18975707

  8. In-Bore MR-Guided Biopsy Systems and Utility of PI-RADS.

    PubMed

    Fütterer, Jurgen J; Moche, Michael; Busse, Harald; Yakar, Derya

    2016-06-01

    A diagnostic dilemma exists in cases wherein a patient with clinical suspicion for prostate cancer has a negative transrectal ultrasound-guided biopsy session. Although transrectal ultrasound-guided biopsy is the standard of care, a paradigm shift is being observed. In biopsy-naive patients and patients with at least 1 negative biopsy session, multiparametric magnetic resonance imaging (MRI) is being utilized for tumor detection and subsequent targeting. Several commercial devices are now available for targeted prostate biopsy ranging from transrectal ultrasound-MR fusion biopsy to in bore MR-guided biopsy. In this review, we will give an update on the current status of in-bore MRI-guided biopsy systems and discuss value of prostate imaging-reporting and data system (PIRADS).

  9. Tracking Perfluorocarbon Nanoemulsion Delivery by 19F MRI for Precise High Intensity Focused Ultrasound Tumor Ablation

    PubMed Central

    Shin, Soo Hyun; Park, Eun-Joo; Min, Changki; Choi, Sun Il; Jeon, Soyeon; Kim, Yun-Hee; Kim, Daehong

    2017-01-01

    Perfluorocarbon nanoemulsions (PFCNEs) have recently been undergoing rigorous study to investigate their ability to improve the therapeutic efficacy of tumor ablation by high intensity focused ultrasound (HIFU). For precise control of PFCNE delivery and thermal ablation, their accumulation and distribution in a tumor should be quantitatively analyzed. Here, we used fluorine-19 (19F) magnetic resonance imaging (MRI) to quantitatively track PFCNE accumulation in a tumor, and analyzed how intra-tumoral PFCNE quantities affect the therapeutic efficacy of HIFU treatment. Ablation outcomes were assessed by intra-voxel incoherent motion analysis and bioluminescent imaging up to 14 days after the procedure. Assessment of PFCNE delivery and treatment outcomes showed that 2-3 mg/mL of PFCNE in a tumor produces the largest ablation volume under the same HIFU insonation conditions. Histology showed varying degrees of necrosis depending on the amount of PFCNE delivered. 19F MRI promises to be a valuable platform for precisely guiding PFCNE-enhanced HIFU ablation of tumors. PMID:28255351

  10. Ultrasound-Guided Transcutaneous Needle Biopsy of the Base of the Tongue and Floor of the Mouth From a Submental Approach.

    PubMed

    Wagner, Jason M; Conrad, Rachel D; Cannon, Trinitia Y; Alleman, Anthony M

    2016-05-01

    Limited data exist regarding the feasibility of ultrasound-guided transcutaneous biopsy of the base of the tongue and floor of the mouth. This retrospective study reviewed 8 cases with lesions in the base of the tongue or floor of the mouth that were biopsied by fine-needle aspiration. Core biopsy was also needed in 1 case. All biopsies were technically successful, and all yielded squamous cell carcinoma. One biopsy yielded a false-positive result, as subsequent resection yielded high-grade dysplasia with no invasion. The other biopsy results were considered true-positive based on subsequent pathologic examinations (2 cases) or clinical/imaging follow-up (5 cases). There were no significant complications associated with the biopsies. © 2016 by the American Institute of Ultrasound in Medicine.

  11. Real-time registration of 3D to 2D ultrasound images for image-guided prostate biopsy.

    PubMed

    Gillies, Derek J; Gardi, Lori; De Silva, Tharindu; Zhao, Shuang-Ren; Fenster, Aaron

    2017-09-01

    During image-guided prostate biopsy, needles are targeted at tissues that are suspicious of cancer to obtain specimen for histological examination. Unfortunately, patient motion causes targeting errors when using an MR-transrectal ultrasound (TRUS) fusion approach to augment the conventional biopsy procedure. This study aims to develop an automatic motion correction algorithm approaching the frame rate of an ultrasound system to be used in fusion-based prostate biopsy systems. Two modes of operation have been investigated for the clinical implementation of the algorithm: motion compensation using a single user initiated correction performed prior to biopsy, and real-time continuous motion compensation performed automatically as a background process. Retrospective 2D and 3D TRUS patient images acquired prior to biopsy gun firing were registered using an intensity-based algorithm utilizing normalized cross-correlation and Powell's method for optimization. 2D and 3D images were downsampled and cropped to estimate the optimal amount of image information that would perform registrations quickly and accurately. The optimal search order during optimization was also analyzed to avoid local optima in the search space. Error in the algorithm was computed using target registration errors (TREs) from manually identified homologous fiducials in a clinical patient dataset. The algorithm was evaluated for real-time performance using the two different modes of clinical implementations by way of user initiated and continuous motion compensation methods on a tissue mimicking prostate phantom. After implementation in a TRUS-guided system with an image downsampling factor of 4, the proposed approach resulted in a mean ± std TRE and computation time of 1.6 ± 0.6 mm and 57 ± 20 ms respectively. The user initiated mode performed registrations with in-plane, out-of-plane, and roll motions computation times of 108 ± 38 ms, 60 ± 23 ms, and 89 ± 27 ms, respectively, and corresponding registration errors of 0.4 ± 0.3 mm, 0.2 ± 0.4 mm, and 0.8 ± 0.5°. The continuous method performed registration significantly faster (P < 0.05) than the user initiated method, with observed computation times of 35 ± 8 ms, 43 ± 16 ms, and 27 ± 5 ms for in-plane, out-of-plane, and roll motions, respectively, and corresponding registration errors of 0.2 ± 0.3 mm, 0.7 ± 0.4 mm, and 0.8 ± 1.0°. The presented method encourages real-time implementation of motion compensation algorithms in prostate biopsy with clinically acceptable registration errors. Continuous motion compensation demonstrated registration accuracy with submillimeter and subdegree error, while performing < 50 ms computation times. Image registration technique approaching the frame rate of an ultrasound system offers a key advantage to be smoothly integrated to the clinical workflow. In addition, this technique could be used further for a variety of image-guided interventional procedures to treat and diagnose patients by improving targeting accuracy. © 2017 American Association of Physicists in Medicine.

  12. Endoluminal ultrasound applicator with an integrated RF coil for high-resolution magnetic resonance imaging-guided high-intensity contact ultrasound thermotherapy

    NASA Astrophysics Data System (ADS)

    Rata, Mihaela; Salomir, Rares; Umathum, Reiner; Jenne, Jürgen; Lafon, Cyril; Cotton, François; Bock, Michael

    2008-11-01

    High-intensity contact ultrasound (HICU) under MRI guidance may provide minimally invasive treatment of endocavitary digestive tumors in the esophagus, colon or rectum. In this study, a miniature receive-only coil was integrated into an endoscopic ultrasound applicator to offer high-resolution MRI guidance of thermotherapy. A cylindrical plastic support with an incorporated single element flat transducer (9.45 MHz, water cooling tip) was made and equipped with a rectangular RF loop coil surrounding the active element. The integrated coil provided significantly higher sensitivity than a four-element extracorporeal phased array coil, and the standard deviation of the MR thermometry (SDT) improved up to a factor of 7 at 10 mm depth in tissue. High-resolution morphological images (T1w-TFE and IR-T1w-TSE with a voxel size of 0.25 × 0.25 × 3 mm3) and accurate thermometry data (the PRFS method with a voxel size of 0.5 × 0.5 × 5 mm3, 2.2 s/image, 0.3 °C voxel-wise SDT) were acquired in an ex vivo esophagus sample, on a clinical 1.5T scanner. The endoscopic device was actively operated under automatic temperature control, demonstrating a high level of accuracy (1.7% standard deviation, 1.1% error of mean value), which indicates that this technology may be suitable for HICU therapy of endoluminal cancer.

  13. Prospective Trial of High-Dose Reirradiation Using Daily Image Guidance With Intensity-Modulated Radiotherapy for Recurrent and Second Primary Head-and-Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Allen M., E-mail: allen.chen@ucdmc.ucdavis.edu; Farwell, D. Gregory; Luu, Quang

    2011-07-01

    Purpose: To report a single-institutional experience using intensity-modulated radiotherapy with daily image-guided radiotherapy for the reirradiation of recurrent and second cancers of the head and neck. Methods and Materials: Twenty-one consecutive patients were prospectively treated with intensity-modulated radiotherapy from February 2006 to March 2009 to a median dose of 66 Gy (range, 60-70 Gy). None of these patients received concurrent chemotherapy. Daily helical megavoltage CT scans were obtained before each fraction as part of an image-guided radiotherapy registration protocol for patient alignment. Results: The 1- and 2-year estimates of in-field control were 72% and 65%, respectively. A total of 651more » daily megavoltage CT scans were obtained. The mean systematic shift to account for interfraction motion was 1.38 {+-} 1.25 mm, 1.79 {+-} 1.45 mm, and 1.98 {+-} 1.75 mm for the medial-lateral, superior-inferior, and anterior-posterior directions, respectively. Pretreatment shifts of >3 mm occurred in 19% of setups in the medial-lateral, 27% in the superior-inferior, and 33% in the anterior-posterior directions, respectively. There were no treatment-related fatalities or hospitalizations. Complications included skin desquamation, odynophagia, otitis externa, keratitis, naso-lacrimal duct stenosis, and brachial plexopathy. Conclusions: Intensity-modulated radiotherapy with daily image guidance results in effective disease control with relatively low morbidity and should be considered for selected patients with recurrent and second primary cancers of the head and neck.« less

  14. Multimedia systems in ultrasound image boundary detection and measurements

    NASA Astrophysics Data System (ADS)

    Pathak, Sayan D.; Chalana, Vikram; Kim, Yongmin

    1997-05-01

    Ultrasound as a medical imaging modality offers the clinician a real-time of the anatomy of the internal organs/tissues, their movement, and flow noninvasively. One of the applications of ultrasound is to monitor fetal growth by measuring biparietal diameter (BPD) and head circumference (HC). We have been working on automatic detection of fetal head boundaries in ultrasound images. These detected boundaries are used to measure BPD and HC. The boundary detection algorithm is based on active contour models and takes 32 seconds on an external high-end workstation, SUN SparcStation 20/71. Our goal has been to make this tool available within an ultrasound machine and at the same time significantly improve its performance utilizing multimedia technology. With the advent of high- performance programmable digital signal processors (DSP), the software solution within an ultrasound machine instead of the traditional hardwired approach or requiring an external computer is now possible. We have integrated our boundary detection algorithm into a programmable ultrasound image processor (PUIP) that fits into a commercial ultrasound machine. The PUIP provides both the high computing power and flexibility needed to support computationally-intensive image processing algorithms within an ultrasound machine. According to our data analysis, BPD/HC measurements made on PUIP lie within the interobserver variability. Hence, the errors in the automated BPD/HC measurements using the algorithm are on the same order as the average interobserver differences. On PUIP, it takes 360 ms to measure the values of BPD/HC on one head image. When processing multiple head images in sequence, it takes 185 ms per image, thus enabling 5.4 BPD/HC measurements per second. Reduction in the overall execution time from 32 seconds to a fraction of a second and making this multimedia system available within an ultrasound machine will help this image processing algorithm and other computer-intensive imaging applications become a practical tool for the sonographers in the feature.

  15. Combined photothermal therapy and magneto-motive ultrasound imaging using multifunctional nanoparticles

    NASA Astrophysics Data System (ADS)

    Mehrmohammadi, Mohammad; Ma, Li L.; Chen, Yun-Sheng; Qu, Min; Joshi, Pratixa; Chen, Raeanna M.; Johnston, Keith P.; Emelianov, Stanislav

    2010-02-01

    Photothermal therapy is a laser-based non-invasive technique for cancer treatment. Photothermal therapy can be enhanced by employing metal nanoparticles that absorb the radiant energy from the laser leading to localized thermal damages. Targeting of nanoparticles leads to more efficient uptake and localization of photoabsorbers thus increasing the effectiveness of the treatment. Moreover, efficient targeting can reduce the required dosage of photoabsorbers; thereby reducing the side effects associated with general systematic administration of nanoparticles. Magnetic nanoparticles, due to their small size and response to an external magnetic field gradient have been proposed for targeted drug delivery. In this study, we investigate the applicability of multifunctional nanoparticles (e.g., magneto-plasmonic nanoparticles) and magneto-motive ultrasound imaging for image-guided photothermal therapy. Magneto-motive ultrasound imaging is an ultrasound based imaging technique capable of detecting magnetic nanoparticles indirectly by utilizing a high strength magnetic field to induce motion within the magnetically labeled tissue. The ultrasound imaging is used to detect the internal tissue motion. Due to presence of the magnetic component, the proposed multifunctional nanoparticles along with magneto-motive ultrasound imaging can be used to detect the presence of the photo absorbers. Clearly the higher concentration of magnetic carriers leads to a monotonic increase in magneto-motive ultrasound signal. Thus, magnetomotive ultrasound can determine the presence of the hybrid agents and provide information about their location and concentration. Furthermore, the magneto-motive ultrasound signal can indicate the change in tissue elasticity - a parameter that is expected to change significantly during the photothermal therapy. Therefore, a comprehensive guidance and assessment of the photothermal therapy may be feasible through magneto-motive ultrasound imaging and magnetoplasmonic nanoparticles.

  16. High-Resolution Ultrasound Imaging Using Model-Bases Iterative Reconstruction For Canister Degradation Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatzidakis, Stylianos; Jarrell, Joshua J; Scaglione, John M

    The inspection of the dry storage canisters that house spent nuclear fuel is an important issue facing the nuclear industry; currently, there are limited options available to provide for even minimal inspections. An issue of concern is stress corrosion cracking (SCC) in austenitic stainless steel canisters. SCC is difficult to predict and exhibits small crack opening displacements on the order of 15 30 m. Nondestructive examination (NDE) of such microscopic cracks is especially challenging, and it may be possible to miss SCC during inspections. The coarse grain microstructure at the heat affected zone reduces the achievable sensitivity of conventional ultrasoundmore » techniques. At Oak Ridge National Laboratory, a tomographic approach is under development to improve SCC detection using ultrasound guided waves and model-based iterative reconstruction (MBIR). Ultrasound-guided waves propagate parallel to the physical boundaries of the surface and allow for rapid inspection of a large area from a single probe location. MBIR is a novel, effective probabilistic imaging tool that offers higher precision and better image quality than current reconstruction techniques. This paper analyzes the canister environment, stainless steel microstructure, and SCC characteristics. The end goal is to demonstrate the feasibility of an NDE system based on ultrasonic guided waves and MBIR for canister degradation and to produce radar-like images of the canister surface with significantly improved image quality. The proposed methodology can potentially reduce human radiation exposure, result in lower operational costs, and provide a methodology that can be used to verify canister integrity in-situ during extended storage« less

  17. Processing ultrasound backscatter to monitor high-intensity focused ultrasound (HIFU) therapy

    NASA Astrophysics Data System (ADS)

    Kaczkowski, Peter J.; Anand, Ajay; Bailey, Michael R.

    2005-09-01

    The development of new noninvasive surgical methods such as HIFU for the treatment of cancer and internal bleeding requires simultaneous development of new sensing approaches to guide, monitor, and assess the therapy. Ultrasound imaging using echo amplitude has long been used to map tissue morphology for diagnostic interpretation by the clinician. New quantitative ultrasonic methods that rely on amplitude and phase processing for tissue characterization are being developed for monitoring of ablative therapy. We have been developing the use of full wave ultrasound backscattering for real-time temperature estimation, and to image changes in tissue backscatter spectrum as therapy progresses. Both approaches rely on differential processing of the backscatter signal in time, and precise measurement of phase differences. Noise and artifacts from motion and nonstationary speckle statistics are addressed by constraining inversions for tissue parameters with physical models. We present results of HIFU experiments with static point and scanned HIFU exposures in which temperature rise can be accurately mapped using a new heat transfer equation (HTE) model-constrained inverse approach. We also present results of a recently developed spectral imaging method that elucidates microbubble-mediated nonlinearity not visible as a change in backscatter amplitude. [Work supported by Army MRMC.

  18. High-Frequency Ultrasound M-mode Imaging for Identifying Lesion and Bubble Activity during High-Intensity Focused Ultrasound Ablation

    PubMed Central

    Kumon, R. E.; Gudur, M. S. R.; Zhou, Y.; Deng, C. X.

    2012-01-01

    Effective real-time monitoring of high-intensity focused ultrasound (HIFU) ablation is important for application of HIFU technology in interventional electrophysiology. This study investigated rapid, high-frequency M-mode ultrasound imaging for monitoring spatiotemporal changes during HIFU application. HIFU (4.33 MHz, 1 kHz PRF, 50% duty cycle, 1 s, 2600 – 6100 W/cm2) was applied to ex-vivo porcine cardiac tissue specimens with a confocally and perpendicularly aligned high-frequency imaging system (Visualsonics Vevo 770, 55 MHz center frequency). Radiofrequency (RF) data from M-mode imaging (1 kHz PRF, 2 s × 7 mm) was acquired before, during, and after HIFU treatment (n = 12). Among several strategies, the temporal maximum integrated backscatter with a threshold of +12 dB change showed the best results for identifying final lesion width (receiver-operating characteristic curve area 0.91 ± 0.04, accuracy 85 ± 8%, as compared to macroscopic images of lesions). A criterion based on a line-to-line decorrelation coefficient is proposed for identification of transient gas bodies. PMID:22341055

  19. Elasticity mapping of tissue mimicking phantoms by remote palpation with a focused ultrasound beam and intensity autocorrelation measurements

    NASA Astrophysics Data System (ADS)

    Usha Devi, C.; Bharat Chandran, R. S.; Vasu, R. M.; Sood, A. K.

    2007-05-01

    We use a focused ultrasound beam to load a region of interest (ROI) in a tissue-mimicking phantom and read out the vibration amplitude of phantom particles from the modulation depth in the intensity autocorrelation of a coherent light beam that intercepted the ROI. The modulation depth, which is also affected by the local light absorption coefficient, which is employed in ultrasound assisted optical tomography, to read out absorption coefficient is greatly influenced by the vibration amplitude, depends to a great extend on local elasticity. We scan a plane in an elastography phantom with an inhomogeneous inclusion, in elasticity with the focused ultrasound and from the measured modulation depth variation create a qualitative map of the elasticity variation in the interrogated plane.

  20. Ultrasound image-guided therapy enhances antitumor effect of cisplatin.

    PubMed

    Sasaki, Noboru; Kudo, Nobuki; Nakamura, Kensuke; Lim, Sue Yee; Murakami, Masahiro; Kumara, W R Bandula; Tamura, Yu; Ohta, Hiroshi; Yamasaki, Masahiro; Takiguchi, Mitsuyoshi

    2014-01-01

    The aim of this study was to clarify whether ultrasound image-guided cisplatin delivery with an intratumor microbubble injection enhances the antitumor effect in a xenograft mouse model. Canine thyroid adenocarcinoma cells were used for all experiments. Before in vivo experiments, the cisplatin and microbubble concentration and ultrasound exposure time were optimized in vitro. For in vivo experiments, cells were implanted into the back of nude mice. Observed by a diagnostic ultrasound machine, a mixture of cisplatin and ultrasound contrast agent, Sonazoid, microbubbles was injected directly into tumors. The amount of injected cisplatin and microbubbles was 1 μg/tumor and 1.2 × 10(7) microbubbles/tumor, respectively, with a total injected volume of 20 μl. Using the same diagnostic machine, tumors were exposed to ultrasound for 15 s. The treatment was repeated four times. The combination of cisplatin, microbubbles, and ultrasound significantly delayed tumor growth as compared with no treatment (after 18 days, 157 ± 55 vs. 398 ± 49 mm(3), P = 0.049). Neither cisplatin alone nor the combination of cisplatin and ultrasound delayed tumor growth. The treatment did not decrease the body weight of mice. Ultrasound image-guided anticancer drug delivery may enhance the antitumor effects of drugs without obvious side effects.

  1. Gold nanoshelled liquid perfluorocarbon nanocapsules for combined dual modal ultrasound/CT imaging and photothermal therapy of cancer.

    PubMed

    Ke, Hengte; Yue, Xiuli; Wang, Jinrui; Xing, Sen; Zhang, Qian; Dai, Zhifei; Tian, Jie; Wang, Shumin; Jin, Yushen

    2014-03-26

    The integration of multimodal contrast-enhanced diagnostic imaging and therapeutic capabilities could utilize imaging guided therapy to plan the treatment strategy based on the diagnostic results and to guide/monitor the therapeutic procedures. Herein, gold nanoshelled perfluorooctylbromide (PFOB) nanocapsules with PEGylation (PGsP NCs) are constructed by oil-in-water emulsion method to form polymeric PFOB nanocapsules, followed by the formation of PEGylated gold nanoshell on the surface. PGsP NCs could not only provide excellent contrast enhancement for dual modal ultrasound and CT imaging in vitro and in vivo, but also serve as efficient photoabsorbers for photothermal ablation of tumors on xenografted nude mouse model. To our best knowledge, this is the first report of gold nanoshell serving as both CT contrast agents and photoabsorbers for photothermal therapy. The novel multifunctional nanomedicine would be of great value to offer more comprehensive diagnostic information to guide more accurate and effective cancer therapy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Determination of optimal ultrasound planes for the initialisation of image registration during endoscopic ultrasound-guided procedures.

    PubMed

    Bonmati, Ester; Hu, Yipeng; Gibson, Eli; Uribarri, Laura; Keane, Geri; Gurusami, Kurinchi; Davidson, Brian; Pereira, Stephen P; Clarkson, Matthew J; Barratt, Dean C

    2018-06-01

    Navigation of endoscopic ultrasound (EUS)-guided procedures of the upper gastrointestinal (GI) system can be technically challenging due to the small fields-of-view of ultrasound and optical devices, as well as the anatomical variability and limited number of orienting landmarks during navigation. Co-registration of an EUS device and a pre-procedure 3D image can enhance the ability to navigate. However, the fidelity of this contextual information depends on the accuracy of registration. The purpose of this study was to develop and test the feasibility of a simulation-based planning method for pre-selecting patient-specific EUS-visible anatomical landmark locations to maximise the accuracy and robustness of a feature-based multimodality registration method. A registration approach was adopted in which landmarks are registered to anatomical structures segmented from the pre-procedure volume. The predicted target registration errors (TREs) of EUS-CT registration were estimated using simulated visible anatomical landmarks and a Monte Carlo simulation of landmark localisation error. The optimal planes were selected based on the 90th percentile of TREs, which provide a robust and more accurate EUS-CT registration initialisation. The method was evaluated by comparing the accuracy and robustness of registrations initialised using optimised planes versus non-optimised planes using manually segmented CT images and simulated ([Formula: see text]) or retrospective clinical ([Formula: see text]) EUS landmarks. The results show a lower 90th percentile TRE when registration is initialised using the optimised planes compared with a non-optimised initialisation approach (p value [Formula: see text]). The proposed simulation-based method to find optimised EUS planes and landmarks for EUS-guided procedures may have the potential to improve registration accuracy. Further work will investigate applying the technique in a clinical setting.

  3. Technical tips to perform safe and effective ultrasound guided steroid joint injections in children.

    PubMed

    Parra, Dimitri A

    2015-01-01

    The aim of this article is to describe the technique used to perform ultrasound guided steroid joint injections in children in a group of joints that can be injected using ultrasound as the only image guidance modality. The technique is described and didactic figures are provided to illustrate key technical concepts. It is very important to be familiar with the sonographic appearance of the pediatric joints and the developing bone when performing ultrasound-guided joint injections in children.

  4. A Guide to Analysing Tongue Motion from Ultrasound Images

    ERIC Educational Resources Information Center

    Stone, Maureen

    2005-01-01

    This paper is meant to be an introduction to and general reference for ultrasound imaging for new and moderately experienced users of the instrument. The paper consists of eight sections. The first explains how ultrasound works, including beam properties, scan types and machine features. The second section discusses image quality, including the…

  5. Backscattering analysis of high frequency ultrasonic imaging for ultrasound-guided breast biopsy

    NASA Astrophysics Data System (ADS)

    Cummins, Thomas; Akiyama, Takahiro; Lee, Changyang; Martin, Sue E.; Shung, K. Kirk

    2017-03-01

    A new ultrasound-guided breast biopsy technique is proposed. The technique utilizes conventional ultrasound guidance coupled with a high frequency embedded ultrasound array located within the biopsy needle to improve the accuracy in breast cancer diagnosis.1 The array within the needle is intended to be used to detect micro- calcifications indicative of early breast cancers such as ductal carcinoma in situ (DCIS). Backscattering analysis has the potential to characterize tissues to improve localization of lesions. This paper describes initial results of the application of backscattering analysis of breast biopsy tissue specimens and shows the usefulness of high frequency ultrasound for the new biopsy related technique. Ultrasound echoes of ex-vivo breast biopsy tissue specimens were acquired by using a single-element transducer with a bandwidth from 41 MHz to 88 MHz utilizing a UBM methodology, and the backscattering coefficients were calculated. These values as well as B-mode image data were mapped in 2D and matched with each pathology image for the identification of tissue type for the comparison to the pathology images corresponding to each plane. Microcalcifications were significantly distinguished from normal tissue. Adenocarcinoma was also successfully differentiated from adipose tissue. These results indicate that backscattering analysis is able to quantitatively distinguish tissues into normal and abnormal, which should help radiologists locate abnormal areas during the proposed ultrasound-guided breast biopsy with high frequency ultrasound.

  6. Transcranial phase aberration correction using beam simulations and MR-ARFI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vyas, Urvi, E-mail: urvi.vyas@gmail.com; Kaye, Elena; Pauly, Kim Butts

    2014-03-15

    Purpose: Transcranial magnetic resonance-guided focused ultrasound surgery is a noninvasive technique for causing selective tissue necrosis. Variations in density, thickness, and shape of the skull cause aberrations in the location and shape of the focal zone. In this paper, the authors propose a hybrid simulation-MR-ARFI technique to achieve aberration correction for transcranial MR-guided focused ultrasound surgery. The technique uses ultrasound beam propagation simulations with MR Acoustic Radiation Force Imaging (MR-ARFI) to correct skull-caused phase aberrations. Methods: Skull-based numerical aberrations were obtained from a MR-guided focused ultrasound patient treatment and were added to all elements of the InSightec conformal bone focusedmore » ultrasound surgery transducer during transmission. In the first experiment, the 1024 aberrations derived from a human skull were condensed into 16 aberrations by averaging over the transducer area of 64 elements. In the second experiment, all 1024 aberrations were applied to the transducer. The aberrated MR-ARFI images were used in the hybrid simulation-MR-ARFI technique to find 16 estimated aberrations. These estimated aberrations were subtracted from the original aberrations to result in the corrected images. Each aberration experiment (16-aberration and 1024-aberration) was repeated three times. Results: The corrected MR-ARFI image was compared to the aberrated image and the ideal image (image with zero aberrations) for each experiment. The hybrid simulation-MR-ARFI technique resulted in an average increase in focal MR-ARFI phase of 44% for the 16-aberration case and 52% for the 1024-aberration case, and recovered 83% and 39% of the ideal MR-ARFI phase for the 16-aberrations and 1024-aberration case, respectively. Conclusions: Using one MR-ARFI image and noa priori information about the applied phase aberrations, the hybrid simulation-MR-ARFI technique improved the maximum MR-ARFI phase of the beam's focus.« less

  7. MIIP: a web-based platform for medical image interpretation training and evaluation focusing on ultrasound

    NASA Astrophysics Data System (ADS)

    Lindseth, Frank; Nordrik Hallan, Marte; Schiller Tønnessen, Martin; Smistad, Erik; Vâpenstad, Cecilie

    2017-03-01

    Introduction: Medical imaging technology has revolutionized health care over the past 30 years. This is especially true for ultrasound, a modality that an increasing amount of medical personal is starting to use. Purpose: The purpose of this study was to develop and evaluate a platform for improving medical image interpretation skills regardless of time and space and without the need for expensive imaging equipment or a patient to scan. Methods, results and conclusions: A stable web application with the needed functionality for image interpretation training and evaluation has been implemented. The system has been extensively tested internally and used during an international course in ultrasound-guided neurosurgery. The web application was well received and got very good System Usability Scale (SUS) scores.

  8. WE-EF-BRA-12: Magnetic Resonance- Guided High-Intensity Focused Ultrasound for Localized Ablation of Head and Neck Tissue Structures: A Feasibility Study in An Animal Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Partanen, A; Ellens, N; Noureldine, S

    Purpose: High-intensity focused ultrasound (HIFU) ablation is feasible in the head and neck [1]. This study aims to expand upon these findings to assess the feasibility of treatment planning and monitoring via magnetic resonance imaging (MRI) guidance using a clinical MR-guided HIFU platform. Methods: Two 31 kg pigs were anaesthetized, shaved, and positioned prone on the HIFU table (Sonalleve, Philips Healthcare, Vantaa, Finland). The necks were acoustically coupled to the integrated transducer using gel pads and degassed water. MR imaging verified acoustic coupling and facilitated target selection in the thyroid and thymus. Targets were thermally ablated with 130–200 W ofmore » acoustic power over a period of 16 s at a frequency of 1.2 MHz while being monitored through real-time, multi-planar MR-thermometry. Contrast-enhanced MR imaging was used to assess treatment efficacy. Post-treatment, animals were euthanized and sonicated tissues were harvested for histology assessment. Results: MR-thermometry, post-contrast-imaging, and gross pathology demonstrated that the system was capable of causing localized thermal ablation in both the thyroid and the thymus without damaging the aerodigestive tract. In one animal, superficial bruising was observed in the ultrasound beam path. Otherwise, there were no adverse events. Analysis of the tissue histology found regions of damage consistent with acute thermal injury at the targeted locations. Conclusion: It is feasible to use a clinical MR-guided HIFU platform for extracorporeal ablation of porcine head and neck tissues. MR guidance and thermometry are sufficient to target and monitor treatment in the thyroid region, despite the presence of the inhomogeneous aerodigestive tract. Further study is necessary to assess efficacy and survival using a tumor model, and to examine what modifications should be made to the transducer positioning system and associated patient positioning aids to adapt it for clinical head and neck targets.Reference:[1] Esnault et al. (2011). Thyroid, 21(9), 965– 973. Funding support provided by Philips Healthcare. Ari Partanen is a paid employee of Philips Healthcare.« less

  9. Versatile robotic probe calibration for position tracking in ultrasound imaging.

    PubMed

    Bø, Lars Eirik; Hofstad, Erlend Fagertun; Lindseth, Frank; Hernes, Toril A N

    2015-05-07

    Within the field of ultrasound-guided procedures, there are a number of methods for ultrasound probe calibration. While these methods are usually developed for a specific probe, they are in principle easily adapted to other probes. In practice, however, the adaptation often proves tedious and this is impractical in a research setting, where new probes are tested regularly. Therefore, we developed a method which can be applied to a large variety of probes without adaptation. The method used a robot arm to move a plastic sphere submerged in water through the ultrasound image plane, providing a slow and precise movement. The sphere was then segmented from the recorded ultrasound images using a MATLAB programme and the calibration matrix was computed based on this segmentation in combination with tracking information. The method was tested on three very different probes demonstrating both great versatility and high accuracy.

  10. Versatile robotic probe calibration for position tracking in ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Eirik Bø, Lars; Fagertun Hofstad, Erlend; Lindseth, Frank; Hernes, Toril A. N.

    2015-05-01

    Within the field of ultrasound-guided procedures, there are a number of methods for ultrasound probe calibration. While these methods are usually developed for a specific probe, they are in principle easily adapted to other probes. In practice, however, the adaptation often proves tedious and this is impractical in a research setting, where new probes are tested regularly. Therefore, we developed a method which can be applied to a large variety of probes without adaptation. The method used a robot arm to move a plastic sphere submerged in water through the ultrasound image plane, providing a slow and precise movement. The sphere was then segmented from the recorded ultrasound images using a MATLAB programme and the calibration matrix was computed based on this segmentation in combination with tracking information. The method was tested on three very different probes demonstrating both great versatility and high accuracy.

  11. Ultrasound in Radiology: from Anatomic, Functional, Molecular Imaging to Drug Delivery and Image-Guided Therapy

    PubMed Central

    Klibanov, Alexander L.; Hossack, John A.

    2015-01-01

    During the past decade, ultrasound has expanded medical imaging well beyond the “traditional” radiology setting - a combination of portability, low cost and ease of use makes ultrasound imaging an indispensable tool for radiologists as well as for other medical professionals who need to obtain imaging diagnosis or guide a therapeutic intervention quickly and efficiently. Ultrasound combines excellent ability for deep penetration into soft tissues with very good spatial resolution, with only a few exceptions (i.e. those involving overlying bone or gas). Real-time imaging (up to hundreds and thousands frames per second) enables guidance of therapeutic procedures and biopsies; characterization of the mechanical properties of the tissues greatly aids with the accuracy of the procedures. The ability of ultrasound to deposit energy locally brings about the potential for localized intervention encompassing: tissue ablation, enhancing penetration through the natural barriers to drug delivery in the body and triggering drug release from carrier micro- and nanoparticles. The use of microbubble contrast agents brings the ability to monitor and quantify tissue perfusion, and microbubble targeting with ligand-decorated microbubbles brings the ability to obtain molecular biomarker information, i.e., ultrasound molecular imaging. Overall, ultrasound has become the most widely used imaging modality in modern medicine; it will continue to grow and expand. PMID:26200224

  12. Analysis and measurement of the modulation transfer function of harmonic shear wave induced phase encoding imaging.

    PubMed

    McAleavey, Stephen A

    2014-05-01

    Shear wave induced phase encoding (SWIPE) imaging generates ultrasound backscatter images of tissue-like elastic materials by using traveling shear waves to encode the lateral position of the scatters in the phase of the received echo. In contrast to conventional ultrasound B-scan imaging, SWIPE offers the potential advantages of image formation without beam focusing or steering from a single transducer element, lateral resolution independent of aperture size, and the potential to achieve relatively high lateral resolution with low frequency ultrasound. Here a Fourier series description of the phase modulated echo signal is developed, demonstrating that echo harmonics at multiples of the shear wave frequency reveal target k-space data at identical multiples of the shear wavenumber. Modulation transfer functions of SWIPE imaging systems are calculated for maximum shear wave acceleration and maximum shear constraints, and compared with a conventionally focused aperture. The relative signal-to-noise ratio of the SWIPE method versus a conventionally focused aperture is found through these calculations. Reconstructions of wire targets in a gelatin phantom using 1 and 3.5 MHz ultrasound and a cylindrical shear wave source are presented, generated from the fundamental and second harmonic of the shear wave modulation frequency, demonstrating weak dependence of lateral resolution with ultrasound frequency.

  13. MO-DE-210-03: Ultrasound imaging is an attractive method for image guided radiation treatment (IGRT), by itself or to complement other imaging modalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, K.

    Ultrasound imaging is an attractive method for image guided radiation treatment (IGRT), by itself or to complement other imaging modalities. It is inexpensive, portable and provides good soft tissue contrast. For challenging soft tissue targets such as pancreatic cancer, ultrasound imaging can be used in combination with pre-treatment MRI and/or CT to transfer important anatomical features for target localization at time of treatment. The non-invasive and non-ionizing nature of ultrasound imaging is particularly powerful for intra-fraction localization and monitoring. Recognizing these advantages, efforts are being made to incorporate novel robotic approaches to position and manipulate the ultrasound probe during irradiation.more » These recent enabling developments hold potential to bring ultrasound imaging to a new level of IGRT applications. However, many challenges, not limited to image registration, robotic deployment, probe interference and image acquisition rate, need to be addressed to realize the full potential of IGRT with ultrasound imaging. Learning Objectives: Understand the benefits and limitations in using ultrasound to augment MRI and/or CT for motion monitoring during radiation therapy delivery. Understanding passive and active robotic approaches to implement ultrasound imaging for intra-fraction monitoring. Understand issues of probe interference with radiotherapy treatment. Understand the critical clinical workflow for effective and reproducible IGRT using ultrasound guidance. The work of X.L. is supported in part by Elekta; J.W. and K.D. is supported in part by a NIH grant R01 CA161613 and by Elekta; D.H. is support in part by a NIH grant R41 CA174089.« less

  14. B-Mode ultrasound pose recovery via surgical fiducial segmentation and tracking

    NASA Astrophysics Data System (ADS)

    Asoni, Alessandro; Ketcha, Michael; Kuo, Nathanael; Chen, Lei; Boctor, Emad; Coon, Devin; Prince, Jerry L.

    2015-03-01

    Ultrasound Doppler imaging may be used to detect blood clots after surgery, a common problem. However, this requires consistent probe positioning over multiple time instances and therefore significant sonographic expertise. Analysis of ultrasound B-mode images of a fiducial implanted at the surgical site offers a landmark to guide a user to the same location repeatedly. We demonstrate that such an implanted fiducial may be successfully detected and tracked to calculate pose and guide a clinician consistently to the site of surgery, potentially reducing the ultrasound experience required for point of care monitoring.

  15. Mixed reality ultrasound guidance system: a case study in system development and a cautionary tale.

    PubMed

    Ameri, Golafsoun; Baxter, John S H; Bainbridge, Daniel; Peters, Terry M; Chen, Elvis C S

    2018-04-01

    Real-time ultrasound has become a crucial aspect of several image-guided interventions. One of the main constraints of such an approach is the difficulty in interpretability of the limited field of view of the image, a problem that has recently been addressed using mixed reality, such as augmented reality and augmented virtuality. The growing popularity and maturity of mixed reality has led to a series of informal guidelines to direct development of new systems and to facilitate regulatory approval. However, the goals of mixed reality image guidance systems and the guidelines for their development have not been thoroughly discussed. The purpose of this paper is to identify and critically examine development guidelines in the context of a mixed reality ultrasound guidance system through a case study. A mixed reality ultrasound guidance system tailored to central line insertions was developed in close collaboration with an expert user. This system outperformed ultrasound-only guidance in a novice user study and has obtained clearance for clinical use in humans. A phantom study with 25 experienced physicians was carried out to compare the performance of the mixed reality ultrasound system against conventional ultrasound-only guidance. Despite the previous promising results, there was no statistically significant difference between the two systems. Guidelines for developing mixed reality image guidance systems cannot be applied indiscriminately. Each design decision, no matter how well justified, should be the subject of scientific and technical investigation. Iterative and small-scale evaluation can readily unearth issues and previously unknown or implicit system requirements. We recommend a wary eye in development of mixed reality ultrasound image guidance systems emphasizing small-scale iterative evaluation alongside system development. Ultimately, we recommend that the image-guided intervention community furthers and deepens this discussion into best practices in developing image-guided interventions.

  16. Cranial nerve threshold for thermal injury induced by MRI-guided high-intensity focused ultrasound (MRgHIFU): preliminary results on an optic nerve model.

    PubMed

    Harnof, Sagi; Zibly, Zion; Cohen, Zvi; Shaw, Andrew; Schlaff, Cody; Kassel, Neal F

    2013-04-01

    Future clinical applications of magnetic resonance imaging-guided high-intensity focused ultrasound (MRgHIFU) are moving toward the management of different intracranial pathologies. We sought to validate the production, safety, and efficacy of thermal injury to cranial nerves generated by MRgHIFU. In this study, five female domestic pigs underwent a standard bifrontal craniectomy under general anesthesia. Treatment was then given using an MRgHIFU system to induce hyperthermic ablative sonication (6 to 10 s; 50 to 2000 J.) Histological analyses were done to confirm nerve damage; temperature measured on the optic nerve was approximately 53.4°C (range: 39°C to 70°C.) Histology demonstrated a clear definition between a necrotic, transitional zone, and normal tissue. MRgHIFU induces targeted thermal injury to nervous tissue within a specific threshold of 50°C to 60°C with the tissue near the sonication center yielding the greatest effect; adjacent tissue showed minimal changes. Additional studies utilizing this technology are required to further establish accurate threshold parameters for optic nerve thermo-ablation.

  17. Intra-operative feedback and dynamic compensation for image-guided robotic focal ultrasound surgery.

    PubMed

    Chauhan, S; Amir, H; Chen, G; Hacker, A; Michel, M S; Koehrmann, K U

    2008-11-01

    This paper describes a non-invasive remote temperature measurement technique integrated with a biomechatronic surgery system devised in our laboratory and named FUSBOT (Focal Ultrasound Surgery RoBOT). FUSBOTs use High-Intensity Focused Ultrasound (HIFU) for ablation of cancers/tumors and targets accessible through various soft-tissue acoustic windows in the human body. The focused ultrasound beam parameters are chosen so that biologically significant temperature rises are achieved only within the focal volume. In this paper, FUSBOT(BS), a customized system for breast surgery, is taken as a representative example to demonstrate the implementation and the results of non-invasive feedback during ablation. An 8-axis PC-based controller controls various sub-sections of the system within a safe constrained work envelope. Temperature is a prime target parameter in ablative procedures, and it is of paramount importance that means should be devised for its measurement and control in order to design optimal dose protocols and judge the efficacy of FUS systems. A customized sensory interface is devised and integrated with FUSBOT(BS), and dedicated software algorithms are embedded for surgical planning based on real-time guidance and feedback. Variations in the physical parameters of the tissue interacting with the incident modality are used as surgical feedback. The use of real-time ultrasound imaging and data processed from various sensors to deduce lesion position and thermal feedback during surgery, as integrated with the robotic system for online surgical planning, is described. Dynamic registration algorithms are developed for compensation and re-registration of the robotic end-effector with respect to the target, and representative empirical outcomes for lesion tracking and online temperature estimation in various biological tissues are presented.

  18. Interference-free ultrasound imaging during HIFU therapy, using software tools

    NASA Technical Reports Server (NTRS)

    Vaezy, Shahram (Inventor); Held, Robert (Inventor); Sikdar, Siddhartha (Inventor); Managuli, Ravi (Inventor); Zderic, Vesna (Inventor)

    2010-01-01

    Disclosed herein is a method for obtaining a composite interference-free ultrasound image when non-imaging ultrasound waves would otherwise interfere with ultrasound imaging. A conventional ultrasound imaging system is used to collect frames of ultrasound image data in the presence of non-imaging ultrasound waves, such as high-intensity focused ultrasound (HIFU). The frames are directed to a processor that analyzes the frames to identify portions of the frame that are interference-free. Interference-free portions of a plurality of different ultrasound image frames are combined to generate a single composite interference-free ultrasound image that is displayed to a user. In this approach, a frequency of the non-imaging ultrasound waves is offset relative to a frequency of the ultrasound imaging waves, such that the interference introduced by the non-imaging ultrasound waves appears in a different portion of the frames.

  19. Influence of low-intensity pulsed ultrasound on osteogenic tissue regeneration in a periodontal injury model: X-ray image alterations assessed by micro-computed tomography.

    PubMed

    Wang, Yunji; Chai, Zhaowu; Zhang, Yuanyuan; Deng, Feng; Wang, Zhibiao; Song, Jinlin

    2014-08-01

    This study was conducted to evaluate, with micro-computed tomography, the influence of low-intensity pulsed ultrasound on wound-healing in periodontal tissues. Periodontal disease with Class II furcation involvement was surgically produced at the bilateral mandibular premolars in 8 adult male beagle dogs. Twenty-four teeth were randomly assigned among 4 groups (G): G1, periodontal flap surgery; G2, periodontal flap surgery+low-intensity pulsed ultrasound (LIPUS); G3, guided tissue regeneration (GTR) surgery; G4, GTR surgery plus LIPUS. The affected area in the experimental group was exposed to LIPUS. At 6 and 8weeks, the X-ray images of regenerated teeth were referred to micro-CT scanning for 3-D measurement. Bone volume (BV), bone surface (BS), and number of trabeculae (Tb) in G2 and G4 were higher than in G1 and G3 (p<0.05). BV, BS, and Tb.N of the GTR+LIPUS group were higher than in the GTR group. BV, BS, and Tb.N of the LIPUS group were higher than in the periodontal flap surgery group. LIPUS irradiation increased the number, volume, and area of new alveolar bone trabeculae. LIPUS has the potential to promote the repair of periodontal tissue, and may work effectively if combined with GTR. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Single slice US-MRI registration for neurosurgical MRI-guided US

    NASA Astrophysics Data System (ADS)

    Pardasani, Utsav; Baxter, John S. H.; Peters, Terry M.; Khan, Ali R.

    2016-03-01

    Image-based ultrasound to magnetic resonance image (US-MRI) registration can be an invaluable tool in image-guided neuronavigation systems. State-of-the-art commercial and research systems utilize image-based registration to assist in functions such as brain-shift correction, image fusion, and probe calibration. Since traditional US-MRI registration techniques use reconstructed US volumes or a series of tracked US slices, the functionality of this approach can be compromised by the limitations of optical or magnetic tracking systems in the neurosurgical operating room. These drawbacks include ergonomic issues, line-of-sight/magnetic interference, and maintenance of the sterile field. For those seeking a US vendor-agnostic system, these issues are compounded with the challenge of instrumenting the probe without permanent modification and calibrating the probe face to the tracking tool. To address these challenges, this paper explores the feasibility of a real-time US-MRI volume registration in a small virtual craniotomy site using a single slice. We employ the Linear Correlation of Linear Combination (LC2) similarity metric in its patch-based form on data from MNI's Brain Images for Tumour Evaluation (BITE) dataset as a PyCUDA enabled Python module in Slicer. By retaining the original orientation information, we are able to improve on the poses using this approach. To further assist the challenge of US-MRI registration, we also present the BOXLC2 metric which demonstrates a speed improvement to LC2, while retaining a similar accuracy in this context.

  1. Mesoporous composite nanoparticles for dual-modality ultrasound/magnetic resonance imaging and synergistic chemo-/thermotherapy against deep tumors.

    PubMed

    Zhang, Nan; Wang, Ronghui; Hao, Junnian; Yang, Yang; Zou, Hongmi; Wang, Zhigang

    2017-01-01

    High-intensity focused ultrasound (HIFU) is a promising and noninvasive treatment for solid tumors, which has been explored for potential clinical applications. However, the clinical applications of HIFU for large and deep tumors such as hepatocellular carcinoma (HCC) are severely limited by unsatisfactory imaging guidance, long therapeutic times, and damage to normal tissue around the tumor due to the high power applied. In this study, we developed doxorubicin/perfluorohexane-encapsulated hollow mesoporous Prussian blue nanoparticles (HMPBs-DOX/PFH) as theranostic agents, which can effectively guide HIFU therapy and enhance its therapeutic effects in combination with chemotherapy, by decreasing the cavitation threshold. We investigated the effects of this agent on ultrasound and magnetic resonance imaging in vitro and in vivo. In addition, we showed a highly efficient HIFU therapeutic effect against HCC tumors, as well as controlled drug release, owing to the phase-transitional performance of the PFH. We therefore conclude that HMPB-DOX/PFH is a safe and efficient nanoplatform, which holds significant promise for cancer theranostics against deep tumors in clinical settings.

  2. Mesoporous composite nanoparticles for dual-modality ultrasound/magnetic resonance imaging and synergistic chemo-/thermotherapy against deep tumors

    PubMed Central

    Zhang, Nan; Wang, Ronghui; Hao, Junnian; Yang, Yang; Zou, Hongmi; Wang, Zhigang

    2017-01-01

    High-intensity focused ultrasound (HIFU) is a promising and noninvasive treatment for solid tumors, which has been explored for potential clinical applications. However, the clinical applications of HIFU for large and deep tumors such as hepatocellular carcinoma (HCC) are severely limited by unsatisfactory imaging guidance, long therapeutic times, and damage to normal tissue around the tumor due to the high power applied. In this study, we developed doxorubicin/perfluorohexane-encapsulated hollow mesoporous Prussian blue nanoparticles (HMPBs-DOX/PFH) as theranostic agents, which can effectively guide HIFU therapy and enhance its therapeutic effects in combination with chemotherapy, by decreasing the cavitation threshold. We investigated the effects of this agent on ultrasound and magnetic resonance imaging in vitro and in vivo. In addition, we showed a highly efficient HIFU therapeutic effect against HCC tumors, as well as controlled drug release, owing to the phase-transitional performance of the PFH. We therefore conclude that HMPB-DOX/PFH is a safe and efficient nanoplatform, which holds significant promise for cancer theranostics against deep tumors in clinical settings. PMID:29042775

  3. A region-based segmentation method for ultrasound images in HIFU therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Dong, E-mail: dongz@whu.edu.cn; Liu, Yu; Yang, Yan

    Purpose: Precisely and efficiently locating a tumor with less manual intervention in ultrasound-guided high-intensity focused ultrasound (HIFU) therapy is one of the keys to guaranteeing the therapeutic result and improving the efficiency of the treatment. The segmentation of ultrasound images has always been difficult due to the influences of speckle, acoustic shadows, and signal attenuation as well as the variety of tumor appearance. The quality of HIFU guidance images is even poorer than that of conventional diagnostic ultrasound images because the ultrasonic probe used for HIFU guidance usually obtains images without making contact with the patient’s body. Therefore, the segmentationmore » becomes more difficult. To solve the segmentation problem of ultrasound guidance image in the treatment planning procedure for HIFU therapy, a novel region-based segmentation method for uterine fibroids in HIFU guidance images is proposed. Methods: Tumor partitioning in HIFU guidance image without manual intervention is achieved by a region-based split-and-merge framework. A new iterative multiple region growing algorithm is proposed to first split the image into homogenous regions (superpixels). The features extracted within these homogenous regions will be more stable than those extracted within the conventional neighborhood of a pixel. The split regions are then merged by a superpixel-based adaptive spectral clustering algorithm. To ensure the superpixels that belong to the same tumor can be clustered together in the merging process, a particular construction strategy for the similarity matrix is adopted for the spectral clustering, and the similarity matrix is constructed by taking advantage of a combination of specifically selected first-order and second-order texture features computed from the gray levels and the gray level co-occurrence matrixes, respectively. The tumor region is picked out automatically from the background regions by an algorithm according to a priori information about the tumor position, shape, and size. Additionally, an appropriate cluster number for spectral clustering can be determined by the same algorithm, thus the automatic segmentation of the tumor region is achieved. Results: To evaluate the performance of the proposed method, 50 uterine fibroid ultrasound images from different patients receiving HIFU therapy were segmented, and the obtained tumor contours were compared with those delineated by an experienced radiologist. For area-based evaluation results, the mean values of the true positive ratio, the false positive ratio, and the similarity were 94.42%, 4.71%, and 90.21%, respectively, and the corresponding standard deviations were 2.54%, 3.12%, and 3.50%, respectively. For distance-based evaluation results, the mean values of the normalized Hausdorff distance and the normalized mean absolute distance were 4.93% and 0.90%, respectively, and the corresponding standard deviations were 2.22% and 0.34%, respectively. The running time of the segmentation process was 12.9 s for a 318 × 333 (pixels) image. Conclusions: Experiments show that the proposed method can segment the tumor region accurately and efficiently with less manual intervention, which provides for the possibility of automatic segmentation and real-time guidance in HIFU therapy.« less

  4. Segmentation of prostate biopsy needles in transrectal ultrasound images

    NASA Astrophysics Data System (ADS)

    Krefting, Dagmar; Haupt, Barbara; Tolxdorff, Thomas; Kempkensteffen, Carsten; Miller, Kurt

    2007-03-01

    Prostate cancer is the most common cancer in men. Tissue extraction at different locations (biopsy) is the gold-standard for diagnosis of prostate cancer. These biopsies are commonly guided by transrectal ultrasound imaging (TRUS). Exact location of the extracted tissue within the gland is desired for more specific diagnosis and provides better therapy planning. While the orientation and the position of the needle within clinical TRUS image are limited, the appearing length and visibility of the needle varies strongly. Marker lines are present and tissue inhomogeneities and deflection artefacts may appear. Simple intensity, gradient oder edge-detecting based segmentation methods fail. Therefore a multivariate statistical classificator is implemented. The independent feature model is built by supervised learning using a set of manually segmented needles. The feature space is spanned by common binary object features as size and eccentricity as well as imaging-system dependent features like distance and orientation relative to the marker line. The object extraction is done by multi-step binarization of the region of interest. The ROI is automatically determined at the beginning of the segmentation and marker lines are removed from the images. The segmentation itself is realized by scale-invariant classification using maximum likelihood estimation and Mahalanobis distance as discriminator. The technique presented here could be successfully applied in 94% of 1835 TRUS images from 30 tissue extractions. It provides a robust method for biopsy needle localization in clinical prostate biopsy TRUS images.

  5. Ultrasound-guided suprascapular nerve block: a correlation with fluoroscopic and cadaveric findings.

    PubMed

    Peng, Philip W H; Wiley, Michael J; Liang, James; Bellingham, Geoff A

    2010-02-01

    Previous work on the ultrasound-guided injection technique and the sonoanatomy of the suprascapular region relevant to the suprascapular nerve (SSN) block suggested that the ultrasound scan showed the presence of the suprascapular notch and transverse ligament. The intended target of the ultrasound-guided injection was the notch. The objective of this case report and the subsequent cadaver dissection findings is to reassess the interpretation of the ultrasound images when locating structures for SSN block. A 45-yr-old man with chronic shoulder pain received an ultrasound-guided SSN block using the suprascapular notch as the intended target. The position of the needle was verified by fluoroscopy, which showed the tip of the needle well outside the suprascapular notch. Similar ultrasound-guided SSN blocks were performed in two cadavers. Dissections were performed which showed that the needle tips were not at the suprascapular notch but, more accurately, were close to the SSN but at the floor of the suprascapular fossa between the suprascapular and spinoglenoid notch. Our fluoroscopic and cadaver dissection findings both suggest that the ultrasound image of the SSN block shown by the well-described technique is actually targeting the nerve on the floor of the suprascapular spine between the suprascapular and spinoglenoid notches rather than the suprascapular notch itself. The structure previously identified as the transverse ligament is actually the fascia layer of the supraspinatus muscle.

  6. Contrast enhanced ultrasound (CEUS) with MRI image fusion for monitoring focal therapy of prostate cancer with high intensity focused ultrasound (HIFU)1.

    PubMed

    Apfelbeck, M; Clevert, D-A; Ricke, J; Stief, C; Schlenker, B

    2018-01-01

    Reduced acceptance of radical prostatectomy in patients with low risk or intermediate risk prostate cancer has significantly changed treatment strategies in prostate cancer (PCa) during the last years. Focal therapy of the prostate with high intensity focused ultrasound (HIFU) is an organ-preserving treatment for prostate cancer with less impairment of health-related quality of life. Follow-up after HIFU therapy by imaging modalities remains a major problem as eg. MRI performs poorly. Contrast enhanced ultrasound (CEUS) allows to monitor the vascular architecture of organs non-invasively. However, only limited data are available using CEUS to define successful and complete HIFU treatment of the prostate. In this study, we aimed to evaluate short-term image findings using CEUS and image fusion before and after HIFU treatment. Prospective single arm study in patients with uni- or bilateral, low or intermediate risk prostate cancer or recurrent cancer after radiotherapy treated with HIFU at our institution between October 2016 and November 2017. HIFU hemiablation or whole gland treatment was performed using the Focal One® device. PCa was diagnosed either by multiparametric magnetic resonance imaging (mpMRI) followed by MRI fusion based targeted biopsy combined with 12 core transrectal ultrasound (TRUS) guided biopsy or 12 core random biopsy only. Monitoring of the target region before, immediately and 24 hours after the ablation was done by CEUS in combination with image fusion using an axial T2-weighted MRI sequence. 6 consecutive patients with Gleason score (GS) 6, 5 patients with GS 7a prostate cancer and one patient with biochemical recurrence after radiotherapy were included in the study. Three patients underwent whole gland treatment due to histological proven bilateral PCa or recurrent PCa after radiotherapy. Hemiablation was performed in 9 patients with unilateral tumor and no PIRADS 4 or 5 lesion in the contralateral lobe. Median patient age was 69.8 years and median PSA (prostate-specific antigen) level was 8.4 ng/ml. CEUS showed markedly reduced microbubbles in the ablated area, the prostate capsule still showed signs of perfusion. The study is limited by the short follow up and small number of patients. CEUS examination showed a reduction of microcirculation in the treated area immediately after the treatment and 24 hours later. The combination of CEUS and image fusion seems to be helpful for detecting the PCa target lesion and monitor the success of HIFU ablation treatment. Evidence for image findings after HIFU-therapy are rare. Further studies on this topic are needed.

  7. On Voxel based Iso-Tumor Control Probabilty and Iso-Complication Maps for Selective Boosting and Selective Avoidance Intensity Modulated Radiotherapy

    PubMed Central

    Kim, Yusung; Tomé, Wolfgang A.

    2010-01-01

    Summary Voxel based iso-Tumor Control Probability (TCP) maps and iso-Complication maps are proposed as a plan-review tool especially for functional image-guided intensity-modulated radiotherapy (IMRT) strategies such as selective boosting (dose painting) and conformal avoidance IMRT. The maps employ voxel-based phenomenological biological dose-response models for target volumes and normal organs. Two IMRT strategies for prostate cancer, namely conventional uniform IMRT delivering an EUD = 84 Gy (equivalent uniform dose) to the entire PTV and selective boosting delivering an EUD = 82 Gy to the entire PTV, are investigated, to illustrate the advantages of this approach over iso-dose maps. Conventional uniform IMRT did yield a more uniform isodose map to the entire PTV while selective boosting did result in a nonuniform isodose map. However, when employing voxel based iso-TCP maps selective boosting exhibited a more uniform tumor control probability map compared to what could be achieved using conventional uniform IMRT, which showed TCP cold spots in high-risk tumor subvolumes despite delivering a higher EUD to the entire PTV. Voxel based iso-Complication maps are presented for rectum and bladder, and their utilization for selective avoidance IMRT strategies are discussed. We believe as the need for functional image guided treatment planning grows, voxel based iso-TCP and iso-Complication maps will become an important tool to assess the integrity of such treatment plans. PMID:21151734

  8. Versatile utilization of real-time intraoperative contrast-enhanced ultrasound in cranial neurosurgery: technical note and retrospective case series.

    PubMed

    Lekht, Ilya; Brauner, Noah; Bakhsheshian, Joshua; Chang, Ki-Eun; Gulati, Mittul; Shiroishi, Mark S; Grant, Edward G; Christian, Eisha; Zada, Gabriel

    2016-03-01

    Intraoperative contrast-enhanced ultrasound (iCEUS) offers dynamic imaging and provides functional data in real time. However, no standardized protocols or validated quantitative data exist to guide its routine use in neurosurgery. The authors aimed to provide further clinical data on the versatile application of iCEUS through a technical note and illustrative case series. Five patients undergoing craniotomies for suspected tumors were included. iCEUS was performed using a contrast agent composed of lipid shell microspheres enclosing perflutren (octafluoropropane) gas. Perfusion data were acquired through a time-intensity curve analysis protocol obtained using iCEUS prior to biopsy and/or resection of all lesions. Three primary tumors (gemistocytic astrocytoma, glioblastoma multiforme, and meningioma), 1 metastatic lesion (melanoma), and 1 tumefactive demyelinating lesion (multiple sclerosis) were assessed using real-time iCEUS. No intraoperative complications occurred following multiple administrations of contrast agent in all cases. In all neoplastic cases, iCEUS replicated enhancement patterns observed on preoperative Gd-enhanced MRI, facilitated safe tumor debulking by differentiating neoplastic tissue from normal brain parenchyma, and helped identify arterial feeders and draining veins in and around the surgical cavity. Intraoperative CEUS was also useful in guiding a successful intraoperative needle biopsy of a cerebellar tumefactive demyelinating lesion obtained during real-time perfusion analysis. Intraoperative CEUS has potential for safe, real-time, dynamic contrast-based imaging for routine use in neurooncological surgery and image-guided biopsy. Intraoperative CEUS eliminates the effect of anatomical distortions associated with standard neuronavigation and provides quantitative perfusion data in real time, which may hold major implications for intraoperative diagnosis, tissue differentiation, and quantification of extent of resection. Further prospective studies will help standardize the role of iCEUS in neurosurgery.

  9. Real-time Monitoring of High Intensity Focused Ultrasound (HIFU) Ablation of In Vitro Canine Livers Using Harmonic Motion Imaging for Focused Ultrasound (HMIFU).

    PubMed

    Grondin, Julien; Payen, Thomas; Wang, Shutao; Konofagou, Elisa E

    2015-11-03

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a technique that can perform and monitor high-intensity focused ultrasound (HIFU) ablation. An oscillatory motion is generated at the focus of a 93-element and 4.5 MHz center frequency HIFU transducer by applying a 25 Hz amplitude-modulated signal using a function generator. A 64-element and 2.5 MHz imaging transducer with 68kPa peak pressure is confocally placed at the center of the HIFU transducer to acquire the radio-frequency (RF) channel data. In this protocol, real-time monitoring of thermal ablation using HIFU with an acoustic power of 7 W on canine livers in vitro is described. HIFU treatment is applied on the tissue during 2 min and the ablated region is imaged in real-time using diverging or plane wave imaging up to 1,000 frames/second. The matrix of RF channel data is multiplied by a sparse matrix for image reconstruction. The reconstructed field of view is of 90° for diverging wave and 20 mm for plane wave imaging and the data are sampled at 80 MHz. The reconstruction is performed on a Graphical Processing Unit (GPU) in order to image in real-time at a 4.5 display frame rate. 1-D normalized cross-correlation of the reconstructed RF data is used to estimate axial displacements in the focal region. The magnitude of the peak-to-peak displacement at the focal depth decreases during the thermal ablation which denotes stiffening of the tissue due to the formation of a lesion. The displacement signal-to-noise ratio (SNRd) at the focal area for plane wave was 1.4 times higher than for diverging wave showing that plane wave imaging appears to produce better displacement maps quality for HMIFU than diverging wave imaging.

  10. Real-time Monitoring of High Intensity Focused Ultrasound (HIFU) Ablation of In Vitro Canine Livers Using Harmonic Motion Imaging for Focused Ultrasound (HMIFU)

    PubMed Central

    Grondin, Julien; Payen, Thomas; Wang, Shutao; Konofagou, Elisa E.

    2015-01-01

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a technique that can perform and monitor high-intensity focused ultrasound (HIFU) ablation. An oscillatory motion is generated at the focus of a 93-element and 4.5 MHz center frequency HIFU transducer by applying a 25 Hz amplitude-modulated signal using a function generator. A 64-element and 2.5 MHz imaging transducer with 68kPa peak pressure is confocally placed at the center of the HIFU transducer to acquire the radio-frequency (RF) channel data. In this protocol, real-time monitoring of thermal ablation using HIFU with an acoustic power of 7 W on canine livers in vitro is described. HIFU treatment is applied on the tissue during 2 min and the ablated region is imaged in real-time using diverging or plane wave imaging up to 1,000 frames/second. The matrix of RF channel data is multiplied by a sparse matrix for image reconstruction. The reconstructed field of view is of 90° for diverging wave and 20 mm for plane wave imaging and the data are sampled at 80 MHz. The reconstruction is performed on a Graphical Processing Unit (GPU) in order to image in real-time at a 4.5 display frame rate. 1-D normalized cross-correlation of the reconstructed RF data is used to estimate axial displacements in the focal region. The magnitude of the peak-to-peak displacement at the focal depth decreases during the thermal ablation which denotes stiffening of the tissue due to the formation of a lesion. The displacement signal-to-noise ratio (SNRd) at the focal area for plane wave was 1.4 times higher than for diverging wave showing that plane wave imaging appears to produce better displacement maps quality for HMIFU than diverging wave imaging. PMID:26556647

  11. Ultrasound window-modulated compounding Nakagami imaging: Resolution improvement and computational acceleration for liver characterization.

    PubMed

    Ma, Hsiang-Yang; Lin, Ying-Hsiu; Wang, Chiao-Yin; Chen, Chiung-Nien; Ho, Ming-Chih; Tsui, Po-Hsiang

    2016-08-01

    Ultrasound Nakagami imaging is an attractive method for visualizing changes in envelope statistics. Window-modulated compounding (WMC) Nakagami imaging was reported to improve image smoothness. The sliding window technique is typically used for constructing ultrasound parametric and Nakagami images. Using a large window overlap ratio may improve the WMC Nakagami image resolution but reduces computational efficiency. Therefore, the objectives of this study include: (i) exploring the effects of the window overlap ratio on the resolution and smoothness of WMC Nakagami images; (ii) proposing a fast algorithm that is based on the convolution operator (FACO) to accelerate WMC Nakagami imaging. Computer simulations and preliminary clinical tests on liver fibrosis samples (n=48) were performed to validate the FACO-based WMC Nakagami imaging. The results demonstrated that the width of the autocorrelation function and the parameter distribution of the WMC Nakagami image reduce with the increase in the window overlap ratio. One-pixel shifting (i.e., sliding the window on the image data in steps of one pixel for parametric imaging) as the maximum overlap ratio significantly improves the WMC Nakagami image quality. Concurrently, the proposed FACO method combined with a computational platform that optimizes the matrix computation can accelerate WMC Nakagami imaging, allowing the detection of liver fibrosis-induced changes in envelope statistics. FACO-accelerated WMC Nakagami imaging is a new-generation Nakagami imaging technique with an improved image quality and fast computation. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. MRI-guided high-intensity focused ultrasound ablation of bone: evaluation of acute findings with MR and CT imaging in a swine model.

    PubMed

    Bucknor, Matthew D; Rieke, Viola; Do, Loi; Majumdar, Sharmila; Link, Thomas M; Saeed, Maythem

    2014-11-01

    To evaluate hyperacute (<1 hour) changes on magnetic resonance (MR) and computed tomography (CT) imaging following MR-guided high-intensity focused ultrasound (MRgHIFU) in a swine bone model as a function of sonication number and energy. Experimental procedures received approval from the local Institutional Animal Care and Use Committee. MRgHIFU was used to create distal and proximal ablations in the right femur of eight pigs. Each target was dosed with four or six sonications within similar volumes. The energy dosed to the distal target was higher (419 ± 19 J) than the proximal target (324 ± 17 J). The targeted femur and contralateral control were imaged before and after ablation using MR at 3T. Qualitative changes in signal on T1-weighted, T2-weighted, and T1-weighted postcontrast images were assessed. Ablation dimensions were calculated from postcontrast MRI. The 64-slice CT images were also obtained before and after ablation and qualitative changes were assessed. MRgHIFU bone ablation size measured on average 8.5 × 21.1 × 16.2 mm (transverse × craniocaudal × anteroposterior). Interestingly, within similar prescribed volumes, increasing the number of sonications from 4 to 6 increased the depth of the intramedullary hypoenhanced zone from 2.9 mm to 6.5 mm (P < 0.001). There was no difference in the appearance of low versus high energy ablations. CT imaging did not show structural abnormalities. The number of MRgHIFU focal sonications can be used to increase the depth of treatment within the targeted bone. Unlike CT, T2-weighted and contrast-enhanced MR demonstrated the hyperacute structural changes in the femur and surrounding soft tissue. © 2013 Wiley Periodicals, Inc.

  13. Endoluminal ultrasound applicators for MR-guided thermal ablation of pancreatic tumors: Preliminary design and evaluation in a porcine pancreas model

    PubMed Central

    Adams, Matthew S.; Salgaonkar, Vasant A.; Plata-Camargo, Juan; Jones, Peter D.; Pascal-Tenorio, Aurea; Chen, Hsin-Yu; Bouley, Donna M.; Sommer, Graham; Pauly, Kim Butts; Diederich, Chris J.

    2016-01-01

    Purpose: Endoluminal ultrasound may serve as a minimally invasive option for delivering thermal ablation to pancreatic tumors adjacent to the stomach or duodenum. The objective of this study was to explore the basic feasibility of this treatment strategy through the design, characterization, and evaluation of proof-of-concept endoluminal ultrasound applicators capable of placement in the gastrointestinal (GI) lumen for volumetric pancreas ablation under MR guidance. Methods: Two variants of the endoluminal applicator, each containing a distinct array of two independently powered transducers (10 × 10 mm 3.2 MHz planar; or 8 × 10 × 20 mm radius of curvature 3.3 MHz curvilinear geometries) at the distal end of a meter long flexible catheter assembly, were designed and fabricated. Transducers and circulatory water flow for acoustic coupling and luminal cooling were contained by a low-profile polyester balloon covering the transducer assembly fixture. Each applicator incorporated miniature spiral MR coils and mechanical features (guiding tips and hinges) to facilitate tracking and insertion through the GI tract under MRI guidance. Acoustic characterization of each device was performed using radiation force balance and hydrophone measurements. Device delivery into the upper GI tract, adjacent to the pancreas, and heating characteristics for treatment of pancreatic tissue were evaluated in MR-guided ex vivo and in vivo porcine experiments. MR guidance was utilized for anatomical target identification, tracking/positioning of the applicator, and MR temperature imaging (MRTI) for PRF-based multislice thermometry, implemented in the real-time RTHawk software environment. Results: Force balance and hydrophone measurements indicated efficiencies of 48.8% and 47.8% and −3 dB intensity beam-widths of 3.2 and 1.2 mm for the planar and curvilinear transducers, respectively. Ex vivo studies on whole-porcine carcasses revealed capabilities of producing ablative temperature rise (ΔT > 15 °C) contours in pancreatic tissue 4–40 mm long and 4–28 mm wide for the planar transducer applicator (1–13 min sonication duration, ∼4 W/cm2 applied acoustic intensity). Curvilinear transducers produced more selective heating, with a narrower ΔT > 15 °C contour length and width of up to 1–24 mm and 2–7 mm, respectively (1–7 min sonication duration, ∼4 W/cm2 applied acoustic intensity). Active tracking of the miniature spiral coils was achieved using a Hadamard encoding tracking sequence, enabling real-time determination of each coil’s coordinates and automated prescription of imaging planes for thermometry. In vivo MRTI-guided heating trials in three pigs demonstrated capability of ∼20 °C temperature elevation in pancreatic tissue at 2 cm depths from the applicator, with 5–7 W/cm2 applied intensity and 6–16 min sonication duration. Dimensions of thermal lesions in the pancreas ranged from 12 to 28 mm, 3 to 10 mm, and 5 to 10 mm in length, width, and depth, respectively, as verified through histological analysis of tissue sections. Multiple-baseline reconstruction and respiratory-gated acquisition were demonstrated to be effective strategies in suppressing motion artifacts for clear evolution of temperature profiles during MRTI in the in vivo studies. Conclusions: This study demonstrates the technical feasibility of generating volumetric ablation in pancreatic tissue using endoluminal ultrasound applicators positioned in the stomach lumen. MR guidance facilitates target identification, device tracking/positioning, and treatment monitoring through real-time multislice PRF-based thermometry. PMID:27370138

  14. Endoluminal ultrasound applicators for MR-guided thermal ablation of pancreatic tumors: Preliminary design and evaluation in a porcine pancreas model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Matthew S., E-mail: matt.adams@ucsf.edu; Di

    Purpose: Endoluminal ultrasound may serve as a minimally invasive option for delivering thermal ablation to pancreatic tumors adjacent to the stomach or duodenum. The objective of this study was to explore the basic feasibility of this treatment strategy through the design, characterization, and evaluation of proof-of-concept endoluminal ultrasound applicators capable of placement in the gastrointestinal (GI) lumen for volumetric pancreas ablation under MR guidance. Methods: Two variants of the endoluminal applicator, each containing a distinct array of two independently powered transducers (10 × 10 mm 3.2 MHz planar; or 8 × 10 × 20 mm radius of curvature 3.3 MHzmore » curvilinear geometries) at the distal end of a meter long flexible catheter assembly, were designed and fabricated. Transducers and circulatory water flow for acoustic coupling and luminal cooling were contained by a low-profile polyester balloon covering the transducer assembly fixture. Each applicator incorporated miniature spiral MR coils and mechanical features (guiding tips and hinges) to facilitate tracking and insertion through the GI tract under MRI guidance. Acoustic characterization of each device was performed using radiation force balance and hydrophone measurements. Device delivery into the upper GI tract, adjacent to the pancreas, and heating characteristics for treatment of pancreatic tissue were evaluated in MR-guided ex vivo and in vivo porcine experiments. MR guidance was utilized for anatomical target identification, tracking/positioning of the applicator, and MR temperature imaging (MRTI) for PRF-based multislice thermometry, implemented in the real-time RTHawk software environment. Results: Force balance and hydrophone measurements indicated efficiencies of 48.8% and 47.8% and −3 dB intensity beam-widths of 3.2 and 1.2 mm for the planar and curvilinear transducers, respectively. Ex vivo studies on whole-porcine carcasses revealed capabilities of producing ablative temperature rise (ΔT > 15 °C) contours in pancreatic tissue 4–40 mm long and 4–28 mm wide for the planar transducer applicator (1–13 min sonication duration, ∼4 W/cm{sup 2} applied acoustic intensity). Curvilinear transducers produced more selective heating, with a narrower ΔT > 15 °C contour length and width of up to 1–24 mm and 2–7 mm, respectively (1–7 min sonication duration, ∼4 W/cm{sup 2} applied acoustic intensity). Active tracking of the miniature spiral coils was achieved using a Hadamard encoding tracking sequence, enabling real-time determination of each coil’s coordinates and automated prescription of imaging planes for thermometry. In vivo MRTI-guided heating trials in three pigs demonstrated capability of ∼20 °C temperature elevation in pancreatic tissue at 2 cm depths from the applicator, with 5–7 W/cm{sup 2} applied intensity and 6–16 min sonication duration. Dimensions of thermal lesions in the pancreas ranged from 12 to 28 mm, 3 to 10 mm, and 5 to 10 mm in length, width, and depth, respectively, as verified through histological analysis of tissue sections. Multiple-baseline reconstruction and respiratory-gated acquisition were demonstrated to be effective strategies in suppressing motion artifacts for clear evolution of temperature profiles during MRTI in the in vivo studies. Conclusions: This study demonstrates the technical feasibility of generating volumetric ablation in pancreatic tissue using endoluminal ultrasound applicators positioned in the stomach lumen. MR guidance facilitates target identification, device tracking/positioning, and treatment monitoring through real-time multislice PRF-based thermometry.« less

  15. Human placental vasculature imaging using an LED-based photoacoustic/ultrasound imaging system

    NASA Astrophysics Data System (ADS)

    Maneas, Efthymios; Xia, Wenfeng; Kuniyil Ajith Singh, Mithun; Sato, Naoto; Agano, Toshitaka; Ourselin, Sebastien; West, Simeon J.; David, Anna L.; Vercauteren, Tom; Desjardins, Adrien E.

    2018-02-01

    Minimally invasive fetal interventions, such as those used for therapy of twin-to-twin transfusion syndrome (TTTS), require accurate image guidance to optimise patient outcomes. Currently, TTTS can be treated fetoscopically by identifying anastomosing vessels on the chorionic (fetal) placental surface, and then performing photocoagulation. Incomplete photocoagulation increases the risk of procedure failure. Photoacoustic imaging can provide contrast for both haemoglobin concentration and oxygenation, and in this study, it was hypothesised that it can resolve chorionic placental vessels. We imaged a term human placenta that was collected after caesarean section delivery using a photoacoustic/ultrasound system (AcousticX) that included light emitting diode (LED) arrays for excitation light and a linear-array ultrasound imaging probe. Two-dimensional (2D) co-registered photoacoustic and B-mode pulse-echo ultrasound images were acquired and displayed in real-time. Translation of the imaging probe enabled 3D imaging. This feasibility study demonstrated that photoacoustic imaging can be used to visualise chorionic placental vasculature, and that it has strong potential to guide minimally invasive fetal interventions.

  16. Convolution neural networks for real-time needle detection and localization in 2D ultrasound.

    PubMed

    Mwikirize, Cosmas; Nosher, John L; Hacihaliloglu, Ilker

    2018-05-01

    We propose a framework for automatic and accurate detection of steeply inserted needles in 2D ultrasound data using convolution neural networks. We demonstrate its application in needle trajectory estimation and tip localization. Our approach consists of a unified network, comprising a fully convolutional network (FCN) and a fast region-based convolutional neural network (R-CNN). The FCN proposes candidate regions, which are then fed to a fast R-CNN for finer needle detection. We leverage a transfer learning paradigm, where the network weights are initialized by training with non-medical images, and fine-tuned with ex vivo ultrasound scans collected during insertion of a 17G epidural needle into freshly excised porcine and bovine tissue at depth settings up to 9 cm and [Formula: see text]-[Formula: see text] insertion angles. Needle detection results are used to accurately estimate needle trajectory from intensity invariant needle features and perform needle tip localization from an intensity search along the needle trajectory. Our needle detection model was trained and validated on 2500 ex vivo ultrasound scans. The detection system has a frame rate of 25 fps on a GPU and achieves 99.6% precision, 99.78% recall rate and an [Formula: see text] score of 0.99. Validation for needle localization was performed on 400 scans collected using a different imaging platform, over a bovine/porcine lumbosacral spine phantom. Shaft localization error of [Formula: see text], tip localization error of [Formula: see text] mm, and a total processing time of 0.58 s were achieved. The proposed method is fully automatic and provides robust needle localization results in challenging scanning conditions. The accurate and robust results coupled with real-time detection and sub-second total processing make the proposed method promising in applications for needle detection and localization during challenging minimally invasive ultrasound-guided procedures.

  17. Modeling-based design and assessment of an acousto-optic guided high-intensity focused ultrasound system

    PubMed Central

    Adams, Matthew T.; Cleveland, Robin O.; Roy, Ronald A.

    2017-01-01

    Abstract. Real-time acousto-optic (AO) sensing has been shown to noninvasively detect changes in ex vivo tissue optical properties during high-intensity focused ultrasound (HIFU) exposures. The technique is particularly appropriate for monitoring noncavitating lesions that offer minimal acoustic contrast. A numerical model is presented for an AO-guided HIFU system with an illumination wavelength of 1064 nm and an acoustic frequency of 1.1 MHz. To confirm the model’s accuracy, it is compared to previously published experimental data gathered during AO-guided HIFU in chicken breast. The model is used to determine an optimal design for an AO-guided HIFU system, to assess its robustness, and to predict its efficacy for the ablation of large volumes. It was found that a through transmission geometry results in the best performance, and an optical wavelength around 800 nm was optimal as it provided sufficient contrast with low absorption. Finally, it was shown that the strategy employed while treating large volumes with AO guidance has a major impact on the resulting necrotic volume and symmetry. PMID:28114454

  18. Focused Ultrasound Surgery in Oncology: Overview and Principles

    PubMed Central

    McDannold, Nathan J.; Hynynen, Kullervo; Jolesz, Ferenc A.

    2011-01-01

    Focused ultrasound surgery (FUS) is a noninvasive image-guided therapy and an alternative to surgical interventions. It presents an opportunity to revolutionize cancer therapy and to affect or change drug delivery of therapeutic agents in new focally targeted ways. In this article the background, principles, technical devices, and clinical cancer applications of image-guided FUS are reviewed. © RSNA, 2011 PMID:21436096

  19. Intra-operative Localization of Brachytherapy Implants Using Intensity-based Registration

    PubMed Central

    KarimAghaloo, Z.; Abolmaesumi, P.; Ahmidi, N.; Chen, T.K.; Gobbi, D. G.; Fichtinger, G.

    2010-01-01

    In prostate brachytherapy, a transrectal ultrasound (TRUS) will show the prostate boundary but not all the implanted seeds, while fluoroscopy will show all the seeds clearly but not the boundary. We propose an intensity-based registration between TRUS images and the implant reconstructed from uoroscopy as a means of achieving accurate intra-operative dosimetry. The TRUS images are first filtered and compounded, and then registered to the uoroscopy model via mutual information. A training phantom was implanted with 48 seeds and imaged. Various ultrasound filtering techniques were analyzed, and the best results were achieved with the Bayesian combination of adaptive thresholding, phase congruency, and compensation for the non-uniform ultrasound beam profile in the elevation and lateral directions. The average registration error between corresponding seeds relative to the ground truth was 0.78 mm. The effect of false positives and false negatives in ultrasound were investigated by masking true seeds in the uoroscopy volume or adding false seeds. The registration error remained below 1.01 mm when the false positive rate was 31%, and 0.96 mm when the false negative rate was 31%. This fully automated method delivers excellent registration accuracy and robustness in phantom studies, and promises to demonstrate clinically adequate performance on human data as well. Keywords: Prostate brachytherapy, Ultrasound, Fluoroscopy, Registration. PMID:21152376

  20. Comparison of a GPS needle-tracking system, multiplanar imaging and 2D imaging for real-time ultrasound-guided epidural anaesthesia: A randomized, comparative, observer-blinded study on phantoms.

    PubMed

    Menacé, Cécilia; Choquet, Olivier; Abbal, Bertrand; Bringuier, Sophie; Capdevila, Xavier

    2017-04-01

    The real-time ultrasound-guided paramedian sagittal oblique approach for neuraxial blockade is technically demanding. Innovative technologies have been developed to improve nerve identification and the accuracy of needle placement. The aim of this study was to evaluate three types of ultrasound scans during ultrasound-guided epidural lumbar punctures in a spine phantom. Eleven sets of 20 ultrasound-guided epidural punctures were performed with 2D, GPS, and multiplanar ultrasound machines (660 punctures) on a spine phantom using an in-plane approach. For all punctures, execution time, number of attempts, bone contacts, and needle redirections were noted by an independent physician. Operator comfort and visibility of the needle (tip and shaft) were measured using a numerical scale. The use of GPS significantly decreased the number of punctures, needle repositionings, and bone contacts. Comfort of the physician was also significantly improved with the GPS system compared with the 2D and multiplanar systems. With the multiplanar system, the procedure was not facilitated and execution time was longer compared with 2D imaging after Bonferroni correction but interaction between the type of ultrasound system and mean execution time was not significant in a linear mixed model. There were no significant differences regarding needle tip and shaft visibility between the systems. Multiplanar and GPS needle-tracking systems do not reduce execution time compared with 2D imaging using a real-time ultrasound-guided paramedian sagittal oblique approach in spine phantoms. The GPS needle-tracking system can improve performance in terms of operator comfort, the number of attempts, needle redirections and bone contacts. Copyright © 2016 Société française d'anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.

  1. Introducing an on-line adaptive procedure for prostate image guided intensity modulate proton therapy.

    PubMed

    Zhang, M; Westerly, D C; Mackie, T R

    2011-08-07

    With on-line image guidance (IG), prostate shifts relative to the bony anatomy can be corrected by realigning the patient with respect to the treatment fields. In image guided intensity modulated proton therapy (IG-IMPT), because the proton range is more sensitive to the material it travels through, the realignment may introduce large dose variations. This effect is studied in this work and an on-line adaptive procedure is proposed to restore the planned dose to the target. A 2D anthropomorphic phantom was constructed from a real prostate patient's CT image. Two-field laterally opposing spot 3D-modulation and 24-field full arc distal edge tracking (DET) plans were generated with a prescription of 70 Gy to the planning target volume. For the simulated delivery, we considered two types of procedures: the non-adaptive procedure and the on-line adaptive procedure. In the non-adaptive procedure, only patient realignment to match the prostate location in the planning CT was performed. In the on-line adaptive procedure, on top of the patient realignment, the kinetic energy for each individual proton pencil beam was re-determined from the on-line CT image acquired after the realignment and subsequently used for delivery. Dose distributions were re-calculated for individual fractions for different plans and different delivery procedures. The results show, without adaptive, that both the 3D-modulation and the DET plans experienced delivered dose degradation by having large cold or hot spots in the prostate. The DET plan had worse dose degradation than the 3D-modulation plan. The adaptive procedure effectively restored the planned dose distribution in the DET plan, with delivered prostate D(98%), D(50%) and D(2%) values less than 1% from the prescription. In the 3D-modulation plan, in certain cases the adaptive procedure was not effective to reduce the delivered dose degradation and yield similar results as the non-adaptive procedure. In conclusion, based on this 2D phantom study, by updating the proton pencil beam energy from the on-line image after realignment, this on-line adaptive procedure is necessary and effective for the DET-based IG-IMPT. Without dose re-calculation and re-optimization, it could be easily incorporated into the clinical workflow.

  2. Introducing an on-line adaptive procedure for prostate image guided intensity modulate proton therapy

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Westerly, D. C.; Mackie, T. R.

    2011-08-01

    With on-line image guidance (IG), prostate shifts relative to the bony anatomy can be corrected by realigning the patient with respect to the treatment fields. In image guided intensity modulated proton therapy (IG-IMPT), because the proton range is more sensitive to the material it travels through, the realignment may introduce large dose variations. This effect is studied in this work and an on-line adaptive procedure is proposed to restore the planned dose to the target. A 2D anthropomorphic phantom was constructed from a real prostate patient's CT image. Two-field laterally opposing spot 3D-modulation and 24-field full arc distal edge tracking (DET) plans were generated with a prescription of 70 Gy to the planning target volume. For the simulated delivery, we considered two types of procedures: the non-adaptive procedure and the on-line adaptive procedure. In the non-adaptive procedure, only patient realignment to match the prostate location in the planning CT was performed. In the on-line adaptive procedure, on top of the patient realignment, the kinetic energy for each individual proton pencil beam was re-determined from the on-line CT image acquired after the realignment and subsequently used for delivery. Dose distributions were re-calculated for individual fractions for different plans and different delivery procedures. The results show, without adaptive, that both the 3D-modulation and the DET plans experienced delivered dose degradation by having large cold or hot spots in the prostate. The DET plan had worse dose degradation than the 3D-modulation plan. The adaptive procedure effectively restored the planned dose distribution in the DET plan, with delivered prostate D98%, D50% and D2% values less than 1% from the prescription. In the 3D-modulation plan, in certain cases the adaptive procedure was not effective to reduce the delivered dose degradation and yield similar results as the non-adaptive procedure. In conclusion, based on this 2D phantom study, by updating the proton pencil beam energy from the on-line image after realignment, this on-line adaptive procedure is necessary and effective for the DET-based IG-IMPT. Without dose re-calculation and re-optimization, it could be easily incorporated into the clinical workflow.

  3. Design and development of an ultrasound calibration phantom and system

    NASA Astrophysics Data System (ADS)

    Cheng, Alexis; Ackerman, Martin K.; Chirikjian, Gregory S.; Boctor, Emad M.

    2014-03-01

    Image-guided surgery systems are often used to provide surgeons with informational support. Due to several unique advantages such as ease of use, real-time image acquisition, and no ionizing radiation, ultrasound is a common medical imaging modality used in image-guided surgery systems. To perform advanced forms of guidance with ultrasound, such as virtual image overlays or automated robotic actuation, an ultrasound calibration process must be performed. This process recovers the rigid body transformation between a tracked marker attached to the ultrasound transducer and the ultrasound image. A phantom or model with known geometry is also required. In this work, we design and test an ultrasound calibration phantom and software. The two main considerations in this work are utilizing our knowledge of ultrasound physics to design the phantom and delivering an easy to use calibration process to the user. We explore the use of a three-dimensional printer to create the phantom in its entirety without need for user assembly. We have also developed software to automatically segment the three-dimensional printed rods from the ultrasound image by leveraging knowledge about the shape and scale of the phantom. In this work, we present preliminary results from using this phantom to perform ultrasound calibration. To test the efficacy of our method, we match the projection of the points segmented from the image to the known model and calculate a sum squared difference between each point for several combinations of motion generation and filtering methods. The best performing combination of motion and filtering techniques had an error of 1.56 mm and a standard deviation of 1.02 mm.

  4. American Thyroid Association statement on preoperative imaging for thyroid cancer surgery.

    PubMed

    Yeh, Michael W; Bauer, Andrew J; Bernet, Victor A; Ferris, Robert L; Loevner, Laurie A; Mandel, Susan J; Orloff, Lisa A; Randolph, Gregory W; Steward, David L

    2015-01-01

    The success of surgery for thyroid cancer hinges on thorough and accurate preoperative imaging, which enables complete clearance of the primary tumor and affected lymph node compartments. This working group was charged by the Surgical Affairs Committee of the American Thyroid Association to examine the available literature and to review the most appropriate imaging studies for the planning of initial and revision surgery for thyroid cancer. Ultrasound remains the most important imaging modality in the evaluation of thyroid cancer, and should be used routinely to assess both the primary tumor and all associated cervical lymph node basins preoperatively. Positive lymph nodes may be distinguished from normal nodes based upon size, shape, echogenicity, hypervascularity, loss of hilar architecture, and the presence of calcifications. Ultrasound-guided fine-needle aspiration of suspicious lymph nodes may be useful in guiding the extent of surgery. Cross-sectional imaging (computed tomography with contrast or magnetic resonance imaging) may be considered in select circumstances to better characterize tumor invasion and bulky, inferiorly located, or posteriorly located lymph nodes, or when ultrasound expertise is not available. The above recommendations are applicable to both initial and revision surgery. Functional imaging with positron emission tomography (PET) or PET-CT may be helpful in cases of recurrent cancer with positive tumor markers and negative anatomic imaging.

  5. American Thyroid Association Statement on Preoperative Imaging for Thyroid Cancer Surgery

    PubMed Central

    Bauer, Andrew J.; Bernet, Victor A.; Ferris, Robert L.; Loevner, Laurie A.; Mandel, Susan J.; Orloff, Lisa A.; Randolph, Gregory W.; Steward, David L.

    2015-01-01

    Background: The success of surgery for thyroid cancer hinges on thorough and accurate preoperative imaging, which enables complete clearance of the primary tumor and affected lymph node compartments. This working group was charged by the Surgical Affairs Committee of the American Thyroid Association to examine the available literature and to review the most appropriate imaging studies for the planning of initial and revision surgery for thyroid cancer. Summary: Ultrasound remains the most important imaging modality in the evaluation of thyroid cancer, and should be used routinely to assess both the primary tumor and all associated cervical lymph node basins preoperatively. Positive lymph nodes may be distinguished from normal nodes based upon size, shape, echogenicity, hypervascularity, loss of hilar architecture, and the presence of calcifications. Ultrasound-guided fine-needle aspiration of suspicious lymph nodes may be useful in guiding the extent of surgery. Cross-sectional imaging (computed tomography with contrast or magnetic resonance imaging) may be considered in select circumstances to better characterize tumor invasion and bulky, inferiorly located, or posteriorly located lymph nodes, or when ultrasound expertise is not available. The above recommendations are applicable to both initial and revision surgery. Functional imaging with positron emission tomography (PET) or PET-CT may be helpful in cases of recurrent cancer with positive tumor markers and negative anatomic imaging. PMID:25188202

  6. Magnetic Nanoliposomes as in Situ Microbubble Bombers for Multimodality Image-Guided Cancer Theranostics.

    PubMed

    Liu, Yang; Yang, Fang; Yuan, Chuxiao; Li, Mingxi; Wang, Tuantuan; Chen, Bo; Jin, Juan; Zhao, Peng; Tong, Jiayi; Luo, Shouhua; Gu, Ning

    2017-02-28

    Nanosized drug delivery systems have offered promising approaches for cancer theranostics. However, few are effective to simultaneously maximize tumor-specific uptake, imaging, and therapy in a single nanoplatform. Here, we report a simple yet stimuli-responsive anethole dithiolethione (ADT)-loaded magnetic nanoliposome (AML) delivery system, which consists of ADT, hydrogen sulfide (H 2 S) pro-drug, doped in the lipid bilayer, and superparamagnetic nanoparticles encapsulated inside. HepG2 cells could be effectively bombed after 6 h co-incubation with AMLs. For in vivo applications, after preferentially targeting the tumor tissue when spatiotemporally navigated by an external magnetic field, the nanoscaled AMLs can intratumorally convert to microsized H 2 S bubbles. This dynamic process can be monitored by magnetic resonance and ultrasound dual modal imaging. Importantly, the intratumoral generated H 2 S bubbles imaged by real-time ultrasound imaging first can bomb to ablate the tumor tissue when exposed to higher acoustic intensity; then as gasotransmitters, intratumoral generated high-concentration H 2 S molecules can diffuse into the inner tumor regions to further have a synergetic antitumor effect. After 7-day follow-up observation, AMLs with magnetic field treatments have indicated extremely significantly higher inhibitions of tumor growth. Therefore, such elaborately designed intratumoral conversion of nanostructures to microstructures has exhibited an improved anticancer efficacy, which may be promising for multimodal image-guided accurate cancer therapy.

  7. High-intensity focused ultrasound combined with hysteroscopic resection to treat retained placenta accreta.

    PubMed

    Lee, Jae-Seong; Hong, Gi-Youn; Park, Byung-Joon; Hwang, Hyejin; Kim, Rayon; Kim, Tae-Eung

    2016-09-01

    We present a case of retained placenta accreta treated by high-intensity focused ultrasound (HIFU) ablation followed by hysteroscopic resection. The patient was diagnosed as submucosal myoma based on ultrasonography in local clinic. Pathologic examination of several pieces of tumor mass from the hysteroscopic procedure revealed necrotic chorionic villi with calcification. HIFU was performed using an ultrasound-guided HIFU tumor therapeutic system. The ultrasound machine had been used for real-time monitoring of the HIFU procedure. After HIFU treatment, no additional vaginal bleeding or complications were observed. A hysteroscopic resection was performed to remove ablated placental tissue 7 days later. No abnormal vaginal bleeding or discharge was seen after the procedure. The patient was stable postoperatively. We proposed HIFU and applied additional hysteroscopic resection for a safe and effective method for treating retained placenta accreta to prevent complications from the remaining placental tissue and to improve fertility options.

  8. FAST at MACH 20: clinical ultrasound aboard the International Space Station.

    PubMed

    Sargsyan, Ashot E; Hamilton, Douglas R; Jones, Jeffrey A; Melton, Shannon; Whitson, Peggy A; Kirkpatrick, Andrew W; Martin, David; Dulchavsky, Scott A

    2005-01-01

    Focused assessment with sonography for trauma (FAST) examination has been proved accurate for diagnosing trauma when performed by nonradiologist physicians. Recent reports have suggested that nonphysicians also may be able to perform the FAST examination reliably. A multipurpose ultrasound system is installed on the International Space Station as a component of the Human Research Facility. Nonphysician crew members aboard the International Space Station receive modest training in hardware operation, sonographic techniques, and remotely guided scanning. This report documents the first FAST examination conducted in space, as part of the sustained effort to maintain the highest possible level of available medical care during long-duration space flight. An International Space Station crew member with minimal sonography training was remotely guided through a FAST examination by an ultrasound imaging expert from Mission Control Center using private real-time two-way audio and a private space-to-ground video downlink (7.5 frames/second). There was a 2-second satellite delay for both video and audio. To facilitate the real-time telemedical ultrasound examination, identical reference cards showing topologic reference points and hardware controls were available to both the crew member and the ground-based expert. A FAST examination, including four standard abdominal windows, was completed in approximately 5.5 minutes. Following commands from the Mission Control Center-based expert, the crew member acquired all target images without difficulty. The anatomic content and fidelity of the ultrasound video were excellent and would allow clinical decision making. It is possible to conduct a remotely guided FAST examination with excellent clinical results and speed, even with a significantly reduced video frame rate and a 2-second communication latency. A wider application of trauma ultrasound applications for remote medicine on earth appears to be possible and warranted.

  9. Multiparametric Quantitative Ultrasound Imaging in Assessment of Chronic Kidney Disease.

    PubMed

    Gao, Jing; Perlman, Alan; Kalache, Safa; Berman, Nathaniel; Seshan, Surya; Salvatore, Steven; Smith, Lindsey; Wehrli, Natasha; Waldron, Levi; Kodali, Hanish; Chevalier, James

    2017-11-01

    To evaluate the value of multiparametric quantitative ultrasound imaging in assessing chronic kidney disease (CKD) using kidney biopsy pathologic findings as reference standards. We prospectively measured multiparametric quantitative ultrasound markers with grayscale, spectral Doppler, and acoustic radiation force impulse imaging in 25 patients with CKD before kidney biopsy and 10 healthy volunteers. Based on all pathologic (glomerulosclerosis, interstitial fibrosis/tubular atrophy, arteriosclerosis, and edema) scores, the patients with CKD were classified into mild (no grade 3 and <2 of grade 2) and moderate to severe (at least 2 of grade 2 or 1 of grade 3) CKD groups. Multiparametric quantitative ultrasound parameters included kidney length, cortical thickness, pixel intensity, parenchymal shear wave velocity, intrarenal artery peak systolic velocity (PSV), end-diastolic velocity (EDV), and resistive index. We tested the difference in quantitative ultrasound parameters among mild CKD, moderate to severe CKD, and healthy controls using analysis of variance, analyzed correlations of quantitative ultrasound parameters with pathologic scores and the estimated glomerular filtration rate (GFR) using Pearson correlation coefficients, and examined the diagnostic performance of quantitative ultrasound parameters in determining moderate CKD and an estimated GFR of less than 60 mL/min/1.73 m 2 using receiver operating characteristic curve analysis. There were significant differences in cortical thickness, pixel intensity, PSV, and EDV among the 3 groups (all P < .01). Among quantitative ultrasound parameters, the top areas under the receiver operating characteristic curves for PSV and EDV were 0.88 and 0.97, respectively, for determining pathologic moderate to severe CKD, and 0.76 and 0.86 for estimated GFR of less than 60 mL/min/1.73 m 2 . Moderate to good correlations were found for PSV, EDV, and pixel intensity with pathologic scores and estimated GFR. The PSV, EDV, and pixel intensity are valuable in determining moderate to severe CKD. The value of shear wave velocity in assessing CKD needs further investigation. © 2017 by the American Institute of Ultrasound in Medicine.

  10. A User-Friendly Software Package for HIFU Simulation

    NASA Astrophysics Data System (ADS)

    Soneson, Joshua E.

    2009-04-01

    A freely-distributed, MATLAB (The Mathworks, Inc., Natick, MA)-based software package for simulating axisymmetric high-intensity focused ultrasound (HIFU) beams and their heating effects is discussed. The package (HIFU_Simulator) consists of a propagation module which solves the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and a heating module which solves Pennes' bioheat transfer (BHT) equation. The pressure, intensity, heating rate, temperature, and thermal dose fields are computed, plotted, the output is released to the MATLAB workspace for further user analysis or postprocessing.

  11. Polarization-dependent optical reflection ultrasonic detection

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoyi; Huang, Zhiyu; Wang, Guohe; Li, Wenzhao; Li, Changhui

    2017-03-01

    Although ultrasound transducers based on commercial piezoelectric-material have been widely used, they generally have limited bandwidth centered at the resonant frequency. Currently, several pure-optical ultrasonic detection methods have gained increasing interest due to their wide bandwidth and high sensitivity. However, most of them require customized components (such as micro-ring, SPR, Fabry-Perot film, etc), which limit their broad implementations. In this study, we presented a simple pure-optical ultrasound detection method, called "Polarization-dependent Reflection Ultrasonic Detection" (PRUD). It detects the intensity difference between two polarization components of the probe beam that is modulated by ultrasound waves. PRUD detect the two components by using a balanced detector, which effectively suppressed much of the unwanted noise. We have achieved the sensitivity (noise equivalent pressure) to be 1.7kPa, and this can be further improved. In addition, like many other pure-optical ultrasonic detection methods, PRUD also has a flat and broad bandwidth from almost zero to over 100MHz. Besides theoretical analysis, we did a phantom study by imaging a tungsten filament to demonstrate the performance of PRUD. We believe this simple and economic method will attract both researchers and engineers in optical and ultrasound fields.

  12. Cerebral perfusion imaging with bolus harmonic imaging (Honorable Mention Poster Award)

    NASA Astrophysics Data System (ADS)

    Kier, Christian; Toth, Daniel; Meyer-Wiethe, Karsten; Schindler, Angela; Cangur, Hakan; Seidel, Gunter; Aach, Til

    2005-04-01

    Fast visualisation of cerebral microcirculation supports diagnosis of acute stroke. However, the commonly used CT/MRI-based methods are time consuming, costly and not applicable to every patient. The bolus perfusion harmonic imaging (BHI) method is an ultrasound imaging technique which makes use of the fact, that ultrasound contrast agents unlike biological tissues resonate at harmonic frequencies. Exploiting this effect, the contrast between perfused and non-perfused areas can be improved. Thus, BHI overcomes the low signal-to-noise ratio of transcranial ultrasound and the high impedance of the skull. By analysing image sequences, visualising the qualitative characteristics of an US contrast agent bolus injection becomes possible. The analysis consists of calculating four perfusion-related parameters, Local Peak Intensity, Time To Peak, Area Under Curve, and Average Rising, from the time/intensity curve and providing them as colour-coded images. For calculating these parameters the fundamental assumption is that image intensity corresponds to contrast agent concentration which in turn shows the perfusion of the corresponding brain region. In a clinical study on patients suffering from acute ischemic stroke it is shown that some of the parameters correlate significantly to the infarction area. Thus, BHI becomes a less time-consuming and inexpensive bedside method for diagnosis of cerebral perfusion deficits.

  13. Ultrasound-Guided Abrams Pleural Biopsy vs CT-Guided Tru-Cut Pleural Biopsy in Malignant Pleural Disease, a 3-Year Follow-up Study.

    PubMed

    Sivakumar, Parthipan; Jayaram, Deepak; Rao, Deepak; Dhileepan, Vignesh; Ahmed, Irfan; Ahmed, Liju

    2016-12-01

    Conventional Abrams biopsy shows low sensitivity in suspected malignant pleural disease. There are limited data on the improvement in sensitivity by adding in image guidance. This retrospective study compares the diagnostic sensitivity of Abrams biopsy using ultrasound guidance with CT-guided Tru-Cut biopsy in suspected malignant pleural disease. Data were collected from 2006 to 2012 of patients who underwent image-guided biopsies for suspected non-tuberculous pleural disease. Data were collected on the result of the initial biopsy and final patient diagnosis as of June 2015. Sixty-three patients underwent image-guided Abrams biopsy and 29 underwent CT-guided Tru-Cut biopsies. The sensitivity of Abrams was 71.43 % compared to 75 % in the CT-guided Tru-Cut group. Specificity was 100 % in both groups. Image-guided Abrams biopsies demonstrate comparable diagnostic sensitivity in malignant pleural disease to CT-guided Tru-Cut biopsy.

  14. Ultrasound-guided venous access for pacemakers and defibrillators.

    PubMed

    Seto, Arnold H; Jolly, Aaron; Salcedo, Jonathan

    2013-03-01

    Ultrasound guidance is widely recommended to reduce the risk of complications during central venous catheter placement. However, ultrasound guidance is not commonly utilized for implanting leads for cardiac rhythm management devices. We describe our technique of ultrasound-guided pacemaker implantation, including a novel pull-through technique that allows percutaneous guidewire insertion prior to the first incision. We review the literature and recent advances in ultrasound imaging technology that may facilitate the adoption of ultrasound guidance. Ultrasound guidance provides a safe and rapid technique for extrathoracic subclavian or axillary venous lead placement. © 2012 Wiley Periodicals, Inc.

  15. Real-time three-dimensional optical coherence tomography image-guided core-needle biopsy system.

    PubMed

    Kuo, Wei-Cheng; Kim, Jongsik; Shemonski, Nathan D; Chaney, Eric J; Spillman, Darold R; Boppart, Stephen A

    2012-06-01

    Advances in optical imaging modalities, such as optical coherence tomography (OCT), enable us to observe tissue microstructure at high resolution and in real time. Currently, core-needle biopsies are guided by external imaging modalities such as ultrasound imaging and x-ray computed tomography (CT) for breast and lung masses, respectively. These image-guided procedures are frequently limited by spatial resolution when using ultrasound imaging, or by temporal resolution (rapid real-time feedback capabilities) when using x-ray CT. One feasible approach is to perform OCT within small gauge needles to optically image tissue microstructure. However, to date, no system or core-needle device has been developed that incorporates both three-dimensional OCT imaging and tissue biopsy within the same needle for true OCT-guided core-needle biopsy. We have developed and demonstrate an integrated core-needle biopsy system that utilizes catheter-based 3-D OCT for real-time image-guidance for target tissue localization, imaging of tissue immediately prior to physical biopsy, and subsequent OCT imaging of the biopsied specimen for immediate assessment at the point-of-care. OCT images of biopsied ex vivo tumor specimens acquired during core-needle placement are correlated with corresponding histology, and computational visualization of arbitrary planes within the 3-D OCT volumes enables feedback on specimen tissue type and biopsy quality. These results demonstrate the potential for using real-time 3-D OCT for needle biopsy guidance by imaging within the needle and tissue during biopsy procedures.

  16. Ultrasound- and MRI-Guided Prostate Biopsy

    MedlinePlus

    ... which the MR images are fused with the real-time ultrasound images — an approach known as MRI/TRUS ... by a computer, which in turn creates a real-time picture on the monitor. One or more frames ...

  17. Mapping cardiac fiber orientations from high-resolution DTI to high-frequency 3D ultrasound

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Wagner, Mary B.; Fei, Baowei

    2014-03-01

    The orientation of cardiac fibers affects the anatomical, mechanical, and electrophysiological properties of the heart. Although echocardiography is the most common imaging modality in clinical cardiac examination, it can only provide the cardiac geometry or motion information without cardiac fiber orientations. If the patient's cardiac fiber orientations can be mapped to his/her echocardiography images in clinical examinations, it may provide quantitative measures for diagnosis, personalized modeling, and image-guided cardiac therapies. Therefore, this project addresses the feasibility of mapping personalized cardiac fiber orientations to three-dimensional (3D) ultrasound image volumes. First, the geometry of the heart extracted from the MRI is translated to 3D ultrasound by rigid and deformable registration. Deformation fields between both geometries from MRI and ultrasound are obtained after registration. Three different deformable registration methods were utilized for the MRI-ultrasound registration. Finally, the cardiac fiber orientations imaged by DTI are mapped to ultrasound volumes based on the extracted deformation fields. Moreover, this study also demonstrated the ability to simulate electricity activations during the cardiac resynchronization therapy (CRT) process. The proposed method has been validated in two rat hearts and three canine hearts. After MRI/ultrasound image registration, the Dice similarity scores were more than 90% and the corresponding target errors were less than 0.25 mm. This proposed approach can provide cardiac fiber orientations to ultrasound images and can have a variety of potential applications in cardiac imaging.

  18. Adaptive Radiation for Lung Cancer

    PubMed Central

    Gomez, Daniel R.; Chang, Joe Y.

    2011-01-01

    The challenges of lung cancer radiotherapy are intra/inter-fraction tumor/organ anatomy/motion changes and the need to spare surrounding critical structures. Evolving radiotherapy technologies, such as four-dimensional (4D) image-based motion management, daily on-board imaging and adaptive radiotherapy based on volumetric images over the course of radiotherapy, have enabled us to deliver higher dose to target while minimizing normal tissue toxicities. The image-guided radiotherapy adapted to changes of motion and anatomy has made the radiotherapy more precise and allowed ablative dose delivered to the target using novel treatment approaches such as intensity-modulated radiation therapy, stereotactic body radiation therapy, and proton therapy in lung cancer, techniques used to be considered very sensitive to motion change. Future clinical trials using real time tracking and biological adaptive radiotherapy based on functional images are proposed. PMID:20814539

  19. Ultrasound-Guided Intervention for Treatment of Trigeminal Neuralgia: An Updated Review of Anatomy and Techniques

    PubMed Central

    Allam, Abdallah El-Sayed; Khalil, Adham Aboul Fotouh; Eltawab, Basma Aly; Wu, Wei-Ting

    2018-01-01

    Orofacial myofascial pain is prevalent and most often results from entrapment of branches of the trigeminal nerves. It is challenging to inject branches of the trigeminal nerve, a large portion of which are shielded by the facial bones. Bony landmarks of the cranium serve as important guides for palpation-guided injections and can be delineated using ultrasound. Ultrasound also provides real-time images of the adjacent muscles and accompanying arteries and can be used to guide the needle to the target region. Most importantly, ultrasound guidance significantly reduces the risk of collateral injury to vital neurovascular structures. In this review, we aimed to summarize the regional anatomy and ultrasound-guided injection techniques for the trigeminal nerve and its branches, including the supraorbital, infraorbital, mental, auriculotemporal, maxillary, and mandibular nerves. PMID:29808105

  20. Transperineal ultrasound-guided implantation of electromagnetic transponders in the prostatic fossa for localization and tracking during external beam radiation therapy.

    PubMed

    Garsa, Adam A; Verma, Vivek; Michalski, Jeff M; Gay, Hiram A

    2014-01-01

    To describe a transperineal ultrasound-guided technique for implantation of electromagnetic transponders into the prostatic fossa. Patients were placed in the dorsal lithotomy position, and local anesthetic was administered. On ultrasound, the bladder, urethra, vesicourethral anastomosis, rectum, and the prostatic fossa were carefully identified. Three transponders were implanted into the prostatic fossa under ultrasound guidance in a triangular configuration and implantation was verified by fluoroscopy. Patients underwent computed tomography (CT) simulation approximately 1 week later. All patients in this study were subsequently treated with intensity modulated radiation therapy (IMRT) to the prostatic fossa. From 2008 to 2012, 180 patients received transperineal implantation of electromagnetic transponders into the prostatic fossa and subsequently received IMRT. There were no cases of severe hematuria or rectal bleeding requiring intervention. There were no grade 3 or 4 toxicities. Three patients (1.7%) had a transponder missing on the subsequent CT simulation. Thirteen patients (7.3%) had transponder migration with a geometric residual that exceeded 2 mm for 3 consecutive days (5.6%) or rotation that exceeded 10 degrees for 5 consecutive days (1.7%). These patients underwent a resimulation CT scan to identify the new transponder coordinates. A transperineal technique for implantation of electromagnetic transponders into the prostatic fossa is safe and well tolerated, with no severe toxicity after implantation. There is a low rate of transponder loss or migration.

  1. Magnetic resonance image guided transurethral ultrasound prostate ablation: a preclinical safety and feasibility study with 28-day followup.

    PubMed

    Burtnyk, Mathieu; Hill, Tracy; Cadieux-Pitre, Heather; Welch, Ian

    2015-05-01

    We determine the safety and feasibility of magnetic resonance image guided transurethral ultrasound prostate ablation using active temperature feedback control in a preclinical canine model with 28-day followup. After a long acclimatization period we performed ultrasound treatment in 8 subjects using the magnetic resonance image guided TULSA-PRO™ transurethral ultrasound prostate ablation system. Comprehensive examinations and observations were done before and throughout the 28-day followup, including assessment of clinically significant treatment related adverse events. In addition to gross pathology evaluation, extensive histopathological analysis was done to assess cell kill inside and outside the prostate. We evaluated prostate conformal heating by comparing the spatial difference between the treatment plan and the 55C isotherm measured on magnetic resonance imaging thermometry acquired during treatment. These findings were confirmed on contrast enhanced magnetic resonance imaging immediately after treatment and at 28 days. Clinically there were no adverse events in any of the 8 subjects throughout the 28-day followup. All subjects had normal urinary and bowel function. Gross necropsy and histology confirmed that the intended thermal cell kill was confined to the prostate. No surrounding tissue was damaged, including the rectum and the external urinary sphincter. Conformal heating was achieved with an average -0.9 mm accuracy and 0.9 mm precision. Contrast enhanced magnetic resonance imaging and histological analysis confirmed tissue ablation in targeted areas of the prostate. Urethral tissue was spared from thermal damage. Magnetic resonance image guided transurethral ultrasound is a safe, feasible procedure for accurate and precise conformal thermal ablation of prostate tissue, as demonstrated in a preclinical model with 28-day followup. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  2. Image guided radiation therapy applications for head and neck, prostate, and breast cancers using 3D ultrasound imaging and Monte Carlo dose calculations

    NASA Astrophysics Data System (ADS)

    Fraser, Danielle

    In radiation therapy an uncertainty in the delivered dose always exists because anatomic changes are unpredictable and patient specific. Image guided radiation therapy (IGRT) relies on imaging in the treatment room to monitor the tumour and surrounding tissue to ensure their prescribed position in the radiation beam. The goal of this thesis was to determine the dosimetric impact on the misaligned radiation therapy target for three cancer sites due to common setup errors; organ motion, tumour tissue deformation, changes in body habitus, and treatment planning errors. For this purpose, a novel 3D ultrasound system (Restitu, Resonant Medical, Inc.) was used to acquire a reference image of the target in the computed tomography simulation room at the time of treatment planning, to acquire daily images in the treatment room at the time of treatment delivery, and to compare the daily images to the reference image. The measured differences in position and volume between daily and reference geometries were incorporated into Monte Carlo (MC) dose calculations. The EGSnrc (National Research Council, Canada) family of codes was used to model Varian linear accelerators and patient specific beam parameters, as well as to estimate the dose to the target and organs at risk under several different scenarios. After validating the necessity of MC dose calculations in the pelvic region, the impact of interfraction prostate motion, and subsequent patient realignment under the treatment beams, on the delivered dose was investigated. For 32 patients it is demonstrated that using 3D conformal radiation therapy techniques and a 7 mm margin, the prescribed dose to the prostate, rectum, and bladder is recovered within 0.5% of that planned when patient setup is corrected for prostate motion, despite the beams interacting with a new external surface and internal tissue boundaries. In collaboration with the manufacturer, the ultrasound system was adapted from transabdominal imaging to neck imaging. Two case studies of nasopharyngeal cancer are discussed. The deformation of disease-positive cervical lymph nodes was monitored throughout treatment. Node volumes shrunk to 17% of the initial volume, moved up 1.3 cm, and received up to a 12% lower dose than that prescribed. It is shown that difficulties in imaging soft tissue in the neck region are circumvented with ultrasound imaging, and after dosimetric verification it is argued that adaptive replanning may be more beneficial than patient realignment when intensity modulated radiation therapy techniques are used. Some of the largest dose delivery errors were found in external electron beam treatments for breast cancer patients who underwent breast conserving surgery. Inaccuracies in conventional treatment planning resulted in substantial target dose discrepancies of up to 88%. When patient setup errors, interfraction tumour bed motion, and tissue remodeling were considered, inadequate target coverage was exacerbated. This thesis quantifies the dose discrepancy between that prescribed and that delivered. I delve into detail for common IGRT treatment sites, and illuminate problems that have not received much attention for less common IGRT treatment sites.

  3. MR-Guided Unfocused Ultrasound Disruption of the Rat Blood-Brain Barrier

    NASA Astrophysics Data System (ADS)

    Townsend, Kelly A.; King, Randy L.; Zaharchuk, Greg; Pauly, Kim Butts

    2011-09-01

    Therapeutic ultrasound with microbubbles can temporarily disrupt the blood-brain barrier (BBB) for drug delivery. Contrast-enhanced MRI (CE-MRI) can visualize gadolinium passage into the brain, indicating BBB opening. Previous studies used focused ultrasound, which is appropriate for the targeted delivery of drugs. The purpose of this study was to investigate unfocused ultrasound for BBB opening across the whole brain. In 10 rats, gadolinium-based MR contrast agent (Gd; 0.25 ml) was administered concurrent with ultrasound microbubbles (Optison, 0.25 ml) and circulated for 20 sec before sonication. A 753 kHz planar PZT transducer, diameter 1.8 cm, sonicated each rat brain with supplied voltage of 300, 400, or 500 mVpp for 10 sec in continuous wave mode, or at 500 mVpp at 20% duty cycle at 10 Hz for 30-300 sec. After sonication, coronal T1-weighted FSE CE-MRI images were acquired with a 3in surface coil. The imaging protocol was repeated 3-5 times after treatment. One control animal was given Gd and microbubbles, but not sonicated, and the other was given Gd and sonicated without microbubbles. Signal change in ROIs over the muscle, mesencephalon/ventricles, and the cortex/striatum were measured at 3-5 time points up to 36 min after sonication. Signal intensity was converted to % signal change compared to the initial image. In the controls, CE-MRI showed brightening of surrounding structures, but not the brain. In the continuous wave subjects, cortex/striatum signal did not increase, but ventricle/mesenchephalon signal did. Those that received pulsed sonications showed signal increases in both the cortex/striatum and ventricles/mesenchephalon. In conclusion, after pulsed unfocused ultrasound sonication, the BBB is disrupted across the whole brain, including cortex and deep grey matter, while continuous wave sonication affects only the ventricles and possibly deeper structures, without opening the cortex BBB. As time passes, the timeline of Gd passage into the brain can be visualized.

  4. Non-infected and Infected Bronchogenic Cyst: The Correlation of Image Findings with Cyst Content

    PubMed Central

    Jeon, Hong Gil; Park, Ju Hwan; Park, Hye Min; Kwon, Woon Jung; Cha, Hee Jeong; Lee, Young Jik; Park, Chang Ryul; Jegal, Yangjin; Ahn, Jong-Joon

    2014-01-01

    We hereby report a case on bronchogenic cyst which is initially non-infected, then becomes infected after bronchoscopic ultrasound (US)-guided transesophageal fine-needle aspiration (FNA). The non-infected bronchogenic cyst appears to be filled with relatively echogenic materials on US, and the aspirate is a whitish jelly-like fluid. Upon contrast-enhanced MRI of the infected bronchogenic cyst, a T1-weighted image shows low signal intensity and a T2-weighted image shows high signal intensity, with no enhancements of the cyst contents, but enhancements of the thickened cystic wall. The patient then undergo video-assisted thoracic surgery 14 days after the FNA. The cystic mass is known to be completely removed, and the aspirate is yellowish and purulent. To understand the image findings that pertain to the gross appearance of the cyst contents will help to diagnose bronchogenic cysts in the future. PMID:24624219

  5. Intraoperative Ultrasound for Peripheral Nerve Applications.

    PubMed

    Willsey, Matthew; Wilson, Thomas J; Henning, Phillip Troy; Yang, Lynda J-S

    2017-10-01

    Offering real-time, high-resolution images via intraoperative ultrasound is advantageous for a variety of peripheral nerve applications. To highlight the advantages of ultrasound, its extraoperative uses are reviewed. The current intraoperative uses, including nerve localization, real-time evaluation of peripheral nerve tumors, and implantation of leads for peripheral nerve stimulation, are reviewed. Although intraoperative peripheral nerve localization has been performed previously using guide wires and surgical dyes, the authors' approach using ultrasound-guided instrument clamps helps guide surgical dissection to the target nerve, which could lead to more timely operations and shorter incisions. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Magnetic Resonance Imaging Parameters in Predicting the Treatment Outcome of High-intensity Focused Ultrasound Ablation of Uterine Fibroids With an Immediate Nonperfused Volume Ratio of at Least 90.

    PubMed

    Keserci, Bilgin; Duc, Nguyen Minh

    2018-03-07

    We aimed to investigate the role of magnetic resonance imaging parameters in predicting the treatment outcome of high-intensity focused ultrasound (HIFU) ablation of uterine fibroids with a nonperfused volume (NPV) ratio of at least 90%. A total of 120 women who underwent HIFU treatment were divided into groups 1 (n = 72) and 2 (n = 48), comprising patients with an NPV ratio of at least 90% and less than 90%, respectively. Multivariate logistic regression analyses were carried out to investigate the potential predictors of the NPV ratio of at least 90%. The NPV ratios immediately post-treatment, therapeutic efficacy at 6 months' follow-up, and safety in terms of adverse effects and changes in anti-Mullerian hormone level were assessed. By introducing multiple predictors obtained from multivariate analyses into a generalized estimating equation model, the results showed that the thickness of the subcutaneous fat layer in the anterior abdominal wall, peak enhancement of fibroid, time to peak of fibroid, and the ratio of area under the curve of fibroid to myometrium were statistically significant, except T2 signal intensity ratio of fibroid to myometrium, hence predicting an NPV ratio of at least 90%. No serious adverse effects and no significant difference between the anti-Mullerian hormone levels before or 6 months post-treatment were reported. The findings in this study suggest that the achievement of NPV ratio of at least 90% in magnetic resonance imaging-guided HIFU treatment of uterine fibroids based on prediction model appears clinically possible without compromising the safety of patients. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  7. Probabilistic registration of an unbiased statistical shape model to ultrasound images of the spine

    NASA Astrophysics Data System (ADS)

    Rasoulian, Abtin; Rohling, Robert N.; Abolmaesumi, Purang

    2012-02-01

    The placement of an epidural needle is among the most difficult regional anesthetic techniques. Ultrasound has been proposed to improve success of placement. However, it has not become the standard-of-care because of limitations in the depictions and interpretation of the key anatomical features. We propose to augment the ultrasound images with a registered statistical shape model of the spine to aid interpretation. The model is created with a novel deformable group-wise registration method which utilizes a probabilistic approach to register groups of point sets. The method is compared to a volume-based model building technique and it demonstrates better generalization and compactness. We instantiate and register the shape model to a spine surface probability map extracted from the ultrasound images. Validation is performed on human subjects. The achieved registration accuracy (2-4 mm) is sufficient to guide the choice of puncture site and trajectory of an epidural needle.

  8. Plantar fascia: imaging diagnosis and guided treatment.

    PubMed

    McNally, Eugene G; Shetty, Shilpa

    2010-09-01

    Plantar fasciopathy is a common cause of heel pain. This article covers the imaging anatomy of the hindfoot, the imaging findings on ultrasound and magnetic resonance imaging (MRI) of plantar fasciopathy, plantar fibromas, trauma, Achilles tendonopathy, neural compression, stress fractures of the os calcis and other heel pad lesions. Thickening of the plantar fascia insertion more than 5 mm either on ultrasound or MRI is suggestive of plantar fasciopathy. Ultrasound is superior to MRI for diagnosis of plantar fibroma as small low signal lesions on MRI are similar to the normal plantar fascia signal. Ultrasound demonstrates low echogenicity compared with the echogenic plantar fascia. Penetrating injuries can appear bizarre due to associated foreign body impaction and infection. Achilles tendonopathy can cause heel pain and should be considered as a possible diagnosis. Treatment options include physical therapy, ECSWT, corticosteroid injection, and dry needling. Percutaneous US guided treatment methods will be described. Thieme Medical Publishers.

  9. Comparison of ultrasound-guided posterior transversus abdominis plane block and lateral transversus abdominis plane block for postoperative pain management in patients undergoing cesarean section: a randomized double-blind clinical trial study.

    PubMed

    Faiz, Seyed Hamid Reza; Alebouyeh, Mahmoud Reza; Derakhshan, Pooya; Imani, Farnad; Rahimzadeh, Poupak; Ghaderi Ashtiani, Maryam

    2018-01-01

    Due to the importance of pain control after abdominal surgery, several methods such as transversus abdominis plane (TAP) block are used to reduce the pain after surgery. TAP blocks can be performed using various ultrasound-guided approaches. Two important approaches to do this are ultrasound-guided lateral and posterior approaches. This study aimed to compare the two approaches of ultrasound-guided lateral and posterior TAP blocks to control pain after cesarean section. In this double-blind clinical trial study, 76 patients scheduled for elective cesarean section were selected and randomly divided into two groups of 38 and underwent spinal anesthesia. For pain management after the surgery, one group underwent lateral TAP block and the other group underwent posterior TAP block using 20cc of ropivacaine 0.2% on both sides. Pain intensity was evaluated based on Numerical Analog Scale (NAS) at rest and when coughing, 2, 4, 6, 12, 24 and 36 hours after surgery. The pain at rest in the posterior group at all hours post surgery was lower than the lateral group, especially at 6, 12 and 24 hours after the surgery and the difference was statistically significant ( p =0.03, p <0.004, p =0.001). The results of this study show that ultrasound-guided posterior TAP block compared with the lateral TAP block was more effective in pain control after cesarean section.

  10. Factors influencing the ablative efficiency of high intensity focused ultrasound (HIFU) treatment for adenomyosis: A retrospective study.

    PubMed

    Gong, Chunmei; Yang, Bin; Shi, Yarong; Liu, Zhongqiong; Wan, Lili; Zhang, Hong; Jiang, Denghua; Zhang, Lian

    2016-08-01

    Objectives The aim of this study was to investigate factors affecting ablative efficiency of high intensity focused ultrasound (HIFU) for adenomyosis. Materials and methods In all, 245 patients with adenomyosis who underwent ultrasound guided HIFU (USgHIFU) were retrospectively reviewed. All patients underwent dynamic contrast-enhanced magnetic resonance imaging (MRI) before and after HIFU treatment. The non-perfused volume (NPV) ratio, energy efficiency factor (EEF) and greyscale change were set as dependent variables, while the factors possibly affecting ablation efficiency were set as independent variables. These variables were used to build multiple regression models. Results A total of 245 patients with adenomyosis successfully completed HIFU treatment. Enhancement type on T1 weighted image (WI), abdominal wall thickness, volume of adenomyotic lesion, the number of hyperintense points, location of the uterus, and location of adenomyosis all had a linear relationship with the NPV ratio. Distance from skin to the adenomyotic lesion's ventral side, enhancement type on T1WI, volume of adenomyotic lesion, abdominal wall thickness, and signal intensity on T2WI all had a linear relationship with EEF. Location of the uterus and abdominal wall thickness also both had a linear relationship with greyscale change. Conclusion The enhancement type on T1WI, signal intensity on T2WI, volume of adenomyosis, location of the uterus and adenomyosis, number of hyperintense points, abdominal wall thickness, and distance from the skin to the adenomyotic lesion's ventral side can all be used as predictors of HIFU for adenomyosis.

  11. Fiber optic photoacoustic probe with ultrasonic tracking for guiding minimally invasive procedures

    NASA Astrophysics Data System (ADS)

    Xia, Wenfeng; Mosse, Charles A.; Colchester, Richard J.; Mari, Jean Martial; Nikitichev, Daniil I.; West, Simeon J.; Ourselin, Sebastien; Beard, Paul C.; Desjardins, Adrien E.

    2015-07-01

    In a wide range of clinical procedures, accurate placement of medical devices such as needles and catheters is critical to optimize patient outcomes. Ultrasound imaging is often used to guide minimally invasive procedures, as it can provide real-time visualization of patient anatomy and medical devices. However, this modality can provide low image contrast for soft tissues, and poor visualization of medical devices that are steeply angled with respect to the incoming ultrasound beams. Photoacoustic sensors can provide information about the spatial distributions of tissue chromophores that could be valuable for guiding minimally invasive procedures. In this study, a system for guiding minimally invasive procedures using photoacoustic sensing was developed. This system included a miniature photoacoustic probe with three optical fibers: one with a bare end for photoacoustic excitation of tissue, a second for photoacoustic excitation of an optically absorbing coating at the distal end to transmit ultrasound, and a third with a Fabry-Perot cavity at the distal end for receiving ultrasound. The position of the photoacoustic probe was determined with ultrasonic tracking, which involved transmitting pulses from a linear-array ultrasound imaging probe at the tissue surface, and receiving them with the fiber-optic ultrasound receiver in the photoacoustic probe. The axial resolution of photoacoustic sensing was better than 70 μm, and the tracking accuracy was better than 1 mm in both axial and lateral dimensions. By translating the photoacoustic probe, depth scans were obtained from different spatial positions, and two-dimensional images were reconstructed using a frequency-domain algorithm.

  12. Evidence-based pain management: is the concept of integrative medicine applicable?

    PubMed Central

    2012-01-01

    This article is dedicated to the concept of predictive, preventive, and personalized (integrative) medicine beneficial and applicable to advance pain management, overviews recent insights, and discusses novel minimally invasive tools, performed under ultrasound guidance, enhanced by model-guided approach in the field of musculoskeletal pain and neuromuscular diseases. The complexity of pain emergence and regression demands intellectual-, image-guided techniques personally specified to the patient. For personalized approach, the combination of the modalities of ultrasound, EMG, MRI, PET, and SPECT gives new opportunities to experimental and clinical studies. Neuromuscular imaging should be crucial for emergence of studies concerning advanced neuroimaging technologies to predict movement disorders, postural imbalance with integrated application of imaging, and functional modalities for rehabilitation and pain management. Scientific results should initiate evidence-based preventive movement programs in sport medicine rehabilitation. Traditional medicine and mathematical analytical approaches and education challenges are discussed in this review. The physiological management of exactly assessed pathological condition, particularly in movement disorders, requires participative medical approach to gain harmonized and sustainable effect. PMID:23088743

  13. Research on respiratory motion correction method based on liver contrast-enhanced ultrasound images of single mode

    NASA Astrophysics Data System (ADS)

    Zhang, Ji; Li, Tao; Zheng, Shiqiang; Li, Yiyong

    2015-03-01

    To reduce the effects of respiratory motion in the quantitative analysis based on liver contrast-enhanced ultrasound (CEUS) image sequencesof single mode. The image gating method and the iterative registration method using model image were adopted to register liver contrast-enhanced ultrasound image sequences of single mode. The feasibility of the proposed respiratory motion correction method was explored preliminarily using 10 hepatocellular carcinomas CEUS cases. The positions of the lesions in the time series of 2D ultrasound images after correction were visually evaluated. Before and after correction, the quality of the weighted sum of transit time (WSTT) parametric images were also compared, in terms of the accuracy and spatial resolution. For the corrected and uncorrected sequences, their mean deviation values (mDVs) of time-intensity curve (TIC) fitting derived from CEUS sequences were measured. After the correction, the positions of the lesions in the time series of 2D ultrasound images were almost invariant. In contrast, the lesions in the uncorrected images all shifted noticeably. The quality of the WSTT parametric maps derived from liver CEUS image sequences were improved more greatly. Moreover, the mDVs of TIC fitting derived from CEUS sequences after the correction decreased by an average of 48.48+/-42.15. The proposed correction method could improve the accuracy of quantitative analysis based on liver CEUS image sequences of single mode, which would help in enhancing the differential diagnosis efficiency of liver tumors.

  14. Echo decorrelation imaging of ex vivo HIFU and bulk ultrasound ablation using image-treat arrays

    NASA Astrophysics Data System (ADS)

    Fosnight, Tyler R.; Hooi, Fong Ming; Colbert, Sadie B.; Keil, Ryan D.; Barthe, Peter G.; Mast, T. Douglas

    2017-03-01

    In this study, the ability of ultrasound echo decorrelation imaging to map and predict heat-induced cell death was tested using bulk ultrasound thermal ablation, high intensity focused ultrasound (HIFU) thermal ablation, and pulse-echo imaging of ex vivo liver tissue by a custom image-treat array. Tissue was sonicated at 5.0 MHz using either pulses of unfocused ultrasound (N=12) (7.5 s, 50.9-101.8 W/cm2 in situ spatial-peak, temporal-peak intensity) for bulk ablation or focused ultrasound (N=21) (1 s, 284-769 W/cm2 in situ spatial-peak, temporal-peak intensity and focus depth of 10 mm) for HIFU ablation. Echo decorrelation and integrated backscatter (IBS) maps were formed from radiofrequency pulse-echo images captured at 118 frames per second during 5.0 s rest periods, beginning 1.1 s after each sonication pulse. Tissue samples were frozen at -80˚C, sectioned, vitally stained, imaged, and semi-automatically segmented for receiver operating characteristic (ROC) analysis. ROC curves were constructed to assess prediction performance for echo decorrelation and IBS. Logarithmically scaled mean echo decorrelation in non-ablated and ablated tissue regions before and after electronic noise and motion correction were compared. Ablation prediction by echo decorrelation and IBS was significant for both focused and bulk ultrasound ablation. The log10-scaled mean echo decorrelation was significantly greater in regions of ablation for both HIFU and bulk ultrasound ablation. Echo decorrelation due to electronic noise and motion was significantly reduced by correction. These results suggest that ultrasound echo decorrelation imaging is a promising approach for real-time prediction of heat-induced cell death for guidance and monitoring of clinical thermal ablation, including radiofrequency ablation and HIFU.

  15. In vivo optimisation study for multi-baseline MR-based thermometry in the context of hyperthermia using MR-guided high intensity focused ultrasound for head and neck applications.

    PubMed

    Pichardo, Samuel; Köhler, Max; Lee, Justin; Hynnyen, Kullervo

    2014-12-01

    In this in vivo study, the feasibility to perform hyperthermia treatments in the head and neck using magnetic resonance image-guided high intensity focused ultrasound (MRgHIFU) was established using a porcine acute model. Porcine specimens with a weight between 17 and 18 kg were treated in the omohyoid muscle in the neck. Hyperthermia was applied with a target temperature of 41 °C for 30 min using a Sonalleve MRgHIFU system. MR-based thermometry was calculated using water-proton resonance frequency shift and multi-baseline look-up tables indexed by peak-to-peak displacement (Dpp) measurements using a pencil-beam navigator. Three hyperthermia experiments were conducted at different Dpp values of 0.2, 1.0 and 3.0 mm. An optimisation study was carried out to establish the optimal parameters controlling the multi-baseline method that ensured a minimisation of spatial-average peak-to-peak temperature (TSA-pp) and temperature direct current bias (TSA-DC). The multi-baseline technique reduced considerably the noise on both TSA-pp and TSA-DC. The reduction of noise was more important when Dpp was higher. For Dpp = 3 mm the average (±standard deviation (SD)) of TSA-pp and TSA-DC was reduced from 4.5 (± 2.5) and 2.5 (±0.6) °C, respectively, to 0.8 (± 0.7) and 0.09 (± 0.2) °C. This in vivo study showed the level of noise in PRFS-based thermometry introduced by respiratory motion in the context of MRgHIFU hyperthermia treatment for head and neck and the feasibility of reducing this noise using a multi-baseline technique.

  16. Uterine fibroids: Influence of "T2-Rim sign" on immediate therapeutic responses to magnetic resonance imaging-guided high-intensity focused ultrasound ablation.

    PubMed

    Yeo, Sin Yuin; Kim, Young-Sun; Lim, Hyo Keun; Rhim, Hyunchul; Jung, Sin-Ho; Hwang, Na Young

    2017-12-01

    To investigate the influence of a high-signal-intensity peripheral rim on T2-weighted MR images (i.e., T2-rim sign) on the immediate therapeutic responses of MR-guided high intensity focused ultrasound (MR-HIFU) ablation of uterine fibroids. This retrospective study was approved by the institutional review board, and patient informed consent was obtained for MR-HIFU ablation. In total, 196 fibroids (diameter 6.2±2.6cm) in 123 women (age 43.4±5.0 years) who underwent MR-HIFU ablation from January 2013 to April 2016 were included. The effects of a T2-rim sign on the immediate therapeutic responses (non-perfused volume [NPV] ratio, ablation efficiency [NPV/treatment cell volume], ablation quality [grade 1-5, poor to excellent]) were investigated with univariable and multivariable analyses using generalized estimating equation (GEE) analysis. In multivariable analysis, T2 signal intensity ratio of fibroids-to-skeletal muscle, relative peak enhancement of fibroids, and subcutaneous fat thickness were also considered. The presence of a T2-rim sign significantly lowered the NPV ratio (54.0±28.0% vs. 83.7±17.7%), ablation efficiency (0.6±0.5 vs. 1.3±0.6), ablation quality (3.1±1.2 vs. 4.2±0.8), (P<0.0001). GEE analysis showed that the presence of a T2-rim sign was independently significant for ablation efficiency and ablation quality (P<0.05). Uterine fibroids with a T2-rim sign showed significantly poorer immediate therapeutic responses to MR-HIFU ablation. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. New piezocrystal material in the development of a 96-element array transducer for MR-guided focused ultrasound surgery

    NASA Astrophysics Data System (ADS)

    Qiu, Zhen; Habeshaw, Roderick; Fortine, Julien; Huang, Zhihong; Démoré, Christine; Cochran, Sandy

    2012-11-01

    Piezocrystal materials have been recognized as having better performance than piezoelectric ceramics, and have thus been widely adopted in ultrasound imaging arrays. Although their behaviour is susceptible to temperature and pressure, their large electromechanical coupling coefficients and other excellent piezoelectric properties also offer the potential for further improvements in the efficiency of therapeutic ultrasound transducers. Furthermore, new piezocrystals with modified compositions have been developed recently to increase their tolerance to temperature and pressure. In this work, a prototype of faceted bowl transducer was designed and manufactured as a proof of concept to explore practical issues associated with adoption of piezocrystals for magnetic resonance imaging guided focused ultrasound surgery.

  18. Ultrasonically modulated x-ray phase contrast and vibration potential imaging methods

    NASA Astrophysics Data System (ADS)

    Hamilton, Theron J.; Cao, Guohua; Wang, Shougang; Bailat, Claude J.; Nguyen, Cuong K.; Li, Shengqiong; Gehring, Stephan; Wands, Jack; Gusev, Vitalyi; Rose-Petruck, Christoph; Diebold, Gerald J.

    2006-02-01

    We show that the radiation pressure exerted by a beam of ultrasound can be used for contrast enhancement in high resolution x-ray imaging of tissue. Interfacial features of objects are highlighted as a result of both the displacement introduced by the ultrasound and the inherent sensitivity of x-ray phase contrast imaging to density variations. The potential of the method is demonstrated by imaging various tumor phantoms and tumors from mice. The directionality of the acoustic radiation force and its localization in space permits the imaging of ultrasound-selected tissue volumes. In a related effort we report progress on development of an imaging technique using and electrokinetic effect known as the ultrasonic vibration potential. The ultrasonic vibration potential refers to the voltage generated when ultrasound traverses a colloidal or ionic fluid. The theory of imaging based on the vibration potential is reviewed, and an expression given that describes the signal from an arbitrary object. The experimental apparatus consists of a pair of parallel plates connected to the irradiated body, a low noise preamplifier, a radio frequency lock-in amplifier, translation stages for the ultrasonic transducer that generates the ultrasound, and a computer for data storage and image formation. Experiments are reported where bursts of ultrasound are directed onto colloidal silica objects placed within inert bodies.

  19. Innovations in diagnostic imaging of localized prostate cancer.

    PubMed

    Pummer, Karl; Rieken, Malte; Augustin, Herbert; Gutschi, Thomas; Shariat, Shahrokh F

    2014-08-01

    In recent years, various imaging modalities have been developed to improve diagnosis, staging, and localization of early-stage prostate cancer (PCa). A MEDLINE literature search of the time frame between 01/2007 and 06/2013 was performed on imaging of localized PCa. Conventional transrectal ultrasound (TRUS) is mainly used to guide prostate biopsy. Contrast-enhanced ultrasound is based on the assumption that PCa tissue is hypervascularized and might be better identified after intravenous injection of a microbubble contrast agent. However, results on its additional value for cancer detection are controversial. Computer-based analysis of the transrectal ultrasound signal (C-TRUS) appears to detect cancer in a high rate of patients with previous biopsies. Real-time elastography seems to have higher sensitivity, specificity, and positive predictive value than conventional TRUS. However, the method still awaits prospective validation. The same is true for prostate histoscanning, an ultrasound-based method for tissue characterization. Currently, multiparametric MRI provides improved tissue visualization of the prostate, which may be helpful in the diagnosis and targeting of prostate lesions. However, most published series are small and suffer from variations in indication, methodology, quality, interpretation, and reporting. Among ultrasound-based techniques, real-time elastography and C-TRUS seem the most promising techniques. Multiparametric MRI appears to have advantages over conventional T2-weighted MRI in the detection of PCa. Despite these promising results, currently, no recommendation for the routine use of these novel imaging techniques can be made. Prospective studies defining the value of various imaging modalities are urgently needed.

  20. In Search of the Optimal Heart Perfusion Ultrasound Imaging Platform.

    PubMed

    Grishenkov, Dmitry; Gonon, Adrian; Janerot-Sjoberg, Birgitta

    2015-09-01

    Quantification of myocardial perfusion by contrast echocardiography remains a challenge. Existing imaging phantoms used to evaluate the performance of ultrasound scanners do not comply with perfusion basics in the myocardium, where perfusion and motion are inherently coupled. To contribute toward an improvement, we developed a contrast echocardiographic perfusion imaging platform based on an isolated rat heart coupled to an ultrasound scanner. Perfusion was assessed by using 3 different types of contrast agents: dextran-based Promiten (Meda AB, Solna, Sweden), phospholipid-shelled SonoVue (Bracco Diagnostics, Inc, Princeton, NJ), and polymer-shelled MB-pH5-RT, developed in-house. The myocardial video intensity was monitored over time from contrast agent administration to peak, and 2 characteristic constants were calculated by using an exponential fit: A, representing capillary volume; and β, representing inflow velocity. Acquired experimental evidence demonstrates that the application of all 3 contrast agents allows sonographic estimation of myocardial perfusion in the isolated rat heart. Video intensity maps show that an increase in contrast concentration increases the late-plateau values, A, mimicking increased capillary volume. Estimated values of the flow, proportional to A × β, increase when the pressure of the perfusate column increases from 80 to 110 cm of water. This finding is in agreement with the true values of the coronary flow increase measured by a flowmeter attached to the aortic cannula. The contrast echocardiographic perfusion imaging platform described holds promise for standardized evaluation and optimization of contrast perfusion ultrasound imaging in which real-time inflow curves at low acoustic power semiquantitatively reflect coronary flow. © 2015 by the American Institute of Ultrasound in Medicine.

  1. Interactive multimedia for prenatal ultrasound training.

    PubMed

    Lee, W; Ault, H; Kirk, J S; Comstock, C H

    1995-01-01

    This demonstration project examines the utility of interactive multimedia for prenatal ultrasound training. A laser-disc library was linked to a three-dimensional (3-D) heart model and other computer-based training materials through interactive multimedia. A testing module presented ultrasound anomalies and related questions to house-staff physicians through the image library. Users were asked to evaluate these training materials on the basis of perceived instructional value, question content, subjects covered, graphics interface, and ease of use; users were also asked for their comments. House-staff physicians indicated that they consider interactive multimedia to be a helpful adjunct to their core fetal imaging rotation. During a 9-month period, 16 house-staff physicians correctly diagnosed 78 +/- 4% of unknown cases presented through the testing module. The 3-D heart model was also perceived to be a useful teaching aid for spatial orientation skills. Our findings suggest that interactive multimedia and volume visualization models can be used to supplement traditional prenatal ultrasound training. The system provides a broad exposure to ultrasound anomalies, increases opportunities for postnatal correlation, emphasizes motion video for ultrasound training, encourages development of independent diagnostic ability, and helps physicians understand anatomic orientation. We hypothesize that interactive multimedia-based tutorials provide a better overall training experience for house-staff physicians. However, these supplementary methods will require formal evaluation of effectiveness to better understand their potential educational impact.

  2. Remotely supported prehospital ultrasound: A feasibility study of real-time image transmission and expert guidance to aid diagnosis in remote and rural communities.

    PubMed

    Eadie, Leila; Mulhern, John; Regan, Luke; Mort, Alasdair; Shannon, Helen; Macaden, Ashish; Wilson, Philip

    2017-01-01

    Introduction Our aim is to expedite prehospital assessment of remote and rural patients using remotely-supported ultrasound and satellite/cellular communications. In this paradigm, paramedics are remotely-supported ultrasound operators, guided by hospital-based specialists, to record images before receiving diagnostic advice. Technology can support users in areas with little access to medical imaging and suboptimal communications coverage by connecting to multiple cellular networks and/or satellites to stream live ultrasound and audio-video. Methods An ambulance-based demonstrator system captured standard trauma and novel transcranial ultrasound scans from 10 healthy volunteers at 16 locations across the Scottish Highlands. Volunteers underwent brief scanning training before receiving expert guidance via the communications link. Ultrasound images were streamed with an audio/video feed to reviewers for interpretation. Two sessions were transmitted via satellite and 21 used cellular networks. Reviewers rated image and communication quality, and their utility for diagnosis. Transmission latency and bandwidth were recorded, and effects of scanner and reviewer experience were assessed. Results Appropriate views were provided in 94% of the simulated trauma scans. The mean upload rate was 835/150 kbps and mean latency was 114/2072 ms for cellular and satellite networks, respectively. Scanning experience had a significant impact on time to achieve a diagnostic image, and review of offline scans required significantly less time than live-streamed scans. Discussion This prehospital ultrasound system could facilitate early diagnosis and streamlining of treatment pathways for remote emergency patients, being particularly applicable in rural areas worldwide with poor communications infrastructure and extensive transport times.

  3. Handheld probe for portable high frame photoacoustic/ultrasound imaging system

    NASA Astrophysics Data System (ADS)

    Daoudi, K.; van den Berg, P. J.; Rabot, O.; Kohl, A.; Tisserand, S.; Brands, P.; Steenbergen, W.

    2013-03-01

    Photoacoustics is a hybrid imaging modality that is based on the detection of acoustic waves generated by absorption of pulsed light by tissue chromophors. In current research, this technique uses large and costly photoacoustic systems with a low frame rate imaging. To open the door for widespread clinical use, a compact, cost effective and fast system is required. In this paper we report on the development of a small compact handset pulsed laser probe which will be connected to a portable ultrasound system for real-time photoacoustic imaging and ultrasound imaging. The probe integrates diode lasers driven by an electrical driver developed for very short high power pulses. It uses specifically developed highly efficient diode stacks with high frequency repetition rate up to 10 kHz, emitting at 800nm wavelength. The emitted beam is collimated and shaped with compact micro optics beam shaping system delivering a homogenized rectangular laser beam intensity distribution. The laser block is integrated with an ultrasound transducer in an ergonomically designed handset probe. This handset is a building block enabling for a low cost high frame rate photoacoustic and ultrasound imaging system. The probe was used with a modified ultrasound scanner and was tested by imaging a tissue mimicking phantom.

  4. Morphometric analysis of high-intensity focused ultrasound-induced lipolysis on cadaveric abdominal and thigh skin.

    PubMed

    Lee, Sugun; Kim, Hee-Jin; Park, Hyun Jun; Kim, Hyoung Moon; Lee, So Hyun; Cho, Sung Bin

    2017-07-01

    Non-focused ultrasound and high-intensity focused ultrasound (HIFU) devices induce lipolysis by generating acoustic cavitation and coagulation necrosis in targeted tissues. We aimed to investigate the morphometric characteristics of immediate tissue reactions induced by 2 MHz, 13-mm focused HIFU via two-dimensional ultrasound images and histologic evaluation of cadaveric skin from the abdomen and thigh. Acoustic fields of a 2 MHz, 38-mm HIFU transducer were characterized by reconstruction of the fields using acoustic intensity measurement. Additionally, abdominal and thigh tissues from a fresh cadaver were treated with a HIFU device for a single, two, and three pulses at the pulse energy of 130 J/cm 2 and a penetration depth of 13 mm. Acoustic intensity measurement revealed characteristic focal zones of significant thermal injury at the depth of 38 mm. In both the abdomen and thigh tissue, round to oval ablative thermal injury zones (TIZs) were visualized in subcutaneous fat layers upon treatment with a single pulse of HIFU treatment. Two to three HIFU pulses generated larger and more remarkable ablative zones throughout subcutaneous fat layers. Finally, experimental treatment in a tumescent infiltration-like setting induced larger HIFU-induced TIZs of an oval or columnar shape, compared to non-tumescent settings. Although neither acoustic intensity measurement nor cadaveric tissue exactly reflects in vivo HIFU-induced reactions in human tissue, we believe that our data will help guide further in vivo studies in investigating the therapeutic efficacy and safety of HIFU-induced lipolysis.

  5. Feasibility of Prostate Cancer Diagnosis by Transrectal Photo-acoustic Imaging

    DTIC Science & Technology

    2013-03-01

    prostate. Transrectal ultrasound has been used as a guiding tool to direct tissue needle biopsy for prostate cancer diagnosis; it cannot be utilized for...tool currently available for prostate cancer detection; needle biopsy is the current practice for diagnosis of the disease, aiming randomly in the...developing an integrated approach between ultrasound and optical tomography, namely, transrectal ultrasound - guided diffuse optical tomography (TRUS

  6. MO-AB-210-00: Diagnostic Ultrasound Imaging Quality Control and High Intensity Focused Ultrasound Therapy Hands-On Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrationsmore » with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS080949 and Philips Healthcare research grant C32.« less

  7. Prostate multimodality image registration based on B-splines and quadrature local energy.

    PubMed

    Mitra, Jhimli; Martí, Robert; Oliver, Arnau; Lladó, Xavier; Ghose, Soumya; Vilanova, Joan C; Meriaudeau, Fabrice

    2012-05-01

    Needle biopsy of the prostate is guided by Transrectal Ultrasound (TRUS) imaging. The TRUS images do not provide proper spatial localization of malignant tissues due to the poor sensitivity of TRUS to visualize early malignancy. Magnetic Resonance Imaging (MRI) has been shown to be sensitive for the detection of early stage malignancy, and therefore, a novel 2D deformable registration method that overlays pre-biopsy MRI onto TRUS images has been proposed. The registration method involves B-spline deformations with Normalized Mutual Information (NMI) as the similarity measure computed from the texture images obtained from the amplitude responses of the directional quadrature filter pairs. Registration accuracy of the proposed method is evaluated by computing the Dice Similarity coefficient (DSC) and 95% Hausdorff Distance (HD) values for 20 patients prostate mid-gland slices and Target Registration Error (TRE) for 18 patients only where homologous structures are visible in both the TRUS and transformed MR images. The proposed method and B-splines using NMI computed from intensities provide average TRE values of 2.64 ± 1.37 and 4.43 ± 2.77 mm respectively. Our method shows statistically significant improvement in TRE when compared with B-spline using NMI computed from intensities with Student's t test p = 0.02. The proposed method shows 1.18 times improvement over thin-plate splines registration with average TRE of 3.11 ± 2.18 mm. The mean DSC and the mean 95% HD values obtained with the proposed method of B-spline with NMI computed from texture are 0.943 ± 0.039 and 4.75 ± 2.40 mm respectively. The texture energy computed from the quadrature filter pairs provides better registration accuracy for multimodal images than raw intensities. Low TRE values of the proposed registration method add to the feasibility of it being used during TRUS-guided biopsy.

  8. Three-dimensional ultrasound imaging of the prostate

    NASA Astrophysics Data System (ADS)

    Fenster, Aaron; Downey, Donal B.

    1999-05-01

    Ultrasonography, a widely used imaging modality for the diagnosis and staging of many diseases, is an important cost- effective technique, however, technical improvements are necessary to realize its full potential. Two-dimensional viewing of 3D anatomy, using conventional ultrasonography, limits our ability to quantify and visualize most diseases, causing, in part, the reported variability in diagnosis and ultrasound guided therapy and surgery. This occurs because conventional ultrasound images are 2D, yet the anatomy is 3D; hence the diagnostician must integrate multiple images in his mind. This practice is inefficient, and may lead to operator variability and incorrect diagnoses. In addition, the 2D ultrasound image represents a single thin plane at some arbitrary angle in the body. It is difficult to localize and reproduce the image plane subsequently, making conventional ultrasonography unsatisfactory for follow-up studies and for monitoring therapy. Our efforts have focused on overcoming these deficiencies by developing 3D ultrasound imaging techniques that can acquire B-mode, color Doppler and power Doppler images. An inexpensive desktop computer is used to reconstruct the information in 3D, and then is also used for interactive viewing of the 3D images. We have used 3D ultrasound images for the diagnosis of prostate cancer, carotid disease, breast cancer and liver disease and for applications in obstetrics and gynecology. In addition, we have also used 3D ultrasonography for image-guided minimally invasive therapeutic applications of the prostate such as cryotherapy and brachytherapy.

  9. Preliminary Experience Using Eye-Tracking Technology to Differentiate Novice and Expert Image Interpretation for Ultrasound-Guided Regional Anesthesia.

    PubMed

    Borg, Lindsay K; Harrison, T Kyle; Kou, Alex; Mariano, Edward R; Udani, Ankeet D; Kim, T Edward; Shum, Cynthia; Howard, Steven K

    2018-02-01

    Objective measures are needed to guide the novice's pathway to expertise. Within and outside medicine, eye tracking has been used for both training and assessment. We designed this study to test the hypothesis that eye tracking may differentiate novices from experts in static image interpretation for ultrasound (US)-guided regional anesthesia. We recruited novice anesthesiology residents and regional anesthesiology experts. Participants wore eye-tracking glasses, were shown 5 sonograms of US-guided regional anesthesia, and were asked a series of anatomy-based questions related to each image while their eye movements were recorded. The answer to each question was a location on the sonogram, defined as the area of interest (AOI). The primary outcome was the total gaze time in the AOI (seconds). Secondary outcomes were the total gaze time outside the AOI (seconds), total time to answer (seconds), and time to first fixation on the AOI (seconds). Five novices and 5 experts completed the study. Although the gaze time (mean ± SD) in the AOI was not different between groups (7 ± 4 seconds for novices and 7 ± 3 seconds for experts; P = .150), the gaze time outside the AOI was greater for novices (75 ± 18 versus 44 ± 4 seconds for experts; P = .005). The total time to answer and total time to first fixation in the AOI were both shorter for experts. Experts in US-guided regional anesthesia take less time to identify sonoanatomy and spend less unfocused time away from a target compared to novices. Eye tracking is a potentially useful tool to differentiate novices from experts in the domain of US image interpretation. © 2017 by the American Institute of Ultrasound in Medicine.

  10. Impact of ultrasound video transfer on the practice of ultrasound

    NASA Astrophysics Data System (ADS)

    Duerinckx, Andre J.; Hayrapetian, Alek S.; Grant, Edward G.; Valentino, Daniel J.; Rahbar, Darius; Kiszonas, Mike; Franco, Ricky; Melany, Michelle; Narin, Sherelle L.; Ragavendra, Nagesh

    1996-05-01

    Sonography can be highly dependent on real-time imaging and as such is highly physician intensive. Such situations arise mostly during complicated ultrasound radiology studies or echocardiology examinations. Under those circumstances it would be of benefit to transmit real-time images beyond the immediate area of the ultrasound laboratory when a physician is not on location. We undertook this study to determine if both static and dynamic image transfer to remote locations might be accomplished using an ultrafast ATM network and PACS. Image management of the local image files was performed by a commercial PACS from AGFA corporation. The local network was Ethernet based, and the global network was based on Asynchronous Transfer Mode (ATM, rates up to 100 Mbits/sec). Real-time image transfer involved two teaching hospitals, one of which had 2 separate ultrasound facilities. Radiologists consulted with technologists via telephone while the examinations were being performed. The applications of ATM network providing real time video for ultrasound imaging in a clinical environment and its potential impact on health delivery and clinical teaching. This technology increased technologist and physician productivity due to the elimination of commute time for physicians and waiting time for technologists and patients. Physician confidence in diagnosis increased compared to reviewing static images alone. This system provided instant access for radiologists to real-time scans from remote sites. Image quality and frame rate were equivalent to the original. The system increased productivity by allowing physicians to monitor studies at multiple sites simultaneously.

  11. Harmonic Motion Imaging for Abdominal Tumor Detection and High-intensity Focused Ultrasound Ablation Monitoring: A Feasibility Study in a Transgenic Mouse Model of Pancreatic Cancer

    PubMed Central

    Chen, Hong; Hou, Gary Y.; Han, Yang; Payen, Thomas; Palermo, Carmine F.; Olive, Kenneth P.; Konofagou, Elisa E.

    2015-01-01

    Harmonic motion imaging (HMI) is a radiation force-based elasticity imaging technique that tracks oscillatory tissue displacements induced by sinusoidal ultrasonic radiation force to assess relative tissue stiffness. The objective of this study was to evaluate the feasibility of HMI in pancreatic tumor detection and high-intensity focused ultrasound (HIFU) treatment monitoring. The HMI system consisted of a focused ultrasound transducer, which generated sinusoidal radiation force to induce oscillatory tissue motion at 50 Hz, and a diagnostic ultrasound transducer, which detected the axial tissue displacements based on acquired radiofrequency signals using a 1D cross-correlation algorithm. For pancreatic tumor detection, HMI images were generated for pancreatic tumors in transgenic mice and normal pancreases in wild-type mice. The obtained HMI images showed a high contrast between normal and malignant pancreases with an average peak-to-peak HMI displacement ratio of 3.2. Histological analysis showed that no tissue damage was associated with HMI when it was used for the sole purpose of elasticity imaging. For pancreatic tumor ablation monitoring, the focused ultrasound transducer was operated with a higher acoustic power and longer pulse length than that used in tumor detection to simultaneously induce HIFU thermal ablation and oscillatory tissue displacements, allowing HMI monitoring without interrupting tumor ablation. HMI monitoring of HIFU ablation found significant decreases in the peak-to-peak HMI displacements before and after HIFU ablation with a reduction rate ranging from 15.8% to 57.0%. The formation of thermal lesions after HIFU exposure was confirmed by histological analysis. This study demonstrated the feasibility of HMI in abdominal tumor detection and HIFU ablation monitoring. PMID:26415128

  12. Harmonic motion imaging for abdominal tumor detection and high-intensity focused ultrasound ablation monitoring: an in vivo feasibility study in a transgenic mouse model of pancreatic cancer.

    PubMed

    Chen, Hong; Hou, Gary Y; Han, Yang; Payen, Thomas; Palermo, Carmine F; Olive, Kenneth P; Konofagou, Elisa E

    2015-09-01

    Harmonic motion imaging (HMI) is a radiationforce- based elasticity imaging technique that tracks oscillatory tissue displacements induced by sinusoidal ultrasonic radiation force to assess the resulting oscillatory displacement denoting the underlying tissue stiffness. The objective of this study was to evaluate the feasibility of HMI in pancreatic tumor detection and high-intensity focused ultrasound (HIFU) treatment monitoring. The HMI system consisted of a focused ultrasound transducer, which generated sinusoidal radiation force to induce oscillatory tissue motion at 50 Hz, and a diagnostic ultrasound transducer, which detected the axial tissue displacements based on acquired radio-frequency signals using a 1-D cross-correlation algorithm. For pancreatic tumor detection, HMI images were generated for pancreatic tumors in transgenic mice and normal pancreases in wild-type mice. The obtained HMI images showed a high contrast between normal and malignant pancreases with an average peak-to-peak HMI displacement ratio of 3.2. Histological analysis showed that no tissue damage was associated with HMI when it was used for the sole purpose of elasticity imaging. For pancreatic tumor ablation monitoring, the focused ultrasound transducer was operated at a higher acoustic power and longer pulse length than that used in tumor detection to simultaneously induce HIFU thermal ablation and oscillatory tissue displacements, allowing HMI monitoring without interrupting tumor ablation. HMI monitoring of HIFU ablation found significant decreases in the peak-to-peak HMI displacements before and after HIFU ablation with a reduction rate ranging from 15.8% to 57.0%. The formation of thermal lesions after HIFU exposure was confirmed by histological analysis. This study demonstrated the feasibility of HMI in abdominal tumor detection and HIFU ablation monitoring.

  13. An improved optical flow tracking technique for real-time MR-guided beam therapies in moving organs

    NASA Astrophysics Data System (ADS)

    Zachiu, C.; Papadakis, N.; Ries, M.; Moonen, C.; de Senneville, B. Denis

    2015-12-01

    Magnetic resonance (MR) guided high intensity focused ultrasound and external beam radiotherapy interventions, which we shall refer to as beam therapies/interventions, are promising techniques for the non-invasive ablation of tumours in abdominal organs. However, therapeutic energy delivery in these areas becomes challenging due to the continuous displacement of the organs with respiration. Previous studies have addressed this problem by coupling high-framerate MR-imaging with a tracking technique based on the algorithm proposed by Horn and Schunck (H and S), which was chosen due to its fast convergence rate and highly parallelisable numerical scheme. Such characteristics were shown to be indispensable for the real-time guidance of beam therapies. In its original form, however, the algorithm is sensitive to local grey-level intensity variations not attributed to motion such as those that occur, for example, in the proximity of pulsating arteries. In this study, an improved motion estimation strategy which reduces the impact of such effects is proposed. Displacements are estimated through the minimisation of a variation of the H and S functional for which the quadratic data fidelity term was replaced with a term based on the linear L1norm, resulting in what we have called an L2-L1 functional. The proposed method was tested in the livers and kidneys of two healthy volunteers under free-breathing conditions, on a data set comprising 3000 images equally divided between the volunteers. The results show that, compared to the existing approaches, our method demonstrates a greater robustness to local grey-level intensity variations introduced by arterial pulsations. Additionally, the computational time required by our implementation make it compatible with the work-flow of real-time MR-guided beam interventions. To the best of our knowledge this study was the first to analyse the behaviour of an L1-based optical flow functional in an applicative context: real-time MR-guidance of beam therapies in moving organs.

  14. Fusion imaging of contrast-enhanced ultrasound and contrast-enhanced CT or MRI before radiofrequency ablation for liver cancers.

    PubMed

    Bo, Xiao-Wan; Xu, Hui-Xiong; Wang, Dan; Guo, Le-Hang; Sun, Li-Ping; Li, Xiao-Long; Zhao, Chong-Ke; He, Ya-Ping; Liu, Bo-Ji; Li, Dan-Dan; Zhang, Kun

    2016-11-01

    To investigate the usefulness of fusion imaging of contrast-enhanced ultrasound (CEUS) and CECT/CEMRI before percutaneous ultrasound-guided radiofrequency ablation (RFA) for liver cancers. 45 consecutive patients with 70 liver lesions were included between March 2013 and October 2015, and all the lesions were identified on CEMRI/CECT prior to inclusion in the study. Planning ultrasound for percutaneous RFA was performed using conventional ultrasound, ultrasound-CECT/CEMRI and CEUS and CECT/CEMRI fusion imaging during the same session. The numbers of the conspicuous lesions on ultrasound and fusion imaging were recorded. RFA was performed according to the results of fusion imaging. Complete response (CR) rate was calculated and the complications were recorded. On conventional ultrasound, 25 (35.7%) of the 70 lesions were conspicuous, whereas 45 (64.3%) were inconspicuous. Ultrasound-CECT/CEMRI fusion imaging detected additional 24 lesions thus increased the number of the conspicuous lesions to 49 (70.0%) (70.0% vs 35.7%; p < 0.001 in comparison with conventional ultrasound). With the use of CEUS and CECT/CEMRI fusion imaging, the number of the conspicuous lesions further increased to 67 (95.7%, 67/70) (95.7% vs 70.0%, 95.7% vs 35.7%; both p < 0.001 in comparison with ultrasound and ultrasound-CECT/CEMRI fusion imaging, respectively). With the assistance of CEUS and CECT/CEMRI fusion imaging, the confidence level of the operator for performing RFA improved significantly with regard to visualization of the target lesions (p = 0.001). The CR rate for RFA was 97.0% (64/66) in accordance to the CECT/CEMRI results 1 month later. No procedure-related deaths and major complications occurred during and after RFA. Fusion of CEUS and CECT/CEMRI improves the visualization of those inconspicuous lesions on conventional ultrasound. It also facilitates improvement in the RFA operators' confidence and CR of RFA. Advances in knowledge: CEUS and CECT/CEMRI fusion imaging is better than both conventional ultrasound and ultrasound-CECT/CEMRI fusion imaging for lesion visualization and improves the operator confidence, thus it should be recommended to be used as a routine in ultrasound-guided percutaneous RFA procedures for liver cancer.

  15. Fusion imaging of contrast-enhanced ultrasound and contrast-enhanced CT or MRI before radiofrequency ablation for liver cancers

    PubMed Central

    Bo, Xiao-Wan; Wang, Dan; Guo, Le-Hang; Sun, Li-Ping; Li, Xiao-Long; Zhao, Chong-Ke; He, Ya-Ping; Liu, Bo-Ji; Li, Dan-Dan; Zhang, Kun

    2016-01-01

    Objective: To investigate the usefulness of fusion imaging of contrast-enhanced ultrasound (CEUS) and CECT/CEMRI before percutaneous ultrasound-guided radiofrequency ablation (RFA) for liver cancers. Methods: 45 consecutive patients with 70 liver lesions were included between March 2013 and October 2015, and all the lesions were identified on CEMRI/CECT prior to inclusion in the study. Planning ultrasound for percutaneous RFA was performed using conventional ultrasound, ultrasound-CECT/CEMRI and CEUS and CECT/CEMRI fusion imaging during the same session. The numbers of the conspicuous lesions on ultrasound and fusion imaging were recorded. RFA was performed according to the results of fusion imaging. Complete response (CR) rate was calculated and the complications were recorded. Results: On conventional ultrasound, 25 (35.7%) of the 70 lesions were conspicuous, whereas 45 (64.3%) were inconspicuous. Ultrasound-CECT/CEMRI fusion imaging detected additional 24 lesions thus increased the number of the conspicuous lesions to 49 (70.0%) (70.0% vs 35.7%; p < 0.001 in comparison with conventional ultrasound). With the use of CEUS and CECT/CEMRI fusion imaging, the number of the conspicuous lesions further increased to 67 (95.7%, 67/70) (95.7% vs 70.0%, 95.7% vs 35.7%; both p < 0.001 in comparison with ultrasound and ultrasound-CECT/CEMRI fusion imaging, respectively). With the assistance of CEUS and CECT/CEMRI fusion imaging, the confidence level of the operator for performing RFA improved significantly with regard to visualization of the target lesions (p = 0.001). The CR rate for RFA was 97.0% (64/66) in accordance to the CECT/CEMRI results 1 month later. No procedure-related deaths and major complications occurred during and after RFA. Conclusion: Fusion of CEUS and CECT/CEMRI improves the visualization of those inconspicuous lesions on conventional ultrasound. It also facilitates improvement in the RFA operators' confidence and CR of RFA. Advances in knowledge: CEUS and CECT/CEMRI fusion imaging is better than both conventional ultrasound and ultrasound-CECT/CEMRI fusion imaging for lesion visualization and improves the operator confidence, thus it should be recommended to be used as a routine in ultrasound-guided percutaneous RFA procedures for liver cancer. PMID:27626506

  16. SU-E-E-06: Teaching About the Gamma Camera and Ultrasound Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, M; Spiro, A; Vogel, R

    Purpose: Instructional modules on applications of physics in medicine are being developed. The target audience consists of students who have had an introductory undergraduate physics course. This presentation will concentrate on an active learning approach to teach the principles of the gamma camera. There will also be a description of an apparatus to teach ultrasound imaging. Methods: Since a real gamma camera is not feasible in the undergraduate classroom, we have developed two types of optical apparatus that teach the main principles. To understand the collimator, LEDS mimic gamma emitters in the body, and the photons pass through an arraymore » of tubes. The distance, spacing, diameter, and length of the tubes can be varied to understand the effect upon the resolution of the image. To determine the positions of the gamma emitters, a second apparatus uses a movable green laser, fluorescent plastic in lieu of the scintillation crystal, acrylic rods that mimic the PMTs, and a photodetector to measure the intensity. The position of the laser is calculated with a centroid algorithm.To teach the principles of ultrasound imaging, we are using the sound head and pulser box of an educational product, variable gain amplifier, rotation table, digital oscilloscope, Matlab software, and phantoms. Results: Gamma camera curriculum materials have been implemented in the classroom at Loyola in 2014 and 2015. Written work shows good knowledge retention and a more complete understanding of the material. Preliminary ultrasound imaging materials were run in 2015. Conclusion: Active learning methods add another dimension to descriptions in textbooks and are effective in keeping the students engaged during class time. The teaching apparatus for the gamma camera and ultrasound imaging can be expanded to include more cases, and could potentially improve students’ understanding of artifacts and distortions in the images.« less

  17. A preliminary evaluation of self-made nanobubble in contrast-enhanced ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Li, Chunfang; Wu, Kaizhi; Li, Jing; Liu, Haijuan; Zhou, Qibing; Ding, Mingyue

    2014-03-01

    Nanoscale bubbles (nanobubbles) have been reported to improve contrast in tumor-targeted ultrasound imaging due to the enhanced permeation and retention effects at tumor vascular leaks. In this work, a self-made nanobubble ultrasound contrast agent was preliminarily characterized and evaluated in-vitro and in-vivo. Fundamental properties such as morphology appearance, size distribution, zeta potential, bubble concentration (bubble numbers per milliliter contrast agent suspension) and the stability of nanobubbles were assessed by light microscope and particle sizing analysis. Then the concentration intensity curve and time intensity curves (TICs) were acquired by ultrasound imaging experiment in-vitro. Finally, the contrast-enhanced ultrasonography was performed on rat to investigate the procedure of liver perfusion. The results showed that the nanobubbles had good shape and uniform distribution with the average diameter of 507.9 nm, polydispersity index (PDI) of 0.527, and zeta potential of -19.17 mV. Significant contrast enhancement was observed in in-vitro ultrasound imaging, demonstrating that the self-made nanobubbles can enhance the contrast effect of ultrasound imaging efficiently in-vitro. Slightly contrast enhancement was observed in in-vivo ultrasound imaging, indicating that the nanobubbles are not stable enough in-vivo. Future work will be focused on improving the ultrasonic imaging performance, stability, and antibody binding of the nanoscale ultrasound contrast agent.

  18. Light and ultrasound activated microbubbles around gold nanorods for photoacoustic microsurgery

    NASA Astrophysics Data System (ADS)

    Cavigli, Lucia; Centi, Sonia; Lai, Sarah; Borri, Claudia; Micheletti, Filippo; Tortoli, Paolo; Panettieri, Ilaria; Streit, Ingolf; Rossi, Francesca; Ratto, Fulvio; Pini, Roberto

    2017-07-01

    Photoacoustic imaging and microsurgery have recently attracted attention for applications in oncology. Here, we present a versatile set-up to trigger vapor microbubbles around plasmonic nanoparticles by a combined light-ultrasound excitation. This system enables the detection and parametrization of bubbles as a function of several variables, such us optical fluence, ultrasound intensity, nanoparticles concentration, thus providing useful directions to the development of new strategies for treatments based on optical cavitation.

  19. Simulators for training in ultrasound guided procedures.

    PubMed

    Farjad Sultan, Syed; Shorten, George; Iohom, Gabrielle

    2013-06-01

    The four major categories of skill sets associated with proficiency in ultrasound guided regional anaesthesia are 1) understanding device operations, 2) image optimization, 3) image interpretation and 4) visualization of needle insertion and injection of the local anesthetic solution. Of these, visualization of needle insertion and injection of local anaesthetic solution can be practiced using simulators and phantoms. This survey of existing simulators summarizes advantages and disadvantages of each. Current deficits pertain to the validation process.

  20. Ultrasound-guided peripheral nerve interventions for common pain disorders

    PubMed Central

    Krishna Prasad, B P; Joy, Binu; Raghavendra, Vijayakumar A; Toms, Ajith; George, Danny; Ray, Brijesh

    2018-01-01

    There are a number of common pain disorders that can be managed effectively by injections around or ablation of peripheral nerves. Ultrasound is a universally available imaging tool, is safe, cost-effective, and is excellent in imaging many peripheral nerves and guiding needles to the site of the nerves. This article aims to present an overview of indications and techniques of such procedures that can be effectively performed by a radiologist. PMID:29692534

  1. Diagnostic ultrasound at MACH 20: retroperitoneal and pelvic imaging in space.

    PubMed

    Jones, J A; Sargsyan, A E; Barr, Y R; Melton, S; Hamilton, D R; Dulchavsky, S A; Whitson, P A

    2009-07-01

    An operationally available diagnostic imaging capability augments spaceflight medical support by facilitating the diagnosis, monitoring and treatment of medical or surgical conditions, by improving medical outcomes and, thereby, by lowering medical mission impacts and the probability of crew evacuation due to medical causes. Microgravity-related physiological changes occurring during spaceflight can affect the genitourinary system and potentially cause conditions such as urinary retention or nephrolithiasis for which ultrasonography (U/S) would be a useful diagnostic tool. This study describes the first genitourinary ultrasound examination conducted in space, and evaluates image quality, frame rate, resolution requirements, real-time remote guidance of nonphysician crew medical officers and evaluation of on-orbit tools that can augment image acquisition. A nonphysician crew medical officer (CMO) astronaut, with minimal training in U/S, performed a self-examination of the genitourinary system onboard the International Space Station, using a Philips/ATL Model HDI-5000 ultrasound imaging unit located in the International Space Station Human Research Facility. The CMO was remotely guided by voice commands from experienced, earth-based sonographers stationed in Mission Control Center in Houston. The crewmember, with guidance, was able to acquire all of the target images. Real-time and still U/S images received at Mission Control Center in Houston were of sufficient quality for the images to be diagnostic for multiple potential genitourinary applications. Microgravity-based ultrasound imaging can provide diagnostic quality images of the retroperitoneum and pelvis, offering improved diagnosis and treatment for onboard medical contingencies. Successful completion of complex sonographic examinations can be obtained even with minimally trained nonphysician ultrasound operators, with the assistance of ground-based real-time guidance.

  2. MR-guided transcranial focused ultrasound safely enhances interstitial dispersion of large polymeric nanoparticles in the living brain

    PubMed Central

    Mohammadabadi, Ali; Nguyen, Ben A.; Guo, Sijia; Winkles, Jeffrey A.; Kim, Anthony J.; Gullapalli, Rao; Keller, Asaf; Frenkel, Victor

    2018-01-01

    Generating spatially controlled, non-destructive changes in the interstitial spaces of the brain has a host of potential clinical applications, including enhancing the delivery of therapeutics, modulating biological features within the tissue microenvironment, altering fluid and pressure dynamics, and increasing the clearance of toxins, such as plaques found in Alzheimer’s disease. Recently we demonstrated that ultrasound can non-destructively enlarge the interstitial spaces of the brain ex vivo. The goal of the current study was to determine whether these effects could be reproduced in the living brain using non-invasive, transcranial MRI-guided focused ultrasound (MRgFUS). The left striatum of healthy rats was treated using MRgFUS. Computer simulations facilitated treatment planning, and targeting was validated using MRI acoustic radiation force impulse imaging. Following MRgFUS treatments, Evans blue dye or nanoparticle probes were infused to assess changes in the interstitial space. In MRgFUS-treated animals, enhanced dispersion was observed compared to controls for 70 nm (12.8 ± 0.9 mm3 vs. 10.6 ± 1.0 mm3, p = 0.01), 200 nm (10.9 ± 1.4 mm3 vs. 7.4 ± 0.7 mm3, p = 0.01) and 700 nm (7.5 ± 0.4 mm3 vs. 5.4 ± 1.2 mm3, p = 0.02) nanoparticles, indicating enlargement of the interstitial spaces. No evidence of significant histological or electrophysiological injury was identified. These findings suggest that transcranial ultrasound can safely and effectively modulate the brain interstitium and increase the dispersion of large therapeutic entities such as particulate drug carriers or modified viruses. This has the potential to expand the therapeutic uses of MRgFUS. PMID:29415084

  3. Assessment of MR Thermometry During High Intensity Ultrasound Ablation of the Canine Prostate

    NASA Astrophysics Data System (ADS)

    Butts Pauly, Kim; Rieke, Viola; Pisani, Laura; Sommer, Graham; Bouley, Donna; Diederich, Chris; Ross, Anthony; Nau, Will; Kinsey, Adam; Dumoulin, Charles; Watkins, Ronald

    2006-05-01

    We are developing transurethral and interstitial ultrasound applicators for the local control of prostate cancer and BPH. The ultrasound energy will be delivered under magnetic resonance imaging guidance because it can provide exquisite temperature mapping capability. The purpose of this work was to evaluate MR thermometry during high intensity ultrasound ablation often canine prostates.

  4. Study protocol for a randomised controlled trial of ultrasound-guided pulsed radiofrequency of the genicular nerves in the treatment of patients with osteoarthritis knee pain

    PubMed Central

    Valentí, Pedro; Hernández, Beatriz; Mir, Bartolome; Aguilar, Jose Luis

    2017-01-01

    Introduction The goals for the management of patients with osteoarthritis (OA) of the knee are to control pain and to minimise disability. Because the number of patients will increase as the population ages, alternative approaches to alleviate their joint pain other than conventional treatments are necessary. The purpose of this article is to present a refined protocol to determine if there is long-term improvement in pain and function after ultrasound-guided pulsed radiofrequency treatment of the genicular nerves (GNs) in patients with chronic painful knee OA. Methods and analysis This study is a randomised, double-blind, placebo-controlled, parallel design trial. One hundred and forty-two outpatients with OA of the knee will be recruited from Mallorca, Spain. Participants will be randomly allocated into two groups: ultrasound-guided sham GN pulsed radiofrequency without active treatment and ultrasound-guided real GN pulsed radiofrequency. The primary outcome measures will be the observed changes from baseline pain intensity based on visual analogue scale (VAS). The possible changes in the secondary efficacy variables from the baseline as assessed by the Goldberg Anxiety and Depression Scale, pain medication use, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC subscales) and VAS pain intensity are also to be included in the study. These variables will be assessed at baseline, 1 month, 3 months, 6 months and 1 year after treatment. Ethics and dissemination The protocol was approved by the Research Ethic Committee of the Balearic Islands (IB 3223/16 PI). The results will be disseminated in peer-reviewed journals and at scientific conferences. Trial registration Trial registration numberNCT02915120; Pre-results PMID:29102985

  5. Osteoid osteoma: Magnetic resonance guided high intensity focused ultrasound for entirely non-invasive treatment. A prospective developmental study

    NASA Astrophysics Data System (ADS)

    Napoli, A.; de Soccio, V.; Cartocci, G.; Boni, F.; Anzidei, M.; Catalano, C.

    2017-03-01

    To determine the effect of acoustic energy delivered during MR guided Focused Ultrasound (MRgFUS) treatment of symptomatic osteoid osteomas. This prospective, IRB approved study involved 15 consecutive patients (11 m; 4f; mean age, 21) with clinical and imaging diagnosis of Osteoid Osteoma; all patients underwent MRgFUS ablation (ExAblate, InSightec; Discovery 750 MR unit, GE). Lesions located in the vertebral body were excluded, while lesions in proximity to joints or neurovascular bundles were included. Treatment success was determined at clinical and imaging follow-up at 1, 6 and 12 months post-treatment. A visual Analog Pain Score (VAS) was used to assess changes in symptoms. Bone changes at nidus site were evaluated on the basis of CT and dynamic ce-MR imaging (Gd-Bopta; Bracco) pre- and post-treatment. Treatment was carried out using a variable number of sonications (mean 4±1.8) with a mean energy deposition of 866±211 J. There were no treatment- or anesthesia-related complications. A statistically significant (p=0.001) difference was noted between the overall pre- and post-treatment mean VAS scores (8.3±1.6 and 0.6±1.5, respectively). Two treatments were conducted in patients with prior CTgRFA failure and needed two different session for achieving complete clinical successful. At imaging, edema and hyperemia associated with typical osteoid osteoma, gradually disappeared in all lesions. No apparent relationship between nidus vascular extinction and successful outcome was found. Variable reabsorption degree of sclerotic reaction was observed with nidus disappearance in 4 cases (27%). Treatment of osteoid osteoma using MR guided Focused Ultrasound can be performed safely with a high rate of success and without treatment related morbidity; our results indicated also a positive trend to bone rearrangement after treatment.

  6. Focused ultrasound delivery of Raman nanoparticles across the blood-brain barrier: potential for targeting experimental brain tumors.

    PubMed

    Diaz, Roberto Jose; McVeigh, Patrick Z; O'Reilly, Meaghan A; Burrell, Kelly; Bebenek, Matthew; Smith, Christian; Etame, Arnold B; Zadeh, Gelareh; Hynynen, Kullervo; Wilson, Brian C; Rutka, James T

    2014-07-01

    Spectral mapping of nanoparticles with surface enhanced Raman scattering (SERS) capability in the near-infrared range is an emerging molecular imaging technique. We used magnetic resonance image-guided transcranial focused ultrasound (TcMRgFUS) to reversibly disrupt the blood-brain barrier (BBB) adjacent to brain tumor margins in rats. Glioma cells were found to internalize SERS capable nanoparticles of 50nm or 120nm physical diameter. Surface coating with anti-epidermal growth factor receptor antibody or non-specific human immunoglobulin G, resulted in enhanced cell uptake of nanoparticles in-vitro compared to nanoparticles with methyl terminated 12-unit polyethylene glycol surface. BBB disruption permitted the delivery of SERS capable spherical 50 or 120nm gold nanoparticles to the tumor margins. Thus, nanoparticles with SERS imaging capability can be delivered across the BBB non-invasively using TcMRgFUS and have the potential to be used as optical tracking agents at the invasive front of malignant brain tumors. This study demonstrates the use of magnetic resonance image-guided transcranial focused ultrasound to open the BBB and enable spectral mapping of nanoparticles with surface enhanced Raman scattering (SERS)-based molecular imaging for experimental tumor tracking. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Physics and instrumentation of ultrasound.

    PubMed

    Lawrence, John P

    2007-08-01

    A thorough understanding of the physics of ultrasound waves and the instrumentation will provide the user with a better understanding of the capabilities and limitations of ultrasound equipment. The ultrasound machine combines two technologies: image production (M-mode and 2-dimensional imaging) with Doppler assessment (continuous and pulse wave as well as color-flow mapping). These distinct technologies have been combined to provide the examiner with the ability to make accurate and comprehensive diagnoses and guide therapeutic intervention.

  8. Multispectral photoacoustic imaging of nerves with a clinical ultrasound system

    NASA Astrophysics Data System (ADS)

    Mari, Jean Martial; West, Simeon; Beard, Paul C.; Desjardins, Adrien E.

    2014-03-01

    Accurate and efficient identification of nerves is of great importance during many ultrasound-guided clinical procedures, including nerve blocks and prostate biopsies. It can be challenging to visualise nerves with conventional ultrasound imaging, however. One of the challenges is that nerves can have very similar appearances to nearby structures such as tendons. Several recent studies have highlighted the potential of near-infrared optical spectroscopy for differentiating nerves and adjacent tissues, as this modality can be sensitive to optical absorption of lipids that are present in intra- and extra-neural adipose tissue and in the myelin sheaths. These studies were limited to point measurements, however. In this pilot study, a custom photoacoustic system with a clinical ultrasound imaging probe was used to acquire multi-spectral photoacoustic images of nerves and tendons from swine ex vivo, across the wavelength range of 1100 to 1300 nm. Photoacoustic images were processed and overlaid in colour onto co-registered conventional ultrasound images that were acquired with the same imaging probe. A pronounced optical absorption peak centred at 1210 nm was observed in the photoacoustic signals obtained from nerves, and it was absent in those obtained from tendons. This absorption peak, which is consistent with the presence of lipids, provides a novel image contrast mechanism to significantly enhance the visualization of nerves. In particular, image contrast for nerves was up to 5.5 times greater with photoacoustic imaging (0.82 +/- 0.15) than with conventional ultrasound imaging (0.148 +/- 0.002), with a maximum contrast of 0.95 +/- 0.02 obtained in photoacoustic mode. This pilot study demonstrates the potential of photoacoustic imaging to improve clinical outcomes in ultrasound-guided interventions in regional anaesthesia and interventional oncology.

  9. Human Space Flight

    NASA Technical Reports Server (NTRS)

    Woolford, Barbara

    2006-01-01

    The performance of complex tasks on the International Space Station (ISS) requires significant preflight crew training commitments and frequent skill and knowledge refreshment. This report documents a recently developed just-in-time training methodology, which integrates preflight hardware familiarization and procedure training with an on-orbit CD-ROM-based skill enhancement. This just-in-time concept was used to support real-time remote expert guidance to complete medical examinations using the ISS Human Research Facility (HRF). An American md Russian ISS crewmember received 2-hours of hands on ultrasound training 8 months prior to the on-orbit ultrasound exam. A CD-ROM-based Onboard Proficiency Enhancement (OPE) interactive multimedia program consisting of memory enhancing tutorials, and skill testing exercises, was completed by the crewmember six days prior to the on-orbit ultrasound exam. The crewmember was then remotely guided through a thoracic, vascular, and echocardiographic examination by ultrasound imaging experts. Results of the CD ROM based OPE session were used to modify the instructions during a complete 35 minute real-time thoracic, cardiac, and carotid/jugular ultrasound study. Following commands from the ground-based expert, the crewmember acquired all target views and images without difficulty. The anatomical content and fidelity of ultrasound video were excellent and adequate for clinical decision-making. Complex ultrasound experiments with expert guidance were performed with high accuracy following limited pre-flight training and CD-ROM-based in-flight review, despite a 2-second communication latency.

  10. A System-on-Chip Solution for Point-of-Care Ultrasound Imaging Systems: Architecture and ASIC Implementation.

    PubMed

    Kang, Jeeun; Yoon, Changhan; Lee, Jaejin; Kye, Sang-Bum; Lee, Yongbae; Chang, Jin Ho; Kim, Gi-Duck; Yoo, Yangmo; Song, Tai-kyong

    2016-04-01

    In this paper, we present a novel system-on-chip (SOC) solution for a portable ultrasound imaging system (PUS) for point-of-care applications. The PUS-SOC includes all of the signal processing modules (i.e., the transmit and dynamic receive beamformer modules, mid- and back-end processors, and color Doppler processors) as well as an efficient architecture for hardware-based imaging methods (e.g., dynamic delay calculation, multi-beamforming, and coded excitation and compression). The PUS-SOC was fabricated using a UMC 130-nm NAND process and has 16.8 GFLOPS of computing power with a total equivalent gate count of 12.1 million, which is comparable to a Pentium-4 CPU. The size and power consumption of the PUS-SOC are 27×27 mm(2) and 1.2 W, respectively. Based on the PUS-SOC, a prototype hand-held US imaging system was implemented. Phantom experiments demonstrated that the PUS-SOC can provide appropriate image quality for point-of-care applications with a compact PDA size ( 200×120×45 mm(3)) and 3 hours of battery life.

  11. Focused US system for MR imaging-guided tumor ablation.

    PubMed

    Cline, H E; Hynynen, K; Watkins, R D; Adams, W J; Schenck, J F; Ettinger, R H; Freund, W R; Vetro, J P; Jolesz, F A

    1995-03-01

    To measure the performance characteristics of a focused ultrasound (US) system for magnetic resonance (MR) imaging-guided tumor ablation. The authors constructed a focused US system for MR imaging-guided tumor ablation. The location of the heated region and thermal dose were monitored with temperature-sensitive MR images obtained in phantoms and rabbit skeletal muscle after application of each sonic pulse. The region heated by the focused ultrasound beam was within 1 mm of that observed on temperature-sensitive fast gradient-echo MR images of in vivo rabbit skeletal muscle. Analysis of heat flow and the rate of coagulation necrosis provided an estimate of the size of the ablated region that was in agreement with experimental findings. MR imaging provides target definition and control for thermal therapy in regions of variable perfusion or in tissues that are not well characterized.

  12. High-intensity focused ultrasound-triggered nanoscale bubble-generating liposomes for efficient and safe tumor ablation under photoacoustic imaging monitoring.

    PubMed

    Feng, Gang; Hao, Lan; Xu, Chunyan; Ran, Haitao; Zheng, Yuanyi; Li, Pan; Cao, Yang; Wang, Qi; Xia, Jizhu; Wang, Zhigang

    2017-01-01

    High-intensity focused ultrasound (HIFU) is widely applied to tumors in clinical practice due to its minimally invasive approach. However, several issues lower therapeutic efficiency in some cases. Many synergists such as microbubbles and perfluorocarbon nanoparticles have recently been used to improve HIFU treatment efficiency, but none were determined to be effective and safe in vivo. In this study, nanoscale bubble-generating liposomes (liposomes containing ammonium bicarbonate [Lip-ABC]) were prepared by film hydration followed by sequential extrusion. Their stable nanoscale particle diameter was confirmed, and their bubble-generating capacity after HIFU triggering was demonstrated with ultrasound imaging. Lip-ABC had good stability in vivo and accumulated in the tumor interstitial space based on the enhanced permeability and retention effect evaluated by photoacoustic imaging. When used to synergize HIFU ablation to bovine liver in vitro and implanted breast tumors of BALB/c nude mice, Lip-ABC outperformed the control. Importantly, all mice survived HIFU treatment, suggesting that Lip-ABC is a safe HIFU synergist.

  13. Plasma based optical guiding of an amplitude-modulated electromagnetic beam

    NASA Astrophysics Data System (ADS)

    Singh, Mamta; Gupta, D. N.

    2015-06-01

    We propose the stronger optical guiding of an electromagnetic beam in a plasma by considering the amplitude modulation of the fundamental beam. With the advent of high power source of electromagnetic radiation, the electron velocity in a plasma may become quite large (comparable to the light velocity in free space). Thus, the effect of relativistic mass variation must be taken into account. The relativistic effect of the laser propagation in a plasma leads to self-focusing because of the dielectric constant of a plasma being an increasing function of the intensity. The ponderomotive force of the laser beam pushes the electrons out of the region of high intensity, which reduces the local electron density and increases the plasma dielectric function further, leading to even more selffocusing of the laser. In this work, we consider a short pulse laser of finite spot size as an amplitude modulation in time. Our findings show an efficient optical guiding mechanism based on amplitude modulation signal propagation in plasmas. Medium nonlinearity becomes stronger if an amplitude modulated beam is introduced, which contributes significantly in laser guiding in plasmas. Furthermore, the rate of laser self-focusing is increased with modulation index due the fact of stronger Kerr effect. The study related to amplitude modulated optical signal may be useful for communication technology.

  14. Interleukin 16- (IL-16-) Targeted Ultrasound Imaging Agent Improves Detection of Ovarian Tumors in Laying Hens, a Preclinical Model of Spontaneous Ovarian Cancer.

    PubMed

    Barua, Animesh; Yellapa, Aparna; Bahr, Janice M; Adur, Malavika K; Utterback, Chet W; Bitterman, Pincas; Basu, Sanjib; Sharma, Sameer; Abramowicz, Jacques S

    2015-01-01

    Limited resolution of transvaginal ultrasound (TVUS) scanning is a significant barrier to early detection of ovarian cancer (OVCA). Contrast agents have been suggested to improve the resolution of TVUS scanning. Emerging evidence suggests that expression of interleukin 16 (IL-16) by the tumor epithelium and microvessels increases in association with OVCA development and offers a potential target for early OVCA detection. The goal of this study was to examine the feasibility of IL-16-targeted contrast agents in enhancing the intensity of ultrasound imaging from ovarian tumors in hens, a model of spontaneous OVCA. Contrast agents were developed by conjugating biotinylated anti-IL-16 antibodies with streptavidin coated microbubbles. Enhancement of ultrasound signal intensity was determined before and after injection of contrast agents. Following scanning, ovarian tissues were processed for the detection of IL-16 expressing cells and microvessels. Compared with precontrast, contrast imaging enhanced ultrasound signal intensity significantly in OVCA hens at early (P < 0.05) and late stages (P < 0.001). Higher intensities of ultrasound signals in OVCA hens were associated with increased frequencies of IL-16 expressing cells and microvessels. These results suggest that IL-16-targeted contrast agents improve the visualization of ovarian tumors. The laying hen may be a suitable model to test new imaging agents and develop targeted anti-OVCA therapeutics.

  15. Stereotactic ultrasound for target volume definition in a patient with prostate cancer and bilateral total hip replacement.

    PubMed

    Boda-Heggemann, Judit; Haneder, Stefan; Ehmann, Michael; Sihono, Dwi Seno Kuncoro; Wertz, Hansjörg; Mai, Sabine; Kegel, Stefan; Heitmann, Sigrun; von Swietochowski, Sandra; Lohr, Frank; Wenz, Frederik

    2015-01-01

    Target-volume definition for prostate cancer in patients with bilateral metal total hip replacements (THRs) is a challenge because of metal artifacts in the planning computed tomography (CT) scans. Magnetic resonance imaging (MRI) can be used for matching and prostate delineation; however, at a spatial and temporal distance from the planning CT, identical rectal and vesical filling is difficult to achieve. In addition, MRI may also be impaired by metal artifacts, even resulting in spatial image distortion. Here, we present a method to define prostate target volumes based on ultrasound images acquired during CT simulation and online-matched to the CT data set directly at the planning CT. A 78-year-old patient with cT2cNxM0 prostate cancer with bilateral metal THRs was referred to external beam radiation therapy. T2-weighted MRI was performed on the day of the planning CT with preparation according to a protocol for reproducible bladder and rectal filling. The planning CT was obtained with the immediate acquisition of a 3-dimensional ultrasound data set with a dedicated stereotactic ultrasound system for online intermodality image matching referenced to the isocenter by ceiling-mounted infrared cameras. MRI (offline) and ultrasound images (online) were thus both matched to the CT images for planning. Daily image guided radiation therapy (IGRT) was performed with transabdominal ultrasound and compared with cone beam CT. Because of variations in bladder and rectal filling and metal-induced image distortion in MRI, soft-tissue-based matching of the MRI to CT was not sufficient for unequivocal prostate target definition. Ultrasound-based images could be matched, and prostate, seminal vesicles, and target volumes were reliably defined. Daily IGRT could be successfully completed with transabdominal ultrasound with good accordance between cone beam CT and ultrasound. For prostate cancer patients with bilateral THRs causing artifacts in planning CTs, ultrasound referenced to the isocenter of the CT simulator and acquired with intermodal online coregistration directly at the planning CT is a fast and easy method to reliably delineate the prostate and target volumes and for daily IGRT. Copyright © 2015 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  16. A Method of Time-Intensity Curve Calculation for Vascular Perfusion of Uterine Fibroids Based on Subtraction Imaging with Motion Correction

    NASA Astrophysics Data System (ADS)

    Zhu, Xinjian; Wu, Ruoyu; Li, Tao; Zhao, Dawei; Shan, Xin; Wang, Puling; Peng, Song; Li, Faqi; Wu, Baoming

    2016-12-01

    The time-intensity curve (TIC) from contrast-enhanced ultrasound (CEUS) image sequence of uterine fibroids provides important parameter information for qualitative and quantitative evaluation of efficacy of treatment such as high-intensity focused ultrasound surgery. However, respiration and other physiological movements inevitably affect the process of CEUS imaging, and this reduces the accuracy of TIC calculation. In this study, a method of TIC calculation for vascular perfusion of uterine fibroids based on subtraction imaging with motion correction is proposed. First, the fibroid CEUS recording video was decoded into frame images based on the record frame rate. Next, the Brox optical flow algorithm was used to estimate the displacement field and correct the motion between two frames based on warp technique. Then, subtraction imaging was performed to extract the positional distribution of vascular perfusion (PDOVP). Finally, the average gray of all pixels in the PDOVP from each image was determined, and this was considered the TIC of CEUS image sequence. Both the correlation coefficient and mutual information of the results with proposed method were larger than those determined using the original method. PDOVP extraction results have been improved significantly after motion correction. The variance reduction rates were all positive, indicating that the fluctuations of TIC had become less pronounced, and the calculation accuracy has been improved after motion correction. This proposed method can effectively overcome the influence of motion mainly caused by respiration and allows precise calculation of TIC.

  17. Method and system to synchronize acoustic therapy with ultrasound imaging

    NASA Technical Reports Server (NTRS)

    Hossack, James (Inventor); Owen, Neil (Inventor); Bailey, Michael R. (Inventor)

    2009-01-01

    Interference in ultrasound imaging when used in connection with high intensity focused ultrasound (HIFU) is avoided by employing a synchronization signal to control the HIFU signal. Unless the timing of the HIFU transducer is controlled, its output will substantially overwhelm the signal produced by ultrasound imaging system and obscure the image it produces. The synchronization signal employed to control the HIFU transducer is obtained without requiring modification of the ultrasound imaging system. Signals corresponding to scattered ultrasound imaging waves are collected using either the HIFU transducer or a dedicated receiver. A synchronization processor manipulates the scattered ultrasound imaging signals to achieve the synchronization signal, which is then used to control the HIFU bursts so as to substantially reduce or eliminate HIFU interference in the ultrasound image. The synchronization processor can alternatively be implemented using a computing device or an application-specific circuit.

  18. Using passive cavitation images to classify high-intensity focused ultrasound lesions.

    PubMed

    Haworth, Kevin J; Salgaonkar, Vasant A; Corregan, Nicholas M; Holland, Christy K; Mast, T Douglas

    2015-09-01

    Passive cavitation imaging provides spatially resolved monitoring of cavitation emissions. However, the diffraction limit of a linear imaging array results in relatively poor range resolution. Poor range resolution has limited prior analyses of the spatial specificity and sensitivity of passive cavitation imaging in predicting thermal lesion formation. In this study, this limitation is overcome by orienting a linear array orthogonal to the high-intensity focused ultrasound propagation direction and performing passive imaging. Fourteen lesions were formed in ex vivo bovine liver samples as a result of 1.1-MHz continuous-wave ultrasound exposure. The lesions were classified as focal, "tadpole" or pre-focal based on their shape and location. Passive cavitation images were beamformed from emissions at the fundamental, harmonic, ultraharmonic and inharmonic frequencies with an established algorithm. Using the area under a receiver operating characteristic curve (AUROC), fundamental, harmonic and ultraharmonic emissions were found to be significant predictors of lesion formation for all lesion types. For both harmonic and ultraharmonic emissions, pre-focal lesions were classified most successfully (AUROC values of 0.87 and 0.88, respectively), followed by tadpole lesions (AUROC values of 0.77 and 0.64, respectively) and focal lesions (AUROC values of 0.65 and 0.60, respectively). Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  19. Primary malignant tumours of the bony pelvis: US-guided high intensity focused ultrasound ablation.

    PubMed

    Wang, Yang; Wang, Wei; Tang, Jie

    2013-11-01

    The aim of this review is to evaluate the value of ultrasound (US)-guided high intensity focused ultrasound (HIFU) ablation in the treatment of primary malignant tumours of the bony pelvis. Eleven patients with primary malignant tumours of the bony pelvis received US-guided HIFU ablation. The maximum tumour size ranged from 5.6 to 25.0 cm (median 10.5 cm). Treatment was curative in four patients and palliative in seven patients. During follow-up, the effectiveness of HIFU ablation was assessed by contrast-enhanced magnetic resonance (MR). Significant coagulative necrosis was obtained in all patients after scheduled HIFU ablations; the volume ablation ratio was 86.7% ± 12.5% (range 65-100%). Complete tumour necrosis was achieved in all patients receiving curative HIFU ablation. No major complications were encountered. No patients died of local tumour progression during follow-up. US-guided HIFU ablation may be a safe and effective minimally invasive technique for the local treatment of primary malignant tumours of the bony pelvis.

  20. MO-FG-210-02: Implementation of Image-Guided Prostate HDR Brachytherapy Using MR-Ultrasound Fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Libby, B.

    Ultrasound (US) is one of the most widely used imaging modalities in medical practice. Since US imaging offers real-time imaging capability, it has becomes an excellent option to provide image guidance for brachytherapy (IGBT). (1) The physics and the fundamental principles of US imaging are presented, and the typical steps required to commission an US system for IGBT is provided for illustration. (2) Application of US for prostate HDR brachytherapy, including partial prostate treatments using MR-ultrasound co-registration to enable a focused treatment on the disease within the prostate is also presented. Prostate HDR with US image guidance planning can benefitmore » from real time visualization of the needles, and fusion of the ultrasound images with T2 weighted MR allows the focusing of the treatment to the specific areas of disease within the prostate, so that the entire gland need not be treated. Finally, (3) ultrasound guidance for an eye plaque program is presented. US can be a key component of placement and QA for episcleral plaque brachytherapy for ocular cancer, and the UCLA eye plaque program with US for image guidance is presented to demonstrate the utility of US verification of plaque placement in improving the methods and QA in episcleral plaque brachytherapy. Learning Objectives: To understand the physics of an US system and the necessary aspects of commissioning US for image guided brachytherapy (IGBT). To understand real time planning of prostate HDR using ultrasound, and its application in partial prostate treatments using MR-ultrasound fusion to focus treatment on disease within the prostate. To understand the methods and QA in applying US for localizing the target and the implant during a episcleral plaque brachytherapy procedures.« less

  1. Interstitial ablation and imaging of soft tissue using miniaturized ultrasound arrays

    NASA Astrophysics Data System (ADS)

    Makin, Inder R. S.; Gallagher, Laura A.; Mast, T. Douglas; Runk, Megan M.; Faidi, Waseem; Barthe, Peter G.; Slayton, Michael H.

    2004-05-01

    A potential alternative to extracorporeal, noninvasive HIFU therapy is minimally invasive, interstitial ultrasound ablation that can be performed laparoscopically or percutaneously. Research in this area at Guided Therapy Systems and Ethicon Endo-Surgery has included development of miniaturized (~3 mm diameter) linear ultrasound arrays capable of high power for bulk tissue ablation as well as broad bandwidth for imaging. An integrated control system allows therapy planning and automated treatment guided by real-time interstitial B-scan imaging. Image quality, challenging because of limited probe dimensions and channel count, is aided by signal processing techniques that improve image definition and contrast. Simulations of ultrasonic heat deposition, bio-heat transfer, and tissue modification provide understanding and guidance for development of treatment strategies. Results from in vitro and in vivo ablation experiments, together with corresponding simulations, will be described. Using methods of rotational scanning, this approach is shown to be capable of clinically relevant ablation rates and volumes.

  2. [High-intensity focused ultrasound (HIFU) for tumor pain relief in inoperable pancreatic cancer : Evaluation with the pain sensation scale (SES)].

    PubMed

    Marinova, M; Strunk, H M; Rauch, M; Henseler, J; Clarens, T; Brüx, L; Dolscheid-Pommerich, R; Conrad, R; Cuhls, H; Radbruch, L; Schild, H H; Mücke, M

    2017-02-01

    High-intensity focused ultrasound (HIFU) in combination with palliative standard therapy is an innovative and effective treatment option for pain reduction in patients with inoperable pancreatic cancer. Evaluation of the effects of additive ultrasound (US)-guided HIFU treatment in inoperable pancreatic cancer on the sensory and affective pain perception using validated questionnaries. In this study 20 patients with locally advanced inoperable pancreatic cancer and tumor-related pain were treated by US-guided HIFU (6 stage III, 12 stage IV according to UICC and 2 with local recurrence after surgery). Ablation was performed using the JC HIFU system (HAIFU, Chongqing, China) with an ultrasonic device for real-time imaging. Clinical assessment included evaluation of pain severity using validated questionnaires with particular attention to the pain sensation scale (SES) with its affective and sensory component and the numeric rating scale (NRS). The average pain reduction after HIFU was 2.87 points on the NRS scale and 57.3 % compared to the mean baseline score (n = 15, 75 %) in 19 of 20 treated patients. Four patients did not report pain relief, however, the previous opioid medication could be stopped (n = 2) or the analgesic dosage could be reduced (n = 2). No pain reduction was achieved in one patient. Furthermore, after HIFU emotional as well as sensory pain aspects were significantly reduced (before vs. 1 week after HIFU, p < 0.05 for all pain scales). US-guided HIFU can be used for effective and early pain relief and reduction of emotional and sensory pain sensation in patients with locally advanced pancreatic cancer.

  3. Clinical challenges in the implementation of a tomotherapy service for head and neck cancer patients in a regional UK radiotherapy centre.

    PubMed

    Chatterjee, S; Mott, J H; Smyth, G; Dickson, S; Dobrowsky, W; Kelly, C G

    2011-04-01

    Intensity-modulated radiotherapy (IMRT) is increasingly being used to treat head and neck cancer cases. We discuss the clinical challenges associated with the setting up of an image guided intensity modulated radiotherapy service for a subset of head and neck cancer patients, using a recently commissioned helical tomotherapy (HT) Hi Art (Tomotherapy Inc, WI) machine in this article. We also discuss the clinical aspects of the tomotherapy planning process, treatment and image guidance experiences for the first 10 head and neck cancer cases. The concepts of geographical miss along with tomotherapy-specific effects, including that of field width and megavoltage CT (MVCT) imaging strategy, have been highlighted using the first 10 head and neck cases treated. There is a need for effective streamlining of all aspects of the service to ensure compliance with cancer waiting time targets. We discuss how patient toxicity audits are crucial to guide refinement of the newly set-up planning dose constraints. This article highlights the important clinical issues one must consider when setting up a head and neck IMRT, image-guided radiotherapy service. It shares some of the clinical challenges we have faced during the setting up of a tomotherapy service. Implementation of a clinical tomotherapy service requires a multidisciplinary team approach and relies heavily on good team working and effective communication between different staff groups.

  4. Toward dynamic lumbar punctures guidance based on single element synthetic tracked aperture ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Haichong K.; Lin, Melissa; Kim, Younsu; Paredes, Mateo; Kannan, Karun; Patel, Nisu; Moghekar, Abhay; Durr, Nicholas J.; Boctor, Emad M.

    2017-03-01

    Lumbar punctures (LPs) are interventional procedures used to collect cerebrospinal fluid (CSF), a bodily fluid needed to diagnose central nervous system disorders. Most lumbar punctures are performed blindly without imaging guidance. Because the target window is small, physicians can only accurately palpate the appropriate space about 30% of the time and perform a successful procedure after an average of three attempts. Although various forms of imaging based guidance systems have been developed to aid in this procedure, these systems complicate the procedure by including independent image modalities and requiring image-to-needle registration to guide the needle insertion. Here, we propose a simple and direct needle insertion platform utilizing a single ultrasound element within the needle through dynamic sensing and imaging. The needle-shaped ultrasound transducer can not only sense the distance between the tip and a potential obstacle such as bone, but also visually locate structures by combining transducer location tracking and back projection based tracked synthetic aperture beam-forming algorithm. The concept of the system was validated through simulation first, which revealed the tolerance to realistic error. Then, the initial prototype of the single element transducer was built into a 14G needle, and was mounted on a holster equipped with a rotation tracking encoder. We experimentally evaluated the system using a metal wire phantom mimicking high reflection bone structures and an actual spine bone phantom with both the controlled motion and freehand scanning. An ultrasound image corresponding to the model phantom structure was reconstructed using the beam-forming algorithm, and the resolution was improved compared to without beam-forming. These results demonstrated the proposed system has the potential to be used as an ultrasound imaging system for lumbar puncture procedures.

  5. Hemodialysis catheter implantation in the axillary vein by ultrasound guidance versus palpation or anatomical reference

    PubMed Central

    Valencia, Cesar A Restrepo; Villa, Carlos A Buitrago; Cardona, Jose A Chacon

    2013-01-01

    Background We compared the results of four different methods of hemodialysis catheter insertion in the medial segment of the axillary vein: ultrasound guidance, palpation, anatomical reference, and prior transient catheter. Methods All patients that required acute or chronic hemodialysis and for whom it was determined impossible or not recommended either to place a catheter in the internal jugular vein (for instance, those patients with a tracheostomy), or to practice arteriovenous fistula or graft; it was then essential to obtain an alternative vascular access. When the procedure of axillary vein catheter insertion was performed in the Renal Care Facility (RCF), ultrasound guidance was used, but in the intensive care unit (ICU), this resource was unavailable, so the palpation or anatomical reference technique was used. Results Two nephrologists with experience in the technique performed 83 procedures during a period lasting 15 years and 8 months (from January 1997–August 2012): 41 by ultrasound guidance; 19 by anatomical references; 15 by palpation of the contiguous axillary artery; and 8 through a temporary axillary catheter previously placed. The ultrasound-guided patients had fewer punctures than other groups, but the value was not statistically significant. Arterial punctures were infrequent in all techniques. Analyzing all the procedure-related complications, such as hematoma, pneumothorax, brachial-plexus injury, as well as the reasons for catheter removal, no differences were observed among the groups. The functioning time was longer in the ultrasound-guided and previous catheter groups. In 15 years and 8 months of surveillance, no clinical or image evidence for axillary vein stenosis was found. Conclusion The ultrasound guide makes the procedure of inserting catheters in the axillary veins easier, but knowledge of the anatomy of the midaxillary region and the ability to feel the axillary artery pulse (for the palpation method) also allow relatively easy successful implant of catheters in the axillary veins. PMID:24143120

  6. Magnetic resonance imaging of boiling induced by high intensity focused ultrasound

    PubMed Central

    Khokhlova, Tatiana D.; Canney, Michael S.; Lee, Donghoon; Marro, Kenneth I.; Crum, Lawrence A.; Khokhlova, Vera A.; Bailey, Michael R.

    2009-01-01

    Both mechanically induced acoustic cavitation and thermally induced boiling can occur during high intensity focused ultrasound (HIFU) medical therapy. The goal was to monitor the temperature as boiling was approached using magnetic resonance imaging (MRI). Tissue phantoms were heated for 20 s in a 4.7-T magnet using a 2-MHz HIFU source with an aperture and radius of curvature of 44 mm. The peak focal pressure was 27.5 MPa with corresponding beam width of 0.5 mm. The temperature measured in a single MRI voxel by water proton resonance frequency shift attained a maximum value of only 73 °C after 7 s of continuous HIFU exposure when boiling started. Boiling was detected by visual observation, by appearance on the MR images, and by a marked change in the HIFU source power. Nonlinear modeling of the acoustic field combined with a heat transfer equation predicted 100 °C after 7 s of exposure. Averaging of the calculated temperature field over the volume of the MRI voxel (0.3×0.5×2 mm3) yielded a maximum of 73 °C that agreed with the MR thermometry measurement. These results have implications for the use of MRI-determined temperature values to guide treatments with clinical HIFU systems. PMID:19354416

  7. Fast and robust multimodal image registration using a local derivative pattern.

    PubMed

    Jiang, Dongsheng; Shi, Yonghong; Chen, Xinrong; Wang, Manning; Song, Zhijian

    2017-02-01

    Deformable multimodal image registration, which can benefit radiotherapy and image guided surgery by providing complementary information, remains a challenging task in the medical image analysis field due to the difficulty of defining a proper similarity measure. This article presents a novel, robust and fast binary descriptor, the discriminative local derivative pattern (dLDP), which is able to encode images of different modalities into similar image representations. dLDP calculates a binary string for each voxel according to the pattern of intensity derivatives in its neighborhood. The descriptor similarity is evaluated using the Hamming distance, which can be efficiently computed, instead of conventional L1 or L2 norms. For the first time, we validated the effectiveness and feasibility of the local derivative pattern for multimodal deformable image registration with several multi-modal registration applications. dLDP was compared with three state-of-the-art methods in artificial image and clinical settings. In the experiments of deformable registration between different magnetic resonance imaging (MRI) modalities from BrainWeb, between computed tomography and MRI images from patient data, and between MRI and ultrasound images from BITE database, we show our method outperforms localized mutual information and entropy images in terms of both accuracy and time efficiency. We have further validated dLDP for the deformable registration of preoperative MRI and three-dimensional intraoperative ultrasound images. Our results indicate that dLDP reduces the average mean target registration error from 4.12 mm to 2.30 mm. This accuracy is statistically equivalent to the accuracy of the state-of-the-art methods in the study; however, in terms of computational complexity, our method significantly outperforms other methods and is even comparable to the sum of the absolute difference. The results reveal that dLDP can achieve superior performance regarding both accuracy and time efficiency in general multimodal image registration. In addition, dLDP also indicates the potential for clinical ultrasound guided intervention. © 2016 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  8. Magnetic Resonance Imaging-Guided High-Intensity Focused Ultrasound Ablation of Uterine Fibroids: Effect of Bowel Interposition on Procedure Feasibility and a Unique Bowel Displacement Technique.

    PubMed

    Kim, Young-Sun; Lim, Hyo Keun; Rhim, Hyunchul

    2016-01-01

    To evaluate the effect of bowel interposition on assessing procedure feasibility, and the usefulness and limiting conditions of bowel displacement techniques in magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) ablation of uterine fibroids. Institutional review board approved this study. A total of 375 screening MR exams and 206 MR-HIFU ablations for symptomatic uterine fibroids performed between August 2010 and March 2015 were retrospectively analyzed. The effect of bowel interposition on procedure feasibility was assessed by comparing pass rates in periods before and after adopting a unique bowel displacement technique (bladder filling, rectal filling and subsequent bladder emptying; BRB maneuver). Risk factors for BRB failure were evaluated using logistic regression analysis. Overall pass rates of pre- and post-BRB periods were 59.0% (98/166) and 71.7% (150/209), and in bowel-interposed cases they were 14.6% (7/48) and 76.4% (55/72), respectively. BRB maneuver was technically successful in 81.7% (49/60). Through-the-bladder sonication was effective in eight of eleven BRB failure cases, thus MR-HIFU could be initiated in 95.0% (57/60). A small uterus on treatment day was the only significant risk factor for BRB failure (B = 0.111, P = 0.017). The BRB maneuver greatly reduces the fraction of patients deemed ineligible for MR-HIFU ablation of uterine fibroids due to interposed bowels, although care is needed when the uterus is small.

  9. Monitoring high-intensity focused ultrasound (HIFU) therapy using radio frequency ultrasound backscatter to quantify heating

    NASA Astrophysics Data System (ADS)

    Kaczkowski, Peter J.; Anand, Ajay

    2005-09-01

    The spatial distribution and temporal history of tissue temperature is an essential indicator of thermal therapy progress, and treatment safety and efficacy. Magnetic resonance methods provide the gold standard noninvasive measurement of temperature but are costly and cumbersome compared to the therapy itself. We have been developing the use of ultrasound backscattering for real-time temperature estimation; ultrasonic methods have been limited to relatively low temperature rise, primarily due to lack of sensitivity at protein denaturation temperatures (50-70°C). Through validation experiments on gel phantoms and ex vivo tissue we show that temperature rise can be accurately mapped throughout the therapeutic temperature range using a new BioHeat Transfer Equation (BHTE) model-constrained inverse approach. Speckle-free temperature and thermal dose maps are generated using the ultrasound calibrated model over the imaged region throughout therapy delivery and post-treatment cooling periods. Results of turkey breast tissue experiments are presented for static HIFU exposures, in which the ultrasound calibrated BHTE temperature maps are shown to be very accurate (within a degree) using independent thermocouple measurements. This new temperature monitoring method may speed clinical adoption of ultrasound-guided HIFU therapy. [Work supported by Army MRMC.

  10. Feasibility of Retrograde Ureteral Contrast Injection to Guide Ultrasonographic Percutaneous Renal Access in the Nondilated Collecting System.

    PubMed

    Usawachintachit, Manint; Tzou, David T; Mongan, John; Taguchi, Kazumi; Weinstein, Stefanie; Chi, Thomas

    2017-02-01

    Ultrasound-guided percutaneous nephrolithotomy (PCNL) has become increasingly utilized. Patients with nondilated collecting systems represent a challenge: the target calix is often difficult to visualize. Here we report pilot study results for retrograde ultrasound contrast injection to aid in percutaneous renal access during ultrasound-guided PCNL. From April to July 2016, consecutive patients over the age of 18 years with nondilated collecting systems on preoperative imaging who presented for PCNL were enrolled. B-mode ultrasound imaging was compared with contrast-enhanced mode with simultaneous retrograde injection of Optison™ via an ipsilateral ureteral catheter. Five patients (four males and one female) with renal stones underwent PCNL with retrograde ultrasound contrast injection during the study period. Mean body mass index was 28.3 ± 5.6 kg/m 2 and mean stone size was 24.5 ± 12.0 mm. Under B-mode ultrasound, all patients demonstrated nondilated renal collecting systems that appeared as hyperechoic areas, where it was difficult to identify a target calix for puncture. Retrograde contrast injection facilitated delineation of all renal calices initially difficult to visualize under B-mode ultrasound. Renal puncture was then performed effectively in all cases with a mean puncture time of 55.4 ± 44.8 seconds. All PCNL procedures were completed without intraoperative complications and no adverse events related to ultrasound contrast injection occurred. Retrograde ultrasound contrast injection as an aide for renal puncture during PCNL is a feasible technique. By improving visualization of the collecting system, it facilitates needle placement in challenging patients without hydronephrosis. Future larger scale studies comparing its use to standard ultrasound-guided technique will be required to validate this concept.

  11. Prediction of thermal coagulation from the instantaneous strain distribution induced by high-intensity focused ultrasound

    NASA Astrophysics Data System (ADS)

    Iwasaki, Ryosuke; Takagi, Ryo; Tomiyasu, Kentaro; Yoshizawa, Shin; Umemura, Shin-ichiro

    2017-07-01

    The targeting of the ultrasound beam and the prediction of thermal lesion formation in advance are the requirements for monitoring high-intensity focused ultrasound (HIFU) treatment with safety and reproducibility. To visualize the HIFU focal zone, we utilized an acoustic radiation force impulse (ARFI) imaging-based method. After inducing displacements inside tissues with pulsed HIFU called the push pulse exposure, the distribution of axial displacements started expanding and moving. To acquire RF data immediately after and during the HIFU push pulse exposure to improve prediction accuracy, we attempted methods using extrapolation estimation and applying HIFU noise elimination. The distributions going back in the time domain from the end of push pulse exposure are in good agreement with tissue coagulation at the center. The results suggest that the proposed focal zone visualization employing pulsed HIFU entailing the high-speed ARFI imaging method is useful for the prediction of thermal coagulation in advance.

  12. Segmentation of prostate from ultrasound images using level sets on active band and intensity variation across edges.

    PubMed

    Li, Xu; Li, Chunming; Fedorov, Andriy; Kapur, Tina; Yang, Xiaoping

    2016-06-01

    In this paper, the authors propose a novel efficient method to segment ultrasound images of the prostate with weak boundaries. Segmentation of the prostate from ultrasound images with weak boundaries widely exists in clinical applications. One of the most typical examples is the diagnosis and treatment of prostate cancer. Accurate segmentation of the prostate boundaries from ultrasound images plays an important role in many prostate-related applications such as the accurate placement of the biopsy needles, the assignment of the appropriate therapy in cancer treatment, and the measurement of the prostate volume. Ultrasound images of the prostate are usually corrupted with intensity inhomogeneities, weak boundaries, and unwanted edges, which make the segmentation of the prostate an inherently difficult task. Regarding to these difficulties, the authors introduce an active band term and an edge descriptor term in the modified level set energy functional. The active band term is to deal with intensity inhomogeneities and the edge descriptor term is to capture the weak boundaries or to rule out unwanted boundaries. The level set function of the proposed model is updated in a band region around the zero level set which the authors call it an active band. The active band restricts the authors' method to utilize the local image information in a banded region around the prostate contour. Compared to traditional level set methods, the average intensities inside∖outside the zero level set are only computed in this banded region. Thus, only pixels in the active band have influence on the evolution of the level set. For weak boundaries, they are hard to be distinguished by human eyes, but in local patches in the band region around prostate boundaries, they are easier to be detected. The authors incorporate an edge descriptor to calculate the total intensity variation in a local patch paralleled to the normal direction of the zero level set, which can detect weak boundaries and avoid unwanted edges in the ultrasound images. The efficiency of the proposed model is demonstrated by experiments on real 3D volume images and 2D ultrasound images and comparisons with other approaches. Validation results on real 3D TRUS prostate images show that the authors' model can obtain a Dice similarity coefficient (DSC) of 94.03% ± 1.50% and a sensitivity of 93.16% ± 2.30%. Experiments on 100 typical 2D ultrasound images show that the authors' method can obtain a sensitivity of 94.87% ± 1.85% and a DSC of 95.82% ± 2.23%. A reproducibility experiment is done to evaluate the robustness of the proposed model. As far as the authors know, prostate segmentation from ultrasound images with weak boundaries and unwanted edges is a difficult task. A novel method using level sets with active band and the intensity variation across edges is proposed in this paper. Extensive experimental results demonstrate that the proposed method is more efficient and accurate.

  13. Fetal intracranial hemorrhage. Imaging by ultrasound and magnetic resonance imaging.

    PubMed

    Kirkinen, P; Partanen, K; Ryynänen, M; Ordén, M R

    1997-08-01

    To describe the magnetic resonance imaging (MRI) findings associated with fetal intracranial hemorrhage and to compare them with ultrasound findings. In four pregnancies complicated by fetal intracranial hemorrhage, fetal imaging was carried out using T2-weighted fast spin echo sequences and T1-weighted fast low angle shot imaging sequences and by transabdominal ultrasonography. An antepartum diagnosis of hemorrhage was made by ultrasound in one case and by MRI in two. Retrospectively, the hemorrhagic area could be identified from the MRI images in an additional two cases and from the ultrasound images in one case. In the cases of intraventricular hemorrhage, the MRI signal intensity in the T1-weighted images was increased in the hemorrhagic area as compared to the contralateral ventricle and brain parenchyma. In a case with subdural hemorrhage, T2-weighted MRI signals from the hemorrhagic area changed from low-to high-intensity signals during four weeks of follow-up. Better imaging of the intracranial anatomy was possible by MRI than by transabdominal ultrasonography. MRI can be used for imaging and dating fetal intracranial hemorrhages. Variable ultrasound and MRI findings are associated with this complication, depending on the age and location of the hemorrhage.

  14. Echogenicity based approach to detect, segment and track the common carotid artery in 2D ultrasound images.

    PubMed

    Narayan, Nikhil S; Marziliano, Pina

    2015-08-01

    Automatic detection and segmentation of the common carotid artery in transverse ultrasound (US) images of the thyroid gland play a vital role in the success of US guided intervention procedures. We propose in this paper a novel method to accurately detect, segment and track the carotid in 2D and 2D+t US images of the thyroid gland using concepts based on tissue echogenicity and ultrasound image formation. We first segment the hypoechoic anatomical regions of interest using local phase and energy in the input image. We then make use of a Hessian based blob like analysis to detect the carotid within the segmented hypoechoic regions. The carotid artery is segmented by making use of least squares ellipse fit for the edge points around the detected carotid candidate. Experiments performed on a multivendor dataset of 41 images show that the proposed algorithm can segment the carotid artery with high sensitivity (99.6 ±m 0.2%) and specificity (92.9 ±m 0.1%). Further experiments on a public database containing 971 images of the carotid artery showed that the proposed algorithm can achieve a detection accuracy of 95.2% with a 2% increase in performance when compared to the state-of-the-art method.

  15. Ultrasound hepatic/renal ratio and hepatic attenuation rate for quantifying liver fat content.

    PubMed

    Zhang, Bo; Ding, Fang; Chen, Tian; Xia, Liang-Hua; Qian, Juan; Lv, Guo-Yi

    2014-12-21

    To establish and validate a simple quantitative assessment method for nonalcoholic fatty liver disease (NAFLD) based on a combination of the ultrasound hepatic/renal ratio and hepatic attenuation rate. A total of 170 subjects were enrolled in this study. All subjects were examined by ultrasound and (1)H-magnetic resonance spectroscopy ((1)H-MRS) on the same day. The ultrasound hepatic/renal echo-intensity ratio and ultrasound hepatic echo-intensity attenuation rate were obtained from ordinary ultrasound images using the MATLAB program. Correlation analysis revealed that the ultrasound hepatic/renal ratio and hepatic echo-intensity attenuation rate were significantly correlated with (1)H-MRS liver fat content (ultrasound hepatic/renal ratio: r = 0.952, P = 0.000; hepatic echo-intensity attenuation r = 0.850, P = 0.000). The equation for predicting liver fat content by ultrasound (quantitative ultrasound model) is: liver fat content (%) = 61.519 × ultrasound hepatic/renal ratio + 167.701 × hepatic echo-intensity attenuation rate -26.736. Spearman correlation analysis revealed that the liver fat content ratio of the quantitative ultrasound model was positively correlated with serum alanine aminotransferase, aspartate aminotransferase, and triglyceride, but negatively correlated with high density lipoprotein cholesterol. Receiver operating characteristic curve analysis revealed that the optimal point for diagnosing fatty liver was 9.15% in the quantitative ultrasound model. Furthermore, in the quantitative ultrasound model, fatty liver diagnostic sensitivity and specificity were 94.7% and 100.0%, respectively, showing that the quantitative ultrasound model was better than conventional ultrasound methods or the combined ultrasound hepatic/renal ratio and hepatic echo-intensity attenuation rate. If the (1)H-MRS liver fat content had a value < 15%, the sensitivity and specificity of the ultrasound quantitative model would be 81.4% and 100%, which still shows that using the model is better than the other methods. The quantitative ultrasound model is a simple, low-cost, and sensitive tool that can accurately assess hepatic fat content in clinical practice. It provides an easy and effective parameter for the early diagnosis of mild hepatic steatosis and evaluation of the efficacy of NAFLD treatment.

  16. Enabling the mission through trans-atlantic remote mentored musculoskeletal ultrasound: case report of a portable hand-carried tele-ultrasound system for medical relief missions.

    PubMed

    Kirkpatrick, Andrew W; Blaivas, Michael; Sargsyan, Ashot E; McBeth, Paul B; Patel, Chirag; Xiao, Zhengwen; Pian, Linping; Panebianco, Nova; Hamilton, Douglas R; Ball, Chad G; Dulchavsky, Scott A

    2013-07-01

    Modern medical practice has become extremely dependent upon diagnostic imaging technologies to confirm the results of clinical examination and to guide the response to therapies. Of the various diagnostic imaging techniques, ultrasound is the most portable modality and one that is repeatable, dynamic, relatively cheap, and safe as long as the imaging provided is accurately interpreted. It is, however, the most user-dependent, a characteristic that has prompted the development of remote guidance techniques, wherein remote experts guide distant users through the use of information technologies. Medical mission work often brings specialist physicians to less developed locations, where they wish to provide the highest levels of care but are often bereft of diagnostic imaging resources on which they depend. Furthermore, if these personnel become ill or injured, their own care received may not be to the standard they have left at home. We herein report the utilization of a compact hand-carried remote tele-ultrasound system that allowed real-time diagnosis and follow-up of an acutely torn adductor muscle by a team of ultrasonographers, surgeons, and physicians. The patient was one of the mission surgeons who was guided to self-image. The virtual network of supporting experts was located across North America, whereas the patient was in Lome, Togo, West Africa. The system consisted of a hand-carried ultrasound, the output of which was digitized and streamed to the experts within standard voice-over-Internet-protocol software with an embedded simultaneous videocamera image of the ultrasonographer's hands using a customized graphical user interface. The practical concept of a virtual tele-ultrasound support network was illustrated through the clinical guidance of multiple physicians, including National Aeronautics and Space Administration Medical Operations remote guiders, Olympic team-associated surgeons, and ultrasound-focused emergentologists.

  17. MO-AB-210-03: Workshop [Advancements in high intensity focused ultrasound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Z.

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrationsmore » with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS080949 and Philips Healthcare research grant C32.« less

  18. The Second American Society of Regional Anesthesia and Pain Medicine Evidence-Based Medicine Assessment of Ultrasound-Guided Regional Anesthesia: Executive Summary.

    PubMed

    Neal, Joseph M; Brull, Richard; Horn, Jean-Louis; Liu, Spencer S; McCartney, Colin J L; Perlas, Anahi; Salinas, Francis V; Tsui, Ban Chi-Ho

    2016-01-01

    In 2009 and again in 2012, the American Society of Regional Anesthesia and Pain Medicine assembled an expert panel to assess the evidence basis for ultrasound guidance as a nerve localization tool for regional anesthesia. The 2012 panel reviewed evidence from the first advisory but focused primarily on new information that had emerged since 2009. A new section was added regarding the accuracy and reliability of ultrasound for determining needle-to-nerve proximity. Jadad scores are used to rank study quality. Grades of recommendations consistent with their level of evidence are provided. The panel offers recommendations based on synthesis and analysis of literature related to (1) the technical capabilities of ultrasound equipment and its operators, (2) comparison of ultrasound to other methods of nerve localization with regard to block characteristics, (3) comparison of block techniques where ultrasound is the sole nerve localization modality, and (4) major complications. Assessment of evidence strength and recommendations are made for upper- and lower-extremity, truncal, neuraxial, and pediatric blocks. Scientific evidence from the past 5 years has clarified and strengthened our understanding of ultrasound-guided regional anesthesia as a nerve localization tool. High-level evidence supports ultrasound guidance contributing to superior characteristics with selected blocks, although absolute differences with the comparator technique are often relatively small (especially for upper-extremity blocks). The clinical meaningfulness of these differences is likely of variable importance to individual practitioners. The use of ultrasound significantly reduces the risk of local anesthetic systemic toxicity as well as the incidence and intensity of hemidiaphragmatic paresis, but has no significant effect on the incidence of postoperative neurologic symptoms. WHAT'S NEW IN THIS UPDATE?: This evidence-based assessment of ultrasound-guided regional anesthesia reviews findings from our 2010 publication and focuses on new meta-analyses, randomized controlled trials, and large case series published since 2009. New to this exercise is an in-depth analysis of the accuracy and reliability of ultrasound guidance for identifying needle-to-nerve relationships. This version no longer addresses ultrasound for interventional pain medicine procedures, because the growth of that field demands separate consideration. Since our 2010 publication, new information has either supported or strengthened our original conclusions. There is no evidence that ultrasound is inferior to alternative nerve localization methods.

  19. Counterbalancing the use of ultrasound contrast agents by a cavitation-regulated system.

    PubMed

    Desjouy, C; Fouqueray, M; Lo, C W; Muleki Seya, P; Lee, J L; Bera, J C; Chen, W S; Inserra, C

    2015-09-01

    The stochastic behavior of cavitation can lead to major problems of initiation and maintenance of cavitation during sonication, responsible of poor reproducibility of US-induced bioeffects in the context of sonoporation for instance. To overcome these disadvantages, the injection of ultrasound contrast agents as cavitation nuclei ensures fast initiation and lower acoustic intensities required for cavitation activity. More recently, regulated-cavitation devices based on the real-time modulation of the applied acoustic intensity have shown their potential to maintain a stable cavitation state during an ultrasonic shot, in continuous or pulsed wave conditions. In this paper is investigated the interest, in terms of cavitation activity, of using such regulated-cavitation device or injecting ultrasound contrast agents in the sonicated medium. When using fixed applied acoustic intensity, results showed that introducing ultrasound contrast agents increases reproducibility of cavitation activity (coefficient of variation 62% and 22% without and with UCA, respectively). Moreover, the use of the regulated-cavitation device ensures a given cavitation activity (coefficient of variation less 0.4% in presence of UCAs or not). This highlights the interest of controlling cavitation over time to free cavitation-based application from the use of UCAs. Interestingly, during a one minute sonication, while ultrasound contrast agents progressively disappear, the regulated-cavitation device counterbalance their destruction to sustain a stable inertial cavitation activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Endoluminal MR-guided ultrasonic applicator embedding cylindrical phased-array transducers and opposed-solenoid detection coil.

    PubMed

    Rata, Mihaela; Birlea, Vlad; Murillo, Adriana; Paquet, Christian; Cotton, François; Salomir, Rares

    2015-01-01

    MR-guided high-intensity contact ultrasound (HICU) was suggested as an alternative therapy for esophageal and rectal cancer. To offer high-quality MR guidance, two prototypes of receive-only opposed-solenoid coil were integrated with 64-element cylindrical phased-array ultrasound transducers (rectal/esophageal). The design of integrated coils took into account the transducer geometry (360° acoustic window within endoluminal space). The rectal coil was sealed on a plastic support and placed reversibly on the transducer head. The esophageal coil was fully embedded within the transducer head, resulting in one indivisible device. Comparison of integrated versus external coils was performed on a clinical 1.5T scanner. The integrated coils showed higher sensitivity compared with the standard extracorporeal coil with factors of up to 7.5 (rectal applicator) and 3.3 (esophageal applicator). High-resolution MR images for both anatomy (voxel 0.4 × 0.4 × 5 mm(3)) and thermometry (voxel 0.75 × 0.75 × 8 mm(3), 2 s/image) were acquired in vivo with the rectal endoscopic device. The temperature feedback loop accurately controlled multiple control points over the region of interest. This study showed significant improvement of MR data quality using endoluminal integrated coils versus standard external coil. Inframillimeter spatial resolution and accurate feedback control of MR-guided HICU thermotherapy were achieved. © 2014 Wiley Periodicals, Inc.

  1. In vivo optoacoustic temperature imaging for image-guided cryotherapy of prostate cancer

    NASA Astrophysics Data System (ADS)

    Petrova, E. V.; Brecht, H. P.; Motamedi, M.; Oraevsky, A. A.; Ermilov, S. A.

    2018-03-01

    The objective of this study is to demonstrate in vivo the feasibility of optoacoustic temperature imaging during cryotherapy of prostate cancer. We developed a preclinical prototype optoacoustic temperature imager that included pulsed optical excitation at a wavelength of 805 nm, a modified clinical transrectal ultrasound probe, a parallel data acquisition system, image processing and visualization software. Cryotherapy of a canine prostate was performed in vivo using a commercial clinical system, Cryocare® CS, with an integrated ultrasound imaging. The universal temperature-dependent optoacoustic response of blood was employed to convert reconstructed optoacoustic images to temperature maps. Optoacoustic imaging of temperature during prostate cryotherapy was performed in the longitudinal view over a region of 30 mm (long)  ×  10 mm (deep) that covered the rectum, the Denonvilliers fascia, and the posterior portion of the treated gland. The transrectal optoacoustic images showed high-contrast vascularized regions, which were used for quantitative estimation of local temperature profiles. The constructed temperature maps and their temporal dynamics were consistent with the arrangement of the cryoprobe and readouts of the thermal needle sensors. The temporal profiles of the readouts from the thermal needle sensors and the temporal profile estimated from the normalized optoacoustic intensity of the selected vascularized region showed significant resemblance, except for the initial overshoot, that may be explained as a result of the physiological thermoregulatory compensation. The temperature was mapped with errors not exceeding  ±2 °C (standard deviation) consistent with the clinical requirements for monitoring cryotherapy of the prostate. In vivo results showed that the optoacoustic temperature imaging is a promising non-invasive technique for real-time imaging of tissue temperature during cryotherapy of prostate cancer, which can be combined with transrectal ultrasound—the current standard for guiding clinical cryotherapy procedure.

  2. An interventional multispectral photoacoustic imaging platform for the guidance of minimally invasive procedures

    NASA Astrophysics Data System (ADS)

    Xia, Wenfeng; Nikitichev, Daniil I.; Mari, Jean Martial; West, Simeon J.; Ourselin, Sebastien; Beard, Paul C.; Desjardins, Adrien E.

    2015-07-01

    Precise and efficient guidance of medical devices is of paramount importance for many minimally invasive procedures. These procedures include fetal interventions, tumor biopsies and treatments, central venous catheterisations and peripheral nerve blocks. Ultrasound imaging is commonly used for guidance, but it often provides insufficient contrast with which to identify soft tissue structures such as vessels, tumors, and nerves. In this study, a hybrid interventional imaging system that combines ultrasound imaging and multispectral photoacoustic imaging for guiding minimally invasive procedures was developed and characterized. The system provides both structural information from ultrasound imaging and molecular information from multispectral photoacoustic imaging. It uses a commercial linear-array ultrasound imaging probe as the ultrasound receiver, with a multimode optical fiber embedded in a needle to deliver pulsed excitation light to tissue. Co-registration of ultrasound and photoacoustic images is achieved with the use of the same ultrasound receiver for both modalities. Using tissue ex vivo, the system successfully discriminated deep-located fat tissue from the surrounding muscle tissue. The measured photoacoustic spectrum of the fat tissue had good agreement with the lipid spectrum in literature.

  3. Feasibility evaluation of 3D photoacoustic imaging of blood vessel structure using multiple wavelengths with a handheld probe

    NASA Astrophysics Data System (ADS)

    Uchimoto, Yo; Namita, Takeshi; Kondo, Kengo; Yamakawa, Makoto; Shiina, Tsuyoshi

    2018-02-01

    Photoacoustic imaging is anticipated for use in portraying blood vessel structures (e.g. neovascularization in inflamed regions). To reduce invasiveness and enhance ease handling, we developed a handheld photoacoustic imaging system using multiple wavelengths. The usefulness of the proposed system was investigated in phantom experiments and in vivo measurements. A silicon tube was embedded into chicken breast meat to simulate the blood vessel. The tube was filled with ovine blood. Then laser light was guided to the phantom surface by an optical fiber bundle close to the linear ultrasound probe. Photoacoustic images were obtained at 750-950 nm wavelengths. Strong photoacoustic signals from the boundary between blood and silicon tube are observed in these images. The shape of photoacoustic spectrum at the boundary resembles that of the HbO2 absorption spectrum at 750-920 nm. In photoacoustic images, similarity between photoacoustic spectrum and HbO2 absorption spectrum was evaluated by calculating the normalized correlation coefficient. Results show high correlation in regions of strong photoacoustic signals in photoacoustic images. These analyses demonstrate the feasibility of portraying blood vessel structures under practical conditions. To evaluate the feasibility of three-dimensional vascular imaging, in vivo experiments were conducted using three wavelengths. A right hand and ultrasound probe were set in degassed water. By scanning a probe, cross-sectional ultrasound and photoacoustic images were obtained at each location. Then, all ultrasound or photoacoustic images were piled up respectively. Then three-dimensional images were constructed. Resultant images portrayed blood vessel-like structures three-dimensionally. Furthermore, to distinguish blood vessels from other tissues (e.g. skin), distinguishing images of them were constructed by comparing photoacoustic signal intensity among three wavelengths. The resultant image portrayed blood vessels as distinguished from surrounding tissues. These results demonstrated the usefulness of the proposed imaging device.

  4. Endoscopic Ultrasound Elastography: Current Clinical Use in Pancreas.

    PubMed

    Mondal, Utpal; Henkes, Nichole; Patel, Sandeep; Rosenkranz, Laura

    2016-08-01

    Elastography is a newer technique for the assessment of tissue elasticity using ultrasound. Cancerous tissue is known to be stiffer (hence, less elastic) than corresponding healthy tissue, and as a result, could be identified in an elasticity-based imaging. Ultrasound elastography has been used in the breast, thyroid, and cervix to differentiate malignant from benign neoplasms and to guide or avoid unnecessary biopsies. In the liver, elastography has enabled a noninvasive and reliable estimate of fibrosis. Endoscopic ultrasound has become a robust diagnostic and therapeutic tool for the management of pancreatic diseases. The addition of elastography to endoscopic ultrasound enabled further characterization of pancreas lesions, and several European and Asian studies have reported encouraging results. The current clinical role of endoscopic ultrasound elastography in the management of pancreas disorders and related literature are reviewed.

  5. Prediction and near-field observation of skull-guided acoustic waves

    NASA Astrophysics Data System (ADS)

    Estrada, Héctor; Rebling, Johannes; Razansky, Daniel

    2017-06-01

    Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. We observed a skull-guided wave propagation over a lateral distance of at least 3 mm, with a half-decay length in the direction perpendicular to the skull ranging from 35 to 300 μm at 6 and 0.5 MHz, respectively. Propagation losses are mostly attributed to the heterogenous acoustic properties of the skull. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.

  6. Prediction and near-field observation of skull-guided acoustic waves.

    PubMed

    Estrada, Héctor; Rebling, Johannes; Razansky, Daniel

    2017-06-21

    Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. We observed a skull-guided wave propagation over a lateral distance of at least 3 mm, with a half-decay length in the direction perpendicular to the skull ranging from 35 to 300 μm at 6 and 0.5 MHz, respectively. Propagation losses are mostly attributed to the heterogenous acoustic properties of the skull. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.

  7. Ultrasonic computed tomography imaging of iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Perlman, Or; Azhari, Haim

    2017-02-01

    Iron oxide nanoparticles (IONPs) are becoming increasingly used and intensively investigated in the field of medical imaging. They are currently FDA approved for magnetic resonance imaging (MRI), and it would be highly desirable to visualize them by ultrasound as well. Previous reports using the conventional ultrasound B-scan (pulse-echo) imaging technique have shown very limited detectability of these particles. The aim of this study is to explore the feasibility of imaging IONPs using the through-transmission ultrasound methodology and demonstrate their detectability using ultrasonic computed tomography (UCT). Commercially available IONPs were acoustically analysed to quantify their effect on the speed of sound (SOS) and acoustic attenuation as a function of concentration. Next, through-transmission projection and UCT imaging were performed on a breast mimicking phantom and on an ex vivo tissue model, to which IONPs were injected. Finally, an MRI scan was performed to verify that the same particles examined in the ultrasound experiment can be imaged by magnetic resonance, using the same clinically relevant concentrations. The results have shown a consistent concentration dependent speed of sound increase (1.86 \\text{m}{{\\text{s}}^{-1}} rise per 100 µg · ml-1 IONPs). Imaging based on this property has shown a substantial contrast-to-noise ratio improvement (up to 5 fold, p  <  0.01). The SOS-related effect generated a well discernible image contrast and allowed the detection of the particles existence and location, in both raster-scan projection and UCT imaging. Conversely, no significant change in the acoustic attenuation coefficient was noted. Based on these findings, it is concluded that IONPs can be used as an effective SOS-based contrast agent, potentially useful for ultrasonic breast imaging. Furthermore, the particle offers the capacity of significantly enhancing diagnosis accuracy using multimodal MRI-ultrasound imaging capabilities.

  8. Effects of line fiducial parameters and beamforming on ultrasound calibration

    PubMed Central

    Ameri, Golafsoun; Baxter, John S. H.; McLeod, A. Jonathan; Peters, Terry M.; Chen, Elvis C. S.

    2017-01-01

    Abstract. Ultrasound (US)-guided interventions are often enhanced via integration with an augmented reality environment, a necessary component of which is US calibration. Calibration requires the segmentation of fiducials, i.e., a phantom, in US images. Fiducial localization error (FLE) can decrease US calibration accuracy, which fundamentally affects the total accuracy of the interventional guidance system. Here, we investigate the effects of US image reconstruction techniques as well as phantom material and geometry on US calibration. It was shown that the FLE was reduced by 29% with synthetic transmit aperture imaging compared with conventional B-mode imaging in a Z-bar calibration, resulting in a 10% reduction of calibration error. In addition, an evaluation of a variety of calibration phantoms with different geometrical and material properties was performed. The phantoms included braided wire, plastic straws, and polyvinyl alcohol cryogel tubes with different diameters. It was shown that these properties have a significant effect on calibration error, which is a variable based on US beamforming techniques. These results would have important implications for calibration procedures and their feasibility in the context of image-guided procedures. PMID:28331886

  9. Effects of line fiducial parameters and beamforming on ultrasound calibration.

    PubMed

    Ameri, Golafsoun; Baxter, John S H; McLeod, A Jonathan; Peters, Terry M; Chen, Elvis C S

    2017-01-01

    Ultrasound (US)-guided interventions are often enhanced via integration with an augmented reality environment, a necessary component of which is US calibration. Calibration requires the segmentation of fiducials, i.e., a phantom, in US images. Fiducial localization error (FLE) can decrease US calibration accuracy, which fundamentally affects the total accuracy of the interventional guidance system. Here, we investigate the effects of US image reconstruction techniques as well as phantom material and geometry on US calibration. It was shown that the FLE was reduced by 29% with synthetic transmit aperture imaging compared with conventional B-mode imaging in a Z-bar calibration, resulting in a 10% reduction of calibration error. In addition, an evaluation of a variety of calibration phantoms with different geometrical and material properties was performed. The phantoms included braided wire, plastic straws, and polyvinyl alcohol cryogel tubes with different diameters. It was shown that these properties have a significant effect on calibration error, which is a variable based on US beamforming techniques. These results would have important implications for calibration procedures and their feasibility in the context of image-guided procedures.

  10. WE-G-12A-01: High Intensity Focused Ultrasound Surgery and Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farahani, K; O'Neill, B

    More and more emphasis is being made on alternatives to invasive surgery and the use of ionizing radiation to treat various diseases including cancer. Novel screening, diagnosis, treatment and monitoring of response to treatment are also hot areas of research and new clinical technologies. Ultrasound(US) has gained traction in all of the aforementioned areas of focus. Especially with recent advances in the use of ultrasound to noninvasively treat various diseases/organ systems. This session will focus on covering MR-guided focused ultrasound and the state of the art clinical applications, and the second speaker will survey the more cutting edge technologies e.g.more » Focused Ultrasound (FUS) mediated drug delivery, principles of cavitation and US guided FUS. Learning Objectives: Fundamental physics and physical limitations of US interaction with tissue and nanoparticles The alteration of tissue transport using focused ultrasound US control of nanoparticle drug carriers for targeted release The basic principles of MRI-guided focused ultrasound (MRgFUS) surgery and therapy the current state of the art clinical applications of MRgFUS requirements for quality assurance and treatment planning.« less

  11. Ultrasound imaging in medical student education: Impact on learning anatomy and physical diagnosis.

    PubMed

    So, Sokpoleak; Patel, Rita M; Orebaugh, Steven L

    2017-03-01

    Ultrasound use has expanded dramatically among the medical specialties for diagnostic and interventional purposes, due to its affordability, portability, and practicality. This imaging modality, which permits real-time visualization of anatomic structures and relationships in vivo, holds potential for pre-clinical instruction of students in anatomy and physical diagnosis, as well as providing a bridge to the eventual use of bedside ultrasound by clinicians to assess patients and guide invasive procedures. In many studies, but not all, improved understanding of anatomy has been demonstrated, and in others, improved accuracy in selected aspects of physical diagnosis is evident. Most students have expressed a highly favorable impression of this technology for anatomy education when surveyed. Logistic issues or obstacles to the integration of ultrasound imaging into anatomy teaching appear to be readily overcome. The enthusiasm of students and anatomists for teaching with ultrasound has led to widespread implementation of ultrasound-based teaching initiatives in medical schools the world over, including some with integration throughout the entire curriculum; a trend that likely will continue to grow. Anat Sci Educ 10: 176-189. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.

  12. Reliable detection of fluence anomalies in EPID-based IMRT pretreatment quality assurance using pixel intensity deviations

    PubMed Central

    Gordon, J. J.; Gardner, J. K.; Wang, S.; Siebers, J. V.

    2012-01-01

    Purpose: This work uses repeat images of intensity modulated radiation therapy (IMRT) fields to quantify fluence anomalies (i.e., delivery errors) that can be reliably detected in electronic portal images used for IMRT pretreatment quality assurance. Methods: Repeat images of 11 clinical IMRT fields are acquired on a Varian Trilogy linear accelerator at energies of 6 MV and 18 MV. Acquired images are corrected for output variations and registered to minimize the impact of linear accelerator and electronic portal imaging device (EPID) positioning deviations. Detection studies are performed in which rectangular anomalies of various sizes are inserted into the images. The performance of detection strategies based on pixel intensity deviations (PIDs) and gamma indices is evaluated using receiver operating characteristic analysis. Results: Residual differences between registered images are due to interfraction positional deviations of jaws and multileaf collimator leaves, plus imager noise. Positional deviations produce large intensity differences that degrade anomaly detection. Gradient effects are suppressed in PIDs using gradient scaling. Background noise is suppressed using median filtering. In the majority of images, PID-based detection strategies can reliably detect fluence anomalies of ≥5% in ∼1 mm2 areas and ≥2% in ∼20 mm2 areas. Conclusions: The ability to detect small dose differences (≤2%) depends strongly on the level of background noise. This in turn depends on the accuracy of image registration, the quality of the reference image, and field properties. The longer term aim of this work is to develop accurate and reliable methods of detecting IMRT delivery errors and variations. The ability to resolve small anomalies will allow the accuracy of advanced treatment techniques, such as image guided, adaptive, and arc therapies, to be quantified. PMID:22894421

  13. Changes in B-mode ultrasound echo intensity following injection of bupivacaine hydrochloride to rat hind limb muscles in relation to histologic changes.

    PubMed

    Fujikake, T; Hart, R; Nosaka, Kazunori

    2009-04-01

    This study tested the hypothesis that infiltration of inflammatory cells in muscle fibers would increase echo intensity (image brightness) of B-mode ultrasound images. Bupivacaine hydrochloride (BPVC) or saline solution (SAL) was injected to the tibialis anterior (TA) muscles of 14- to 23-wk-old male Wistar rats. Ultrasound images were taken from the muscles before and at 0, 2, 4, 6, 9, 12, 24, 48, 72, 120, 168 and 336 h after the injection and analyzed for the echo intensity (echogenicity) expressed as the mean value of image pixel value of a region-of-interest. Changes in the echo intensity were compared between BPVC-injected and control or SAL-injected muscles. In the subsequent study, rats (n = 2 per time point) were sacrificed after taking ultrasound image at 0, 2, 6, 12, 24, 48 and 168 h after BPVC injection to the right TA and SAL injection to the left TA to observe histologic changes under a light microscope and the relationship between echo intensity and inflammatory cells was assessed. No significant changes in echo intensity were observed for the control, but BPVC induced significant (p < 0.05) increases in the echo intensity peaking 0 to 24 h postinjection. SAL also increased echo intensity immediately after injection but returned to the baseline by 24 h postinjection. The time course of changes in the echo intensity did not match with the time course of increases in inflammatory cells in the muscle. It is concluded that infiltration of inflammatory cells is not a direct cause of the increased echo intensity.

  14. High intensity focused ultrasound (HIFU) in tumor therapy.

    PubMed

    Sequeiros, Roberto Blanco; Joronen, Kirsi; Komar, Gaber; Koskinen, Seppo K

    HIFU (high intensity focused ultrasound) is a method in which high-frequency ultrasound is focused on a tissue in order to achieve a thermal effect and the subsequent percutaneously ablation, or tissue modulation. HIFU is non-invasive and results in an immediate tissue destruction effect corresponding to surgery, either percutaneously or through body cavities. HIFU can be utilized in the treatment of both benign and malignant tumors. In neurological diseases, focused HIFU can be used in the treatment of disorders of the basal ganglia.

  15. Surface-based prostate registration with biomechanical regularization

    NASA Astrophysics Data System (ADS)

    van de Ven, Wendy J. M.; Hu, Yipeng; Barentsz, Jelle O.; Karssemeijer, Nico; Barratt, Dean; Huisman, Henkjan J.

    2013-03-01

    Adding MR-derived information to standard transrectal ultrasound (TRUS) images for guiding prostate biopsy is of substantial clinical interest. A tumor visible on MR images can be projected on ultrasound by using MRUS registration. A common approach is to use surface-based registration. We hypothesize that biomechanical modeling will better control deformation inside the prostate than a regular surface-based registration method. We developed a novel method by extending a surface-based registration with finite element (FE) simulation to better predict internal deformation of the prostate. For each of six patients, a tetrahedral mesh was constructed from the manual prostate segmentation. Next, the internal prostate deformation was simulated using the derived radial surface displacement as boundary condition. The deformation field within the gland was calculated using the predicted FE node displacements and thin-plate spline interpolation. We tested our method on MR guided MR biopsy imaging data, as landmarks can easily be identified on MR images. For evaluation of the registration accuracy we used 45 anatomical landmarks located in all regions of the prostate. Our results show that the median target registration error of a surface-based registration with biomechanical regularization is 1.88 mm, which is significantly different from 2.61 mm without biomechanical regularization. We can conclude that biomechanical FE modeling has the potential to improve the accuracy of multimodal prostate registration when comparing it to regular surface-based registration.

  16. Image-guided transnasal cryoablation of a recurrent nasal adenocarcinoma in a dog.

    PubMed

    Murphy, S M; Lawrence, J A; Schmiedt, C W; Davis, K W; Lee, F T; Forrest, L J; Bjorling, D E

    2011-06-01

    An eight-year-old female spayed Airedale terrier with rapid recurrence of a nasal adenocarcinoma following image-guided intensity-modulated radiation therapy was treated with transnasal, image-guided cryotherapy. Ice ball size and location were monitored real-time with computed tomography-fluoroscopy to verify that the entire tumour was enveloped in ice. Serial computed tomography scans demonstrated reduction in and subsequent resolution of the primary tumour volume corresponding visually with the ice ball imaged during the ablation procedure. Re-imaging demonstrated focallysis of the cribriform plate following ablation that spontaneously resolved by 13 months. While mild chronic nasal discharge developed following cryoablation, no other clinical signs of local nasal neoplasia were present. Twenty-one months after nasal tumour cryoablation the dog was euthanased as a result of acute haemoabdomen. Image-guided cryotherapy may warrant further investigation for the management of focal residual or recurrent tumours in dogs, especially in regions where critical structures preclude surgical intervention. © 2011 British Small Animal Veterinary Association.

  17. Ultrasound: medical imaging and beyond (an invited review).

    PubMed

    Azhari, Haim

    2012-09-01

    Medical applications of ultrasound were first investigated about seventy years ago. It has rapidly evolved since then, becoming an essential tool in medical imaging. Ultrasound ability to provide real time images with frame rates exceeding several hundred frames per second allows one to view rapid anatomical changes as well as to guide minimal invasive procedures. By, combining Doppler techniques with anatomical images ultrasound provides real time quantitative flow information as well. It is portable, versatile, cost effective and considered sufficiently hazardless to monitor pregnancy. Moreover, ultrasound has the unique capacity to offer therapeutic capabilities in addition to its outstanding imaging abilities. It can be used for physiotherapy, lithotripsy, and thermal ablation, and recent studies have demonstrated its usefulness in drug delivery, gene therapy and molecular imaging. The purpose of this article is to provide an introductory review of the field covering briefly topics from basic physics through current imaging methods to therapeutic applications.

  18. Optimization of prostate biopsy: the role of magnetic resonance imaging targeted biopsy in detection, localization and risk assessment.

    PubMed

    Bjurlin, Marc A; Meng, Xiaosong; Le Nobin, Julien; Wysock, James S; Lepor, Herbert; Rosenkrantz, Andrew B; Taneja, Samir S

    2014-09-01

    Optimization of prostate biopsy requires addressing the shortcomings of standard systematic transrectal ultrasound guided biopsy, including false-negative rates, incorrect risk stratification, detection of clinically insignificant disease and the need for repeat biopsy. Magnetic resonance imaging is an evolving noninvasive imaging modality that increases the accurate localization of prostate cancer at the time of biopsy, and thereby enhances clinical risk assessment and improves the ability to appropriately counsel patients regarding therapy. In this review we 1) summarize the various sequences that comprise a prostate multiparametric magnetic resonance imaging examination along with its performance characteristics in cancer detection, localization and reporting standards; 2) evaluate potential applications of magnetic resonance imaging targeting in prostate biopsy among men with no previous biopsy, a negative previous biopsy and those with low stage cancer; and 3) describe the techniques of magnetic resonance imaging targeted biopsy and comparative study outcomes. A bibliographic search covering the period up to October 2013 was conducted using MEDLINE®/PubMed®. Articles were reviewed and categorized based on which of the 3 objectives of this review was addressed. Data were extracted, analyzed and summarized. Multiparametric magnetic resonance imaging consists of anatomical T2-weighted imaging coupled with at least 2 functional imaging techniques. It has demonstrated improved prostate cancer detection sensitivity up to 80% in the peripheral zone and 81% in the transition zone. A prostate cancer magnetic resonance imaging suspicion score has been developed, and is depicted using the Likert or PI-RADS (Prostate Imaging Reporting and Data System) scale for better standardization of magnetic resonance imaging interpretation and reporting. Among men with no previous biopsy, magnetic resonance imaging increases the frequency of significant cancer detection to 50% in low risk and 71% in high risk patients. In low risk men the negative predictive value of a combination of negative magnetic resonance imaging with prostate volume parameters is nearly 98%, suggesting a potential role in avoiding biopsy and reducing over detection/overtreatment. Among men with a previous negative biopsy 72% to 87% of cancers detected by magnetic resonance imaging guidance are clinically significant. Among men with a known low risk cancer, repeat biopsy using magnetic resonance targeting demonstrates a high likelihood of confirming low risk disease in low suspicion score lesions and of upgrading in high suspicion score lesions. Techniques of magnetic resonance imaging targeted biopsy include visual estimation transrectal ultrasound guided biopsy; software co-registered magnetic resonance imaging-ultrasound, transrectal ultrasound guided biopsy; and in-bore magnetic resonance imaging guided biopsy. Although the improvement in accuracy and efficiency of visual estimation biopsy compared to systematic appears limited, co-registered magnetic resonance imaging-ultrasound biopsy as well as in-bore magnetic resonance imaging guided biopsy appear to increase cancer detection rates in conjunction with increasing suspicion score. Use of magnetic resonance imaging for targeting prostate biopsies has the potential to reduce the sampling error associated with conventional biopsy by providing better disease localization and sampling. More accurate risk stratification through improved cancer sampling may impact therapeutic decision making. Optimal clinical application of magnetic resonance imaging targeted biopsy remains under investigation. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  19. Counter-propagating wave interaction for contrast-enhanced ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Renaud, G.; Bosch, J. G.; ten Kate, G. L.; Shamdasani, V.; Entrekin, R.; de Jong, N.; van der Steen, A. F. W.

    2012-11-01

    Most techniques for contrast-enhanced ultrasound imaging require linear propagation to detect nonlinear scattering of contrast agent microbubbles. Waveform distortion due to nonlinear propagation impairs their ability to distinguish microbubbles from tissue. As a result, tissue can be misclassified as microbubbles, and contrast agent concentration can be overestimated; therefore, these artifacts can significantly impair the quality of medical diagnoses. Contrary to biological tissue, lipid-coated gas microbubbles used as a contrast agent allow the interaction of two acoustic waves propagating in opposite directions (counter-propagation). Based on that principle, we describe a strategy to detect microbubbles that is free from nonlinear propagation artifacts. In vitro images were acquired with an ultrasound scanner in a phantom of tissue-mimicking material with a cavity containing a contrast agent. Unlike the default mode of the scanner using amplitude modulation to detect microbubbles, the pulse sequence exploiting counter-propagating wave interaction creates no pseudoenhancement behind the cavity in the contrast image.

  20. Hot topics in biomedical ultrasound: ultrasound therapy and its integration with ultrasonic imaging

    NASA Astrophysics Data System (ADS)

    Everbach, E. Carr

    2005-09-01

    Since the development of biomedical ultrasound imaging from sonar after WWII, there has been a clear divide between ultrasonic imaging and ultrasound therapy. While imaging techniques are designed to cause as little change as possible in the tissues through which ultrasound propagates, ultrasound therapy typically relies upon heating or acoustic cavitation to produce a desirable therapeutic effect. Concerns over the increasingly high acoustic outputs of diagnostic ultrasound scanners prompted the adoption of the Mechanical Index (MI) and Thermal Index (TI) in the early 1990s. Therapeutic applications of ultrasound, meanwhile, have evolved from deep tissue heating in sports medicine to include targeted drug delivery, tumor and plaque ablation, cauterization via high intensity focused ultrasound (HIFU), and accelerated dissolution of blood clots. The integration of ultrasonic imaging and therapy in one device is just beginning, but the promise of improved patient outcomes is balanced by regulatory and practical impediments.

  1. The NifTK software platform for image-guided interventions: platform overview and NiftyLink messaging.

    PubMed

    Clarkson, Matthew J; Zombori, Gergely; Thompson, Steve; Totz, Johannes; Song, Yi; Espak, Miklos; Johnsen, Stian; Hawkes, David; Ourselin, Sébastien

    2015-03-01

    To perform research in image-guided interventions, researchers need a wide variety of software components, and assembling these components into a flexible and reliable system can be a challenging task. In this paper, the NifTK software platform is presented. A key focus has been high-performance streaming of stereo laparoscopic video data, ultrasound data and tracking data simultaneously. A new messaging library called NiftyLink is introduced that uses the OpenIGTLink protocol and provides the user with easy-to-use asynchronous two-way messaging, high reliability and comprehensive error reporting. A small suite of applications called NiftyGuide has been developed, containing lightweight applications for grabbing data, currently from position trackers and ultrasound scanners. These applications use NiftyLink to stream data into NiftyIGI, which is a workstation-based application, built on top of MITK, for visualisation and user interaction. Design decisions, performance characteristics and initial applications are described in detail. NiftyLink was tested for latency when transmitting images, tracking data, and interleaved imaging and tracking data. NiftyLink can transmit tracking data at 1,024 frames per second (fps) with latency of 0.31 milliseconds, and 512 KB images with latency of 6.06 milliseconds at 32 fps. NiftyIGI was tested, receiving stereo high-definition laparoscopic video at 30 fps, tracking data from 4 rigid bodies at 20-30 fps and ultrasound data at 20 fps with rendering refresh rates between 2 and 20 Hz with no loss of user interaction. These packages form part of the NifTK platform and have proven to be successful in a variety of image-guided surgery projects. Code and documentation for the NifTK platform are available from http://www.niftk.org . NiftyLink is provided open-source under a BSD license and available from http://github.com/NifTK/NiftyLink . The code for this paper is tagged IJCARS-2014.

  2. [MR-guided focused ultrasound. Current and future applications].

    PubMed

    Trumm, C G; Napoli, A; Peller, M; Clevert, D-A; Stahl, R; Reiser, M; Matzko, M

    2013-03-01

    High-intensity focused ultrasound (synonyms FUS and HIFU) under magnetic resonance imaging (MRI) guidance (synonyms MRgFUS and MR-HIFU) is a completely non-invasive technology for accurate thermal ablation of a target tissue while neighboring tissues and organs are preserved. The combination of FUS with MRI for planning, (near) real-time monitoring and outcome assessment of treatment markedly enhances the safety of the procedure. The MRgFUS procedure is clinically established in particular for the treatment of symptomatic uterine fibroids, followed by palliative ablation of painful bone metastases. Furthermore, promising results have been shown for the treatment of adenomyosis, malignant tumors of the prostate, breast and liver and for various intracranial applications, such as thermal ablation of brain tumors, functional neurosurgery and transient disruption of the blood-brain barrier.

  3. Comparison of optical and power Doppler ultrasound imaging for non-invasive evaluation of arsenic trioxide as a vascular disrupting agent in tumors.

    PubMed

    Alhasan, Mustafa K; Liu, Li; Lewis, Matthew A; Magnusson, Jennifer; Mason, Ralph P

    2012-01-01

    Small animal imaging provides diverse methods for evaluating tumor growth and acute response to therapy. This study compared the utility of non-invasive optical and ultrasound imaging to monitor growth of three diverse human tumor xenografts (brain U87-luc-mCherry, mammary MCF7-luc-mCherry, and prostate PC3-luc) growing in nude mice. Bioluminescence imaging (BLI), fluorescence imaging (FLI), and Power Doppler ultrasound (PD US) were then applied to examine acute vascular disruption following administration of arsenic trioxide (ATO).During initial tumor growth, strong correlations were found between manual caliper measured tumor volume and FLI intensity, BLI intensity following luciferin injection, and traditional B-mode US. Administration of ATO to established U87 tumors caused significant vascular shutdown within 2 hrs at all doses in the range 5 to 10 mg/kg in a dose dependant manner, as revealed by depressed bioluminescent light emission. At lower doses substantial recovery was seen within 4 hrs. At 8 mg/kg there was >85% reduction in tumor vascular perfusion, which remained depressed after 6 hrs, but showed some recovery after 24 hrs. Similar response was observed in MCF7 and PC3 tumors. Dynamic BLI and PD US each showed similar duration and percent reductions in tumor blood flow, but FLI showed no significant changes during the first 24 hrs.The results provide further evidence for comparable utility of optical and ultrasound imaging for monitoring tumor growth, More specifically, they confirm the utility of BLI and ultrasound imaging as facile assays of the vascular disruption in solid tumors based on ATO as a model agent.

  4. Improvement in toxicity in high risk prostate cancer patients treated with image-guided intensity-modulated radiotherapy compared to 3D conformal radiotherapy without daily image guidance.

    PubMed

    Sveistrup, Joen; af Rosenschöld, Per Munck; Deasy, Joseph O; Oh, Jung Hun; Pommer, Tobias; Petersen, Peter Meidahl; Engelholm, Svend Aage

    2014-02-04

    Image-guided radiotherapy (IGRT) facilitates the delivery of a very precise radiation dose. In this study we compare the toxicity and biochemical progression-free survival between patients treated with daily image-guided intensity-modulated radiotherapy (IG-IMRT) and 3D conformal radiotherapy (3DCRT) without daily image guidance for high risk prostate cancer (PCa). A total of 503 high risk PCa patients treated with radiotherapy (RT) and endocrine treatment between 2000 and 2010 were retrospectively reviewed. 115 patients were treated with 3DCRT, and 388 patients were treated with IG-IMRT. 3DCRT patients were treated to 76 Gy and without daily image guidance and with 1-2 cm PTV margins. IG-IMRT patients were treated to 78 Gy based on daily image guidance of fiducial markers, and the PTV margins were 5-7 mm. Furthermore, the dose-volume constraints to both the rectum and bladder were changed with the introduction of IG-IMRT. The 2-year actuarial likelihood of developing grade > = 2 GI toxicity following RT was 57.3% in 3DCRT patients and 5.8% in IG-IMRT patients (p < 0.001). For GU toxicity the numbers were 41.8% and 29.7%, respectively (p = 0.011). On multivariate analysis, 3DCRT was associated with a significantly increased risk of developing grade > = 2 GI toxicity compared to IG-IMRT (p < 0.001, HR = 11.59 [CI: 6.67-20.14]). 3DCRT was also associated with an increased risk of developing GU toxicity compared to IG-IMRT.The 3-year actuarial biochemical progression-free survival probability was 86.0% for 3DCRT and 90.3% for IG-IMRT (p = 0.386). On multivariate analysis there was no difference in biochemical progression-free survival between 3DCRT and IG-IMRT. The difference in toxicity can be attributed to the combination of the IMRT technique with reduced dose to organs-at-risk, daily image guidance and margin reduction.

  5. A Targeting Microbubble for Ultrasound Molecular Imaging

    PubMed Central

    Yeh, James Shue-Min; Sennoga, Charles A.; McConnell, Ellen; Eckersley, Robert; Tang, Meng-Xing; Nourshargh, Sussan; Seddon, John M.; Haskard, Dorian O.; Nihoyannopoulos, Petros

    2015-01-01

    Rationale Microbubbles conjugated with targeting ligands are used as contrast agents for ultrasound molecular imaging. However, they often contain immunogenic (strept)avidin, which impedes application in humans. Although targeting bubbles not employing the biotin-(strept)avidin conjugation chemistry have been explored, only a few reached the stage of ultrasound imaging in vivo, none were reported/evaluated to show all three of the following properties desired for clinical applications: (i) low degree of non-specific bubble retention in more than one non-reticuloendothelial tissue; (ii) effective for real-time imaging; and (iii) effective for acoustic quantification of molecular targets to a high degree of quantification. Furthermore, disclosures of the compositions and methodologies enabling reproduction of the bubbles are often withheld. Objective To develop and evaluate a targeting microbubble based on maleimide-thiol conjugation chemistry for ultrasound molecular imaging. Methods and Results Microbubbles with a previously unreported generic (non-targeting components) composition were grafted with anti-E-selectin F(ab’)2 using maleimide-thiol conjugation, to produce E-selectin targeting microbubbles. The resulting targeting bubbles showed high specificity to E-selectin in vitro and in vivo. Non-specific bubble retention was minimal in at least three non-reticuloendothelial tissues with inflammation (mouse heart, kidneys, cremaster). The bubbles were effective for real-time ultrasound imaging of E-selectin expression in the inflamed mouse heart and kidneys, using a clinical ultrasound scanner. The acoustic signal intensity of the targeted bubbles retained in the heart correlated strongly with the level of E-selectin expression (|r|≥0.8), demonstrating a high degree of non-invasive molecular quantification. Conclusions Targeting microbubbles for ultrasound molecular imaging, based on maleimide-thiol conjugation chemistry and the generic composition described, may possess properties (i)–(iii) desired for clinical applications. PMID:26161541

  6. The effects of Magnetic Resonance Imaging-guided High-Intensity Focused Ultrasound ablation on human cadaver breast tissue.

    PubMed

    Merckel, Laura G; Deckers, Roel; Baron, Paul; Bleys, Ronald L A W; van Diest, Paul J; Moonen, Chrit T W; Mali, Willem P Th M; van den Bosch, Maurice A A J; Bartels, Lambertus W

    2013-10-05

    Magnetic Resonance Imaging-guided High-Intensity Focused Ultrasound (MR-HIFU) is a promising technique for non-invasive breast tumor ablation. The purpose of this study was to investigate the effects of HIFU ablation and thermal exposure on ex vivo human breast tissue. HIFU ablations were performed in three unembalmed cadaveric breast specimens using a clinical MR-HIFU system. Sonications were performed in fibroglandular and adipose tissue. During HIFU ablation, time-resolved anatomical MR images were acquired to monitor macroscopic tissue changes. Furthermore, the breast tissue temperature was measured using a thermocouple to investigate heating and cooling under HIFU exposure. After HIFU ablation, breast tissue samples were excised and prepared for histopathological analysis. In addition, thermal exposure experiments were performed to distinguish between different levels of thermal damage using immunohistochemical staining. Irreversible macroscopic deformations up to 3.7 mm were observed upon HIFU ablation both in fibroglandular and in adipose tissue. No relationship was found between the sonication power or the maximum tissue temperature and the size of the deformations. Temperature measurements after HIFU ablation showed a slow decline in breast tissue temperature. Histopathological analysis of sonicated regions demonstrated ablated tissue and morphologically complete cell death. After thermal exposure, samples exposed to three different temperatures could readily be distinguished. In conclusion, the irreversible macroscopic tissue deformations in ex vivo human breast tissue observed during HIFU ablation suggest that it might be relevant to monitor tissue deformations during MR-HIFU treatments. Furthermore, the slow decrease in breast tissue temperature after HIFU ablation increases the risk of heat accumulation between successive sonications. Since cell death was inflicted after already 5 minutes at 75°C, MR-HIFU may find a place in non-invasive treatment of breast tumors. © 2013 Elsevier B.V. All rights reserved.

  7. The sensitivity of motor response to needle nerve stimulation during ultrasound guided interscalene catheter placement.

    PubMed

    Fredrickson, Michael J

    2008-01-01

    Neurostimulation during single shot interscalene block has a significant false negative motor response rate. Compared with tangential needle approaches for single shot block, interscalene catheter (ISC) placement commonly involves Tuohy needles inserted longitudinally to the brachial plexus. This study aimed to determine the sensitivity of neurostimulation during ultrasound-guided ISC needle placement, and the feasibility of an ultrasound-guided ISC needle endpoint. One hundred fifty-five consecutive nonstimulating ISCs were placed with the needle tip position confirmed by the sonographic spread of 5 mL dextrose 5%. Catheter advancement was then blind 2 to 3 cm past the needle tip. A 0.8 mA electrical stimulus at 2 Hz was applied throughout. When a satisfactory image was obtained, neurostimulation was ignored and the minimum motor response amplitude noted. If imaging was equivocal, a brief appropriate motor response at 0.8 mA was sought. A sustained response at <0.5 mA was only sought if imaging was suboptimal. Prior to surgery conducted under general anesthesia, 30 mL ropivacaine 0.5% was administered through the ISC. Catheter success was defined as a recovery room numerical rating pain score of

  8. Realization of Combined Diagnosis/Treatment System By Ultrasound Strain Measurement-Based Shear Modulus Reconstruction/Imaging Technique Examples With Application on The New Type Interstitial RF Electromagnetic Wave Thermal Therapy

    DTIC Science & Technology

    2001-10-25

    Righetti, J. Ophir, and J. Hazle, “The feasibility of elastographic visualization of HIFU -induced thermal lesions in soft tissues,” Ultrasound in Med...Review article: High intensity focused ultrasound -potential for cancer treatment,” Br. J. Radiol., vol. 68, pp. 1296-1303, 1995. [17] Watkin NA, G...R.. Ter Haar, S. B. Morris, C. R. J. Woodhouse, “The urological applications of focused ultrasound surgery,” Br. J. Urol., vol. 75 (suppl. 1), pp

  9. Ultrasound-guided microinjection into the mouse forebrain in utero at E9.5.

    PubMed

    Pierfelice, Tarran J; Gaiano, Nicholas

    2010-11-13

    In utero survival surgery in mice permits the molecular manipulation of gene expression during development. However, because the uterine wall is opaque during early embryogenesis, the ability to target specific parts of the embryo for microinjection is greatly limited. Fortunately, high-frequency ultrasound imaging permits the generation of images that can be used in real time to guide a microinjection needle into the embryonic region of interest. Here we describe the use of such imaging to guide the injection of retroviral vectors into the ventricular system of the mouse forebrain at embryonic day (E) 9.5. This method uses a laparotomy to permit access to the uterine horns, and a specially designed plate that permits host embryos to be bathed in saline while they are imaged and injected. Successful surgeries often result in most or all of the injected embryos surviving to any subsequent time point of interest (embryonically or postnatally). The principles described here can be used with slight modifications to perform injections into the amnionic fluid of E8.5 embryos (thereby permitting infection along the anterior posterior extent of the neural tube, which has not yet closed), or into the ventricular system of the brain at E10.5/11.5. Furthermore, at mid-neurogenic ages (~E13.5), ultrasound imaging can be used direct injection into specific brain regions for viral infection or cell transplantation. The use of ultrasound imaging to guide in utero injections in mice is a very powerful technique that permits the molecular and cellular manipulation of mouse embryos in ways that would otherwise be exceptionally difficult if not impossible.

  10. Segmentation of prostate boundaries from ultrasound images using statistical shape model.

    PubMed

    Shen, Dinggang; Zhan, Yiqiang; Davatzikos, Christos

    2003-04-01

    This paper presents a statistical shape model for the automatic prostate segmentation in transrectal ultrasound images. A Gabor filter bank is first used to characterize the prostate boundaries in ultrasound images in both multiple scales and multiple orientations. The Gabor features are further reconstructed to be invariant to the rotation of the ultrasound probe and incorporated in the prostate model as image attributes for guiding the deformable segmentation. A hierarchical deformation strategy is then employed, in which the model adaptively focuses on the similarity of different Gabor features at different deformation stages using a multiresolution technique, i.e., coarse features first and fine features later. A number of successful experiments validate the algorithm.

  11. Magnetic resonance imaging-guided focused ultrasound treatment of symptomatic uterine fibroids: impact of technology advancement on ablation volumes in 115 patients.

    PubMed

    Trumm, Christoph G; Stahl, Robert; Clevert, Dirk-André; Herzog, Peter; Mindjuk, Irene; Kornprobst, Sabine; Schwarz, Christina; Hoffmann, Ralf-Thorsten; Reiser, Maximilian F; Matzko, Matthias

    2013-06-01

    The aim of this study was to assess the impact of the advanced technology of the new ExAblate 2100 system (Insightec Ltd, Haifa, Israel) for magnetic resonance imaging (MRI)-guided focused ultrasound surgery on treatment outcomes in patients with symptomatic uterine fibroids, as measured by the nonperfused volume ratio. This is a retrospective analysis of 115 women (mean age, 42 years; range, 27-54 years) with symptomatic fibroids who consecutively underwent MRI-guided focused ultrasound treatment in a single center with the new generation ExAblate 2100 system from November 2010 to June 2011. Mean ± SD total volume and number of treated fibroids (per patient) were 89 ± 94 cm and 2.2 ± 1.7, respectively. Patient baseline characteristics were analyzed regarding their impact on the resulting nonperfused volume ratio. Magnetic resonance imaging-guided focused ultrasound treatment was technically successful in 115 of 123 patients (93.5%). In 8 patients, treatment was not possible because of bowel loops in the beam pathway that could not be mitigated (n = 6), patient movement (n = 1), and system malfunction (n = 1). Mean nonperfused volume ratio was 88% ± 15% (range, 38%-100%). Mean applied energy level was 5400 ± 1200 J, and mean number of sonications was 74 ± 27. No major complications occurred. Two cases of first-degree skin burn resolved within 1 week after the intervention. Of the baseline characteristics analyzed, only the planned treatment volume had a statistically significant impact on nonperfused volume ratio. With technological advancement, the outcome of MRI-guided focused ultrasound treatment in terms of the nonperfused volume ratio can be enhanced with a high safety profile, markedly exceeding results reported in previous clinical trials.

  12. Development of a High-Throughput Ultrasound Technique for the Analysis of Tissue Engineering Constructs

    PubMed Central

    Stukel, Jessica; Goss, Monika; Zhou, Haoyan; Zhou, Wenda; Willits, Rebecca; Exner, Agata A.

    2015-01-01

    Development of hydrogel-based tissue engineering constructs is growing at a rapid rate, yet translation to patient use has been sluggish. Years of costly preclinical tests are required to predict clinical performance and safety of these devices. The tests are invasive, destructive to the samples and, in many cases, are not representative of the ultimate in vivo scenario. Biomedical imaging has the potential to facilitate biomaterial development by enabling longitudinal noninvasive device characterization directly in situ. Among the various available imaging modalities, ultrasound stands out as an excellent candidate due to low cost, wide availability, and a favorable safety profile. The overall goal of this work was to demonstrate the utility of clinical ultrasound in longitudinal characterization of 3D hydrogel matrices supporting cell growth. Specifically, we developed a quantitative technique using clinical B-mode ultrasound to differentiate collagen content and fibroblast density within poly(ethylene glycol) (PEG) hydrogels and validated it in an in vitro phantom environment. By manipulating the hydrogel gelation, differences in ultrasound signal intensity were found between gels with collagen fibers and those with non-fiber forming collagen, indicating that the technique was sensitive to the configuration of the protein. At a collagen density of 2.5 mg/mL collagen, fiber forming collagen had a significantly increased signal intensity of 14.90± 2.58*10−5 a.u. compared to non-fiber forming intensity at 2.74± 0.36*10−5 a.u. Additionally, differences in intensity were found between living and fixed fibroblasts, with an increased signal intensity detected in living cells (5 ± 0.8*10−5 a.u. in 1 day live cells compared to 2.26 ± 0.39*10−5 a.u. in fixed cells at a concentration of 1*106 cells/mL in gels containing collagen). Overall, there was a linear correlation >0.90 for ultrasound intensity with increasing cell density. Results demonstrate the feasibility of using clinical ultrasound for characterization of PEG-based hydrogels in a tissue-mimicking phantom. The approach is clinically-relevant and could, with further validation, be utilized to nondestructively monitor in vivo performance of implanted tissue engineering scaffolds over time in preclinical and clinical settings. PMID:26577255

  13. Development of a High-Throughput Ultrasound Technique for the Analysis of Tissue Engineering Constructs.

    PubMed

    Stukel, Jessica M; Goss, Monika; Zhou, Haoyan; Zhou, Wenda; Willits, Rebecca Kuntz; Exner, Agata A

    2016-03-01

    Development of hydrogel-based tissue engineering constructs is growing at a rapid rate, yet translation to patient use has been sluggish. Years of costly preclinical tests are required to predict clinical performance and safety of these devices. The tests are invasive, destructive to the samples and, in many cases, are not representative of the ultimate in vivo scenario. Biomedical imaging has the potential to facilitate biomaterial development by enabling longitudinal noninvasive device characterization directly in situ. Among the various available imaging modalities, ultrasound stands out as an excellent candidate due to low cost, wide availability, and a favorable safety profile. The overall goal of this work was to demonstrate the utility of clinical ultrasound in longitudinal characterization of 3D hydrogel matrices supporting cell growth. Specifically, we developed a quantitative technique using clinical B-mode ultrasound to differentiate collagen content and fibroblast density within poly(ethylene glycol) (PEG) hydrogels and validated it in an in vitro phantom environment. By manipulating the hydrogel gelation, differences in ultrasound signal intensity were found between gels with collagen fibers and those with non-fiber forming collagen, indicating that the technique was sensitive to the configuration of the protein. At a collagen density of 2.5 mg/mL collagen, fiber forming collagen had a significantly increased signal intensity of 14.90 ± 2.58 × 10(-5) a.u. compared to non-fiber forming intensity at 2.74 ± 0.36 × 10(-5) a.u. Additionally, differences in intensity were found between living and fixed fibroblasts, with an increased signal intensity detected in living cells (5.00 ± 0.80 × 10(-5) a.u. in 1 day live cells compared to 2.26 ± 0.39 × 10(-5) a.u.in fixed cells at a concentration of 1 × 10(6) cells/mL in gels containing collagen). Overall, there was a linear correlation >0.90 for ultrasound intensity with increasing cell density. Results demonstrate the feasibility of using clinical ultrasound for characterization of PEG-based hydrogels in a tissue-mimicking phantom. The approach is clinically-relevant and could, with further validation, be utilized to nondestructively monitor in vivo performance of implanted tissue engineering scaffolds over time in preclinical and clinical settings.

  14. Use of shear waves for diagnosis and ablation monitoring of prostate cancer: a feasibility study

    NASA Astrophysics Data System (ADS)

    Gomez, A.; Rus, G.; Saffari, N.

    2016-01-01

    Prostate cancer remains as a major healthcare issue. Limitations in current diagnosis and treatment monitoring techniques imply that there is still a need for improvements. The efficacy of prostate cancer diagnosis is still low, generating under and over diagnoses. High intensity focused ultrasound ablation is an emerging treatment modality, which enables the noninvasive ablation of pathogenic tissue. Clinical trials are being carried out to evaluate its longterm efficacy as a focal treatment for prostate cancer. Successful treatment of prostate cancer using non-invasive modalities is critically dependent on accurate diagnostic means and is greatly benefited by a real-time monitoring system. While magnetic resonance imaging remains the gold standard for prostate imaging, its wider implementation for prostate cancer diagnosis remains prohibitively expensive. Conventional ultrasound is currently limited to guiding biopsy. Elastography techniques are emerging as a promising real-time imaging method, as cancer nodules are usually stiffer than adjacent healthy prostatic tissue. In this paper, a new transurethral approach is proposed, using shear waves for diagnosis and ablation monitoring of prostate cancer. A finite-difference time domain model is developed for studying the feasibility of the method, and an inverse problem technique based on genetic algorithms is proposed for reconstructing the location, size and stiffness parameters of the tumour. Preliminary results indicate that the use of shear waves for diagnosis and monitoring ablation of prostate cancer is feasible.

  15. MO-DE-202-01: Image-Guided Focused Ultrasound Surgery and Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farahani, K.

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guidedmore » neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504 Disclosure and CoI: IGI Technologies, small-business partner on the grants.« less

  16. Hybrid Photoacoustic/Ultrasound Tomograph for Real-Time Finger Imaging.

    PubMed

    Oeri, Milan; Bost, Wolfgang; Sénégond, Nicolas; Tretbar, Steffen; Fournelle, Marc

    2017-10-01

    We report a target-enclosing, hybrid tomograph with a total of 768 elements based on capacitive micromachined ultrasound transducer technology and providing fast, high-resolution 2-D/3-D photoacoustic and ultrasound tomography tailored to finger imaging. A freely programmable ultrasound beamforming platform sampling data at 80 MHz was developed to realize plane wave transmission under multiple angles. A multiplexing unit enables the connection and control of a large number of elements. Fast image reconstruction is provided by GPU processing. The tomograph is composed of four independent and fully automated movable arc-shaped transducers, allowing imaging of all three finger joints. The system benefits from photoacoustics, yielding high optical contrast and enabling visualization of finger vascularization, and ultrasound provides morphologic information on joints and surrounding tissue. A diode-pumped, Q-switched Nd:YAG laser and an optical parametric oscillator are used to broaden the spectrum of emitted wavelengths to provide multispectral imaging. Custom-made optical fiber bundles enable illumination of the region of interest in the plane of acoustic detection. Precision in positioning of the probe in motion is ensured by use of a motor-driven guide slide. The current position of the probe is encoded by the stage and used to relate ultrasound and photoacoustic signals to the corresponding region of interest of the suspicious finger joint. The system is characterized in phantoms and a healthy human finger in vivo. The results obtained promise to provide new opportunities in finger diagnostics and establish photoacoustic/ultrasound-tomography in medical routine. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  17. Lean Six Sigma Applied to Ultrasound Guided Needle Biopsy in the Head and Neck.

    PubMed

    Matt, Bruce H; Woodward-Hagg, Heather K; Wade, Christopher L; Butler, Penny D; Kokoska, Mimi S

    2014-07-01

    (1) Confirm the positive value stream of office-based ultrasound using Lean Six Sigma; (2) demonstrate how ultrasound reduces time to diagnosis, costs, patient inconvenience and travel, exposure to ionizing radiation, intravenous contrast, and laboratory tests. Case series with historical controls using chart review. Tertiary Veterans Administration Hospital (university-affiliated). Patients with a consult request or decision for ultrasound guided fine needle aspiration (USFNA) from 2006 to 2012. Process evaluation using Lean Six Sigma methodologies; years study conducted: 2006-2012; outcome measurements: type of diagnostic tests and imaging studies including CT scans with associated radiation exposure, time to preliminary and final cytopathologic diagnosis, episodes of patient travel. Value stream mapping prior to and after implementing office-based ultrasound confirmed the time from consult request or decision for USFNA to completion of the USFNA was reduced from a range of 0 to 286 days requiring a maximum 17 steps to a range of 0 to 48 days, necessitating only a maximum of 9 steps. Office-based USFNA for evaluation of head and neck lesions reduced costs, time to diagnosis, risks and inconvenience to patients, radiation exposure, unnecessary laboratory, and patient complaints while increasing staff satisfaction. In addition, office-based ultrasound also changed the clinical management of specific patients. Lean Six Sigma reduces waste and optimizes quality and accuracy in manufacturing. This is the first known application of Lean Six Sigma to office-based USFNA in the evaluation of head and neck lesions. The literature supports the value of office-based ultrasound to patients and health care systems. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.

  18. Feasibility of MR-Temperature Mapping of Ultrasonic Heating from a CMUT

    PubMed Central

    Wong, Serena H.; Watkins, Ronald D.; Kupnik, Mario; Butts-Pauly, Kim; Khuri-Yakub, Butrus T.

    2014-01-01

    In the last decade, high intensity focused ultrasound (HIFU) has gained popularity as a minimally-invasive and non-invasive therapeutic tool for treatment of cancers, arrhythmias, and other medical conditions. HIFU therapy is often guided by magnetic resonance imaging (MRI), which provides anatomical images for therapeutic device placement, temperature maps for treatment guidance, and post-operative evaluation of the region of interest. While piezoelectric transducers are dominantly used for MR-guided HIFU, capacitive micromachined ultrasonic transducers (CMUTs) show competitive advantages such as ease of fabrication, integration with electronics, improved efficiency, and reduction of self-heating. In this paper, we will show our first results of an unfocused CMUT transducer monitored by MR-temperature maps. This 2.51 mm by 2.32 mm, unfocused CMUT heated a HIFU phantom by 14°C in 2.5 min. This temperature rise was successfully monitored by MR thermometry in a 3.0 T General Electric scanner. PMID:18467225

  19. Safety and therapeutic efficacy of complete or near-complete ablation of symptomatic uterine fibroid tumors by MR imaging-guided high-intensity focused US therapy.

    PubMed

    Park, Min Jung; Kim, Young-sun; Rhim, Hyunchul; Lim, Hyo Keun

    2014-02-01

    To evaluate the safety and therapeutic efficacy of magnetic resonance (MR) imaging-guided high-intensity focused ultrasound (US) ablation of symptomatic uterine fibroid tumors with an immediate nonperfused volume (NPV) ratio of 80% or more. A total of 79 women with 117 uterine tumors were treated with MR-guided high-intensity focused US ablation. Immediate NPV, complications, and therapeutic efficacy (tumor volume reduction ratio and symptom severity score [SSS] decrease at 3-mo follow-up) were retrospectively assessed. Statistical comparisons of the frequency of complications and therapeutic efficacy were performed between patients with NPV ratios of at least 80% and less than 80%. Technical success was achieved in 93.7% of cases (n = 74) of cases, and the immediate NPV ratio was 62.7% ± 25.5. Twenty-four patients exhibited an NPV ratio of at least 80% (89.7% ± 5.8), and 50 patients showed an NPV ratio of less than 80% (49.8% ± 20.7). All complications were minor in severity, and the incidences were not significantly different between groups (P > .05). The 3-month volume reduction ratio was significantly greater in patients with an NPV ratio of at least 80% (0.43 ± 0.17) than in those with an NPV ratio of less than 80% (0.20 ± 0.26; P = .002), although the decreases in SSS were not significantly different (20.9 ± 19.6 vs 12.1 ± 10.1; P = .097). In MR-guided high-intensity focused US ablation of symptomatic uterine fibroid tumors, achievement of an immediate NPV ratio of at least 80% is safe, with greater tumor volume shrinkage compared with cases with a lower NPV ratio. © 2014 SIR Published by SIR All rights reserved.

  20. Quantitative analysis for peripheral vascularity assessment based on clinical photoacoustic and ultrasound images

    NASA Astrophysics Data System (ADS)

    Murakoshi, Dai; Hirota, Kazuhiro; Ishii, Hiroyasu; Hashimoto, Atsushi; Ebata, Tetsurou; Irisawa, Kaku; Wada, Takatsugu; Hayakawa, Toshiro; Itoh, Kenji; Ishihara, Miya

    2018-02-01

    Photoacoustic (PA) imaging technology is expected to be applied to clinical assessment for peripheral vascularity. We started a clinical evaluation with the prototype PA imaging system we recently developed. Prototype PA imaging system was composed with in-house Q-switched Alexandrite laser system which emits short-pulsed laser with 750 nm wavelength, handheld ultrasound transducer where illumination optics were integrated and signal processing for PA image reconstruction implemented in the clinical ultrasound (US) system. For the purpose of quantitative assessment of PA images, an image analyzing function has been developed and applied to clinical PA images. In this analyzing function, vascularity derived from PA signal intensity ranged for prescribed threshold was defined as a numerical index of vessel fulfillment and calculated for the prescribed region of interest (ROI). Skin surface was automatically detected by utilizing B-mode image acquired simultaneously with PA image. Skinsurface position is utilized to place the ROI objectively while avoiding unwanted signals such as artifacts which were imposed due to melanin pigment in the epidermal layer which absorbs laser emission and generates strong PA signals. Multiple images were available to support the scanned image set for 3D viewing. PA images for several fingers of patients with systemic sclerosis (SSc) were quantitatively assessed. Since the artifact region is trimmed off in PA images, the visibility of vessels with rather low PA signal intensity on the 3D projection image was enhanced and the reliability of the quantitative analysis was improved.

  1. Segmentation of prostate from ultrasound images using level sets on active band and intensity variation across edges

    PubMed Central

    Li, Xu; Li, Chunming; Fedorov, Andriy; Kapur, Tina; Yang, Xiaoping

    2016-01-01

    Purpose: In this paper, the authors propose a novel efficient method to segment ultrasound images of the prostate with weak boundaries. Segmentation of the prostate from ultrasound images with weak boundaries widely exists in clinical applications. One of the most typical examples is the diagnosis and treatment of prostate cancer. Accurate segmentation of the prostate boundaries from ultrasound images plays an important role in many prostate-related applications such as the accurate placement of the biopsy needles, the assignment of the appropriate therapy in cancer treatment, and the measurement of the prostate volume. Methods: Ultrasound images of the prostate are usually corrupted with intensity inhomogeneities, weak boundaries, and unwanted edges, which make the segmentation of the prostate an inherently difficult task. Regarding to these difficulties, the authors introduce an active band term and an edge descriptor term in the modified level set energy functional. The active band term is to deal with intensity inhomogeneities and the edge descriptor term is to capture the weak boundaries or to rule out unwanted boundaries. The level set function of the proposed model is updated in a band region around the zero level set which the authors call it an active band. The active band restricts the authors’ method to utilize the local image information in a banded region around the prostate contour. Compared to traditional level set methods, the average intensities inside∖outside the zero level set are only computed in this banded region. Thus, only pixels in the active band have influence on the evolution of the level set. For weak boundaries, they are hard to be distinguished by human eyes, but in local patches in the band region around prostate boundaries, they are easier to be detected. The authors incorporate an edge descriptor to calculate the total intensity variation in a local patch paralleled to the normal direction of the zero level set, which can detect weak boundaries and avoid unwanted edges in the ultrasound images. Results: The efficiency of the proposed model is demonstrated by experiments on real 3D volume images and 2D ultrasound images and comparisons with other approaches. Validation results on real 3D TRUS prostate images show that the authors’ model can obtain a Dice similarity coefficient (DSC) of 94.03% ± 1.50% and a sensitivity of 93.16% ± 2.30%. Experiments on 100 typical 2D ultrasound images show that the authors’ method can obtain a sensitivity of 94.87% ± 1.85% and a DSC of 95.82% ± 2.23%. A reproducibility experiment is done to evaluate the robustness of the proposed model. Conclusions: As far as the authors know, prostate segmentation from ultrasound images with weak boundaries and unwanted edges is a difficult task. A novel method using level sets with active band and the intensity variation across edges is proposed in this paper. Extensive experimental results demonstrate that the proposed method is more efficient and accurate. PMID:27277056

  2. TU-B-210-00: MR-Guided Focused Ultrasound Therapy in Oncology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    MR guided focused ultrasound (MRgFUS), or alternatively high-intensity focused ultrasound (MRgHIFU), is approved for thermal ablative treatment of uterine fibroids and pain palliation in bone metastases. Ablation of malignant tumors is under active investigation in sites such as breast, prostate, brain, liver, kidney, pancreas, and soft tissue. Hyperthermia therapy with MRgFUS is also feasible, and may be used in conjunction with radiotherapy and for local targeted drug delivery. MRI allows in situ target definition and provides continuous temperature monitoring and subsequent thermal dose mapping during HIFU. Although MRgHIFU can be very precise, treatment of mobile organs is challenging and advancedmore » techniques are required because of artifacts in MR temperature mapping, the need for intercostal firing, and need for gated HIFU or tracking of the lesion in real time. The first invited talk, “MR guided Focused Ultrasound Treatment of Tumors in Bone and Soft Tissue”, will summarize the treatment protocol and review results from treatment of bone tumors. In addition, efforts to extend this technology to treat both benign and malignant soft tissue tumors of the extremities will be presented. The second invited talk, “MRI guided High Intensity Focused Ultrasound – Advanced Approaches for Ablation and Hyperthermia”, will provide an overview of techniques that are in or near clinical trials for thermal ablation and hyperthermia, with an emphasis of applications in abdominal organs and breast, including methods for MRTI and tracking targets in moving organs. Learning Objectives: Learn background on devices and techniques for MR guided HIFU for cancer therapy Understand issues and current status of clinical MRg HIFU Understand strategies for compensating for organ movement during MRgHIFU Understand strategies for strategies for delivering hyperthermia with MRgHIFU CM - research collaboration with Philips.« less

  3. Navigational ultrasound imaging: A novel imaging tool for aiding interventional therapies of equine musculoskeletal injuries.

    PubMed

    Lustgarten, M; Redding, W R; Schnabel, L V; Prange, T; Seiler, G S

    2016-03-01

    Navigational ultrasound imaging, also known as fusion imaging, is a novel technology that allows real-time ultrasound imaging to be correlated with a previously acquired computed tomography (CT) or magnetic resonance imaging (MRI) study. It has been used in man to aid interventional therapies and has been shown to be valuable for sampling and assessing lesions diagnosed with MRI or CT that are equivocal on ultrasonography. To date, there are no reports of the use of this modality in veterinary medicine. To assess whether navigational ultrasound imaging can be used to assist commonly performed interventional therapies for the treatment of equine musculoskeletal injuries diagnosed with MRI and determine the appropriateness of regional anatomical landmarks as registration sites. Retrospective, descriptive clinical study. Horses with musculoskeletal injuries of the distal limb diagnosed with MRI scheduled for ultrasound-guided interventional therapies were evaluated (n = 17 horses with a total of 29 lesions). Anatomical landmarks used for image registration for the navigational procedure were documented. Accuracy of lesion location and success of the procedure were assessed subjectively and described using a grading scale. All procedures were accurately registered using regional anatomical landmarks and considered successful based on our criteria. Anatomical landmarks were described for each lesion type. The addition of navigational imaging was considered to greatly aid the procedures in 59% of cases and added information to the remainder of the procedures. The technique was considered to improve the precision of these interventional procedures. Navigational ultrasound imaging is a complementary imaging modality that can be used for the treatment of equine soft tissue musculoskeletal injuries diagnosed with MRI. © 2015 EVJ Ltd.

  4. Optimization of ultrasound parameters of myocardial cavitation microlesions for therapeutic application.

    PubMed

    Miller, Douglas L; Dou, Chunyan; Owens, Gabe E; Kripfgans, Oliver D

    2014-06-01

    Intermittent high intensity ultrasound scanning with contrast microbubbles can induce scattered cavitation microlesions in the myocardium, which may be of value for tissue reduction therapy. Anesthetized rats were treated in a heated water bath with 1.5 MHz focused ultrasound pulses, guided by an 8 MHz imaging transducer. The relative efficacy with 2 or 4 MPa pulses, 1:4 or 1:8 trigger intervals and 5 or 10 cycle pulses was explored in six groups. Electrocardiogram premature complexes (PCs) induced by the triggered pulse bursts were counted, and Evans blue stained cardiomyocyte scores (SCSs) were obtained. The increase from 2 to 4 MPa produced significant increases in PCs and SCSs and eliminated an anticipated decline in the rate of PC induction with time, which might hinder therapeutic efficacy. Increased intervals and pulse durations did not yield significant increases in the effects. The results suggest that cavitation microlesion production can be refined and potentially lead to a clinically robust therapeutic method. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  5. Endoscopic ultrasound-guided techniques for diagnosing pancreatic mass lesions: Can we do better?

    PubMed Central

    Storm, Andrew C; Lee, Linda S

    2016-01-01

    The diagnostic approach to a possible pancreatic mass lesion relies first upon various non-invasive imaging modalities, including computed tomography, ultrasound, and magnetic resonance imaging techniques. Once a suspect lesion has been identified, tissue acquisition for characterization of the lesion is often paramount in developing an individualized therapeutic approach. Given the high prevalence and mortality associated with pancreatic cancer, an ideal approach to diagnosing pancreatic mass lesions would be safe, highly sensitive, and reproducible across various practice settings. Tools, in addition to radiologic imaging, currently employed in the initial evaluation of a patient with a pancreatic mass lesion include serum tumor markers, endoscopic retrograde cholangiopancreatography, and endoscopic ultrasound-guided fine needle aspiration (EUS-FNA). EUS-FNA has grown to become the gold standard in tissue diagnosis of pancreatic lesions. PMID:27818584

  6. Diagnostic instrumentation aboard ISS: just-in-time training for non-physician crewmembers.

    PubMed

    Foale, C Michael; Kaleri, Alexander Y; Sargsyan, Ashot E; Hamilton, Douglas R; Melton, Shannon; Martin, David; Dulchavsky, Scott A

    2005-06-01

    The performance of complex tasks on the International Space Station (ISS) requires significant preflight crew training commitments and frequent skill and knowledge refreshment. This report documents a recently developed "just-in-time" training methodology, which integrates preflight hardware familiarization and procedure training with an on-orbit CD-ROM-based skill enhancement. This "just-in-time" concept was used to support real-time remote expert guidance to complete ultrasound examinations using the ISS Human Research Facility (HRF). An American and Russian ISS crewmember received 2 h of "hands on" ultrasound training 8 mo prior to the on-orbit ultrasound exam. A CD-ROM-based Onboard Proficiency Enhancement (OPE) interactive multimedia program consisting of memory enhancing tutorials, and skill testing exercises, was completed by the crewmember 6 d prior to the on-orbit ultrasound exam. The crewmember was then remotely guided through a thoracic, vascular, and echocardiographic examination by ultrasound imaging experts. Results of the CD-ROM-based OPE session were used to modify the instructions during a complete 35-min real-time thoracic, cardiac, and carotid/jugular ultrasound study. Following commands from the ground-based expert, the crewmember acquired all target views and images without difficulty. The anatomical content and fidelity of ultrasound video were adequate for clinical decision making. Complex ultrasound experiments with expert guidance were performed with high accuracy following limited preflight training and multimedia based in-flight review, despite a 2-s communication latency. In-flight application of multimedia proficiency enhancement software, coupled with real-time remote expert guidance, facilitates the successful performance of ultrasound examinations on orbit and may have additional terrestrial and space applications.

  7. Diagnostic instrumentation aboard ISS: just-in-time training for non-physician crewmembers

    NASA Technical Reports Server (NTRS)

    Foale, C. Michael; Kaleri, Alexander Y.; Sargsyan, Ashot E.; Hamilton, Douglas R.; Melton, Shannon; Martin, David; Dulchavsky, Scott A.

    2005-01-01

    INTRODUCTION: The performance of complex tasks on the International Space Station (ISS) requires significant preflight crew training commitments and frequent skill and knowledge refreshment. This report documents a recently developed "just-in-time" training methodology, which integrates preflight hardware familiarization and procedure training with an on-orbit CD-ROM-based skill enhancement. This "just-in-time" concept was used to support real-time remote expert guidance to complete ultrasound examinations using the ISS Human Research Facility (HRF). METHODS: An American and Russian ISS crewmember received 2 h of "hands on" ultrasound training 8 mo prior to the on-orbit ultrasound exam. A CD-ROM-based Onboard Proficiency Enhancement (OPE) interactive multimedia program consisting of memory enhancing tutorials, and skill testing exercises, was completed by the crewmember 6 d prior to the on-orbit ultrasound exam. The crewmember was then remotely guided through a thoracic, vascular, and echocardiographic examination by ultrasound imaging experts. RESULTS: Results of the CD-ROM-based OPE session were used to modify the instructions during a complete 35-min real-time thoracic, cardiac, and carotid/jugular ultrasound study. Following commands from the ground-based expert, the crewmember acquired all target views and images without difficulty. The anatomical content and fidelity of ultrasound video were adequate for clinical decision making. CONCLUSIONS: Complex ultrasound experiments with expert guidance were performed with high accuracy following limited preflight training and multimedia based in-flight review, despite a 2-s communication latency. In-flight application of multimedia proficiency enhancement software, coupled with real-time remote expert guidance, facilitates the successful performance of ultrasound examinations on orbit and may have additional terrestrial and space applications.

  8. Diagnostic and interventional musculoskeletal ultrasound: part 1. Fundamentals.

    PubMed

    Smith, Jay; Finnoff, Jonathan T

    2009-01-01

    Musculoskeletal ultrasound involves the use of high-frequency sound waves to image soft tissues and bony structures in the body for the purposes of diagnosing pathology or guiding real-time interventional procedures. Recently, an increasing number of physicians have integrated musculoskeletal ultrasound into their practices to facilitate patient care. Technological advancements, improved portability, and reduced costs continue to drive the proliferation of ultrasound in clinical medicine. This increased interest creates a need for education pertaining to all aspects of musculoskeletal ultrasound. The primary purpose of this article is to review diagnostic ultrasound technology and its potential clinical applications in the evaluation and treatment of patients with neurologic and musculoskeletal disorders. After reviewing this article, physicians should be able to (1) list the advantages and disadvantages of ultrasound compared with other available imaging modalities, (2) describe how ultrasound machines produce images using sound waves, (3) discuss the steps necessary to acquire and optimize an ultrasound image, (4) understand the different ultrasound appearances of tendons, nerves, muscles, ligaments, blood vessels, and bones, and (5) identify multiple applications for diagnostic and interventional musculoskeletal ultrasound in musculoskeletal practice. Part 1 of this 2-part article reviews the fundamentals of clinical ultrasonographic imaging, including relevant physics, equipment, training, image optimization, and scanning principles for diagnostic and interventional purposes.

  9. Mechanically assisted 3D ultrasound for pre-operative assessment and guiding percutaneous treatment of focal liver tumors

    NASA Astrophysics Data System (ADS)

    Sadeghi Neshat, Hamid; Bax, Jeffery; Barker, Kevin; Gardi, Lori; Chedalavada, Jason; Kakani, Nirmal; Fenster, Aaron

    2014-03-01

    Image-guided percutaneous ablation is the standard treatment for focal liver tumors deemed inoperable and is commonly used to maintain eligibility for patients on transplant waitlists. Radiofrequency (RFA), microwave (MWA) and cryoablation technologies are all delivered via one or a number of needle-shaped probes inserted directly into the tumor. Planning is mostly based on contrast CT/MRI. While intra-procedural CT is commonly used to confirm the intended probe placement, 2D ultrasound (US) remains the main, and in some centers the only imaging modality used for needle guidance. Corresponding intraoperative 2D US with planning and other intra-procedural imaging modalities is essential for accurate needle placement. However, identification of matching features of interest among these images is often challenging given the limited field-of-view (FOV) and low quality of 2D US images. We have developed a passive tracking arm with a motorized scan-head and software tools to improve guiding capabilities of conventional US by large FOV 3D US scans that provides more anatomical landmarks that can facilitate registration of US with both planning and intra-procedural images. The tracker arm is used to scan the whole liver with a high geometrical accuracy that facilitates multi-modality landmark based image registration. Software tools are provided to assist with the segmentation of the ablation probes and tumors, find the 2D view that best shows the probe(s) from a 3D US image, and to identify the corresponding image from planning CT scans. In this paper, evaluation results from laboratory testing and a phase 1 clinical trial for planning and guiding RFA and MWA procedures using the developed system will be presented. Early clinical results show a comparable performance to intra-procedural CT that suggests 3D US as a cost-effective alternative with no side-effects in centers where CT is not available.

  10. Regional lymph node staging in breast cancer: the increasing role of imaging and ultrasound-guided axillary lymph node fine needle aspiration.

    PubMed

    Mainiero, Martha B

    2010-09-01

    The status of axillary lymph nodes is a key prognostic indicator in patients with breast cancer and helps guide patient management. Sentinel lymph node biopsy is increasingly being used as a less morbid alternative to axillary lymph node dissection. However, when sentinel lymph node biopsy is positive, axillary dissection is typically performed for complete staging and local control. Axillary ultrasound and ultrasound-guided fine needle aspiration (USFNA) are useful for detecting axillary nodal metastasis preoperatively and can spare patients sentinel node biopsy, because those with positive cytology on USFNA can proceed directly to axillary dissection or neoadjuvant chemotherapy. Internal mammary nodes are not routinely evaluated, but when the appearance of these nodes is abnormal on imaging, further treatment or metastatic evaluation may be necessary. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Despeckle filtering software toolbox for ultrasound imaging of the common carotid artery.

    PubMed

    Loizou, Christos P; Theofanous, Charoula; Pantziaris, Marios; Kasparis, Takis

    2014-04-01

    Ultrasound imaging of the common carotid artery (CCA) is a non-invasive tool used in medicine to assess the severity of atherosclerosis and monitor its progression through time. It is also used in border detection and texture characterization of the atherosclerotic carotid plaque in the CCA, the identification and measurement of the intima-media thickness (IMT) and the lumen diameter that all are very important in the assessment of cardiovascular disease (CVD). Visual perception, however, is hindered by speckle, a multiplicative noise, that degrades the quality of ultrasound B-mode imaging. Noise reduction is therefore essential for improving the visual observation quality or as a pre-processing step for further automated analysis, such as image segmentation of the IMT and the atherosclerotic carotid plaque in ultrasound images. In order to facilitate this preprocessing step, we have developed in MATLAB(®) a unified toolbox that integrates image despeckle filtering (IDF), texture analysis and image quality evaluation techniques to automate the pre-processing and complement the disease evaluation in ultrasound CCA images. The proposed software, is based on a graphical user interface (GUI) and incorporates image normalization, 10 different despeckle filtering techniques (DsFlsmv, DsFwiener, DsFlsminsc, DsFkuwahara, DsFgf, DsFmedian, DsFhmedian, DsFad, DsFnldif, DsFsrad), image intensity normalization, 65 texture features, 15 quantitative image quality metrics and objective image quality evaluation. The software is publicly available in an executable form, which can be downloaded from http://www.cs.ucy.ac.cy/medinfo/. It was validated on 100 ultrasound images of the CCA, by comparing its results with quantitative visual analysis performed by a medical expert. It was observed that the despeckle filters DsFlsmv, and DsFhmedian improved image quality perception (based on the expert's assessment and the image texture and quality metrics). It is anticipated that the system could help the physician in the assessment of cardiovascular image analysis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. MO-FG-210-00: US Guided Systems for Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Ultrasound (US) is one of the most widely used imaging modalities in medical practice. Since US imaging offers real-time imaging capability, it has becomes an excellent option to provide image guidance for brachytherapy (IGBT). (1) The physics and the fundamental principles of US imaging are presented, and the typical steps required to commission an US system for IGBT is provided for illustration. (2) Application of US for prostate HDR brachytherapy, including partial prostate treatments using MR-ultrasound co-registration to enable a focused treatment on the disease within the prostate is also presented. Prostate HDR with US image guidance planning can benefitmore » from real time visualization of the needles, and fusion of the ultrasound images with T2 weighted MR allows the focusing of the treatment to the specific areas of disease within the prostate, so that the entire gland need not be treated. Finally, (3) ultrasound guidance for an eye plaque program is presented. US can be a key component of placement and QA for episcleral plaque brachytherapy for ocular cancer, and the UCLA eye plaque program with US for image guidance is presented to demonstrate the utility of US verification of plaque placement in improving the methods and QA in episcleral plaque brachytherapy. Learning Objectives: To understand the physics of an US system and the necessary aspects of commissioning US for image guided brachytherapy (IGBT). To understand real time planning of prostate HDR using ultrasound, and its application in partial prostate treatments using MR-ultrasound fusion to focus treatment on disease within the prostate. To understand the methods and QA in applying US for localizing the target and the implant during a episcleral plaque brachytherapy procedures.« less

  13. MO-FG-210-03: Intraoperative Ultrasonography-Guided Positioning of Plaque Brachytherapy in the Treatment of Choroidal Melanoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamb, J.

    2015-06-15

    Ultrasound (US) is one of the most widely used imaging modalities in medical practice. Since US imaging offers real-time imaging capability, it has becomes an excellent option to provide image guidance for brachytherapy (IGBT). (1) The physics and the fundamental principles of US imaging are presented, and the typical steps required to commission an US system for IGBT is provided for illustration. (2) Application of US for prostate HDR brachytherapy, including partial prostate treatments using MR-ultrasound co-registration to enable a focused treatment on the disease within the prostate is also presented. Prostate HDR with US image guidance planning can benefitmore » from real time visualization of the needles, and fusion of the ultrasound images with T2 weighted MR allows the focusing of the treatment to the specific areas of disease within the prostate, so that the entire gland need not be treated. Finally, (3) ultrasound guidance for an eye plaque program is presented. US can be a key component of placement and QA for episcleral plaque brachytherapy for ocular cancer, and the UCLA eye plaque program with US for image guidance is presented to demonstrate the utility of US verification of plaque placement in improving the methods and QA in episcleral plaque brachytherapy. Learning Objectives: To understand the physics of an US system and the necessary aspects of commissioning US for image guided brachytherapy (IGBT). To understand real time planning of prostate HDR using ultrasound, and its application in partial prostate treatments using MR-ultrasound fusion to focus treatment on disease within the prostate. To understand the methods and QA in applying US for localizing the target and the implant during a episcleral plaque brachytherapy procedures.« less

  14. MR-guided focused ultrasound: a potentially disruptive technology.

    PubMed

    Bradley, William G

    2009-07-01

    A disruptive technology is a technological innovation that overturns the existing dominant technologies in a market. Magnetic resonance (MR)-guided focused ultrasound (MRgFUS) is a noninvasive procedure based on the combination of real-time MR anatomic guidance, MR thermometry, and high-intensity focused ultrasound. Several hundred transducer elements become convergent at a point under MR guidance, leading to heating and coagulation necrosis. Outside the focal point, there is no significant heating. There is no need to break the skin for procedures in the body or to perform a craniotomy for procedures in the brain. This lack of invasiveness is what makes MRgFUS so disruptive compared with surgery. At present, MRgFUS has been used for the ablation of uterine fibroids, breast tumors, painful bony metastases, and liver tumors. In the brain, it has been used for the ablation of glioblastomas and for functional neurosurgery. Phantom and animal studies suggest future applications for prostate cancer and acute stroke treatment.

  15. A review of randomised controlled trials comparing ultrasound-guided foam sclerotherapy with endothermal ablation for the treatment of great saphenous varicose veins.

    PubMed

    Davies, Huw Ob; Popplewell, Matthew; Darvall, Katy; Bate, Gareth; Bradbury, Andrew W

    2016-05-01

    The last 10 years have seen the introduction into everyday clinical practice of a wide range of novel non-surgical treatments for varicose veins. In July 2013, the UK National Institute for Health and Care Excellence recommended the following treatment hierarchy for varicose veins: endothermal ablation, ultrasound-guided foam sclerotherapy, surgery and compression hosiery. The aim of this paper is to review the randomised controlled trials that have compared endothermal ablation and ultrasound-guided foam sclerotherapy to determine if the level 1 evidence base still supports an "endothermal ablation first" strategy for the treatment of varicose veins. A PubMed and OVID literature search (until 31 January 2015) was performed and randomised controlled trials comparing endothermal ablation and ultrasound-guided foam sclerotherapy were obtained. Although anatomical success appeared higher with endothermal ablation than ultrasound-guided foam sclerotherapy, clinical success and patient-reported outcomes measures were similar. Morbidity and complication rates were very low and not significantly different between endothermal ablation and ultrasound-guided foam sclerotherapy. Ultrasound-guided foam sclerotherapy was consistently less expensive that endothermal ablation. All endovenous modalities appear to be successful and have a role in modern day practice. Although further work is required to optimise ultrasound-guided foam sclerotherapy technique to maximise anatomical success and minimise retreatment, the present level 1 evidence base shows there is no significant difference in clinical important outcomes between ultrasound-guided foam sclerotherapy and endothermal ablation. As ultrasound-guided foam sclerotherapy is less expensive, it is likely to be a more cost-effective option in most patients in most healthcare settings. Strict adherence to the treatment hierarchy recommended by National Institute for Health and Care Excellence seems unjustified. © The Author(s) 2015.

  16. Ultrasound guided fluorescence molecular tomography with improved quantification by an attenuation compensated born-normalization and in vivo preclinical study of cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Baoqiang; Berti, Romain; Abran, Maxime

    2014-05-15

    Ultrasound imaging, having the advantages of low-cost and non-invasiveness over MRI and X-ray CT, was reported by several studies as an adequate complement to fluorescence molecular tomography with the perspective of improving localization and quantification of fluorescent molecular targets in vivo. Based on the previous work, an improved dual-modality Fluorescence-Ultrasound imaging system was developed and then validated in imaging study with preclinical tumor model. Ultrasound imaging and a profilometer were used to obtain the anatomical prior information and 3D surface, separately, to precisely extract the tissue boundary on both sides of sample in order to achieve improved fluorescence reconstruction. Furthermore,more » a pattern-based fluorescence reconstruction on the detection side was incorporated to enable dimensional reduction of the dataset while keeping the useful information for reconstruction. Due to its putative role in the current imaging geometry and the chosen reconstruction technique, we developed an attenuation compensated Born-normalization method to reduce the attenuation effects and cancel off experimental factors when collecting quantitative fluorescence datasets over large area. Results of both simulation and phantom study demonstrated that fluorescent targets could be recovered accurately and quantitatively using this reconstruction mechanism. Finally, in vivo experiment confirms that the imaging system associated with the proposed image reconstruction approach was able to extract both functional and anatomical information, thereby improving quantification and localization of molecular targets.« less

  17. Therapeutic modulation of the natural history of coronary atherosclerosis: lessons learned from serial imaging studies.

    PubMed

    Andrews, Jordan; Puri, Rishi; Kataoka, Yu; Nicholls, Stephen J; Psaltis, Peter J

    2016-08-01

    Despite advances in risk prediction, preventive and therapeutic strategies, atherosclerotic cardiovascular disease remains a major public health challenge worldwide, carrying considerable morbidity, mortality and health economic burden. There continues to be a need to better understand the natural history of this disease to guide the development of more effective treatment, integral to which is the rapidly evolving field of coronary artery imaging. Various imaging modalities have been refined to enable detailed visualization of the pathological substrate of atherosclerosis, providing accurate and reproducible measures of coronary plaque burden and composition, including the presence of high-risk characteristics. The serial application of such techniques, including coronary computed tomography angiography (CTA), intravascular ultrasound (IVUS) and optical coherence tomography (OCT) have uncovered important insights into the progression of coronary plaque over time in patients with stable and unstable coronary artery disease (CAD), and its responsiveness to therapeutic interventions. Here we review the use of different imaging modalities for the surveillance of coronary atherosclerosis and the lessons they have provided about the modulation of CAD by both traditional and experimental therapies.

  18. Ultrasound assessment of endometrial cavity in perimenopausal women on oral progesterone for abnormal uterine bleeding: comparison of diagnostic accuracy of imaging with hysteroscopy-guided biopsy.

    PubMed

    Dasgupta, Subhankar; Dasgupta, Shyamal; Sharma, Partha Pratim; Mukherjee, Amitabha; Ghosh, Tarun Kumar

    2011-11-01

    To investigate the effect of oral progesterone on the accuracy of imaging studies performed to detect endometrial pathology in comparison to hysteroscopy-guided biopsy in perimenopausal women on progesterone treatment for abnormal uterine bleeding. The study population comprised of women aged 40-55 years with complaints of abnormal uterine bleeding who were also undergoing oral progesterone therapy. Women with a uterus ≥ 12 weeks' gestation size, previous abnormal endometrial biopsy, cervical lesion on speculum examination, abnormal Pap smear, active pelvic infection, adnexal mass on clinical examination or during ultrasound scan and a positive pregnancy test were excluded. A transvaginal ultrasound followed by saline infusion sonography were done. On the following day, a hysteroscopy followed by a guided biopsy of the endometrium or any endometrial lesion was performed. Comparison between the results of the imaging study with the hysteroscopy and guided biopsy was done. The final analysis included 83 patients. For detection of overall pathology, polyp and fibroid transvaginal ultrasound had a positive likelihood ratio of 1.65, 5.45 and 5.4, respectively, and a negative likelihood ratio of 0.47, 0.6 and 0.43, respectively. For detection of overall pathology, polyp and fibroid saline infusion sonography had a positive likelihood ratio of 4.4, 5.35 and 11.8, respectively, and a negative likelihood ratio of 0.3, 0.2 and 0.15, respectively. In perimenopausal women on oral progesterone therapy for abnormal uterine bleeding, imaging studies cannot be considered as an accurate method for diagnosing endometrial pathology when compared to hysteroscopy and guided biopsy. © 2011 The Authors. Journal of Obstetrics and Gynaecology Research © 2011 Japan Society of Obstetrics and Gynecology.

  19. Increased Anatomical Specificity of Neuromodulation via Modulated Focused Ultrasound

    PubMed Central

    Mehić, Edin; Xu, Julia M.; Caler, Connor J.; Coulson, Nathaniel K.; Moritz, Chet T.; Mourad, Pierre D.

    2014-01-01

    Transcranial ultrasound can alter brain function transiently and nondestructively, offering a new tool to study brain function now and inform future therapies. Previous research on neuromodulation implemented pulsed low-frequency (250–700 kHz) ultrasound with spatial peak temporal average intensities (ISPTA) of 0.1–10 W/cm2. That work used transducers that either insonified relatively large volumes of mouse brain (several mL) with relatively low-frequency ultrasound and produced bilateral motor responses, or relatively small volumes of brain (on the order of 0.06 mL) with relatively high-frequency ultrasound that produced unilateral motor responses. This study seeks to increase anatomical specificity to neuromodulation with modulated focused ultrasound (mFU). Here, ‘modulated’ means modifying a focused 2-MHz carrier signal dynamically with a 500-kHz signal as in vibro-acoustography, thereby creating a low-frequency but small volume (approximately 0.015 mL) source of neuromodulation. Application of transcranial mFU to lightly anesthetized mice produced various motor movements with high spatial selectivity (on the order of 1 mm) that scaled with the temporal average ultrasound intensity. Alone, mFU and focused ultrasound (FUS) each induced motor activity, including unilateral motions, though anatomical location and type of motion varied. Future work should include larger animal models to determine the relative efficacy of mFU versus FUS. Other studies should determine the biophysical processes through which they act. Also of interest is exploration of the potential research and clinical applications for targeted, transcranial neuromodulation created by modulated focused ultrasound, especially mFU’s ability to produce compact sources of ultrasound at the very low frequencies (10–100s of Hertz) that are commensurate with the natural frequencies of the brain. PMID:24504255

  20. MR-guided adaptive focusing of ultrasound

    PubMed Central

    Larrat, Benoît; Pernot, Mathieu; Montaldo, Gabriel; Fink, Mathias; Tanter, Mickaël

    2010-01-01

    Adaptive focusing of ultrasonic waves under the guidance of a Magnetic Resonance (MR) system is demonstrated for medical applications. This technique is based on the maximization of the ultrasonic wave intensity at one targeted point in space. The wave intensity is indirectly estimated from the local tissue displacement induced at the chosen focus by the acoustic radiation force of ultrasonic beams. Coded ultrasonic waves are transmitted by an ultrasonic array and an MRI scanner is used to measure the resulting local displacements through a motion sensitive MR sequence. After the transmission of a set of spatially encoded ultrasonic waves, a non iterative inversion process is employed to accurately estimate the spatial-temporal aberration induced by the propagation medium and to maximize the acoustical intensity at the target. Both programmable and physical aberrating layers introducing strong distortions (up to 2π radians) were recovered within acceptable errors (<0.8 rad). This non invasive technique is shown to accurately correct phase aberrations in a phantom gel with negligible heat deposition and limited acquisition time. These refocusing performances demonstrate a major potential in the field of MR-Guided Ultrasound Therapy in particular for transcranial brain HIFU. PMID:20704061

  1. Image-guided thermal therapy of uterine fibroids

    PubMed Central

    Shen, Shu-Huei; Fennessy, Fiona; McDannold, Nathan; Jolesz, Ferenc; Tempany, Clare

    2009-01-01

    Thermal ablation is an established treatment for tumor. The merging of newly developed imaging techniques has allowed precise targeting and real-time thermal mapping. This article provides an overview of the image-guided thermal ablation techniques in the treatment of uterine fibroids. Background on uterine fibroids, including epidemiology, histology, symptoms, imaging findings and current treatment options, is first outlined. After describing the principle of magnetic resonance thermal imaging, we introduce the applications of image-guided thermal therapies, including laser ablation, radiofrequency ablation, cryotherapy and particularly the newest, magnetic resonance-guided focused ultrasound surgery, and how they apply to uterine fibroid treatment. PMID:19358440

  2. Ultrasound-guided synovial Tru-cut biopsy: indications, technique, and outcome in 111 cases.

    PubMed

    Sitt, Jacqueline C M; Griffith, James F; Lai, Fernand M; Hui, Mamie; Chiu, K H; Lee, Ryan K L; Ng, Alex W H; Leung, Jason

    2017-05-01

    To investigate the diagnostic performance of ultrasound-guided synovial biopsy. Clinical notes, pathology and microbiology reports, ultrasound and other imaging studies of 100 patients who underwent 111 ultrasound-guided synovial biopsies were reviewed. Biopsies were compared with the final clinical diagnosis established after synovectomy (n = 43) or clinical/imaging follow-up (n = 57) (mean 30 months). Other than a single vasovagal episode, no complication of synovial biopsy was encountered. One hundred and seven (96 %) of the 111 biopsies yielded synovium histologically. Pathology ± microbiology findings for these 107 conclusive biopsies comprised synovial tumour (n = 30, 28 %), synovial infection (n = 18, 17 %), synovial inflammation (n = 45, 42 %), including gouty arthritis (n = 3), and no abnormality (n = 14, 13 %). The accuracy, sensitivity, and specificity of synovial biopsy was 99 %, 97 %, and 100 % for synovial tumour; 100 %, 100 %, and 100 % for native joint infection; and 78 %, 45 %, and 100 % for prosthetic joint infection. False-negative synovial biopsy did not seem to be related to antibiotic therapy. Ultrasound-guided Tru-cut synovial biopsy is a safe and reliable technique with a high diagnostic yield for diagnosing synovial tumour and also, most likely, for joint infection. Regarding joint infection, synovial biopsy of native joints seems to have a higher diagnostic yield than that for infected prosthetic joints. • Ultrasound-guided Tru-cut synovial biopsy has high accuracy (99 %) for diagnosing synovial tumour. • It has good accuracy, sensitivity, and high specificity for diagnosis of joint infection. • Synovial biopsy of native joints works better than biopsy of prosthetic joints. • A negative synovial biopsy culture from a native joint largely excludes septic arthritis. • Ultrasound-guided Tru-cut synovial biopsy is a safe and well-tolerated procedure.

  3. Bedside imaging of intracranial hemorrhage in the neonate using light: comparison with ultrasound, computed tomography, and magnetic resonance imaging.

    PubMed

    Hintz, S R; Cheong, W F; van Houten, J P; Stevenson, D K; Benaron, D A

    1999-01-01

    Medical optical imaging (MOI) uses light emitted into opaque tissues to determine the interior structure. Previous reports detailed a portable time-of-flight and absorbance system emitting pulses of near infrared light into tissues and measuring the emerging light. Using this system, optical images of phantoms, whole rats, and pathologic neonatal brain specimens have been tomographically reconstructed. We have now modified the existing instrumentation into a clinically relevant headband-based system to be used for optical imaging of structure in the neonatal brain at the bedside. Eight medical optical imaging studies in the neonatal intensive care unit were performed in a blinded clinical comparison of optical images with ultrasound, computed tomography, and magnetic resonance imaging. Optical images were interpreted as correct in six of eight cases, with one error attributed to the age of the clot, and one small clot not seen. In addition, one disagreement with ultrasound, not reported as an error, was found to be the result of a mislabeled ultrasound report rather than because of an inaccurate optical scan. Optical scan correlated well with computed tomography and magnetic resonance imaging findings in one patient. We conclude that light-based imaging using a portable time-of-flight system is feasible and represents an important new noninvasive diagnostic technique, with potential for continuous monitoring of critically ill neonates at risk for intraventricular hemorrhage or stroke. Further studies are now underway to further investigate the functional imaging capabilities of this new diagnostic tool.

  4. Multimodal Approach for Radical Excision of Focal Cortical Dysplasia by Combining Advanced Magnetic Resonance Imaging Data to Intraoperative Ultrasound, Electrocorticography, and Cortical Stimulation: A Preliminary Experience.

    PubMed

    Tringali, Giovanni; Bono, Beatrice; Dones, Ivano; Cordella, Roberto; Didato, Giuseppe; Villani, Flavio; Prada, Francesco

    2018-05-01

    Type II focal cortical dysplasia is the most common malformation of cortical development associated with drug resistant epilepsy and susceptible to surgical resection. Although, at present, advanced imaging modalities are capable of detecting most cortical disorders, it is still a challenge for the surgeon to visualize them intraoperatively. The lack of direct identification between normal brain and subtle dysplastic tissue may explain the poor results in terms of being seizure-free versus other forms of epilepsy. The aim of this study is to compare magnetic resonance imaging (MRI) and intraoperative ultrasound-guided neuronavigation, along with cortical stimulation and acute electrocorticography, as a multimodal surgical approach to cortical dysplasia's tailored resection. Six consecutive patients with type II cortical dysplasia underwent epilepsy surgery by means of MRI/intraoperative ultrasound-guided neuronavigation. Intraoperative cortical stimulation of sensory/motor cortex was performed to localize cortical eloquent areas. Acute electrocorticography was used to identify epileptogenic tissue. These findings were correlated to real-time ultrasound imaging to establish the extent of the resection. Intraoperative ultrasound depicted cortical dysplasias at a higher resolution and accuracy than MRI. Therefore it maximized the extent of the resection. Both postoperative MRIs and pathology documented the extent of the resection in all patients. Seizure-freedom was achieved in 5 cases (Engel class IA), and in 1 patient it was classified as Engel class IB. No postoperative neurological deficits were observed. These results strongly suggest feasibility of ultrasound-guided resection of focal cortical dysplasia. Providing high resolution and accuracy, it allows an easy, real-time discrimination between normal and dysplastic brain. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Pathological fracture of the patella due to an atypical located aneurysmal bone cyst: verification by means of ultrasound-guided biopsy.

    PubMed

    Plaikner, Michaela; Gruber, Hannes; Henninger, Benjamin; Gruber, Leonhard; Kosiol, Juana; Loizides, Alexander

    2016-03-01

    We report on a rare case of an atypical located aneurysmal bone cyst (ABC) in the patella presenting with pathological fracture after trauma. Using all available diagnostic modalities and by means of ultrasound-guided core-needle biopsy an unclear and suspected pathological fractured cystic bone lesion in the patella of a young man could be further clarified. The acquired images suggested the diagnosis of a pathological fractured aneurysmal bone cyst after mild trauma. However, due to the extraordinary location and clinical presentation the diagnosis was secured by means of ultrasound-guided biopsy through a small cortical gap. As shown in this rare case of an atypical aneurysmal bone cyst of the patella, the quite seldom but sometimes possible ultrasound-guided biopsy of intraosseous lesions can help to achieve the diagnostic clarification and should also be taken into account as a non-standard procedure.

  6. Two- and three-dimensional ultrasound imaging to facilitate detection and targeting of taut bands in myofascial pain syndrome.

    PubMed

    Shankar, Hariharan; Reddy, Sapna

    2012-07-01

    Ultrasound imaging has gained acceptance in pain management interventions. Features of myofascial pain syndrome have been explored using ultrasound imaging and elastography. There is a paucity of reports showing the benefit clinically. This report provides three-dimensional features of taut bands and highlights the advantages of using two-dimensional ultrasound imaging to improve targeting of taut bands in deeper locations. Fifty-eight-year-old man with pain and decreased range of motion of the right shoulder was referred for further management of pain above the scapula after having failed conservative management for myofascial pain syndrome. Three-dimensional ultrasound images provided evidence of aberrancy in the architecture of the muscle fascicles around the taut bands compared to the adjacent normal muscle tissue during serial sectioning of the accrued image. On two-dimensional ultrasound imaging over the palpated taut band, areas of hyperechogenicity were visualized in the trapezius and supraspinatus muscles. Subsequently, the patient received ultrasound-guided real-time lidocaine injections to the trigger points with successful resolution of symptoms. This is a successful demonstration of utility of ultrasound imaging of taut bands in the management of myofascial pain syndrome. Utility of this imaging modality in myofascial pain syndrome requires further clinical validation. Wiley Periodicals, Inc.

  7. Musculoskeletal ultrasound: how to treat calcific tendinitis of the rotator cuff by ultrasound-guided single-needle lavage technique.

    PubMed

    Lee, Kenneth S; Rosas, Humberto G

    2010-09-01

    The purpose of this video article is to illustrate the ultrasound appearance of calcium deposition in the rotator cuff and provide a detailed step-by-step protocol for performing the ultrasound-guided single-needle lavage technique for the treatment of calcific tendinitis with emphasis on patient positioning, necessary supplies, real-time lavage technique, and steroid injection into the subacromial subdeltoid bursa. Musculoskeletal ultrasound is well established as a safe, cost-effective imaging tool in diagnosing and treating common musculoskeletal disorders. Calcific tendinitis of the rotator cuff is a common disabling cause of shoulder pain. Although most cases are self-limiting, a subset of patients is refractory to conservative therapy and requires treatment intervention. Ultrasound-guided lavage is an effective and safe minimally-invasive treatment not readily offered in the United States as an alternative to surgery, perhaps because of the limited prevalence of musculoskeletal ultrasound programs and limited training. On completion of this video article, the participant should be able to develop an appropriate diagnostic and therapeutic algorithm for the treatment of calcific tendinitis of the rotator cuff using ultrasound.

  8. Smartphone based automatic organ validation in ultrasound video.

    PubMed

    Vaish, Pallavi; Bharath, R; Rajalakshmi, P

    2017-07-01

    Telesonography involves transmission of ultrasound video from remote areas to the doctors for getting diagnosis. Due to the lack of trained sonographers in remote areas, the ultrasound videos scanned by these untrained persons do not contain the proper information that is required by a physician. As compared to standard methods for video transmission, mHealth driven systems need to be developed for transmitting valid medical videos. To overcome this problem, we are proposing an organ validation algorithm to evaluate the ultrasound video based on the content present. This will guide the semi skilled person to acquire the representative data from patient. Advancement in smartphone technology allows us to perform high medical image processing on smartphone. In this paper we have developed an Application (APP) for a smartphone which can automatically detect the valid frames (which consist of clear organ visibility) in an ultrasound video and ignores the invalid frames (which consist of no-organ visibility), and produces a compressed sized video. This is done by extracting the GIST features from the Region of Interest (ROI) of the frame and then classifying the frame using SVM classifier with quadratic kernel. The developed application resulted with the accuracy of 94.93% in classifying valid and invalid images.

  9. Ultrasound-aided high-resolution biophotonic imaging

    NASA Astrophysics Data System (ADS)

    Wang, Lihong V.

    2003-10-01

    We develop novel biophotonic imaging for early-cancer detection, a grand challenge in cancer research, using nonionizing electromagnetic and ultrasonic waves. Unlike ionizing x-ray radiation, nonionizing electromagnetic waves such as optical waves are safe for biomedical applications and reveal new contrast mechanisms and functional information. For example, our spectroscopic oblique-incidence reflectometry can detect skin cancers based on functional hemoglobin parameters and cell nuclear size with 95% accuracy. Unfortunately, electromagnetic waves in the nonionizing spectral region do not penetrate biological tissue in straight paths as do x-rays. Consequently, high-resolution tomography based on nonionizing electromagnetic waves alone, as demonstrated by our Mueller optical coherence tomography, is limited to superficial tissue imaging. Ultrasonic imaging, on the contrary, furnishes good imaging resolution but has poor contrast in early-stage tumors and has strong speckle artifacts as well. We developed ultrasound-mediated imaging modalities by combining electromagnetic and ultrasonic waves synergistically. The hybrid modalities yield speckle-free electromagnetic-contrast at ultrasonic resolution in relatively large biological tissue. In ultrasound-modulated (acousto)-optical tomography, a focused ultrasonic wave encodes diffuse laser light in scattering biological tissue. In photo-acoustic (thermo-acoustic) tomography, a low-energy laser (RF) pulse induces ultrasonic waves in biological tissue due to thermoelastic expansion.

  10. The feasibility of non-contact ultrasound for medical imaging.

    PubMed

    Clement, G T; Nomura, H; Adachi, H; Kamakura, T

    2013-09-21

    High intensity focused ultrasound in air may provide a means for medical and biological imaging without direct coupling of an ultrasound probe. In this study, an approach based on highly focused ultrasound in air is described and the feasibility of the technique is assessed. The overall method is based on the observations that (1) ultrasound in air has superior focusing ability and stronger nonlinear harmonic generation as compared to tissue propagation and (2) a tightly focused field directed into tissue causes point-like spreading that may be regarded as a source for generalized diffraction tomography. Simulations of a spherically-curved transducer are performed, where the transducer's radiation pattern is directed from air into tissue. It is predicted that a focal pressure of 162 dB (2.5 kPa) is sufficient to direct ultrasound through the body, and provide a small but measurable signal (∼1 mPa) upon exit. Based on the simulations, a 20 cm diameter array consisting of 298 transducers is constructed. For this feasibility study, a 40 kHz resonance frequency is selected based on the commercial availability of such transducers. The array is used to focus through water and acrylic phantoms, and the time history of the exiting signal is evaluated. Sufficient data are acquired to demonstrate a low-resolution tomographic reconstruction. Finally, to demonstrate the feasibility to record a signal in vivo, a 75 mm × 55 mm section of a human hand is imaged in a C-mode configuration.

  11. Image guided versus palpation guided core needle biopsy of palpable breast masses: a prospective study

    PubMed Central

    Hari, Smriti; Kumari, Swati; Srivastava, Anurag; Thulkar, Sanjay; Mathur, Sandeep; Veedu, Prasad Thotton

    2016-01-01

    Background & objectives: Biopsy of palpable breast masses can be performed manually by palpation guidance or under imaging guidance. Based on retrospective studies, image guided biopsy is considered more accurate than palpation guided breast biopsy; however, these techniques have not been compared prospectively. We conducted this prospective study to verify the superiority and determine the size of beneficial effect of image guided biopsy over palpation guided biopsy. Methods: Over a period of 18 months, 36 patients each with palpable breast masses were randomized into palpation guided and image guided breast biopsy arms. Ultrasound was used for image guidance in 33 patients and mammographic (stereotactic) guidance in three patients. All biopsies were performed using 14 gauge automated core biopsy needles. Inconclusive, suspicious or imaging-histologic discordant biopsies were repeated. Results: Malignancy was found in 30 of 36 women in palpation guided biopsy arm and 27 of 36 women in image guided biopsy arm. Palpation guided biopsy had sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of 46.7, 100, 100, 27.3 per cent, respectively, for diagnosing breast cancer. Nineteen of 36 women (52.8%) required repeat biopsy because of inadequate samples (7 of 19), suspicious findings (2 of 19) or imaging-histologic discordance (10 of 19). On repeat biopsy, malignancy was found in all cases of imaging-histologic discordance. Image guided biopsy had 96.3 per cent sensitivity and 100 per cent specificity. There was no case of inadequate sample or imaging-histologic discordance with image guided biopsy. Interpretation & conclusions: Our results showed that in palpable breast masses, image guided biopsy was superior to palpation guided biopsy in terms of sensitivity, false negative rate and repeat biopsy rates. PMID:27488003

  12. Monitoring radiofrequency ablation with ultrasound Nakagami imaging.

    PubMed

    Wang, Chiao-Yin; Geng, Xiaonan; Yeh, Ta-Sen; Liu, Hao-Li; Tsui, Po-Hsiang

    2013-07-01

    Radiofrequency ablation (RFA) is a widely used alternative modality in the treatment of liver tumors. Ultrasound B-mode imaging is an important tool to guide the insertion of the RFA electrode into the tissue. However, it is difficult to visualize the ablation zone because RFA induces the shadow effect in a B-scan. Based on the randomness of ultrasonic backscattering, this study proposes ultrasound Nakagami imaging, which is a well-established method for backscattered statistics analysis, as an approach to complement the conventional B-scan for evaluating the ablation region. Porcine liver samples (n = 6) were ablated using a RFA system and monitored by employing an ultrasound scanner equipped with a 7.5 MHz linear array transducer. During the stages of ablation (0-12 min) and postablation (12-24 min), the raw backscattered data were acquired at a sampling rate of 30 MHz for B-mode, Nakagami imaging, and polynomial approximation of Nakagami imaging. The contrast-to-noise ratio (CNR) was also calculated to compare the image contrasts of the B-mode and Nakagami images. The results demonstrated that the Nakagami image has the ability to visualize changes in the backscattered statistics in the ablation zone, including the shadow region during RFA. The average Nakagami parameter increased from 0.2 to 0.6 in the ablation stage, and then decreased to approximately 0.3 at the end of the postablation stage. Moreover, the CNR of the Nakagami image was threefold that of the B-mode image, showing that the Nakagami image has a better image contrast for monitoring RFA. Specifically, the use of the polynomial approximation equips the Nakagami image with an enhanced ability to estimate the range of the ablation region. This study demonstrated that ultrasound Nakagami imaging based on the analysis of backscattered statistics has the ability to visualize the RFA-induced ablation zone, even if the shadow effect exists in the B-scan.

  13. Improving the light quantification of near infrared (NIR) diffused light optical tomography with ultrasound localization

    NASA Astrophysics Data System (ADS)

    Ardeshirpour, Yasaman

    According to the statistics published by the American Cancer Society, currently breast cancer is the second most common cancer after skin cancer and the second cause of cancer death after lung cancer in the female population. Diffuse optical tomography (DOT) using near-infrared (NIR) light, guided by ultrasound localization, has shown great promise in distinguishing benign from malignant breast tumors and in assessing the response of breast cancer to chemotherapy. Our ultrasound-guided DOT system is based on reflection geometry, with patients scanned in supine position using a hand-held probe. For patients with chest-wall located at a depth shallower than 1 to 2cm, as in about 10% of our clinical cases, the semi-infinite imaging medium is not a valid assumption and the chest-wall effect needs to be considered in the imaging reconstruction procedure. In this dissertation, co-registered ultrasound images were used to model the breast-tissue and chest-wall as a two-layer medium. The effect of the chest wall on breast lesion reconstruction was systematically investigated. The performance of the two-layer model-based reconstruction, using the Finite Element Method, was evaluated by simulation, phantom experiments and clinical studies. The results show that the two-layer model can improve the accuracy of estimated background optical properties, the reconstructed absorption map and the total hemoglobin concentration of the lesion. For patients' data affected by chest wall, the perturbation, which is the difference between measurements obtained at lesion and normal reference sites, may include the information of background mismatch between these two sites. Because the imaging reconstruction is based on the perturbation approach, the effect of this mismatch between the optical properties at the two sites on reconstructed optical absorption was studied and a guideline for imaging procedure was developed to reduce these effects during data capturing. To reduce the artifacts caused by the background mismatch between the lesion and reference sites, two solutions were introduced. The first solution uses a model-based approach and the second method uses an exogenous contrast agent. The results of phantom and animal studies show that both methods can significantly reduce artifacts generated by the background mismatch.

  14. Normalized gradient fields cross-correlation for automated detection of prostate in magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Fotin, Sergei V.; Yin, Yin; Periaswamy, Senthil; Kunz, Justin; Haldankar, Hrishikesh; Muradyan, Naira; Cornud, François; Turkbey, Baris; Choyke, Peter L.

    2012-02-01

    Fully automated prostate segmentation helps to address several problems in prostate cancer diagnosis and treatment: it can assist in objective evaluation of multiparametric MR imagery, provides a prostate contour for MR-ultrasound (or CT) image fusion for computer-assisted image-guided biopsy or therapy planning, may facilitate reporting and enables direct prostate volume calculation. Among the challenges in automated analysis of MR images of the prostate are the variations of overall image intensities across scanners, the presence of nonuniform multiplicative bias field within scans and differences in acquisition setup. Furthermore, images acquired with the presence of an endorectal coil suffer from localized high-intensity artifacts at the posterior part of the prostate. In this work, a three-dimensional method for fast automated prostate detection based on normalized gradient fields cross-correlation, insensitive to intensity variations and coil-induced artifacts, is presented and evaluated. The components of the method, offline template learning and the localization algorithm, are described in detail. The method was validated on a dataset of 522 T2-weighted MR images acquired at the National Cancer Institute, USA that was split in two halves for development and testing. In addition, second dataset of 29 MR exams from Centre d'Imagerie Médicale Tourville, France were used to test the algorithm. The 95% confidence intervals for the mean Euclidean distance between automatically and manually identified prostate centroids were 4.06 +/- 0.33 mm and 3.10 +/- 0.43 mm for the first and second test datasets respectively. Moreover, the algorithm provided the centroid within the true prostate volume in 100% of images from both datasets. Obtained results demonstrate high utility of the detection method for a fully automated prostate segmentation.

  15. Automatic transperineal ultrasound probe positioning based on CT scan for image guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Camps, S. M.; Verhaegen, F.; Paiva Fonesca, G.; de With, P. H. N.; Fontanarosa, D.

    2017-03-01

    Image interpretation is crucial during ultrasound image acquisition. A skilled operator is typically needed to verify if the correct anatomical structures are all visualized and with sufficient quality. The need for this operator is one of the major reasons why presently ultrasound is not widely used in radiotherapy workflows. To solve this issue, we introduce an algorithm that uses anatomical information derived from a CT scan to automatically provide the operator with a patient-specific ultrasound probe setup. The first application we investigated, for its relevance to radiotherapy, is 4D transperineal ultrasound image acquisition for prostate cancer patients. As initial test, the algorithm was applied on a CIRS multi-modality pelvic phantom. Probe setups were calculated in order to allow visualization of the prostate and adjacent edges of bladder and rectum, as clinically required. Five of the proposed setups were reproduced using a precision robotic arm and ultrasound volumes were acquired. A gel-filled probe cover was used to ensure proper acoustic coupling, while taking into account possible tilted positions of the probe with respect to the flat phantom surface. Visual inspection of the acquired volumes revealed that clinical requirements were fulfilled. Preliminary quantitative evaluation was also performed. The mean absolute distance (MAD) was calculated between actual anatomical structure positions and positions predicted by the CT-based algorithm. This resulted in a MAD of (2.8±0.4) mm for prostate, (2.5±0.6) mm for bladder and (2.8±0.6) mm for rectum. These results show that no significant systematic errors due to e.g. probe misplacement were introduced.

  16. Efficacy of Magnetic Resonance-guided Focused Ultrasound Surgery for Bone Metastases Pain Palliation

    NASA Astrophysics Data System (ADS)

    Kawasaki, Motohiro; Nanba, Hirofumi; Kato, Tomonari; Tani, Toshikazu; Ushida, Takahiro

    2011-09-01

    Magnetic resonance-guided focused ultrasound surgery (MRgFUS) is a novel treatment method that achieves non-invasive thermal ablation by focusing many ultrasound waves on a target tissue with real-time monitoring of the location and temperature of the target during the procedure. We investigated the palliative effect on pain and safety of MRgFUS in painful bone metastases. Six patients (mean age, 65.8 years) who met eligibility criteria for the clinical study approved by our Institutional Ethics Committee based on the cooperative protocol were treated with MRgFUS. Targeted sites included the sacrum (n = 1), ilium (n = 2), scapula (n = 2), and femur (n = 1). The mean follow-up period was 9.2 months. All procedures were performed as a single-session treatment using the treatment system that is integrated into the patient table of a magnetic resonance image (MRI) scanner. Endpoints were change in the intensity of pain due to bone metastases from before to after the treatment, as measured on a numerical rating scale, pain interference with daily activities as determined by the Brief pain inventory (BPI), change in images, and safety. Pain relief was obtained in all patients early after treatment, with a reduction in the mean pain score from 6.0±1.3 at baseline to 1.2±1.0 at the end of follow-up as well as in pain interference with daily activities. The mean time required for a single-session treatment was 83.7±37.0 min, with a mean number of sonications required of 13.3±3.7 and mean energy applied of 846.4±273.5 J. No significant growth of tumors was observed, nor were there treatment-related adverse events. These results suggest that MRgFUS has a non-invasive palliative effect on the localized pain in patients with bone metastasis. MRgFUS could become an option in treatment strategies for painful bone metastases in the future.

  17. A modeling-based assessment of acousto-optic sensing for monitoring high-intensity focused ultrasound lesion formation

    NASA Astrophysics Data System (ADS)

    Adams, Matthew Tyler

    Real-time acousto-optic (AO) sensing---a dual-wave modality that combines ultrasound with diffuse light to probe the optical properties of turbid media---has been demonstrated to non-invasively detect changes in ex vivo tissue optical properties during high-intensity focused ultrasound (HIFU) exposure. The AO signal indicates the onset of lesion formation and predicts resulting lesion volumes. Although proof-of-concept experiments have been successful, many of the underlying parameters and mechanisms affecting thermally induced optical property changes and the AO detectability of HIFU lesion formation are not well understood. In thesis, a numerical simulation was developed to model the AO sensing process and capture the relevant acoustic, thermal, and optical transport processes. The simulation required data that described how optical properties changed with heating. Experiments were carried out where excised chicken breast was exposed to thermal bath heating and changes in the optical absorption and scattering spectra (500 nm--1100 nm) were measured using a scanning spectrophotometer and an integrating sphere assembly. Results showed that the standard thermal dose model currently used for guiding HIFU treatments needs to be adjusted to describe thermally induced optical property changes. To model the entire AO process, coupled models were used for ultrasound propagation, tissue heating, and diffusive light transport. The angular spectrum method was used to model the acoustic field from the HIFU source. Spatial-temporal temperature elevations induced by the absorption of ultrasound were modeled using a finite-difference time-domain solution to the Pennes bioheat equation. The thermal dose model was then used to determine optical properties based on the temperature history. The diffuse optical field in the tissue was then calculated using a GPU-accelerated Monte Carlo algorithm, which accounted for light-sound interactions and AO signal detection. The simulation was used to determine the optimal design for an AO guided HIFU system by evaluating the robustness of the systems signal to changes in tissue thickness, lesion optical contrast, and lesion location. It was determined that AO sensing is a clinically viable technique for guiding the ablation of large volumes and that real-time sensing may be feasible in the breast and prostate.

  18. Lung flooding enables efficient lung sonography and tumour imaging in human ex vivo and porcine in vivo lung cancer model

    PubMed Central

    2013-01-01

    Background Sonography has become the imaging technique of choice for guiding intraoperative interventions in abdominal surgery. Due to artefacts from residual air content, however, videothoracoscopic and open intraoperative ultrasound-guided thermoablation of lung malignancies are impossible. Lung flooding is a new method that allows complete ultrasound imaging of lungs and their tumours. Methods Fourteen resected tumourous human lung lobes were examined transpleurally with B-mode ultrasound before (in atelectasis) and after lung flooding with isotonic saline solution. In two swine, the left lung was filled with 15 ml/kg isotonic saline solution through the left side of a double-lumen tube. Lung tumours were simulated by transthoracic ultrasound-guided injection of 5 ml of purified bovine serum albumin in glutaraldehyde, centrally into the left lower lung lobe. The rate of tumour detection, the severity of disability caused by residual gas, and sonomorphology of the lungs and tumours were assessed. Results The ex vivo tumour detection rate was 100% in flooded human lung lobes and 43% (6/14) in atelectatic lungs. In all cases of atelectasis, sonographic tumour imaging was impaired by residual gas. Tumours and atelectatic tissue were isoechoic. In 28% of flooded lungs, a little residual gas was observed that did not impair sonographic tumour imaging. In contrast to tumours, flooded lung tissue was hyperechoic, homogeneous, and of fine-grained structure. Because of the bronchial wall three-laminar structure, sonographic differentiation of vessels and bronchi was possible. In all cases, malignant tumours in the flooded lung appeared well-demarcated from the lung parenchyma. Adenocarcinoma, squamous, and large cell carcinomas were hypoechoic. Bronchioloalveolar cell carcinoma was slightly hyperechoic. Transpleural sonography identifies endobronchial tumour growth and bronchial wall destruction. With transthoracic sonography, the flooded animal lung can be completely examined in vivo. There is no residual gas, which interferes with ultrasound. Pulmonary vessels and bronchi are clearly differentiated. Simulated lung lesions can easily be detected inside the lung lobe. Conclusions Lung flooding enables complete lung sonography and tumour detection. We have developed a novel method that efficiently uses ultrasound for guiding intraoperative interventions in open and endoscopic lung surgery. PMID:23841910

  19. Cardiac phase detection in intravascular ultrasound images

    NASA Astrophysics Data System (ADS)

    Matsumoto, Monica M. S.; Lemos, Pedro Alves; Yoneyama, Takashi; Furuie, Sergio Shiguemi

    2008-03-01

    Image gating is related to image modalities that involve quasi-periodic moving organs. Therefore, during intravascular ultrasound (IVUS) examination, there is cardiac movement interference. In this paper, we aim to obtain IVUS gated images based on the images themselves. This would allow the reconstruction of 3D coronaries with temporal accuracy for any cardiac phase, which is an advantage over the ECG-gated acquisition that shows a single one. It is also important for retrospective studies, as in existing IVUS databases there are no additional reference signals (ECG). From the images, we calculated signals based on average intensity (AI), and, from consecutive frames, average intensity difference (AID), cross-correlation coefficient (CC) and mutual information (MI). The process includes a wavelet-based filter step and ascendant zero-cross detection in order to obtain the phase information. Firstly, we tested 90 simulated sequences with 1025 frames each. Our method was able to achieve more than 95.0% of true positives and less than 2.3% of false positives ratio, for all signals. Afterwards, we tested in a real examination, with 897 frames and ECG as gold-standard. We achieved 97.4% of true positives (CC and MI), and 2.5% of false positives. For future works, methodology should be tested in wider range of IVUS examinations.

  20. Analysis of "dry" mesothelioma with ultrasound guided biopsies.

    PubMed

    Stigt, Jos A; Boers, James E; Groen, Harry J M

    2012-12-01

    Image-guided sampling of the thickened pleura is a sensitive approach in patients with malignant pleural mesothelioma with pleural effusion. Malignant pleural mesothelioma presenting without effusion however is more of a diagnostic challenge. In this study we report the diagnostic yield and complications of ultrasound-guided cutting needle biopsies in this particular category of patients. A retrospective database analysis from September 2007 until January 2012 was performed in 56 patients with malignant pleural mesothelioma. Clinical characteristics and results of diagnostic evaluations were analysed. Of the 56 patients with malignant pleural mesothelioma, 20 patients presented without pleural effusion of with locular effusion. Ultrasound-guided cutting needle biopsy was performed in 14/20 patients with a diagnostic accuracy of 80%. Only 1 patient had mild haemoptysis immediately following biopsies. Diagnosing patients with pleural thickenings suspect for malignant mesothelioma without pleural effusion or with loculated pleural effusion is effective and safe with ultrasound-guided cutting needle biopsies. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Accelerated Training at Mach 20: A Brief Communication Submitted from the International Space Station

    NASA Technical Reports Server (NTRS)

    Foale, C. Michael; Kaleri, Alexander Y.; Sargsyan, Ashot E.; Hamilton, Douglas R.; Melton, Shannon; Martin, David; Dulchavsky, Scott A.

    2004-01-01

    The performance of complex tasks on the International Space Station (ISS) requires significant preflight crew training commitments and frequent skill and knowledge refreshment. This report documents a recently developed just-in-time training methodology, which integrates preflight hardware familiarization and procedure training with an on-orbit CD-ROM-based skill enhancement. This just-in-time concept was used to support real-time remote expert guidance to complete medical examinations using the ISS Human Research Facility (HRF). An American and Russian ISS crewmember received 2-hours of hands on ultrasound training 8 months prior to the on-orbit ultrasound exam. A CD-ROM-based Onboard Proficiency Enhancement (OPE) interactive multimedia program consisting of memory enhancing tutorials, and skill testing exercises, was completed by the crewmember six days prior to the on-orbit ultrasound exam. The crewmember was then remotely guided through a thoracic, vascular, and echocardiographic examination by ultrasound imaging experts. Results of the CD ROM based OPE session were used to modify the instructions during a complete 35 minute real-time thoracic, cardiac, and carotid/jugular ultrasound study. Following commands from the ground-based expert, the crewmember acquired all target views and images without difficulty. The anatomical content and fidelity of ultrasound video were excellent and adequate for clinical decision-making. Complex ultrasound experiments with expert guidance were performed with high accuracy following limited pre-flight training and CD-ROM-based in-flight review, despite a 2-second communication latency. In-flight application of multimedia proficiency enhancement software, coupled with real-time remote expert guidance, can facilitate the performance of complex demanding tasks.

  2. Register cardiac fiber orientations from 3D DTI volume to 2D ultrasound image of rat hearts

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Lerakis, Stamatios; Wagner, Mary B.; Fei, Baowei

    2015-03-01

    Two-dimensional (2D) ultrasound or echocardiography is one of the most widely used examinations for the diagnosis of cardiac diseases. However, it only supplies the geometric and structural information of the myocardium. In order to supply more detailed microstructure information of the myocardium, this paper proposes a registration method to map cardiac fiber orientations from three-dimensional (3D) magnetic resonance diffusion tensor imaging (MR-DTI) volume to the 2D ultrasound image. It utilizes a 2D/3D intensity based registration procedure including rigid, log-demons, and affine transformations to search the best similar slice from the template volume. After registration, the cardiac fiber orientations are mapped to the 2D ultrasound image via fiber relocations and reorientations. This method was validated by six images of rat hearts ex vivo. The evaluation results indicated that the final Dice similarity coefficient (DSC) achieved more than 90% after geometric registrations; and the inclination angle errors (IAE) between the mapped fiber orientations and the gold standards were less than 15 degree. This method may provide a practical tool for cardiologists to examine cardiac fiber orientations on ultrasound images and have the potential to supply additional information for diagnosis of cardiac diseases.

  3. Ultrasound of the thyroid and parathyroid glands.

    PubMed

    Barraclough, B M; Barraclough, B H

    2000-02-01

    The superficial position of thyroid and parathyroid glands facilitates the use of diagnostic ultrasound (US) as an imaging technique. Techniques of image acquisition and interpretation are described in detail. Size and morphology of glands can be defined easily. The most important use of US guided biopsy in relation to thyroid and parathyroid glands is to increase diagnostic accuracy.

  4. 2D-3D rigid registration to compensate for prostate motion during 3D TRUS-guided biopsy.

    PubMed

    De Silva, Tharindu; Fenster, Aaron; Cool, Derek W; Gardi, Lori; Romagnoli, Cesare; Samarabandu, Jagath; Ward, Aaron D

    2013-02-01

    Three-dimensional (3D) transrectal ultrasound (TRUS)-guided systems have been developed to improve targeting accuracy during prostate biopsy. However, prostate motion during the procedure is a potential source of error that can cause target misalignments. The authors present an image-based registration technique to compensate for prostate motion by registering the live two-dimensional (2D) TRUS images acquired during the biopsy procedure to a preacquired 3D TRUS image. The registration must be performed both accurately and quickly in order to be useful during the clinical procedure. The authors implemented an intensity-based 2D-3D rigid registration algorithm optimizing the normalized cross-correlation (NCC) metric using Powell's method. The 2D TRUS images acquired during the procedure prior to biopsy gun firing were registered to the baseline 3D TRUS image acquired at the beginning of the procedure. The accuracy was measured by calculating the target registration error (TRE) using manually identified fiducials within the prostate; these fiducials were used for validation only and were not provided as inputs to the registration algorithm. They also evaluated the accuracy when the registrations were performed continuously throughout the biopsy by acquiring and registering live 2D TRUS images every second. This measured the improvement in accuracy resulting from performing the registration, continuously compensating for motion during the procedure. To further validate the method using a more challenging data set, registrations were performed using 3D TRUS images acquired by intentionally exerting different levels of ultrasound probe pressures in order to measure the performance of our algorithm when the prostate tissue was intentionally deformed. In this data set, biopsy scenarios were simulated by extracting 2D frames from the 3D TRUS images and registering them to the baseline 3D image. A graphics processing unit (GPU)-based implementation was used to improve the registration speed. They also studied the correlation between NCC and TREs. The root-mean-square (RMS) TRE of registrations performed prior to biopsy gun firing was found to be 1.87 ± 0.81 mm. This was an improvement over 4.75 ± 2.62 mm before registration. When the registrations were performed every second during the biopsy, the RMS TRE was reduced to 1.63 ± 0.51 mm. For 3D data sets acquired under different probe pressures, the RMS TRE was found to be 3.18 ± 1.6 mm. This was an improvement from 6.89 ± 4.1 mm before registration. With the GPU based implementation, the registrations were performed with a mean time of 1.1 s. The TRE showed a weak correlation with the similarity metric. However, the authors measured a generally convex shape of the metric around the ground truth, which may explain the rapid convergence of their algorithm to accurate results. Registration to compensate for prostate motion during 3D TRUS-guided biopsy can be performed with a measured accuracy of less than 2 mm and a speed of 1.1 s, which is an important step toward improving the targeting accuracy of a 3D TRUS-guided biopsy system.

  5. Application of wavelet techniques for cancer diagnosis using ultrasound images: A Review.

    PubMed

    Sudarshan, Vidya K; Mookiah, Muthu Rama Krishnan; Acharya, U Rajendra; Chandran, Vinod; Molinari, Filippo; Fujita, Hamido; Ng, Kwan Hoong

    2016-02-01

    Ultrasound is an important and low cost imaging modality used to study the internal organs of human body and blood flow through blood vessels. It uses high frequency sound waves to acquire images of internal organs. It is used to screen normal, benign and malignant tissues of various organs. Healthy and malignant tissues generate different echoes for ultrasound. Hence, it provides useful information about the potential tumor tissues that can be analyzed for diagnostic purposes before therapeutic procedures. Ultrasound images are affected with speckle noise due to an air gap between the transducer probe and the body. The challenge is to design and develop robust image preprocessing, segmentation and feature extraction algorithms to locate the tumor region and to extract subtle information from isolated tumor region for diagnosis. This information can be revealed using a scale space technique such as the Discrete Wavelet Transform (DWT). It decomposes an image into images at different scales using low pass and high pass filters. These filters help to identify the detail or sudden changes in intensity in the image. These changes are reflected in the wavelet coefficients. Various texture, statistical and image based features can be extracted from these coefficients. The extracted features are subjected to statistical analysis to identify the significant features to discriminate normal and malignant ultrasound images using supervised classifiers. This paper presents a review of wavelet techniques used for preprocessing, segmentation and feature extraction of breast, thyroid, ovarian and prostate cancer using ultrasound images. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. A Methodology for Anatomic Ultrasound Image Diagnostic Quality Assessment.

    PubMed

    Hemmsen, Martin Christian; Lange, Theis; Brandt, Andreas Hjelm; Nielsen, Michael Bachmann; Jensen, Jorgen Arendt

    2017-01-01

    This paper discusses the methods for the assessment of ultrasound image quality based on our experiences with evaluating new methods for anatomic imaging. It presents a methodology to ensure a fair assessment between competing imaging methods using clinically relevant evaluations. The methodology is valuable in the continuing process of method optimization and guided development of new imaging methods. It includes a three phased study plan covering from initial prototype development to clinical assessment. Recommendations to the clinical assessment protocol, software, and statistical analysis are presented. Earlier uses of the methodology has shown that it ensures validity of the assessment, as it separates the influences between developer, investigator, and assessor once a research protocol has been established. This separation reduces confounding influences on the result from the developer to properly reveal the clinical value. This paper exemplifies the methodology using recent studies of synthetic aperture sequential beamforming tissue harmonic imaging.

  7. Real-time three-dimensional ultrasound-assisted axillary plexus block defines soft tissue planes.

    PubMed

    Clendenen, Steven R; Riutort, Kevin; Ladlie, Beth L; Robards, Christopher; Franco, Carlo D; Greengrass, Roy A

    2009-04-01

    Two-dimensional (2D) ultrasound is commonly used for regional block of the axillary brachial plexus. In this technical case report, we described a real-time three-dimensional (3D) ultrasound-guided axillary block. The difference between 2D and 3D ultrasound is similar to the difference between plain radiograph and computer tomography. Unlike 2D ultrasound that captures a planar image, 3D ultrasound technology acquires a 3D volume of information that enables multiple planes of view by manipulating the image without movement of the ultrasound probe. Observation of the brachial plexus in cross-section demonstrated distinct linear hyperechoic tissue structures (loose connective tissue) that initially inhibited the flow of the local anesthesia. After completion of the injection, we were able to visualize the influence of arterial pulsation on the spread of the local anesthesia. Possible advantages of this novel technology over current 2D methods are wider image volume and the capability to manipulate the planes of the image without moving the probe.

  8. Magnetic resonance-guided shielding of prefocal acoustic obstacles in focused ultrasound therapy: application to intercostal ablation in liver.

    PubMed

    Salomir, Rares; Petrusca, Lorena; Auboiroux, Vincent; Muller, Arnaud; Vargas, Maria-Isabel; Morel, Denis R; Goget, Thomas; Breguet, Romain; Terraz, Sylvain; Hopple, Jerry; Montet, Xavier; Becker, Christoph D; Viallon, Magalie

    2013-06-01

    The treatment of liver cancer is a major public health issue because the liver is a frequent site for both primary and secondary tumors. Rib heating represents a major obstacle for the application of extracorporeal focused ultrasound to liver ablation. Magnetic resonance (MR)-guided external shielding of acoustic obstacles (eg, the ribs) was investigated here to avoid unwanted prefocal energy deposition in the pathway of the focused ultrasound beam. Ex vivo and in vivo (7 female sheep) experiments were performed in this study. Magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU) was performed using a randomized 256-element phased-array transducer (f∼1 MHz) and a 3-T whole-body clinical MR scanner. A physical mask was inserted in the prefocal beam pathway, external to the body, to block the energy normally targeted on the ribs. The effectiveness of the reflecting material was investigated by characterizing the efficacy of high-intensity focused ultrasound beam reflection and scattering on its surface using Schlieren interferometry. Before high-intensity focused ultrasound sonication, the alignment of the protectors with the conical projections of the ribs was required and achieved in multiple steps using the embedded graphical tools of the MR scanner. Multiplanar near real-time MR thermometry (proton resonance frequency shift method) enabled the simultaneous visualization of the local temperature increase at the focal point and around the exposed ribs. The beam defocusing due to the shielding was evaluated from the MR acoustic radiation force impulse imaging data. Both MR thermometry (performed with hard absorber positioned behind a full-aperture blocking shield) and Schlieren interferometry indicated a very good energy barrier of the shielding material. The specific temperature contrast between rib surface (spatial average) and focus, calculated at the end point of the MRgHIFU sonication, with protectors vs no protectors, indicated an important reduction of the temperature elevation at the ribs' surface, typically by 3.3 ± 0.4 in vivo. This was translated into an exponential reduction in thermal dose by several orders of magnitude. The external shielding covering the full conical shadow of the ribs was more effective when the protectors could be placed close to the ribs' surface and had a tendency to lose its efficiency when placed further from the ribs. Hepatic parenchyma was safely ablated in vivo using this rib-sparing strategy and single-focus independent sonications. A readily available, MR-compatible, effective, and cost-competitive method for rib protection in transcostal MRgHIFU was validated in this study, using specific reflective strips. The current approach permitted safe intercostal ablation of small volumes (0.7 mL) of liver parenchyma.

  9. Linearized image reconstruction method for ultrasound modulated electrical impedance tomography based on power density distribution

    NASA Astrophysics Data System (ADS)

    Song, Xizi; Xu, Yanbin; Dong, Feng

    2017-04-01

    Electrical resistance tomography (ERT) is a promising measurement technique with important industrial and clinical applications. However, with limited effective measurements, it suffers from poor spatial resolution due to the ill-posedness of the inverse problem. Recently, there has been an increasing research interest in hybrid imaging techniques, utilizing couplings of physical modalities, because these techniques obtain much more effective measurement information and promise high resolution. Ultrasound modulated electrical impedance tomography (UMEIT) is one of the newly developed hybrid imaging techniques, which combines electric and acoustic modalities. A linearized image reconstruction method based on power density is proposed for UMEIT. The interior data, power density distribution, is adopted to reconstruct the conductivity distribution with the proposed image reconstruction method. At the same time, relating the power density change to the change in conductivity, the Jacobian matrix is employed to make the nonlinear problem into a linear one. The analytic formulation of this Jacobian matrix is derived and its effectiveness is also verified. In addition, different excitation patterns are tested and analyzed, and opposite excitation provides the best performance with the proposed method. Also, multiple power density distributions are combined to implement image reconstruction. Finally, image reconstruction is implemented with the linear back-projection (LBP) algorithm. Compared with ERT, with the proposed image reconstruction method, UMEIT can produce reconstructed images with higher quality and better quantitative evaluation results.

  10. Out of hospital point of care ultrasound: current use models and future directions.

    PubMed

    Nelson, B P; Sanghvi, A

    2016-04-01

    Ultrasound has evolved from a modality that was once exclusively reserved to certain specialities of its current state, in which its portability and durability lend to its broadly increasing applications. This review describes portable ultrasound in the hospital setting and its comparison to gold standard imaging modalities. Also, this review summarizes current literature describing portable ultrasound use in prehospital, austere and remote environments, highlighting successes and barriers to use in these environments. Prehospital ultrasound has the ability to increase diagnostic ability and allow for therapeutic intervention in the field. In austere environments, ultrasound may be the only available imaging modality and thus can guide diagnosis, therapeutics and determine which patients may need emergent transfer to a healthcare facility. The most cutting edge applications of portable ultrasound employ telemedicine to obtain and transmit ultrasound images. This technology and ability to transmit images via satellite and cellular transmission can allow for even novice users to obtain interpretable images in austere environments. Portable ultrasound uses have steadily grown and will continue to do so with the introduction of more portable and durable technologies. As applications continue to grow, certain technologic considerations and future directions are explored.

  11. MO-AB-210-02: Ultrasound Imaging and Therapy-Hands On Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sammet, S.

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrationsmore » with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS080949 and Philips Healthcare research grant C32.« less

  12. MO-AB-210-01: Ultrasound Imaging and Therapy-Hands On Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Z.

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrationsmore » with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS080949 and Philips Healthcare research grant C32.« less

  13. Acute bacterial prostatitis after transrectal ultrasound-guided prostate biopsy: epidemiological, bacteria and treatment patterns from a 4-year prospective study.

    PubMed

    Campeggi, Alexandre; Ouzaid, Idir; Xylinas, Evanguelos; Lesprit, Philippe; Hoznek, Andras; Vordos, Dimitri; Abbou, Claude-Clément; Salomon, Laurent; de la Taille, Alexandre

    2014-02-01

    To evaluate the incidence, and clinical and bacterial features of iatrogenic prostatitis within 1 month after transrectal ultrasound-guided biopsy for detection of prostate cancer. From January 2006 to December 2009, 3000 patients underwent a 21-core transrectal ultrasound-guided prostate biopsy at Henri Mondor Hospital (Créteil, France) and were prospectively followed. All patients had a fluoroquinolone antimicrobial prophylaxis for 7 days. The primary study end-point was to evaluate the incidence of iatrogenic acute prostatitis within 1 month after the biopsy. The secondary end-point was to analyze the clinical and the bacterial features of the prostatitis. Overall, 20 patients of the entire study population (0.67%) had an acute bacterial prostatitis within 2.90 ± 1.77 days (range 1-7 days) after the transrectal ultrasound-guided biopsy. The groups of patients with (n = 20) and without (n = 2980) infection were similar in terms of age, prostate-specific antigen level and prostate volume. Escherichia coli was the only isolated bacteria. The subsequent tests for antibiotic susceptibility showed a 95% resistance for fluroquinolone and amoxicillin. Resistance to amoxiclav, trimethoprim-sulfamethoxazole, third generation cephalosporin and amikacin was 70%, 70%, 25% and 5% respectively. No resistance to imipenem was reported. They were all admitted for treatment without the need of intensive care unit referral. Complete recovery was achieved after 21.4 ± 7 days of antibiotic treatment. A fluroquinolone-based regimen still represents an appropriate prophylaxis protocol to minimize the risk of acute prostatitis secondary to prostate biopsy. Patients should be provided the appropriate care soon after the onset of the symptoms. An intravenous third generation cephalosporin or imipenem-based therapy seem to provide satisfying results. © 2013 The Japanese Urological Association.

  14. Sparse matrix beamforming and image reconstruction for real-time 2D HIFU monitoring using Harmonic Motion Imaging for Focused Ultrasound (HMIFU) with in vitro validation

    PubMed Central

    Hou, Gary Y.; Provost, Jean; Grondin, Julien; Wang, Shutao; Marquet, Fabrice; Bunting, Ethan; Konofagou, Elisa E.

    2015-01-01

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a recently developed High-Intensity Focused Ultrasound (HIFU) treatment monitoring method. HMIFU utilizes an Amplitude-Modulated (fAM = 25 Hz) HIFU beam to induce a localized focal oscillatory motion, which is simultaneously estimated and imaged by confocally-aligned imaging transducer. HMIFU feasibilities have been previously shown in silico, in vitro, and in vivo in 1-D or 2-D monitoring of HIFU treatment. The objective of this study is to develop and show the feasibility of a novel fast beamforming algorithm for image reconstruction using GPU-based sparse-matrix operation with real-time feedback. In this study, the algorithm was implemented onto a fully integrated, clinically relevant HMIFU system composed of a 93-element HIFU transducer (fcenter = 4.5MHz) and coaxially-aligned 64-element phased array (fcenter = 2.5MHz) for displacement excitation and motion estimation, respectively. A single transmit beam with divergent beam transmit was used while fast beamforming was implemented using a GPU-based delay-and-sum method and a sparse-matrix operation. Axial HMI displacements were then estimated from the RF signals using a 1-D normalized cross-correlation method and streamed to a graphic user interface. The present work developed and implemented a sparse matrix beamforming onto a fully-integrated, clinically relevant system, which can stream displacement images up to 15 Hz using a GPU-based processing, an increase of 100 fold in rate of streaming displacement images compared to conventional CPU-based conventional beamforming and reconstruction processing. The achieved feedback rate is also currently the fastest and only approach that does not require interrupting the HIFU treatment amongst the acoustic radiation force based HIFU imaging techniques. Results in phantom experiments showed reproducible displacement imaging, and monitoring of twenty two in vitro HIFU treatments using the new 2D system showed a consistent average focal displacement decrease of 46.7±14.6% during lesion formation. Complementary focal temperature monitoring also indicated an average rate of displacement increase and decrease with focal temperature at 0.84±1.15 %/ °C, and 2.03± 0.93%/ °C, respectively. These results reinforce the HMIFU capability of estimating and monitoring stiffness related changes in real time. Current ongoing studies include clinical translation of the presented system for monitoring of HIFU treatment for breast and pancreatic tumor applications. PMID:24960528

  15. Automated localization and segmentation techniques for B-mode ultrasound images: A review.

    PubMed

    Meiburger, Kristen M; Acharya, U Rajendra; Molinari, Filippo

    2018-01-01

    B-mode ultrasound imaging is used extensively in medicine. Hence, there is a need to have efficient segmentation tools to aid in computer-aided diagnosis, image-guided interventions, and therapy. This paper presents a comprehensive review on automated localization and segmentation techniques for B-mode ultrasound images. The paper first describes the general characteristics of B-mode ultrasound images. Then insight on the localization and segmentation of tissues is provided, both in the case in which the organ/tissue localization provides the final segmentation and in the case in which a two-step segmentation process is needed, due to the desired boundaries being too fine to locate from within the entire ultrasound frame. Subsequenly, examples of some main techniques found in literature are shown, including but not limited to shape priors, superpixel and classification, local pixel statistics, active contours, edge-tracking, dynamic programming, and data mining. Ten selected applications (abdomen/kidney, breast, cardiology, thyroid, liver, vascular, musculoskeletal, obstetrics, gynecology, prostate) are then investigated in depth, and the performances of a few specific applications are compared. In conclusion, future perspectives for B-mode based segmentation, such as the integration of RF information, the employment of higher frequency probes when possible, the focus on completely automatic algorithms, and the increase in available data are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Stereoscopic Integrated Imaging Goggles for Multimodal Intraoperative Image Guidance

    PubMed Central

    Mela, Christopher A.; Patterson, Carrie; Thompson, William K.; Papay, Francis; Liu, Yang

    2015-01-01

    We have developed novel stereoscopic wearable multimodal intraoperative imaging and display systems entitled Integrated Imaging Goggles for guiding surgeries. The prototype systems offer real time stereoscopic fluorescence imaging and color reflectance imaging capacity, along with in vivo handheld microscopy and ultrasound imaging. With the Integrated Imaging Goggle, both wide-field fluorescence imaging and in vivo microscopy are provided. The real time ultrasound images can also be presented in the goggle display. Furthermore, real time goggle-to-goggle stereoscopic video sharing is demonstrated, which can greatly facilitate telemedicine. In this paper, the prototype systems are described, characterized and tested in surgeries in biological tissues ex vivo. We have found that the system can detect fluorescent targets with as low as 60 nM indocyanine green and can resolve structures down to 0.25 mm with large FOV stereoscopic imaging. The system has successfully guided simulated cancer surgeries in chicken. The Integrated Imaging Goggle is novel in 4 aspects: it is (a) the first wearable stereoscopic wide-field intraoperative fluorescence imaging and display system, (b) the first wearable system offering both large FOV and microscopic imaging simultaneously, (c) the first wearable system that offers both ultrasound imaging and fluorescence imaging capacities, and (d) the first demonstration of goggle-to-goggle communication to share stereoscopic views for medical guidance. PMID:26529249

  17. Non-Thermal High-Intensity Focused Ultrasound for Breast Cancer Therapy

    DTIC Science & Technology

    2013-07-01

    ultrasound for breast cancer therapy PRINCIPAL INVESTIGATOR: Chang Ming (Charlie) Ma, Ph.D...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Non-thermal high-intensity focused ultrasound for breast cancer therapy 5b. GRANT NUMBER W81XWH-11-1-0341...treatment systems for small animal models. Advanced imaging systems will be required to determine the gross tumor volume, to plan the HIFU treatment, to

  18. Intensity Modulated Radiation Treatment of Prostate Cancer Guided by High Field MR Spectroscopic Imaging

    DTIC Science & Technology

    2006-05-01

    d). (e) In the histogram analysis eld units are observed initially for voxels located on the d to 250 Hounsfield units.ses (a) el the tration...CT10, CT20, and CT30. Histogram ximum difference of 250 Hounsfield units . Only 0.01% d units.d imag ts a mand finite-element model. The fluid flow...cause Hounsfield unit calibration problems. While this does not seem to influence the image registration, the use of CBCT for dose calculation should

  19. Evaluation of volume change in rectum and bladder during application of image-guided radiotherapy for prostate carcinoma

    NASA Astrophysics Data System (ADS)

    Luna, J. A.; Rojas, J. I.

    2016-07-01

    All prostate cancer patients from Centro Médico Radioterapia Siglo XXI receive Volumetric Modulated Arc Therapy (VMAT). This therapy uses image-guided radiotherapy (IGRT) with the Cone Beam Computed Tomography (CBCT). This study compares the planned dose in the reference CT image against the delivered dose recalculate in the CBCT image. The purpose of this study is to evaluate the anatomic changes and related dosimetric effect based on weekly CBCT directly for patients with prostate cancer undergoing volumetric modulated arc therapy (VMAT) treatment. The collected data were analyzed using one-way ANOVA.

  20. Ultrasound imaging-guided intracardiac injection to develop a mouse model of breast cancer brain metastases followed by longitudinal MRI.

    PubMed

    Zhou, Heling; Zhao, Dawen

    2014-03-06

    Breast cancer brain metastasis, occurring in 30% of breast cancer patients at stage IV, is associated with high mortality. The median survival is only 6 months. It is critical to have suitable animal models to mimic the hemodynamic spread of the metastatic cells in the clinical scenario. Here, we are introducing the use of small animal ultrasound imaging to guide an accurate injection of brain tropical breast cancer cells into the left ventricle of athymic nude mice. Longitudinal MRI is used to assessing intracranial initiation and growth of brain metastases. Ultrasound-guided intracardiac injection ensures not only an accurate injection and hereby a higher successful rate but also significantly decreased mortality rate, as compared to our previous manual procedure. In vivo high resolution MRI allows the visualization of hyperintense multifocal lesions, as small as 310 µm in diameter on T2-weighted images at 3 weeks post injection. Follow-up MRI reveals intracranial tumor growth and increased number of metastases that distribute throughout the whole brain.

Top