Sample records for ultrasound-targeted microbubble destruction

  1. Ultrasound-Targeted Microbubble Destruction to Deliver siRNA Cancer Therapy

    PubMed Central

    Carson, Andrew R; McTiernan, Charles F; Lavery, Linda; Grata, Michelle; Leng, Xiaoping; Wang, Jianjun; Chen, Xucai; Villanueva, Flordeliza S

    2012-01-01

    Microbubble contrast agents can specifically deliver nucleic acids to target tissues when exposed to ultrasound treatment parameters that mediate microbubble destruction. In this study, we evaluated whether microbubbles and ultrasound targeted microbubble destruction (UTMD) could be used to enhance delivery of EGFR-directed small inhibitory RNA (siRNA) to murine squamous cell carcinomas. Custom designed microbubbles efficiently bound siRNA and mediated RNAse protection. UTMD-mediated delivery of microbubbles loaded with EGFR-directed siRNA to murine squamous carcinoma cells in vitro reduced EGFR expression and EGF-dependent growth, relative to delivery of control siRNA. Similarly, serial UTMD-mediated delivery of EGFR siRNA to squamous cell carcinoma in vivo decreased EGFR expression and increased tumor doubling times, relative to controls receiving EGFR siRNA loaded microbubbles but not ultrasound or control siRNA loaded microbubbles and UTMD. Taken together, our results offer a preclinical proof of concept for customized microbubbles and UTMD to deliver gene-targeted siRNA for cancer therapy. PMID:23010078

  2. Delivery of Hydrogen Sulfide by Ultrasound Targeted Microbubble Destruction Attenuates Myocardial Ischemia-reperfusion Injury

    PubMed Central

    Chen, Gangbin; Yang, Li; Zhong, Lintao; Kutty, Shelby; Wang, Yuegang; Cui, Kai; Xiu, Jiancheng; Cao, Shiping; Huang, Qiaobing; Liao, Wangjun; Liao, Yulin; Wu, Juefei; Zhang, Wenzhu; Bin, Jianping

    2016-01-01

    Hydrogen sulfide (H2S) is an attractive agent for myocardial ischemia-reperfusion injury, however, systemic delivery of H2S may cause unwanted side effects. Ultrasound targeted microbubble destruction has become a promising tool for organ specific delivery of bioactive substance. We hypothesized that delivery of H2S by ultrasound targeted microbubble destruction attenuates myocardial ischemia-reperfusion injury and could avoid unwanted side effects. We prepared microbubbles carrying hydrogen sulfide (hs-MB) with different H2S/C3F8 ratios (4/0, 3/1, 2/2, 1/3, 0/4) and determined the optimal ratio. Release of H2S triggered by ultrasound was investigated. The cardioprotective effect of ultrasound targeted hs-MB destruction was investigated in a rodent model of myocardial ischemia-reperfusion injury. The H2S/C3F8 ratio of 2/2 was found to be an optimal ratio to prepare stable hs-MB with higher H2S loading capability. Ultrasound targeted hs-MB destruction triggered H2S release and increased the concentration of H2S in the myocardium and lung. Ultrasound targeted hs-MB destruction limited myocardial infarct size, preserved left ventricular function and had no influence on haemodynamics and respiratory. This cardioprotective effect was associated with alleviation of apoptosis and oxidative stress. Delivery of H2S to the myocardium by ultrasound targeted hs-MB destruction attenuates myocardial ischemia-reperfusion injury and may avoid unwanted side effects. PMID:27469291

  3. Unilateral Opening of Rat Blood-Brain Barrier Assisted by Diagnostic Ultrasound Targeted Microbubbles Destruction.

    PubMed

    Xu, Yali; Cui, Hai; Zhu, Qiong; Hua, Xing; Xia, Hongmei; Tan, Kaibin; Gao, Yunhua; Zhao, Jing; Liu, Zheng

    2016-01-01

    Objective. Blood-brain barrier (BBB) is a key obstacle that prevents the medication from blood to the brain. Microbubble-enhanced cavitation by focused ultrasound can open the BBB and proves to be valuable in the brain drug delivery. The study aimed to explore the feasibility, efficacy, and safety of unilateral opening of BBB using diagnostic ultrasound targeted microbubbles destruction in rats. Methods. A transtemporal bone irradiation of diagnostic ultrasound and intravenous injection of lipid-coated microbubbles were performed at unilateral hemisphere. Pathological changes were monitored. Evans Blue extravasation grades, extraction from brain tissue, and fluorescence optical density were quantified. Lanthanum nitrate was traced by transmission electron microscopy. Results. After diagnostic ultrasound mediated microbubbles destruction, Evans Blue extravasation and fluorescence integrated optical density were significantly higher in the irradiated hemisphere than the contralateral side (all p < 0.01). Erythrocytes extravasations were demonstrated in the ultrasound-exposed hemisphere (4 ± 1, grade 2) while being invisible in the control side. Lanthanum nitrate tracers leaked through interendothelial cleft and spread to the nerve fiber existed in the irradiation side. Conclusions. Transtemporal bone irradiation under DUS mediated microbubble destruction provides us with a more accessible, safer, and higher selective BBB opening approach in rats, which is advantageous in brain targeted drugs delivery.

  4. Introduction to the ultrasound targeted microbubble destruction technique.

    PubMed

    Walton, Chad B; Anderson, Cynthia D; Boulay, Rachel; Shohet, Ralph V

    2011-06-12

    In UTMD, bioactive molecules, such as negatively charged plasmid DNA vectors encoding a gene of interest, are added to the cationic shells of lipid microbubble contrast agents. In mice these vector-carrying microbubbles can be administered intravenously or directly to the left ventricle of the heart. In larger animals they can also be infused through an intracoronary catheter. The subsequent delivery from the circulation to a target organ occurs by acoustic cavitation at a resonant frequency of the microbubbles. It seems likely that the mechanical energy generated by the microbubble destruction results in transient pore formation in or between the endothelial cells of the microvasculature of the targeted region. As a result of this sonoporation effect, the transfection efficiency into and across the endothelial cells is enhanced, and transgene-encoding vectors are deposited into the surrounding tissue. Plasmid DNA remaining in the circulation is rapidly degraded by nucleases in the blood, which further reduces the likelihood of delivery to non-sonicated tissues and leads to highly specific target-organ transfection.

  5. Targeted gene delivery to the synovial pannus in antigen-induced arthritis by ultrasound-targeted microbubble destruction in vivo.

    PubMed

    Xiang, Xi; Tang, Yuanjiao; Leng, Qianying; Zhang, Lingyan; Qiu, Li

    2016-02-01

    The purpose of this study was to optimize an ultrasound-targeted microbubble destruction (UTMD) technique to improve the in vivo transfection efficiency of the gene encoding enhanced green fluorescent protein (EGFP) in the synovial pannus in an antigen-induced arthritis rabbit model. A mixture of microbubbles and plasmids was locally injected into the knee joints of an antigen-induced arthritis (AIA) rabbits. The plasmid concentrations and ultrasound conditions were varied in the experiments. We also tested local articular and intravenous injections. The rabbits were divided into five groups: (1) ultrasound+microbubbles+plasmid; (2) ultrasound+plasmid; (3) microbubble+plasmid; (4) plasmid only; (5) untreated controls. EGFP expression was observed by fluorescent microscope and immunohistochemical staining in the synovial pannus of each group. The optimal plasmid dosage and ultrasound parameter were determined based on the results of EGFP expression and the present and absent of tissue damage under light microscopy. The irradiation procedure was performed to observe the duration of the EGFP expression in the synovial pannus and other tissues and organs, as well as the damage to the normal cells. The optimal condition was determined to be a 1-MHz ultrasound pulse applied for 5 min with a power output of 2 W/cm(2) and a 20% duty cycle along with 300 μg of plasmid. Under these conditions, the synovial pannus showed significant EGFP expression without significant damage to the surrounding normal tissue. The EGFP expression induced by the local intra-articular injection was significantly more increased than that induced by the intravenous injection. The EGFP expression in the synovial pannus of the ultrasound+microbubbles+plasmid group was significantly higher than that of the other four groups (P<0.05). The expression peaked on day 5, remained detectable on day 40 and disappeared on day 60. No EGFP expression was detected in the other tissues and organs. The UTMD

  6. A Targeting Microbubble for Ultrasound Molecular Imaging

    PubMed Central

    Yeh, James Shue-Min; Sennoga, Charles A.; McConnell, Ellen; Eckersley, Robert; Tang, Meng-Xing; Nourshargh, Sussan; Seddon, John M.; Haskard, Dorian O.; Nihoyannopoulos, Petros

    2015-01-01

    Rationale Microbubbles conjugated with targeting ligands are used as contrast agents for ultrasound molecular imaging. However, they often contain immunogenic (strept)avidin, which impedes application in humans. Although targeting bubbles not employing the biotin-(strept)avidin conjugation chemistry have been explored, only a few reached the stage of ultrasound imaging in vivo, none were reported/evaluated to show all three of the following properties desired for clinical applications: (i) low degree of non-specific bubble retention in more than one non-reticuloendothelial tissue; (ii) effective for real-time imaging; and (iii) effective for acoustic quantification of molecular targets to a high degree of quantification. Furthermore, disclosures of the compositions and methodologies enabling reproduction of the bubbles are often withheld. Objective To develop and evaluate a targeting microbubble based on maleimide-thiol conjugation chemistry for ultrasound molecular imaging. Methods and Results Microbubbles with a previously unreported generic (non-targeting components) composition were grafted with anti-E-selectin F(ab’)2 using maleimide-thiol conjugation, to produce E-selectin targeting microbubbles. The resulting targeting bubbles showed high specificity to E-selectin in vitro and in vivo. Non-specific bubble retention was minimal in at least three non-reticuloendothelial tissues with inflammation (mouse heart, kidneys, cremaster). The bubbles were effective for real-time ultrasound imaging of E-selectin expression in the inflamed mouse heart and kidneys, using a clinical ultrasound scanner. The acoustic signal intensity of the targeted bubbles retained in the heart correlated strongly with the level of E-selectin expression (|r|≥0.8), demonstrating a high degree of non-invasive molecular quantification. Conclusions Targeting microbubbles for ultrasound molecular imaging, based on maleimide-thiol conjugation chemistry and the generic composition described

  7. Microbubbles in Ultrasound-Triggered Drug and Gene Delivery

    PubMed Central

    Hernot, Sophie; Klibanov, Alexander L.

    2008-01-01

    Ultrasound contrast agents, in the form of gas-filled microbubbles, are becoming popular in perfusion monitoring; they are employed as molecular imaging agents. Microbubbles are manufactured from biocompatible materials, they can be injected intravenously, and some are approved for clinical use. Microbubbles can be destroyed by ultrasound irradiation. This destruction phenomenon can be applied to targeted drug delivery and enhancement of drug action. The ultrasonic field can be focused at the target tissues and organs; thus, selectivity of the treatment can be improved, reducing undesirable side effects. Microbubbles enhance ultrasound energy deposition in the tissues and serve as cavitation nuclei, increasing intracellular drug delivery. DNA delivery and successful tissue transfection is observed in the areas of the body where ultrasound is applied after intravascular administration of microbubbles and plasmid DNA. Accelerated blood clot dissolution in the areas of insonation by cooperative action of thrombolytic agents and microbubbles is demonstrated in several clinical trials. PMID:18486268

  8. Characterization and destruction of Definity® microbubbles used for ultrasound imaging and drug delivery

    NASA Astrophysics Data System (ADS)

    Sarkar, Kausik; Chatterjee, Dhiman; Jain, Pankaj

    2004-11-01

    Intravenously injected encapsulated microbubbles improve the contrast of an ultrasound image. Their destruction is used in measuring blood flow, stimulating arteriogenesis, and drug delivery. We measure attenuation and scattering of ultrasound through solution of contrast agent Definity (Bristol Meyer-Squibb Imaging, North Ballerina, MA). We have developed an interfacial rheology model for the stabilizing encapsulation of such microbubbles. By matching with attenuation data, we obtain the characteristic rheological parameters for Definity. We compare model predictions with measured scattering. We investigate microbubble destruction under acoustic excitation by measuring time-varying attenuation data. Three regions of acoustic pressure amplitudes are found: at low pressure, there is no destruction; at slightly higher pressure bubbles are destroyed, and the rate of destruction depends on a combination of PRF and amplitude. At a still higher pressure amplitude, the attenuation decreases catastrophically. The last two regimes correspond respectively to 1) slow destruction of bubbles due to increased gas diffusion and 2) complete bubble destruction leading to release of free bubbles. (Supported by DOD, NSF and University of Delaware Research Foundation)

  9. Ultrasound-Mediated Vascular Gene Transfection by Cavitation of Endothelial-Targeted Cationic Microbubbles

    PubMed Central

    Xie, Aris; Belcik, Todd; Qi, Yue; Morgan, Terry K.; Champaneri, Shivam A.; Taylor, Sarah; Davidson, Brian P.; Zhao, Yan; Klibanov, Alexander L.; Kuliszewski, Michael A.; Leong-Poi, Howard; Ammi, Azzdine; Lindner, Jonathan R.

    2013-01-01

    OBJECTIVES Ultrasound-mediated gene delivery can be amplified by acoustic disruption of microbubble carriers that undergo cavitation. We hypothesized that endothelial targeting of microbubbles bearing cDNA is feasible and, through optimizing proximity to the vessel wall, increases the efficacy of gene transfection. BACKGROUND Contrast ultrasound-mediated gene delivery is a promising approach for site-specific gene therapy, although there are concerns with the reproducibility of this technique and the safety when using high-power ultrasound. METHODS Cationic lipid-shelled decafluorobutane microbubbles bearing a targeting moiety were prepared and compared with nontargeted microbubbles. Microbubble targeting efficiency to endothelial adhesion molecules (P-selectin or intercellular adhesion molecule [ICAM]-1) was tested using in vitro flow chamber studies, intravital microscopy of tumor necrosis factor-alpha (TNF-α)–stimulated murine cremaster muscle, and targeted contrast ultrasound imaging of P-selectin in a model of murine limb ischemia. Ultrasound-mediated transfection of luciferase reporter plasmid charge coupled to microbubbles in the post-ischemic hindlimb muscle was assessed by in vivo optical imaging. RESULTS Charge coupling of cDNA to the microbubble surface was not influenced by the presence of targeting ligand, and did not alter the cavitation properties of cationic microbubbles. In flow chamber studies, surface conjugation of cDNA did not affect attachment of targeted microbubbles at microvascular shear stresses (0.6 and 1.5 dyne/cm2). Attachment in vivo was also not affected by cDNA according to intravital microscopy observations of venular adhesion of ICAM-1–targeted microbubbles and by ultrasound molecular imaging of P-selectin–targeted microbubbles in the post-ischemic hindlimb in mice. Transfection at the site of high acoustic pressures (1.0 and 1.8 MPa) was similar for control and P-selectin–targeted microbubbles but was associated with

  10. Cardiac Gene Expression Knockdown Using Small Inhibitory RNA-Loaded Microbubbles and Ultrasound

    PubMed Central

    McTiernan, Charles F.; Chen, Xucai; Klein, Edwin C.; Villanueva, Flordeliza S.

    2016-01-01

    RNA interference has potential therapeutic value for cardiac disease, but targeted delivery of interfering RNA is a challenge. Custom designed microbubbles, in conjunction with ultrasound, can deliver small inhibitory RNA to target tissues in vivo. The efficacy of cardiac RNA interference using a microbubble-ultrasound theranostic platform has not been demonstrated in vivo. Therefore, our objective was to test the hypothesis that custom designed microbubbles and ultrasound can mediate effective delivery of small inhibitory RNA to the heart. Microbubble and ultrasound mediated cardiac RNA interference was tested in transgenic mice displaying cardiac-restricted luciferase expression. Luciferase expression was assayed in select tissues of untreated mice (n = 14). Mice received intravenous infusion of cationic microbubbles bearing small inhibitory RNA directed against luciferase (n = 9) or control RNA (n = 8) during intermittent cardiac-directed ultrasound at mechanical index of 1.6. Simultaneous echocardiography in a separate group of mice (n = 3) confirmed microbubble destruction and replenishment during treatment. Three days post treatment, cardiac luciferase messenger RNA and protein levels were significantly lower in ultrasound-treated mice receiving microbubbles loaded with small inhibitory RNA directed against luciferase compared to mice receiving microbubbles bearing control RNA (23±7% and 33±7% of control mice, p<0.01 and p = 0.03, respectively). Passive cavitation detection focused on the heart confirmed that insonification resulted in inertial cavitation. In conclusion, small inhibitory RNA-loaded microbubbles and ultrasound directed at the heart significantly reduced the expression of a reporter gene. Ultrasound-targeted destruction of RNA-loaded microbubbles may be an effective image-guided strategy for therapeutic RNA interference in cardiac disease. PMID:27471848

  11. Cardiac Gene Expression Knockdown Using Small Inhibitory RNA-Loaded Microbubbles and Ultrasound.

    PubMed

    Kopechek, Jonathan A; Carson, Andrew R; McTiernan, Charles F; Chen, Xucai; Klein, Edwin C; Villanueva, Flordeliza S

    2016-01-01

    RNA interference has potential therapeutic value for cardiac disease, but targeted delivery of interfering RNA is a challenge. Custom designed microbubbles, in conjunction with ultrasound, can deliver small inhibitory RNA to target tissues in vivo. The efficacy of cardiac RNA interference using a microbubble-ultrasound theranostic platform has not been demonstrated in vivo. Therefore, our objective was to test the hypothesis that custom designed microbubbles and ultrasound can mediate effective delivery of small inhibitory RNA to the heart. Microbubble and ultrasound mediated cardiac RNA interference was tested in transgenic mice displaying cardiac-restricted luciferase expression. Luciferase expression was assayed in select tissues of untreated mice (n = 14). Mice received intravenous infusion of cationic microbubbles bearing small inhibitory RNA directed against luciferase (n = 9) or control RNA (n = 8) during intermittent cardiac-directed ultrasound at mechanical index of 1.6. Simultaneous echocardiography in a separate group of mice (n = 3) confirmed microbubble destruction and replenishment during treatment. Three days post treatment, cardiac luciferase messenger RNA and protein levels were significantly lower in ultrasound-treated mice receiving microbubbles loaded with small inhibitory RNA directed against luciferase compared to mice receiving microbubbles bearing control RNA (23±7% and 33±7% of control mice, p<0.01 and p = 0.03, respectively). Passive cavitation detection focused on the heart confirmed that insonification resulted in inertial cavitation. In conclusion, small inhibitory RNA-loaded microbubbles and ultrasound directed at the heart significantly reduced the expression of a reporter gene. Ultrasound-targeted destruction of RNA-loaded microbubbles may be an effective image-guided strategy for therapeutic RNA interference in cardiac disease.

  12. Ultrasound-mediated vascular gene transfection by cavitation of endothelial-targeted cationic microbubbles.

    PubMed

    Xie, Aris; Belcik, Todd; Qi, Yue; Morgan, Terry K; Champaneri, Shivam A; Taylor, Sarah; Davidson, Brian P; Zhao, Yan; Klibanov, Alexander L; Kuliszewski, Michael A; Leong-Poi, Howard; Ammi, Azzdine; Lindner, Jonathan R

    2012-12-01

    Ultrasound-mediated gene delivery can be amplified by acoustic disruption of microbubble carriers that undergo cavitation. We hypothesized that endothelial targeting of microbubbles bearing cDNA is feasible and, through optimizing proximity to the vessel wall, increases the efficacy of gene transfection. Contrast ultrasound-mediated gene delivery is a promising approach for site-specific gene therapy, although there are concerns with the reproducibility of this technique and the safety when using high-power ultrasound. Cationic lipid-shelled decafluorobutane microbubbles bearing a targeting moiety were prepared and compared with nontargeted microbubbles. Microbubble targeting efficiency to endothelial adhesion molecules (P-selectin or intercellular adhesion molecule [ICAM]-1) was tested using in vitro flow chamber studies, intravital microscopy of tumor necrosis factor-alpha (TNF-α)-stimulated murine cremaster muscle, and targeted contrast ultrasound imaging of P-selectin in a model of murine limb ischemia. Ultrasound-mediated transfection of luciferase reporter plasmid charge coupled to microbubbles in the post-ischemic hindlimb muscle was assessed by in vivo optical imaging. Charge coupling of cDNA to the microbubble surface was not influenced by the presence of targeting ligand, and did not alter the cavitation properties of cationic microbubbles. In flow chamber studies, surface conjugation of cDNA did not affect attachment of targeted microbubbles at microvascular shear stresses (0.6 and 1.5 dyne/cm(2)). Attachment in vivo was also not affected by cDNA according to intravital microscopy observations of venular adhesion of ICAM-1-targeted microbubbles and by ultrasound molecular imaging of P-selectin-targeted microbubbles in the post-ischemic hindlimb in mice. Transfection at the site of high acoustic pressures (1.0 and 1.8 MPa) was similar for control and P-selectin-targeted microbubbles but was associated with vascular rupture and hemorrhage. At 0.6 MPa

  13. Gene therapy for cardiovascular disease mediated by ultrasound and microbubbles

    PubMed Central

    2013-01-01

    Gene therapy provides an efficient approach for treatment of cardiovascular disease. To realize the therapeutic effect, both efficient delivery to the target cells and sustained expression of transgenes are required. Ultrasound targeted microbubble destruction (UTMD) technique has become a potential strategy for target-specific gene and drug delivery. When gene-loaded microbubble is injected, the ultrasound-mediated microbubble destruction may spew the transported gene to the targeted cells or organ. Meanwhile, high amplitude oscillations of microbubbles increase the permeability of capillary and cell membrane, facilitating uptake of the released gene into tissue and cell. Therefore, efficiency of gene therapy can be significantly improved. To date, UTMD has been successfully investigated in many diseases, and it has achieved outstanding progress in the last two decades. Herein, we discuss the current status of gene therapy of cardiovascular diseases, and reviewed the progress of the delivery of genes to cardiovascular system by UTMD. PMID:23594865

  14. Improved luciferase gene expression using ultrasound targeted microbubble destruction therapy in swine

    NASA Astrophysics Data System (ADS)

    Noble, Misty L.; Song, Shuxian; Sun, Ryan R.; Fan, Luping; DiBlasi, Robert M.; O'Kelly-Priddy, Colleen; Loeb, Keith R.; Miao, Carol H.

    2012-11-01

    Ultrasound (US) targeted microbubble (MB) destruction (UTMD) has been shown to be an effective method in delivering drugs and plasmid DNA (pDNA) into cells. We previously reported successful gene transfection of a reporter luciferase gene, pGL4, into livers of mice and rats using UTMD. The challenge is to translate and achieve similar gene expression in large animals, like swine, where the treated tissue volume is substantially larger. The scale-up study requires proportionally increased amount of pDNA/MBs delivered to tissues and an equivalent increase in US energy. We use different MBs and surgical strategies to retain most of pDNA/MB locally during US application in order to maximize the effect of UTMD in gene transfection. Our results show significant increase in luciferase expression in swine injected with MBs and exposed to 2.7 MPa US. We obtained up to 1800-fold enhancement in the pig experiment using Definity® MBs, and 2000-fold and 6300-fold enhancement in two pig studies using RN18 MBs compared to sham. These results represent an important developmental step towards US mediated gene delivery in large animals and clinical trials.

  15. Ultrasound Targeted Microbubble Destruction-Mediated Delivery of a Transcription Factor Decoy Inhibits STAT3 Signaling and Tumor Growth

    PubMed Central

    Kopechek, Jonathan A.; Carson, Andrew R.; McTiernan, Charles F.; Chen, Xucai; Hasjim, Bima; Lavery, Linda; Sen, Malabika; Grandis, Jennifer R.; Villanueva, Flordeliza S.

    2015-01-01

    Signal transducer and activator of transcription 3 (STAT3) is constitutively activated in many cancers where it acts to promote tumor progression. A STAT3-specific transcription factor decoy has been developed to suppress STAT3 downstream signaling, but a delivery strategy is needed to improve clinical translation. Ultrasound-targeted microbubble destruction (UTMD) has been shown to enhance image-guided local delivery of molecular therapeutics to a target site. The objective of this study was to deliver STAT3 decoy to squamous cell carcinoma (SCC) tumors using UTMD to disrupt STAT3 signaling and inhibit tumor growth. Studies performed demonstrated that UTMD treatment with STAT3 decoy-loaded microbubbles inhibited STAT3 signaling in SCC cells in vitro. Studies performed in vivo demonstrated that UTMD treatment with STAT3 decoy-loaded microbubbles induced significant tumor growth inhibition (31-51% reduced tumor volume vs. controls, p < 0.05) in mice bearing SCC tumors. Furthermore, expression of STAT3 downstream target genes (Bcl-xL and cyclin D1) was significantly reduced (34-39%, p < 0.05) in tumors receiving UTMD treatment with STAT3 decoy-loaded microbubbles compared to controls. In addition, the quantity of radiolabeled STAT3 decoy detected in tumors eight hours after treatment was significantly higher with UTMD treatment compared to controls (70-150%, p < 0.05). This study demonstrates that UTMD can increase delivery of a transcription factor decoy to tumors in vivo and that the decoy can inhibit STAT3 signaling and tumor growth. These results suggest that UTMD treatment holds potential for clinical use to increase the concentration of a transcription factor signaling inhibitor in the tumor. PMID:26681983

  16. Lung Surfactant Microbubbles Increase Lipophilic Drug Payload for Ultrasound-Targeted Delivery

    PubMed Central

    Sirsi, Shashank R.; Fung, Chinpong; Garg, Sumit; Tianning, Mary Y.; Mountford, Paul A.; Borden, Mark A.

    2013-01-01

    The cavitation response of circulating microbubbles to targeted ultrasound can be used for noninvasive, site-specific delivery of shell-loaded materials. One challenge for microbubble-mediated delivery of lipophilic compounds is the limitation of drug loading into the microbubble shell, which is commonly a single phospholipid monolayer. In this study, we investigated the use of natural lung surfactant extract (Survanta®, Abbott Nutrition) as a microbubble shell material in order to improve drug payload and delivery. Pulmonary surfactant extracts such as Survanta contain hydrophobic surfactant proteins (SP-B and SP-C) that facilitate lipid folding and retention on lipid monolayers. Here, we show that Survanta-based microbubbles exhibit wrinkles in bright-field microscopy and increased lipid retention on the microbubble surface in the form of surface-associated aggregates observed with fluorescence microscopy. The payload of a model lipophilic drug (DiO), measured by flow cytometry, increased by over 2-fold compared to lipid-coated microbubbles lacking SP-B and SP-C. Lung surfactant microbubbles were highly echogenic to contrast enhanced ultrasound imaging at low acoustic intensities. At higher ultrasound intensity, excess lipid was observed to be acoustically cleaved for localized release. To demonstrate targeting, a biotinylated lipopolymer was incorporated into the shell, and the microbubbles were subjected to a sequence of radiation force and fragmentation pulses as they passed through an avidinated hollow fiber. Lung surfactant microbubbles showed a 3-fold increase in targeted deposition of the model fluorescent drug compared to lipid-only microbubbles. Our results demonstrate that lung surfactant microbubbles maintain the acoustic responsiveness of lipid-coated microbubbles with the added benefit of increased lipophilic drug payload. PMID:23781287

  17. Lung surfactant microbubbles increase lipophilic drug payload for ultrasound-targeted delivery.

    PubMed

    Sirsi, Shashank R; Fung, Chinpong; Garg, Sumit; Tianning, Mary Y; Mountford, Paul A; Borden, Mark A

    2013-01-01

    The cavitation response of circulating microbubbles to targeted ultrasound can be used for noninvasive, site-specific delivery of shell-loaded materials. One challenge for microbubble-mediated delivery of lipophilic compounds is the limitation of drug loading into the microbubble shell, which is commonly a single phospholipid monolayer. In this study, we investigated the use of natural lung surfactant extract (Survanta(®), Abbott Nutrition) as a microbubble shell material in order to improve drug payload and delivery. Pulmonary surfactant extracts such as Survanta contain hydrophobic surfactant proteins (SP-B and SP-C) that facilitate lipid folding and retention on lipid monolayers. Here, we show that Survanta-based microbubbles exhibit wrinkles in bright-field microscopy and increased lipid retention on the microbubble surface in the form of surface-associated aggregates observed with fluorescence microscopy. The payload of a model lipophilic drug (DiO), measured by flow cytometry, increased by over 2-fold compared to lipid-coated microbubbles lacking SP-B and SP-C. Lung surfactant microbubbles were highly echogenic to contrast enhanced ultrasound imaging at low acoustic intensities. At higher ultrasound intensity, excess lipid was observed to be acoustically cleaved for localized release. To demonstrate targeting, a biotinylated lipopolymer was incorporated into the shell, and the microbubbles were subjected to a sequence of radiation force and fragmentation pulses as they passed through an avidinated hollow fiber. Lung surfactant microbubbles showed a 3-fold increase in targeted deposition of the model fluorescent drug compared to lipid-only microbubbles. Our results demonstrate that lung surfactant microbubbles maintain the acoustic responsiveness of lipid-coated microbubbles with the added benefit of increased lipophilic drug payload.

  18. Focused ultrasound and microbubbles for enhanced extravasation.

    PubMed

    Böhmer, M R; Chlon, C H T; Raju, B I; Chin, C T; Shevchenko, T; Klibanov, A L

    2010-11-20

    The permeability of blood vessels for albumin can be altered by using ultrasound and polymer or lipid-shelled microbubbles. The region in which the microbubbles were destroyed with focused ultrasound was quantified in gel phantoms as a function of pressure, number of cycles and type of microbubble. At 2MPa the destruction took place in a fairly wide area for a lipid-shelled agent, while for polymer-shelled agents at this setting, distinct destruction spots with a radius of only 1mm were obtained. When microbubbles with a thicker shell were used, the pressure above which the bubbles were destroyed shifts to higher values. In vivo both lipid and polymer microbubbles increased the extravasation of the albumin binding dye Evans Blue, especially in muscle leading to about 6-8% of the injected dose to extravasate per gram muscle tissue 30 min after start of the treatment, while no Evans Blue could be detected in muscle in the absence of microbubbles. Variation in the time between ultrasound treatment and Evans Blue injection, demonstrated that the time window for promoting extravasation is at least an hour at the settings used. In MC38 tumors, extravasation already occurred without ultrasound and only a trend towards enhancement with about a factor of 2 could be established with a maximum percentage injected dose per gram of 3%. Ultrasound mediated microbubble destruction especially enhances the extravasation in the highly vascularized outer part of the MC38 tumor and adjacent muscle and would, therefore, be most useful for release of, for instance, anti-angiogenic drugs. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Engineering brown fat into skeletal muscle using ultrasound-targeted microbubble destruction gene delivery in obese Zucker rats: Proof of concept design.

    PubMed

    Bastarrachea, Raul A; Chen, Jiaxi; Kent, Jack W; Nava-Gonzalez, Edna J; Rodriguez-Ayala, Ernesto; Daadi, Marcel M; Jorge, Barbara; Laviada-Molina, Hugo; Comuzzie, Anthony G; Chen, Shuyuan; Grayburn, Paul A

    2017-09-01

    Ultrasound-targeted microbubble destruction (UTMD) is a novel means of tissue-specific gene delivery. This approach systemically infuses transgenes precoupled to gas-filled lipid microbubbles that are burst within the microvasculature of target tissues via an ultrasound signal resulting in release of DNA and transfection of neighboring cells within the tissue. Previous work has shown that adenovirus containing cDNA of UCP-1, injected into the epididymal fat pads in mice, induced localized fat depletion, improving glucose tolerance, and decreasing food intake in obese diabetic mice. Our group recently demonstrated that gene therapy by UTMD achieved beta cell regeneration in streptozotocin (STZ)-treated mice and baboons. We hypothesized that gene therapy with BMP7/PRDM16/PPARGC1A in skeletal muscle (SKM) of obese Zucker diabetic fatty (fa/fa) rats using UTMD technology would produce a brown adipose tissue (BAT) phenotype with UCP-1 overexpression. This study was designed as a proof of concept (POC) project. Obese Zucker rats were administered plasmid cDNA contructs encoding a gene cocktail with BMP7/PRDM16/PPARGC1A incorporated within microbubbles and intravenously delivered into their left thigh. Controls received UTMD with plasmids driving a DsRed reporter gene. An ultrasound transducer was directed to the thigh to disrupt the microbubbles within the microcirculation. Blood samples were drawn at baseline, and after treatment to measure glucose, insulin, and free fatty acids levels. SKM was harvested for immunohistochemistry (IHC). Our IHC results showed a reliable pattern of effective UTMD-based gene delivery in enhancing SKM overexpression of the UCP-1 gene. This clearly indicates that our plasmid DNA construct encoding the gene combination of PRDM16, PPARGC1A, and BMP7 reprogrammed adult SKM tissue into brown adipose cells in vivo. Our pilot established POC showing that the administration of the gene cocktail to SKM in this rat model of genetic obesity using UTMD

  20. Acoustic cavitation of individual ultrasound contrast agent microbubbles confined in capillaries

    NASA Astrophysics Data System (ADS)

    Almaqwashi, Ali; McIntyre, David; Ammi, Azzdine

    2011-10-01

    Ultrasound targeted therapies mainly rely on the inertial cavitation of ultrasound contrast agent (UCA) microbubbles. Our objective is to determine the cavitation acoustic pressure threshold for the destruction of UCA microbubbles inside cellulose capillaries. Acoustic emission from individual Optison microbubbles confined inside a 200-μm diameter capillary was detected using a passive cavitation detection system. Excitation signals from a 2.25 MHz transmitter were applied to the microbubbles while their acoustic emission was detected by a broadband 15 MHz receiver. Time traces were recorded (100 MHz sampling, 12- bit), and frequency-domain analysis of the received signals was performed to characterize microbubble cavitation. The cavitation acoustic pressure threshold was found to be 1 MPa inside the capillary in comparison with ˜0.7 MPa previously reported for unconfined UCA microbubbles. This work provides a clearer understanding of the role of ultrasound contrast agent dynamics inside a capillary.

  1. High-frequency ultrasound-guided disruption of glycoprotein VI-targeted microbubbles targets atheroprogressison in mice.

    PubMed

    Metzger, Katja; Vogel, Sebastian; Chatterjee, Madhumita; Borst, Oliver; Seizer, Peter; Schönberger, Tanja; Geisler, Tobias; Lang, Florian; Langer, Harald; Rheinlaender, Johannes; Schäffer, Tilman E; Gawaz, Meinrad

    2015-01-01

    Targeted contrast-enhanced ultrasound (CEU) using microbubble agents is a promising non-invasive imaging technique to evaluate atherosclerotic lesions. In this study, we decipher the diagnostic and therapeutic potential of targeted-CEU with soluble glycoprotein (GP)-VI in vivo. Microbubbles were conjugated with the recombinant fusion protein GPVI-Fc (MBGPVI) that binds with high affinity to atherosclerotic lesions. MBGPVI or control microbubbles (MBC) were intravenously administered into ApoE(-/-) or wild type mice and binding of the microbubbles to the vessel wall was visualized by high-resolution CEU. CEU molecular imaging signals of MBGPVI were substantially enhanced in the aortic arch and in the truncus brachiocephalicus in ApoE(-/-) as compared to wild type mice. High-frequency ultrasound (HFU)-guided disruption of MBGPVI enhanced accumulation of GPVI in the atherosclerotic lesions, which may interfere with atheroprogression. Thus, we establish targeted-CEU with soluble GPVI as a novel non-invasive molecular imaging method for atherosclerosis. Further, HFU-guided disruption of GPVI-targeted microbubbles is an innovate therapeutic approach that potentially prevents progression of atherosclerotic disease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Enhanced cytotoxic effect of cisplatin using diagnostic ultrasound and microbubbles in vitro

    NASA Astrophysics Data System (ADS)

    Sasaki, Noboru; Nakamura, Kensuke; Murakami, Masahiro; Lim, Sue Yee; Ohta, Hiroshi; Yamasaki, Masahiro; Takiguchi, Mitsuyoshi

    2012-10-01

    Diagnostic ultrasound has accomplished drug and gene delivery by ultrasound targeted microbubble destruction (UTMD). However, the efficacy of delivery is still relatively low. Therefore, we optimized conditions of UTMD using diagnostic ultrasound and ultrasound contrast agent microbubbles. Canine thyroid adenocarcinoma cells were cultured in a 96-well plate. After addition of cisplatin and Sonazoid®, the plate was inverted to raise microbubbles near cells and incubated. Cells were exposed to diagnostic ultrasound using a linear probe operated in the contrast harmonic imaging mode. The center frequency was 2.5 MHz with a mechanical index of 1.33 and a frame rate of 48 frames/sec. Cytotoxic effect of cisplatin was evaluated 24h after exposure using trypan blue dye exclusion test. We optimized incubation duration, cisplatin concentration, and the relationship between microbubble concentration and exposure duration. The optimum enhancement was observed at incubation duration of 5min, cisplatin concentration of 1 μg/ml, and microbubble concentration of 2.4 × 105 microbubbles/ml. Exposure duration did not influence the enhancement at the microbubble concentration of 2.4 × 105 microbubbles/ml. Our results suggest that relative low concentrations of drug and microbubbles with short exposure duration might be sufficient for drug delivery by UTMD using diagnostic ultrasound.

  3. Localized Delivery of shRNA against PHD2 Protects the Heart from Acute Myocardial Infarction through Ultrasound-Targeted Cationic Microbubble Destruction.

    PubMed

    Zhang, Li; Sun, Zhenxing; Ren, Pingping; You, Manjie; Zhang, Jing; Fang, Lingyun; Wang, Jing; Chen, Yihan; Yan, Fei; Zheng, Hairong; Xie, Mingxing

    2017-01-01

    Hypoxia-inducible factor 1α (HIF-1α) plays a critical protective role in ischemic heart disease. Under normoxic conditions, HIF-1α was degraded by oxygen-dependent prolyl hydroxylase-2 (PHD2). Gene therapy has become a promising strategy to inhibit the degradation of HIF-1α and to improve cardiac function after ischemic injury. However, conventional gene delivery systems are difficult to achieve a targeted and localized gene delivery into the ischemic myocardia. Here, we report the localized myocardial delivery of shRNA against PHD2 through ultrasound-targeted microbubble destruction (UTMD) for protection the heart from acute myocardial infarction. In this study, a novel cationic microbubble was fabricated by using of the thin-film hydration and sonication method. The resulting microbubbles had a 28.2 ± 2.21 mV surface zeta potential and could greatly improve DNA binding performance, achieving 17.81 ± 1.46 μg of DNA loading capacity per 5 × 10 8 microbubbles. Combined with these cationic microbubbles, UTMD-mediated gene delivery was evaluated and the gene transfection efficiency was optimized in the H9C2 cardiac cells. Knockdown of PHD2 gene was successfully realized by UTMD-mediated shPHD2 transfection, resulting in HIF-1α-dependent protective effects on H9C2 cells through increasing the expression of HIF-1α, VEGF and bFGF. We further employed UTMD-mediated shPHD2 transfection into the localized ischemic myocardia in a rat ischemia model, demonstrating significantly reduced infarct size and greatly improved the heart function. The silencing of PHD2 and the up-regulation of its downstream genes in the treated myocardia were confirmed. Histological analysis further revealed numbers of HIF-1α- and VEGF-, and CD31-positive cells/mm 2 in the shPHD2-treated group were significantly greater than those in the sham or control vector groups (P < 0.05). In conclusion, our study provides a promising strategy to realize ultrasound-mediated localized myocardial sh

  4. Localized Delivery of shRNA against PHD2 Protects the Heart from Acute Myocardial Infarction through Ultrasound-Targeted Cationic Microbubble Destruction

    PubMed Central

    Zhang, Li; Sun, Zhenxing; Ren, Pingping; You, Manjie; Zhang, Jing; Fang, Lingyun; Wang, Jing; Chen, Yihan; Yan, Fei; Zheng, Hairong; Xie, Mingxing

    2017-01-01

    Hypoxia-inducible factor 1α (HIF-1α) plays a critical protective role in ischemic heart disease. Under normoxic conditions, HIF-1α was degraded by oxygen-dependent prolyl hydroxylase-2 (PHD2). Gene therapy has become a promising strategy to inhibit the degradation of HIF-1α and to improve cardiac function after ischemic injury. However, conventional gene delivery systems are difficult to achieve a targeted and localized gene delivery into the ischemic myocardia. Here, we report the localized myocardial delivery of shRNA against PHD2 through ultrasound-targeted microbubble destruction (UTMD) for protection the heart from acute myocardial infarction. In this study, a novel cationic microbubble was fabricated by using of the thin-film hydration and sonication method. The resulting microbubbles had a 28.2 ± 2.21 mV surface zeta potential and could greatly improve DNA binding performance, achieving 17.81 ± 1.46 μg of DNA loading capacity per 5 × 108 microbubbles. Combined with these cationic microbubbles, UTMD-mediated gene delivery was evaluated and the gene transfection efficiency was optimized in the H9C2 cardiac cells. Knockdown of PHD2 gene was successfully realized by UTMD-mediated shPHD2 transfection, resulting in HIF-1α-dependent protective effects on H9C2 cells through increasing the expression of HIF-1α, VEGF and bFGF. We further employed UTMD-mediated shPHD2 transfection into the localized ischemic myocardia in a rat ischemia model, demonstrating significantly reduced infarct size and greatly improved the heart function. The silencing of PHD2 and the up-regulation of its downstream genes in the treated myocardia were confirmed. Histological analysis further revealed numbers of HIF-1α- and VEGF-, and CD31-positive cells/mm2 in the shPHD2-treated group were significantly greater than those in the sham or control vector groups (P < 0.05). In conclusion, our study provides a promising strategy to realize ultrasound-mediated localized myocardial sh

  5. Advances in ultrasound-targeted microbubble-mediated gene therapy for liver fibrosis.

    PubMed

    Huang, Cuiyuan; Zhang, Hong; Bai, Ruidan

    2017-07-01

    Hepatic fibrosis develops as a wound-healing scar in response to acute and chronic liver inflammation and can lead to cirrhosis in patients with chronic hepatitis B and C. The condition arises due to increased synthesis and reduced degradation of extracellular matrix (ECM) and is a common pathological sequela of chronic liver disease. Excessive deposition of ECM in the liver causes liver dysfunction, ascites, and eventually upper gastrointestinal bleeding as well as a series of complications. However, fibrosis can be reversed before developing into cirrhosis and has thus been the subject of extensive researches particularly at the gene level. Currently, therapeutic genes are imported into the damaged liver to delay or prevent the development of liver fibrosis by regulating the expression of exogenous genes. One technique of gene delivery uses ultrasound targeting of microbubbles combined with therapeutic genes where the time and intensity of the ultrasound can control the release process. Ultrasound irradiation of microbubbles in the vicinity of cells changes the permeability of the cell membrane by its cavitation effect and enhances gene transfection. In this paper, recent progress in the field is reviewed with emphasis on the following aspects: the types of ultrasound microbubbles, the construction of an ultrasound-mediated gene delivery system, the mechanism of ultrasound microbubble-mediated gene transfer and the application of ultrasound microbubbles in the treatment of liver fibrosis.

  6. Ultrasonic destruction of albumin microbubbles enhances gene transfection and expression in cardiac myocytes.

    PubMed

    Wang, Guo-zhong; Liu, Jing-hua; Lü, Shu-zheng; Lü, Yun; Guo, Cheng-jun; Zhao, Dong-hui; Fang, Dong-ping; He, Dong-fang; Zhou, Yuan; Ge, Chang-jiang

    2011-05-01

    It has been proven that ultrasonic destruction of microbubbles can enhance gene transfection efficiency into the noncardiac cells, but there are few reports about cardiac myocytes. Moreover, the exact mechanisms are not yet clear; whether the characteristic of microbubbles can affect the gene transfection efficiency or not is still controversial. This study was designed to investigate whether the ultrasound destruction of gene-loaded microbubbles could enhance the plasmids carried reporter gene transfection in primary cultured myocardial cell, and evaluate the effects of microbubbles characteristics on the transgene expression in cardiac myocytes. The β-galactosidase plasmids attached to the two types of microbubbles, air-contained sonicated dextrose albumin (ASDA) and perfluoropropane-exposed sonicated dextrose albumin (PESDA) were prepared. The gene transfection into cardiac myocytes was performed in vitro by naked plasmids, ultrasound exposure, ultrasonic destruction of gene-loaded microbubbles and calcium phosphate precipitation, and then the gene expression and cell viability were analyzed. The ultrasonic destruction of gene-loaded microbubbles enhanced gene expression in cardiac myocytes compared with naked plasmid transfection ((51.95 ± 2.41) U/g or (29.28 ± 3.65) U/g vs. (0.84 ± 0.21) U/g, P < 0.01), and ultrasonic destruction PESDA resulted in more significant gene expression than ASDA ((51.95 ± 2.41) U/g vs. (29.28 ± 3.65) U/g, P < 0.05). Ultrasonic destruction of microbubbles during calcium phosphate precipitation gene transfection enhanced β-galactosidase activity nearly 8-fold compared with calcium phosphate precipitation gene transfection alone ((111.35 ± 11.21) U/g protein vs. (14.13 ± 2.58) U/g protein, P < 0.01). Even 6 hours after calcium phosphate precipitation gene transfection, ultrasound-mediated microbubbles destruction resulted in more intense gene expression ((35.63 ± 7.65) U/g vs. (14.13 ± 2.58) U/g, P < 0.05). Ultrasonic

  7. Unbinding of targeted ultrasound contrast agent microbubbles by secondary acoustic forces.

    PubMed

    Garbin, Valeria; Overvelde, Marlies; Dollet, Benjamin; de Jong, Nico; Lohse, Detlef; Versluis, Michel

    2011-10-07

    Targeted molecular imaging with ultrasound contrast agent microbubbles is achieved by incorporating targeting ligands on the bubble coating and allows for specific imaging of tissues affected by diseases. Improved understanding of the interplay between the acoustic forces acting on the bubbles during insonation with ultrasound and other forces (e.g. shear due to blood flow, binding of targeting ligands to receptors on cell membranes) can help improve the efficacy of this technique. This work focuses on the effects of the secondary acoustic radiation force, which causes bubbles to attract each other and may affect the adhesion of targeted bubbles. First, we examine the translational dynamics of ultrasound contrast agent microbubbles in contact with (but not adherent to) a semi-rigid membrane due to the secondary acoustic radiation force. An equation of motion that effectively accounts for the proximity of the membrane is developed, and the predictions of the model are compared with experimental data extracted from optical recordings at 15 million frames per second. A time-averaged model is also proposed and validated. In the second part of the paper, initial results on the translation due to the secondary acoustic radiation force of targeted, adherent bubbles are presented. Adherent bubbles are also found to move due to secondary acoustic radiation force, and a restoring force is observed that brings them back to their initial positions. For increasing magnitude of the secondary acoustic radiation force, a threshold is reached above which the adhesion of targeted microbubbles is disrupted. This points to the fact that secondary acoustic radiation forces can cause adherent bubbles to detach and alter the spatial distribution of targeted contrast agents bound to tissues during activation with ultrasound. While the details of the rupture of intermolecular bonds remain elusive, this work motivates the use of the secondary acoustic radiation force to measure the strength

  8. Numerical Study on Focusing of Ultrasounds in Microbubble-enhanced HIFU

    NASA Astrophysics Data System (ADS)

    Matsumoto, Yoichiro; Okita, Kohei; Takagi, Shu

    2011-11-01

    The injection of microbubbles into the target tissue enhances tissue heating in High-Intensity Focused Ultrasound therapy, via inertial cavitation. The control of the inertial cavitation is required to achieve the efficient tissue ablation. Microbubbles between a transducer and a target disturb the ultrasound propagation depending on the conditions. A method to clear such microbubbles has been proposed by Kajiyama et al. [Physics Procedia 3 (2010) 305-314]. In the method, the irradiation of intense ultrasounds with a burst waveform fragmentize microbubbles in the pathways before the irradiation of ultrasounds for tissue heating. The vitro experiment using a gel containing microbubbles has showed that the method enables to heat the target correctly by controlling the microbubble distribution. Following the experiment, we simulate the focusing of ultrasounds through a mixture containing microbubbles with considering the size and number density distributions in space. The numerical simulation shows that the movement of the heating region from the transducer side to the target by controlling the microbubble distributions. The numerical results elucidate well the experimental ones.

  9. The Behavior of Lipid Debris Left on Cell Surfaces from Microbubble Based Ultrasound Molecular Imaging

    PubMed Central

    Ibsen, Stuart; Shi, Guixin; Schutt, Carolyn; Shi, Linda; Suico, Kyle-David; Benchimol, Michael; Serra, Viviana; Simberg, Dmitri; Berns, Michael; Esener, Sadik

    2014-01-01

    Lipid monolayer coated microbubbles are currently being developed to identify vascular regions that express certain surface proteins as part of the new technique of ultrasound molecular imaging. The microbubbles are functionalized with targeting ligands which bind to the desired cells holding the microbubbles in place as the remaining unbound microbubbles are eliminated from circulation. Subsequent scanning with ultrasound can detect the highly reflectant microbubbles that are left behind. The ultrasound scanning and detection process results in the destruction of the microbubble, creating lipid fragments from the monolayer. Here we demonstrate that microbubbles targeted to 4T1 murine breast cancer cells and human umbilical cord endothelial cells leave behind adhered fragments of the lipid monolayer after exposure to ultrasound with peak negative pressures of 0.18 and 0.8 MPa. Most of the observed fragments were large enough to be resistant to receptor mediated endocytosis. The fragments were not observed to incorporate into the lipid membrane of the cell over a period of 96 min. They were not observed to break into smaller pieces or significantly change shape but they were observed to undergo translation and rotation across the cell surface as the cells migrated over the substrate. These large fragments will apparently remain on the surface of the targeted cells for significant periods of time and need to be considered for their potential effects on blood flow through the microcapillaries and potential for immune system recognition. PMID:25059435

  10. Influence of the bubble-bubble interaction on destruction of encapsulated microbubbles under ultrasound.

    PubMed

    Yasui, Kyuichi; Lee, Judy; Tuziuti, Toru; Towata, Atsuya; Kozuka, Teruyuki; Iida, Yasuo

    2009-09-01

    Influence of the bubble-bubble interaction on the pulsation of encapsulated microbubbles has been studied by numerical simulations under the condition of the experiment reported by Chang et al. [IEEE Trans. Ultrason Ferroelectr. Freq. Control 48, 161 (2001)]. It has been shown that the natural (resonance) frequency of a microbubble decreases considerably as the microbubble concentration increases to relatively high concentrations. At some concentration, the natural frequency may coincide with the driving frequency. Microbubble pulsation becomes milder as the microbubble concentration increases except at around the resonance condition due to the stronger bubble-bubble interaction. This may be one of the reasons why the threshold of acoustic pressure for destruction of an encapsulated microbubble increases as the microbubble concentration increases. A theoretical model for destruction has been proposed.

  11. Ultrasound Mediated Microbubbles Destruction Augmented Sonolysis: An In Vitro and In Vivo Study.

    PubMed

    Cui, Hai; Zhu, Qiong; Gao, Yunhua; Xia, Hongmei; Tan, Kaibin; He, Ying; Liu, Zheng; Xu, Yali

    2017-01-01

    This study was aimed at exploring ultrasound mediated microbubbles destruction (UMMD) assisted sonolysis in both the in vitro and in vivo clots. Therapeutic ultrasound (TUS) and lipid microbubbles (MBs) were used in whole blood clots and divided into the control, TUS group, and TUS + MB group. Thrombolytic rates and microscopy were performed. Color Doppler flow imaging (CDFI) and angiography were performed to evaluate the recanalization rates and flow scores in femoral arterial thrombus (FAT) in rabbits. FAT were dyed with H&E. The average thrombolytic ratios of TUS + MB group were significantly higher than those of TUS group and the control group (both P < 0.05). Clots had different pathological changes. Recanalization rates and flow scores in TUS + MB group were significantly higher than the control and TUS group. Flow scores and recanalization ratios were grade 0 in 0% of the control group, grade I in 25% of TUS group, and grade II or higher in 87.5% of TUS + MB group after 30 min sonolysis. Both the in vitro and in vivo sonolysis can be significantly augmented by the introduction of MBs without thrombolytic agents, which might be induced by the enhanced cavitation via UMMD.

  12. Modeling and Characterization of Encapsulated Microbubbles for Ultrasound Imaging and Drug Delivery

    NASA Astrophysics Data System (ADS)

    Sarkar, Kausik; Jain, Pankaj; Chatterjee, Dhiman

    2008-07-01

    Intravenously injected encapsulated microbubbles improve the contrast of an ultrasound image. Their destruction is used in measuring blood flow, stimulating arteriogenesis, and drug delivery. We measure attenuation and scattering of ultrasound through solution of commercial contrast agents such as Optison (GE Health Care, Princeton, NJ) and Definity (Bristol Meyer-Squibb Imaging, North Ballerina, MA). We have developed an interfacial rheology model for the encapsulation of such microbubbles. By matching with experimental data, we obtain the characteristic rheological parameters. We compare model predictions with other experiments. We also investigate microbubble destruction under acoustic excitation by measuring time-varying attenuation data. Three regions of acoustic pressure amplitudes are found: at low pressure, there is no destruction; at slightly higher pressure bubbles are destroyed, and the rate of destruction depends on a combination of PRF and amplitude. At a still higher pressure amplitude, the attenuation decreases catastrophically. The last two regimes correspond respectively to 1) slow destruction of bubbles due to increased gas diffusion and 2) complete bubble destruction leading to release of free bubbles. An analytical model for the bubble growth and dissolution will be presented. The effects of membrane permeability and elasticity on the stability of microbubbles are investigated. (Supported by DOD, NSF and NIH).

  13. Gene therapy for ocular diseases meditated by ultrasound and microbubbles (Review)

    PubMed Central

    WAN, CAIFENG; LI, FENGHUA; LI, HONGLI

    2015-01-01

    The eye is an ideal target organ for gene therapy as it is easily accessible and immune-privileged. With the increasing insight into the underlying molecular mechanisms of ocular diseases, gene therapy has been proposed as an effective approach. Successful gene therapy depends on efficient gene transfer to targeted cells to prove stable and prolonged gene expression with minimal toxicity. At present, the main hindrance regarding the clinical application of gene therapy is not the lack of an ideal gene, but rather the lack of a safe and efficient method to selectively deliver genes to target cells and tissues. Ultrasound-targeted microbubble destruction (UTMD), with the advantages of high safety, repetitive applicability and tissue targeting, has become a potential strategy for gene- and drug delivery. When gene-loaded microbubbles are injected, UTMD is able to enhance the transport of the gene to the targeted cells. High-amplitude oscillations of microbubbles act as cavitation nuclei which can effectively focus ultrasound energy, produce oscillations and disruptions that increase the permeability of the cell membrane and create transient pores in the cell membrane. Thereby, the efficiency of gene therapy can be significantly improved. The UTMD-mediated gene delivery system has been widely used in pre-clinical studies to enhance gene expression in a site-specific manner in a variety of organs. With reasonable application, the effects of sonoporation can be spatially and temporally controlled to improve localized tissue deposition of gene complexes for ocular gene therapy applications. In addition, appropriately powered, focused ultrasound combined with microbubbles can induce a reversible disruption of the blood-retinal barrier with no significant side effects. The present review discusses the current status of gene therapy of ocular diseases as well as studies on gene therapy of ocular diseases meditated by UTMD. PMID:26151686

  14. Effect of microbubble ligation to cells on ultrasound signal enhancement: implications for targeted imaging.

    PubMed

    Lankford, Miles; Behm, Carolyn Z; Yeh, James; Klibanov, Alexander L; Robinson, Peter; Lindner, Jonathan R

    2006-10-01

    Molecular imaging with contrast-enhanced ultrasound (CEU) relies on the detection of microbubbles retained in regions of disease. The aim of this study was to determine whether microbubble attachment to cells influences their acoustic signal generation and stability. Biotinylated microbubbles were attached to streptavidin-coated plates to derive density versus intensity relations during low- and high-power imaging. To assess damping from microbubble attachment to solid or cell surfaces, in vitro imaging was performed for microbubbles charge-coupled to methacrylate spheres and for vascular cell adhesion molecule-1-targeted microbubbles attached to endothelial cells. Signal enhancement on plates increased according to acoustic power and microbubble site density up to 300 mm. Microbubble signal was reduced by attachment to solid spheres during high- and low-power imaging but was minimally reduced by attachment to endothelial cells and only at low power. Attachment of targeted microbubbles to rigid surfaces results in damping and a reduction of their acoustic signal, which is not seen when microbubbles are attached to cells. A reliable concentration versus intensity relationship can be expected from microbubble attachment to 2-dimensional surfaces until a very high site density is reached.

  15. Lipid microbubbles as a vehicle for targeted drug delivery using focused ultrasound-induced blood-brain barrier opening.

    PubMed

    Sierra, Carlos; Acosta, Camilo; Chen, Cherry; Wu, Shih-Ying; Karakatsani, Maria E; Bernal, Manuel; Konofagou, Elisa E

    2017-04-01

    Focused ultrasound in conjunction with lipid microbubbles has fully demonstrated its ability to induce non-invasive, transient, and reversible blood-brain barrier opening. This study was aimed at testing the feasibility of our lipid-coated microbubbles as a vector for targeted drug delivery in the treatment of central nervous system diseases. These microbubbles were labeled with the fluorophore 5-dodecanoylaminfluorescein. Focused ultrasound targeted mouse brains in vivo in the presence of these microbubbles for trans-blood-brain barrier delivery of 5-dodecanoylaminfluorescein. This new approach, compared to previously studies of our group, where fluorescently labeled dextrans and microbubbles were co-administered, represents an appreciable improvement in safety outcome and targeted drug delivery. This novel technique allows the delivery of 5-dodecanoylaminfluorescein at the region of interest unlike the alternative of systemic exposure. 5-dodecanoylaminfluorescein delivery was assessed by ex vivo fluorescence imaging and by in vivo transcranial passive cavitation detection. Stable and inertial cavitation doses were quantified. The cavitation dose thresholds for estimating, a priori, successful targeted drug delivery were, for the first time, identified with inertial cavitation were concluded to be necessary for successful delivery. The findings presented herein indicate the feasibility and safety of the proposed microbubble-based targeted drug delivery and that, if successful, can be predicted by cavitation detection in vivo.

  16. Targeted Antiangiogenesis Gene Therapy Using Targeted Cationic Microbubbles Conjugated with CD105 Antibody Compared with Untargeted Cationic and Neutral Microbubbles

    PubMed Central

    Zhou, Yu; Gu, Haitao; Xu, Yan; Li, Fan; Kuang, Shaojing; Wang, Zhigang; Zhou, Xiyuan; Ma, Huafeng; Li, Pan; Zheng, Yuanyi; Ran, Haitao; Jian, Jia; Zhao, Yajing; Song, Weixiang; Wang, Qiushi; Wang, Dong

    2015-01-01

    Objective This study aimed to develop targeted cationic microbubbles conjugated with a CD105 antibody (CMB105) for use in targeted vascular endothelial cell gene therapy and ultrasound imaging. We compared the results with untargeted cationic microbubbles (CMB) and neutral microbubbles (NMB). Methods CMB105 were prepared and compared with untargeted CMB and NMB. First, the microbubbles were characterized in terms of size, zeta-potential, antibody binding ability and plasmid DNA loading capacity. A tumor model of subcutaneous breast cancer in nude mice was used for our experiments. The ability of different types of microbubbles to target HUVECs in vitro and tumor neovascularization in vivo was measured. The endostatin gene was selected for its outstanding antiangiogenesis effect. For in vitro experiments, the transfection efficiency and cell cycle were analyzed using flow cytometry, and the transcription and expression of endostatin were measured by qPCR and Western blotting, respectively. Vascular tube cavity formation and tumor cell invasion were used to evaluate the antiangiogenesis gene therapy efficiency in vitro. Tumors were exposed to ultrasound irradiation with different types of microbubbles, and the gene therapy effects were investigated by detecting apoptosis induction and changes in tumor volume. Results CMB105 and CMB differed significantly from NMB in terms of zeta-potential, and the DNA loading capacities were 16.76±1.75 μg, 18.21±1.22 μg, and 0.48±0.04 μg per 5×108 microbubbles, respectively. The charge coupling of plasmid DNA to CMB105 was not affected by the presence of the CD105 antibody. Both CMB105 and CMB could target to HUVECs in vitro, whereas only CMB105 could target to tumor neovascularization in vivo. In in vitro experiments, the transfection efficiency of CMB105 was 24.7-fold higher than the transfection efficiency of NMB and 1.47-fold higher than the transfection efficiency of CMB (P<0.05). With ultrasound-targeted microbubble

  17. Targeted antiangiogenesis gene therapy using targeted cationic microbubbles conjugated with CD105 antibody compared with untargeted cationic and neutral microbubbles.

    PubMed

    Zhou, Yu; Gu, Haitao; Xu, Yan; Li, Fan; Kuang, Shaojing; Wang, Zhigang; Zhou, Xiyuan; Ma, Huafeng; Li, Pan; Zheng, Yuanyi; Ran, Haitao; Jian, Jia; Zhao, Yajing; Song, Weixiang; Wang, Qiushi; Wang, Dong

    2015-01-01

    This study aimed to develop targeted cationic microbubbles conjugated with a CD105 antibody (CMB105) for use in targeted vascular endothelial cell gene therapy and ultrasound imaging. We compared the results with untargeted cationic microbubbles (CMB) and neutral microbubbles (NMB). CMB105 were prepared and compared with untargeted CMB and NMB. First, the microbubbles were characterized in terms of size, zeta-potential, antibody binding ability and plasmid DNA loading capacity. A tumor model of subcutaneous breast cancer in nude mice was used for our experiments. The ability of different types of microbubbles to target HUVECs in vitro and tumor neovascularization in vivo was measured. The endostatin gene was selected for its outstanding antiangiogenesis effect. For in vitro experiments, the transfection efficiency and cell cycle were analyzed using flow cytometry, and the transcription and expression of endostatin were measured by qPCR and Western blotting, respectively. Vascular tube cavity formation and tumor cell invasion were used to evaluate the antiangiogenesis gene therapy efficiency in vitro. Tumors were exposed to ultrasound irradiation with different types of microbubbles, and the gene therapy effects were investigated by detecting apoptosis induction and changes in tumor volume. CMB105 and CMB differed significantly from NMB in terms of zeta-potential, and the DNA loading capacities were 16.76±1.75 μg, 18.21±1.22 μg, and 0.48±0.04 μg per 5×10(8) microbubbles, respectively. The charge coupling of plasmid DNA to CMB105 was not affected by the presence of the CD105 antibody. Both CMB105 and CMB could target to HUVECs in vitro, whereas only CMB105 could target to tumor neovascularization in vivo. In in vitro experiments, the transfection efficiency of CMB105 was 24.7-fold higher than the transfection efficiency of NMB and 1.47-fold higher than the transfection efficiency of CMB (P<0.05). With ultrasound-targeted microbubble destruction (UTMD

  18. Dual-high-frequency ultrasound excitation on microbubble destruction volume.

    PubMed

    Shen, Che-Chou; Su, Shin-Yuan; Cheng, Chih-Hao; Yeh, Chih-Kuang

    2010-06-01

    The goal of this work was to test experimentally that exposing air bubbles or ultrasound contrast agents in water to amplitude modulated wave allows control of inertial cavitation affected volume and hence could limit the undesirable bioeffects. Focused transducer operating at the center frequency of 10 MHz and having about 65% fractional bandwidth was excited by 3 micros 8.5 and 11.5 MHz tone-bursts to produce 3 MHz envelope signal. The 3 MHz frequency was selected because it corresponds to the resonance frequency of the microbubbles used in the experiment. Another 5 MHz transducer was used as a receiver to produce B-mode image. Peak negative acoustic pressure was adjusted in the range from 0.5 to 3.5 MPa. The spectrum amplitudes obtained from the imaging of SonoVue contrast agent when using the envelope and a separate 3 MHz transducer were compared to determine their cross-section at the -6 dB level. The conventional 3 MHz tone-burst excitation resulted in the region of interest (ROI) cross-section of 2.47 mm while amplitude modulated, dual-frequency excitation with difference frequency of 3 MHz produced cross-section equal to 1.2mm. These results corroborate our hypothesis that, in addition to the considerably higher penetration depth of dual-frequency excitation due to the lower attenuation at 3 MHz than that at 8.5 and 11.5 MHz, the sample volume of dual-frequency excitation is also smaller than that of linear 3-MHz method for more spatially confined destruction of microbubbles. 2010 Elsevier B.V. All rights reserved.

  19. Lipid microbubbles as a vehicle for targeted drug delivery using focused ultrasound-induced blood–brain barrier opening

    PubMed Central

    Sierra, Carlos; Acosta, Camilo; Chen, Cherry; Wu, Shih-Ying; Karakatsani, Maria E; Bernal, Manuel

    2016-01-01

    Focused ultrasound in conjunction with lipid microbubbles has fully demonstrated its ability to induce non-invasive, transient, and reversible blood–brain barrier opening. This study was aimed at testing the feasibility of our lipid-coated microbubbles as a vector for targeted drug delivery in the treatment of central nervous system diseases. These microbubbles were labeled with the fluorophore 5-dodecanoylaminfluorescein. Focused ultrasound targeted mouse brains in vivo in the presence of these microbubbles for trans-blood–brain barrier delivery of 5-dodecanoylaminfluorescein. This new approach, compared to previously studies of our group, where fluorescently labeled dextrans and microbubbles were co-administered, represents an appreciable improvement in safety outcome and targeted drug delivery. This novel technique allows the delivery of 5-dodecanoylaminfluorescein at the region of interest unlike the alternative of systemic exposure. 5-dodecanoylaminfluorescein delivery was assessed by ex vivo fluorescence imaging and by in vivo transcranial passive cavitation detection. Stable and inertial cavitation doses were quantified. The cavitation dose thresholds for estimating, a priori, successful targeted drug delivery were, for the first time, identified with inertial cavitation were concluded to be necessary for successful delivery. The findings presented herein indicate the feasibility and safety of the proposed microbubble-based targeted drug delivery and that, if successful, can be predicted by cavitation detection in vivo. PMID:27278929

  20. Hydrodynamic Forces on Microbubbles under Ultrasound Excitation

    NASA Astrophysics Data System (ADS)

    Clark, Alicia; Aliseda, Alberto

    2014-11-01

    Ultrasound (US) pressure waves exert a force on microbubbles that can be used to steer them in a flow. To control the motion of microbubbles under ultrasonic excitation, the coupling between the volume oscillations induced by the ultrasound pressure and the hydrodynamic forces needs to be well understood. We present experimental results for the motion of small, coated microbubbles, with similar sizes and physico-chemical properties as clinically-available ultrasound contrast agents (UCAs). The size distribution for the bubbles, resulting from the in-house manufacturing process, was characterized by analysis of high magnification microscopic images and determined to be bimodal. More than 99% of the volume is contained in microbubbles less than 10 microns in diameter, the size of a red blood cell. The motion of the microbubbles in a pulsatile flow, at different Reynolds and Womersley numbers, is studied from tracking of high-speed shadowgraphy. The influence of ultrasound forcing, at or near the resonant frequency of the bubbles, on the hydrodynamic forces due to the pulsatile flow is determined from the experimental measurements of the trajectories. Previous evidence of a sign reversal in Saffman lift is the focus of particular attention, as this is frequently the only hydrodynamic force acting in the direction perpendicular to the flow pathlines. Application of the understanding of this physical phenomenon to targeted drug delivery is analyzed in terms of the transport of the microbubbles. NSF GRFP.

  1. Targeting property and toxicity of a novel ultrasound contrast agent microbubble carrying the targeting and drug-loaded complex FA-CNTs-PTX on MCF7 cells.

    PubMed

    Zhang, Jie; Zhang, Yu; Liu, Junxi; Li, Guozhong; Wen, Zhaohui; Zhao, Yue; Zhang, Xiangyu; Liu, Fenghua

    2017-10-01

    The application of ultrasound contrast agents not only is confined to the enhancement of ultrasound imaging but also has started to be used as a drug system for diagnosis and treatment. In this paper, Span60 and PEG1500 were used as membrane materials, and a new targeting and drug-loading multifunctional ultrasound contrast agent microbubble enveloping the FA-CNTs-PTX complex was successfully prepared by acoustic cavitation. With the breast cancer cell line MCF7 as the research target, the effects of the microbubble with FA-CNTs-PTX on the proliferation and toxicity of MCF7 cells were studied using a CCK-8 and AO/EB double-staining method. The influences of the microbubbles with FA-CNTs-PTX on the cellular morphology and apoptosis period of the MCF7 cells were detected using an inverted fluorescence microscope. The apoptosis of MCF7 cells induced by the microbubbles with FA-CNTs-PTX was investigated with flow cytometry and an annexin and PI double staining fluorescence quantitative analysis. The results indicated that the ultrasound contrast agent microbubble with FA-CNTs-PTX remarkably inhibited the proliferation of MCF7 cells, which was mainly controlled by the drug loading rate and the nanometer size of the microbubbles. Moreover, the proliferative inhibition rate of the microbubbles with FA-CNTs-PTX was related to the cell apoptosis period of MCF7 cells. Its inhibition degree on the proliferation of MCF7 cells was higher than that of the hepatoma HepG2 cells. The apoptosis rate of MCF7 cells induced by the microbubbles with FA-CNTs-PTX was higher than that of normal human umbilical vein endothelial cells (HUVECs), and the microbubbles with FA-CNTs-PTX could target the MCF7 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Ultrafast 2-dimensional image monitoring and array-based passive cavitation detection for ultrasound contrast agent destruction in a variably sized region.

    PubMed

    Xu, Shanshan; Hu, Hong; Jiang, Hujie; Xu, Zhi'an; Wan, Mingxi

    2014-11-01

    A combined approach was proposed, based on programmable ultrasound equipment, to simultaneously monitor surviving microbubbles and detect cavitation activity during microbubble destruction in a variably sized region for use in ultrasound contrast agent (UCA)-enhanced therapeutic ultrasound applications. A variably sized focal region wherein the acoustic pressure was above the UCA fragmentation threshold was synthesized at frequencies of 3, 4, 5, and 6 MHz with a linear broadband imaging probe. The UCAs' temporal and spatial distribution during the microbubbles' destruction was monitored in a 2-dimensional imaging plane at 5 MHz and a frame rate of 400 Hz, and simultaneously, broadband noise emissions during the microbubbles' fragmentation were extracted by using the backscattered signals produced by the focused release bursts (ie, destruction pulses) themselves. Afterward, the temporal evolution of broadband noise emission, the surviving microbubbles in a region of interest (ROI), and the destruction area in a static UCA suspension were computed. Then the inertial cavitation dose, destruction rate of microbubbles in the ROI, and area of the destruction region were determined. It was found that an increasing pulse length and a decreasing transmit aperture and excitation frequency were correlated with an increased inertial cavitation dose, microbubble destruction rate, and destruction area. Furthermore, it was obvious that the microbubble destruction rate was significantly correlated with the inertial cavitation dose (P < .05). In addition, the intensity decrease in the ROI was significantly correlated with the destruction area (P < .05). By the proposed strategy, microbubbles could be destroyed in a variably sized region, and destruction efficiency as well as the corresponding inertial cavitation dose could be regulated by manipulating the transmission parameters. © 2014 by the American Institute of Ultrasound in Medicine.

  3. Ultrasound-mediated destruction of oxygen and paclitaxel loaded lipid microbubbles for combination therapy in hypoxic ovarian cancer cells.

    PubMed

    Sun, Jiangchuan; Yin, Mingyue; Zhu, Shenyin; Liu, Li; Zhu, Yi; Wang, Zhigang; Xu, Ronald X; Chang, Shufang

    2016-01-01

    We synthesized oxygen and paclitaxel (PTX) loaded lipid microbubbles (OPLMBs) for ultrasound mediated combination therapy in hypoxic ovarian cancer cells. Our experiments successfully demonstrated that ultrasound induced OPLMBs destruction significantly enhanced the local oxygen release. We also demonstrated that OPLMBs in combination with ultrasound (300 kHz, 0.5 W/cm(2), 15s) yielded anti-proliferative activities of 52.8 ± 2.75% and cell apoptosis ratio of 35.25 ± 0.17% in hypoxic cells at 24h after the treatment, superior to other treatment groups such as PTX only and PTX-loaded MBs (PLMBs) with or without ultrasound mediation. RT-PCR and Western blot tests further confirmed the reduced expression of HIF-1α and MDR-1/P-gp after ultrasound mediation of OPLMBs. Our experiment suggests that ultrasound mediation of oxygen and drug-loaded MBs may be a useful method to overcome chemoresistance in the hypoxic ovarian cancer cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Myocardial regeneration in adriamycin cardiomyopathy by nuclear expression of GLP1 using ultrasound targeted microbubble destruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shuyuan; Chen, Jiaxi; Huang, Pintong

    Recently GLP-1 was found to have cardioprotective effects independent of those attributable to tight glycemic control. Methods and results: We employed ultrasound targeted microbubble destruction (UTMD) to deliver piggybac transposon plasmids encoding the GLP-1 gene with a nuclear localizing signal to rat hearts with adriamycin cardiomyopathy. After a single UTMD treatment, overexpression of transgenic GLP-1 was found in nuclei of rat heart cells with evidence that transfected cardiac cells had undergone proliferation. UTMD-GLP-1 gene therapy restored LV mass, fractional shortening index, and LV posterior wall diameter to nearly normal. Nuclear overexpression of GLP-1 by inducing phosphorylation of FoxO1-S256 and translocationmore » of FoxO1 from the nucleus to the cytoplasm significantly inactivated FoxO1 and activated the expression of cyclin D1 in nuclei of cardiac muscle cells. Reversal of adriamycin cardiomyopathy appeared to be mediated by dedifferentiation and proliferation of nuclear FoxO1-positive cardiac muscle cells with evidence of embryonic stem cell markers (OCT4, Nanog, SOX2 and c-kit), cardiac early differentiation markers (NKX2.5 and ISL-1) and cellular proliferation markers (BrdU and PHH3) after UTMD with GLP-1 gene therapy. Conclusions: Intranuclear myocardial delivery of the GLP-1gene can reverse established adriamycin cardiomyopathy by stimulating myocardial regeneration. - Highlights: • The activation of nuclear FoxO1 in cardiac muscle cells associated with adriamycin cardiomyopathy. • Myocardial nuclear GLP-1 stimulates myocardial regeneration and reverses adriamycin cardiomyopathy. • The process of myocardial regeneration associated with dedifferentiation and proliferation.« less

  5. Probing microbubble targeting with atomic force microscopy.

    PubMed

    Sboros, V; Glynos, E; Ross, J A; Moran, C M; Pye, S D; Butler, M; McDicken, W N; Brown, S B; Koutsos, V

    2010-10-01

    Microbubble science is expanding beyond ultrasound imaging applications to biological targeting and drug/gene delivery. The characteristics of molecular targeting should be tested by a measurement system that can assess targeting efficacy and strength. Atomic force microscopy (AFM) is capable of piconewton force resolution, and is reported to measure the strength of single hydrogen bonds. An in-house targeted microbubble modified using the biotin-avidin chemistry and the CD31 antibody was used to probe cultures of Sk-Hep1 hepatic endothelial cells. We report that the targeted microbubbles provide a single distribution of adhesion forces with a median of 93pN. This interaction is assigned to the CD31 antibody-antigen unbinding event. Information on the distances between the interaction forces was obtained and could be important for future microbubble fabrication. In conclusion, the capability of single microbubbles to target cell lines was shown to be feasible with AFM.

  6. In Vivo Demonstration of Cancer Molecular Imaging with Ultrasound Radiation Force and Buried-Ligand Microbubbles

    PubMed Central

    Borden, Mark A.; Streeter, Jason E.; Sirsi, Shashank R.; Dayton, Paul A.

    2015-01-01

    In designing targeted contrast agent materials for imaging, the need to present a targeting ligand for recognition and binding by the target is counterbalanced by the need to minimize interactions with plasma components and to avoid recognition by the immune system. We have previously reported on a microbubble imaging probe for ultrasound molecular imaging that uses a buried-ligand surface architecture to minimize unwanted interactions and immunogenicity. Here we examine for the first time the utility of this approach for in vivo molecular imaging. In accordance with previous results, we showed a threefold increase in circulation persistence through the tumor of a fibrosarcoma model in comparison with controls. The buried-ligand microbubbles were then activated for targeted adhesion through the application of noninvasive ultrasound radiation forces applied specifically to the tumor region. Using a clinical ultrasound scanner, microbubbles were activated, imaged, and silenced. The results showed visually conspicuous images of tumor neovasculature and a twofold increase in ultrasound radiation force enhancement of acoustic contrast intensity for buried-ligand microbubbles, whereas no such increase was found for exposed-ligand microbubbles. We therefore conclude that the use of acoustically active buried-ligand microbubbles for ultrasound molecular imaging bridges the demand for low immunogenicity with the necessity of maintaining targeting efficacy and imaging conspicuity in vivo. PMID:23981781

  7. Investigation of microbubble response to long pulses used in ultrasound-enhanced drug delivery.

    PubMed

    Mannaris, Christophoros; Averkiou, Michalakis A

    2012-04-01

    In current drug delivery approaches, microbubbles and drugs can be co-administered while ultrasound is applied. The mechanism of microbubble interaction with ultrasound, the drug and the cells is not fully understood. The aim of this study was to investigate microbubble response to long ultrasonic pulses used in drug delivery approaches. Two different in vitro set-ups were considered: with the microbubbles diluted in an enclosure and with the microbubbles flowing in a capillary tube. Acoustic streaming, which influences the observed bubble response, was observed in "typical" drug delivery conditions in the first set-up. With the capillary set-up, streaming effects were avoided and accurate bubble responses were recorded. The diffraction pattern of the source greatly influences the bubble response and in different locations of the field different bubble responses are observed. At low nondestructive pressures, microbubbles can oscillate for thousands of cycles repeatedly. At high acoustic pressures (at 1 MHz), most bubble activity disappeared within about 100 μs despite the length of the pulse, mainly due to violent bubble destruction and subsequent accelerated diffusion. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  8. Improving ultrasound gene transfection efficiency by controlling ultrasound excitation of microbubbles

    PubMed Central

    Fan, Z.; Chen, D.; Deng, C.X.

    2013-01-01

    Ultrasound application in the presence of microbubbles has shown great potential for non-viral gene transfection via transient disruption of cell membrane (sonoporation). However, improvement of its efficiency has largely relied on empirical approaches without consistent and translatable results. The goal of this study is to develop a rational strategy based on new results obtained using novel experimental techniques and analysis to improve sonoporation gene transfection. We conducted experiments using targeted microbubbles that were attached to cell membrane to facilitate sonoporation. We quantified the dynamic activities of microbubbles exposed to pulsed ultrasound and the resulting sonoporation outcome and identified distinct regimes of characteristic microbubble behaviors: stable cavitation, coalescence and translation, and inertial cavitation. We found that inertial cavitation generated the highest rate of membrane poration. By establishing direct correlation of ultrasound-induced bubble activities with intracellular uptake and pore size, we designed a ramped pulse exposure scheme for optimizing microbubble excitation to improve sonoporation gene transfection. We implemented a novel sonoporation gene transfection system using an aqueous two phase system (ATPS) for efficient use of reagents and high throughput operation. Using plasmid coding for the green fluorescence protein (GFP), we achieved a sonoporation transfection efficiency in rate aortic smooth muscle cells (RASMCs) of 6.9% ± 2.2% (n = 9), comparable with lipofection (7.5% ± 0.8%, n = 9). Our results reveal characteristic microbubble behaviors responsible for sonoporation and demonstrated a rational strategy to improve sonoporation gene transfection. PMID:23770009

  9. Nanoparticles Formed by Acoustic Destruction of Microbubbles and Their Utilization for Imaging and Effects on Therapy by High Intensity Focused Ultrasound.

    PubMed

    Blum, Nicholas T; Yildirim, Adem; Chattaraj, Rajarshi; Goodwin, Andrew P

    2017-01-01

    This work reports that when PEG-lipid-shelled microbubbles with fluorocarbon interior (C 4 F 10 , C 5 F 12 , or C 6 F 14 ) are subjected to ultrasound pulses, they produce metastable, fluid-filled nanoparticles that can be re-imaged upon administration of HIFU. The nanoparticles produced by destruction of the microbubbles (MBNPs) are of 150 nm average diameter and can be re-imaged for up to an hour after creation for C 4 F 10 , and for at least one day for C 5 F 12 . The active species were found to be fluid (gas or liquid) filled nanoparticles rather than lipid debris. The acoustic droplet vaporization threshold of the nanoparticles was found to vary with the vapor pressure of the encapsulated fluorocarbon, and integrated image brightness was found to increase dramatically when the temperature was raised above the normal boiling point of the fluorocarbon. Finally, the vaporization threshold decreases in serum as compared to buffer, and administration of HIFU to the nanoparticles caused breast cancer cells to completely detach from their culture substrate. This work demonstrates a new functionality of microbubbles that could serve as a platform technology for ultrasound-based theranostics.

  10. Encapsulated microbubbles and echogenic liposomes for contrast ultrasound imaging and targeted drug delivery

    PubMed Central

    Paul, Shirshendu; Nahire, Rahul; Mallik, Sanku; Sarkar, Kausik

    2014-01-01

    Micron- to nanometer-sized ultrasound agents, like encapsulated microbubbles and echogenic liposomes, are being developed for diagnostic imaging and ultrasound mediated drug/gene delivery. This review provides an overview of the current state of the art of the mathematical models of the acoustic behavior of ultrasound contrast microbubbles. We also present a review of the in vitro experimental characterization of the acoustic properties of microbubble based contrast agents undertaken in our laboratory. The hierarchical two-pronged approach of modeling contrast agents we developed is demonstrated for a lipid coated (Sonazoid™) and a polymer shelled (poly D-L-lactic acid) contrast microbubbles. The acoustic and drug release properties of the newly developed echogenic liposomes are discussed for their use as simultaneous imaging and drug/gene delivery agents. Although echogenicity is conclusively demonstrated in experiments, its physical mechanisms remain uncertain. Addressing questions raised here will accelerate further development and eventual clinical approval of these novel technologies. PMID:26097272

  11. Time-resolved nanoseconds dynamics of ultrasound contrast agent microbubbles manipulated and controlled by optical tweezers

    NASA Astrophysics Data System (ADS)

    Garbin, Valeria; Cojoc, Dan; Ferrari, Enrico; Di Fabrizio, Enzo; Overvelde, Marlies L. J.; Versluis, Michel; van der Meer, Sander M.; de Jong, Nico; Lohse, Detlef

    2006-08-01

    Optical tweezers enable non-destructive, contact-free manipulation of ultrasound contrast agent (UCA) microbubbles, which are used in medical imaging for enhancing the echogenicity of the blood pool and to quantify organ perfusion. The understanding of the fundamental dynamics of ultrasound-driven contrast agent microbubbles is a first step for exploiting their acoustical properties and to develop new diagnostic and therapeutic applications. In this respect, optical tweezers can be used to study UCA microbubbles under controlled and repeatable conditions, by positioning them away from interfaces and from neighboring bubbles. In addition, a high-speed imaging system is required to record the dynamics of UCA microbubbles in ultrasound, as their oscillations occur on the nanoseconds timescale. In this work, we demonstrate the use of an optical tweezers system combined with a high-speed camera capable of 128-frame recordings at up to 25 million frames per second (Mfps), for the study of individual UCA microbubble dynamics as a function of the distance from solid interfaces.

  12. Molecular imaging with targeted contrast ultrasound.

    PubMed

    Piedra, Mark; Allroggen, Achim; Lindner, Jonathan R

    2009-01-01

    Molecular imaging with contrast-enhanced ultrasound uses targeted microbubbles that are retained in diseased tissue. The resonant properties of these microbubbles produce acoustic signals in an ultrasound field. The microbubbles are targeted to diseased tissue by using certain chemical constituents in the microbubble shell or by attaching disease-specific ligands such as antibodies to the microbubble. In this review, we discuss the applications of this technique to pathological states in the cerebrovascular system including atherosclerosis, tumor angiogenesis, ischemia, intravascular thrombus, and inflammation. Copyright 2009 S. Karger AG, Basel.

  13. Microbubble and ultrasound radioenhancement of bladder cancer

    PubMed Central

    Tran, W T; Iradji, S; Sofroni, E; Giles, A; Eddy, D; Czarnota, G J

    2012-01-01

    Background: Tumour vasculature is an important component of tumour growth and survival. Recent evidence indicates tumour vasculature also has an important role in tumour radiation response. In this study, we investigated ultrasound and microbubbles to enhance the effects of radiation. Methods: Human bladder cancer HT-1376 xenografts in severe combined immuno-deficient mice were used. Treatments consisted of no, low and high concentrations of microbubbles and radiation doses of 0, 2 and 8 Gy in short-term and longitudinal studies. Acute response was assessed 24 h after treatment and longitudinal studies monitored tumour response weekly up to 28 days using power Doppler ultrasound imaging for a total of 9 conditions (n=90 animals). Results: Quantitative analysis of ultrasound data revealed reduced blood flow with ultrasound-microbubble treatments alone and further when combined with radiation. Tumours treated with microbubbles and radiation revealed enhanced cell death, vascular normalisation and areas of fibrosis. Longitudinal data demonstrated a reduced normalised vascular index and increased tumour cell death in both low and high microbubble concentrations with radiation. Conclusion: Our study demonstrated that ultrasound-mediated microbubble exposure can enhance radiation effects in tumours, and can lead to enhanced tumour cell death. PMID:22790798

  14. Ultra-high Speed Optical Imaging of Ultrasound-activated Microbubbles in Mesenteric Microvessels

    NASA Astrophysics Data System (ADS)

    Chen, Hong

    Ultrasound contrast agent microbubbles have gained widespread applications in diagnostic and therapeutic ultrasound. Animal studies of bioeffects induced by ultrasound-activated microbubbles have demonstrated that microbubbles can cause microvessel damage. Much scientific attention has been attracted to such microvascular bioeffects, not only because of the related safety concerns, but also because of the potential useful applications of microbubbles in the intravascular delivery of drugs and genetic materials into target tissues. A significant challenge in using microbubbles in medical ultrasound is the lack of knowledge about how the microbubbles behave in blood vessels when exposed to ultrasound and how their interactions with ultrasound cause vascular damage. Although extensive studies were performed in the past to study the dynamics of microbubbles, most of those studies were performed in vitro and did not directly address the clinical environment in which microbubbles are injected into blood vessels. In this thesis work, a synchronized optical-acoustic system was set up for ultrahigh speed imaging of insonated microbubbles in microvessels. The recorded images revealed the formation of microjets penetrating the microbubbles, as well as vessel distention (motion outward against the surrounding tissue) and vessel invagination (motion inward toward the lumen) caused by the expansion and collapse of the microbubbles, respectively. Contrary to current paradigms which propose that microbubbles damage vessels either by distending them or by forming liquid jets impinging on them, microbubbles translation and jetting were in the direction away from the nearest vessel wall; furthermore, invagination typically exceeded distention in arterioles and venules. Vessel invagination was found to be associated with vascular damage. These studies suggest that vessel invagination may be a newly discovered potential mechanism for vascular damage by ultrasound-activated microbubbles

  15. Sonoporation of endothelial cells by vibrating targeted microbubbles.

    PubMed

    Kooiman, Klazina; Foppen-Harteveld, Miranda; van der Steen, Antonius F W; de Jong, Nico

    2011-08-25

    Molecular imaging using ultrasound makes use of targeted microbubbles. In this study we investigated whether these microbubbles could also be used to induce sonoporation in endothelial cells. Lipid-coated microbubbles were targeted to CD31 and insonified at 1 MHz at low peak negative acoustic pressures at six sequences of 10 cycle sine-wave bursts. Vibration of the targeted microbubbles was recorded with the Brandaris-128 high-speed camera (~13 million frames per second). In total, 31 cells were studied that all had one microbubble (1.2-4.2 micron in diameter) attached per cell. After insonification at 80 kPa, 30% of the cells (n=6) had taken up propidium iodide, while this was 20% (n=1) at 120 kPa and 83% (n=5) at 200 kPa. Irrespective of the peak negative acoustic pressure, uptake of propidium iodide was observed when the relative vibration amplitude of targeted microbubbles was greater than 0.5. No relationship was found between the position of the microbubble on the cell and induction of sonoporation. This study shows that targeted microbubbles can also be used to induce sonoporation, thus making it possible to combine molecular imaging and drug delivery. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Polyplex-microbubble hybrids for ultrasound-guided plasmid DNA delivery to solid tumors.

    PubMed

    Sirsi, Shashank R; Hernandez, Sonia L; Zielinski, Lukasz; Blomback, Henning; Koubaa, Adel; Synder, Milo; Homma, Shunichi; Kandel, Jessica J; Yamashiro, Darrell J; Borden, Mark A

    2012-01-30

    Microbubble ultrasound contrast agents are being developed as image-guided gene carriers for targeted delivery in vivo. In this study, novel polyplex-microbubbles were synthesized, characterized and evaluated for systemic circulation and tumor transfection. Branched polyethylenimine (PEI; 25 kDa) was modified with polyethylene glycol (PEG; 5 kDa), thiolated and covalently attached to maleimide groups on lipid-coated microbubbles. The PEI-microbubbles demonstrated increasingly positive surface charge and DNA loading capacity with increasing maleimide content. The in vivo ultrasound contrast persistence of PEI-microbubbles was measured in the healthy mouse kidney, and a two-compartment pharmacokinetic model accounting for free and adherent microbubbles was developed to describe the anomalous time-intensity curves. The model suggested that PEI loading dramatically reduced free circulation and increased nonspecific adhesion to the vasculature. However, DNA loading to form polyplex-microbubbles increased circulation in the bloodstream and decreased nonspecific adhesion. PEI-microbubbles coupled to a luciferase bioluminescence reporter plasmid DNA were shown to transfect tumors implanted in the mouse kidney. Site-specific delivery was achieved using ultrasound applied over the tumor area following bolus injection of the DNA/PEI-microbubbles. In vivo imaging showed over 10-fold higher bioluminescence from the tumor region compared to untreated tissue. Ex vivo analysis of excised tumors showed greater than 40-fold higher expression in tumor tissue than non-sonicated control (heart) tissue. These results suggest that the polyplex-microbubble platform offers improved control of DNA loading and packaging suitable for ultrasound-guided tissue transfection. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Theranostic Oxygen Delivery Using Ultrasound and Microbubbles

    PubMed Central

    Kwan, James J.; Kaya, Mehmet; Borden, Mark A.; Dayton, Paul A.

    2012-01-01

    Means to overcome tumor hypoxia have been the subject of clinical investigations since the 1960's; however these studies have yet to find a treatment which is widely accepted. It has been known for nearly a century that hypoxic cells are more resistant to radiotherapy than aerobic cells, and tumor hypoxia is a major factor leading to the resistance of tumors to radiation treatment as well as several cytotoxic agents. In this manuscript, the application of ultrasound combined with oxygen-carrier microbubbles is demonstrated as a method to locally increase dissolved oxygen. Microbubbles can also be imaged by ultrasound, thus providing the opportunity for image-guided oxygen delivery. Simulations of gas diffusion and microbubble gas exchange show that small amounts (down to 5 vol%) of a low-solubility osmotic gas can substantially increase microbubble persistence and therefore production rates and stability of oxygen-carrier microbubbles. Simulations also indicate that the lipid shell can be engineered with long-chain lipids to increase oxygen payload during in vivo transit. Experimental results demonstrate that the application of ultrasound to destroy the microbubbles significantly enhances the local oxygen release. We propose this technology as an application for ultrasound image-guided release of oxygen directly to hypoxic tissue, such as tumor sites to enhance radiotherapy. PMID:23382774

  18. Ultrasound-mediated microbubble enhancement of radiation therapy studied using three-dimensional high-frequency power Doppler ultrasound.

    PubMed

    Kwok, Sheldon J J; El Kaffas, Ahmed; Lai, Priscilla; Al Mahrouki, Azza; Lee, Justin; Iradji, Sara; Tran, William Tyler; Giles, Anoja; Czarnota, Gregory J

    2013-11-01

    Tumor responses to high-dose (>8 Gy) radiation therapy are tightly connected to endothelial cell death. In the study described here, we investigated whether ultrasound-activated microbubbles can locally enhance tumor response to radiation treatments of 2 and 8 Gy by mechanically perturbing the endothelial lining of tumors. We evaluated vascular changes resulting from combined microbubble and radiation treatments using high-frequency 3-D power Doppler ultrasound in a breast cancer xenograft model. We compared treatment effects and monitored vasculature damage 3 hours, 24 hours and 7 days after treatment delivery. Mice treated with 2 Gy radiation and ultrasound-activated microbubbles exhibited a decrease in vascular index to 48 ± 10% at 24 hours, whereas vascular indices of mice treated with 2 Gy radiation alone or microbubbles alone were relatively unchanged at 95 ± 14% and 78 ± 14%, respectively. These results suggest that ultrasound-activated microbubbles enhance the effects of 2 Gy radiation through a synergistic mechanism, resulting in alterations of tumor blood flow. This novel therapy may potentiate lower radiation doses to preferentially target endothelial cells, thus reducing effects on neighboring normal tissue and increasing the efficacy of cancer treatments. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  19. Ultrasound-targeted microbubble destruction enhances delayed BMC delivery and attenuates post-infarction cardiac remodelling by inducing engraftment signals.

    PubMed

    Chen, Yanmei; Zhang, Chuanxi; Shen, Shuxin; Guo, Shengcun; Zhong, Lintao; Li, Xinzhong; Chen, Guojun; Chen, Gangbin; He, Xiang; Huang, Chixiong; He, Nvqin; Liao, Wangjun; Liao, Yulin; Bin, Jianping

    2016-12-01

    Delayed administration of bone marrow cells (BMCs) at 2-4 weeks after successful reperfusion in patients with acute myocardial infarction (MI) does not improve cardiac function. The reduction in engraftment signals observed following this time interval might impair the effects of delayed BMC treatment. In the present study, we aimed to determine whether ultrasound-targeted microbubble destruction (UTMD) treatment could increase engraftment signals, enhance the delivery of delayed BMCs and subsequently attenuate post-infarction cardiac remodelling. A myocardial ischaemia/reperfusion (I/R) model was induced in Wistar rats via left coronary ligation for 45 min followed by reperfusion. Western blotting revealed that engraftment signals peaked at 7 days post-I/R and were dramatically lower at 14 days post-I/R. The lower engraftment signals at 14 days post-I/R could be triggered by UTMD treatment at a mechanical index of 1.0-1.9. The troponin I levels in the 1.9 mechanical index group were higher than in the other groups. Simultaneous haematoxylin and eosin staining and fluorescence revealed that the number of engrafted BMCs in the ischaemic zone was greater in the group treated with both UTMD and delayed BMC transplantation than in the control groups (P<0.05). Both UTMD and delayed BMC transplantation improved cardiac function and decreased cardiac fibrosis at 4 weeks after treatment, as compared with control groups (both P<0.05). Histopathology demonstrated that UTMD combined with delayed BMC transplantation increased capillary density, myocardial cell proliferation and c-kit + cell proliferation. These findings indicated that UTMD treatment could induce engraftment signals and enhance homing of delayed BMCs to ischaemic myocardium, attenuating post-infarction cardiac remodelling by promoting neovascularization, cardiomyogenesis and expansion of cardiac c-kit + cells. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  20. Circulating Magnetic Microbubbles for Localized Real-Time Control of Drug Delivery by Ultrasonography-Guided Magnetic Targeting and Ultrasound

    PubMed Central

    Chertok, Beata; Langer, Robert

    2018-01-01

    Image-guided and target-selective modulation of drug delivery by external physical triggers at the site of pathology has the potential to enable tailored control of drug targeting. Magnetic microbubbles that are responsive to magnetic and acoustic modulation and visible to ultrasonography have been proposed as a means to realize this drug targeting strategy. To comply with this strategy in vivo, magnetic microbubbles must circulate systemically and evade deposition in pulmonary capillaries, while also preserving magnetic and acoustic activities in circulation over time. Unfortunately, challenges in fabricating magnetic microbubbles with such characteristics have limited progress in this field. In this report, we develop magnetic microbubbles (MagMB) that display strong magnetic and acoustic activities, while also preserving the ability to circulate systemically and evade pulmonary entrapment. Methods: We systematically evaluated the characteristics of MagMB including their pharmacokinetics, biodistribution, visibility to ultrasonography and amenability to magneto-acoustic modulation in tumor-bearing mice. We further assessed the applicability of MagMB for ultrasonography-guided control of drug targeting. Results: Following intravenous injection, MagMB exhibited a 17- to 90-fold lower pulmonary entrapment compared to previously reported magnetic microbubbles and mimicked circulation persistence of the clinically utilized Definity microbubbles (>10 min). In addition, MagMB could be accumulated in tumor vasculature by magnetic targeting, monitored by ultrasonography and collapsed by focused ultrasound on demand to activate drug deposition at the target. Furthermore, drug delivery to target tumors could be enhanced by adjusting the magneto-acoustic modulation based on ultrasonographic monitoring of MagMB in real-time. Conclusions: Circulating MagMB in conjunction with ultrasonography-guided magneto-acoustic modulation may provide a strategy for tailored minimally

  1. Ultrasound triggered drug delivery with liposomal nested microbubbles.

    PubMed

    Wallace, N; Wrenn, S P

    2015-12-01

    When ultrasound contrast agent microbubbles are nested within a liposome, damage to the liposome membrane caused by both stable and inertial cavitation of the microbubble allows for release of the aqueous core of the liposome. Triggered release was not accomplished unless microbubbles were present within the liposome. Leakage was tested using fluorescence assays developed specifically for this drug delivery vehicle and qualitative measurements using an optical microscope. These studies were done using a 1 MHz focused ultrasound transducer while varying parameters including peak negative ultrasound pressure, average liposome diameter, and microbubble concentration. Two regimes exist for membrane disruption caused by cavitating microbubbles. A faster release rate, as well as permanent membrane damage are seen for samples exposed to high pressure (2.1-3.7 MPa). A slower release rate and dilation/temporary poration are characteristic of stable cavitation for low pressure studies (0.54-1.7 MPa). Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Ultrasound imaging of the mouse pancreatic duct using lipid microbubbles

    NASA Astrophysics Data System (ADS)

    Banerjee, B.; McKeown, K. R.; Skovan, B.; Ogram, E.; Ingram, P.; Ignatenko, N.; Paine-Murrieta, G.; Witte, R.; Matsunaga, T. O.

    2012-03-01

    Research requiring the murine pancreatic duct to be imaged is often challenging due to the difficulty in selectively cannulating the pancreatic duct. We have successfully catheterized the pancreatic duct through the common bile duct in severe combined immune deficient (SCID) mice and imaged the pancreatic duct with gas filled lipid microbubbles that increase ultrasound imaging sensitivity due to exquisite scattering at the gas/liquid interface. A SCID mouse was euthanized by CO2, a midline abdominal incision made, the common bile duct cut at its midpoint, a 2 cm, 32 gauge tip catheter was inserted about 1 mm into the duct and tied with suture. The duodenum and pancreas were excised, removed in toto, embedded in agar and an infusion pump was used to instill normal saline or lipid-coated microbubbles (10 million / ml) into the duct. B-mode images before and after infusion of the duct with microbubbles imaged the entire pancreatic duct (~ 1 cm) with high contrast. The microbubbles were cavitated by high mechanical index (HMI) ultrasound for imaging to be repeated. Our technique of catheterization and using lipid microbubbles as a contrast agent may provide an effective, affordable technique of imaging the murine pancreatic duct; cavitation with HMI ultrasound would enable repeated imaging to be performed and clustering of targeted microbubbles to receptors on ductal cells would allow pathology to be localized accurately. This research was supported by the Experimental Mouse Shared Service of the AZ Cancer Center (Grant Number P30CA023074, NIH/NCI and the GI SPORE (NIH/NCI P50 CA95060).

  3. Safety of Microbubbles and Transcranial Ultrasound in Rabbits

    NASA Astrophysics Data System (ADS)

    Culp, William C.; Brown, Aliza T.; Hennings, Leah; Lowery, John; Culp, Benjamin C.; Erdem, Eren; Roberson, Paula; Matsunaga, Terry O.

    2007-05-01

    The object of this study was to evaluate the safety of large doses of microbubbles and ultrasound administered to the head of rabbits as if they were receiving acute stroke therapy of a similar nature. Materials and Methods: Female New Zealand White rabbits were used, N=24, in three groups 1] n=4 control (no treatment), 2] n=10 bubble control (ultrasound plus aspirin), and 3] n=10 target group (ultrasound plus aspirin plus MRX-815 microbubbles). Group 3 was infused with IV bubbles over 1 hour at 0.16cc/kg. Ultrasound was delivered to the dehaired side of the head during bubble infusion and for 1 additional hour at 0.8 W/cm2 20% pulsed wave. Rabbits survived for 22 to 24 hours, were imaged with computerized tomography and 3 Tesla magnetic resonance imaging including contrast studies, and sacrificed. Tetrazolium (TTC) and Hematoxylin and Eosin (H&E) sections were made for pathological examination. Results: All 24 animals showed absence of bleeding, endothelial damage, EKG abnormalities, stroke, blood-brain-barrier breakdown, or other acute abnormalities. CT and MRI showed no bleeding or signs of stroke, but two animals had mild hydrocephalus. The EKGs showed normal variation in QTc. Rabbit behavior was normal in all. Minimal chronic inflammation unrelated to the study was seen in 5. Two animals were excluded because of protocol violations and replaced during the study. Conclusion: The administered dose of microbubbles and ultrasound demonstrated no detrimental effects on the healthy rabbit animal model.

  4. Inhibition of prostate cancer growth using doxorubicin assisted by ultrasound-targeted nanobubble destruction

    PubMed Central

    Fan, Xiaozhou; Wang, Luofu; Guo, Yanli; Xiong, Xingyu; Zhu, Lianhua; Fang, Kejing

    2016-01-01

    Ultrasound (US)-targeted microbubble destruction has been widely used as an effective drug-delivery system. However, nanobubbles (NBs) have better stability and stronger penetration than microbubbles, and drug delivery assisted by US-targeted NB destruction (UTND) still needs to be investigated. Our aim was to investigate the effect of doxorubicin (DOX) on the inhibition of prostate cancer growth under UTND. Contrast-enhanced US imaging of transplanted PC3 prostate cancer in mice showed that under a combination of 1 W/cm2 US power and a 100 Hz intermittent pulse with a “5 seconds on, 5 seconds off” mode, NBs with an average size of (485.7±33) nm were effectively destroyed within 15 minutes in the tumor location. PC3 cells and 20 tumor-bearing mice were divided into four groups: a DOX group, a DOX + NB group, a DOX + US group, and a DOX + NB + US group. The cell growth-inhibition rate and DOX concentration of xenografts in the DOX + NB + US group were highest. Based on another control group and these four groups, another 25 tumor-bearing mice were used to observe the treatment effect of nine DOX injections under UTND. The xenografts in the DOX + NB + US group decreased more obviously and had more cellular apoptosis than other groups. Finally, electron microscopy was used to estimate the cavitation effect of NBs under US irradiation in the control group, NB group, US group, and NB + US group. The results of scanning electron microscopy showed that PC3 cells in the DOX + NB + US group had more holes and significantly increased cell-surface folds. Meanwhile, transmission electric microscopy confirmed that more lanthanum nitrate particles entered the parenchymal cells in xenografts in the NB + US group compared with the other groups. This study suggested that UTND technology could be an effective method to promote drugs to function in US-irradiated sites, and the underlying mechanism may be associated with a cavitation effect. PMID:27536100

  5. Contrast Ultrasound Targeted Treatment of Gliomas in Mice via Drug-Bearing Nanoparticle Delivery and Microvascular Ablation

    PubMed Central

    Burke, Caitlin W.; Price, Richard J.

    2010-01-01

    We are developing minimally-invasive contrast agent microbubble based therapeutic approaches in which the permeabilization and/or ablation of the microvasculature are controlled by varying ultrasound pulsing parameters. Specifically, we are testing whether such approaches may be used to treat malignant brain tumors through drug delivery and microvascular ablation. Preliminary studies have been performed to determine whether targeted drug-bearing nanoparticle delivery can be facilitated by the ultrasound mediated destruction of "composite" delivery agents comprised of 100nm poly(lactide-co-glycolide) (PLAGA) nanoparticles that are adhered to albumin shelled microbubbles. We denote these agents as microbubble-nanoparticle composite agents (MNCAs). When targeted to subcutaneous C6 gliomas with ultrasound, we observed an immediate 4.6-fold increase in nanoparticle delivery in MNCA treated tumors over tumors treated with microbubbles co-administered with nanoparticles and a 8.5 fold increase over non-treated tumors. Furthermore, in many cancer applications, we believe it may be desirable to perform targeted drug delivery in conjunction with ablation of the tumor microcirculation, which will lead to tumor hypoxia and apoptosis. To this end, we have tested the efficacy of non-theramal cavitation-induced microvascular ablation, showing that this approach elicits tumor perfusion reduction, apoptosis, significant growth inhibition, and necrosis. Taken together, these results indicate that our ultrasound-targeted approach has the potential to increase therapeutic efficiency by creating tumor necrosis through microvascular ablation and/or simultaneously enhancing the drug payload in gliomas. PMID:21206463

  6. Contrast ultrasound targeted treatment of gliomas in mice via drug-bearing nanoparticle delivery and microvascular ablation.

    PubMed

    Burke, Caitlin W; Price, Richard J

    2010-12-15

    We are developing minimally-invasive contrast agent microbubble based therapeutic approaches in which the permeabilization and/or ablation of the microvasculature are controlled by varying ultrasound pulsing parameters. Specifically, we are testing whether such approaches may be used to treat malignant brain tumors through drug delivery and microvascular ablation. Preliminary studies have been performed to determine whether targeted drug-bearing nanoparticle delivery can be facilitated by the ultrasound mediated destruction of "composite" delivery agents comprised of 100nm poly(lactide-co-glycolide) (PLAGA) nanoparticles that are adhered to albumin shelled microbubbles. We denote these agents as microbubble-nanoparticle composite agents (MNCAs). When targeted to subcutaneous C6 gliomas with ultrasound, we observed an immediate 4.6-fold increase in nanoparticle delivery in MNCA treated tumors over tumors treated with microbubbles co-administered with nanoparticles and a 8.5 fold increase over non-treated tumors. Furthermore, in many cancer applications, we believe it may be desirable to perform targeted drug delivery in conjunction with ablation of the tumor microcirculation, which will lead to tumor hypoxia and apoptosis. To this end, we have tested the efficacy of non-theramal cavitation-induced microvascular ablation, showing that this approach elicits tumor perfusion reduction, apoptosis, significant growth inhibition, and necrosis. Taken together, these results indicate that our ultrasound-targeted approach has the potential to increase therapeutic efficiency by creating tumor necrosis through microvascular ablation and/or simultaneously enhancing the drug payload in gliomas.

  7. Ultrasound-Mediated Microbubble Destruction (UMMD) Facilitates the Delivery of CA19-9 Targeted and Paclitaxel Loaded mPEG-PLGA-PLL Nanoparticles in Pancreatic Cancer.

    PubMed

    Xing, Lingxi; Shi, Qiusheng; Zheng, Kailiang; Shen, Ming; Ma, Jing; Li, Fan; Liu, Yang; Lin, Lizhou; Tu, Wenzhi; Duan, Yourong; Du, Lianfang

    2016-01-01

    Pancreatic cancer, one of the most lethal human malignancies with dismal prognosis, is refractory to existing radio-chemotherapeutic treatment modalities. There is a critical unmet need to develop effective approaches, especially for targeted pancreatic cancer drug delivery. Targeted and drug-loaded nanoparticles (NPs) combined with ultrasound-mediated microbubble destruction (UMMD) have been shown to significantly increase the cellular uptake in vitro and drug retention in vivo, suggesting a promising strategy for cancer therapy. In this study, we synthesized pancreatic cancer-targeting organic NPs that were modified with anti CA19-9 antibody and encapsulated paclitaxol (PTX). The three-block copolymer methoxy polyethylene glycol-polylacticco-glycolic acid-polylysine (mPEG-PLGA-PLL) constituted the skeleton of the NPs. We speculated that the PTX-NPs-anti CA19-9 would circulate long-term in vivo, "actively target" pancreatic cancer cells, and sustainably release the loaded PTX while UMMD would "passively target" the irradiated tumor and effectively increase the permeability of cell membrane and capillary gaps. Our results demonstrated that the combination of PTX-NPs-anti CA19-9 with UMMD achieved a low IC50, significant cell cycle arrest, and cell apoptosis in vitro. In mouse pancreatic tumor xenografts, the combined application of PTX-NP-anti CA19-9 NPs with UMMD attained the highest tumor inhibition rate, promoted the pharmacokinetic profile by increasing AUC, t1/2, and mean residence time (MRT), and decreased clearance. Consequently, the survival of the tumor-bearing nude mice was prolonged without obvious toxicity. The dynamic change in cellular uptake, targeted real-time imaging, and the concentration of PTX in the plasma and tumor were all closely associated with the treatment efficacy both in vitro and in vivo. Our study suggests that PTX-NP-anti CA19-9 NPs combined with UMMD is a promising strategy for the treatment of pancreatic cancer.

  8. Design and Control of Functional Microbubbles for Medical Applications of Ultrasound

    NASA Astrophysics Data System (ADS)

    Takagi, Shu; Osaki, Taichi; Ariyoshi, Takuya; Azuma, Takashi; Ichiyanagi, Mitsuhisa; Kinefuchi, Ikuya

    2015-11-01

    Microbubbles are used as a contrast agent for ultrasound diagnosis. It is also expected to be use for the treatment. One of the possible applications is microbubble DDS. For that purpose, microbubbles need to be well-controlled for the generating process and manipulation. In this talk, for the design and control of the functional microbubbles, an experimental study on generation and surface modification of microbubbles are explained. Using a T-junction type microchannel, small bubbles about 5 μm size are successfully generated. For the surface modification, Biotin-coated microbubbles are tried to adhere the Avidin-coated wall. Furthermore, the manipulation of the microbubbles using ultrasound is also discussed. Plane-wave and focused ultrasound is used to manipulate a microbubble and bubble clusters. The experimental results are shown in the presentation. Supported by JSPS KAKENHI Grant Number 15K13865.

  9. Localized delivery of curcumin into brain with polysorbate 80-modified cerasomes by ultrasound-targeted microbubble destruction for improved Parkinson's disease therapy

    PubMed Central

    Zhang, Nisi; Yan, Fei; Liang, Xiaolong; Wu, Manxiang; Shen, Yuanyuan; Chen, Min; Xu, Yunxue; Zou, Guangyang; Jiang, Peng; Tang, Caiyun; Zheng, Hairong; Dai, Zhifei

    2018-01-01

    Rationale: Treatment for Parkinson's disease (PD) is challenged by the presence of the blood-brain barrier (BBB) that significantly limits the effective drug concentration in a patient's brain for therapeutic response throughout various stages of PD. Curcumin holds the potential for α-synuclein clearance to treat PD; however, its applications are still limited due to its low bioavailability and poor permeability through the BBB in a free form. Methods: Herein, this paper fabricated curcumin-loaded polysorbate 80-modified cerasome (CPC) nanoparticles (NPs) with a mean diameter of ~110 nm for enhancing the localized curcumin delivery into the targeted brain nuclei via effective BBB opening in combination with ultrasound-targeted microbubble destruction (UTMD). Results: The liposomal nanohybrid cerasome exhibited superior stability towards PS 80 surfactant solubilization and longer circulation lifetime (t1/2 = 6.22 h), much longer than free curcumin (t1/2 = 0.76 h). The permeation was found to be 1.7-fold higher than that of CPC treatment only at 6 h after the systemic administration of CPC NPs. Notably, motor behaviors, dopamine (DA) level and tyrosine hydroxylase (TH) expression all returned to normal, thanks to α-synuclein (AS) removal mediated by efficient curcumin delivery to the striatum. Most importantly, the animal experiment demonstrated that the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice had notably improved behavior disorder and dopamine depletion during two-week post-observation after treatment with CPC NPs (15 mg curcumin/kg) coupled with UTMD. Conclusion: This novel CPC-UTMD formulation approach could be an effective, safe and amenable choice with higher therapeutic relevance and fewer unwanted complications than conventional chemotherapeutics delivery systems for PD treatment in the near future. PMID:29721078

  10. Superharmonic microbubble Doppler effect in ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Pouliopoulos, Antonios N.; Choi, James J.

    2016-08-01

    The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  104-5  ×  107 microbubbles ml-1) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75-366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s-1, prior to the onset of

  11. Superharmonic microbubble Doppler effect in ultrasound therapy

    PubMed Central

    Pouliopoulos, Antonios N; Choi, James J

    2016-01-01

    Abstract The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  104–5  ×  107 microbubbles ml−1) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75–366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s−1, prior to

  12. Microbubbles and ultrasound: a bird's eye view.

    PubMed

    Kaul, Sanjiv

    2004-01-01

    Gas-filled microbubbles were initially used as ultrasound contrast agent because of their intravascular rheology, which is similar to that of red blood cells. Their transit through tissue can thus be quantified with ultrasound. More recently, these bubbles have been successfully used for molecular imaging by incorporating ligands on their surfaces that will adhere to cellular and other components within the microvasculature and can be detected by ultrasound. These bubbles have also been used for delivery of genes and drugs which can be released locally by disruption of the bubbles with high-energy ultrasound. Finally, bioeffects produced by localized ultrasound disruption of microbubbles have been shown to induce angiogenesis. This brief review will provide a bird's eye view of these applications.

  13. Multifunctional microbubbles and nanobubbles for photoacoustic and ultrasound imaging

    PubMed Central

    Kim, Chulhong; Qin, Ruogu; Xu, Jeff S.; Wang, Lihong V.; Xu, Ronald

    2010-01-01

    We develop a novel dual-modal contrast agent—encapsulated-ink poly(lactic-co-glycolic acid) (PLGA) microbubbles and nanobubbles—for photoacoustic and ultrasound imaging. Soft gelatin phantoms with embedded tumor simulators of encapsulated-ink PLGA microbubbles and nanobubbles in various concentrations are clearly shown in both photoacoustic and ultrasound images. In addition, using photoacoustic imaging, we successfully image the samples positioned below 1.8-cm-thick chicken breast tissues. Potentially, simultaneous photoacoustic and ultrasound imaging enhanced by encapsulated-dye PLGA microbubbles or nanobubbles can be a valuable tool for intraoperative assessment of tumor boundaries and therapeutic margins. PMID:20210423

  14. Mechanisms for microvascular damage induced by ultrasound-activated microbubbles

    NASA Astrophysics Data System (ADS)

    Chen, Hong; Brayman, Andrew A.; Evan, Andrew P.; Matula, Thomas J.

    2012-10-01

    To provide insight into the mechanisms of microvascular damage induced by ultrasound-activated microbubbles, experimental studies were performed to correlate microvascular damage to the dynamics of bubble-vessel interactions. High-speed photomicrography was used to record single microbubbles interacting with microvessels in ex vivo tissue, under the exposure of short ultrasound pulses with a center frequency of 1 MHz and peak negative pressures (PNP) ranging from 0.8-4 MPa. Vascular damage associated with observed bubble-vessel interactions was either indicated directly by microbubble extravasation or examined by transmission electron microscopy (TEM) analyses. As observed previously, the high-speed images revealed that ultrasound-activated microbubbles could cause distention and invagination of adjacent vessel walls, and could form liquid jets in microvessels. Vessel distention, invagination, and liquid jets were associated with the damage of microvessels whose diameters were smaller than those of maximally expanded microbubbles. However, vessel invagination appeared to be the dominant mechanism for the damage of relative large microvessels.

  15. Mechanisms for microvascular damage induced by ultrasound-activated microbubbles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Hong; Brayman, Andrew A.; Evan, Andrew P.

    To provide insight into the mechanisms of microvascular damage induced by ultrasound-activated microbubbles, experimental studies were performed to correlate microvascular damage to the dynamics of bubble-vessel interactions. High-speed photomicrography was used to record single microbubbles interacting with microvessels in ex vivo tissue, under the exposure of short ultrasound pulses with a center frequency of 1 MHz and peak negative pressures (PNP) ranging from 0.8-4 MPa. Vascular damage associated with observed bubble-vessel interactions was either indicated directly by microbubble extravasation or examined by transmission electron microscopy (TEM) analyses. As observed previously, the high-speed images revealed that ultrasound-activated microbubbles could cause distentionmore » and invagination of adjacent vessel walls, and could form liquid jets in microvessels. Vessel distention, invagination, and liquid jets were associated with the damage of microvessels whose diameters were smaller than those of maximally expanded microbubbles. However, vessel invagination appeared to be the dominant mechanism for the damage of relative large microvessels.« less

  16. Optical Fluorescent Imaging to Monitor Temporal Effects of Microbubble-Mediated Ultrasound Therapy

    PubMed Central

    Sorace, Anna G.; Saini, Reshu; Rosenthal, Eben; Warram, Jason M.; Zinn, Kurt R.; Hoyt, Kenneth

    2013-01-01

    Microbubble-mediated ultrasound therapy can noninvasively enhance drug delivery to localized regions in the body. This technique can be beneficial in cancer therapy, but currently there are limitations to tracking the therapeutic effects. The purpose of this experiment was to investigate the potential of fluorescent imaging for monitoring the temporal effects of microbubble-mediated ultrasound therapy. Mice were implanted with 2LMP breast cancer cells. The animals underwent microbubble-mediated ultrasound therapy in the presence of Cy5.5 fluorescent-labeled IgG antibody (large molecule) or Cy5.5 dye (small molecule) and microbubble contrast agents. Control animals were administered fluorescent molecules only. Animals were transiently imaged in vivo at 1, 10, 30, and 60 min post therapy using a small animal optical imaging system. Tumors were excised and analyzed ex vivo. Tumors were homogenized and emulsion imaged for Cy5.5 fluorescence. Monitoring in vivo results showed significant influx of dye into the tumor (p < 0.05) using the small molecule, but not in the large molecule group (p > 0.05). However, after tumor emulsion, significantly higher dye concentration was detected in therapy group tumors for both small and large molecule groups in comparison to their control counterparts (p < 0.01). This paper explores a noninvasive optical imaging method for monitoring the effects of microbubble-mediated ultrasound therapy in a cancer model. It provides temporal information following the process of increasing extravasation of molecules into target tumors. PMID:23357902

  17. Optical fluorescent imaging to monitor temporal effects of microbubble-mediated ultrasound therapy.

    PubMed

    Sorace, Anna G; Saini, Reshu; Rosenthal, Eben; Warram, Jason M; Zinn, Kurt R; Hoyt, Kenneth

    2013-02-01

    Microbubble-mediated ultrasound therapy can noninvasively enhance drug delivery to localized regions in the body. This technique can be beneficial in cancer therapy, but currently there are limitations to tracking the therapeutic effects. The purpose of this experiment was to investigate the potential of fluorescent imaging for monitoring the temporal effects of microbubble-mediated ultrasound therapy. Mice were implanted with 2LMP breast cancer cells. The animals underwent microbubble-mediated ultrasound therapy in the presence of Cy5.5 fluorescent-labeled IgG antibody (large molecule) or Cy5.5 dye (small molecule) and microbubble contrast agents. Control animals were administered fluorescent molecules only. Animals were transiently imaged in vivo at 1, 10, 30, and 60 min post therapy using a small animal optical imaging system. Tumors were excised and analyzed ex vivo. Tumors were homogenized and emulsion imaged for Cy5.5 fluorescence. Monitoring in vivo results showed significant influx of dye into the tumor (p < 0.05) using the small molecule, but not in the large molecule group (p > 0.05). However, after tumor emulsion, significantly higher dye concentration was detected in therapy group tumors for both small and large molecule groups in comparison to their control counterparts (p <0.01). This paper explores a noninvasive optical imaging method for monitoring the effects of microbubble-mediated ultrasound therapy in a cancer model. It provides temporal information following the process of increasing extravasation of molecules into target tumors.

  18. Quantitative ultrasound molecular imaging by modeling the binding kinetics of targeted contrast agent

    NASA Astrophysics Data System (ADS)

    Turco, Simona; Tardy, Isabelle; Frinking, Peter; Wijkstra, Hessel; Mischi, Massimo

    2017-03-01

    Ultrasound molecular imaging (USMI) is an emerging technique to monitor diseases at the molecular level by the use of novel targeted ultrasound contrast agents (tUCA). These consist of microbubbles functionalized with targeting ligands with high-affinity for molecular markers of specific disease processes, such as cancer-related angiogenesis. Among the molecular markers of angiogenesis, the vascular endothelial growth factor receptor 2 (VEGFR2) is recognized to play a major role. In response, the clinical-grade tUCA BR55 was recently developed, consisting of VEGFR2-targeting microbubbles which can flow through the entire circulation and accumulate where VEGFR2 is over-expressed, thus causing selective enhancement in areas of active angiogenesis. Discrimination between bound and free microbubbles is crucial to assess cancer angiogenesis. Currently, this is done non-quantitatively by looking at the late enhancement, about 10 min after injection, or by calculation of the differential targeted enhancement, requiring the application of a high-pressure ultrasound (US) burst to destroy all the microbubbles in the acoustic field and isolate the signal coming only from bound microbubbles. In this work, we propose a novel method based on mathematical modeling of the binding kinetics during the tUCA first pass, thus reducing the acquisition time and with no need for a destructive US burst. Fitting time-intensity curves measured with USMI by the proposed model enables the assessment of cancer angiogenesis at both the vascular and molecular levels. This is achieved by estimation of quantitative parameters related to the microvascular architecture and microbubble binding. The proposed method was tested in 11 prostate-tumor bearing rats by performing USMI after injection of BR55, and showed good agreement with current USMI methods. The novel information provided by the proposed method, possibly combined with the current non-quantitative methods, may bring deeper insight into

  19. Microbubbles and Ultrasound: A Bird's Eye View.

    PubMed Central

    Kaul, Sanjiv

    2004-01-01

    Gas-filled microbubbles were initially used as ultrasound contrast agent because of their intravascular rheology, which is similar to that of red blood cells. Their transit through tissue can thus be quantified with ultrasound. More recently, these bubbles have been successfully used for molecular imaging by incorporating ligands on their surfaces that will adhere to cellular and other components within the microvasculature and can be detected by ultrasound. These bubbles have also been used for delivery of genes and drugs which can be released locally by disruption of the bubbles with high-energy ultrasound. Finally, bioeffects produced by localized ultrasound disruption of microbubbles have been shown to induce angiogenesis. This brief review will provide a bird's eye view of these applications. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 PMID:17060963

  20. Microbubble gas volume: A unifying dose parameter in blood-brain barrier opening by focused ultrasound.

    PubMed

    Song, Kang-Ho; Fan, Alexander C; Hinkle, Joshua J; Newman, Joshua; Borden, Mark A; Harvey, Brandon K

    2017-01-01

    Focused ultrasound with microbubbles is being developed to transiently, locally and noninvasively open the blood-brain barrier (BBB) for improved pharmaceutical delivery. Prior work has demonstrated that, for a given concentration dose, microbubble size affects both the intravascular circulation persistence and extent of BBB opening. When matched to gas volume dose, however, the circulation half-life was found to be independent of microbubble size. In order to determine whether this holds true for BBB opening as well, we independently measured the effects of microbubble size (2 vs. 6 µm diameter) and concentration, covering a range of overlapping gas volume doses (1-40 µL/kg). We first demonstrated precise targeting and a linear dose-response of Evans Blue dye extravasation to the rat striatum for a set of constant microbubble and ultrasound parameters. We found that dye extravasation increased linearly with gas volume dose, with data points from both microbubble sizes collapsing to a single line. A linear trend was observed for both the initial sonication (R 2 =0.90) and a second sonication on the contralateral side (R 2 =0.68). Based on these results, we conclude that microbubble gas volume dose, not size, determines the extent of BBB opening by focused ultrasound (1 MHz, ~0.5 MPa at the focus). This result may simplify planning for focused ultrasound treatments by constraining the protocol to a single microbubble parameter - gas volume dose - which gives equivalent results for varying size distributions. Finally, using optimal parameters determined for Evan Blue, we demonstrated gene delivery and expression using a viral vector, dsAAV1-CMV-EGFP, one week after BBB disruption, which allowed us to qualitatively evaluate neuronal health.

  1. Current Status and Prospects for Microbubbles in Ultrasound Theranostics

    PubMed Central

    Martin, K. Heath

    2013-01-01

    Encapsulated microbubbles have been developed over the past two decades to provide both improvements in imaging as well as new therapeutic applications. Microbubble contrast agents are used currently for clinical imaging where increased sensitivity to blood flow is required, such as echocardiography. These compressible spheres oscillate in an acoustic field, producing nonlinear responses which can be uniquely distinguished from surrounding tissue, resulting in substantial enhancements in imaging signal-to-noise ratio. Furthermore, with sufficient acoustic energy the oscillation of microbubbles can mediate localized biological effects in tissue including the enhancement of membrane permeability or increased thermal energy deposition. Structurally, microbubbles are comprised of two principal components – an encapsulating shell and an inner gas core. This configuration enables microbubbles to be loaded with drugs or genes for additional therapeutic effect. Application of sufficient ultrasound energy can release this payload, resulting in site-specific delivery. Extensive pre-clinical studies illustrate that combining microbubbles and ultrasound can result in enhanced drug delivery or gene expression at spatially selective sites. Thus, microbbubles can be used for imaging, for therapy, or for both simultaneously. In this sense, microbubbles combined with acoustics may be one of the most universal theranostic tools. PMID:23504911

  2. Ultrasound-guided drug delivery in cancer

    PubMed Central

    2017-01-01

    Recent advancements in ultrasound and microbubble (USMB) mediated drug delivery technology has shown that this approach can improve spatially confined delivery of drugs and genes to target tissues while reducing systemic dose and toxicity. The mechanism behind enhanced delivery of therapeutics is sonoporation, the formation of openings in the vasculature, induced by ultrasound-triggered oscillations and destruction of microbubbles. In this review, progress and challenges of USMB mediated drug delivery are summarized, with special focus on cancer therapy. PMID:28607323

  3. Imaging of targeted lipid microbubbles to detect cancer cells using third harmonic generation microscopy

    PubMed Central

    Harpel, Kaitlin; Baker, Robert Dawson; Amirsolaimani, Babak; Mehravar, Soroush; Vagner, Josef; Matsunaga, Terry O.; Banerjee, Bhaskar; Kieu, Khanh

    2016-01-01

    The use of receptor-targeted lipid microbubbles imaged by ultrasound is an innovative method of detecting and localizing disease. However, since ultrasound requires a medium between the transducer and the object being imaged, it is impractical to apply to an exposed surface in a surgical setting where sterile fields need be maintained and ultrasound gel may cause the bubbles to collapse. Multiphoton microscopy (MPM) is an emerging tool for accurate, label-free imaging of tissues and cells with high resolution and contrast. We have recently determined a novel application of MPM to be used for detecting targeted microbubble adherence to the upregulated plectin-receptor on pancreatic tumor cells. Specifically, the third-harmonic generation response can be used to detect bound microbubbles to various cell types presenting MPM as an alternative and useful imaging method. This is an interesting technique that can potentially be translated as a diagnostic tool for the early detection of cancer and inflammatory disorders. PMID:27446711

  4. Ultrasound-microbubble mediated cavitation of plant cells: effects on morphology and viability.

    PubMed

    Qin, Peng; Xu, Lin; Zhong, Wenjing; Yu, Alfred C H

    2012-06-01

    The interaction between ultrasound pulses and microbubbles is known to generate acoustic cavitation that may puncture biological cells. This work presents new experimental findings on the bioeffects of ultrasound-microbubble mediated cavitation in plant cells with emphasis on direct observations of morphological impact and analysis of viability trends in tobacco BY-2 cells that are widely studied in higher plant physiology. The tobacco cell suspensions were exposed to 1 MHz ultrasound pulses in the presence of 1% v/v microbubbles (10% duty cycle; 1 kHz pulse repetition frequency; 70 mm between probe and cells; 1-min exposure time). Few bioeffects were observed at low peak negative pressures (<0.4 MPa) where stable cavitation presumably occurred. In contrast, at 0.9 MPa peak negative pressure (with more inertial cavitation activities according to our passive cavitation detection results), random pores were found on tobacco cell wall (observed via scanning electron microscopy) and enhanced exogenous uptake into the cytoplasm was evident (noted in our fluorescein isothiocyanate dextran uptake analysis). Also, instant lysis was observed in 23.4% of cells (found using trypan blue staining) and programmed cell death was seen in 23.3% of population after 12 h (determined by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling [TUNEL]). These bioeffects generally correspond in trend with those for mammalian cells. This raises the possibility of developing ultrasound-microbubble mediated cavitation into a targeted gene transfection paradigm for plant cells and, conversely, adopting plant cells as experimental test-beds for sonoporation-based gene therapy in mammalian cells. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  5. Acoustic microstreaming due to an ultrasound contrast microbubble near a wall

    NASA Astrophysics Data System (ADS)

    Mobadersany, Nima; Sarkar, Kausik

    2017-11-01

    In an ultrasound field, in addition to the sinusoidal motion of fluid particles, particles experience a steady streaming velocity due to nonlinear second order effects. Here, we have simulated the microstreaming flow near a plane rigid wall caused by the pulsations of contrast microbubbles. Although these microbubbles were initially developed as a contrast enhancing agents for ultrasound imaging, they generate additional therapeutic effects that can be harnessed for targeted drug delivery or blood brain barrier (BBB) opening. The microbubbles have a gas core coated with a stabilizing layer of lipids or proteins. We use analytical models as well as boundary element (BEM) simulation to simulate the flow around these bubbles implementing interfacial rheology models for the coating. The microstreaming flow is characterized by two wall bounded vortices. The size of the vortices decreases with the decrease of the separation from the wall. The vortex-induced shear stress is simulated and analyzed as a function of excitation parameters and geometry. These microstreaming shear stress plays a critical role in increasing the membrane permeability facilitating drug delivery or rupturing biological tissues.

  6. Fabrication of Indocyanine Green and 2H, 3H-perfluoropentane loaded microbubbles for fluorescence and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    He, Yutong; Wu, Qiang; Ma, Rong; Chang, Shufang; Shao, Pengfei; Xu, Ronald

    2016-03-01

    As a near-infrared (NIR) fluorescence dye, Indocyanine Green (ICG) has not gained broader clinical applications, owing to its multiple limitations such as concentration-dependent aggregation, low fluorescence quantum yield, poor physicochemical stability and rapid elimination from the body. In the meanwhile, 2H,3H-perfluoropentane (H-PFP) has been widely studied in ultrasound imaging as a vehicle for targeted delivery of contrast agents and drugs. We synthesized a novel dual-modal fluorescence and ultrasound contrast agent by encapsulating ICG and H-PFP in lipid microbubbles using a liquid-driven coaxial flow focusing (LDCFF) process. Uniform microbubbles with the sizes ranging from 1-10um and great ICG loading efficiency was achieved by this method. Our benchtop experiments showed that ICG/H-PFP microbubbles exhibited less aggregation, increased fluorescence intensity and more stable photostability compared to free ICG aqueous solution. Our phantom experiments demonstrated that ICG/H-PFP microbubbles enhanced the imaging contrasts in fluorescence imaging and ultrasonography. Our animal experiments indicated that ICG/H-PFP microbubbles extended the ICG life time and facilitated dual mode fluorescence and ultrasound imaging in vivo.

  7. The hydrodynamic and ultrasound-induced forces on microbubbles under high Reynolds number flow representative of the human systemic circulation

    NASA Astrophysics Data System (ADS)

    Clark, Alicia; Aliseda, Alberto

    2016-11-01

    Ultrasound contrast agents (UCAs) are micron-sized bubbles that are used in conjunction with ultrasound (US) in medical applications such as thrombolysis and targeted intravenous drug delivery. Previous work has shown that the Bjerknes force, due to the phase difference between the incoming US pressure wave and the bubble volume oscillations, can be used to manipulate the trajectories of microbubbles. Our work explores the behavior of microbubbles in medium sized blood vessels under both uniform and pulsatile flows at a range of physiologically relevant Reynolds and Womersley numbers. High speed images were taken of the microbubbles in an in-vitro flow loop that replicates physiological flow conditions. During the imaging, the microbubbles were insonified at different diagnostic ultrasound settings (varying center frequency, PRF, etc.). An in-house Lagrangian particle tracking code was then used to determine the trajectories of the microbubbles and, thus, a dynamic model for the microbubbles including the Bjerknes forces acting on them, as well as drag, lift, and added mass. Preliminary work has also explored the behavior of the microbubbles in a patient-specific model of a carotid artery bifurcation to demonstrate the feasibility of preferential steering of microbubbles towards the intracranial circulation with US.

  8. Liver haemostasis using microbubble-enhanced ultrasound at a low acoustic intensity.

    PubMed

    Zhao, Xiaochen; Li, Lu; Zhao, Hongzhi; Li, Tao; Wu, Shengzheng; Zhong, Yu; Zhao, Yang; Liu, Zheng

    2012-02-01

    To explore the haemostatic effects of microbubble-enhanced ultrasound (MEUS) at a very low acoustic intensity on the bleeding liver of rabbits. Liver incisions made on 20 rabbits were treated with a pulsed therapeutic ultrasound transducer. The transducer was operated at 831 KHz with an acoustic intensity of 0.4 W/cm(2). The treatment was coordinated with intravenous injection of microbubbles. Ultrasound only and sham treatment served as the controls. Visual bleeding score and 10-min bleeding volume were evaluated for haemostatic efficacy. Contrast-enhanced ultrasound (CEUS) was performed to assess the liver perfusion. Nine treated livers were harvested for acute histological examination. Regarding the bleeding incisions made on rabbit livers, the haemorrhage stopped immediately after 2 min of MEUS treatment but bleeding continued in the controls treated by ultrasound or microbubble injection alone. The bleeding scores and the 10-min haemorrhagic volumes dropped significantly in the MEUS group compared with those of the controls (p < 0.01). The mechanism of MEUS haemostasis appears to involve the extensive swelling of hepatocytes and the haemorrhage of the portal area, which formed a joint compression on the regional liver circulation. Low acoustic intensity MEUS might provide a novel method for liver haemostasis. • This animal experiment demonstrates a novel method of controlling hepatic haemorrhage • The treatment uses therapeutic ultrasound during enhancement with intravenous microbubbles • This combined therapy was more effective than ultrasound or intravenous microbubbles alone • More work is required with larger animals before potential human trials.

  9. Ultrasound contrast agent fabricated from microbubbles containing instant adhesives, and its ultrasound imaging ability

    NASA Astrophysics Data System (ADS)

    Makuta, T.; Tamakawa, Y.

    2012-04-01

    Non-invasive surgery techniques and drug delivery system with acoustic characteristics of ultrasound contrast agent have been studied intensively in recent years. Ultrasound contrast agent collapses easily under the blood circulating and the ultrasound irradiating because it is just a stabilized bubble without solid-shell by surface adsorption of surfactant or lipid. For improving the imaging stability, we proposed the fabrication method of the hollow microcapsule with polymer shell, which can be fabricated just blowing vapor of commonly-used instant adhesive (Cyanoacrylate monomer) into water as microbubbles. Therefore, the cyanoacrylate vapor contained inside microbubble initiates polymerization on the gasliquid interface soon after microbubbles are generated in water. Consequently, hollow microspheres coated by cyanoacrylate thin film are generated. In this report, we revealed that diameter distributions of microbubbles and microcapsules were approximately same and most of them were less than 10 μm, that is, smaller than blood capillary. In addition, we also revealed that hollow microcapsules enhanced the acoustic signal especially in the harmonic contrast imaging and were broken or agglomerated under the ultrasound field. As for the yield of hollow microcapsules, we revealed that sodium dodecyl sulfate addition to water phase instead of deoxycolic acid made the fabrication yield increased.

  10. Irinotecan delivery by microbubble-assisted ultrasound - A pilot preclinical study

    NASA Astrophysics Data System (ADS)

    Escoffre, Jean-Michel; Novell, Anthony; Serrière, Sophie; Bouakaz, Ayache

    2012-11-01

    Irinotecan is conventionally used for the treatment of colorectal cancer. However, its administration is associated with severe side effects. Targeted drug delivery using ultrasound (US) combined with microbubbles offers new opportunities to increase the therapeutic effectiveness of antitumor treatment and to reduce toxic exposure to healthy tissues. The objective of this study is to investigate the safety and efficacy of in-vivo delivery of irinotecan by microbubble-assisted US in human glioblastoma model (U-87 MG). In order to validate the potential of this new method in-vivo, subcutaneous tumors were implanted in the flank of nude mouse and treated when they reached a volume of 100 mm3. In the first study, the measured volumes with caliper and anatomic ultrasound imaging were compared for the monitoring and the quantification of tumor growth during 27 days. Ultrasound imaging measurements were positively correlated to caliper measurements. The tumor treatment consisted of an i.v. injection of irinotecan (20 mg/kg) followed one hour later by i.v. administration of MM1 microbubble and an US insonation using a single-element transducer operating at 1MHz (400 kPa, 10 kHz PRF 40% DC, 3 min). The therapeutic efficacy was evaluated for 39 days by measuring the tumor volume before and after treatment using a caliper and based on ultrasound images using an 18 MHz probe (Vevo 2100). Our results showed that anatomical ultrasound imaging was as efficient as caliper for the monitoring and the quantification of tumor growth. Moreover, irinotecan delivery by sonoporation induced a significant decrease of glioblastoma tumor volume and an increase of tumor-doubling time compared to the tumor treated by irinotecan alone. In conclusion, this novel therapeutic approach has promising features since it can be used to reduce the injected drug dose and to achieve a better therapeutic efficacy.

  11. Theranostic Gd(III)-lipid microbubbles for MRI-guided focused ultrasound surgery.

    PubMed

    Feshitan, Jameel A; Vlachos, Fotis; Sirsi, Shashank R; Konofagou, Elisa E; Borden, Mark A

    2012-01-01

    We have synthesized a biomaterial consisting of Gd(III) ions chelated to lipid-coated, size-selected microbubbles for utility in both magnetic resonance and ultrasound imaging. The macrocyclic ligand DOTA-NHS was bound to PE headgroups on the lipid shell of pre-synthesized microbubbles. Gd(III) was then chelated to DOTA on the microbubble shell. The reaction temperature was optimized to increase the rate of Gd(III) chelation while maintaining microbubble stability. ICP-OES analysis of the microbubbles determined a surface density of 7.5 × 10(5) ± 3.0 × 10(5) Gd(III)/μm(2) after chelation at 50 °C. The Gd(III)-bound microbubbles were found to be echogenic in vivo during high-frequency ultrasound imaging of the mouse kidney. The Gd(III)-bound microbubbles also were characterized by magnetic resonance imaging (MRI) at 9.4 T by a spin-echo technique and, surprisingly, both the longitudinal and transverse proton relaxation rates were found to be roughly equal to that of no-Gd(III) control microbubbles and saline. However, the relaxation rates increased significantly, and in a dose-dependent manner, after sonication was used to fragment the Gd(III)-bound microbubbles into non-gas-containing lipid bilayer remnants. The longitudinal (r(1)) and transverse (r(2)) molar relaxivities were 4.0 ± 0.4 and 120 ± 18 mM(-1)s(-1), respectively, based on Gd(III) content. The Gd(III)-bound microbubbles may find application in the measurement of cavitation events during MRI-guided focused ultrasound therapy and to track the biodistribution of shell remnants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Characterization of Contrast Agent Microbubbles for Ultrasound Imaging and Therapy Research.

    PubMed

    Mulvana, Helen; Browning, Richard J; Luan, Ying; de Jong, Nico; Tang, Meng-Xing; Eckersley, Robert J; Stride, Eleanor

    2017-01-01

    The high efficiency with which gas microbubbles can scatter ultrasound compared with the surrounding blood pool or tissues has led to their widespread employment as contrast agents in ultrasound imaging. In recent years, their applications have been extended to include super-resolution imaging and the stimulation of localized bio-effects for therapy. The growing exploitation of contrast agents in ultrasound and in particular these recent developments have amplified the need to characterize and fully understand microbubble behavior. The aim in doing so is to more fully exploit their utility for both diagnostic imaging and potential future therapeutic applications. This paper presents the key characteristics of microbubbles that determine their efficacy in diagnostic and therapeutic applications and the corresponding techniques for their measurement. In each case, we have presented information regarding the methods available and their respective strengths and limitations, with the aim of presenting information relevant to the selection of appropriate characterization methods. First, we examine methods for determining the physical properties of microbubble suspensions and then techniques for acoustic characterization of both suspensions and single microbubbles. The next section covers characterization of microbubbles as therapeutic agents, including as drug carriers for which detailed understanding of their surface characteristics and drug loading capacity is required. Finally, we discuss the attempts that have been made to allow comparison across the methods employed by various groups to characterize and describe their microbubble suspensions and promote wider discussion and comparison of microbubble behavior.

  13. Targeted microbubbles: a novel application for the treatment of kidney stones.

    PubMed

    Ramaswamy, Krishna; Marx, Vanessa; Laser, Daniel; Kenny, Thomas; Chi, Thomas; Bailey, Michael; Sorensen, Mathew D; Grubbs, Robert H; Stoller, Marshall L

    2015-07-01

    Kidney stone disease is endemic. Extracorporeal shockwave lithotripsy was the first major technological breakthrough where focused shockwaves were used to fragment stones in the kidney or ureter. The shockwaves induced the formation of cavitation bubbles, whose collapse released energy at the stone, and the energy fragmented the kidney stones into pieces small enough to be passed spontaneously. Can the concept of microbubbles be used without the bulky machine? The logical progression was to manufacture these powerful microbubbles ex vivo and inject these bubbles directly into the collecting system. An external source can be used to induce cavitation once the microbubbles are at their target; the key is targeting these microbubbles to specifically bind to kidney stones. Two important observations have been established: (i) bisphosphonates attach to hydroxyapatite crystals with high affinity; and (ii) there is substantial hydroxyapatite in most kidney stones. The microbubbles can be equipped with bisphosphonate tags to specifically target kidney stones. These bubbles will preferentially bind to the stone and not surrounding tissue, reducing collateral damage. Ultrasound or another suitable form of energy is then applied causing the microbubbles to induce cavitation and fragment the stones. This can be used as an adjunct to ureteroscopy or percutaneous lithotripsy to aid in fragmentation. Randall's plaques, which also contain hydroxyapatite crystals, can also be targeted to pre-emptively destroy these stone precursors. Additionally, targeted microbubbles can aid in kidney stone diagnostics by virtue of being used as an adjunct to traditional imaging methods, especially useful in high-risk patient populations. This novel application of targeted microbubble technology not only represents the next frontier in minimally invasive stone surgery, but a platform technology for other areas of medicine. © 2014 The Authors BJU International © 2014 BJU International Published

  14. AUGMENTATION OF LIMB PERFUSION AND REVERSAL OF TISSUE ISCHEMIA PRODUCED BY ULTRASOUND-MEDIATED MICROBUBBLE CAVITATION

    PubMed Central

    Belcik, J. Todd; Mott, Brian H.; Xie, Aris; Zhao, Yan; Kim, Sajeevani; Lindner, Nathan J.; Ammi, Azzdine; Linden, Joel M.; Lindner, Jonathan R.

    2015-01-01

    Background Ultrasound can increase tissue blood flow in part through the intravascular shear produced by oscillatory pressure fluctuations. We hypothesized that ultrasound-mediated increases in perfusion can be augmented by microbubble contrast agents that undergo ultrasound-mediated cavitation, and sought to characterize the biologic mediators. Methods and Results Contrast ultrasound perfusion imaging of hindlimb skeletal muscle and femoral artery diameter measurement were performed in non-ischemic mice after unilateral 10 min exposure to intermittent ultrasound alone (mechanical index [MI] 0.6 or 1.3) or ultrasound with lipid microbubbles (2×108 I.V.). Studies were also performed after inhibiting shear- or pressure-dependent vasodilator pathways, and in mice with hindlimb ischemia. Ultrasound alone produced a 2-fold increase (p<0.05) in muscle perfusion regardless of ultrasound power. Ultrasound-mediated augmentation in flow was greater with microbubbles (3-fold and 10-fold higher than control for MI 0.6 and 1.3, respectively; p<0.05), as was femoral artery dilation. Inhibition of endothelial nitric oxide synthase (eNOS) attenuated flow augmentation produced by ultrasound and microbubbles by 70% (p<0.01), whereas inhibition of adenosine-A2a receptors and epoxyeicosatrienoic acids had minimal effect. Limb nitric oxide (NO) production and muscle phospho-eNOS increased in a stepwise fashion by ultrasound and ultrasound with microbubbles. In mice with unilateral hindlimb ischemia (40–50% reduction in flow), ultrasound (MI 1.3) with microbubbles increased perfusion by 2-fold to a degree that was greater than the control non-ischemic limb. Conclusions Increases in muscle blood flow during high-power ultrasound are markedly amplified by the intravascular presence of microbubbles and can reverse tissue ischemia. These effects are most likely mediated by cavitation-related increases in shear and activation of eNOS. PMID:25834183

  15. Augmentation of limb perfusion and reversal of tissue ischemia produced by ultrasound-mediated microbubble cavitation.

    PubMed

    Belcik, J Todd; Mott, Brian H; Xie, Aris; Zhao, Yan; Kim, Sajeevani; Lindner, Nathan J; Ammi, Azzdine; Linden, Joel M; Lindner, Jonathan R

    2015-04-01

    Ultrasound can increase tissue blood flow, in part, through the intravascular shear produced by oscillatory pressure fluctuations. We hypothesized that ultrasound-mediated increases in perfusion can be augmented by microbubble contrast agents that undergo ultrasound-mediated cavitation and sought to characterize the biological mediators. Contrast ultrasound perfusion imaging of hindlimb skeletal muscle and femoral artery diameter measurement were performed in nonischemic mice after unilateral 10-minute exposure to intermittent ultrasound alone (mechanical index, 0.6 or 1.3) or ultrasound with lipid microbubbles (2×10(8) IV). Studies were also performed after inhibiting shear- or pressure-dependent vasodilator pathways, and in mice with hindlimb ischemia. Ultrasound alone produced a 2-fold increase (P<0.05) in muscle perfusion regardless of ultrasound power. Ultrasound-mediated augmentation in flow was greater with microbubbles (3- and 10-fold higher than control for mechanical index 0.6 and 1.3, respectively; P<0.05), as was femoral artery dilation. Inhibition of endothelial nitric oxide synthase attenuated flow augmentation produced by ultrasound and microbubbles by 70% (P<0.01), whereas inhibition of adenosine-A2a receptors and epoxyeicosatrienoic acids had minimal effect. Limb nitric oxide production and muscle phospho-endothelial nitric oxide synthase increased in a stepwise fashion by ultrasound and ultrasound with microbubbles. In mice with unilateral hindlimb ischemia (40%-50% reduction in flow), ultrasound (mechanical index, 1.3) with microbubbles increased perfusion by 2-fold to a degree that was greater than the control nonischemic limb. Increases in muscle blood flow during high-power ultrasound are markedly amplified by the intravascular presence of microbubbles and can reverse tissue ischemia. These effects are most likely mediated by cavitation-related increases in shear and activation of endothelial nitric oxide synthase. © 2015 American Heart

  16. Novel chitosan derivative for temperature and ultrasound dual-sensitive liposomal microbubble gel.

    PubMed

    Chen, Daquan; Yu, Hongyun; Mu, Hongjie; Wei, Junhua; Song, Zhenkun; Shi, Hong; Liang, Rongcai; Sun, Kaoxiang; Liu, Wanhui

    2013-04-15

    In this study, a novel liposome-loaded microbubble gel based on N-cholesteryl hemisuccinate-O-sulfate chitosan (NCHOSC) was designed. The structure of the NCHOSC was characterized by FTIR and (1)H NMR. The liposomal microbubble gel based on NCHOSC with a high encapsulation efficiency of curcumin was formed and improved the solubility of curcumin. The diameter of most liposomal microbubble was about 950 nm. The temperature-sensitive CS/GP gel could be formulated at room temperature and would form a gel at body temperature. Simultaneously, the ultrasound-sensitive induced release of curcumin was 85% applying ultrasound. The results of cytotoxicity assay indicated that encapsulated curcumin in Cur-LM or Cur-LM-G was less toxic. The anti-tumor efficacy in vivo suggested that Cur-LM-G by ultrasound suppressed tumor growth most efficiently. These findings have shed some light on the potential NCHOSC material used to liposome-loaded microbubble gel for temperature and ultrasound dual-sensitive drug delivery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Microbubble Compositions, Properties and Biomedical Applications

    PubMed Central

    Sirsi, Shashank

    2010-01-01

    Over the last decade, there has been significant progress towards the development of microbubbles as theranostics for a wide variety of biomedical applications. The unique ability of microbubbles to respond to ultrasound makes them useful agents for contrast ultrasound imaging, molecular imaging, and targeted drug and gene delivery. The general composition of a microbubble is a gas core stabilized by a shell comprised of proteins, lipids or polymers. Each type of microbubble has its own unique advantages and can be tailored for specialized functions. In this review, different microbubbles compositions and physiochemical properties are discussed in the context of current progress towards developing novel constructs for biomedical applications, with specific emphasis on molecular imaging and targeted drug/gene delivery. PMID:20574549

  18. Ultrasound and Microbubble Guided Drug Delivery: Mechanistic Understanding and Clinical Implications

    PubMed Central

    Wang, Tzu-Yin; Wilson, Katheryne E.; Machtaler, Steven; Willmann, Jürgen K.

    2014-01-01

    Ultrasound mediated drug delivery using microbubbles is a safe and noninvasive approach for spatially localized drug administration. This approach can create temporary and reversible openings on cellular membranes and vessel walls (a process called “sonoporation”), allowing for enhanced transport of therapeutic agents across these natural barriers. It is generally believed that the sonoporation process is highly associated with the energetic cavitation activities (volumetric expansion, contraction, fragmentation, and collapse) of the microbubble. However, a thorough understanding of the process was unavailable until recently. Important progress on the mechanistic understanding of sonoporation and the corresponding physiological responses in vitro and in vivo has been made. Specifically, recent research shed light on the cavitation process of microbubbles and fluid motion during insonation of ultrasound, on the spatio-temporal interactions between microbubbles and cells or vessel walls, as well as on the temporal course of the subsequent biological effects. These findings have significant clinical implications on the development of optimal treatment strategies for effective drug delivery. In this article, current progress in the mechanistic understanding of ultrasound and microbubble mediated drug delivery and its implications for clinical translation is discussed. PMID:24372231

  19. Successful β cells islet regeneration in streptozotocin-induced diabetic baboons using ultrasound-targeted microbubble gene therapy with cyclinD2/CDK4/GLP1

    PubMed Central

    Chen, Shuyuan; Bastarrachea, Raul A; Roberts, Brad J; Voruganti, V Saroja; Frost, Patrice A; Nava-Gonzalez, Edna J; Arriaga-Cazares, Hector E; Chen, Jiaxi; Huang, Pintong; DeFronzo, Ralph A; Comuzzie, Anthony G; Grayburn, Paul A

    2014-01-01

    Both major forms of diabetes mellitus (DM) involve β-cell destruction and dysfunction. New treatment strategies have focused on replenishing the deficiency of β-cell mass common to both major forms of diabetes by islet transplantation or β-cell regeneration. The pancreas, not the liver, is the ideal organ for islet regeneration, because it is the natural milieu for islets. Since islet mass is known to increase during obesity and pregnancy, the concept of stimulating pancreatic islet regeneration in vivo is both rational and physiologic. This paper proposes a novel approach in which non-viral gene therapy is targeted to pancreatic islets using ultrasound targeted microbubble destruction (UTMD) in a non-human primate model (NHP), the baboon. Treated baboons received a gene cocktail comprised of cyclinD2, CDK, and GLP1, which in rats results in robust and durable islet regeneration with normalization of blood glucose, insulin, and C-peptide levels. We were able to generate important preliminary data indicating that gene therapy by UTMD can achieve in vivo normalization of the intravenous (IV) glucose tolerance test (IVGTT) curves in STZ hyperglycemic-induced conscious tethered baboons. Immunohistochemistry clearly demonstrated evidence of islet regeneration and restoration of β-cell mass. PMID:24553120

  20. Successful β cells islet regeneration in streptozotocin-induced diabetic baboons using ultrasound-targeted microbubble gene therapy with cyclinD2/CDK4/GLP1.

    PubMed

    Chen, Shuyuan; Bastarrachea, Raul A; Roberts, Brad J; Voruganti, V Saroja; Frost, Patrice A; Nava-Gonzalez, Edna J; Arriaga-Cazares, Hector E; Chen, Jiaxi; Huang, Pintong; DeFronzo, Ralph A; Comuzzie, Anthony G; Grayburn, Paul A

    2014-01-01

    Both major forms of diabetes mellitus (DM) involve β-cell destruction and dysfunction. New treatment strategies have focused on replenishing the deficiency of β-cell mass common to both major forms of diabetes by islet transplantation or β-cell regeneration. The pancreas, not the liver, is the ideal organ for islet regeneration, because it is the natural milieu for islets. Since islet mass is known to increase during obesity and pregnancy, the concept of stimulating pancreatic islet regeneration in vivo is both rational and physiologic. This paper proposes a novel approach in which non-viral gene therapy is targeted to pancreatic islets using ultrasound targeted microbubble destruction (UTMD) in a non-human primate model (NHP), the baboon. Treated baboons received a gene cocktail comprised of cyclinD2, CDK, and GLP1, which in rats results in robust and durable islet regeneration with normalization of blood glucose, insulin, and C-peptide levels. We were able to generate important preliminary data indicating that gene therapy by UTMD can achieve in vivo normalization of the intravenous (IV) glucose tolerance test (IVGTT) curves in STZ hyperglycemic-induced conscious tethered baboons. Immunohistochemistry clearly demonstrated evidence of islet regeneration and restoration of β-cell mass.

  1. Microfluidics-based microbubbles in methylene blue solution for photoacoustic and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Das, Dhiman; Sivasubramanian, Kathyayini; Yang, Chun; Pramanik, Manojit

    2018-02-01

    Contrast agents which can be used for more than one bio-imaging technique has gained a lot of attention from researchers in recent years. In this work, a microfluidic device employing a flow-focusing junction, is used for the continuous generation of monodisperse nitrogen microbubbles in methylene blue, an optically absorbing organic dye, for dual-modal photoacoustic and ultrasound imaging. Using an external phase of polyoxyethylene glycol 40 stearate (PEG 40), a non-ionic surfactant, and 50% glycerol solution at a flow rate of 1 ml/hr and gas pressure at 1.75 bar, monodisperse nitrogen microbubbles of diameter 7 microns were obtained. The external phase also contained methylene blue hydrate at a concentration of 1 gm/litre. The monodisperse microbubbles produced a strong ultrasound signal as expected. It was observed that the signal-to-noise (SNR) ratio of the photoacoustic signal for the methylene blue solution in the presence of the monodisperse microbubbles was 68.6% lower than that of methylene blue solution in the absence of microbubbles. This work is of significance because using microfluidics, we can precisely control the bubbles' production rate and bubble size which increases ultrasound imaging efficiency. A uniform size distribution of the bubbles will have narrower resonance frequency bandwidth which will respond well to specific ultrasound frequencies.

  2. Targeted microbubbles with ultrasound irradiation and PD-1 inhibitor to increase antitumor activity in B-cell lymphoma.

    PubMed

    Zheng, Shiya; Song, Dan; Jin, Xiaoxiao; Zhang, Haijun; Aldarouish, Mohanad; Chen, Yan; Wang, Cailian

    2018-02-01

    Severe cardiac toxicity of doxorubicin and an immunosuppressive tumor micro-environment become main obstacles for the effective treatment of B-cell lymphoma. In this research, rituximab-conjugated and doxorubicin-loaded microbubbles (RDMs) were designed for exploring a combination approach of targeted microbubbles with ultrasound (US) irradiation and PD-1 inhibitor to overcome obstacles mentioned above. In vivo studies were performed on SU-DHL-4 cell-grafted mice and ex vivo studies were performed on CD20 + human SU-DHL-4 cells and human T cells. A greater therapeutic effect and higher expression of PD-L1 protein expression were obtained with RDMs with US irradiation in vivo. A significant inhibitory effect on SU-DHL-4 B-cell lymphoma cells was observed after treated by RDMs with US irradiation and PD-1 inhibitor ex vivo. Combination of RDMs with US irradiation and PD-1 inhibitor could be a promising therapeutic strategy for B-cell lymphoma.

  3. Ablation of benign prostatic hyperplasia using microbubble-mediated ultrasound cavitation.

    PubMed

    Li, Tao; Liu, Zheng

    2010-04-01

    Benign prostatic hyperplasia (BPH) is a world-wide common disease in elderly male patients. A number of invasive physiotherapies have been used to replace prostatectomy. In this article we report our hypothesis of using microbubbles-mediated ultrasound cavitation effects to ablate prostatic tissues. Microbubble ultrasound contrast agent is widely used contrast media in ultrasonography, yet it is also found to act as cavitation nuclei or enhancer. Once excited by a high peak pressure ultrasound pulse, the mechanical effects, like shock wave and microstream, released from cavitation could produce a series of bioeffects, contributing to sonoporation, microvascular rupture and hematoma. BPH is known to have hyperplastic neovasculature and this make it possible to be disrupted by the physical effects of cavitation under existing microbubbles in circulation. Mechanical ablation of prostatic capillary or small vessels could result in pathological alterations such as thrombosis, micro-circulation blockage, prostatic necrosis and atrophia. Thereupon it could effectively treat BPH by nontraumatic ways. (c) 2009 Elsevier Ltd. All rights reserved.

  4. Real time observation of the ultrasound stimulated disintegration of optically trapped microbubbles in proximity to biological cells

    NASA Astrophysics Data System (ADS)

    Prentice, Paul; MacDonald, Michael P.; Cuschieri, Alfred; Dholakia, Kishan; Campbell, Paul

    2005-08-01

    Cells that are exposed to varying amounts of ultrasonic energy in the presence of ultrasound contrast agent (UCA) may undergo either permanent cell membrane damage (lethal sonoporation), or a transient enhancement of membrane permeability (reversible or non lethal sonoporation). The merits of each mode are clear; lethal sonoporation constitutes a significant tumour therapy weapon, whilst its less intrusive counterpart, reversible sonoporation, represents an effective non-invasive targeted drug delivery technique. Our working hypothesis for understanding this problem was that the root cause and effect in sonoporation involves the interaction of individual cells with single microbubbles, and to that end we devised an experiment that facilitates video rate observation of this specific scenario under well defined optical control. Specifically, we have constructed an innovative hybridization apparatus involving holographic optical trapping of single and multiple UCA microbubbles, together with the facility to irradiate with MHz pulsed ultrasound energy in the presence cancerous cells. This approach allows the isolation of a target microbubble from a resident population and the relocation to a [controllable] predetermined position relative to a cell within a monolayer. Frame extraction from standard framing rate video microscopy demonstrates the individuality of single microbubble-cell interactions. We describe a fluorescence microscopy protocol that will allow future study of the potential to deliver molecular species to cells, the dependence of the delivery on the initial microbubble-cell distance and to determine the targeted cell survival.

  5. Dual-targeted and pH-sensitive Doxorubicin Prodrug-Microbubble Complex with Ultrasound for Tumor Treatment

    PubMed Central

    Luo, Wanxian; Wen, Ge; Yang, Li; Tang, Jiao; Wang, Jianguo; Wang, Jihui; Zhang, Shiyu; Zhang, Li; Ma, Fei; Xiao, Liling; Wang, Ying; Li, Yingjia

    2017-01-01

    In this study, we investigated the potential of a dual-targeted pH-sensitive doxorubicin prodrug-microbubble complex (DPMC) in ultrasound (US)-assisted antitumor therapy. The doxorubicin prodrug (DP) consists of a succinylated-heparin carrier conjugated with doxorubicin (DOX) via hydrazone linkage and decorated with dual targeting ligands, folate and cRGD peptide. Combination of microbubble (MB) and DP, generated via avidin-biotin binding, promoted intracellular accumulation and improved therapeutic efficiency assisted by US cavitation and sonoporation. Aggregates of prepared DP were observed with an inhomogeneous size distribution (average diameters: 149.6±29.8 nm and 1036.2±38.8 nm, PDI: 1.0) while DPMC exhibited a uniform distribution (average diameter: 5.804±2.1 μm), facilitating its usage for drug delivery. Notably, upon US exposure, DPMC was disrupted and aggregated DP dispersed into homogeneous small-sized nanoparticles (average diameter: 128.6±42.3 nm, PDI: 0.21). DPMC could target to angiogenic endothelial cells in tumor region via αvβ3-mediated recognition and subsequently facilitate its specific binding to tumor cells mediated via recognition of folate receptor (FR) after US exposure. In vitro experiments showed higher tumor specificity and killing ability of DPMC with US than free DOX and DP for breast cancer MCF-7 cells. Furthermore, significant accumulation and specificity for tumor tissues of DPMC with US were detected using in vivo fluorescence and ultrasound molecular imaging, indicating its potential to integrate tumor imaging and therapy. In particular, through inducing apoptosis, inhibiting cell proliferation and antagonizing angiogenesis, DPMC with US produced higher tumor inhibition rates than DOX or DPMC without US in MCF-7 xenograft tumor-bearing mice while inducing no obvious body weight loss. Our strategy provides an effective platform for the delivery of large-sized or aggregated particles to tumor sites, thereby extending their

  6. Spatially Uniform Tumor Treatment and Drug Penetration by Regulating Ultrasound with Microbubbles.

    PubMed

    Ho, Yi-Ju; Wang, Tzu-Chia; Fan, Ching-Hsiang; Yeh, Chih-Kuang

    2018-05-30

    Tumor microenvironment has different morphologies of vessels in the core and rim regions, which influences the efficacy of tumor therapy. Our study proposed to improve the spatial uniformity of the antivascular effect and drug penetration within the tumor core and rim in combination therapies by regulating ultrasound-stimulated microbubble destruction (USMD). Focused ultrasound at 2 MHz and lipid-shell microbubbles (1.12 ± 0.08 μm, mean ± standard deviation) were used to perform USMD. The efficiency of the antivascular effect was evaluated by intravital imaging to determine the optimal USMD parameters. Tumor perfusion and histological alterations in the tumor core and rim were used to analyze the spatial uniformity of the antivascular effect and liposomal-doxorubicin (5 mg/kg) penetration in the combination therapy. Tumor vessels of specific sizes were disrupted by regulating USMD: vessels with sizes of 11 ± 3, 14 ± 5, 19 ± 7, and 23 ± 10 μm were disrupted by stimulation at acoustic pressures of 3, 5, 7, and 9 MPa, respectively (each p < 0.05). The effective treatment time of USMD (at 2 × 10 7 microbubbles/mouse, 7 MPa, and three cycles) was 60-120 min, which resulted in the disruption of 21-44% of vessels smaller than 50 μm. The reductions in perfusion and vascular density after combination therapy did not differ significantly between the tumor core and rim. This study found that regulating USMD can result in homogeneous antivascular effects and drug penetration within tumors and thereby improve the efficacy of combination therapies.

  7. Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering

    PubMed Central

    Qin, Shengping; Caskey, Charles F; Ferrara, Katherine W

    2010-01-01

    Microbubble contrast agents and the associated imaging systems have developed over the past twenty-five years, originating with manually-agitated fluids introduced for intra-coronary injection. Over this period, stabilizing shells and low diffusivity gas materials have been incorporated in microbubbles, extending stability in vitro and in vivo. Simultaneously, the interaction of these small gas bubbles with ultrasonic waves has been extensively studied, resulting in models for oscillation and increasingly sophisticated imaging strategies. Early studies recognized that echoes from microbubbles contained frequencies that are multiples of the microbubble resonance frequency. Although individual microbubble contrast agents cannot be resolved—given that their diameter is on the order of microns—nonlinear echoes from these agents are used to map regions of perfused tissue and to estimate the local microvascular flow rate. Such strategies overcome a fundamental limitation of previous ultrasound blood flow strategies; the previous Doppler-based strategies are insensitive to capillary flow. Further, the insonation of resonant bubbles results in interesting physical phenomena that have been widely studied for use in drug and gene delivery. Ultrasound pressure can enhance gas diffusion, rapidly fragment the agent into a set of smaller bubbles or displace the microbubble to a blood vessel wall. Insonation of a microbubble can also produce liquid jets and local shear stress that alter biological membranes and facilitate transport. In this review, we focus on the physical aspects of these agents, exploring microbubble imaging modes, models for microbubble oscillation and the interaction of the microbubble with the endothelium. PMID:19229096

  8. Contrast-enhanced and targeted ultrasound.

    PubMed

    Postema, Michiel; Gilja, Odd Helge

    2011-01-07

    Ultrasonic imaging is becoming the most popular medical imaging modality, owing to the low price per examination and its safety. However, blood is a poor scatterer of ultrasound waves at clinical diagnostic transmit frequencies. For perfusion imaging, markers have been designed to enhance the contrast in B-mode imaging. These so-called ultrasound contrast agents consist of microscopically small gas bubbles encapsulated in biodegradable shells. In this review, the physical principles of ultrasound contrast agent microbubble behavior and their adjustment for drug delivery including sonoporation are described. Furthermore, an outline of clinical imaging applications of contrast-enhanced ultrasound is given. It is a challenging task to quantify and predict which bubble phenomenon occurs under which acoustic condition, and how these phenomena may be utilized in ultrasonic imaging. Aided by high-speed photography, our improved understanding of encapsulated microbubble behavior will lead to more sophisticated detection and delivery techniques. More sophisticated methods use quantitative approaches to measure the amount and the time course of bolus or reperfusion curves, and have shown great promise in revealing effective tumor responses to anti-angiogenic drugs in humans before tumor shrinkage occurs. These are beginning to be accepted into clinical practice. In the long term, targeted microbubbles for molecular imaging and eventually for directed anti-tumor therapy are expected to be tested.

  9. Contrast-enhanced and targeted ultrasound

    PubMed Central

    Postema, Michiel; Gilja, Odd Helge

    2011-01-01

    Ultrasonic imaging is becoming the most popular medical imaging modality, owing to the low price per examination and its safety. However, blood is a poor scatterer of ultrasound waves at clinical diagnostic transmit frequencies. For perfusion imaging, markers have been designed to enhance the contrast in B-mode imaging. These so-called ultrasound contrast agents consist of microscopically small gas bubbles encapsulated in biodegradable shells. In this review, the physical principles of ultrasound contrast agent microbubble behavior and their adjustment for drug delivery including sonoporation are described. Furthermore, an outline of clinical imaging applications of contrast-enhanced ultrasound is given. It is a challenging task to quantify and predict which bubble phenomenon occurs under which acoustic condition, and how these phenomena may be utilized in ultrasonic imaging. Aided by high-speed photography, our improved understanding of encapsulated microbubble behavior will lead to more sophisticated detection and delivery techniques. More sophisticated methods use quantitative approaches to measure the amount and the time course of bolus or reperfusion curves, and have shown great promise in revealing effective tumor responses to anti-angiogenic drugs in humans before tumor shrinkage occurs. These are beginning to be accepted into clinical practice. In the long term, targeted microbubbles for molecular imaging and eventually for directed anti-tumor therapy are expected to be tested. PMID:21218081

  10. Microbubble-enhanced ultrasound to demonstrate urethral transection in a case of penile fracture.

    PubMed

    Czarnecki, Oliver; von Stempel, Conrad Brice; Sangster, Pippa; Walkden, Miles

    2017-09-23

    A 47-year-old man attended the emergency department following trauma during sexual intercourse after which he developed penile swelling and haematuria several hours later. A penile fracture was suspected but given the slightly atypical history, ultrasound was performed to look for a fracture. Given the history of haematuria, both a standard Doppler ultrasound and a microbubble-enhanced retrograde ultrasound urethrogram were performed. The Doppler confirmed the suspected diagnosis of penile fracture, and microbubble urethrogram demonstrated a urethral injury. This facilitated prompt surgical treatment and helped guide the surgical approach. Retrograde microbubble enhanced ultrasound urethrogram is a novel technique that can be used in conjunction with standard ultrasound to confirm the presence of a concurrent urethral rupture in penile fracture. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Long residence time of ultrasound microbubbles targeted to integrin in murine tumor model.

    PubMed

    Jun, Hong Young; Park, Seong Hoon; Kim, Hun Soo; Yoon, Kwon-Ha

    2010-01-01

    The aim of this study was to evaluate the intratumoral residence time of microbubbles (MBs) targeted to alpha(v)beta(3) integrin expressed in the endothelial cells of mice during the process of tumor angiogenesis. For the preparation of MBs, decafluorobutane gas was sonically dispersed in phosphate buffer saline containing L-A-phosphatidylcholine-distearoyl, polyethylene glycol 40 stearate, and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[biotinyl(polyethylene glycol)2000] in a 77:15:8 molar ratio. Avidin-fluorescein isothiocyanate and biotin-cyclic arginine-glycine-aspartate-D-tyrosine-lysine (cRGD) or biotin-alanine-glycine-aspartate (AGD) conjugates were added to the reaction mixture. Adhesion testing of the targeting MBs was performed for the MS-1 cell line expressing alpha(v)beta(3) integrin in vitro. The in vivo acoustic properties of the MBs were assessed by clinical ultrasound on the HT1080 fibrosarcoma model (n = 8) for 1 hour. Cryosections were stained with hematoxylin and eosin and by immunohistochemical staining to identify expression of alpha(v)beta(3) integrin in the HT1080 tumor. The adherence of the MBs conjugated to cRGD was significantly greater than the adherence of the MBs conjugated to biotin-AGD (P < .01) for the MS-1 endothelial cell line. The acoustic enhancement on ultrasound was observed as a stable imaging window until 1 hour after injection of the MB conjugates in the mice. The MBs targeted via cRGD preferentially adhered to the vascular endothelium of the HT-1080 tumors. The findings of ultrasound imaging were correlated with immunohistochemical findings for the expression of alpha(v)beta(3) integrin on the vascular endothelium of the tumors. The prepared MBs conjugated with cRGD demonstrated a sufficient residence time to attach to the target integrin of tumor tissues. This finding suggests that the MBs are a potential molecular contrast agent that enables characterization of tumor angiogenesis and the monitoring of antitumor and

  12. Facilitation of Drug Transport across the Blood-Brain Barrier with Ultrasound and Microbubbles.

    PubMed

    Meairs, Stephen

    2015-08-31

    Medical treatment options for central nervous system (CNS) diseases are limited due to the inability of most therapeutic agents to penetrate the blood-brain barrier (BBB). Although a variety of approaches have been investigated to open the BBB for facilitation of drug delivery, none has achieved clinical applicability. Mounting evidence suggests that ultrasound in combination with microbubbles might be useful for delivery of drugs to the brain through transient opening of the BBB. This technique offers a unique non-invasive avenue to deliver a wide range of drugs to the brain and promises to provide treatments for CNS disorders with the advantage of being able to target specific brain regions without unnecessary drug exposure. If this method could be applied for a range of different drugs, new CNS therapeutic strategies could emerge at an accelerated pace that is not currently possible in the field of drug discovery and development. This article reviews both the merits and potential risks of this new approach. It assesses methods used to verify disruption of the BBB with MRI and examines the results of studies aimed at elucidating the mechanisms of opening the BBB with ultrasound and microbubbles. Possible interactions of this novel delivery method with brain disease, as well as safety aspects of BBB disruption with ultrasound and microbubbles are addressed. Initial translational research for treatment of brain tumors and Alzheimer's disease is presented.

  13. Cationic microbubbles and antibiotic-free miniplasmid for sustained ultrasound-mediated transgene expression in liver.

    PubMed

    Manta, Simona; Renault, Gilles; Delalande, Anthony; Couture, Olivier; Lagoutte, Isabelle; Seguin, Johanne; Lager, Franck; Houzé, Pascal; Midoux, Patrick; Bessodes, Michel; Scherman, Daniel; Bureau, Michel-Francis; Marie, Corinne; Pichon, Chantal; Mignet, Nathalie

    2017-09-28

    Despite the increasing number of clinical trials in gene therapy, no ideal methods still allow non-viral gene transfer in deep tissues such as the liver. We were interested in ultrasound (US)-mediated gene delivery to provide long term liver expression. For this purpose, new positively charged microbubbles were designed and complexed with pFAR4, a highly efficient small length miniplasmid DNA devoid of antibiotic resistance sequence. Sonoporation parameters, such as insonation time, acoustic pressure and duration of plasmid injection were controlled under ultrasound imaging guidance. The optimization of these various parameters was performed by bioluminescence optical imaging of luciferase reporter gene expression in the liver. Mice were injected with 50μg pFAR4-LUC either alone, or complexed with positively charged microbubbles, or co-injected with neutral MicroMarker™ microbubbles, followed by low ultrasound energy application to the liver. Injection of the pFAR4 encoding luciferase alone led to a transient transgene expression that lasted only for two days. The significant luciferase signal obtained with neutral microbubbles decreased over 2days and reached a plateau with a level around 1 log above the signal obtained with pFAR4 alone. With the newly designed positively charged microbubbles, we obtained a much stronger bioluminescence signal which increased over 2days. The 12-fold difference (p<0.05) between MicroMarker™ and our positively charged microbubbles was maintained over a period of 6months. Noteworthy, the positively charged microbubbles led to an improvement of 180-fold (p<0.001) as regard to free pDNA using unfocused ultrasound performed at clinically tolerated ultrasound amplitude. Transient liver damage was observed when using the cationic microbubble-pFAR4 complexes and the optimized sonoporation parameters. Immunohistochemistry analyses were performed to determine the nature of cells transfected. The pFAR4 miniplasmid complexed with cationic

  14. Disruption of Prostate Microvasculature by Combining Microbubble-Enhanced Ultrasound and Prothrombin

    PubMed Central

    Liu, Yongliang; Qiao, Lu; Gao, Wenhong; Zhang, Weiguo; Liu, Zheng

    2016-01-01

    Previous studies have shown a unique method to disrupt tumor vasculature using pulsed, high-pressure amplitude therapeutic ultrasound combined with microbubbles. In this study, we attempted to destroy the prostate vasculature of canine prostates using microbubble-enhanced ultrasound (MEUS) and prothrombin. The prostates of 43 male mongrel canines were surgically exposed. Twenty-two prostates were treated using MEUS (n = 11) or MEUS and prothrombin (PMEUS, n = 11). The other 21 prostates, which were treated using microbubbles (n = 7), ultrasound (n = 7) or prothrombin (n = 7) only, served as the controls. Prothrombin was intravenously infused at 20 IU/kg. MEUS was induced using a therapeutic ultrasound device at a peak negative pressure of 4.47 MPa and a microbubble injection. Contrast-enhanced ultrasound was performed to assess the blood perfusion of the prostates. Then, the prostate tissue was harvested immediately after treatment and at 48 hours later for pathological examination. The contrast-enhanced ultrasound peak value of the prostate decreased significantly from 36.2 ± 5.6 to 27.1 ± 6.3 after treatment in the PMEUS group, but it remained unchanged in the other groups. Histological examination found severe microvascular rupture, hemorrhage and thrombosis in both MEUS- and PMEUS-treated prostates immediately after treatment, while disruption in the PMEUS group was more severe than in the MEUS group. Forty-eight hours after treatment, massive necrosis and infiltration of white blood cells occurred in the PMEUS group. This study demonstrated that PMEUS disrupted the normal microvasculature of canine prostates and induced massive necrosis. PMEUS could potentially become a new noninvasive method used for the treatment of benign prostatic hyperplasia. PMID:27643992

  15. An optical system for detecting 3D high-speed oscillation of a single ultrasound microbubble

    PubMed Central

    Liu, Yuan; Yuan, Baohong

    2013-01-01

    As contrast agents, microbubbles have been playing significant roles in ultrasound imaging. Investigation of microbubble oscillation is crucial for microbubble characterization and detection. Unfortunately, 3-dimensional (3D) observation of microbubble oscillation is challenging and costly because of the bubble size—a few microns in diameter—and the high-speed dynamics under MHz ultrasound pressure waves. In this study, a cost-efficient optical confocal microscopic system combined with a gated and intensified charge-coupled device (ICCD) camera were developed to detect 3D microbubble oscillation. The capability of imaging microbubble high-speed oscillation with much lower costs than with an ultra-fast framing or streak camera system was demonstrated. In addition, microbubble oscillations along both lateral (x and y) and axial (z) directions were demonstrated. Accordingly, this system is an excellent alternative for 3D investigation of microbubble high-speed oscillation, especially when budgets are limited. PMID:24049677

  16. Aptamer-crosslinked microbubbles: smart contrast agents for thrombin-activated ultrasound imaging.

    PubMed

    Nakatsuka, Matthew A; Mattrey, Robert F; Esener, Sadik C; Cha, Jennifer N; Goodwin, Andrew P

    2012-11-27

    Thrombosis, or malignant blood clotting, is associated with numerous cardiovascular diseases and cancers. A microbubble contrast agent is presented that produces ultrasound harmonic signal only when exposed to elevated thrombin levels. Initially silent microbubbles are activated in the presence of both thrombin-spiked and freshly clotting blood in three minutes with detection limits of 20 nM thrombin and 2 aM microbubbles. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Reversible and irreversible vascular bioeffects induced by ultrasound and microbubbles in chorioallantoic membrane model

    NASA Astrophysics Data System (ADS)

    Tarapacki, Christine; Kuebler, Wolfgang M.; Tabuchi, Arata; Karshafian, Raffi

    2017-03-01

    Background: The application of ultrasound and microbubbles at therapeutic conditions has been shown to improve delivery of molecules, cause vasoconstriction, modulate blood flow and induce a vascular shut down in in vivo cancerous tissues. The underlying mechanism has been associated with the interaction of ultrasonically-induced microbubble oscillation and cavitation with the blood vessel wall. In this study, the effect of ultrasound and microbubbles on blood flow and vascular architecture was studied using a fertilized chicken egg CAM (chorioallantoic membrane) model. Methods: CAM at day 12 of incubation (Hamburger-Hamilton stage 38-40) were exposed to ultrasound at varying acoustic pressures (160, 240 and 320 kPa peak negative pressure) in the presence of Definity microbubbles and 70 kDa FITC dextran fluorescent molecules. A volume of 50 µL Definity microbubbles were injected into a large anterior vein of the CAM prior to ultrasound exposure. The ultrasound treatment sequence consisted of 5 s exposure at 500 kHz frequency, 8 cycles and 1 kHz pulse repetition frequency with 5 s off for a total exposure of 2 minutes. Fluorescent videos and images of the CAM vasculature were acquired using intravital microscopy prior, during and following the ultrasound exposure. Perfusion was quantified by measuring the length of capillaries in a region of interest using Adobe Illustrator. Results and Discussion: The vascular bioeffects induced by USMB increased with acoustic peak negative pressure. At 160 kPa, no visible differences were observed compared to the control. At 240 kPa, a transient decrease in perfusion with subsequent recovery within 15 minutes was observed, whereas at 320 kPa, the fluorescent images showed an irreversible vascular damage. The study indicates that a potential mechanism for the transient decrease in perfusion may be related to blood coagulation. The results suggest that ultrasound and microbubbles can induce reversible and irreversible vascular

  18. Ultrasound-targeted microbubble destruction of calcium channel subunit α 1D siRNA inhibits breast cancer via G protein-coupled receptor 30.

    PubMed

    Ji, Yanlei; Han, Zhen; Shao, Limei; Zhao, Yuehuan

    2016-10-01

    Estrogen has been closely associated with breast cancer. Several studies reported that Ca2+ signal and Ca2+ channels act in estrogen-modulated non-genomic pathway of breast cancer, however little was revealed on the function of L-type Ca2+ channels. The L-type Ca2+ channel subunit α 1D, named Cav1.3 was found in breast cancer cells. We aimed to investigate the expression and activity of Cav1.3 in human breast cancer, and reveal the effect of estrogen in regulating the expression of Cav1.3. The qRT-PCR and western blotting were employed to show that Cav1.3 was highly expressed in breast cancer tissues. E2 exposure rapidly upregulated the expression of Cav1.3 in dosage- and time-dependent manner, and promoted Ca2+ influx. The silencing of G protein-coupled estrogen receptor 30 (GPER1/GPR30) using siRNA transfection inhibited the upregulation of Cav1.3 and Ca2+ influx induced by E2. Moreover, the inhibition of Cav1.3 by siRNA transfection suppressed E2-induced second peak of Ca2+ signal, the expression of p-ERK1/2, and the cell proliferation. Ultrasound-targeted microbubble destruction (UTMD) of Cav1.3 siRNA was used in MCF-7 cells in vitro and in the tumor xenografts mice in vivo. The application of UTMD significantly suppressed the tumor growth and promoted the survival rate. In conclusion, E2 upregulated the expression of Cav1.3 for Ca2+ influx to promote the expression of p-ERK1/2 for cell proliferation. The study confirmed that the mechanism of E2 inducing the expression of Cav1.3 through a non-genomic pathway, and highlighted that UTMD of Cav1.3 siRNA is a powerful promising technology for breast cancer gene therapy.

  19. Biodegradable double-targeted PTX-mPEG-PLGA nanoparticles for ultrasound contrast enhanced imaging and antitumor therapy in vitro.

    PubMed

    Ma, Jing; Shen, Ming; Xu, Chang Song; Sun, Ying; Duan, You Rong; Du, Lian Fang

    2016-11-29

    A porous-structure nano-scale ultrasound contrast agent (UCA) was made of monomethoxypoly (ethylene glycol)-poly (lactic-co-glycolic acid) (mPEG-PLGA), and modified by double-targeted antibody: anti-carcinoembryonic antigen (CEA) and anti-carbohydrate antigen 19-9 (CA19-9), as a double-targeted nanoparticles (NPs). Anti-tumor drug paclitaxel (PTX) was encapsulated in the double-targeted nanoparticles (NPs). The morphor and release curve were characterized. We verified a certain anticancer effect of PTX-NPs through cytotoxicity experiments. The cell uptake result showed much more NPs may be facilitated to ingress the cells or tissues with ultrasound (US) or ultrasound targeted microbubble destruction (UTMD) transient sonoporation in vitro. Ultrasound contrast-enhanced images in vitro and in vivo were investigated. Compared with SonoVue, the NPs prolonged imaging time in rabbit kidneys and tumor of nude mice, which make it possible to further enhance anti-tumor effects by extending retention time in the tumor region. The novel double-targeted NPs with the function of ultrasound contrast enhanced imaging and anti-tumor therapy can be a promising way in clinic.

  20. Nonthermal ablation with microbubble-enhanced focused ultrasound close to the optic tract without affecting nerve function.

    PubMed

    McDannold, Nathan; Zhang, Yong-Zhi; Power, Chanikarn; Jolesz, Ferenc; Vykhodtseva, Natalia

    2013-11-01

    Tumors at the skull base are challenging for both resection and radiosurgery given the presence of critical adjacent structures, such as cranial nerves, blood vessels, and brainstem. Magnetic resonance imaging-guided thermal ablation via laser or other methods has been evaluated as a minimally invasive alternative to these techniques in the brain. Focused ultrasound (FUS) offers a noninvasive method of thermal ablation; however, skull heating limits currently available technology to ablation at regions distant from the skull bone. Here, the authors evaluated a method that circumvents this problem by combining the FUS exposures with injected microbubble-based ultrasound contrast agent. These microbubbles concentrate the ultrasound-induced effects on the vasculature, enabling an ablation method that does not cause significant heating of the brain or skull. In 29 rats, a 525-kHz FUS transducer was used to ablate tissue structures at the skull base that were centered on or adjacent to the optic tract or chiasm. Low-intensity, low-duty-cycle ultrasound exposures (sonications) were applied for 5 minutes after intravenous injection of an ultrasound contrast agent (Definity, Lantheus Medical Imaging Inc.). Using histological analysis and visual evoked potential (VEP) measurements, the authors determined whether structural or functional damage was induced in the optic tract or chiasm. Overall, while the sonications produced a well-defined lesion in the gray matter targets, the adjacent tract and chiasm had comparatively little or no damage. No significant changes (p > 0.05) were found in the magnitude or latency of the VEP recordings, either immediately after sonication or at later times up to 4 weeks after sonication, and no delayed effects were evident in the histological features of the optic nerve and retina. This technique, which selectively targets the intravascular microbubbles, appears to be a promising method of noninvasively producing sharply demarcated lesions in

  1. Nonthermal ablation with microbubble-enhanced focused ultrasound close to the optic tract without affecting nerve function

    PubMed Central

    McDannold, Nathan; Zhang, Yong-Zhi; Power, Chanikarn; Jolesz, Ferenc; Vykhodtseva, Natalia

    2014-01-01

    Object Tumors at the skull base are challenging for both resection and radiosurgery given the presence of critical adjacent structures, such as cranial nerves, blood vessels, and brainstem. Magnetic resonance imaging–guided thermal ablation via laser or other methods has been evaluated as a minimally invasive alternative to these techniques in the brain. Focused ultrasound (FUS) offers a noninvasive method of thermal ablation; however, skull heating limits currently available technology to ablation at regions distant from the skull bone. Here, the authors evaluated a method that circumvents this problem by combining the FUS exposures with injected microbubble-based ultrasound contrast agent. These microbubbles concentrate the ultrasound-induced effects on the vasculature, enabling an ablation method that does not cause significant heating of the brain or skull. Methods In 29 rats, a 525-kHz FUS transducer was used to ablate tissue structures at the skull base that were centered on or adjacent to the optic tract or chiasm. Low-intensity, low-duty-cycle ultrasound exposures (sonications) were applied for 5 minutes after intravenous injection of an ultrasound contrast agent (Definity, Lantheus Medical Imaging Inc.). Using histological analysis and visual evoked potential (VEP) measurements, the authors determined whether structural or functional damage was induced in the optic tract or chiasm. Results Overall, while the sonications produced a well-defined lesion in the gray matter targets, the adjacent tract and chiasm had comparatively little or no damage. No significant changes (p > 0.05) were found in the magnitude or latency of the VEP recordings, either immediately after sonication or at later times up to 4 weeks after sonication, and no delayed effects were evident in the histological features of the optic nerve and retina. Conclusions This technique, which selectively targets the intravascular microbubbles, appears to be a promising method of noninvasively

  2. Ultrasound wave propagation in tissue and scattering from microbubbles for echo particle image velocimetry technique.

    PubMed

    Mukdadi, Osama; Shandas, Robin

    2004-01-01

    Nonlinear wave propagation in tissue can be employed for tissue harmonic imaging, ultrasound surgery, and more effective tissue ablation for high intensity focused ultrasound (HIFU). Wave propagation in soft tissue and scattering from microbubbles (ultrasound contrast agents) are modeled to improve detectability, signal-to-noise ratio, and contrast harmonic imaging used for echo particle image velocimetry (Echo-PIV) technique. The wave motion in nonlinear material (tissue) is studied using KZK-type parabolic evolution equation. This model considers ultrasound beam diffraction, attenuation, and tissue nonlinearity. Time-domain numerical model is based on that originally developed by Lee and Hamilton [J. Acoust. Soc. Am 97:906-917 (1995)] for axi-symmetric acoustic field. The initial acoustic waveform emitted from the transducer is assumed to be a broadband wave modulated by Gaussian envelope. Scattering from microbubbles seeded in the blood stream is characterized. Hence, we compute the pressure field impinges the wall of a coated microbubble; the dynamics of oscillating microbubble can be modeled using Rayleigh-Plesset-type equation. Here, the continuity and the radial-momentum equation of encapsulated microbubbles are used to account for the lipid layer surrounding the microbubble. Numerical results show the effects of tissue and microbubble nonlinearities on the propagating pressure wave field. These nonlinearities have a strong influence on the waveform distortion and harmonic generation of the propagating and scattering waves. Results also show that microbubbles have stronger nonlinearity than tissue, and thus improves S/N ratio. These theoretical predictions of wave phenomena provide further understanding of biomedical imaging technique and provide better system design.

  3. CAVITATION THRESHOLD OF MICROBUBBLES IN GEL TUNNELS BY FOCUSED ULTRASOUND

    PubMed Central

    Sassaroli, E.; Hynynen, K.

    2007-01-01

    The investigation of inertial cavitation in micro-tunnels has significant implications for the development of therapeutic applications of ultrasound such as ultrasound-mediated drug and gene delivery. The threshold for inertial cavitation was investigated using a passive cavitation detector with a center frequency of 1 MHz. Micro-tunnels of various diameters (90 to 800 μm) embedded in gel were fabricated and injected with a solution of Optison™ contrast agent of concentrations 1.2% and 0.2% diluted in water. An ultrasound pulse of duration 500 ms and center frequency 1.736 MHz was used to insonate the microbubbles. The acoustic pressure was increased at one second intervals until broadband noise emission was detected. The pressure threshold at which broadband noise emission was observed was found to be dependent on the diameter of the micro-tunnels, with an average increase of 1.2 to 1.5 between the smallest and the largest tunnels, depending on the microbubble concentration. The evaluation of inertial cavitation in gel tunnels rather than tubes provides a novel opportunity to investigate microbubble collapse in a situation that simulates in vivo blood vessels better than tubes with solid walls do. PMID:17590501

  4. Microbubble Enzyme-Linked Immunosorbent Assay for the Detection of Targeted Microbubbles in in Vitro Static Binding Assays.

    PubMed

    Wischhusen, Jennifer; Padilla, Frederic

    2017-07-01

    Targeted microbubbles (MBs) are ultrasound contrast agents that are functionalized with a ligand for ultrasound molecular imaging of endothelial markers. Novel targeted MBs are characterized in vitro by incubation in protein-coated wells, followed by binding quantification by microscopy or ultrasound imaging. Both methods provide operator-dependent results: Between 3 and 20 fields of view from a heterogeneous sample are typically selected for analysis by microscopy, and in ultrasound imaging, different acoustic settings affect signal intensities. This study proposes a new method to reproducibly quantify MB binding based on enzyme-linked immunosorbent assay (ELISA), in which bound MBs are revealed with an enzyme-linked antibody. MB-ELISA was adapted to in vitro static binding assays, incubating the MBs in inverted position or by agitation, and compared with microscopy. The specificity and sensitivity of MB-ELISA enable the reliable quantification of MB binding in a rapid, high-throughput and whole-well analysis, facilitating the characterization of new targeted contrast agents. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  5. Sonothrombolysis of Intra-Catheter Aged Venous Thrombi Using Microbubble Enhancement and Guided Three Dimensional Ultrasound Pulses

    PubMed Central

    Kutty, Shelby; Xie, Feng; Gao, Shunji; Drvol, Lucas K; Lof, John; Fletcher, Scott E; Radio, Stanley J; Danford, David A; Hammel, James M; Porter, Thomas R

    2010-01-01

    Central venous and arterial catheters are a major source of thrombo-embolic disease in children. We hypothesized that guided high mechanical index (MI) impulses from diagnostic three-dimensional (3D) ultrasound during an intravenous microbubble infusion could dissolve these thrombi. An in vitro system simulating intra-catheter thrombi was created and then treated with guided high MI impulses from 3D ultrasound, utilizing low MI microbubble sensitive imaging pulse sequence schemes to detect the microbubbles (Perflutren Lipid Microsphere, Definity®, Lantheus). Ten aged thrombi over 24 hours old were tested using 3D ultrasound coupled with a continuous diluted microbubble infusion (Group A), and ten with 3D ultrasound alone (Group B). Mean thrombus age was 28.6 hours (range 26.6–30.3). Groups A exhibited a 55 ± 19 % reduction in venous thrombus size, compared to 31±10 % for Group B (p=0.008). Feasibility testing was performed in 4 pigs, establishing a model to further investigate the efficacy. Sonothrombolysis of aged intra-catheter venous thrombi can be achieved with commercially available microbubbles and guided high MI ultrasound from a diagnostic 3D transducer. PMID:20696549

  6. Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging.

    PubMed

    Jeon, Mansik; Song, Wentao; Huynh, Elizabeth; Kim, Jungho; Kim, Jeesu; Helfield, Brandon L; Leung, Ben Y C; Goertz, David E; Zheng, Gang; Oh, Jungtaek; Lovell, Jonathan F; Kim, Chulhong

    2014-01-01

    Ultrasound and photoacoustic imaging are highly complementary modalities since both use ultrasonic detection for operation. Increasingly, photoacoustic and ultrasound have been integrated in terms of hardware instrumentation. To generate a broadly accessible dual-modality contrast agent, we generated microbubbles (a standard ultrasound contrast agent) in a solution of methylene blue (a standard photoacoustic dye). This MB2 solution was formed effectively and was optimized as a dual-modality contrast solution. As microbubble concentration increased (with methylene blue concentration constant), photoacoustic signal was attenuated in the MB2 solution. When methylene blue concentration increased (with microbubble concentration held constant), no ultrasonic interference was observed. Using an MB2 solution that strongly attenuated all photoacoustic signal, high powered ultrasound could be used to burst the microbubbles and dramatically enhance photoacoustic contrast (>800-fold increase), providing a new method for spatiotemporal control of photoacoustic signal generation.

  7. Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Jeon, Mansik; Song, Wentao; Huynh, Elizabeth; Kim, Jungho; Kim, Jeesu; Helfield, Brandon L.; Leung, Ben Y. C.; Goertz, David E.; Zheng, Gang; Oh, Jungtaek; Lovell, Jonathan F.; Kim, Chulhong

    2014-01-01

    Ultrasound and photoacoustic imaging are highly complementary modalities since both use ultrasonic detection for operation. Increasingly, photoacoustic and ultrasound have been integrated in terms of hardware instrumentation. To generate a broadly accessible dual-modality contrast agent, we generated microbubbles (a standard ultrasound contrast agent) in a solution of methylene blue (a standard photoacoustic dye). This MB2 solution was formed effectively and was optimized as a dual-modality contrast solution. As microbubble concentration increased (with methylene blue concentration constant), photoacoustic signal was attenuated in the MB2 solution. When methylene blue concentration increased (with microbubble concentration held constant), no ultrasonic interference was observed. Using an MB2 solution that strongly attenuated all photoacoustic signal, high powered ultrasound could be used to burst the microbubbles and dramatically enhance photoacoustic contrast (>800-fold increase), providing a new method for spatiotemporal control of photoacoustic signal generation.

  8. TOPICAL REVIEW: Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering

    NASA Astrophysics Data System (ADS)

    Qin, Shengping; Caskey, Charles F.; Ferrara, Katherine W.

    2009-03-01

    Microbubble contrast agents and the associated imaging systems have developed over the past 25 years, originating with manually-agitated fluids introduced for intra-coronary injection. Over this period, stabilizing shells and low diffusivity gas materials have been incorporated in microbubbles, extending stability in vitro and in vivo. Simultaneously, the interaction of these small gas bubbles with ultrasonic waves has been extensively studied, resulting in models for oscillation and increasingly sophisticated imaging strategies. Early studies recognized that echoes from microbubbles contained frequencies that are multiples of the microbubble resonance frequency. Although individual microbubble contrast agents cannot be resolved—given that their diameter is on the order of microns—nonlinear echoes from these agents are used to map regions of perfused tissue and to estimate the local microvascular flow rate. Such strategies overcome a fundamental limitation of previous ultrasound blood flow strategies; the previous Doppler-based strategies are insensitive to capillary flow. Further, the insonation of resonant bubbles results in interesting physical phenomena that have been widely studied for use in drug and gene delivery. Ultrasound pressure can enhance gas diffusion, rapidly fragment the agent into a set of smaller bubbles or displace the microbubble to a blood vessel wall. Insonation of a microbubble can also produce liquid jets and local shear stress that alter biological membranes and facilitate transport. In this review, we focus on the physical aspects of these agents, exploring microbubble imaging modes, models for microbubble oscillation and the interaction of the microbubble with the endothelium.

  9. Effects of the microbubble shell physicochemical properties on ultrasound-mediated drug delivery to the brain.

    PubMed

    Wu, Shih-Ying; Chen, Cherry C; Tung, Yao-Sheng; Olumolade, Oluyemi O; Konofagou, Elisa E

    2015-08-28

    Lipid-shelled microbubbles have been used in ultrasound-mediated drug delivery. The physicochemical properties of the microbubble shell could affect the delivery efficiency since they determine the microbubble mechanical properties, circulation persistence, and dissolution behavior during cavitation. Therefore, the aim of this study was to investigate the shell effects on drug delivery efficiency in the brain via blood-brain barrier (BBB) opening in vivo using monodisperse microbubbles with different phospholipid shell components. The physicochemical properties of the monolayer were varied by using phospholipids with different hydrophobic chain lengths (C16, C18, and C24). The dependence on the molecular size and acoustic energy (both pressure and pulse length) were investigated. Our results showed that a relatively small increase in the microbubble shell rigidity resulted in a significant increase in the delivery of 40-kDa dextran, especially at higher pressures. Smaller (3kDa) dextran did not show significant difference in the delivery amount, suggesting that the observed shell effect was molecular size-dependent. In studying the impact of acoustic energy on the shell effects, it was found that they occurred most significantly at pressures causing microbubble destruction (450kPa and 600kPa); by increasing the pulse length to deliver the 40-kDa dextran, the difference between C16 and C18 disappeared while C24 still achieved the highest delivery efficiency. These indicated that the acoustic energy could be used to modulate the shell effects. The acoustic cavitation emission revealed the physical mechanisms associated with different shells. Overall, lipid-shelled microbubbles with long hydrophobic chain length could achieve high delivery efficiency for larger molecules especially with high acoustic energy. Our study, for the first time, offered evidence directly linking the microbubble monolayer shell with their efficacy for drug delivery in vivo. Copyright © 2015

  10. Acoustic Characterization and Enhanced Ultrasound Imaging of Long-Circulating Lipid-Coated Microbubbles.

    PubMed

    Li, Hongbo; Yang, Yanye; Zhang, Meimei; Yin, Liping; Tu, Juan; Guo, Xiasheng; Zhang, Dong

    2018-05-01

    A long-circulating lipid-coated ultrasound (US) contrast agent was fabricated to achieve a longer wash-out time and gain more resistance against higher-mechanical index sonication. Systemic physical, acoustic, and in vivo imaging experiments were performed to better understand the underlying mechanism enabling the improvement of contrast agent performance by adjusting the physical and acoustic properties of contrast agent microbubbles. By simply altering the gas core, a kind of US contrast agent microbubble was synthesized with a similar lipid-coating shell as SonoVue microbubbles (Bracco SpA, Milan, Italy) to achieve a longer wash-out time and higher inertial cavitation threshold. To bridge the structure-performance relationship of the synthesized microbubbles, the imaging performance of the microbubbles was assessed in vivo with SonoVue as a control group. The size distribution and inertial cavitation threshold of the synthesized microbubbles were characterized, and the shell parameters of the microbubbles were determined by acoustic attenuation measurements. All of the measurements were compared with SonoVue microbubbles. The synthesized microbubbles had a spherical shape, a smooth, consistent membrane, and a uniform distribution, with an average diameter of 1.484 μm. According to the measured attenuation curve, the synthesized microbubbles resonated at around 2.8 MHz. Although the bubble's shell elasticity (0.2 ± 0.09 N/m) was comparable with SonoVue, it had relatively greater viscosity and inertial cavitation because of the different gas core. Imaging studies showed that the synthesized microbubbles had a longer circulation time and a better chance of fighting against rapid collapse than SonoVue. Nano/micrometer long-circulating lipid-coated microbubbles could be fabricated by simply altering the core composition of SonoVue microbubbles with a higher-molecular weight gas. The smaller diameter and higher inertial cavitation threshold of the

  11. Intravascular ultrasound catheter to enhance microbubble-based drug delivery via acoustic radiation force.

    PubMed

    Kilroy, Joseph P; Klibanov, Alexander L; Wamhoff, Brian R; Hossack, John A

    2012-10-01

    Previous research has demonstrated that acoustic radiation force enhances intravascular microbubble adhesion to blood vessels in the presence of flow for moleculartargeted ultrasound imaging and drug delivery. A prototype acoustic radiation force intravascular ultrasound (ARFIVUS) catheter was designed and fabricated to displace a microbubble contrast agent in flow representative of conditions encountered in the human carotid artery. The prototype ARFIVUS transducer was designed to match the resonance frequency of 1.4- to 2.6-μm-diameter microbubbles modeled by an experimentally verified 1-D microbubble acoustic radiation force translation model. The transducer element was an elongated Navy Type I (hard) lead zirconate titanate (PZT) ceramic designed to operate at 3 MHz. Fabricated devices operated with center frequencies of 3.3 and 3.6 MHz with -6-dB fractional bandwidths of 55% and 50%, respectively. Microbubble translation velocities as high as 0.86 m/s were measured using a high-speed streak camera when insonating with the ARFIVUS transducer. Finally, the prototype was used to displace microbubbles in a flow phantom while imaging with a commercial 45-MHz imaging IVUS transducer. A sustained increase of 31 dB in average video intensity was measured following insonation with the ARFIVUS, indicating microbubble accumulation resulting from the application of acoustic radiation force.

  12. Functional and pathological improvements of the hearts in diabetes model by the combined therapy of bFGF-loaded nanoparticles with ultrasound-targeted microbubble destruction.

    PubMed

    Zhao, Ying-Zheng; Tian, Xin-Qiao; Zhang, Ming; Cai, Lu; Ru, Ao; Shen, Xiao-Tong; Jiang, Xi; Jin, Rong-Rong; Zheng, Lei; Hawkins, Kyle; Charkrabarti, Subrata; Li, Xiao-Kun; Lin, Qian; Yu, Wen-Ze; Ge, Shuping; Lu, Cui-Tao; Wong, Ho Lun

    2014-07-28

    Diabetic cardiomyopathy (DCM) is the leading cause of morbidity and mortality among the diabetic patients and currently there is no effective means to reverse its pathological progress. Basic fibroblast growth factor (bFGF) has shown promise as a molecular therapy for DCM, but its delivery is inefficient and non-specific. In the present study, a therapy combining nanoparticle (NP) carrier and ultrasound-targeted microbubble destruction (UTMD) was reported the first time for bFGF delivery to the heart of diabetic rats. bFGF-loaded NP (bFGF-NP) were prepared with Poloxamer 188-grafted heparin copolymer using water-in-water technique, and the morphology, encapsulation efficiency, and bioactivity of bFGF-NP were studied. The cellular uptake and cytotoxicity of bFGF-NP were evaluated with primary cultures of the left ventricular (LV) cardiomyocytes in vitro. Therapeutic effects of bFGF-NP/UTMD on the heart of DCM rats were studied by measuring LV systolic and diastolic functions, hemodynamic characteristics and indicators of cardiac remodeling including myocardial collagen volume fraction and capillary density. Results demonstrated that bFGF-NP showed good round morphology, efficient bFGF encapsulation and stable bioactivity of bFGF in vitro. bFGF-NP/UTMD combined treatment significantly enhanced the efficiency of bFGF cellular uptake (P<0.05) without obvious cytotoxicity. Significant improvements (P<0.05) in both cardiac functions and tissue morphology in the DCM rats were observed in bFGF-NP/UTMD group. These were not achievable using free bFGF, bFGF-NP or UTMD treatment alone. Our results show that combining a non-viral vector with UTMD technique is an effective strategy to deliver bFGF to the heart, and the resulting growth factor therapy has demonstrated potential to reverse the progress of DCM by restoring the cardiac functions and even the structure of damaged cardiac tissues. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Preliminary study on forming microbubble-surrounded cells as carriers for cellular therapy and evaluation of ultrasound controllability by fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Demachi, Fumi; Murayama, Yuta; Hosaka, Naoto; Mochizuki, Takashi; Masuda, Kohji; Enosawa, Shin; Chiba, Toshio; Oda, Yusuke; Suzuki, Ryo; Maruyama, Kazuo

    2015-07-01

    Although various cellular immune therapies have been proposed and developed, because the therapeutic cells disperse upon injection into blood flow, there is a limitation on the accumulation of the cells to the target area. We previously reported our attempts to actively control microbubbles in artificial blood vessels, and here we propose a new method of carrying therapeutic cells for cellular therapy using microbubbles and ultrasound. When microbubbles and their aggregations attach to the surface of therapeutic cells, the acoustic force needed to propel the cells is increased because of the size expansion and the boundary in acoustic impedance on the cell surface. We fabricated a cylindrical chamber including two ultrasound transducers to emit a suspension of microbubbles (TF-BLs, transferrin-bubble liposomes) on the cells (Colon-26) to enhance the adhesion of microbubbles on the cells. We found that the optimum conditions for producing BL-surrounded cells were a sound pressure of 100 kPa-pp, an exposure time of 30 s, and a TF-BL concentration of 0.33 mg lipid/mL, when the cell concentration was constant at 0.77 × 105/mL in phosphate-buffered saline. Using these BL-surrounded cells, we confirmed the controllability of the cells under ultrasound exposure, where the displacement increased in proportion to the sound pressure and was not confirmed with the original cells.

  14. Microbubble-mediated ultrasound therapy: a review of its potential in cancer treatment

    PubMed Central

    Ibsen, Stuart; Schutt, Carolyn E; Esener, Sadik

    2013-01-01

    The inherently toxic nature of chemotherapy drugs is essential for them to kill cancer cells but is also the source of the detrimental side effects experienced by patients. One strategy to reduce these side effects is to limit the healthy tissue exposure by encapsulating the drugs in a vehicle that demonstrates a very low leak rate in circulation while simultaneously having the potential for rapid release once inside the tumor. Designing a vehicle with these two opposing properties is the major challenge in the field of drug delivery. A triggering event is required to change the vehicle from its stable circulating state to its unstable release state. A unique mechanical actuation type trigger is possible by harnessing the size changes that occur when microbubbles interact with ultrasound. These mechanical actuations can burst liposomes and cell membranes alike allowing for rapid drug release and facilitating delivery into nearby cells. The tight focusing ability of the ultrasound to just a few cubic millimeters allows for precise control over the tissue location where the microbubbles destabilize the vehicles. This allows the ultrasound to highlight the tumor tissue and cause rapid drug release from any carrier present. Different vehicle designs have been demonstrated from carrying drug on just the surface of the microbubble itself to encapsulating the microbubble along with the drug within a liposome. In the future, nanoparticles may extend the circulation half-life of these ultrasound triggerable drug-delivery vehicles by acting as nucleation sites of ultrasound-induced mechanical actuation. In addition to the drug delivery capability, the microbubble size changes can also be used to create imaging contrast agents that could allow the internal chemical environment of a tumor to be studied to help improve the diagnosis and detection of cancer. The ability to attain truly tumor-specific release from circulating drug-delivery vehicles is an exciting future prospect

  15. Magnetic targeting to enhance microbubble delivery in an occluded microarterial bifurcation

    NASA Astrophysics Data System (ADS)

    de Saint Victor, M.; Carugo, D.; Barnsley, L. C.; Owen, J.; Coussios, C.-C.; Stride, E.

    2017-09-01

    Ultrasound and microbubbles have been shown to accelerate the breakdown of blood clots both in vitro and in vivo. Clinical translation of this technology is still limited, however, in part by inefficient microbubble delivery to the thrombus. This study examines the obstacles to delivery posed by fluid dynamic conditions in occluded vasculature and investigates whether magnetic targeting can improve microbubble delivery. A 2D computational fluid dynamic model of a fully occluded Y-shaped microarterial bifurcation was developed to determine: (i) the fluid dynamic field in the vessel with inlet velocities from 1-100 mm s-1 (corresponding to Reynolds numbers 0.25-25) (ii) the transport dynamics of fibrinolytic drugs; and (iii) the flow behavior of microbubbles with diameters in the clinically-relevant range (0.6-5 µm). In vitro experiments were carried out in a custom-built microfluidic device. The flow field was characterized using tracer particles, and fibrinolytic drug transport was assessed using fluorescence microscopy. Lipid-shelled magnetic microbubbles were fluorescently labelled to determine their spatial distribution within the microvascular model. In both the simulations and experiments, the formation of laminar vortices and an abrupt reduction of fluid velocity were observed in the occluded branch of the bifurcation, severely limiting drug transport towards the occlusion. In the absence of a magnetic field, no microbubbles reached the occlusion, remaining trapped in the first vortex, within 350 µm from the bifurcation center. The number of microbubbles trapped within the vortex decreased as the inlet velocity increased, but was independent of microbubble size. Application of a magnetic field (magnetic flux density of 76 mT, magnetic flux density gradient of 10.90 T m-1 at the centre of the bifurcation) enabled delivery of microbubbles to the occlusion and the number of microbubbles delivered increased with bubble size and with decreasing inlet velocity.

  16. Intravascular forward-looking ultrasound transducers for microbubble-mediated sonothrombolysis.

    PubMed

    Kim, Jinwook; Lindsey, Brooks D; Chang, Wei-Yi; Dai, Xuming; Stavas, Joseph M; Dayton, Paul A; Jiang, Xiaoning

    2017-06-14

    Effective removal or dissolution of large blood clots remains a challenge in clinical treatment of acute thrombo-occlusive diseases. Here we report the development of an intravascular microbubble-mediated sonothrombolysis device for improving thrombolytic rate and thus minimizing the required dose of thrombolytic drugs. We hypothesize that a sub-megahertz, forward-looking ultrasound transducer with an integrated microbubble injection tube is more advantageous for efficient thrombolysis by enhancing cavitation-induced microstreaming than the conventional high-frequency, side-looking, catheter-mounted transducers. We developed custom miniaturized transducers and demonstrated that these transducers are able to generate sufficient pressure to induce cavitation of lipid-shelled microbubble contrast agents. Our technology demonstrates a thrombolysis rate of 0.7 ± 0.15 percent mass loss/min in vitro without any use of thrombolytic drugs.

  17. Steering Microbubbles in Physiologically Realistic Flows Using the Bjerknes Force

    NASA Astrophysics Data System (ADS)

    Clark, Alicia; Aliseda, Alberto

    2017-11-01

    Ultrasound contrast agents (UCAs) are lipid-coated microbubbles that are used to increase contrast in ultrasound imaging due to their ability to scatter sound. Additionally, UCAs can be used in conjunction with ultrasound in medical applications such as targeted drug delivery and thrombolysis. These applications utilize the Bjerknes force, an ultrasound-induced force caused by the phase difference between the incoming ultrasound pressure wave and the microbubble volume oscillations. The dynamics of microbubbles under ultrasound excitation have been studied thoroughly in stagnant fluid baths; however, understanding of the fundamental physics of microbubbles in physiologically realistic flows is lacking. An in vitroexperiment that reproduces the dynamics (Reynolds and Womersley numbers) of a medium-sized blood vessel was used to explore the behavior of microbubbles. Using Lagrangian tracking, the trajectory of each individual bubble was reconstructed using information obtained from high speed imaging. The balance of hydrodynamic forces (lift, drag, added mass, etc.) against the primary Bjerknes force was analyzed. The results show that an increase in ultrasound pulse repetition frequency leads to a linear increase in the Bjerknes force and the increase in the force is quadratic with the amplitude of the excitation.

  18. Transient permeabilization of cell membranes by ultrasound-exposed microbubbles is related to formation of hydrogen peroxide.

    PubMed

    Juffermans, L J M; Dijkmans, P A; Musters, R J P; Visser, C A; Kamp, O

    2006-10-01

    In the present study, we addressed the interactions among ultrasound, microbubbles, and living cells as well as consequent arising bioeffects. We specifically investigated whether hydrogen peroxide (H(2)O(2)) is involved in transient permeabilization of cell membranes in vitro after ultrasound exposure at low diagnostic power, in the presence of stable oscillating microbubbles, by measuring the generation of H(2)O(2) and Ca(2+) influx. Ultrasound, in the absence or presence of SonoVue microbubbles, was applied to H9c2 cells at 1.8 MHz with a mechanical index (MI) of 0.1 or 0.5 during 10 s. This was repeated every minute, for a total of five times. The production of H(2)O(2) was measured intracellularly with CM-H(2)DCFDA. Cell membrane permeability was assessed by measuring real-time changes in intracellular Ca(2+) concentration with fluo-4 using live-cell fluorescence microscopy. Ultrasound, in the presence of microbubbles, caused a significant increase in intracellular H(2)O(2) at MI 0.1 of 50% and MI 0.5 of 110% compared with control (P < 0.001). Furthermore, we found increases in intracellular Ca(2+) levels at both MI 0.1 and MI 0.5 in the presence of microbubbles, which was not detected in the absence of extracellular Ca(2+). In addition, in the presence of catalase, Ca(2+) influx immediately following ultrasound exposure was completely blocked at MI 0.1 (P < 0.01) and reduced by 50% at MI 0.5 (P < 0.001). Finally, cell viability was not significantly affected, not even 24 h later. These results implicate a role for H(2)O(2) in transient permeabilization of cell membranes induced by ultrasound-exposed microbubbles.

  19. Enhancing laser thermal-therapy using ultrasound-microbubbles and gold nanorods: In vitro investigation

    NASA Astrophysics Data System (ADS)

    Tarapacki, Christine; Kumaradas, Carl; Karshafian, Raffi

    2012-11-01

    Gold nanorods (GNR) in laser-induced thermal therapy can significantly increase light absorption, leading to a local temperature increase and causing irreversible cell damage. One of the key challenges in using GNR as a thermal therapy agent is to deliver a concentration of GNR to generate sufficient heat and cause cell death. In this study, ultrasound and microbubble induced sonoporation is used to enhance intracellular uptake of GNR and improve the therapeutic outcome of laserinduced thermal therapy. Acute myeloid leukemia (AML) cells in suspension (0.6 mL) were treated with ultrasound and microbubbles (USMB) at 1 MHz frequency, 16 microseconds pulse duration, 1 kHz pulse repetition frequency, 1 minute insonation time, varying acoustic pressures (0, 1.26 and 1.73 MPa) and 10 μL Definity microbubble agent with and without GNR (12 nm × 48 nm) at varying concentration (1.0×1010 to 2.5×1011 GNR/mL). The GNR were manufactured through wet chemical synthesis process and measured using Transmission Electron Microscopy (TEM) and Atomic Absorption Spectroscopy (AAS) for size and concentration respectively. Following ultrasound and microbubble treatment, cells were centrifuged to remove excess gold nanorods and treated in suspension with an 810 nm laser (Diomed 60 NIR) at 4 W for 5 minutes. A thermal camera (FLIR Thermovision A40) was positioned to monitor the sample temperature throughout laser treatment and cell viability was assessed using flow cytometry with propidium iodide. Cell viability of 18±2% was achieved with GNR+USMB (1.26 MPa) compared to 72±3% with GNR alone (12 hour incubation) and 99±0.2% with USMB (1.26 MPa) alone. With increasing GNR concentration during ultrasound and microbubble treatment, laser induced sample temperature increased and consequently cell viability decreased. Cell viability decreased from 92±1% at 1.0×1011 GNR/mL to 29±5% at 1.5×1011 GNR/mL concentration with corresponding maximum temperatures of 50°C and 54°C, respectively

  20. Rest-Stress Limb Perfusion Imaging in Humans with Contrast Ultrasound Using Intermediate-Power Imaging and Microbubbles Resistant to Inertial Cavitation.

    PubMed

    Davidson, Brian P; Hodovan, James; Belcik, J Todd; Moccetti, Federico; Xie, Aris; Ammi, Azzdine Y; Lindner, Jonathan R

    2017-05-01

    Contrast-enhanced ultrasound (CEU) limb perfusion imaging is a promising approach for evaluating peripheral artery disease (PAD). However, low signal enhancement in skeletal muscle has necessitated high-power intermittent imaging algorithms, which are not clinically feasible. We hypothesized that CEU using a combination of intermediate power and a contrast agent resistant to inertial cavitation would allow real-time limb stress perfusion imaging. In normal volunteers, CEU of the calf skeletal muscle was performed on separate days with Sonazoid, Optison, or Definity. Progressive reduction in the ultrasound pulsing interval was used to assess the balance between signal enhancement and agent destruction at escalating mechanical indices (MI, 0.1-0.4). Real-time perfusion imaging at MI 0.1-0.4 using postdestructive replenishment kinetics was performed at rest and during 25 W plantar flexion contractile exercise. For Optison, limb perfusion imaging was unreliable at rest due to very low signal enhancement generated at all MIs and was possible during exercise-induced hyperemia only at MI 0.1 due to agent destruction at higher MIs. For Definity, signal intensity progressively increased with MI but was offset by microbubble destruction, which resulted in modest signal enhancement during CEU perfusion imaging and distortion of replenishment curves at MI ≥ 0.2. For Sonazoid, there strong signal enhancement at MI ≥ 0.2, with little destruction detected only at MI 0.4. Accordingly, high signal intensity and nondistorted perfusion imaging was possible at MI 0.2-0.3 and detected an 8.0- ± 5.7-fold flow reserve. Rest-stress limb perfusion imaging in humans with real-time CEU, which requires only seconds to perform, is possible using microbubbles with viscoelastic properties that produce strong nonlinear signal generation without destruction at intermediate acoustic pressures. Copyright © 2016 American Society of Echocardiography. All rights reserved.

  1. Ultrasound assisted gene and photodynamic synergistic therapy with multifunctional FOXA1-siRNA loaded porphyrin microbubbles for enhancing therapeutic efficacy for breast cancer.

    PubMed

    Zhao, Ranran; Liang, Xiaolong; Zhao, Bo; Chen, Min; Liu, Renfa; Sun, Sujuan; Yue, Xiuli; Wang, Shumin

    2018-05-03

    To improve the non-invasive therapeutic efficacy for ER positive breast cancer (ER+ BC), we fabricated a multifunctional FOXA1 loaded porphyrin microbubble to combine photodynamic therapy (PDT) and gene therapy of FOXA1 knockdown (KD) with ultrasound targeted microbubble destruction (UTMD) technology under the guidance of contrast enhanced ultrasound (CEUS). Cationic porphyrin microbubbles (CpMBs) were firstly fabricated from a porphyrin grafted lipid with two cationic amino groups (PGL-NH2) and fluorocarbon inert gas of C 3 F 8 . Porphyrin group in the CpMBs monolayer could be used as a photosensitizer for PDT, while amino groups could adsorb siRNA through electrostatic interaction for FOXA1 KD, which could inhibit the proliferation of estrogen-dependent ER+ BC. This system showed high photosensitizer and gene loading content. Moreover, CpMBs/siRNA can be converted into nanoparticles with low-frequency pulsed ultrasound (LFUS) exposure, which increase the transfection efficiency of siRNA (∼4 fold) and the porphyrin uptake (∼8 fold) in MCF-7 (a human breast cancer cell line, ER+) by sonoporation effect. In vivo, UTMD was performed under the guidance of CEUS, and the fluorescence intensity of CpMBs/siRNA at the tumour site reached a peak value at 6 h after injection and it was retained in the following 24 h. Furthermore, there was no tumour recurrence during the observation period (21 days) in the group of PDT combined with FXOA1 KD. Compared to the PDT or FOXA1 KD alone group, the combination of these two methods was much more efficient in inhibiting ER+ breast cancer, showing a good synergistic effect. CpMBs/siRNA combined with UTMD dramatically increased the local accumulation of porphyrin and siRNA through ultrasound-induced sonoporation effect under the guidance of CEUS, showing excellent therapeutic effect for estrogen-dependent ER+ breast cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Comparison of gene delivery techniques for therapeutic angiogenesis ultrasound-mediated destruction of carrier microbubbles versus direct intramuscular injection.

    PubMed

    Kobulnik, Jeremy; Kuliszewski, Michael A; Stewart, Duncan J; Lindner, Jonathan R; Leong-Poi, Howard

    2009-10-27

    This study was designed to compare the efficacy of angiogenic gene delivery by ultrasound-mediated (UM) destruction of intravenous carrier microbubbles to direct intramuscular (IM) injections. Current trials of gene therapy for angiogenesis remain limited by suboptimal, invasive delivery techniques. Hind-limb ischemia was produced by iliac artery ligation in 99 rats. In 32 rats, UM delivery of green fluorescent protein (GFP)/vascular endothelial growth factor-165 (VEGF(165)) plasmid deoxyribonucleic acid was performed. Thirty-five animals received IM injections of VEGF(165)/GFP plasmid. Remaining rats received no treatment. Before delivery (day 14 after ligation) and at days 17, 21, and 28 and week 8 after ligation, microvascular blood volume and microvascular blood flow to the proximal hind limbs were assessed by contrast-enhanced ultrasound (n = 8 per group). Total transfection was assessed by reverse transcriptase-polymerase chain reaction, and localization of transfection was determined by immunohistochemistry. By day 28, both IM and UM delivery of VEGF(165) produced significant increases in microvascular blood volume and microvascular blood flow. Whereas increases in microvascular blood volume were similar between treatment groups, microvascular blood flow was greater (p < 0.005) in UM-treated animals as compared with IM-treated animals, persisting to week 8. The VEGF(165)/GFP messenger ribonucleic acid expression was greater (p < 0.05) for IM-treated animals. A strong GFP signal was detected for both groups and was localized to focal perivascular regions and myocytes around injection sites for IM and to the vascular endothelium of arterioles/capillaries in a wider distribution for UM delivery. Despite lower transfection levels, UM delivery of VEGF(165) is as effective as IM injections. The UM delivery results in directed vascular transfection over a wider distribution, which may account for the more efficient angiogenesis.

  3. TREATMENT OF MICROVASCULAR MICRO-EMBOLIZATION USING MICROBUBBLES AND LONG-TONE-BURST ULTRASOUND: AN IN VIVO STUDY

    PubMed Central

    Pacella, John J.; Brands, Judith; Schnatz, Frederick G.; Black, John J.; Chen, Xucai; Villanueva, Flordeliza S.

    2015-01-01

    Despite epicardial coronary artery reperfusion by percutaneous coronary intervention, distal micro-embolization into the coronary microcirculation limits myocardial salvage during acute myocardial infarction. Thrombolysis using ultrasound and microbubbles (sonothrombolysis) is an approach that induces microbubble oscillations to cause clot disruption and restore perfusion. We sought to determine whether this technique could restore impaired tissue perfusion caused by thrombotic microvascular obstruction. In 16 rats, an imaging transducer was placed on the biceps femoris muscle, perpendicular to a single-element 1-MHz treatment transducer. Ultrasound contrast perfusion imaging was performed at baseline and after micro-embolization. Therapeutic ultrasound (5000 cycles, pulse repetition frequency = 5 0.33 Hz, 1.5 MPa) was delivered to nine rats for two 10-min sessions during intra-arterial infusion of lipid-encapsulated microbubbles; seven control rats received no ultrasound–microbubble therapy. Ultrasound contrast perfusion imaging was repeated after each treatment or control period, and microvascular volume was measured as peak video intensity. There was a 90% decrease in video intensity after micro-embolization (from 8.6 ± 4.8 to 0.7 ± 0.8 dB, p < 0.01). The first and second ultrasound–microbubble sessions were respectively followed by video intensity increases of 5.8 ± 5.1 and 8.7 ± 5.7 dB (p < 0.01, compared with micro-embolization). The first and second control sessions, respectively, resulted in no significant increase in video intensity (2.4 ± 2.3 and 3.6 ± 4.9) compared with micro-embolization (0.6 ± 0.7 dB). We have developed an in vivo model that simulates the distal thrombotic microvascular obstruction that occurs after primary percutaneous coronary intervention. Long-pulse-length ultrasound with microbubbles has a therapeutic effect on microvascular perfusion and may be a valuable adjunct to reperfusion therapy for acute myocardial infarction

  4. Passive acoustic mapping of magnetic microbubbles for cavitation enhancement and localization.

    PubMed

    Crake, Calum; Victor, Marie de Saint; Owen, Joshua; Coviello, Christian; Collin, Jamie; Coussios, Constantin-C; Stride, Eleanor

    2015-01-21

    Magnetic targeting of microbubbles functionalized with superparamagnetic nanoparticles has been demonstrated previously for diagnostic (B-mode) ultrasound imaging and shown to enhance gene delivery in vitro and in vivo. In the present work, passive acoustic mapping (PAM) was used to investigate the potential of magnetic microbubbles for localizing and enhancing cavitation activity under focused ultrasound. Suspensions of magnetic microbubbles consisting of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), air and 10 nm diameter iron oxide nanoparticles were injected into a tissue mimicking phantom at different flow velocities (from 0 to 50 mm s(-1)) with or without an applied magnetic field. Microbubbles were excited using a 500 kHz single element focused transducer at peak negative focal pressures of 0.1-1.0 MPa, while a 64 channel imaging array passively recorded their acoustic emissions. Magnetic localization of microbubble-induced cavitation activity was successfully achieved and could be resolved using PAM as a shift in the spatial distribution and increases in the intensity and sustainability of cavitation activity under the influence of a magnetic field. Under flow conditions at shear rates of up to 100 s(-1) targeting efficacy was maintained. Application of a magnetic field was shown to consistently increase the energy of cavitation emissions by a factor of 2-5 times over the duration of exposures compared to the case without targeting, which was approximately equivalent to doubling the injected microbubble dose. These results suggest that magnetic targeting could be used to localize and increase the concentration of microbubbles and hence cavitation activity for a given systemic dose of microbubbles or ultrasound intensity.

  5. [Relevance of contrast ultrasound with microbubbles in vascular medecine].

    PubMed

    Erdmann, Andreas; Ney, Barbara; Alatri, Adriano; Calanca, Luca; Mazzolai, Lucia

    2016-12-07

    Application of ultrasound contrast media has become a standard in diagnostic imaging in cardiology and in the characterization of focal lesions in multiple organs, especially of the liver. In the past years there was a growing body of evidence for their usefulness in vascular medicine. The development of contrast media, microbubbles with a stabilizing envelope and filled with gaz, small enough to pass through pulmonary capillaries made real-time imaging of organ perfusion possible. Ultrasound contrast media are rapidly eliminated by exhalation and can safely be administered to patients with renal failure. The objective of this review is to describe the basic principles of ultrasound contrast imaging and to inform about vascular applications of contrast ultrasound.

  6. [Preparation and preliminary evaluation of KGDS-targeted ultrasound contrast agent].

    PubMed

    Gao, Feng; Ding, Yanfei; Sheng, Xiaoxi; Wang, Wei; Liang, Qi; Luo, Zhuoqiong; Zhou, Ping; Li, Hui

    2009-12-01

    To prepare a thrombus-targeted ultrasonic contrast agent and to investigate its targeted ability to fresh blood clots. We first synthesized FITC-KGDS-Palm compound, and then prepared thrombus-targeted microbubbles using "ultrasound & high speed shearing method". Fluorescence labeling thrombus-specific peptides and KGDS, directed at the activated glycoprotein(GP)IIb/IIIa receptor of platelets were attached to the surface of lipid microbubbles. The concentration and size of TUCA were measured by Malvern Zeta Sizer Nano-ZS590 and Coulter counter. Immunofluorescence was applied to confirm the conjugation. The conjunct ratio was assessed by flow cytometer (FCM). The KGDS-TUCA was straw yellow turbid liquor, and the concentration was 1.5 x 10(9)/mL, and the average size was 1.5 microm. The targeted microbubbles conjugated with the thrombus-specific peptides showed bright green rings by fluorescence microscope. FCM demonstrated that the wavelength of shell of KGDS-TUCA changed greatly, and the conjunct ratio was 90.04%. In vitro study showed KGDS-TUCA remained stable for 48 h at 4 degree C and target-attached to blood clots and showed good stability. The ultrasound & high speed shearing method to prepare TUCA is easy and in favor of purification. KGDS-TUCA has high specific biological activity. The conjunct ratio and stability of KGDS-TUCA are excellent.

  7. Ultrasound-Guided Delivery of siRNA and a Chemotherapeutic Drug by Using Microbubble Complexes: In Vitro and In Vivo Evaluations in a Prostate Cancer Model.

    PubMed

    Bae, Yun Jung; Yoon, Young Il; Yoon, Tae-Jong; Lee, Hak Jong

    2016-01-01

    To evaluate the effectiveness of ultrasound and microbubble-liposome complex (MLC)-mediated delivery of siRNA and doxorubicin into prostate cancer cells and its therapeutic capabilities both in vitro and in vivo. Microbubble-liposome complexes conjugated with anti-human epidermal growth factor receptor type 2 (Her2) antibodies were developed to target human prostate cancer cell lines PC-3 and LNCaP. Intracellular delivery of MLC was observed by confocal microscopy. We loaded MLC with survivin-targeted small interfering RNA (siRNA) and doxorubicin, and delivered it into prostate cancer cells. The release of these agents was facilitated by ultrasound application. Cell viability was analyzed by MTT assay after the delivery of siRNA and doxorubicin. Survivin-targeted siRNA loaded MLC was delivered into the xenograft mouse tumor model. Western blotting was performed to quantify the expression of survivin in vivo. Confocal microscopy demonstrated substantial intracellular uptake of MLCs in LNCaP, which expresses higher levels of Her2 than PC-3. The viability of LNCaP cells was significantly reduced after the delivery of MLCs loaded with siRNA and doxorubicin (85.0 ± 2.9%), which was further potentiated by application of ultrasound (55.0 ± 3.5%, p = 0.009). Survivin expression was suppressed in vivo in LNCaP tumor xenograft model following the ultrasound and MLC-guided delivery of siRNA (77.4 ± 4.90% to 36.7 ± 1.34%, p = 0.027). Microbubble-liposome complex can effectively target prostate cancer cells, enabling intracellular delivery of the treatment agents with the use of ultrasound. Ultrasound and MLC-mediated delivery of survivin-targeted siRNA and doxorubicin can induce prostate cell apoptosis and block survivin expression in vitro and in vivo.

  8. Disruption of tumor neovasculature by microbubble enhanced ultrasound: a potential new physical therapy of anti-angiogenesis.

    PubMed

    Liu, Zheng; Gao, Shunji; Zhao, Yang; Li, Peijing; Liu, Jia; Li, Peng; Tan, Kaibin; Xie, Feng

    2012-02-01

    Tumor angiogenesis is of vital importance to the growth and metastasis of solid tumors. The angiogenesis is featured with a defective, leaky and fragile vascular construction. Microbubble enhanced ultrasound (MEUS) cavitation is capable of mechanical disruption of small blood vessels depending on effective acoustic pressure amplitude. We hypothesized that acoustic cavitation combining high-pressure amplitude pulsed ultrasound (US) and circulating microbubble could potentially disrupt tumor vasculature. A high-pressure amplitude, pulsed ultrasound device was developed to induce inertial cavitation of circulating microbubbles. The tumor vasculature of rat Walker 256 was insonated percutaneously with two acoustic pressures, 2.6 MPa and 4.8 MPa, both with intravenous injection of a lipid microbubble. The controls were treated by the ultrasound only or sham ultrasound exposure. Contrast enhanced ultrasound (CEUS) and histology were performed to assess tumor circulation and pathological changes. The CEUS results showed that the circulation of Walker 256 tumors could be completely blocked off for 24 hours in 4.8 MPa treated tumors. The CEUS gray scale value (GSV) indicated that there was significant GSV drop-off in both of the two experimental groups but none in the controls. Histology showed that the tumor microvasculature was disrupted into diffuse hematomas accompanied by thrombosis, intercellular edema and multiple cysts formation. The 24 hours of tumor circulation blockage resulted in massive necrosis of the tumor. MEUS provides a new, simple physical method for anti-angiogenic therapy and may have great potential for clinical applications. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  9. Pinched flow fractionation of microbubbles for ultrasound contrast agent enrichment

    NASA Astrophysics Data System (ADS)

    Versluis, Michel; Kok, Maarten; Segers, Tim

    2014-11-01

    An ultrasound contrast agent (UCA) suspension contains a wide size distribution of encapsulated microbubbles (typically 1-10 μm in diameter) that resonate to the driving ultrasound field by the intrinsic relationship between bubble size and ultrasound frequency. Medical transducers, however, operate in a narrow frequency range, which severely limits the number of bubbles that contribute to the echo signal. Thus, the sensitivity can be improved by narrowing down the size distribution of the bubble suspension. Here, we present a novel, low-cost, lab-on-a-chip method for the sorting of contrast microbubbles by size, based on a microfluidic separation technique known as pinched flow fractionation (PFF). We show by experimental and numerical investigation that the inclusion of particle rotation is essential for an accurate physical description of the sorting behavior of the larger bubbles. Successful sorting of a bubble suspension with a narrow size distribution (3.0 +/- 0.6 μm) has been achieved with a PFF microdevice. This sorting technique can be easily parallelized, and may lead to a significant improvement in the sensitivity of contrast-enhanced medical ultrasound. This work is supported by NanoNextNL, a micro and nanotechnology consortium of the Government of the Netherlands and 130 partners.

  10. Acoustic characterization of ultrasound contrast microbubbles and echogenic liposomes: Applications to imaging and drug-delivery

    NASA Astrophysics Data System (ADS)

    Paul, Shirshendu

    Micron- to nanometer - sized ultrasound agents, like encapsulated microbubbles and echogenic liposomes (ELIPs), are being actively developed for possible clinical implementations in diagnostic imaging and ultrasound mediated drug/gene delivery. The primary objective of this thesis is to characterize the acoustic behavior of and the ultrasound-mediated contents release from these contrast agents for developing multi-functional ultrasound contrast agents. Subharmonic imaging using contrast microbubbles can improve image quality by providing a higher signal to noise ratio. However, the design and development of contrast microbubbles with favorable subharmonic behavior requires accurate mathematical models capable of predicting their nonlinear dynamics. To this goal, 'strain-softening' viscoelastic interfacial models of the encapsulation were developed and subsequently utilized to simulate the dynamics of encapsulated microbubbles. A hierarchical two-pronged approach of modeling --- a model is applied to one set of experimental data to obtain the model parameters (material characterization), and then the model is validated against a second independent experiment --- is demonstrated in this thesis for two lipid coated (SonazoidRTM and DefinityRTM) and a few polymer (polylactide) encapsulated microbubbles. The proposed models were successful in predicting several experimentally observed behaviors e.g., low subharmonic thresholds and "compression-only" radial oscillations. Results indicate that neglecting the polydisperse size distribution of contrast agent suspensions, a common practice in the literature, can lead to inaccurate results. In vitro experimental investigation of the dependence of subharmonic response from these microbubbles on the ambient pressure is also in conformity with the recent numerical investigations, showing both increase or decrease under appropriate excitation conditions. Experimental characterization of the ELIPs and polymersomes was performed

  11. Interactions between individual ultrasound-stimulated microbubbles and fibrin clots.

    PubMed

    Acconcia, Christopher; Leung, Ben Y C; Manjunath, Anoop; Goertz, David E

    2014-09-01

    The use of ultrasound-stimulated microbubbles (USMBs) to promote thrombolysis is well established, but there remains considerable uncertainty about the mechanisms of this process. Here we examine the microscale interactions between individual USMBs and fibrin clots as a function of bubble size, exposure conditions and clot type. Microbubbles (n = 185) were placed adjacent to clot boundaries ("coarse" or "fine") using optical tweezers and exposed to 1-MHz ultrasound as a function of pressure (0.1-0.39 MPa). High-speed (10 kfps) imaging was employed, and clots were subsequently assessed with 2-photon microscopy. For fine clots, 46% of bubbles "embedded" within 10 μm of the clot boundary at pressures of 0.1 and 0.2 MPa, whereas at 0.39 MPa, 53% of bubbles penetrated and transited into the clots with an incidence inversely related to their diameter. A substantial fraction of penetrating bubbles induced fibrin network damage and promoted the uptake of nanobeads. In coarse clots, penetration occurred more readily and at lower pressures than in fine clots. The results therefore provide direct evidence of therapeutically relevant effects of USMBs and indicate their dependence on size, exposure conditions and clot properties. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  12. Collapse dynamics of ultrasound contrast agent microbubbles

    NASA Astrophysics Data System (ADS)

    King, Daniel Alan

    Ultrasound contrast agents (UCAs) are micron-sized gas bubbles encapsulated with thin shells on the order of nanometers thick. The damping effects of these viscoelastic coatings are widely known to significantly alter the bubble dynamics for linear and low-amplitude behavior; however, their effects on strongly nonlinear and destruction responses are much less studied. This dissertation examines the behaviors of single collapsing shelled microbubbles using experimental and theoretical methods. The study of their dynamics is particularly relevant for emerging experimental uses of UCAs which seek to leverage localized mechanical forces to create or avoid specialized biomedical effects. The central component in this work is the study of postexcitation rebound and collapse, observed acoustically to identify shell rupture and transient inertial cavitation of single UCA microbubbles. This time-domain analysis of the acoustic response provides a unique method for characterization of UCA destruction dynamics. The research contains a systematic documentation of single bubble postexcitation collapse through experimental measurement with the double passive cavitation detection (PCD) system at frequencies ranging from 0.9 to 7.1 MHz and peak rarefactional pressure amplitudes (PRPA) ranging from 230 kPa to 6.37 MPa. The double PCD setup is shown to improve the quality of collected data over previous setups by allowing symmetric responses from a localized confocal region to be identified. Postexcitation signal percentages are shown to generally follow trends consistent with other similar cavitation metrics such as inertial cavitation, with greater destruction observed at both increased PRPA and lower frequency over the tested ranges. Two different types of commercially available UCAs are characterized and found to have very different collapse thresholds; lipid-shelled Definity exhibits greater postexcitation at lower PRPAs than albumin-shelled Optison. Furthermore, by altering

  13. Microbubbles induce renal hemorrhage when exposed to diagnostic ultrasound in anesthetized rats.

    PubMed

    Wible, James H; Galen, Karen P; Wojdyla, Jolette K; Hughes, Michael S; Klibanov, Alexander L; Brandenburger, Gary H

    2002-01-01

    The generation of ultrasound (US) bioeffects using a clinical imaging system is controversial. We tested the hypothesis that the presence of microbubbles in the US field of a medical imager induces biologic effects. Both kidneys of anesthetized rats were insonified for 5 min using a medical imaging system after the administration of microbubbles. One kidney was insonified using a continuous mode (30 Hz) and the opposite kidney was insonified using an intermittent (1 Hz) technique. The microbubbles were exposed to three different transducer frequencies and four transducer output powers. After insonification, the animals were euthanized, the kidneys were removed and their gross appearance scored under "blinded" conditions using a defined scale. After the administration of microbubbles, US imaging of the kidney caused hemorrhage in the renal tissue. The severity and area of hemorrhage increased with an increase in the transducer power and a decrease in the transducer frequency. Intermittent insonification in the presence of microbubbles produced a greater degree of renal hemorrhage than continuous imaging techniques.

  14. Nonspherical dynamics and shape mode stability of ultrasound contrast agent microbubbles

    NASA Astrophysics Data System (ADS)

    Calvisi, Michael

    2016-11-01

    Ultrasound contrast agents (UCAs) are shell encapsulated microbubbles developed originally for ultrasound imaging enhancement. UCAs are more recently being exploited for therapeutic applications, such as for drug delivery, gene therapy, and tissue ablation. Ultrasound transducer pulses can induce spherical (radial) UCA oscillations, translation, and nonspherical shape oscillations, the dynamics of which are highly coupled. If driven sufficiently strongly, the ultrasound can induce breakup of UCAs, which can facilitate drug or gene delivery but should be minimized for imaging purposes to increase residence time and maximize diagnostic effect. Therefore, an understanding of the interplay between the acoustic driving and nonspherical shape mode stability of UCAs is essential for both diagnostic and therapeutic applications. In this work, we use both analytical and numerical methods to analyze shape mode stability for cases of small and large nonspherical oscillations, respectively. To analyze shape mode stability in the limit of small nonspherical perturbations, we couple a radial model of a lipid-coated microbubble with a model for bubble translation and nonspherical shape oscillation. This hybrid model is used to predict shape mode stability for ultrasound driving frequencies and pressure amplitudes of clinical interest. In addition, calculations of the stability of individual shape modes, residence time, maximum radius, and translation are provided with respect to acoustic driving parameters and compared to an unshelled bubble. The effects of shell elasticity, shell viscosity, and initial radius on stability are investigated. Furthermore, the well-established boundary element method (BEM) is used to investigate the dynamics and shape stability of large amplitude nonspherical oscillations of an ultrasonically-forced, polymer-coated microbubble near a rigid boundary. Different instability modes are identified based on the degree of jetting and proximity to the

  15. Light and ultrasound activated microbubbles around gold nanorods for photoacoustic microsurgery

    NASA Astrophysics Data System (ADS)

    Cavigli, Lucia; Centi, Sonia; Lai, Sarah; Borri, Claudia; Micheletti, Filippo; Tortoli, Paolo; Panettieri, Ilaria; Streit, Ingolf; Rossi, Francesca; Ratto, Fulvio; Pini, Roberto

    2017-07-01

    Photoacoustic imaging and microsurgery have recently attracted attention for applications in oncology. Here, we present a versatile set-up to trigger vapor microbubbles around plasmonic nanoparticles by a combined light-ultrasound excitation. This system enables the detection and parametrization of bubbles as a function of several variables, such us optical fluence, ultrasound intensity, nanoparticles concentration, thus providing useful directions to the development of new strategies for treatments based on optical cavitation.

  16. Real-time contrast ultrasound muscle perfusion imaging with intermediate-power imaging coupled with acoustically durable microbubbles.

    PubMed

    Seol, Sang-Hoon; Davidson, Brian P; Belcik, J Todd; Mott, Brian H; Goodman, Reid M; Ammi, Azzdine; Lindner, Jonathan R

    2015-06-01

    There is growing interest in limb contrast-enhanced ultrasound (CEU) perfusion imaging for the evaluation of peripheral artery disease. Because of low resting microvascular blood flow in skeletal muscle, signal enhancement during limb CEU is prohibitively low for real-time imaging. The aim of this study was to test the hypothesis that this obstacle can be overcome by intermediate- rather than low-power CEU when performed with an acoustically resilient microbubble agent. Viscoelastic properties of Definity and Sonazoid were assessed by measuring bulk modulus during incremental increases in ambient pressure to 200 mm Hg. Comparison of in vivo microbubble destruction and signal enhancement at a mechanical index (MI) of 0.1 to 0.4 was performed by sequential reduction in pulsing interval from 10 to 0.05 sec during limb CEU at 7 MHz in mice and 1.8 MHz in dogs. Destruction was also assessed by broadband signal generation during passive cavitation detection. Real-time CEU perfusion imaging with destruction-replenishment was then performed at 1.8 MHz in dogs using an MI of 0.1, 0.2, or 0.3. Sonazoid had a higher bulk modulus than Definity (66 ± 12 vs 29 ± 2 kPa, P = .02) and exhibited less inertial cavitation (destruction) at MIs ≥ 0.2. On in vivo CEU, maximal signal intensity increased incrementally with MI for both agents and was equivalent between agents except at an MI of 0.1 (60% and 85% lower for Sonazoid at 7 and 1.8 MHz, respectively, P < .05). However, on progressive shortening of the pulsing interval, Definity was nearly completely destroyed at MIs ≥ 0.2 at 1.8 and 7 MHz, whereas Sonazoid was destroyed only at 1.8 MHz at MIs ≥ 0.3. As a result, real-time CEU perfusion imaging demonstrated approximately fourfold greater enhancement for Sonazoid at an MI of 0.3 to 0.4. Robust signal enhancement during real-time CEU perfusion imaging of the limb is possible when using intermediate-power imaging coupled with a durable microbubble

  17. Noninvasive, localized, and transient brain drug delivery using focused ultrasound and microbubbles

    NASA Astrophysics Data System (ADS)

    Choi, James J.

    In the United States, Alzheimer's disease (AD), Parkinson's disease (PD), and brain cancer caused 72,432, 19,566 and 12,886 deaths in 2006, respectively. Whereas the number of deaths due to major disorders such as heart disease, stroke, and prostate cancer have decreased since 2006, deaths attributed to AD, PD, and brain cancer have not. Treatment options for patients with CNS disorders remain limited despite significant advances in knowledge of CNS disease pathways and development of neurologically potent agents. One of the major obstacles is that the cerebral microvasculature is lined by a specialized and highly regulated blood-brain barrier (BBB) that prevents large agents from entering the brain extracellular space. The purpose of this dissertation is to design a noninvasive, localized, and transient BBB opening system using focused ultrasound (FUS) and determine ultrasound and microbubble conditions that can effectively and safely deliver large pharmacologically-relevant-sized agents to the brain. To meet this end, an in vivo mouse brain drug delivery system using a stereotactic-based targeting method was developed. FUS was applied noninvasively through the intact skin and skull, which allowed for long-term and high-throughput studies. With this system, more than 150 mice were exposed to one of 31 distinct acoustic and microbubble conditions. The feasibility of delivering a large MRI contrast agent was first demonstrated in vivo in both wild-type and transgenic Alzheimer's disease model (APP/PS1) mice. A wide range of acoustic and microbubble conditions were then evaluated for their ability to deliver agents to a target region. Interestingly, the possible design space of parameters was found to be vast and different conditions resulted in distinct spatial distributions and doses delivered. In particular, BBB opening was shown to be dependent on the microbubble diameter, acoustic pressure, pulse repetition frequency (PRF), and pulse length (PL). Each set of

  18. Modeling photothermal and acoustical induced microbubble generation and growth.

    PubMed

    Krasovitski, Boris; Kislev, Hanoch; Kimmel, Eitan

    2007-12-01

    Previous experimental studies showed that powerful heating of nanoparticles by a laser pulse using energy density greater than 100 mJ/cm(2), could induce vaporization and generate microbubbles. When ultrasound is introduced at the same time as the laser pulse, much less laser power is required. For therapeutic applications, generation of microbubbles on demand at target locations, e.g. cells or bacteria can be used to induce hyperthermia or to facilitate drug delivery. The objective of this work is to develop a method capable of predicting photothermal and acoustic parameters in terms of laser power and acoustic pressure amplitude that are needed to produce stable microbubbles; and investigate the influence of bubble coalescence on the thresholds when the microbubbles are generated around nanoparticles that appear in clusters. We develop and solve here a combined problem of momentum, heat and mass transfer which is associated with generation and growth of a microbubble, filled with a mixture of non-vaporized gas (air) and water vapor. The microbubble's size and gas content vary as a result of three mechanisms: gas expansion or compression, evaporation or condensation on the bubble boundary, and diffusion of dissolved air in the surrounding water. The simulations predict that when ultrasound is applied relatively low threshold values of laser and ultrasound power are required to obtain a stable microbubble from a single nanoparticle. Even lower power is required when microbubbles are formed by coalescence around a cluster of 10 nanoparticles. Laser pulse energy density of 21 mJ/cm(2) is predicted for instance together with acoustic pressure of 0.1 MPa for a cluster of 10 or 62 mJ/cm(2) for a single nanoparticle. Those values are well within the safety limits, and as such are most appealing for targeted therapeutic purposes.

  19. Neuroprotective effect of combined ultrasound and microbubbles in a rat model of middle cerebral artery infarction

    NASA Astrophysics Data System (ADS)

    Fatar, M.; Griebe, M.; Stroick, M.; Kern, R.; Hennerici, M.; Meairs, S.

    2005-03-01

    Ultrasound-mediated microbubble thrombolysis (UMT) was performed in a middle cerebral artery occlusion model in rats to evaluate possible effects upon brain infarct volume, apoptosis, IL-6 and TNF-alpha levels, and disruption of the blood-brain barrier (BBB). The results show that infarct volume was significantly reduced (p<0.04) in the microbubble + ultrasound (MB + US) group as compared to control animals. The levels of IL-6 and TNF-alpha concentrations, as markers of tissue damage, were not significantly different. In trypan blue treated animals, no additional BBB disruption was observed for the UMT group. Likewise, there was no increase in apoptotic cell death outside the infarction area in animals treated with MB + US. The results demonstrate that UMT does not have a harmful effect upon ischemic stroke in a middle cerebral artery occlusion model of the rat. The significant reduction in brain infarction following insonation with ultrasound and microbubbles suggests a novel neuroprotective effect in ischemic stroke.

  20. Phospholipid Capped Mesoporous Nanoparticles for Targeted High Intensity Focused Ultrasound Ablation.

    PubMed

    Yildirim, Adem; Chattaraj, Rajarshi; Blum, Nicholas T; Shi, Dennis; Kumar, Kaushlendra; Goodwin, Andrew P

    2017-09-01

    The mechanical effects of cavitation can be effective for therapy but difficult to control, thus potentially leading to off-target side effects in patients. While administration of ultrasound active agents such as fluorocarbon microbubbles and nanodroplets can locally enhance the effects of high intensity focused ultrasound (HIFU), it has been challenging to prepare ultrasound active agents that are small and stable enough to accumulate in tumors and internalize into cancer cells. Here, this paper reports the synthesis of 100 nm nanoparticle ultrasound agents based on phospholipid-coated, mesoporous, hydrophobically functionalized silica nanoparticles that can internalize into cancer cells and remain acoustically active. The ultrasound agents produce bubbles when subjected to short HIFU pulses (≈6 µs) with peak negative pressure as low as ≈7 MPa and at particle concentrations down to 12.5 µg mL -1 (7 × 10 9 particles mL -1 ). Importantly, ultrasound agents are effectively uptaken by cancer cells without cytotoxic effects, but HIFU insonation causes destruction of the cells by the acoustically generated bubbles, as demonstrated by (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) and lactate dehydrogenase assays and flow cytometry. Finally, it is showed that the HIFU dose required to effectively eliminate cancer cells in the presence of ultrasound agents causes only a small temperature increase of ≈3.5 °C. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Ultrasound-microbubble-mediated intercellular adhesion molecule-1 small interfering ribonucleic acid transfection attenuates neointimal formation after arterial injury in mice.

    PubMed

    Suzuki, Jun-ichi; Ogawa, Masahito; Takayama, Kiyoshi; Taniyama, Yoshiaki; Morishita, Ryuichi; Hirata, Yasunobu; Nagai, Ryozo; Isobe, Mitsuaki

    2010-03-02

    The purpose of this study was to investigate the efficiency of small interfering ribonucleic acid (siRNA) in murine arteries. We transfected it using a nonviral ultrasound-microbubble-mediated in vivo gene delivery system. siRNA is an effective methodology to suppress gene function. The siRNA can be synthesized easily; however, a major obstacle in the use of siRNA as therapeutics is the difficulty involved in effective in vivo delivery. To investigate the efficiency of nonviral ultrasound-microbubble-mediated in vivo siRNA delivery, we used a fluorescein-labeled siRNA, green fluorescent protein (GFP) siRNA, and intercellular adhesion molecule (ICAM)-1 siRNA in murine arteries. Murine femoral arteries were injured using flexible wires to establish arterial injury. The fluorescein-labeled siRNA and GFP siRNA showed that this nonviral approach could deliver siRNA into target arteries effectively without any tissue damage and systemic adverse effects. ICAM-1 siRNA transfection into murine injured arteries significantly suppressed the development of neointimal formation in comparison to those in the control group. Immunohistochemistry revealed that accumulation of T cells and adhesion molecule positive cells was observed in nontreated injured arteries, whereas siRNA suppressed accumulation. The nonviral ultrasound-microbubble delivery of siRNA ensures effective transfection into target arteries. ICAM-1 siRNA has the potential to suppress arterial neointimal formation. Transfection of siRNA can be beneficial for the clinical treatment of cardiovascular and other inflammatory diseases. Copyright 2010 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  2. Two-dimensional longitudinal strain assessment in the presence of myocardial contrast agents is only feasible with speckle-tracking after microbubble destruction.

    PubMed

    Cavalcante, João L; Collier, Patrick; Plana, Juan C; Agler, Deborah; Thomas, James D; Marwick, Thomas H

    2012-12-01

    Longitudinal strain (LS) imaging is an important tool for the quantification of left ventricular function and deformation, but its assessment is challenging in the presence of echocardiographic contrast agents (CAs). The aim of this study was to test the hypothesis that destruction of microbubbles using high mechanical index (MI) could allow the measurement of LS. LS was measured using speckle strain (speckle-tracking LS [STLS]) and Velocity Vector Imaging (VVI) before and after CA administration in 30 consecutive patients. Low MI was used for left ventricular opacification and three-dimensional high MI for microbubble destruction. Four different settings were tested over 60 sec: (1) baseline LS without contrast, (2) LS after CA administration with low MI (0.3), (3) LS after CA administration with high MI (0.9), and (4) LS after microbubble destruction with high MI and three-dimensional imaging. Baseline feasibility of LS assessment (99.3% and 98.2% with STLS and VVI, respectively) was reduced after CA administration using STLS at low (69%, P < .0001) and high (95.4%, P = .0002) MI as well as with VVI (93.8%, P = .004, and 84.7%, P < .0001, respectively). STLS assessment was feasible with high MI after microbubble destruction (1.7% of uninterpretable segments vs 0.7%, P = .26) but not using VVI (7.2% vs 1.8%, P < .001). Regardless of which microbubbles or image settings were used, VVI was associated with significant variability and overestimation of global LS (for low MI, +4.7%, P < .01; for high MI, +3.3%, P < .001; for high MI after microbubble destruction, +1.3%, P = .04). LS assessment is most feasible without contrast. If a CA is necessary, the calculation of LS is feasible using the speckle-tracking method, if three-dimensional imaging is used as a tool for microbubble destruction 1 min after CA administration. Copyright © 2012. Published by Mosby, Inc.

  3. Manipulation of Microbubble Clusters Using Focused Ultrasound

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Hironobu; Osaki, Taichi; Kawaguchi, Kei; Unga, Johan; Ichiyanagi, Mitsuhisa; Azuma, Takashi; Suzuki, Ryo; Maruyama, Kazuo; Takagi, Shu

    2017-11-01

    In recent years, microbubbles (MBs) are expected to be utilized for the ultrasound drug delivery system (DDS). For the MB-DDS, it is important to establish a method of controlling bubbles and bubble clusters using ultrasound field. The objective of this study is to clarify behaviors of bubble clusters with various physical conditions. MBs in the ultrasound field are subjected to the primary Bjerknes force. The force traps MBs at the focal region of the focused ultrasound field. The trapped MBs form a bubble cluster at the region. A bubble cluster continues growing with absorbing surrounding bubbles until it reaches a maximum size beyond which it disappears from the focal region. In the present study, two kinds of MBs are used for the experiment. One is Sonazoid with average diameter of 2.6 um and resonant frequency of 5 MHz. The other is developed by Teikyo Univ., with average diameter of 1.5 um and presumed resonant frequency of 4 MHz. The bubble cluster's behaviors are analyzed using the high-speed camera. Sonazoid clusters have larger critical size than the other in every frequency, and its cluster size is inversely proportional to the ultrasound frequency, while Teikyo-bubble clusters have different tendency. These results are discussed in the presentation.

  4. Enhanced cell killing and apoptosis of oral squamous cell carcinoma cells with ultrasound in combination with cetuximab coated albumin microbubbles.

    PubMed

    Narihira, Kyoichi; Watanabe, Akiko; Sheng, Hong; Endo, Hitomi; Feril, Loreto B; Irie, Yutaka; Ogawa, Koichi; Moosavi-Nejad, Seyedeh; Kondo, Seiji; Kikuta, Toshihiro; Tachibana, Katsuro

    2018-03-01

    Targeted microbubbles have the potential to be used for ultrasound (US) therapy and diagnosis of various cancers. In the present study, US was irradiated to oral squamous cell carcinoma cells (HSC-2) in the presence of cetuximab-coated albumin microbubbles (CCAM). Cell killing rate with US treatment at 0.9 W/cm 2 and 1.0 W/cm 2 in the presence of CCAM was greater compared to non-targeted albumin microbubbles (p < .05). On the other hand, selective cell killing was not observed in human myelomonocytic lymphoma cell line (U937) that had no affinity to cetuximab. Furthermore, US irradiation in the presence of CCAM showed a fivefold increase of cell apoptotic rate for HSC-2 cells (21.0 ± 3.8%) as compared to U937 cells (4.0 ± 0.8%). Time-signal intensity curve in a tissue phantom demonstrated clear visualisation of CCAM with conventional US imaging device. Our experiment verifies the hypothesis that CCAM was selective to HSC-2 cells and may be applied as a novel therapeutic/diagnostic microbubble for oral squamous cell carcinoma.

  5. Hemostatic Effects of Microbubble-Enhanced Low-Intensity Ultrasound in a Liver Avulsion Injury Model

    PubMed Central

    Feng, Guiying; Liu, Jianhua; Zhao, Xiaochen; Wei, Jinglu; Ou, Wencai; Xiao, Shuyi; Hu, Zhiwen; Wei, Hongqin; Liu, Zheng

    2014-01-01

    Objectives Microbubble-enhanced therapeutic ultrasound (MEUS) can block the blood flow in the organs. The aim of this study was to evaluate the hemostatic effect of microbubble-enhanced pulsed, low-intensity ultrasound in a New Zealand White rabbit model of avulsion trauma of the liver. The therapeutic ultrasound (TUS) transducer was operated with the frequency of 1.2 MHz and an acoustic pressure of 3.4 MPa. Microbubble-(MB) enhanced ultrasound (MEUS) (n = 6) was delivered to the distal part of the liver where the avulsion was created. Livers were treated by TUS only (n = 4) or MB only (n = 4) which served as controls. Bleeding rates were measured and contrast enhanced ultrasound (CEUS) was performed to assess the hemostatic effect, and liver hemoperfusion before and after treatment. Generally, bleeding rates decreased more than 10-fold after the treatment with MEUS compared with those of the control group (P<0.05). CEUS showed significant declines in perfusion. The peak intensity value and the area under the curve also decreased after insonation compared with those of the control group (P<0.05). Histological examination showed cloudy and swollen hepatocytes, dilated hepatic sinusoids, perisinusoidal spaces with erythrocyte accumulation in small blood vessels, obvious hemorrhage around portal areas and scattered necrosis in liver tissues within the insonation area of MEUS Group. In addition, necrosis was found in liver tissue 48 h after insonation. We conclude that MEUS might provide an effective hemostatic therapy for serious organ trauma such as liver avulsion injury. PMID:24788757

  6. Nanoparticle Delivery Enhancement With Acoustically Activated Microbubbles

    PubMed Central

    Mullin, Lee B; Phillips, Linsey C; Dayton, Paul A

    2013-01-01

    The application of microbubbles and ultrasound to deliver nanoparticle carriers for drug and gene delivery is an area that has expanded greatly in recent years. Under ultrasound exposure, microbubbles can enhance nanoparticle delivery by increasing cellular and vascular permeability. In this review, the underlying mechanisms of enhanced nanoparticle delivery with ultrasound and microbubbles and various proposed delivery techniques are discussed. Additionally, types of nanoparticles currently being investigated in preclinical studies, as well as the general limitations and benefits of a microbubble-based approach to nanoparticle delivery are reviewed. PMID:23287914

  7. Influence of ultrasound induced cavitation on magnetic resonance imaging contrast in the rat liver in the presence of macromolecular contrast agent.

    PubMed

    Frulio, Nora; Trillaud, Hervé; Deckers, Roel; Lepreux, Sébastien; Moonen, Chrit; Quesson, Bruno

    2010-05-01

    Local drug delivery by ultrasound (US)-induced cavitation is a promising strategy for increasing the drug concentration at the target location and for decreasing the systemic toxicity effects. The presence of microbubbles during sonication at the targeted location improves the likelihood for cavitation that can be exploited to increase the capillary permeability. The objective of this work was to evaluate the magnetic resonance imaging (MRI) contrast changes in hepatic tissue in vivo, induced by US-triggered cavitation and destruction of microbubbles (Sonovue), in the presence of a coinjected blood pool MRI contrast agent (Vistarem) used as a reporter macromolecule. The potential tissue damage induced by microbubbles destruction was also evaluated by histology. The change in the hepatic distribution of the macromolecular MRI contrast agent associated with cavitation was monitored at 1.5 T with a look-locker fast inversion recovery sequence to map the longitudinal relaxation rates, before and during 1 hour after intravenous administration of Vistarem and Sonovue. In 1 group of rats (n = 5), these microbubbles were immediately destroyed with a clinical echograph, using a high mechanical index (MI = 1.5) at low frequency (2 MHz). The control group (n = 7) received identical injections without application of US. The parametric relaxation rate images were computed, and the changes in time were analyzed to account for the potential effect of microbubble destruction by US on the permeability of the hepatic vessels. The animals were killed 1 day after the experiment for routine histology of the liver. For both groups of animals, after an initial increase, a transient decay of the longitudinal relaxation rate was observed, followed by a constant plateau after 20 minutes. The analysis of the mean relaxation rates in the liver showed significant (P < 0.01) higher values for the group with destruction of microbubbles as compared with the control group. The US

  8. Ultrasound mediated nanoparticle drug delivery

    NASA Astrophysics Data System (ADS)

    Mullin, Lee B.

    Ultrasound is not only a powerful diagnostic tool, but also a promising therapeutic technology that can be used to improve localized drug delivery. Microbubble contrast agents are micron sized encapsulated gas filled bubbles that are administered intravenously. Originally developed to enhance ultrasound images, microbubbles are highly echogenic due to the gas core that provides a detectable impedance difference from the surrounding medium. The core also allows for controlled response of the microbubbles to ultrasound pulses. Microbubbles can be pushed using acoustic radiation force and ruptured using high pressures. Destruction of microbubbles can increase permeability at the cellular and vascular level, which can be advantageous for drug delivery. Advances in drug delivery methods have been seen with the introduction of nanoparticles, nanometer sized objects often carrying a drug payload. In chemotherapy, nanoparticles can deliver drugs to tumors while limiting systemic exposure due to abnormalities in tumor vasculature such large gaps between endothelial cells that allow nanoparticles to enter into the interstitial space; this is referred to as the enhanced permeability and retention (EPR) effect. However, this effect may be overestimated in many tumors. Additionally, only a small percentage of the injected dose accumulates in the tumor, which most the nanoparticles accumulating in the liver and spleen. It is hypothesized that combining the acoustic activity of an ultrasound contrast agent with the high payload and extravasation ability of a nanoparticle, localized delivery to the tumor with reduced systemic toxicity can be achieved. This method can be accomplished by either loading nanoparticles onto the shell of the microbubble or through a coadministration method of both nanoparticles and microbubbles. The work presented in this dissertation utilizes novel and commercial nanoparticle formulations, combined with microbubbles and a variety of ultrasound systems

  9. Markedly Enhanced Skeletal Muscle Transfection Achieved by the Ultrasound-Targeted Delivery of Non-Viral Gene Nanocarriers with Microbubbles

    PubMed Central

    Burke, Caitlin W.; Suk, Jung Soo; Kim, Anthony J.; Hsiang, Yu-Han J.; Klibanov, Alexander L.; Hanes, Justin; Price, Richard J.

    2012-01-01

    Our goal was to enhance ultrasound (US)-targeted skeletal muscle transfection through the use of poly(ethyleneglycol) (PEG)/polyethylenimine (PEI) nanocomplex gene carriers and adjustments to US and microbubble (MB) parameters. C57BL/6 mice received an intravenous infusion of MBs and either “naked” luciferase plasmid or luciferase plasmid condensed in PEG/PEI nanocomplexes. Pulsed ultrasound (1MHz; 0.6 MPa or 0.8 MPa) was applied to the right hindlimb for 12 mins. Luciferase activity in both hindlimbs was assessed at 3, 5, 7, and 10 days post-treatment by bioluminescent imaging. When targeted to hindlimb using unsorted MBs and 0.6 MPa US, 7 days after treatment, we observed a >60-fold increase in luciferase activity in PEG/PEI nanocomplex treated muscles over muscles treated with “naked” plasmid DNA. Luciferase activity was consistently greater after treatment with PEG/PEI nanocomplexes at 0.6 MPa as compared to 0.8 MPa. The combination of small diameter MBs and 0.6 MPa US also resulted in significantly greater gene expression when compared to concentration matched intramuscular injections, a control condition in which considerably more PEG/PEI nanocomplexes were present in tissue. This result suggests that, in addition to facilitating PEG/PEI nanocomplex delivery from the bloodstream to tissue, US enhances transfection via one or more secondary mechanisms, including increased cellular uptake and/or trafficking to the nucleus of PEG/PEI nanocomplexes. We conclude that PEG/PEI nanocomplexes may be used to markedly enhance the amplitude of US-MB-targeted skeletal muscle transfection and that activating “small” MBs with a moderate level (0.6 MPa) of acoustic pressure can further enhance these effects. PMID:22800583

  10. Creating Brain Lesions by Low Intensity Focused Ultrasound with Microbubbles: A Rat Study at Half MHz

    PubMed Central

    Huang, Yuexi; Vykhodtseva, Natalia I.; Hynynen, Kullervo

    2014-01-01

    Low intensity focused ultrasound was applied with microbubbles (Definity, 0.02 mL/kg) to produce brain lesions in 50 rats at 558 kHz. Burst sonications (burst length: 10 ms; pulse repetition frequency: 1 Hz; total exposure: 5 min; acoustic powers: 0.47-1.3W) generated ischemic or hemorrhagic lesions at the focal volume revealed by both MR imaging and histology. Shorter burst (2 ms) or shorter sonication time (1 min) reduced the probability of lesion production. Longer pulses (200ms, 500ms and continuous wave) caused significant near-field damages. Using microbubbles with focused ultrasound significantly reduced the acoustic power levels, therefore avoided skull heating issues and potentially can extend the treatable volume of transcranial focused ultrasound to the brain tissues close to the skull. PMID:23743099

  11. Spatiotemporal evolution of cavitation dynamics exhibited by flowing microbubbles during ultrasound exposure.

    PubMed

    Choi, James J; Coussios, Constantin-C

    2012-11-01

    Ultrasound and microbubble-based therapies utilize cavitation to generate bioeffects, yet cavitation dynamics during individual pulses and across consecutive pulses remain poorly understood under physiologically relevant flow conditions. SonoVue(®) microbubbles were made to flow (fluid velocity: 10-40 mm/s) through a vessel in a tissue-mimicking material and were exposed to ultrasound [frequency: 0.5 MHz, peak-rarefactional pressure (PRP): 150-1200 kPa, pulse length: 1-100,000 cycles, pulse repetition frequency (PRF): 1-50 Hz, number of pulses: 10-250]. Radiated emissions were captured on a linear array, and passive acoustic mapping was used to spatiotemporally resolve cavitation events. At low PRPs, stable cavitation was maintained throughout several pulses, thus generating a steady rise in energy with low upstream spatial bias within the focal volume. At high PRPs, inertial cavitation was concentrated in the first 6.3 ± 1.3 ms of a pulse, followed by an energy reduction and high upstream bias. Multiple pulses at PRFs below a flow-dependent critical rate (PRF(crit)) produced predictable and consistent cavitation dynamics. Above the PRF(crit), energy generated was unpredictable and spatially biased. In conclusion, key parameters in microbubble-seeded flow conditions were matched with specific types, magnitudes, distributions, and durations of cavitation; this may help in understanding empirically observed in vivo phenomena and guide future pulse sequence designs.

  12. Ultrasound Contrast Agents

    NASA Astrophysics Data System (ADS)

    Cachard, Christian; Basset, Olivier

    While the use of contrast agents in other imaging modalities (X ray, MRI, PET, …) has been routinely accepted for many years, the development and commercialization of contrast agents designed specifically for ultrasound imaging has occurred only very recently. As in the other imaging modalities, the injection of contrast agents during an ultrasound examination is intended to facilitate the detection and diagnosis of specific pathologies. Contrast agents efficiency is based on the backscattering of ultrasound by microbubbles. These microparticules are intravenously injected in the blood flow. After an introduction and generalities on ultrasound contrast agents (UCA) the microbubble physics in an acoustic field will be developed. Second, physics characteristics of contrast agents will be compared (bubbles with or without shell, gas nature, size distribution). Influence of acoustic pressure on the behaviour of the microparticules (linear, non linear and destruction) will be discussed. Finally, a review of specific imaging adapted to contrast agent properties as harmonic imaging, pulse inversion imaging will be presented.

  13. In vivo characterization of ultrasound contrast agents: microbubble spectroscopy in a chicken embryo.

    PubMed

    Faez, Telli; Skachkov, Ilya; Versluis, Michel; Kooiman, Klazina; de Jong, Nico

    2012-09-01

    The dynamics of coated microbubbles was studied in an in vivo model. Biotinylated lipid-coated microbubbles were prepared in-house and were injected into a chick embryo chorioallantoic membrane (CAM) model on the fifth day of incubation. The microbubbles, ranging between 1.0 and 3.5 μm in diameter, were insonified in the frequency range of 4-7 MHz. Two amplitudes of acoustic pressure were applied: 300 kPa and 400 kPa. The fundamental and subharmonic responses were recorded optically with an ultra-fast camera (Brandaris 128) at 20 million frames per second. A subharmonic response was observed for 44% of the studied bubbles. From the data the frequency of the maximum fundamental and subharmonic response was derived for each individual bubble and resulted in the resonance curves of the microbubbles. All the bubbles showed shell (strain) hardening behavior for a higher acoustic pressure. We conclude that the subharmonic oscillations observed in this study belonged to the transmit at resonance (TR) regime. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  14. Ultrasound-targeted hepatic delivery of factor IX in hemophiliac mice.

    PubMed

    Anderson, C D; Moisyadi, S; Avelar, A; Walton, C B; Shohet, R V

    2016-06-01

    Ultrasound-targeted microbubble destruction (UTMD) was used to direct the delivery of plasmid and transposase-based vectors encoding human factor IX (hFIX) to the livers of hemophilia B (FIX-/-) mice. The DNA vectors were incorporated into cationic lipid microbubbles, injected intravenously, and transfected into hepatocytes by acoustic cavitation of the bubbles as they transited the liver. Ultrasound parameters were identified that produced transfection of hepatocytes in vivo without substantial damage or bleeding in the livers of the FIX-deficient mice. These mice were treated with a conventional expression plasmid, or one containing a piggyBac transposon construct, and hFIX levels in the plasma and liver were evaluated at multiple time points after UTMD. We detected hFIX in the plasma by western blotting from mice treated with either plasmid during the 12 days after UTMD, and in the hepatocytes of treated livers by immunofluorescence. Reductions in clotting time and improvements in the percentage of FIX activity were observed for both plasmids, conventional (4.15±1.98%), and transposon based (2.70±.75%), 4 to 5 days after UTMD compared with untreated FIX (-/-) control mice (0.92±0.78%) (P=0.001 and P=0.012, respectively). Reduced clotting times persisted for both plasmids 12 days after treatment (reflecting percentage FIX activity of 3.12±1.56%, P=0.02 and 3.08±0.10%, P=0.001, respectively). Clotting times from an additional set of mice treated with pmGENIE3-hFIX were evaluated for long-term effects and demonstrated a persistent reduction in average clotting time 160 days after a single treatment. These data suggest that UTMD could be a minimally invasive, nonviral approach to enhance hepatic FIX expression in patients with hemophilia.

  15. Hemostatic mechanism underlying microbubble-enhanced non-focused ultrasound in the treatment of a rabbit liver trauma model

    PubMed Central

    Zhao, Da-wei; Tian, Meng; Yang, Jian-zheng; Du, Peng; Bi, Jie; Zhu, Xinjian

    2016-01-01

    The aim of our study was to investigate the hemostatic mechanism underlying microbubble-enhanced non-focused ultrasound treatment of liver trauma. Thirty rabbits with liver trauma were randomly divided into three groups—the microbubble-enhanced ultrasound (MEUS; further subdivided based on exposure intensity into MEUS1 [0.11 W/cm2], MEUS2 [0.55 W/cm2], and MEUS3 [1.1 W/cm2]), ultrasound without microbubbles (US), and microbubbles without ultrasound (MB) groups. The pre- and post-treatment bleeding weight and visual bleeding scores were evaluated. The serum liver enzyme concentrations as well as the blood perfusion level represented by mean peak contrast intensity (PI) ratio in the treatment area were analyzed. The hemostatic mechanism was evaluated by histological and transmission electron microscopic examination of liver tissue samples. The MEUS subgroups 1–3 (grade 0–1, grade 0–2, and grade 1–2, respectively) exhibited significantly lower post-treatment visual bleeding scores than the US and MB groups (both, grade 3–4; all, P < 0.05). Subgroups MEUS1 (0.346 ± 0.345 g) and MEUS2 (2.232 ± 2.256 g) exhibited significantly lower post-treatment bleeding weight than the US and MB groups (5.698 ± 1.938 and 5.688 ± 2.317 g, respectively; all, P < 0.05). Additionally, MEUS subgroups 1–3 exhibited significantly lower post-treatment blood perfusion levels (PI ratios, 0.64 ± 0.085, 0.73 ± 0.045, and 0.84 ± 0.034, respectively) than the US and MB groups (PI ratios, 1.00 ± 0.005 and 0.99 ± 0.005, respectively; all, P < 0.05). In the MEUS group, hepatic cells became edematous and compressed the hepatic sinus and associated blood vessels. However, the serum liver enzyme levels were not significantly altered. Microbubble-enhanced non-focused ultrasound does not significantly affect blood perfusion and liver function and can be used to induce rapid hemostasis in case of liver trauma. PMID:27633577

  16. High pulse repetition frequency ultrasound system for ex vivo measurement of mechanical properties of crystalline lenses with laser-induced microbubble interrogated by acoustic radiation force

    PubMed Central

    Yoon, Sangpil; Aglyamov, Salavat; Karpiouk, Andrei; Emelianov, Stanislav

    2012-01-01

    A high pulse repetition frequency ultrasound system for ex vivo measurement of mechanical properties of animal crystalline lens was developed and validated. We measured the bulk displacement of laser-induced microbubbles created at different positions within the lens using nanosecond laser pulses. An impulsive acoustic radiation force was applied to the microbubble, and spatio-temporal measurements of the microbubble displacement were assessed using a custom-made high pulse repetition frequency ultrasound system consisting of two 25 MHz focused ultrasound transducers. One of these transducers was used to emit a train of ultrasound pulses and another transducer was used to receive the ultrasound echoes reflected from the microbubble. The developed system was operating at 1 MHz pulse repetition frequency. Based on measured motion of the microbubble, the Young’s moduli of surrounding tissue were reconstructed and the values were compared with those measured using indentation test. Measured values of Young’s moduli of 4 bovine lenses ranged from 2.6±0.1 to 26±1.4 kPa and there was good agreement between the two methods. Therefore, our studies, utilizing the high pulse repetition frequency ultrasound system, suggest that the developed approach can be used to assess the mechanical properties of ex vivo crystalline lenses. Furthermore, the potential of the presented approach for in vivo measurements is discussed. PMID:22797709

  17. [Effect of low-dose focused ultrasound pre-irradiation versus microbubbles for enhancing high-intensity focused ultrasound ablation of VX2 hepatic tumor in rabbits].

    PubMed

    Zhang, Yi; Yang, Chao; Zou, Jian-Zhong; Chen, Fei; Ou, Xia; Zou, Hai-Rong; Wang, Yan

    2016-10-20

    To compare the effect of low-dose focused ultrasound pre-irradiation and microbubbles for enhancing the ablation effect of high intensity focused ultrasound (HIFU) on VX 2 hepatic tumor in rabbits. Fifty-five rabbits bearing VX 2 hepatic tumor were randomly divided into low-dose pre-irradiation + HIFU ablation group, microbubbles+HIFU ablation group, and HIFU ablation group for corresponding treatments. The pathological changes in the tumors after low-dose irradiation, time for HIFU ablation, tumor volume with coagulative necrosis, energy efficiency factor (EEF), pathological changes in the ablated tumor, and sound channel of HIFU ablation were observed. Tumor cell edema, vacuolar changes in the cytoplasm and tumor interstitial vascular congestion were observed 24 h after low-dose pre-irradiation. The ablation time were significantly shorter, coagulative necrosis volume was larger, and EEF was lower in low-dose irradiation + HIFU ablation group and microbubbles+HIFU ablation group than in simple HIFU ablation group (P<0.05), but the differences between the former two groups were not significant. The effectiveness and stability of the synergistic effect of low-dose pre-irradiation were inferior to microbubbles, but the former ensured a better safety of the sound channel. Low-dose irradiation has comparable synergistic effect in HIFU with microbubbles with such advantages as non-invasiveness, high concentration and good safety, and can be a potentially new method to enhance the efficiency of HIFU.

  18. Next generation ultrasound platforms for theranostics.

    PubMed

    Oddo, Letizia; Cerroni, Barbara; Domenici, Fabio; Bedini, Angelico; Bordi, Federico; Chiessi, Ester; Gerbes, Stefan; Paradossi, Gaio

    2017-04-01

    Microbubbles are a well-established contrast agent which improves diagnostic ultrasound imaging. During the last decade research has focused on expanding their use to include molecular imaging, targeted therapy and imaging modalities other than ultrasound. However, bioadhesion of targeted microbubbles under physiological flow conditions is still difficult to achieve, the main challenge being connected to the poor stability of lipid microbubbles in the body's circulation system. In this article, we investigate the use of polymeric microbubbles based on a poly (vinyl alcohol) shell as an alternative to lipid microbubbles. In particular, we report on the development of microbubble shell modification, using mild reaction conditions, with the aim of designing a multifunctional platform to enable diagnosis and therapy. Superparamagnetic iron oxide nanoparticles and a near infrared fluorescent probe, indocyanine green, are coupled to the bubbles surface in order to support magnetic resonance and fluorescence imaging. Furthermore, anchoring cyclic arginyl-glycyl-aspartic acid (RGD) peptide, and cyclodextrin molecules, allows targeting and drug loading, respectively. Last but not least, shell topography is provided by atomic force microscopy. These applications and features, together with the high echogenicity of poly (vinyl alcohol) microbubbles, may offer a more stable alternative to lipid microbubbles for the development of a multimodal theranostic platform. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Molecular Imaging of Vasa Vasorum Neovascularization via DEspR-targeted Contrast-enhanced Ultrasound Micro-imaging in Transgenic Atherosclerosis Rat Model

    PubMed Central

    Decano, Julius L.; Moran, Anne Marie; Ruiz-Opazo, Nelson; Herrera, Victoria L. M.

    2011-01-01

    Purpose Given that carotid vasa vasorum neovascularization is associated with increased risk for stroke and cardiac events, the present in vivo study was designed to investigate molecular imaging of carotid artery vasa vasorum neovascularization via target-specific contrast-enhanced ultrasound (CEU) micro-imaging. Procedures Molecular imaging was performed in male transgenic rats with carotid artery disease and non-transgenic controls using dual endothelin1/VEGFsp receptor (DEspR)-targeted microbubbles (MBD) and the Vevo770 micro-imaging system and CEU imaging software. Results DEspR-targeted CEU-positive imaging exhibited significantly higher contrast intensity signal (CIS)-levels and pre-/post-destruction CIS-differences in seven of 13 transgenic rats, in contrast to significantly lower CIS-levels and differences in control isotype-targeted microbubble (MBC)-CEU imaging (n =8) and in MBD CEU-imaging of five non-transgenic control rats (P<0.0001). Ex vivo immunofluorescence analysis demonstrated binding of MBD to DEspR-positive endothelial cells; and association of DEspR-targeted increased contrast intensity signals with DEspR expression in vasa vasorum neovessel and intimal lesions. In vitro analysis demonstrated dose-dependent binding of MBD to DEspR-positive human endothelial cells with increasing %cells bound and number of MBD per cell, in contrast to MBC or non-labeled microbubbles (P<0.0001). Conclusion In vivo DEspR-targeted molecular imaging detected increased DEspR-expression in carotid artery lesions and in expanded vasa vasorum neovessels in transgenic rats with carotid artery disease. Future studies are needed to determine predictive value for stroke or heart disease in this transgenic atherosclerosis rat model and translational applications. PMID:20972637

  20. The effect of lipid monolayer in-plane rigidity on in vivo microbubble circulation persistence

    PubMed Central

    Garg, Sumit; Thomas, Alex A.; Borden, Mark A.

    2013-01-01

    The goal of this study was to increase in vivo microbubble circulation persistence for applications in medical imaging and targeted drug delivery. Our approach was to investigate the effect of lipid monolayer in-plane rigidity to reduce the rate of microbubble dissolution, while holding constant the microbubble size, concentration and surface architecture. We first estimated the impact of acyl chain length of the main diacyl phosphatidyl-choline (PC) lipid and inter-lipid distance on the cohesive surface energy and, based on these results, we hypothesized that microbubble stability and in vivo ultrasound contrast persistence would increase monotonically with increasing acyl chain length. We therefore measured microbubble in vitro stability to dilution with and without ultrasound exposure, as well as in vivo ultrasound contrast persistence. All measurements showed a sharp rise in stability between DPPC (C16:0) and DSPC (C18:0), which correlates to the wrinkling transition, which signals the onset of significant surface shear and gas permeation resistance, observed in prior single-bubble dissolution studies. Further evidence for the effect of the wrinkling transition came from an in vitro and in vivo stability comparison of microbubbles coated with pure DPPC with those of lung surfactant extract. Microbubble stability against dilution without ultrasound and in vivo ultrasound contrast persistence showed a monotonic increase with acyl chain length from DSPC to DBPC (C22:0). However, we also observed that stability dropped precipitously for all measurements on further increasing lipid acyl chain length from DBPC to DLiPC (C24:0). This result suggests that hydrophobic mismatch between the main PC lipid and the lipopolymer emulsifier, DSPE-PEG5000, may drive a less stable surface microstructure. Overall, these results support our general hypothesis of the role of in-plane rigidity for increasing the lifetime of microbubble circulation. PMID:23787108

  1. Ultrasound imaging beyond the vasculature with new generation contrast agents.

    PubMed

    Perera, Reshani H; Hernandez, Christopher; Zhou, Haoyan; Kota, Pavan; Burke, Alan; Exner, Agata A

    2015-01-01

    Current commercially available ultrasound contrast agents are gas-filled, lipid- or protein-stabilized microbubbles larger than 1 µm in diameter. Because the signal generated by these agents is highly dependent on their size, small yet highly echogenic particles have been historically difficult to produce. This has limited the molecular imaging applications of ultrasound to the blood pool. In the area of cancer imaging, microbubble applications have been constrained to imaging molecular signatures of tumor vasculature and drug delivery enabled by ultrasound-modulated bubble destruction. Recently, with the rise of sophisticated advancements in nanomedicine, ultrasound contrast agents, which are an order of magnitude smaller (100-500 nm) than their currently utilized counterparts, have been undergoing rapid development. These agents are poised to greatly expand the capabilities of ultrasound in the field of targeted cancer detection and therapy by taking advantage of the enhanced permeability and retention phenomenon of many tumors and can extravasate beyond the leaky tumor vasculature. Agent extravasation facilitates highly sensitive detection of cell surface or microenvironment biomarkers, which could advance early cancer detection. Likewise, when combined with appropriate therapeutic agents and ultrasound-mediated deployment on demand, directly at the tumor site, these nanoparticles have been shown to contribute to improved therapeutic outcomes. Ultrasound's safety profile, broad accessibility and relatively low cost make it an ideal modality for the changing face of healthcare today. Aided by the multifaceted nano-sized contrast agents and targeted theranostic moieties described herein, ultrasound can considerably broaden its reach in future applications focused on the diagnosis and staging of cancer. © 2015 Wiley Periodicals, Inc.

  2. Ultrasound Imaging Beyond the Vasculature with New Generation Contrast Agents

    PubMed Central

    Perera, Reshani H.; Hernandez, Christopher; Zhou, Haoyan; Kota, Pavan; Burke, Alan

    2015-01-01

    Current commercially available ultrasound contrast agents are gas-filled, lipid- or protein-stabilized microbubbles larger than 1 μm in diameter. Because the signal generated by these agents is highly dependent on their size, small yet highly echogenic particles have been historically difficult to produce. This has limited the molecular imaging applications of ultrasound to the blood pool. In the area of cancer imaging, microbubble applications have been constrained to imaging molecular signatures of tumor vasculature and drug delivery enabled by ultrasound-modulated bubble destruction. Recently, with the rise of sophisticated advancements in nanomedicine, ultrasound contrast agents, which are an order of magnitude smaller (100-500 nm) than their currently utilized counterparts, have been undergoing rapid development. These agents are poised to greatly expand the capabilities of ultrasound in the field of targeted cancer detection and therapy by taking advantage of the enhanced permeability and retention phenomenon of many tumors and can extravasate beyond the leaky tumor vasculature. Agent extravasation facilitates highly sensitive detection of cell surface or microenvironment biomarkers, which could advance early cancer detection. Likewise, when combined with appropriate therapeutic agents and ultrasound-mediated deployment on demand, directly at the tumor site, these nanoparticles have been shown to contribute to improved therapeutic outcomes. Ultrasound's safety profile, broad accessibility and relatively low cost make it an ideal modality for the changing face of healthcare today. Aided by the multifaceted nano-sized contrast agents and targeted theranostic moieties described herein, ultrasound can considerably broaden its reach in future applications focused on the diagnosis and staging of cancer. PMID:25580914

  3. Ligand conjugation to bimodal poly(ethylene glycol) brush layers on microbubbles.

    PubMed

    Chen, Cherry C; Borden, Mark A

    2010-08-17

    feasibility of postlabeling for small-molecule ligands to BLA microbubbles to generate stealth targeted ultrasound contrast agents.

  4. CHANGES IN LIPID-ENCAPSULATED MICROBUBBLE POPULATION DURING CONTINUOUS INFUSION AND METHODS TO MAINTAIN CONSISTENCY

    PubMed Central

    KAYA, MEHMET; GREGORY, THOMAS S.; DAYTON, PAUL A.

    2009-01-01

    Stabilized microbubbles are utilized as ultrasound contrast agents. These micron-sized gas capsules are injected into the bloodstream to provide contrast enhancement during ultrasound imaging. Some contrast imaging strategies, such as destruction-reperfusion, require a continuous injection of microbubbles over several minutes. Most quantitative imaging strategies rely on the ability to administer a consistent dose of contrast agent. Because of the buoyancy of these gas-filled agents, their spatial distribution within a syringe changes over time. The population of microbubbles that is pumped from a horizontal syringe outlet differs from initial population as the microbubbles float to the syringe top. In this manuscript, we study the changes in the population of a contrast agent that is pumped from a syringe due to microbubble floatation. Results are presented in terms of change in concentration and change in mean diameter, as a function of time, suspension medium, and syringe diameter. Data illustrate that the distribution of contrast agents injected from a syringe changes in both concentration and mean diameter over several minutes without mixing. We discuss the application of a mixing system and viscosity agents to keep the contrast solution more evenly distributed in a syringe. These results are significant for researchers utilizing microbubble contrast agents in continuous-infusion applications where it is important to maintain consistent contrast agent delivery rate, or in situations where the injection syringe cannot be mixed immediately prior to administration. PMID:19632760

  5. Characterization of Different Microbubbles in Assisting Focused Ultrasound-Induced Blood-Brain Barrier Opening

    NASA Astrophysics Data System (ADS)

    Wu, Sheng-Kai; Chu, Po-Chun; Chai, Wen-Yen; Kang, Shih-Tsung; Tsai, Chih-Hung; Fan, Ching-Hsiang; Yeh, Chih-Kuang; Liu, Hao-Li

    2017-04-01

    Microbubbles (MBs) serve as a critical catalyst to amplify local cavitation in CNS capillary lumen to facilitate focused ultrasound (FUS) to transiently open the blood-brain barrier (BBB). However, limited understanding is available regarding the effect of different microbubbles to induce BBB opening. The aim of this study is to characterize different MBs on their effect in FUS-induced BBB opening. Three MBs, SonoVue, Definity, and USphere, were tested, with 0.4-MHz FUS exposure at 0.62-1.38 of mechanical index (MI) on rats. Evans blue, dynamic contrast-enhanced (DCE) MRI and small-animal ultrasound imaging were used as surrogates to allow molecule-penetrated quantification, BBB-opened observation, and MBs circulation/persistence. Cavitation activity was measured via the passive cavitation detection (PCD) setup to correlate with the exposure level and the histological effect. Under given and identical MB concentrations, the three MBs induced similar and equivalent BBB-opening effects and persistence. In addition, a treatment paradigm by adapting exposure time is proposed to compensate MB decay to retain the persistence of BBB-opening efficiency in multiple FUS exposures. The results potentially improve understanding of the equivalence among MBs in focused ultrasound CNS drug delivery, and provide an effective strategy for securing persistence in this treatment modality.

  6. Ultrasonic Analysis of Peptide- and Antibody-Targeted Microbubble Contrast Agents for Molecular Imaging of αvβ3-Expressing Cells

    PubMed Central

    Dayton, Paul A.; Pearson, David; Clark, Jarrod; Simon, Scott; Schumann, Patricia A.; Zutshi, Reena; Matsunaga, Terry O.; Ferrara, Katherine W.

    2008-01-01

    The goal of targeted ultrasound contrast agents is to significantly and selectively enhance the detection of a targeted vascular site. In this manuscript, three distinct contrast agents targeted to the αvβ3 integrin are examined. The αvβ3 integrin has been shown to be highly expressed on metastatic tumors and endothelial cells during neovascularization, and its expression has been shown to correlate with tumor grade. Specific adhesion of these contrast agents to αvβ3-expressing cell monolayers is demonstrated in vitro, and compared with that of nontargeted agents. Acoustic studies illustrate a backscatter amplitude increase from monolayers exposed to the targeted contrast agents of up to 13-fold (22 dB) relative to enhancement due to control bubbles. A linear dependence between the echo amplitude and bubble concentration was observed for bound agents. The decorrelation of the echo from adherent targeted agents is observed over successive pulses as a function of acoustic pressure and bubble density. Frequency–domain analysis demonstrates that adherent targeted bubbles exhibit high-amplitude narrowband echo components, in contrast to the primarily wideband response from free microbubbles. Results suggest that adherent targeted contrast agents are differentiable from free-floating microbubbles, that targeted contrast agents provide higher sensitivity in the detection of angiogenesis, and that conventional ultrasound imaging techniques such as signal subtraction or decorrelation detection can be used to detect integrin-expressing vasculature with sufficient signal-to-noise. PMID:15296677

  7. A high pulse repetition frequency ultrasound system for the ex vivo measurement of mechanical properties of crystalline lenses with laser-induced microbubbles interrogated by acoustic radiation force.

    PubMed

    Yoon, Sangpil; Aglyamov, Salavat; Karpiouk, Andrei; Emelianov, Stanislav

    2012-08-07

    A high pulse repetition frequency ultrasound system for an ex vivo measurement of mechanical properties of an animal crystalline lens was developed and validated. We measured the bulk displacement of laser-induced microbubbles created at different positions within the lens using nanosecond laser pulses. An impulsive acoustic radiation force was applied to the microbubble, and spatio-temporal measurements of the microbubble displacement were assessed using a custom-made high pulse repetition frequency ultrasound system consisting of two 25 MHz focused ultrasound transducers. One of these transducers was used to emit a train of ultrasound pulses and another transducer was used to receive the ultrasound echoes reflected from the microbubble. The developed system was operating at 1 MHz pulse repetition frequency. Based on the measured motion of the microbubble, Young's moduli of surrounding tissue were reconstructed and the values were compared with those measured using the indentation test. Measured values of Young's moduli of four bovine lenses ranged from 2.6 ± 0.1 to 26 ± 1.4 kPa, and there was good agreement between the two methods. Therefore, our studies, utilizing the high pulse repetition frequency ultrasound system, suggest that the developed approach can be used to assess the mechanical properties of ex vivo crystalline lenses. Furthermore, the potential of the presented approach for in vivo measurements is discussed.

  8. Combined Ultrasound and MR Imaging to Guide Focused Ultrasound Therapies in the Brain

    PubMed Central

    Arvanitis, Costas D.; Livingstone, Margaret S.; McDannold, Nathan

    2013-01-01

    Purpose Several emerging therapies with potential for use in the brain harness effects produced by acoustic cavitation – the interaction between ultrasound and microbubbles either generated during sonication or introduced into the vasculature. Systems developed for transcranial MRI-guided focused ultrasound (MRgFUS) thermal ablation can enable their clinical translation, but methods for real-time monitoring and control are currently lacking. Acoustic emissions produced during sonication can provide information about the location, strength, and type of the microbubble oscillations within the ultrasound field, and they can be mapped in real-time using passive imaging approaches. Here, we tested whether such mapping can be achieved transcranially within a clinical brain MRgFUS system. Materials and Methods We integrated an ultrasound imaging array into the hemisphere transducer of the MRgFUS device. Passive cavitation maps were obtained during sonications combined with a circulating microbubble agent at 20 targets in the cingulate cortex in three macaques. The maps were compared with MRI-evident tissue effects. Results The system successfully mapped microbubble activity during both stable and inertial cavitation, which was correlated with MRI-evident transient blood-brain barrier disruption and vascular damage, respectively. The location of this activity was coincident with the resulting tissue changes within the expected resolution limits of the system. Conclusion While preliminary, these data clearly demonstrate, for the first time, that is possible to construct maps of stable and inertial cavitation transcranially, in a large animal model, and under clinically relevant conditions. Further, these results suggest that this hybrid ultrasound/MRI approach can provide comprehensive guidance for targeted drug delivery via blood-brain barrier disruption and other emerging ultrasound treatments, facilitating their clinical translation. We anticipate it will also prove to

  9. Combined ultrasound and MR imaging to guide focused ultrasound therapies in the brain

    NASA Astrophysics Data System (ADS)

    Arvanitis, Costas D.; Livingstone, Margaret S.; McDannold, Nathan

    2013-07-01

    Several emerging therapies with potential for use in the brain, harness effects produced by acoustic cavitation—the interaction between ultrasound and microbubbles either generated during sonication or introduced into the vasculature. Systems developed for transcranial MRI-guided focused ultrasound (MRgFUS) thermal ablation can enable their clinical translation, but methods for real-time monitoring and control are currently lacking. Acoustic emissions produced during sonication can provide information about the location, strength and type of the microbubble oscillations within the ultrasound field, and they can be mapped in real-time using passive imaging approaches. Here, we tested whether such mapping can be achieved transcranially within a clinical brain MRgFUS system. We integrated an ultrasound imaging array into the hemisphere transducer of the MRgFUS device. Passive cavitation maps were obtained during sonications combined with a circulating microbubble agent at 20 targets in the cingulate cortex in three macaques. The maps were compared with MRI-evident tissue effects. The system successfully mapped microbubble activity during both stable and inertial cavitation, which was correlated with MRI-evident transient blood-brain barrier disruption and vascular damage, respectively. The location of this activity was coincident with the resulting tissue changes within the expected resolution limits of the system. While preliminary, these data clearly demonstrate, for the first time, that it is possible to construct maps of stable and inertial cavitation transcranially, in a large animal model, and under clinically relevant conditions. Further, these results suggest that this hybrid ultrasound/MRI approach can provide comprehensive guidance for targeted drug delivery via blood-brain barrier disruption and other emerging ultrasound treatments, facilitating their clinical translation. We anticipate that it will also prove to be an important research tool that will

  10. Development of prostate specific membrane antigen targeted ultrasound microbubbles using bioorthogonal chemistry

    PubMed Central

    Zlitni, Aimen; Yin, Melissa; Janzen, Nancy; Chatterjee, Samit; Lisok, Ala; Gabrielson, Kathleen L.; Nimmagadda, Sridhar; Pomper, Martin G.; Foster, F. Stuart

    2017-01-01

    Prostate specific membrane antigen (PSMA) targeted microbubbles (MBs) were developed using bioorthogonal chemistry. Streptavidin-labeled MBs were treated with a biotinylated tetrazine (MBTz) and targeted to PSMA expressing cells using trans-cyclooctene (TCO)-functionalized anti-PSMA antibodies (TCO-anti-PSMA). The extent of MB binding to PSMA positive cells for two different targeting strategies was determined using an in vitro flow chamber. The initial approach involved pretargeting, where TCO-anti-PSMA was first incubated with PSMA expressing cells and followed by MBTz, which subsequently showed a 2.8 fold increase in the number of bound MBs compared to experiments performed in the absence of TCO-anti-PSMA. Using direct targeting, where TCO-anti-PSMA was linked to MBTz prior to initiation of the assay, a 5-fold increase in binding compared to controls was observed. The direct targeting approach was subsequently evaluated in vivo using a human xenograft tumor model and two different PSMA-targeting antibodies. The US signal enhancements observed were 1.6- and 5.9-fold greater than that for non-targeted MBs. The lead construct was also evaluated in a head-to-head study using mice bearing both PSMA positive or negative tumors in separate limbs. The human PSMA expressing tumors exhibited a 2-fold higher US signal compared to those tumors deficient in human PSMA. The results demonstrate both the feasibility of preparing PSMA-targeted MBs and the benefits of using bioorthogonal chemistry to create targeted US probes. PMID:28472168

  11. Targeting of Magnetic Nanoparticle-coated Microbubbles to the Vascular Wall Empowers Site-specific Lentiviral Gene Delivery in vivo.

    PubMed

    Heun, Yvonn; Hildebrand, Staffan; Heidsieck, Alexandra; Gleich, Bernhard; Anton, Martina; Pircher, Joachim; Ribeiro, Andrea; Mykhaylyk, Olga; Eberbeck, Dietmar; Wenzel, Daniela; Pfeifer, Alexander; Woernle, Markus; Krötz, Florian; Pohl, Ulrich; Mannell, Hanna

    2017-01-01

    In the field of vascular gene therapy, targeting systems are promising advancements to improve site-specificity of gene delivery. Here, we studied whether incorporation of magnetic nanoparticles (MNP) with different magnetic properties into ultrasound sensitive microbubbles may represent an efficient way to enable gene targeting in the vascular system after systemic application. Thus, we associated novel silicon oxide-coated magnetic nanoparticle containing microbubbles (SO-Mag MMB) with lentiviral particles carrying therapeutic genes and determined their physico-chemical as well as biological properties compared to MMB coated with polyethylenimine-coated magnetic nanoparticles (PEI-Mag MMB). While there were no differences between both MMB types concerning size and lentivirus binding, SO-Mag MMB exhibited superior characteristics regarding magnetic moment, magnetizability as well as transduction efficiency under static and flow conditions in vitro . Focal disruption of lentiviral SO-Mag MMB by ultrasound within isolated vessels exposed to an external magnetic field decisively improved localized VEGF expression in aortic endothelium ex vivo and enhanced the angiogenic response. Using the same system in vivo , we achieved a highly effective, site-specific lentiviral transgene expression in microvessels of the mouse dorsal skin after arterial injection. Thus, we established a novel lentiviral MMB technique, which has great potential towards site-directed vascular gene therapy.

  12. Focal areas of increased lipid concentration on the coating of microbubbles during short tone-burst ultrasound insonification.

    PubMed

    Kooiman, Klazina; van Rooij, Tom; Qin, Bin; Mastik, Frits; Vos, Hendrik J; Versluis, Michel; Klibanov, Alexander L; de Jong, Nico; Villanueva, Flordeliza S; Chen, Xucai

    2017-01-01

    Acoustic behavior of lipid-coated microbubbles has been widely studied, which has led to several numerical microbubble dynamics models that incorporate lipid coating behavior, such as buckling and rupture. In this study we investigated the relationship between microbubble acoustic and lipid coating behavior on a nanosecond scale by using fluorescently labeled lipids. It is hypothesized that a local increased concentration of lipids, appearing as a focal area of increased fluorescence intensity (hot spot) in the fluorescence image, is related to buckling and folding of the lipid layer thereby highly influencing the microbubble acoustic behavior. To test this hypothesis, the lipid microbubble coating was fluorescently labeled. The vibration of the microbubble (n = 177; 2.3-10.3 μm in diameter) upon insonification at an ultrasound frequency of 0.5 or 1 MHz at 25 or 50 kPa acoustic pressure was recorded with the UPMC Cam, an ultra-high-speed fluorescence camera, operated at ~4-5 million frames per second. During short tone-burst excitation, hot spots on the microbubble coating occurred at relative vibration amplitudes > 0.3 irrespective of frequency and acoustic pressure. Around resonance, the majority of the microbubbles formed hot spots. When the microbubble also deflated acoustically, hot spot formation was likely irreversible. Although compression-only behavior (defined as substantially more microbubble compression than expansion) and subharmonic responses were observed in those microbubbles that formed hot spots, both phenomena were also found in microbubbles that did not form hot spots during insonification. In conclusion, this study reveals hot spot formation of the lipid monolayer in the microbubble's compression phase. However, our experimental results show that there is no direct relationship between hot spot formation of the lipid coating and microbubble acoustic behaviors such as compression-only and the generation of a subharmonic response. Hence, our

  13. Investigating Interactions between Ultrasound Stimulated Microbubbles and the Fibrin Network of Blood Clots

    NASA Astrophysics Data System (ADS)

    Acconcia, Christopher N.

    The occlusion of blood vessels by thrombus is a major cause of mortality and morbidity in cardiovascular diseases such as deep vein thrombosis, myocardial infarction and ischemic stroke. In these contexts, prompt restoration of blood flow is of the utmost importance and is poorly addressed by current methods in many cases. For example, the treatment standard for ischemic stroke is administration of the thrombolytic agent tissue plasminogen activator, which is only minimally effective and has associated safety issues. There is, therefore, a need for the development of alternative recanalization strategies and amongst these, bubble mediated sonothrombolysis (thrombolysis by ultrasound) has emerged as a promising approach. Though it is well established that ultrasound stimulated microbubbles can potentiate the lysis of blood clots, the mechanisms are not well understood and this lack of understanding is a hindrance to the development of improved ultrasound exposure strategies. This thesis has revealed insights into the mechanisms of bubble mediated sonothrombolysis which can be used to guide the development of improved exposure strategies and contrast agents (i.e. bubble sizes) for sonothrombolysis treatments. The experimental approach involved fast frame optical imaging of ultrasound stimulated microbubbles interacting with clots, and two-photon fluorescence imaging of clots following ultrasound exposure. It was demonstrated that bubbles can penetrate fibrin clots, disrupt the fibrin network, generate patent tunnels, enhance the transport of fluid into the clot and induce clot boundary displacements. Furthermore, the occurrence and extent of these therapeutically relevant effects were shown to be highly dependent on pulse length and bubble size: longer pulses and larger bubbles were associated with greater disruption of fibrin networks and greater fluid transport distances. Finally, it was shown that bubbles can induce the ejection of erythrocytes from blood clots

  14. Microbubble-Assisted Ultrasound-Induced Transient Phosphatidylserine Translocation.

    PubMed

    Escoffre, Jean-Michel; Derieppe, Marc; Lammertink, Bart; Bos, Clemens; Moonen, Chrit

    2017-04-01

    Microbubble-assisted ultrasound (sonopermeabilization) results in reversible permeabilization of the plasma membrane of cells. This method is increasingly used in vivo because of its potential to deliver therapeutic molecules with limited cell damage. Nevertheless, the effects of sonopermeabilization on the plasma membrane remain not fully understood. We investigated the influence of sonopermeabilization on the transverse mobility of phospholipids, especially on phosphatidylserine (PS) externalization. We performed studies using optical imaging with Annexin V and FM1-43 probes to monitor PS externalization of rat glioma C6 cells. Sonopermeabilization induced transient membrane permeabilization, which is positively correlated with reversible PS externalization. This membrane disorganization was temporary and not associated with loss of cell viability. Sonopermeabilization did not induce PS externalization via activation of the scramblase. We hypothesize that acoustically induced membrane pores may provide a new pathway for PS migration between both membrane leaflets. During the membrane-resealing phase, PS asymmetry may be re-established by amino-phospholipid flippase activity and/or endocytosis, along with exocytosis processes. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  15. Optical Verification of Microbubble Response to Acoustic Radiation Force in Large Vessels With In Vivo Results.

    PubMed

    Wang, Shiying; Wang, Claudia Y; Unnikrishnan, Sunil; Klibanov, Alexander L; Hossack, John A; Mauldin, F William

    2015-11-01

    The objective of this study was to optically verify the dynamic behaviors of adherent microbubbles in large blood vessel environments in response to a new ultrasound technique using modulated acoustic radiation force. Polydimethylsiloxane (PDMS) flow channels coated with streptavidin were used in targeted groups to mimic large blood vessels. The custom-modulated acoustic radiation force beam sequence was programmed on a Verasonics research scanner. In vitro experiments were performed by injecting a biotinylated lipid-perfluorobutane microbubble dispersion through flow channels. The dynamic response of adherent microbubbles was detected acoustically and simultaneously visualized using a video camera connected to a microscope. In vivo verification was performed in a large abdominal blood vessel of a murine model for inflammation with injection of biotinylated microbubbles conjugated with P-selectin antibody. Aggregates of adherent microbubbles were observed optically under the influence of acoustic radiation force. Large microbubble aggregates were observed solely in control groups without targeted adhesion. Additionally, the dispersion of microbubble aggregates were demonstrated to lead to a transient acoustic signal enhancement in control groups (a new phenomenon we refer to as "control peak"). In agreement with in vitro results, the control peak phenomenon was observed in vivo in a murine model. This study provides the first optical observation of microbubble-binding dynamics in large blood vessel environments with application of a modulated acoustic radiation force beam sequence. With targeted adhesion, secondary radiation forces were unable to produce large aggregates of adherent microbubbles. Additionally, the new phenomenon called control peak was observed both in vitro and in vivo in a murine model for the first time. The findings in this study provide us with a better understanding of microbubble behaviors in large blood vessel environments with application

  16. Optical Verification of Microbubble Response to Acoustic Radiation Force in Large Vessels with In Vivo Results

    PubMed Central

    Wang, Shiying; Wang, Claudia Y.; Unnikrishnan, Sunil; Klibanov, Alexander L.; Hossack, John A.; Mauldin, F. William

    2015-01-01

    Objectives To optically verify the dynamic behaviors of adherent microbubbles in large blood vessel environments in response to a new ultrasound technique using modulated acoustic radiation force. Materials and Methods Polydimethylsiloxane (PDMS) flow channels coated with streptavidin were used in targeted groups to mimic large blood vessels. The custom modulated acoustic radiation force beam sequence was programmed on a Verasonics research scanner. In vitro experiments were performed by injecting a biotinylated lipid-perfluorobutane microbubble dispersion through flow channels. The dynamic response of adherent microbubbles was detected acoustically and simultaneously visualized using a video camera connected to a microscope. In vivo verification was performed in a large abdominal blood vessel of a murine model for inflammation with injection of biotinylated microbubbles conjugated with P-selectin antibody. Results Aggregates of adherent microbubbles were observed optically under the influence of acoustic radiation force. Large microbubble aggregates were observed solely in control groups without targeted adhesion. Additionally, the dispersion of microbubble aggregates were demonstrated to lead to a transient acoustic signal enhancement in control groups (a new phenomenon we refer to as “control peak”). In agreement with in vitro results, the “control peak” phenomenon was observed in vivo in a murine model. Conclusions This study provides the first optical observation of microbubble binding dynamics in large blood vessel environments with application of a modulated acoustic radiation force beam sequence. With targeted adhesion, secondary radiation forces were unable to produce large aggregates of adherent microbubbles. Additionally, the new phenomenon called “control peak” was observed both in vitro and in vivo in a murine model for the first time. The findings in this study provide us with a better understanding of microbubble behaviors in large blood

  17. Drug-Loaded Nanoemulsions/Microbubbles for Combined Tumor Imaging and Therapy

    NASA Astrophysics Data System (ADS)

    Rapoport, Natalya; Gao, Zhonggao; Kennedy, Ann

    2007-05-01

    A new class of multifunctional nanoparticles that combine properties of polymeric drug carriers, ultrasound imaging contrast agents, and enhancers of ultrasound-mediated intracellular drug delivery was developed. At room temperature, the developed systems comprise perfluorocarbon nanodroplets stabilized by the walls made of biodegradable block copolymers. The nanodroplets convert into microbubbles upon heating to physiological temperatures. The phase state of the systems and nanodroplet size may be controlled by the copolymer/perfluorocarbon volume ratio. Three areas observed in phase diagrams correspond to micelles; micelle/microbubble coexistence; and nano/microbubble coexistence. These systems manifest a relatively high drug loading capacity (about 15 % wt/wt). As indicated by biodistribution measurements and ultrasound imaging, the micelles and nanobubbles extravasate selectively into the tumor interstitia. Microbubble cavitate and collapse under the action of tumor-directed ultrasound, resulting in a dramatically enhanced intracellular drug uptake by the tumor cells. Upon intravenous injections, a long-lasting, strong and selective ultrasound contrast is observed in the tumor volume confirming nanobubble extravasation through the defected tumor microvasculature and suggesting their coalescence into larger, highly echogenic microbubbles in the tumor tissue. This effect is tumor-selective; no accumulation of echogenic microbubbles is observed in other organs. Tumor contrast increases in time confirming gradual accumulation of echogenic microbubbles in the tumor tissue, presumably via the enhanced penetration and retention (EPR) effect.

  18. Targeted ultrasound contrast imaging of matrix metalloproteinase-2 in ischemia-reperfusion rat model: ex vivo and in vivo studies.

    PubMed

    Su, Haili; Du, Yongfeng; Qian, Yunqiu; Zong, Yujin; Li, Jun; Zhuang, Ran; He, Jianguo; Wei, Zhangrui; Zhang, Jun; Zhou, Xiaodong

    2011-04-01

    We hypothesized that post-myocardial ischemia-reperfusion (I/R) remodeling associated matrix metalloproteinase-2 (MMP(2)) activation could be detected by using novel MMP(2) targeted ultrasound imaging. We study the combination of MMP(2)-targeted microbubbles (TMB(2)) and control microbubbles with myocardium in 1 week post-I/R rats. In in vitro studies, TMB(2) significantly bound within the risk area (RA) of 1-week post-I/R myocardial sections while rare binding was observed in the control area (CA). In in vivo studies, increased focal retention of TMB(2) was observed within the RA, with the higher myocardial video intensity (RA 42.85 ± 20.12 dB versus CA 25.85 ± 13.40 dB, p < 0.01). However, there was no difference of control microbubble retention in both CA and RA. A targeted ultrasound contrast imaging approach that employs novel TMB(2) has the potential to provide a less-invasive, higher-resolution technique for in vivo localization of MMP(2) activation and tracking of MMP-mediated post-I/R remodeling.

  19. Mapping microbubble viscosity using fluorescence lifetime imaging of molecular rotors

    PubMed Central

    Hosny, Neveen A.; Mohamedi, Graciela; Rademeyer, Paul; Owen, Joshua; Wu, Yilei; Tang, Meng-Xing; Eckersley, Robert J.; Stride, Eleanor; Kuimova, Marina K.

    2013-01-01

    Encapsulated microbubbles are well established as highly effective contrast agents for ultrasound imaging. There remain, however, some significant challenges to fully realize the potential of microbubbles in advanced applications such as perfusion mapping, targeted drug delivery, and gene therapy. A key requirement is accurate characterization of the viscoelastic surface properties of the microbubbles, but methods for independent, nondestructive quantification and mapping of these properties are currently lacking. We present here a strategy for performing these measurements that uses a small fluorophore termed a “molecular rotor” embedded in the microbubble surface, whose fluorescence lifetime is directly related to the viscosity of its surroundings. We apply fluorescence lifetime imaging to show that shell viscosities vary widely across the population of the microbubbles and are influenced by the shell composition and the manufacturing process. We also demonstrate that heterogeneous viscosity distributions exist within individual microbubble shells even with a single surfactant component. PMID:23690599

  20. Numerical study on microbubble-enhanced heating for various parameters in EUS-FUS

    NASA Astrophysics Data System (ADS)

    Okita, Kohei; Maezawa, Miyuki; Takagi, Shu; Matsumoto, Yoichiro

    2012-11-01

    Endoscopic ultrasonography guided focused ultrasound surgery (EUS-FUS) have been developed as a less-invasive treatment for pancreatic cancer. In the present study, microbubble-enhanced heating for various parameters in EUS-FUS is investigated numerically. Mass and momentum equations for bubbly mixture are solved to reproduce the propagation of ultrasound of 4.8MHz through the gel containing microbubbles as Sonazoid®. The dynamics of bubble is governed by the equation which considers the elasticity of both shell and surrounding media. Additionally, the heat equation with the time averaged heat source is solved to obtain a temperature distribution. The basic equations are discretized by the 6th-order finite difference method and developed based on FDTD method. The mixture and bubbles are coupled by Euler-Lagrange method. As the results, the temperature around the target increased due to the microbubble oscillation with increasing the initial void fraction fG0 from 10-5 to 10-4%. However, at fG0=10-3%, ultrasounds were too attenuated to heat the target. The heating region moved from the target to the transducer side. By comparing the results with and without shell, the shell of bubble induced the heating around focus. This is because the decrease of the attenuation due to the elasticity of the shell and the increase of the viscous dissipation rate due to the viscosity of the shell.

  1. A Sensitive TLRH Targeted Imaging Technique for Ultrasonic Molecular Imaging

    PubMed Central

    Hu, Xiaowen; Zheng, Hairong; Kruse, Dustin E.; Sutcliffe, Patrick; Stephens, Douglas N.; Ferrara, Katherine W.

    2010-01-01

    The primary goals of ultrasound molecular imaging are the detection and imaging of ultrasound contrast agents (microbubbles), which are bound to specific vascular surface receptors. Imaging methods that can sensitively and selectively detect and distinguish bound microbubbles from freely circulating microbubbles (free microbubbles) and surrounding tissue are critically important for the practical application of ultrasound contrast molecular imaging. Microbubbles excited by low frequency acoustic pulses emit wide-band echoes with a bandwidth extending beyond 20 MHz; we refer to this technique as TLRH (transmission at a low frequency and reception at a high frequency). Using this wideband, transient echo, we have developed and implemented a targeted imaging technique incorporating a multi-frequency co-linear array and the Siemens Antares® imaging system. The multi-frequency co-linear array integrates a center 5.4 MHz array, used to receive echoes and produce radiation force, and two outer 1.5 MHz arrays used to transmit low frequency incident pulses. The targeted imaging technique makes use of an acoustic radiation force sub-sequence to enhance accumulation and a TLRH imaging sub-sequence to detect bound microbubbles. The radiofrequency (RF) data obtained from the TLRH imaging sub-sequence are processsed to separate echo signatures between tissue, free microbubbles, and bound microbubbles. By imaging biotin-coated microbubbles targeted to avidin-coated cellulose tubes, we demonstrate that the proposed method has a high contrast-to-tissue ratio (up to 34 dB) and a high sensitivity to bound microbubbles (with the ratio of echoes from bound microbubbles versus free microbubbles extending up to 23 dB). The effects of the imaging pulse acoustic pressure, the radiation force sub-sequence and the use of various slow-time filters on the targeted imaging quality are studied. The TLRH targeted imaging method is demonstrated in this study to provide sensitive and selective

  2. The Effect of Short Duration Ultrasound Pulses on the Interaction Between Individual Microbubbles and Fibrin Clots.

    PubMed

    Acconcia, Christopher; Leung, Ben Y C; Manjunath, Anoop; Goertz, David E

    2015-10-01

    In previous work, we examined microscale interactions between microbubbles and fibrin clots under exposure to 1 ms ultrasound pulses. This provided direct evidence that microbubbles were capable of deforming clot boundaries and penetrating into clots, while also affecting fluid uptake and inducing fibrin network damage. Here, we investigate the effect of short duration (15 μs) pulses on microscale bubble-clot interactions as function of bubble diameter (3-9 μm) and pressure. Individual microbubbles (n = 45) were placed at the clot boundary with optical tweezers and exposed to 1 MHz ultrasound. High-speed (10 kfps) imaging and 2-photon microscopy were performed during and after exposure, respectively. While broadly similar phenomena were observed as in the 1 ms pulse case (i.e., bubble penetration, network damage and fluid uptake), substantial quantitative differences were present. The pressure threshold for bubble penetration was increased from 0.39 MPa to 0.6 MPa, and those bubbles that did enter clots had reduced penetration depths and were associated with less fibrin network damage and nanobead uptake. This appeared to be due in large part to increased bubble shrinkage relative to the 1 ms pulse case. Stroboscopic imaging was performed on a subset of bubbles (n = 11) and indicated that complex bubble oscillations can occur during this process. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  3. Effect of high intensity focused ultrasound (HIFU) in conjunction with a nanomedicines-microbubble complex for enhanced drug delivery.

    PubMed

    Han, Hyounkoo; Lee, Hohyeon; Kim, Kwangmeyung; Kim, Hyuncheol

    2017-11-28

    Although nanomedicines have been intensively investigated for cancer therapy in the past, poor accumulation of nanomedicines in tumor sites remains a serious problem. Therefore, a novel drug delivery system is required to enhance accumulation and penetration of nanomedicines at the tumor site. Recently, high-intensity focused ultrasound (HIFU) has been highlighted as a non-invasive therapeutic modality, and showed enhanced therapeutic efficacy in combination with nanomedicines. Cavitation effect induced by the combination of HIFU and microbubbles results in transiently enhanced cell membrane permeability, facilitating improved drug delivery efficiency into tumor sites. Therefore, we introduce the acoustic cavitation and thermal/mechanical effects of HIFU in conjunction with microbubble to overcome the limitation of conventional drug delivery. The cavitation effect maximized by the strong acoustic energy of HIFU induced the preferential accumulation of nanomedicine locally released from the nanomedicines-microbubble complex in the tumor. In addition, the mechanical effect of HIFU allowed the accumulated nanomedicines to penetrate into deeper tumor region. The preferential accumulation and deeper penetration of nanomedicines by HIFU showed enhanced therapeutic efficacy, compared to low frequency ultrasound (US). These overall results demonstrate that the strategy combined nanomedicines-microbubble complex with HIFU is a promising tools for cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Effect of Anesthesia Carrier Gas on In-Vivo Circulation Times of Ultrasound Microbubble Contrast Agents in Rats

    PubMed Central

    Mullin, Lee; Gessner, Ryan; Kwan, James; Kaya, Mehmet; Borden, Mark A.; Dayton, Paul A.

    2012-01-01

    Purpose Microbubble contrast agents are currently implemented in a variety of both clinical and preclinical ultrasound imaging studies. The therapeutic and diagnostic capabilities of these contrast agents are limited by their short in-vivo lifetimes, and research to lengthen their circulation times is ongoing. In this manuscript, observations are presented from a controlled experiment performed to evaluate differences in circulation times for lipid shelled perfluorocarbon-filled contrast agents circulating within rodents as a function of inhaled anesthesia carrier gas. Methods The effects of two common anesthesia carrier gas selections - pure oxygen and medical air – were observed within five rats. Contrast agent persistence within the kidney was measured and compared for oxygen and air anesthesia carrier gas for six bolus contrast injections in each animal. Simulations were performed to examine microbubble behavior with changes in external environment gases. Results A statistically significant extension of contrast circulation time was observed for animals breathing medical air compared to breathing pure oxygen. Simulations support experimental observations and indicate that enhanced contrast persistence may be explained by reduced ventilation/perfusion mismatch and classical diffusion, in which nitrogen plays a key role by contributing to the volume and diluting other gas species in the microbubble gas core. Conclusion: Using medical air in place of oxygen as the carrier gas for isoflurane anesthesia can increase the circulation lifetime of ultrasound microbubble contrast agents. PMID:21246710

  5. LyP-1 ultrasonic microbubbles targeting to cancer cell as tumor bio-acoustics markers or drug carriers: targeting efficiency evaluation in, microfluidic channels.

    PubMed

    Li, Xiang; Jin, Qiaofeng; Chen, Tan; Zhang, Baoyue; Zheng, Rongqin; Wang, Zhanhui; Zheng, Hairong

    2009-01-01

    Using ultrasonic contrast microbubbles as acoustic biomarkers and drug carrier vehicles by conjugating tumor specific antibody to microbubbles has shown great potential in ultrasonic tumor molecular imaging or drug-delivery and therapy. Microbubble probe targeting efficiency is one of the major challenges. In this study, we developed a novel method to evaluate the targeting capability and efficiency of microbubbles to cells, and more specifically, microbubbles binding LyP-1 (a cyclic nonapeptide acid peptide) target to cancer cell within a microfluidic system. The micro cell sieves within the microfludic channels could trap the tumor cells and enhance the microbubble's interaction with the cell. Assisted with the controllable fluid shear stress, the microbubble's targeting to the cell and the corresponding affinity efficiency could be quantitatively evaluated under a florescent microscope. The system provides a useful low-cost high efficient in vitro platform for studying microbubble-cell interaction for ultrasonic tumor molecular imaging or drug-delivery and therapy.

  6. Renal Perfusion in Scleroderma Patients Assessed by Microbubble-Based Contrast-Enhanced Ultrasound

    PubMed Central

    Kleinert, Stefan; Roll, Petra; Baumgaertner, Christian; Himsel, Andrea; Mueller, Adelheid; Fleck, Martin; Feuchtenberger, Martin; Jenett, Manfred; Tony, Hans-Peter

    2012-01-01

    Objectives: Renal damage is common in scleroderma. It can occur acutely or chronically. Renal reserve might already be impaired before it can be detected by laboratory findings. Microbubble-based contrast-enhanced ultrasound has been demonstrated to improve blood perfusion imaging in organs. Therefore, we conducted a study to assess renal perfusion in scleroderma patients utilizing this novel technique. Materials and Methodology: Microbubble-based contrast agent was infused and destroyed by using high mechanical index by Siemens Sequoia (curved array, 4.5 MHz). Replenishment was recorded for 8 seconds. Regions of interests (ROI) were analyzed in renal parenchyma, interlobular artery and renal pyramid with quantitative contrast software (CUSQ 1.4, Siemens Acuson, Mountain View, California). Time to maximal Enhancement (TmE), maximal enhancement (mE) and maximal enhancement relative to maximal enhancement of the interlobular artery (mE%A) were calculated for different ROIs. Results: There was a linear correlation between the time to maximal enhancement in the parenchyma and the glomerular filtration rate. However, the other parameters did not reveal significant differences between scleroderma patients and healthy controls. Conclusion: Renal perfusion of scleroderma patients including the glomerular filtration rate can be assessed using microbubble-based contrast media. PMID:22670165

  7. Power cavitation-guided blood-brain barrier opening with focused ultrasound and microbubbles

    NASA Astrophysics Data System (ADS)

    Burgess, M. T.; Apostolakis, I.; Konofagou, E. E.

    2018-03-01

    Image-guided monitoring of microbubble-based focused ultrasound (FUS) therapies relies on the accurate localization of FUS-stimulated microbubble activity (i.e. acoustic cavitation). Passive cavitation imaging with ultrasound arrays can achieve this, but with insufficient spatial resolution. In this study, we address this limitation and perform high-resolution monitoring of acoustic cavitation-mediated blood-brain barrier (BBB) opening with a new technique called power cavitation imaging. By synchronizing the FUS transmit and passive receive acquisition, high-resolution passive cavitation imaging was achieved by using delay and sum beamforming with absolute time delays. Since the axial image resolution is now dependent on the duration of the received acoustic cavitation emission, short pulses of FUS were used to limit its duration. Image sets were acquired at high-frame rates for calculation of power cavitation images analogous to power Doppler imaging. Power cavitation imaging displays the mean intensity of acoustic cavitation over time and was correlated with areas of acoustic cavitation-induced BBB opening. Power cavitation-guided BBB opening with FUS could constitute a standalone system that may not require MRI guidance during the procedure. The same technique can be used for other acoustic cavitation-based FUS therapies, for both safety and guidance.

  8. Power cavitation-guided blood-brain barrier opening with focused ultrasound and microbubbles.

    PubMed

    Burgess, M T; Apostolakis, I; Konofagou, E E

    2018-03-15

    Image-guided monitoring of microbubble-based focused ultrasound (FUS) therapies relies on the accurate localization of FUS-stimulated microbubble activity (i.e. acoustic cavitation). Passive cavitation imaging with ultrasound arrays can achieve this, but with insufficient spatial resolution. In this study, we address this limitation and perform high-resolution monitoring of acoustic cavitation-mediated blood-brain barrier (BBB) opening with a new technique called power cavitation imaging. By synchronizing the FUS transmit and passive receive acquisition, high-resolution passive cavitation imaging was achieved by using delay and sum beamforming with absolute time delays. Since the axial image resolution is now dependent on the duration of the received acoustic cavitation emission, short pulses of FUS were used to limit its duration. Image sets were acquired at high-frame rates for calculation of power cavitation images analogous to power Doppler imaging. Power cavitation imaging displays the mean intensity of acoustic cavitation over time and was correlated with areas of acoustic cavitation-induced BBB opening. Power cavitation-guided BBB opening with FUS could constitute a standalone system that may not require MRI guidance during the procedure. The same technique can be used for other acoustic cavitation-based FUS therapies, for both safety and guidance.

  9. Nonlinear oscillation and interfacial stability of an encapsulated microbubble under dual-frequency ultrasound

    NASA Astrophysics Data System (ADS)

    Liu, Yunqiao; Calvisi, Michael L.; Wang, Qianxi

    2017-04-01

    Encapsulated microbubbles (EMBs) are widely used in medical ultrasound imaging as contrast-enhanced agents. However, the potential damaging effects of violent collapsing EMBs to cells and tissues in clinical settings have remained a concern. Dual-frequency ultrasound is a promising technique for improving the efficacy and safety of sonography. The system modeled consists of the external liquid, membrane and internal gases of an EMB. The microbubble dynamics are simulated using a simple nonlinear interactive theory, considering the compressibility of the internal gas, viscosity of the liquid flow and viscoelasticity of the membrane. The radial oscillation and interfacial stability of an EMB under single- and dual-frequency excitations are compared. The simulation results show that the dual-frequency technique produces larger backscatter pressure at higher harmonics of the primary driving frequency—this enriched acoustic spectrum can enhance blood-tissue contrast and improve the quality of sonographic images. The results further show that the acoustic pressure threshold associated with the onset of shape instability is greater for dual-frequency driving. This suggests that the dual-frequency technique stabilizes the encapsulated bubble, thereby improving the efficacy and safety of contrast-enhanced agents.

  10. Nonlinear oscillation and interfacial stability of an encapsulated microbubble under dual-frequency ultrasound

    NASA Astrophysics Data System (ADS)

    Calvisi, Michael; Liu, Yunqiao; Wang, Qianxi

    2016-11-01

    Encapsulated microbubbles (EMBs) are widely used in medical ultrasound imaging as contrast-enhanced agents. However, the potential damaging effects of violent, collapsing EMBs to cells and tissues in clinical practice have remained a concern. Dual-frequency ultrasound is a promising technique for improving the efficacy and safety of sonography. The EMB system modeled consists of the external liquid, membrane, and internal gases. The microbubble dynamics are simulated using a simple nonlinear interactive theory, considering the compressibility of the internal gas, viscosity of the liquid flow, and elasticity of the membrane. The radial oscillation and interfacial stability of an EMB under single and dual-frequency excitations are compared. The simulation results show that the dual-frequency technique produces larger backscatter pressure at higher harmonics of the primary driving frequency. This enriched acoustic spectrum can enhance blood-tissue contrast and improve sonographic image quality. The results further show that the acoustic pressure threshold associated with the onset of shape instability is greater for dual-frequency driving. This suggests that the dual-frequency technique stabilizes the EMB, thereby improving the efficacy and safety of contrast-enhanced agents.

  11. Pancreatic cancer cell detection by targeted lipid microbubbles and multiphoton imaging

    NASA Astrophysics Data System (ADS)

    Cromey, Benjamin; McDaniel, Ashley; Matsunaga, Terry; Vagner, Josef; Kieu, Khanh Quoc; Banerjee, Bhaskar

    2018-04-01

    Surgical resection of pancreatic cancer represents the only chance of cure and long-term survival in this common disease. Unfortunately, determination of a cancer-free margin at surgery is based on one or two tiny frozen section biopsies, which is far from ideal. Not surprisingly, cancer is usually left behind and is responsible for metastatic disease. We demonstrate a method of receptor-targeted imaging using peptide ligands, lipid microbubbles, and multiphoton microscopy that could lead to a fast and accurate way of examining the entire cut surface during surgery. Using a plectin-targeted microbubble, we performed a blinded in-vitro study to demonstrate avid binding of targeted microbubbles to pancreatic cancer cells but not noncancerous cell lines. Further work should lead to a much-needed point-of-care diagnostic test for determining clean margins in oncologic surgery.

  12. Controllable bioeffects of laser-generated intracellular microbubbles

    NASA Astrophysics Data System (ADS)

    Zohdy, Marwa Joy

    Laser-induced optical breakdown (LIOB) is a nonlinear energy absorption process that can generate precise damage in biological tissues. With femtosecond laser pulses, disruption is highly localized with minimal thermal and mechanical effects to the surrounding region. Cavitation bubbles are produced as a result of LIOB, and these bubbles can be detected and monitored with high-frequency ultrasound. In this work, the controllable viability effects of LIOB bubbles in single cells were characterized. Using a high-frequency acoustic transducer synchronized with a 793 nm, 100 fs laser pulsed at 250 kHz, thermal effects in the vicinity of an LIOB event were directly assessed. Temperaturedependent pulse-echo displacements were calculated using phase-sensitive correlation tracking and fit to a finite-element heat transfer model to estimate thermal distribution. Results indicate a minimal temperature increase (<1 degree C) within 100 microns of a bubble created with multiple laser pulses, confirming that LIOB can be controlled to be thermally noninvasive in the bubble vicinity. Acoustically detectable microbubbles were generated in individual cells with femtosecond LIOB. By adjusting laser fluence, exposure time, and focal location, LIOB could be controlled to produce distinctly different cellular effects. Small (1-2 micron) bubbles with short lifetimes (10100 ms) could be generated in cells without affecting their viability; and, alternatively, large (510 micron) bubbles with long lifetimes (1-5 s) could be generated for selective cell killing without affecting immediately neighboring cells. Experiments were performed in Chinese hamster ovary (CHO) cells in vitro, and LIOB was detected with both optical and acoustic microscopy. A long-term proliferation assay was also performed using green-fluorescent MCA207 mouse sarcoma cells targeted for LIOB. This assay confirmed that nondestructive bubbles did not affect target cell proliferation over several generations, and that

  13. Dynamics and fragmentation of thick-shelled microbubbles.

    PubMed

    May, Donovan J; Allen, John S; Ferrara, Katherine W

    2002-10-01

    Localized delivery could decrease the systemic side effects of toxic chemotherapy drugs. The unique delivery agents we examine consist of microbubbles with an outer lipid coating, an oil layer, and a perfluorobutane gas core. These structures are 0.5-12 microm in radius at rest. Oil layers of these acoustically active lipospheres (AALs) range from 0.3-1.5 microm in thickness and thus the agents can carry a large payload compared to nano-scale drug delivery systems. We show that triacetin-based drug-delivery vehicles can be fragmented using ultrasound. Compared with a lipid-shelled contrast agent, the expansion of the drug-delivery vehicle within the first cycle is similar, and a subharmonic component is demonstrated at an equivalent radius, frequency, and driving pressure. For the experimental conditions explored here, the pulse length required for destruction of the drug-delivery vehicle is significantly greater, with at least five cycles required, compared with one cycle for the contrast agent. For the drug-delivery vehicle, the observed destruction mechanism varies with the initial radius, with microbubbles smaller than resonance size undergoing a symmetric collapse and producing a set of small, equal-sized fragments. Between resonance size and twice resonance size, surface waves become visible, and the oscillations become asymmetrical. For agents larger than twice the resonance radius, the destruction mechanism changes to a pinch-off, with one fragment containing a large fraction of the original volume.

  14. Lipid shedding from single oscillating microbubbles.

    PubMed

    Luan, Ying; Lajoinie, Guillaume; Gelderblom, Erik; Skachkov, Ilya; van der Steen, Antonius F W; Vos, Hendrik J; Versluis, Michel; De Jong, Nico

    2014-08-01

    Lipid-coated microbubbles are used clinically as contrast agents for ultrasound imaging and are being developed for a variety of therapeutic applications. The lipid encapsulation and shedding of the lipids by acoustic driving of the microbubble has a crucial role in microbubble stability and in ultrasound-triggered drug delivery; however, little is known about the dynamics of lipid shedding under ultrasound excitation. Here we describe a study that optically characterized the lipid shedding behavior of individual microbubbles on a time scale of nanoseconds to microseconds. A single ultrasound burst of 20 to 1000 cycles, with a frequency of 1 MHz and an acoustic pressure varying from 50 to 425 kPa, was applied. In the first step, high-speed fluorescence imaging was performed at 150,000 frames per second to capture the instantaneous dynamics of lipid shedding. Lipid detachment was observed within the first few cycles of ultrasound. Subsequently, the detached lipids were transported by the surrounding flow field, either parallel to the focal plane (in-plane shedding) or in a trajectory perpendicular to the focal plane (out-of-plane shedding). In the second step, the onset of lipid shedding was studied as a function of the acoustic driving parameters, for example, pressure, number of cycles, bubble size and oscillation amplitude. The latter was recorded with an ultrafast framing camera running at 10 million frames per second. A threshold for lipid shedding under ultrasound excitation was found for a relative bubble oscillation amplitude >30%. Lipid shedding was found to be reproducible, indicating that the shedding event can be controlled. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  15. Contrast imaging in mouse embryos using high-frequency ultrasound.

    PubMed

    Denbeigh, Janet M; Nixon, Brian A; Puri, Mira C; Foster, F Stuart

    2015-03-04

    Ultrasound contrast-enhanced imaging can convey essential quantitative information regarding tissue vascularity and perfusion and, in targeted applications, facilitate the detection and measure of vascular biomarkers at the molecular level. Within the mouse embryo, this noninvasive technique may be used to uncover basic mechanisms underlying vascular development in the early mouse circulatory system and in genetic models of cardiovascular disease. The mouse embryo also presents as an excellent model for studying the adhesion of microbubbles to angiogenic targets (including vascular endothelial growth factor receptor 2 (VEGFR2) or αvβ3) and for assessing the quantitative nature of molecular ultrasound. We therefore developed a method to introduce ultrasound contrast agents into the vasculature of living, isolated embryos. This allows freedom in terms of injection control and positioning, reproducibility of the imaging plane without obstruction and motion, and simplified image analysis and quantification. Late gestational stage (embryonic day (E)16.6 and E17.5) murine embryos were isolated from the uterus, gently exteriorized from the yolk sac and microbubble contrast agents were injected into veins accessible on the chorionic surface of the placental disc. Nonlinear contrast ultrasound imaging was then employed to collect a number of basic perfusion parameters (peak enhancement, wash-in rate and time to peak) and quantify targeted microbubble binding in an endoglin mouse model. We show the successful circulation of microbubbles within living embryos and the utility of this approach in characterizing embryonic vasculature and microbubble behavior.

  16. Combined optical sizing and acoustical characterization of single freely-floating microbubbles

    NASA Astrophysics Data System (ADS)

    Luan, Ying; Renaud, Guillaume; Raymond, Jason L.; Segers, Tim; Lajoinie, Guillaume; Beurskens, Robert; Mastik, Frits; Kokhuis, Tom J. A.; van der Steen, Antonius F. W.; Versluis, Michel; de Jong, Nico

    2016-12-01

    In this study we present a combined optical sizing and acoustical characterization technique for the study of the dynamics of single freely-floating ultrasound contrast agent microbubbles exposed to long burst ultrasound excitations up to the milliseconds range. A co-axial flow device was used to position individual microbubbles on a streamline within the confocal region of three ultrasound transducers and a high-resolution microscope objective. Bright-field images of microbubbles passing through the confocal region were captured using a high-speed camera synchronized to the acoustical data acquisition to assess the microbubble response to a 1-MHz ultrasound burst. Nonlinear bubble vibrations were identified at a driving pressure as low as 50 kPa. The results demonstrate good agreement with numerical simulations based on the shell-buckling model proposed by Marmottant et al. [J. Acoust. Soc. Am. 118, 3499-3505 (2005)]. The system demonstrates the potential for a high-throughput in vitro characterization of individual microbubbles.

  17. Focal areas of increased lipid concentration on the coating of microbubbles during short tone-burst ultrasound insonification

    PubMed Central

    van Rooij, Tom; Qin, Bin; Mastik, Frits; Vos, Hendrik J.; Versluis, Michel; Klibanov, Alexander L.; de Jong, Nico; Villanueva, Flordeliza S.; Chen, Xucai

    2017-01-01

    Acoustic behavior of lipid-coated microbubbles has been widely studied, which has led to several numerical microbubble dynamics models that incorporate lipid coating behavior, such as buckling and rupture. In this study we investigated the relationship between microbubble acoustic and lipid coating behavior on a nanosecond scale by using fluorescently labeled lipids. It is hypothesized that a local increased concentration of lipids, appearing as a focal area of increased fluorescence intensity (hot spot) in the fluorescence image, is related to buckling and folding of the lipid layer thereby highly influencing the microbubble acoustic behavior. To test this hypothesis, the lipid microbubble coating was fluorescently labeled. The vibration of the microbubble (n = 177; 2.3–10.3 μm in diameter) upon insonification at an ultrasound frequency of 0.5 or 1 MHz at 25 or 50 kPa acoustic pressure was recorded with the UPMC Cam, an ultra-high-speed fluorescence camera, operated at ~4–5 million frames per second. During short tone-burst excitation, hot spots on the microbubble coating occurred at relative vibration amplitudes > 0.3 irrespective of frequency and acoustic pressure. Around resonance, the majority of the microbubbles formed hot spots. When the microbubble also deflated acoustically, hot spot formation was likely irreversible. Although compression-only behavior (defined as substantially more microbubble compression than expansion) and subharmonic responses were observed in those microbubbles that formed hot spots, both phenomena were also found in microbubbles that did not form hot spots during insonification. In conclusion, this study reveals hot spot formation of the lipid monolayer in the microbubble’s compression phase. However, our experimental results show that there is no direct relationship between hot spot formation of the lipid coating and microbubble acoustic behaviors such as compression-only and the generation of a subharmonic response. Hence

  18. Pancreatic cancer cell detection by targeted lipid microbubbles and multiphoton imaging.

    PubMed

    Cromey, Benjamin; McDaniel, Ashley; Matsunaga, Terry; Vagner, Josef; Kieu, Khanh Quoc; Banerjee, Bhaskar

    2018-04-01

    Surgical resection of pancreatic cancer represents the only chance of cure and long-term survival in this common disease. Unfortunately, determination of a cancer-free margin at surgery is based on one or two tiny frozen section biopsies, which is far from ideal. Not surprisingly, cancer is usually left behind and is responsible for metastatic disease. We demonstrate a method of receptor-targeted imaging using peptide ligands, lipid microbubbles, and multiphoton microscopy that could lead to a fast and accurate way of examining the entire cut surface during surgery. Using a plectin-targeted microbubble, we performed a blinded in-vitro study to demonstrate avid binding of targeted microbubbles to pancreatic cancer cells but not noncancerous cell lines. Further work should lead to a much-needed point-of-care diagnostic test for determining clean margins in oncologic surgery. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  19. Shrinking microbubbles with microfluidics: mathematical modelling to control microbubble sizes.

    PubMed

    Salari, A; Gnyawali, V; Griffiths, I M; Karshafian, R; Kolios, M C; Tsai, S S H

    2017-11-29

    Microbubbles have applications in industry and life-sciences. In medicine, small encapsulated bubbles (<10 μm) are desirable because of their utility in drug/oxygen delivery, sonoporation, and ultrasound diagnostics. While there are various techniques for generating microbubbles, microfluidic methods are distinguished due to their precise control and ease-of-fabrication. Nevertheless, sub-10 μm diameter bubble generation using microfluidics remains challenging, and typically requires expensive equipment and cumbersome setups. Recently, our group reported a microfluidic platform that shrinks microbubbles to sub-10 μm diameters. The microfluidic platform utilizes a simple microbubble-generating flow-focusing geometry, integrated with a vacuum shrinkage system, to achieve microbubble sizes that are desirable in medicine, and pave the way to eventual clinical uptake of microfluidically generated microbubbles. A theoretical framework is now needed to relate the size of the microbubbles produced and the system's input parameters. In this manuscript, we characterize microbubbles made with various lipid concentrations flowing in solutions that have different interfacial tensions, and monitor the changes in bubble size along the microfluidic channel under various vacuum pressures. We use the physics governing the shrinkage mechanism to develop a mathematical model that predicts the resulting bubble sizes and elucidates the dominant parameters controlling bubble sizes. The model shows a good agreement with the experimental data, predicting the resulting microbubble sizes under different experimental input conditions. We anticipate that the model will find utility in enabling users of the microfluidic platform to engineer bubbles of specific sizes.

  20. Experimental analysis of behavior in nanobubbles using echograms under ultrasound exposure

    NASA Astrophysics Data System (ADS)

    Wada, Hikaru; Koido, Jun; Miyazawa, Shinya; Mochizuki, Takashi; Masuda, Kohji; Unga, Johan; Oda, Yusuke; Suzuki, Ryo; Maruyama, Kazuo

    2016-07-01

    Although we have reported our attempts to actively control microbubbles in flow using acoustic radiation force for future drug delivery systems, the microbubbles we used are not applicable for in vivo experiments. Thus, we examined two types of nanobubble with a drug-retaining function. Because the nanobubbles are invisible in a conventional optical observation, we observed the behavior of nanobubbles using ultrasound images (echograms). First, we found the optimal settings of echography to guarantee the relationship between the brightness variation and lipid concentration of nanobubbles. Then, we derived the destructive coefficient using two types of path under continuous ultrasound exposure of 5 MHz. Results indicate that the controllability is related to the construction of nanobubbles and the spatial distribution of the ultrasound field. We realized that the design of the ultrasound field is important with Bubble A, whereas the frequency of ultrasound emission needs to be discussed with Bubble B.

  1. Contrast-Enhanced Ultrasound with VEGFR2-Targeted Microbubbles for Monitoring Regorafenib Therapy Effects in Experimental Colorectal Adenocarcinomas in Rats with DCE-MRI and Immunohistochemical Validation

    PubMed Central

    Clevert, Dirk-Andre; Hirner-Eppeneder, Heidrun; Ingrisch, Michael; Moser, Matthias; Schuster, Jessica; Tadros, Dina; Schneider, Moritz; Kazmierczak, Philipp Maximilian; Reiser, Maximilian; Cyran, Clemens C.

    2017-01-01

    Objectives To investigate contrast-enhanced ultrasound (CEUS) with VEGFR2-targeted microbubbles for monitoring therapy effects of regorafenib on experimental colon carcinomas in rats with correlation to dynamic contrast-enhanced MRI (DCE-MRI) and immunohistochemistry. Materials and Methods Human colorectal adenocarcinoma xenografts (HT-29) were implanted subcutaneously in n = 21 (n = 11 therapy group; n = 10 control group) female athymic nude rats (Hsd: RH-Foxn1rnu). Animals were imaged at baseline and after a one-week daily treatment with regorafenib or a placebo (10 mg/kg bodyweight), using CEUS with VEGFR2-targeted microbubbles and DCE-MRI. In CEUS tumor perfusion was assessed during an early vascular phase (wash-in area under the curve = WiAUC) and VEGFR2-specific binding during a late molecular phase (signal intensity after 8 (SI8min) and 10 minutes (SI10min)), using a conventional 15L8 linear transducer (transmit frequency 7 MHz, dynamic range 80 dB, depth 25 mm). In DCE-MRI functional parameters plasma flow (PF) and plasma volume (PV) were quantified. For validation purposes, CEUS parameters were correlated with DCE-MRI parameters and immunohistochemical VEGFR2, CD31, Ki-67 and TUNEL stainings. Results CEUS perfusion parameter WiAUC decreased significantly (116,989 ± 77,048 a.u. to 30,076 ± 27,095a.u.; p = 0.005) under therapy with no significant changes (133,932 ± 65,960 a.u. to 84,316 ± 74,144 a.u.; p = 0.093) in the control group. In the therapy group, the amount of bound microbubbles in the late phase was significantly lower in the therapy than in the control group on day 7 (SI8min: 283 ± 191 vs. 802 ± 460 a.u.; p = 0.006); SI10min: 226 ± 149 vs. 645 ± 461 a.u.; p = 0.009). PF and PV decreased significantly (PF: 147 ± 58 mL/100 mL/min to 71 ± 15 mL/100 mL/min; p = 0.003; PV: 13 ± 3% to 9 ± 4%; p = 0.040) in the therapy group. Immunohistochemistry revealed significantly fewer VEGFR2 (7.2 ± 1.8 vs. 17.8 ± 4.6; p < 0.001), CD31 (8.1 ± 3.0 vs

  2. Localized Down-regulation of P-glycoprotein by Focused Ultrasound and Microbubbles induced Blood-Brain Barrier Disruption in Rat Brain

    NASA Astrophysics Data System (ADS)

    Cho, Hongseok; Lee, Hwa-Youn; Han, Mun; Choi, Jong-Ryul; Ahn, Sanghyun; Lee, Taekwan; Chang, Yongmin; Park, Juyoung

    2016-08-01

    Multi-drug resistant efflux transporters found in Blood-Brain Barrier (BBB) acts as a functional barrier, by pumping out most of the drugs into the blood. Previous studies showed focused ultrasound (FUS) induced microbubble oscillation can disrupt the BBB by loosening the tight junctions in the brain endothelial cells; however, no study was performed to investigate its impact on the functional barrier of the BBB. In this study, the BBB in rat brains were disrupted using the MRI guided FUS and microbubbles. The immunofluorescence study evaluated the expression of the P-glycoprotein (P-gp), the most dominant multi-drug resistant protein found in the BBB. Intensity of the P-gp expression at the BBB disruption (BBBD) regions was significantly reduced (63.2 ± 18.4%) compared to the control area. The magnitude of the BBBD and the level of the P-gp down-regulation were significantly correlated. Both the immunofluorescence and histologic analysis at the BBBD regions revealed no apparent damage in the brain endothelial cells. The results demonstrate that the FUS and microbubbles can induce a localized down-regulation of P-gp expression in rat brain. The study suggests a clinically translation of this method to treat neural diseases through targeted delivery of the wide ranges of brain disorder related drugs.

  3. Sonochemotherapy: from bench to bedside

    PubMed Central

    Lammertink, Bart H. A.; Bos, Clemens; Deckers, Roel; Storm, Gert; Moonen, Chrit T. W.; Escoffre, Jean-Michel

    2015-01-01

    The combination of microbubbles and ultrasound has emerged as a promising method for local drug delivery. Microbubbles can be locally activated by a targeted ultrasound beam, which can result in several bio-effects. For drug delivery, microbubble-assisted ultrasound is used to increase vascular- and plasma membrane permeability for facilitating drug extravasation and the cellular uptake of drugs in the treated region, respectively. In the case of drug-loaded microbubbles, these two mechanisms can be combined with local release of the drug following destruction of the microbubble. The use of microbubble-assisted ultrasound to deliver chemotherapeutic agents is also referred to as sonochemotherapy. In this review, the basic principles of sonochemotherapy are discussed, including aspects such as the type of (drug-loaded) microbubbles used, the routes of administration used in vivo, ultrasound devices and parameters, treatment schedules and safety issues. Finally, the clinical translation of sonochemotherapy is discussed, including the first clinical study using sonochemotherapy. PMID:26217226

  4. Lipid-shelled vehicles: engineering for ultrasound molecular imaging and drug delivery.

    PubMed

    Ferrara, Katherine W; Borden, Mark A; Zhang, Hua

    2009-07-21

    Ultrasound pressure waves can map the location of lipid-stabilized gas micro-bubbles after their intravenous administration in the body, facilitating an estimate of vascular density and microvascular flow rate. Microbubbles are currently approved by the Food and Drug Administration as ultrasound contrast agents for visualizing opacification of the left ventricle in echocardiography. However, the interaction of ultrasound waves with intravenously-injected lipid-shelled particles, including both liposomes and microbubbles, is a far richer field. Particles can be designed for molecular imaging and loaded with drugs or genes; the mechanical and thermal properties of ultrasound can then effect localized drug release. In this Account, we provide an overview of the engineering of lipid-shelled microbubbles (typical diameter 1000-10 000 nm) and liposomes (typical diameter 65-120 nm) for ultrasound-based applications in molecular imaging and drug delivery. The chemistries of the shell and core can be optimized to enhance stability, circulation persistence, drug loading and release, targeting to and fusion with the cell membrane, and therapeutic biological effects. To assess the biodistribution and pharmacokinetics of these particles, we incorporated positron emission tomography (PET) radioisotopes on the shell. The radionuclide (18)F (half-life approximately 2 h) was covalently coupled to a dipalmitoyl lipid, followed by integration of the labeled lipid into the shell, facilitating short-term analysis of particle pharmacokinetics and metabolism of the lipid molecule. Alternately, labeling a formed particle with (64)Cu (half-life 12.7 h), after prior covalent incorporation of a copper-chelating moiety onto the lipid shell, permits pharmacokinetic study of particles over several days. Stability and persistence in circulation of both liposomes and microbubbles are enhanced by long acyl chains and a poly(ethylene glycol) coating. Vascular targeting has been demonstrated with

  5. Algal cell disruption using microbubbles to localize ultrasonic energy

    PubMed Central

    Krehbiel, Joel D.; Schideman, Lance C.; King, Daniel A.; Freund, Jonathan B.

    2015-01-01

    Microbubbles were added to an algal solution with the goal of improving cell disruption efficiency and the net energy balance for algal biofuel production. Experimental results showed that disruption increases with increasing peak rarefaction ultrasound pressure over the range studied: 1.90 to 3.07 MPa. Additionally, ultrasound cell disruption increased by up to 58% by adding microbubbles, with peak disruption occurring in the range of 108 microbubbles/ml. The localization of energy in space and time provided by the bubbles improve efficiency: energy requirements for such a process were estimated to be one-fourth of the available heat of combustion of algal biomass and one-fifth of currently used cell disruption methods. This increase in energy efficiency could make microbubble enhanced ultrasound viable for bioenergy applications and is expected to integrate well with current cell harvesting methods based upon dissolved air flotation. PMID:25311188

  6. Enhancement and Passive Acoustic Mapping of Cavitation from Fluorescently Tagged Magnetic Resonance-Visible Magnetic Microbubbles In Vivo.

    PubMed

    Crake, Calum; Owen, Joshua; Smart, Sean; Coviello, Christian; Coussios, Constantin-C; Carlisle, Robert; Stride, Eleanor

    2016-12-01

    Previous work has indicated the potential of magnetically functionalized microbubbles to localize and enhance cavitation activity under focused ultrasound exposure in vitro. The aim of this study was to investigate magnetic targeting of microbubbles for promotion of cavitation in vivo. Fluorescently labelled magnetic microbubbles were administered intravenously in a murine xenograft model. Cavitation was induced using a 0.5-MHz focused ultrasound transducer at peak negative focal pressures of 1.2-2.0 MPa and monitored in real-time using B-mode imaging and passive acoustic mapping. Magnetic targeting was found to increase the amplitude of the cavitation signal by approximately 50% compared with untargeted bubbles. Post-exposure magnetic resonance imaging indicated deposition of magnetic nanoparticles in tumours. Magnetic targeting was similarly associated with increased fluorescence intensity in the tumours after the experiments. These results suggest that magnetic targeting could potentially be used to improve delivery of cavitation-mediated therapy and that passive acoustic mapping could be used for real-time monitoring of this process. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Simultaneous Ultrasound Therapy and Monitoring of Microbubble-Seeded Acoustic Cavitation Using a Single-Element Transducer.

    PubMed

    Heymans, Sophie V; Martindale, Christine F; Suler, Andrej; Pouliopoulos, Antonios N; Dickinson, Robert J; Choi, James J

    2017-08-01

    Ultrasound-driven microbubble (MB) activity is used in therapeutic applications such as blood clot dissolution and targeted drug delivery. The safety and performance of these technologies are linked to the type and distribution of MB activities produced within the targeted area, but controlling and monitoring these activities in vivo and in real time has proven to be difficult. As therapeutic pulses are often milliseconds long, MB monitoring currently requires a separate transducer used in a passive reception mode. Here, we present a simple, inexpensive, integrated setup, in which a focused single-element transducer can perform ultrasound therapy and monitoring simultaneously. MBs were made to flow through a vessel-mimicking tube, placed within the transducer's focus, and were sonicated with therapeutic pulses (peak rarefactional pressure: 75-827 kPa, pulse lengths: [Formula: see text] and 20 ms). The MB-seeded acoustic emissions were captured using the same transducer. The received signals were separated from the therapeutic signal with a hybrid coupler and a high-pass filter. We discriminated the MB-generated cavitation signal from the primary acoustic field and characterized MB behavior in real time. The simplicity and versatility of our circuit could make existing single-element therapeutic transducers also act as cavitation detectors, allowing the production of compact therapeutic systems with real time monitoring capabilities.

  8. Conformal drug delivery and instantaneous monitoring based on an inverse synthesis method at a diagnostic ultrasound platform

    NASA Astrophysics Data System (ADS)

    Xu, Shanshan; Zong, Yujin; Liu, Xiaodong; Lu, Mingzhu; Wan, Mingxi

    2017-03-01

    In this paper, based on a programmable diagnostic ultrasound scanner, a combined approach was proposed, in which a variable-sized focal region wherein the acoustic pressure is above the ultrasound contrast agents (UCA) fragmentation threshold is synthesized by reasonably matching the excitation voltage and the transmit aperture of the linear array at 5MHz, the UCAs' temporal and spatial distribution before and after the microbubbles fragmentation is monitored using the plane-wave transmission and reception at 400Hz and, simultaneously, the broadband noise emission during the microbubbles fragmentation is extracted using the backscattering of focused release bursts (destruction pulse) themselves on the linear array. Then, acquired radio frequency (RF) data are processed to draw parameters which can be correlated with the indicator of broadband noise emission level, namely inertial cavitation dose (ICD) and microbubble fragmentation efficiency, namely decay rate of microbubbles.

  9. Microbubble mediated dual-frequency high intensity focused ultrasound thrombolysis: An In vitro study

    NASA Astrophysics Data System (ADS)

    Suo, Dingjie; Jin, Zhiyang; Jiang, Xiaoning; Dayton, Paul A.; Jing, Yun

    2017-01-01

    High intensity focused ultrasound (HIFU) has recently emerged as a promising alternative approach for thrombolysis. However, the high acoustic energy required by HIFU could elicit thermal damage bioeffects, impeding the clinical translation of this technique. This paper investigates the use of dual-frequency focused ultrasound (DFFU) mediated by microbubbles (MBs) to minimize the acoustic power required for thrombolysis in vitro. It was found that MBs, with sufficient concentration, could significantly lower the power threshold for thrombolysis for both DFFU and single-frequency focused ultrasound (SFFU). In addition, SFFU needs about 96%-156% higher energy to achieve the same thrombolysis efficiency as that of DFFU. The thrombolysis efficiency is also found to increase with the duty cycle. The measured cavitation signals reveal that the enhanced inertial cavitation is likely responsible for the improved thrombolysis under DFFU and MBs.

  10. RGD-Targeted Ultrasound Contrast Agent for Longitudinal Assessment of Hep-2 Tumor Angiogenesis In Vivo.

    PubMed

    Hu, Qiao; Wang, Xiao-Yan; Kang, Li-Ke; Wei, Hai-Ming; Xu, Chun-Mei; Wang, Tao; Wen, Zong-Hua

    2016-01-01

    To prepare arginine-glycine-aspartate (RGD)-targeted ultrasound contrast microbubbles (MBs) and explore the feasibility of their use in assessing dynamic changes in αvβ3 integrin expression in a murine model of tumor angiogenesis. RGD peptides were conjugated to the surfaces of microbubbles via biotin-avidin linkage. Microbubbles bearing RADfK peptides were prepared as controls. The RGD-MBs were characterized using an Accusizer 780 and optical microscopy. The binding specificity of the RGD-MBs for ανβ3-expressing endothelial cells (bEnd.3) was demonstrated in vitro by a competitive inhibition experiment. In an in vivo study, mice bearing tumors of three different stages were intravenously injected with RGD-MBs and subjected to targeted, contrast-enhanced, high-frequency ultrasound. Subsequently, tumors were harvested and sectioned for immunofluorescence analysis of ανβ3 expression. The mean size of the RGD-MBs was 2.36 ± 1.7 μm. The RGD-MBs showed significantly higher adhesion levels to bEnd.3 cells compared to control MBs (P < 0.01). There was rarely binding of RGD-MBs to αvβ3-negative MCF-7 cells. Adhesion of the RGD-MBs to the bEnd.3 cells was significantly inhibited following treatment with anti-alpha(v) antibodies. The quantitative acoustic video intensity for high-frequency, contrast-enhanced ultrasound imaging of subcutaneous human laryngeal carcinoma (Hep-2) tumor xenografts was significantly higher in small tumors (19.89 ± 2.49) than in medium tumors (11.25 ± 2.23) and large tumors (3.38 ± 0.67) (P < 0.01). RGD-MBs enable noninvasive in vivo visualization of changes in tumor angiogenesis during tumor growth in subcutaneous cancer xenografts.

  11. RGD-Targeted Ultrasound Contrast Agent for Longitudinal Assessment of Hep-2 Tumor Angiogenesis In Vivo

    PubMed Central

    Hu, Qiao; Wang, Xiao-Yan; Kang, Li-Ke; Wei, Hai-Ming; Xu, Chun-Mei; Wang, Tao; Wen, Zong-Hua

    2016-01-01

    Objective To prepare arginine-glycine-aspartate (RGD)-targeted ultrasound contrast microbubbles (MBs) and explore the feasibility of their use in assessing dynamic changes in αvβ3 integrin expression in a murine model of tumor angiogenesis. Methods RGD peptides were conjugated to the surfaces of microbubbles via biotin-avidin linkage. Microbubbles bearing RADfK peptides were prepared as controls. The RGD-MBs were characterized using an Accusizer 780 and optical microscopy. The binding specificity of the RGD-MBs for ανβ3-expressing endothelial cells (bEnd.3) was demonstrated in vitro by a competitive inhibition experiment. In an in vivo study, mice bearing tumors of three different stages were intravenously injected with RGD-MBs and subjected to targeted, contrast-enhanced, high-frequency ultrasound. Subsequently, tumors were harvested and sectioned for immunofluorescence analysis of ανβ3 expression. Results The mean size of the RGD-MBs was 2.36 ± 1.7 μm. The RGD-MBs showed significantly higher adhesion levels to bEnd.3 cells compared to control MBs (P < 0.01). There was rarely binding of RGD-MBs to αvβ3-negative MCF-7 cells. Adhesion of the RGD-MBs to the bEnd.3 cells was significantly inhibited following treatment with anti-alpha(v) antibodies. The quantitative acoustic video intensity for high-frequency, contrast-enhanced ultrasound imaging of subcutaneous human laryngeal carcinoma (Hep-2) tumor xenografts was significantly higher in small tumors (19.89 ± 2.49) than in medium tumors (11.25 ± 2.23) and large tumors (3.38 ± 0.67) (P < 0.01). Conclusions RGD-MBs enable noninvasive in vivo visualization of changes in tumor angiogenesis during tumor growth in subcutaneous cancer xenografts. PMID:26862757

  12. [Destruction of synovial pannus of antigen-induced arthritis by ultrasonic cavitation in rabbits].

    PubMed

    Zhang, Ling-yan; Qiu, Li; Wang, Lei; Lin, Ling; Wen, Xiao-rong

    2011-11-01

    To optimize the conditions of ultrasonic irradiation and microbubble of ultrasound cavitation on destruction of synovial pannus of antigen-induced arthritis (AIA) in rabbits. Antigen-induced arthritis was successfully induced on bilateral knee joints of 85 rabbits. Each 10 AIA rabbits were divided into two groups to compare various peak negative pressures, different ultrasonic pulse durations, various pulse repetition frequencies, different irradiance duration, different dosages of microbubble contrast agents, different ultrasonic irradiance times. With intravenous infusion of Sonovue to the rabbits, ultrasonic irradiance was performed on the right knee joint using the above condition of ultrasound cavitation. At the day 1 after ultrasonic irradiance, MRI and pathological examination were employed to evaluate the optimal conditions. The optimal parameters and conditions for ultrasonic irradiance included intermittent ultrasonic application (in 6 s intervals), 0.6 mL/kg of microbubble contrast agent, 4.6 MPa of ultrasonic peak negative pressure, 100 cycles of pulse duration, 50 Hz of pulse repetition frequency, 5 min of ultrasonic duration, 0.6 mL/kg of dosages of microbubble contrast agents and multi-sessional ultrasonic irradiance. After the ultrasonic irradiance, the thickness of right knee synovium measured by MRI was thinner than that of left knee and synovial necrosis was confirmed by the pathological finding. Under optimal ultrasonic irradiation and microbubble conditions, ultrasonic cavitation could destroy synovial pannus of AIA in rabbits.

  13. Vascular applications of contrast-enhanced ultrasound imaging.

    PubMed

    Mehta, Kunal S; Lee, Jake J; Taha, Ashraf G; Avgerinos, Efthymios; Chaer, Rabih A

    2017-07-01

    Contrast-enhanced ultrasound (CEUS) imaging is a powerful noninvasive modality offering numerous potential diagnostic and therapeutic applications in vascular medicine. CEUS imaging uses microbubble contrast agents composed of an encapsulating shell surrounding a gaseous core. These microbubbles act as nearly perfect intravascular reflectors of ultrasound energy and may be used to enhance the overall contrast and quality of ultrasound images. The purpose of this narrative review is to survey the current literature regarding CEUS imaging and discuss its diagnostic and therapeutic roles in current vascular and selected nonvascular applications. The PubMed, MEDLINE, and Embase databases were searched until July 2016 using the PubMed and Ovid Web-based search engines. The search terms used included contrast-enhanced, microbubble, ultrasound, carotid, aneurysm, and arterial. The diagnostic and therapeutic utility of CEUS imaging has grown exponentially, particularly in the realms of extracranial carotid arterial disease, aortic disease, and peripheral arterial disease. Studies have demonstrated that CEUS imaging is diagnostically superior to conventional ultrasound imaging in identifying vessel irregularities and measuring neovascularization to assess plaque vulnerability and end-muscle perfusion. Groups have begun to use microbubbles as agents in therapeutic applications for targeted drug and gene therapy delivery as well as for the enhancement of sonothrombolysis. The emerging technology of microbubbles and CEUS imaging holds considerable promise for cardiovascular medicine and cancer therapy given its diagnostic and therapeutic utility. Overall, with proper training and credentialing of technicians, the clinical implications are innumerable as microbubble technology is rapidly bursting onto the scene of cardiovascular medicine. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  14. Modeling Encapsulated Microbubble Dynamics at High Pressure Amplitudes

    NASA Astrophysics Data System (ADS)

    Heyse, Jan F.; Bose, Sanjeeb; Iaccarino, Gianluca

    2017-11-01

    Encapsulated microbubbles are commonly used in ultrasound contrast imaging and are of growing interest in therapeutic applications where local cavitation creates temporary perforations in cell membranes allowing for enhanced drug delivery. Clinically used microbubbles are encapsulated by a shell commonly consisting of protein, polymer, or phospholipid; the response of these bubbles to externally imposed ultrasound waves is sensitive to the compressibility of the encapsulating shell. Existing models approximate the shell compressibility via an effective surface tension (Marmottant et al. 2005). We present simulations of microbubbles subjected to high amplitude ultrasound waves (on the order of 106 Pa) and compare the results with the experimental measurements of Helfield et al. (2016). Analysis of critical points (corresponding to maximum and minimum expansion) in the governing Rayleigh-Plesset equation is used to make estimates of the parameters used to characterize the effective surface tension of the encapsulating shell. Stanford Graduate Fellowship.

  15. Nonlinear response of ultrasound contrast agent microbubbles: From fundamentals to applications

    NASA Astrophysics Data System (ADS)

    Teng, Xu-Dong; Guo, Xia-Sheng; Tu, Juan; Zhang, Dong

    2016-12-01

    Modelling and biomedical applications of ultrasound contrast agent (UCA) microbubbles have attracted a great deal of attention. In this review, we summarize a series of researches done in our group, including (i) the development of an all-in-one solution of characterizing coated bubble parameters based on the light scattering technique and flow cytometry; (ii) a novel bubble dynamic model that takes into consideration both nonlinear shell elasticity and viscosity to eliminate the dependences of bubble shell parameters on bubble size; (iii) the evaluation of UCA inertial cavitation threshold and its relationship with shell parameters; and (iv) the investigations of transfection efficiency and the reduction of cytotoxicity in gene delivery facilitated by UCAs excited by ultrasound exposures. Projects supported by the National Natural Science Foundation of China (Grant Nos. 81127901, 81227004, 11374155, 11274170, 11274176, 11474001, 11474161, 11474166, and 11674173), the National High-Technology Research and Development Program, China (Grant No. 2012AA022702), and Qing Lan Project of Jiangsu Province, China.

  16. Breast Cancer Detection by B7-H3-Targeted Ultrasound Molecular Imaging.

    PubMed

    Bachawal, Sunitha V; Jensen, Kristin C; Wilson, Katheryne E; Tian, Lu; Lutz, Amelie M; Willmann, Jürgen K

    2015-06-15

    Ultrasound complements mammography as an imaging modality for breast cancer detection, especially in patients with dense breast tissue, but its utility is limited by low diagnostic accuracy. One emerging molecular tool to address this limitation involves contrast-enhanced ultrasound using microbubbles targeted to molecular signatures on tumor neovasculature. In this study, we illustrate how tumor vascular expression of B7-H3 (CD276), a member of the B7 family of ligands for T-cell coregulatory receptors, can be incorporated into an ultrasound method that can distinguish normal, benign, precursor, and malignant breast pathologies for diagnostic purposes. Through an IHC analysis of 248 human breast specimens, we found that vascular expression of B7-H3 was selectively and significantly higher in breast cancer tissues. B7-H3 immunostaining on blood vessels distinguished benign/precursors from malignant lesions with high diagnostic accuracy in human specimens. In a transgenic mouse model of cancer, the B7-H3-targeted ultrasound imaging signal was increased significantly in breast cancer tissues and highly correlated with ex vivo expression levels of B7-H3 on quantitative immunofluorescence. Our findings offer a preclinical proof of concept for the use of B7-H3-targeted ultrasound molecular imaging as a tool to improve the diagnostic accuracy of breast cancer detection in patients. ©2015 American Association for Cancer Research.

  17. Diagnostic Ultrasound Impulses Improve Microvascular Flow in Patients With STEMI Receiving Intravenous Microbubbles.

    PubMed

    Mathias, Wilson; Tsutsui, Jeane M; Tavares, Bruno G; Xie, Feng; Aguiar, Miguel O D; Garcia, Diego R; Oliveira, Mucio T; Soeiro, Alexandre; Nicolau, Jose C; Lemos, Pedro A; Rochitte, Carlos E; Ramires, José A F; Kalil, Roberto; Porter, Thomas R

    2016-05-31

    Pre-clinical trials have demonstrated that, during intravenous microbubble infusion, high mechanical index (HMI) impulses from a diagnostic ultrasound (DUS) transducer might restore epicardial and microvascular flow in acute ST-segment elevation myocardial infarction (STEMI). The purpose of this study was to test the safety and efficacy of this adjunctive approach in humans. From May 2014 through September 2015, patients arriving with their first STEMI were randomized to either DUS intermittent HMI impulses (n = 20) just prior to emergent percutaneous coronary intervention (PCI) and for an additional 30 min post-PCI (HMI + PCI), or low mechanical index (LMI) imaging only (n = 10) for perfusion assessments before and after PCI (LMI + PCI). All studies were conducted during an intravenous perflutren lipid microsphere infusion. A control reference group (n = 70) arrived outside of the time window of ultrasound availability and received emergent PCI alone (PCI only). Initial epicardial recanalization rates prior to emergent PCI and improvements in microvascular flow were compared between ultrasound-treated groups. Median door-to-dilation times were 82 ± 26 min in the LMI + PCI group, 72 ± 15 min in the HMI + PCI group, and 103 ± 42 min in the PCI-only group (p = NS). Angiographic recanalization prior to PCI was seen in 12 of 20 HMI + PCI patients (60%) compared with 10% of LMI + PCI and 23% of PCI-only patients (p = 0.002). There were no differences in microvascular obstructed segments prior to treatment, but there were significantly smaller proportions of obstructed segments in the HMI + PCI group at 1 month (p = 0.001) and significant improvements in left ventricular ejection fraction (p < 0.005). HMI impulses from a diagnostic transducer, combined with a commercial microbubble infusion, can prevent microvascular obstruction and improve functional outcome when added to the contemporary PCI management of acute STEMI. (Therapeutic Use of Ultrasound in

  18. Transfection of neurotrophin-3 into neural stem cells using ultrasound with microbubbles to treat denervated muscle atrophy.

    PubMed

    Gong, Lin; Jiang, Changqing; Liu, Li; Wan, Shengxiang; Tan, Wen; Ma, Sushuang; Jia, Xiaojian; Wang, Meiwei; Hu, Azhen; Shi, Yu; Zhang, Yu; Shen, Yuanyuan; Wang, Feng; Chen, Yun

    2018-01-01

    Neurotrophin-3 (NT-3) has potential as a therapeutic agent for the treatment of patients with denervated muscle atrophy. However, the endogenous secretion of NT-3 is low and exogenous NT-3 lacks sufficient time to accumulate due to its short half-life. The transfection of NT-3 has been demonstrated to have a beneficial effect on denervated muscle and motor endplates. Neural stem cells (NSCs) differentiate into neurons and form motor endplate nerve-muscle connections. It has been previously demonstrated that local and noninvasive transfection can be performed using ultrasound with microbubbles (MBs). In the current study, hematoxylin and eosin, acetylcholinesterase and gold chloride staining, as well as transmission electron microscopy, were performed to verify the effects of this treatment strategy. The results demonstrated that using ultrasound with MBs for the transfection of NT-3 into NSCs, and their subsequent transplantation in vivo , attenuated the atrophy of denervated muscle and reduced motor endplate degeneration. This noninvasive, efficient and targeted treatment strategy may therefore be a potential treatment for patients with denervated muscle atrophy.

  19. Ultra-low-dose Ultrasound Molecular Imaging for the Detection of Angiogenesis in a Mouse Murine Tumor Model: How Little Can We See?

    PubMed Central

    Wang, Shiying; Herbst, Elizabeth B.; Mauldin, F. William; Diakova, Galina B.; Klibanov, Alexander L.; Hossack, John A.

    2016-01-01

    Objectives The objective of this study is to evaluate the minimum microbubble dose for ultrasound molecular imaging to achieve statistically significant detection of angiogenesis in a mouse model. Materials and Methods The pre-burst minus post-burst method was implemented on a Verasonics ultrasound research scanner using a multi-frame compounding pulse inversion imaging sequence. Biotinylated lipid (distearoyl phosphatidylcholine, DSPC-based) microbubbles that were conjugated with anti-vascular endothelial growth factor 2 (VEGFR2) antibody (MBVEGFR2) or isotype control antibody (MBControl) were injected into mice carrying adenocarcinoma xenografts. Different injection doses ranging from 5 × 104 to 1 × 107 microbubbles per mouse were evaluated to determine the minimum diagnostically effective dose. Results The proposed imaging sequence was able to achieve statistically significant detection (p < 0.05, n = 5) of VEGFR2 in tumors with a minimum MBVEGFR2 injection dose of only 5 × 104 microbubbles per mouse (DSPC at 0.053 ng/g mouse body mass). Non-specific adhesion of MBControl at the same injection dose was negligible. Additionally, the targeted contrast ultrasound signal of MBVEGFR2 decreased with lower microbubble doses, while non-specific adhesion of MBControl increased with higher microbubble doses. Conclusions 5 × 104 microbubbles per animal is now the lowest injection dose on record for ultrasound molecular imaging to achieve statistically significant detection of molecular targets in vivo. Findings in this study provide us with further guidance for future developments of clinically translatable ultrasound molecular imaging applications using a lower dose of microbubbles. PMID:27654582

  20. Transcranial functional ultrasound imaging of the brain using microbubble-enhanced ultrasensitive Doppler

    PubMed Central

    Errico, Claudia; Osmanski, Bruno-Félix; Pezet, Sophie; Couture, Olivier; Lenkei, Zsolt; Tanter, Mickael

    2016-01-01

    Functional ultrasound (fUS) is a novel neuroimaging technique, based on high-sensitivity ultrafast Doppler imaging of cerebral blood volume, capable of measuring brain activation and connectivity in rodents with high spatiotemporal resolution (100 μm, 1 ms). However, the skull attenuates acoustic waves, so fUS in rats currently requires craniotomy or a thinned-skull window. Here we propose a non-invasive approach by enhancing the fUS signal with a contrast agent, inert gas microbubbles. Plane-wave illumination of the brain at high frame rate (500 Hz compounded sequence with three tilted plane waves, PRF = 1500Hz with a 128 element 15 MHz linear transducer), yields highly-resolved neurovascular maps. We compared fUS imaging performance through the intact skull bone (transcranial fUS) versus a thinned-skull window in the same animal. First, we show that the vascular network of the adult rat brain can be imaged transcranially only after a bolus intravenous injection of microbubbles, which leads to a 9 dB gain in the contrast-to-tissue ratio. Next, we demonstrate that functional increase in the blood volume of the primary sensory cortex after targeted electrical-evoked stimulations of the sciatic nerve is observable transcranially in presence of contrast agents, with high reproducibility (Pearson's coefficient ρ = 0.7 ± 0.1, p = 0.85). Our work demonstrates that the combination of ultrafast Doppler imaging and injection of contrast agent allows non-invasive functional brain imaging through the intact skull bone in rats. These results should ease non-invasive longitudinal studies in rodents and open a promising perspective for the adoption of highly resolved fUS approaches for the adult human brain. PMID:26416649

  1. On-chip generation of microbubbles as a practical technology for manufacturing contrast agents for ultrasonic imaging

    PubMed Central

    Hettiarachchi, Kanaka; Talu, Esra; Longo, Marjorie L.; Dayton, Paul A.; Lee, Abraham P.

    2007-01-01

    This paper presents a new manufacturing method to generate monodisperse microbubble contrast agents with polydispersity index (σ) values of <2% through microfluidic flow-focusing. Micron-sized lipid shell-based perfluorocarbon (PFC) gas microbubbles for use as ultrasound contrast agents were produced using this method. The poly(dimethylsiloxane) (PDMS)-based devices feature expanding nozzle geometry with a 7 μm orifice width, and are robust enough for consistent production of microbubbles with runtimes lasting several hours. With high-speed imaging, we characterized relationships between channel geometry, liquid flow rate Q, and gas pressure P in controlling bubble sizes. By a simple optimization of the channel geometry and Q and P, bubbles with a mean diameter of <5 μm can be obtained, ideal for various ultrasonic imaging applications. This method demonstrates the potential of microfluidics as an efficient means for custom-designing ultrasound contrast agents with precise size distributions, different gas compositions and new shell materials for stabilization, and for future targeted imaging and therapeutic applications. PMID:17389962

  2. Low-amplitude non-linear volume vibrations of single microbubbles measured with an "acoustical camera".

    PubMed

    Renaud, Guillaume; Bosch, Johan G; Van Der Steen, Antonius F W; De Jong, Nico

    2014-06-01

    Contrast-enhanced ultrasound imaging is based on the detection of non-linear vibrational responses of a contrast agent after its intravenous administration. Improving contrast-enhanced images requires an accurate understanding of the vibrational response to ultrasound of the lipid-coated gas microbubbles that constitute most ultrasound contrast agents. Variations in the volume of microbubbles provide the most efficient radiation of ultrasound and, therefore, are the most important bubble vibrations for medical diagnostic ultrasound imaging. We developed an "acoustical camera" that measures the dynamic volume change of individual microbubbles when excited by a pressure wave. In the work described here, the technique was applied to the characterization of low-amplitude non-linear behaviors of BR14 microbubbles (Bracco Research, Geneva, Switzerland). The amplitude dependence of the resonance frequency and the damping, the prevalence of efficient subharmonic and ultraharmonic vibrations and the amplitude dependence of the response at the fundamental frequency and at the second harmonic frequency were investigated. Because of the large number of measurements, we provide a statistical characterization of the low-amplitude non-linear properties of the contrast agent. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  3. Temporal effect of inertial cavitation with and without microbubbles on surface deformation of agarose S gel in the presence of 1-MHz focused ultrasound.

    PubMed

    Tomita, Y; Matsuura, T; Kodama, T

    2015-01-01

    Sonoporation has the potential to deliver extraneous molecules into a target tissue non-invasively. There have been numerous investigations of cell membrane permeabilization induced by microbubbles, but very few studies have been carried out to investigate sonoporation by inertial cavitation, especially from a temporal perspective. In the present paper, we show the temporal variations in nano/micro-pit formations following the collapse of inertial cavitation bubbles, with and without Sonazoid® microbubbles. Using agarose S gel as a target material, erosion experiments were conducted in the presence of 1-MHz focused ultrasound applied for various exposure times, Tex (0.002-60 s). Conventional microscopy was used to measure temporal variations in micrometer-scale pit numbers, and atomic force microscopy utilized to detect surface roughness on a nanometer scale. The results demonstrated that nanometer-scale erosion was predominantly caused by Sonazoid® microbubbles and C4F10 gas bubbles for 0.002 s

  4. Dynamic Behavior of Microbubbles during Long Ultrasound Tone-Burst Excitation: Mechanistic Insights into Ultrasound-Microbubble Mediated Therapeutics Using High-Speed Imaging and Cavitation Detection.

    PubMed

    Chen, Xucai; Wang, Jianjun; Pacella, John J; Villanueva, Flordeliza S

    2016-02-01

    Ultrasound (US)-microbubble (MB)-mediated therapies have been found to restore perfusion and enhance drug/gene delivery. On the presumption that MBs do not persist during long US exposure under high acoustic pressures, most schemes use short US pulses when a high US pressure is employed. However, we recently observed an enhanced thrombolytic effect using long US pulses at high acoustic pressures. Therefore, we explored the fate of MBs during long tone-burst exposures (5 ms) at various acoustic pressures and MB concentrations via direct high-speed optical observation and passive cavitation detection. MBs first underwent stable or inertial cavitation depending on the acoustic pressure and then formed gas-filled clusters that continued to oscillate, break up and form new clusters. Cavitation detection confirmed continued, albeit diminishing, acoustic activity throughout the 5-ms US excitation. These data suggest that persisting cavitation activity during long tone bursts may confer additional therapeutic effects. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  5. Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets.

    PubMed

    Chen, Cherry C; Sheeran, Paul S; Wu, Shih-Ying; Olumolade, Oluyemi O; Dayton, Paul A; Konofagou, Elisa E

    2013-12-28

    Focused ultrasound (FUS) in the presence of systemically administered microbubbles has been shown to locally, transiently and reversibly increase the permeability of the blood-brain barrier (BBB), thus allowing targeted delivery of therapeutic agents in the brain for the treatment of central nervous system diseases. Currently, microbubbles are the only agents that have been used to facilitate the FUS-induced BBB opening. However, they are constrained within the intravascular space due to their micron-size diameters, limiting the delivery effect at or near the microvessels. In the present study, acoustically-activated nanodroplets were used as a new class of contrast agents to mediate FUS-induced BBB opening in order to study the feasibility of utilizing these nanoscale phase-shift particles for targeted drug delivery in the brain. Significant dextran delivery was achieved in the mouse hippocampus using nanodroplets at clinically relevant pressures. Passive cavitation detection was used in the attempt to establish a correlation between the amount of dextran delivered in the brain and the acoustic emission recorded during sonication. Conventional microbubbles with the same lipid shell composition and perfluorobutane core as the nanodroplets were also used to compare the efficiency of an FUS-induced dextran delivery. It was found that nanodroplets had a higher BBB opening pressure threshold but a lower stable cavitation threshold than microbubbles, suggesting that contrast agent-dependent acoustic emission monitoring was needed. A more homogeneous dextran delivery within the targeted hippocampus was achieved using nanodroplets without inducing inertial cavitation or compromising safety. Our results offered a new means of developing the FUS-induced BBB opening technology for potential extravascular targeted drug delivery in the brain, extending the potential drug delivery region beyond the cerebral vasculature. © 2013.

  6. Acoustical properties of individual liposome-loaded microbubbles.

    PubMed

    Luan, Ying; Faez, Telli; Gelderblom, Erik; Skachkov, Ilya; Geers, Bart; Lentacker, Ine; van der Steen, Ton; Versluis, Michel; de Jong, Nico

    2012-12-01

    A comparison between phospholipid-coated microbubbles with and without liposomes attached to the microbubble surface was performed using the ultra-high-speed imaging camera (Brandaris 128). We investigated 73 liposome-loaded microbubbles (loaded microbubbles) and 41 microbubbles without liposome loading (unloaded microbubbles) with a diameter ranging from 3-10 μm at frequencies ranging from 0.6-3.8 MHz and acoustic pressures ranging from 5-100 kPa. The experimental data showed nearly the same shell elasticity for the loaded and unloaded bubbles, but the shell viscosity was higher for loaded bubbles compared with unloaded bubbles. For loaded bubbles, a higher pressure threshold for the bubble vibrations was noticed. In addition, an "expansion-only" behavior was observed for up to 69% of the investigated loaded bubbles, which mostly occurred at low acoustic pressures (≤30 kPa). Finally, fluorescence imaging showed heterogeneity of liposome distributions of the loaded bubbles. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  7. A multi-frequency sparse hemispherical ultrasound phased array for microbubble-mediated transcranial therapy and simultaneous cavitation mapping

    NASA Astrophysics Data System (ADS)

    Deng, Lulu; O'Reilly, Meaghan A.; Jones, Ryan M.; An, Ran; Hynynen, Kullervo

    2016-12-01

    Focused ultrasound (FUS) phased arrays show promise for non-invasive brain therapy. However, the majority of them are limited to a single transmit/receive frequency and therefore lack the versatility to expose and monitor the treatment volume. Multi-frequency arrays could offer variable transmit focal sizes under a fixed aperture, and detect different spectral content on receive for imaging purposes. Here, a three-frequency (306, 612, and 1224 kHz) sparse hemispherical ultrasound phased array (31.8 cm aperture; 128 transducer modules) was constructed and evaluated for microbubble-mediated transcranial therapy and simultaneous cavitation mapping. The array is able to perform effective electronic beam steering over a volume spanning (-40, 40) and (-30, 50) mm in the lateral and axial directions, respectively. The focal size at the geometric center is approximately 0.9 (2.1) mm, 1.7 (3.9) mm, and 3.1 (6.5) mm in lateral (axial) pressure full width at half maximum (FWHM) at 1224, 612, and 306 kHz, respectively. The array was also found capable of dual-frequency excitation and simultaneous multi-foci sonication, which enables the future exploration of more complex exposure strategies. Passive acoustic mapping of dilute microbubble clouds demonstrated that the point spread function of the receive array has a lateral (axial) intensity FWHM between 0.8-3.5 mm (1.7-11.7 mm) over a volume spanning (-25, 25) mm in both the lateral and axial directions, depending on the transmit/receive frequency combination and the imaging location. The device enabled both half and second harmonic imaging through the intact skull, which may be useful for improving the contrast-to-tissue ratio or imaging resolution, respectively. Preliminary in vivo experiments demonstrated the system’s ability to induce blood-brain barrier opening and simultaneously spatially map microbubble cavitation activity in a rat model. This work presents a tool to investigate optimal strategies for non

  8. A multi-frequency sparse hemispherical ultrasound phased array for microbubble-mediated transcranial therapy and simultaneous cavitation mapping

    PubMed Central

    Deng, Lulu; O'Reilly, Meaghan A.; Jones, Ryan M.; An, Ran; Hynynen, Kullervo

    2016-01-01

    Focused ultrasound (FUS) phased arrays show promise for non-invasive brain therapy. However, the majority of them are limited to a single transmit/receive frequency and therefore lack the versatility to expose and monitor the treatment volume. Multi-frequency arrays could offer variable transmit focal sizes under a fixed aperture, and detect different spectral content on receive for imaging purposes. Here, a three-frequency (306, 612 and 1224 kHz) sparse hemispherical ultrasound phased array (31.8 cm aperture; 128 transducer modules) was constructed and evaluated for microbubble-mediated transcranial therapy and simultaneous cavitation mapping. The array is able to perform effective electronic beam steering over a volume spanning [−40, 40] and [−30, 50] mm in the lateral and axial directions, respectively. The focal size at the geometric center is approximately 0.9 (2.1) mm, 1.7 (3.9) mm, and 3.1 (6.5) mm in lateral (axial) pressure full width at half maximum (FWHM) at 1224, 612, and 306 kHz, respectively. The array was also found capable of dual-frequency excitation and simultaneous multi–foci sonication, which enables the future exploration of more complex exposure strategies. Passive acoustic mapping of dilute microbubble clouds demonstrated that the point spread function of the receive array has a lateral (axial) intensity FWHM between 0.8-3.5 mm (1.7-11.7 mm) over a volume spanning [−25, 25] mm in both the lateral and axial directions, depending on the transmit/receive frequency combination and the imaging location. The device enabled both half and second harmonic imaging through the intact skull, which may be useful for improving the contrast-to-tissue ratio or imaging resolution, respectively. Preliminary in-vivo experiments demonstrated the system's ability to induce blood-brain barrier opening and simultaneously spatially map microbubble cavitation activity in a rat model. This work presents a tool to investigate optimal strategies for non

  9. A multi-frequency sparse hemispherical ultrasound phased array for microbubble-mediated transcranial therapy and simultaneous cavitation mapping.

    PubMed

    Deng, Lulu; O'Reilly, Meaghan A; Jones, Ryan M; An, Ran; Hynynen, Kullervo

    2016-12-21

    Focused ultrasound (FUS) phased arrays show promise for non-invasive brain therapy. However, the majority of them are limited to a single transmit/receive frequency and therefore lack the versatility to expose and monitor the treatment volume. Multi-frequency arrays could offer variable transmit focal sizes under a fixed aperture, and detect different spectral content on receive for imaging purposes. Here, a three-frequency (306, 612, and 1224 kHz) sparse hemispherical ultrasound phased array (31.8 cm aperture; 128 transducer modules) was constructed and evaluated for microbubble-mediated transcranial therapy and simultaneous cavitation mapping. The array is able to perform effective electronic beam steering over a volume spanning (-40, 40) and (-30, 50) mm in the lateral and axial directions, respectively. The focal size at the geometric center is approximately 0.9 (2.1) mm, 1.7 (3.9) mm, and 3.1 (6.5) mm in lateral (axial) pressure full width at half maximum (FWHM) at 1224, 612, and 306 kHz, respectively. The array was also found capable of dual-frequency excitation and simultaneous multi-foci sonication, which enables the future exploration of more complex exposure strategies. Passive acoustic mapping of dilute microbubble clouds demonstrated that the point spread function of the receive array has a lateral (axial) intensity FWHM between 0.8-3.5 mm (1.7-11.7 mm) over a volume spanning (-25, 25) mm in both the lateral and axial directions, depending on the transmit/receive frequency combination and the imaging location. The device enabled both half and second harmonic imaging through the intact skull, which may be useful for improving the contrast-to-tissue ratio or imaging resolution, respectively. Preliminary in vivo experiments demonstrated the system's ability to induce blood-brain barrier opening and simultaneously spatially map microbubble cavitation activity in a rat model. This work presents a tool to investigate optimal strategies for non

  10. Blood-brain barrier disruption and vascular damage induced by ultrasound bursts combined with microbubbles can be influenced by choice of anesthesia protocol.

    PubMed

    McDannold, Nathan; Zhang, Yongzhi; Vykhodtseva, Natalia

    2011-08-01

    Numerous animal studies have demonstrated that ultrasound bursts combined with a microbubble-based ultrasound contrast agent can temporarily disrupt the blood-brain barrier (BBB) with little or no other apparent effects to the brain. As the BBB is a primary limitation to the use of most drugs in the brain, this method could enable a noninvasive means for targeted drug delivery in the brain. This work investigated whether BBB disruption and vessel damage when overexposure occurs can be influenced by choice of anesthesia protocol, which have different vasoactive effects. Four locations were sonicated transcranially in each brain of 16 rats using an unfocused 532 kHz piston transducer. Burst sonications (10 ms bursts applied at 1 Hz for 60 s) were combined with intravenous Definity (10 μl/kg) injections. BBB disruption was evaluated using contrast-enhanced MRI. Half of the animals were anesthetized with i.p. ketamine and xylazine, and the other half with inhaled isoflurane and oxygen. Over the range of exposure levels tested, MRI contrast enhancement was significantly higher (p < 0.05) for animals anesthetized with ketamine/xylazine. Furthermore, the threshold for extensive erythrocyte extravasation was lower with ketamine/xylazine. These results suggest that BBB disruption and/or vascular damage can be affected by vascular or other factors that are influenced by different anesthesia protocol. These experiments may also have been influenced by the recently reported findings that the circulation time for perfluorocarbon microbubbles is substantially reduced when oxygen is used as the carrier gas. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. Noninvasive and Targeted Drug Delivery to the Brain Using Focused Ultrasound

    PubMed Central

    2013-01-01

    Brain diseases are notoriously difficult to treat due to the presence of the blood-brain barrier (BBB). Here, we review the development of focused ultrasound (FUS) as a noninvasive method for BBB disruption, aiding in drug delivery to the brain. FUS can be applied through the skull to a targeted region in the brain. When combined with microbubbles, FUS causes localized and reversible disruption of the BBB. The cellular mechanisms of BBB disruption are presented. Several therapeutic agents have been delivered to the brain resulting in significant improvements in pathology in models of glioblastoma and Alzheimer’s disease. The requirements for clinical translation of FUS will be discussed. PMID:23379618

  12. Comparison of microbubble presence in the right heart during mechanochemical and radiofrequency ablation for varicose veins.

    PubMed

    Moon, K H; Dharmarajah, B; Bootun, R; Lim, C S; Lane, Tra; Moore, H M; Sritharan, K; Davies, A H

    2017-07-01

    Objective Mechanochemical ablation is a novel technique for ablation of varicose veins utilising a rotating catheter and liquid sclerosant. Mechanochemical ablation and radiofrequency ablation have no reported neurological side-effect but the rotating mechanism of mechanochemical ablation may produce microbubbles. Air emboli have been implicated as a cause of cerebrovascular events during ultrasound-guided foam sclerotherapy and microbubbles in the heart during ultrasound-guided foam sclerotherapy have been demonstrated. This study investigated the presence of microbubbles in the right heart during varicose vein ablation by mechanochemical abaltion and radiofrequency abaltion. Methods Patients undergoing great saphenous vein ablation by mechanochemical abaltion or radiofrequency ablation were recruited. During the ablative procedure, the presence of microbubbles was assessed using transthoracic echocardiogram. Offline blinded image quantification was performed using International Consensus Criteria grading guidelines. Results From 32 recruited patients, 28 data sets were analysed. Eleven underwent mechanochemical abaltion and 17 underwent radiofrequency abaltion. There were no neurological complications. In total, 39% (11/28) of patients had grade 1 or 2 microbubbles detected. Thirty-six percent (4/11) of mechanochemical abaltion patients and 29% (5/17) of radiofrequency ablation patients had microbubbles with no significant difference between the groups ( p=0.8065). Conclusion A comparable prevalence of microbubbles between mechanochemical abaltion and radiofrequency ablation both of which are lower than that previously reported for ultrasound-guided foam sclerotherapy suggests that mechanochemical abaltion may not confer the same risk of neurological events as ultrasound-guided foam sclerotherapy for treatment of varicose veins.

  13. Microbubble responses to a similar mechanical index with different real-time perfusion imaging techniques.

    PubMed

    Porter, Thomas R; Oberdorfer, Joseph; Rafter, Patrick; Lof, John; Xie, Feng

    2003-08-01

    The purpose of this study was to determine differences in contrast enhancement and microbubble destruction rates with current commercially available low-mechanical index (MI) real-time perfusion imaging modalities. A tissue-mimicking phantom was developed that had vessels at 3 cm (near field) and 9 cm (far field) from a real-time transducer. Perfluorocarbon-exposed sonicated dextrose albumin microbubbles (PESDA) were injected proximal to a mixing chamber, and then passed through these vessels while the region was insonified with either pulses of alternating polarity with pulse inversion Doppler (PID) or pulses of alternating amplitude by power modulation (PM) at MIs of 0.1, 0.2 and 0.3. Effluent microbubble concentration, contrast intensity and the slope of digital contrast intensity vs. time were measured. Our results demonstrated that microbubble destruction already occurs with PID at an MI of 0.1. Contrast intensity seen with PID was less than with PM. Therefore, differences in contrast enhancement and microbubble destruction rates occur at a similar MI setting when using different real-time pulse sequence schemes.

  14. Microbubble Sizing and Shell Characterization Using Flow Cytometry

    PubMed Central

    Tu, Juan; Swalwell, Jarred E.; Giraud, David; Cui, Weicheng; Chen, Weizhong; Matula, Thomas J.

    2015-01-01

    Experiments were performed to size, count, and obtain shell parameters for individual ultrasound contrast microbubbles using a modified flow cytometer. Light scattering was modeled using Mie theory, and applied to calibration beads to calibrate the system. The size distribution and population were measured directly from the flow cytometer. The shell parameters (shear modulus and shear viscosity) were quantified at different acoustic pressures (from 95 to 333 kPa) by fitting microbubble response data to a bubble dynamics model. The size distribution of the contrast agent microbubbles is consistent with manufacturer specifications. The shell shear viscosity increases with increasing equilibrium microbubble size, and decreases with increasing shear rate. The observed trends are independent of driving pressure amplitude. The shell elasticity does not vary with microbubble size. The results suggest that a modified flow cytometer can be an effective tool to characterize the physical properties of microbubbles, including size distribution, population, and shell parameters. PMID:21622051

  15. Experiment on the factors for enhancing the susceptibility of cancer cells to chemotherapeutic drug by ultrasound microbubbles.

    PubMed

    Zhao, Ying-Zheng; Gao, Hui-Sheng; Zhou, Zhi-Cai; Tang, Qin-Qin; Lu, Cui-Tao; Jin, Zhuo; Tian, Ji-Lai; Xu, Yan-Yan; Tian, Xin-Qiao; Wang, Lee; Kong, Fan-Lei; Li, Xiao-Kun; Huang, Pin-Tong; He, Hui-Liao; Wu, Yan

    2010-07-01

    The objective of this study was to investigate the factors for enhancing the susceptibility of cancer cells to chemotherapeutic drug by ultrasound microbubbles. Ultrasound (US) combined with phospholipid-based microbubbles (MB) was used to enhance the susceptibility of colon cancer cell line SWD-620 to anticancer drugs Topotecan hydrochloride (TOP). Experiments were designed to investigate the influence of main factors on cell viability and cell inhibition, such as US intensity, MB concentration, drug combination with MB, asynchronous action between US triggered cavitation and drug entering cell, MB particle size. US exposure for 10 sec with US probe power at 0.6 W/cm(2) had satisfied cell viability. Treated with US combined with 15% MB, cell viability maintained more than 85% and cell inhibition 86.16%. Under optimal US combined with MB, TOP showed much higher cell inhibition than that of only TOP group. Cell inhibition under short delayed time (<2 h) for TOP addition did not show obvious difference. In terms of MB particle size, the order of cell inhibition was: Mixture > Micron bubble part > Nanometer bubble part. US combined with MB can enhance the susceptibility of cancer cells to chemotherapeutic drug, which may provide a potential method for US-mediated tumor chemotherapy.

  16. Blood-Brain Barrier Opening in Behaving Non-Human Primates via Focused Ultrasound with Systemically Administered Microbubbles

    NASA Astrophysics Data System (ADS)

    Downs, Matthew E.; Buch, Amanda; Karakatsani, Maria Eleni; Konofagou, Elisa E.; Ferrera, Vincent P.

    2015-10-01

    Over the past fifteen years, focused ultrasound coupled with intravenously administered microbubbles (FUS) has been proven an effective, non-invasive technique to open the blood-brain barrier (BBB) in vivo. Here we show that FUS can safely and effectively open the BBB at the basal ganglia and thalamus in alert non-human primates (NHP) while they perform a behavioral task. The BBB was successfully opened in 89% of cases at the targeted brain regions of alert NHP with an average volume of opening 28% larger than prior anesthetized FUS procedures. Safety (lack of edema or microhemorrhage) of FUS was also improved during alert compared to anesthetized procedures. No physiological effects (change in heart rate, motor evoked potentials) were observed during any of the procedures. Furthermore, the application of FUS did not disrupt reaching behavior, but in fact improved performance by decreasing reaction times by 23 ms, and significantly decreasing touch error by 0.76 mm on average.

  17. Phase-shift perfluorocarbon agents enhance high intensity focused ultrasound thermal delivery with reduced near-field heating

    PubMed Central

    Phillips, Linsey C.; Puett, Connor; Sheeran, Paul S.; Dayton, Paul A.; Wilson Miller, G.; Matsunaga, Terry O.

    2013-01-01

    Ultrasound contrast agents are known to enhance high intensity focused ultrasound (HIFU) ablation, but these perfluorocarbon microbubbles are limited to the vasculature, have a short half-life in vivo, and may result in unintended heating away from the target site. Herein, a nano-sized (100–300 nm), dual perfluorocarbon (decafluorobutane/dodecafluoropentane) droplet that is stable, is sufficiently small to extravasate, and is convertible to micron-sized bubbles upon acoustic activation was investigated. Microbubbles and nanodroplets were incorporated into tissue-mimicking acrylamide-albumin phantoms. Microbubbles or nanodroplets at 0.1 × 106 per cm3 resulted in mean lesion volumes of 80.4 ± 33.1 mm3 and 52.8 ± 14.2 mm3 (mean ± s.e.), respectively, after 20 s of continuous 1 MHz HIFU at a peak negative pressure of 4 MPa, compared to a lesion volume of 1.0 ± 0.8 mm3 in agent-free control phantoms. Magnetic resonance thermometry mapping during HIFU confirmed undesired surface heating in phantoms containing microbubbles, whereas heating occurred at the acoustic focus of phantoms containing the nanodroplets. Maximal change in temperature at the target site was enhanced by 16.9% and 37.0% by microbubbles and nanodroplets, respectively. This perfluorocarbon nanodroplet has the potential to reduce the time to ablate tumors by one-third during focused ultrasound surgery while also safely enhancing thermal deposition at the target site. PMID:23927187

  18. Low-Energy Ultrasound Treatment Improves Regional Tumor Vessel Infarction by Retargeted Tissue Factor.

    PubMed

    Brand, Caroline; Dencks, Stefanie; Schmitz, Georg; Mühlmeister, Mareike; Stypmann, Jörg; Ross, Rebecca; Hintelmann, Heike; Schliemann, Christoph; Müller-Tidow, Carsten; Mesters, Rolf M; Berdel, Wolfgang E; Schwöppe, Christian

    2015-07-01

    To enhance the regional antitumor activity of the vascular-targeting agent truncated tissue factor (tTF)-NGR by combining the therapy with low-energy ultrasound (US) treatment. For the in vitro US exposure of human umbilical vein endothelial cells (HUVECs), cells were put in the focus of a US transducer. For analysis of the US-induced phosphatidylserine (PS) surface concentration on HUVECs, flow cytometry was used. To demonstrate the differences in the procoagulatory efficacy of TF-derivative tTF-NGR on binding to HUVECs with a low versus high surface concentration of PS, we performed factor X activation assays. For low-energy US pretreatment, HT1080 fibrosarcoma xenotransplant-bearing nude mice were treated by tumor-regional US-mediated stimulation (ie, destruction) of microbubbles. The therapy cohorts received the tumor vessel-infarcting tTF-NGR protein with or without US pretreatment (5 minutes after US stimulation via intraperitoneal injection on 3 consecutive days). Combination therapy experiments with xenotransplant-bearing nude mice significantly increased the antitumor activity of tTF-NGR by regional low-energy US destruction of vascular microbubbles in tumor vessels shortly before application of tTF-NGR (P < .05). Mechanistic studies proved the upregulation of anionic PS on the outer leaflet of the lipid bilayer of endothelial cell membranes by low-energy US and a consecutive higher potential of these preapoptotic endothelial cells to activate coagulation via tTF-NGR and coagulation factor X as being a basis for this synergistic activity. Combining retargeted tTF to tumor vessels with proapoptotic stimuli for the tumor vascular endothelium increases the antitumor effects of tumor vascular infarction. Ultrasound treatment may thus be useful in this respect for regional tumor therapy. © 2015 by the American Institute of Ultrasound in Medicine.

  19. Fabricating multifunctional microbubbles and nanobubbles for concurrent ultrasound and photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Qin, Ruogu; Xu, Jeff; Xu, Ronald; Kim, Chulhong; Wang, Lihong V.

    2010-02-01

    Background: Clinical ultrasound (US) uses ultrasonic scattering contrast to characterize subcutaneous anatomic structures. Photoacoustic (PA) imaging detects the functional properties of thick biological tissue with high optical contrast. In the case of image-guided cancer ablation therapy, simultaneous US and PA imaging can be useful for intraoperative assessment of tumor boundaries and ablation margins. In this regard, accurate co-registration between imaging modalities and high sensitivity to cancer cells are important. Methods: We synthesized poly-lactic-co-glycolic acid (PLGA) microbubbles (MBs) and nanobubbles (NBs) encapsulating India ink or indocyanine green (ICG). Multiple tumor simulators were fabricated by entrapping ink MBs or NBs at various concentrations in gelatin phantoms for simultaneous US and PA imaging. MBs and NBs were also conjugated with CC49 antibody to target TAG-72, a human glycoprotein complex expressed in many epithelial-derived cancers. Results: Accurate co-registration and intensity correlation were observed in US and PA images of MB and NB tumor simulators. MBs and NBs conjugating with CC49 effectively bound with over-expressed TAG-72 in LS174T colon cancer cell cultures. ICG was also encapsulated in MBs and NBs for the potential to integrate US, PA, and fluorescence imaging. Conclusions: Multifunctional MBs and NBs can be potentially used as a general contrast agent for multimodal intraoperative imaging of tumor boundaries and therapeutic margins.

  20. Ultrasound induced cancer immunotherapy.

    PubMed

    Unga, Johan; Hashida, Mitsuru

    2014-06-01

    Recently, the use of ultrasound (US) has been shown to have potential in cancer immunotherapy. High intensity focused US destruction of tumors may lead to immunity forming in situ in the body by immune cells being exposed to the tumor debris and immune stimulatory substances that are present in the tumor remains. Another way of achieving anti-cancer immune responses is by using US in combination with microbubbles and nanobubbles to deliver genes and antigens into cells. US leads to bubble destruction and the forces released to direct delivery of the substances into the cytoplasm of the cells thus circumventing the natural barriers. In this way tumor antigens and antigen-encoding genes can be delivered to immune cells and immune response stimulating genes can be delivered to cancer cells thus enhancing immune responses. Combination of bubbles with cell-targeting ligands and US provides an even more sophisticated delivery system whereby the therapy is not only site specific but also cell specific. In this review we describe how US has been used to achieve immunity and discuss the potential and possible obstacles in future development. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. An algorithm for sensing venous oxygenation using ultrasound-modulated light enhanced by microbubbles

    NASA Astrophysics Data System (ADS)

    Honeysett, Jack E.; Stride, Eleanor; Deng, Jing; Leung, Terence S.

    2012-02-01

    Near-infrared spectroscopy (NIRS) can provide an estimate of the mean oxygen saturation in tissue. This technique is limited by optical scattering, which reduces the spatial resolution of the measurement, and by absorption, which makes the measurement insensitive to oxygenation changes in larger deep blood vessels relative to that in the superficial tissue. Acousto-optic (AO) techniques which combine focused ultrasound (US) with diffuse light have been shown to improve the spatial resolution as a result of US-modulation of the light signal, however this technique still suffers from low signal-to-noise when detecting a signal from regions of high optical absorption. Combining an US contrast agent with this hybrid technique has been proposed to amplify an AO signal. Microbubbles are a clinical contrast agent used in diagnostic US for their ability to resonate in a sound field: in this work we also make use of their optical scattering properties (modelled using Mie theory). A perturbation Monte Carlo (pMC) model of light transport in a highly absorbing blood vessel containing microbubbles surrounded by tissue is used to calculate the AO signal detected on the top surface of the tissue. An algorithm based on the modified Beer-Lambert law is derived which expresses intravenous oxygen saturation in terms of an AO signal. This is used to determine the oxygen saturation in the blood vessel from a dual wavelength microbubble-contrast AO measurement. Applying this algorithm to the simulation data shows that the venous oxygen saturation is accurately recovered, and this measurement is robust to changes in the oxygenation of the superficial tissue layer.

  2. Temporary disruption of the blood-brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in rhesus macaques.

    PubMed

    McDannold, Nathan; Arvanitis, Costas D; Vykhodtseva, Natalia; Livingstone, Margaret S

    2012-07-15

    The blood-brain barrier (BBB) prevents entry of most drugs into the brain and is a major hurdle to the use of drugs for brain tumors and other central nervous system disorders. Work in small animals has shown that ultrasound combined with an intravenously circulating microbubble agent can temporarily permeabilize the BBB. Here, we evaluated whether this targeted drug delivery method can be applied safely, reliably, and in a controlled manner on rhesus macaques using a focused ultrasound system. We identified a clear safety window during which BBB disruption could be produced without evident tissue damage, and the acoustic pressure amplitude where the probability for BBB disruption was 50% and was found to be half of the value that would produce tissue damage. Acoustic emission measurements seem promising for predicting BBB disruption and damage. In addition, we conducted repeated BBB disruption to central visual field targets over several weeks in animals trained to conduct complex visual acuity tasks. All animals recovered from each session without behavioral deficits, visual deficits, or loss in visual acuity. Together, our findings show that BBB disruption can be reliably and repeatedly produced without evident histologic or functional damage in a clinically relevant animal model using a clinical device. These results therefore support clinical testing of this noninvasive-targeted drug delivery method.

  3. The influence of distance between microbubbles on the fluid flow produced during ultrasound exposure

    PubMed Central

    Schutt, Carolyn E.; Ibsen, Stuart D.; Thrift, William; Esener, Sadik C.

    2014-01-01

    The collapse dynamics of lipid monolayer-coated microbubbles in the clinically-relevant size range under 6 μm in diameter have not been studied directly due to their small size obscuring the collapse visualization. This study investigates the influence of inter-microbubble distance on the shape of lipid debris clouds created by the collapse of the microbubble destroying the microbubble lipid monolayer. The shape was highly influenced by the fluid motion that occurred as the microbubbles collapsed. It was observed that at inter-microbubble distances smaller than 37 μm the microbubbles began to interact with one another resulting in distorted and ellipsoid-shaped debris clouds. At inter-microbubble distances less than 10 μm, significantly elongated debris clouds were observed that extended out from the original microbubble location in a single direction. These distortions show a significant distance-dependent interaction between microbubbles. It was observed that microbubbles in physical contact with one another behaved in the same manner as separate microbubbles less than 10 μm apart creating significantly elongated debris clouds. It can be hypothesized that small inter-microbubble distances influence the microbubble to collapse asymmetrically resulting in the creation of fluid jets that contribute to the formation of debris fields that are elongated in a single direction. PMID:25480086

  4. Microbubble Cavitation Imaging

    PubMed Central

    Vignon, Francois; Shi, William T.; Powers, Jeffry E.; Everbach, E. Carr; Liu, Jinjin; Gao, Shunji; Xie, Feng; Porter, Thomas R.

    2014-01-01

    Ultrasound cavitation of microbubble contrast agents has a potential for therapeutic applications such as sonothrombolysis (STL) in acute ischemic stroke. For safety, efficacy, and reproducibility of treatment, it is critical to evaluate the cavitation state (moderate oscillations, stable cavitation, and inertial cavitation) and activity level in and around a treatment area. Acoustic passive cavitation detectors (PCDs) have been used to this end but do not provide spatial information. This paper presents a prototype of a 2-D cavitation imager capable of producing images of the dominant cavitation state and activity level in a region of interest. Similar to PCDs, the cavitation imaging described here is based on the spectral analysis of the acoustic signal radiated by the cavitating microbubbles: ultraharmonics of the excitation frequency indicate stable cavitation, whereas elevated noise bands indicate inertial cavitation; the absence of both indicates moderate oscillations. The prototype system is a modified commercially available ultrasound scanner with a sector imaging probe. The lateral resolution of the system is 1.5 mm at a focal depth of 3 cm, and the axial resolution is 3 cm for a therapy pulse length of 20 µs. The maximum frame rate of the prototype is 2 Hz. The system has been used for assessing and mapping the relative importance of the different cavitation states of a microbubble contrast agent. In vitro (tissue-mimicking flow phantom) and in vivo (heart, liver, and brain of two swine) results for cavitation states and their changes as a function of acoustic amplitude are presented. PMID:23549527

  5. Ultrasound image-guided therapy enhances antitumor effect of cisplatin.

    PubMed

    Sasaki, Noboru; Kudo, Nobuki; Nakamura, Kensuke; Lim, Sue Yee; Murakami, Masahiro; Kumara, W R Bandula; Tamura, Yu; Ohta, Hiroshi; Yamasaki, Masahiro; Takiguchi, Mitsuyoshi

    2014-01-01

    The aim of this study was to clarify whether ultrasound image-guided cisplatin delivery with an intratumor microbubble injection enhances the antitumor effect in a xenograft mouse model. Canine thyroid adenocarcinoma cells were used for all experiments. Before in vivo experiments, the cisplatin and microbubble concentration and ultrasound exposure time were optimized in vitro. For in vivo experiments, cells were implanted into the back of nude mice. Observed by a diagnostic ultrasound machine, a mixture of cisplatin and ultrasound contrast agent, Sonazoid, microbubbles was injected directly into tumors. The amount of injected cisplatin and microbubbles was 1 μg/tumor and 1.2 × 10(7) microbubbles/tumor, respectively, with a total injected volume of 20 μl. Using the same diagnostic machine, tumors were exposed to ultrasound for 15 s. The treatment was repeated four times. The combination of cisplatin, microbubbles, and ultrasound significantly delayed tumor growth as compared with no treatment (after 18 days, 157 ± 55 vs. 398 ± 49 mm(3), P = 0.049). Neither cisplatin alone nor the combination of cisplatin and ultrasound delayed tumor growth. The treatment did not decrease the body weight of mice. Ultrasound image-guided anticancer drug delivery may enhance the antitumor effects of drugs without obvious side effects.

  6. Cavitation and contrast: the use of bubbles in ultrasound imaging and therapy.

    PubMed

    Stride, E P; Coussios, C C

    2010-01-01

    Microbubbles and cavitation are playing an increasingly significant role in both diagnostic and therapeutic applications of ultrasound. Microbubble ultrasound contrast agents have been in clinical use now for more than two decades, stimulating the development of a range of new contrast-specific imaging techniques which offer substantial benefits in echocardiography, microcirculatory imaging, and more recently, quantitative and molecular imaging. In drug delivery and gene therapy, microbubbles are being investigated/developed as vehicles which can be loaded with the required therapeutic agent, traced to the target site using diagnostic ultrasound, and then destroyed with ultrasound of higher intensity energy burst to release the material locally, thus avoiding side effects associated with systemic administration, e.g. of toxic chemotherapy. It has moreover been shown that the motion of the microbubbles increases the permeability of both individual cell membranes and the endothelium, thus enhancing therapeutic uptake, and can locally increase the activity of drugs by enhancing their transport across biologically inaccessible interfaces such as blood clots or solid tumours. In high-intensity focused ultrasound (HIFU) surgery and lithotripsy, controlled cavitation is being investigated as a means of increasing the speed and efficacy of the treatment. The aim of this paper is both to describe the key features of the physical behaviour of acoustically driven bubbles which underlie their effectiveness in biomedical applications and to review the current state of the art.

  7. Improved survival in rats with glioma using MRI-guided focused ultrasound and microbubbles to disrupt the blood-brain barrier and deliver Doxil

    NASA Astrophysics Data System (ADS)

    Aryal, Muna; Zhi Zhang, Yong; Vykhodtseva, Natalia; Park, Juyoung; Power, Chanikarn; McDannold, Nathan

    2012-02-01

    Blood-brain-barrier (BBB) limits the transportation of most neuropeptides, proteins (enzymes, antibodies), chemotherapeutic agents, and genes that have therapeutic potential for the treatment of brain diseases. Different methods have been used to overcome this limitation, but they are invasive, non-targeted, or require the development of new drugs. We have developed a method that uses MRI-guided focused ultrasound (FUS) combined with circulating microbubbles to temporarily open BBB in and around brain tumors to deliver chemotherapy agents. Here, we tested whether this noninvasive technique could enhance the effectiveness of a chemotherapy agent (Doxil). Using 690 kHz FUS transducer and microbubble (Definity), we induced BBB disruption in intracranially-implanted 9L glioma tumors in rat's brain in three weekly sessions. Animals who received BBB disruption and Doxil had a median survival time of 34.5 days, which was significantly longer than that found in control animals which is 16, 18.5, 21 days who received no treatment, BBB disruption only and Doxil only respectively This work demonstrates that FUS technique has promise in overcoming barriers to drug delivery, which are particularly stark in the brain due to the BBB.

  8. Dynamics of encapsulated microbubbles for contrast ultrasound imaging and drug delivery: from pressure dependent subharmonic to collapsing jet and acoustic streaming

    NASA Astrophysics Data System (ADS)

    Sarkar, Kausik

    2016-11-01

    Intravenously injected microbubbles used as ultrasound contrast enhancing agents are encapsulated by a nanometer-thick layer of lipids, proteins or polymers to stabilize them against premature dissolution. Over the years, we have developed interfacial rheological models for the encapsulation and used them to characterize several contrast agents by acoustic means. We will present an overview of our research emphasizing recent efforts in two directions. The first is on using subharmonic signals from the contrast microbubbles for non-invasive pressure estimation. Experimental measurement and modeling show that the subharmonic signal can both increase or decrease with pressure depending on frequency. Secondly, we will discuss boundary element (BEM) simulation of the collapse of an encapsulated microbubbles forming a jet near a blood vessel wall. Different rheology models of the encapsulation have been rigorously implemented in the BEM formulation. We will discuss the resulting stresses and the acoustic streaming near the wall leading to sonoporation and other bioeffects. Partially supported by Natinal Science Foundation.

  9. Blood-brain barrier disruption and vascular damage induced by ultrasound bursts combined with microbubbles can be influenced by choice of anesthesia protocol

    PubMed Central

    McDannold, Nathan; Zhang, Yongzhi; Vykhodtseva, Natalia

    2011-01-01

    Numerous animal studies have demonstrated that ultrasound bursts combined with a microbubble-based ultrasound contrast agent can temporarily disrupt the blood-brain barrier (BBB) with little or no other apparent effects to the brain. As the BBB is a primary limitation to the use of most drugs in the brain, this method could enable a noninvasive means for targeted drug delivery in the brain. This work investigated whether BBB disruption and vessel damage when overexposure occurs can be influenced by choice of anesthesia protocol, which have different vasoactive effects. Four locations were sonicated transcranially in each brain of 16 rats using an unfocused 532 kHz piston transducer. Burst sonications (10 ms bursts applied at 1 Hz for 60 s) were combined with intravenous Definity (10 μl/kg) injections. BBB disruption was evaluated using contrast-enhanced MRI. Half of the animals were anesthetized with i.p. ketamine and xylazine, and the other half with inhaled isoflurane and oxygen. Over the range of exposure levels tested, MRI contrast enhancement was significantly higher (P<0.05) for animals anesthetized with ketamine/xylazine. Furthermore, the threshold for extensive erythrocyte extravasation was lower with ketamine/xylazine. These results suggest that BBB disruption and/or vascular damage can be affected by vascular or other factors that are influenced by different anesthesia protocol. These experiments may also have been influenced by the recently reported findings that the circulation time for perfluorocarbon microbubbles is substantially reduced when oxygen is used as the carrier gas. PMID:21645965

  10. Reparable Cell Sonoporation in Suspension: Theranostic Potential of Microbubble.

    PubMed

    Nejad, S Moosavi; Hosseini, Hamid; Akiyama, Hidenori; Tachibana, Katsuro

    2016-01-01

    The conjunction of low intensity ultrasound and encapsulated microbubbles can alter the permeability of cell membrane, offering a promising theranostic technique for non-invasive gene/drug delivery. Despite its great potential, the biophysical mechanisms of the delivery at the cellular level remains poorly understood. Here, the first direct high-speed micro-photographic images of human lymphoma cell and microbubble interaction dynamics are provided in a completely free suspension environment without any boundary parameter defect. Our real-time images and theoretical analyses prove that the negative divergence side of the microbubble's dipole microstreaming locally pulls the cell membrane, causing transient local protrusion of 2.5 µm in the cell membrane. The linear oscillation of microbubble caused microstreaming well below the inertial cavitation threshold, and imposed 35.3 Pa shear stress on the membrane, promoting an area strain of 0.12%, less than the membrane critical areal strain to cause cell rupture. Positive transfected cells with pEGFP-N1 confirm that the interaction causes membrane poration without cell disruption. The results show that the overstretched cell membrane causes reparable submicron pore formation, providing primary evidence of low amplitude (0.12 MPa at 0.834 MHz) ultrasound sonoporation mechanism.

  11. Harmonic responses and cavitation activity of encapsulated microbubbles coupled with magnetic nanoparticles.

    PubMed

    Gu, Yuyang; Chen, Chuyi; Tu, Juan; Guo, Xiasheng; Wu, Hongyi; Zhang, Dong

    2016-03-01

    Encapsulated microbubbles coupled with magnetic nanoparticles, one kind of hybrid agents that can integrate both ultrasound and magnetic resonance imaging/therapy functions, have attracted increasing interests in both research and clinic communities. However, there is a lack of comprehensive understanding of their dynamic behaviors generated in diagnostic and therapeutic applications. In the present work, a hybrid agent was synthesized by integrating superparamagnetic iron oxide nanoparticles (SPIOs) into albumin-shelled microbubbles (named as SPIO-albumin microbubbles). Then, both the stable and inertial cavitation thresholds of this hybrid agent were measured at varied SPIO concentrations and ultrasound parameters (e.g., frequency, pressure amplitude, and pulse length). The results show that, at a fixed acoustic driving frequency, both the stable and inertial cavitation thresholds of SPIO-albumin microbubble should decrease with the increasing SPIO concentration and acoustic driving pulse length. The inertial cavitation threshold of SPIO-albumin microbubbles also decreases with the raised driving frequency, while the minimum sub- and ultra-harmonic thresholds appear at twice and two thirds resonance frequency, respectively. It is also noticed that both the stable and inertial cavitation thresholds of SonoVue microbubbles are similar to those measured for hybrid microbubbles with a SPIO concentration of 114.7 μg/ml. The current work could provide better understanding on the impact of the integrated SPIOs on the dynamic responses (especially the cavitation activities) of hybrid microbubbles, and suggest the shell composition of hybrid agents should be appropriately designed to improve their clinical diagnostic and therapeutic performances of hybrid microbubble agents. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Blood-brain barrier disruption induced by diagnostic ultrasound combined with microbubbles in mice

    PubMed Central

    Liu, Jinfeng; Zhang, Li; Wang, Jing; Yang, Yali; Lv, Qing; Xie, Mingxing

    2018-01-01

    Objective To investigate the effects of the microbubble (MB) dose, mechanism index (MI) and sonication duration on blood-brain barrier (BBB) disruption induced by diagnostic ultrasound combined with MBs as well as to investigate the potential molecular mechanism. Results The extent of BBB disruption increased with MB dose, MI and sonication duration. A relatively larger extent of BBB disruption associated with minimal tissue damage was achieved by an appropriate MB dose and ultrasound exposure parameters with diagnostic ultrasound. Decreased expression of ZO-1, occludin and claudin-5 were correlated with disruption of the BBB, as confirmed by paracellular passage of the tracer lanthanum nitrate into the brain parenchyma after BBB disruption. Conclusions These findings indicated that this technique is a promising tool for promoting brain delivery of diagnostic and therapeutic agents in the diagnosis and treatment of brain diseases. Methods The extent of BBB disruption was qualitatively assessed by Evans blue (EB) staining and quantitatively analyzed by an EB extravasation measurement. A histological examination was performed to evaluate tissue damage. Expression of tight junction (TJ) related proteins ZO-1, occludin and claudin-5 was determined by western blotting analysis and immunohistofluorescence. Transmission electron microscopy was performed to observe ultrastructure changes of TJs after BBB disruption. PMID:29435150

  13. Blood-brain barrier disruption induced by diagnostic ultrasound combined with microbubbles in mice.

    PubMed

    Zhao, Bingxia; Chen, Yihan; Liu, Jinfeng; Zhang, Li; Wang, Jing; Yang, Yali; Lv, Qing; Xie, Mingxing

    2018-01-12

    To investigate the effects of the microbubble (MB) dose, mechanism index (MI) and sonication duration on blood-brain barrier (BBB) disruption induced by diagnostic ultrasound combined with MBs as well as to investigate the potential molecular mechanism. The extent of BBB disruption increased with MB dose, MI and sonication duration. A relatively larger extent of BBB disruption associated with minimal tissue damage was achieved by an appropriate MB dose and ultrasound exposure parameters with diagnostic ultrasound. Decreased expression of ZO-1, occludin and claudin-5 were correlated with disruption of the BBB, as confirmed by paracellular passage of the tracer lanthanum nitrate into the brain parenchyma after BBB disruption. These findings indicated that this technique is a promising tool for promoting brain delivery of diagnostic and therapeutic agents in the diagnosis and treatment of brain diseases. The extent of BBB disruption was qualitatively assessed by Evans blue (EB) staining and quantitatively analyzed by an EB extravasation measurement. A histological examination was performed to evaluate tissue damage. Expression of tight junction (TJ) related proteins ZO-1, occludin and claudin-5 was determined by western blotting analysis and immunohistofluorescence. Transmission electron microscopy was performed to observe ultrastructure changes of TJs after BBB disruption.

  14. The dynamic behavior of microbubbles during long ultrasound tone-burst excitation: mechanistic insights into ultrasound-microbubble mediated therapeutics using high-speed imaging and cavitation detection

    PubMed Central

    Pacella, John J.; Villanueva, Flordeliza S.

    2015-01-01

    Ultrasound (US)-microbubble (MB) mediated therapies have been shown to restore perfusion and enhance drug/gene delivery. Due to the presumption that MBs do not persist during long US exposure under high acoustic pressures, most schemes utilize short US pulses when a high US pressure is employed. However, we recently observed an enhanced thrombolytic effect using long US pulses at high acoustic pressures. Therefore we explored the fate of MBs during long tone-burst exposures (5 ms) at various acoustic pressures and MB concentrations via direct high-speed optical observation and passive cavitation detection. MBs first underwent stable or inertial cavitation depending on the acoustic pressure, and then formed gas-filled clusters that continued to oscillate, break up, and form new clusters. Cavitation detection confirmed continued, albeit diminishing acoustic activity throughout the 5-ms US excitation. These data suggest that persisting cavitation activity during long tone-bursts may confer additional therapeutic effects. PMID:26603628

  15. Low-pressure pulsed focused ultrasound with microbubbles promotes an anticancer immunological response.

    PubMed

    Liu, Hao-Li; Hsieh, Han-Yi; Lu, Li-An; Kang, Chiao-Wen; Wu, Ming-Fang; Lin, Chun-Yen

    2012-11-11

    High-intensity focused-ultrasound (HIFU) has been successfully employed for thermal ablation of tumors in clinical settings. Continuous- or pulsed-mode HIFU may also induce a host antitumor immune response, mainly through expansion of antigen-presenting cells in response to increased cellular debris and through increased macrophage activation/infiltration. Here we demonstrated that another form of focused ultrasound delivery, using low-pressure, pulsed-mode exposure in the presence of microbubbles (MBs), may also trigger an antitumor immunological response and inhibit tumor growth. A total of 280 tumor-bearing animals were subjected to sonographically-guided FUS. Implanted tumors were exposed to low-pressure FUS (0.6 to 1.4 MPa) with MBs to increase the permeability of tumor microvasculature. Tumor progression was suppressed by both 0.6 and 1.4-MPa MB-enhanced FUS exposures. We observed a transient increase in infiltration of non-T regulatory (non-Treg) tumor infiltrating lymphocytes (TILs) and continual infiltration of CD8+ cytotoxic T-lymphocytes (CTL). The ratio of CD8+/Treg increased significantly and tumor growth was inhibited. Our findings suggest that low-pressure FUS exposure with MBs may constitute a useful tool for triggering an anticancer immune response, for potential cancer immunotherapy.

  16. Three-dimensional ultrasound molecular imaging of angiogenesis in colon cancer using a clinical matrix array ultrasound transducer.

    PubMed

    Wang, Huaijun; Kaneko, Osamu F; Tian, Lu; Hristov, Dimitre; Willmann, Jürgen K

    2015-05-01

    We sought to assess the feasibility and reproducibility of 3-dimensional ultrasound molecular imaging (USMI) of vascular endothelial growth factor receptor 2 (VEGFR2) expression in tumor angiogenesis using a clinical matrix array transducer and a clinical grade VEGFR2-targeted contrast agent in a murine model of human colon cancer. Animal studies were approved by the Institutional Administrative Panel on Laboratory Animal Care. Mice with human colon cancer xenografts (n = 33) were imaged with a clinical ultrasound system and transducer (Philips iU22; X6-1) after intravenous injection of either clinical grade VEGFR2-targeted microbubbles or nontargeted control microbubbles. Nineteen mice were scanned twice to assess imaging reproducibility. Fourteen mice were scanned both before and 24 hours after treatment with either bevacizumab (n = 7) or saline only (n = 7). Three-dimensional USMI data sets were retrospectively reconstructed into multiple consecutive 1-mm-thick USMI data sets to simulate 2-dimensional imaging. Vascular VEGFR2 expression was assessed ex vivo using immunofluorescence. Three-dimensional USMI was highly reproducible using both VEGFR2-targeted microbubbles and nontargeted control microbubbles (intraclass correlation coefficient, 0.83). The VEGFR2-targeted USMI signal significantly (P = 0.02) decreased by 57% after antiangiogenic treatment compared with the control group, which correlated well with ex vivo VEGFR2 expression on immunofluorescence (ρ = 0.93, P = 0.003). If only central 1-mm tumor planes were analyzed to assess antiangiogenic treatment response, the USMI signal change was significantly (P = 0.006) overestimated by an average of 27% (range, 2%-73%) compared with 3-dimensional USMI. Three-dimensional USMI is feasible and highly reproducible and allows accurate assessment and monitoring of VEGFR2 expression in tumor angiogenesis in a murine model of human colon cancer.

  17. Cavitation-enhanced delivery of a replicating oncolytic adenovirus to tumors using focused ultrasound.

    PubMed

    Bazan-Peregrino, Miriam; Rifai, Bassel; Carlisle, Robert C; Choi, James; Arvanitis, Costas D; Seymour, Leonard W; Coussios, Constantin C

    2013-07-10

    Oncolytic viruses (OV) and ultrasound-enhanced drug delivery are powerful novel technologies. OV selectively self-amplify and kill cancer cells but their clinical use has been restricted by limited delivery from the bloodstream into the tumor. Ultrasound has been previously exploited for targeted release of OV in vivo, but its use to induce cavitation, microbubble oscillations, for enhanced OV tumor extravasation and delivery has not been previously reported. By identifying and optimizing the underlying physical mechanism, this work demonstrates that focused ultrasound significantly enhances the delivery and biodistribution of systemically administered OV co-injected with microbubbles. Up to a fiftyfold increase in tumor transgene expression was achieved, without any observable tissue damage. Ultrasound exposure parameters were optimized as a function of tumor reperfusion time to sustain inertial cavitation, a type of microbubble activity, throughout the exposure. Passive detection of acoustic emissions during treatment confirmed inertial cavitation as the mechanism responsible for enhanced delivery and enabled real-time monitoring of successful viral delivery. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Fluid Viscosity Affects the Fragmentation and Inertial Cavitation Threshold of Lipid-Encapsulated Microbubbles.

    PubMed

    Helfield, Brandon; Black, John J; Qin, Bin; Pacella, John; Chen, Xucai; Villanueva, Flordeliza S

    2016-03-01

    Ultrasound and microbubble optimization studies for therapeutic applications are often conducted in water/saline, with a fluid viscosity of 1 cP. In an in vivo context, microbubbles are situated in blood, a more viscous fluid (∼4 cP). In this study, ultrahigh-speed microscopy and passive cavitation approaches were employed to investigate the effect of fluid viscosity on microbubble behavior at 1 MHz subject to high pressures (0.25-2 MPa). The propensity for individual microbubble (n = 220) fragmentation was found to significantly decrease in 4-cP fluid compared with 1-cP fluid, despite achieving similar maximum radial excursions. Microbubble populations diluted in 4-cP fluid exhibited decreased wideband emissions (up to 10.2 times), and increasingly distinct harmonic emission peaks (e.g., ultraharmonic) with increasing pressure, compared with those in 1-cP fluid. These results suggest that in vitro studies should consider an evaluation using physiologic viscosity perfusate before transitioning to in vivo evaluations. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  19. Ultrasound microbubble-mediated transfection of NF-κB decoy oligodeoxynucleotide into gingival tissues inhibits periodontitis in rats in vivo

    PubMed Central

    Yamaguchi, Hiroyuki; Hosomichi, Jun; Suzuki, Jun-ichi; Hatano, Kasumi; Usumi-Fujita, Risa; Shimizu, Yasuhiro; Kaneko, Sawa; Ono, Takashi

    2017-01-01

    Periodontitis is a chronic infectious disease for which the fundamental treatment is to reduce the load of subgingival pathogenic bacteria by debridement. However, previous investigators attempted to implement a nuclear factor kappa B (NF-κB) decoy oligodeoxynucleotide (ODN) as a suppressor of periodontitis progression. Although we recently reported the effectiveness of the ultrasound-microbubble method as a tool for transfecting the NF-κB decoy ODN into healthy rodent gingival tissue, this technique has not yet been applied to the pathological gingiva of periodontitis animal models. Therefore, the aim of this study was to investigate the effectiveness of the technique in transfecting the NF-κB decoy ODN into rats with ligature-induced periodontitis. Micro computed tomography (micro-CT) analysis demonstrated a significant reduction in alveolar bone loss following treatment with the NF-κB decoy ODN in the experimental group. RT-PCR showed that NF-κB decoy ODN treatment resulted in significantly reduced expression of inflammatory cytokine transcripts within rat gingival tissues. Thus, we established a transcutaneous transfection model of NF-κB decoy ODN treatment of periodontal tissues using the ultrasound-microbubble technique. Our findings suggest that the NF-κB decoy ODN could be used as a significant suppressor of gingival inflammation and periodontal disease progression. PMID:29091721

  20. Quantitative evaluation of contrast-enhanced ultrasound after intravenous administration of a microbubble contrast agent for differentiation of benign and malignant thyroid nodules: assessment of diagnostic accuracy.

    PubMed

    Nemec, Ursula; Nemec, Stefan F; Novotny, Clemens; Weber, Michael; Czerny, Christian; Krestan, Christian R

    2012-06-01

    To investigate the diagnostic accuracy, through quantitative analysis, of contrast-enhanced ultrasound (CEUS), using a microbubble contrast agent, in the differentiation of thyroid nodules. This prospective study enrolled 46 patients with solitary, scintigraphically non-functional thyroid nodules. These patients were scheduled for surgery and underwent preoperative CEUS with pulse-inversion harmonic imaging after intravenous microbubble contrast medium administration. Using histology as a standard of reference, time-intensity curves of benign and malignant nodules were compared by means of peak enhancement and wash-out enhancement relative to the baseline intensity using a mixed model ANOVA. ROC analysis was performed to assess the diagnostic accuracy in the differentiation of benign and malignant nodules on CEUS. The complete CEUS data of 42 patients (31/42 [73.8%] benign and 11/42 [26.2%] malignant nodules) revealed a significant difference (P < 0.001) in enhancement between benign and malignant nodules. Furthermore, based on ROC analysis, CEUS demonstrated sensitivity of 76.9%, specificity of 84.8% and accuracy of 82.6%. Quantitative analysis of CEUS using a microbubble contrast agent allows the differentiation of benign and malignant thyroid nodules and may potentially serve, in addition to grey-scale and Doppler ultrasound, as an adjunctive tool in the assessment of patients with thyroid nodules. • Contrast-enhanced ultrasound (CEUS) helps differentiate between benign and malignant thyroid nodules. • Quantitative CEUS analysis yields sensitivity of 76.9% and specificity of 84.8%. • CEUS may be a potentially useful adjunct in assessing thyroid nodules.

  1. Compare ultrasound-mediated heating and cavitation between flowing polymer- and lipid-shelled microbubbles during focused ultrasound exposures.

    PubMed

    Zhang, Siyuan; Zong, Yujin; Wan, Mingxi; Yu, Xiaojun; Fu, Quanyou; Ding, Ting; Zhou, Fanyu; Wang, Supin

    2012-06-01

    This paper compares the efficiency of flowing polymer- and lipid-shelled microbubbles (MBs) in the heating and cavitation during focused ultrasound exposures. Temperature and cavitation activity were simultaneously measured as the two types of shelled MBs and saline flowing through a 3 mm diameter vessel in the phantom with varying flow velocities (0-20 cm/s) at different acoustic power levels (0.6-20 W) with each exposure for 5 s. Temperature and cavitation for the lipid-shelled MBs were higher than those for the polymer-shelled MBs. Temperature rise decreased with increasing flow velocities for the two types of shelled MBs and saline at acoustic power 1.5 W. At acoustic power 11.1 W, temperature rise increased with increasing flow velocities for the lipid-shelled MBs. For the polymer-shelled MBs, the temperature rise increased with increasing flow velocities from 3-15 cm/s and decreased at 20 cm/s. Cavitation increased with increasing flow velocity for the two shelled MBs and there were no significant changes of cavitation with increasing flow velocities for saline. These results suggested that lipid-shelled MBs may have a greater efficiency than polymer-shelled MBs in heating and cavitation during focused ultrasound exposures.

  2. Mie scattering off coated microbubbles

    NASA Astrophysics Data System (ADS)

    Nelissen, Radboud; Koene, Elmer; Hilgenfeldt, Sascha; Versluis, Michel

    2002-11-01

    The acoustic behavior of coated microbubbles depends on parameters of the shell coating, which are in turn dependent on bubble size. More intimate knowledge of this size dependence is required for an improved modeling of a distribution of coated microbubbles such as found in ultrasound contrast agents (UCA). Here a setup is designed to simultaneously measure the optical and acoustic response of an ultrasound-driven single bubble contained in a capillary or levitated by the pressure field of a focused transducer. Optical detection is done by Mie scattering through an inverted microscope. Acoustical detection of the single bubble by a receiving transducer is made possible because of the large working distance of the microscope. For Mie scattering investigation of excited bubbles, two regimes can be distinguished, which require different detection techniques: Conventional wide-angle detection through the microscope objective is sufficient for bubbles of radius exceeding 10 mum. For smaller bubbles, two narrow-aperture detectors are used to reconstruct the bubble dynamics from the complex angle-dependence of the scattered light.

  3. Tumour Vascular Shutdown and Cell Death Following Ultrasound-Microbubble Enhanced Radiation Therapy

    PubMed Central

    El Kaffas, Ahmed; Gangeh, Mehrdad J.; Farhat, Golnaz; Tran, William Tyler; Hashim, Amr; Giles, Anoja; Czarnota, Gregory J.

    2018-01-01

    High-dose radiotherapy effects are regulated by acute tumour endothelial cell death followed by rapid tumour cell death instead of canonical DNA break damage. Pre-treatment with ultrasound-stimulated microbubbles (USMB) has enabled higher-dose radiation effects with conventional radiation doses. This study aimed to confirm acute and longitudinal relationships between vascular shutdown and tumour cell death following radiation and USMB in a wild type murine fibrosarcoma model using in vivo imaging. Methods: Tumour xenografts were treated with single radiation doses of 2 or 8 Gy alone, or in combination with low-/high-concentration USMB. Vascular changes and tumour cell death were evaluated at 3, 24 and 72 h following therapy, using high-frequency 3D power Doppler and quantitative ultrasound spectroscopy (QUS) methods, respectively. Staining using in situ end labelling (ISEL) and cluster of differentiation 31 (CD31) of tumour sections were used to assess cell death and vascular distributions, respectively, as gold standard histological methods. Results: Results indicated a decrease in the power Doppler signal of up to 50%, and an increase of more than 5 dBr in cell-death linked QUS parameters at 24 h for tumours treated with combined USMB and radiotherapy. Power Doppler and quantitative ultrasound results were significantly correlated with CD31 and ISEL staining results (p < 0.05), respectively. Moreover, a relationship was found between ultrasound power Doppler and QUS results, as well as between micro-vascular densities (CD31) and the percentage of cell death (ISEL) (R2 0.5-0.9). Conclusions: This study demonstrated, for the first time, the link between acute vascular shutdown and acute tumour cell death using in vivo longitudinal imaging, contributing to the development of theoretical models that incorporate vascular effects in radiation therapy. Overall, this study paves the way for theranostic use of ultrasound in radiation oncology as a diagnostic modality to

  4. Ultrasound in Radiology: from Anatomic, Functional, Molecular Imaging to Drug Delivery and Image-Guided Therapy

    PubMed Central

    Klibanov, Alexander L.; Hossack, John A.

    2015-01-01

    During the past decade, ultrasound has expanded medical imaging well beyond the “traditional” radiology setting - a combination of portability, low cost and ease of use makes ultrasound imaging an indispensable tool for radiologists as well as for other medical professionals who need to obtain imaging diagnosis or guide a therapeutic intervention quickly and efficiently. Ultrasound combines excellent ability for deep penetration into soft tissues with very good spatial resolution, with only a few exceptions (i.e. those involving overlying bone or gas). Real-time imaging (up to hundreds and thousands frames per second) enables guidance of therapeutic procedures and biopsies; characterization of the mechanical properties of the tissues greatly aids with the accuracy of the procedures. The ability of ultrasound to deposit energy locally brings about the potential for localized intervention encompassing: tissue ablation, enhancing penetration through the natural barriers to drug delivery in the body and triggering drug release from carrier micro- and nanoparticles. The use of microbubble contrast agents brings the ability to monitor and quantify tissue perfusion, and microbubble targeting with ligand-decorated microbubbles brings the ability to obtain molecular biomarker information, i.e., ultrasound molecular imaging. Overall, ultrasound has become the most widely used imaging modality in modern medicine; it will continue to grow and expand. PMID:26200224

  5. New mechanisms for non-porative ultrasound stimulation of cargo delivery to cell cytosol with targeted perfluorocarbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Soman, N. R.; Marsh, J. N.; Lanza, G. M.; Wickline, S. A.

    2008-05-01

    The cell membrane constitutes a major barrier for non-endocytotic intracellular delivery of therapeutic molecules from drug delivery vehicles. Existing approaches to breaching the cell membrane include cavitational ultrasound (with microbubbles), electroporation and cell-penetrating peptides. We report the use of diagnostic ultrasound for intracellular delivery of therapeutic bulky cargo with the use of molecularly targeted liquid perfluorocarbon (PFC) nanoparticles. To demonstrate the concept, we used a lipid with a surrogate polar head group, nanogold-DPPE, incorporated into the nanoparticle lipid monolayer. Melanoma cells were incubated with nanogold particles and this was followed by insonication with continuous wave ultrasound (2.25 MHz, 5 min, 0.6 MPa). Cells not exposed to ultrasound showed gold particles partitioned only in the outer bilayer of the cell membrane with no evidence of the intracellular transit of nanogold. However, the cells exposed to ultrasound exhibited numerous nanogold-DPPE components inside the cell that appeared polarized inside intracellular vesicles demonstrating cellular uptake and trafficking. Further, ultrasound-exposed cells manifested no incorporation of calcein or the release of lactate dehydrogenase. These observations are consistent with a mechanism that suggests that ultrasound is capable of stimulating the intracellular delivery of therapeutic molecules via non-porative mechanisms. Therefore, non-cavitational adjunctive ultrasound offers a novel paradigm in intracellular cargo delivery from PFC nanoparticles.

  6. The Effects of Pressure on Gases in Solution: Possible Insights to Improve Microbubble Filtration for Extracorporeal Circulation

    PubMed Central

    Herbst, Daniel P.

    2013-01-01

    Abstract: Improvements in micropore arterial line filter designs used for extracorporeal circulation are still needed because microbubbles larger than the rated pore sizes are being detected beyond the filter outlet. Linked to principles governing the function of micropore filters, fluid pressures contained in extracorporeal circuits also influence the behavior of gas bubbles and the extent to which they are carried in a fluid flow. To better understand the relationship between pressure and microbubble behavior, two ex vivo test circuits with and without inline resistance were designed to assess changes in microbubble load with changes in pressure. Ultrasound Doppler probes were used to measure and compare the quality and quantity of microbubbles generated in each test circuit. Analysis of microbubble load was separated into two distinct phases, the time periods during and immediately after bubble generation. Although microbubble number decreased similarly in both test circuits, changes in microbubble volume were significant only in the test circuit with inline resistance. The test circuit with inline resistance also showed a decrease in the rate of volume transferred across each ultrasound Doppler probe and the microbubble number and size range measured in the postbubble generation period. The present research proposes that fluid pressures contained in extracorporeal circuits may be used to affect gases in solution as a possible method to improve microbubble filtration during extracorporeal circulation. PMID:23930378

  7. The effects of pressure on gases in solution: possible insights to improve microbubble filtration for extracorporeal circulation.

    PubMed

    Herbst, Daniel P

    2013-06-01

    Improvements in micropore arterial line filter designs used for extracorporeal circulation are still needed because microbubbles larger than the rated pore sizes are being detected beyond the filter outlet. Linked to principles governing the function of micropore filters, fluid pressures contained in extracorporeal circuits also influence the behavior of gas bubbles and the extent to which they are carried in a fluid flow. To better understand the relationship between pressure and microbubble behavior, two ex vivo test circuits with and without inline resistance were designed to assess changes in microbubble load with changes in pressure. Ultrasound Doppler probes were used to measure and compare the quality and quantity of microbubbles generated in each test circuit. Analysis of microbubble load was separated into two distinct phases, the time periods during and immediately after bubble generation. Although microbubble number decreased similarly in both test circuits, changes in microbubble volume were significant only in the test circuit with inline resistance. The test circuit with inline resistance also showed a decrease in the rate of volume transferred across each ultrasound Doppler probe and the microbubble number and size range measured in the postbubble generation period. The present research proposes that fluid pressures contained in extracorporeal circuits may be used to affect gases in solution as a possible method to improve microbubble filtration during extracorporeal circulation.

  8. Loss of gas from echogenic liposomes exposed to pulsed ultrasound

    PubMed Central

    Raymond, Jason L.; Luan, Ying; Peng, Tao; Huang, Shao-Ling; McPherson, David D.; Versluis, Michel; de Jong, Nico; Holland, Christy K.

    2017-01-01

    The destruction of echogenic liposomes (ELIP) in response to pulsed ultrasound excitations has been studied acoustically previously. However, the mechanism underlying the loss of echogenicity due to cavitation of ELIP has not been fully clarified. In this study, an ultra-high speed imaging approach was employed to observe the destruction phenomena of single ELIP exposed to ultrasound bursts at a center frequency of 6- MHz. We observed a rapid size reduction during the ultrasound excitation in 139 out of 397 (35 %) ultra-high-speed recordings. The shell dilation rate, which is defined as the microbubble wall velocity divided by the instantaneous radius, Ṙ/R, was extracted from the radius versus time response of each ELIP, and was found to be correlated with the deflation. Fragmentation and surface mode vibrations were also observed and are shown to depend on the applied acoustic pressure and initial radius. Results from this study can be utilized to optimize the theranostic application of ELIP, e.g., by tuning the size distribution or the excitation frequency. PMID:27811382

  9. Individual lipid encapsulated microbubble radial oscillations: Effects of fluid viscosity

    PubMed Central

    Helfield, Brandon; Chen, Xucai; Qin, Bin; Villanueva, Flordeliza S.

    2016-01-01

    Ultrasound-stimulated microbubble dynamics have been shown to be dependent on intrinsic bubble properties, including size and shell characteristics. The effect of the surrounding environment on microbubble response, however, has been less investigated. In particular, microbubble optimization studies are generally conducted in water/saline, characterized by a 1 cP viscosity, for application in the vasculature (i.e., 4 cP). In this study, ultra-high speed microscopy was employed to investigate fluid viscosity effects on phospholipid encapsulated microbubble oscillations at 1 MHz, using a single, eight-cycle pulse at peak negative pressures of 100 and 250 kPa. Microbubble oscillations were shown to be affected by fluid viscosity in a size- and pressure-dependent manner. In general, the oscillation amplitudes exhibited by microbubbles between 3 and 6 μm in 1 cP fluid were larger than in 4 cP fluid, reaching a maximum of 1.7-fold at 100 kPa for microbubbles 3.8 μm in diameter and 1.35-fold at 250 kPa for microbubbles 4.8 μm in diameter. Simulation results were in broad agreement at 250 kPa, however generally underestimated the effect of fluid viscosity at 100 kPa. This is the first experimental demonstration documenting the effects of surrounding fluid viscosity on microbubble oscillations, resulting in behavior not entirely predicted by current microbubble models. PMID:26827018

  10. Microbubble-assisted p53, RB, and p130 gene transfer in combination with radiation therapy in prostate cancer.

    PubMed

    Nande, Rounak; Greco, Adelaide; Gossman, Michael S; Lopez, Jeffrey P; Claudio, Luigi; Salvatore, Marco; Brunetti, Arturo; Denvir, James; Howard, Candace M; Claudio, Pier Paolo

    2013-06-01

    Combining radiation therapy and direct intratumoral (IT) injection of adenoviral vectors has been explored as a means to enhance the therapeutic potential of gene transfer. A major challenge for gene transfer is systemic delivery of nucleic acids directly into an affected tissue. Ultrasound (US) contrast agents (microbubbles) are viable candidates to enhance targeted delivery of systemically administered genes. Here we show that p53, pRB, and p130 gene transfer mediated by US cavitation of microbubbles at the tumor site resulted in targeted gene transduction and increased reduction in tumor growth compared to DU-145 prostate cancer cell xenografts treated intratumorally with adenovirus (Ad) or radiation alone. Microbubble-assisted/US-mediated Ad.p53 and Ad.RB treated tumors showed significant reduction in tumor volume compared to Ad.p130 treated tumors (p<0.05). Additionally, US mediated microbubble delivery of p53 and RB combined with external beam radiation resulted in the most profound tumor reduction in DU-145 xenografted nude mice (p<0.05) compared to radiation alone. These findings highlight the potential therapeutic applications of this novel image-guided gene transfer technology in combination with external beam radiation for prostate cancer patients with therapy resistant disease.

  11. Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system

    PubMed Central

    Aryal, Muna; Arvanitis, Costas D.; Alexander, Phillip M.; McDannold, Nathan

    2014-01-01

    The physiology of the vasculature in the central nervous system (CNS), which includes the blood-brain barrier (BBB) and other factors, complicates the delivery of most drugs to the brain. Different methods have been used to bypass the BBB, but they have limitations such as being invasive, non-targeted or requiring the formulation of new drugs. Focused ultrasound (FUS), when combined with circulating microbubbles, is a noninvasive method to locally and transiently disrupt the BBB at discrete targets. This review provides insight on the current status of this unique drug delivery technique, experience in preclinical models, and potential for clinical translation. If translated to humans, this method would offer a flexible means to target therapeutics to desired points or volumes in the brain, and enable the whole arsenal of drugs in the CNS that are currently prevented by the BBB. PMID:24462453

  12. Synergistic enhancement of breast cancer cell death using ultrasound-microbubbles in combination with cisplatin

    NASA Astrophysics Data System (ADS)

    Jetha, Sheliza; Karshafian, Raffi

    2017-03-01

    Cisplatin (CDDP), an anti-cancer agent, can effectively treat several cancerous tumourstumors such as testicular, bladder, and ovarian cancers. CDDP binds to specific DNA bases causing 1,2-intrastrand cross-links, single strand and double strand breaks inducing apoptosis. However, the effectiveness of CDDP is limited in tumourtumors such as breast cancer due to drug resistance. In this study, the application of ultrasound-microbubble (USMB) in improving the therapeutic effect of CDDP in breast cancer cell line is investigated. Human breast cancer (MDA-MB-231) cells in suspension (2×106 cells/mL concentration and 0.6 mL volume) were treated with CDDP (3 µM, 30 µM and 300 µM) and USMB at 0.5 MHz pulse centered frequency, 60 s insonation time, 16 µs pulse duration, 1 kHz pulse repetition frequency, and 1.7% v/v (volume concentration) of Definity microbubble agent. Following USMB treatment, cells were plated in 96-well plates for 24 and 48-hour incubation, after which cell viability was measured using MTT assay (VMTT). Cell viability decreased significantly with the combined treatment of CDDP and USMB compared to CDDP alone (p<0.001) after both 24 and 48-hour incubation. After 24-hour incubation, the VMMT was 40±2%, 32±1% and 18±1% with the combined treatment compared to 96±3%, 81±3% and 63±3% with CDDP alone at 3 µM, 30 µM and 300 µM, respectively. The combined treatment was additive at both concentrations (3 µM, p=0.9957) and (30 µM, p=0.6018) and synergistic at the highest concentration (300 µM, p=0.0169), based on Bliss Independence model with a 95% confidence interval of p<0.05. Furthermore, after 48-hour incubation, the VMTT was 54±3%, 22±1% and 13±1% with the combined treatment compared to 94±9%, 68±3% and 44±2%with CDDP alone at 3 µM, 30 µM and 300 µM, respectively. The combined treatment was still additive at the lowest concentration (3 µM, p=0.6689) and synergistic at the higher concentrations (30 µM, p=0.0001) and (300 µM, p=0

  13. Extracellular delivery induced by ultrasound and microbubbles in cells

    NASA Astrophysics Data System (ADS)

    Hussein, Farah; Antonescu, Costin; Karshafian, Raffi

    2017-03-01

    Ultrasound and microbubble treatment (USMB) can enhance the intracellular uptake of molecules, which otherwise would be excluded from the cell, through USMB-mediated transient membrane disruption and through enhanced endocytosis. However, the effect of USMB on the outward movement of molecules from cells is not well understood. This study investigates the effects of USMB on the release of molecules from various cellular compartments including cytoplasm, lysosomes, and recycling endosomes. In vitro ARPE-19 (RPE henceforth) cells were loaded with Alexa fluor-labeled transferrin as a marker for recycling endosomes, LAMP-1 antibody was used to detect the fusion of lysosomes with the plasma membrane, GFP-transfected RPE cells were used to examine the release of GFP from the cytoplasm, and 7-AAD was used to assess cell viability. Subsequently, cells were exposed to USMB (106 cells/mL, 300 kPa peak negative pressure, 1 min treatment duration, and 20 µL/mL Definity microbubbles). Following USMB, the release of the fluorescent markers was examined at 1.5, 11.5, and 21.5 minutes from the start of USMB. The mean fluorescent intensity (MFI) of untreated and USMB treated samples were measured using flow cytometry. USMB increased the extracellular delivery of GFP molecules from the cytoplasm; the MFI in USMB treated GFP-transfected RPE cells decreased by 17% in viable cells and this MFI decreased by 70% in non-viable cells. This could be due to diffusion of GFP through the membrane disruptions induced by USMB. Additionally, the MFI of viable cells stained with LAMP-1 antibody increased by 50% and this increase was 15 folds in the non-viable cells indicating lysosome exocytosis as a mechanism for membrane repair. Furthermore, the MFI of cells loaded with fluorescent transferrin decreased by 22% after USMB treatment in viable cells, indicating a significant increase in transferrin recycling to the cell membrane. However, the increased recycling was not statistically significant

  14. Improving Sensitivity in Ultrasound Molecular Imaging by Tailoring Contrast Agent Size Distribution: In Vivo Studies

    PubMed Central

    Streeter, Jason E.; Gessner, Ryan; Miles, Iman; Dayton, Paul A.

    2010-01-01

    Molecular imaging with ultrasound relies on microbubble contrast agents (MCAs) selectively adhering to a ligand-specific target. Prior studies have shown that only small quantities of microbubbles are retained at their target sites, therefore, enhancing contrast sensitivity to low concentrations of microbubbles is essential to improve molecular imaging techniques. In order to assess the effect of MCA diameter on imaging sensitivity, perfusion and molecular imaging studies were performed with microbubbles of varying size distributions. To assess signal improvement and MCA circulation time as a function of size and concentration, blood perfusion was imaged in rat kidneys using nontargeted size-sorted MCAs with a Siemens Sequoia ultrasound system (Siemans, Mountain View, CA) in cadence pulse sequencing (CPS) mode. Molecular imaging sensitivity improvements were studied with size-sorted αvβ3-targeted bubbles in both fibrosarcoma and R3230 rat tumor models. In perfusion imaging studies, video intensity and contrast persistence was ≈8 times and ≈3 times greater respectively, for “sorted 3-micron” MCAs (diameter, 3.3 ± 1.95 μm) when compared to “unsorted” MCAs (diameter, 0.9 ± 0.45 μm) at low concentrations. In targeted experiments, application of sorted 3-micron MCAs resulted in a ≈20 times video intensity increase over unsorted populations. Tailoring size-distributions results in substantial imaging sensitivity improvement over unsorted populations, which is essential in maximizing sensitivity to small numbers of MCAs for molecular imaging. PMID:20236606

  15. Photothermolysis by laser-induced microbubbles generated around gold nanorod clusters selectively formed in leukemia cells

    NASA Astrophysics Data System (ADS)

    Lapotko, Dmitri; Lukianova-Hleb, Ekaterina; Zhdanok, Sergei; Rostro, Betty; Simonette, Rebecca; Hafner, Jason; Konopleva, Marina; Andreeff, Michael; Conjusteau, Andre; Oraevsky, Alexander

    2008-02-01

    In an effort of developing clinical LANTCET (laser-activated nano-thermolysis as cell elimination technology) we achieved selective destruction of individual tumor cells through laser generation of vapor microbubbles around clusters of light absorbing gold nanorods (GNR) selectively formed in target tumor cells. Among all gold nanoparticles, nanorods offer the highest optical absorption in the near-infrared. We applied covalent conjugates of gold nanorods with targeting vectors such as monoclonal antibodies CD33 (specific for Acute Myeloid Leukemia), while GNR conjugates with polyethylene-glycol (PEG) were used as nonspecific targeting control. GNR clusters were formed inside the tumor cells at 37 °C due to endocytosis of large concentration of nanorods accumulated on the surface of tumor cells targeted at 4 °C. Formation of GNR clusters significantly reduces the threshold of tumor cell damage making LANTCET safe for normal cells. Appearance of GNR clusters was verified directly with optical resonance scattering microscopy. LANTCET was performed in vitro with living cells of (1) model myeloid K562 cells (CD33 positive), (2) primary human bone marrow CD33-positive blast cells from patients diagnosed with acute myeloid leukemia. Laser-induced microbubbles were generated and detected with a photothermal microscope equipped with a tunable Ti-Sa pulsed laser. GNT cluster formation caused a 100-fold decrease in the threshold optical fluence for laser microbubble generation in tumor cells compared with that in normal cells under the same targeting and irradiation conditions. Combining imaging based on resonance optical scattering with photothermal imaging of microbubbles, we developed a method for detection, image-guided treatment and monitoring of LANTCET. Pilot experiments were performed in flow mode bringing LANTCET closer to reality of clinical procedure of purging tumor cells from bone marrow grafts.

  16. Inertial cavitation threshold of nested microbubbles.

    PubMed

    Wallace, N; Dicker, S; Lewin, Peter; Wrenn, S P

    2015-04-01

    Cavitation of ultrasound contrast agents (UCAs) promotes both beneficial and detrimental bioeffects in vivo (Radhakrishnan et al., 2013) [1]. The ability to determine the inertial cavitation threshold of UCA microbubbles has potential application in contrast imaging, development of therapeutic agents, and evaluation of localized effects on the body (Ammi et al., 2006) [2]. This study evaluates a novel UCA and its inertial cavitation behavior as determined by a home built cavitation detection system. Two 2.25 MHz transducers are placed at a 90° angle to one another where one transducer is driven by a high voltage pulser and the other transducer receives the signal from the oscillating microbubble. The sample chamber is placed in the overlap of the focal region of the two transducers where the microbubbles are exposed to a pulser signal consisting of 600 pulse trains per experiment at a pulse repetition frequency of 5 Hz where each train has four pulses of four cycles. The formulation being analyzed is comprised of an SF6 microbubble coated by a DSPC PEG-3000 monolayer nested within a poly-lactic acid (PLA) spherical shell. The effect of varying shell diameters and microbubble concentration on cavitation threshold profile for peak negative pressures ranging from 50 kPa to 2 MPa are presented and discussed in this paper. The nesting shell decreases inertial cavitation events from 97.96% for an un-nested microbubble to 19.09% for the same microbubbles nested within a 2.53 μm shell. As shell diameter decreases, the percentage of inertially cavitating microbubbles also decreases. For nesting formulations with average outer capsule diameters of 20.52, 14.95, 9.95, 5.55, 2.53, and 1.95 μm, the percentage of sample destroyed at 1 MPa was 51.02, 38.94, 33.25, 25.27, 19.09, and 5.37% respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. A Lipopeptide-Based αvβ₃ Integrin-Targeted Ultrasound Contrast Agent for Molecular Imaging of Tumor Angiogenesis.

    PubMed

    Yan, Fei; Xu, Xiuxia; Chen, Yihan; Deng, Zhiting; Liu, Hongmei; Xu, Jianrong; Zhou, Jie; Tan, Guanghong; Wu, Junru; Zheng, Hairong

    2015-10-01

    The design and fabrication of targeted ultrasound contrast agents are key factors in the success of ultrasound molecular imaging applications. Here, we introduce a transformable αvβ3 integrin-targeted microbubble (MB) by incorporation of iRGD-lipopeptides into the MB membrane for non-invasive ultrasound imaging of tumor angiogenesis. First, the iRGD-lipopeptides were synthesized by conjugating iRGD peptides to distearoylphosphatidylethanolamine-polyethylene glycol 2000-maleimide. The resulting iRGD-lipopeptides were used for fabrication of the iRGD-carrying αvβ3 integrin-targeted MBs (iRGD-MBs). The binding specificity of iRGD-MBs for endothelial cells was found to be significantly stronger than that of control MBs (p < 0.01) under in vitro static and dynamic conditions. The binding of iRGD-MBs on the endothelial cells was competed off by pre-incubation with the anti-αv or anti-β3 antibody (p < 0.01). Ultrasound images taken of mice bearing 4T1 breast tumors after intravenous injections of iRGD-MBs or control MBs revealed strong contrast enhancement within the tumors from iRGD-MBs but not from the control MBs; the mean acoustic signal intensity was 10.71 ± 2.75 intensity units for iRGD-MBs versus 1.13 ± 0.18 intensity units for the control MBs (p < 0.01). The presence of αvβ3 integrin was confirmed by immunofluorescence staining. These data indicate that iRGD-MBs can be used as an ultrasound imaging probe for the non-invasive molecular imaging of tumor angiogenesis, and may have further implications for ultrasound image-guided tumor targeting drug delivery. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. All rights reserved.

  18. Acoustic Studies on Nanodroplets, Microbubbles and Liposomes

    NASA Astrophysics Data System (ADS)

    Kumar, Krishna Nandan

    in vitro study aimed at developing an ultrasound-aided noninvasive pressure estimation technique using contrast agents-DefinityRTM, a lipid coated microbubble, and an experimental PLA (Poly lactic acid) microbubbles. Scattered responses from these bubbles have been measured in vitro as a function of ambient pressure using a 3.5 MHz acoustic excitation of varying amplitude. At an acoustic pressure of 670 kPa, Definity RTM microbubbles showed a linear decrease in subharmonic signal with increasing ambient pressure, registering a 12dB reduction at an overpressure of 120 mm Hg. Ultrasound contrast microbubbles experience widely varying ambient blood pressure in different organs, which can also change due to diseases. Pressure change can alter the material properties of the encapsulation of these microbubbles. Here the characteristic rheological parameters of contrast agent Definity and Targestar are determined by varying the ambient pressure (in a physiologically relevant range 0-200 mmHg). Four different interfacial rheological models are used to characterize the microbubbles. Both the contrast agents show an increase in their interfacial dilatational viscosity and interfacial dilatational elasticity with ambient pressure. It has been well established that liposomes prepared following a careful multi-step procedure can be made echogenic. Our group as well as others experimentally demonstrated that freeze-drying in the presence of mannitol is a crucial component to ensure echogenicity. Here, we showed that freeze-dried aqueous solutions of excipients such as mannitol, meso-erythritol, glycine, and glucose that assume a crystalline state, when dispersed in water creates bubbles and are echogenic even without any lipids. We also present an explanation for the bubble generation process because of dissolution of mannitol.

  19. The Thrombolytic Effect of Diagnostic Ultrasound-Induced Microbubble Cavitation in Acute Carotid Thromboembolism.

    PubMed

    Porter, Thomas R; Xie, Feng; Lof, John; Powers, Jeffry; Vignon, Francois; Shi, William; White, Matthew

    2017-08-01

    Acute ischemic stroke is often due to thromboembolism forming over ruptured atherosclerotic plaque in the carotid artery (CA). The presence of intraluminal CA thrombus is associated with a high risk of thromboembolic cerebral ischemic events. The cavitation induced by diagnostic ultrasound high mechanical index (MI) impulses applied locally during a commercially available intravenous microbubble infusion has dissolved intravascular thrombi, especially when using longer pulse durations. The beneficial effects of this in acute carotid thromboembolism is not known. An oversized balloon injury was created in the distal extracranial common CA of 38 porcine carotid arteries. After this, a 70% to 80% stenosis was created in the mid common CA proximal to the injury site using partial balloon inflation. Acute thrombotic CA occlusions were created just distal to the balloon catheter by injecting fresh autologous arterial thrombi. After angiographic documentation of occlusion, the common carotid thrombosis was treated with either diagnostic low MI imaging alone (0.2 MI; Philips S5-1) applied through a tissue mimicking phantom (TMP) or intermittent diagnostic high MI stable cavitation (SC)-inducing impulses with a longer pulse duration (0.8 MI; 20 microseconds' pulse duration) or inertial cavitation (IC) impulses (1.2 MI; 20 microseconds' pulse duration). All treatment times were for 30 minutes. Intravenous ultrasound contrast (2% Definity; Lantheus Medical) was infused during the treatment period. Angiographic recanalization in 4 intracranial and extracranial vessels downstream from the CA occlusion (auricular, ascending pharyngeal, buccinator, and maxillary) was assessed with both magnetic resonance 3-dimensional time-of-flight and phase contrast angiography. All magnetic resonance images were interpreted by an independent neuroradiologist using the thrombolysis in cerebral infarction (TICI) scoring system. By phase contrast angiography, at least mild recanalization (TICI 2a

  20. Ultrasound Molecular Imaging: Moving Towards Clinical Translation

    PubMed Central

    Abou-Elkacem, Lotfi; Bachawal, Sunitha V.; Willmann, Jürgen K.

    2015-01-01

    Ultrasound is a widely available, cost-effective, real-time, non-invasive and safe imaging modality widely used in the clinic for anatomical and functional imaging. With the introduction of novel molecularly-targeted ultrasound contrast agents, another dimension of ultrasound has become a reality: diagnosing and monitoring pathological processes at the molecular level. Most commonly used ultrasound molecular imaging contrast agents are micron sized, gas-containing microbubbles functionalized to recognize and attach to molecules expressed on inflamed or angiogenic vascular endothelial cells. There are several potential clinical applications currently being explored including earlier detection, molecular profiling, and monitoring of cancer, as well as visualization of ischemic memory in transient myocardial ischemia, monitoring of disease activity in inflammatory bowel disease, and assessment of arteriosclerosis. Recently, a first clinical grade ultrasound contrast agent (BR55), targeted at a molecule expressed in neoangiogenesis (vascular endothelial growth factor receptor type 2; VEGFR2) has been introduced and safety and feasibility of VEGFR2-targeted ultrasound imaging is being explored in first inhuman clinical trials in various cancer types. This review describes the design of ultrasound molecular imaging contrast agents, imaging techniques, and potential future clinical applications of ultrasound molecular imaging. PMID:25851932

  1. Activation of microbubbles by low-intensity pulsed ultrasound enhances the cytotoxicity of curcumin involving apoptosis induction and cell motility inhibition in human breast cancer MDA-MB-231 cells.

    PubMed

    Li, Yixiang; Wang, Pan; Chen, Xiyang; Hu, Jianmin; Liu, Yichen; Wang, Xiaobing; Liu, Quanhong

    2016-11-01

    Ultrasound and microbubbles-mediated drug delivery has become a promising strategy to promote drug delivery and its therapeutic efficacy. The aim of this research was to assess the effects of microbubbles (MBs)-combined low-intensity pulsed ultrasound (LPUS) on the delivery and cytotoxicity of curcumin (Cur) to human breast cancer MDA-MB-231 cells. Under the experimental condition, MBs raised the level of acoustic cavitation and enhanced plasma membrane permeability; and cellular uptake of Cur was notably improved by LPUS-MBs treatment, aggravating Cur-induced MDA-MB-231 cells death. The combined treatment markedly caused more obvious changes of cell morphology, F-actin cytoskeleton damage and cell migration inhibition. Our results demonstrated that combination of MBs and LPUS may be an efficient strategy for improving anti-tumor effect of Cur, suggesting a potential effective method for antineoplastic therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Low-intensity focused ultrasound mediated localized drug delivery for liver tumors in rabbits.

    PubMed

    Gong, Yuping; Wang, Zhigang; Dong, Guifang; Sun, Yang; Wang, Xi; Rong, Yue; Li, Maoping; Wang, Dong; Ran, Haitao

    2016-09-01

    To explore the antitumor effects of low-intensity focused ultrasound (LIFU) mediated localized drug delivery of adriamycin-microbubble-PLGA nanoparticle complexes on rabbits VX2 liver tumor. ADM-NMCs were prepared by covalent linking of ADM-PLGA nanoparticles (ADM-NPs) to the shell of the microbubbles. A fixed water bag filled with microbubbles was subjected to LIFU and non-focused ultrasound respectively, and the ultrasound images of which were recorded before and after ultrasonication. A total of 54 VX2 liver tumor-burdened rabbits were divided into six groups randomly, including control, ADM-NPs combined with LIFU, microbubbles combined with LIFU, ADM-NPs and microbubbles combined with LIFU, ADM-NMCs combined with LIFU and ADM-NMCs combined with Non-FUS. The tumor volume and volume inhibition rate (VIR) of tumor progression were calculated and compared. Apoptotic cells were labeled by terminal deoxyuridine nick end. Proliferating cell nuclear antigen was detected by immunohistochemistry. The median survival time of the animals were recorded and compared. ADM-NMCs were successfully prepared with an average diameter of 1721 nm. The highest VIR and apoptotic index (AI) were found in the group of ADM-NMCs combined with LIFU while the lowest proliferating index (PI) was simultaneously observed in this group. The median survival time of the rabbits in the ADM-NMCs combined with LIFU group was the longest (71days) among all groups. ADM-NMCs combined with LIFU could inhibit the rabbits VX2 liver tumor progress by delaying the tumor proliferation and accelerating apoptosis, which presents a novel process for liver tumor targeting chemotherapy.

  3. Interleukin 16- (IL-16-) Targeted Ultrasound Imaging Agent Improves Detection of Ovarian Tumors in Laying Hens, a Preclinical Model of Spontaneous Ovarian Cancer.

    PubMed

    Barua, Animesh; Yellapa, Aparna; Bahr, Janice M; Adur, Malavika K; Utterback, Chet W; Bitterman, Pincas; Basu, Sanjib; Sharma, Sameer; Abramowicz, Jacques S

    2015-01-01

    Limited resolution of transvaginal ultrasound (TVUS) scanning is a significant barrier to early detection of ovarian cancer (OVCA). Contrast agents have been suggested to improve the resolution of TVUS scanning. Emerging evidence suggests that expression of interleukin 16 (IL-16) by the tumor epithelium and microvessels increases in association with OVCA development and offers a potential target for early OVCA detection. The goal of this study was to examine the feasibility of IL-16-targeted contrast agents in enhancing the intensity of ultrasound imaging from ovarian tumors in hens, a model of spontaneous OVCA. Contrast agents were developed by conjugating biotinylated anti-IL-16 antibodies with streptavidin coated microbubbles. Enhancement of ultrasound signal intensity was determined before and after injection of contrast agents. Following scanning, ovarian tissues were processed for the detection of IL-16 expressing cells and microvessels. Compared with precontrast, contrast imaging enhanced ultrasound signal intensity significantly in OVCA hens at early (P < 0.05) and late stages (P < 0.001). Higher intensities of ultrasound signals in OVCA hens were associated with increased frequencies of IL-16 expressing cells and microvessels. These results suggest that IL-16-targeted contrast agents improve the visualization of ovarian tumors. The laying hen may be a suitable model to test new imaging agents and develop targeted anti-OVCA therapeutics.

  4. Photoacoustic/ultrasound dual-modality contrast agent and its application to thermotherapy.

    PubMed

    Wang, Yu-Hsin; Liao, Ai-Ho; Chen, Jui-Hao; Wang, Churng-Ren Chris; Li, Pai-Chi

    2012-04-01

    This study investigates a photoacoustic/ultrasound dual-modality contrast agent, including extending its applications from image-contrast enhancement to combined diagnosis and therapy with site-specific targeting. The contrast agent comprises albumin-shelled microbubbles with encapsulated gold nanorods (AuMBs). The gas-filled microbubbles, whose diameters range from submicrometer to several micrometers, are not only echogenic but also can serve as drug-delivery vehicles. The gold nanorods are used to enhance the generation of both photoacoustic and photothermal signals. The optical absorption peak of the gold nanorods is tuned to 760 nm and is invariant after microbubble encapsulation. Dual-modality contrast enhancement is first described here, and the applications to cellular targeting and laser-induced thermotherapy in a phantom are demonstrated. Photoacoustic imaging can be used to monitor temperature increases during the treatment. The targeting capability of AuMBs was verified, and the temperature increased by 26°C for a laser power of 980 mW, demonstrating the potential of combined diagnosis and therapy with the dual-modality agent. Targeted photo- or acoustic-mediated delivery is also possible.

  5. Ultrasound-mediated gene delivery of naked plasmid DNA in skeletal muscles: a case for bolus injections.

    PubMed

    Sanches, Pedro Gomes; Mühlmeister, Mareike; Seip, Ralf; Kaijzel, Eric; Löwik, Clemens; Böhmer, Marcel; Tiemann, Klaus; Grüll, Holger

    2014-12-10

    Localized gene delivery has many potential clinical applications. However, the nucleic acids (e.g. pDNA and siRNA) are incapable of passively crossing the endothelium, cell membranes and other biological barriers which must be crossed to reach their intracellular targets. A possible solution is the use of ultrasound to burst circulating microbubbles inducing transient permeabilization of surrounding tissues which mediates nucleic acid extravasation and cellular uptake. In this study we report on an optimization of the ultrasound gene delivery technique. Naked pDNA (200 μg) encoding luciferase and SonoVue® microbubbles were co-injected intravenously in mice. The hindlimb skeletal muscles were exposed to ultrasound from a non-focused transducer (1 MHz, 1.25 MPa, PRI 30s) and injection protocols and total amounts as well as ultrasound parameters were systemically varied. Gene expression was quantified relative to a control using a bioluminescence camera system at day 7 after sonication. Bioluminescence ratios in sonicated/control muscles of up to 101× were obtained. In conclusion, we were able to specifically deliver genetic material to the selected skeletal muscles and overall, the use of bolus injections and high microbubble numbers resulted in increased gene expression reflected by stronger bioluminescence signals. Based on our data, bolus injections seem to be required in order to achieve transient highly concentrated levels of nucleic acids and microbubbles at the tissue of interest which upon ultrasound exposure should lead to increased levels of gene delivery. Thus, ultrasound mediated gene delivery is a promising technique for the clinical translation of localized drug delivery. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. On the dynamics of StemBells: Microbubble-conjugated stem cells for ultrasound-controlled delivery

    NASA Astrophysics Data System (ADS)

    Kokhuis, Tom J. A.; Naaijkens, Benno A.; Juffermans, Lynda J. M.; Kamp, Otto; van der Steen, Antonius F. W.; Versluis, Michel; de Jong, Nico

    2017-07-01

    The use of stem cells for regenerative tissue repair is promising but hampered by the low number of cells delivered to the site of injury. To increase the delivery, we propose a technique in which stem cells are linked to functionalized microbubbles, creating echogenic complex dubbed StemBells. StemBells are highly susceptible to acoustic radiation force which can be employed after injection to push the StemBells locally to the treatment site. To optimally benefit from the delivery technique, a thorough characterization of the dynamics of StemBells during ultrasound exposure is needed. Using high-speed optical imaging, we study the dynamics of StemBells as a function of the applied frequency from which resonance curves were constructed. A theoretical model, based on a modified Rayleigh-Plesset type equation, captured the experimental resonance characteristics and radial dynamics in detail.

  7. Ablation of synovial pannus using microbubble-mediated ultrasonic cavitation in antigen-induced arthritis in rabbits.

    PubMed

    Qiu, Li; Jiang, Yong; Zhang, Lingyan; Wang, Lei; Luo, Yan

    2012-12-01

    To investigate the ablative effectiveness of microbubble-mediated ultrasonic cavitation for treating synovial pannus and to determine a potential mechanism using the antigen-induced arthritis model (AIA). Ultrasonic ablation was performed on the knee joints of AIA rabbits using optimal ultrasonic ablative parameters. Rabbits with antigen-induced arthritis were randomly assigned to 4 groups: (1) the ultrasound (US) + microbubble group; (2) the US only group; (3) the microbubble only group, and (4) the control group. At 1 h and 14 days after the first ablation, contrast-enhanced ultrasonography (CEUS) monitoring and pathology synovitis score were used to evaluate the therapeutic effects. Synovial necrosis and microvascular changes were also measured. After the ablation treatment, the thickness of synovium and parameters of time intensity curve including derived peak intensity and area under curve were measured using CEUS, and the pathology synovitis score in the ultrasound + microbubble group was significantly lower than that found in the remaining groups. No damage was observed in the surrounding normal tissues. The mechanism underlying the ultrasonic ablation was related to microthrombosis and microvascular rupture that resulted in synovial necrosis. The results suggest that microbubble-mediated ultrasonic cavitation should be applied as a non-invasive strategy for the treatment of synovial pannus in arthritis under optimal conditions.

  8. Experimental and Computational Investigation of Microbubble Production in Microfluidic Flow-Focusing Devices

    NASA Astrophysics Data System (ADS)

    Weber, Michael; Shandas, Robin

    2005-11-01

    Micron-sized bubbles have been effectively used as contrast agents in ultrasound imaging systems and have the potential for many other applications including targeted drug delivery and tumor destruction. The further development of these applications is dependent on precise control of bubble size. Recently, microfluidic flow-focusing systems have emerged as a viable means of producing microbubbles with monodisperse size distributions. These systems focus co-flowing liquid streams surrounding a gas stream through a narrow orifice, producing bubbles in very reproducible manner. In this work, a photopolymerization technique has been used to produce microfludicic flow-focusing devices which were successfully used to produce micron-sized bubbles. The flow dynamics involved in these devices has also been simulated using a volume-of-fluid approach to simultaneously solve the equations of motion for both the gas and liquid phases. Simulations were run with several variations of the flow-focuser geometry (gas inlet width, orifice length, gas-liquid approach angle, etc.) in an effort to produce smaller bubbles and increase the working range of liquid and gas flow rates. These findings are being incorporated into the production of actual devices in an effort to improve the overall effectiveness of the bubble production process.

  9. Targeting distinct myeloid cell populations in vivo using polymers, liposomes and microbubbles.

    PubMed

    Ergen, Can; Heymann, Felix; Al Rawashdeh, Wa'el; Gremse, Felix; Bartneck, Matthias; Panzer, Ulf; Pola, Robert; Pechar, Michal; Storm, Gert; Mohr, Nicole; Barz, Matthias; Zentel, Rudolf; Kiessling, Fabian; Trautwein, Christian; Lammers, Twan; Tacke, Frank

    2017-01-01

    Identifying intended or accidental cellular targets for drug delivery systems is highly relevant for evaluating therapeutic and toxic effects. However, limited knowledge exists on the distribution of nano- and micrometer-sized carrier systems at the cellular level in different organs. We hypothesized that clinically relevant carrier materials, differing in composition and size, are able to target distinct myeloid cell subsets that control inflammatory processes, such as macrophages, neutrophils, monocytes and dendritic cells. Therefore, we analyzed the biodistribution and in vivo cellular uptake of intravenously injected poly(N-(2-hydroxypropyl) methacrylamide) polymers, PEGylated liposomes and poly(butyl cyanoacrylate) microbubbles in mice, using whole-body imaging (computed tomography - fluorescence-mediated tomography), intra-organ imaging (intravital multi-photon microscopy) and cellular analysis (flow cytometry of blood, liver, spleen, lung and kidney). While the three carrier materials shared accumulation in tissue macrophages in liver and spleen, they notably differed in uptake by other myeloid subsets. Kupffer cells and splenic red pulp macrophages rapidly take up microbubbles. Liposomes efficiently reach dendritic cells in liver, lung and kidney. Polymers exhibit the longest circulation half-life and target endothelial cells in the liver, neutrophils and alveolar macrophages. The identification of such previously unrecognized target cell populations might open up new avenues for more efficient drug delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Counter-propagating wave interaction for contrast-enhanced ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Renaud, G.; Bosch, J. G.; ten Kate, G. L.; Shamdasani, V.; Entrekin, R.; de Jong, N.; van der Steen, A. F. W.

    2012-11-01

    Most techniques for contrast-enhanced ultrasound imaging require linear propagation to detect nonlinear scattering of contrast agent microbubbles. Waveform distortion due to nonlinear propagation impairs their ability to distinguish microbubbles from tissue. As a result, tissue can be misclassified as microbubbles, and contrast agent concentration can be overestimated; therefore, these artifacts can significantly impair the quality of medical diagnoses. Contrary to biological tissue, lipid-coated gas microbubbles used as a contrast agent allow the interaction of two acoustic waves propagating in opposite directions (counter-propagation). Based on that principle, we describe a strategy to detect microbubbles that is free from nonlinear propagation artifacts. In vitro images were acquired with an ultrasound scanner in a phantom of tissue-mimicking material with a cavity containing a contrast agent. Unlike the default mode of the scanner using amplitude modulation to detect microbubbles, the pulse sequence exploiting counter-propagating wave interaction creates no pseudoenhancement behind the cavity in the contrast image.

  11. Targeted disruption of the blood brain barrier with focused ultrasound: association with cavitation activity

    NASA Astrophysics Data System (ADS)

    McDannold, N.; Vykhodtseva, N.; Hynynen, K.

    2006-02-01

    Acoustic emission was monitored during focused ultrasound exposures in conjunction with an ultrasound contrast agent (Optison®) in order to determine if cavitation activity is associated with the induction of blood-brain barrier disruption (BBBD). Thirty-four locations were sonicated (frequency: 260 kHz) at targets 10 mm deep in rabbit brain (N = 9). The sonications were applied at peak pressure amplitudes ranging from 0.11 to 0.57 MPa (burst length: 10 ms; repetition frequency of 1 Hz; duration: 20 s). Acoustic emission was recorded with a focused passive cavitation detector. This emission was recorded at each location during sonications with and without Optison®. Detectable wideband acoustic emission was observed only at 0.40 and 0.57 MPa. BBBD was observed in contrast MRI after sonication at 0.29-0.57 MPa. The appearance of small regions of extravasated erythrocytes appeared to be associated with this wideband emission signal. The results thus suggest that BBBD resulting from focused ultrasound pulses in the presence of Optison® can occur without indicators for inertial cavitation in vivo, wideband emission and extravasation. If inertial cavitation is not responsible for the BBBD, other ultrasound/microbubble interactions are likely the source. A significant increase in the emission signal due to Optison® at the second and third harmonics of the ultrasound driving frequency was found to correlate with BBBD and might be useful as an online method to indicate when the disruption occurs.

  12. State-of-the-Art Materials for Ultrasound-Triggered Drug Delivery

    PubMed Central

    Sirsi, Shashank; Borden, Mark

    2014-01-01

    Ultrasound is a unique and exciting theranostic modality that can be used to track drug carriers, trigger drug release and improve drug deposition with high spatial precision. In this review, we briefly describe the mechanisms of interaction between drug carriers and ultrasound waves, including cavitation, streaming and hyperthermia, and how those interactions can promote drug release and tissue uptake. We then discuss the rational design of some state-of-the-art materials for ultrasound-triggered drug delivery and review recent progress for each drug carrier, focusing on the delivery of chemotherapeutic agents such as doxorubicin. These materials include nanocarrier formulations, such as liposomes and micelles, designed specifically for ultrasound-triggered drug release, as well as microbubbles, microbubble-nanocarrier hybrids, microbubble-seeded hydrogels and phase-change agents. PMID:24389162

  13. Ultrasound molecular imaging: Moving toward clinical translation.

    PubMed

    Abou-Elkacem, Lotfi; Bachawal, Sunitha V; Willmann, Jürgen K

    2015-09-01

    Ultrasound is a widely available, cost-effective, real-time, non-invasive and safe imaging modality widely used in the clinic for anatomical and functional imaging. With the introduction of novel molecularly-targeted ultrasound contrast agents, another dimension of ultrasound has become a reality: diagnosing and monitoring pathological processes at the molecular level. Most commonly used ultrasound molecular imaging contrast agents are micron sized, gas-containing microbubbles functionalized to recognize and attach to molecules expressed on inflamed or angiogenic vascular endothelial cells. There are several potential clinical applications currently being explored including earlier detection, molecular profiling, and monitoring of cancer, as well as visualization of ischemic memory in transient myocardial ischemia, monitoring of disease activity in inflammatory bowel disease, and assessment of arteriosclerosis. Recently, a first clinical grade ultrasound contrast agent (BR55), targeted at a molecule expressed in neoangiogenesis (vascular endothelial growth factor receptor type 2; VEGFR2) has been introduced and safety and feasibility of VEGFR2-targeted ultrasound imaging is being explored in first inhuman clinical trials in various cancer types. This review describes the design of ultrasound molecular imaging contrast agents, imaging techniques, and potential future clinical applications of ultrasound molecular imaging. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Contrast-enhanced ultrasound imaging and in vivo circulatory kinetics with low-boiling-point nanoscale phase-change perfluorocarbon agents.

    PubMed

    Sheeran, Paul S; Rojas, Juan D; Puett, Connor; Hjelmquist, Jordan; Arena, Christopher B; Dayton, Paul A

    2015-03-01

    Many studies have explored phase-change contrast agents (PCCAs) that can be vaporized by an ultrasonic pulse to form microbubbles for ultrasound imaging and therapy. However, few investigations have been published on the utility and characteristics of PCCAs as contrast agents in vivo. In this study, we examine the properties of low-boiling-point nanoscale PCCAs evaluated in vivo and compare data with those for conventional microbubbles with respect to contrast generation and circulation properties. To do this, we develop a custom pulse sequence to vaporize and image PCCAs using the Verasonics research platform and a clinical array transducer. Results indicate that droplets can produce contrast enhancement similar to that of microbubbles (7.29 to 18.24 dB over baseline, depending on formulation) and can be designed to circulate for as much as 3.3 times longer than microbubbles. This study also reports for the first time the ability to capture contrast washout kinetics of the target organ as a measure of vascular perfusion. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  15. Transfection effect of microbubbles on cells in superposed ultrasound waves and behavior of cavitation bubble.

    PubMed

    Kodama, Tetsuya; Tomita, Yukio; Koshiyama, Ken-Ichiro; Blomley, Martin J K

    2006-06-01

    The combination of ultrasound and ultrasound contrast agents (UCAs) is able to induce transient membrane permeability leading to direct delivery of exogenous molecules into cells. Cavitation bubbles are believed to be involved in the membrane permeability; however, the detailed mechanism is still unknown. In the present study, the effects of ultrasound and the UCAs, Optison on transfection in vitro for different medium heights and the related dynamic behaviors of cavitation bubbles were investigated. Cultured CHO-E cells mixed with reporter genes (luciferase or beta-gal plasmid DNA) and UCAs were exposed to 1 MHz ultrasound in 24-well plates. Ultrasound was applied from the bottom of the well and reflected at the free surface of the medium, resulting in the superposition of ultrasound waves within the well. Cells cultured on the bottom of 24-well plates were located near the first node (displacement node) of the incident ultrasound downstream. Transfection activity was a function determined with the height of the medium (wave traveling distance), as well as the concentration of UCAs and the exposure time was also determined with the concentration of UCAs and the exposure duration. Survival fraction was determined by MTT assay, also changes with these values in the reverse pattern compared with luciferase activity. With shallow medium height, high transfection efficacy and high survival fraction were obtained at a low concentration of UCAs. In addition, capillary waves and subsequent atomized particles became significant as the medium height decreased. These phenomena suggested cavitation bubbles were being generated in the medium. To determine the effect of UCAs on bubble generation, we repeated the experiments using crushed heat-treated Optison solution instead of the standard microbubble preparation. The transfection ratio and survival fraction showed no additional benefit when ultrasound was used. These results suggested that cavitation bubbles created by the

  16. Fluid viscosity affects the fragmentation and inertial cavitation threshold of lipid encapsulated microbubbles

    PubMed Central

    Helfield, Brandon; Black, John J.; Qin, Bin; Pacella, John; Chen, Xucai; Villanueva, Flordeliza S.

    2015-01-01

    Ultrasound and microbubble optimization studies for therapeutic applications are often conducted in water/saline, with a fluid viscosity of 1 cP. In an in vivo context, microbubbles are situated in blood, a more viscous fluid (~4 cP). In this study, ultra-high speed microscopy and passive cavitation approaches were employed to investigate the effect of fluid viscosity on microbubble behavior at 1 MHz subject to high pressures (0.25 – 2 MPa). The propensity for individual microbubble (n=220) fragmentation was shown to significantly decrease in 4 cP fluid as compared to 1 cP fluid, despite achieving similar maximum radial excursions. Microbubble populations diluted in 4 cP fluid exhibited decreased wideband emissions (up to 10.2 times), and increasingly distinct harmonic emission peaks (e.g. ultraharmonic) with increasing pressure as compared to 1 cP fluid. These results suggest that in vitro studies should consider an evaluation using physiologic viscosity perfusate before transitioning to in vivo evaluations. PMID:26674676

  17. MR-Guided Unfocused Ultrasound Disruption of the Rat Blood-Brain Barrier

    NASA Astrophysics Data System (ADS)

    Townsend, Kelly A.; King, Randy L.; Zaharchuk, Greg; Pauly, Kim Butts

    2011-09-01

    Therapeutic ultrasound with microbubbles can temporarily disrupt the blood-brain barrier (BBB) for drug delivery. Contrast-enhanced MRI (CE-MRI) can visualize gadolinium passage into the brain, indicating BBB opening. Previous studies used focused ultrasound, which is appropriate for the targeted delivery of drugs. The purpose of this study was to investigate unfocused ultrasound for BBB opening across the whole brain. In 10 rats, gadolinium-based MR contrast agent (Gd; 0.25 ml) was administered concurrent with ultrasound microbubbles (Optison, 0.25 ml) and circulated for 20 sec before sonication. A 753 kHz planar PZT transducer, diameter 1.8 cm, sonicated each rat brain with supplied voltage of 300, 400, or 500 mVpp for 10 sec in continuous wave mode, or at 500 mVpp at 20% duty cycle at 10 Hz for 30-300 sec. After sonication, coronal T1-weighted FSE CE-MRI images were acquired with a 3in surface coil. The imaging protocol was repeated 3-5 times after treatment. One control animal was given Gd and microbubbles, but not sonicated, and the other was given Gd and sonicated without microbubbles. Signal change in ROIs over the muscle, mesencephalon/ventricles, and the cortex/striatum were measured at 3-5 time points up to 36 min after sonication. Signal intensity was converted to % signal change compared to the initial image. In the controls, CE-MRI showed brightening of surrounding structures, but not the brain. In the continuous wave subjects, cortex/striatum signal did not increase, but ventricle/mesenchephalon signal did. Those that received pulsed sonications showed signal increases in both the cortex/striatum and ventricles/mesenchephalon. In conclusion, after pulsed unfocused ultrasound sonication, the BBB is disrupted across the whole brain, including cortex and deep grey matter, while continuous wave sonication affects only the ventricles and possibly deeper structures, without opening the cortex BBB. As time passes, the timeline of Gd passage into the brain

  18. Ultrasound Microbubble Treatment Enhances Clathrin-Mediated Endocytosis and Fluid-Phase Uptake through Distinct Mechanisms.

    PubMed

    Fekri, Farnaz; Delos Santos, Ralph Christian; Karshafian, Raffi; Antonescu, Costin N

    2016-01-01

    Drug delivery to tumors is limited by several factors, including drug permeability of the target cell plasma membrane. Ultrasound in combination with microbubbles (USMB) is a promising strategy to overcome these limitations. USMB treatment elicits enhanced cellular uptake of materials such as drugs, in part as a result of sheer stress and formation of transient membrane pores. Pores formed upon USMB treatment are rapidly resealed, suggesting that other processes such as enhanced endocytosis may contribute to the enhanced material uptake by cells upon USMB treatment. How USMB regulates endocytic processes remains incompletely understood. Cells constitutively utilize several distinct mechanisms of endocytosis, including clathrin-mediated endocytosis (CME) for the internalization of receptor-bound macromolecules such as Transferrin Receptor (TfR), and distinct mechanism(s) that mediate the majority of fluid-phase endocytosis. Tracking the abundance of TfR on the cell surface and the internalization of its ligand transferrin revealed that USMB acutely enhances the rate of CME. Total internal reflection fluorescence microscopy experiments revealed that USMB treatment altered the assembly of clathrin-coated pits, the basic structural units of CME. In addition, the rate of fluid-phase endocytosis was enhanced, but with delayed onset upon USMB treatment relative to the enhancement of CME, suggesting that the two processes are distinctly regulated by USMB. Indeed, vacuolin-1 or desipramine treatment prevented the enhancement of CME but not of fluid phase endocytosis upon USMB, suggesting that lysosome exocytosis and acid sphingomyelinase, respectively, are required for the regulation of CME but not fluid phase endocytosis upon USMB treatment. These results indicate that USMB enhances both CME and fluid phase endocytosis through distinct signaling mechanisms, and suggest that strategies for potentiating the enhancement of endocytosis upon USMB treatment may improve targeted

  19. Development of therapeutic microbubbles for enhancing ultrasound-mediated gene delivery.

    PubMed

    Sun, Ryan R; Noble, Misty L; Sun, Samuel S; Song, Shuxian; Miao, Carol H

    2014-05-28

    Ultrasound (US)-mediated gene delivery has emerged as a promising non-viral method for safe and selective gene delivery. When enhanced by the cavitation of microbubbles (MBs), US exposure can induce sonoporation that transiently increases cell membrane permeability for localized delivery of DNA. The present study explores the effect of generalizable MB customizations on MB facilitation of gene transfer compared to Definity®, a clinically available contrast agent. These modifications are 1) increased MB shell acyl chain length (RN18) for elevated stability and 2) addition of positive charge on MB (RC5K) for greater DNA associability. The MB types were compared in their ability to facilitate transfection of luciferase and GFP reporter plasmid DNA in vitro and in vivo under various conditions of US intensity, MB dosage, and pretreatment MB-DNA incubation. The results indicated that both RN18 and RC5K were more efficient than Definity®, and that the cationic RC5K can induce even greater transgene expression by increasing payload capacity with prior DNA incubation without compromising cell viability. These findings could be applied to enhance MB functions in a wide range of therapeutic US/MB gene and drug delivery approach. With further designs, MB customizations have the potential to advance this technology closer to clinical application. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Non-invasive and Non-destructive Characterization of Tissue Engineered Constructs Using Ultrasound Imaging Technologies: A Review.

    PubMed

    Kim, Kang; Wagner, William R

    2016-03-01

    With the rapid expansion of biomaterial development and coupled efforts to translate such advances toward the clinic, non-invasive and non-destructive imaging tools to evaluate implants in situ in a timely manner are critically needed. The required multi-level information is comprehensive, including structural, mechanical, and biological changes such as scaffold degradation, mechanical strength, cell infiltration, extracellular matrix formation and vascularization to name a few. With its inherent advantages of non-invasiveness and non-destructiveness, ultrasound imaging can be an ideal tool for both preclinical and clinical uses. In this review, currently available ultrasound imaging technologies that have been applied in vitro and in vivo for tissue engineering and regenerative medicine are discussed and some new emerging ultrasound technologies and multi-modality approaches utilizing ultrasound are introduced.

  1. Non-invasive and non-destructive characterization of tissue engineered constructs using ultrasound imaging technologies: a review

    PubMed Central

    Kim, Kang; Wagner, William R.

    2015-01-01

    With the rapid expansion of biomaterial development and coupled efforts to translate such advances toward the clinic, non-invasive and non-destructive imaging tools to evaluate implants in situ in a timely manner are critically needed. The required multilevel information is comprehensive, including structural, mechanical, and biological changes such as scaffold degradation, mechanical strength, cell infiltration, extracellular matrix formation and vascularization to name a few. With its inherent advantages of non-invasiveness and non-destructiveness, ultrasound imaging can be an ideal tool for both preclinical and clinical uses. In this review, currently available ultrasound imaging technologies that have been applied in vitro and in vivo for tissue engineering and regenerative medicine are discussed and some new emerging ultrasound technologies and multi-modality approaches utilizing ultrasound are introduced. PMID:26518412

  2. Dual-Frequency Piezoelectric Transducers for Contrast Enhanced Ultrasound Imaging

    PubMed Central

    Martin, K. Heath; Lindsey, Brooks D.; Ma, Jianguo; Lee, Mike; Li, Sibo; Foster, F. Stuart; Jiang, Xiaoning; Dayton, Paul A.

    2014-01-01

    For many years, ultrasound has provided clinicians with an affordable and effective imaging tool for applications ranging from cardiology to obstetrics. Development of microbubble contrast agents over the past several decades has enabled ultrasound to distinguish between blood flow and surrounding tissue. Current clinical practices using microbubble contrast agents rely heavily on user training to evaluate degree of localized perfusion. Advances in separating the signals produced from contrast agents versus surrounding tissue backscatter provide unique opportunities for specialized sensors designed to image microbubbles with higher signal to noise and resolution than previously possible. In this review article, we describe the background principles and recent developments of ultrasound transducer technology for receiving signals produced by contrast agents while rejecting signals arising from soft tissue. This approach relies on transmitting at a low-frequency and receiving microbubble harmonic signals at frequencies many times higher than the transmitted frequency. Design and fabrication of dual-frequency transducers and the extension of recent developments in transducer technology for dual-frequency harmonic imaging are discussed. PMID:25375755

  3. Dual-frequency piezoelectric transducers for contrast enhanced ultrasound imaging.

    PubMed

    Martin, K Heath; Lindsey, Brooks D; Ma, Jianguo; Lee, Mike; Li, Sibo; Foster, F Stuart; Jiang, Xiaoning; Dayton, Paul A

    2014-11-04

    For many years, ultrasound has provided clinicians with an affordable and effective imaging tool for applications ranging from cardiology to obstetrics. Development of microbubble contrast agents over the past several decades has enabled ultrasound to distinguish between blood flow and surrounding tissue. Current clinical practices using microbubble contrast agents rely heavily on user training to evaluate degree of localized perfusion. Advances in separating the signals produced from contrast agents versus surrounding tissue backscatter provide unique opportunities for specialized sensors designed to image microbubbles with higher signal to noise and resolution than previously possible. In this review article, we describe the background principles and recent developments of ultrasound transducer technology for receiving signals produced by contrast agents while rejecting signals arising from soft tissue. This approach relies on transmitting at a low-frequency and receiving microbubble harmonic signals at frequencies many times higher than the transmitted frequency. Design and fabrication of dual-frequency transducers and the extension of recent developments in transducer technology for dual-frequency harmonic imaging are discussed.

  4. Hemocoagulase Combined with Microbubble-Enhanced Ultrasound Cavitation for Augmented Ablation of Microvasculature in Rabbit VX2 Liver Tumors.

    PubMed

    Yang, Qian; Tang, Peng; He, Guangbin; Ge, Shuping; Liu, Liwen; Zhou, Xiaodong

    2017-08-01

    We investigated a new method for combining microbubble-enhanced ultrasound cavitation (MEUC) with hemocoagulase (HC) atrox. Our goal was to induce embolic effects in the vasculature and combine these with an anti-angiogenic treatment strategy. Fourteen days after being implanted with a single slice of the liver VX2 tumor, rabbits were randomly divided into five groups: (i) a control group injected intra-venously with saline using a micropump; (ii) a group given only an injection of HC; (iii) a group treated only with ultrasound cavitation; (iv) a group treated with MEUC; (v) a group treated with MEUC + HC. Contrast-enhanced ultrasound was performed before treatment and 1 h and 7 d post-treatment to measure tumor size, enhancement and necrosis range. QontraXt software was used to determine the time-intensity curve of tumor blood perfusion and microvascular changes. At 1 h and 7 d after treatment with MEUC + HC, the parameters of the time-intensity curve, which included peak value, regional blood volume, regional blood flow and area under the curve value and which were measured using contrast-enhanced ultrasound, were significantly lower than those of the other treatment groups. The MEUC + HC treatment group exhibited significant growth inhibition relative to the ultrasound cavitation only, HC and MEUC treatment groups. No damage was observed in the surrounding normal tissues. These results support the feasibility of reducing the blood perfusion of rabbit VX2 liver tumors using a new method that combines MEUC and HC. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. All rights reserved.

  5. Identifying the Inertial Cavitation Pressure Threshold and Skull Effects in a Vessel Phantom Using Focused Ultrasound and Microbubbles

    NASA Astrophysics Data System (ADS)

    Tung, Yao-Sheng; Choi, James J.; Konofagou, Elisa E.

    2010-03-01

    Using Focused Ultrasound (FUS) and microbubbles to open the blood-brain barrier (BBB) has been shown promising for brain drug delivery. However, the exact mechanism behind the opening remains unknown. Here, the effects of the murine skull on the threshold of inertial cavitation were investigated. In order to investigate the pressure threshold for inertial cavitation of preformed microbubbles during sonication, passive cavitation detection in conjunction with B-mode imaging was used. A cylindrical vessel with a 610-μm diameter inside a polyacrylamide gel was generated within a polyacrylamide gel to simulate large blood vessels. Definity® (Lantheus Medical Imaging, MA, USA) microbubbles with a 1.1-3.3 μm in diameter at 2.5×107 bubbles/mL were injected into the channel before sonication (frequency: 1.525 MHz; pulse length: 100 cycles; PRF: 10 Hz; sonication duration: 2 s) through an excised mouse skull. A cylindrically focused hydrophone, confocal with the FUS transducer, acted as a passive cavitation detector (PCD) to identify the threshold. A 7.5 MHz linear array with the field-of-view perpendicular to the axial length of the FUS beam was also used to image the occurrence of bubble fragmentation. The broadband spectral response acquired at the passive cavitation detector (PCD) and the B-mode images identified the occurrence and location of the inertial cavitation, respectively. Findings indicated that the peak-rarefactional pressure threshold was approximately equal to 0.45 MPa at the presence or the absence of the skull. However, the skull induced 10-50% lower inertial cavitation dose. Mouse skulls did not affect the pressure threshold of inertial cavitation but resulted in a lower inertial cavitation dose. The broadband response could be captured through the murine skull, so the same PCD setup can be used in future in vivo applications.

  6. Dual-Targeted Theranostic Delivery of miRs Arrests Abdominal Aortic Aneurysm Development.

    PubMed

    Wang, Xiaowei; Searle, Amy Kate; Hohmann, Jan David; Liu, Ao Leo; Abraham, Meike-Kristin; Palasubramaniam, Jathushan; Lim, Bock; Yao, Yu; Wallert, Maria; Yu, Eefang; Chen, Yung-Chih; Peter, Karlheinz

    2018-04-04

    Abdominal aortic aneurysm (AAA) is an often deadly disease without medical, non-invasive treatment options. The upregulation of vascular cell adhesion molecule-1 (VCAM-1) on aortic endothelium provides an early target epitope for a novel biotechnological theranostic approach. MicroRNA-126 was used as a therapeutic agent, based on its capability to downregulate VCAM-1 expression in endothelial cells and thereby reduces leukocyte adhesion and exerts anti-inflammatory effects. Ultrasound microbubbles were chosen as carriers, allowing both molecular imaging as well as targeted therapy of AAA. Microbubbles were coupled with a VCAM-1-targeted single-chain antibody (scFv mVCAM-1 ) and a microRNA-126 mimic (M 126 ) constituting theranostic microbubbles (Targ MB -M 126 ). Targ MB -M 126 downregulates VCAM-1 expression in vitro and in an in vivo acute inflammatory murine model. Most importantly, using Targ MB -M 126 and ultrasound-guided burst delivery of M 126 , the development of AAA in an angiotensin-II-induced mouse model can be prevented. Overall, we describe a unique biotechnological theranostic approach with the potential for early diagnosis and long-sought-after medical therapy of AAA. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Ultrasound-enhanced nanotherapy of pancreatic cancer

    NASA Astrophysics Data System (ADS)

    Rapoport, N.; Nam, K.-H.; Christensen, D. A.; Kennedy, A. M.; Shea, J. E.; Scaife, C. L.

    2010-03-01

    The paper reports in vivo results of ultrasonic nanotherapy of orthotopically grown pancreatic cancer. Phase-shift paclitaxel (PTX) loaded perfluoropentane (PFP) nanoemusions combined with tumor-directed ultrasound have been used with a considerable success for tumor-targeted chemotherapy of gemcitabin (GEM)-refractory pancreatic cancer (PC). The GEM-resistant pancreatic cancer proved sensitive to treatment by a micellar PTX formulation Genexol PM (GEN) andor nanodroplet PTX formulation ndGEN. Due to increased permeability of tumor blood vessels, drug-loaded nanodroplets accumulated in the tumor via passive targeting, which was confirmed by ultrasound imaging. Nanodroplets converted into microbubbles in situ under the action of tumor-directed 1-MHz therapeutic ultrasound. The strongest therapeutic effect was observed for the combination therapy by PTX-loaded nanodroplets, GEM and ultrasound (ndGEN+GEM+ultrasound). This combination therapy resulted in a spectacular tumor regression and in some cases complete tumor resolution. Moreover, formation of metastases was dramatically decreased and ascitis generation was completely suppressed. However for all animal groups, local tumor recurrence was observed after the completion of the treatment indicating that some cancer cells survived the treatment. The recurrent tumors proved more resistant to the repeated therapy than initial tumors.

  8. Enhancement of non-invasive trans-membrane drug delivery using ultrasound and microbubbles during physiologically relevant flow.

    PubMed

    Shamout, Farah E; Pouliopoulos, Antonios N; Lee, Patrizia; Bonaccorsi, Simone; Towhidi, Leila; Krams, Rob; Choi, James J

    2015-09-01

    Sonoporation has been associated with drug delivery across cell membranes and into target cells, yet several limitations have prohibited further advancement of this technology. Higher delivery rates were associated with increased cellular death, thus implying a safety-efficacy trade-off. Meanwhile, there has been no reported study of safe in vitro sonoporation in a physiologically relevant flow environment. The objective of our study was not only to evaluate sonoporation under physiologically relevant flow conditions, such as fluid velocity, shear stress and temperature, but also to design ultrasound parameters that exploit the presence of flow to maximize sonoporation efficacy while minimizing or avoiding cellular damage. Human umbilical vein endothelial cells (EA.hy926) were seeded in flow chambers as a monolayer to mimic the endothelium. A peristaltic pump maintained a constant fluid velocity of 12.5 cm/s. A focused 0.5 MHz transducer was used to sonicate the cells, while an inserted focused 7.5 MHz passive cavitation detector monitored microbubble-seeded cavitation emissions. Under these conditions, propidium iodide, which is normally impermeable to the cell membrane, was traced to determine whether it could enter cells after sonication. Meanwhile, calcein-AM was used as a cell viability marker. A range of focused ultrasound parameters was explored, with several unique bioeffects observed: cell detachment, preservation of cell viability with no membrane penetration, cell death and preservation of cell viability with sonoporation. The parameters were then modified further to produce safe sonoporation with minimal cell death. To increase the number of favourable cavitation events, we lowered the ultrasound exposure pressure to 40 kPapk-neg and increased the number of cavitation nuclei by 50 times to produce a trans-membrane delivery rate of 62.6% ± 4.3% with a cell viability of 95% ± 4.2%. Furthermore, acoustic cavitation analysis showed that the low pressure

  9. Ultrasound contrast agents: an overview.

    PubMed

    Cosgrove, David

    2006-12-01

    With the introduction of microbubble contrast agents, diagnostic ultrasound has entered a new era that allows the dynamic detection of tissue flow of both the macro and microvasculature. Underpinning this development is the fact that gases are compressible, and thus the microbubbles expand and contract in the alternating pressure waves of the ultrasound beam, while tissue is almost incompressible. Special software using multiple pulse sequences separates these signals from those of tissue and displays them as an overlay or on a split screen. This can be done at low acoustic pressures (MI<0.3) so that the microbubbles are not destroyed and scanning can continue in real time. The clinical roles of contrast enhanced ultrasound scanning are expanding rapidly. They are established in echocardiography to improve endocardial border detection and are being developed for myocardial perfusion. In radiology, the most important application is the liver, especially for focal disease. The approach parallels that of dynamic CT or MRI but ultrasound has the advantages of high spatial and temporal resolution. Thus, small lesions that can be indeterminate on CT can often be studied with ultrasound, and situations where the flow is very rapid (e.g., focal nodular hyperplasia where the first few seconds of arterial perfusion may be critical to making the diagnosis) are readily studied. Microbubbles linger in the extensive sinusoidal space of normal liver for several minutes whereas they wash out rapidly from metastases, which have a low vascular volume and thus appear as filling defects. The method has been shown to be as sensitive as three-phase CT. Microbubbles have clinical uses in many other applications where knowledge of the microcirculation is important (the macrocirculation can usually be assessed adequately using conventional Doppler though there are a few important situations where the signal boost given by microbubbles is useful, e.g., transcranial Doppler for evaluating

  10. Sonophoresis Using Ultrasound Contrast Agents: Dependence on Concentration.

    PubMed

    Park, Donghee; Song, Gillsoo; Jo, Yongjun; Won, Jongho; Son, Taeyoon; Cha, Ohrum; Kim, Jinho; Jung, Byungjo; Park, Hyunjin; Kim, Chul-Woo; Seo, Jongbum

    2016-01-01

    Sonophoresis can increase skin permeability to various drugs in transdermal drug delivery. Cavitation is recognized as the predominant mechanism of sonophoresis. Recently, a new logical approach to enhance the efficiency of transdermal drug delivery was tried. It is to utilize the engineered microbubble and its resonant frequency for increase of cavitation activity. Actively-induced cavitation with low-intensity ultrasound (less than ~1 MPa) causes disordering of the lipid bilayers and the formation of aqueous channels by stable cavitation which indicates a continuous oscillation of bubbles. Furthermore, the mutual interactions of microbubble determined by concentration of added bubble are also thought to be an important factor for activity of stable cavitation, even in different characteristics of drug. In the present study, we addressed the dependence of ultrasound contrast agent concentration using two types of drug on the efficiency of transdermal drug delivery. Two types of experiment were designed to quantitatively evaluate the efficiency of transdermal drug delivery according to ultrasound contrast agent concentration. First, an experiment of optical clearing using a tissue optical clearing agent was designed to assess the efficiency of sonophoresis with ultrasound contrast agents. Second, a Franz diffusion cell with ferulic acid was used to quantitatively determine the amount of drug delivered to the skin sample by sonophoresis with ultrasound contrast agents. The maximum enhancement ratio of sonophoresis with a concentration of 1:1,000 was approximately 3.1 times greater than that in the ultrasound group without ultrasound contrast agent and approximately 7.5 times greater than that in the control group. These results support our hypothesis that sonophoresis becomes more effective in transdermal drug delivery due to the presence of engineered bubbles, and that the efficiency of transdermal drug delivery using sonophoresis with microbubbles depends on the

  11. Acoustic Characterization of a Vessel-on-a-Chip Microfluidic System for Ultrasound-Mediated Drug Delivery.

    PubMed

    Beekers, Ines; van Rooij, Tom; Verweij, Martin D; Versluis, Michel; de Jong, Nico; Trietsch, Sebastiaan J; Kooiman, Klazina

    2018-04-01

    Ultrasound in the presence of gas-filled microbubbles can be used to enhance local uptake of drugs and genes. To study the drug delivery potential and its underlying physical and biological mechanisms, an in vitro vessel model should ideally include 3-D cell culture, perfusion flow, and membrane-free soft boundaries. Here, we propose an organ-on-a-chip microfluidic platform to study ultrasound-mediated drug delivery: the OrganoPlate. The acoustic propagation into the OrganoPlate was determined to assess the feasibility of controlled microbubble actuation, which is required to study the microbubble-cell interaction for drug delivery. The pressure field in the OrganoPlate was characterized non-invasively by studying experimentally the well-known response of microbubbles and by simulating the acoustic wave propagation in the system. Microbubble dynamics in the OrganoPlate were recorded with the Brandaris 128 ultrahigh-speed camera (17 million frames/s) and a control experiment was performed in an OptiCell, an in vitro monolayer cell culture chamber that is conventionally used to study ultrasound-mediated drug delivery. When insonified at frequencies between 1 and 2 MHz, microbubbles in the OrganoPlate experienced larger oscillation amplitudes resulting from higher local pressures. Microbubbles responded similarly in both systems when insonified at frequencies between 2 and 4 MHz. Numerical simulations performed with a 3-D finite-element model of ultrasound propagation into the OrganoPlate and the OptiCell showed the same frequency-dependent behavior. The predictable and homogeneous pressure field in the OrganoPlate demonstrates its potential to develop an in vitro 3-D cell culture model, well suited to study ultrasound-mediated drug delivery.

  12. Advanced Ultrasound Technologies for Diagnosis and Therapy.

    PubMed

    Rix, Anne; Lederle, Wiltrud; Theek, Benjamin; Lammers, Twan; Moonen, Chrit; Schmitz, Georg; Kiessling, Fabian

    2018-05-01

    Ultrasound is among the most rapidly advancing imaging techniques. Functional methods such as elastography have been clinically introduced, and tissue characterization is improved by contrast-enhanced scans. Here, novel superresolution techniques provide unique morphologic and functional insights into tissue vascularization. Functional analyses are complemented by molecular ultrasound imaging, to visualize markers of inflammation and angiogenesis. The full potential of diagnostic ultrasound may become apparent by integrating these multiple imaging features in radiomics approaches. Emerging interest in ultrasound also results from its therapeutic potential. Various applications of tumor ablation with high-intensity focused ultrasound are being clinically evaluated, and its performance strongly benefits from the integration into MRI. Additionally, oscillating microbubbles mediate sonoporation to open biologic barriers, thus improving the delivery of drugs or nucleic acids that are coadministered or coformulated with microbubbles. This article provides an overview of recent developments in diagnostic and therapeutic ultrasound, highlighting multiple innovation tracks and their translational potential. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  13. Nonthermal ablation in the rat brain using focused ultrasound and an ultrasound contrast agent: long-term effects

    PubMed Central

    McDannold, Nathan; Zhang, Yongzhi; Vykhodtseva, Natalia

    2016-01-01

    OBJECTIVE Thermal ablation with transcranial MRI-guided focused ultrasound (FUS) is currently under investigation as a less invasive alternative to radiosurgery and resection. A major limitation of the method is that its use is currently restricted to centrally located brain targets. The combination of FUS and a microbubble-based ultrasound contrast agent greatly reduces the ultrasound exposure level needed to ablate brain tissue and could be an effective means to increase the “treatment envelope” for FUS in the brain. This method, however, ablates tissue through a different mechanism: destruction of the microvasculature. It is not known whether nonthermal FUS ablation in substantial volumes of tissue can safely be performed without unexpected effects. The authors investigated this question by ablating volumes in the brains of normal rats. METHODS Overlapping sonications were performed in rats (n = 15) to ablate a volume in 1 hemisphere per animal. The sonications (10-msec bursts at 1 Hz for 60 seconds; peak negative pressure 0.8 MPa) were combined with the ultrasound contrast agent Optison (100 μl/kg). The rats were followed with MRI for 4–9 weeks after FUS, and the brains were examined with histological methods. RESULTS Two weeks after sonication and later, the lesions appeared as cyst-like areas in T2-weighted MR images that were stable over time. Histological examination demonstrated well-defined lesions consisting of a cyst-like cavity that remained lined by astrocytic tissue. Some white matter structures within the sonicated area were partially intact. CONCLUSIONS The results of this study indicate that nonthermal FUS ablation can be used to safely ablate tissue volumes in the brain without unexpected delayed effects. The findings are encouraging for the use of this ablation method in the brain. PMID:26848919

  14. Impact of Focused Ultrasound-enhanced Drug Delivery on Survival in Rats with Glioma

    NASA Astrophysics Data System (ADS)

    Treat, Lisa Hsu; Zhang, Yongzhi; McDannold, Nathan; Hynynen, Kullervo

    2009-04-01

    Malignancies of the brain remain difficult to treat with chemotherapy because the selective permeability of the blood-brain barrier (BBB) blocks many potent agents from reaching their target. Previous studies have illustrated the feasibility of drug and antibody delivery across the BBB using MRI-guided focused ultrasound. In this study, we investigated the impact of focused ultrasound-enhanced delivery of doxorubicin on survival in rats with aggressive glioma. Sprague-Dawley rats were implanted with 9 L gliosarcoma cells in the brain. Eight days after implantation, each rat received one of the following: (1) no treatment (control), (2) a single treatment with microbubble-enhanced MRI-guided focused ultrasound (FUS only), (3) a single treatment with i.v. liposomal doxorubicin (DOX only), or (4) a single treatment with microbubble-enhanced MRI-guided focused ultrasound and concurrent i.v. injections of liposomal doxorubicin (FUS+DOX). The survival time from implantation to death or euthanasia was recorded. We observed a modest but significant increase in median survival time in rats treated with combined MRI-guided focused ultrasound chemotherapy, compared to chemotherapy alone (p<0.001). There was no significant improvement in survival between those who received stand-alone chemotherapy and those who did not receive any treatment (p>0.10). Our study demonstrates for the first time a therapeutic benefit achieved with ultrasound-enhanced drug delivery across the blood-brain barrier. This confirmation of efficacy in an in vivo tumor model indicates that targeted drug delivery using MRI-guided focused ultrasound has the potential to have a major impact on the treatment of patients with brain tumors and other neurological disorders.

  15. Continuous Nanoparticle Assembly by a Modulated Photo-Induced Microbubble for Fabrication of Micrometric Conductive Patterns.

    PubMed

    Armon, Nina; Greenberg, Ehud; Layani, Michael; Rosen, Yitzchak S; Magdassi, Shlomo; Shpaisman, Hagay

    2017-12-20

    The laser-induced microbubble technique (LIMBT) has recently been developed for micro-patterning of various materials. In this method, a laser beam is focused on a dispersion of nanoparticles leading to the formation of a microbubble due to laser heating. Convection currents around the microbubble carry nanoparticles so that they become pinned to the bubble/substrate interface. The major limitation of this technique is that for most materials, a noncontinuous deposition is formed. We show that continuous patterns can be formed by preventing the microbubble from being pinned to the deposited material. This is done by modulating the laser so that the construction and destruction of the microbubble are controlled. When the method is applied to a dispersion of Ag nanoparticles, continuous electrically conductive lines are formed. Furthermore, the line width is narrower than that achieved by the standard nonmodulated LIMBT. This approach can be applied to the direct-write fabrication of micron-size conductive patterns in electronic devices without the use of photolithography.

  16. Prevention of doxorubicin-induced cardiomyopathy using targeted MaFGF mediated by nanoparticles combined with ultrasound-targeted MB destruction

    PubMed Central

    Zheng, Lei; ZhuGe, De-Li; Chen, Bin; Lu, Cui-Tao; Yuan, Jian-Jun; Zhao, Ying-Zheng

    2017-01-01

    The present study seeks to observe the preventive effects of doxorubicin-induced cardiomyopathy (DOX-CM) in rats using targeted non-mitogenic acidic fibroblast growth factor (MaFGF) mediated by nanoparticles (NP) combined with ultrasound-targeted MB destruction (UTMD). DOX-CM rats were induced by intraperitoneally injected doxorubicin. Six weeks after intervention, the indices from the transthoracic echocardiography and velocity vector imaging showed that the left ventricular function in the MaFGF-loaded NP (MaFGF-NP) + UTMD group was significantly improved compared with the DOX-CM group. The increased malondialdehyde and decreased superoxide dismutase were observed in the DOX-CM group, while a significant increase in superoxide dismutase and a decrease in malondialdehyde were detected in the groups treated with MaFGF-NP + UTMD. From the Masson staining, the MaFGF-NP + UTMD group showed a significant difference from the DOX-CM group. The cardiac collagen volume fraction and the ratio of the perivascular collagen area to the luminal area number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labelling positive cells in the MaFGF-NP + UTMD group decreased to 8.9%, 0.55-fold, compared with the DOX-CM group (26.5%, 1.7-fold). From terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labelling staining, the results showed the strongest inhibition of apoptosis progress in MaFGF-NP + UTMD group. The immunohistochemical staining of the TGF-β1 in MaFGF-NP + UTMD group reached 3.6%, which was much lower than that of the DOX-CM group (12.6%). These results confirmed that the abnormalities, including left ventricular dysfunction, myocardial fibrosis, cardiomyocytes apoptosis and oxidative stress, could be suppressed by twice weekly MaFGF treatments for 6 consecutive weeks (free MaFGF or MaFGF-NP+/UTMD), with the strongest improvements observed in the MaFGF-NP + UTMD group. Western blot analyses of the heart

  17. Effective in vitro and in vivo gene delivery by the combination of liposomal bubbles (bubble liposomes) and ultrasound exposure.

    PubMed

    Suzuki, Ryo; Maruyama, Kazuo

    2010-01-01

    Gene delivery with a physical mechanism using ultrasound (US) and nano/microbubbles is expected as an ideal system in terms of delivering plasmid DNA noninvasively into a specific target site. We developed novel liposomal bubbles (Bubble liposomes (BLs)) containing the lipid nanobubbles of perfluoropropane which were utilized for contrast enhancement in ultrasonography. BLs were smaller in diameter than conventional microbubbles and induced cavitation upon exposure ultrasound. In addition, when coupled with US exposure, BLs could deliver plasmid DNA into various types of cells in vitro and in vivo. The transfection efficiency with BLs and US was higher than that with conventional lipofection method. Therefore, the combination of BLs and US might be an efficient and novel nonviral gene delivery system.

  18. Spatial and temporal profile of cisplatin delivery by ultrasound-assisted intravesical chemotherapy in a bladder cancer model.

    PubMed

    Sasaki, Noboru; Ishi, Kazuhiro; Kudo, Nobuki; Nakayama, Shouta M M; Nakamura, Kensuke; Morishita, Keitaro; Ohta, Hiroshi; Ishizuka, Mayumi; Takiguchi, Mitsuyoshi

    2017-01-01

    Non-muscle invasive bladder cancer is one of the most common tumors of the urinary tract. Despite the current multimodal therapy, recurrence and progression of disease have been challenging problems. We hereby introduced a new approach, ultrasound-assisted intravesical chemotherapy, intravesical instillation of chemotherapeutic agents and microbubbles followed by ultrasound exposure. We investigated the feasibility of the treatment for non-muscle invasive bladder cancer. In order to evaluate intracellular delivery and cytotoxic effect as a function to the thickness, we performed all experiments using a bladder cancer mimicking 3D culture model. Ultrasound-triggered microbubble cavitation increased both the intracellular platinum concentration and the cytotoxic effect of cisplatin at the thickness of 70 and 122 μm of the culture model. The duration of enhanced cytotoxic effect of cisplatin by ultrasound-triggered microbubble cavitation was approximately 1 hr. Based on the distance and duration of delivery, we further tested the feasibility of repetition of the treatment. Triple treatment increased the effective distance by 1.6-fold. Our results clearly showed spatial and temporal profile of delivery by ultrasound-triggered microbubble cavitation in a tumor-mimicking structure. Furthermore, we demonstrated that the increase in intracellular concentration results in the enhancement of the cytotoxic effect in a structure with the certain thickness. Repetition of ultrasound exposure would be treatment of choice in future clinical application. Our results suggest ultrasound-triggered microbubble cavitation can be repeatable and is promising for the local control of non-muscle invasive bladder cancer.

  19. Ultrasound-guided delivery of microRNA loaded nanoparticles into cancer.

    PubMed

    Wang, Tzu-Yin; Choe, Jung Woo; Pu, Kanyi; Devulapally, Rammohan; Bachawal, Sunitha; Machtaler, Steven; Chowdhury, Sayan Mullick; Luong, Richard; Tian, Lu; Khuri-Yakub, Butrus; Rao, Jianghong; Paulmurugan, Ramasamy; Willmann, Jürgen K

    2015-04-10

    Ultrasound induced microbubble cavitation can cause enhanced permeability across natural barriers of tumors such as vessel walls or cellular membranes, allowing for enhanced therapeutic delivery into the target tissues. While enhanced delivery of small (<1nm) molecules has been shown at acoustic pressures below 1MPa both in vitro and in vivo, the delivery efficiency of larger (>100nm) therapeutic carriers into cancer remains unclear and may require a higher pressure for sufficient delivery. Enhanced delivery of larger therapeutic carriers such as FDA approved pegylated poly(lactic-co-glycolic acid) nanoparticles (PLGA-PEG-NP) has significant clinical value because these nanoparticles have been shown to protect encapsulated drugs from degradation in the blood circulation and allow for slow and prolonged release of encapsulated drugs at the target location. In this study, various acoustic parameters were investigated to facilitate the successful delivery of two nanocarriers, a fluorescent semiconducting polymer model drug nanoparticle as well as PLGA-PEG-NP into human colon cancer xenografts in mice. We first measured the cavitation dose produced by various acoustic parameters (pressure, pulse length, and pulse repetition frequency) and microbubble concentration in a tissue mimicking phantom. Next, in vivo studies were performed to evaluate the penetration depth of nanocarriers using various acoustic pressures, ranging between 1.7 and 6.9MPa. Finally, a therapeutic microRNA, miR-122, was loaded into PLGA-PEG-NP and the amount of delivered miR-122 was assessed using quantitative RT-PCR. Our results show that acoustic pressures had the strongest effect on cavitation. An increase of the pressure from 0.8 to 6.9MPa resulted in a nearly 50-fold increase in cavitation in phantom experiments. In vivo, as the pressures increased from 1.7 to 6.9MPa, the amount of nanoparticles deposited in cancer xenografts was increased from 4- to 14-fold, and the median penetration depth of

  20. Potential and problems in ultrasound-responsive drug delivery systems

    PubMed Central

    Zhao, Ying-Zheng; Du, Li-Na; Lu, Cui-Tao; Jin, Yi-Guang; Ge, Shu-Ping

    2013-01-01

    Ultrasound is an important local stimulus for triggering drug release at the target tissue. Ultrasound-responsive drug delivery systems (URDDS) have become an important research focus in targeted therapy. URDDS include many different formulations, such as microbubbles, nanobubbles, nanodroplets, liposomes, emulsions, and micelles. Drugs that can be loaded into URDDS include small molecules, biomacromolecules, and inorganic substances. Fields of clinical application include anticancer therapy, treatment of ischemic myocardium, induction of an immune response, cartilage tissue engineering, transdermal drug delivery, treatment of Huntington’s disease, thrombolysis, and disruption of the blood–brain barrier. This review focuses on recent advances in URDDS, and discusses their formulations, clinical application, and problems, as well as a perspective on their potential use in the future. PMID:23637531

  1. Tissue Bioeffects during Ultrasound-mediated Drug Delivery

    NASA Astrophysics Data System (ADS)

    Sutton, Jonathan

    Ultrasound has been developed as both a valuable diagnostic tool and a potent promoter of beneficial tissue bioeffects for the treatment of cardiovascular disease. Vascular effects can be mediated by mechanical oscillations of circulating microbubbles, or ultrasound contrast agents, which may also encapsulate and shield a therapeutic agent in the bloodstream. Oscillating microbubbles can create stresses directly on nearby tissue or induce fluid effects that effect drug penetration into vascular tissue, lyse thrombi, or direct drugs to optimal locations for delivery. These investigations have spurred continued research into alternative therapeutic applications, such as bioactive gas delivery. This dissertation addresses a fundamental hypothesis in biomedical ultrasound: ultrasound-mediated drug delivery is capable of increasing the penetration of drugs across different physiologic barriers within the cardiovascular system, such as the vascular endothelium, blood clots, and smooth muscle cells.

  2. Microvascular flow estimation by contrast-assisted ultrasound B-scan and statistical parametric images.

    PubMed

    Tsui, Po-Hsiang; Yeh, Chih-Kuang; Chang, Chien-Cheng

    2009-05-01

    The microbubbles destruction/replenishment technique has been previously applied to estimating blood flow in the microcirculation. The rate of increase of the time-intensity curve (TIC) due to microbubbles flowing into the region of interest (ROI), as measured from B-mode images, closely reflects the flow velocity. In previous studies, we proposed a new approach called the time-Nakagami-parameter curve (TNC) obtained from Nakagami images to monitor microbubble replenishment for quantifying the microvascular flow velocity. This study aimed to further explore some effects that may affect the TNC to estimate the microflow, including microbubble concentration, ultrasound transmitting energy, attenuation, intrinsic noise, and tissue clutter. In order to well control each effect production, we applied a typical simulation method to investigate the TIC and TNC. The rates of increase of the TIC and TNC were expressed by the rate constants beta(I) and beta(N), respectively, of a monoexponential model. The results show that beta(N) quantifies the microvascular flow velocity similarly to the conventional beta(I) . Moreover, the measures of beta(I) and beta(N) are not influenced by microbubble concentration, transducer excitation energy, and attenuation effect. Although the effect of intrinsic signals contributed by noise and blood would influence the TNC behavior, the TNC method has a better tolerance of tissue clutter than the TIC does, allowing the presence of some clutter components in the ROI. The results suggest that the TNC method can be used as a complementary tool for the conventional TIC to reduce the wall filter requirements for blood flow measurement in the microcirculation.

  3. Ultrasound-triggered effects of the microbubbles coupled to GDNF- and Nurr1-loaded PEGylated liposomes in a rat model of Parkinson's disease.

    PubMed

    Yue, Peijian; Gao, Lin; Wang, Xuejing; Ding, Xuebing; Teng, Junfang

    2018-06-01

    The purpose of this study was to investigate ultrasound-triggered effects of the glial cell line-derived neurotrophic factor (GDNF) + nuclear receptor-related factor 1 (Nurr1)-polyethylene glycol (PEG)ylated liposomes-coupled microbubbles (PLs-GDNF + Nurr1-MBs) on behavioral impairment and neuron loss in a rat model of Parkinson's disease (PD). The unloaded PEGylated liposomes-coupled microbubbles (PLs-MBs) were characterized for zeta potential, particle size, and concentration. 6-hydroxydopamine (6-OHDA) was used to establish the PD rat model. Rotational, climbing pole, and suspension tests were used to detect behavioral impairment. The immunohistochemical staining of tyrosine hydroxylase (TH) and dopamine transporter (DAT) was used to assess the neuron loss. Western blot and quantitative real-time PCR (qRT-PCR) analysis were used to measure the expression levels of GDNF and Nurr1. The particle size of PLs-MBs was gradually increased, while the concentration and absolute zeta potential were gradually decreased as the time prolongs. 6-OHDA increased amphetamine-induced rotations and loss of dopaminergic neurons as compared to sham group. Interestingly, PLs-GDNF-MBs or PLs-Nurr1-MBs decreased rotations and increased the TH and DAT immunoreactivity. Combined of both genes resulted in a robust reduction in the rotations and a greater increase of the dopaminergic neurons. The delivery of PLs-GDNF + Nurr1-MBs into the brains using magnetic resonance imaging (MRI)-guided focused ultrasound may be more efficacious for the treatment of PD than the single treatment. © 2017 Wiley Periodicals, Inc.

  4. Acoustic bubble sorting for ultrasound contrast agent enrichment.

    PubMed

    Segers, Tim; Versluis, Michel

    2014-05-21

    An ultrasound contrast agent (UCA) suspension contains encapsulated microbubbles with a wide size distribution, with radii ranging from 1 to 10 μm. Medical transducers typically operate at a single frequency, therefore only a small selection of bubbles will resonate to the driving ultrasound pulse. Thus, the sensitivity can be improved by narrowing down the size distribution. Here, we present a simple lab-on-a-chip method to sort the population of microbubbles on-chip using a traveling ultrasound wave. First, we explore the physical parameter space of acoustic bubble sorting using well-defined bubble sizes formed in a flow-focusing device, then we demonstrate successful acoustic sorting of a commercial UCA. This novel sorting strategy may lead to an overall improvement of the sensitivity of contrast ultrasound by more than 10 dB.

  5. Synergistic inhibition of malignant melanoma proliferation by melphalan combined with ultrasound and microbubbles.

    PubMed

    Matsuo, Miki; Yamaguchi, Kazuki; Feril, Loreto B; Endo, Hitomi; Ogawa, Koichi; Tachibana, Katsuro; Nakayama, Juichiro

    2011-09-01

    The cavitational effects of ultrasound (US) exposure induce transient pores on the cell membrane (sonoporation). Sonoporation have been applied in the field of cancer therapy by promoting delivery of extracellular molecules such as drugs and genes into cytoplasm. In addition, it is known that using US together with microbubbles (MB) elevates permeability of these agents. In this study, by applying the US-MB strategy for melanoma chemotherapy, we evaluated the antitumor effect of melphalan combined with US-MB on a melanoma cell line (C32) in vitro and in vivo. The in vitro cytotoxic effect of the melphalan with US-MB was greater than that of melphalan alone or melphalan in combination with US. In vivo experiments using xenografts, intratumoral injection of melphalan and MB with US exposure led to a greater degree of tumor regression than did the intratumoral injection of the melphalan alone or melphalan in combination with US. These results suggest that US-MB promotes the antitumor effect of melphalan by increasing delivery of molecules into cells and that this strategy may become an effective method of adjuvant therapy against malignant melanoma. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Magnetic resonance properties of Gd(III)-bound lipid-coated microbubbles and their cavitation fragments.

    PubMed

    Feshitan, Jameel A; Boss, Michael A; Borden, Mark A

    2012-10-30

    Gas-filled microbubbles are potentially useful theranostic agents for magnetic resonance imaging-guided focused ultrasound surgery (MRIgFUS). Previously, MRI at 9.4 T was used to measure the contrast properties of lipid-coated microbubbles with gadolinium (Gd(III)) bound to lipid headgroups, which revealed that the longitudinal molar relaxivity (r(1)) increased after microbubble fragmentation. This behavior was attributed to an increase in water proton exchange with the Gd(III)-bound lipid fragments caused by an increase in the lipid headgroup area that accompanied the lipid shell monolayer-to-bilayer transition. In this article, we explore this mechanism by comparing the changes in r(1) and its transverse counterpart, r(2)*, after the fragmentation of microbubbles consisting of Gd(III) bound to two different locations on the lipid monolayer shell: the phosphatidylethanolamine (PE) lipid headgroup region or the distal region of the poly(ethylene glycol) (PEG) brush. Nuclear magnetic resonance (NMR) at 1.5 T was used to measure the contrast properties of the various microbubble constructs because this is the most common field strength used in clinical MRI. Results for the lipid-headgroup-labeled Gd(III) microbubbles revealed that r(1) increased after microbubble fragmentation, whereas r(2)* was unchanged. An analysis of PEG-labeled Gd(III) microbubbles revealed that both r(1) and r(2)* decreased after microbubble fragmentation. Further analysis revealed that the microbubble gas core enhanced the transverse MR signal (T(2)*) in a concentration-dependent manner but minimally affected the longitudinal (T(1)) signal. These results illustrate a new method for the use of NMR to measure the biomembrane packing structure and suggest that two mechanisms, proton-exchange enhancement by lipid membrane relaxation and magnetic field inhomogeneity imposed by the gas/liquid interface, may be used to detect and differentiate Gd(III)-labeled microbubbles and their cavitation

  7. Focused Ultrasound-Induced Neurogenesis Requires an Increase in Blood-Brain Barrier Permeability.

    PubMed

    Mooney, Skyler J; Shah, Kairavi; Yeung, Sharon; Burgess, Alison; Aubert, Isabelle; Hynynen, Kullervo

    2016-01-01

    Transcranial focused ultrasound technology used to transiently open the blood-brain barrier, is capable of stimulating hippocampal neurogenesis; however, it is not yet known what aspects of the treatment are necessary for enhanced neurogenesis to occur. The present study set out to determine whether the opening of blood-brain barrier, the specific pressure amplitudes of focused ultrasound, and/or the intravenous administration of microbubbles (phospholipid microspheres) are necessary for the enhancement of neurogenesis. Specifically, mice were exposed to burst (10ms, 1Hz burst repetition frequency) focused ultrasound at the frequency of 1.68MHz and with 0.39, 0.78, 1.56 and 3.0MPa pressure amplitudes. These treatments were also conducted with or without microbubbles, at 0.39 + 0.78MPa or 1.56 + 3.0MPa, respectively. Only focused ultrasound at the ~0.78 MPa pressure amplitude with microbubbles promoted hippocampal neurogenesis and was associated with an increase in blood-brain barrier permeability. These results suggest that focused ultrasound -mediated neurogenesis is dependent upon the opening of the blood-brain barrier.

  8. Transient disruption of vascular barriers using focused ultrasound and microbubbles for targeted drug delivery in the brain

    NASA Astrophysics Data System (ADS)

    Aryal, Muna

    The physiology of the vasculature in the central nervous system (CNS) which includes the blood-brain-barrier (BBB) and other factors, prevents the transport of most anticancer agents to the brain and restricts delivery to infiltrating brain tumors. The heterogeneous vascular permeability in tumor vessels (blood-tumor barrier; BTB), along with several other factors, creates additional hurdles for drug treatment of brain tumors. Different methods have been used to bypass the BBB/BTB, but they have their own limitations such as being invasive, non-targeted or requiring the formulation of new drugs. Magnetic Resonance Imaging guided Focused Ultrasound (MRIgFUS), when combined with circulating microbubbles, is an emerging noninvasive method to temporarily permeabilize the BBB and BTB. The purpose of this thesis was to use this alternative approach to deliver chemotherapeutic agents through the BBB/BTB for brain tumor treatment in a rodent model to overcome the hinderances encountered in prior approaches tested for drug delivery in the CNS. The results presented in thesis demonstrate that MRIgFUS can be used to achieve consistent and reproducible BBB/BTB disruption in rats. It enabled us to achieve clinically-relevant concentrations of doxorubicin (~ 4.8+/-0.5 microg/g) delivered to the brain with the sonication parameters (0.69 MHz; 0.55 MPa; 10 ms bursts; 1 Hz PRF; 60 s duration), microbubble concentration (Definity, 10 microl/kg), and liposomoal doxorubicin (Lipo-DOX) dose (5.67 mg/kg) used. The resulting doxorubicin concentration was reduced by 32% when the agent was injected 10 minute after the last sonication. Three weekly sessions of FUS and Lipo-DOX appeared to be safe in the rat brain, despite some minor tissue damage. Importantly, the severe neurotoxicity seen in earlier works using other approaches does not appear to occur with delivery via FUS-BBB disruption. The resuls from three weekly treatments of FUS and Lipo-DOX in a rat glioma model are highly

  9. Pulse sequences for uniform perfluorocarbon droplet vaporization and ultrasound imaging.

    PubMed

    Puett, C; Sheeran, P S; Rojas, J D; Dayton, P A

    2014-09-01

    Phase-change contrast agents (PCCAs) consist of liquid perfluorocarbon droplets that can be vaporized into gas-filled microbubbles by pulsed ultrasound waves at diagnostic pressures and frequencies. These activatable contrast agents provide benefits of longer circulating times and smaller sizes relative to conventional microbubble contrast agents. However, optimizing ultrasound-induced activation of these agents requires coordinated pulse sequences not found on current clinical systems, in order to both initiate droplet vaporization and image the resulting microbubble population. Specifically, the activation process must provide a spatially uniform distribution of microbubbles and needs to occur quickly enough to image the vaporized agents before they migrate out of the imaging field of view. The development and evaluation of protocols for PCCA-enhanced ultrasound imaging using a commercial array transducer are described. The developed pulse sequences consist of three states: (1) initial imaging at sub-activation pressures, (2) activating droplets within a selected region of interest, and (3) imaging the resulting microbubbles. Bubble clouds produced by the vaporization of decafluorobutane and octafluoropropane droplets were characterized as a function of focused pulse parameters and acoustic field location. Pulse sequences were designed to manipulate the geometries of discrete microbubble clouds using electronic steering, and cloud spacing was tailored to build a uniform vaporization field. The complete pulse sequence was demonstrated in the water bath and then in vivo in a rodent kidney. The resulting contrast provided a significant increase (>15 dB) in signal intensity. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Evaluation of 18F-labeled targeted perfluorocarbon-filled albumin microbubbles as a probe for microUS and microPET in tumor-bearing mice.

    PubMed

    Liao, Ai-Ho; Wu, Shih-Yen; Wang, Hsin-Ell; Weng, Chien-Hsiu; Wu, Ming-Fang; Li, Pai-Chi

    2013-02-01

    In this study, albumin-shelled, targeted MBs (tMBs) were first demonstrated with the expectation of visualization of biodistribution of albumin-shelled tMBs. The actual biodistribution of albumin-shelled tMBs is of vital importance either for molecular imaging or for drug delivery. Recently, albumin microbubbles (MBs) have been studied for drug and gene delivery in vitro and in vivo through cavitation. Targeted lipid-shelled MBs have been applied for ultrasound molecular imaging and conjugated with radiolabeled antibodies for whole-body biodistribution evaluations. The novelty of the work is that, in addition to the lipid tMBs, the albumin tMBs was also applied in biodistribution detection. Multimodality albumin-shelled, (18)F-SFB-labeled VEGFR2 tMBs were synthesized, and their characteristics in mice bearing MDA-MB-231 human breast cancer were investigated with micro-positron-emission tomography (microPET) and high-frequency ultrasound (microUS). Albumin-shelled MBs can be labeled with (18)F-SFB directly and conjugated with antibodies for dual molecular imaging. The albumin-shelled tMBs show a lifetime in 30min in the blood pool and a highly specific adherence to tumor vessels in mice bearing human breast cancer. From the evaluations of whole-body biodistribution, the potential of the dual molecular imaging probe for drug or gene delivery in animal experiments with albumin shelled MBs has been investigated. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Musculoskeletal ultrasound in rheumatology in Korea: targeted ultrasound initiative survey.

    PubMed

    Kang, Taeyoung; Wakefield, Richard J; Emery, Paul

    2016-04-01

    In collaboration with the Targeted Ultrasound Initiative (TUI), to conduct the first study in Korea to investigate current practices in ultrasound use among Korean rheumatologists. We translated the TUI Global Survey into Korean and added questions to better understand the specific challenges facing rheumatologists in Korea. To target as many rheumatologists in Korea as possible, we created an on-line version of this survey, which was conducted from March to April 2013. Rheumatologists are in charge of ultrasound in many Korean hospitals. Rheumatologists in hospitals and private clinics use ultrasound to examine between one and five patients daily; they use ultrasound for diagnosis more than monitoring and receive compensation of about US$30-50 per patient. There are marked differences in the rates of ultrasound usage between rheumatologists who work in private practice compared with tertiary hospitals. Korean rheumatologists not currently using ultrasound in their practice appear eager to do so. This survey provides important insights into the current status of ultrasound in rheumatology in Korea and highlights several priorities; specifically, greater provision of formal training, standardization of reporting and accrual of greater experience among ultrasound users. If these needs are addressed, all rheumatology departments in Korea are likely to use ultrasound or have access to it in the future. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  12. Enhanced cavitation and heating of flowing polymer- and lipid-shelled microbubbles and phase-shift nanodroplets during focused ultrasound exposures

    NASA Astrophysics Data System (ADS)

    Zhang, Siyuan; Cui, Zhiwei; Li, Chong; Zhou, Fanyu; Zong, Yujin; Wang, Supin; Wan, Mingxi

    2017-03-01

    Cavitation and heating are the primary mechanisms of numerous therapeutic applications of ultrasound. Various encapsulated microbubbles (MBs) and phase-shift nanodroplets (NDs) have been used to enhance local cavitation and heating, creating interests in developing ultrasound therapy using these encapsulated MBs and NDs. This work compared the efficiency of flowing polymer- and lipid-shelled MBs and phase-shift NDs in cavitation and heating during focused ultrasound (FUS) exposures. Cavitation activity and temperature were investigated when the solution of polymer- and lipid-shelled MBs and NDs flowed through the vessel in a tissue-mimicking phantom with varying flow velocities when exposed to FUS at various acoustic power levels. The inertial cavitation dose (ICD) for the encapsulated MBs and NDs were higher than those for the saline. Temperature initially increased with increasing flow velocities of the encapsulated MBs, followed by a decrease of the temperature with increasing flow velocities when the velocity was much higher. Meanwhile, ICD showed a trend of increases with increasing flow velocity. For the phase-shift NDs, ICD after the first FUS exposure was lower than those after the second FUS exposure. For the encapsulated MBs, ICD after the first FUS exposure was higher than those after the second FUS exposure. Further studies are necessary to investigate the treatment efficiency of different encapsulated MBs and phase-shift NDs in cavitation and heating.

  13. Development of Microbubble Contrast Agents with Biochemical Recognition and Tunable Acoustic Response

    NASA Astrophysics Data System (ADS)

    Nakatsuka, Matthew Allan Masao

    Microbubbles, consisting of gas-filled cores encapsulated within phospholipid or polymer shells, are the most widely used ultrasound contrast agents in the world. Because of their acoustic impedance mismatch with surrounding tissues and compressible gaseous interiors, they have high echogenicities that allow for efficient backscatter of ultrasound. They can also generate unique harmonic frequencies when insonated near their resonance frequency, depending on physical microbubble properties such as the stiffness and thickness of the encapsulating shell. Microbubbles are used to detect a number of cardiovascular diseases, but current methodologies lack the ability to detect and distinguish small, rapidly growing abnormalities that do not produce visible blockage or slowing of blood flow. This work describes the development, formulation, and validation of microbubbles with various polymer shell architectures designed to modulate their acoustic ability. We demonstrate that the addition of a thick disulfide crosslinked, poly(acrylic acid) encapsulating shell increases a bubble's resistance to cavitation and changes its resonance frequency. Modification of this shell architecture to use hybridized DNA strands to form crosslinks between the polymer chains allows for tuning of the bubble acoustic response. When the DNA crosslinks are in place, shell stiffness is increased so the bubbles do not oscillate and acoustic signal is muted. Subsequently, when these DNA strands are displaced, partial acoustic activity is restored. By using aptamer sequences with a specific affinity towards the biomolecule thrombin as the DNA crosslinking strand, this acoustic "ON/OFF" behavior can be specifically tailored towards the presence of a specific biomarker, and produces a change in acoustic signal at concentrations of thrombin consistent with acute deep venous thrombosis. Incorporation of the emulsifying agent poly(ethylene glycol) into the encapsulating shell improves microbubble yield

  14. Acoustic characterization and pharmacokinetic analyses of new nanobubble ultrasound contrast agents.

    PubMed

    Wu, Hanping; Rognin, Nicolas G; Krupka, Tianyi M; Solorio, Luis; Yoshiara, Hiroki; Guenette, Gilles; Sanders, Christopher; Kamiyama, Naohisa; Exner, Agata A

    2013-11-01

    In contrast to the clinically used microbubble ultrasound contrast agents, nanoscale bubbles (or nanobubbles) may potentially extravasate into tumors that exhibit more permeable vasculature, facilitating targeted molecular imaging and drug delivery. Our group recently presented a simple strategy using the non-ionic surfactant Pluronic as a size control excipient to produce nanobubbles with a mean diameter of 200 nm that exhibited stability and echogenicity on par with microbubbles. The objective of this study was to carry out an in-depth characterization of nanobubble properties as compared with Definity microbubbles, both in vitro and in vivo. Through use of a tissue-mimicking phantom, in vitro experiments measured the echogenicity of the contrast agent solutions and the contrast agent dissolution rate over time. Nanobubbles were found to be more echogenic than Definity microbubbles at three different harmonic frequencies (8, 6.2 and 3.5 MHz). Definity microbubbles also dissolved 1.67 times faster than nanobubbles. Pharmacokinetic studies were then performed in vivo in a subcutaneous human colorectal adenocarcinoma (LS174T) in mice. The peak enhancement and decay rates of contrast agents after bolus injection in the liver, kidney and tumor were analyzed. No significant differences were observed in peak enhancement between the nanobubble and Definity groups in the three tested regions (tumor, liver and kidney). However, the decay rates of nanobubbles in tumor and kidney were significantly slower than those of Definity in the first 200-s fast initial phase. There were no significant differences in the decay rates in the liver in the initial phase or in three regions of interest in the terminal phase. Our results suggest that the stability and acoustic properties of the new nanobubble contrast agents are superior to those of the clinically used Definity microbubbles. The slower washout of nanobubbles in tumors suggests potential entrapment of the bubbles within

  15. In vivo ultrasound visualization of non-occlusive blood clots with thrombin-sensitive contrast agents.

    PubMed

    Nakatsuka, Matthew A; Barback, Christopher V; Fitch, Kirsten R; Farwell, Alexander R; Esener, Sadik C; Mattrey, Robert F; Cha, Jennifer N; Goodwin, Andrew P

    2013-12-01

    The use of microbubbles as ultrasound contrast agents is one of the primary methods to diagnose deep venous thrombosis. However, current microbubble imaging strategies require either a clot sufficiently large to produce a circulation filling defect or a clot with sufficient vascularization to allow for targeted accumulation of contrast agents. Previously, we reported the design of a microbubble formulation that modulated its ability to generate ultrasound contrast from interaction with thrombin through incorporation of aptamer-containing DNA crosslinks in the encapsulating shell, enabling the measurement of a local chemical environment by changes in acoustic activity. However, this contrast agent lacked sufficient stability and lifetime in blood to be used as a diagnostic tool. Here we describe a PEG-stabilized, thrombin-activated microbubble (PSTA-MB) with sufficient stability to be used in vivo in circulation with no change in biomarker sensitivity. In the presence of actively clotting blood, PSTA-MBs showed a 5-fold increase in acoustic activity. Specificity for the presence of thrombin and stability under constant shear flow were demonstrated in a home-built in vitro model. Finally, PSTA-MBs were able to detect the presence of an active clot within the vena cava of a rabbit sufficiently small as to not be visible by current non-specific contrast agents. By activating in non-occlusive environments, these contrast agents will be able to detect clots not diagnosable by current contrast agents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Resonance frequencies of lipid-shelled microbubbles in the regime of nonlinear oscillations

    PubMed Central

    Doinikov, Alexander A.; Haac, Jillian F.; Dayton, Paul A.

    2009-01-01

    Knowledge of resonant frequencies of contrast microbubbles is important for the optimization of ultrasound contrast imaging and therapeutic techniques. To date, however, there are estimates of resonance frequencies of contrast microbubbles only for the regime of linear oscillation. The present paper proposes an approach for evaluating resonance frequencies of contrast agent microbubbles in the regime of nonlinear oscillation. The approach is based on the calculation of the time-averaged oscillation power of the radial bubble oscillation. The proposed procedure was verified for free bubbles in the frequency range 1–4 MHz and then applied to lipid-shelled microbubbles insonified with a single 20-cycle acoustic pulse at two values of the acoustic pressure amplitude, 100 kPa and 200 kPa, and at four frequencies: 1.5, 2.0, 2.5, and 3.0 MHz. It is shown that, as the acoustic pressure amplitude is increased, the resonance frequency of a lipid-shelled microbubble tends to decrease in comparison with its linear resonance frequency. Analysis of existing shell models reveals that models that treat the lipid shell as a linear viscoelastic solid appear may be challenged to provide the observed tendency in the behavior of the resonance frequency at increasing acoustic pressure. The conclusion is drawn that the further development of shell models could be improved by the consideration of nonlinear rheological laws. PMID:18977009

  17. Quantitative evaluation of microvascular blood flow by contrast-enhanced ultrasound (CEUS).

    PubMed

    Greis, Christian

    2011-01-01

    Ultrasound contrast agents consist of tiny gas-filled microbubbles the size of red blood cells. Due to their size distribution, they are purely intravascular tracers which do not extravasate into the interstitial fluid, and thus they are perfect agents for imaging blood distribution and flow. Using ultrasound scanners with contrast-specific software, the specific microbubble-derived echo signals can be separated from tissue signals in realtime, allowing selective imaging of the contrast agent. The signal intensity obtained lies in a linear relationship to the amount of microbubbles in the target organ, which allows easy and reliable assessment of relative blood volume. Imaging of the contrast wash-in and wash-out after bolus injection, or more precisely using the flash-replenishment technique, allows assessment of regional blood flow velocity. Commercially available quantification software packages can calculate time-related intensity values from the contrast wash-in and wash-out phase for each image pixel from stored video clips. After fitting of a mathematical model curve according to the respective kinetic model (bolus or flash-replenishment kinetics), time/intensity curves (TIC) can be calculated from single pixels or user-defined regions of interest (ROI). Characteristic parameters of these TICs (e.g. peak intensity, area under the curve, wash-in rate, etc.) can be displayed as color-coded parametric maps on top of the anatomical image, to identify cold and hot spots with abnormal perfusion.

  18. In Vivo Targeted, Responsive, and Synergistic Cancer Nanotheranostics by Magnetic Resonance Imaging-Guided Synergistic High-Intensity Focused Ultrasound Ablation and Chemotherapy.

    PubMed

    Tang, Hailin; Guo, Yuan; Peng, Li; Fang, Hui; Wang, Zhigang; Zheng, Yuanyi; Ran, Haitao; Chen, Yu

    2018-05-09

    As one of the most representative noninvasive therapeutic modalities, high-intensity focused ultrasound (HIFU) has shown great promise for cancer therapy, but its low therapeutic efficacy and biosafety significantly hinder further extensive clinical translation and application. In this work, we report on the construction of a multifunctional theranostic nanoplatform to synergistically enhance the HIFU-therapeutic efficacy based on nanomedicine. A targeted and temperature-responsive theranostic nanoplatform (PFH/DOX@PLGA/Fe 3 O 4 -FA) has been designed and fabricated for efficient ultrasound/magnetic resonance dual-modality imaging-guided HIFU/chemo synergistic therapy. Especially, the folate was conjugated onto the surface of the nanoplatform for achieving active targeting to hepatoma cells by receptor-ligand interaction, which facilitates accumulation of the nanoplatforms into the tumor site. The integrated superparamagnetic iron oxide nanoparticles could generate the contrast enhancement in T 2 -weighted magnetic resonance imaging. By virtue of the thermal effect as generated by HIFU, liquid-gas phase transition of perfluorohexane (PFH) in nanocomposites was induced to generate PFH microbubbles, which achieved the contrast-enhanced ultrasound imaging and significantly improved the HIFU ablation efficacy. The loaded anticancer drugs could be released from the nanocomposites in a controllable manner (both pH and HIFU responsiveness). These multifunctional nanocomposites have been demonstrated to efficiently suppress the tumor growth based on the enhanced and synergistic chemotherapy and HIFU ablation, providing an efficient theranostic nanoplatform for cancer treatment.

  19. Effects of ultrasound and ultrasound contrast agent on vascular tissue

    PubMed Central

    2012-01-01

    Background Ultrasound (US) imaging can be enhanced using gas-filled microbubble contrast agents. Strong echo signals are induced at the tissue-gas interface following microbubble collapse. Applications include assessment of ventricular function and virtual histology. Aim While ultrasound and US contrast agents are widely used, their impact on the physiological response of vascular tissue to vasoactive agents has not been investigated in detail. Methods and results In the present study, rat dorsal aortas were treated with US via a clinical imaging transducer in the presence or absence of the US contrast agent, Optison. Aortas treated with both US and Optison were unable to contract in response to phenylephrine or to relax in the presence of acetylcholine. Histology of the arteries was unremarkable. When the treated aortas were stained for endothelial markers, a distinct loss of endothelium was observed. Importantly, terminal deoxynucleotidyl transferase mediated dUTP nick-end-labeling (TUNEL) staining of treated aortas demonstrated incipient apoptosis in the endothelium. Conclusions Taken together, these ex vivo results suggest that the combination of US and Optison may alter arterial integrity and promote vascular injury; however, the in vivo interaction of Optison and ultrasound remains an open question. PMID:22805356

  20. Ultrasound-mediated drug delivery by gas bubbles generated from a chemical reaction.

    PubMed

    Lee, Sungmun; Al-Kaabi, Leena; Mawart, Aurélie; Khandoker, Ahsan; Alsafar, Habiba; Jelinek, Herbert F; Khalaf, Kinda; Park, Ji-Ho; Kim, Yeu-Chun

    2018-02-01

    Highly echogenic and ultrasound-responsive microbubbles such as nitrogen and perfluorocarbons have been exploited as ultrasound-mediated drug carriers. Here, we propose an innovative method for drug delivery using microbubbles generated from a chemical reaction. In a novel drug delivery system, luminol encapsulated in folate-conjugated bovine serum albumin nanoparticles (Fol-BSAN) can generate nitrogen gas (N 2 ) by chemical reaction when it reacts with hydrogen peroxide (H 2 O 2 ), one of reactive oxygen species (ROS). ROS plays an important role in the initiation and progression of cancer and elevated ROS have been observed in cancer cells both in vitro and in vivo. High-intensity focussed ultrasound (HIFU) is used to burst the N 2 microbubbles, causing site-specific delivery of anticancer drugs such as methotrexate. In this research, the drug delivery system was optimised by using water-soluble luminol and Mobil Composition of Matter-41 (MCM-41), a mesoporous material, so that the delivery system was sensitive to micromolar concentrations of H 2 O 2 . HIFU increased the drug release from Fol-BSAN by 52.9 ± 2.9% in 10 minutes. The cytotoxicity of methotrexate was enhanced when methotrexate is delivered to MDA-MB-231, a metastatic human breast cancer cell line, using Fol-BSAN with HIFU. We anticipate numerous applications of chemically generated microbubbles for ultrasound-mediated drug delivery.

  1. Investigation on the inertial cavitation threshold and shell properties of commercialized ultrasound contrast agent microbubbles.

    PubMed

    Guo, Xiasheng; Li, Qian; Zhang, Zhe; Zhang, Dong; Tu, Juan

    2013-08-01

    The inertial cavitation (IC) activity of ultrasound contrast agents (UCAs) plays an important role in the development and improvement of ultrasound diagnostic and therapeutic applications. However, various diagnostic and therapeutic applications have different requirements for IC characteristics. Here through IC dose quantifications based on passive cavitation detection, IC thresholds were measured for two commercialized UCAs, albumin-shelled KangRun(®) and lipid-shelled SonoVue(®) microbubbles, at varied UCA volume concentrations (viz., 0.125 and 0.25 vol. %) and acoustic pulse lengths (viz., 5, 10, 20, 50, and 100 cycles). Shell elastic and viscous coefficients of UCAs were estimated by fitting measured acoustic attenuation spectra with Sarkar's model. The influences of sonication condition (viz., acoustic pulse length) and UCA shell properties on IC threshold were discussed based on numerical simulations. Both experimental measurements and numerical simulations indicate that IC thresholds of UCAs decrease with increasing UCA volume concentration and acoustic pulse length. The shell interfacial tension and dilatational viscosity estimated for SonoVue (0.7 ± 0.11 N/m, 6.5 ± 1.01 × 10(-8) kg/s) are smaller than those of KangRun (1.05 ± 0.18 N/m, 1.66 ± 0.38 × 10(-7) kg/s); this might result in lower IC threshold for SonoVue. The current results will be helpful for selecting and utilizing commercialized UCAs for specific clinical applications, while minimizing undesired IC-induced bioeffects.

  2. Toward in vivo detection of hydrogen peroxide with ultrasound molecular imaging

    PubMed Central

    Olson, Emilia S.; Orozco, Jahir; Wu, Zhe; Malone, Christopher D.; Yi, Boemha; Gao, Wei; Eghtedari, Mohammad; Wang, Joseph; Mattrey, Robert F.

    2013-01-01

    We present a new class of ultrasound molecular imaging agents that extend upon the design of micromotors that are designed to move through fluids by catalyzing hydrogen peroxide (H2O2) and propelling forward by escaping oxygen microbubbles. Micromotor converters require 62 mm of H2O2 to move – 1000-fold higher than is expected in vivo. Here, we aim to prove that ultrasound can detect the expelled microbubbles, to determine the minimum H2O2 concentration needed for microbubble detection, explore alternate designs to detect the H2O2 produced by activated neutrophils and perform preliminary in vivo testing. Oxygen microbubbles were detected by ultrasound at 2.5 mm H2O2. Best results were achieved with a 400–500 nm spherical design with alternating surface coatings of catalase and PSS over a silica core. The lowest detection limit of 10–100 µm was achieved when assays were done in plasma. Using this design, we detected the H2O2 produced by freshly isolated PMA-activated neutrophils allowing their distinction from naïve neutrophils. Finally, we were also able to show that direct injection of these nanospheres into an abscess in vivo enhanced ultrasound signal only when they contained catalase, and only when injected into an abscess, likely because of the elevated levels of H2O2 produced by inflammatory mediators. PMID:23958028

  3. Evaluation of targeting errors in ultrasound-assisted radiotherapy

    PubMed Central

    Wang, Michael; Rohling, Robert; Duzenli, Cheryl; Clark, Brenda; Archip, Neculai

    2014-01-01

    A method for validating the start-to-end accuracy of a 3D ultrasound-based patient positioning system for radiotherapy is described. A radiosensitive polymer gel is used to record the actual dose delivered to a rigid phantom after being positioned using 3D ultrasound guidance. Comparison of the delivered dose with the treatment plan allows accuracy of the entire radiotherapy treatment process, from simulation to 3D ultrasound guidance, and finally delivery of radiation, to be evaluated. The 3D ultrasound patient positioning system has a number of features for achieving high accuracy and reducing operator dependence. These include using tracked 3D ultrasound scans of the target anatomy acquired using a dedicated 3D ultrasound probe during both the simulation and treatment sessions, automatic 3D ultrasound-to-ultrasound registration, and use of infra-red LED (IRED) markers of the optical position sensing system for registering simulation CT to ultrasound data. The mean target localization accuracy of this system was 2.5mm for four target locations inside the phantom, compared to 1.6mm obtained using the conventional patient positioning method of laser alignment. Since the phantom is rigid, this represents the best possible set-up accuracy of the system. Thus, these results suggest that 3D ultrasound-based target localization is practically feasible and potentially capable of increasing the accuracy of patient positioning for radiotherapy in sites where day-to-day organ shifts are greater than 1mm in magnitude. PMID:18723271

  4. Droplets, Bubbles and Ultrasound Interactions.

    PubMed

    Shpak, Oleksandr; Verweij, Martin; de Jong, Nico; Versluis, Michel

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics.

  5. Three-Dimensional Phenomena in Microbubble Acoustic Streaming

    NASA Astrophysics Data System (ADS)

    Marin, Alvaro; Rossi, Massimiliano; Rallabandi, Bhargav; Wang, Cheng; Hilgenfeldt, Sascha; Kähler, Christian J.

    2015-04-01

    Ultrasound-driven oscillating microbubbles are used as active actuators in microfluidic devices to perform manifold tasks such as mixing, sorting, and manipulation of microparticles. A common configuration consists of side bubbles created by trapping air pockets in blind channels perpendicular to the main channel direction. This configuration consists of acoustically excited bubbles with a semicylindrical shape that generate significant streaming flow. Because of the geometry of the channels, such flows are generally considered as quasi-two-dimensional. Similar assumptions are often made in many other microfluidic systems based on flat microchannels. However, in this Letter we show that microparticle trajectories actually present a much richer behavior, with particularly strong out-of-plane dynamics in regions close to the microbubble interface. Using astigmatism particle-tracking velocimetry, we reveal that the apparent planar streamlines are actually projections of a stream surface with a pseudotoroidal shape. We, therefore, show that acoustic streaming cannot generally be assumed as a two-dimensional phenomenon in confined systems. The results have crucial consequences for most of the applications involving acoustic streaming such as particle trapping, sorting, and mixing.

  6. In vivo Sonothrombolysis of Ear Marginal Vein of Rabbits Monitored with High-frequency Ultrasound Needle Transducer.

    PubMed

    Chen, Ruimin; Paeng, Dong-Guk; Lam, Kwok Ho; Zhou, Qifa; Shung, K Kirk; Matsuoka, Naoki; Humayun, Mark S

    2013-01-01

    Ultrasound (US) is known to enhance thrombolysis when thrombolytic agents and/or microbubbles are injected into the targeted vessels. In this research, high-intensity US (1 MHz, 7 W/cm 2 , 30 % duty cycle) was applied in vivo to the ear marginal vein of three rabbits which was occluded by either laser photothrombosis or thrombin, right after the injection of 0.3~0.6 cc of microbubbles (13 × 10 8 bubbles/ml of concentration) through the other ear vein without using any thrombolytic agent. To determine the effect of the sonothrombolysis, the blood flow velocity near the occlusion site in the vein was measured by a custom-made 40-MHz US needle transducer and its corresponding Doppler US system. The Doppler spectra show that the blood flow velocity recovered from total occlusion after three 10-minute high-intensity US treatments. Fluorescein angiography was employed to confirm the opening of the vessel occlusion. A control study of three rabbits with only the microbubble injection showed no recovery on the occlusion in 3 hours. The results show that the sonothrombolysis in the rabbit ear marginal vein can be achieved with microbubbles only. The results of cavitation measurements indicate that the mechanism of sonothrombolysis is probably due to the cavitation induced by the microbubbles. Without the need of applying any thrombolytic agent, high-intensity US has high potential for therapies targeting on small blood vessels.

  7. Are microbubbles free flowing tracers through the Myocardium? Comparison of indicator-dilution curves obtained from dye dilution and echo contrast using harmonic power Doppler imaging.

    PubMed

    Tiemann, K; Schlosser, T; Pohl, C; Bimmel, D; Wietasch, G; Hoeft, A; Likungu, J; Vahlhaus, C; Kuntz, S; Nanda, N C; Becher, H; Lüderitz, B

    2000-01-01

    Harmonic power Doppler imaging (H-PDI) has been introduced into the field of contrast echocardiography as a contrast-specific imaging modality. However, there has been considerable skepticism as to whether H-PDI would be quantifiable, because it depends on the destruction of microbubbles and has more complex signal processing than gray scale imaging. The aim of the present study was to evaluate the relationship between the concentration of microbubbles and the resulting H-PDI signals even under conditions where bubble destruction is most likely. Furthermore, we evaluated whether microbubbles of Levovist freely pass the microcirculation, which is a prerequisite for the assessment of myocardial blood flow. A strong positive correlation was found between the H-PDI signals and the amount of microbubbles up to the onset of acoustic shadowing (r = 0. 968, P<0.001). Time-intensity curves for H-PDI of air-filled microbubbles were compared with time-concentration curves of indocyanine green (ICG) in both a flow phantom and a working heart setup. The mean transit times (MTTs) through the myocardium of both agents were compared after a bolus injection into the left coronary artery. A close correlation was observed between 1/MTT and flow in both setups (r>0.98, P<0.0001). However, at high flow rates, the MTTs of the microbubbles were slightly, albeit not significantly, faster than those of indocyanine green. We conclude that microbubbles fulfill the prerequisites of free flowing tracers through the myocardium. Furthermore, H-PDI technology allows a reliable assessment of time-concentration curves of air-filled microbubbles up to the onset of acoustic shadowing.

  8. Combination of bubble liposomes and high-intensity focused ultrasound (HIFU) enhanced antitumor effect by tumor ablation.

    PubMed

    Hamano, Nobuhito; Negishi, Yoichi; Takatori, Kyohei; Endo-Takahashi, Yoko; Suzuki, Ryo; Maruyama, Kazuo; Niidome, Takuro; Aramaki, Yukihiko

    2014-01-01

    Ultrasound (US) is used in the clinical setting not only for diagnosis but also for therapy. As a therapeutic US technique, high-intensity focused ultrasound (HIFU) can be applied to treat cancer in a clinical setting. Microbubbles increased temperature and improved the low therapeutic efficiency under HIFU; however, microbubbles have room for improvement in size, stability, and targeting ability. To solve these issues, we reported that "Bubble liposomes" (BLs) containing the US imaging gas (perfluoropropane gas) liposomes were suitable for ultrasound imaging and gene delivery. In this study, we examined whether BLs and HIFU could enhance the ablation area of the tumor and the antitumor effect. First, we histologically analyzed the tumor after BLs and HIFU. The ablation area of the treatment of BLs and HIFU was broader than that of HIFU alone. Next, we monitored the temperature of the tumor, and examined the antitumor effect. The temperature increase with BLs and HIFU treatment was faster and higher than that with HIFU alone. Moreover, treatment with BLs and HIFU enhanced the antitumor effect, which was better than with HIFU alone. Thus, the combination of BLs and HIFU could be efficacious for cancer therapy.

  9. Rupture threshold characterization of polymer-shelled ultrasound contrast agents subjected to static overpressure

    NASA Astrophysics Data System (ADS)

    Chitnis, Parag V.; Lee, Paul; Mamou, Jonathan; Allen, John S.; Böhmer, Marcel; Ketterling, Jeffrey A.

    2011-04-01

    Polymer-shelled micro-bubbles are employed as ultrasound contrast agents (UCAs) and vesicles for targeted drug delivery. UCA-based delivery of the therapeutic payload relies on ultrasound-induced shell rupture. The fragility of two polymer-shelled UCAs manufactured by Point Biomedical or Philips Research was investigated by characterizing their response to static overpressure. The nominal diameters of Point and Philips UCAs were 3 μm and 2 μm, respectively. The UCAs were subjected to static overpressure in a glycerol-filled test chamber with a microscope-reticule lid. UCAs were reconstituted in 0.1 mL of water and added over the glycerol surface in contact with the reticule. A video-microscope imaged UCAs as glycerol was injected (5 mL/h) to vary the pressure from 2 to 180 kPa over 1 h. Neither UCA population responded to overpressure until the rupture threshold was exceeded, which resulted in abrupt destruction. The rupture data for both UCAs indicated three subclasses that exhibited different rupture behavior, although their mean diameters were not statistically different. The rupture pressures provided a measure of UCA fragility; the Philips UCAs were more resilient than Point UCAs. Results were compared to theoretical models of spherical shells under compression. Observed variations in rupture pressures are attributed to shell imperfections. These results may provide means to optimize polymeric UCAs for drug delivery and elucidate associated mechanisms.

  10. Noninvasive, targeted gene therapy for acute spinal cord injury using LIFU-mediated BDNF-loaded cationic nanobubble destruction.

    PubMed

    Song, Zhaojun; Ye, Yongjie; Zhang, Zhi; Shen, Jieliang; Hu, Zhenming; Wang, Zhigang; Zheng, Jiazhuang

    2018-02-12

    Various gene delivery systems have been widely studied for the acute spinal cord injury (SCI) treatment. In the present study, a novel type of brain-derived neurotrophic factor (BDNF)-loaded cationic nanobubbles (CNBs) conjugated with MAP-2 antibody (mAb MAP-2 /BDNF/CNBs) was prepared to provide low-intensity focused ultrasound (LIFU)-targeted gene therapy. In vitro experiments, the ultrasound-targeted tranfection to BDNF overexpressioin in neurons and efficiently inhibition neuronal apoptosis have been demonstrated, and the elaborately designed mAb MAP-2 /BDNF/CNBs can specifically target to the neurons. Furthermore, in a acute SCI rat model, LIFU-mediated mAb MAP-2 /BDNF/CNBs transfection significantly increased BDNF expression, attenuated histological injury, decreased neurons loss, inhibited neuronal apoptosis in injured spinal cords, and increased BBB scores in SCI rats. LIFU-mediated mAb MAP-2 /BDNF/CNBs destruction significantly increase transfection efficiency of BDNF gene both in vitro and in vivo, and has a significant neuroprotective effect on the injured spinal cord. Therefore, the combination of LIFU irradiation and gene therapy through mAb MAP-2 /BDNF/CNBs can be considered as a novel non-invasive and targeted treatment for gene therapy of SCI. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Aptamer-conjugated nanobubbles for targeted ultrasound molecular imaging.

    PubMed

    Wang, Chung-Hsin; Huang, Yu-Fen; Yeh, Chih-Kuang

    2011-06-07

    Targeted ultrasound contrast agents can be prepared by some specific bioconjugation techniques. The biotin-avidin complex is an extremely useful noncovalent binding system, but the system might induce immunogenic side effects in human bodies. Previous proposed covalently conjugated systems suffered from low conjugation efficiency and complex procedures. In this study, we propose a covalently conjugated nanobubble coupling with nucleic acid ligands, aptamers, for providing a higher specific affinity for ultrasound targeting studies. The sgc8c aptamer was linked with nanobubbles through thiol-maleimide coupling chemistry for specific targeting to CCRF-CEM cells. Further improvements to reduce the required time and avoid the degradation of nanobubbles during conjugation procedures were also made. Several investigations were used to discuss the performance and consistency of the prepared nanobubbles, such as size distribution, conjugation efficiency analysis, and flow cytometry assay. Further, we applied our conjugated nanobubbles to ex vivo ultrasound targeted imaging and compared the resulting images with optical images. The results indicated the availability of aptamer-conjugated nanobubbles in targeted ultrasound imaging and the practicability of using a highly sensitive ultrasound system in noninvasive biological research.

  12. Acoustically active liposome-nanobubble complexes for enhanced ultrasonic imaging and ultrasound-triggered drug delivery.

    PubMed

    Nguyen, An T; Wrenn, Steven P

    2014-01-01

    Ultrasound is well known as a safe, reliable imaging modality. A historical limitation of ultrasound, however, was its inability to resolve structures at length scales less than nominally 20 µm, which meant that classical ultrasound could not be used in applications such as echocardiography and angiogenesis where one requires the ability to image small blood vessels. The advent of ultrasound contrast agents, or microbubbles, removed this limitation and ushered in a new wave of enhanced ultrasound applications. In recent years, the microbubbles have been designed to achieve yet another application, namely ultrasound-triggered drug delivery. Ultrasound contrast agents are thus tantamount to 'theranostic' vehicles, meaning they can do both therapy (drug delivery) and imaging (diagnostics). The use of ultrasound contrast agents as drug delivery vehicles, however, is perhaps less than ideal when compared to traditional drug delivery vehicles (e.g., polymeric microcapsules and liposomes) which have greater drug carrying capacities. The drawback of the traditional drug delivery vehicles is that they are not naturally acoustically active and cannot be used for imaging. The notion of a theranostic vehicle is sufficiently intriguing that many attempts have been made in recent years to achieve a vehicle that combines the echogenicity of microbubbles with the drug carrying capacity of liposomes. The attempts can be classified into three categories, namely entrapping, tethering, and nesting. Of these, nesting is the newest-and perhaps the most promising. © 2014 Wiley Periodicals, Inc.

  13. Imaging of vaporised sub-micron phase change contrast agents with high frame rate ultrasound and optics

    NASA Astrophysics Data System (ADS)

    Lin, Shengtao; Zhang, Ge; Jamburidze, Akaki; Chee, Melisse; Hau Leow, Chee; Garbin, Valeria; Tang, Meng-Xing

    2018-03-01

    Phase-change ultrasound contrast agent (PCCA), or nanodroplet, shows promise as an alternative to the conventional microbubble agent over a wide range of diagnostic applications. Meanwhile, high-frame-rate (HFR) ultrasound imaging with microbubbles enables unprecedented temporal resolution compared to traditional contrast-enhanced ultrasound imaging. The combination of HFR ultrasound imaging and PCCAs can offer the opportunity to observe and better understand PCCA behaviour after vaporisation captures the fast phenomenon at a high temporal resolution. In this study, we utilised HFR ultrasound at frame rates in the kilohertz range (5-20 kHz) to image native and size-selected PCCA populations immediately after vaporisation in vitro within clinical acoustic parameters. The size-selected PCCAs through filtration are shown to preserve a sub-micron-sized (mean diameter  <  200 nm) population without micron-sized outliers (>1 µm) that originate from native PCCA emulsion. The results demonstrate imaging signals with different amplitudes and temporal features compared to that of microbubbles. Compared with the microbubbles, both the B-mode and pulse-inversion (PI) signals from the vaporised PCCA populations were reduced significantly in the first tens of milliseconds, while only the B-mode signals from the PCCAs were recovered during the next 400 ms, suggesting significant changes to the size distribution of the PCCAs after vaporisation. It is also shown that such recovery in signal over time is not evident when using size-selective PCCAs. Furthermore, it was found that signals from the vaporised PCCA populations are affected by the amplitude and frame rate of the HFR ultrasound imaging. Using high-speed optical camera observation (30 kHz), we observed a change in particle size in the vaporised PCCA populations exposed to the HFR ultrasound imaging pulses. These findings can further the understanding of PCCA behaviour under HFR ultrasound imaging.

  14. Passive cavitation imaging with ultrasound arrays

    PubMed Central

    Salgaonkar, Vasant A.; Datta, Saurabh; Holland, Christy K.; Mast, T. Douglas

    2009-01-01

    A method is presented for passive imaging of cavitational acoustic emissions using an ultrasound array, with potential application in real-time monitoring of ultrasound ablation. To create such images, microbubble emissions were passively sensed by an imaging array and dynamically focused at multiple depths. In this paper, an analytic expression for a passive image is obtained by solving the Rayleigh–Sommerfield integral, under the Fresnel approximation, and passive images were simulated. A 192-element array was used to create passive images, in real time, from 520-kHz ultrasound scattered by a 1-mm steel wire. Azimuthal positions of this target were accurately estimated from the passive images. Next, stable and inertial cavitation was passively imaged in saline solution sonicated at 520 kHz. Bubble clusters formed in the saline samples were consistently located on both passive images and B-scans. Passive images were also created using broadband emissions from bovine liver sonicated at 2.2 MHz. Agreement was found between the images and source beam shape, indicating an ability to map therapeutic ultrasound beams in situ. The relation between these broadband emissions, sonication amplitude, and exposure conditions are discussed. PMID:20000921

  15. Passive cavitation imaging with ultrasound arrays.

    PubMed

    Salgaonkar, Vasant A; Datta, Saurabh; Holland, Christy K; Mast, T Douglas

    2009-12-01

    A method is presented for passive imaging of cavitational acoustic emissions using an ultrasound array, with potential application in real-time monitoring of ultrasound ablation. To create such images, microbubble emissions were passively sensed by an imaging array and dynamically focused at multiple depths. In this paper, an analytic expression for a passive image is obtained by solving the Rayleigh-Sommerfield integral, under the Fresnel approximation, and passive images were simulated. A 192-element array was used to create passive images, in real time, from 520-kHz ultrasound scattered by a 1-mm steel wire. Azimuthal positions of this target were accurately estimated from the passive images. Next, stable and inertial cavitation was passively imaged in saline solution sonicated at 520 kHz. Bubble clusters formed in the saline samples were consistently located on both passive images and B-scans. Passive images were also created using broadband emissions from bovine liver sonicated at 2.2 MHz. Agreement was found between the images and source beam shape, indicating an ability to map therapeutic ultrasound beams in situ. The relation between these broadband emissions, sonication amplitude, and exposure conditions are discussed.

  16. Real-time measurement of renal blood flow in healthy subjects using contrast-enhanced ultrasound.

    PubMed

    Kalantarinia, Kambiz; Belcik, J Todd; Patrie, James T; Wei, Kevin

    2009-10-01

    Current methods for measuring renal blood flow (RBF) are time consuming and not widely available. Contrast-enhanced ultrasound (CEU) is a safe and noninvasive imaging technique suitable for assessment of tissue blood flow, which has been used clinically to assess myocardial blood flow. We tested the utility of CEU in monitoring changes in RBF in healthy volunteers. We utilized CEU to monitor the expected increase in RBF following a high protein meal in healthy adults. Renal cortical perfusion was assessed by CEU using low mechanical index (MI) power modulation Angio during continuous infusions of Definity. Following destruction of tissue microbubbles using ultrasound at a MI of 1.0, the rate of tissue replenishment with microbubbles and the plateau acoustic intensity (AI) were used to estimate the RBF velocity and cortical blood volume, respectively. Healthy adults (n = 19, mean age 26.6 yr) were enrolled. The A.beta parameter of CEU, representing mean RBF increased by 42.8%from a baseline of 17.05 +/- 6.23 to 23.60 +/- 6.76 dB/s 2 h after the ingestion of the high-protein meal (P = 0.002). Similarly, there was a 37.3%increase in the beta parameter, representing the geometric mean of blood velocity after the high protein meal (P < 0.001). The change in cortical blood volume was not significant (P = 0.89). Infusion time of Definity was 6.3 +/- 2.0 min. The ultrasound contrast agent was tolerated well with no serious adverse events. CEU is a fast, noninvasive, and practical imaging technique that may be useful for monitoring renal blood velocity, volume, and flow.

  17. 3-D transcranial ultrasound imaging with bilateral phase aberration correction of multiple isoplanatic patches: a pilot human study with microbubble contrast enhancement.

    PubMed

    Lindsey, Brooks D; Nicoletto, Heather A; Bennett, Ellen R; Laskowitz, Daniel T; Smith, Stephen W

    2014-01-01

    With stroke currently the second-leading cause of death globally, and 87% of all strokes classified as ischemic, the development of a fast, accessible, cost-effective approach for imaging occlusive stroke could have a significant impact on health care outcomes and costs. Although clinical examination and standard computed tomography alone do not provide adequate information for understanding the complex temporal events that occur during an ischemic stroke, ultrasound imaging is well suited to the task of examining blood flow dynamics in real time and may allow for localization of a clot. A prototype bilateral 3-D ultrasound imaging system using two matrix array probes on either side of the head allows for correction of skull-induced aberration throughout two entire phased array imaging volumes. We investigated the feasibility of applying this custom correction technique in five healthy volunteers with Definity microbubble contrast enhancement. Subjects were scanned simultaneously via both temporal acoustic windows in 3-D color flow mode. The number of color flow voxels above a common threshold increased as a result of aberration correction in five of five subjects, with a mean increase of 33.9%. The percentage of large arteries visualized by 3-D color Doppler imaging increased from 46% without aberration correction to 60% with aberration correction. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  18. Hadamard-Encoded Multipulses for Contrast-Enhanced Ultrasound Imaging.

    PubMed

    Gong, Ping; Song, Pengfei; Chen, Shigao

    2017-11-01

    The development of contrast-enhanced ultrasound (CEUS) imaging offers great opportunities for new ultrasound clinical applications such as myocardial perfusion imaging and abdominal lesion characterization. In CEUS imaging, the contrast agents (i.e., microbubbles) are utilized to improve the contrast between blood and tissue based on their high nonlinearity under low ultrasound pressure. In this paper, we propose a new CEUS pulse sequence by combining Hadamard-encoded multipulses (HEM) with fundamental frequency bandpass filter (i.e., filter centered on transmit frequency). HEM consecutively emits multipulses encoded by a second-order Hadamard matrix in each of the two transmission events (i.e., pulse-echo events), as opposed to conventional CEUS methods which emit individual pulses in two separate transmission events (i.e., pulse inversion (PI), amplitude modulation (AM), and PIAM). In HEM imaging, the microbubble responses can be improved by the longer transmit pulse, and the tissue harmonics can be suppressed by the fundamental frequency filter, leading to significantly improved contrast-to-tissue ratio (CTR) and signal-to-noise ratio (SNR). In addition, the fast polarity change between consecutive coded pulse emissions excites strong nonlinear microbubble echoes, further enhancing the CEUS image quality. The spatial resolution of HEM image is compromised as compared to other microbubble imaging methods due to the longer transmit pulses and the lower imaging frequency (i.e., fundamental frequency). However, the resolution loss was shown to be negligible and could be offset by the significantly enhanced CTR, SNR, and penetration depth. These properties of HEM can potentially facilitate robust CEUS imaging for many clinical applications, especially for deep abdominal organs and heart.

  19. Aptamer-conjugated and drug-loaded acoustic droplets for ultrasound theranosis.

    PubMed

    Wang, Chung-Hsin; Kang, Shih-Tsung; Lee, Ya-Hsuan; Luo, Yun-Ling; Huang, Yu-Fen; Yeh, Chih-Kuang

    2012-02-01

    Tumor therapy requires multi-functional treatment strategies with specific targeting of therapeutics to reduce general toxicity and increase efficacy. In this study we fabricated and functionally tested aptamer-conjugated and doxorubicin (DOX)-loaded acoustic droplets comprising cores of liquid perfluoropentane compound and lipid-based shell materials. Conjugation of sgc8c aptamers provided the ability to specifically target CCRF-CEM cells for both imaging and therapy. High-intensity focused ultrasound (HIFU) was introduced to trigger targeted acoustic droplet vaporization (ADV) which resulted in both mechanical cancer cell destruction by inertial cavitation and chemical treatment through localized drug release. HIFU insonation showed a 56.8% decrease in cell viability with aptamer-conjugated droplets, representing a 4.5-fold increase in comparison to non-conjugated droplets. In addition, the fully-vaporized droplets resulted in the highest DOX uptake by cancer cells, compared to non-vaporized or partially vaporized droplets. Optical studies clearly illustrated the transient changes that occurred upon ADV of droplet-targeted CEM cells, and B-mode ultrasound imaging revealed contrast enhancement by ADV in ultrasound images. In conclusion, our fabricated droplets functioned as a hybrid chemical and mechanical strategy for the specific destruction of cancer cells upon ultrasound-mediated ADV, while simultaneously providing ultrasound imaging capability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. An iterative fullwave simulation approach to multiple scattering in media with randomly distributed microbubbles

    NASA Astrophysics Data System (ADS)

    Joshi, Aditya; Lindsey, Brooks D.; Dayton, Paul A.; Pinton, Gianmarco; Muller, Marie

    2017-05-01

    Ultrasound contrast agents (UCA), such as microbubbles, enhance the scattering properties of blood, which is otherwise hypoechoic. The multiple scattering interactions of the acoustic field with UCA are poorly understood due to the complexity of the multiple scattering theories and the nonlinear microbubble response. The majority of bubble models describe the behavior of UCA as single, isolated microbubbles suspended in infinite medium. Multiple scattering models such as the independent scattering approximation can approximate phase velocity and attenuation for low scatterer volume fractions. However, all current models and simulation approaches only describe multiple scattering and nonlinear bubble dynamics separately. Here we present an approach that combines two existing models: (1) a full-wave model that describes nonlinear propagation and scattering interactions in a heterogeneous attenuating medium and (2) a Paul-Sarkar model that describes the nonlinear interactions between an acoustic field and microbubbles. These two models were solved numerically and combined with an iterative approach. The convergence of this combined model was explored in silico for 0.5 × 106 microbubbles ml-1, 1% and 2% bubble concentration by volume. The backscattering predicted by our modeling approach was verified experimentally with water tank measurements performed with a 128-element linear array transducer. An excellent agreement in terms of the fundamental and harmonic acoustic fields is shown. Additionally, our model correctly predicts the phase velocity and attenuation measured using through transmission and predicted by the independent scattering approximation.

  1. The Use of Acoustic Radiation Force Decorrelation-Weighted Pulse Inversion for Enhanced Ultrasound Contrast Imaging.

    PubMed

    Herbst, Elizabeth B; Unnikrishnan, Sunil; Wang, Shiying; Klibanov, Alexander L; Hossack, John A; Mauldin, Frank William

    2017-02-01

    The use of ultrasound imaging for cancer diagnosis and screening can be enhanced with the use of molecularly targeted microbubbles. Nonlinear imaging strategies such as pulse inversion (PI) and "contrast pulse sequences" (CPS) can be used to differentiate microbubble signal, but often fail to suppress highly echogenic tissue interfaces. This failure results in false-positive detection and potential misdiagnosis. In this study, a novel acoustic radiation force (ARF)-based approach was developed for superior microbubble signal detection. The feasibility of this technique, termed ARF decorrelation-weighted PI (ADW-PI), was demonstrated in vivo using a subcutaneous mouse tumor model. Tumors were implanted in the hindlimb of C57BL/6 mice by subcutaneous injection of MC38 cells. Lipid-shelled microbubbles were conjugated to anti-VEGFR2 antibody and administered via bolus injection. An image sequence using ARF pulses to generate microbubble motion was combined with PI imaging on a Verasonics Vantage programmable scanner. ADW-PI images were generated by combining PI images with interframe signal decorrelation data. For comparison, CPS images of the same mouse tumor were acquired using a Siemens Sequoia clinical scanner. Microbubble-bound regions in the tumor interior exhibited significantly higher signal decorrelation than static tissue (n = 9, P < 0.001). The application of ARF significantly increased microbubble signal decorrelation (n = 9, P < 0.01). Using these decorrelation measurements, ADW-PI imaging demonstrated significantly improved microbubble contrast-to-tissue ratio when compared with corresponding CPS or PI images (n = 9, P < 0.001). Contrast-to-tissue ratio improved with ADW-PI by approximately 3 dB compared with PI images and 2 dB compared with CPS images. Acoustic radiation force can be used to generate adherent microbubble signal decorrelation without microbubble bursting. When combined with PI, measurements of the resulting microbubble signal

  2. Usage of CO2 microbubbles as flow-tracing contrast media in X-ray dynamic imaging of blood flows.

    PubMed

    Lee, Sang Joon; Park, Han Wook; Jung, Sung Yong

    2014-09-01

    X-ray imaging techniques have been employed to visualize various biofluid flow phenomena in a non-destructive manner. X-ray particle image velocimetry (PIV) was developed to measure velocity fields of blood flows to obtain hemodynamic information. A time-resolved X-ray PIV technique that is capable of measuring the velocity fields of blood flows under real physiological conditions was recently developed. However, technical limitations still remained in the measurement of blood flows with high image contrast and sufficient biocapability. In this study, CO2 microbubbles as flow-tracing contrast media for X-ray PIV measurements of biofluid flows was developed. Human serum albumin and CO2 gas were mechanically agitated to fabricate CO2 microbubbles. The optimal fabricating conditions of CO2 microbubbles were found by comparing the size and amount of microbubbles fabricated under various operating conditions. The average size and quantity of CO2 microbubbles were measured by using a synchrotron X-ray imaging technique with a high spatial resolution. The quantity and size of the fabricated microbubbles decrease with increasing speed and operation time of the mechanical agitation. The feasibility of CO2 microbubbles as a flow-tracing contrast media was checked for a 40% hematocrit blood flow. Particle images of the blood flow were consecutively captured by the time-resolved X-ray PIV system to obtain velocity field information of the flow. The experimental results were compared with a theoretically amassed velocity profile. Results show that the CO2 microbubbles can be used as effective flow-tracing contrast media in X-ray PIV experiments.

  3. A cMUT probe for ultrasound-guided focused ultrasound targeted therapy.

    PubMed

    Gross, Dominique; Coutier, Caroline; Legros, Mathieu; Bouakaz, Ayache; Certon, Dominique

    2015-06-01

    Ultrasound-mediated targeted therapy represents a promising strategy in the arsenal of modern therapy. Capacitive micromachined ultrasonic transducer (cMUT) technology could overcome some difficulties encountered by traditional piezoelectric transducers. In this study, we report on the design, fabrication, and characterization of an ultrasound-guided focused ultrasound (USgFUS) cMUT probe dedicated to preclinical evaluation of targeted therapy (hyperthermia, thermosensitive liposomes activation, and sonoporation) at low frequency (1 MHz) with simultaneous ultrasonic imaging and guidance (15 to 20 MHz). The probe embeds two types of cMUT arrays to perform the modalities of targeted therapy and imaging respectively. The wafer-bonding process flow employed for the manufacturing of the cMUTs is reported. One of its main features is the possibility of implementing two different gap heights on the same wafer. All the design and characterization steps of the devices are described and discussed, starting from the array design up to the first in vitro measurements: optical (microscopy) and electrical (impedance) measurements, arrays' electroacoustic responses, focused pressure field mapping (maximum peak-to-peak pressure = 2.5 MPa), and the first B-scan image of a wire-target phantom.

  4. Mesoporous silica nanoparticles as a breast cancer targeting contrast agent for ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Milgroom, Andrew Carson

    Current clinical use of ultrasound for breast cancer diagnostics is strictly limited to a role as a supplementary detection method to other modalities, such as mammography or MRI. A major reason for ultrasound’s role as a secondary method is its inability to discern between cancerous and non-cancerous bodies of similar density, like dense calcifications or benign fibroadenomas. Its detection capabilities are further diminished by the variable density of the surrounding breast tissue with the progression of age. Preliminary studies suggest that mesoporous silica nanoparticles (MSNs) are a good candidate as an in situ contrast agent for ultrasound. By tagging the silica particle surface with the cancer-targeting antibody trastuzumab (Herceptin), suspect regions of interest can be better identified in real time with standard ultrasound equipment. Once the silica-antibody conjugate is injected into the bloodstream and enters the cancerous growth’s vasculature, the antibody arm will bind to HER2, a cell surface receptor known to be dysfunctional or overexpressed in certain types of breast cancer. As more particles aggregate at the cell surface, backscatter of the ultrasonic waves increases as a result of the higher porous silica concentration. This translates to an increased contrast around the lesion boundary. Tumor detection through ultrasound contrast enhancement provides a tremendous advantage over current cancer diagnostics because is it significantly cheaper and can be monitored in real time. Characterization of MCM-41 type MSNs suggests that these particles have sufficient stability and particle size distribution to penetrate through fenestrated tumor vasculature and accumulate in HER2+ breast cancer cells through the enhanced permeation and retention (EPR) effect. A study of acoustic properties showed that particle concentration is linearly correlated to image contrast in clinical frequency-range ultrasound, although less pronounced than typical microbubble

  5. Targeted Gene Transfer to the Brain via the Delivery of Brain-Penetrating DNA Nanoparticles with Focused Ultrasound

    PubMed Central

    Mead, Brian P.; Mastorakos, Panagiotis; Suk, Jung Soo; Klibanov, Alexander L.; Hanes, Justin; Price, Richard J.

    2016-01-01

    Gene therapy holds promise for the treatment of many pathologies of the central nervous system (CNS), including brain tumors and neurodegenerative diseases. However, the delivery of systemically administered gene carriers to the CNS is hindered by both the blood-brain barrier (BBB) and the nanoporous and electrostatically charged brain extracelluar matrix (ECM), which acts as a steric and adhesive barrier. We have previously shown that these physiological barriers may be overcome by, respectively, opening the BBB with MR image-guided focused ultrasound (FUS) and microbubbles and using highly compact “brain penetrating” nanoparticles (BPN) coated with a dense polyethylene glycol corona that prevents adhesion to ECM components. Here, we tested whether this combined approach could be utilized to deliver systemically administered DNA-bearing BPN (DNA-BPN) across the BBB and mediate localized, robust, and sustained transgene expression in the rat brain. Systemically administered DNA-BPN delivered through the BBB with FUS led to dose-dependent transgene expression only in the FUS-treated region that was evident as early as 24 h post administration and lasted for at least 28 days. In the FUS-treated region ~42% of all cells, including neurons and astrocytes, were transfected, while less than 6% were transfected in the contralateral non-FUS treated hemisphere. Importantly, this was achieved without any sign of toxicity or astrocyte activation. We conclude that the image-guided delivery of DNA-BPN with FUS and microbubbles constitutes a safe and non-invasive strategy for targeted gene therapy to the brain. PMID:26732553

  6. Fluorescent microscope system to monitor real-time interactions between focused ultrasound, echogenic drug delivery vehicles, and live cell membranes.

    PubMed

    Ibsen, Stuart; Benchimol, Michael; Esener, Sadik

    2013-01-01

    Rapid development in the field of ultrasound triggered drug delivery has made it essential to study the real-time interaction between the membranes of live cells and the membranes of echogenic delivery vehicles under exposure to focused ultrasound. The objective of this work was to design an analysis system that combined fluorescent imagining, high speed videography, and definable pulse sequences of focused ultrasound to allow for real time observations of both cell and vehicle membranes. Documenting the behavior of the membranes themselves has not previously been possible due to limitations with existing optical systems used to understand the basic physics of microbubble/ultrasound interaction and the basic interaction between microbubbles and cells. The performance of this new system to monitor membrane behavior was demonstrated by documenting the modes of vehicle fragmentation at different ultrasound intensity levels. At 1.5MPa the membranes were shown to completely fragment while at intensities below 1MPa the membranes pop open and slowly unfold. The interaction between these vehicles and cell membranes was also documented by the removal of fluorescent particles from the surfaces of live cells out to 20μm from the microbubble location. The fluid flow created by microstreaming around ensonated microbubbles was documented at video recording speeds from 60 to 18,000 frames per second. This information about membrane behavior allows the chemical and physical properties of the drug delivery vehicle to be designed along with the ultrasound pulse sequence to cause the most efficient drug delivery. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Fluorescent Microscope System to Monitor Real-Time Interactions between Focused Ultrasound, Echogenic Drug Delivery Vehicles, and Live Cell Membranes

    PubMed Central

    Ibsen, Stuart; Benchimol, Michael; Esener, Sadik

    2012-01-01

    Rapid development in the field of ultrasound triggered drug delivery has made it essential to study the real-time interaction between the membranes of live cells and the membranes of echogenic delivery vehicles under exposure to focused ultrasound. The objective of this work was to design an analysis system that combined fluorescent imagining, high speed videography, and definable pulse sequences of focused ultrasound to allow for real time observations of both cell and vehicle membranes. Documenting the behavior of the membranes themselves has not previously been possible due to limitations with existing optical systems used to understand the basic physics of microbubble/ultrasound interaction and the basic interaction between microbubbles and cells. The performance of this new system to monitor membrane behavior was demonstrated by documenting the modes of vehicle fragmentation at different ultrasound intensity levels. At 1.5 MPa the membranes were shown to completely fragment while at intensities below 1 MPa there is a popping and slow unfolding. The interaction between these vehicles and cell membranes was also documented by the removal of fluorescent particles from the surfaces of live cells out to 20 μm from the microbubble location. The fluid flow created by microstreaming around ensonated microbubbles was documented at video recording speeds from 60 to 18,000 frames per second. This information about membrane behavior allows the chemical and physical properties of the drug delivery vehicle to be designed along with the ultrasound pulse sequence to cause the most efficient drug delivery. PMID:22749476

  8. Dynamic behaviour of a two-microbubble system under ultrasonic wave excitation.

    PubMed

    Huang, Xiao; Wang, Qian-Xi; Zhang, A-Man; Su, Jian

    2018-05-01

    Acoustic bubbles have wide and important applications in ultrasonic cleaning, sonochemistry and medical ultrasonics. A two-microbubble system (TMS) under ultrasonic wave excitation is explored in the present study, by using the boundary element method (BEM) based on the potential flow theory. A parametric study of the behaviour of a TMS has been carried out in terms of the amplitude and direction of ultrasound as well as the sizes and separation distance of the two bubbles. Three regimes of the dynamic behaviour of the TMS have been identified in terms of the pressure amplitude of the ultrasonic wave. When subject to a strong wave with the pressure amplitude of 1 atm or larger, the two microbubbles become non-spherical during the first cycle of oscillation, with two counter liquid jets formed. When subject to a weak wave with the pressure amplitude of less than 0.5 atm, two microbubbles may be attracted, repelled, or translate along the wave direction with periodic stable separation distance, depending on their size ratio. However, for the TMS under moderate waves, bubbles undergo both non-spherical oscillation and translation as well as liquid jet rebounding. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. ACOUSTIC CHARACTERIZATION AND PHARAMACOKINETIC ANALYSES OF NEW NANOBUBBLE ULTRASOUND CONTRAST AGENTS

    PubMed Central

    Wu, Hanping; Rognin, Nicolas G.; Krupka, Tianyi M.; Solorio, Luis; Yoshiara, Hiroki; Guenette, Gilles; Sanders, Christoher; Kamiyama, Naohisa; Exner, Agata A.

    2013-01-01

    In contrast to the clinically used microbubble ultrasound contrast agents, nanoscale bubbles (or nanobubbles) may potentially extravasate into tumors that exhibit more permeable vasculature, facilitating targeted molecular imaging and drug delivery. Our group recently presented a simple strategy using the non-ionic surfactant Pluronic as a size control excipient to produce nanobubbles with a mean diameter of 200 nm that exhibited stability and echogenicity on par with microbubbles. The objective of this study was to carry out an in-depth characterization of nanobubble properties as compared with Definity microbubbles, both in vitro and in vivo. Through use of a tissue-mimicking phantom, in vitro experiments measured the echogenicity of the contrast agent solutions and the contrast agent dissolution rate over time. Nanobubbles were found to be more echogenic than Definity microbubbles at three different harmonic frequencies (8, 6.2 and 3.5 MHz). Definity microbubbles also dissolved 1.67 times faster than nanobubbles. Pharmacokinetic studies were then performed in vivo in a subcutaneous human colorectal adenocarcinoma (LS174T) in mice. The peak enhancement and decay rates of contrast agents after bolus injection in the liver, kidney and tumor were analyzed. No significant differences were observed in peak enhancement between the nanobubble and Definity groups in the three tested regions (tumor, liver and kidney). However, the decay rates of nanobubbles in tumor and kidney were significantly slower than those of Definity in the first 200-s fast initial phase. There were no significant differences in the decay rate in the liver in the initial phase or in three regions of interest in the terminal phase. Our results suggest that the stability and acoustic properties of the new nanobubble contrast agents are superior to those of the clinically used Definity microbubbles. The slower washout of nanobubbles in tumors suggests potential entrapment of the bubbles within the

  10. Novel cell-penetrating peptide-loaded nanobubbles synergized with ultrasound irradiation enhance EGFR siRNA delivery for triple negative Breast cancer therapy.

    PubMed

    Jing, Hui; Cheng, Wen; Li, Shouqiang; Wu, Bolin; Leng, Xiaoping; Xu, Shouping; Tian, Jiawei

    2016-10-01

    The lack of safe and effective gene delivery strategies remains a bottleneck for cancer gene therapy. Here, we describe the synthesis, characterization, and application of cell-penetrating peptide (CPP)-loaded nanobubbles (NBs), which are characterized by their safety, strong penetrating power and high gene loading capability for gene delivery. An epidermal growth factor receptor (EGFR)-targeted small interfering RNA (siEGFR) was transfected into triple negative breast cancer (TNBC) cells via prepared CPP-NBs synergized with ultrasound-targeted microbubble destruction (UTMD) technology. Fluorescence microscopy showed that siEGFR and CPP were loaded on the shells of the NBs. The transfection efficiency and cell proliferation levels were evaluated by FACS and MTT assays, respectively. In addition, in vivo experiments showed that the expression of EGFR mRNA and protein could be efficiently downregulated and that the growth of a xenograft tumor derived from TNBC cells could be inhibited. Our results indicate that CPP-NBs carrying siEGFR could potentially be used as a promising non-viral gene vector that can be synergized with UTMD technology for efficient TNBC therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Risk of decompression sickness in the presence of circulating microbubbles

    NASA Technical Reports Server (NTRS)

    Kumar, K. Vasantha; Powell, Michael R.

    1993-01-01

    In this study, we examined the association between microbubbles formed in the circulation from a free gas phase and symptoms of altitude decompression sickness (DCS). In a subgroup of 59 males of mean (S.D) age 31.2 (5.8) years who developed microbubbles during exposure to 26.59 kPa (4.3 psi) under simulated extravehicular activities (EVA), symptoms of DCS occurred in 24 (41 percent) individuals. Spencer grade 1 microbubbles occurred in 4 (7 percent), grade 2 in 9 (15 percent), grade 3 in 15 (25 percent), and grade 4 in 31 (53 percent) of subjects. Survival analysis using Cox proportional hazards regression showed that individuals with less than grade 3 CMB showed 2.46 times (95 percent confidence interval = 1.26 to 5.34) higher risk of symptoms. This information is crucial for defining the risk of DCS for inflight Doppler monitoring under space EVA. Altitude decompression sickness (DCS) occurs when there is acute reduction in ambient pressure. The symptoms of DCS are due to the formation of a free gas phase (in the form of gas microbubbles) in tissues during decompression. Musculo-skeletal pain of bends is the commonest form of DCS in altitude exposures. In the space flight environment, there is a risk of DCS when astronauts decompress from the normobaric shuttle pressure into the hypobaric space suit pressure (currently about 29.65 kPa (4.3 psi) for extra-vehicular activities (EVA). This risk is counterbalanced by a judicious combination of prior denitrogenation and staged decompression. Studies of DCS are limited by the duration of the test at reduced pressure. Since only a proportion of subjects tested develop symptoms, the information on DCS is generally incomplete or 'censored'. Many studies employ Doppler ultrasound monitoring of the precordial area for detecting circulating microbubbles (CMB). Although the association between CMB and bends pain is not causal, CMB are frequently monitored during decompression. In this paper, we examine the association

  12. Effects of ultrasound-induced inertial cavitation on enzymatic thrombolysis.

    PubMed

    Chuang, Yueh-Hsun; Cheng, Po-Wen; Chen, Szu-Chia; Ruan, Jia-Ling; Li, Pai-Chi

    2010-04-01

    Cavitation induced by ultrasound enhances enzymatic fibrinolysis by increasing the transport of reactants. However, the effects of cavitation need to be fully understood before sonothrombolysis can be applied clinically. In order to understand the underlying mechanisms, we examined the effects of combining ultrasound, microbubbles and thrombolytic enzymes on thrombolysis. First, we evaluated the relations between inertial cavitation and the reduction in the weight of a blood clot. Inertial cavitation was varied by changing the amplitude and duration of the transmitted acoustic wave as well as the concentration of microbubbles used to induce cavitation. Second, we studied the combined effects of streptokinase and inertial cavitation on thrombolysis. The results show that inertial cavitation increases the weight reduction of a blood clot by up to 33.9%. With linear regression fitting, the measured differential inertial cavitation dose and the weight reduction had a correlation coefficient of 0.66. Microscopically, enzymatic thrombolysis effects manifest as multiple large cavities within the clot that are uniformly distributed on the side exposed to ultrasound. This suggests that inertial cavitation plays an important role in producing cavities, while microjetting of the microbubbles induces pits on the clot surface. These observations preliminarily demonstrate the clinical potential of sonothrombolysis. The use of the differential inertial cavitation dose as an indicator of blood clot weight loss for controlled sonothrombolysis is also possible and will be further explored.

  13. The use of Acoustic Radiation Force decorrelation-weighted pulse inversion (ADW-PI) for enhanced ultrasound contrast imaging

    PubMed Central

    Herbst, Elizabeth; Unnikrishnan, Sunil; Wang, Shiying; Klibanov, Alexander L.; Hossack, John A.; Mauldin, F. William

    2016-01-01

    Objectives The use of ultrasound imaging for cancer diagnosis and screening can be enhanced with the use of molecularly targeted microbubbles. Nonlinear imaging strategies such as pulse inversion (PI) and “contrast pulse sequences” (CPS) can be used to differentiate microbubble signal, but often fail to suppress highly echogenic tissue interfaces. This failure results in false positive detection and potential misdiagnosis. In this study, a novel Acoustic Radiation Force (ARF) based approach was developed for superior microbubble signal detection. The feasibility of this technique, termed ARF-decorrelation-weighted PI (ADW-PI), was demonstrated in vivo using a subcutaneous mouse tumor model. Materials and Methods Tumors were implanted in the hindlimb of C57BL/6 mice by subcutaneous injection of MC38 cells. Lipid-shelled microbubbles were conjugated to anti-VEGFR2 antibody and administered via bolus injection. An image sequence using ARF pulses to generate microbubble motion was combined with PI imaging on a Verasonics Vantage programmable scanner. ADW-PI images were generated by combining PI images with inter-frame signal decorrelation data. For comparison, CPS images of the same mouse tumor were acquired using a Siemens Sequoia clinical scanner. Results Microbubble-bound regions in the tumor interior exhibited significantly higher signal decorrelation than static tissue (n = 9, p < 0.001). The application of ARF significantly increased microbubble signal decorrelation (n = 9, p < 0.01). Using these decorrelation measurements, ADW-PI imaging demonstrated significantly improved microbubble contrast-to-tissue ratio (CTR) when compared to corresponding CPS or PI images (n = 9, p < 0.001). CTR improved with ADW-PI by approximately 3 dB compared to PI images and 2 dB compared to CPS images. Conclusions Acoustic radiation force can be used to generate adherent microbubble signal decorrelation without microbubble bursting. When combined with pulse inversion

  14. Drug delivery across the blood-brain barrier using focused ultrasound

    PubMed Central

    Burgess, Alison; Hynynen, Kullervo H.

    2015-01-01

    Introduction The presence of the blood-brain barrier (BBB) is a significant impediment to the delivery of therapeutic agents to the brain for treatment of brain diseases. Focused ultrasound (FUS) has been developed as a non-invasive method for transiently increasing the permeability of the BBB to promote drug delivery to targeted regions of the brain. Areas Covered The present review briefly compares the methods used to promote drug delivery to the brain and describes the benefits and limitations of FUS technology. We summarize the experimental data which shows that FUS, combined with intravascular microbubbles, increases therapeutic agent delivery into the brain leading to significant reductions in pathology in preclinical models of disease. The potential for translation of this technology to the clinic is also discussed. Expert Opinion The introduction of MRI guidance and intravascular administration of microbubbles to FUS treatments permits the consistent, transient, and targeted opening of the BBB. The development of feedback systems and real-time monitoring techniques improve the safety of BBB opening. Successful clinical translation of FUS has the potential to revolutionize the treatment of brain disease resulting in effective, less-invasive treatments without the need for expensive drug development. PMID:24650132

  15. Drug delivery across the blood-brain barrier using focused ultrasound.

    PubMed

    Burgess, Alison; Hynynen, Kullervo

    2014-05-01

    The presence of the blood-brain barrier (BBB) is a significant impediment to the delivery of therapeutic agents to the brain for treatment of brain diseases. Focused ultrasound (FUS) has been developed as a noninvasive method for transiently increasing the permeability of the BBB to promote drug delivery to targeted regions of the brain. The present review briefly compares the methods used to promote drug delivery to the brain and describes the benefits and limitations of FUS technology. We summarize the experimental data which shows that FUS, combined with intravascular microbubbles, increases therapeutic agent delivery into the brain leading to significant reductions in pathology in preclinical models of disease. The potential for translation of this technology to the clinic is also discussed. The introduction of magnetic resonance imaging guidance and intravascular administration of microbubbles to FUS treatments permits the consistent, transient and targeted opening of the BBB. The development of feedback systems and real-time monitoring techniques improve the safety of BBB opening. Successful clinical translation of FUS has the potential to revolutionize the treatment of brain disease resulting in effective, less-invasive treatments without the need for expensive drug development.

  16. Dynamic Contrast-Enhanced Ultrasound Identifies Microcirculatory Alterations in Sepsis-Induced Acute Kidney Injury.

    PubMed

    Lima, Alexandre; van Rooij, Tom; Ergin, Bulent; Sorelli, Michele; Ince, Yasin; Specht, Patricia A C; Mik, Egbert G; Bocchi, Leonardo; Kooiman, Klazina; de Jong, Nico; Ince, Can

    2018-05-15

    We developed quantitative methods to analyze microbubble kinetics based on renal contrast-enhanced ultrasound imaging combined with measurements of sublingual microcirculation on a fixed area to quantify early microvascular alterations in sepsis-induced acute kidney injury. Prospective controlled animal experiment study. Hospital-affiliated animal research institution. Fifteen female pigs. The animals were instrumented with a renal artery flow probe after surgically exposing the kidney. Nine animals were given IV infusion of lipopolysaccharide to induce septic shock, and six were used as controls. Contrast-enhanced ultrasound imaging was performed on the kidney before, during, and after having induced shock. Sublingual microcirculation was measured continuously using the Cytocam on the same spot. Contrast-enhanced ultrasound effectively allowed us to develop new analytical methods to measure dynamic variations in renal microvascular perfusion during shock and resuscitation. Renal microvascular hypoperfusion was quantified by decreased peak enhancement and an increased ratio of the final plateau intensity to peak enhancement. Reduced intrarenal blood flow could be estimated by measuring the microbubble transit times between the interlobar arteries and capillary vessels in the renal cortex. Sublingual microcirculation measured using the Cytocam in a fixed area showed decreased functional capillary density associated with plugged sublingual capillary vessels that persisted during and after fluid resuscitation. In our lipopolysaccharide model, with resuscitation targeted at blood pressure, the contrast-enhanced ultrasound imaging can identify renal microvascular alterations by showing prolonged contrast enhancement in microcirculation during shock, worsened by resuscitation with fluids. Concomitant analysis of sublingual microcirculation mirrored those observed in the renal microcirculation.

  17. Recent Advances in Molecular, Multimodal and Theranostic Ultrasound Imaging

    PubMed Central

    Kiessling, Fabian; Fokong, Stanley; Bzyl, Jessica; Lederle, Wiltrud; Palmowski, Moritz; Lammers, Twan

    2014-01-01

    Ultrasound (US) imaging is an exquisite tool for the non-invasive and real-time diagnosis of many different diseases. In this context, US contrast agents can improve lesion delineation, characterization and therapy response evaluation. US contrast agents are usually micrometer-sized gas bubbles, stabilized with soft or hard shells. By conjugating antibodies to the microbubble (MB) surface, and by incorporating diagnostic agents, drugs or nucleic acids into or onto the MB shell, molecular, multimodal and theranostic MB can be generated. We here summarize recent advances in molecular, multimodal and theranostic US imaging, and introduce concepts how such advanced MB can be generated, applied and imaged. Examples are given for their use to image and treat oncological, cardiovascular and neurological diseases. Furthermore, we discuss for which therapeutic entities incorporation into (or conjugation to) MB is meaningful, and how US-mediated MB destruction can increase their extravasation, penetration, internalization and efficacy. PMID:24316070

  18. Micro- and nanobubbles: a versatile non-viral platform for gene delivery.

    PubMed

    Cavalli, Roberta; Bisazza, Agnese; Lembo, David

    2013-11-18

    Micro- and nanobubbles provide a promising non-viral strategy for ultrasound mediated gene delivery. Microbubbles are spherical gas-filled structures with a mean diameter of 1-8 μm, characterised by their core-shell composition and their ability to circulate in the bloodstream following intravenous injection. They undergo volumetric oscillations or acoustic cavitation when insonified by ultrasound and, most importantly, they are able to resonate at diagnostic frequencies. It is due to this behaviour that microbubbles are currently being used as ultrasound contrast agents, but their use in therapeutics is still under investigation. For example, microbubbles could play a role in enhancing gene delivery to cells: when combined with clinical ultrasound exposure, microbubbles are able to favour gene entry into cells by cavitation. Two different delivery strategies have been used to date: DNA can be co-administered with the microbubbles (i.e. the contrast agent) or 'loaded' in purposed-built bubble systems - indeed a number of different technological approaches have been proposed to associate genes within microbubble structures. Nanobubbles, bubbles with sizes in the nanometre order of magnitude, have also been developed with the aim of obtaining more efficient gene delivery systems. Their small sizes allow the possibility of extravasation from blood vessels into the surrounding tissues and ultrasound-targeted site-specific release with minimal invasiveness. In contrast, microbubbles, due to their larger sizes, are unable to extravasate, thus and their targeting capacity is limited to specific antigens present within the vascular lumen. This review provides an overview of the use of microbubbles as gene delivery systems, with a specific focus on recent research into the development of nanosystems. In particular, ultrasound delivery mechanisms, formulation parameters, gene-loading approaches and the advantages of nanometric systems will be described. Copyright © 2013

  19. Ultrasound for Drug and Gene Delivery to the Brain

    PubMed Central

    Hynynen, Kullervo

    2008-01-01

    Noninvasive, transient, and local image-guided blood-brain barrier disruption (BBBD) has been demonstrated with focused ultrasound exposure in animal models. Most studies have combined low pressure amplitude and low time average acoustic power burst sonications with intra-vascular injection of pre-formed micro-bubbles to produce BBBD without damage to the neurons. The BBB has been shown to be healed within a few hours after the exposure. The combination of focused ultrasound beams with MR image guidance allows precise anatomical targeting as demonstrated by the delivery of several marker molecules in different animal models. This method may in the future have a significant impact on the diagnosis and treatment of central nervous system (CNS) disorders. Most notably, the delivery of the chemotherapy agents liposomal Doxorubicin and Herceptin has been shown in a rat model. PMID:18486271

  20. Utilization of diagnostic ultrasound and intravenous lipid-encapsulated perfluorocarbons in non-invasive targeted cardiovascular therapeutics.

    PubMed

    Porter, Thomas R; Choudhury, Songita A; Xie, Feng

    2016-01-01

    Diagnostic ultrasound (DUS) pressures have the ability to induce inertial cavitation (IC) of systemically administered microbubbles; this bioeffect has many diagnostic and therapeutic implications in cardiovascular care. Diagnostically, commercially available lipid-encapsulated perfluorocarbons (LEP) can be utilized to improve endocardial and vascular border delineation as well as assess myocardial perfusion. Therapeutically, the liquid jets induced by IC can alter endothelial function and dissolve thrombi within the immediate vicinity of the cavitating microbubbles. The cavitating LEP can also result in the localized release of any bound therapeutic substance at the site of insonation. DUS-induced IC has been tested in pre-clinical studies to determine what effect it has on acute vascular and microvascular thrombosis as well as nitric oxide (NO) release. These pre-clinical studies have consistently shown that DUS-induced IC of LEP is effective in restoring coronary vascular and microvascular flow in acute ST segment elevation myocardial infarction (STEMI), with microvascular flow improving even if upstream large vessel flow has not been achieved. The initial clinical trials examining the efficacy of short pulse duration DUS high mechanical index impulses in patients with STEMI are underway, and preliminary studies have suggested that earlier epicardial vessel recanalization can be achieved prior to arriving in the cardiac catheterization laboratory. DUS high mechanical index impulses have also been effective in pre-clinical studies for targeting DNA delivery that has restored islet cell function in type I diabetes and restored vascular flow in the extremities downstream from a peripheral vascular occlusion. Improvements in this technique will come from three dimensional arrays for therapeutic applications, more automated delivery techniques that can be applied in the field, and use of submicron-sized acoustically activated LEP droplets that may better permeate the

  1. Ultrasound-Induced Blood-Brain Barrier Opening

    PubMed Central

    Konofagou, Elisa E.; Tung, Yao-Sheng; Choi, James; Deffieux, Thomas; Baseri, Babak; Vlachos, Fotios

    2014-01-01

    Over 4 million U.S. men and women suffer from Alzheimer's disease; 1 million from Parkinson's disease; 350,000 from multiple sclerosis (MS); and 20,000 from amyotrophic lateral sclerosis (ALS). Worldwide, these four diseases account for more than 20 million patients. In addition, aging greatly increases the risk of neurodegenerative disease. Although great progress has been made in recent years toward understanding of these diseases, few effective treatments and no cures are currently available. This is mainly due to the impermeability of the blood-brain barrier (BBB) that allows only 5% of the 7000 small-molecule drugs available to treat only a tiny fraction of these diseases. On the other hand, safe and localized opening of the BBB has been proven to present a significant challenge. Of the methods used for BBB disruption shown to be effective, Focused Ultrasound (FUS), in conjunction with microbubbles, is the only technique that can induce localized BBB opening noninvasively and regionally. FUS may thus have a huge impact in trans-BBB brain drug delivery. The primary objective in this paper is to elucidate the interactions between ultrasound, microbubbles and the local microenvironment during BBB opening with FUS, which are responsible for inducing the BBB disruption. The mechanism of the BBB opening in vivo is monitored through the MRI and passive cavitation detection (PCD), and the safety of BBB disruption is assessed using H&E histology at distinct pressures, pulse lengths and microbubble diameters. It is hereby shown that the BBB can be disrupted safely and transiently under specific acoustic pressures (under 0.45 MPa) and microbubble (diameter under 8 μm) conditions. PMID:22201586

  2. Improved Contrast-Enhanced Ultrasound Imaging With Multiplane-Wave Imaging.

    PubMed

    Gong, Ping; Song, Pengfei; Chen, Shigao

    2018-02-01

    Contrast-enhanced ultrasound (CEUS) imaging has great potential for use in new ultrasound clinical applications such as myocardial perfusion imaging and abdominal lesion characterization. In CEUS imaging, contrast agents (i.e., microbubbles) are used to improve contrast between blood and tissue because of their high nonlinearity under low ultrasound pressure. However, the quality of CEUS imaging sometimes suffers from a low signal-to-noise ratio (SNR) in deeper imaging regions when a low mechanical index (MI) is used to avoid microbubble disruption, especially for imaging at off-resonance transmit frequencies. In this paper, we propose a new strategy of combining CEUS sequences with the recently proposed multiplane-wave (MW) compounding method to improve the SNR of CEUS in deeper imaging regions without increasing MI or sacrificing frame rate. The MW-CEUS method emits multiple Hadamard-coded CEUS pulses in each transmission event (i.e., pulse-echo event). The received echo signals first undergo fundamental bandpass filtering (i.e., the filter is centered on the transmit frequency) to eliminate the microbubble's second-harmonic signals because they cannot be encoded by pulse inversion. The filtered signals are then Hadamard decoded and realigned in fast time to recover the signals as they would have been obtained using classic CEUS pulses, followed by designed recombination to cancel the linear tissue responses. The MW-CEUS method significantly improved contrast-to-tissue ratio and SNR of CEUS imaging by transmitting longer coded pulses. The image resolution was also preserved. The microbubble disruption ratio and motion artifacts in MW-CEUS were similar to those of classic CEUS imaging. In addition, the MW-CEUS sequence can be adapted to other transmission coding formats. These properties of MW-CEUS can potentially facilitate CEUS imaging for many clinical applications, especially assessing deep abdominal organs or the heart.

  3. Measurement of the complex permittivity of microbubbles using a cavity perturbation technique for contrast enhanced ultra-wideband breast cancer detection.

    PubMed

    Ogunlade, Olumide; Chen, Yifan; Kosmas, Panagiotis

    2010-01-01

    Measurements of the complex permittivity of various concentrations of microbubbles in ethylene glycol liquid phantom have been carried out. A cavity perturbation technique using custom rectangular waveguide cavities, which are sensitive to small changes in the permittivity of the perturber, has been employed. Three different frequencies within the ultra-wideband (UWB) frequency spectrum have been used for the experiments. The results show that the concentration of the air filled microbubbles required to achieve a dielectric contrast as little as 2% exceeds the recommended dosage used in clinical ultrasound applications, by more than two orders of magnitude.

  4. Advanced ultrasound applications in the assessment of renal transplants: contrast-enhanced ultrasound, elastography, and B-flow.

    PubMed

    Morgan, Tara A; Jha, Priyanka; Poder, Liina; Weinstein, Stefanie

    2018-04-09

    Ultrasound is routinely used as the first imaging exam for evaluation of renal transplants and can identify most major surgical complications and evaluate vascularity with color Doppler. Ultrasound is limited, however, in the detection of parenchymal disease processes and Doppler evaluation is also prone to technical errors. Multiple new ultrasound applications have been developed and are under ongoing investigation which could add additional diagnostic capability to the routine ultrasound exam with minimal additional time, cost, and patient risk. Contrast-enhanced ultrasound (CEUS) can be used off-label in the transplant kidney, and can assist in detection of infection, trauma, and vascular complications. CEUS also can demonstrate perfusion of the transplant assessed quantitatively with generation of time-intensity curves. Future directions of CEUS include monitoring treatment response and microbubble targeted medication delivery. Elastography is an ultrasound application that can detect changes in tissue elasticity, which is useful to diagnose diffuse parenchymal disease, such as fibrosis, otherwise unrecognizable with ultrasound. Elastography has been successfully applied in other organs including the liver, thyroid, and breast; however, it is still under development for use in the transplant kidney. Unique properties of the transplant kidney including its heterogeneity, anatomic location, and other technical factors present challenges in the development of reference standard measurements. Lastly, B-flow imaging is a flow application derived from B-mode. This application can show the true lumen size of a vessel which is useful to depict vascular anatomy and bypasses some of the pitfalls of color Doppler such as demonstration of slow flow.

  5. MRI-Guided Focused Ultrasound Surgery

    PubMed Central

    Jolesz, Ferenc A.

    2014-01-01

    MRI-guided focused ultrasound (MRgFUS) surgery is a noninvasive thermal ablation method that uses magnetic resonance imaging (MRI) for target definition, treatment planning, and closed-loop control of energy deposition. Integrating FUS and MRI as a therapy delivery system allows us to localize, target, and monitor in real time, and thus to ablate targeted tissue without damaging normal structures. This precision makes MRgFUS an attractive alternative to surgical resection or radiation therapy of benign and malignant tumors. Already approved for the treatment of uterine fibroids, MRgFUS is in ongoing clinical trials for the treatment of breast, liver, prostate, and brain cancer and for the palliation of pain in bone metastasis. In addition to thermal ablation, FUS, with or without the use of microbubbles, can temporarily change vascular or cell membrane permeability and release or activate various compounds for targeted drug delivery or gene therapy. A disruptive technology, MRgFUS provides new therapeutic approaches and may cause major changes in patient management and several medical disciplines. PMID:19630579

  6. Targeted myocardial delivery of GDF11 gene rejuvenates the aged mouse heart and enhances myocardial regeneration after ischemia-reperfusion injury.

    PubMed

    Du, Guo-Qing; Shao, Zheng-Bo; Wu, Jie; Yin, Wen-Juan; Li, Shu-Hong; Wu, Jun; Weisel, Richard D; Tian, Jia-Wei; Li, Ren-Ke

    2017-01-01

    Ischemic cardiac injury is the main contributor to heart failure, and the regenerative capacity of intrinsic stem cells plays an important role in tissue repair after injury. However, stem cells in aged individuals have reduced regenerative potential and aged tissues lack the capacity to renew. Growth differentiation factor 11 (GDF11), from the activin-transforming growth factor β superfamily, has been shown to promote stem cell activity and rejuvenation. We carried out non-invasive targeted delivery of the GDF11 gene to the heart using ultrasound-targeted microbubble destruction (UTMD) and cationic microbubble (CMB) to investigate the ability of GDF11 to rejuvenate the aged heart and improve tissue regeneration after injury. Young (3 months) and old (21 months) mice were used to evaluate the expression of GDF11 mRNA in the myocardium at baseline and after ischemia/reperfusion (I/R) and myocardial infarction. GDF11 expression decreased with age and following myocardial injury. UTMD-mediated delivery of the GDF11 plasmid to the aged heart after I/R injury effectively and selectively increased GDF11 expression in the heart, and improved cardiac function and reduced infarct size. Over-expression of GDF11 decreased senescence markers, p16 and p53, as well as the number of p16 + cells in old mouse hearts. Furthermore, increased proliferation of cardiac stem cell antigen 1 (Sca-1 + ) cells and increased homing of endothelial progenitor cells and angiogenesis in old ischemic hearts occurred after GDF11 over-expression. Repetitive targeted delivery of the GDF11 gene via UTMD can rejuvenate the aged mouse heart and protect it from I/R injury.

  7. Echogenic Glycol Chitosan Nanoparticles for Ultrasound-Triggered Cancer Theranostics

    PubMed Central

    Min, Hyun Su; You, Dong Gil; Son, Sejin; Jeon, Sangmin; Park, Jae Hyung; Lee, Seulki; Kwon, Ick Chan; Kim, Kwangmeyung

    2015-01-01

    Theranostic nanoparticles hold great promise for simultaneous diagnosis of diseases, targeted drug delivery with minimal toxicity, and monitoring of therapeutic efficacy. However, one of the current challenges in developing theranostic nanoparticles is enhancing the tumor-specific targeting of both imaging probes and anticancer agents. Herein, we report the development of tumor-homing echogenic glycol chitosan-based nanoparticles (Echo-CNPs) that concurrently execute cancer-targeted ultrasound (US) imaging and US-triggered drug delivery. To construct this novel Echo-CNPs, an anticancer drug and bioinert perfluoropentane (PFP), a US gas precursor, were simultaneously encapsulated into glycol chitosan nanoparticles using the oil in water (O/W) emulsion method. The resulting Echo-CNPs had a nano-sized particle structure, composing of hydrophobic anticancer drug/PFP inner cores and a hydrophilic glycol chitosan polymer outer shell. The Echo-CNPs had a favorable hydrodynamic size of 432 nm, which is entirely different from the micro-sized core-empty conventional microbubbles (1-10 μm). Furthermore, Echo-CNPs showed the prolonged echogenicity via the sustained microbubble formation process of liquid-phase PFP at the body temperature and they also presented a US-triggered drug release profile through the external US irradiation. Interestingly, Echo-CNPs exhibited significantly increased tumor-homing ability with lower non-specific uptake by other tissues in tumor-bearing mice through the nanoparticle's enhanced permeation and retention (EPR) effect. Conclusively, theranostic Echo-CNPs are highly useful for simultaneous cancer-targeting US imaging and US-triggered delivery in cancer theranostics. PMID:26681985

  8. Ultrasound-mediated drug delivery for cardiovascular disease

    PubMed Central

    Sutton, Jonathan T; Haworth, Kevin J; Pyne-Geithman, Gail; Holland, Christy K

    2014-01-01

    Introduction Ultrasound (US) has been developed as both a valuable diagnostic tool and a potent promoter of beneficial tissue bioeffects for the treatment of cardiovascular disease. These effects can be mediated by mechanical oscillations of circulating microbubbles, or US contrast agents, which may also encapsulate and shield a therapeutic agent in the bloodstream. Oscillating microbubbles can create stresses directly on nearby tissue or induce fluid effects that effect drug penetration into vascular tissue, lyse thrombi or direct drugs to optimal locations for delivery. Areas covered The present review summarizes investigations that have provided evidence for US-mediated drug delivery as a potent method to deliver therapeutics to diseased tissue for cardiovascular treatment. In particular, the focus will be on investigations of specific aspects relating to US-mediated drug delivery, such as delivery vehicles, drug transport routes, biochemical mechanisms and molecular targeting strategies. Expert opinion These investigations have spurred continued research into alternative therapeutic applications, such as bioactive gas delivery and new US technologies. Successful implementation of US-mediated drug delivery has the potential to change the way many drugs are administered systemically, resulting in more effective and economical therapeutics, and less-invasive treatments. PMID:23448121

  9. Nanobubble-Affibody: Novel ultrasound contrast agents for targeted molecular ultrasound imaging of tumor.

    PubMed

    Yang, Hengli; Cai, Wenbin; Xu, Lei; Lv, Xiuhua; Qiao, Youbei; Li, Pan; Wu, Hong; Yang, Yilin; Zhang, Li; Duan, Yunyou

    2015-01-01

    Nanobubbles (NBs), as novel ultrasound contrast agents (UCAs), have attracted increasing attention in the field of molecular ultrasound imaging for tumors. However, the preparation of uniform-sized NBs is considered to be controversial, and poor tumor selectivity in in vivo imaging has been reported. In this study, we fabricated uniform nano-sized NBs (478.2 ± 29.7 nm with polydispersity index of 0.164 ± 0.044, n = 3) using a thin-film hydration method by controlling the thickness of phospholipid films; we then conjugated the NBs with Affibody molecules to produce nano-sized UCAs referred to as NB-Affibody with specific affinity to human epidermal growth factor receptor type 2 (HER2)-overexpressing tumors. NB-Affibody presented good ultrasound enhancement, demonstrating a peak intensity of 104.5 ± 2.1 dB under ultrasound contrast scanning. Ex vivo experiments further confirmed that the NB-Affibody conjugates were capable of targeting HER2-expressing tumor cells in vivo with high affinity. The newly prepared nano-sized NB-Affibody conjugates were observed to be novel targeted UCAs for efficient and safe specific molecular imaging and may have potential applications in early cancer quantitative diagnosis and targeted therapy in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Acoustically accessible window determination for ultrasound mediated treatment of glycogen storage disease type Ia patients

    NASA Astrophysics Data System (ADS)

    Wang, Shutao; Raju, Balasundar I.; Leyvi, Evgeniy; Weinstein, David A.; Seip, Ralf

    2012-10-01

    Glycogen storage disease type Ia (GSDIa) is caused by an inherited single-gene defect resulting in an impaired glycogen to glucose conversion pathway. Targeted ultrasound mediated delivery (USMD) of plasmid DNA (pDNA) to liver in conjunction with microbubbles may provide a potential treatment for GSDIa patients. As the success of USMD treatments is largely dependent on the accessibility of the targeted tissue by the focused ultrasound beam, this study presents a quantitative approach to determine the acoustically accessible liver volume in GSDIa patients. Models of focused ultrasound beam profiles for transducers of varying aperture and focal lengths were applied to abdomen models reconstructed from suitable CT and MRI images. Transducer manipulations (simulating USMD treatment procedures) were implemented via transducer translations and rotations with the intent of targeting and exposing the entire liver to ultrasound. Results indicate that acoustically accessible liver volumes can be as large as 50% of the entire liver volume for GSDIa patients and on average 3 times larger compared to a healthy adult group due to GSDIa patients' increased liver size. Detailed descriptions of the evaluation algorithm, transducer-and abdomen models are presented, together with implications for USMD treatments of GSDIa patients and transducer designs for USMD applications.

  11. Drug Release from Phase-Changeable Nanodroplets Triggered by Low-Intensity Focused Ultrasound

    PubMed Central

    Cao, Yang; Chen, Yuli; Yu, Tao; Guo, Yuan; Liu, Fengqiu; Yao, Yuanzhi; Li, Pan; Wang, Dong; Wang, Zhigang; Chen, Yu; Ran, Haitao

    2018-01-01

    Background: As one of the most effective triggers with high tissue-penetrating capability and non-invasive feature, ultrasound shows great potential for controlling the drug release and enhancing the chemotherapeutic efficacy. In this study, we report, for the first time, construction of a phase-changeable drug-delivery nanosystem with programmable low-intensity focused ultrasound (LIFU) that could trigger drug-release and significantly enhance anticancer drug delivery. Methods: Liquid-gas phase-changeable perfluorocarbon (perfluoropentane) and an anticancer drug (doxorubicin) were simultaneously encapsulated in two kinds of nanodroplets. By triggering LIFU, the nanodroplets could be converted into microbubbles locally in tumor tissues for acoustic imaging and the loaded anticancer drug (doxorubicin) was released after the microbubble collapse. Based on the acoustic property of shell materials, such as shell stiffness, two types of nanodroplets (lipid-based nanodroplets and PLGA-based nanodroplets) were activated by different acoustic pressure levels. Ultrasound irradiation duration and power of LIFU were tested and selected to monitor and control the drug release from nanodroplets. Various ultrasound energies were introduced to induce the phase transition and microbubble collapse of nanodroplets in vitro (3 W/3 min for lipid nanodroplets; 8 W/3 min for PLGA nanodroplets). Results: We detected three steps in the drug-releasing profiles exhibiting the programmable patterns. Importantly, the intratumoral accumulation and distribution of the drug with LIFU exposure were significantly enhanced, and tumor proliferation was substantially inhibited. Co-delivery of two drug-loaded nanodroplets could overcome the physical barriers of tumor tissues during chemotherapy. Conclusion: Our study provides a new strategy for the efficient ultrasound-triggered chemotherapy by nanocarriers with programmable LIFU capable of achieving the on-demand drug release. PMID:29507623

  12. Size-based sorting of micro-particles using microbubble streaming

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Jalikop, Shreyas; Hilgenfeldt, Sascha

    2009-11-01

    Oscillating microbubbles driven by ultrasound have shown great potential in microfluidic applications, such as transporting particles and promoting mixing [1-3]. The oscillations generate secondary steady streaming that can also trap particles. We use the streaming to develop a method of sorting particles of different sizes in an initially well-mixed solution. The solution is fed into a channel consisting of bubbles placed periodically along a side wall. When the bubbles are excited by an ultrasound piezo-electric transducer to produce steady streaming, the flow field is altered by the presence of the particles. This effect is dependent on particle size and results in size-based sorting of the particles. The effectiveness of the separation depends on the dimensions of the bubbles and particles as well as on the ultrasound frequency. Our experimental studies are aimed at a better understanding of the design and control of effective microfluidic separating devices. Ref: [1] P. Marmottant and S. Hilgenfeldt, Nature 423, 153 (2003). [2] P. Marmottant and S. Hilgenfeldt, Proc. Natl. Acad. Science USA, 101, 9523 (2004). [3] P. Marmottant, J.-P. Raven, H. Gardeniers, J. G. Bomer, and S. Hilgenfeldt, J. Fluid Mech., vol.568, 109 (2006).

  13. High-Accuracy Ultrasound Contrast Agent Detection Method for Diagnostic Ultrasound Imaging Systems.

    PubMed

    Ito, Koichi; Noro, Kazumasa; Yanagisawa, Yukari; Sakamoto, Maya; Mori, Shiro; Shiga, Kiyoto; Kodama, Tetsuya; Aoki, Takafumi

    2015-12-01

    An accurate method for detecting contrast agents using diagnostic ultrasound imaging systems is proposed. Contrast agents, such as microbubbles, passing through a blood vessel during ultrasound imaging are detected as blinking signals in the temporal axis, because their intensity value is constantly in motion. Ultrasound contrast agents are detected by evaluating the intensity variation of a pixel in the temporal axis. Conventional methods are based on simple subtraction of ultrasound images to detect ultrasound contrast agents. Even if the subject moves only slightly, a conventional detection method will introduce significant error. In contrast, the proposed technique employs spatiotemporal analysis of the pixel intensity variation over several frames. Experiments visualizing blood vessels in the mouse tail illustrated that the proposed method performs efficiently compared with conventional approaches. We also report that the new technique is useful for observing temporal changes in microvessel density in subiliac lymph nodes containing tumors. The results are compared with those of contrast-enhanced computed tomography. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  14. Spark channel propagation in a microbubble liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panov, V. A.; Vasilyak, L. M., E-mail: vasilyak@ihed.ras.ru; Vetchinin, S. P.

    Experimental study on the development of the spark channel from the anode needle under pulsed electrical breakdown of isopropyl alcohol solution in water with air microbubbles has been performed. The presence of the microbubbles increases the velocity of the spark channel propagation and increases the current in the discharge gap circuit. The observed rate of spark channel propagation in microbubble liquid ranges from 4 to 12 m/s, indicating the thermal mechanism of the spark channel development in a microbubble liquid.

  15. The Effects of Oxygen on Ultrasound-Induced Blood-Brain Barrier Disruption in Mice.

    PubMed

    McDannold, Nathan; Zhang, Yongzhi; Vykhodtseva, Natalia

    2017-02-01

    Numerous researchers are investigating the use of microbubble-enhanced ultrasound to disrupt the blood-brain barrier (BBB) and deliver drugs to the brain. This study investigated the impact of using oxygen as a carrier gas for anesthesia on microbubble activity and BBB disruption. Targets in mice were sonicated in combination with administration of Optison microbubbles (100 μL/kg) under isoflurane anesthesia with either oxygen or medical air. A 690-kHz focused ultrasound transducer applied 10-ms bursts at peak pressure amplitudes of 0.46-0.54 MPa (n = 2) or 0.34-0.36 MPa (n = 5). After sonication of two locations in one hemisphere, the carrier gas for the anesthesia was changed and the sonications were repeated in the contralateral hemisphere. The BBB disruption, measured via contrast-enhanced magnetic resonance imaging, was significantly greater (p < 0.001) with medical air than with oxygen. Harmonic emissions were also greater with air (p < 0.001), while the decay rate of the harmonic emissions was 1.5 times faster with oxygen. A good correlation (R 2 , 0.46) was observed between the harmonic emissions strength and magnetic resonance imaging signal enhancement. At 0.46-0.54 MPa, both the occurrence and strength of wideband emissions were greater with medical air. However, at lower peak pressure amplitudes of 0.34-0.36 MPa, the strength and probability for wideband emissions were higher with oxygen. Little or no effects were observed in histology at 0.34-0.36 MPa. These findings show that use of oxygen as a carrier gas can result in a substantial diminution of BBB disruption. These results should be taken into account when comparing studies from different researchers and in translating this method to humans. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  16. CO2 bubbling-based 'Nanobomb' System for Targetedly Suppressing Panc-1 Pancreatic Tumor via Low Intensity Ultrasound-activated Inertial Cavitation.

    PubMed

    Zhang, Kun; Xu, Huixiong; Chen, Hangrong; Jia, Xiaoqing; Zheng, Shuguang; Cai, Xiaojun; Wang, Ronghui; Mou, Juan; Zheng, Yuanyi; Shi, Jianlin

    2015-01-01

    Noninvasive and targeted physical treatment is still desirable especially for those cancerous patients. Herein, we develop a new physical treatment protocol by employing CO2 bubbling-based 'nanobomb' system consisting of low-intensity ultrasound (1.0 W/cm(2)) and a well-constructed pH/temperature dual-responsive CO2 release system. Depending on the temperature elevation caused by exogenous low-intensity therapeutic ultrasound irradiation and the low pH caused by the endogenous acidic-environment around/within tumor, dual-responsive CO2 release system can quickly release CO2 bubbles, and afterwards, the generated CO2 bubbles waves will timely explode before dissolution due to triggering by therapeutic ultrasound waves. Related bio-effects (e.g., cavitation, mechanical, shock waves, etc) caused by CO2 bubbles' explosion effectively induce instant necrosis of panc-1 cells and blood vessel destruction within panc-1 tumor, and consequently inhibit the growth of panc-1 solid tumor, simultaneously minimizing the side effects to normal organs. This new physiotherapy employing CO2 bubbling-based 'nanobomb' system promises significant potentials in targetedly suppressing tumors, especially for those highly deadly cancers.

  17. CO2 bubbling-based 'Nanobomb' System for Targetedly Suppressing Panc-1 Pancreatic Tumor via Low Intensity Ultrasound-activated Inertial Cavitation

    PubMed Central

    Zhang, Kun; Xu, Huixiong; Chen, Hangrong; Jia, Xiaoqing; Zheng, Shuguang; Cai, Xiaojun; Wang, Ronghui; Mou, Juan; Zheng, Yuanyi; Shi, Jianlin

    2015-01-01

    Noninvasive and targeted physical treatment is still desirable especially for those cancerous patients. Herein, we develop a new physical treatment protocol by employing CO2 bubbling-based 'nanobomb' system consisting of low-intensity ultrasound (1.0 W/cm2) and a well-constructed pH/temperature dual-responsive CO2 release system. Depending on the temperature elevation caused by exogenous low-intensity therapeutic ultrasound irradiation and the low pH caused by the endogenous acidic-environment around/within tumor, dual-responsive CO2 release system can quickly release CO2 bubbles, and afterwards, the generated CO2 bubbles waves will timely explode before dissolution due to triggering by therapeutic ultrasound waves. Related bio-effects (e.g., cavitation, mechanical, shock waves, etc) caused by CO2 bubbles' explosion effectively induce instant necrosis of panc-1 cells and blood vessel destruction within panc-1 tumor, and consequently inhibit the growth of panc-1 solid tumor, simultaneously minimizing the side effects to normal organs. This new physiotherapy employing CO2 bubbling-based 'nanobomb' system promises significant potentials in targetedly suppressing tumors, especially for those highly deadly cancers. PMID:26379793

  18. Ultrasonically targeted delivery into endothelial and smooth muscle cells in ex vivo arteries

    PubMed Central

    Hallow, Daniel M.; Mahajan, Anuj D.; Prausnitz, Mark R.

    2007-01-01

    This study tested the hypothesis that ultrasound can target intracellular uptake of drugs into vascular endothelial cells (ECs) at low to intermediate energy and into smooth muscle cells (SMCs) at high energy. Ultrasound-enhanced delivery has been shown to enhance and target intracellular drug and gene delivery in the vasculature to treat cardiovascular disease, but quantitative studies of the delivery process are lacking. Viable ex vivo porcine carotid arteries were placed in a solution containing a model drug, TO-PRO®-1, and Optison® microbubbles. Arteries were exposed to ultrasound at 1.1 MHz and acoustic energies of 5.0, 66, or 630 J/cm2. Using confocal microscopy and fluorescent labeling of cells, the artery endothelium and media were imaged to determine the localization and to quantify intracellular uptake and cell death. At low to intermediate ultrasound energy, ultrasound was shown to target intracellular delivery into viable cells that represented 9 – 24% of exposed ECs. These conditions also typically caused 7 – 25% EC death. At high energy, intracellular delivery was targeted to SMCs, which was associated with denuding or death of proximal ECs. This work represents the first known in-depth study to evaluate intracellular uptake into cells in tissue. We conclude that significant intracellular uptake of molecules can be targeted into ECs and SMCs by ultrasound-enhanced delivery suggesting possible applications for treatment of cardivascular diseases and dysfunctions. PMID:17291619

  19. Investigation of Microbubble Cavitation-Induced Calcein Release from Cells In Vitro.

    PubMed

    Maciulevičius, Martynas; Tamošiūnas, Mindaugas; Jakštys, Baltramiejus; Jurkonis, Rytis; Venslauskas, Mindaugas Saulius; Šatkauskas, Saulius

    2016-12-01

    In the present study, microbubble (MB) cavitation signal analysis was performed together with calcein release evaluation in both pressure and exposure duration domains of the acoustic field. A passive cavitation detection system was used to simultaneously measure MB scattering and attenuation signals for subsequent extraction efficiency relative to MB cavitation activity. The results indicate that the decrease in the efficiency of extraction of calcein molecules from Chinese hamster ovary cells, as well as cell viability, is associated with MB cavitation activity and can be accurately predicted using inertial cavitation doses up to 0.18 V × s (R 2  > 0.9, p < 0.0001). No decrease in additional calcein release or cell viability was observed after complete MB sonodestruction was achieved. This indicates that the optimal exposure duration within which maximal sono-extraction efficiency is obtained coincides with the time necessary to achieve complete MB destruction. These results illustrate the importance of MB inertial cavitation in the sono-extraction process. To our knowledge, this study is the first to (i) investigate small molecule extraction from cells via sonoporation and (ii) relate the extraction process to the quantitative characteristics of MB cavitation acoustic spectra. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  20. Closed-loop control of targeted ultrasound drug delivery across the blood–brain/tumor barriers in a rat glioma model

    PubMed Central

    Sun, Tao; Zhang, Yongzhi; Power, Chanikarn; Alexander, Phillip M.; Sutton, Jonathan T.; Aryal, Muna; Vykhodtseva, Natalia; Miller, Eric L.; McDannold, Nathan J.

    2017-01-01

    Cavitation-facilitated microbubble-mediated focused ultrasound therapy is a promising method of drug delivery across the blood–brain barrier (BBB) for treating many neurological disorders. Unlike ultrasound thermal therapies, during which magnetic resonance thermometry can serve as a reliable treatment control modality, real-time control of modulated BBB disruption with undetectable vascular damage remains a challenge. Here a closed-loop cavitation controlling paradigm that sustains stable cavitation while suppressing inertial cavitation behavior was designed and validated using a dual-transducer system operating at the clinically relevant ultrasound frequency of 274.3 kHz. Tests in the normal brain and in the F98 glioma model in vivo demonstrated that this controller enables reliable and damage-free delivery of a predetermined amount of the chemotherapeutic drug (liposomal doxorubicin) into the brain. The maximum concentration level of delivered doxorubicin exceeded levels previously shown (using uncontrolled sonication) to induce tumor regression and improve survival in rat glioma. These results confirmed the ability of the controller to modulate the drug delivery dosage within a therapeutically effective range, while improving safety control. It can be readily implemented clinically and potentially applied to other cavitation-enhanced ultrasound therapies. PMID:29133392

  1. Resolution limits of ultrafast ultrasound localization microscopy

    NASA Astrophysics Data System (ADS)

    Desailly, Yann; Pierre, Juliette; Couture, Olivier; Tanter, Mickael

    2015-11-01

    As in other imaging methods based on waves, the resolution of ultrasound imaging is limited by the wavelength. However, the diffraction-limit can be overcome by super-localizing single events from isolated sources. In recent years, we developed plane-wave ultrasound allowing frame rates up to 20 000 fps. Ultrafast processes such as rapid movement or disruption of ultrasound contrast agents (UCA) can thus be monitored, providing us with distinct punctual sources that could be localized beyond the diffraction limit. We previously showed experimentally that resolutions beyond λ/10 can be reached in ultrafast ultrasound localization microscopy (uULM) using a 128 transducer matrix in reception. Higher resolutions are theoretically achievable and the aim of this study is to predict the maximum resolution in uULM with respect to acquisition parameters (frequency, transducer geometry, sampling electronics). The accuracy of uULM is the error on the localization of a bubble, considered a point-source in a homogeneous medium. The proposed model consists in two steps: determining the timing accuracy of the microbubble echo in radiofrequency data, then transferring this time accuracy into spatial accuracy. The simplified model predicts a maximum resolution of 40 μm for a 1.75 MHz transducer matrix composed of two rows of 64 elements. Experimental confirmation of the model was performed by flowing microbubbles within a 60 μm microfluidic channel and localizing their blinking under ultrafast imaging (500 Hz frame rate). The experimental resolution, determined as the standard deviation in the positioning of the microbubbles, was predicted within 6 μm (13%) of the theoretical values and followed the analytical relationship with respect to the number of elements and depth. Understanding the underlying physical principles determining the resolution of superlocalization will allow the optimization of the imaging setup for each organ. Ultimately, accuracies better than the size

  2. Superhydrophobic silica nanoparticles as ultrasound contrast agents.

    PubMed

    Jin, Qiaofeng; Lin, Chih-Yu; Kang, Shih-Tsung; Chang, Yuan-Chih; Zheng, Hairong; Yang, Chia-Min; Yeh, Chih-Kuang

    2017-05-01

    Microbubbles have been widely studied as ultrasound contrast agents for diagnosis and as drug/gene carriers for therapy. However, their size and stability (lifetime of 5-12min) limited their applications. The development of stable nanoscale ultrasound contrast agents would therefore benefit both. Generating bubbles persistently in situ would be one of the promising solutions to the problem of short lifetime. We hypothesized that bubbles could be generated in situ by providing stable air nuclei since it has been found that the interfacial nanobubbles on a hydrophobic surface have a much longer lifetime (orders of days). Mesoporous silica nanoparticles (MSNs) with large surface areas and different levels of hydrophobicity were prepared to test our hypothesis. It is clear that the superhydrophobic and porous nanoparticles exhibited a significant and strong contrast intensity compared with other nanoparticles. The bubbles generated from superhydrophobic nanoparticles sustained for at least 30min at a MI of 1.0, while lipid microbubble lasted for about 5min at the same settings. In summary MSNs have been transformed into reliable bubble precursors by making simple superhydrophobic modification, and made into a promising contrast agent with the potentials to serve as theranostic agents that are sensitive to ultrasound stimulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Trans-cranial opening of the blood-brain barrier in targeted regions using a stereotaxic brain atlas and focused ultrasound energy.

    PubMed

    Bing, Chenchen; Ladouceur-Wodzak, Michelle; Wanner, Clinton R; Shelton, John M; Richardson, James A; Chopra, Rajiv

    2014-01-01

    The blood-brain barrier (BBB) protects the brain by preventing the entry of large molecules; this poses a major obstacle for the delivery of drugs to the brain. A novel technique using focused ultrasound (FUS) energy combined with microbubble contrast agents has been widely used for non-invasive trans-cranial BBB opening. Traditionally, FUS research is conducted with magnetic resonance imaging (MRI) guidance, which is expensive and poses physical limitations due to the magnetic field. A system that could allow researchers to test brain therapies without MR intervention could facilitate and accelerate translational research. In this study, we present a novel FUS system that uses a custom-built FUS generator mounted on a motorized stereotaxic apparatus with embedded brain atlas to locally open the BBB in rodents. The system was initially characterized using a tissue-mimicking phantom. Rodent studies were also performed to evaluate whether non-invasive, localized BBB opening could be achieved using brain atlas-based targeting. Brains were exposed to pulsed focused ultrasound energy at 1.06 MHz in rats and 3.23 MHz in mice, with the focal pressure estimated to be 0.5-0.6 MPa through the skull. BBB opening was confirmed in gross tissue sections by the presence of Evans blue leakage in the exposed region of the brain and by histological assessment. The targeting accuracy of the stereotaxic system was better than 0.5 mm in the tissue-mimicking phantom. Reproducible localized BBB opening was verified with Evans blue dye leakage in 32/33 rats and had a targeting accuracy of ±0.3 mm. The use of higher frequency exposures in mice enabled a similar precision of localized BBB opening as was observed with the low frequency in the rat model. With this dedicated small-animal motorized stereotaxic-FUS system, we achieved accurate targeting of focused ultrasound exposures in the brain for non-invasive opening of the BBB. This system can be used as an alternative to MR

  4. On ultrasound-induced microbubble oscillation in a capillary blood vessel and its implications for the blood-brain barrier

    NASA Astrophysics Data System (ADS)

    Wiedemair, W.; Tuković, Ž.; Jasak, H.; Poulikakos, D.; Kurtcuoglu, V.

    2012-02-01

    The complex interaction between an ultrasound-driven microbubble and an enclosing capillary microvessel is investigated by means of a coupled, multi-domain numerical model using the finite volume formulation. This system is of interest in the study of transient blood-brain barrier disruption (BBBD) for drug delivery applications. The compliant vessel structure is incorporated explicitly as a distinct domain described by a dedicated physical model. Red blood cells (RBCs) are taken into account as elastic solids in the blood plasma. We report the temporal and spatial development of transmural pressure (Ptm) and wall shear stress (WSS) at the luminal endothelial interface, both of which are candidates for the yet unknown mediator of BBBD. The explicit introduction of RBCs shapes the Ptm and WSS distributions and their derivatives markedly. While the peak values of these mechanical wall parameters are not affected considerably by the presence of RBCs, a pronounced increase in their spatial gradients is observed compared to a configuration with blood plasma alone. The novelty of our work lies in the explicit treatment of the vessel wall, and in the modelling of blood as a composite fluid, which we show to be relevant for the mechanical processes at the endothelium.

  5. Pressure-dependent attenuation with microbubbles at low mechanical index.

    PubMed

    Tang, Meng-Xing; Eckersley, Robert J; Noble, J Alison

    2005-03-01

    It has previously been shown that the attenuation of ultrasound (US) by microbubble contrast agents is dependent on acoustic pressure (Chen et al. 2002). Although previous studies have modelled the pressure-dependence of attenuation in single bubbles, this paper investigates this subject by considering a bulk volume of bubbles together with other linear attenuators. Specifically, a new pressure-dependent attenuation model for an inhomogeneous volume of attenuators is proposed. In this model, the effect of the attenuation on US propagation is considered. The model was validated using experimental measurements on the US contrast agent Sonovue. The results indicate, at low acoustic pressures, a linear relationship between the attenuation of Sonovue, measured in dB, and the insonating acoustic pressure.

  6. Comparative Effectiveness of Targeted Prostate Biopsy Using Magnetic Resonance Imaging Ultrasound Fusion Software and Visual Targeting: a Prospective Study.

    PubMed

    Lee, Daniel J; Recabal, Pedro; Sjoberg, Daniel D; Thong, Alan; Lee, Justin K; Eastham, James A; Scardino, Peter T; Vargas, Hebert Alberto; Coleman, Jonathan; Ehdaie, Behfar

    2016-09-01

    We compared the diagnostic outcomes of magnetic resonance-ultrasound fusion and visually targeted biopsy for targeting regions of interest on prostate multiparametric magnetic resonance imaging. Patients presenting for prostate biopsy with regions of interest on multiparametric magnetic resonance imaging underwent magnetic resonance imaging targeted biopsy. For each region of interest 2 visually targeted cores were obtained, followed by 2 cores using a magnetic resonance-ultrasound fusion device. Our primary end point was the difference in the detection of high grade (Gleason 7 or greater) and any grade cancer between visually targeted and magnetic resonance-ultrasound fusion, investigated using McNemar's method. Secondary end points were the difference in detection rate by biopsy location using a logistic regression model and the difference in median cancer length using the Wilcoxon signed rank test. We identified 396 regions of interest in 286 men. The difference in the detection of high grade cancer between magnetic resonance-ultrasound fusion biopsy and visually targeted biopsy was -1.4% (95% CI -6.4 to 3.6, p=0.6) and for any grade cancer the difference was 3.5% (95% CI -1.9 to 8.9, p=0.2). Median cancer length detected by magnetic resonance-ultrasound fusion and visually targeted biopsy was 5.5 vs 5.8 mm, respectively (p=0.8). Magnetic resonance-ultrasound fusion biopsy detected 15% more cancers in the transition zone (p=0.046) and visually targeted biopsy detected 11% more high grade cancer at the prostate base (p=0.005). Only 52% of all high grade cancers were detected by both techniques. We found no evidence of a significant difference in the detection of high grade or any grade cancer between visually targeted and magnetic resonance-ultrasound fusion biopsy. However, the performance of each technique varied in specific biopsy locations and the outcomes of both techniques were complementary. Combining visually targeted biopsy and magnetic resonance-ultrasound

  7. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging

    NASA Astrophysics Data System (ADS)

    Errico, Claudia; Pierre, Juliette; Pezet, Sophie; Desailly, Yann; Lenkei, Zsolt; Couture, Olivier; Tanter, Mickael

    2015-11-01

    Non-invasive imaging deep into organs at microscopic scales remains an open quest in biomedical imaging. Although optical microscopy is still limited to surface imaging owing to optical wave diffusion and fast decorrelation in tissue, revolutionary approaches such as fluorescence photo-activated localization microscopy led to a striking increase in resolution by more than an order of magnitude in the last decade. In contrast with optics, ultrasonic waves propagate deep into organs without losing their coherence and are much less affected by in vivo decorrelation processes. However, their resolution is impeded by the fundamental limits of diffraction, which impose a long-standing trade-off between resolution and penetration. This limits clinical and preclinical ultrasound imaging to a sub-millimetre scale. Here we demonstrate in vivo that ultrasound imaging at ultrafast frame rates (more than 500 frames per second) provides an analogue to optical localization microscopy by capturing the transient signal decorrelation of contrast agents—inert gas microbubbles. Ultrafast ultrasound localization microscopy allowed both non-invasive sub-wavelength structural imaging and haemodynamic quantification of rodent cerebral microvessels (less than ten micrometres in diameter) more than ten millimetres below the tissue surface, leading to transcranial whole-brain imaging within short acquisition times (tens of seconds). After intravenous injection, single echoes from individual microbubbles were detected through ultrafast imaging. Their localization, not limited by diffraction, was accumulated over 75,000 images, yielding 1,000,000 events per coronal plane and statistically independent pixels of ten micrometres in size. Precise temporal tracking of microbubble positions allowed us to extract accurately in-plane velocities of the blood flow with a large dynamic range (from one millimetre per second to several centimetres per second). These results pave the way for deep non

  8. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging.

    PubMed

    Errico, Claudia; Pierre, Juliette; Pezet, Sophie; Desailly, Yann; Lenkei, Zsolt; Couture, Olivier; Tanter, Mickael

    2015-11-26

    Non-invasive imaging deep into organs at microscopic scales remains an open quest in biomedical imaging. Although optical microscopy is still limited to surface imaging owing to optical wave diffusion and fast decorrelation in tissue, revolutionary approaches such as fluorescence photo-activated localization microscopy led to a striking increase in resolution by more than an order of magnitude in the last decade. In contrast with optics, ultrasonic waves propagate deep into organs without losing their coherence and are much less affected by in vivo decorrelation processes. However, their resolution is impeded by the fundamental limits of diffraction, which impose a long-standing trade-off between resolution and penetration. This limits clinical and preclinical ultrasound imaging to a sub-millimetre scale. Here we demonstrate in vivo that ultrasound imaging at ultrafast frame rates (more than 500 frames per second) provides an analogue to optical localization microscopy by capturing the transient signal decorrelation of contrast agents--inert gas microbubbles. Ultrafast ultrasound localization microscopy allowed both non-invasive sub-wavelength structural imaging and haemodynamic quantification of rodent cerebral microvessels (less than ten micrometres in diameter) more than ten millimetres below the tissue surface, leading to transcranial whole-brain imaging within short acquisition times (tens of seconds). After intravenous injection, single echoes from individual microbubbles were detected through ultrafast imaging. Their localization, not limited by diffraction, was accumulated over 75,000 images, yielding 1,000,000 events per coronal plane and statistically independent pixels of ten micrometres in size. Precise temporal tracking of microbubble positions allowed us to extract accurately in-plane velocities of the blood flow with a large dynamic range (from one millimetre per second to several centimetres per second). These results pave the way for deep non

  9. Influence of nesting shell size on brightness longevity and resistance to ultrasound-induced dissolution during enhanced B-mode contrast imaging.

    PubMed

    Wallace, N; Dicker, S; Lewin, P; Wrenn, S P

    2014-12-01

    This study aims to bridge the gap between transport mechanisms of an improved ultrasound contrast agent (UCA) and its resulting behavior in a clinical imaging study. Phospholipid-shelled microbubbles nested within the aqueous core of a polymer microcapsule are examined for their use and feasibility as an improved UCA. The nested formulation provides contrast comparable to traditional formulations, specifically an SF6 microbubble coated by a DSPC PEG-3000 monolayer, with the advantage that contrast persists at least nine times longer in a mock clinical, in vitro setting. The effectiveness of the sample was measured using a contrast ratio in units of decibels (dB) which compares the brightness of the nested microbubbles to a reference value of a phantom tissue mimic. During a 40min imaging study, six nesting formulations with average outer capsule diameters of 1.95, 2.53, 5.55, 9.95, 14.95, and 20.51μm reached final contrast ratio values of 0.25, 2.35, 3.68, 4.51, 5.93, and 8.00dB, respectively. The starting contrast ratio in each case was approximately 8dB and accounts for the brightness attributed to the nesting shell. As compared with empty microcapsules (no microbubbles nested within), enhancement of the initial contrast ratio increased systematically with decreasing microcapsule size. The time required to reach a steady state in the temporal contrast ratio profile also varied with microcapsule diameter and was found to be 420s for each of the four smallest shell diameters and 210s and 150s, respectively, for the largest two shell diameters. All nested formulations were longer-lived and gave higher final contrast ratios than a control sample comprising un-nested, but otherwise equivalent, microbubbles. Specifically, the contrast ratio of the un-nested microbubbles decreased to a negative value after 4min of continuous ultrasound exposure with complete disappearance of the microbubbles after 15min whereas all nested formulations maintained positive contrast ratio

  10. Ultrasound-mediated oxygen delivery from chitosan nanobubbles.

    PubMed

    Cavalli, Roberta; Bisazza, Agnese; Rolfo, Alessandro; Balbis, Sonia; Madonnaripa, Daniele; Caniggia, Isabella; Guiot, Caterina

    2009-08-13

    Ultrasound (US) energy combined with gas-filled microbubbles has been used for several years in medical imaging. This study investigated the ability of oxygen-loaded chitosan bubbles to exchange oxygen in the presence or in the absence of US. Oxygen delivery is enhanced by sonication and both frequency and time duration of US affected the exchange kinetics.

  11. Paramagnetic perfluorocarbon-filled albumin-(Gd-DTPA) microbubbles for the induction of focused-ultrasound-induced blood-brain barrier opening and concurrent MR and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Liao, Ai-Ho; Liu, Hao-Li; Su, Chia-Hao; Hua, Mu-Yi; Yang, Hung-Wei; Weng, Yu-Ting; Hsu, Po-Hung; Huang, Sheng-Min; Wu, Shih-Yen; Wang, Hsin-Ell; Yen, Tzu-Chen; Li, Pai-Chi

    2012-05-01

    This paper presents new albumin-shelled Gd-DTPA microbubbles (MBs) that can concurrently serve as a dual-modality contrast agent for ultrasound (US) imaging and magnetic resonance (MR) imaging to assist blood-brain barrier (BBB) opening and detect intracerebral hemorrhage (ICH) during focused ultrasound brain drug delivery. Perfluorocarbon-filled albumin-(Gd-DTPA) MBs were prepared with a mean diameter of 2320 nm and concentration of 2.903×109 MBs ml-1 using albumin-(Gd-DTPA) and by sonication with perfluorocarbon (C3F8) gas. The albumin-(Gd-DTPA) MBs were then centrifuged and the procedure was repeated until the free Gd3+ ions were eliminated (which were detected by the xylenol orange sodium salt solution). The albumin-(Gd-DTPA) MBs were also characterized and evaluated both in vitro and in vivo by US and MR imaging. Focused US was used with the albumin-(Gd-DTPA) MBs to induce disruption of the BBB in 18 rats. BBB disruption was confirmed with contrast-enhanced T1-weighted turbo-spin-echo sequence MR imaging. Heavy T2*-weighted 3D fast low-angle shot sequence MR imaging was used to detect ICH. In vitro US imaging experiments showed that albumin-(Gd-DTPA) MBs can significantly enhance the US contrast in T1-, T2- and T2*-weighted MR images. The r1 and r2 relaxivities for Gd-DTPA were 7.69 and 21.35 s-1mM-1, respectively, indicating that the MBs represent a positive contrast agent in T1-weighted images. In vivo MR imaging experiments on 18 rats showed that focused US combined with albumin-(Gd-DTPA) MBs can be used to both induce disruption of the BBB and detect ICH. To compare the signal intensity change between pure BBB opening and BBB opening accompanying ICH, albumin-(Gd-DTPA) MB imaging can provide a ratio of 5.14 with significant difference (p = 0.026), whereas Gd-DTPA imaging only provides a ratio of 2.13 and without significant difference (p = 0.108). The results indicate that albumin-(Gd-DTPA) MBs have potential as a US/MR dual-modality contrast agent for

  12. Paramagnetic perfluorocarbon-filled albumin-(Gd-DTPA) microbubbles for the induction of focused-ultrasound-induced blood-brain barrier opening and concurrent MR and ultrasound imaging.

    PubMed

    Liao, Ai-Ho; Liu, Hao-Li; Su, Chia-Hao; Hua, Mu-Yi; Yang, Hung-Wei; Weng, Yu-Ting; Hsu, Po-Hung; Huang, Sheng-Min; Wu, Shih-Yen; Wang, Hsin-Ell; Yen, Tzu-Chen; Li, Pai-Chi

    2012-05-07

    This paper presents new albumin-shelled Gd-DTPA microbubbles (MBs) that can concurrently serve as a dual-modality contrast agent for ultrasound (US) imaging and magnetic resonance (MR) imaging to assist blood-brain barrier (BBB) opening and detect intracerebral hemorrhage (ICH) during focused ultrasound brain drug delivery. Perfluorocarbon-filled albumin-(Gd-DTPA) MBs were prepared with a mean diameter of 2320 nm and concentration of 2.903×10(9) MBs ml(-1) using albumin-(Gd-DTPA) and by sonication with perfluorocarbon (C(3)F(8)) gas. The albumin-(Gd-DTPA) MBs were then centrifuged and the procedure was repeated until the free Gd(3+) ions were eliminated (which were detected by the xylenol orange sodium salt solution). The albumin-(Gd-DTPA) MBs were also characterized and evaluated both in vitro and in vivo by US and MR imaging. Focused US was used with the albumin-(Gd-DTPA) MBs to induce disruption of the BBB in 18 rats. BBB disruption was confirmed with contrast-enhanced T(1)-weighted turbo-spin-echo sequence MR imaging. Heavy T(2)*-weighted 3D fast low-angle shot sequence MR imaging was used to detect ICH. In vitro US imaging experiments showed that albumin-(Gd-DTPA) MBs can significantly enhance the US contrast in T(1)-, T(2)- and T(2)*-weighted MR images. The r(1) and r(2) relaxivities for Gd-DTPA were 7.69 and 21.35 s(-1)mM(-1), respectively, indicating that the MBs represent a positive contrast agent in T(1)-weighted images. In vivo MR imaging experiments on 18 rats showed that focused US combined with albumin-(Gd-DTPA) MBs can be used to both induce disruption of the BBB and detect ICH. To compare the signal intensity change between pure BBB opening and BBB opening accompanying ICH, albumin-(Gd-DTPA) MB imaging can provide a ratio of 5.14 with significant difference (p = 0.026), whereas Gd-DTPA imaging only provides a ratio of 2.13 and without significant difference (p = 0.108). The results indicate that albumin-(Gd-DTPA) MBs have potential as a US/MR dual

  13. Sonoporation, drug delivery, and gene therapy.

    PubMed

    Liang, H-D; Tang, J; Halliwell, M

    2010-01-01

    Ultrasound is a very effective modality for drug delivery and gene therapy because energy that is non-invasively transmitted through the skin can be focused deeply into the human body in a specific location and employed to release drugs at that site. Ultrasound cavitation, enhanced by injected microbubbles, perturbs cell membrane structures to cause sonoporation and increases the permeability to bioactive materials. Cavitation events also increase the rate of drug transport in general by augmenting the slow diffusion process with convective transport processes. Drugs and genes can be incorporated into microbubbles, which in turn can target a specific disease site using ligands such as the antibody. Drugs can be released ultrasonically from microbubbles that are sufficiently robust to circulate in the blood and retain their cargo of drugs until they enter an insonated volume of tissue. Local drug delivery ensures sufficient drug concentration at the diseased region while limiting toxicity for healthy tissues. Ultrasound-mediated gene delivery has been applied to heart, blood vessel, lung, kidney, muscle, brain, and tumour with enhanced gene transfection efficiency, which depends on the ultrasonic parameters such as acoustic pressure, pulse length, duty cycle, repetition rate, and exposure duration, as well as microbubble properties such as size, gas species, shell material, interfacial tension, and surface rigidity. Microbubble-augmented sonothrombolysis can be enhanced further by using targeting microbubbles.

  14. Biosurfactants for Microbubble Preparation and Application

    PubMed Central

    Xu, Qingyi; Nakajima, Mitsutoshi; Liu, Zengshe; Shiina, Takeo

    2011-01-01

    Biosurfactants can be classified by their chemical composition and their origin. This review briefly describes various classes of biosurfactants based on their origin and introduces a few of the most widely used biosurfactants. The current status and future trends in biosurfactant production are discussed, with an emphasis on those derived from plants. Following a brief introduction of the properties of microbubbles, recent progress in the application of microbubble technology to molecular imaging, wastewater treatment, and aerobic fermentation are presented. Several studies on the preparation, characterization and applications of biosurfactant-based microbubbles are reviewed. PMID:21339998

  15. The effect of particle density on ultrasound-mediated transport of nanoparticles.

    PubMed

    Lea-Banks, Harriet; Teo, Boon; Stride, Eleanor; Coussios, Constantin C

    2016-11-21

    A significant barrier to successful drug delivery is the limited penetration of nanoscale therapeutics beyond the vasculature. Building on recent in vivo findings in the context of cancer drug delivery, the current study investigates whether modification of nanoparticle drug-carriers to increase their density can be used to enhance their penetration into viscoelastic materials under ultrasound exposure. A computational model is first presented to predict the transport of identically sized nanoparticles of different densities in an ultrasonic field in the presence of an oscillating microbubble, by a combination of primary and secondary acoustic radiation forces, acoustic streaming and microstreaming. Experiments are then described in which near monodisperse (polydispersity index  <0.2) nanoparticles of approximate mean diameter 200 nm and densities ranging from 1.01 g cm -3 to 5.58 g cm -3 were fabricated and delivered to a tissue-mimicking material in the presence or absence of a microbubble ultrasound contrast agent, at ultrasound frequencies of 0.5 MHz and 1.6 MHz and a peak negative pressure of 1 MPa. Both the theoretical and experimental results confirm that denser particles exhibit significantly greater ultrasound-mediated transport than their lower density counterparts, indicating that density is a key consideration in the design of nanoscale therapeutics.

  16. Ultrasound-mediated delivery and distribution of polymeric nanoparticles in the normal brain parenchyma of a metastatic brain tumour model

    PubMed Central

    Baghirov, Habib; Snipstad, Sofie; Sulheim, Einar; Berg, Sigrid; Hansen, Rune; Thorsen, Frits; Mørch, Yrr; Åslund, Andreas K. O.

    2018-01-01

    The treatment of brain diseases is hindered by the blood-brain barrier (BBB) preventing most drugs from entering the brain. Focused ultrasound (FUS) with microbubbles can open the BBB safely and reversibly. Systemic drug injection might induce toxicity, but encapsulation into nanoparticles reduces accumulation in normal tissue. Here we used a novel platform based on poly(2-ethyl-butyl cyanoacrylate) nanoparticle-stabilized microbubbles to permeabilize the BBB in a melanoma brain metastasis model. With a dual-frequency ultrasound transducer generating FUS at 1.1 MHz and 7.8 MHz, we opened the BBB using nanoparticle-microbubbles and low-frequency FUS, and applied high-frequency FUS to generate acoustic radiation force and push nanoparticles through the extracellular matrix. Using confocal microscopy and image analysis, we quantified nanoparticle extravasation and distribution in the brain parenchyma. We also evaluated haemorrhage, as well as the expression of P-glycoprotein, a key BBB component. FUS and microbubbles distributed nanoparticles in the brain parenchyma, and the distribution depended on the extent of BBB opening. The results from acoustic radiation force were not conclusive, but in a few animals some effect could be detected. P-glycoprotein was not significantly altered immediately after sonication. In summary, FUS with our nanoparticle-stabilized microbubbles can achieve accumulation and displacement of nanoparticles in the brain parenchyma. PMID:29338016

  17. AUGMENTATION OF MUSCLE BLOOD FLOW BY ULTRASOUND CAVITATION IS MEDIATED BY ATP AND PURINERGIC SIGNALING

    PubMed Central

    Belcik, J. Todd; Davidson, Brian P.; Xie, Aris; Wu, Melinda D.; Yadava, Mrinal; Qi, Yue; Liang, Sherry; Chon, Chae Ryung; Ammi, Azzdine Y.; Field, Joshua; Harmann, Leanne; Chilian, William M.; Linden, Joel; Lindner, Jonathan R.

    2017-01-01

    Background Augmentation of tissue blood flow by therapeutic ultrasound is thought to rely on convective shear. Microbubble contrast agents that undergo ultrasound-mediated cavitation markedly amplify these effects. We hypothesized that purinergic signalling is responsible for shear-dependent increases in muscle perfusion during therapeutic cavitation. Methods Unilateral exposure of the proximal hindlimb of mice (with or without ischemia produced by iliac ligation) to therapeutic ultrasound (1.3 MHz, mechanical index 1.3) was performed for ten minutes after intravenous injection of 2×108 lipid microbubbles. Microvascular perfusion was evaluated by low-power contrast ultrasound perfusion imaging. In vivo muscle ATP release and in vitro ATP release from endothelial cells or erythrocytes were assessed by a luciferin-luciferase assay. Purinergic signalling pathways were assessed by studying interventions that either (1) accelerated ATP degradation; (2) inhibited P2Y receptors, adenosine receptors, or KATP channels; or (3) inhibited downstream signalling pathways involving endothelial nitric oxide synthase (eNOS) or prostanoid production (indomethacin). Augmentation in muscle perfusion by ultrasound cavitation was assessed in a proof-of-concept clinical trial in 12 subjects with stable sickle cell disease (SCD). Results Therapeutic ultrasound cavitation increased muscle perfusion by 7-fold in normal mice, reversed tissue ischemia for up to 24 hrs in the murine model of peripheral artery disease, and doubled muscle perfusion in patients with SCD. Augmentation in flow extended well beyond the region of ultrasound exposure. Ultrasound cavitation produced a nearly 40-fold focal and sustained increase in ATP, the source of which included both endothelial cells and erythrocytes. Inhibitory studies indicated that ATP was a critical mediator of flow augmentation that acts primarily through either P2Y receptors or through adenosine produced by ectonucleotidase activity. Combined

  18. Augmentation of Muscle Blood Flow by Ultrasound Cavitation Is Mediated by ATP and Purinergic Signaling.

    PubMed

    Belcik, J Todd; Davidson, Brian P; Xie, Aris; Wu, Melinda D; Yadava, Mrinal; Qi, Yue; Liang, Sherry; Chon, Chae Ryung; Ammi, Azzdine Y; Field, Joshua; Harmann, Leanne; Chilian, William M; Linden, Joel; Lindner, Jonathan R

    2017-03-28

    Augmentation of tissue blood flow by therapeutic ultrasound is thought to rely on convective shear. Microbubble contrast agents that undergo ultrasound-mediated cavitation markedly amplify these effects. We hypothesized that purinergic signaling is responsible for shear-dependent increases in muscle perfusion during therapeutic cavitation. Unilateral exposure of the proximal hindlimb of mice (with or without ischemia produced by iliac ligation) to therapeutic ultrasound (1.3 MHz, mechanical index 1.3) was performed for 10 minutes after intravenous injection of 2×10 8 lipid microbubbles. Microvascular perfusion was evaluated by low-power contrast ultrasound perfusion imaging. In vivo muscle ATP release and in vitro ATP release from endothelial cells or erythrocytes were assessed by a luciferin-luciferase assay. Purinergic signaling pathways were assessed by studying interventions that (1) accelerated ATP degradation; (2) inhibited P2Y receptors, adenosine receptors, or K ATP channels; or (3) inhibited downstream signaling pathways involving endothelial nitric oxide synthase or prostanoid production (indomethacin). Augmentation in muscle perfusion by ultrasound cavitation was assessed in a proof-of-concept clinical trial in 12 subjects with stable sickle cell disease. Therapeutic ultrasound cavitation increased muscle perfusion by 7-fold in normal mice, reversed tissue ischemia for up to 24 hours in the murine model of peripheral artery disease, and doubled muscle perfusion in patients with sickle cell disease. Augmentation in flow extended well beyond the region of ultrasound exposure. Ultrasound cavitation produced an ≈40-fold focal and sustained increase in ATP, the source of which included both endothelial cells and erythrocytes. Inhibitory studies indicated that ATP was a critical mediator of flow augmentation that acts primarily through either P2Y receptors or adenosine produced by ectonucleotidase activity. Combined indomethacin and inhibition of

  19. Ultrasound-responsive gene-activated matrices for osteogenic gene therapy using matrix-assisted sonoporation.

    PubMed

    Nomikou, N; Feichtinger, G A; Saha, S; Nuernberger, S; Heimel, P; Redl, H; McHale, A P

    2018-01-01

    Gene-activated matrix (GAM)-based therapeutics for tissue regeneration are limited by efficacy, the lack of spatiotemporal control and availability of target cells, all of which impact negatively on their translation to the clinic. Here, an advanced ultrasound-responsive GAM is described containing target cells that facilitates matrix-assisted sonoporation (MAS) to induce osteogenic differentiation. Ultrasound-responsive GAMs consisting of fibrin/collagen hybrid-matrices containing microbubbles, bone morphogenetic protein BMP2/7 coexpression plasmids together with C2C12 cells were treated with ultrasound either in vitro or following parenteral intramuscular implantation in vivo. Using direct measurement for alkaline phosphatase activity, von Kossa staining and immunohistochemical analysis for osteocalcin expression, MAS-stimulated osteogenic differentiation was confirmed in the GAMs in vitro 7 days after treatment with ultrasound. At day 30 post-treatment with ultrasound, ectopic osteogenic differentiation was confirmed in vivo using X-ray microcomputed tomography and histological analysis. Osteogenic differentiation was indicated by the presence of ectopic bone structures in all animals treated with MAS. In addition, bone volumes in this group were statistically greater than those in the control groups. This novel approach of incorporating a MAS capability into GAMs could be exploited to facilitate ex vivo gene transfer with subsequent surgical implantation or alternatively provide a minimally invasive means of stimulating in situ transgene delivery for osteoinductive gene-based therapies. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  20. CO2 microbubble contrast enhancement in x-ray angiography.

    PubMed

    Kariya, S; Komemushi, A; Nakatani, M; Yoshida, R; Sawada, S; Tanigawa, N

    2013-04-01

    To demonstrate that carbon dioxide (CO2) microbubble contrast enhancement depicts blood vessels when used for x-ray examinations. Microbubbles were generated by cavitation of physiological saline to which CO2 gas had been added using an ejector-type microbubble generator. The input pressure values for CO2 gas and physiological saline that produced a large quantity of CO2 microbubbles were obtained in a phantom. In an animal study, angiography was performed in three swine using three types of contrast: CO2 microbubbles, conventional CO2 gas, and iodinated contrast medium. For CO2 microbubble contrast enhancement, physiological saline, and CO2 gas were supplied at the input pressures calculated in the phantom experiment. Regions of interest were set in the abdominal aorta, external iliac arteries, and background. The difference in digital values between each artery and the background was calculated. The input pressures obtained in the phantom experiment were 0.16 MPa for physiological saline and 0.5 MPa for CO2 gas, with physiological saline input volume being 8.1 ml/s. Three interventional radiologists all evaluated the depictions of all arteries as "present" in the CO2 microbubble contrast enhancement, conventional CO2 contrast enhancement, and iodinated contrast enhancement performed in three swine. Digital values for all vessels with microbubble CO2 contrast enhancement were higher than background values. In x-ray angiography, blood vessels can be depicted by CO2 microbubble contrast enhancement, in which a large quantity of CO2 microbubbles is generated within blood vessels. Copyright © 2012 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  1. Association schemes perspective of microbubble cluster in ultrasonic fields.

    PubMed

    Behnia, S; Yahyavi, M; Habibpourbisafar, R

    2018-06-01

    Dynamics of a cluster of chaotic oscillators on a network are studied using coupled maps. By introducing the association schemes, we obtain coupling strength in the adjacency matrices form, which satisfies Markov matrices property. We remark that in general, the stability region of the cluster of oscillators at the synchronization state is characterized by Lyapunov exponent which can be defined based on the N-coupled map. As a detailed physical example, dynamics of microbubble cluster in an ultrasonic field are studied using coupled maps. Microbubble cluster dynamics have an indicative highly active nonlinear phenomenon, were not easy to be explained. In this paper, a cluster of microbubbles with a thin elastic shell based on the modified Keller-Herring equation in an ultrasonic field is demonstrated in the framework of the globally coupled map. On the other hand, a relation between the microbubble elements is replaced by a relation between the vertices. Based on this method, the stability region of microbubbles pulsations at complete synchronization state has been obtained analytically. In this way, distances between microbubbles as coupling strength play the crucial role. In the stability region, we thus observe that the problem of study of dynamics of N-microbubble oscillators reduce to that of a single microbubble. Therefore, the important parameters of the isolated microbubble such as applied pressure, driving frequency and the initial radius have effective behavior on the synchronization state. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Experimental study of microbubble drag reduction on an axisymmetric body

    NASA Astrophysics Data System (ADS)

    Song, Wuchao; Wang, Cong; Wei, Yingjie; Zhang, Xiaoshi; Wang, Wei

    2018-01-01

    Microbubble drag reduction on the axisymmetric body is experimentally investigated in the turbulent water tunnel. Microbubbles are created by injecting compressed air through the porous medium with various average pore sizes. The morphology of microbubble flow and the size distribution of microbubble are observed by the high-speed visualization system. Drag measurements are obtained by the balance which is presented as the function of void ratio. The results show that when the air injection flow rate is high, uniformly dispersed microbubble flow is coalesced into an air layer with the larger increment rate of drag reduction ratio. The diameter distributions of microbubble under various conditions are submitted to normal distribution. Microbubble drag reduction can be divided into three distinguishable regions in which the drag reduction ratio experiences increase stage, rapid increase stage and stability stage, respectively, corresponding to the various morphologies of microbubble flow. Moreover, drag reduction ratio increases with the decreasing pore sizes of porous medium at the identical void ratio in the area of low speeds, while the effect of pore sizes on drag reduction is reduced gradually until it disappears with the increasing free stream speeds, which indicates that smaller microbubbles have better efficiency in drag reduction. This research results help to improve the understanding of microbubble drag reduction and provides helpful references for practical applications.

  3. Multi-modality safety assessment of blood-brain barrier opening using focused ultrasound and definity microbubbles: a short-term study.

    PubMed

    Baseri, Babak; Choi, James J; Tung, Yao-Sheng; Konofagou, Elisa E

    2010-09-01

    As a potentially viable method of brain drug delivery, the safety profile of blood-brain barrier (BBB) opening using focused ultrasound (FUS) and ultrasound contrast agents (UCA) needs to be established. In this study, we provide a short-term (30-min or 5-h survival) histological assessment of murine brains undergoing FUS-induced BBB opening. Forty-nine mice were intravenously injected with Definity microbubbles (0.05 microL/kg) and sonicated under the following parameters: frequency of 1.525 MHz, pulse length of 20 ms, pulse repetition frequency of 10 Hz, peak rarefactional acoustic pressures of 0.15-0.98 MPa and two 30-s sonication intervals with an intermittent 30-s delay. The BBB opening threshold was found to be 0.15-0.3 MPa based on fluorescence and magnetic resonance imaging of systemically injected tracers. Analysis of three histological measures in hematoxylin and eosin-stained sections revealed the safest acoustic pressure to be within the range of 0.3-0.46 MPa in all examined time periods post sonication. Across different pressure amplitudes, only the samples 30 min post opening showed significant difference (p < 0.05) in the average number of distinct damaged sites, microvacuolated sites, dark neurons and sites with extravasated erythrocytes. Enhanced fluorescence around severed microvessels was also noted and found to be associated with the largest tissue effects, whereas mildly diffuse BBB opening with uniform fluorescence in the parenchyma was associated with no or mild tissue injury. Region-specific areas of the sonicated brain (thalamus, hippocampal fissure, dentate gyrus and CA3 area of hippocampus) exhibited variation in fluorescence intensity based on the position, orientation and size of affected vessels. The results of this short-term histological analysis demonstrated the feasibility of a safe FUS-UCA-induced BBB opening under a specific set of sonication parameters and provided new insights on the mechanism of BBB opening.

  4. Gene delivery systems by the combination of lipid bubbles and ultrasound.

    PubMed

    Negishi, Yoichi; Endo-Takahashi, Yoko; Maruyama, Kazuo

    2016-11-28

    Gene therapy is promising for the treatment of many diseases including cancers and genetic diseases. From the viewpoint of safety, ultrasound (US)-mediated gene delivery with nano/ microbubbles was recently developed as a novel non-viral vector system. US-mediated gene delivery using nano/microbubbles are able to produce transient changes in the permeability of the cell membrane after US-induced cavitation while reducing cellular damage and enables the tissue-specific or the site-specific intracellular delivery of gene both in vitro and in vivo. We have recently developed novel lipid nanobubbles (Lipid Bubbles). These nanobubbles can also be used to enhance the efficacy of the US-mediated genes (plasmid DNA, siRNA, and miRNA etc.) delivery. In this review, we describe US-mediated delivery systems combined with nano/microbubbles and discuss their feasibility as non-viral vector systems.

  5. Effects of microchannel confinement on acoustic vaporisation of ultrasound phase change contrast agents

    NASA Astrophysics Data System (ADS)

    Lin, Shengtao; Zhang, Ge; Hau Leow, Chee; Tang, Meng-Xing

    2017-09-01

    The sub-micron phase change contrast agent (PCCA) composed of a perfluorocarbon liquid core can be activated into gaseous state and form stable echogenic microbubbles for contrast-enhanced ultrasound imaging. It has shown great promise in imaging microvasculature, tumour microenvironment, and cancer cells. Although PCCAs have been extensively studied for different diagnostic and therapeutic applications, the effect of biologically geometrical confinement on the acoustic vaporisation of PCCAs is still not clear. We have investigated the difference in PCCA-produced ultrasound contrast enhancement after acoustic activation with and without a microvessel confinement on a microchannel phantom. The experimental results indicated more than one-order of magnitude less acoustic vaporisation in a microchannel than that in a free environment taking into account the attenuation effect of the vessel on the microbubble scattering. This may provide an improved understanding in the applications of PCCAs in vivo.

  6. Characterisation of gene delivery using liposomal bubbles and ultrasound

    NASA Astrophysics Data System (ADS)

    Koshima, Risa; Suzuki, Ryo; Oda, Yusuke; Hirata, Keiichi; Nomura, Tetsuya; Negishi, Yoichi; Utoguchi, Naoki; Kudo, Nobuki; Maruyama, Kazuo

    2011-09-01

    The combination of nano/microbubbles and ultrasound is a novel technique for a non-viral gene deliver. We have previously developed novel ultrasound sensitive liposomes (Bubble liposomes) which contain the ultrasound imaging gas perfluoropropane. In this study, Bubble liposomes were compared with cationic lipid (CL)-DNA complexes as potential gene delivery carriers into tumors in vivo. The delivery of genes by bubble liposomes depended on the intensity of the applied ultrasound. The transfection efficiency plateaued at 0.7 W/cm2 ultrasound intensity. Bubble liposomes efficiently transferred genes into cultured cells even when the cells were exposed to ultrasound for only 1 s. In addition, bubble liposomes were able to introduce the luciferase gene more effectively than CL-DNA complexes into mouse ascites tumor cells. We conclude that the combination of Bubble liposomes and ultrasound is a good method for gene transfer in vivo.

  7. Investigations on the destruction of ultrasound contrast agents: Fragmentation thresholds, inertial cavitation, and bioeffects

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Shiang

    Ultrasound contrast agents (UCA) have shown great potential in both diagnostic and therapeutic applications recently. To fully explore the possible applications and the safety concerns of using UCA, a complete understanding of the UCA responses to various acoustic fields is necessary. Therefore, we performed a series of experiments and simulations to investigate the various acoustic properties of UCA with different gases and shells. We also investigated the mechanisms of some UCA-enhanced bioeffects including thrombolysis, hemolysis and high-intensity focused ultrasound (HIFU) tumor ablation. Two pressure thresholds were found: the fragmentation threshold and continuous inertial cavitation (IC) threshold. At the fragmentation threshold, bubbles were destroyed and the released gas dissolved in the surrounding solution at a rate which depended on the bubble's initial size and type of gas. The continuous IC threshold occurred at a higher pressure, where fragments of destroyed UCA (derivative bubbles) underwent violent inertial collapse; the period of activity depending on acoustic parameters such as frequency, pressure, pulse length, and pulse repetition frequency (PRF). Different UCA had different threshold pressures and demonstrated different magnitudes of IC activity after destruction. The amount of derivative bubbles generated by IC was determined by several acoustic parameters including pressure, pulse length and PRE For the same acoustic energy delivered, longer pulses generated more bubbles. More IC could be induced if the derivative bubbles could survive through the 'off' period of the pulsed ultrasound waves, and served as nuclei for the subsequent IC. In therapeutic applications, evidences of IC activity were recorded during the hemolysis, thrombolysis, and the lesion-formation processes with UCA. Hemolysis and thrombolysis were highly correlated to the presence of ultrasound and UCA, and correlated well with the amount of the IC activity. Finally, the

  8. Resonance and streaming of armored microbubbles

    NASA Astrophysics Data System (ADS)

    Spelman, Tamsin; Bertin, Nicolas; Stephen, Olivier; Marmottant, Philippe; Lauga, Eric

    2015-11-01

    A new experimental technique involves building a hollow capsule which partially encompasses a microbubble, creating an ``armored microbubble'' with long lifespan. Under acoustic actuation, such bubble produces net streaming flows. In order to theoretically model the induced flow, we first extend classical models of free bubbles to describe the streaming flow around a spherical body for any known axisymmetric shape oscillation. A potential flow model is then employed to determine the resonance modes of the armored microbubble. We finally use a more detailed viscous model to calculate the surface shape oscillations at the experimental driving frequency, and from this we predict the generated streaming flows.

  9. Influence of Shell Properties on High-Frequency Ultrasound Imaging and Drug Delivery Using Polymer-Shelled Microbubbles

    PubMed Central

    Chitnis, Parag V.; Koppolu, Sujeethraj; Mamou, Jonathan; Chlon, Ceciel; Ketterling, Jeffrey A.

    2013-01-01

    This two-part study investigated shell rupture of ultrasound contrast agents (UCAs) under static overpressure conditions and the subharmonic component from UCAs subjected to 20-MHz tonebursts. Five different polylactide-shelled UCAs with shell-thickness-to-radius ratios (STRRs) of 7.5, 30, 40, 65, and 100 nm/μm were subjected to static overpressure in a glycerol-filled test chamber. A video microscope imaged the UCAs as pressure varied from 2 to 330 kPa over 90 min. Images were postprocessed to obtain the pressure threshold for rupture and the diameter of individual microbubbles. Backscatter from individual UCAs was investigated by flowing a dilute UCA solution through a wall-less flow phantom placed at the geometric focus of a 20-MHz transducer. UCAs were subjected to 10- and 20-cycle tonebursts of acoustic pressures ranging from 0.3 to 2.3 MPa. A method based on singular-value decomposition (SVD) was employed to obtain a cumulative subharmonic score (SHS). Different UCA types exhibited distinctly different rupture thresholds that were linearly related to their STRR, but uncorrelated with UCA size. The rupture threshold for the UCAs with an STRR = 100 nm/μm was more than 4 times greater than the UCAs with an STRR = 7.5 nm/μm. The polymer-shelled UCAs produced substantial subharmonic response but the subharmonic response to 20-MHz excitation did not correlate with STRRs or UCA-rupture pressures. The 20-cycle excitation resulted in an SHS that was 2 to 3 times that of UCAs excited with 10-cycle tonebursts. PMID:23287913

  10. Cyanine 5.5 Conjugated Nanobubbles as a Tumor Selective Contrast Agent for Dual Ultrasound-Fluorescence Imaging in a Mouse Model

    PubMed Central

    Li, Jing; Wei, Qiong; Yuchi, Ming; He, Xiaoling; Ding, Mingyue; Zhou, Qibing

    2013-01-01

    Nanobubbles and microbubbles are non-invasive ultrasound imaging contrast agents that may potentially enhance diagnosis of tumors. However, to date, both nanobubbles and microbubbles display poor in vivo tumor-selectivity over non-targeted organs such as liver. We report here cyanine 5.5 conjugated nanobubbles (cy5.5-nanobubbles) of a biocompatible chitosan–vitamin C lipid system as a dual ultrasound-fluorescence contrast agent that achieved tumor-selective imaging in a mouse tumor model. Cy5.5-nanobubble suspension contained single bubble spheres and clusters of bubble spheres with the size ranging between 400–800 nm. In the in vivo mouse study, enhancement of ultrasound signals at tumor site was found to persist over 2 h while tumor-selective fluorescence emission was persistently observed over 24 h with intravenous injection of cy5.5-nanobubbles. In vitro cell study indicated that cy5.5-flurescence dye was able to accumulate in cancer cells due to the unique conjugated nanobubble structure. Further in vivo fluorescence study suggested that cy5.5-nanobubbles were mainly located at tumor site and in the bladder of mice. Subsequent analysis confirmed that accumulation of high fluorescence was present at the intact subcutaneous tumor site and in isolated tumor tissue but not in liver tissue post intravenous injection of cy5.5-nanobubbles. All these results led to the conclusion that cy5.5-nanobubbles with unique crosslinked chitosan–vitamin C lipid system have achieved tumor-selective imaging in vivo. PMID:23637799

  11. Cyanine 5.5 conjugated nanobubbles as a tumor selective contrast agent for dual ultrasound-fluorescence imaging in a mouse model.

    PubMed

    Mai, Liyi; Yao, Anna; Li, Jing; Wei, Qiong; Yuchi, Ming; He, Xiaoling; Ding, Mingyue; Zhou, Qibing

    2013-01-01

    Nanobubbles and microbubbles are non-invasive ultrasound imaging contrast agents that may potentially enhance diagnosis of tumors. However, to date, both nanobubbles and microbubbles display poor in vivo tumor-selectivity over non-targeted organs such as liver. We report here cyanine 5.5 conjugated nanobubbles (cy5.5-nanobubbles) of a biocompatible chitosan-vitamin C lipid system as a dual ultrasound-fluorescence contrast agent that achieved tumor-selective imaging in a mouse tumor model. Cy5.5-nanobubble suspension contained single bubble spheres and clusters of bubble spheres with the size ranging between 400-800 nm. In the in vivo mouse study, enhancement of ultrasound signals at tumor site was found to persist over 2 h while tumor-selective fluorescence emission was persistently observed over 24 h with intravenous injection of cy5.5-nanobubbles. In vitro cell study indicated that cy5.5-flurescence dye was able to accumulate in cancer cells due to the unique conjugated nanobubble structure. Further in vivo fluorescence study suggested that cy5.5-nanobubbles were mainly located at tumor site and in the bladder of mice. Subsequent analysis confirmed that accumulation of high fluorescence was present at the intact subcutaneous tumor site and in isolated tumor tissue but not in liver tissue post intravenous injection of cy5.5-nanobubbles. All these results led to the conclusion that cy5.5-nanobubbles with unique crosslinked chitosan-vitamin C lipid system have achieved tumor-selective imaging in vivo.

  12. The EFSUMB Guidelines and Recommendations for the Clinical Practice of Contrast-Enhanced Ultrasound (CEUS) in Non-Hepatic Applications: Update 2017 (Short Version).

    PubMed

    Sidhu, Paul S; Cantisani, Vito; Dietrich, Christoph F; Gilja, Odd Helge; Saftoiu, Adrian; Bartels, Eva; Bertolotto, Michele; Calliada, Fabrizio; Clevert, Dirk-André; Cosgrove, David; Deganello, Annamaria; D'Onofrio, Mirko; Drudi, Francesco Maria; Freeman, Simon; Harvey, Christopher; Jenssen, Christian; Jung, Ernst-Michael; Klauser, Andrea Sabine; Lassau, Nathalie; Meloni, Maria Franca; Leen, Edward; Nicolau, Carlos; Nolsoe, Christian; Piscaglia, Fabio; Prada, Francesco; Prosch, Helmut; Radzina, Maija; Savelli, Luca; Weskott, Hans-Peter; Wijkstra, Hessel

    2018-04-01

    The updated version of the EFSUMB guidelines on the application of non-hepatic contrast-enhanced ultrasound (CEUS) deals with the use of microbubble ultrasound contrast outside the liver in the many established and emerging applications. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Controlled Ultrasound-Induced Blood-Brain Barrier Disruption Using Passive Acoustic Emissions Monitoring

    PubMed Central

    Arvanitis, Costas D.; Livingstone, Margaret S.; Vykhodtseva, Natalia; McDannold, Nathan

    2012-01-01

    The ability of ultrasonically-induced oscillations of circulating microbubbles to permeabilize vascular barriers such as the blood-brain barrier (BBB) holds great promise for noninvasive targeted drug delivery. A major issue has been a lack of control over the procedure to ensure both safe and effective treatment. Here, we evaluated the use of passively-recorded acoustic emissions as a means to achieve this control. An acoustic emissions monitoring system was constructed and integrated into a clinical transcranial MRI-guided focused ultrasound system. Recordings were analyzed using a spectroscopic method that isolates the acoustic emissions caused by the microbubbles during sonication. This analysis characterized and quantified harmonic oscillations that occur when the BBB is disrupted, and broadband emissions that occur when tissue damage occurs. After validating the system's performance in pilot studies that explored a wide range of exposure levels, the measurements were used to control the ultrasound exposure level during transcranial sonications at 104 volumes over 22 weekly sessions in four macaques. We found that increasing the exposure level until a large harmonic emissions signal was observed was an effective means to ensure BBB disruption without broadband emissions. We had a success rate of 96% in inducing BBB disruption as measured by in contrast-enhanced MRI, and we detected broadband emissions in less than 0.2% of the applied bursts. The magnitude of the harmonic emissions signals was significantly (P<0.001) larger for sonications where BBB disruption was detected, and it correlated with BBB permeabilization as indicated by the magnitude of the MRI signal enhancement after MRI contrast administration (R2 = 0.78). Overall, the results indicate that harmonic emissions can be a used to control focused ultrasound-induced BBB disruption. These results are promising for clinical translation of this technology. PMID:23029240

  14. Development and evaluation of a novel VEGFR2-targeted nanoscale ultrasound contrast agents

    NASA Astrophysics Data System (ADS)

    Yu, Houqiang; Li, Chunfang; He, Xiaoling; Zhou, Qibing; Ding, Mingyue

    2016-04-01

    Recent literatures have reported that the targeted nanoscale ultrasound contrast agents are becoming more and more important in medical application, like ultrasound imaging, detection of perfusion, drug delivery and molecular imaging and so on. In this study, we fabricated an uniform nanoscale bubbles (257 nm with the polydispersity index of 0.458) by incorporation of antibody targeted to vascular endothelial growth factor receptor 2 (VEGFR2) into the nanobubbles membrane by using avidin-biotin interaction. Some fundamental characterizations such as nanobubble suspension, surface morphology, particle size distribution and zeta potential were investigated. The concentration and time-intensity curves (TICs) were obtained with a self-made ultrasound experimental setup in vitro evaluation. In addition, in order to evaluate the contrast enhancement ability and the potential tumor-targeted ability in vivo, normal Wistar rats and nude female BALB/c mice were intravascular administration of the nanobubbles via tail vein injection, respectively. Significant contrast enhancement of ultrasound imaging within liver and tumor were visualized. These experiments demonstrated that the targeted nanobubbles is efficient in ultrasound molecular imaging by enhancement of the contrast effect and have potential capacity for targeted tumor diagnosis and therapy in the future.

  15. Low-intensity focused ultrasound (LIFU)-induced acoustic droplet vaporization in phase-transition perfluoropentane nanodroplets modified by folate for ultrasound molecular imaging.

    PubMed

    Liu, Jianxin; Shang, Tingting; Wang, Fengjuan; Cao, Yang; Hao, Lan; Ren, JianLi; Ran, Haitao; Wang, Zhigang; Li, Pan; Du, Zhiyu

    2017-01-01

    The commonly used ultrasound (US) molecular probes, such as targeted microbubbles and perfluorocarbon emulsions, present a number of inherent problems including the conflict between US visualization and particle penetration. This study describes the successful fabrication of phase changeable folate-targeted perfluoropentane nanodroplets (termed FA-NDs), a novel US molecular probe for tumor molecular imaging with US. Notably, these FA-NDs can be triggered by low-intensity focused US (LIFU) sonication, providing excellent US enhancement in B-mode and contrast-enhanced US mode in vitro. After intravenous administration into nude mice bearing SKOV3 ovarian carcinomas, 1,1'-dioctadecyl-3,3,3',3' -tetramethylindotricarbocya-nine iodide-labeled FA-NDs were found to accumulate in the tumor region. FA-NDs injection followed by LIFU sonication exhibited remarkable US contrast enhancement in the tumor region. In conclusion, combining our elaborately developed FA-NDs with LIFU sonication provides a potential protocol for US molecular imaging in folate receptor-overexpressing tumors.

  16. Low-intensity focused ultrasound (LIFU)-induced acoustic droplet vaporization in phase-transition perfluoropentane nanodroplets modified by folate for ultrasound molecular imaging

    PubMed Central

    Liu, Jianxin; Shang, Tingting; Wang, Fengjuan; Cao, Yang; Hao, Lan; Ren, JianLi; Ran, Haitao; Wang, Zhigang; Li, Pan; Du, Zhiyu

    2017-01-01

    The commonly used ultrasound (US) molecular probes, such as targeted microbubbles and perfluorocarbon emulsions, present a number of inherent problems including the conflict between US visualization and particle penetration. This study describes the successful fabrication of phase changeable folate-targeted perfluoropentane nanodroplets (termed FA-NDs), a novel US molecular probe for tumor molecular imaging with US. Notably, these FA-NDs can be triggered by low-intensity focused US (LIFU) sonication, providing excellent US enhancement in B-mode and contrast-enhanced US mode in vitro. After intravenous administration into nude mice bearing SKOV3 ovarian carcinomas, 1,1′-dioctadecyl-3,3,3′,3′ -tetramethylindotricarbocya-nine iodide-labeled FA-NDs were found to accumulate in the tumor region. FA-NDs injection followed by LIFU sonication exhibited remarkable US contrast enhancement in the tumor region. In conclusion, combining our elaborately developed FA-NDs with LIFU sonication provides a potential protocol for US molecular imaging in folate receptor-overexpressing tumors. PMID:28184161

  17. Dynamics of Ultrasound Contrast Agents and Nonlinear Acoustic Waves: Experiments, Modeling, and Theories

    NASA Astrophysics Data System (ADS)

    Xia, Lang

    Bubbles occur in many natural and biological flows as well as in numerous industrial phenomena, such as pumps, propellers, turbines, and chemical processing plants. They have been widely studied in the past leading to a large body of literature. However, bubbles appearing in different situations differ significantly in their physical characteristics and behaviors. Recently, bubbles of diameter less than 10 micrometers have found applications in diagnostic ultrasound imaging. These microbubble-based ultrasound contrast agents (UCA) are intravenously administered in patients before ultrasound imaging. Due to the compressive gas core, they generate substantial ultrasound echoes leading to significant enhancement of image quality and contrast. Free bubbles of a micrometer diameter experience a large surface tension induced Laplace pressure leading to their quick dissolution in milliseconds. UCAs are stabilized by coating them with a shell of lipids, polymers, proteins, and other surface-active materials and changing the gas content from air to a high molecular weight low solubility gas such as perfluorocarbon. The past literature of bubble dynamics are mostly restricted to free bubbles. The stabilizing shell of UCAs, however, critically affects their dynamics. In this thesis, we performed acoustic characterization of several UCAs coated with polymer and lipids. We experimentally measured their acoustic attenuation and scattering, of which the data were used in mathematical models to determine shell properties and nonlinear dynamics. Several different interfacial rheological models were employed. Experimental acoustic characterization was also extended to a novel type of nanoparticle suspension--polymersomes, vesicles encapsulated by amphiphilic polymers. The later part of the thesis is devoted to modeling the effects of the presence of coated microbubbles to the overall effective bulk properties of bubbly liquids. Introduction of microbubbles in the liquids does not

  18. WE-D-210-04: Radiation-Induced Polymerization of Ultrasound Contrast Agents in View of Non-Invasive Dosimetry in External Beam Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callens, M; Verboven, E; Van Den Abeele, K

    2015-06-15

    Purpose: Ultrasound contrast agents (UCA’s) based on gas-filled microbubbles encapsulated by an amphiphilic shell are well established as safe and effective echo-enhancers in diagnostic imaging. In view of an alternative application of UCA’s, we investigated the use of targeted microbubbles as radiation sensors for external beam radiation therapy. As radiation induces permanent changes in the microbubble’s physico-chemical properties, a robust measure of these changes can provide a direct or indirect estimate of the applied radiation dose. For instance, by analyzing the ultrasonic dispersion characteristics of microbubble distributions before and after radiation treatment, an estimate of the radiation dose at themore » location of the irradiated volume can be made. To increase the radiation sensitivity of microbubbles, polymerizable diacetylene molecules can be incorporated into the shell. This study focuses on characterizing the acoustic response and quantifying the chemical modifications as a function of radiation dose. Methods: Lipid/diacetylene microbubbles were irradiated with a 6 MV photon beam using dose levels in the range of 0–150 Gy. The acoustic response of the microbubbles was monitored by ultrasonic through-transmission measurements in the range of 500 kHz to 20 MHz, thereby providing the dispersion relations of the phase velocity, attenuation and nonlinear coefficient. In addition, the radiation-induced chemical modifications were quantified using UV-VIS spectroscopy. Results: UV-VIS spectroscopy measurements indicate that ionizing radiation induces the polymerization of diacetylenes incorporated in the microbubble shell. The polymer yield strongly depends on the shell composition and the radiation-dose. The acoustic response is inherently related to the visco-elastic properties of the shell and is strongly influenced by the shell composition and the physico-chemical changes in the environment. Conclusion: Diacetylene-containing microbubbles

  19. Effect of self-demodulation on the subharmonic response of contrast agent microbubbles

    NASA Astrophysics Data System (ADS)

    Daeichin, V.; Faez, T.; Renaud, G.; Bosch, J. G.; van der Steen, A. F. W.; de Jong, N.

    2012-06-01

    Subharmonic (SH) emission from the ultrasound contrast agent (UCA) is of interest since it is produced only by the UCA and not by tissue, opposite to harmonic imaging modes where both tissue and microbubble show harmonics. In this work, the use of the self-demodulation (S-D) signal as a means of microbubble excitation at the SH frequency to enhance the SH emission of UCA is studied. The S-D wave is a low-frequency signal produced by the weak nonlinear propagation of an ultrasound wave. It is proportional to the second time derivative of the squared envelope of the transmitted signal. A diluted population of BR14 UCA (Bracco Research SA, Geneva, Switzerland) was insonified by a 10 MHz transducer focused at 76 mm firing bursts with different envelopes, durations and peak pressure amplitudes. The center frequency of the S-D signal changes from low frequencies (around 0.5 MHz) toward the transmitted frequency (10 MHz) by modifying the envelope function from Gaussian to rectangular. For 6 and 20 transmitted cycles, the SH response is enhanced up to 25 and 22 dB, respectively, when using a rectangular envelope instead of a Gaussian one. The experimental results are confirmed by the numerical simulation. The effects of the excitation duration and pressure amplitude are also studied. This study shows that a suitable design of the envelope of the transmit excitation to generate a S-D signal at the SH frequency can enhance the SH emission of UCA, and the SH imaging is feasible at high frequencies with a shorter transmit burst (six-cycle) and low acoustic pressure (∼100 KPa).

  20. Acoustic accessibility investigation for ultrasound mediated treatment of glycogen storage disease type Ia patients.

    PubMed

    Wang, Shutao; Raju, Balasundar I; Leyvi, Evgeniy; Weinstein, David A; Seip, Ralf

    2011-09-01

    Glycogen storage disease type Ia (GSDIa) is caused by an inherited defect in the glucose-6-phosphatase gene. The recent advent of targeted ultrasound-mediated delivery (USMD) of plasmid DNA (pDNA) to the liver in conjunction with microbubbles may provide an alternative treatment option. This study focuses on determining the acoustically accessible liver volume in GSDIa patients using transducer models of various geometries with an image-based geometry-driven approach. Results show that transducers with longer focal lengths and smaller apertures (up to an f/number of 2) are able to access larger liver volumes in GSDIa patients while still being capable of delivering the required ultrasound dose in situ (2.5 MPa peak negative pressure at the focus). With sufficiently large acoustic windows and the ability to use glucose to easily assess efficacy, GSD appears to be a good model for testing USMD as proof of principle as a potential therapy for liver applications in general. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  1. Novel 3-D laparoscopic magnetic ultrasound image guidance for lesion targeting

    PubMed Central

    Sindram, David; McKillop, Iain H; Martinie, John B; Iannitti, David A

    2010-01-01

    Objectives: Accurate laparoscopic liver lesion targeting for biopsy or ablation depends on the ability to merge laparoscopic and ultrasound images with proprioceptive instrument positioning, a skill that can be acquired only through extensive experience. The aim of this study was to determine whether using magnetic positional tracking to provide three-dimensional, real-time guidance improves accuracy during laparoscopic needle placement. Methods: Magnetic sensors were embedded into a needle and laparoscopic ultrasound transducer. These sensors interrupted the magnetic fields produced by an electromagnetic field generator, allowing for real-time, 3-D guidance on a stereoscopic monitor. Targets measuring 5 mm were embedded 3–5 cm deep in agar and placed inside a laparoscopic trainer box. Two novices (a college student and an intern) and two experts (hepatopancreatobiliary surgeons) targeted the lesions out of the ultrasound plane using either traditional or 3-D guidance. Results: Each subject targeted 22 lesions, 11 with traditional and 11 with the novel guidance (n = 88). Hit rates of 32% (14/44) and 100% (44/44) were observed with the traditional approach and the 3-D magnetic guidance approach, respectively. The novices were essentially unable to hit the targets using the traditional approach, but did not miss using the novel system. The hit rate of experts improved from 59% (13/22) to 100% (22/22) (P < 0.0001). Conclusions: The novel magnetic 3-D laparoscopic ultrasound guidance results in perfect targeting of 5-mm lesions, even by surgical novices. PMID:21083797

  2. Quantification of transient increase of the blood–brain barrier permeability to macromolecules by optimized focused ultrasound combined with microbubbles

    PubMed Central

    Shi, Lingyan; Palacio-Mancheno, Paolo; Badami, Joseph; Shin, Da Wi; Zeng, Min; Cardoso, Luis; Tu, Raymond; Fu, Bingmei M

    2014-01-01

    Radioimmunotherapy using a radiolabeled monoclonal antibody that targets tumor cells has been shown to be efficient for the treatment of many malignant cancers, with reduced side effects. However, the blood–brain barrier (BBB) inhibits the transport of intravenous antibodies to tumors in the brain. Recent studies have demonstrated that focused ultrasound (FUS) combined with microbubbles (MBs) is a promising method to transiently disrupt the BBB for the drug delivery to the central nervous system. To find the optimal FUS and MBs that can induce reversible increase in the BBB permeability, we employed minimally invasive multiphoton microscopy to quantify the BBB permeability to dextran-155 kDa with similar molecular weight to an antibody by applying different doses of FUS in the presence of MBs with an optimal size and concentration. The cerebral microcirculation was observed through a section of frontoparietal bone thinned with a micro-grinder. About 5 minutes after applying the FUS on the thinned skull in the presence of MBs for 1 minute, TRITC (tetramethylrhodamine isothiocyanate)-dextran-155 kDa in 1% bovine serum albumin in mammalian Ringer’s solution was injected into the cerebral circulation via the ipsilateral carotid artery by a syringe pump. Simultaneously, the temporal images were collected from the brain parenchyma ~100–200 μm below the pia mater. Permeability was determined from the rate of tissue solute accumulation around individual microvessels. After several trials, we found the optimal dose of FUS. At the optimal dose, permeability increased by ~14-fold after 5 minutes post-FUS, and permeability returned to the control level after 25 minutes. FUS without MBs or MBs injected without FUS did not change the permeability. Our method provides an accurate in vivo assessment for the transient BBB permeability change under the treatment of FUS. The optimal FUS dose found for the reversible BBB permeability increase without BBB disruption is reliable

  3. Quantitative assessment of placental perfusion by contrast-enhanced ultrasound in macaques and human subjects

    PubMed Central

    Roberts, Victoria HJ; Lo, Jamie O; Salati, Jennifer A; Lewandowski, Katherine S; Lindner, Jonathan R; Morgan, Terry K; Frias, Antonio E

    2016-01-01

    Background The utero-placental vascular supply is a critical determinant of placental function and fetal growth. Current methods for the in vivo assessment of placental blood flow are limited. Objective Here we demonstrate the feasibility of utilizing contrast-enhanced ultrasound to visualize and quantify perfusion kinetics in the intervillous space of the primate placenta. Study design Pregnant Japanese macaques were studied at mid second trimester and in the early third trimester. Markers of injury were assessed in placenta samples from animals with or without contrast-enhanced ultrasound exposure (n=6/group). Human subjects were recruited immediately prior to scheduled first trimester pregnancy termination. All studies were performed with maternal intravenous infusion of lipid-shelled octofluoropropane microbubbles with image acquisition using a multipulse contrast-specific algorithm with destruction-replenishment analysis of signal intensity for assessment of perfusion. Results In macaques, rate of perfusion in the intervillous space was increased with advancing gestation. No evidence of microvascular hemorrhage or acute inflammation was found in placental villous tissue and expression levels of caspase-3, nitrotyrosine and HSP70 as markers of apoptosis, nitrative and oxidative stress respectively were unchanged by contrast-enhanced ultrasound exposure. In humans, placental perfusion was visualized at 11wks gestation and preliminary data reveal regional differences in intervillous space perfusion within an individual placenta. By electron microscopy, we demonstrate no evidence of ultrastructure damage to the microvilli on the syncytiotrophoblast following first trimester ultrasound studies. Conclusions Use of contrast-enhanced ultrasound did not result in placental structural damage, and was able to identify intervillous space perfusion rate differences within a placenta. Contrast-enhanced ultrasound may offer a safe clinical tool for the identification of

  4. Ultrasound molecular imaging of ovarian cancer with CA-125 targeted nanobubble contrast agents.

    PubMed

    Gao, Yong; Hernandez, Christopher; Yuan, Hai-Xia; Lilly, Jacob; Kota, Pavan; Zhou, Haoyan; Wu, Hanping; Exner, Agata A

    2017-10-01

    Ultrasound is frequently utilized in diagnosis of gynecologic malignancies such as ovarian cancer. Because epithelial ovarian cancer (EOC) is often characterized by overexpression of cancer antigen 125 (CA-125), ultrasound contrast agents able to target this molecular signature could be a promising complementary strategy. In this work, we demonstrate application of CA-125-targeted echogenic lipid and surfactant-stabilized nanobubbles imaged with standard clinical contrast harmonic ultrasound for imaging of CA-125 positive OVCAR-3 tumors in mice. Surface functionalization of the nanobubbles with a CA-125 antibody achieved rapid significantly (P < 0.05) enhanced tumor accumulation, higher peak ultrasound signal intensity and slower wash out rates in OVCAR-3 tumors compared to CA-125 negative SKOV-3 tumors. Targeted nanobubbles also exhibited increased tumor retention and prolonged echogenicity compared to untargeted nanobubbles. Data suggest that ultrasound molecular imaging using CA-125 antibody-conjugated nanobubbles may contribute to improved diagnosis of EOC. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Modeling complicated rheological behaviors in encapsulating shells of lipid-coated microbubbles accounting for nonlinear changes of both shell viscosity and elasticity.

    PubMed

    Li, Qian; Matula, Thomas J; Tu, Juan; Guo, Xiasheng; Zhang, Dong

    2013-02-21

    It has been accepted that the dynamic responses of ultrasound contrast agent (UCA) microbubbles will be significantly affected by the encapsulating shell properties (e.g., shell elasticity and viscosity). In this work, a new model is proposed to describe the complicated rheological behaviors in an encapsulating shell of UCA microbubbles by applying the nonlinear 'Cross law' to the shell viscous term in the Marmottant model. The proposed new model was verified by fitting the dynamic responses of UCAs measured with either a high-speed optical imaging system or a light scattering system. The comparison results between the measured radius-time curves and the numerical simulations demonstrate that the 'compression-only' behavior of UCAs can be successfully simulated with the new model. Then, the shell elastic and viscous coefficients of SonoVue microbubbles were evaluated based on the new model simulations, and compared to the results obtained from some existing UCA models. The results confirm the capability of the current model for reducing the dependence of bubble shell parameters on the initial bubble radius, which indicates that the current model might be more comprehensive to describe the complex rheological nature (e.g., 'shear-thinning' and 'strain-softening') in encapsulating shells of UCA microbubbles by taking into account the nonlinear changes of both shell elasticity and shell viscosity.

  6. Modeling complicated rheological behaviors in encapsulating shells of lipid-coated microbubbles accounting for nonlinear changes of both shell viscosity and elasticity

    NASA Astrophysics Data System (ADS)

    Li, Qian; Matula, Thomas J.; Tu, Juan; Guo, Xiasheng; Zhang, Dong

    2013-02-01

    It has been accepted that the dynamic responses of ultrasound contrast agent (UCA) microbubbles will be significantly affected by the encapsulating shell properties (e.g., shell elasticity and viscosity). In this work, a new model is proposed to describe the complicated rheological behaviors in an encapsulating shell of UCA microbubbles by applying the nonlinear ‘Cross law’ to the shell viscous term in the Marmottant model. The proposed new model was verified by fitting the dynamic responses of UCAs measured with either a high-speed optical imaging system or a light scattering system. The comparison results between the measured radius-time curves and the numerical simulations demonstrate that the ‘compression-only’ behavior of UCAs can be successfully simulated with the new model. Then, the shell elastic and viscous coefficients of SonoVue microbubbles were evaluated based on the new model simulations, and compared to the results obtained from some existing UCA models. The results confirm the capability of the current model for reducing the dependence of bubble shell parameters on the initial bubble radius, which indicates that the current model might be more comprehensive to describe the complex rheological nature (e.g., ‘shear-thinning’ and ‘strain-softening’) in encapsulating shells of UCA microbubbles by taking into account the nonlinear changes of both shell elasticity and shell viscosity.

  7. Microbubble-assisted optofluidic control using a photothermal waveguide

    NASA Astrophysics Data System (ADS)

    Cheng, YuPeng; Yang, JianXin; Li, ZongBao; Zhu, DeBin; Cai, Xiang; Hu, Xiaowen; Huang, Wen; Xing, XiaoBo

    2017-10-01

    A convenient and easily controllable microfluidic system was proposed based on a photothermal device. Here, graphene oxide was assembled on an optical waveguide, which could serve as a miniature heat source to generate a microbubble and to control dynamic behaviors of flow by adjusting optical power at the micrometer scale. Micro/nanoparticles were used to demonstrate the trace of fluid flow around the microbubble, which displayed the ability of the flow to capture, transmit, and rotate particles in thermal convection. Correspondingly, three-dimensional theoretical simulation combining thermodynamics with hydrodynamics analyzed the distribution of the velocity field induced by the microbubble for collection and driving of particles. Furthermore, the photothermal waveguide would be developed into a microbubble-based device in the manipulation or transmission of micro/nanoparticles.

  8. Multifunctional Polymer Microbubbles for Advanced Sentinel Lymph Node Imaging and Mapping

    DTIC Science & Technology

    2012-03-01

    undesired PMA attached to microbubble surface. Figure 1: One-pot polymer -lipid microbubbles. (a) Synthesis of thiolated poly(acrylic acid) with...Award Number: W81XWH-11-1-0215 TITLE: Multifunctional Polymer Microbubbles for Advanced Sentinel...February 2012 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Multifunctional Polymer Microbubbles for Advanced Sentinel Lymph Node Imaging and Mapping 5b

  9. Transportation of single cell and microbubbles by phase-shift introduced to standing leaky surface acoustic waves

    PubMed Central

    Meng, Long; Cai, Feiyan; Zhang, Zidong; Niu, Lili; Jin, Qiaofeng; Yan, Fei; Wu, Junru; Wang, Zhanhui; Zheng, Hairong

    2011-01-01

    A microfluidic device was developed to precisely transport a single cell or multiple microbubbles by introducing phase-shifts to a standing leaky surface acoustic wave (SLSAW). The device consists of a polydimethyl-siloxane (PDMS) microchannel and two phase-tunable interdigital transducers (IDTs) for the generation of the relative phase for the pair of surface acoustic waves (SAW) propagating along the opposite directions forming a standing wave. When the SAW contacts the fluid medium inside the microchannel, some of SAW energy is coupled to the fluid and the SAW becomes the leaky surface wave. By modulating the relative phase between two IDTs, the positions of pressure nodes of the SLSAW in the microchannel change linearly resulting in the transportation of a single cell or microbubbles. The results also reveal that there is a good linear relationship between the relative phase and the displacement of a single cell or microbubbles. Furthermore, the single cell and the microbubbles can be transported over a predetermined distance continuously until they reach the targeted locations. This technique has its distinct advantages, such as precise position-manipulation, simple to implement, miniature size, and noninvasive character, which may provide an effective method for the position-manipulation of a single cell and microbubbles in many biological and biomedical applications. PMID:22662056

  10. On the interplay of shell structure with low- and high-frequency mechanics of multifunctional magnetic microbubbles.

    PubMed

    Poehlmann, Melanie; Grishenkov, Dmitry; Kothapalli, Satya V V N; Härmark, Johan; Hebert, Hans; Philipp, Alexandra; Hoeller, Roland; Seuss, Maximilian; Kuttner, Christian; Margheritelli, Silvia; Paradossi, Gaio; Fery, Andreas

    2014-01-07

    Polymer-shelled magnetic microbubbles have great potential as hybrid contrast agents for ultrasound and magnetic resonance imaging. In this work, we studied US/MRI contrast agents based on air-filled poly(vinyl alcohol)-shelled microbubbles combined with superparamagnetic iron oxide nanoparticles (SPIONs). The SPIONs are integrated either physically or chemically into the polymeric shell of the microbubbles (MBs). As a result, two different designs of a hybrid contrast agent are obtained. With the physical approach, SPIONs are embedded inside the polymeric shell and with the chemical approach SPIONs are covalently linked to the shell surface. The structural design of hybrid probes is important, because it strongly determines the contrast agent's response in the considered imaging methods. In particular, we were interested how structural differences affect the shell's mechanical properties, which play a key role for the MBs' US imaging performance. Therefore, we thoroughly characterized the MBs' geometric features and investigated low-frequency mechanics by using atomic force microscopy (AFM) and high-frequency mechanics by using acoustic tests. Thus, we were able to quantify the impact of the used SPIONs integration method on the shell's elastic modulus, shear modulus and shear viscosity. In summary, the suggested approach contributes to an improved understanding of structure-property relations in US-active hybrid contrast agents and thus provides the basis for their sustainable development and optimization.

  11. Process and apparatus for separating fine particles by microbubble flotation together with a process and apparatus for generation of microbubbles

    DOEpatents

    Yoon, R.H.; Adel, G.T.; Luttrell, G.H.

    1991-01-01

    A method and apparatus are disclosed for the microbubble flotation separation of very fine particles, especially coal, so as to produce a high purity and large recovery efficiently. This is accomplished through the use of a high aspect ratio flotation column, microbubbles, and a countercurrent use of wash water to gently wash the froth. Also, disclosed are unique processes and apparatus for generating microbubbles for flotation in a high efficient and inexpensive manner using either a porous tube or an in-line static generator. 23 figures.

  12. PLGA nanoparticles introduction into mitoxantrone-loaded ultrasound-responsive liposomes: In vitro and in vivo investigations.

    PubMed

    Xin, Yuxuan; Qi, Qi; Mao, Zhenmin; Zhan, Xiaoping

    2017-08-07

    A novel ultrasound-responsive liposomal system for tumor targeting was prepared in order to increase the antitumor efficacy and decrease serious side effects. In this paper, PLGA nanoparticles were used ultrasound-responsive agents instead of conventional microbubbles. The PLGA-nanoparticles were prepared by an emulsion solvent evaporation method. The liposomes were prepared by a lipid film hydration method. Particle size, zeta potential, encapsulation efficiency and drug loading capacity of the liposomes were studied by light scattering analysis and dialysis. Transmission electron microscopy (TEM) and atomic force microscope (AFM) were used to investigate the morphology of liposomes. The release in vitro was carried out in the pH 7.4 phosphate buffer solutions, as a result, liposome L3 encapsulating PLGA-nanoparticles displayed good stability under simulative physiological conditions and quickly responsive release under the ultrasound. The release in vivo was carried out on the rats, as a result, liposome L3 showed higher bioavailability than traditional intravenous injectable administration, and liposome L3 showed higher elimination ratio after stimulation by ultrasound than L3 without stimulation. Thus, the novel ultrasound-responsive liposome encapsulating PLGA-nanoparticles has a potential to be developed as a new drug delivery system for anti-tumor drug. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Investigation on the relationship between overpressure and sub-harmonic response from encapsulated microbubbles

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Fan, Ting-Bo; Xu, Di; Zhang, Dong

    2014-10-01

    Sub-harmonic component generated from microbubbles is proven to be potentially used in noninvasive blood pressure measurement. Both theoretical and experimental studies are performed in the present work to investigate the dependence of the sub-harmonic generation on the overpressure with different excitation pressure amplitudes and pulse lengths. With 4-MHz ultrasound excitation at an applied acoustic pressure amplitude of 0.24 MPa, the measured sub-harmonic amplitude exhibits a decreasing change as overpressure increases; while non-monotonic change is observed for the applied acoustic pressures of 0.36 MPa and 0.48 MPa, and the peak position in the curve of the sub-harmonic response versus the overpressure shifts toward higher overpressure as the excitation pressure amplitude increases. Furthermore, the exciting pulse with long duration could lead to a better sensitivity of the sub-harmonic response to overpressure. The measured results are explained by the numerical simulations based on the Marmottant model. The numerical simulations qualitatively accord with the measured results. This work might provide a preliminary proof for the optimization of the noninvasive blood pressure measurement through using sub-harmonic generation from microbubbles.

  14. Penetration depth, concentration and efficiency of transdermal α-arbutin delivery after ultrasound treatment with albumin-shelled microbubbles in mice.

    PubMed

    Liao, Ai-Ho; Ma, Wan-Chun; Wang, Chih-Hung; Yeh, Ming-Kung

    2016-09-01

    Recently, the feasibility and effects of using microbubbles (MBs) as an ultrasound (US) contrast agent for enhancing the penetration in transdermal delivery in vivo have been demonstrated, but the mechanism and efficiency are unclear. This study demonstrates the penetration depth, concentration and efficiency of transdermal α-arbutin delivery during 4 weeks after US treatment with MBs in mice. Experimental animals were randomly divided into the following four groups (n = 5 animals per group): (1) penetrating α-arbutin alone (C), (2) US combined with penetrating α-arbutin, (3) US combined with MBs and penetrating α-arbutin, and (4) US combined with diluted MBs and penetrating α-arbutin (UBD). The penetration depths in agarose phantoms and pigskin were 47 and 84% greater for group UBD, respectively, than for group C. The in vitro skin penetration by 2% α-arbutin after 3 h was 83% greater in group UBD than in group C. The degree of in vivo skin whitening (quantified as the luminosity index) in group UBD significantly increased by 25% after 1 week, 34% after 2 weeks, and then stabilized after 3 weeks at 37% in C57BL/6J mice over a 4-week experimental period. Our results indicate that combined treatment with optimal US and MBs can increase skin permeability so as to enhance α-arbutin delivery to inhibit melanogenesis without damaging the skin in mice.

  15. [Novel dianostics and therapeutics with ultrasound technologies and nanotechnologies].

    PubMed

    Suzuki, Ryo; Oda, Yusuke; Omata, Daiki; Sawaguchi, Yoshikazu; Negishi, Yoichi; Maruyama, Kazuo

    2013-01-01

    Ultrasound is a good tool for theranostics due to have multi-potency both of diagnostics with sonography and therapeutics with high intensity focused ultrasound (HIFU). In addition, microbubbles and nanobubbles are utilized as not only contrast imaging agent but also enhancer of drug and gene delivery by combination of ultrasound. Recently, we developed novel liposomal nanobubbles (Bubble liposomes) which were containing perfluoropropane. Bubble liposomes induced jet stream by low intensity ultrasound exposure and resulted in enhancing permeability of cell membrane. This phenomenon has been utilized as driving force for drug and gene delivery. On the other hand, the combination of Bubble liposomes and high intensity ultrasound induces strong jet stream and increase temperature. This condition can directly damage to tumor cells, we are applying this for cancer therapy. Therefore, their combination has potency for various cancer therapies such as gene therapy, immunotherapy and hyperthermia. In this review, we discuss about cancer therapy by the combination of Bubble liposomes and ultrasound.

  16. Frequency dependence and frequency control of microbubble streaming flows

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Rallabandi, Bhargav; Hilgenfeldt, Sascha

    2013-02-01

    Steady streaming from oscillating microbubbles is a powerful actuating mechanism in microfluidics, enjoying increased use due to its simplicity of manufacture, ease of integration, low heat generation, and unprecedented control over the flow field and particle transport. As the streaming flow patterns are caused by oscillations of microbubbles in contact with walls of the set-up, an understanding of the bubble dynamics is crucial. Here we experimentally characterize the oscillation modes and the frequency response spectrum of such cylindrical bubbles, driven by a pressure variation resulting from ultrasound in the range of 1 kHz raisebox {-.9ex{stackrel{textstyle <}{˜ }} }f raisebox {-.9ex{stackrel{textstyle <}{˜ }} } 100 kHz. We find that (i) the appearance of 2D streaming flow patterns is governed by the relative amplitudes of bubble azimuthal surface modes (normalized by the volume response), (ii) distinct, robust resonance patterns occur independent of details of the set-up, and (iii) the position and width of the resonance peaks can be understood using an asymptotic theory approach. This theory describes, for the first time, the shape oscillations of a pinned cylindrical bubble at a wall and gives insight into necessary mode couplings that shape the response spectrum. Having thus correlated relative mode strengths and observed flow patterns, we demonstrate that the performance of a bubble micromixer can be optimized by making use of such flow variations when modulating the driving frequency.

  17. Meshless bubble filter using ultrasound for extracorporeal circulation and its effect on blood.

    PubMed

    Mino, Koji; Imura, Masato; Koyama, Daisuke; Omori, Masayoshi; Kawarabata, Shigeki; Sato, Masafumi; Watanabe, Yoshiaki

    2015-02-01

    A bubble filter with no mesh structure for extracorporeal circulation using ultrasound was developed. Hemolysis was evaluated by measuring free hemoglobin (FHb). FHb in 120 mL of bovine blood was measured in acoustic standing-wave fields. With a sound pressure amplitude of 60 kPa at driving frequencies of 1 MHz, 500 kHz and 27 kHz for 15 min. FHb values were 641.6, 2575 and 8903 mg/dL, respectively. Thus, hemolysis was inhibited with higher driving frequencies when the same sound pressure amplitude was applied. An ultrasound bubble filter with a resonance frequency of 1 MHz was designed. The filtering characteristics of the flowing microbubbles were investigated with a circulation system using bovine blood with a flow rate of 5.0 L/min. Approximately 99.1% of microbubbles were filtered with 250 kPa and a flow of 5.0 L/min. Hemolysis decreased as the sound pressure decreased; FHb values were 225.8 and 490.7 mg/dL when using 150 and 200 kPa, respectively. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  18. Numerical modeling of the 3D dynamics of ultrasound contrast agent microbubbles using the boundary integral method

    NASA Astrophysics Data System (ADS)

    Wang, Qianxi; Manmi, Kawa; Calvisi, Michael L.

    2015-02-01

    Ultrasound contrast agents (UCAs) are microbubbles stabilized with a shell typically of lipid, polymer, or protein and are emerging as a unique tool for noninvasive therapies ranging from gene delivery to tumor ablation. While various models have been developed to describe the spherical oscillations of contrast agents, the treatment of nonspherical behavior has received less attention. However, the nonspherical dynamics of contrast agents are thought to play an important role in therapeutic applications, for example, enhancing the uptake of therapeutic agents across cell membranes and tissue interfaces, and causing tissue ablation. In this paper, a model for nonspherical contrast agent dynamics based on the boundary integral method is described. The effects of the encapsulating shell are approximated by adapting Hoff's model for thin-shell, spherical contrast agents. A high-quality mesh of the bubble surface is maintained by implementing a hybrid approach of the Lagrangian method and elastic mesh technique. The numerical model agrees well with a modified Rayleigh-Plesset equation for encapsulated spherical bubbles. Numerical analyses of the dynamics of UCAs in an infinite liquid and near a rigid wall are performed in parameter regimes of clinical relevance. The oscillation amplitude and period decrease significantly due to the coating. A bubble jet forms when the amplitude of ultrasound is sufficiently large, as occurs for bubbles without a coating; however, the threshold amplitude required to incite jetting increases due to the coating. When a UCA is near a rigid boundary subject to acoustic forcing, the jet is directed towards the wall if the acoustic wave propagates perpendicular to the boundary. When the acoustic wave propagates parallel to the rigid boundary, the jet direction has components both along the wave direction and towards the boundary that depend mainly on the dimensionless standoff distance of the bubble from the boundary. In all cases, the jet

  19. Long-Term Safety of Repeated Blood-Brain Barrier Opening via Focused Ultrasound with Microbubbles in Non-Human Primates Performing a Cognitive Task.

    PubMed

    Downs, Matthew E; Buch, Amanda; Sierra, Carlos; Karakatsani, Maria Eleni; Teichert, Tobias; Chen, Shangshang; Konofagou, Elisa E; Ferrera, Vincent P

    2015-01-01

    Focused Ultrasound (FUS) coupled with intravenous administration of microbubbles (MB) is a non-invasive technique that has been shown to reliably open (increase the permeability of) the blood-brain barrier (BBB) in multiple in vivo models including non-human primates (NHP). This procedure has shown promise for clinical and basic science applications, yet the safety and potential neurological effects of long term application in NHP requires further investigation under parameters shown to be efficacious in that species (500 kHz, 200-400 kPa, 4-5 μm MB, 2 minute sonication). In this study, we repeatedly opened the BBB in the caudate and putamen regions of the basal ganglia of 4 NHP using FUS with systemically-administered MB over 4-20 months. We assessed the safety of the FUS with MB procedure using MRI to detect edema or hemorrhaging in the brain. Contrast enhanced T1-weighted MRI sequences showed a 98% success rate for openings in the targeted regions. T2-weighted and SWI sequences indicated a lack edema in the majority of the cases. We investigated potential neurological effects of the FUS with MB procedure through quantitative cognitive testing of' visual, cognitive, motivational, and motor function using a random dot motion task with reward magnitude bias presented on a touchpanel display. Reaction times during the task significantly increased on the day of the FUS with MB procedure. This increase returned to baseline within 4-5 days after the procedure. Visual motion discrimination thresholds were unaffected. Our results indicate FUS with MB can be a safe method for repeated opening of the BBB at the basal ganglia in NHP for up to 20 months without any long-term negative physiological or neurological effects with the parameters used.

  20. Low-frequency quantitative ultrasound imaging of cell death in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadeghi-Naini, Ali; Falou, Omar; Czarnota, Gregory J.

    Purpose: Currently, no clinical imaging modality is used routinely to assess tumor response to cancer therapies within hours to days of the delivery of treatment. Here, the authors demonstrate the efficacy of ultrasound at a clinically relevant frequency to quantitatively detect changes in tumors in response to cancer therapies using preclinical mouse models.Methods: Conventional low-frequency and corresponding high-frequency ultrasound (ranging from 4 to 28 MHz) were used along with quantitative spectroscopic and signal envelope statistical analyses on data obtained from xenograft tumors treated with chemotherapy, x-ray radiation, as well as a novel vascular targeting microbubble therapy.Results: Ultrasound-based spectroscopic biomarkers indicatedmore » significant changes in cell-death associated parameters in responsive tumors. Specifically changes in the midband fit, spectral slope, and 0-MHz intercept biomarkers were investigated for different types of treatment and demonstrated cell-death related changes. The midband fit and 0-MHz intercept biomarker derived from low-frequency data demonstrated increases ranging approximately from 0 to 6 dBr and 0 to 8 dBr, respectively, depending on treatments administrated. These data paralleled results observed for high-frequency ultrasound data. Statistical analysis of ultrasound signal envelope was performed as an alternative method to obtain histogram-based biomarkers and provided confirmatory results. Histological analysis of tumor specimens indicated up to 61% cell death present in the tumors depending on treatments administered, consistent with quantitative ultrasound findings indicating cell death. Ultrasound-based spectroscopic biomarkers demonstrated a good correlation with histological morphological findings indicative of cell death (r{sup 2}= 0.71, 0.82; p < 0.001).Conclusions: In summary, the results provide preclinical evidence, for the first time, that quantitative ultrasound used at a clinically relevant

  1. The Dependence of the Ultrasound-Induced Blood-Brain Barrier Opening Characteristics on Microbubble Size In Vivo

    NASA Astrophysics Data System (ADS)

    Choi, James J.; Feshitan, Jameel A.; Wang, Shougang; Tung, Yao-Sheng; Baseri, Babak; Borden, Mark A.; Konofagou, Elisa E.

    2009-04-01

    Recent neuropharmaceutical developments have led to potent disease-modifying drugs. In spite of these advancements, most agents cannot traverse the blood-brain barrier (BBB) and deposit in the brain. Focused ultrasound (FUS) with microbubbles has been shown to induce noninvasive, localized, and transient BBB opening. Although promising, safety and efficacy concerns still remain. Previously reported experiments used conventional imaging contrast agents that have a wide size distribution. In this study, we hypothesize that BBB opening characteristics are dependent on bubble diameter. A 25 μl bolus of in-house manufactured, lipid-shelled bubbles with either 1-2 or 4-5 μm diameter ranges was injected intravenously. Pulsed FUS (frequency: 1.5 MHz, peak-negative pressure: 146-607 kPa, duty cycle: 20%, duration: 1-min) was then applied to the left hippocampus of mice (n = 16) in vivo through the intact skin and skull. MRI or fluorescence microscopy was used to determine BBB opening. Contrast-enhanced (Omniscan™; 0.75 mL; molecular weight: 574 Da) MRI (9.4-T) was acquired on multiple days after sonication to determine BBB opening and closing. Fluorescence microscopy was also used to determine the feasibility of delivering large, 3 kDa dextran compounds through the BBB. The BBB opening acoustic pressure threshold for the 4-5μm bubbles was in the 146-304 kPa range while the threshold for the 1-2μm bubbles was higher. In conclusion, FUS-induced BBB opening and closing was shown to be dependent on the bubble diameter indicating the possibility of specifically designing bubbles to enhance this therapeutic application.

  2. Temperature-dependent differences in the nonlinear acoustic behavior of ultrasound contrast agents revealed by high-speed imaging and bulk acoustics.

    PubMed

    Mulvana, Helen; Stride, Eleanor; Tang, Mengxing; Hajnal, Jo V; Eckersley, Robert

    2011-09-01

    Previous work by the authors has established that increasing the temperature of the suspending liquid from 20°C to body temperature has a significant impact on the bulk acoustic properties and stability of an ultrasound contrast agent suspension (SonoVue, Bracco Suisse SA, Manno, Lugano, Switzerland). In this paper the influence of temperature on the nonlinear behavior of microbubbles is investigated, because this is one of the most important parameters in the context of diagnostic imaging. High-speed imaging showed that raising the temperature significantly influences the dynamic behavior of individual microbubbles. At body temperature, microbubbles exhibit greater radial excursion and oscillate less spherically, with a greater incidence of jetting and gas expulsion, and therefore collapse, than they do at room temperature. Bulk acoustics revealed an associated increase in the harmonic content of the scattered signals. These findings emphasize the importance of conducting laboratory studies at body temperature if the results are to be interpreted for in vivo applications. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  3. Fabrication and characterization of an egg-shaped hollow fiber microbubble

    NASA Astrophysics Data System (ADS)

    Wang, Guanjun; Ruan, Yinlan; Jia, Pinggang; Gui, Zhiguo; Zhang, Pengcheng; Wang, Chao; Liu, Shen; Liao, Changrui; Yin, Guolu; Wang, Yiping

    2017-04-01

    In this paper, an egg-shaped microbubble is proposed and analyzed firstly, which is fabricated by the pressure-assisted arc discharge technique. By tailoring the arc parameters and the position of glass tube during the fabrication process, the thinnest wall of the fabricated microbubble could reach to the level of 873nm. Then, the fiber Fabry-Perot interference technique is used to analyze the deformation of microbubble that under different filling pressures. It is found that the endface of micro-bubble occurs compression when the inner pressure increasing from 4Kpa to 1400KPa. And the pressure sensitivity of such egg-shaped microbubble sample is14.3pm/Kpa. Results of this study could be good reference for developing new pressure sensors, etc.

  4. Inflammatory activity in Crohn disease: ultrasound findings.

    PubMed

    Migaleddu, Vincenzo; Quaia, Emilio; Scano, Domenico; Virgilio, Giuseppe

    2008-01-01

    Improvements in the ultrasound examination of bowel disease have registered in the last years the introduction of new technologies regarding high frequency probes (US), highly sensitive color or power Doppler units (CD-US), and the development of new non-linear technologies that optimize detection of contrast agents. Contrast-enhanced ultrasound (CE-US) most importantly increases the results in sonographic evaluation of Crohn disease inflammatory activity. CE-US has become an imaging modality routinely employed in the clinical practice for the evaluation of parenchymal organs due to the introduction of new generation microbubble contrast agents which persist in the bloodstream for several minutes after intravenous injection. The availability of high frequency dedicated contrast-specific US techniques provide accurate depiction of small bowel wall perfusion due to the extremely high sensitivity of non-linear signals produced by microbubble insonation. In Crohn's disease, CE-US may characterize the bowel wall thickness by differentiating fibrosis from edema and may grade the inflammatory disease activity by assessing the presence and distribution of vascularity within the layers of the bowel wall (submucosa alone or the entire bowel wall). Peri-intestinal inflammatory involvement can be also characterized. CE-US can provide prognostic data concerning clinical recurrence of the inflammatory disease and evaluate the efficacy of drugs treatments.

  5. Feasibility of Dual Optics/Ultrasound Imaging and Contrast Media for the Detection and Characterization of Prostate Cancer

    DTIC Science & Technology

    2010-03-01

    ultrasound microbubbles and generation of higher harmonic modulation. We also demonstrated acousto- optic detection with a novel SPAD detector. During...NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a. REPORT U b. ABSTRACT U c . THIS PAGE U UU 27 19b. TELEPHONE NUMBER (include...pass Filter Digital Scope Silicon Photodetector (a) (b) ( c ) Figure 2a) Experimental set-up for detection of ultrasound-modulated

  6. Temperature sensor based on high-Q polymethylmethacrylate optical microbubble

    NASA Astrophysics Data System (ADS)

    He, Chunhong; Sun, Huijin; Mo, Jun; Yang, Chao; Feng, Guoying; Zhou, Hao; Zhou, Shouhuan

    2018-07-01

    A new flexible method to fabricate a temperature sensor based on polymethylmethacrylate (PMMA) optical microbubbles, using a volume-controllable pipette, is demonstrated. The high quality factor of the cavity is guaranteed by the smooth wall of the microbubble. The shape and refractive index of the microbubbles change with the surrounding temperature, which leads to the obvious displacement of the whispering gallery mode transmission spectrum. As the surrounding temperature increases, the spectrum undergoes a significant blue shift, hence the microresonator can be used for temperature sensing. A sensitivity of 39 pm °C‑1 is obtained in a PMMA microbubble with a diameter of 740 µm. This work suggests a new convenient approach to achieving high-quality flexible microscale sensors.

  7. Experimental investigation of the penetration of ultrasound nanobubbles in a gastric cancer xenograft.

    PubMed

    Fan, Xiaozhou; Wang, Luofu; Guo, Yanli; Tong, Haipeng; Li, Lang; Ding, Jun; Huang, Haiyun

    2013-08-16

    Nanobubbles as a type of ultrasound contrast agent have attracted much interest in recent years due to their many advantages, such as strong penetrating power and high stability. However, there is still insufficient morphological evidence concerning gas-filled nanobubbles in tumor tissue spaces and tumor angiogenesis. We used a gastric cancer xenograft as an example to study this question. Nanobubbles with a particle size of 435.2 ± 60.53 nm were prepared and compared with SonoVue® microbubbles in vitro and in vivo, and they exhibited a superior contrast imaging effect. After excluding the impact of the nanobubbles in blood vessels through saline flush, we used an ultrasound burst and frozen sectioning to investigate the distribution of nanobubbles in the gastric cancer xenografts and confirmed this by transmission electron microscopy. Preliminary results showed that the nanobubbles were able to pass through the gaps between the endothelial cells in the tumor vascular system to enter the tissue space. These findings could provide morphological evidence for extravascular ultrasound imaging of tumors and serve as a foundation for the application of nanobubbles in extravascular tumor-targeted ultrasonic diagnostics and therapy.

  8. Experimental investigation of the penetration of ultrasound nanobubbles in a gastric cancer xenograft

    NASA Astrophysics Data System (ADS)

    Fan, Xiaozhou; Wang, Luofu; Guo, Yanli; Tong, Haipeng; Li, Lang; Ding, Jun; Huang, Haiyun

    2013-08-01

    Nanobubbles as a type of ultrasound contrast agent have attracted much interest in recent years due to their many advantages, such as strong penetrating power and high stability. However, there is still insufficient morphological evidence concerning gas-filled nanobubbles in tumor tissue spaces and tumor angiogenesis. We used a gastric cancer xenograft as an example to study this question. Nanobubbles with a particle size of 435.2 ± 60.53 nm were prepared and compared with SonoVue® microbubbles in vitro and in vivo, and they exhibited a superior contrast imaging effect. After excluding the impact of the nanobubbles in blood vessels through saline flush, we used an ultrasound burst and frozen sectioning to investigate the distribution of nanobubbles in the gastric cancer xenografts and confirmed this by transmission electron microscopy. Preliminary results showed that the nanobubbles were able to pass through the gaps between the endothelial cells in the tumor vascular system to enter the tissue space. These findings could provide morphological evidence for extravascular ultrasound imaging of tumors and serve as a foundation for the application of nanobubbles in extravascular tumor-targeted ultrasonic diagnostics and therapy.

  9. Quantitative contrast-enhanced ultrasound imaging: a review of sources of variability

    PubMed Central

    Tang, M.-X.; Mulvana, H.; Gauthier, T.; Lim, A. K. P.; Cosgrove, D. O.; Eckersley, R. J.; Stride, E.

    2011-01-01

    Ultrasound provides a valuable tool for medical diagnosis offering real-time imaging with excellent spatial resolution and low cost. The advent of microbubble contrast agents has provided the additional ability to obtain essential quantitative information relating to tissue vascularity, tissue perfusion and even endothelial wall function. This technique has shown great promise for diagnosis and monitoring in a wide range of clinical conditions such as cardiovascular diseases and cancer, with considerable potential benefits in terms of patient care. A key challenge of this technique, however, is the existence of significant variations in the imaging results, and the lack of understanding regarding their origin. The aim of this paper is to review the potential sources of variability in the quantification of tissue perfusion based on microbubble contrast-enhanced ultrasound images. These are divided into the following three categories: (i) factors relating to the scanner setting, which include transmission power, transmission focal depth, dynamic range, signal gain and transmission frequency, (ii) factors relating to the patient, which include body physical differences, physiological interaction of body with bubbles, propagation and attenuation through tissue, and tissue motion, and (iii) factors relating to the microbubbles, which include the type of bubbles and their stability, preparation and injection and dosage. It has been shown that the factors in all the three categories can significantly affect the imaging results and contribute to the variations observed. How these factors influence quantitative imaging is explained and possible methods for reducing such variations are discussed. PMID:22866229

  10. Nerve growth factor delivery by ultrasound-mediated nanobubble destruction as a treatment for acute spinal cord injury in rats

    PubMed Central

    Song, Zhaojun; Wang, Zhigang; Shen, Jieliang; Xu, Shengxi; Hu, Zhenming

    2017-01-01

    Background Spinal cord injuries (SCIs) can cause severe disability or death. Treatment options include surgical intervention, drug therapy, and stem cell transplantation. However, the efficacy of these methods for functional recovery remains unsatisfactory. Purpose This study was conducted to explore the effect of ultrasound (US)-mediated destruction of poly(lactic-co-glycolic acid) (PLGA) nanobubbles (NBs) expressing nerve growth factor (NGF) (NGF/PLGA NBs) on nerve regeneration in rats following SCI. Materials and methods Adult male Sprague Dawley rats were randomly divided into four treatment groups after Allen hit models of SCI were established. The groups were normal saline (NS) group, NGF and NBs group, NGF and US group, and NGF/PLGA NBs and US group. Histological changes after SCI were observed by hematoxylin and eosin staining. Neuron viability was determined by Nissl staining. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling staining was used to examine cell apoptosis. NGF gene and protein expressions were detected by quantitative reverse transcription polymerase chain reaction and Western blotting. Green fluorescent protein expression in the spinal cord was examined using an inverted fluorescence microscope. The recovery of neural function was determined using the Basso, Beattie, and Bresnahan test. Results NGF therapy using US-mediated NGF/PLGA NBs destruction significantly increased NGF expression, attenuated histological injury, decreased neuron loss, inhibited neuronal apoptosis in injured spinal cords, and increased BBB scores in rats with SCI. Conclusion US-mediated NGF/PLGA NBs destruction effectively transfects the NGF gene into target tissues and has a significant effect on the injured spinal cord. The combination of US irradiation and gene therapy through NGF/PLGA NBs holds great promise for the future of nanomedicine and the development of noninvasive treatment options for SCI and other diseases. PMID:28280337

  11. Ultrasound has synergistic effects in vitro with tirofiban and heparin for thrombus dissolution.

    PubMed

    Birnbaum, Y; Atar, S; Luo, H; Nagai, T; Siegel, R J

    1999-12-15

    Previous studies have shown synergism between ultrasound and thrombolytic agents or microbubbles on blood clot dissolution. It has not been investigated whether heparin or glycoprotein IIb/IIIa blockers enhance clot lysis by ultrasound. We compared the blood clot dissolution effect of saline, heparin, tissue plasminogen activator (tPA), tirofiban, and an echocardiographic contrast media (Optison) without and with ultrasound application. Human blood clots from four donors, 2 to 4 hours old, were cut into 200- to 400-mg sections, weighed, and immersed for 2 minutes in 1 L of normal saline 0.9% solution containing either heparin 1000 U, tirofiban 150 microg, tPA 20 mg, Optison 0.5 mL, or normal saline alone. Clots were randomized to 2 minutes ultrasound application or immersion alone without ultrasound. Ultrasound was applied with a 19.5 KHz catheter. After treatment, the clots were weighed, and the absolute and percent difference in weight was calculated. Immersion in heparin, tirofiban, and tPA without ultrasound did not augment clot disruption relative to normal saline alone. Immersion in Optison (p = 0.07) tended to result in less lysis than saline alone. Ultrasound enhanced clot dissolution compared to immersion alone with: saline (48.1+/-15.3% vs. 26.0+/-13.8%, p<0.0000002); heparin (60.8+/-17.5% vs. 30.8+/-15.1%, p = 0.000001); tirofiban (61.8+/-13.6% vs. 30.1+/-12.2%, p<0.0000001); tPA (53.1+/-15.3% vs. 30.2+/-11.5%, p<0.000002); and Optison (47.8+/-16.0% vs. 18.4+/-11.5%, p<0.0000001). The combination of tirofiban with ultrasound, as well as heparin with ultrasound, was associated with a significant augmentation of clot dissolution compared with the saline plus ultrasound group (p = 0.002, 0.013, respectively). Ultrasound with tPA or with Optison had no significant augmentation of clot dissolution over the ultrasound + saline effect. This in vitro study of catheter-delivered high-intensity low-frequency ultrasound demonstrates that: (1) tirofiban and heparin

  12. Section 6—Mechanical Bioeffects in the Presence of Gas-Carrier Ultrasound Contrast Agents

    PubMed Central

    2007-01-01

    This review addresses the issue of mechanical ultrasound-induced bioeffects in the presence of gas carrier contrast agents (GCAs). Here, the term “contrast agent” refers to those agents that provide ultrasound contrast by being composed of microbubbles, encapsulated or not, containing one or more gases. Provided in this section are summaries on how contrast agents work, some of their current uses, and the potential for bio-effects associated with their presence in an ultrasonic field. PMID:10680618

  13. A REVIEW OF LOW-INTENSITY ULTRASOUND FOR CANCER THERAPY

    PubMed Central

    WOOD, ANDREW K. W.; SEHGAL, CHANDRA M.

    2015-01-01

    The literature describing the use of low-intensity ultrasound in four major areas of cancer therapy was reviewed - sonodynamic therapy, ultrasound mediated chemotherapy, ultrasound mediated gene delivery and antivascular ultrasound therapy. Each technique consistently resulted in the death of cancer cells and the bioeffects of ultrasound were primarily attributed to thermal actions and inertial cavitation. In each therapeutic modality, theranostic contrast agents composed of microbubbles played a role in both therapy and vascular imaging. The development of these agents is important as it establishes a therapeutic-diagnostic platform which can monitor the success of anti-cancer therapy. Little attention, however, has been given to either the direct assessment of the underlying mechanisms of the observed bioeffects or to the viability of these therapies in naturally occurring cancers in larger mammals; if such investigations provided encouraging data there could be a prompt application of a therapy technique in treating cancer patients. PMID:25728459

  14. MRI-Guided Focused Ultrasound as a New Method of Drug Delivery

    PubMed Central

    Thanou, M.; Gedroyc, W.

    2013-01-01

    Ultrasound-mediated drug delivery under the guidance of an imaging modality can improve drug disposition and achieve site-specific drug delivery. The term focal drug delivery has been introduced to describe the focal targeting of drugs in tissues with the help of imaging and focused ultrasound. Focal drug delivery aims to improve the therapeutic profile of drugs by improving their specificity and their permeation in defined areas. Focused-ultrasound- (FUS-) mediated drug delivery has been applied with various molecules to improve their local distribution in tissues. FUS is applied with the aid of microbubbles to enhance the permeability of bioactive molecules across BBB and improve drug distribution in the brain. Recently, FUS has been utilised in combination with MRI-labelled liposomes that respond to temperature increase. This strategy aims to “activate” nanoparticles to release their cargo locally when triggered by hyperthermia induced by FUS. MRI-guided FUS drug delivery provides the opportunity to improve drug bioavailability locally and therefore improve the therapeutic profiles of drugs. This drug delivery strategy can be directly translated to clinic as MRg FUS is a promising clinically therapeutic approach. However, more basic research is required to understand the physiological mechanism of FUS-enhanced drug delivery. PMID:23738076

  15. Fluorescence labeled microbubbles for multimodal imaging.

    PubMed

    Barrefelt, Åsa; Zhao, Ying; Larsson, Malin K; Egri, Gabriella; Kuiper, Raoul V; Hamm, Jörg; Saghafian, Maryam; Caidahl, Kenneth; Brismar, Torkel B; Aspelin, Peter; Heuchel, Rainer; Muhammed, Mamoun; Dähne, Lars; Hassan, Moustapha

    2015-08-28

    Air-filled polyvinyl alcohol microbubbles (PVA-MBs) were recently introduced as a contrast agent for ultrasound imaging. In the present study, we explore the possibility of extending their application in multimodal imaging by labeling them with a near infrared (NIR) fluorophore, VivoTag-680. PVA-MBs were injected intravenously into FVB/N female mice and their dynamic biodistribution over 24 h was determined by 3D-fluorescence imaging co-registered with 3D-μCT imaging, to verify the anatomic location. To further confirm the biodistribution results from in vivo imaging, organs were removed and examined histologically using bright field and fluorescence microscopy. Fluorescence imaging detected PVA-MB accumulation in the lungs within the first 30 min post-injection. Redistribution to a low extent was observed in liver and kidneys at 4 h, and to a high extent mainly in the liver and spleen at 24 h. Histology confirmed PVA-MB localization in lung capillaries and macrophages. In the liver, they were associated with Kupffer cells; in the spleen, they were located mostly within the marginal-zone. Occasional MBs were observed in the kidney glomeruli and interstitium. The potential application of PVA-MBs as a contrast agent was also studied using ultrasound (US) imaging in subcutaneous and orthotopic pancreatic cancer mouse models, to visualize blood flow within the tumor mass. In conclusion, this study showed that PVA-MBs are useful as a contrast agent for multimodal imaging. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. The Endoplasmic Reticulum Stress Protein Calreticulin in Diabetic Chronic Kidney Disease

    DTIC Science & Technology

    2015-07-01

    lines and for use in long-term assays. For aim 2, we established that 0.7 mPa of ultrasound to deliver cre- recombinase plasmid to the kidney is...using kidney targeted microbubble/ ultrasound -mediated plasmid delivery. We will also examine non-targeted CRT knockdown in these mice. Aim 2.b: We will...diabetes, chronic kidney disease, diabetic nephropathy, calreticulin, TGF-beta, ER stress, ultrasound , tubulointerstitial fibrosis 4 3. ACCOMPLISHMENTS a

  17. Parametric array technique for microbubble excitation.

    PubMed

    Vos, Hendrik J; Goertz, David E; van der Steen, Antonius F W; de Jong, Nico

    2011-05-01

    This study investigates the use of an acoustic parametric array as a means for microbubble excitation. The excitation wave is generated during propagation in a nonlinear medium of two high-frequency carrier waves, whereby the frequency of the excitation wave is the difference frequency of the carrier waves. Carrier waves of around 10 and 25 MHz are used to generate low-frequency waves between 0.5 and 3.5 MHz at amplitudes in the range of 25 to 80 kPa in water. We demonstrate with high-speed camera observations that it is possible to induce microbubble oscillations with the low frequency signal arising from the nonlinear propagation process. As an application, we determined the resonance frequency of Definity contrast agent microbubbles with radius ranging from 1.5 to 5 μm by sweeping the difference frequency in the range from 0.5 to 3.5 MHz.

  18. Effect of acoustic parameters on the cavitation behavior of SonoVue microbubbles induced by pulsed ultrasound.

    PubMed

    Lin, Yutong; Lin, Lizhou; Cheng, Mouwen; Jin, Lifang; Du, Lianfang; Han, Tao; Xu, Lin; Yu, Alfred C H; Qin, Peng

    2017-03-01

    SonoVue microbubbles could serve as artificial nuclei for ultrasound-triggered stable and inertial cavitation, resulting in beneficial biological effects for future therapeutic applications. To optimize and control the use of the cavitation of SonoVue bubbles in therapy while ensuring safety, it is important to comprehensively understand the relationship between the acoustic parameters and the cavitation behavior of the SonoVue bubbles. An agarose-gel tissue phantom was fabricated to hold the SonoVue bubble suspension. 1-MHz transmitting transducer calibrated by a hydrophone was used to trigger the cavitation of SonoVue bubbles under different ultrasonic parameters (i.e., peak rarefactional pressure (PRP), pulse repetition frequency (PRF), and pulse duration (PD)). Another 7.5-MHz focused transducer was employed to passively receive acoustic signals from the exposed bubbles. The ultraharmonics and broadband intensities in the acoustic emission spectra were measured to quantify the extent of stable and inertial cavitation of SonoVue bubbles, respectively. We found that the onset of both stable and inertial cavitation exhibited a strong dependence on the PRP and PD and a relatively weak dependence on the PRF. Approximate 0.25MPa PRP with more than 20μs PD was considered to be necessary for ultraharmonics emission of SonoVue bubbles, and obvious broadband signals started to appear when the PRP exceeded 0.40MPa. Moreover, the doses of stable and inertial cavitation varied with the PRP. The stable cavitation dose initially increased with increasing PRP, and then decreased rapidly after 0.5MPa. By contrast, the inertial cavitation dose continuously increased with increasing PRP. Finally, the doses of both stable and inertial cavitation were positively correlated with PRF and PD. These results could provide instructive information for optimizing future therapeutic applications of SonoVue bubbles. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A Review of Microbubble and its Applications in Ozonation

    NASA Astrophysics Data System (ADS)

    Shangguan, Yufei; Yu, Shuili; Gong, Chao; Wang, Yue; Yang, Wangzhen; Hou, Li-an

    2018-03-01

    Ozonation has been demonstrated to be an effective technology for the oxidation of organic matters in water treatment. But the low solubility and low mass transfer efficiency limit the application. Microbubble technology has the potential of enhancing gas-liquid mass transfer efficiency, thus it can be applied in ozonation process. The applications of microbubble ozonation have shown advantages over macro bubble ozonation in mass transfer and reaction rate. Microbubble ozonation will be a promising treatment both in water and wastewater treatment.

  20. Time-reversal acoustics and ultrasound-assisted convection-enhanced drug delivery to the brain.

    PubMed

    Olbricht, William; Sistla, Manjari; Ghandi, Gaurav; Lewis, George; Sarvazyan, Armen

    2013-08-01

    Time-reversal acoustics is an effective way of focusing ultrasound deep inside heterogeneous media such as biological tissues. Convection-enhanced delivery is a method of delivering drugs into the brain by infusing them directly into the brain interstitium. These two technologies are combined in a focusing system that uses a "smart needle" to simultaneously infuse fluid into the brain and provide the necessary feedback for focusing ultrasound using time-reversal acoustics. The effects of time-reversal acoustics-focused ultrasound on the spatial distribution of infused low- and high-molecular weight tracer molecules are examined in live, anesthetized rats. Results show that exposing the rat brain to focused ultrasound significantly increases the penetration of infused compounds into the brain. The addition of stabilized microbubbles enhances the effect of ultrasound exposure.