Sample records for ultrathin films prepared

  1. Ultrathin nanofibrous films prepared from cadmium hydroxide nanostrands and anionic surfactants.

    PubMed

    Peng, Xinsheng; Karan, Santanu; Ichinose, Izumi

    2009-08-04

    We developed a simple fabrication method of ultrathin nanofibrous films from the dispersion of cadmium hydroxide nanostrands and anionic surfactants. The nanostrands were prepared in a dilute aqueous solution of cadmium chloride by using 2-aminoethanol. They were highly positively charged and gave bundlelike fibers upon mixing an aqueous solution of anionic surfactant. The nanostrand/surfactant composite fibers were filtered on an inorganic membrane filter. The resultant nanofibrous film was very uniform in the area of a few centimeters square when the thickness was not less than 60 nm. The films obtained with sodium tetradecyl sulfate (STS) had a composition close to the electroneutral complex, [Cd37(OH)68(H2O)n] x 6(STS), as confirmed by energy dispersive X-ray analysis. They were water-repellent with a contact angle of 117 degrees, and the value slightly decreased with the alkyl chain length of anionic surfactants. Ultrathin nanofibrous films were stable enough to be used for ultrafiltration at pressure difference of 90 kPa. We could effectively separate Au nanoparticles of 40 nm at an extremely high filtration rate of 14000 L/(h m2 bar).

  2. Fabrication of Large-area Free-standing Ultrathin Polymer Films

    PubMed Central

    Stadermann, Michael; Baxamusa, Salmaan H.; Aracne-Ruddle, Chantel; Chea, Maverick; Li, Shuaili; Youngblood, Kelly; Suratwala, Tayyab

    2015-01-01

    This procedure describes a method for the fabrication of large-area and ultrathin free-standing polymer films. Typically, ultrathin films are prepared using either sacrificial layers, which may damage the film or affect its mechanical properties, or they are made on freshly cleaved mica, a substrate that is difficult to scale. Further, the size of ultrathin film is typically limited to a few square millimeters. In this method, we modify a surface with a polyelectrolyte that alters the strength of adhesion between polymer and deposition substrate. The polyelectrolyte can be shown to remain on the wafer using spectroscopy, and a treated wafer can be used to produce multiple films, indicating that at best minimal amounts of the polyelectrolyte are added to the film. The process has thus far been shown to be limited in scalability only by the size of the coating equipment, and is expected to be readily scalable to industrial processes. In this study, the protocol for making the solutions, preparing the deposition surface, and producing the films is described. PMID:26066738

  3. Controllable fabrication of ultrathin free-standing graphene films

    PubMed Central

    Chen, Jianyi; Guo, Yunlong; Huang, Liping; Xue, Yunzhou; Geng, Dechao; Liu, Hongtao; Wu, Bin; Yu, Gui; Hu, Wenping; Liu, Yunqi; Zhu, Daoben

    2014-01-01

    Graphene free-standing film-like or paper-like materials have attracted great attention due to their intriguing electronic, optical and mechanical properties and potential application in chemical filters, molecular storage and supercapacitors. Although significant progress has been made in fabricating graphene films or paper, there is still no effective method targeting ultrathin free-standing graphene films (UFGFs). Here, we present a modified filtration assembly method to prepare these ultrathin films. With this approach, we have fabricated a series of ultrathin free-standing graphene oxide films and UFGFs, up to 40 mm in diameter, with controllable thickness from micrometre to nanoscale (approx. 40 nm) dimensions. This method can be easily scaled up and the films display excellent optical, electrical and electrochemical properties. The ability to produce UFGFs from graphene oxide with a scalable, low-cost approach should take us a step closer to real-world applications of graphene. PMID:24615152

  4. Preparation and characterization of the nanoporous ultrathin multilayer films based on molybdenum polyoxometalate (Mo 38) n

    NASA Astrophysics Data System (ADS)

    Wang, L.; Jiang, M.; Wang, E. B.; Duan, L. Y.; Hao, N.; Lan, Y.; Xu, L.; Li, Z.

    2003-11-01

    Ultrathin multilayer films of the wheel-shaped molybdenum polyoxometalate cluster (Mo 38) n and poly(allylamine hydrochloride)(PAH) have been prepared by the layer-by-layer (LbL) self-assembly method. The ((Mo 38) n/PAH) m multilayer films have been characterized by X-ray photoelectron spectra (XPS) and atomic force microscopy (AFM). UV-VIS measurements reveal regular film growth with each (Mo 38) n adsorption. The electrochemistry behavior of the film at room temperature was investigated.

  5. High-mobility ultrathin semiconducting films prepared by spin coating

    NASA Astrophysics Data System (ADS)

    Mitzi, David B.; Kosbar, Laura L.; Murray, Conal E.; Copel, Matthew; Afzali, Ali

    2004-03-01

    The ability to deposit and tailor reliable semiconducting films (with a particular recent emphasis on ultrathin systems) is indispensable for contemporary solid-state electronics. The search for thin-film semiconductors that provide simultaneously high carrier mobility and convenient solution-based deposition is also an important research direction, with the resulting expectations of new technologies (such as flexible or wearable computers, large-area high-resolution displays and electronic paper) and lower-cost device fabrication. Here we demonstrate a technique for spin coating ultrathin (~50Å), crystalline and continuous metal chalcogenide films, based on the low-temperature decomposition of highly soluble hydrazinium precursors. We fabricate thin-film field-effect transistors (TFTs) based on semiconducting SnS2-xSex films, which exhibit n-type transport, large current densities (>105Acm-2) and mobilities greater than 10cm2V-1s-1-an order of magnitude higher than previously reported values for spin-coated semiconductors. The spin-coating technique is expected to be applicable to a range of metal chalcogenides, particularly those based on main group metals, as well as for the fabrication of a variety of thin-film-based devices (for example, solar cells, thermoelectrics and memory devices).

  6. High-mobility ultrathin semiconducting films prepared by spin coating.

    PubMed

    Mitzi, David B; Kosbar, Laura L; Murray, Conal E; Copel, Matthew; Afzali, Ali

    2004-03-18

    The ability to deposit and tailor reliable semiconducting films (with a particular recent emphasis on ultrathin systems) is indispensable for contemporary solid-state electronics. The search for thin-film semiconductors that provide simultaneously high carrier mobility and convenient solution-based deposition is also an important research direction, with the resulting expectations of new technologies (such as flexible or wearable computers, large-area high-resolution displays and electronic paper) and lower-cost device fabrication. Here we demonstrate a technique for spin coating ultrathin (approximately 50 A), crystalline and continuous metal chalcogenide films, based on the low-temperature decomposition of highly soluble hydrazinium precursors. We fabricate thin-film field-effect transistors (TFTs) based on semiconducting SnS(2-x)Se(x) films, which exhibit n-type transport, large current densities (>10(5) A cm(-2)) and mobilities greater than 10 cm2 V(-1) s(-1)--an order of magnitude higher than previously reported values for spin-coated semiconductors. The spin-coating technique is expected to be applicable to a range of metal chalcogenides, particularly those based on main group metals, as well as for the fabrication of a variety of thin-film-based devices (for example, solar cells, thermoelectrics and memory devices).

  7. Injection doping of ultrathin microcrystalline silicon films prepared by CC-CVD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koynov, S.; Grebner, S.; Schwarz, R.

    1997-07-01

    Recently, the authors have proposed a cyclic method, referred to as Closed Chamber CVD (CC-CVD), for the preparation of {micro}c-Si films of high crystalline fraction at increased deposition rates. In this work, they first report new process conditions of CC-CVD, which result in growth of highly crystalline films with a sharp interface on a foreign substrate. Then these conditions are further used together with a pulsed injection of B{sub 2}H{sub 6} in an appropriate moment of each cycle, so that the disturbance of the crystallization process is prevented. A series of ultrathin {micro}c-Si films, doped by this technique, is characterizedmore » by conductivity measurements, SEM, Raman Scattering, optical transmission and UV reflection. A strong reduction of the transient interface layer is achieved and conductivity as high as 2 S/cm with an activation energy of 27 meV is reached.« less

  8. Controlled Growth of Ultrathin Film of Organic Semiconductors by Balancing the Competitive Processes in Dip-Coating for Organic Transistors.

    PubMed

    Wu, Kunjie; Li, Hongwei; Li, Liqiang; Zhang, Suna; Chen, Xiaosong; Xu, Zeyang; Zhang, Xi; Hu, Wenping; Chi, Lifeng; Gao, Xike; Meng, Yancheng

    2016-06-28

    Ultrathin film with thickness below 15 nm of organic semiconductors provides excellent platform for some fundamental research and practical applications in the field of organic electronics. However, it is quite challenging to develop a general principle for the growth of uniform and continuous ultrathin film over large area. Dip-coating is a useful technique to prepare diverse structures of organic semiconductors, but the assembly of organic semiconductors in dip-coating is quite complicated, and there are no reports about the core rules for the growth of ultrathin film via dip-coating until now. In this work, we develop a general strategy for the growth of ultrathin film of organic semiconductor via dip-coating, which provides a relatively facile model to analyze the growth behavior. The balance between the three direct factors (nucleation rate, assembly rate, and recession rate) is the key to determine the growth of ultrathin film. Under the direction of this rule, ultrathin films of four organic semiconductors are obtained. The field-effect transistors constructed on the ultrathin film show good field-effect property. This work provides a general principle and systematic guideline to prepare ultrathin film of organic semiconductors via dip-coating, which would be highly meaningful for organic electronics as well as for the assembly of other materials via solution processes.

  9. Suppression of superconductivity in epitaxial MgB2 ultrathin films

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Wang, Yue; Wang, Da; Zhang, Yan; Liu, Zheng-Hao; Feng, Qing-Rong; Gan, Zi-Zhao

    2013-07-01

    MgB2 ultrathin films have potential to make sensitive superconducting devices such as superconducting single-photon detectors working at relatively high temperatures. We have grown epitaxial MgB2 films in thicknesses ranging from about 40 nm to 6 nm by using the hybrid physical-chemical vapor deposition method and performed electrical transport measurements to study the thickness dependence of the superconducting critical temperature Tc. With reducing film thickness d, although a weak depression of the Tc has been observed, which could be attributed to an increase of disorder (interband impurity scattering) in the film, the Tc retains close to the bulk value of MgB2 (39 K), being about 35 K in the film of 6 nm thick. We show that this result, beneficial to the application of MgB2 ultrathin films and in accordance with recent theoretical calculations, is in contrast to previous findings in MgB2 films prepared by other methods such as co-evaporation and molecular-beam epitaxy, where a severe Tc suppression has been observed with Tc about one third of the bulk value in films of ˜5 nm thick. We discuss this apparent discrepancy in experiments and suggest that, towards the ultrathin limit, the different degrees of Tc suppression displayed in currently obtained MgB2 films by various techniques may arise from the different levels of disorder present in the film or different extents of proximity effect at the film surface or film-substrate interface.

  10. Ultrathin Ferroelectric Films: Growth, Characterization, Physics and Applications.

    PubMed

    Wang, Ying; Chen, Weijin; Wang, Biao; Zheng, Yue

    2014-09-11

    Ultrathin ferroelectric films are of increasing interests these years, owing to the need of device miniaturization and their wide spectrum of appealing properties. Recent advanced deposition methods and characterization techniques have largely broadened the scope of experimental researches of ultrathin ferroelectric films, pushing intensive property study and promising device applications. This review aims to cover state-of-the-art experimental works of ultrathin ferroelectric films, with a comprehensive survey of growth methods, characterization techniques, important phenomena and properties, as well as device applications. The strongest emphasis is on those aspects intimately related to the unique phenomena and physics of ultrathin ferroelectric films. Prospects and challenges of this field also have been highlighted.

  11. Ultrathin Ferroelectric Films: Growth, Characterization, Physics and Applications

    PubMed Central

    Wang, Ying; Chen, Weijin; Wang, Biao; Zheng, Yue

    2014-01-01

    Ultrathin ferroelectric films are of increasing interests these years, owing to the need of device miniaturization and their wide spectrum of appealing properties. Recent advanced deposition methods and characterization techniques have largely broadened the scope of experimental researches of ultrathin ferroelectric films, pushing intensive property study and promising device applications. This review aims to cover state-of-the-art experimental works of ultrathin ferroelectric films, with a comprehensive survey of growth methods, characterization techniques, important phenomena and properties, as well as device applications. The strongest emphasis is on those aspects intimately related to the unique phenomena and physics of ultrathin ferroelectric films. Prospects and challenges of this field also have been highlighted. PMID:28788196

  12. Improved metal-insulator-transition characteristics of ultrathin VO2 epitaxial films by optimized surface preparation of rutile TiO2 substrates

    NASA Astrophysics Data System (ADS)

    Martens, Koen; Aetukuri, Nagaphani; Jeong, Jaewoo; Samant, Mahesh G.; Parkin, Stuart S. P.

    2014-02-01

    Key to the growth of epitaxial, atomically thin films is the preparation of the substrates on which they are deposited. Here, we report the growth of atomically smooth, ultrathin films of VO2 (001), only ˜2 nm thick, which exhibit pronounced metal-insulator transitions, with a change in resistivity of ˜500 times, at a temperature that is close to that of films five times thicker. These films were prepared by pulsed laser deposition on single crystalline TiO2(001) substrates that were treated by dipping in acetone, HCl and HF in successive order, followed by an anneal at 700-750 °C in flowing oxygen. This pretreatment removes surface contaminants, TiO2 defects, and provides a terraced, atomically smooth surface.

  13. Thickness-dependence of optical constants for Ta2O5 ultrathin films

    NASA Astrophysics Data System (ADS)

    Zhang, Dong-Xu; Zheng, Yu-Xiang; Cai, Qing-Yuan; Lin, Wei; Wu, Kang-Ning; Mao, Peng-Hui; Zhang, Rong-Jun; Zhao, Hai-bin; Chen, Liang-Yao

    2012-09-01

    An effective method for determining the optical constants of Ta2O5 thin films deposited on crystal silicon (c-Si) using spectroscopic ellipsometry (SE) measurement with a two-film model (ambient-oxide-interlayer-substrate) was presented. Ta2O5 thin films with thickness range of 1-400 nm have been prepared by the electron beam evaporation (EBE) method. We find that the refractive indices of Ta2O5 ultrathin films less than 40 nm drop with the decreasing thickness, while the other ones are close to those of bulk Ta2O5. This phenomenon was due to the existence of an interfacial oxide region and the surface roughness of the film, which was confirmed by the measurement of atomic force microscopy (AFM). Optical properties of ultrathin film varying with the thickness are useful for the design and manufacture of nano-scaled thin-film devices.

  14. Transport in ultrathin gold films decorated with magnetic Gd atoms

    NASA Astrophysics Data System (ADS)

    Alemani, Micol; Helgren, Erik; Hugel, Addison; Hellman, Frances

    2008-03-01

    We have performed four-probe transport measurements of ultrathin Au films decorated with Gd ad-atoms. The samples were prepared by quench condensation, i.e., sequential evaporation on a cryogenically cooled substrate under UHV conditions while monitoring the film thickness and resistance. Electrically continuous Au films at thickness of about 2 mono-layers of material are grown on an amorphous Ge wetting layer. The quench condensation method provides a sensitive control on the sample growth process, allowing us to tune the morphological and electrical configuration of the system. The ultrathin gold films develop from an insulating to a metallic state as a function of film thickness. The temperature dependence of the Au conductivity for different thickness is studied. It evolves from hopping transport for the insulating films, to a ln T dependence for thicker films. For gold films in the insulating regime we found a decreasing resistance by adding Gd. This is in agreement with a decreasing tunneling barrier height between metallic atoms. The Gd magnetic moments are randomly oriented for isolated atoms. This magnetic disorder leads to scattering of the charge carriers and a reduced conductivity compared to nonmagnetic materials.

  15. Ultrathin NiGe films prepared via catalytic solid-vapor reaction of Ni with GeH(4).

    PubMed

    Peter, Antony P; Opsomer, Karl; Adelmann, Christoph; Schaekers, Marc; Meersschaut, Johan; Richard, Olivier; Vaesen, Inge; Moussa, Alain; Franquet, Alexis; Zsolt, Tokei; Van Elshocht, Sven

    2013-10-09

    A low-temperature (225-300 °C) solid-vapor reaction process is reported for the synthesis of ultrathin NiGe films (∼6-23 nm) on 300 mm Si wafers covered with thermal oxide. The films were prepared via catalytic chemical vapor reaction of germane (GeH4) gas with physical vapor deposited (PVD) Ni films of different thickness (2-10 nm). The process optimization by investigating GeH4 partial pressure, reaction temperature, and time shows that low resistive, stoichiometric, and phase pure NiGe films can be formed within a broad window. NiGe films crystallized in an orthorhombic structure and were found to exhibit a smooth morphology with homogeneous composition as evidenced by glancing angle X-ray diffraction (GIXRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and Rutherford back-scattering (RBS) analysis. Transmission electron microscopy (TEM) analysis shows that the NiGe layers exhibit a good adhesion without voids and a sharp interface on the thermal oxide. The NiGe films were found to be morphologically and structurally stable up to 500 °C and exhibit a resistivity value of 29 μΩ cm for 10 nm NiGe films.

  16. Biosensors Based on Ultrathin Film Composite Membranes

    DTIC Science & Technology

    1994-01-25

    composite membranes should have a number C •’ of potential advantages including fast response time, simplicity of construction, and applicability to a number...The support membrane for the ultrathin film composite was an Anopore ( Alltech Associates) microporous alumina filter, these membranes are 55 Pm thick...constant 02 concentration in this solution. Finally, one of the most important potential advantage of a sensor based on an ultrathin film composite

  17. A repeated halving approach to fabricate ultrathin single-walled carbon nanotube films for transparent supercapacitors.

    PubMed

    Niu, Zhiqiang; Zhou, Weiya; Chen, Jun; Feng, Guoxing; Li, Hong; Hu, Yongsheng; Ma, Wenjun; Dong, Haibo; Li, Jinzhu; Xie, Sishen

    2013-02-25

    Ultrathin SWCNT transparent and conductive films on flexible and transparent substrates are prepared via repeatedly halving the directly grown SWCNT films and flexible and transparent supercapacitors with excellent performance were fabricated. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Preparation of c-axis perpendicularly oriented ultra-thin L10-FePt films on MgO and VN underlayers

    NASA Astrophysics Data System (ADS)

    Futamoto, Masaaki; Shimizu, Tomoki; Ohtake, Mitsuru

    2018-05-01

    Ultra-thin L10-FePt films of 2 nm average thickness are prepared on (001) oriented MgO and VN underlayers epitaxially grown on base substrate of SrTiO3(001) single crystal. Detailed cross-sectional structures are observed by high-resolution transmission electron microscopy. Continuous L10-FePt(001) thin films with very flat surface are prepared on VN(001) underlayer whereas the films prepared on MgO(001) underlayer consist of isolated L10-FePt(001) crystal islands. Presence of misfit dislocation and lattice bending in L10-FePt material is reducing the effective lattice mismatch with respect to the underlayer to be less than 0.5 %. Formation of very flat and continuous FePt layer on VN underlayer is due to the large surface energy of VN material where de-wetting of FePt material at high temperature annealing process is suppressed under a force balance between the surface and interface energies of FePt and VN materials. An employment of underlayer or substrate material with the lattice constant and the surface energy larger than those of L10-FePt is important for the preparation of very thin FePt epitaxial thin continuous film with the c-axis controlled to be perpendicular to the substrate surface.

  19. Ultrathin Carbon Film Protected Silver Nanostructures for Surface-Enhanced Raman Scattering.

    PubMed

    Peng, Yinshan; Zheng, Xianliang; Tian, Hongwei; Cui, Xiaoqiang; Chen, Hong; Zheng, Weitao

    2016-06-23

    In this article, ultrathin carbon film protected silver substrate (Ag/C) was prepared via a plasma-enhanced chemical vapor deposition (PECVD) method. The morphological evolution of silver nanostructures underneath, as well as the surface-enhanced Raman scattering (SERS) activity of Ag/C hybrid can be tuned by controlling the deposition time. The stability and reproducibility of the as-prepared hybrid were also studied. © The Author(s) 2016.

  20. Skyrmion morphology in ultrathin magnetic films

    NASA Astrophysics Data System (ADS)

    Gross, I.; Akhtar, W.; Hrabec, A.; Sampaio, J.; Martínez, L. J.; Chouaieb, S.; Shields, B. J.; Maletinsky, P.; Thiaville, A.; Rohart, S.; Jacques, V.

    2018-02-01

    Nitrogen-vacancy magnetic microscopy is employed in the quenching mode as a noninvasive, high-resolution tool to investigate the morphology of isolated skyrmions in ultrathin magnetic films. The skyrmion size and shape are found to be strongly affected by local pinning effects and magnetic field history. Micromagnetic simulations including a static disorder, based on the physical model of grain-to-grain thickness variations, reproduce all experimental observations and reveal the key role of disorder and magnetic history in the stabilization of skyrmions in ultrathin magnetic films. This work opens the way to an in-depth understanding of skyrmion dynamics in real, disordered media.

  1. Selective, ultrathin membrane skins prepared by deposition of novel polymer films on porous alumina supports

    NASA Astrophysics Data System (ADS)

    Balachandra, Anagi Manjula

    Membrane-based separations are attractive in industrial processes because of their low energy costs and simple operation. However, low permeabilities often make membrane processes uneconomical. Since flux is inversely proportional to membrane thickness, composite membranes consisting of ultrathin, selective skins on highly permeable supports are required to simultaneously achieve high throughput and high selectivity. However, the synthesis of defect-free skins with thicknesses less than 50 nm is difficult, and thus flux is often limited. Layer-by-layer deposition of oppositely charged polyelectrolytes on porous supports is an attractive method to synthesize ultrathin ion-separation membranes with high flux and high selectivity. The ion-transport selectivity of multilayer polyelectrolyte membranes (MPMs) is primarily due to Donnan exclusion; therefore increase in fixed charge density should yield high selectivity. However, control over charge density in MPMs is difficult because charges on polycations are electrostatically compensated by charges on polyanions, and the net charge in the bulk of these films is small. To overcome this problem, we introduced a templating method to create ion-exchange sites in the bulk of the membrane. This strategy involves alternating deposition of a Cu2+-poly(acrylic acid) complex and poly(allylamine hydrochloride) on a porous alumina support followed by removal of Cu2+ and deprotonation to yield free -COO- ion-exchange sites. Diffusion dialysis studies showed that the Cl-/SO42-. Selectivity of Cu2+-templated membranes is 4-fold higher than that of membranes prepared in the absence of Cu2+. Post-deposition cross-linking of these membranes by heat-induced amide bond formation further increased Cl-/SO42- selectivity to values as high as 600. Room-temperature, surface-initiated atom transfer radical polymerization (ATRP) provides another convenient method for formation of ultrathin polymer skins. This process involves attachment of

  2. Room Temperature Ferroelectricity in Ultrathin SnTe Films

    NASA Astrophysics Data System (ADS)

    Chang, Kai; Liu, Junwei; Lin, Haicheng; Zhao, Kun; Zhong, Yong; Ji, Shuai-Hua; He, Ke; Wang, Lili; Ma, Xucun; Fu, Liang; Chen, Xi; Xue, Qi-Kun

    2015-03-01

    The ultrathin SnTe films with several unit cell thickness grown on graphitized SiC(0001) surface have been studied by the scanning tunneling microscopy and spectroscopy (STM/S). The domain structures, local lattice distortion and the electronic band bending at film edges induced by the in-plane spontaneous polarization along < 110 > have been revealed at atomic scale. The experiments at variant temperature show that the Curie temperature Tc of the one unit cell thick (two atomic layers) SnTe film is as high as 280K, much higher than that of the bulk counterpart (~100K) and the 2-4 unit cell thick films even indicate robust ferroelectricity at room temperature. This Tc enhancement is attributed to the stress-free interface, larger electronic band gap and greatly reduced Sn vacancy concentration in the ultrathin films. The lateral domain size varies from several tens to several hundreds of nanometers, and the spontaneous polarization direction could be modified by STM tip. Those properties of ultrathin SnTe films show the potential application on ferroelectric devices. The work was financially supported by Ministry of Science and Technology of China, National Science Foundation and Ministry of Education of China.

  3. Fabrication of Ultra-thin Color Films with Highly Absorbing Media Using Oblique Angle Deposition.

    PubMed

    Yoo, Young Jin; Lee, Gil Ju; Jang, Kyung-In; Song, Young Min

    2017-08-29

    Ultra-thin film structures have been studied extensively for use as optical coatings, but performance and fabrication challenges remain.  We present an advanced method for fabricating ultra-thin color films with improved characteristics. The proposed process addresses several fabrication issues, including large area processing. Specifically, the protocol describes a process for fabricating ultra-thin color films using an electron beam evaporator for oblique angle deposition of germanium (Ge) and gold (Au) on silicon (Si) substrates.  Film porosity produced by the oblique angle deposition induces color changes in the ultra-thin film. The degree of color change depends on factors such as deposition angle and film thickness. Fabricated samples of the ultra-thin color films showed improved color tunability and color purity. In addition, the measured reflectance of the fabricated samples was converted into chromatic values and analyzed in terms of color. Our ultra-thin film fabricating method is expected to be used for various ultra-thin film applications such as flexible color electrodes, thin film solar cells, and optical filters. Also, the process developed here for analyzing the color of the fabricated samples is broadly useful for studying various color structures.

  4. Real-Time Deposition Monitor for Ultrathin Conductive Films

    NASA Technical Reports Server (NTRS)

    Hines, Jacqueline

    2011-01-01

    A device has been developed that can be used for the real-time monitoring of ultrathin (2 or more) conductive films. The device responds in less than two microseconds, and can be used to monitor film depositions up to about 60 thick. Actual thickness monitoring capability will vary based on properties of the film being deposited. This is a single-use device, which, due to the very low device cost, can be disposable. Conventional quartz/crystal microbalance devices have proven inadequate to monitor the thickness of Pd films during deposition of ultrathin films for hydrogen sensor devices. When the deposited film is less than 100 , the QCM measurements are inadequate to allow monitoring of the ultrathin films being developed. Thus, an improved, high-sensitivity, real-time deposition monitor was needed to continue Pd film deposition development. The new deposition monitor utilizes a surface acoustic wave (SAW) device in a differential delay-line configuration to produce both a reference response and a response for the portion of the device on which the film is being deposited. Both responses are monitored simultaneously during deposition. The reference response remains unchanged, while the attenuation of the sensing path (where the film is being deposited) varies as the film thickness increases. This device utilizes the fact that on high-coupling piezoelectric substrates, the attenuation of an SAW undergoes a transition from low to very high, and back to low as the conductivity of a film on the device surface goes from nonconductive to highly conductive. Thus, the sensing path response starts with a low insertion loss, and as a conductive film is deposited, the film conductivity increases, causing the device insertion loss to increase dramatically (by up to 80 dB or more), and then with continued film thickness increases (and the corresponding conductivity increases), the device insertion loss goes back down to the low level at which it started. This provides a

  5. Chain and mirophase-separated structures of ultrathin polyurethane films

    NASA Astrophysics Data System (ADS)

    Kojio, Ken; Uchiba, Yusuke; Yamamoto, Yasunori; Motokucho, Suguru; Furukawa, Mutsuhisa

    2009-08-01

    Measurements are presented how chain and microphase-separated structures of ultrathin polyurethane (PU) films are controlled by the thickness. The film thickness is varied by a solution concentration for spin coating. The systems are PUs prepared from commercial raw materials. Fourier-transform infrared spectroscopic measurement revealed that the degree of hydrogen bonding among hard segment chains decreased and increased with decreasing film thickness for strong and weak microphase separation systems, respectively. The microphase-separated structure, which is formed from hard segment domains and a surrounding soft segment matrix, were observed by atomic force microscopy. The size of hard segment domains decreased with decreasing film thickness, and possibility of specific orientation of the hard segment chains was exhibited for both systems. These results are due to decreasing space for the formation of the microphase-separated structure.

  6. Coexistence of Topological Edge State and Superconductivity in Bismuth Ultrathin Film.

    PubMed

    Sun, Hao-Hua; Wang, Mei-Xiao; Zhu, Fengfeng; Wang, Guan-Yong; Ma, Hai-Yang; Xu, Zhu-An; Liao, Qing; Lu, Yunhao; Gao, Chun-Lei; Li, Yao-Yi; Liu, Canhua; Qian, Dong; Guan, Dandan; Jia, Jin-Feng

    2017-05-10

    Ultrathin freestanding bismuth film is theoretically predicted to be one kind of two-dimensional topological insulators. Experimentally, the topological nature of bismuth strongly depends on the situations of the Bi films. Film thickness and interaction with the substrate often change the topological properties of Bi films. Using angle-resolved photoemission spectroscopy, scanning tunneling microscopy or spectroscopy and first-principle calculation, the properties of Bi(111) ultrathin film grown on the NbSe 2 superconducting substrate have been studied. We find the band structures of the ultrathin film is quasi-freestanding, and one-dimensional edge state exists on Bi(111) film as thin as three bilayers. Superconductivity is also detected on different layers of the film and the pairing potential exhibits an exponential decay with the layer thicknesses. Thus, the topological edge state can coexist with superconductivity, which makes the system a promising platform for exploring Majorana Fermions.

  7. Theoretical Methods of Domain Structures in Ultrathin Ferroelectric Films: A Review

    PubMed Central

    Liu, Jianyi; Chen, Weijin; Wang, Biao; Zheng, Yue

    2014-01-01

    This review covers methods and recent developments of the theoretical study of domain structures in ultrathin ferroelectric films. The review begins with an introduction to some basic concepts and theories (e.g., polarization and its modern theory, ferroelectric phase transition, domain formation, and finite size effects, etc.) that are relevant to the study of domain structures in ultrathin ferroelectric films. Basic techniques and recent progress of a variety of important approaches for domain structure simulation, including first-principles calculation, molecular dynamics, Monte Carlo simulation, effective Hamiltonian approach and phase field modeling, as well as multiscale simulation are then elaborated. For each approach, its important features and relative merits over other approaches for modeling domain structures in ultrathin ferroelectric films are discussed. Finally, we review recent theoretical studies on some important issues of domain structures in ultrathin ferroelectric films, with an emphasis on the effects of interfacial electrostatics, boundary conditions and external loads. PMID:28788198

  8. Ultrathin free-standing close-packed gold nanoparticle films: Conductivity and Raman scattering enhancement

    NASA Astrophysics Data System (ADS)

    Yu, Qing; Huang, Hongwen; Peng, Xinsheng; Ye, Zhizhen

    2011-09-01

    A simple filtration technique was developed to prepare large scale free-standing close-packed gold nanoparticle ultrathin films using metal hydroxide nanostrands as both barrier layer and sacrificial layer. As thin as 70 nm, centimeter scale robust free-standing gold nanoparticle thin film was obtained. The thickness of the films could be easily tuned by the filtration volumes. The electronic conductivities of these films varied with the size of the gold nanoparticles, post-treatment temperature, and thickness, respectively. The conductivity of the film prepared from 20 nm gold nanoparticles is higher than that of the film prepared from 40 nm gold nanoparticle by filtering the same filtration volume of their solution, respectively. Their conductivities are comparable to that of the 220 nm thick ITO film. Furthermore, these films demonstrated an average surface Raman scattering enhancement up to 6.59 × 105 for Rhodamine 6 G molecules on the film prepared from 40 nm gold nanoparticles. Due to a lot of nano interspaces generated from the close-packed structures, two abnormal enhancements and relative stronger intensities of the asymmetrical vibrations at 1534 and 1594 cm-1 of R6G were observed, respectively. These robust free-standing gold nanoparticle films could be easily transferred onto various solid substrates and hold the potential application for electrodes and surface enhanced Raman detectors. This method is applicable for preparation of other nanoparticle free-standing thin films.A simple filtration technique was developed to prepare large scale free-standing close-packed gold nanoparticle ultrathin films using metal hydroxide nanostrands as both barrier layer and sacrificial layer. As thin as 70 nm, centimeter scale robust free-standing gold nanoparticle thin film was obtained. The thickness of the films could be easily tuned by the filtration volumes. The electronic conductivities of these films varied with the size of the gold nanoparticles, post

  9. Molecular Imaging of Ultrathin Pentacene Films: Evidence for Homoepitaxy

    NASA Astrophysics Data System (ADS)

    Wu, Yanfei; Haugstad, Greg; Frisbie, C. Daniel

    2013-03-01

    Ultrathin polycrystalline films of organic semiconductors have received intensive investigations due to the critical role they play in governing the performance of organic thin film transistors. In this work, a variety of scanning probe microscopy (SPM) techniques have been employed to investigate ultrathin polycrystalline films (1-3 nm) of the benchmark organic semiconductor pentacene. By using spatially resolved Friction Force Microscopy (FFM), Kelvin Probe Force Microscopy (KFM) and Electrostatic Force Microscopy (EFM), an interesting multi-domain structure is revealed within the second layer of the films, characterized as two distinct friction and surface potential domains correlating with each other. The existence of multiple homoepitaxial modes within the films is thus proposed and examined. By employing lattice-revolved imaging using contact mode SPM, direct molecular evidence for the unusual homoepitaxy is obtained.

  10. Composite membranes from photochemical synthesis of ultrathin polymer films

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Martin, Charles R.

    1991-07-01

    THERE has recently been a resurgence of interest in synthetic membranes and membrane-based processes1-12. This is motivated by a wide variety of technological applications, such as chemical separations1-7, bioreactors and sensors8,9, energy conversion10,11 and drug-delivery systems12. Many of these technologies require the ability to prepare extremely thin, defect-free synthetic (generally polymeric) films, which are supported on microporous supports to form composite membranes. Here we describe a method for producing composite membranes of this sort that incorporate high-quality polymer films less than 50-nm thick. The method involves interfacial photopolymerization of a thin polymer film on the surface of the microporous substrate. We have been able to use this technique to synthesize a variety of functionalized ultrathin films based on electroactive, photoactive and ion-exchange polymers. We demonstrate the method here with composite membranes that show exceptional gas-transport properties.

  11. Metal Adatoms and Clusters on Ultrathin Zirconia Films

    PubMed Central

    2016-01-01

    Nucleation and growth of transition metals on zirconia has been studied by scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. Since STM requires electrical conductivity, ultrathin ZrO2 films grown by oxidation of Pt3Zr(0001) and Pd3Zr(0001) were used as model systems. DFT studies were performed for single metal adatoms on supported ZrO2 films as well as the (1̅11) surface of monoclinic ZrO2. STM shows decreasing cluster size, indicative of increasing metal–oxide interaction, in the sequence Ag < Pd ≈ Au < Ni ≈ Fe. Ag and Pd nucleate mostly at steps and domain boundaries of ZrO2/Pt3Zr(0001) and form three-dimensional clusters. Deposition of low coverages of Ni and Fe at room temperature leads to a high density of few-atom clusters on the oxide terraces. Weak bonding of Ag to the oxide is demonstrated by removing Ag clusters with the STM tip. DFT calculations for single adatoms show that the metal–oxide interaction strength increases in the sequence Ag < Au < Pd < Ni on monoclinic ZrO2, and Ag ≈ Au < Pd < Ni on the supported ultrathin ZrO2 film. With the exception of Au, metal nucleation and growth on ultrathin zirconia films follow the usual rules: More reactive (more electropositive) metals result in a higher cluster density and wet the surface more strongly than more noble metals. These bind mainly to the oxygen anions of the oxide. Au is an exception because it can bind strongly to the Zr cations. Au diffusion may be impeded by changing its charge state between −1 and +1. We discuss differences between the supported ultrathin zirconia films and the surfaces of bulk ZrO2, such as the possibility of charge transfer to the substrate of the films. Due to their large in-plane lattice constant and the variety of adsorption sites, ZrO2{111} surfaces are more reactive than many other oxygen-terminated oxide surfaces. PMID:27213024

  12. Ultrathin free-standing close-packed gold nanoparticle films: conductivity and Raman scattering enhancement.

    PubMed

    Yu, Qing; Huang, Hongwen; Peng, Xinsheng; Ye, Zhizhen

    2011-09-01

    A simple filtration technique was developed to prepare large scale free-standing close-packed gold nanoparticle ultrathin films using metal hydroxide nanostrands as both barrier layer and sacrificial layer. As thin as 70 nm, centimeter scale robust free-standing gold nanoparticle thin film was obtained. The thickness of the films could be easily tuned by the filtration volumes. The electronic conductivities of these films varied with the size of the gold nanoparticles, post-treatment temperature, and thickness, respectively. The conductivity of the film prepared from 20 nm gold nanoparticles is higher than that of the film prepared from 40 nm gold nanoparticle by filtering the same filtration volume of their solution, respectively. Their conductivities are comparable to that of the 220 nm thick ITO film. Furthermore, these films demonstrated an average surface Raman scattering enhancement up to 6.59 × 10(5) for Rhodamine 6 G molecules on the film prepared from 40 nm gold nanoparticles. Due to a lot of nano interspaces generated from the close-packed structures, two abnormal enhancements and relative stronger intensities of the asymmetrical vibrations at 1534 and 1594 cm(-1) of R6G were observed, respectively. These robust free-standing gold nanoparticle films could be easily transferred onto various solid substrates and hold the potential application for electrodes and surface enhanced Raman detectors. This method is applicable for preparation of other nanoparticle free-standing thin films.

  13. Study of anisotropy, magnetization reversal and damping in ultrathin Co films on MgO (0 0 1) substrate

    NASA Astrophysics Data System (ADS)

    Mallik, Srijani; Bedanta, Subhankar

    2018-01-01

    Ultrathin Co films of 3 nm thickness have been prepared on MgO (0 0 1) substrate in presence or absence of substrate pre-annealing. Uniaxial anisotropy is induced in the samples due to the deposition under oblique angle of incidence. Along with the oblique deposition induced anisotropy, another uniaxial anisotropy contribution has been observed due to pre-annealing. However, no cubic anisotropy has been observed here as compared to the thicker films. Angle dependent ferromagnetic resonance (FMR) measurement confirms the presence of two anisotropies in the pre-annealed sample with ∼18° misalignment with each other. The two anisotropy constants were calculated from both superconducting quantum interference device (SQUID) magnetometry and FMR spectroscopy. The magnetization reversal is governed by nucleation dominated aftereffect followed by domain wall motion for the pre-annealed sample. Branched domains are observed for the sample prepared without pre-annealing which indicates grain disorientation of Co. However, in the thicker (25 nm) Co films ripple domains were observed in contrary to ultrathin (3 nm) films.

  14. Ultrathin Polymer Films, Patterned Arrays, and Microwells

    NASA Astrophysics Data System (ADS)

    Yan, Mingdi

    2002-05-01

    The ability to control and tailor the surface and interface properties of materials is important in microelectronics, cell growth control, and lab-on-a-chip devices. Modification of material surfaces with ultrathin polymer films is attractive due to the availability of a variety of polymers either commercially or by synthesis. We have developed two approaches to the attachment of ultrathin polymer films on solid substrates. In the first method, a silane-functionalized perfluorophenyl azide (PFPA-silane) was synthesized and used to covalently immobilize polymer thin films on silicon wafers. Silanization of the wafer surface with the PFPA-silane introduced a monolayer of azido groups which in turn covalently attached the polymer film by way of photochemically initiated insertion reactions. The thickness of the film could be adjusted by the type and the molecular weight of the polymer. The method is versatile due to the general C-H and/or N-H insertion reactions of crosslinker; and therefore, no specific reactive functional groups on the polymers are required. Using this method, a new type of microwell array was fabricated from covalently immobilized polymer thin films on flat substrates. The arrays were characterized with AFM, XPS, and TOF-SIMS. The second method describes the attachment of polymer thin films on solid substrates via UV irradiation. The procedure consisted of spin-coating a polymer film and irradiating the film with UV light. Following solvent extraction, a thin film remained. The thickness of the film, from a few to over a hundred nanometers, was controlled by varying solution concentration and the molecular weight of the polymer.

  15. Bias current dependence of resistivity in Co0.4Fe0.4B0.2 ultrathin film prepared by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Mandal, Snehal; Mazumdar, Dipak; Das, I.

    2018-04-01

    Ultrathin film of Co0.4Fe0.4B0.2 was prepared on p-type Si (100) substrate by RF magnetron sputtering. X-Ray Reflectivity and Atomic Force Microscopy measurements were performed to estimate the thickness and surface roughness of the film. Electrical transport measurements were performed by four-probe method in a current-in-plane (CIP) geometry. Presence of non-linearity in the current-voltage (I-V) characteristics was observed at higher current range. The electrical resistivity was found to change by several orders of magnitude (105) by changing the bias current from nano-ampere (nA) to milli-ampere (mA) range. This bias current dependence of the resistivity has been explained by different transport mechanisms.

  16. Physicochemically functional ultrathin films by interfacial polymerization

    DOEpatents

    Lonsdale, Harold K.; Babcock, Walter C.; Friensen, Dwayne T.; Smith, Kelly L.; Johnson, Bruce M.; Wamser, Carl C.

    1990-01-01

    Interfacially-polymerized ultrathin films containing physicochemically functional groups are disclosed, both with and without supports. Various applications are disclsoed, including membrane electrodes, selective membranes and sorbents, biocompatible materials, targeted drug delivery, and narrow band optical absorbers.

  17. Extraordinary optical transmission in nanopatterned ultrathin metal films without holes

    DOE PAGES

    Peer, Akshit; Biswas, Rana

    2016-02-01

    In this study, we experimentally and theoretically demonstrate that a continuous gold film on a periodically textured substrate exhibits extraordinary optical transmission, even though no holes were etched in the film. Our film synthesis started by nanoimprinting a periodic array of nanocups with a period of ~750 nm on a polystyrene film over a glass substrate. A thin non-conformal gold film was sputter-deposited on the polystyrene by angle-directed deposition. The gold film was continuous with spatial thickness variation, the film being thinnest at the bottom of the nanocup. Measurements revealed an extraordinary transmission peak at a wavelength just smaller thanmore » the period, with an enhancement of ~2.5 compared to the classically expected value. Scattering matrix simulations model well the transmission and reflectance measurements when an ultrathin gold layer (~5 nm), smaller than the skin depth is retained at the bottom of the nanocups. Electric field intensities are enhanced by >100 within the nanocup, and ~40 in the ultrathin gold layer causing transmission through it. We show a wavelength red-shift of ~30 nm in the extraordinary transmission peak when the nanocups are coated with a thin film of a few nanometers, which can be utilized for biosensing. The continuous corrugated metal films are far simpler structures to observe extraordinary transmission, circumventing the difficult process of etching the metal film. Such continuous metal films with ultrathin regions are simple platforms for non-linear optics, plasmonics, and biological and chemical sensing.« less

  18. Physicochemically functional ultrathin films by interfacial polymerization

    DOEpatents

    Lonsdale, H.K.; Babcock, W.C.; Friensen, D.T.; Smith, K.L.; Johnson, B.M.; Wamser, C.C.

    1990-08-14

    Interfacially-polymerized ultrathin films containing physicochemically functional groups are disclosed, both with and without supports. Various applications are disclosed, including membrane electrodes, selective membranes and sorbents, biocompatible materials, targeted drug delivery, and narrow band optical absorbers. 3 figs.

  19. Designing metal hemispheres on silicon ultrathin film solar cells for plasmonic light trapping.

    PubMed

    Gao, Tongchuan; Stevens, Erica; Lee, Jung-kun; Leu, Paul W

    2014-08-15

    We systematically investigate the design of two-dimensional silver (Ag) hemisphere arrays on crystalline silicon (c-Si) ultrathin film solar cells for plasmonic light trapping. The absorption in ultrathin films is governed by the excitation of Fabry-Perot TEMm modes. We demonstrate that metal hemispheres can enhance absorption in the films by (1) coupling light to c-Si film waveguide modes and (2) exciting localized surface plasmon resonances (LSPRs). We show that hemisphere arrays allow light to couple to fundamental TEm and TMm waveguide modes in c-Si film as well as higher-order versions of these modes. The near-field light concentration of LSPRs also may increase absorption in the c-Si film, though these resonances are associated with significant parasitic absorption in the metal. We illustrate how Ag plasmonic hemispheres may be utilized for light trapping with 22% enhancement in short-circuit current density compared with that of a bare 100 nm thick c-Si ultrathin film solar cell.

  20. Confined Transformation Derived Ultrathin Titanate Nanosheets/ Graphene Films for Excellent Na/K Ion Storage.

    PubMed

    Zeng, Cheng; Xie, Fangxi; Yang, Xianfeng; Jaroniec, Mietek; Zhang, Lei; Qiao, Shizhang

    2018-05-02

    Confined transformation of assembled two-dimensional MXene (titanium carbide) and reduced graphene oxide (rGO) nanosheets was employed to prepare the free-standing films of the integrated ultrathin sodium titanate (NTO)/potassium titanate (KTO) nanosheets sandwiched between graphene layers. The ultrathin Ti-based nanosheets reduce the diffusion distance while rGO layers enhance conductivity. Incorporation of graphene into the titanate films produced efficient binder-free anodes for ion storage. The resulting NTO/rGO electrode for sodium ion batteries exhibited an excellent rate performance and long cycling stability characterized by reversible capacity of 72 mA h g-1 at 5 A g-1 after 10000 cycles. Moreover, flexible KTO/rGO electrode for potassium ion batteries maintained a reversible capacity of 75 mA h g-1 after 700 cycles at 2 A g-1. These results demonstrate the superiority of the unique sandwich-type electrodes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Aerosol-assisted chemical vapor deposition of ultra-thin CuOx films as hole transport material for planar perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Zhixin; Chen, Shuqun; Li, Pingping; Li, Hongyi; Wu, Junshu; Hu, Peng; Wang, Jinshu

    This paper reports on the fabrication of CuOx films to be used as hole transporting layer (HTL) in CH3NH3PbI3 perovskite solar cells (PSCs). Ultra-thin CuOx coatings were grown onto FTO substrates for the first time via aerosol-assisted chemical vapor deposition (AACVD) of copper acetylacetonate in methanol. After incorporating into the PSCs prepared at ambient air, a highest power conversion efficiency (PCE) of 8.26% with HTL and of 3.34% without HTL were achieved. Our work represents an important step in the development of low-cost CVD technique for fabricating ultra-thin metal oxide functional layers in thin film photovoltaics.

  2. Investigations of Topological Surface States in Sb (111) Ultrathin Films by STM/STS Experiments and DFT Calculations

    NASA Astrophysics Data System (ADS)

    Luo, Ziyu; Yao, Guanggeng; Xu, Wentao; Feng, Yuanping; Wang, Xue-Sen

    2014-03-01

    Bulk Sb was regarded as a semimetal with a nontrivial topological order. It is worth exploring whether the Sb ultrathin film has the potential to be an elementary topological insulator. In the presence of quantum confinement effect, we investigated the evolution of topological surface states in Sb (111) ultrathin films with different thickness by the scanning tunneling microscopy/ spectroscopy (STM/STS) experiments and density functional theory (DFT) calculations. By comparing the quasiparticle interference (QPI) patterns obtained from Fourier-transform scanning tunneling spectroscopy (FT-STS) and from DFT calculations, we successfully derive the spin properties of topological surface states on Sb (111) ultrathin films. In addition, based on the DFT calculations, the 8BL Sb (111) ultrathin film was proved to possess up to 30% spinseparated topological surface states within the bandgap. Therefore, the highquality 8BL Sb (111) ultrathin film could be regarded as an elementary topological insulator.

  3. Tg and Structural Recovery of Single Ultrathin Films

    NASA Astrophysics Data System (ADS)

    Simon, Sindee

    The behavior of materials confined at the nanoscale has been of considerable interest over the past two decades. Here, the focus is on recent results for single polystyrene ultrathin films studied with ultrafast scanning chip calorimetry. The Tg depression of a 20 nm-thick high-molecular-weight polystyrene film is found to be a function of cooling rate, decreasing with increasing cooling rate; whereas, at high enough cooling rates (e.g., 1000 K/s), Tg is the same as the bulk within the error of the measurements. Structural recovery is also performed with chip calorimetry as a function of aging time and temperature, and the evolution of the fictive temperature is followed. The advantages of the Flash DSC include sufficient sensitivity to measure enthalpy recovery for a single 20 nm-thick film, as well as extension of the measurements to aging temperatures as high as 15 K above nominal Tg and to aging times as short as 0.01 s. The aging behavior and relaxation time-temperature map for single ultrathin films are compared to those for bulk material. Comparison to behavior in other geometries will also be discussed.

  4. Enhanced magnetic moment in ultrathin Fe-doped CoFe2O4 films

    NASA Astrophysics Data System (ADS)

    Moyer, J. A.; Vaz, C. A. F.; Kumah, D. P.; Arena, D. A.; Henrich, V. E.

    2012-11-01

    The effect of film thickness on the magnetic properties of ultrathin Fe-doped cobalt ferrite (Co1-xFe2+xO4) grown on MgO (001) substrates is investigated by superconducting quantum interference device magnetometry and x-ray magnetic linear dichroism, while the distribution of the Co2+ cations between the octahedral and tetrahedral lattice sites is studied with x-ray absorption spectroscopy. For films thinner than 10 nm, there is a large enhancement of the magnetic moment; conversely, the remanent magnetization and coercive fields both decrease, while the magnetic spin axes of all the cations become less aligned with the [001] crystal direction. In particular, at 300 K the coercive fields of the thinnest films vanish. The spectroscopy data show that no changes occur in the cation distribution as a function of film thickness, ruling this out as the origin of the enhanced magnetic moment. However, the magnetic measurements all support the possibility that these ultrathin Fe-doped CoFe2O4 films are transitioning into a superparamagnetic state, as has been seen in ultrathin Fe3O4. A weakening of the magnetic interactions at the antiphase boundaries, leading to magnetically independent domains within the film, could explain the enhanced magnetic moment in ultrathin Fe-doped CoFe2O4 and the onset of superparamagnetism at room temperature.

  5. Superstable Ultrathin Water Film Confined in a Hydrophilized Carbon Nanotube.

    PubMed

    Tomo, Yoko; Askounis, Alexandros; Ikuta, Tatsuya; Takata, Yasuyuki; Sefiane, Khellil; Takahashi, Koji

    2018-03-14

    Fluids confined in a nanoscale space behave differently than in the bulk due to strong interactions between fluid molecules and solid atoms. Here, we observed water confined inside "open" hydrophilized carbon nanotubes (CNT), with diameter of tens of nanometers, using transmission electron microscopy (TEM). A 1-7 nm water film adhering to most of the inner wall surface was observed and remained stable in the high vacuum (order of 10 -5 Pa) of the TEM. The superstability of this film was attributed to a combination of curvature, nanoroughness, and confinement resulting in a lower vapor pressure for water and hence inhibiting its vaporization. Occasional, suspended ultrathin water film with thickness of 3-20 nm were found and remained stable inside the CNT. This film thickness is 1 order of magnitude smaller than the critical film thickness (about 40 nm) reported by the Derjaguin-Landau-Verwey-Overbeek theory and previous experimental investigations. The stability of the suspended ultrathin water film is attributed to the additional molecular interactions due to the extended water meniscus, which balances the rest of the disjoining pressures.

  6. Ultrathin planar hematite film for solar photoelectrochemical water splitting

    DOE PAGES

    Liu, Dong; Bierman, David M.; Lenert, Andrej; ...

    2015-10-08

    Hematite holds promise for photoelectrochemical (PEC) water splitting due to its stability, low-cost, abundance and appropriate bandgap. However, it suffers from a mismatch between the hole diffusion length and light penetration length. We have theoretically designed and characterized an ultrathin planar hematite/silver nanohole array/silver substrate photoanode. Due to the supported destructive interference and surface plasmon resonance, photons are efficiently absorbed in an ultrathin hematite film. In conclusion, compared with ultrathin hematite photoanodes with nanophotonic structures, this photoanode has comparable photon absorption but with intrinsically lower recombination losses due to its planar structure and promises to exceed the state-of-the-art photocurrent ofmore » hematite photoanodes.« less

  7. Magnetic x-ray linear dichroism of ultrathin Fe-Ni alloy films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumann, F.O.; Willis, R.F.; Goodman, K.W.

    1997-04-01

    The authors have studied the magnetic structure of ultrathin Fe-Ni alloy films as a function of Fe concentration by measuring the linear dichroism of the 3p-core levels in angle-resolved photoemission spectroscopy. The alloy films, grown by molecular-beam epitaxy on Cu(001) surfaces, were fcc and approximately four monolayers thick. The intensity of the Fe dichroism varied with Fe concentration, with larger dichroisms at lower Fe concentrations. The implication of these results to an ultrathin film analogue of the bulk Invar effect in Fe-Ni alloys will be discussed. These measurements were performed at the Spectromicroscopy Facility (Beamline 7.0.1) of the Advanced Lightmore » Source.« less

  8. Stability of Polymer Ultrathin Films (<7 nm) Made by a Top-Down Approach.

    PubMed

    Bal, Jayanta Kumar; Beuvier, Thomas; Unni, Aparna Beena; Chavez Panduro, Elvia Anabela; Vignaud, Guillaume; Delorme, Nicolas; Chebil, Mohamed Souheib; Grohens, Yves; Gibaud, Alain

    2015-08-25

    In polymer physics, the dewetting of spin-coated polystyrene ultrathin films on silicon remains mysterious. By adopting a simple top-down method based on good solvent rinsing, we are able to prepare flat polystyrene films with a controlled thickness ranging from 1.3 to 7.0 nm. Their stability was scrutinized after a classical annealing procedure above the glass transition temperature. Films were found to be stable on oxide-free silicon irrespective of film thickness, while they were unstable (<2.9 nm) and metastable (>2.9 nm) on 2 nm oxide-covered silicon substrates. The Lifshitz-van der Waals intermolecular theory that predicts the domains of stability as a function of the film thickness and of the substrate nature is now fully reconciled with our experimental observations. We surmise that this reconciliation is due to the good solvent rinsing procedure that removes the residual stress and/or the density variation of the polystyrene films inhibiting thermodynamically the dewetting on oxide-free silicon.

  9. Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films

    PubMed Central

    Wang, Xuewen; He, Xuexia; Zhu, Hongfei; Sun, Linfeng; Fu, Wei; Wang, Xingli; Hoong, Lai Chee; Wang, Hong; Zeng, Qingsheng; Zhao, Wu; Wei, Jun; Jin, Zhong; Shen, Zexiang; Liu, Jie; Zhang, Ting; Liu, Zheng

    2016-01-01

    Driven by the development of high-performance piezoelectric materials, actuators become an important tool for positioning objects with high accuracy down to nanometer scale, and have been used for a wide variety of equipment, such as atomic force microscopy and scanning tunneling microscopy. However, positioning at the subatomic scale is still a great challenge. Ultrathin piezoelectric materials may pave the way to positioning an object with extreme precision. Using ultrathin CdS thin films, we demonstrate vertical piezoelectricity in atomic scale (three to five space lattices). With an in situ scanning Kelvin force microscopy and single and dual ac resonance tracking piezoelectric force microscopy, the vertical piezoelectric coefficient (d33) up to 33 pm·V−1 was determined for the CdS ultrathin films. These findings shed light on the design of next-generation sensors and microelectromechanical devices. PMID:27419234

  10. Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films.

    PubMed

    Wang, Xuewen; He, Xuexia; Zhu, Hongfei; Sun, Linfeng; Fu, Wei; Wang, Xingli; Hoong, Lai Chee; Wang, Hong; Zeng, Qingsheng; Zhao, Wu; Wei, Jun; Jin, Zhong; Shen, Zexiang; Liu, Jie; Zhang, Ting; Liu, Zheng

    2016-07-01

    Driven by the development of high-performance piezoelectric materials, actuators become an important tool for positioning objects with high accuracy down to nanometer scale, and have been used for a wide variety of equipment, such as atomic force microscopy and scanning tunneling microscopy. However, positioning at the subatomic scale is still a great challenge. Ultrathin piezoelectric materials may pave the way to positioning an object with extreme precision. Using ultrathin CdS thin films, we demonstrate vertical piezoelectricity in atomic scale (three to five space lattices). With an in situ scanning Kelvin force microscopy and single and dual ac resonance tracking piezoelectric force microscopy, the vertical piezoelectric coefficient (d 33) up to 33 pm·V(-1) was determined for the CdS ultrathin films. These findings shed light on the design of next-generation sensors and microelectromechanical devices.

  11. Nonbolometric bottleneck in electron-phonon relaxation in ultrathin WSi films

    NASA Astrophysics Data System (ADS)

    Sidorova, Mariia V.; Kozorezov, A. G.; Semenov, A. V.; Korneeva, Yu. P.; Mikhailov, M. Yu.; Devizenko, A. Yu.; Korneev, A. A.; Chulkova, G. M.; Goltsman, G. N.

    2018-05-01

    We developed the model of the internal phonon bottleneck to describe the energy exchange between the acoustically soft ultrathin metal film and acoustically rigid substrate. Discriminating phonons in the film into two groups, escaping and nonescaping, we show that electrons and nonescaping phonons may form a unified subsystem, which is cooled down only due to interactions with escaping phonons, either due to direct phonon conversion or indirect sequential interaction with an electronic system. Using an amplitude-modulated absorption of the sub-THz radiation technique, we studied electron-phonon relaxation in ultrathin disordered films of tungsten silicide. We found an experimental proof of the internal phonon bottleneck. The experiment and simulation based on the proposed model agree well, resulting in τe -ph˜14 0 -19 0 ps at TC=3.4 K , supporting the results of earlier measurements by independent techniques.

  12. TOPICAL REVIEW: Ultra-thin film encapsulation processes for micro-electro-mechanical devices and systems

    NASA Astrophysics Data System (ADS)

    Stoldt, Conrad R.; Bright, Victor M.

    2006-05-01

    A range of physical properties can be achieved in micro-electro-mechanical systems (MEMS) through their encapsulation with solid-state, ultra-thin coatings. This paper reviews the application of single source chemical vapour deposition and atomic layer deposition (ALD) in the growth of submicron films on polycrystalline silicon microstructures for the improvement of microscale reliability and performance. In particular, microstructure encapsulation with silicon carbide, tungsten, alumina and alumina-zinc oxide alloy ultra-thin films is highlighted, and the mechanical, electrical, tribological and chemical impact of these overlayers is detailed. The potential use of solid-state, ultra-thin coatings in commercial microsystems is explored using radio frequency MEMS as a case study for the ALD alloy alumina-zinc oxide thin film.

  13. Structure Formation of Ultrathin PEO Films at Solid Interfaces—Complex Pattern Formation by Dewetting and Crystallization

    PubMed Central

    Braun, Hans-Georg; Meyer, Evelyn

    2013-01-01

    The direct contact of ultrathin polymer films with a solid substrate may result in thin film rupture caused by dewetting. With crystallisable polymers such as polyethyleneoxide (PEO), molecular self-assembly into partial ordered lamella structures is studied as an additional source of pattern formation. Morphological features in ultrathin PEO films (thickness < 10 nm) result from an interplay between dewetting patterns and diffusion limited growth pattern of ordered lamella growing within the dewetting areas. Besides structure formation of hydrophilic PEO molecules, n-alkylterminated (hydrophobic) PEO oligomers are investigated with respect to self-organization in ultrathin films. Morphological features characteristic for pure PEO are not changed by the presence of the n-alkylgroups. PMID:23385233

  14. A molecular dynamics analysis of ion irradiation of ultrathin amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Qi, J.; Komvopoulos, K.

    2016-09-01

    Molecular dynamics (MD) simulations provide insight into nanoscale problems where continuum description breaks down, such as the modeling of ultrathin films. Amorphous carbon (a-C) films are commonly used as protective overcoats in various contemporary technologies, including microelectromechanical systems, bio-implantable devices, optical lenses, and hard-disk drives. In all of these technologies, the protective a-C film must be continuous and very thin. For example, to achieve high storage densities (e.g., on the order of 1 Tb/in.2) in magnetic recording, the thickness of the a-C film used to protect the magnetic media and the recording head against mechanical wear and corrosion must be 2-3 nm. Inert ion irradiation is an effective post-deposition method for reducing the film thickness, while preserving the mechanical and chemical characteristics. In this study, MD simulations of Ar+ ion irradiated a-C films were performed to elucidate the effects of the ion incidence angle and ion kinetic energy on the film thickness and structure. The MD results reveal that the film etching rate exhibits a strong dependence on the ion kinetic energy and ion incidence angle, with a maximum etching rate corresponding to an ion incidence angle of ˜20°. It is also shown that Ar+ ion irradiation mainly affects the structure of the upper half of the ultrathin a-C film and that carbon atom hybridization is a strong function of the ion kinetic energy and ion incidence angle. The results of this study elucidate the effects of important ion irradiation parameters on the structure and thickness of ultrathin films and provide fundamental insight into the physics of dry etching.

  15. Coupling of microphase separation and dewetting in weakly segregated diblock co-polymer ultrathin films.

    PubMed

    Yan, Derong; Huang, Haiying; He, Tianbai; Zhang, Fajun

    2011-10-04

    We have studied the coupling behavior of microphase separation and autophobic dewetting in weakly segregated poly(ε-caprolactone)-block-poly(L-lactide) (PCL-b-PLLA) diblock co-polymer ultrathin films on carbon-coated mica substrates. At temperatures higher than the melting point of the PLLA block, the co-polymer forms a lamellar structure in bulk with a long period of L ∼ 20 nm, as determined using small-angle X-ray scattering. The relaxation procedure of ultrathin films with an initial film thickness of h = 10 nm during annealing has been followed by atomic force microscopy (AFM). In the experimental temperature range (100-140 °C), the co-polymer dewets to an ultrathin film of itself at about 5 nm because of the strong attraction of both blocks with the substrate. Moreover, the dewetting velocity increases with decreasing annealing temperatures. This novel dewetting kinetics can be explained by a competition effect of the composition fluctuation driven by the microphase separation with the dominated dewetting process during the early stage of the annealing process. While dewetting dominates the relaxation procedure and leads to the rupture of the ultrathin films, the composition fluctuation induced by the microphase separation attempts to stabilize them because of the matching of h to the long period (h ∼ 1/2L). The temperature dependence of these two processes leads to this novel relaxation kinetics of co-polymer thin films. © 2011 American Chemical Society

  16. Ultrathin Nanocrystalline Diamond Films with Silicon Vacancy Color Centers via Seeding by 2 nm Detonation Nanodiamonds.

    PubMed

    Stehlik, Stepan; Varga, Marian; Stenclova, Pavla; Ondic, Lukas; Ledinsky, Martin; Pangrac, Jiri; Vanek, Ondrej; Lipov, Jan; Kromka, Alexander; Rezek, Bohuslav

    2017-11-08

    Color centers in diamonds have shown excellent potential for applications in quantum information processing, photonics, and biology. Here we report chemical vapor deposition (CVD) growth of nanocrystalline diamond (NCD) films as thin as 5-6 nm with photoluminescence (PL) from silicon-vacancy (SiV) centers at 739 nm. Instead of conventional 4-6 nm detonation nanodiamonds (DNDs), we prepared and employed hydrogenated 2 nm DNDs (zeta potential = +36 mV) to form extremely dense (∼1.3 × 10 13 cm -2 ), thin (2 ± 1 nm), and smooth (RMS roughness < 0.8 nm) nucleation layers on an Si/SiO x substrate, which enabled the CVD growth of such ultrathin NCD films in two different and complementary microwave (MW) CVD systems: (i) focused MW plasma with an ellipsoidal cavity resonator and (ii) pulsed MW plasma with a linear antenna arrangement. Analytical ultracentrifuge, infrared and Raman spectroscopies, atomic force microscopy, and scanning electron microscopy are used for detailed characterization of the 2 nm H-DNDs and the nucleation layer as well as the ultrathin NCD films. We also demonstrate on/off switching of the SiV center PL in the NCD films thinner than 10 nm, which is achieved by changing their surface chemistry.

  17. Determining thickness and refractive index from free-standing ultra-thin polymer films with spectroscopic ellipsometry

    DOE PAGES

    Hilfiker, James N.; Stadermann, Michael; Sun, Jianing; ...

    2016-08-27

    It is a well-known challenge to determine refractive index (n) from ultra-thin films where the thickness is less than about 10 nm. In this paper, we discovered an interesting exception to this issue while characterizing spectroscopic ellipsometry (SE) data from isotropic, free-standing polymer films. Ellipsometry analysis shows that both thickness and refractive index can be independently determined for free-standing films as thin as 5 nm. Simulations further confirm an orthogonal separation between thickness and index effects on the experimental SE data. Effects of angle of incidence and wavelength on the data and sensitivity are discussed. Finally, while others have demonstratedmore » methods to determine refractive index from ultra-thin films, our analysis provides the first results to demonstrate high-sensitivity to the refractive index from ultra-thin layers.« less

  18. Influence of Thickness on the Electrical Transport Properties of Exfoliated Bi2Te3 Ultrathin Films

    NASA Astrophysics Data System (ADS)

    Mo, D. L.; Wang, W. B.; Cai, Q.

    2016-08-01

    In this work, the mechanical exfoliation method has been utilized to fabricate Bi2Te3 ultrathin films. The thickness of the ultrathin films is revealed to be several tens of nanometers. Weak antilocalization effects and Shubnikov de Haas oscillations have been observed in the magneto-transport measurements on individual films with different thickness, and the two-dimensional surface conduction plays a dominant role. The Fermi level is found to be 81 meV above the Dirac point, and the carrier mobility can reach ~6030 cm2/(Vs) for the 10-nm film. When the film thickness decreases from 30 to 10 nm, the Fermi level will move 8 meV far from the bulk valence band. The coefficient α in the Hikami-Larkin-Nagaoka equation is shown to be ~0.5, manifesting that only the bottom surface of the Bi2Te3 ultrathin films takes part in transport conductions. These will pave the way for understanding thoroughly the surface transport properties of topological insulators.

  19. Spin fluctuation induced linear magnetoresistance in ultrathin superconducting FeSe films

    DOE PAGES

    Wang, Qingyan; Zhang, Wenhao; Chen, Weiwei; ...

    2017-07-21

    The discovery of high-temperature superconductivity in FeSe/STO has trigged great research interest to reveal a range of exotic physical phenomena in this novel material. Here we present a temperature dependent magnetotransport measurement for ultrathin FeSe/STO films with different thickness and protection layers. Remarkably, a surprising linear magnetoresistance (LMR) is observed around the superconducting transition temperatures but absent otherwise. The experimental LMR can be reproduced by magnetotransport calculations based on a model of magnetic field dependent disorder induced by spin fluctuation. Thus, the observed LMR in coexistence with superconductivity provides the first magnetotransport signature for spin fluctuation around the superconducting transitionmore » region in ultrathin FeSe/STO films.« less

  20. Dynamic response of ultrathin highly dense ZIF-8 nanofilms.

    PubMed

    Cookney, Joanna; Ogieglo, Wojciech; Hrabanek, Pavel; Vankelecom, Ivo; Fila, Vlastimil; Benes, Nieck E

    2014-10-11

    Ultrathin ZIF-8 nanofilms are prepared by facile step-by-step dip coating. A critical withdrawal speed allows for films with a very uniform minimum thickness. The high refractive index of the films denotes the absence of mesopores. The dynamic response of the films to CO2 exposure resembles behaviour observed for non-equilibrium organic polymers.

  1. Dissolvable Films of Silk Fibroin for Ultrathin Conformal Bio-Integrated Electronics

    DTIC Science & Technology

    2010-06-01

    the systems described in the following, ultrathin, spin- cast films of polyimide (PI) served as a support for arrays of electrodes designed for...micropatterning of optically transparent, mechanically robust, biocompatible silk fibroin films. Adv. Mater. 20, 3070–3072 (2008). 20. Murphy, A. R., John, P. S...analysis of induced colour change on periodically nanopatterned silk films. Opt. Express 17, 21271–21279 (2009). 25. Parker, S. T. et al. Biocompatible

  2. Using Ultrathin Parylene Films as an Organic Gate Insulator in Nanowire Field-Effect Transistors.

    PubMed

    Gluschke, J G; Seidl, J; Lyttleton, R W; Carrad, D J; Cochrane, J W; Lehmann, S; Samuelson, L; Micolich, A P

    2018-06-27

    We report the development of nanowire field-effect transistors featuring an ultrathin parylene film as a polymer gate insulator. The room temperature, gas-phase deposition of parylene is an attractive alternative to oxide insulators prepared at high temperatures using atomic layer deposition. We discuss our custom-built parylene deposition system, which is designed for reliable and controlled deposition of <100 nm thick parylene films on III-V nanowires standing vertically on a growth substrate or horizontally on a device substrate. The former case gives conformally coated nanowires, which we used to produce functional Ω-gate and gate-all-around structures. These give subthreshold swings as low as 140 mV/dec and on/off ratios exceeding 10 3 at room temperature. For the gate-all-around structure, we developed a novel fabrication strategy that overcomes some of the limitations with previous lateral wrap-gate nanowire transistors. Finally, we show that parylene can be deposited over chemically treated nanowire surfaces, a feature generally not possible with oxides produced by atomic layer deposition due to the surface "self-cleaning" effect. Our results highlight the potential for parylene as an alternative ultrathin insulator in nanoscale electronic devices more broadly, with potential applications extending into nanobioelectronics due to parylene's well-established biocompatible properties.

  3. Camphor-Enabled Transfer and Mechanical Testing of Centimeter-Scale Ultrathin Films.

    PubMed

    Wang, Bin; Luo, Da; Li, Zhancheng; Kwon, Youngwoo; Wang, Meihui; Goo, Min; Jin, Sunghwan; Huang, Ming; Shen, Yongtao; Shi, Haofei; Ding, Feng; Ruoff, Rodney S

    2018-05-21

    Camphor is used to transfer centimeter-scale ultrathin films onto custom-designed substrates for mechanical (tensile) testing. Compared to traditional transfer methods using dissolving/peeling to remove the support-layers, camphor is sublimed away in air at low temperature, thereby avoiding additional stress on the as-transferred films. Large-area ultrathin films can be transferred onto hollow substrates without damage by this method. Tensile measurements are made on centimeter-scale 300 nm-thick graphene oxide film specimens, much thinner than the ≈2 μm minimum thickness of macroscale graphene-oxide films previously reported. Tensile tests were also done on two different types of large-area samples of adlayer free CVD-grown single-layer graphene supported by a ≈100 nm thick polycarbonate film; graphene stiffens this sample significantly, thus the intrinsic mechanical response of the graphene can be extracted. This is the first tensile measurement of centimeter-scale monolayer graphene films. The Young's modulus of polycrystalline graphene ranges from 637 to 793 GPa, while for near single-crystal graphene, it ranges from 728 to 908 GPa (folds parallel to the tensile loading direction) and from 683 to 775 GPa (folds orthogonal to the tensile loading direction), demonstrating the mechanical performance of large-area graphene in a size scale relevant to many applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. An easily accessible carbon material derived from carbonization of polyacrylonitrile ultrathin films: ambipolar transport properties and application in a CMOS-like inverter.

    PubMed

    Jiao, Fei; Zhang, Fengjiao; Zang, Yaping; Zou, Ye; Di, Chong'an; Xu, Wei; Zhu, Daoben

    2014-03-04

    Ultrathin carbon films were prepared by carbonization of a solution processed polyacrylonitrile (PAN) film in a moderate temperature range (500-700 °C). The films displayed balanced hole (0.50 cm(2) V(-1) s(-1)) and electron mobilities (0.20 cm(2) V(-1) s(-1)) under ambient conditions. Spectral characterization revealed that the electrical transport is due to the formation of sp(2) hybridized carbon during the carbonization process. A CMOS-like inverter demonstrated the potential application of this material in the area of carbon electronics, considering its processability and low-cost.

  5. Enhanced Hydrogen Transport over Palladium Ultrathin Films through Surface Nanostructure Engineering.

    PubMed

    Abate, Salvatore; Giorgianni, Gianfranco; Gentiluomo, Serena; Centi, Gabriele; Perathoner, Siglinda

    2015-11-01

    Palladium ultrathin films (around 2 μm) with different surface nanostructures are characterized by TEM, SEM, AFM, and temperature programmed reduction (TPR), and evaluated in terms of H2 permeability and H2-N2 separation. A change in the characteristics of Pd seeds by controlled oxidation-reduction treatments produces films with the same thickness, but different surface and bulk nanostructure. In particular, the films have finer and more homogeneous Pd grains, which results in lower surface roughness. Although all samples show high permeo-selectivity to H2 , the samples with finer grains exhibit enhanced permeance and lower activation energy for H2 transport. The analysis of the data suggests that grain boundaries between the Pd grains at the surface favor H2 transfer from surface to subsurface. Thus, the surface nanostructure plays a relevant role in enhancing the transport of H2 over the Pd ultrathin film, which is an important aspect to develop improved membranes that function at low temperatures and toward new integrated process architectures in H2 and syngas production with enhanced sustainability. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Dynamic XPS measurements of ultrathin polyelectrolyte films containing antibacterial Ag–Cu nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taner-Camcı, Merve; Suzer, Sefik, E-mail: suzer@fen.bilkent.edu.tr

    Ultrathin films consisting of polyelectrolyte layers prepared by layer-by-layer deposition technique and containing also Ag and Cu nanoparticles exhibit superior antibacterial activity toward Escherichia coli. These films have been investigated with XPS measurements under square wave excitation at two different frequencies, in order to further our understanding about the chemical/physical nature of the nanoparticles. Dubbed as dynamical XPS, such measurements bring out similarities and differences among the surface structures by correlating the binding energy shifts of the corresponding XPS peaks. Accordingly, it is observed that the Cu2p, Ag3d of the metal nanoparticles, and S2p of cysteine, the stabilizer and themore » capping agent, exhibit similar shifts. On the other hand, the C1s, N1s, and S2p peaks of the polyelectrolyte layers shift differently. This finding leads us the claim that the Ag and Cu atoms are in a nanoalloy structure, capped with cystein, as opposed to phase separated entities.« less

  7. Electrical properties of spin coated ultrathin titanium oxide films on GaAs

    NASA Astrophysics Data System (ADS)

    Dutta, Shankar; Pal, Ramjay; Chatterjee, Ratnamala

    2015-04-01

    In recent years, ultrathin (<50 nm) metal oxide films have been being extensively studied as high-k dielectrics for future metal oxide semiconductor (MOS) technology. This paper discusses deposition of ultrathin TiO2 films (˜10 nm) on GaAs substrates (one sulfur-passivated, another unpassivated) by spin coating technique. The sulfur passivation is done to reduce the surface states of GaAs substrate. After annealing at 400 °C in a nitrogen environment, the TiO2 films are found to be polycrystalline in nature with rutile phase. The TiO2 films exhibit consistent grain size of 10-20 nm with thickness around 10-12 nm. Dielectric constants of the films are found to be 65.4 and 47.1 corresponding to S-passivated and unpassivated substrates, respectively. Corresponding threshold voltages of the MOS structures are measured to be -0.1 V to -0.3 V for the S-passivated and unpassivated samples, respectively. The S-passivated TiO2 film showed improved (lower) leakage current density (5.3 × 10-4 A cm-2 at 3 V) compared to the unpassivated film (1.8 × 10-3 A/cm2 at 3 V). Dielectric breakdown-field of the TiO2 films on S-passivated and unpassivated GaAs samples are found to be 8.4 MV cm-1 and 7.2 MV cm-1 respectively.

  8. Synthesis of Ultrathin ta-C Films by Twist-Filtered Cathodic Arc Carbon Plasmas

    DTIC Science & Technology

    2001-04-01

    system. Ultrathin tetrahedral amorphous carbon (ta-C) films have been deposited on 6 inch wafers. Film properties have been investigated with respect to...Diamondlike films are characterized by an outstanding combination of advantageous properties : they can be very hard, tough, super-smooth, chemically...5 nm) hard carbon films are being used as protective overcoats on hard disks and read-write heads. The tribological properties of the head-disk

  9. Multiscale Relaxation Dynamics in Ultrathin Metallic Glass-Forming Films

    NASA Astrophysics Data System (ADS)

    Bi, Q. L.; Lü, Y. J.; Wang, W. H.

    2018-04-01

    The density layering phenomenon originating from a free surface gives rise to the layerlike dynamics and stress heterogeneity in ultrathin Cu-Zr glassy films, which facilitates the occurrence of multistep relaxations in the timescale of computer simulations. Taking advantage of this condition, we trace the relaxation decoupling and evolution with temperature simply via the intermediate scattering function. We show that the β relaxation hierarchically follows fast and slow modes in films, and there is a β -relaxation transition as the film is cooled close to the glass transition. We provide the direct observation of particle motions responsible for the β relaxation and reveal the dominant mechanism varying from the thermal activated to the cooperative jumps across the transition.

  10. Electrical transport of spin-polarized carriers in disordered ultrathin films.

    PubMed

    Hernandez, L M; Bhattacharya, A; Parendo, Kevin A; Goldman, A M

    2003-09-19

    Slow, nonexponential relaxation of electrical transport accompanied by memory effects has been induced in quench-condensed ultrathin amorphous Bi films by the application of a parallel magnetic field. This behavior, which is very similar to space-charge limited current flow, is found in extremely thin films well on the insulating side of the thickness-tuned superconductor-insulator transition. It may be the signature of a collective state that forms when the carriers are spin polarized at low temperatures and in high magnetic fields.

  11. Archetypal structure of ultrathin alumina films: Grazing-incidence x-ray diffraction on Ni(111)

    NASA Astrophysics Data System (ADS)

    Prévot, G.; Le Moal, S.; Bernard, R.; Croset, B.; Lazzari, R.; Schmaus, D.

    2012-05-01

    We have studied by grazing-incidence x-ray diffraction the atomic structure of an ultrathin alumina film grown on Ni(111). We show that, since there is neither registry between the film and the substrate nor induced Ni relaxations, this system appears to be a prototypical freestanding oxide layer. We have been able to unambiguously determine the three-dimensional structure of the film, which consists of a substrate/Al16/O24/Al24/O28 stacking within a (18.23 × 10.53 Å) R0° unit cell. From the different Al coordinations (3/4/5) in the layer and from the precise determination of the Al-O interatomic distances, we conclude that the film structure presents some similarities with the η phase of bulk alumina, which also has a high surface/bulk ratio. The precise comparison between these two structures allows us to explain that the perfect 3 ratio between the two sides of the mesh of the film is governed by the stacking of the two central planes, combining oxygen close-packed atoms below Al atoms in tetrahedral or pyramidal positions. Moreover, Al atoms at the interface plane of the ultrathin film adopt a quasitrihedral configuration, which confirms that, in the alumina η phase, Al atoms with such a coordination are located near the surface of the nanocrystals. The atomic structure is also very close to the one first proposed by Kresse [G. Kresse, M. Schmid, E. Napetschnig, M. Shishkin, L. Köhler, and P. Varga, ScienceSCIEAS0036-807510.1126/science.1107783 308, 1440 (2005)] for alumina films on NiAl(110). This strongly suggests that this atomic model, within small variations, can be extended to ultrathin alumina film on numerous other metal substrates and may be quasi-intrinsic to a freestanding layer rather than governed by the interactions between the film and the substrate.

  12. Ultrathin pyrolytic carbon films on a magnetic substrate

    NASA Astrophysics Data System (ADS)

    Umair, Ahmad; Raza, Tehseen Z.; Raza, Hassan

    2016-07-01

    We report the growth of ultrathin pyrolytic carbon (PyC) films on nickel substrate by using chemical vapor deposition at 1000 °C under methane ambience. We find that the ultra-fast cooling is crucial for PyC film uniformity by controlling the segregation of carbon on nickel. We characterize the in-plane crystal size of the PyC film by using Raman spectroscopy. The Raman peaks at ˜1354 and ˜1584 cm-1 wavenumbers are used to extract the D and G bands. The corresponding peak intensities are then used in an excitation energy dependent equation to calculate the in-plane crystal size. Using Raman area mapping, the mean value of in-plane crystal size over an area of 100 μm × 100 μm is about 22.9 nm with a standard deviation of about 2.4 nm.

  13. Modeling the mechanical properties of ultra-thin polymer films [Structural modeling of films of atomic scale thickness

    DOE PAGES

    Espinosa-Loza, Francisco; Stadermann, Michael; Aracne-Ruddle, Chantel; ...

    2017-11-16

    A modeling method to extract the mechanical properties of ultra-thin films (10–100 nm thick) from experimental data generated by indentation of freestanding circular films using a spherical indenter is presented. The relationship between the mechanical properties of the film and experimental parameters including load, and deflection are discussed in the context of a constitutive material model, test variables, and analytical approaches. As a result, elastic and plastic regimes are identified by comparison of finite element simulation and experimental data.

  14. Modeling the mechanical properties of ultra-thin polymer films [Structural modeling of films of atomic scale thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espinosa-Loza, Francisco; Stadermann, Michael; Aracne-Ruddle, Chantel

    A modeling method to extract the mechanical properties of ultra-thin films (10–100 nm thick) from experimental data generated by indentation of freestanding circular films using a spherical indenter is presented. The relationship between the mechanical properties of the film and experimental parameters including load, and deflection are discussed in the context of a constitutive material model, test variables, and analytical approaches. As a result, elastic and plastic regimes are identified by comparison of finite element simulation and experimental data.

  15. Ultrathin free-standing graphene oxide film based flexible touchless sensor

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Wang, Yingyi; Li, Guanghui; Qin, Sujie; Zhang, Ting

    2018-01-01

    Ultrathin free-standing graphene oxide (GO) films were fabricated by vacuum filtration method assisted with Ni(OH)2 nanosheets as the sacrifice layer. The surface of the obtained GO film is very clean as the Ni(OH)2 nanosheets can be thoroughly etched by HCl. The thickness of the GO films can be well-controlled by changing the volume of GO dispersion, and the thinnest GO film reached ~12 nm. As a novel and transparent dielectric material, the GO film has been applied as the dielectric layer for the flexible touchless capacitive sensor which can effectively distinguish the approaching of an insulator or a conductor. Project supported by the National Natural Science Foundation of China (No. 61574163) and the Foundation Research Project of Jiangsu Province (Nos. BK20160392, BK20170008).

  16. Transparent 'solution' of ultrathin magnesium hydroxide nanocrystals for flexible and transparent nanocomposite films.

    PubMed

    Wang, Jie-Xin; Sun, Qian; Chen, Bo; Wu, Xi; Zeng, Xiao-Fei; Zhang, Cong; Zou, Hai-Kui; Chen, Jian-Feng

    2015-05-15

    Transparent solutions of nanocrystals exhibit many unique properties, and are thus attractive materials for numerous applications. However, the synthesis of transparent nanocrystal solutions of magnesium hydroxide (MH) with wide applications is yet to be realized. Here, we report a facile two-step process, which includes a direct reactive precipitation in alcohol phase instead of aqueous phase combined with a successive surface modification, to prepare transparent alcohol solutions containing lamellar MH nanocrystals with an average size of 52 nm and an ultrathin thickness of 1-2 nm, which is the thinnest MH nanoplatelet reported in the literatures. Further, highly flexible and transparent nanocomposite films are fabricated with a solution mixing method by adding the transparent MH nanocrystal solutions into PVB solution. Considering the simplicity of the fabrication process, high transparency and good flexibility, this MH/polymer nanocomposite film is promising for flame-resistant applications in plastic electronics and optical devices with high transparency, such as flexible displays, optical filters, and flexible solar cells.

  17. Single crystalline silicene consist of various superstructures using a flexible ultrathin Ag(111) template on Si(111)

    NASA Astrophysics Data System (ADS)

    Hsu, Hung-Chang; Lu, Yi-Hung; Su, Tai-Lung; Lin, Wen-Chin; Fu, Tsu-Yi

    2018-07-01

    Using scanning tunneling microscopy, we studied the formation of silicene on an ultrathin Ag(111) film with a thickness of 6–12 monolayers, which was prepared on a Si(111) substrate. A low-energy electron diffraction pattern with an oval spot indicated that the ultrathin Ag(111) film is more disordered than the single-crystal Ag(111). After Si epitaxy growth, we still measured the classical 4 × 4, √13 × √13, and 2√3 × 2√3 silicene superstructures, which are the same as the silicene superstructure on single-crystal Ag(111). Growing silicene on a single-crystal Ag(111) bulk usually results in the formation of a defect boundary due to the inconsistent orientation of various superstructures. By comparing the angles and boundary conditions between various silicene superstructures on the ultrathin film and single-crystal Ag(111), we discovered that a consistent orientation of various superstructures without obvious boundary defects formed on the ultrathin Ag(111) film. The results indicated single crystalline silicene formation, which was attributed to the domain rotation and lateral shift of the disordered ultrathin Ag(111) film.

  18. Magnetic and structural characterization of ultra-thin Fe (222) films

    NASA Astrophysics Data System (ADS)

    Loving, Melissa G.; Brown, Emily E.; Rizzo, Nicholas D.; Ambrose, Thomas F.

    2018-05-01

    Varied thickness body centered cubic (BCC) ultrathin Fe films (10-50Å) have been sputter deposited onto Si (111) substrates. BCC Fe with the novel (222) texture was obtained by H- terminating the Si (111) starting substrate then immediately depositing the magnetic films. Structural results derived from grazing incidence x-ray diffraction and x-ray reflectivity confirm the crystallographic texture, film thickness, and interface roughness. Magnetic results indicate that Fe (222) exhibits soft magnetic switching (easy axis), high anisotropy (hard axis), which is maintained across the thickness range, and a positive magnetostriction (for the thicker film layers). The observed soft magnetic switching in this system makes it an ideal candidate for future magnetic memory development as well as other microelectronics applications that utilize magnetic materials.

  19. Exploitation of a Self-limiting Process for Reproducible Formation of Ultrathin Ni(1-x)Pt(x) Silicide Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Z Zhang; B Yang; Y Zhu

    This letter reports on a process scheme to obtain highly reproducible Ni{sub 1-x}Pt{sub x} silicide films of 3-6 nm thickness formed on a Si(100) substrate. Such ultrathin silicide films are readily attained by sputter deposition of metal films, metal stripping in wet chemicals, and final silicidation by rapid thermal processing. This process sequence warrants an invariant amount of metal intermixed with Si in the substrate surface region independent of the initial metal thickness, thereby leading to a self-limiting formation of ultrathin silicide films. The crystallographic structure, thickness, uniformity, and morphological stability of the final silicide films depend sensitively on themore » initial Pt fraction.« less

  20. Understanding Metal-Insulator transitions in ultra-thin films of LaNiO3

    NASA Astrophysics Data System (ADS)

    Ravichandran, Jayakanth; King, Philip D. C.; Schlom, Darrell G.; Shen, Kyle M.; Kim, Philip

    2014-03-01

    LaNiO3 (LNO) is a bulk paramagnetic metal and a member of the family of RENiO3 Nickelates (RE = Rare Earth Metals), which is on the verge of the metal-insulator transition. Ultra-thin films of LNO has been studied extensively in the past and due to its sensitivity to disorder, the true nature of the metal-insulator transition in these films have been hard to decipher. We grow high quality ultra-thin films of LNO using reactive molecular beam epitaxy (MBE) and use a combination of ionic liquid gating and magneto-transport measurements to understand the nature and tunability of metal-insulator transition as a function of thickness for LNO. The underlying mechanisms for the transition are discussed in the framework of standard transport models. These results are discussed in the light of other Mott insulators such as Sr2IrO4, where we have performed similar measurements around the insulating state.

  1. Structural phase diagram for ultra-thin epitaxial Fe 3O 4 / MgO(0 01) films: thickness and oxygen pressure dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alraddadi, S.; Hines, W.; Yilmaz, T.

    2016-02-19

    A systematic investigation of the thickness and oxygen pressure dependence for the structural properties of ultra-thin epitaxial magnetite (Fe 3O 4) films has been carried out; for such films, the structural properties generally differ from those for the bulk when the thickness ≤10 nm. Iron oxide ultra-thin films with thicknesses varying from 3 nm to 20 nm were grown on MgO (001) substrates using molecular beam epitaxy under different oxygen pressures ranging from 1 × 10 -7 torr to 1 × 10 -5 torr. The crystallographic and electronic structures of the films were characterized using low energy electron diffraction (LEED)more » and x-ray photoemission spectroscopy (XPS), respectively. Moreover, the quality of the epitaxial Fe 3O 4 ultra-thin films was judged by magnetic measurements of the Verwey transition, along with complementary XPS spectra. We observed that under the same growth conditions the stoichiometry of ultra-thin films under 10 nm transforms from the Fe 3O 4 phase to the FeO phase. In this work, a phase diagram based on thickness and oxygen pressure has been constructed to explain the structural phase transformation. It was found that high-quality magnetite films with thicknesses ≤20 nm formed within a narrow range of oxygen pressure. An optimal and controlled growth process is a crucial requirement for the accurate study of the magnetic and electronic properties for ultra-thin Fe 3O 4 films. Furthermore, these results are significant because they may indicate a general trend in the growth of other oxide films, which has not been previously observed or considered.« less

  2. Coexistence of colossal stress and texture gradients in sputter deposited nanocrystalline ultra-thin metal films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuru, Yener; Welzel, Udo; Mittemeijer, Eric J.

    2014-12-01

    This paper demonstrates experimentally that ultra-thin, nanocrystalline films can exhibit coexisting colossal stress and texture depth gradients. Their quantitative determination is possible by X-ray diffraction experiments. Whereas a uniform texture by itself is known to generally cause curvature in so-called sin{sup 2}ψ plots, it is shown that the combined action of texture and stress gradients provides a separate source of curvature in sin{sup 2}ψ plots (i.e., even in cases where a uniform texture does not induce such curvature). On this basis, the texture and stress depth profiles of a nanocrystalline, ultra-thin (50 nm) tungsten film could be determined.

  3. The influence of the surface parameter changes onto the phonon states in ultrathin crystalline films

    NASA Astrophysics Data System (ADS)

    Šetrajčić, Jovan P.; Ilić, Dušan I.; Jaćimovski, Stevo K.

    2018-04-01

    In this paper, we have analytically investigated how the changes in boundary surface parameters influence the phonon dispersion law in ultrathin films of the simple cubic crystalline structure. Spectra of possible phonon states are analyzed using the method of two-time dependent Green's functions and for the diverse combination of boundary surface parameters, this problem was presented numerically and graphically. It turns out that for certain values and combinations of parameters, displacement of dispersion branches outside of bulk zone occurs, leading to the creation of localized phonon states. This fact is of great importance for the heat removal, electrical conductivity and superconducting properties of ultrathin films.

  4. Precisely Controlled Ultrathin Conjugated Polymer Films for Large Area Transparent Transistors and Highly Sensitive Chemical Sensors.

    PubMed

    Khim, Dongyoon; Ryu, Gi-Seong; Park, Won-Tae; Kim, Hyunchul; Lee, Myungwon; Noh, Yong-Young

    2016-04-13

    A uniform ultrathin polymer film is deposited over a large area with molecularlevel precision by the simple wire-wound bar-coating method. The bar-coated ultrathin films not only exhibit high transparency of up to 90% in the visible wavelength range but also high charge carrier mobility with a high degree of percolation through the uniformly covered polymer nanofibrils. They are capable of realizing highly sensitive multigas sensors and represent the first successful report of ethylene detection using a sensor based on organic field-effect transistors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Electron transport in ultra-thin films and ballistic electron emission microscopy

    NASA Astrophysics Data System (ADS)

    Claveau, Y.; Di Matteo, S.; de Andres, P. L.; Flores, F.

    2017-03-01

    We have developed a calculation scheme for the elastic electron current in ultra-thin epitaxial heterostructures. Our model uses a Keldysh’s non-equilibrium Green’s function formalism and a layer-by-layer construction of the epitaxial film. Such an approach is appropriate to describe the current in a ballistic electron emission microscope (BEEM) where the metal base layer is ultra-thin and generalizes a previous one based on a decimation technique appropriated for thick slabs. This formalism allows a full quantum mechanical description of the transmission across the epitaxial heterostructure interface, including multiple scattering via the Dyson equation, which is deemed a crucial ingredient to describe interfaces of ultra-thin layers properly in the future. We introduce a theoretical formulation needed for ultra-thin layers and we compare with results obtained for thick Au(1 1 1) metal layers. An interesting effect takes place for a width of about ten layers: a BEEM current can propagate via the center of the reciprocal space (\\overlineΓ ) along the Au(1 1 1) direction. We associate this current to a coherent interference finite-width effect that cannot be found using a decimation technique. Finally, we have tested the validity of the handy semiclassical formalism to describe the BEEM current.

  6. Novel self-organization mechanism in ultrathin liquid films: theory and experiment.

    PubMed

    Trice, Justin; Favazza, Christopher; Thomas, Dennis; Garcia, Hernando; Kalyanaraman, Ramki; Sureshkumar, Radhakrishna

    2008-07-04

    When an ultrathin metal film of thickness h (<20 nm) is melted by a nanosecond pulsed laser, the film temperature is a nonmonotonic function of h and achieves its maximum at a certain thickness h*. This is a consequence of the h and time dependence of energy absorption and heat flow. Linear stability analysis and nonlinear dynamical simulations that incorporate such intrinsic interfacial thermal gradients predict a characteristic pattern length scale Lambda that decreases for h>h*, in contrast to the classical spinodal dewetting behavior where Lambda increases monotonically as h2. These predictions agree well with experimental observations for Co and Fe films on SiO2.

  7. Ion-beam mixed ultra-thin cobalt suicide (CoSi2) films by cobalt sputtering and rapid thermal annealing

    NASA Astrophysics Data System (ADS)

    Kal, S.; Kasko, I.; Ryssel, H.

    1995-10-01

    The influence of ion-beam mixing on ultra-thin cobalt silicide (CoSi2) formation was investigated by characterizing the ion-beam mixed and unmixed CoSi2 films. A Ge+ ion-implantation through the Co film prior to silicidation causes an interface mixing of the cobalt film with the silicon substrate and results in improved silicide-to-silicon interface roughness. Rapid thermal annealing was used to form Ge+ ion mixed and unmixed thin CoSi2 layer from 10 nm sputter deposited Co film. The silicide films were characterized by secondary neutral mass spectroscopy, x-ray diffraction, tunneling electron microscopy (TEM), Rutherford backscattering, and sheet resistance measurements. The experi-mental results indicate that the final rapid thermal annealing temperature should not exceed 800°C for thin (<50 nm) CoSi2 preparation. A comparison of the plan-view and cross-section TEM micrographs of the ion-beam mixed and unmixed CoSi2 films reveals that Ge+ ion mixing (45 keV, 1 × 1015 cm-2) produces homogeneous silicide with smooth silicide-to-silicon interface.

  8. Optimization of ion-atomic beam source for deposition of GaN ultrathin films.

    PubMed

    Mach, Jindřich; Šamořil, Tomáš; Kolíbal, Miroslav; Zlámal, Jakub; Voborny, Stanislav; Bartošík, Miroslav; Šikola, Tomáš

    2014-08-01

    We describe the optimization and application of an ion-atomic beam source for ion-beam-assisted deposition of ultrathin films in ultrahigh vacuum. The device combines an effusion cell and electron-impact ion beam source to produce ultra-low energy (20-200 eV) ion beams and thermal atomic beams simultaneously. The source was equipped with a focusing system of electrostatic electrodes increasing the maximum nitrogen ion current density in the beam of a diameter of ≈15 mm by one order of magnitude (j ≈ 1000 nA/cm(2)). Hence, a successful growth of GaN ultrathin films on Si(111) 7 × 7 substrate surfaces at reasonable times and temperatures significantly lower (RT, 300 °C) than in conventional metalorganic chemical vapor deposition technologies (≈1000 °C) was achieved. The chemical composition of these films was characterized in situ by X-ray Photoelectron Spectroscopy and morphology ex situ using Scanning Electron Microscopy. It has been shown that the morphology of GaN layers strongly depends on the relative Ga-N bond concentration in the layers.

  9. Development of an ultra-thin film comprised of a graphene membrane and carbon nanotube vein support.

    PubMed

    Lin, Xiaoyang; Liu, Peng; Wei, Yang; Li, Qunqing; Wang, Jiaping; Wu, Yang; Feng, Chen; Zhang, Lina; Fan, Shoushan; Jiang, Kaili

    2013-01-01

    Graphene, exhibiting superior mechanical, thermal, optical and electronic properties, has attracted great interest. Considering it being one-atom-thick, and the reduced mechanical strength at grain boundaries, the fabrication of large-area suspended chemical vapour deposition graphene remains a challenge. Here we report the fabrication of an ultra-thin free-standing carbon nanotube/graphene hybrid film, inspired by the vein-membrane structure found in nature. Such a square-centimetre-sized hybrid film can realize the overlaying of large-area single-layer chemical vapour deposition graphene on to a porous vein-like carbon nanotube network. The vein-membrane-like hybrid film, with graphene suspended on the carbon nanotube meshes, possesses excellent mechanical performance, optical transparency and good electrical conductivity. The ultra-thin hybrid film features an electron transparency close to 90%, which makes it an ideal gate electrode in vacuum electronics and a high-performance sample support in transmission electron microscopy.

  10. FABRICATION AND OPTOELECTRONIC PROPERTIES OF MgxZn1-xO ULTRATHIN FILMS BY LANGMUIR-BLODGETT TECHNOLOGY

    NASA Astrophysics Data System (ADS)

    Tang, Dongyan; Feng, Qian; Jiang, Enying; He, Baozhu

    2012-08-01

    By transferring MgxZn1-xO sol and stearic acid onto a hydrophilic silicon wafer or glass plate, the Langmuir-Blodgett (LB) multilayers of MgxZn1-xO (x:0, 0.2, 0.4) were deposited. After calcinations at 350°C for 0.5 h and at 500°C for 3 h, MgxZn1-xO ultrathin films were fabricated. The optimized parameters for monolayer formation and multilayer deposition were determined by the surface pressure-surface (Π-A) area and the transfer coefficient, respectively. The expended areas of stearic acid with MgxZn1-xO sols under Π-A isotherms inferred the interaction of stearic acid with MgxZn1-xO sols during the formation of monolayer at air-water interface. X-ray diffraction (XRD) was used to determine the crystal structures of MgxZn1-xO nanoparticles and ultrathin films. The surface morphologies of MgxZn1-xO ultrathin films were observed by scanning probe microscopy (AFM). And the optoelectronic properties of MgxZn1-xO were detected and discussed based on photoluminescence (PL) spectra.

  11. "Un-annealed and Annealed Pd Ultra-Thin Film on SiC Characterized by Scanning Probe Microscopy and X-ray Photoelectron Spectroscopy"

    NASA Technical Reports Server (NTRS)

    Lu, W. J.; Shi, D. T.; Elshot, K.; Bryant, E.; Lafate, K.; Chen, H.; Burger, A.; Collins, W. E.

    1998-01-01

    Pd/SiC has been used as a hydrogen and a hydrocarbon gas sensor operated at high temperature. UHV (Ultra High Vacuum)-Scanning Tunneling Microscopy (STM), Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS) techniques were applied to study the relationship between the morphology and chemical compositions for Pd ultra-thin films on SiC (less than 30 angstroms) at different annealing temperatures. Pd ultra-thin film on 6H-SiC was prepared by the RF sputtering method. The morphology from UHV-STM and AFM shows that the Pd thin film was well deposited on SiC substrate, and the Pd was partially aggregated to round shaped participates at an annealing temperature of 300 C. At 400 C, the amount of surface participates decreases, and some strap shape participates appear. From XPS, Pd2Si was formed on the surface after annealing at 300 C, and all Pd reacted with SiC to form Pd2Si after annealing at 400 C. The intensity of the XPS Pd peak decreases enormously at 400 C. The Pd film diffused into SiC, and the Schottky barrier height has almost no changes. The work shows the Pd sicilides/SiC have the same electronic properties with Pd/SiC, and explains why the Pd/SiC sensor still responds to hydrogen at high operating temperatures.

  12. Spin accumulation in disordered topological insulator ultrathin films

    NASA Astrophysics Data System (ADS)

    Siu, Zhuo Bin; Ho, Cong Son; Tan, Seng Ghee; Jalil, Mansoor B. A.

    2017-08-01

    Topological insulator (TI) ultrathin films differ from the more commonly studied semi-infinite bulk TIs in that the former possess both top and bottom surfaces where the surface states localized at different surfaces can couple to one another across the finite thickness of the film. In the presence of an in-plane magnetization, the TI thin films display two distinct phases depending on which of the inter-surface coupling or the magnetization is stronger. In this work, we consider a Bi2Se3 TI thin film system with an in-plane magnetization and numerically calculate the resulting spin accumulation on both surfaces of the film due to an in-plane electric field to linear order. We describe a numerical scheme for performing the Kubo formula calculation in which we include impurity scattering and vertex corrections. We find that the sums of the spin accumulation over the two surfaces in the in-plane direction perpendicular to the magnetization and in the out of plane direction are antisymmetric in Fermi energy around the charge neutrality point and are non-vanishing only when the symmetry between the top and bottom TI surfaces is broken. The impurity scattering, in general, diminishes the magnitude of the spin accumulation.

  13. Chitosan-based ultrathin films as antifouling, anticoagulant and antibacterial protective coatings.

    PubMed

    Bulwan, Maria; Wójcik, Kinga; Zapotoczny, Szczepan; Nowakowska, Maria

    2012-01-01

    Ultrathin antifouling and antibacterial protective nanocoatings were prepared from ionic derivatives of chitosan using layer-by-layer deposition methodology. The surfaces of silicon, and glass protected by these nanocoatings were resistant to non-specific adsorption of proteins disregarding their net charges at physiological conditions (positively charged TGF-β1 growth factor and negatively charged bovine serum albumin) as well as human plasma components. The coatings also preserved surfaces from the formation of bacterial (Staphylococcus aureus) biofilm as shown using microscopic studies (SEM, AFM) and the MTT viability test. Moreover, the chitosan-based films adsorbed onto glass surface demonstrated the anticoagulant activity towards the human blood. The antifouling and antibacterial actions of the coatings were correlated with their physicochemical properties. The studied biologically relevant properties were also found to be dependent on the thickness of those nanocoatings. These materials are promising for biomedical applications, e.g., as protective coatings for medical devices, anticoagulant coatings and protective layers in membranes.

  14. Conformal surface plasmons propagating on ultrathin and flexible films

    PubMed Central

    Shen, Xiaopeng; Cui, Tie Jun; Martin-Cano, Diego; Garcia-Vidal, Francisco J.

    2013-01-01

    Surface plasmon polaritons (SPPs) are localized surface electromagnetic waves that propagate along the interface between a metal and a dielectric. Owing to their inherent subwavelength confinement, SPPs have a strong potential to become building blocks of a type of photonic circuitry built up on 2D metal surfaces; however, SPPs are difficult to control on curved surfaces conformably and flexibly to produce advanced functional devices. Here we propose the concept of conformal surface plasmons (CSPs), surface plasmon waves that can propagate on ultrathin and flexible films to long distances in a wide broadband range from microwave to mid-infrared frequencies. We present the experimental realization of these CSPs in the microwave regime on paper-like dielectric films with a thickness 600-fold smaller than the operating wavelength. The flexible paper-like films can be bent, folded, and even twisted to mold the flow of CSPs. PMID:23248311

  15. Fabrication of ultrathin film capacitors by chemical solution deposition

    DOE PAGES

    Brennecka, Geoff L.; Tuttle, Bruce A.

    2007-10-01

    We present that a facile solution-based processing route using standard spin-coating deposition techniques has been developed for the production of reliable capacitors based on lead lanthanum zirconate titanate (PLZT) with active areas of ≥1 mm 2 and dielectric layer thicknesses down to 50 nm. With careful control of the dielectric phase development through improved processing, ultrathin capacitors exhibited slim ferroelectric hysteresis loops and dielectric constants of >1000, similar to those of much thicker films. Furthermore, it has been demonstrated that chemical solution deposition is a viable route to the production of capacitor films which are as thin as 50 nmmore » but are still macroscopically addressable with specific capacitance values >160 nF/mm 2.« less

  16. Effect of nanoconfinement on the sputter yield in ultrathin polymeric films: Experiments and model

    NASA Astrophysics Data System (ADS)

    Cristaudo, Vanina; Poleunis, Claude; Delcorte, Arnaud

    2018-06-01

    This fundamental contribution on secondary ion mass spectrometry (SIMS) polymer depth-profiling by large argon clusters investigates the dependence of the sputter yield volume (Y) on the thickness (d) of ultrathin films as a function of the substrate nature, i.e. hard vs soft. For this purpose, thin films of polystyrene (PS) oligomers (∼4,000 amu) are spin-coated, respectively, onto silicon and poly (methyl methacrylate) supports and, then, bombarded by 10 keV Ar3000+ ions. The investigated thickness ranges from 15 to 230 nm. Additionally, the influence of the polymer molecular weight on Y(d) for PS thin films on Si is explored. The sputtering efficiency is found to be strongly dependent on the overlayer thickness, only in the case of the silicon substrate. A simple phenomenological model is proposed for the description of the thickness influence on the sputtering yield. Molecular dynamics (MD) simulations conducted on amorphous films of polyethylene-like oligomers of increasing thickness (from 2 to 20 nm), under comparable cluster bombardment conditions, predict a significant increase of the sputtering yield for ultrathin layers on hard substrates, induced by energy confinement in the polymer, and support our phenomenological model.

  17. Polarity compensation in ultra-thin films of complex oxides: The case of a perovskite nickelate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middey, S.; Rivero, P.; Meyers, D.

    2014-10-29

    In this study, we address the fundamental issue of growth of perovskite ultra-thin films under the condition of a strong polar mismatch at the heterointerface exemplified by the growth of a correlated metal LaNiO 3 on the band insulator SrTiO 3 along the pseudo cubic [111] direction. While in general the metallic LaNiO 3 film can effectively screen this polarity mismatch, we establish that in the ultra-thin limit, films are insulating in nature and require additional chemical and structural reconstruction to compensate for such mismatch. A combination of in-situ reflection high-energy electron diffraction recorded during the growth, X-ray diffraction, andmore » synchrotron based resonant X-ray spectroscopy reveal the formation of a chemical phase La 2Ni 2O 5 (Ni 2+) for a few unit-cell thick films. First-principles layer-resolved calculations of the potential energy across the nominal LaNiO 3/SrTiO 3 interface confirm that the oxygen vacancies can efficiently reduce the electric field at the interface.« less

  18. Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings

    NASA Astrophysics Data System (ADS)

    Li, Zhongyang; Palacios, Edgar; Butun, Serkan; Kocer, Hasan; Aydin, Koray

    2015-10-01

    Resonant absorbers based on nanostructured materials are promising for variety of applications including optical filters, thermophotovoltaics, thermal emitters, and hot-electron collection. One of the significant challenges for such micro/nanoscale featured medium or surface, however, is costly lithographic processes for structural patterning which restricted from industrial production of complex designs. Here, we demonstrate lithography-free, broadband, polarization-independent optical absorbers based on a three-layer ultrathin film composed of subwavelength chromium (Cr) and oxide film coatings. We have measured almost perfect absorption as high as 99.5% across the entire visible regime and beyond (400-800 nm). In addition to near-ideal absorption, our absorbers exhibit omnidirectional independence for incidence angle over ±60 degrees. Broadband absorbers introduced in this study perform better than nanostructured plasmonic absorber counterparts in terms of bandwidth, polarization and angle independence. Improvements of such “blackbody” samples based on uniform thin-film coatings is attributed to extremely low quality factor of asymmetric highly-lossy Fabry-Perot cavities. Such broadband absorber designs are ultrathin compared to carbon nanotube based black materials, and does not require lithographic processes. This demonstration redirects the broadband super absorber design to extreme simplicity, higher performance and cost effective manufacturing convenience for practical industrial production.

  19. Tunable magnetic properties by interfacial manipulation of L1(0)-FePt perpendicular ultrathin film with island-like structures.

    PubMed

    Feng, C; Wang, S G; Yang, M Y; Zhang, E; Zhan, Q; Jiang, Y; Li, B H; Yu, G H

    2012-02-01

    Based on interfacial manipulation of the MgO single crystal substrate and non-magnetic AIN compound, a L1(0)-FePt perpendicular ultrathin film with the structure of MgO/FePt-AIN/Ta was designed, prepared, and investigated. The film is comprised of L1(0)-FePt "magnetic islands," which exhibits a perpendicular magnetic anisotropy (PMA), tunable coercivity (Hc), and interparticle exchange coupling (IEC). The MgO substrate promotes PMA of the film because of interfacial control of the FePt lattice orientation. The AIN compound is doped to increase the difference of surface energy between FePt layer and MgO substrate and to suppress the growth of FePt grains, which takes control of island growth mode of FePt atoms. The AIN compound also acts as isolator of L1(0)-FePt islands to pin the sites of FePt domains, resulting in the tunability of Hc and IEC of the films.

  20. Electronic-Reconstruction-Enhanced Tunneling Conductance at Terrace Edges of Ultrathin Oxide Films.

    PubMed

    Wang, Lingfei; Kim, Rokyeon; Kim, Yoonkoo; Kim, Choong H; Hwang, Sangwoon; Cho, Myung Rae; Shin, Yeong Jae; Das, Saikat; Kim, Jeong Rae; Kalinin, Sergei V; Kim, Miyoung; Yang, Sang Mo; Noh, Tae Won

    2017-11-01

    Quantum mechanical tunneling of electrons across ultrathin insulating oxide barriers has been studied extensively for decades due to its great potential in electronic-device applications. In the few-nanometers-thick epitaxial oxide films, atomic-scale structural imperfections, such as the ubiquitously existed one-unit-cell-high terrace edges, can dramatically affect the tunneling probability and device performance. However, the underlying physics has not been investigated adequately. Here, taking ultrathin BaTiO 3 films as a model system, an intrinsic tunneling-conductance enhancement is reported near the terrace edges. Scanning-probe-microscopy results demonstrate the existence of highly conductive regions (tens of nanometers wide) near the terrace edges. First-principles calculations suggest that the terrace-edge geometry can trigger an electronic reconstruction, which reduces the effective tunneling barrier width locally. Furthermore, such tunneling-conductance enhancement can be discovered in other transition metal oxides and controlled by surface-termination engineering. The controllable electronic reconstruction can facilitate the implementation of oxide electronic devices and discovery of exotic low-dimensional quantum phases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Fabrication of ultrathin MIL-96(Al) films and study of CO2 adsorption/desorption processes using quartz crystal microbalance.

    PubMed

    Andrés, Miguel A; Benzaqui, M; Serre, C; Steunou, N; Gascón, I

    2018-06-01

    This contribution reports the fabrication and characterization of ultrathin films of nanoparticles of the water stable microporous Al tricarboxylate metal organic framework MIL-96(Al). The preparation of MOF dispersions in chloroform has been optimized to obtain dense monolayer films of good quality, without nanoparticle agglomeration, at the air-water interface that can be deposited onto solid substrates of different nature without any previous substrate functionalization. The MOF studied shows great interest for CO 2 capture because it presents Al 3+ Lewis centers and hydroxyl groups that strongly interact with CO 2 molecules. A comparative CO 2 adsorption study on drop-cast, Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS) films using a Quartz Crystal Microbalance-based setup (QCM) has revealed that the CO 2 uptake depends strongly on the film fabrication procedure and the storage conditions. Noteworthy the CO 2 adsorption capacity of LB films is increased by 30% using a simple and green treatment (immersion of the film into water during 12 h just after film preparation). Finally, the stability of LB MOF monolayers upon several CO 2 adsorption/desorption cycles has been demonstrated, showing that CO 2 can be easily desorbed from the films at 303 K by flowing an inert gas (He). These results show that MOF LB monolayers can be of great interest for the development of MOF-based devices that require the use of very small MOF quantities, especially gas sensors. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Surface Acoustic Wave Monitor for Deposition and Analysis of Ultra-Thin Films

    NASA Technical Reports Server (NTRS)

    Hines, Jacqueline H. (Inventor)

    2015-01-01

    A surface acoustic wave (SAW) based thin film deposition monitor device and system for monitoring the deposition of ultra-thin films and nanomaterials and the analysis thereof is characterized by acoustic wave device embodiments that include differential delay line device designs, and which can optionally have integral reference devices fabricated on the same substrate as the sensing device, or on a separate device in thermal contact with the film monitoring/analysis device, in order to provide inherently temperature compensated measurements. These deposition monitor and analysis devices can include inherent temperature compensation, higher sensitivity to surface interactions than quartz crystal microbalance (QCM) devices, and the ability to operate at extreme temperatures.

  3. Electric field effect on exchange interaction in ultrathin Co films with ionic liquids

    NASA Astrophysics Data System (ADS)

    Ishibashi, Mio; Yamada, Kihiro T.; Shiota, Yoichi; Ando, Fuyuki; Koyama, Tomohiro; Kakizakai, Haruka; Mizuno, Hayato; Miwa, Kazumoto; Ono, Shimpei; Moriyama, Takahiro; Chiba, Daichi; Ono, Teruo

    2018-06-01

    Electric-field modulations of magnetic properties have been extensively studied not only for practical applications but also for fundamental interest. In this study, we investigated the electric field effect on the exchange interaction in ultrathin Co films with ionic liquids. The exchange coupling J was characterized from the direct magnetization measurement as a function of temperature using Pt/ultrathin Co/MgO structures. The trend of the electric field effect on J is in good agreement with that of the theoretical prediction, and a large change in J by applying a gate voltage was observed by forming an electric double layer using ionic liquids.

  4. Theoretical requirements for broadband perfect absorption of acoustic waves by ultra-thin elastic meta-films

    PubMed Central

    Duan, Yuetao; Luo, Jie; Wang, Guanghao; Hang, Zhi Hong; Hou, Bo; Li, Jensen; Sheng, Ping; Lai, Yun

    2015-01-01

    We derive and numerically demonstrate that perfect absorption of elastic waves can be achieved in two types of ultra-thin elastic meta-films: one requires a large value of almost pure imaginary effective mass density and a free space boundary, while the other requires a small value of almost pure imaginary effective modulus and a hard wall boundary. When the pure imaginary density or modulus exhibits certain frequency dispersions, the perfect absorption effect becomes broadband, even in the low frequency regime. Through a model analysis, we find that such almost pure imaginary effective mass density with required dispersion for perfect absorption can be achieved by elastic metamaterials with large damping. Our work provides a feasible approach to realize broadband perfect absorption of elastic waves in ultra-thin films. PMID:26184117

  5. Temporally and Spatially Resolved Plasma Spectroscopy in Pulsed Laser Deposition of Ultra-Thin Boron Nitride Films (Postprint)

    DTIC Science & Technology

    2015-04-24

    AFRL-RX-WP-JA-2016-0196 TEMPORALLY AND SPATIALLY RESOLVED PLASMA SPECTROSCOPY IN PULSED LASER DEPOSITION OF ULTRA-THIN BORON NITRIDE...AND SPATIALLY RESOLVED PLASMA SPECTROSCOPY IN PULSED LASER DEPOSITION OF ULTRA-THIN BORON NITRIDE FILMS (POSTPRINT) 5a. CONTRACT NUMBER FA8650...distributions within a PVD plasma plume ablated from a boron nitride (BN) target by a KrF laser at different pressures of nitrogen gas were investigated

  6. Naturally formed ultrathin V2O5 heteroepitaxial layer on VO2/sapphire(001) film

    NASA Astrophysics Data System (ADS)

    Littlejohn, Aaron J.; Yang, Yunbo; Lu, Zonghuan; Shin, Eunsung; Pan, KuanChang; Subramanyam, Guru; Vasilyev, Vladimir; Leedy, Kevin; Quach, Tony; Lu, Toh-Ming; Wang, Gwo-Ching

    2017-10-01

    Vanadium dioxide (VO2) and vanadium pentoxide (V2O5) thin films change their properties in response to external stimuli such as photons, temperature, electric field and magnetic field and have applications in electronics, optical devices, and sensors. Due to the multiple valence states of V and non-stoichiometry in thin films, it is challenging to grow epitaxial, single-phase V-oxide on a substrate, or a heterostructure of two epitaxial V-oxides. We report the formation of a heterostructure consisting of a few nm thick ultrathin V2O5 epitaxial layer on pulsed laser deposited tens of nm thick epitaxial VO2 thin films grown on single crystal Al2O3(001) substrates without post annealing of the VO2 film. The simultaneous observation of the ultrathin epitaxial V2O5 layer and VO2 epitaxial film is only possible by our unique reflection high energy electron diffraction pole figure analysis. The out-of-plane and in-plane epitaxial relationships are V2O5[100]||VO2[010]||Al2O3[001] and V2O5[03 2 bar ]||VO2[100]||Al2O3[1 1 bar 0], respectively. The existence of the V2O5 layer on the surface of the VO2 film is also supported by X-ray photoelectron spectroscopy and Raman spectroscopy.

  7. Growth of highly strained CeO 2 ultrathin films

    DOE PAGES

    Shi, Yezhou; Lee, Sang Chul; Monti, Matteo; ...

    2016-11-07

    Large biaxial strain is a promising route to tune the functionalities of oxide thin films. However, large strain is often not fully realized due to the formation of misfit dislocations at the film/substrate interface. In this work, we examine the growth of strained ceria (CeO 2) thin films on (001)-oriented single crystal yttria-stabilized zirconia (YSZ) via pulsed-laser deposition. By varying the film thickness systematically between 1 and 430 nm, we demonstrate that ultrathin ceria films are coherently strained to the YSZ substrate for thicknesses up to 2.7 nm, despite the large lattice mismatch (~5%). The coherency is confirmed by bothmore » X-ray diffraction and high-resolution transmission electron microscopy. This thickness is several times greater than the predicted equilibrium critical thickness. Partial strain relaxation is achieved by forming semirelaxed surface islands rather than by directly nucleating dislocations. In situ reflective high-energy electron diffraction during growth confirms the transition from 2-D (layer-by-layer) to 3-D (island) at a film thickness of ~1 nm, which is further supported by atomic force microscopy. We propose that dislocations likely nucleate near the surface islands and glide to the film/substrate interface, as evidenced by the presence of 60° dislocations. Finally, an improved understanding of growing oxide thin films with a large misfit lays the foundation to systematically explore the impact of strain and dislocations on properties such as ionic transport and redox chemistry.« less

  8. Effect of processing parameters on microstructure of MoS{sub 2} ultra-thin films synthesized by chemical vapor deposition method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Yang; You, Suping; Sun, Kewei

    2015-06-15

    MoS{sub 2} ultra-thin layers are synthesized using a chemical vapor deposition method based on the sulfurization of molybdenum trioxide (MoO{sub 3}). The ultra-thin layers are characterized by X-ray diffraction (XRD), photoluminescence (PL) spectroscopy and atomic force microscope (AFM). Based on our experimental results, all the processing parameters, such as the tilt angle of substrate, applied voltage, heating time and the weight of source materials have effect on the microstructures of the layers. In this paper, the effects of such processing parameters on the crystal structures and morphologies of the as-grown layers are studied. It is found that the film obtainedmore » with the tilt angle of 0.06° is more uniform. A larger applied voltage is preferred to the growth of MoS{sub 2} thin films at a certain heating time. In order to obtain the ultra-thin layers of MoS{sub 2}, the weight of 0.003 g of source materials is preferred. Under our optimal experimental conditions, the surface of the film is smooth and composed of many uniformly distributed and aggregated particles, and the ultra-thin MoS{sub 2} atomic layers (1∼10 layers) covers an area of more than 2 mm×2 mm.« less

  9. Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films.

    PubMed

    Krishna, H; Sachan, R; Strader, J; Favazza, C; Khenner, M; Kalyanaraman, R

    2010-04-16

    We show here that the morphological pathway of spontaneous dewetting of ultrathin Ag films on SiO2 under nanosecond laser melting is dependent on film thickness. For films with thickness h of 2 nm < or = h < or = 9.5 nm, the morphology during the intermediate stages of dewetting consisted of bicontinuous structures. For films with 11.5 nm < or = h < or = 20 nm, the intermediate stages consisted of regularly sized holes. Measurement of the characteristic length scales for different stages of dewetting as a function of film thickness showed a systematic increase, which is consistent with the spinodal dewetting instability over the entire thickness range investigated. This change in morphology with thickness is consistent with observations made previously for polymer films (Sharma and Khanna 1998 Phys. Rev. Lett. 81 3463-6; Seemann et al 2001 J. Phys.: Condens. Matter 13 4925-38). Based on the behavior of free energy curvature that incorporates intermolecular forces, we have estimated the morphological transition thickness for the intermolecular forces for Ag on SiO2. The theory predictions agree well with observations for Ag. These results show that it is possible to form a variety of complex Ag nanomorphologies in a consistent manner, which could be useful in optical applications of Ag surfaces, such as in surface enhanced Raman sensing.

  10. Optical bandgap of single- and multi-layered amorphous germanium ultra-thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Pei; Zaslavsky, Alexander; Longo, Paolo

    2016-01-07

    Accurate optical methods are required to determine the energy bandgap of amorphous semiconductors and elucidate the role of quantum confinement in nanometer-scale, ultra-thin absorbing layers. Here, we provide a critical comparison between well-established methods that are generally employed to determine the optical bandgap of thin-film amorphous semiconductors, starting from normal-incidence reflectance and transmittance measurements. First, we demonstrate that a more accurate estimate of the optical bandgap can be achieved by using a multiple-reflection interference model. We show that this model generates more reliable results compared to the widely accepted single-pass absorption method. Second, we compare two most representative methods (Taucmore » and Cody plots) that are extensively used to determine the optical bandgap of thin-film amorphous semiconductors starting from the extracted absorption coefficient. Analysis of the experimental absorption data acquired for ultra-thin amorphous germanium (a-Ge) layers demonstrates that the Cody model is able to provide a less ambiguous energy bandgap value. Finally, we apply our proposed method to experimentally determine the optical bandgap of a-Ge/SiO{sub 2} superlattices with single and multiple a-Ge layers down to 2 nm thickness.« less

  11. Restoring the magnetism of ultrathin LaMn O3 films by surface symmetry engineering

    NASA Astrophysics Data System (ADS)

    Peng, J. J.; Song, C.; Li, F.; Gu, Y. D.; Wang, G. Y.; Pan, F.

    2016-12-01

    The frustration of magnetization and conductivity properties of ultrathin manganite is detrimental to their device performance, preventing their scaling down process. Here we demonstrate that the magnetism of ultrathin LaMn O3 films can be restored by a SrTi O3 capping layer, which engineers the surface from a symmetry breaking induced out-of-plane orbital occupancy to the recovered in-plane orbital occupancy. The stabilized in-plane orbital occupancy would strengthen the intralayer double exchange and thus recovers the robust magnetism. This method is proved to be effective for films as thin as 2 unit cells, greatly shrinking the critical thickness of 6 unit cells for ferromagnetic LaMn O3 as demonstrated previously [Wang et al., Science 349, 716 (2015), 10.1126/science.aaa5198]. The achievement made in this work opens up new perspectives to an active control of surface states and thereby tailors the surface functional properties of transition metal oxides.

  12. Bottom Extreme-Ultraviolet-Sensitive Coating for Evaluation of the Absorption Coefficient of Ultrathin Film

    NASA Astrophysics Data System (ADS)

    Hijikata, Hayato; Kozawa, Takahiro; Tagawa, Seiichi; Takei, Satoshi

    2009-06-01

    A bottom extreme-ultraviolet-sensitive coating (BESC) for evaluation of the absorption coefficients of ultrathin films such as extreme ultraviolet (EUV) resists was developed. This coating consists of a polymer, crosslinker, acid generator, and acid-responsive chromic dye and is formed by a conventional spin-coating method. By heating the film after spin-coating, a crosslinking reaction is induced and the coating becomes insoluble. A typical resist solution can be spin-coated on a substrate covered with the coating film. The evaluation of the linear absorption coefficients of polymer films was demonstrated by measuring the EUV absorption of BESC substrates on which various polymers were spin-coated.

  13. Mixed-Penetrant Sorption in Ultrathin Films of Polymer of Intrinsic Microporosity PIM-1.

    PubMed

    Ogieglo, Wojciech; Furchner, Andreas; Ghanem, Bader; Ma, Xiaohua; Pinnau, Ingo; Wessling, Matthias

    2017-11-02

    Mixed-penetrant sorption into ultrathin films of a superglassy polymer of intrinsic microporosity (PIM-1) was studied for the first time by using interference-enhanced in situ spectroscopic ellipsometry. PIM-1 swelling and the concurrent changes in its refractive index were determined in ultrathin (12-14 nm) films exposed to pure and mixed penetrants. The penetrants included water, n-hexane, and ethanol and were chosen on the basis of their significantly different penetrant-penetrant and penetrant-polymer affinities. This allowed studying microporous polymer responses at diverse ternary compositions and revealed effects such as competition for the sorption sites (for water/n-hexane or ethanol/n-hexane) or enhancement in sorption of typically weakly sorbing water in the presence of more highly sorbing ethanol. The results reveal details of the mutual sorption effects which often complicate comprehension of glassy polymers' behavior in applications such as high-performance membranes, adsorbents, or catalysts. Mixed-penetrant effects are typically very challenging to study directly, and their understanding is necessary owing to a broadly recognized inadequacy of simple extrapolations from measurements in a pure component environment.

  14. Interfacial structure and electrical properties of ultrathin HfO2 dielectric films on Si substrates by surface sol-gel method

    NASA Astrophysics Data System (ADS)

    Gong, You-Pin; Li, Ai-Dong; Qian, Xu; Zhao, Chao; Wu, Di

    2009-01-01

    Ultrathin HfO2 films with about ~3 nm thickness were deposited on n-type (1 0 0) silicon substrates using hafnium chloride (HfCl4) source by the surface sol-gel method and post-deposition annealing (PDA). The interfacial structure and electrical properties of ultrathin HfO2 films were investigated. The HfO2 films show amorphous structures and smooth surface morphologies with a very thin interfacial oxide layer of ~0.5 nm and small surface roughness (~0.45 nm). The 500 °C PDA treatment forms stronger Hf-O bonds, leading to passivated traps, and the interfacial layer is mainly Hf silicate (HfxSiyOz). Equivalent oxide thickness of around 0.84 nm of HfO2/Si has been obtained with a leakage current density of 0.7 A cm-2 at Vfb + 1 V after 500 °C PDA. It was found that the current conduction mechanism of HfO2/Si varied from Schottky-Richardson emission to Fowler-Nordheim tunnelling at an applied higher positive voltage due to the activated partial traps remaining in the ultrathin HfO2 films.

  15. Determination of magnetic anisotropy constants in Fe ultrathin film on vicinal Si(111) by anisotropic magnetoresistance

    PubMed Central

    Ye, Jun; He, Wei; Wu, Qiong; Liu, Hao-Liang; Zhang, Xiang-Qun; Chen, Zi-Yu; Cheng, Zhao-Hua

    2013-01-01

    The epitaxial growth of ultrathin Fe film on Si(111) surface provides an excellent opportunity to investigate the contribution of magnetic anisotropy to magnetic behavior. Here, we present the anisotropic magnetoresistance (AMR) effect of Fe single crystal film on vicinal Si(111) substrate with atomically flat ultrathin p(2 × 2) iron silicide as buffer layer. Owing to the tiny misorientation from Fe(111) plane, the symmetry of magnetocrystalline anisotropy energy changes from the six-fold to a superposition of six-fold, four-fold and a weakly uniaxial contribution. Furthermore, the magnitudes of various magnetic anisotropy constants were derived from torque curves on the basis of AMR results. Our work suggests that AMR measurements can be employed to figure out precisely the contributions of various magnetic anisotropy constants. PMID:23828508

  16. Trends in the thermodynamic stability of ultrathin supported oxide films

    DOE PAGES

    Plessow, Philipp N.; Bajdich, Michal; Greene, Joshua; ...

    2016-05-05

    The formation of thin oxide films on metal supports is an important phenomenon, especially in the context of strong metal support interaction (SMSI). Computational predictions of the stability of these films are hampered by their structural complexity and a varying lattice mismatch with different supports. In this study, we report a large combination of supports and ultrathin oxide films studied with density functional theory (DFT). Trends in stability are investigated through a descriptor-based analysis. Since the studied films are bound to the support exclusively through metal–metal interaction, the adsorption energy of the oxide-constituting metal atom can be expected to bemore » a reasonable descriptor for the stability of the overlayers. If the same supercell is used for all supports, the overlayers experience different amounts of stress. Using supercells with small lattice mismatch for each system leads to significantly improved scaling relations for the stability of the overlayers. Finally, this approach works well for the studied systems and therefore allows the descriptor-based exploration of the thermodynamic stability of supported thin oxide layers.« less

  17. New possibilities for tuning ultrathin cobalt film magnetic properties by a noble metal overlayer.

    PubMed

    Kisielewski, M; Maziewski, A; Tekielak, M; Wawro, A; Baczewski, L T

    2002-08-19

    Complementary multiscale magneto-optical studies based on the polar Kerr effect are carried out on an ultrathin cobalt wedge covered with a silver wedge and subsequently with the Au thick layer. A few monolayers of Ag are found to have a substantial effect on magnetic anisotropy, the coercivity field, and Kerr rotation. The silver overlayer thickness-driven magnetic reorientation from easy axis to easy plane generates a new type of 90 degrees magnetic wall for cobalt thicknesses between 1.3 and 1.8 nm. The tuning of the wall width in a wide range is possible. Tailoring of the overlayer structure can be used for ultrathin film magnetic patterning.

  18. Nanoscale interfacial heat transport of ultrathin epitaxial hetero films: Few monolayer Pb(111) on Si(111)

    NASA Astrophysics Data System (ADS)

    Witte, T.; Frigge, T.; Hafke, B.; Krenzer, B.; Horn-von Hoegen, M.

    2017-06-01

    We studied the phononic heat transport from ultrathin epitaxial Pb(111) films across the heterointerface into a Si(111) substrate by means of ultrafast electron diffraction. The thickness of the Pb films was varied from 15 to 4 monolayers. It was found that the thermal boundary conductance σTBC of the heterointerface is independent of the film thickness. We have no evidence for finite size effects: the continuum description of heat transport is still valid, even for the thinnest films of only 4 monolayer thickness.

  19. How Do Organic Vapors Swell Ultrathin Films of Polymer of Intrinsic Microporosity PIM-1?

    PubMed

    Ogieglo, Wojciech; Rahimi, Khosorov; Rauer, Sebastian Bernhard; Ghanem, Bader; Ma, Xiaohua; Pinnau, Ingo; Wessling, Matthias

    2017-07-27

    Dynamic sorption of ethanol and toluene vapor into ultrathin supported films of polymer of intrinsic microporosity PIM-1 down to a thickness of 6 nm are studied with a combination of in situ spectroscopic ellipsometry and in situ X-ray reflectivity. Both ethanol and toluene significantly swell the PIM-1 matrix and, at the same time, induce persistent structural relaxations of the frozen-in glassy PIM-1 morphology. For ethanol below 20 nm, three effects were identified. First, the swelling magnitude at high vapor pressures is reduced by about 30% as compared to that of thicker films. Second, at low penetrant activities (below 0.3p/p 0 ), films below 20 nm are able to absorb slightly more penetrant as compared with thicker films despite a similar swelling magnitude. Third, for the ultrathin films, the onset of the dynamic penetrant-induced glass transition P g has been found to shift to higher values, indicating higher resistance to plasticization. All of these effects are consistent with a view where immobilization of the superglassy PIM-1 at the substrate surface leads to an arrested, even more rigid, and plasticization-resistant, yet still very open, microporous structure. PIM-1 in contact with the larger and more condensable toluene shows very complex, heterogeneous swelling dynamics, and two distinct penetrant-induced relaxation phenomena, probably associated with the film outer surface and the bulk, are detected. Following the direction of the penetrant's diffusion, the surface seems to plasticize earlier than the bulk, and the two relaxations remain well separated down to 6 nm film thickness, where they remarkably merge to form just a single relaxation.

  20. SERS Taper-Fiber Nanoprobe Modified by Gold Nanoparticles Wrapped with Ultrathin Alumina Film by Atomic Layer Deposition

    PubMed Central

    Xu, Wenjie; Chen, Zhenyi; Chen, Na; Zhang, Heng; Liu, Shupeng; Hu, Xinmao; Wen, Jianxiang; Wang, Tingyun

    2017-01-01

    A taper-fiber SERS nanoprobe modified by gold nanoparticles (Au-NPs) with ultrathin alumina layers was fabricated and its ability to perform remote Raman detection was demonstrated. The taper-fiber nanoprobe (TFNP) with a nanoscale tip size under 80 nm was made by heated pulling combined with the chemical etching method. The Au-NPs were deposited on the TFNP surface with the electrostatic self-assembly technology, and then the TFNP was wrapped with ultrathin alumina layers by the atomic layer deposition (ALD) technique. The results told us that with the increasing thickness of the alumina film, the Raman signals decreased. With approximately 1 nm alumina film, the remote detection limit for R6G aqueous solution reached 10−6 mol/L. PMID:28245618

  1. Bayesian inference of metal oxide ultrathin film structure based on crystal truncation rod measurements

    PubMed Central

    Anada, Masato; Nakanishi-Ohno, Yoshinori; Okada, Masato; Kimura, Tsuyoshi; Wakabayashi, Yusuke

    2017-01-01

    Monte Carlo (MC)-based refinement software to analyze the atomic arrangements of perovskite oxide ultrathin films from the crystal truncation rod intensity is developed on the basis of Bayesian inference. The advantages of the MC approach are (i) it is applicable to multi-domain structures, (ii) it provides the posterior probability of structures through Bayes’ theorem, which allows one to evaluate the uncertainty of estimated structural parameters, and (iii) one can involve any information provided by other experiments and theories. The simulated annealing procedure efficiently searches for the optimum model owing to its stochastic updates, regardless of the initial values, without being trapped by local optima. The performance of the software is examined with a five-unit-cell-thick LaAlO3 film fabricated on top of SrTiO3. The software successfully found the global optima from an initial model prepared by a small grid search calculation. The standard deviations of the atomic positions derived from a dataset taken at a second-generation synchrotron are ±0.02 Å for metal sites and ±0.03 Å for oxygen sites. PMID:29217989

  2. Ultrathin Au film on polymer surface for surface plasmon polariton waveguide application

    NASA Astrophysics Data System (ADS)

    Liu, Tong; Ji, Lanting; He, Guobing; Sun, Xiaoqiang; Wang, Fei; Zhang, Daming

    2017-11-01

    Formation of laterally continuous ultrathin gold films on polymer substrates is a technological challenge. In this work, the vacuum thermal evaporation method is adopted to form continuous Au films in the thickness range of 7-17 nm on polymers of Poly(methyl-methacrylate-glycidly-methacrylate) and SU-8 film surface without using the adhesion or metallic seeding layers. Absorption spectrum, scanning electron microscope and atomic force microscope images are used to characterize the Au film thickness, roughness and optical loss. The result shows that molecular-scale structure, surface energy and electronegativity have impacts on the Au film morphology on polymers. Wet chemical etching is used to fabricate 7-nm thick Au stripes embedded in polymer claddings. These long-range surface plasmon polariton waveguides demonstrate the favorable morphological configurations and cross-sectional states. Through the end-fire excitation method, propagation losses of 6-μm wide Au stripes are compared to theoretical values and analyzed from practical film status. The smooth, patternable gold films on polymer provide potential applications to plasmonic waveguides, biosensing, metamaterials and optical antennas.

  3. Negative differential resistance in electron tunneling in ultrathin films near the two-dimensional limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batabyal, R.; Abdul Wasey, A. H. M.; Mahato, J. C.

    We report on our observation of negative differential resistance (NDR) in electron tunneling conductance in atomic-scale ultrathin Ag films on Si(111) substrates. NDR was observed by scanning tunneling spectroscopy measurements. The tunneling conductance depends on the electronic local density of states (LDOS) of the sample. We show that the sample bias voltage, at which negative differential resistance and peak negative conductance occur, depends on the film thickness. This can be understood from the variation in the LDOS of the Ag films as a function of film thickness down to the two-dimensional limit of one atomic layer. First principles density functionalmore » theory calculations have been used to explain the results.« less

  4. Effects of copolymer composition, film thickness, and solvent vapor annealing time on dewetting of ultrathin block copolymer films.

    PubMed

    Huang, Changchun; Wen, Gangyao; Li, Jingdan; Wu, Tao; Wang, Lina; Xue, Feifei; Li, Hongfei; Shi, Tongfei

    2016-09-15

    Effects of copolymer composition, film thickness, and solvent vapor annealing time on dewetting of spin-coated polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) films (<20nm thick) were mainly investigated by atomic force microscopy. Surface chemical analysis of the ultrathin films annealed for different times were performed using X-ray photoelectron spectroscopy and contact angle measurement. With the annealing of acetone vapor, dewetting of the films with different thicknesses occur via the spinodal dewetting and the nucleation and growth mechanisms, respectively. The PS-b-PMMA films rupture into droplets which first coalesce into large ones to reduce the surface free energy. Then the large droplets rupture into small ones to increase the contact area between PMMA blocks and acetone molecules resulting from ultimate migration of PMMA blocks to droplet surface, which is a novel dewetting process observed in spin-coated films for the first time. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Operando SXRD of E-ALD deposited sulphides ultra-thin films: Crystallite strain and size

    NASA Astrophysics Data System (ADS)

    Giaccherini, Andrea; Russo, Francesca; Carlà, Francesco; Guerri, Annalisa; Picca, Rosaria Anna; Cioffi, Nicola; Cinotti, Serena; Montegrossi, Giordano; Passaponti, Maurizio; Di Benedetto, Francesco; Felici, Roberto; Innocenti, Massimo

    2018-02-01

    Electrochemical Atomic Layer Deposition (E-ALD), exploiting surface limited electrodeposition of atomic layers, can easily grow highly ordered ultra-thin films and 2D structures. Among other compounds CuxZnyS grown by means of E-ALD on Ag(111) has been found particularly suitable for the solar energy conversion due to its band gap (1.61 eV). However its growth seems to be characterized by a micrometric thread-like structure, probably overgrowing a smooth ultra-thin films. On this ground, a SXRD investigation has been performed, to address the open questions about the structure and the growth of CuxZnyS by means of E-ALD. The experiment shows a pseudo single crystal pattern as well as a powder pattern, confirming that part of the sample grows epitaxially on the Ag(111) substrate. The growth of the film was monitored by following the evolution of the Bragg peaks and Debye rings during the E-ALD steps. Breadth and profile analysis of the Bragg peaks lead to a qualitative interpretation of the growth mechanism. This study confirms that Zn lead to the growth of a strained Cu2S-like structure, while the growth of the thread-like structure is probably driven by the release of the stress from the epitaxial phase.

  6. 'One-component' ultrathin multilayer films based on poly(vinyl alcohol) as stabilizing coating for phenytoin-loaded liposomes.

    PubMed

    Zasada, Katarzyna; Łukasiewicz-Atanasov, Magdalena; Kłysik, Katarzyna; Lewandowska-Łańcucka, Joanna; Gzyl-Malcher, Barbara; Puciul-Malinowska, Agnieszka; Karewicz, Anna; Nowakowska, Maria

    2015-11-01

    Ultrathin "one-component" multilayer polymeric films for potential biomedical applications were designed based on polyvinyl alcohol,-a non-toxic, fully degradable synthetic polymer. Good uniformity of the obtained film and adequate adsorption properties of the polymeric layers were achieved by functional modification of the polymer, which involved synthesis of cationic and anionic derivatives. Synthesized polymers were characterized by FTIR, NMR spectroscopy, dynamic light scattering measurements and elemental analysis. The layer by layer assembly technique was used to build up a multilayer film and this process was followed using UV-Vis spectroscopy and ellipsometry. The morphology and thickness of the obtained multilayered film material was evaluated by atomic force microscopy (AFM). Preliminary studies on the application of the obtained multilayer film for coating of liposomal nanocarriers containing phenytoin, an antiarrhythmic drug, were performed. The coating effectively stabilizes liposomes and the effect increases with an increasing number of deposited layers until the polymeric film reaches the optimal thickness. The obtained release profiles suggest that bilayer-coated liposomes release phenytoin less rapidly than uncoated ones. The cytotoxicity studies performed for all obtained nanocarriers confirmed that none of them has negative effect on cell viability. All of the performed experiments suggest that liposomes coated with ultrathin film obtained from PVA derivatives can be attractive drug nanocarriers. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. High-Pressure CO2 Sorption in Polymers of Intrinsic Microporosity under Ultrathin Film Confinement.

    PubMed

    Ogieglo, Wojciech; Ghanem, Bader; Ma, Xiaohua; Wessling, Matthias; Pinnau, Ingo

    2018-04-04

    Ultrathin microporous polymer films are pertinent to the development and further spread of nanotechnology with very promising potential applications in molecular separations, sensors, catalysis, or batteries. Here, we report high-pressure CO 2 sorption in ultrathin films of several chemically different polymers of intrinsic microporosity (PIMs), including the prototypical PIM-1. Films with thicknesses down to 7 nm were studied using interference-enhanced in situ spectroscopic ellipsometry. It was found that all PIMs swell much more than non-microporous polystyrene and other high-performance glassy polymers reported previously. Furthermore, chemical modifications of the parent PIM-1 strongly affected the swelling magnitude. By investigating the behavior of relative refractive index, n rel , it was possible to study the interplay between micropores filling and matrix expansion. Remarkably, all studied PIMs showed a maximum in n rel at swelling of 2-2.5% indicating a threshold point above which the dissolution in the dense matrix started to dominate over sorption in the micropores. At pressures above 25 bar, all PIMs significantly plasticized in compressed CO 2 and for the ones with the highest affinity to the penetrant, a liquidlike mixing typical for rubbery polymers was observed. Reduction of film thickness below 100 nm revealed pronounced nanoconfinement effects and resulted in a large swelling enhancement and a quick loss of the ultrarigid character. On the basis of the partial molar volumes of the dissolved CO 2 , the effective reduction of the T g was estimated to be ∼200 °C going from 128 to 7 nm films.

  8. Dynamics of ultrathin metal films on amorphous substrates under fast thermal processing

    NASA Astrophysics Data System (ADS)

    Favazza, Christopher; Kalyanaraman, Ramki; Sureshkumar, Radhakrishna

    2007-11-01

    A mathematical model is developed to analyze the growth/decay rate of surface perturbations of an ultrathin metal film on an amorphous substrate (SiO2). The formulation combines the approach of Mullins [W. W. Mullins, J. Appl. Phys. 30, 77 (1959)] for bulk surfaces, in which curvature-driven mass transport and surface deformation can occur by surface/volume diffusion and evaporation-condensation processes, with that of Spencer etal . [B. J. Spencer, P. W. Voorhees, and S. H. Davis, Phys. Rev. Lett. 67, 26 (1991)] to describe solid-state transport in thin films under epitaxial strain. Modifications of the Mullins model to account for thin-film boundary conditions result in qualitatively different dispersion relationships especially in the limit as kho≪1, where k is the wavenumber of the perturbation and ho is the unperturbed film height. The model is applied to study the relative rate of solid-state mass transport as compared to that of liquid phase dewetting in a thin film subjected to a fast thermal pulse. Specifically, we have recently shown that multiple cycles of nanosecond (ns) pulsed laser melting and resolidification of ultrathin metal films on amorphous substrates can lead to the formation of various types of spatially ordered nanostructures [J. Trice, D. Thomas, C. Favazza, R. Sureshkumar, and R. Kalyanaraman, Phys. Rev. B 75, 235439 (2007)]. The pattern formation has been attributed to the dewetting of the thin film by a hydrodynamic instability. In such experiments the film is in the solid state during a substantial fraction of each thermal cycle. However, results of a linear stability analysis based on the aforementioned model suggest that solid-state mass transport has a negligible effect on morphological changes of the surface. Further, a qualitative analysis of the effect of thermoelastic stress, induced by the rapid temperature changes in the film-substrate bilayer, suggests that stress relaxation does not appreciably contribute to surface

  9. "Self-Peel-Off" Transfer Produces Ultrathin Polyvinylidene-Fluoride-Based Flexible Nanodevices.

    PubMed

    Tai, Yanlong; Lubineau, Gilles

    2017-04-01

    Here, a new strategy, self-peel-off transfer, for the preparation of ultrathin flexible nanodevices made from polyvinylidene-fluoride (PVDF) is reported. In this process, a functional pattern of nanoparticles is transferred via peeling from a temporary substrate to the final PVDF film. This peeling process takes advantage of the differences in the work of adhesion between the various layers (the PVDF layer, the nanoparticle-pattern layer and the substrate layer) and of the high stresses generated by the differential thermal expansion of the layers. The work of adhesion is mainly guided by the basic physical/chemical properties of these layers and is highly sensitive to variations in temperature and moisture in the environment. The peeling technique is tested on a variety of PVDF-based functional films using gold/palladium nanoparticles, carbon nanotubes, graphene oxide, and lithium iron phosphate. Several PVDF-based flexible nanodevices are prepared, including a single-sided wireless flexible humidity sensor in which PVDF is used as the substrate and a double-sided flexible capacitor in which PVDF is used as the ferroelectric layer and the carrier layer. Results show that the nanodevices perform with high repeatability and stability. Self-peel-off transfer is a viable preparation strategy for the design and fabrication of flexible, ultrathin, and light-weight nanodevices.

  10. A dual-stimuli-responsive fluorescent switch ultrathin film

    NASA Astrophysics Data System (ADS)

    Li, Zhixiong; Liang, Ruizheng; Liu, Wendi; Yan, Dongpeng; Wei, Min

    2015-10-01

    Stimuli-responsive fluorescent switches have shown broad applications in optical devices, biological materials and intelligent responses. Herein, we describe the design and fabrication of a dual-stimuli-responsive fluorescent switch ultrathin film (UTF) via a three-step layer-by-layer (LBL) technique: (i) encapsulation of spiropyran (SP) within an amphiphilic block copolymer (PTBEM) to give the (SP@PTBEM) micelle; (ii) the mixture of riboflavin (Rf) and poly(styrene 4-sulfonate) (PSS) to enhance the adhesion ability of small molecules; (iii) assembly of negatively charged SP@PTBEM and Rf-PSS with cationic layered double hydroxide (LDH) nanoplatelets to obtain the (Rf-PSS/LDH/SP@PTBEM)n UTFs (n: bilayer number). The assembly process of the UTFs and their luminescence properties, as monitored by fluorescence spectroscopy and scanning electron microscopy (SEM), present a uniform and ordered layered structure with stepwise growth. The resulting Rf-PSS/LDH/SP@PTBEM UTF serves as a three-state switchable multicolor (green, yellow, and red) luminescent system based on stimulation from UV/Vis light and pH, with an acceptable reversibility. Therefore, this work provides a facile way to fabricate stimuli-responsive solid-state film switches with tunable-color luminescence, which have potential applications in the areas of displays, sensors, and rewritable optical memory and fluorescent logic devices.Stimuli-responsive fluorescent switches have shown broad applications in optical devices, biological materials and intelligent responses. Herein, we describe the design and fabrication of a dual-stimuli-responsive fluorescent switch ultrathin film (UTF) via a three-step layer-by-layer (LBL) technique: (i) encapsulation of spiropyran (SP) within an amphiphilic block copolymer (PTBEM) to give the (SP@PTBEM) micelle; (ii) the mixture of riboflavin (Rf) and poly(styrene 4-sulfonate) (PSS) to enhance the adhesion ability of small molecules; (iii) assembly of negatively charged SP

  11. Preparation of Aluminum Nanomesh Thin Films from an Anodic Aluminum Oxide Template as Transparent Conductive Electrodes

    NASA Astrophysics Data System (ADS)

    Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui

    2016-02-01

    We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials.

  12. Preparation of Aluminum Nanomesh Thin Films from an Anodic Aluminum Oxide Template as Transparent Conductive Electrodes

    PubMed Central

    Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui

    2016-01-01

    We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials. PMID:26831759

  13. Preparation of Aluminum Nanomesh Thin Films from an Anodic Aluminum Oxide Template as Transparent Conductive Electrodes.

    PubMed

    Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui

    2016-02-02

    We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials.

  14. Dynamics of ultrathin metal films on amorphous substrates under fast thermal processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favazza, Christopher; Kalyanaraman, Ramki; Sureshkumar, Radhakrishna

    A mathematical model is developed to analyze the growth/decay rate of surface perturbations of an ultrathin metal film on an amorphous substrate (SiO{sub 2}). The formulation combines the approach of Mullins [W. W. Mullins, J. Appl. Phys. 30, 77 (1959)] for bulk surfaces, in which curvature-driven mass transport and surface deformation can occur by surface/volume diffusion and evaporation-condensation processes, with that of Spencer et al. [B. J. Spencer, P. W. Voorhees, and S. H. Davis, Phys. Rev. Lett. 67, 26 (1991)] to describe solid-state transport in thin films under epitaxial strain. Modifications of the Mullins model to account for thin-filmmore » boundary conditions result in qualitatively different dispersion relationships especially in the limit as kh{sub o}<<1, where k is the wavenumber of the perturbation and h{sub o} is the unperturbed film height. The model is applied to study the relative rate of solid-state mass transport as compared to that of liquid phase dewetting in a thin film subjected to a fast thermal pulse. Specifically, we have recently shown that multiple cycles of nanosecond (ns) pulsed laser melting and resolidification of ultrathin metal films on amorphous substrates can lead to the formation of various types of spatially ordered nanostructures [J. Trice, D. Thomas, C. Favazza, R. Sureshkumar, and R. Kalyanaraman, Phys. Rev. B 75, 235439 (2007)]. The pattern formation has been attributed to the dewetting of the thin film by a hydrodynamic instability. In such experiments the film is in the solid state during a substantial fraction of each thermal cycle. However, results of a linear stability analysis based on the aforementioned model suggest that solid-state mass transport has a negligible effect on morphological changes of the surface. Further, a qualitative analysis of the effect of thermoelastic stress, induced by the rapid temperature changes in the film-substrate bilayer, suggests that stress relaxation does not appreciably

  15. Magnetron sputtered boron films

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1998-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence.

  16. Magnetron sputtered boron films

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1998-06-16

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence. 8 figs.

  17. Layered ultra-thin coherent structures used as electrical resistors having low-temperature coefficient of resistivity

    DOEpatents

    Werner, T.R.; Falco, C.M.; Schuller, I.K.

    1982-08-31

    A thin film resistor having a controlled temperature coefficient of resistance (TCR) ranging from negative to positive degrees kelvin and having relatively high resistivity. The resistor is a multilayer superlattice crystal containing a plurality of alternating, ultra-thin layers of two different metals. TCR is varied by controlling the thickness of the individual layers. The resistor can be readily prepared by methods compatible with thin film circuitry manufacturing techniques.

  18. Diffusion of phonons through (along and across) the ultrathin crystalline films

    NASA Astrophysics Data System (ADS)

    Šetrajčić, J. P.; Jaćimovski, S. K.; Vučenović, S. M.

    2017-11-01

    Instead of usual approach, applying displacement-displacement Green's functions, the momentum-momentum Green's functions will be used to calculate the diffusion tensor. With this type of Green's function we have calculated and analyzed dispersion law in film-structures. A small number of phonon energy levels along the direction of boundary surfaces joint of the film are discrete-ones and in this case standing waves could occur. This is consequence of quantum size effects. These Green's functions enter into Kubo's formula defining diffusion properties of the system and possible heat transfer direction through observed structures. Calculation of the diffusion tensor for phonons in film-structure requires solving of the system of difference equations. Boundary conditions are included into mentioned system through the Hamiltonian of the film-structure. It has been shown that the diagonal elements of the diffusion tensor express discrete behavior of the dispersion law of elementary excitations. More important result is-that they are temperature independent and that their values are much higher comparing with bulk structures. This result favors better heat conduction of the film, but in direction which is perpendicular to boundary film surface. In the same time this significantly favors appearance 2D superconducting surfaces inside the ultra-thin crystal structure, which are parallel to the boundary surface.

  19. Positively-charged reduced graphene oxide as an adhesion promoter for preparing a highly-stable silver nanowire film

    NASA Astrophysics Data System (ADS)

    Sun, Qijun; Lee, Seong Jun; Kang, Hyungseok; Gim, Yuseong; Park, Ho Seok; Cho, Jeong Ho

    2015-04-01

    An ultrathin conductive adhesion promoter using positively charged reduced graphene oxide (rGO-NH3+) has been demonstrated for preparing highly stable silver nanowire transparent conductive electrodes (AgNW TCEs). The adhesion promoter rGO-NH3+, spray coated between the substrate and AgNWs, significantly enhances the chemical and mechanical stabilities of the AgNW TCEs. Besides, the ultrathin thickness of the rGO-NH3+ ensures excellent optical transparency and mechanical flexibility for TCEs. The AgNW films prepared using the adhesion promoter are extremely stable under harsh conditions, including ultrasonication in a variety of solvents, 3M Scotch tape detachment test, mechanical bending up to 0.3% strain, or fatigue over 1000 cycles. The greatly enhanced adhesion force is attributed to the ionic interactions between the positively charged protonated amine groups in rGO-NH3+ and the negatively charged hydroxo- and oxo-groups on the AgNWs. The positively charged GO-NH3+ and commercial polycationic polymer (poly allylamine hydrochloride) are also prepared as adhesion promoters for comparison with rGO-NH3+. Notably, the closely packed hexagonal atomic structure of rGO offers better barrier properties to water permeation and demonstrates promising utility in durable waterproof electronics. This work offers a simple method to prepare high-quality TCEs and is believed to have great potential application in flexible waterproof electronics.An ultrathin conductive adhesion promoter using positively charged reduced graphene oxide (rGO-NH3+) has been demonstrated for preparing highly stable silver nanowire transparent conductive electrodes (AgNW TCEs). The adhesion promoter rGO-NH3+, spray coated between the substrate and AgNWs, significantly enhances the chemical and mechanical stabilities of the AgNW TCEs. Besides, the ultrathin thickness of the rGO-NH3+ ensures excellent optical transparency and mechanical flexibility for TCEs. The AgNW films prepared using the adhesion

  20. Ultrathin Lutetium Oxide Film as an Epitaxial Hole-Blocking Layer for Crystalline Bismuth Vanadate Water Splitting Photoanodes

    DOE PAGES

    Zhang, Wenrui; Yan, Danhua; Tong, Xiao; ...

    2018-01-08

    Here a novel ultrathin lutetium oxide (Lu 2O 3) interlayer is integrated with crystalline bismuth vanadate (BiVO4) thin film photoanodes to facilitate carrier transport through atomic-scale interface control. The epitaxial Lu 2O 32O 3

  1. Structure of periodic crystals and quasicrystals in ultrathin films of Ba-Ti-O

    DOE PAGES

    Cockayne, Eric; Mihalkovič, Marek; Henley, Christopher L.

    2016-01-07

    Here, we model the remarkable thin-film Ba-Ti-O structures formed by heat treatment of an initial perovskite BaTiO 3 thin film on a Pt(111) surface. All structures contain a rumpled Ti-O network with all Ti threefold coordinated with O, and with Ba occupying the larger. mainly Ti 7O 7, pores. The quasicrystal structue is a simple decoration of three types of tiles: square, triangle and 30° rhombus, with edge lengths 6.85 Å, joined edge-to-edge in a quasicrystalline pattern; observed periodic crystals in ultrathin film Ba-Ti-O are built from these and other tiles. Simulated STM images reproduce the patterns seen experimentally, andmore » identify the bright protrusions as Ba atoms. The models are consistent with all experimental observations.« less

  2. Oxidation of the Ru(0001) surface covered by weakly bound, ultrathin silicate films

    DOE PAGES

    Emmez, Emre; Anibal Boscoboinik, J.; Tenney, Samuel; ...

    2015-06-30

    Bilayer silicate films grown on metal substrates are weakly bound to the metal surfaces, which allows ambient gas molecules to intercalate the oxide/metal interface. In this work, we studied the interaction of oxygen with Ru(0001) supported ultrathin silicate and aluminosilicate films at elevated O 2 pressures (10 -5–10 mbar) and temperatures (450–923 K). The results show that the silicate films stay essentially intact under these conditions, and oxygen in the film does not exchange with oxygen in the ambient. O 2 molecules readily penetrate the film and dissociate on the underlying Ru surface underneath. Also, the silicate layer does howevermore » strongly passivate the Ru surface towards RuO 2(110) oxide formation that readily occurs on bare Ru(0001) under the same conditions. Lastly, the results indicate considerable spatial effects for oxidation reactions on metal surfaces in the confined space at the interface. Moreover, the aluminosilicate films completely suppress the Ru oxidation, providing some rationale for using crystalline aluminosilicates in anti-corrosion coatings.« less

  3. Local variation of fragility and glass transition temperature of ultra-thin supported polymer films.

    PubMed

    Hanakata, Paul Z; Douglas, Jack F; Starr, Francis W

    2012-12-28

    Despite extensive efforts, a definitive picture of the glass transition of ultra-thin polymer films has yet to emerge. The effect of film thickness h on the glass transition temperature T(g) has been widely examined, but this characterization does not account for the fragility of glass-formation, which quantifies how rapidly relaxation times vary with temperature T. Accordingly, we simulate supported polymer films of a bead-spring model and determine both T(g) and fragility, both as a function of h and film depth. We contrast changes in the relaxation dynamics with density ρ and demonstrate the limitations of the commonly invoked free-volume layer model. As opposed to bulk polymer materials, we find that the fragility and T(g) do not generally vary proportionately. Consequently, the determination of the fragility profile--both locally and for the film as a whole--is essential for the characterization of changes in film dynamics with confinement.

  4. Method for laser welding ultra-thin metal foils

    DOEpatents

    Pernicka, J.C.; Benson, D.K.; Tracy, C.E.

    1996-03-26

    A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld. 5 figs.

  5. Method for laser welding ultra-thin metal foils

    DOEpatents

    Pernicka, John C.; Benson, David K.; Tracy, C. Edwin

    1996-01-01

    A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld.

  6. Gigantic Dzyaloshinskii-Moriya interaction in the MnBi ultrathin films

    NASA Astrophysics Data System (ADS)

    Yu, Jie-Xiang; Zang, Jiadong; Zang's Team

    The magnetic skyrmion, a swirling-like spin texture with nontrivial topology, is driven by strong Dzyaloshinskii-Moriya (DM) interaction originated from the spin-orbit coupling in inversion symmetry breaking systems. Here, based on first-principles calculations, we predict a new material, MnBi ultrathin film, with gigantic DM interactions. The ratio of the DM interaction to the Heisenberg exchange is about 0.3, exceeding any values reported so far. Its high Curie temperature, high coercivity, and large perpendicular magnetoanisotropy make MnBi a good candidate for future spintronics studies. Topologically nontrivial spin textures are emergent in this system. We expect further experimental efforts will be devoted into this systems.

  7. Magnetic properties influenced by interfaces in ultrathin Co/Ge(1 0 0) and Co/Ge(1 1 1) films

    NASA Astrophysics Data System (ADS)

    Tsay, J. S.; Yao, Y. D.; Cheng, W. C.; Tseng, T. K.; Wang, K. C.; Yang, C. S.

    2003-10-01

    Magnetic properties influenced by interfaces in ultrathin Co/Ge(1 0 0) and Co/Ge(1 1 1) films with thickness below 28 monolayers (ML) have been studied using the surface magneto-optic Kerr effect (SMOKE) technique. In both systems, the nonferromagnetic layer, as an interface between Co and Ge, plays an important role during annealing. In general, ultrathin Co films with fixed total thickness but fabricated at different temperatures on the same substrate, their Kerr hysteresis loops disappear roughly at the same temperature. This suggests that the thickness of the interfacial layer could inversely prevent the diffusion between Co and Ge substrate. From the annealing studies for both systems with total film thickness of 28 monolayers, we have found that Kerr signal disappears at 375 K for Co/Ge(1 1 1) and 425 K for Co/Ge(1 0 0) films. This suggests that Co/Ge(1 1 1) films possess a lower thermal stability than that of the Co/Ge(1 0 0) films. Our experimental data could be explained by different interfacial condition between Ge(1 0 0) and Ge(1 1 1), the different onset of interdiffusion, and the surface structure condition of Ge(1 0 0) and Ge(1 1 1).

  8. Combined three-axis surface magneto-optical Kerr effects in the study of surface and ultrathin-film magnetism

    NASA Astrophysics Data System (ADS)

    Yang, Z. J.; Scheinfein, M. R.

    1993-12-01

    Surface and ultrathin-film magnetocrystalline anisotropy in epitaxial fcc Fe thin films grown on room-temperature Cu(100) single crystals has been investigated, in situ, by the combined surface magneto-optical Kerr effects (SMOKE). In polar, longitudinal, and transverse Kerr effects, the direction of the applied magnetic field must be distinguished from the direction of magnetization during the switching process. For arbitrary orientations of the magnetization and field axis relative to the optical scattering plane, any of the three Kerr effects may contribute to the detected signal. A general expression for the normalized light intensity sensed by a photodiode detector, involving all three combined Kerr effects, is obtained both in the ultrathin-film limit and for bulk, at general oblique incidence angles and with different orientations of the polarizer, modulator, and analyzer. This expression is used to interpret the results of fcc Fe/Cu(100) SMOKE measurements. For films grown at room temperature, polar and longitudinal Kerr-effect magnetization loops show that the easy axis of magnetization rotates from the (canted) out-of-plane direction to the in-plane direction at a thickness of about 4.7 monolayers. Transverse Kerr-effect measurements indicate that the in-plane easy axes are biaxial.

  9. Highly conductive ultrathin Co films by high-power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Jablonka, L.; Riekehr, L.; Zhang, Z.; Zhang, S.-L.; Kubart, T.

    2018-01-01

    Ultrathin Co films deposited on SiO2 with conductivities exceeding that of Cu are demonstrated. Ionized deposition implemented by high-power impulse magnetron sputtering (HiPIMS) is shown to result in smooth films with large grains and low resistivities, namely, 14 µΩ cm at a thickness of 40 nm, which is close to the bulk value of Co. Even at a thickness of only 6 nm, a resistivity of 35 µΩ cm is obtained. The improved film quality is attributed to a higher nucleation density in the Co-ion dominated plasma in HiPIMS. In particular, the pulsed nature of the Co flux as well as shallow ion implantation of Co into SiO2 can increase the nucleation density. Adatom diffusion is further enhanced in the ionized process, resulting in a dense microstructure. These results are in contrast to Co deposited by conventional direct current magnetron sputtering where the conductivity is reduced due to smaller grains, voids, rougher interfaces, and Ar incorporation. The resistivity of the HiPIMS films is shown to be in accordance with models by Mayadas-Shatzkes and Sondheimer which consider grain-boundary and surface-scattering.

  10. Increased magnetic damping in ultrathin films of Co2FeAl with perpendicular anisotropy

    NASA Astrophysics Data System (ADS)

    Takahashi, Y. K.; Miura, Y.; Choi, R.; Ohkubo, T.; Wen, Z. C.; Ishioka, K.; Mandal, R.; Medapalli, R.; Sukegawa, H.; Mitani, S.; Fullerton, E. E.; Hono, K.

    2017-06-01

    We estimated the magnetic damping constant α of Co2FeAl (CFA) Heusler alloy films of different thicknesses with an MgO capping layer by means of time-resolved magneto-optical Kerr effect and ferromagnetic resonance measurements. CFA films with thicknesses of 1.2 nm and below exhibited perpendicular magnetic anisotropy arising from the presence of the interface with MgO. While α increased gradually with decreasing CFA film thickness down to 1.2 nm, it was increased substantially when the thickness was reduced further to 1.0 nm. Based on the microstructure analyses and first-principles calculations, we attributed the origin of the large α in the ultrathin CFA film primarily to the Al deficiency in the CFA layer, which caused an increase in the density of states and thereby in the scatterings of their spins.

  11. Transport properties of ultrathin BaFe1.84Co0.16As2 superconducting nanowires

    NASA Astrophysics Data System (ADS)

    Yuan, Pusheng; Xu, Zhongtang; Li, Chen; Quan, Baogang; Li, Junjie; Gu, Changzhi; Ma, Yanwei

    2018-07-01

    Superconducting nanowire single-photon detectors (SNSPDs) have an absolute advantage over other types of single-photon detectors, except for the low operating temperature. Therefore, much effort has been devoted to finding high-temperature superconducting materials that are suitable for preparing SNSPDs. Copper-based and MgB2 ultrathin superconducting nanowires have already been reported. However, the transport properties of iron-based ultrathin superconducting nanowires have not been studied. In this work, a 10 nm thick × 200 nm wide × 30 μm long high-quality superconducting nanowire was fabricated from ultrathin BaFe1.84Co0.16As2 films by a lift-off process. The precursor BaFe1.84Co0.16As2 film with a thickness of 10 nm and root-mean-square roughness of 1 nm was grown on CaF2 substrates by pulsed laser deposition. The nanowire shows a high superconducting critical temperature {T}{{c}}{{zero}} = 20 K with a narrow transition width of ΔT = 2.5 K and exhibits a high critical current density J c of 1.8 × 107 A cm-2 at 10 K. These results of ultrathin BaFe1.84Co0.16As2 nanowire will attract interest in electronic applications, including SNSPDs.

  12. Controllable Preparation of Ultrathin Sandwich-Like Membrane with Porous Organic Framework and Graphene Oxide for Molecular Filtration

    NASA Astrophysics Data System (ADS)

    Zhu, Yuanzhi; Xu, Danyun; Zhao, Qingshan; Li, Yang; Peng, Wenchao; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin

    2015-10-01

    Porous organic frameworks (POFs) based membranes have potential applications in molecular filtration, despite the lack of a corresponding study. This study reports an interesting strategy to get processable POFs dispersion and a novel ultrathin sandwich-like membrane design. It was accidentally found that the hydrophobic N-rich Schiff based POFs agglomerates could react with lithium-ethylamine and formed stable dispersion in water. By successively filtrating the obtained POFs dispersion and graphene oxide (GO), we successfully prepared ultrathin sandwich-like hybrid membranes with layered structure, which showed significantly improved separation efficiency in molecular filtration of organic dyes. This study may provide a universal way to the preparation of processable POFs and their hybrid membranes with GO.

  13. Stabilization of ultrathin (hydroxy)oxide films on transition metal substrates for electrochemical energy conversion

    NASA Astrophysics Data System (ADS)

    Zeng, Zhenhua; Chang, Kee-Chul; Kubal, Joseph; Markovic, Nenad M.; Greeley, Jeffrey

    2017-06-01

    Design of cost-effective electrocatalysts with enhanced stability and activity is of paramount importance for the next generation of energy conversion systems, including fuel cells and electrolysers. However, electrocatalytic materials generally improve one of these properties at the expense of the other. Here, using density functional theory calculations and electrochemical surface science measurements, we explore atomic-level features of ultrathin (hydroxy)oxide films on transition metal substrates and demonstrate that these films exhibit both excellent stability and activity for electrocatalytic applications. The films adopt structures with stabilities that significantly exceed bulk Pourbaix limits, including stoichiometries not found in bulk and properties that are tunable by controlling voltage, film composition, and substrate identity. Using nickel (hydroxy)oxide/Pt(111) as an example, we further show how the films enhance activity for hydrogen evolution through a bifunctional effect. The results suggest design principles for this class of electrocatalysts with simultaneously enhanced stability and activity for energy conversion.

  14. Stabilization of ultrathin (hydroxy)oxide films on transition metal substrates for electrochemical energy conversion

    DOE PAGES

    Zeng, Zhenhua; Chang, Kee-Chul; Kubal, Joseph; ...

    2017-05-08

    Design of cost-effective electrocatalysts with enhanced stability and activity is of paramount importance for the next generation of energy conversion systems, including fuel cells and electrolyzers. However, electrocatalytic materials generally improve one of these properties at the expense of the other. Here, using Density Functional Theory calculations and electrochemical surface science measurements, we explore atomic-level features of ultrathin (hydroxy)oxide films on transition metal substrates and demonstrate that these films exhibit both excellent stability and activity for electrocatalytic applications. The films adopt structures with stabilities that significantly exceed bulk Pourbaix limits, including stoichiometries not found in bulk and properties that aremore » tunable by controlling voltage, film composition, and substrate identity. Using nickel (hydroxy)oxide/Pt(111) as an example, we further show how the films enhance activity for hydrogen evolution through a bifunctional effect. Finally, the results suggest design principles for a new class of electrocatalysts with simultaneously enhanced stability and activity for energy conversion.« less

  15. A dual-stimuli-responsive fluorescent switch ultrathin film.

    PubMed

    Li, Zhixiong; Liang, Ruizheng; Liu, Wendi; Yan, Dongpeng; Wei, Min

    2015-10-28

    Stimuli-responsive fluorescent switches have shown broad applications in optical devices, biological materials and intelligent responses. Herein, we describe the design and fabrication of a dual-stimuli-responsive fluorescent switch ultrathin film (UTF) via a three-step layer-by-layer (LBL) technique: (i) encapsulation of spiropyran (SP) within an amphiphilic block copolymer (PTBEM) to give the (SP@PTBEM) micelle; (ii) the mixture of riboflavin (Rf) and poly(styrene 4-sulfonate) (PSS) to enhance the adhesion ability of small molecules; (iii) assembly of negatively charged SP@PTBEM and Rf-PSS with cationic layered double hydroxide (LDH) nanoplatelets to obtain the (Rf-PSS/LDH/SP@PTBEM)n UTFs (n: bilayer number). The assembly process of the UTFs and their luminescence properties, as monitored by fluorescence spectroscopy and scanning electron microscopy (SEM), present a uniform and ordered layered structure with stepwise growth. The resulting Rf-PSS/LDH/SP@PTBEM UTF serves as a three-state switchable multicolor (green, yellow, and red) luminescent system based on stimulation from UV/Vis light and pH, with an acceptable reversibility. Therefore, this work provides a facile way to fabricate stimuli-responsive solid-state film switches with tunable-color luminescence, which have potential applications in the areas of displays, sensors, and rewritable optical memory and fluorescent logic devices.

  16. Simultaneous determination of the residual stress, elastic modulus, density and thickness of ultrathin film utilizing vibrating doubly clamped micro-/nanobeams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stachiv, Ivo, E-mail: stachiv@fzu.cz; Institute of Physics, Czech Academy of Sciences, Prague; Kuo, Chih-Yun

    2016-04-15

    Measurement of ultrathin film thickness and its basic properties can be highly challenging and time consuming due to necessity of using several very sophisticated devices. Here, we report an easy accessible resonant based method capable to simultaneously determinate the residual stress, elastic modulus, density and thickness of ultrathin film coated on doubly clamped micro-/nanobeam. We show that a general dependency of the resonant frequencies on the axial load is also valid for in-plane vibrations, and the one depends only on the considered vibrational mode. As a result, we found that the film elastic modulus, density and thickness can be evaluatedmore » from two measured in-plane and out-plane fundamental resonant frequencies of micro-/nanobeam with and without film under different prestress forces. Whereas, the residual stress can be determined from two out-plane (in-plane) measured consecutive resonant frequencies of beam with film under different prestress forces without necessity of knowing film and substrate properties and dimensions. Moreover, we also reveal that the common uncertainties in force (and thickness) determination have a negligible (and minor) impact on the determined film properties. The application potential of the present method is illustrated on the beam made of silicon and SiO{sub 2} with deposited 20 nm thick AlN and 40 nm thick Au thin films, respectively.« less

  17. Collective Behavior of Amoebae in Thin Films

    NASA Astrophysics Data System (ADS)

    Bae, Albert

    2005-03-01

    We have discovered new aspects of social behavior in Dictyostelium discoideum by culturing high density colonies in liquid media depleted of nutrients in confined geometries by using three different preparations: I. thin (15-40um thick) and II. ultrathin (<3um) films of liquid media with a mineral oil overlayer, and III. microfluidic chambers fabricated in PDMS (˜7um tall). We find greatly reduced, if not eliminated, cell on cell layering in the microfluidic system when compared to the wetting layer preparations. The ultrathin films reveal robust behavior of cells despite flattening that increased their areas by over an order of magnitude. We also observed that the earliest synchronized response of cells following the onset of starvation, a precursor to aggregation, was hastened by reducing the thickness of the aqueous culture layer. We were surprised to find that the threshold concentration for aggregation was raised by thin film confinement when compared to bulk behavior. Finally, both the ultra thin and microfluidic preparations reveal, with new clarity, vortex states of aggregation.

  18. Highly efficient ultrathin-film amorphous silicon solar cells on top of imprinted periodic nanodot arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Wensheng, E-mail: yws118@gmail.com; Gu, Min, E-mail: mgu@swin.edu.au; Tao, Zhikuo

    2015-03-02

    The addressing of the light absorption and conversion efficiency is critical to the ultrathin-film hydrogenated amorphous silicon (a-Si:H) solar cells. We systematically investigate ultrathin a-Si:H solar cells with a 100 nm absorber on top of imprinted hexagonal nanodot arrays. Experimental evidences are demonstrated for not only notable silver nanodot arrays but also lower-cost ITO and Al:ZnO nanodot arrays. The measured external quantum efficiency is explained by the simulation results. The J{sub sc} values are 12.1, 13.0, and 14.3 mA/cm{sup 2} and efficiencies are 6.6%, 7.5%, and 8.3% for ITO, Al:ZnO, and silver nanodot arrays, respectively. Simulated optical absorption distribution shows high lightmore » trapping within amorphous silicon layer.« less

  19. In situ study of the electronic structure of atomic layer deposited oxide ultrathin films upon oxygen adsorption using ambient pressure XPS

    DOE PAGES

    Mao, Bao-Hua; Crumlin, Ethan; Tyo, Eric C.; ...

    2016-07-21

    In this work, ambient pressure X-ray photoelectron spectroscopy (APXPS) was used to investigate the effect of oxygen adsorption on the band bending and electron affinity of Al 2O 3, ZnO and TiO 2 ultrathin films (~1 nm in thickness) deposited on a Si substrate by atomic layer deposition (ALD). Upon exposure to oxygen at room temperature (RT), upward band bending was observed on all three samples, and a decrease in electron affinity was observed on Al 2O 3 and ZnO ultrathin films at RT. At 80°C, the magnitude of the upward band bending decreased, and the change in the electronmore » affinity vanished. These results indicate the existence of two surface oxygen species: a negatively charged species that is strongly adsorbed and responsible for the observed upward band bending, and a weakly adsorbed species that is polarized, lowering the electron affinity. Based on the extent of upward band bending on the three samples, the surface coverage of the strongly adsorbed species exhibits the following order: Al 2O 3 > ZnO > TiO 2. This finding is in stark contrast to the trend expected on the surface of these bulk oxides, and highlights the unique surface activity of ultrathin oxide films with important implications, for example, in oxidation reactions taking place on these films or in catalyst systems where such oxides are used as a support material.« less

  20. Magnetron sputtered boron films and TI/B multilayer structures

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1993-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  1. Magnetron sputtered boron films and Ti/B multilayer structures

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1995-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  2. Magnetron sputtered boron films and TI/B multilayer structures

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1993-04-20

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  3. Magnetron sputtered boron films and Ti/B multilayer structures

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1995-02-14

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence. 6 figs.

  4. Ultra-thin passivating film induced by vinylene carbonate on highly oriented pyrolytic graphite negative electrode in lithium-ion cell

    NASA Astrophysics Data System (ADS)

    Matsuoka, O.; Hiwara, A.; Omi, T.; Toriida, M.; Hayashi, T.; Tanaka, C.; Saito, Y.; Ishida, T.; Tan, H.; Ono, S. S.; Yamamoto, S.

    We investigated the influence of vinylene carbonate, as an additive molecule, on the decomposition phenomena of electrolyte solution [ethylene carbonate (EC)—ethyl methyl carbonate (EMC) (1:2 by volume) containing 1 M LiPF 6] on a highly oriented pyrolytic graphite (HOPG) negative electrode by using cyclic voltammetry (CV) and atomic force microscopy (AFM). Vinylene carbonate deactivated reactive sites (e.g. radicals and oxides at the defects and the edge of carbon layer) on the cleaved surface of the HOPG negative electrode, and prevented further decomposition of the other solvents there. Further, vinylene carbonate induced an ultra-thin film (less than 1.0 nm in thickness) on the terrace of the basal plane of the HOPG negative electrode, and this film suppressed the decomposition of electrolyte solution on the terraces of the basal plane. We consider that this ultra-thin passivating film is composed of a reduction product of vinylene carbonate (VC), and might have a polymer structure. These induced effects might explain how VC improves the life performance of lithium-ion cells.

  5. Ultrathin dendrimer-graphene oxide composite film for stable cycling lithium-sulfur batteries.

    PubMed

    Liu, Wen; Jiang, Jianbing; Yang, Ke R; Mi, Yingying; Kumaravadivel, Piranavan; Zhong, Yiren; Fan, Qi; Weng, Zhe; Wu, Zishan; Cha, Judy J; Zhou, Henghui; Batista, Victor S; Brudvig, Gary W; Wang, Hailiang

    2017-04-04

    Lithium-sulfur batteries (Li-S batteries) have attracted intense interest because of their high specific capacity and low cost, although they are still hindered by severe capacity loss upon cycling caused by the soluble lithium polysulfide intermediates. Although many structure innovations at the material and device levels have been explored for the ultimate goal of realizing long cycle life of Li-S batteries, it remains a major challenge to achieve stable cycling while avoiding energy and power density compromises caused by the introduction of significant dead weight/volume and increased electrochemical resistance. Here we introduce an ultrathin composite film consisting of naphthalimide-functionalized poly(amidoamine) dendrimers and graphene oxide nanosheets as a cycling stabilizer. Combining the dendrimer structure that can confine polysulfide intermediates chemically and physically together with the graphene oxide that renders the film robust and thin (<1% of the thickness of the active sulfur layer), the composite film is designed to enable stable cycling of sulfur cathodes without compromising the energy and power densities. Our sulfur electrodes coated with the composite film exhibit very good cycling stability, together with high sulfur content, large areal capacity, and improved power rate.

  6. In situ monitoring of thermal crystallization of ultrathin tris(8-hydroxyquinoline) aluminum films using surface-enhanced Raman scattering.

    PubMed

    Muraki, Naoki

    2014-01-01

    Thermal crystallization of 3, 10, and 60 nm-thick tris(8-hydroxyquinoline)aluminum (Alq3) films is studied using surface-enhanced Raman scattering with a constant heating rate. An abrupt higher frequency shift of the quinoline-stretching mode is found to be an indication of a phase transition of Alq3 molecules from amorphous to crystalline. While the 60 nm-thick film shows the same crystallization temperature as a bulk sample, the thinner films were found to have a lower crystallization temperature and slower rate of crystallization. Non-isothermal kinetics analysis is performed to quantify kinetic properties such as the Avrami exponent constants and crystallization rates of ultrathin Alq3 films.

  7. Multi-Layer Coating of Ultrathin Polymer Films on Nanoparticles of Alumina by a Plasma Treatment

    DTIC Science & Technology

    2001-01-01

    Proc. Vol. 635 © 2001 Materials Research Society Multi-Layer Coating of Ultrathin Polymer Films on Nanoparticles of Alumina by a Plasma Treatment Donglu...interconnected organic and inorganic networks results in coatings with a very low permeability for gases and liquids. Hybrid materials are very suitable for... materials consist of a clear alcoholic solution that can easily be processed by classical application techniques such as dipping, spraying, or spin coating

  8. Heterogeneity in ultrathin films simulated by Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Sun, Jiebing; Hannon, James B.; Kellogg, Gary L.; Pohl, Karsten

    2007-03-01

    The 3D composition profile of ultra-thin Pd films on Cu(001) has been experimentally determined using low energy electron microscopy (LEEM).^[1] Quantitative measurements of the alloy concentration profile near steps show that the Pd distribution in the 3^rd layer is heterogeneous due to step overgrowth during Pd deposition. Interestingly, the Pd distribution in the 2^nd layer is also heterogeneous, and appears to be correlated with the distribution in the 1^st layer. We describe Monte Carlo simulations that show that correlation is due to Cu-Pd attraction, and that the 2^nd layer Pd is, in fact, laterally equilibrated. By comparing measured and simulated concentration profiles, we can estimate this attraction within a simple bond counting model. [1] J. B. Hannon, J. Sun, K. Pohl, G. L. Kellogg, Phys. Rev. Lett. 96, 246103 (2006)

  9. High resolution electron energy loss spectroscopy of spin waves in ultra-thin film - The return of the adiabatic approximation?

    NASA Astrophysics Data System (ADS)

    Ibach, Harald

    2014-12-01

    The paper reports on recent considerable improvements in electron energy loss spectroscopy (EELS) of spin waves in ultra-thin films. Spin wave spectra with 4 meV resolution are shown. The high energy resolution enables the observation of standing modes in ultra-thin films in the wave vector range of 0.15 Å- 1 < q|| < 0.3 Å- 1. In this range, Landau damping is comparatively small and standing spin wave modes are well-defined Lorentzians for which the adiabatic approximation is well suited, an approximation which was rightly dismissed by Mills and collaborators for spin waves near the Brillouin zone boundary. With the help of published exchange coupling constants, the Heisenberg model, and a simple model for the spectral response function, experimental spectra for Co-films on Cu(100) as well as for Co films capped with further copper layers are successfully simulated. It is shown that, depending on the wave vector and film thickness, the most prominent contribution to the spin wave spectrum may come from the first standing mode, not from the so-called surface mode. In general, the peak position of a low-resolution spin wave spectrum does not correspond to a single mode. A discussion of spin waves based on the "dispersion" of the peak positions in low resolution spectra is therefore subject to errors.

  10. Numerical experiments on evaporation and explosive boiling of ultra-thin liquid argon film on aluminum nanostructure substrate

    NASA Astrophysics Data System (ADS)

    Wang, Weidong; Zhang, Haiyan; Tian, Conghui; Meng, Xiaojie

    2015-04-01

    Evaporation and explosive boiling of ultra-thin liquid film are of great significant fundamental importance for both science and engineering applications. The evaporation and explosive boiling of ultra-thin liquid film absorbed on an aluminum nanostructure solid wall are investigated by means of molecular dynamics simulations. The simulated system consists of three regions: liquid argon, vapor argon, and an aluminum substrate decorated with nanostructures of different heights. Those simulations begin with an initial configuration for the complex liquid-vapor-solid system, followed by an equilibrating system at 90 K, and conclude with two different jump temperatures, including 150 and 310 K which are far beyond the critical temperature. The space and time dependences of temperature, pressure, density number, and net evaporation rate are monitored to investigate the phase transition process on a flat surface with and without nanostructures. The simulation results reveal that the nanostructures are of great help to raise the heat transfer efficiency and that evaporation rate increases with the nanostructures' height in a certain range.

  11. Numerical experiments on evaporation and explosive boiling of ultra-thin liquid argon film on aluminum nanostructure substrate.

    PubMed

    Wang, Weidong; Zhang, Haiyan; Tian, Conghui; Meng, Xiaojie

    2015-01-01

    Evaporation and explosive boiling of ultra-thin liquid film are of great significant fundamental importance for both science and engineering applications. The evaporation and explosive boiling of ultra-thin liquid film absorbed on an aluminum nanostructure solid wall are investigated by means of molecular dynamics simulations. The simulated system consists of three regions: liquid argon, vapor argon, and an aluminum substrate decorated with nanostructures of different heights. Those simulations begin with an initial configuration for the complex liquid-vapor-solid system, followed by an equilibrating system at 90 K, and conclude with two different jump temperatures, including 150 and 310 K which are far beyond the critical temperature. The space and time dependences of temperature, pressure, density number, and net evaporation rate are monitored to investigate the phase transition process on a flat surface with and without nanostructures. The simulation results reveal that the nanostructures are of great help to raise the heat transfer efficiency and that evaporation rate increases with the nanostructures' height in a certain range.

  12. Effect of structure on the tribology of ultrathin graphene and graphene oxide films.

    PubMed

    Chen, Hang; Filleter, Tobin

    2015-03-27

    The friction and wear properties of graphene and graphene oxide (GO) with varying C/O ratio were investigated using friction force microscopy. When applied as solid lubricants between a sliding contact of a silicon (Si) tip and a SiO2/Si substrate, graphene and ultrathin GO films (as thin as 1-2 atomic layers) were found to reduce friction by ∼6 times and ∼2 times respectively as compared to the unlubricated contact. The differences in measured friction were attributed to different interfacial shear strengths. Ultrathin films of GO with a low C/O ratio of ∼2 were found to wear easily under small normal load. The onset of wear, and the location of wear initiation, is attributed to differences in the local shear strength of the sliding interface as a result of the non-homogeneous surface structure of GO. While the exhibited low friction of GO as compared to SiO2 makes it an economically viable coating for micro/nano-electro-mechanical systems with the potential to extend the lifetime of devices, its higher propensity for wear may limit its usefulness. To address this limitation, the wear resistance of GO samples with a higher C/O ratio (∼4) was also studied. The higher C/O ratio GO was found to exhibit much improved wear resistance which approached that of the graphene samples. This demonstrates the potential of tailoring the structure of GO to achieve graphene-like tribological properties.

  13. Surface Morphology of Vapor-Deposited Chitosan: Evidence of Solid-State Dewetting during the Formation of Biopolymer Films.

    PubMed

    Retamal, Maria Jose; Corrales, Tomas P; Cisternas, Marcelo A; Moraga, Nicolas H; Diaz, Diego I; Catalan, Rodrigo E; Seifert, Birger; Huber, Patrick; Volkmann, Ulrich G

    2016-03-14

    Chitosan is a useful and versatile biopolymer with several industrial and biological applications. Whereas its physical and physicochemical bulk properties have been explored quite intensively in the past, there is a lack of studies regarding the morphology and growth mechanisms of thin films of this biopolymer. Of particular interest for applications in bionanotechnology are ultrathin films with thicknesses under 500 Å. Here, we present a study of thin chitosan films prepared in a dry process using physical vapor deposition and in situ ellipsometric monitoring. The prepared films were analyzed with atomic force microscopy in order to correlate surface morphology with evaporation parameters. We find that the surface morphology of our final thin films depends on both the optical thickness, i.e., measured with ellipsometry, and the deposition rate. Our work shows that ultrathin biopolymer films can undergo dewetting during film formation, even in the absence of solvents and thermal annealing.

  14. Interface effects in ultra-thin films: Magnetic and chemical properties

    NASA Astrophysics Data System (ADS)

    Park, Sungkyun

    When the thickness of a magnetic layer is comparable to (or smaller than) the electron mean free path, the interface between magnetic and non-magnetic layers becomes very important factor to determine magnetic properties of the ultra-thin films. The quality of interface can enhance (or reduce) the desired properties. Several interesting physical phenomena were studied using these interface effects. The magnetic anisotropy of ultra-thin Co films is studied as function of non-magnetic underlayer thickness and non- magnetic overlayer materials using ex situ Brillouin light scattering (BLS). I observed that perpendicular magnetic anisotropy (PMA) increases with underlayer thickness and saturates after 5 ML. This saturation can be understood as a relaxation of the in-plane lattice parameter of Au(111) on top of Cu(111) to its bulk value. For the overlayer study, Cu, Al, and Au are used. An Au overlayer gives the largest PMA due to the largest in-plane lattice mismatch between Co and Au. An unusual effect was found by adding an additional layer on top of the Au overlayer. An additional Al capping layer on top of the Au overlayer reduces the PMA significantly. The possible explanation is that the misfit strain at the interface between the Al and the Au can be propagated through the Au layer to affect the magnetic properties of Co even though the in- plane lattice mismatch is less than 1%. Another interesting problem in interface interdiffusion and thermal stability in magnetic tunnel junction (MTJ) structures is studied using X-ray photoelectron spectroscopy (XPS). Since XPS is a very chemically sensitive technique, it allows us to monitor interface interdiffusion of the MTJ structures as-deposited and during post-deposition processing. For the plasma- oxidized samples, Fe only participates in the oxidation reduction process. In contrast to plasma-oxidized samples, there were no noticeable chemical shifts as- deposited and during post-deposition processing in air

  15. Facile fabrication of network film electrodes with ultrathin Au nanowires for nonenzymatic glucose sensing and glucose/O2 fuel cell.

    PubMed

    Yang, Lu; Zhang, Yijia; Chu, Mi; Deng, Wenfang; Tan, Yueming; Ma, Ming; Su, Xiaoli; Xie, Qingji; Yao, Shuozhuo

    2014-02-15

    We report here on the facile fabrication of network film electrodes with ultrathin Au nanowires (AuNWs) and their electrochemical applications for high-performance nonenzymatic glucose sensing and glucose/O2 fuel cell under physiological conditions (pH 7.4, containing 0.15M Cl(-)). AuNWs with an average diameter of ~7 or 2 nm were prepared and can self-assemble into robust network films on common electrodes. The network film electrode fabricated with 2-nm AuNWs exhibits high sensitivity (56.0 μA cm(-2)mM(-1)), low detection limit (20 μM), short response time (within 10s), excellent selectivity, and good storage stability for nonenzymatic glucose sensing. Glucose/O2 fuel cells were constructed using network film electrodes as the anode and commercial Pt/C catalyst modified glassy carbon electrode as cathode. The glucose/O2 fuel cell using 2-nm AuNWs as anode catalyst output a maximum power density of is 126 μW cm(-2), an open-circuit cell voltage of 0.425 V, and a short-circuit current density of 1.34 mA cm(-2), respectively. Due to the higher specific electroactive surface area of 2-nm AuNWs, the network film electrode fabricated with 2-nm AuNWs exhibited higher electrocatalytic activity toward glucose oxidation than the network film electrode fabricated with 7-nm AuNWs. The network film electrode exhibits high electrocatalytic activity toward glucose oxidation under physiological conditions, which is helpful for constructing implantable electronic devices. © 2013 Elsevier B.V. All rights reserved.

  16. Ultrathin MoS2 Nanosheets with Superior Extreme Pressure Property as Boundary Lubricants.

    PubMed

    Chen, Zhe; Liu, Xiangwen; Liu, Yuhong; Gunsel, Selda; Luo, Jianbin

    2015-08-07

    In this paper, a new kind of oil-soluble ultrathin MoS2 nanosheets is prepared through a one-pot process. A superior extreme pressure property, which has not been attained with other nano-additives, is discovered when the nanosheets are used as lubricant additives. The as-synthesized MoS2 nanosheet is only a few atomic layers thick and tens of nanometers wide, and it is surface-modified with oleylamine so it can be well dispersed in oil or lubricant without adscititious dispersants or surfactants. By adding 1 wt% ultrathin MoS2 nanosheets, at the temperature of 120 °C, the highest load liquid paraffin can bear is tremendously improved from less than 50 N to more than 2000 N. Based on the tribological tests and analysis of the wear scar, a lubrication mechanism is proposed. It is believed that the good dispersion and the ultrathin shape of the nanosheets ensure that they can enter the contact area of the opposite sliding surfaces and act like a protective film to prevent direct contact and seizure between them. This work enriches the investigation of ultrathin MoS2 and has potential application in the mechanical industry.

  17. Ultrathin MoS2 Nanosheets with Superior Extreme Pressure Property as Boundary Lubricants

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Liu, Xiangwen; Liu, Yuhong; Gunsel, Selda; Luo, Jianbin

    2015-08-01

    In this paper, a new kind of oil-soluble ultrathin MoS2 nanosheets is prepared through a one-pot process. A superior extreme pressure property, which has not been attained with other nano-additives, is discovered when the nanosheets are used as lubricant additives. The as-synthesized MoS2 nanosheet is only a few atomic layers thick and tens of nanometers wide, and it is surface-modified with oleylamine so it can be well dispersed in oil or lubricant without adscititious dispersants or surfactants. By adding 1 wt% ultrathin MoS2 nanosheets, at the temperature of 120 °C, the highest load liquid paraffin can bear is tremendously improved from less than 50 N to more than 2000 N. Based on the tribological tests and analysis of the wear scar, a lubrication mechanism is proposed. It is believed that the good dispersion and the ultrathin shape of the nanosheets ensure that they can enter the contact area of the opposite sliding surfaces and act like a protective film to prevent direct contact and seizure between them. This work enriches the investigation of ultrathin MoS2 and has potential application in the mechanical industry.

  18. Solution-processed ultrathin chemically derived graphene films as soft top contacts for solid-state molecular electronic junctions.

    PubMed

    Li, Tao; Hauptmann, Jonas Rahlf; Wei, Zhongming; Petersen, Søren; Bovet, Nicolas; Vosch, Tom; Nygård, Jesper; Hu, Wenping; Liu, Yunqi; Bjørnholm, Thomas; Nørgaard, Kasper; Laursen, Bo W

    2012-03-08

    A novel method using solution-processed ultrathin chemically derived graphene films as soft top contacts for the non-destructive fabrication of molecular junctions is demonstrated. We believe this protocol will greatly enrich the solid-state test beds for molecular electronics due to its low-cost, easy-processing and flexible nature. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Phase formation and morphological stability of ultrathin Ni-Co-Pt silicide films formed on Si(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Peng; Wu, Dongping, E-mail: dongpingwu@fudan.edu.cn; Kubart, Tomas

    Ultrathin Ni, Co, and Pt films, each no more than 4 nm in thickness, as well as their various combinations are employed to investigate the competing growth of epitaxial Co{sub 1-y}Ni{sub y}Si{sub 2} films against polycrystalline Pt{sub 1-z}Ni{sub z}Si. The phase formation critically affects the morphological stability of the resulting silicide films, with the epitaxial films being superior to the polycrystalline ones. Any combination of those metals improves the morphological stability with reference to their parent individual metal silicide films. When Ni, Co, and Pt are all included, the precise initial location of Pt does little to affect the final phasemore » formation in the silicide films and the epitaxial growth of Co{sub 1-x}Ni{sub x}Si{sub 2} films is always perturbed, in accordance to thermodynamics that shows a preferential formation of Pt{sub 1-z}Ni{sub z}Si over that of Co{sub 1-y}Ni{sub y}Si{sub 2}.« less

  20. A process for preparing an ultra-thin, adhesiveless, multi-layered, patterned polymer substrate

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor); Kruse, Nancy H. M. (Inventor); Fox, Robert L. (Inventor); Tran, Sang Q. (Inventor)

    1995-01-01

    A process for preparing an ultra-thin, adhesiveless, multi-layered, patterned polymer substrate is disclosed. The process may be used to prepare both rigid and flexible cables and circuit boards. A substrate is provided and a polymeric solution comprising a self-bonding, soluble polymer and a solvent is applied to the substrate. Next, the polymer solution is dried to form a polymer coated substrate. The polymer coated substrate is metallized and patterned. At least one additional coating of the polymeric solution is applied to the metallized, patterned, polymer coated substrate and the steps of metallizing and patterning are repeated. Lastly, a cover coat is applied. When preparing a flexible cable and flexible circuit board, the polymer coating is removed from the substrate.

  1. Surface structure of coherently strained ceria ultrathin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Yezhou; Stone, Kevin H.; Guan, Zixuan

    2016-11-14

    Cerium oxide, or ceria, is an important material for solid oxide fuel cells and water splitting devices. Although the ceria surface is active in catalytic and electrochemical reactions, how its catalytic properties are affected by the surface structure under operating conditions is far from understood. We investigate the structure of the coherently strained CeO 2 ultrathin films on yttria-stabilized zirconia (001) single crystals by specular synchrotron x-ray diffraction (XRD) under oxidizing conditions as a first step to study the surface structure in situ. An excellent agreement between the experiment data and the model is achieved by using a “stacks andmore » islands” model that has a two-component roughness. One component is due to the tiny clusters of nanometer scale in lateral dimensions on each terrace, while the other component is due to slightly different CeO 2 thickness that span over hundreds of nanometers on neighboring terraces. We attribute the nonuniform thickness to step depairing during the thin film deposition that is supported by the surface morphology results on the microscopic level. Importantly, our model also shows that the polarity of the ceria surface is removed by a half monolayer surface coverage of oxygen. In conclusion, the successful resolution of the ceria surface structure using in situ specular synchrotron XRD paves the way to study the structural evolution of ceria as a fuel cell electrode under catalytically relevant temperatures and gas pressures.« less

  2. Resistive switching of organic–inorganic hybrid devices of conductive polymer and permeable ultra-thin SiO2 films

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shunsuke; Kitanaka, Takahisa; Miyashita, Tokuji; Mitsuishi, Masaya

    2018-06-01

    We propose a resistive switching device composed of conductive polymer (PEDOT:PSS) and SiO2 ultra-thin films. The SiO2 film was fabricated from silsesquioxane polymer nanosheets as a resistive switching layer. Devices with metal (Ag or Au)∣SiO2∣PEDOT:PSS architecture show good resistive switching performance with set–reset voltages as low as several hundred millivolts. The device properties and the working mechanism were investigated by varying the electrode material, surrounding atmosphere, and SiO2 film thickness. Results show that resistive switching is based on water and ion migration at the PEDOT:PSS∣SiO2 interface.

  3. Resistive switching of organic-inorganic hybrid devices of conductive polymer and permeable ultra-thin SiO2 films.

    PubMed

    Yamamoto, Shunsuke; Kitanaka, Takahisa; Miyashita, Tokuji; Mitsuishi, Masaya

    2018-06-29

    We propose a resistive switching device composed of conductive polymer (PEDOT:PSS) and SiO 2 ultra-thin films. The SiO 2 film was fabricated from silsesquioxane polymer nanosheets as a resistive switching layer. Devices with metal (Ag or Au)∣SiO 2 ∣PEDOT:PSS architecture show good resistive switching performance with set-reset voltages as low as several hundred millivolts. The device properties and the working mechanism were investigated by varying the electrode material, surrounding atmosphere, and SiO 2 film thickness. Results show that resistive switching is based on water and ion migration at the PEDOT:PSS∣SiO 2 interface.

  4. [Color selection of ultrathin veneers in clinic].

    PubMed

    Feng, Sun

    2016-12-01

    Ultrathin veneer is a new therapeutic technology developed from minimally invasive theories. Ultrathin veneer alters the unwanted shape and color of a tooth through minimal or lack of preparation. The color of tooth after restoration is mixed with the natural color of tooth, the original color of veneer, and the color of bonding material because of ultrathin (approximately 0.2 mm) veneer. Thus, the color is affected by numerous variations. Full considerations are required for creating designs. The author summarizes clinical points and provides suggestions for ultrathin veneer in color.

  5. Verwey transition in a magnetite ultrathin film by resonant x-ray scattering

    NASA Astrophysics Data System (ADS)

    Grenier, S.; Bailly, A.; Ramos, A. Y.; De Santis, M.; Joly, Y.; Lorenzo, J. E.; Garaudée, S.; Frericks, M.; Arnaud, S.; Blanc, N.; Boudet, N.

    2018-03-01

    We report a detailed study of the Verwey transition in a magnetite ultrathin film (UTF) grown on Ag(001) using resonant x-ray scattering (RXS). RXS was measured at the Fe K-edge on the crystal truncation rod of the substrate, increasing the sensitivity to the film thanks to the cross-interference, thereby obtaining an x-ray phase-shift reference and a polarization analyzer. The spectra were interpreted with ad hoc calculations based on density functional theory within a surface-scattering formalism. We observed that the UTF has a relatively sharp transition temperature TV=120 K and is remarkably close to the bulk temperature for such thickness. We determined the specific Fe stacking at the interface with the substrate below TV, and detected a spectroscopic signal evolving with temperature from TV up to at least TV+80 K, hinting that the RT crystallographic structure does not set at TV in the UTF.

  6. Electrical properties of epitaxial yttrium iron garnet ultrathin films at high temperatures

    NASA Astrophysics Data System (ADS)

    Thiery, N.; Naletov, V. V.; Vila, L.; Marty, A.; Brenac, A.; Jacquot, J.-F.; de Loubens, G.; Viret, M.; Anane, A.; Cros, V.; Ben Youssef, J.; Beaulieu, N.; Demidov, V. E.; Divinskiy, B.; Demokritov, S. O.; Klein, O.

    2018-02-01

    We report a study on the electrical properties of 19-nm-thick yttrium iron garnet (YIG) films grown by liquid phase epitaxy on gadolinium gallium garnet single crystal. The electrical conductivity and Hall coefficient are measured in the high-temperature range [300,400] K using a Van der Pauw four-point probe technique. We find that the electrical resistivity decreases exponentially with increasing temperature following an activated behavior corresponding to a band gap of Eg≈2 eV. It drops to values about 5 ×103Ω cm at T =400 K, thus indicating that epitaxial YIG ultrathin films behave as large gap semiconductors. We also infer the Hall mobility, which is found to be positive (p type) at 5 cm2V-1sec-1 and almost independent of temperature. We discuss the consequence for nonlocal spin transport experiments performed on YIG at room temperature and demonstrate the existence of electrical offset voltages to be disentangled from pure spin effects.

  7. Rutherford forward scattering and elastic recoil detection (RFSERD) as a method for characterizing ultra-thin films

    DOE PAGES

    Lohn, Andrew J.; Doyle, Barney L.; Stein, Gregory J.; ...

    2014-04-03

    We present a novel ion beam analysis technique combining Rutherford forward scattering and elastic recoil detection (RFSERD) and demonstrate its ability to increase efficiency in determining stoichiometry in ultrathin (5-50 nm) films as compared to Rutherford backscattering. In the conventional forward geometries, scattering from the substrate overwhelms the signal from light atoms but in RFSERD, scattered ions from the substrate are ranged out while forward scattered ions and recoiled atoms from the thin film are simultaneously detected in a single detector. Lastly, the technique is applied to tantalum oxide memristors but can be extended to a wide range of materialsmore » systems.« less

  8. Cap-Induced Magnetic Anisotropy in Ultra-thin Fe/MgO(001) Films

    NASA Astrophysics Data System (ADS)

    Brown-Heft, Tobias; Pendharkar, Mihir; Lee, Elizabeth; Palmstrom, Chris

    Magnetic anisotropy plays an important role in the design of spintronic devices. Perpendicular magnetic anisotropy (PMA) is preferred for magnetic tunnel junctions because the resulting energy barrier between magnetization states can be very high and this allows enhanced device scalability suitable for magnetic random access memory applications. Interface induced anisotropy is often used to control magnetic easy axes. For example, the Fe/MgO(001) system has been predicted to exhibit PMA in the ultrathin Fe limit. We have used in-situ magneto optic Kerr effect and ex-situ SQUID to study the changes in anisotropy constants between bare Fe/MgO(001) films and those capped with MgO, Pt, and Ta. In some cases in-plane anisotropy terms reverse sign after capping. We also observe transitions from superparamagnetic to ferromagnetic behavior induced by capping layers. Perpendicular anisotropy is observed for Pt/Fe/MgO(001) films after annealing to 300°C. These effects are characterized and incorporated into a magnetic simulation that accurately reproduces the behavior of the films. This work was supported in part by the Semiconductor Research Corporation programs (1) MSR-Intel, and (2) C-SPIN.

  9. A Hydrogel of Ultrathin Pure Polyaniline Nanofibers: Oxidant-Templating Preparation and Supercapacitor Application.

    PubMed

    Zhou, Kun; He, Yuan; Xu, Qingchi; Zhang, Qin'e; Zhou, An'an; Lu, Zihao; Yang, Li-Kun; Jiang, Yuan; Ge, Dongtao; Liu, Xiang Yang; Bai, Hua

    2018-05-15

    Although challenging, fabrication of porous conducting polymeric materials with excellent electronic properties is crucial for many applications. We developed a fast in situ polymerization approach to pure polyaniline (PANI) hydrogels, with vanadium pentoxide hydrate nanowires as both the oxidant and sacrifice template. A network comprised of ultrathin PANI nanofibers was generated during the in situ polymerization, and the large aspect ratio of these PANI nanofibers allowed the formation of hydrogels at a low solid content of 1.03 wt %. Owing to the ultrathin fibril structure, PANI hydrogels functioning as a supercapacitor electrode display a high specific capacitance of 636 F g -1 , a rate capability, and good cycling stability (∼83% capacitance retention after 10,000 cycles). This method was also extended to the preparation of polypyrrole and poly(3,4-ethylenedioxythiophene) hydrogels. This template polymerization method represents a rational strategy for design of conducing polymer networks, which can be readily integrated in high-performance devices or a further platform for functional composites.

  10. Connecting quantum dots and bionanoparticles in hybrid nanoscale ultra-thin films

    NASA Astrophysics Data System (ADS)

    Tangirala, Ravisubhash; Hu, Yunxia; Zhang, Qingling; He, Jinbo; Russell, Thomas; Emrick, Todd

    2008-03-01

    Aldehyde-functionalized CdSe quantum dots and nanorods, and horse spleen ferritin bionanoparticles, were co-assembled at an oil-water interface. Reaction of the aldehydes with the surface-available amines on the ferritin particles enabled cross-linking at the interface, converting the assembled nanoparticles into robust ultra-thin films. The cross-linked capsules and sheets thus made by aldehyde-amine conjugation could be disrupted by addition of acid. Reductive amination chemistry could be performed to convert these degradable capsules and sheets into structures with irreversible cross-linking. Fluorescence confocal microscopy, scanning force microscopy and pendant drop tensiometry were used to characterize these hybrid nanoparticle-based materials, and transmission electron microscopy (TEM) confirmed the presence of both the synthetic and naturally derived nanoparticles.

  11. Structure of a zinc oxide ultra-thin film on Rh(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuhara, J.; Kato, D.; Matsui, T.

    The structural parameters of ultra-thin zinc oxide films on Rh(100) are investigated using low-energy electron diffraction intensity (LEED I–V) curves, scanning tunneling microscopy (STM), and first-principles density functional theory (DFT) calculations. From the analysis of LEED I–V curves and DFT calculations, two optimized models A and B are determined. Their structures are basically similar to the planer h-BN ZnO(0001) structure, although some oxygen atoms protrude from the surface, associated with an in-plane shift of Zn atoms. From a comparison of experimental STM images and simulated STM images, majority and minority structures observed in the STM images represent the two optimizedmore » models A and B, respectively.« less

  12. Superstructures and Electronic Properties of Manganese-Phthalocyanine Molecules on Au(110) from Submonolayer Coverage to Ultrathin Molecular Films.

    PubMed

    Topyła, M; Néel, N; Kröger, J

    2016-07-12

    The adsorption of manganese-phthalocyanine molecules on Au(110) was investigated using a low-temperature scanning tunneling microscope. A rich variety of commensurate superstructures was observed upon increasing the molecule coverage from submonolayers to ultrathin films. All structures were associated with reconstructions of the Au(110) substrate. Molecules adsorbed in the second molecular layer exhibited negative differential conductance occurring symmetrically around zero bias voltage. A double-barrier tunneling model rationalized this observation in terms of a peaked molecular resonance at the Fermi energy together with a voltage drop across the molecular film.

  13. Ultrathin IBAD MgO films for epitaxial growth on amorphous substrates and sub-50 nm membranes

    DOE PAGES

    Wang, Siming; Antonakos, C.; Bordel, C.; ...

    2016-11-07

    Here, a fabrication process has been developed for high energy ion beam assisted deposition (IBAD) biaxial texturing of ultrathin (~1 nm) MgO films, using a high ion-to-atom ratio and post-deposition annealing instead of a homoepitaxial MgO layer. These films serve as the seed layer for epitaxial growth of materials on amorphous substrates such as electron/X-ray transparent membranes or nanocalorimetry devices. Stress measurements and atomic force microscopy of the MgO films reveal decreased stress and surface roughness, while X-ray diffraction of epitaxial overlayers demonstrates the improved crystal quality of films grown epitaxially on IBAD MgO. The process simplifies the synthesis ofmore » IBAD MgO, fundamentally solves the “wrinkle” issue induced by the homoepitaxial layer on sub-50 nm membranes, and enables studies of epitaxial materials in electron/X-ray transmission and nanocalorimetry.« less

  14. Kelvin–Helmholtz instability in an ultrathin air film causes drop splashing on smooth surfaces

    PubMed Central

    Liu, Yuan; Tan, Peng; Xu, Lei

    2015-01-01

    When a fast-moving drop impacts onto a smooth substrate, splashing will be produced at the edge of the expanding liquid sheet. This ubiquitous phenomenon lacks a fundamental understanding. Combining experiment with model, we illustrate that the ultrathin air film trapped under the expanding liquid front triggers splashing. Because this film is thinner than the mean free path of air molecules, the interior airflow transfers momentum with an unusually high velocity comparable to the speed of sound and generates a stress 10 times stronger than the airflow in common situations. Such a large stress initiates Kelvin–Helmholtz instabilities at small length scales and effectively produces splashing. Our model agrees quantitatively with experimental verifications and brings a fundamental understanding to the ubiquitous phenomenon of drop splashing on smooth surfaces. PMID:25713350

  15. Investigation of microstructure and properties of ultrathin graded ZrNx self-assembled diffusion barrier in deep nano-vias prepared by plasma ion immersion implantation

    NASA Astrophysics Data System (ADS)

    Zou, Jianxiong; Liu, Bo; Lin, Liwei; Lu, Yuanfu; Dong, Yuming; Jiao, Guohua; Ma, Fei; Li, Qiran

    2018-01-01

    Ultrathin graded ZrNx self-assembled diffusion barriers with controllable stoichiometry was prepared in Cu/p-SiOC:H interfaces by plasma immersion ion implantation (PIII) with dynamic regulation of implantation fluence. The fundamental relationship between the implantation fluence of N+ and the stoichiometry and thereby the electrical properties of the ZrNx barrier was established. The optimized fluence of a graded ZrN thin film with gradually decreased Zr valence was obtained with the best electrical performance as well. The Cu/p-SiOC:H integration is thermally stable up to 500 °C due to the synergistic effect of Cu3Ge and ZrNx layers. Accordingly, the PIII process was verified in a 100-nm-thick Cu dual-damascene interconnect, in which the ZrNx diffusion barrier of 1 nm thick was successfully self-assembled on the sidewall without barrier layer on the via bottom. In this case, the via resistance was reduced by approximately 50% in comparison with Ta/TaN barrier. Considering the results in this study, ultrathin ZrNx conformal diffusion barrier can be adopted in the sub-14 nm technology node.

  16. Molecular dynamics simulations of disjoining pressure effects in ultra-thin water films on a metal surface

    NASA Astrophysics Data System (ADS)

    Hu, Han; Sun, Ying

    2013-11-01

    Disjoining pressure, the excess pressure in an ultra-thin liquid film as a result of van der Waals interactions, is important in lubrication, wetting, flow boiling, and thin film evaporation. The classic theory of disjoining pressure is developed for simple monoatomic liquids. However, real world applications often utilize water, a polar liquid, for which fundamental understanding of disjoining pressure is lacking. In the present study, molecular dynamics (MD) simulations are used to gain insights into the effect of disjoining pressure in a water thin film. Our MD models were firstly validated against Derjaguin's experiments on gold-gold interactions across a water film and then verified against disjoining pressure in an argon thin film using the Lennard-Jones potential. Next, a water thin film adsorbed on a gold surface was simulated to examine the change of vapor pressure with film thickness. The results agree well with the classic theory of disjoining pressure, which implies that the polar nature of water molecules does not play an important role. Finally, the effects of disjoining pressure on thin film evaporation in nanoporous membrane and on bubble nucleation are discussed.

  17. Symmetry of Epitaxial BiFeO3 Films in the Ultrathin Regime

    NASA Astrophysics Data System (ADS)

    Yang, Yongsoo; Schlep&üTz, Christian; Adamo, Carolina; Schlom, Darrell; Clarke, Roy

    2013-03-01

    BiFeO3 (BFO) films grown on SrTiO3 (STO) with a SrRuO3 buffer layer exhibit a monoclinic structure at thicknesses greater than 40 nm, but higher structural symmetry can be observed for thinner films [Phys. Rev. B 81, 144115 (2010)]. We report a structural phase transition from monoclinic to tetragonal in ultra-thin BFO films grown directly on (100)-oriented STO. X-ray diffraction measurements of 3-dimensional reciprocal space maps reveal half-integer order peaks due to oxygen octahedral tilting. When the film thickness is decreased below 20 unit cells, the integer-order Bragg peak splitting associated with the presence of multiple domains of the monoclinic phase disappears. Instead, a single peak that is commensurate with the STO substrate lattice appears. The diffraction pattern has four-fold symmetry, ruling out the presence of a single monoclinic domain in favor of a tetragonal film structure. The evolution of the oxygen octahedra tilt pattern inferred from the intensities of half-order peaks suggests that this transition originates from the corner-connectivity of oxygen atoms at the interface between BFO and STO, and also strongly supports this monoclinic to tetragonal transition. Supported in part by the U.S. Department of Energy (DE-FG02-06ER46273). Measurements performed at Sectors 13-BMC, 33-IDD, 33-BMC of the Advanced Photon Source, Argonne National Laboratory, USA (DOE contract No. DE-AC02-06CH11357).

  18. Ultrathin Two-Dimensional Covalent Organic Framework Nanosheets: Preparation and Application in Highly Sensitive and Selective DNA Detection.

    PubMed

    Peng, Yongwu; Huang, Ying; Zhu, Yihan; Chen, Bo; Wang, Liying; Lai, Zhuangchai; Zhang, Zhicheng; Zhao, Meiting; Tan, Chaoliang; Yang, Nailiang; Shao, Fangwei; Han, Yu; Zhang, Hua

    2017-06-28

    The ability to prepare ultrathin two-dimensional (2D) covalent organic framework (COF) nanosheets (NSs) in high yield is of great importance for the further exploration of their unique properties and potential applications. Herein, by elaborately designing and choosing two flexible molecules with C 3v molecular symmetry as building units, a novel imine-linked COF, namely, TPA-COF, with a hexagonal layered structure and sheet-like morphology, is synthesized. Since the flexible building units are integrated into the COF skeletons, the interlayer stacking becomes weak, resulting in the easy exfoliation of TPA-COF into ultrathin 2D NSs. Impressively, for the first time, the detailed structural information, i.e., the pore channels and individual building units in the NSs, is clearly visualized by using the recently developed low-dose imaging technique of transmission electron microscopy (TEM). As a proof-of-concept application, the obtained ultrathin COF NSs are used as a novel fluorescence sensing platform for the highly sensitive and selective detection of DNA.

  19. Flexible, Low-Power Thin-Film Transistors Made of Vapor-Phase Synthesized High-k, Ultrathin Polymer Gate Dielectrics.

    PubMed

    Choi, Junhwan; Joo, Munkyu; Seong, Hyejeong; Pak, Kwanyong; Park, Hongkeun; Park, Chan Woo; Im, Sung Gap

    2017-06-21

    A series of high-k, ultrathin copolymer gate dielectrics were synthesized from 2-cyanoethyl acrylate (CEA) and di(ethylene glycol) divinyl ether (DEGDVE) monomers by a free radical polymerization via a one-step, vapor-phase, initiated chemical vapor deposition (iCVD) method. The chemical composition of the copolymers was systematically optimized by tuning the input ratio of the vaporized CEA and DEGDVE monomers to achieve a high dielectric constant (k) as well as excellent dielectric strength. Interestingly, DEGDVE was nonhomopolymerizable but it was able to form a copolymer with other kinds of monomers. Utilizing this interesting property of the DEGDVE cross-linker, the dielectric constant of the copolymer film could be maximized with minimum incorporation of the cross-linker moiety. To our knowledge, this is the first report on the synthesis of a cyanide-containing polymer in the vapor phase, where a high-purity polymer film with a maximized dielectric constant was achieved. The dielectric film with the optimized composition showed a dielectric constant greater than 6 and extremely low leakage current densities (<3 × 10 -8 A/cm 2 in the range of ±2 MV/cm), with a thickness of only 20 nm, which is an outstanding thickness for down-scalable cyanide polymer dielectrics. With this high-k dielectric layer, organic thin-film transistors (OTFTs) and oxide TFTs were fabricated, which showed hysteresis-free transfer characteristics with an operating voltage of less than 3 V. Furthermore, the flexible OTFTs retained their low gate leakage current and ideal TFT characteristics even under 2% applied tensile strain, which makes them some of the most flexible OTFTs reported to date. We believe that these ultrathin, high-k organic dielectric films with excellent mechanical flexibility will play a crucial role in future soft electronics.

  20. Three-configurational surface magneto-optical Kerr effect measurement system for an ultrahigh vacuum in situ study of ultrathin magnetic films

    NASA Astrophysics Data System (ADS)

    Lee, J.-W.; Jeong, J.-R.; Kim, D.-H.; Ahn, J. S.; Kim, J.; Shin, S.-C.

    2000-10-01

    We have constructed a three-configurational surface magneto-optical Kerr effect system, which provides the simultaneous measurements of the "polar," "longitudinal," and "transverse" Kerr hysteresis loops at the position where deposition is carried out in an ultrahigh vacuum growth chamber. The present system enables in situ three-dimensional vectorial studies of ultrathin film magnetism with a submonolayer sensitivity. We present three-configurational hysteresis loops measured during the growth of Co films on Pd(111), glass, and Pd/glass substrates.

  1. Plasma-enhanced pulsed-laser deposition of single-crystalline M o2C ultrathin superconducting films

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Zhang, Zhi; Wang, Huichao; Chan, Cheuk Ho; Chan, Ngai Yui; Chen, Xin Xin; Dai, Ji-Yan

    2017-08-01

    Transition-metal carbides (TMCs) possess many intriguing properties and inspiring application potentials, and recently the study of a two-dimensional form of TMCs has attracted great attention. Herein, we report successful fabrication of continuous M o2C ultrathin single-crystalline films at 700 ∘C with an approach of plasma-enhanced pulsed-laser deposition. By sophisticated structural analyses, the M o2C films are characterized as single crystal with a rarely reported face-centered cubic structure. In further electrical transport measurements, superconductivity observed in the M o2C films demonstrates a typical two-dimensional feature, which is consistent with Berezinskii-Kosterlitz-Thouless transitions. Besides, large upper critical magnetic fields are discovered in this system. Our work offers an approach to grow large-area and high-quality TMCs at relatively low temperatures. This study may stimulate more related investigations on the synthesis, characterizations, and applications of two-dimensional TMCs.

  2. Patterned FePt nanostructures using ultrathin self-organized templates

    NASA Astrophysics Data System (ADS)

    Deng, Chen Hua; Zhang, Min; Wang, Fang; Xu, Xiao Hong

    2018-02-01

    Patterned magnetic thin films are both scientifically interesting and technologically useful. Ultrathin self-organized anodic aluminum oxide (AAO) template can be used to fabricate large area nanodot and antidot arrays. The magnetic properties of these nanostructures may be tuned by the morphology of the AAO template, which in turn can be controlled by synthetic parameters. In this work, ultrathin AAO templates were used as etching masks for the fabrication of both FePt nanodot and antidot arrays with high areal density. The perpendicular magnetic anisotropy of L10 FePt thin films are preserved in the nanostructures.

  3. First-principles studies of hydrogen interaction with ultrathin Mg and Mg-based alloy films

    NASA Astrophysics Data System (ADS)

    Yoon, Mina; Weitering, Hanno H.; Zhang, Zhenyu

    2011-01-01

    The search for technologically and economically viable storage solutions for hydrogen fuel would benefit greatly from research strategies that involve systematic property tuning of potential storage materials via atomic-level modification. Here, we use first-principles density-functional theory to investigate theoretically the structural and electronic properties of ultrathin Mg films and Mg-based alloy films and their interaction with atomic hydrogen. Additional delocalized charges are distributed over the Mg films upon alloying them with 11.1% of Al or Na atoms. These extra charges contribute to enhance the hydrogen binding strength to the films. We calculated the chemical potential of hydrogen in Mg films for different dopant species and film thickness, and we included the vibrational degrees of freedom. By comparing the chemical potential with that of free hydrogen gas at finite temperature (T) and pressure (P), we construct a hydrogenation phase diagram and identify the conditions for hydrogen absorption or desorption. The formation enthalpies of metal hydrides are greatly increased in thin films, and in stark contrast to its bulk phase, the hydride state can only be stabilized at high P and T (where the chemical potential of free H2 is very high). Metal doping increases the thermodynamic stabilities of the hydride films and thus significantly helps to reduce the required pressure condition for hydrogen absorption from H2 gas. In particular, with Na alloying, hydrogen can be absorbed and/or desorbed at experimentally accessible T and P conditions.

  4. Ultrathin MoS2 Nanosheets with Superior Extreme Pressure Property as Boundary Lubricants

    PubMed Central

    Chen, Zhe; Liu, Xiangwen; Liu, Yuhong; Gunsel, Selda; Luo, Jianbin

    2015-01-01

    In this paper, a new kind of oil-soluble ultrathin MoS2 nanosheets is prepared through a one-pot process. A superior extreme pressure property, which has not been attained with other nano-additives, is discovered when the nanosheets are used as lubricant additives. The as-synthesized MoS2 nanosheet is only a few atomic layers thick and tens of nanometers wide, and it is surface-modified with oleylamine so it can be well dispersed in oil or lubricant without adscititious dispersants or surfactants. By adding 1 wt% ultrathin MoS2 nanosheets, at the temperature of 120 °C, the highest load liquid paraffin can bear is tremendously improved from less than 50 N to more than 2000 N. Based on the tribological tests and analysis of the wear scar, a lubrication mechanism is proposed. It is believed that the good dispersion and the ultrathin shape of the nanosheets ensure that they can enter the contact area of the opposite sliding surfaces and act like a protective film to prevent direct contact and seizure between them. This work enriches the investigation of ultrathin MoS2 and has potential application in the mechanical industry. PMID:26249536

  5. An ultrathin wide-band planar metamaterial absorber based on a fractal frequency selective surface and resistive film

    NASA Astrophysics Data System (ADS)

    Fan, Yue-Nong; Cheng, Yong-Zhi; Nie, Yan; Wang, Xian; Gong, Rong-Zhou

    2013-06-01

    We propose an ultrathin wide-band metamaterial absorber (MA) based on a Minkowski (MIK) fractal frequency selective surface and resistive film. This absorber consists of a periodic arrangement of dielectric substrates sandwiched with an MIK fractal loop structure electric resonator and a resistive film. The finite element method is used to simulate and analyze the absorption of the MA. Compared with the MA-backed copper film, the designed MA-backed resistive film exhibits an absorption of 90% at a frequency region of 2 GHz-20 GHz. The power loss density distribution of the MA is further illustrated to explain the mechanism of the proposed MA. Simulated absorptions at different incidence cases indicate that this absorber is polarization-insensitive and wide-angled. Finally, further simulated results indicate that the surface resistance of the resistive film and the dielectric constant of the substrate can affect the absorbing property of the MA. This absorber may be used in many military fields.

  6. Growth, stability and decomposition of Mg2Si ultra-thin films on Si (100)

    NASA Astrophysics Data System (ADS)

    Sarpi, B.; Zirmi, R.; Putero, M.; Bouslama, M.; Hemeryck, A.; Vizzini, S.

    2018-01-01

    Using Auger Electron Spectroscopy (AES), Scanning Tunneling Microscopy/Spectroscopy (STM/STS) and Low Energy Electron Diffraction (LEED), we report an in-situ study of amorphous magnesium silicide (Mg2Si) ultra-thin films grown by thermally enhanced solid-phase reaction of few Mg monolayers deposited at room temperature (RT) on a Si(100) surface. Silicidation of magnesium films can be achieved in the nanometric thickness range with high chemical purity and a high thermal stability after annealing at 150 °C, before reaching a regime of magnesium desorption for temperatures higher than 350 °C. The thermally enhanced reaction of one Mg monolayer (ML) results in the appearance of Mg2Si nanometric crystallites leaving the silicon surface partially uncovered. For thicker Mg deposition nevertheless, continuous 2D silicide films are formed with a volcano shape surface topography characteristic up to 4 Mg MLs. Due to high reactivity between magnesium and oxygen species, the thermal oxidation process in which a thin Mg2Si film is fully decomposed (0.75 eV band gap) into a magnesium oxide layer (6-8 eV band gap) is also reported.

  7. Brillouin light scattering studies of the mechanical properties of ultrathin low-k dielectric films

    NASA Astrophysics Data System (ADS)

    Link, A.; Sooryakumar, R.; Bandhu, R. S.; Antonelli, G. A.

    2006-07-01

    In an effort to reduce RC time delays that accompany decreasing feature sizes, low-k dielectric films are rapidly emerging as potential replacements for silicon dioxide (SiO2) at the interconnect level in integrated circuits. The main challenge in low-k materials is their substantially weaker mechanical properties that accompany the increasing pore volume content needed to reduce k. We show that Brillouin light scattering is an excellent nondestructive technique to monitor and characterize the mechanical properties of these porous films at thicknesses well below 200nm that are pertinent to present applications. Observation of longitudinal and transverse standing wave acoustic resonances and the dispersion that accompany their transformation into traveling waves with finite in-plane wave vectors provides for a direct measure of the principal elastic constants that completely characterize the mechanical properties of these ultrathin films. The mode amplitudes of the standing waves, their variation within the film, and the calculated Brillouin intensities account for most aspects of the spectra. We further show that the values obtained by this method agree well with other experimental techniques such as nanoindentation and picosecond laser ultrasonics.

  8. Effects of different wetting layers on the growth of smooth ultra-thin silver thin films

    NASA Astrophysics Data System (ADS)

    Ni, Chuan; Shah, Piyush; Sarangan, Andrew M.

    2014-09-01

    Ultrathin silver films (thickness below 10 nm) are of great interest as optical coatings on windows and plasmonic devices. However, producing these films has been a continuing challenge because of their tendency to form clusters or islands rather than smooth contiguous thin films. In this work we have studied the effect of Cu, Ge and ZnS as wetting layers (1.0 nm) to achieve ultrasmooth thin silver films. The silver films (5 nm) were grown by RF sputter deposition on silicon and glass substrates using a few monolayers of the different wetting materials. SEM imaging was used to characterize the surface properties such as island formation and roughness. Also the optical properties were measured to identify the optical impact of the different wetting layers. Finally, a multi-layer silver based structure is designed and fabricated, and its performance is evaluated. The comparison between the samples with different wetting layers show that the designs with wetting layers which have similar optical properties to silver produce the best overall performance. In the absence of a wetting layer, the measured optical spectra show a significant departure from the model predictions, which we attribute primarily to the formation of clusters.

  9. Magnetron sputtered boron films for increasing hardness of a metal surface

    DOEpatents

    Makowiecki, Daniel M [Livermore, CA; Jankowski, Alan F [Livermore, CA

    2003-05-27

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence.

  10. Temperature Controlled Electrostatic Disorder and Polymorphism in Ultrathin Films of α-Sexithiophene

    NASA Astrophysics Data System (ADS)

    Hoffman, Benjamin; Jafari, Sara; McAfee, Terry; Apperson, Aubrey; O'Connor, Brendan; Dougherty, Daniel

    Competing phases in well-ordered alpha-sexithiophene (α-6T) are shown to contribute to electrostatic disorder observed by differences in surface potential between mono- and bi-layer crystallites. Ultrathin films are of key importance to devices in which charge transport occurs in the first several monolayers nearest to a dielectric interface (e.g. thin film transistors) and complex structures in this regime impact the general electrostatic landscape. This study is comprised of 1.5 ML sample crystals grown via organic molecular beam deposition onto a temperature controlled hexamethyldisilazane (HMDS) passivated SiO2 substrate to produce well-ordered layer-by-layer type growth. Sample topography and surface potential were characterized simultaneously using Kelvin Probe Force Microscopy to then isolate contact potential differences by first and second layer α-6T regions. Films grown on 70° C, 120° C substrates are observed to have a bilayer with lower, higher potential than the monolayer, respectively. Resulting interlayer potential differences are a clear source of electrostatic disorder and are explained as subtle shifts in tilt-angles between layers relative to the substrate. These empirical results continue our understanding of how co-existing orientations contribute to the complex electrostatics influencing charge transport. NSF CAREER award DMR-1056861.

  11. Probing nanoscale ion dynamics in ultrathin films of polymerized ionic liquids by broadband dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Sangoro, Joshua; Heres, Maximilian; Cosby, Tyler

    Continuous progress in energy storage and conversion technologies necessitates novel experimental approaches that can provide fundamental insights regarding the impact of reduced dimensions on the functional properties of materials. In this talk, a nondestructive experimental approach to probe nanoscale ion dynamics in ultrathin films of polymerized ionic liquids over a broad frequency range spanning over six orders of magnitude by broadband dielectric spectroscopy will be presented. The approach involves using an electrode configuration with lithographically patterned silica nanostructures, which allow for an air gap between the confined ion conductor and one of the electrodes. It is observed that the characteristic ion dynamics rates significantly slow down with decreasing film thicknesses above the calorimetric glass transition of the bulk polymer. However, the mean rates remain bulk-like at lower temperatures. These results highlight the increasing influence of the polymer/substrate interactions with decreasing film thickness on ion dynamics. The authors gratefully acknowledge the National Science Foundation for financial support through the Polymers Program award DMR-1508394.

  12. Oromucosal film preparations: classification and characterization methods.

    PubMed

    Preis, Maren; Woertz, Christina; Kleinebudde, Peter; Breitkreutz, Jörg

    2013-09-01

    Recently, the regulatory authorities have enlarged the variety of 'oromucosal preparations' by buccal films and orodispersible films. Various film preparations have entered the market and pharmacopoeias. Due to the novelty of the official monographs, no standardized characterization methods and quality specifications are included. This review reports the methods of choice to characterize oromucosal film preparations with respect to biorelevant characterization and quality control. Commonly used dissolution tests for other dosage forms are not transferable for films in all cases. Alternatives and guidance on decision, which methods are favorable for film preparations are discussed. Furthermore, issues about requirements for film dosage forms are reflected. Oromucosal film preparations offer a wide spectrum of opportunities. There are a lot of suggestions in the literature on how to control the quality of these innovative products, but no standardized tests are available. Regulatory authorities need to define the standards and quality requirements more precisely.

  13. Oxygen-enabled control of Dzyaloshinskii-Moriya Interaction in ultra-thin magnetic films.

    PubMed

    Belabbes, Abderrezak; Bihlmayer, Gustav; Blügel, Stefan; Manchon, Aurélien

    2016-04-22

    The search for chiral magnetic textures in systems lacking spatial inversion symmetry has attracted a massive amount of interest in the recent years with the real space observation of novel exotic magnetic phases such as skyrmions lattices, but also domain walls and spin spirals with a defined chirality. The electrical control of these textures offers thrilling perspectives in terms of fast and robust ultrahigh density data manipulation. A powerful ingredient commonly used to stabilize chiral magnetic states is the so-called Dzyaloshinskii-Moriya interaction (DMI) arising from spin-orbit coupling in inversion asymmetric magnets. Such a large antisymmetric exchange has been obtained at interfaces between heavy metals and transition metal ferromagnets, resulting in spin spirals and nanoskyrmion lattices. Here, using relativistic first-principles calculations, we demonstrate that the magnitude and sign of DMI can be entirely controlled by tuning the oxygen coverage of the magnetic film, therefore enabling the smart design of chiral magnetism in ultra-thin films. We anticipate that these results extend to other electronegative ions and suggest the possibility of electrical tuning of exotic magnetic phases.

  14. Oxygen-enabled control of Dzyaloshinskii-Moriya Interaction in ultra-thin magnetic films

    PubMed Central

    Belabbes, Abderrezak; Bihlmayer, Gustav; Blügel, Stefan; Manchon, Aurélien

    2016-01-01

    The search for chiral magnetic textures in systems lacking spatial inversion symmetry has attracted a massive amount of interest in the recent years with the real space observation of novel exotic magnetic phases such as skyrmions lattices, but also domain walls and spin spirals with a defined chirality. The electrical control of these textures offers thrilling perspectives in terms of fast and robust ultrahigh density data manipulation. A powerful ingredient commonly used to stabilize chiral magnetic states is the so-called Dzyaloshinskii-Moriya interaction (DMI) arising from spin-orbit coupling in inversion asymmetric magnets. Such a large antisymmetric exchange has been obtained at interfaces between heavy metals and transition metal ferromagnets, resulting in spin spirals and nanoskyrmion lattices. Here, using relativistic first-principles calculations, we demonstrate that the magnitude and sign of DMI can be entirely controlled by tuning the oxygen coverage of the magnetic film, therefore enabling the smart design of chiral magnetism in ultra-thin films. We anticipate that these results extend to other electronegative ions and suggest the possibility of electrical tuning of exotic magnetic phases. PMID:27103448

  15. Atomic Scale Control of Competing Electronic Phases in Ultrathin Correlated Oxides

    NASA Astrophysics Data System (ADS)

    Shen, Kyle

    2015-03-01

    Ultrathin epitaxial thin films offer a number of unique advantages for engineering the electronic properties of correlated transition metal oxides. For example, atomically thin films can be synthesized to artificially confine electrons in two dimensions. Furthermore, using a substrate with a mismatched lattice constant can impose large biaxial strains of larger than 3% (Δa / a), much larger than can achieved in bulk single crystals. Since these dimensionally confined or strained systems may necessarily be less than a few unit cells thick, investigating their properties and electronic structure can be particularly challenging. We employ a combination of reactive oxide molecular beam epitaxy (MBE) and angle-resolved photoemission spectroscopy (ARPES) to investigate how dimensional confinement and epitaxial strain can be used to manipulate electronic properties and structure in correlated transition metal oxide thin films. We describe some of our recent work manipulating and studying the electronic structure of ultrathin LaNiO3 through a thickness-driven metal-insulator transition between three and two unit cells (Nature Nanotechnology 9, 443, 2014), where coherent Fermi liquid-like quasiparticles are suppressed at the metal-insulator transition observed in transport. We also will describe some recent unpublished work using epitaxial strain to drive a Lifshitz transition in atomically thin films of the spin-triplet ruthenate superconductor Sr2RuO4, where we also can dramatically alter the quasiparticle scattering rates and drive the system towards non-Fermi liquid behavior near the critical point (B. Burganov, C. Adamo, in preparation). Funding provided by the Office of Naval Research and Air Force Office of Scientific Research.

  16. Dynamics of metal-induced crystallization of ultrathin Ge films by rapid thermal annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Yuanxun; Huang, Shujuan; Shrestha, Santosh

    2015-12-07

    Though Ge crystallization has been widely studied, few works investigate metal-induced crystallization of ultrathin Ge films. For 2 nm Ge films in oxide matrix, crystallization becomes challenging due to easy oxidation and low mobility of Ge atoms. Introducing metal atoms may alleviate these problems, but the functions and the behaviours of metal atoms need to be clarified. This paper investigates the crystallization dynamics of a multilayer structure 1.9 nm Ge/0.5 nm Al/1.5 nm Al{sub 2}O{sub 3} under rapid thermal annealing (RTA). The functions of metal atoms, like effective anti-oxidation, downshifting Raman peaks, and incapability to decrease crystallization temperature, are found and explained. The metalmore » behaviours, such as inter-diffusion and defect generation, are supported with direct evidences, Al-Ge nanobicrystals, and Al cluster in Ge atoms. With these understandings, a two-step RTA process achieves high-quality 2 nm nanocrystal Ge films with Raman peak at 298 cm{sup −1} of FWHM 10.3 cm{sup −1} and atomic smooth interfaces.« less

  17. Ultrathin Shape Change Smart Materials.

    PubMed

    Xu, Weinan; Kwok, Kam Sang; Gracias, David H

    2018-02-20

    With the discovery of graphene, significant research has focused on the synthesis, characterization, and applications of ultrathin materials. Graphene has also brought into focus other ultrathin materials composed of organics, polymers, inorganics, and their hybrids. Together, these ultrathin materials have unique properties of broad significance. For example, ultrathin materials have a large surface area and high flexibility which can enhance conformal contact in wearables and sensors leading to improved sensitivity. When porous, the short transverse diffusion length in these materials allows rapid mass transport. Alternatively, when impermeable, these materials behave as an ultrathin barrier. Such controlled permeability is critical in the design of encapsulation and drug delivery systems. Finally, ultrathin materials often feature defect-free and single-crystal-like two-dimensional atomic structures resulting in superior mechanical, optical, and electrical properties. A unique property of ultrathin materials is their low bending rigidity, which suggests that they could easily be bent, curved, or folded into 3D shapes. In this Account, we review the emerging field of 2D to 3D shape transformations of ultrathin materials. We broadly define ultrathin to include materials with a thickness below 100 nm and composed of a range of organic, inorganic, and hybrid compositions. This topic is important for both fundamental and applied reasons. Fundamentally, bending and curving of ultrathin films can cause atomistic and molecular strain which can alter their physical and chemical properties and lead to new 3D forms of matter which behave very differently from their planar precursors. Shape change can also lead to new 3D architectures with significantly smaller form factors. For example, 3D ultrathin materials would occupy a smaller space in on-chip devices or could permeate through tortuous media which is important for miniaturized robots and smart dust applications. Our

  18. A novel interferometric method for the study of the viscoelastic properties of ultra-thin polymer films determined from nanobubble inflation

    NASA Astrophysics Data System (ADS)

    Chapuis, P.; Montgomery, P. C.; Anstotz, F.; Leong-Hoï, A.; Gauthier, C.; Baschnagel, J.; Reiter, G.; McKenna, G. B.; Rubin, A.

    2017-09-01

    Glass formation and glassy behavior remain as the important areas of investigation in soft matter physics with many aspects which are still not completely understood, especially at the nanometer size-scale. In the present work, we show an extension of the "nanobubble inflation" method developed by O'Connell and McKenna [Rev. Sci. Instrum. 78, 013901 (2007)] which uses an interferometric method to measure the topography of a large array of 5 μ m sized nanometer thick films subjected to constant inflation pressures during which the bubbles grow or creep with time. The interferometric method offers the possibility of making measurements on multiple bubbles at once as well as having the advantage over the AFM methods of O'Connell and McKenna of being a true non-contact method. Here we demonstrate the method using ultra-thin films of both poly(vinyl acetate) (PVAc) and polystyrene (PS) and discuss the capabilities of the method relative to the AFM method, its advantages and disadvantages. Furthermore we show that the results from experiments on PVAc are consistent with the prior work on PVAc, while high stress results with PS show signs of a new non-linear response regime that may be related to the plasticity of the ultra-thin film.

  19. A General Strategy for Hybrid Thin Film Fabrication and Transfer onto Arbitrary Substrates

    PubMed Central

    Zhang, Yong; Magan, John J.; Blau, Werner J.

    2014-01-01

    The development of thin film-based structures/devices often requires thin films to be transferred onto arbitrary substrates/surfaces. Controllable and non-destructive transfer method, although highly desired, remains quite challenging. Here we report a general method for fabrication and transfer of hybrid (ultra)thin films. The proposed solution-based in-situ transfer method shows not only its robust ability for thin film transfer onto arbitrary substrates but also its highly controlled and non-destructive characteristic. With a hole structure as the support, fully-stretched free-standing thin film is prepared. The successful transfer to a curved surface demonstrates the possibility for production of thin film-coated complex optical components. Ultrathin (35 nm) hybrid film transferred onto PET (50 μm thick) shows high transparency (>90% in visible range), conductivity (1.54 × 104 S/m), and flexibility (radius of curvature down to mm scale). The reported transfer method would provide a powerful route towards complex thin film-based structures/devices. PMID:24769689

  20. A general strategy for hybrid thin film fabrication and transfer onto arbitrary substrates.

    PubMed

    Zhang, Yong; Magan, John J; Blau, Werner J

    2014-04-28

    The development of thin film-based structures/devices often requires thin films to be transferred onto arbitrary substrates/surfaces. Controllable and non-destructive transfer method, although highly desired, remains quite challenging. Here we report a general method for fabrication and transfer of hybrid (ultra)thin films. The proposed solution-based in-situ transfer method shows not only its robust ability for thin film transfer onto arbitrary substrates but also its highly controlled and non-destructive characteristic. With a hole structure as the support, fully-stretched free-standing thin film is prepared. The successful transfer to a curved surface demonstrates the possibility for production of thin film-coated complex optical components. Ultrathin (35 nm) hybrid film transferred onto PET (50 μm thick) shows high transparency (>90% in visible range), conductivity (1.54 × 10(4) S/m), and flexibility (radius of curvature down to mm scale). The reported transfer method would provide a powerful route towards complex thin film-based structures/devices.

  1. Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing.

    PubMed

    Shih, Huan-Yu; Lee, Wei-Hao; Kao, Wei-Chung; Chuang, Yung-Chuan; Lin, Ray-Ming; Lin, Hsin-Chih; Shiojiri, Makoto; Chen, Miin-Jang

    2017-01-03

    Low-temperature epitaxial growth of AlN ultrathin films was realized by atomic layer deposition (ALD) together with the layer-by-layer, in-situ atomic layer annealing (ALA), instead of a high growth temperature which is needed in conventional epitaxial growth techniques. By applying the ALA with the Ar plasma treatment in each ALD cycle, the AlN thin film was converted dramatically from the amorphous phase to a single-crystalline epitaxial layer, at a low deposition temperature of 300 °C. The energy transferred from plasma not only provides the crystallization energy but also enhances the migration of adatoms and the removal of ligands, which significantly improve the crystallinity of the epitaxial layer. The X-ray diffraction reveals that the full width at half-maximum of the AlN (0002) rocking curve is only 144 arcsec in the AlN ultrathin epilayer with a thickness of only a few tens of nm. The high-resolution transmission electron microscopy also indicates the high-quality single-crystal hexagonal phase of the AlN epitaxial layer on the sapphire substrate. The result opens a window for further extension of the ALD applications from amorphous thin films to the high-quality low-temperature atomic layer epitaxy, which can be exploited in a variety of fields and applications in the near future.

  2. Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing

    PubMed Central

    Shih, Huan-Yu; Lee, Wei-Hao; Kao, Wei-Chung; Chuang, Yung-Chuan; Lin, Ray-Ming; Lin, Hsin-Chih; Shiojiri, Makoto; Chen, Miin-Jang

    2017-01-01

    Low-temperature epitaxial growth of AlN ultrathin films was realized by atomic layer deposition (ALD) together with the layer-by-layer, in-situ atomic layer annealing (ALA), instead of a high growth temperature which is needed in conventional epitaxial growth techniques. By applying the ALA with the Ar plasma treatment in each ALD cycle, the AlN thin film was converted dramatically from the amorphous phase to a single-crystalline epitaxial layer, at a low deposition temperature of 300 °C. The energy transferred from plasma not only provides the crystallization energy but also enhances the migration of adatoms and the removal of ligands, which significantly improve the crystallinity of the epitaxial layer. The X-ray diffraction reveals that the full width at half-maximum of the AlN (0002) rocking curve is only 144 arcsec in the AlN ultrathin epilayer with a thickness of only a few tens of nm. The high-resolution transmission electron microscopy also indicates the high-quality single-crystal hexagonal phase of the AlN epitaxial layer on the sapphire substrate. The result opens a window for further extension of the ALD applications from amorphous thin films to the high-quality low-temperature atomic layer epitaxy, which can be exploited in a variety of fields and applications in the near future. PMID:28045075

  3. Formation of silicon nanodots via ion beam sputtering of ultrathin gold thin film coatings on Si

    PubMed Central

    2011-01-01

    Ion beam sputtering of ultrathin film Au coatings used as a physical catalyst for self-organization of Si nanostructures has been achieved by tuning the incident particle energy. This approach holds promise as a scalable nanomanufacturing parallel processing alternative to candidate nanolithography techniques. Structures of 11- to 14-nm Si nanodots are formed with normal incidence low-energy Ar ions of 200 eV and fluences above 2 × 1017 cm-2. In situ surface characterization during ion irradiation elucidates early stage ion mixing migration mechanism for nanodot self-organization. In particular, the evolution from gold film islands to the formation of ion-induced metastable gold silicide followed by pure Si nanodots formed with no need for impurity seeding. PMID:21711934

  4. Negative differential resistance in nickel octabutoxy phthalocyanine and nickel octabutoxy phthalocyanine/graphene oxide ultrathin films

    NASA Astrophysics Data System (ADS)

    Sarkar, Arup; Suresh, K. A.

    2018-04-01

    We find negative differential resistance (NDR) at room temperature in ultrathin films of nickel (II) 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine [NiPc(OBu)8] deposited on highly ordered pyrolytic graphite (HOPG) substrate [NiPc(OBu)8/HOPG] and NiPc(OBu)8 on graphene oxide (GO) deposited on HOPG [NiPc(OBu)8/GO/HOPG]. For the NiPc(OBu)8/HOPG system, NiPc(OBu)8 was transferred four times onto HOPG by the Langmuir-Blodgett (LB) technique. We have prepared a stable Langmuir monolayer of amphiphilic GO at the air-water interface and transferred it onto HOPG by the LB technique. Further, the monolayer of NiPc(OBu)8 was transferred four times for good coverage on GO to obtain the NiPc(OBu)8/GO/HOPG system. The current-voltage characteristics were carried out using a current sensing atomic force microscope (CSAFM) with a platinum (Pt) tip that forms Pt/NiPc(OBu)8/HOPG and Pt/NiPc(OBu)8/GO/HOPG junctions. The CSAFM, UV-visible spectroscopy, and cyclic voltammetry studies show that the NDR effect occurs due to molecular resonant tunneling. In the Pt/NiPc(OBu)8/GO/HOPG junction, we find that due to the presence of GO, the features of NDR become more prominent. Also, GO causes a shift in NDR voltage towards a lower value in the negative bias direction. We attribute this behavior to the role of GO in injecting holes into the NiPc(OBu)8 film.

  5. Growth of an Ultrathin Zirconia Film on Pt3Zr Examined by High-Resolution X-ray Photoelectron Spectroscopy, Temperature-Programmed Desorption, Scanning Tunneling Microscopy, and Density Functional Theory.

    PubMed

    Li, Hao; Choi, Joong-Il Jake; Mayr-Schmölzer, Wernfried; Weilach, Christian; Rameshan, Christoph; Mittendorfer, Florian; Redinger, Josef; Schmid, Michael; Rupprechter, Günther

    2015-02-05

    Ultrathin (∼3 Å) zirconium oxide films were grown on a single-crystalline Pt 3 Zr(0001) substrate by oxidation in 1 × 10 -7 mbar of O 2 at 673 K, followed by annealing at temperatures up to 1023 K. The ZrO 2 films are intended to serve as model supports for reforming catalysts and fuel cell anodes. The atomic and electronic structure and composition of the ZrO 2 films were determined by synchrotron-based high-resolution X-ray photoelectron spectroscopy (HR-XPS) (including depth profiling), low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), and density functional theory (DFT) calculations. Oxidation mainly leads to ultrathin trilayer (O-Zr-O) films on the alloy; only a small area fraction (10-15%) is covered by ZrO 2 clusters (thickness ∼0.5-10 nm). The amount of clusters decreases with increasing annealing temperature. Temperature-programmed desorption (TPD) of CO was utilized to confirm complete coverage of the Pt 3 Zr substrate by ZrO 2 , that is, formation of a closed oxide overlayer. Experiments and DFT calculations show that the core level shifts of Zr in the trilayer ZrO 2 films are between those of metallic Zr and thick (bulklike) ZrO 2 . Therefore, the assignment of such XPS core level shifts to substoichiometric ZrO x is not necessarily correct, because these XPS signals may equally well arise from ultrathin ZrO 2 films or metal/ZrO 2 interfaces. Furthermore, our results indicate that the common approach of calculating core level shifts by DFT including final-state effects should be taken with care for thicker insulating films, clusters, and bulk insulators.

  6. Time-resolved atomic force microscopy imaging studies of asymmetric PS-b-PMMA ultrathin films: Dislocation and disclination transformations, defect mobility, and evolution of nanoscale morphology

    NASA Astrophysics Data System (ADS)

    Hahm, J.; Sibener, S. J.

    2001-03-01

    Time-sequenced atomic force microscopy (AFM) studies of ultrathin films of cylinder-forming polystyrene-block-polymethylmethacrylate (PS-b-PMMA) copolymer are presented which delineate thin film mobility kinetics and the morphological changes which occur in microphase-separated films as a function of annealing temperature. Of particular interest are defect mobilities in the single layer (L thick) region, as well as the interfacial morphological changes which occur between L thick and adjacent 3L/2 thick layers, i.e., structural changes which occur during multilayer evolution. These measurements have revealed the dominant pathways by which disclinations and dislocations transform, annihilate, and topologically evolve during thermal annealing of such films. Mathematical combining equations are given to better explain such defect transformations and show the topological outcomes which result from defect-defect encounters. We also report a collective, Arrhenius-type flow of defects in localized L thick regions of the film; these are characterized by an activation energy of 377 kJ/mol. These measurements represent the first direct investigation of time-lapse interfacial morphological changes including associated defect evolution pathways for polymeric ultrathin films. Such observations will facilitate a more thorough and predictive understanding of diblock copolymer thin film dynamics, which in turn will further enable the utilization of these nanoscale phase-separated materials in a range of physical and chemical applications.

  7. A room temperature method for the formation of ultrathin silicon oxide films

    NASA Astrophysics Data System (ADS)

    Muisener, Richard John

    Growing interest surrounds the use of thin films to impart unique surface properties without adversely affecting those of the bulk. One such example is the formation of a stable high-energy silicon oxide surface on polymers. Thin silicon oxide films have been used to tailor the surface properties of many materials. Conventional methods for SiOx film fabrication such as chemical vapor deposition require either high temperature or expensive vacuum chambers. This research focuses on the intrinsically inexpensive process of UV-ozone to form ultrathin SiOx films from polysiloxane precursors at room temperature and atmospheric pressure. Chemical evidence suggests a complete conversion from organic polymer to inorganic ceramic. Through XPS, the UV-ozone treatment oxidizes over 95% of the silicone's organic side groups with a resulting stoichiometry Of Si 1O2.2C0.08. The silicon oxidation state changes from 2+ in poly(dimethylsiloxane) to 93% 4+ corresponding to SiO2. IR studies show a total loss of methyl bands and the growth of a new Si-O band centered at 1225 cm-1. Gas phase reaction products suggest a radical driven process. The physical properties also suggest a complete conversion to SiO x. Excellent control of film thickness, as low as 2 nm, has been demonstrated by variable angle spectroscopic ellipsometry. The ellipsometrically determined thickness loss of 55% during treatment corresponds to an SiOx film density of 1.9 g/cm3. The continuity of the film is demonstrated by electrical properties and a very low water contact angle consistent with SiOx. The later property ensures that the SiOx films are anti-fogging in nature. Unique hydrophilic-hydrophobic structures were formed through photo-patterning. The reaction has been successfully modeled as self-limiting based on the diffusion of ozone. The chief reactant, atomic oxygen, is generated by the photochemical dissociation of ozone and quickly generates radical species within the polymer film. The reaction proceeds

  8. Fabrication of superconducting nanowires from ultrathin MgB2 films via focused ion beam milling

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Wang, Da; Liu, Zheng-Hao; Zhang, Yan; Ma, Ping; Feng, Qing-Rong; Wang, Yue; Gan, Zi-Zhao

    2015-02-01

    High quality superconducting nanowires were fabricated from ultrathin MgB2 films by a focused ion beam milling technique. The precursor MgB2 films in 10 nm thick were grown on MgO substrates by using a hybrid physical-chemical vapor deposition method. The nanowires, in widths of about 300-600 nm and lengths of 1 or 10 μm, showed high superconducting critical temperatures (Tc's) above 34 K and narrow superconducting transition widths (ΔTc's) of 1-3 K. The superconducting critical current density Jc of the nanowires was above 5 × 107 A/cm2 at 20 K. The high Tc, narrow ΔTc, and high Jc of the nanowires offered the possibility of making MgB2-based nano-devices such as hot-electron bolometers and superconducting nanowire single-photon detectors with high operating temperatures at 15-20 K.

  9. Photochemistry on ultrathin metal films: Strongly enhanced cross sections for NO2 on Ag /Si(100)

    NASA Astrophysics Data System (ADS)

    Wesenberg, Claudia; Autzen, Olaf; Hasselbrink, Eckart

    2006-12-01

    The surface photochemistry of NO2 on ultrathin Ag(111) films (5-60nm ) on Si(100) substrates has been studied. NO2, forming N2O4 on the surface, dissociates to release NO and NO2 into the gas phase with translational energies exceeding the equivalent of the sample temperature. An increase of the photodesorption cross section is observed for 266nm light when the film thickness is decreased below 30nm despite the fact that the optical absorptivity decreases. For 4.4nm film thickness this increase is about threefold. The data are consistent with a similar effect for 355nm light. The reduced film thickness has no significant influence on the average translation energy of the desorbing molecules or the branching into the different channels. The increased photodesorption cross section is interpreted to result from photon absorption in the Si substrate producing electrons with no or little momenta parallel to the surface at energies where this is not allowed in Ag. It is suggested that these electrons penetrate through the Ag film despite the gap in the surface projected band structure.

  10. Fabrication and stability investigation of ultra-thin transparent and flexible Cu-Ag-Au tri-layer film on PET

    NASA Astrophysics Data System (ADS)

    Prakasarao, Ch Surya; D'souza, Slavia Deeksha; Hazarika, Pratim; Karthiselva N., S.; Ramesh Babu, R.; Kovendhan, M.; Kumar, R. Arockia; Joseph, D. Paul

    2018-04-01

    The need for transparent conducting electrodes with high transmittance, low sheet resistance and flexibility to replace Indium Tin Oxide is ever growing. We have deposited and studied the performance of ultra-thin Cu-Ag-Au tri-layer films over a flexible poly-ethylene terephthalate substrate. Scotch tape test showed good adhesion of the metallic film. Transmittance of the tri-layer was around 40 % in visible region. Optical profiler measurements were done to study the surface features. The XRD pattern revealed that film was amorphous. Sheet resistance measured by four probe technique was around 7.7 Ohm/Δ and was stable up to 423 K. The transport parameters by Hall effect showed high conductivity and carrier concentration with a mobility of 5.58 cm2/Vs. Tests performed in an indigenously designed bending unit indicated the films to be stable both mechanically and electrically even after 50,000 bending cycles.

  11. On the persistence of polar domains in ultrathin ferroelectric capacitors.

    PubMed

    Zubko, Pavlo; Lu, Haidong; Bark, Chung-Wung; Martí, Xavi; Santiso, José; Eom, Chang-Beom; Catalan, Gustau; Gruverman, Alexei

    2017-07-19

    The instability of ferroelectric ordering in ultra-thin films is one of the most important fundamental issues pertaining realization of a number of electronic devices with enhanced functionality, such as ferroelectric and multiferroic tunnel junctions or ferroelectric field effect transistors. In this paper, we investigate the polarization state of archetypal ultrathin (several nanometres) ferroelectric heterostructures: epitaxial single-crystalline BaTiO 3 films sandwiched between the most habitual perovskite electrodes, SrRuO 3 , on top of the most used perovskite substrate, SrTiO 3 . We use a combination of piezoresponse force microscopy, dielectric measurements and structural characterization to provide conclusive evidence for the ferroelectric nature of the relaxed polarization state in ultrathin BaTiO 3 capacitors. We show that even the high screening efficiency of SrRuO 3 electrodes is still insufficient to stabilize polarization in SrRuO 3 /BaTiO 3 /SrRuO 3 heterostructures at room temperature. We identify the key role of domain wall motion in determining the macroscopic electrical properties of ultrathin capacitors and discuss their dielectric response in the light of the recent interest in negative capacitance behaviour.

  12. Evaluating nanoscale ultra-thin metal films by means of lateral photovoltaic effect in metal-semiconductor structure.

    PubMed

    Zheng, Diyuan; Yu, Chongqi; Zhang, Qian; Wang, Hui

    2017-12-15

    Nanoscale metal-semiconductor (MS) structure materials occupy an important position in semiconductor and microelectronic field due to their abundant physical phenomena and effects. The thickness of metal films is a critical factor in determining characteristics of MS devices. How to detect or evaluate the metal thickness is always a key issue for realizing high performance MS devices. In this work, we propose a direct surface detection by use of the lateral photovoltaic effect (LPE) in MS structure, which can not only measure nanoscale thickness, but also detect the fluctuation of metal films. This method is based on the fact that the output of lateral photovoltaic voltage (LPV) is closely linked with the metal thickness at the laser spot. We believe this laser-based contact-free detection is a useful supplement to the traditional methods, such as AFM, SEM, TEM or step profiler. This is because these traditional methods are always incapable of directly detecting ultra-thin metal films in MS structure materials.

  13. Evaluating nanoscale ultra-thin metal films by means of lateral photovoltaic effect in metal-semiconductor structure

    NASA Astrophysics Data System (ADS)

    Zheng, Diyuan; Yu, Chongqi; Zhang, Qian; Wang, Hui

    2017-12-01

    Nanoscale metal-semiconductor (MS) structure materials occupy an important position in semiconductor and microelectronic field due to their abundant physical phenomena and effects. The thickness of metal films is a critical factor in determining characteristics of MS devices. How to detect or evaluate the metal thickness is always a key issue for realizing high performance MS devices. In this work, we propose a direct surface detection by use of the lateral photovoltaic effect (LPE) in MS structure, which can not only measure nanoscale thickness, but also detect the fluctuation of metal films. This method is based on the fact that the output of lateral photovoltaic voltage (LPV) is closely linked with the metal thickness at the laser spot. We believe this laser-based contact-free detection is a useful supplement to the traditional methods, such as AFM, SEM, TEM or step profiler. This is because these traditional methods are always incapable of directly detecting ultra-thin metal films in MS structure materials.

  14. Facile fabrication of ultrathin Pt overlayers onto nanoporous metal membranes via repeated Cu UPD and in situ redox replacement reaction.

    PubMed

    Liu, Pengpeng; Ge, Xingbo; Wang, Rongyue; Ma, Houyi; Ding, Yi

    2009-01-06

    Ultrathin Pt films from one to several atomic layers are successfully decorated onto nanoporous gold (NPG) membranes by utilizing under potential deposition (UPD) of Cu onto Au or Pt surfaces, followed by in situ redox replacement reaction (RRR) of UPD Cu by Pt. The thickness of Pt layers can be controlled precisely by repeating the Cu-UPD-RRR cycles. TEM observations coupled with electrochemical testing suggest that the morphology of Pt overlayers changes from an ultrathin epitaxial film in the case of one or two atomic layers to well-dispersed nanoislands in the case of four and more atomic layers. Electron diffraction (ED) patterns confirm that the as-prepared NPG-Pt membranes maintain a single-crystalline structure, even though the thickness of Pt films reaches six atomic layers, indicating the decorated Pt films hold the same crystallographic relationship to the NPG substrate during the entire fabrication process. Due to the regular modulation of Pt utilization, the electrocatalytic activity of NPG-Pt exhibits interesting surface structure dependence in methanol, ethanol, and CO electrooxidation reactions. These novel bimetallic nanocatalysts show excellent electrocatalytic activity and much enhanced poison tolerance as compared to the commercial Pt/C catalysts. The success in the fabrication of NPG-Pt-type materials provides a new path to prepare electrocatalysts with ultralow Pt loading and high Pt utilization, which is of great significance in energy-related applications, such as direct alcohol fuel cells (DAFCs).

  15. CH3Br adsorption on MgO/Mo ultrathin films: A DFT study

    NASA Astrophysics Data System (ADS)

    Cipriano, Luis A.; Tosoni, Sergio; Pacchioni, Gianfranco

    2018-06-01

    The adsorption of methyl bromide on MgO ultrathin films supported on Mo(100) was studied by means of density functional theory calculations, in comparison to the MgO(100) and Mo(100) surfaces. The adsorption energy and geometry were shown to depend on the thickness of the supported oxide film. MgO films as thick as 2ML (or more) display adsorptive properties similar to MgO(100), i.e. the adsorption of CH3Br is mostly due to dispersion and the molecule lies in a tilted geometry almost parallel to the surface. The CH3Br HOMO-LUMO gap is almost unaltered with respect to the gas phase. On metallic Mo(100) surfaces the bonding is completely different with the CH3Br molecule strongly bound and the C-Br bond axis almost vertical with respect to the metal surface. The MgO monolayer supported on Mo exhibits somehow intermediate properties: the tilt angle is larger and the bonding is stronger than on MgO(100), due to the effect of the supporting metal. In this case, a small reduction of the HOMO-LUMO gap of the adsorbed molecule is reported. The results help to rationalize the observed behavior in photodissociation of CH3Br supported on different substrates.

  16. Structure and morphology of magnetron sputter deposited ultrathin ZnO films on confined polymeric template

    NASA Astrophysics Data System (ADS)

    Singh, Ajaib; Schipmann, Susanne; Mathur, Aakash; Pal, Dipayan; Sengupta, Amartya; Klemradt, Uwe; Chattopadhyay, Sudeshna

    2017-08-01

    The structure and morphology of ultra-thin zinc oxide (ZnO) films with different film thicknesses on confined polymer template were studied through X-ray reflectivity (XRR) and grazing incidence small angle X-ray scattering (GISAXS). Using magnetron sputter deposition technique ZnO thin films with different film thicknesses (<10 nm) were grown on confined polystyrene with ∼2Rg film thickness, where Rg ∼ 20 nm (Rg is the unperturbed radius of gyration of polystyrene, defined by Rg = 0.272 √M0, and M0 is the molecular weight of polystyrene). The detailed internal structure, along the surface/interfaces and the growth direction of the system were explored in this study, which provides insight into the growth procedure of ZnO on confined polymer and reveals that a thin layer of ZnO, with very low surface and interface roughness, can be grown by DC magnetron sputtering technique, with approximately full coverage (with bulk like electron density) even in nm order of thickness, in 2-7 nm range on confined polymer template, without disturbing the structure of the underneath template. The resulting ZnO-polystyrene hybrid systems show strong ZnO near band edge (NBE) and deep-level (DLE) emissions in their room temperature photoluminescence spectra, where the contribution of DLE gets relatively stronger with decreasing ZnO film thickness, indicating a significant enhancement of surface defects because of the greater surface to volume ratio in thinner films.

  17. Acoustic Phonons and Mechanical Properties of Ultra-Thin Porous Low-k Films: A Surface Brillouin Scattering Study

    NASA Astrophysics Data System (ADS)

    Zizka, J.; King, S.; Every, A.; Sooryakumar, R.

    2018-04-01

    To reduce the RC (resistance-capacitance) time delay of interconnects, a key development of the past 20 years has been the introduction of porous low-k dielectrics to replace the traditional use of SiO2. Moreover, in keeping pace with concomitant reduction in technology nodes, these low-k materials have reached thicknesses below 100 nm wherein the porosity becomes a significant fraction of the film volume. The large degree of porosity not only reduces mechanical strength of the dielectric layer but also renders a need for non-destructive approaches to measure the mechanical properties of such ultra-thin films within device configurations. In this study, surface Brillouin scattering (SBS) is utilized to determine the elastic constants, Poisson's ratio, and Young's modulus of these porous low-k SiOC:H films (˜ 25-250 nm thick) grown on Si substrates by probing surface acoustic phonons and their dispersions.

  18. Acoustic Phonons and Mechanical Properties of Ultra-Thin Porous Low- k Films: A Surface Brillouin Scattering Study

    NASA Astrophysics Data System (ADS)

    Zizka, J.; King, S.; Every, A.; Sooryakumar, R.

    2018-07-01

    To reduce the RC (resistance-capacitance) time delay of interconnects, a key development of the past 20 years has been the introduction of porous low- k dielectrics to replace the traditional use of SiO2. Moreover, in keeping pace with concomitant reduction in technology nodes, these low- k materials have reached thicknesses below 100 nm wherein the porosity becomes a significant fraction of the film volume. The large degree of porosity not only reduces mechanical strength of the dielectric layer but also renders a need for non-destructive approaches to measure the mechanical properties of such ultra-thin films within device configurations. In this study, surface Brillouin scattering (SBS) is utilized to determine the elastic constants, Poisson's ratio, and Young's modulus of these porous low- k SiOC:H films (˜ 25-250 nm thick) grown on Si substrates by probing surface acoustic phonons and their dispersions.

  19. Quantum-Fluctuation Effects in the Transport Properties of Ultrathin Films of Disordered Superconductors above the Paramagnetic Limit

    NASA Astrophysics Data System (ADS)

    Khodas, M.; Levchenko, A.; Catelani, G.

    2012-06-01

    We study the transport in ultrathin disordered film near the quantum critical point induced by the Zeeman field. We calculate corrections to the normal state conductivity due to quantum pairing fluctuations. The fluctuation-induced transport is mediated by virtual rather than real quasiparticle excitations. We find that at zero temperature, where the corrections come from purely quantum fluctuations, the Aslamazov-Larkin paraconductivity term, the Maki-Thompson interference contribution, and the density of states effects are all of the same order. The total correction leads to the negative magnetoresistance. This result is in qualitative agreement with the recent transport observations in the parallel magnetic field of the homogeneously disordered amorphous films and superconducting two-dimensional electron gas realized at the oxide interfaces.

  20. Measurement of conformability and adhesion energy of polymeric ultrathin film to skin model

    NASA Astrophysics Data System (ADS)

    Sugano, Junki; Fujie, Toshinori; Iwata, Hiroyasu; Iwase, Eiji

    2018-06-01

    We measured the conformability and adhesion energy of a polymeric ultrathin film “nanosheet” with hundreds of nanometer thickness to a skin model with epidermal depressions. To compare the confirmability of the nanosheets with different thicknesses and/or under different attaching conditions, we proposed a measurement method using skin models with the same surface profile and defined the surface strain εS as the quantified value of the conformability. Then, we measured the adhesion energy of the nanosheet at each conformability through a vertical tensile test. Experimental results indicate that the adhesion energy does not depend on the liquid used in wetting the nanosheet before attaching to the skin model and increases monotonously as the surface strain εS increases.

  1. Tunneling interferometry and measurement of the thickness of ultrathin metallic Pb(111) films

    NASA Astrophysics Data System (ADS)

    Ustavshchikov, S. S.; Putilov, A. V.; Aladyshkin, A. Yu.

    2017-10-01

    Spectra of the differential tunneling conductivity for ultrathin lead films grown on Si(111) 7 × 7 single crystals with a thickness of 9 to 50 ML have been studied by low-temperature scanning tunneling microscopy and spectroscopy. The presence of local maxima of the tunneling conductivity is characteristic of such systems. The energies of maxima of the differential conductivity are determined by the spectrum of quantum-confined states of electrons in a metallic layer and, consequently, the local thickness of the layer. It has been shown that features of the microstructure of substrates, such as steps of monatomic height, structural defects, and inclusions of other materials covered with a lead layer, can be visualized by bias-modulation scanning tunneling spectroscopy.

  2. Preparation and mechanical properties of edible rapeseed protein films.

    PubMed

    Jang, Sung-Ae; Lim, Geum-Ok; Song, Kyung Bin

    2011-03-01

    Edible films were manufactured from rapeseed oil extraction residues. To prepare rapeseed protein (RP) films, various concentrations of plasticizers and emulsifiers were incorporated into the preparation of a film-forming solution. The optimal conditions for the preparation of the RP film were 2% sorbitol/0.5% sucrose as plasticizer and 1.5% polysorbate 20 as an emulsifier. In addition, RP blend films were prepared. Gelidium corneum or gelatin was added to improve the physical properties of the RP film, and the highest tensile strength value of the films was 53.45 MPa for the 3% RP/4% gelatin film. Our results suggest that the RP-gelatin blend film is suitable for applications in food packaging. Edible RP films prepared in the present investigation can be applied in food packaging.

  3. A cost-effective nanoporous ultrathin film electrode based on nanoporous gold/IrO2 composite for proton exchange membrane water electrolysis

    NASA Astrophysics Data System (ADS)

    Zeng, Yachao; Guo, Xiaoqian; Shao, Zhigang; Yu, Hongmei; Song, Wei; Wang, Zhiqiang; Zhang, Hongjie; Yi, Baolian

    2017-02-01

    A cost-effective nanoporous ultrathin film (NPUF) electrode based on nanoporous gold (NPG)/IrO2 composite has been constructed for proton exchange membrane (PEM) water electrolysis. The electrode was fabricated by integrating IrO2 nanoparticles into NPG through a facile dealloying and thermal decomposition method. The NPUF electrode is featured in its 3D interconnected nanoporosity and ultrathin thickness. The nanoporous ultrathin architecture is binder-free and beneficial for improving electrochemical active surface area, enhancing mass transport and facilitating releasing of oxygen produced during water electrolysis. Serving as anode, a single cell performance of 1.728 V (@ 2 A cm-2) has been achieved by NPUF electrode with a loading of IrO2 and Au at 86.43 and 100.0 μg cm-2 respectively, the electrolysis voltage is 58 mV lower than that of conventional electrode with an Ir loading an order of magnitude higher. The electrolysis voltage kept relatively constant up to 300 h (@250 mA cm-2) during the course of durability test, manifesting that NPUF electrode is promising for gas evolution.

  4. Impact of Film Thickness of Ultrathin Dip-Coated Compact TiO2 Layers on the Performance of Mesoscopic Perovskite Solar Cells.

    PubMed

    Masood, Muhammad Talha; Weinberger, Christian; Sarfraz, Jawad; Rosqvist, Emil; Sandén, Simon; Sandberg, Oskar J; Vivo, Paola; Hashmi, Ghufran; Lund, Peter D; Österbacka, Ronald; Smått, Jan-Henrik

    2017-05-31

    Uniform and pinhole-free electron-selective TiO 2 layers are of utmost importance for efficient perovskite solar cells. Here we used a scalable and low-cost dip-coating method to prepare uniform and ultrathin (5-50 nm) compact TiO 2 films on fluorine-doped tin oxide (FTO) glass substrates. The thickness of the film was tuned by changing the TiCl 4 precursor concentration. The formed TiO 2 follows the texture of the underlying FTO substrates, but at higher TiCl 4 concentrations, the surface roughness is substantially decreased. This change occurs at a film thickness close to 20-30 nm. A similar TiCl 4 concentration is needed to produce crystalline TiO 2 films. Furthermore, below this film thickness, the underlying FTO might be exposed resulting in pinholes in the compact TiO 2 layer. When integrated into mesoscopic perovskite solar cells there appears to be a similar critical compact TiO 2 layer thickness above which the devices perform more optimally. The power conversion efficiency was improved by more than 50% (from 5.5% to ∼8.6%) when inserting a compact TiO 2 layer. Devices without or with very thin compact TiO 2 layers display J-V curves with an "s-shaped" feature in the negative voltage range, which could be attributed to immobilized negative ions at the electron-extracting interface. A strong correlation between the magnitude of the s-shaped feature and the exposed FTO seen in the X-ray photoelectron spectroscopy measurements indicates that the s-shape is related to pinholes in the compact TiO 2 layer when it is too thin.

  5. Preventing kinetic roughening in physical vapor-phase-deposited films.

    PubMed

    Vasco, E; Polop, C; Sacedón, J L

    2008-01-11

    The growth kinetics of the mostly used physical vapor-phase deposition techniques -molecular beam epitaxy, sputtering, flash evaporation, and pulsed laser deposition-is investigated by rate equations with the aim of testing their suitability for the preparation of ultraflat ultrathin films. The techniques are studied in regard to the roughness and morphology during early stages of growth. We demonstrate that pulsed laser deposition is the best technique for preparing the flattest films due to two key features [use of (i) a supersaturated pulsed flux of (ii) hyperthermal species] that promote a kinetically limited Ostwald ripening mechanism.

  6. Transport properties of ultra-thin VO2 films on (001) TiO2 grown by reactive molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Paik, Hanjong; Moyer, Jarrett A.; Spila, Timothy; Tashman, Joshua W.; Mundy, Julia A.; Freeman, Eugene; Shukla, Nikhil; Lapano, Jason M.; Engel-Herbert, Roman; Zander, Willi; Schubert, Jürgen; Muller, David A.; Datta, Suman; Schiffer, Peter; Schlom, Darrell G.

    2015-10-01

    We report the growth of (001)-oriented VO2 films as thin as 1.5 nm with abrupt and reproducible metal-insulator transitions (MIT) without a capping layer. Limitations to the growth of thinner films with sharp MITs are discussed, including the Volmer-Weber type growth mode due to the high energy of the (001) VO2 surface. Another key limitation is interdiffusion with the (001) TiO2 substrate, which we quantify using low angle annular dark field scanning transmission electron microscopy in conjunction with electron energy loss spectroscopy. We find that controlling island coalescence on the (001) surface and minimization of cation interdiffusion by using a low growth temperature followed by a brief anneal at higher temperature are crucial for realizing ultrathin VO2 films with abrupt MIT behavior.

  7. Water Vapor Uptake of Ultrathin Films of Biologically Derived Nanocrystals: Quantitative Assessment with Quartz Crystal Microbalance and Spectroscopic Ellipsometry.

    PubMed

    Niinivaara, Elina; Faustini, Marco; Tammelin, Tekla; Kontturi, Eero

    2015-11-10

    Despite the relevance of water interactions, explicit analysis of vapor adsorption on biologically derived surfaces is often difficult. Here, a system was introduced to study the vapor uptake on a native polysaccharide surface; namely, cellulose nanocrystal (CNC) ultrathin films were examined with a quartz crystal microbalance with dissipation monitoring (QCM-D) and spectroscopic ellipsometry (SE). A significant mass uptake of water vapor by the CNC films was detected using the QCM-D upon increasing relative humidity. In addition, thickness changes proportional to changes in relative humidity were detected using SE. Quantitative analysis of the results attained indicated that in preference to being soaked by water at the point of hydration each individual CNC in the film became enveloped by a 1 nm thick layer of adsorbed water vapor, resulting in the detected thickness response.

  8. Mesoporous polyaniline film on ultra-thin graphene sheets for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Yan, Jun; Fan, Zhuangjun; Wei, Tong; Zhang, Milin; Jing, Xiaoyan

    2014-02-01

    A facile approach has been developed to fabricate mesoporous PANI film on ultra-thin graphene nanosheet (G-mPANI) hybrid by in situ polymerization using graphene-mesoporous silica composite as template. Due to its mesoporous structure, over-all conductive network, G-mPANI electrode displays a specific capacitance of 749 F g-1 at 0.5 A g-1 with excellent rate capability (remains 73% even at 5.0 A g-1), much higher than that of pristine PANI electrode (315 F g-1 at 0.5 A g-1, 39% retention at 5.0 A g-1) in 1 mol L-1 H2SO4 aqueous solution. More interestingly, the G-mPANI hybrid can maintain 88% of its initial capacitance compared to 45% for pristine PANI after 1000 cycles, suggesting a superior electrochemical cyclic stability.

  9. Stepwise crystallization and the layered distribution in crystallization kinetics of ultra-thin poly(ethylene terephthalate) film

    NASA Astrophysics Data System (ADS)

    Zuo, Biao; Xu, Jianquan; Sun, Shuzheng; Liu, Yue; Yang, Juping; Zhang, Li; Wang, Xinping

    2016-06-01

    Crystallization is an important property of polymeric materials. In conventional viewpoint, the transformation of disordered chains into crystals is usually a spatially homogeneous process (i.e., it occurs simultaneously throughout the sample), that is, the crystallization rate at each local position within the sample is almost the same. Here, we show that crystallization of ultra-thin poly(ethylene terephthalate) (PET) films can occur in the heterogeneous way, exhibiting a stepwise crystallization process. We found that the layered distribution of glass transition dynamics of thin film modifies the corresponding crystallization behavior, giving rise to the layered distribution of the crystallization kinetics of PET films, with an 11-nm-thick surface layer having faster crystallization rate and the underlying layer showing bulk-like behavior. The layered distribution in crystallization kinetics results in a particular stepwise crystallization behavior during heating the sample, with the two cold-crystallization temperatures separated by up to 20 K. Meanwhile, interfacial interaction is crucial for the occurrence of the heterogeneous crystallization, as the thin film crystallizes simultaneously if the interfacial interaction is relatively strong. We anticipate that this mechanism of stepwise crystallization of thin polymeric films will allow new insight into the chain organization in confined environments and permit independent manipulation of localized properties of nanomaterials.

  10. Stepwise crystallization and the layered distribution in crystallization kinetics of ultra-thin poly(ethylene terephthalate) film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuo, Biao, E-mail: chemizuo@zstu.edu.cn, E-mail: wxinping@yahoo.com; Xu, Jianquan; Sun, Shuzheng

    2016-06-21

    Crystallization is an important property of polymeric materials. In conventional viewpoint, the transformation of disordered chains into crystals is usually a spatially homogeneous process (i.e., it occurs simultaneously throughout the sample), that is, the crystallization rate at each local position within the sample is almost the same. Here, we show that crystallization of ultra-thin poly(ethylene terephthalate) (PET) films can occur in the heterogeneous way, exhibiting a stepwise crystallization process. We found that the layered distribution of glass transition dynamics of thin film modifies the corresponding crystallization behavior, giving rise to the layered distribution of the crystallization kinetics of PET films,more » with an 11-nm-thick surface layer having faster crystallization rate and the underlying layer showing bulk-like behavior. The layered distribution in crystallization kinetics results in a particular stepwise crystallization behavior during heating the sample, with the two cold-crystallization temperatures separated by up to 20 K. Meanwhile, interfacial interaction is crucial for the occurrence of the heterogeneous crystallization, as the thin film crystallizes simultaneously if the interfacial interaction is relatively strong. We anticipate that this mechanism of stepwise crystallization of thin polymeric films will allow new insight into the chain organization in confined environments and permit independent manipulation of localized properties of nanomaterials.« less

  11. Influence of C or In buffer layer on photoluminescence behaviour of ultrathin ZnO film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saravanan, K., E-mail: saravanan@igcar.gov.in; Jayalakshmi, G.; Krishnan, R.

    We study the effect of the indium or carbon buffer layer on the photoluminescence (PL) property of ZnO ultrathin films deposited on a Si(100) substrate. The surface morphology of the films obtained using scanning tunnelling microscopy shows spherical shaped ZnO nanoparticles of size ∼8 nm in ZnO/C/Si and ∼22 nm in ZnO/Si samples, while the ZnO/In/Si sample shows elliptical shaped ZnO particles. Further, the ZnO/C/Si sample shows densely packed ZnO nanoparticles in comparison with other samples. Strong band edge emission has been observed in the presence of In or C buffer layer, whereas the ZnO/Si sample exhibits poor PL emission. The influencemore » of C and In buffer layers on the PL behaviour of ZnO films is studied in detail using temperature dependent PL measurements in the range of 4 K–300 K. The ZnO/C/Si sample exhibits a multi-fold enhancement in the PL emission intensity with well-resolved free and bound exciton emission lines. Our experimental results imply that the ZnO films deposited on the C buffer layer showed higher particle density and better exciton emission desired for optoelectronic applications.« less

  12. Ultrathin ZnS and ZnO Interfacial Passivation Layers for Atomic-Layer-Deposited HfO2 Films on InP Substrates.

    PubMed

    Kim, Seung Hyun; Joo, So Yeong; Jin, Hyun Soo; Kim, Woo-Byoung; Park, Tae Joo

    2016-08-17

    Ultrathin ZnS and ZnO films grown by atomic layer deposition (ALD) were employed as interfacial passivation layers (IPLs) for HfO2 films on InP substrates. The interfacial layer growth during the ALD of the HfO2 film was effectively suppressed by the IPLs, resulting in the decrease of electrical thickness, hysteresis, and interface state density. Compared with the ZnO IPL, the ZnS IPL was more effective in reducing the interface state density near the valence band edge. The leakage current density through the film was considerably lowered by the IPLs because the film crystallization was suppressed. Especially for the film with the ZnS IPL, the leakage current density in the low-voltage region was significantly lower than that observed for the film with the ZnO IPL, because the direct tunneling current was suppressed by the higher conduction band offset of ZnS with the InP substrate.

  13. Atomic-scale epitaxial aluminum film on GaAs substrate

    NASA Astrophysics Data System (ADS)

    Fan, Yen-Ting; Lo, Ming-Cheng; Wu, Chu-Chun; Chen, Peng-Yu; Wu, Jenq-Shinn; Liang, Chi-Te; Lin, Sheng-Di

    2017-07-01

    Atomic-scale metal films exhibit intriguing size-dependent film stability, electrical conductivity, superconductivity, and chemical reactivity. With advancing methods for preparing ultra-thin and atomically smooth metal films, clear evidences of the quantum size effect have been experimentally collected in the past two decades. However, with the problems of small-area fabrication, film oxidation in air, and highly-sensitive interfaces between the metal, substrate, and capping layer, the uses of the quantized metallic films for further ex-situ investigations and applications have been seriously limited. To this end, we develop a large-area fabrication method for continuous atomic-scale aluminum film. The self-limited oxidation of aluminum protects and quantizes the metallic film and enables ex-situ characterizations and device processing in air. Structure analysis and electrical measurements on the prepared films imply the quantum size effect in the atomic-scale aluminum film. Our work opens the way for further physics studies and device applications using the quantized electronic states in metals.

  14. Image potential states at transition metal oxide surfaces: A time-resolved two-photon photoemission study on ultrathin NiO films

    NASA Astrophysics Data System (ADS)

    Gillmeister, K.; Kiel, M.; Widdra, W.

    2018-02-01

    For well-ordered ultrathin films of NiO(001) on Ag(001), a series of unoccupied states below the vacuum level has been found. The states show a nearly free electron dispersion and binding energies which are typical for image potential states. By time-resolved two-photon photoemission (2PPE), the lifetimes of the first three states and their dependence on oxide film thickness are determined. For NiO film thicknesses between 2 and 4 monolayers (ML), the lifetime of the first state is in the range of 28-42 fs and shows an oscillatory behavior with increasing thickness. The values for the second state decrease monotonically from 88 fs for 2 ML to 33 fs for 4 ML. These differences are discussed in terms of coupling of the unoccupied states to the layer-dependent electronic structure of the growing NiO film.

  15. Enhanced Self-Organized Dewetting of Ultrathin Polymer Blend Film for Large-Area Fabrication of SERS Substrate.

    PubMed

    Zhang, Huanhuan; Xu, Lin; Xu, Yabo; Huang, Gang; Zhao, Xueyu; Lai, Yuqing; Shi, Tongfei

    2016-12-06

    We study the enhanced dewetting of ultrathin Polystyrene (PS)/Poly (methyl methacrylate) (PMMA) blend films in a mixed solution, and reveal the dewetting can act as a simple and effective method to fabricate large-area surface-enhanced Raman scattering (SERS) substrate. A bilayer structure consisting of under PMMA layer and upper PS layer forms due to vertical phase separation of immiscible PS/PMMA during the spin-coating process. The thicker layer of the bilayer structure dominates the dewetting structures of PS/PMMA blend films. The diameter and diameter distribution of droplets, and the average separation spacing between the droplets can be precisely controlled via the change of blend ratio and film thickness. The dewetting structure of 8 nm PS/PMMA (1:1 wt%) blend film is proved to successfully fabricate large-area (3.5 cm × 3.5 cm) universal SERS substrate via deposited a silver layer on the dewetting structure. The SERS substrate shows good SERS-signal reproducibility (RSD < 7.2%) and high enhancement factor (2.5 × 10 7 ). The enhanced dewetting of polymer blend films broadens the application of dewetting of polymer films, especially in the nanotechnology, and may open a new approach for the fabrication of large-area SERS substrate to promote the application of SERS substrate in the rapid sensitive detection of trace molecules.

  16. Enhanced Self-Organized Dewetting of Ultrathin Polymer Blend Film for Large-Area Fabrication of SERS Substrate

    PubMed Central

    Zhang, Huanhuan; Xu, Lin; Xu, Yabo; Huang, Gang; Zhao, Xueyu; Lai, Yuqing; Shi, Tongfei

    2016-01-01

    We study the enhanced dewetting of ultrathin Polystyrene (PS)/Poly (methyl methacrylate) (PMMA) blend films in a mixed solution, and reveal the dewetting can act as a simple and effective method to fabricate large-area surface-enhanced Raman scattering (SERS) substrate. A bilayer structure consisting of under PMMA layer and upper PS layer forms due to vertical phase separation of immiscible PS/PMMA during the spin-coating process. The thicker layer of the bilayer structure dominates the dewetting structures of PS/PMMA blend films. The diameter and diameter distribution of droplets, and the average separation spacing between the droplets can be precisely controlled via the change of blend ratio and film thickness. The dewetting structure of 8 nm PS/PMMA (1:1 wt%) blend film is proved to successfully fabricate large-area (3.5 cm × 3.5 cm) universal SERS substrate via deposited a silver layer on the dewetting structure. The SERS substrate shows good SERS-signal reproducibility (RSD < 7.2%) and high enhancement factor (2.5 × 107). The enhanced dewetting of polymer blend films broadens the application of dewetting of polymer films, especially in the nanotechnology, and may open a new approach for the fabrication of large-area SERS substrate to promote the application of SERS substrate in the rapid sensitive detection of trace molecules. PMID:27922062

  17. Ferroelectric ultrathin perovskite films

    DOEpatents

    Rappe, Andrew M; Kolpak, Alexie Michelle

    2013-12-10

    Disclosed herein are perovskite ferroelectric thin-film. Also disclosed are methods of controlling the properties of ferroelectric thin films. These films can be used in a variety materials and devices, such as catalysts and storage media, respectively.

  18. A Ga2O3 underlayer as an isomorphic template for ultrathin hematite films toward efficient photoelectrochemical water splitting.

    PubMed

    Hisatomi, Takashi; Brillet, Jérémie; Cornuz, Maurin; Le Formal, Florian; Tétreault, Nicolas; Sivula, Kevin; Grätzel, Michael

    2012-01-01

    Hematite photoanodes for photoelectrochemical (PEC) water splitting are often fabricated as extremely-thin films to minimize charge recombination because of the short diffusion lengths of photoexcited carriers. However, poor crystallinity caused by structural interaction with a substrate negates the potential of ultrathin hematite photoanodes. This study demonstrates that ultrathin Ga2O3 underlayers, which were deposited on conducting substrates prior to hematite layers by atomic layer deposition, served as an isomorphic (corundum-type) structural template for ultrathin hematite and improved the photocurrent onset of PEC water splitting by 0.2 V. The benefit from Ga2O3 underlayers was most pronounced when the thickness of the underlayer was approximately 2 nm. Thinner underlayers did not work effectively as a template presumably because of insufficient crystallinity of the underlayer, while thicker ones diminished the PEC performance of hematite because the underlayer prevented electron injection from hematite to a conductive substrate due to the large conduction band offset. The enhancement of PEC performance by a Ga2O3 underlayer was more significant for thinner hematite layers owing to greater margins for improving the crystallinity of ultrathin hematite. It was confirmed that a Ga2O3 underlayer was applicable to a rough conducting substrate loaded with Sb-doped SnO2 nanoparticles, improving the photocurrent by a factor of 1.4. Accordingly, a Ga2O3 underlayer could push forward the development of host-guest-type nanocomposites consisting of highly-rough substrates and extremely-thin hematite absorbers.

  19. Identification of O-rich structures on platinum(111)-supported ultrathin iron oxide films

    DOE PAGES

    Merte, Lindsay R.; Bai, Yunhai; Zeuthen, Helene; ...

    2016-01-06

    Using high-resolution scanning tunneling microscopy (STM) we have studied the oxidation of ultrathin FeO films grown on Pt(111). At the initial stage of the FeO film oxidation by atomic oxygen exposure, we identified three distinct types of line defects, all of which form boundaries between FeO domains of opposite orientation. Two types of line defects appearing bright ( type-i) and dark ( type-ii) in the STM images at typical scanning parameters are “metallic”, whereas the third line defect exhibits nonmetallic behavior ( type-iii). Atomic-scale structure models of these line defects are proposed, with type-i defects exhibiting 4-fold coordinated Fe atoms,more » type-ii exhibiting 2-fold coordinated O atoms, and type-iii exhibiting tetrahedrally-coordinated Fe atoms. In addition, FeO 2 trilayer islands are formed upon oxidation, which appear at FCC-type domains of the moiré structure. At high scanning bias, distinct protrusions on the trilayer islands are observed over surface O ions, which are assigned to H adatoms. The experimental data are supported by density functional theory (DFT) calculations, in which bare and hydroxylated FeO 2 trilayer islands are compared. Finally, we compare the formation of O-rich features on continuous FeO films using atomic oxygen with the oxidation of Pt(111)-supported FeO islands accomplished by O 2 exposure.« less

  20. Magneto-optical properties of CoFeB ultrathin films: Effect of Ta buffer and capping layer

    NASA Astrophysics Data System (ADS)

    Husain, Sajid; Gupta, Nanhe Kumar; Barwal, Vineet; Chaudhary, Sujeet

    2018-05-01

    The effect of adding Ta as a capping and buffer layer on ultrathin CFB(Co60Fe20B20) thin films has been investigated by magneto-optical Kerr effect. A large difference in the coercivity and saturation field is observed between the single layer CFB(2nm) and Ta(5nm)/CFB(2nm)/Ta(2nm) trilayer structure. In particular, the in-plane anisotropy energy is found to be 90kJ/m3 on CFB(2nm) and 2.22kJ/m3 for Ta(5nm)/CFB(2nm)/Ta(2nm) thin films. Anisotropy energy further reduced to 0.93kJ/m3 on increasing the CFB thinness in trilayer structure i.e., Ta(5nm)/CFB(4nm)/Ta(2nm). Using VSM measurement, the saturation magnetization is found to be 1230±50 kA/m. Low coercivity and anisotropy energy in capped and buffer layer thin films envisage the potential of employing CFB for low field switching applications of the spintronic devices.

  1. Nanoporous Ni(OH)2 thin film on 3D Ultrathin-graphite foam for asymmetric supercapacitor.

    PubMed

    Ji, Junyi; Zhang, Li Li; Ji, Hengxing; Li, Yang; Zhao, Xin; Bai, Xin; Fan, Xiaobin; Zhang, Fengbao; Ruoff, Rodney S

    2013-07-23

    Nanoporous nickel hydroxide (Ni(OH)2) thin film was grown on the surface of ultrathin-graphite foam (UGF) via a hydrothermal reaction. The resulting free-standing Ni(OH)2/UGF composite was used as the electrode in a supercapacitor without the need for addition of either binder or metal-based current collector. The highly conductive 3D UGF network facilitates electron transport and the porous Ni(OH)2 thin film structure shortens ion diffusion paths and facilitates the rapid migration of electrolyte ions. An asymmetric supercapacitor was also made and studied with Ni(OH)2/UGF as the positive electrode and activated microwave exfoliated graphite oxide ('a-MEGO') as the negative electrode. The highest power density of the fully packaged asymmetric cell (44.0 kW/kg) was much higher (2-27 times higher), while the energy density was comparable to or higher, than high-end commercially available supercapacitors. This asymmetric supercapacitor had a capacitance retention of 63.2% after 10,000 cycles.

  2. Flexible Mixed-Potential-Type (MPT) NO₂ Sensor Based on An Ultra-Thin Ceramic Film.

    PubMed

    You, Rui; Jing, Gaoshan; Yu, Hongyan; Cui, Tianhong

    2017-07-29

    A novel flexible mixed-potential-type (MPT) sensor was designed and fabricated for NO₂ detection from 0 to 500 ppm at 200 °C. An ultra-thin Y₂O₃-doped ZrO₂ (YSZ) ceramic film 20 µm thick was sandwiched between a heating electrode and reference/sensing electrodes. The heating electrode was fabricated by a conventional lift-off process, while the porous reference and the sensing electrodes were fabricated by a two-step patterning method using shadow masks. The sensor's sensitivity is achieved as 58.4 mV/decade at the working temperature of 200 °C, as well as a detection limit of 26.7 ppm and small response time of less than 10 s at 200 ppm. Additionally, the flexible MPT sensor demonstrates superior mechanical stability after bending over 50 times due to the mechanical stability of the YSZ ceramic film. This simply structured, but highly reliable flexible MPT NO₂ sensor may lead to wide application in the automobile industry for vehicle emission systems to reduce NO₂ emissions and improve fuel efficiency.

  3. Chemical surface deposition of ultra-thin semiconductors

    DOEpatents

    McCandless, Brian E.; Shafarman, William N.

    2003-03-25

    A chemical surface deposition process for forming an ultra-thin semiconducting film of Group IIB-VIA compounds onto a substrate. This process eliminates particulates formed by homogeneous reactions in bath, dramatically increases the utilization of Group IIB species, and results in the formation of a dense, adherent film for thin film solar cells. The process involves applying a pre-mixed liquid coating composition containing Group IIB and Group VIA ionic species onto a preheated substrate. Heat from the substrate causes a heterogeneous reaction between the Group IIB and VIA ionic species of the liquid coating composition, thus forming a solid reaction product film on the substrate surface.

  4. Manipulation of Spin-Torque Generation Using Ultrathin Au

    NASA Astrophysics Data System (ADS)

    An, Hongyu; Haku, Satoshi; Kanno, Yusuke; Nakayama, Hiroyasu; Maki, Hideyuki; Shi, Ji; Ando, Kazuya

    2018-06-01

    The generation and the manipulation of current-induced spin-orbit torques are of essential interest in spintronics. However, in spite of the vital progress in spin orbitronics, electric control of the spin-torque generation still remains elusive and challenging. We report on electric control of the spin-torque generation using ionic-liquid gating of ultrathin Au. We show that by simply depositing a SiO2 capping layer on an ultrathin-Au /Ni81Fe19 bilayer, the spin-torque generation efficiency is drastically enhanced by a maximum of 7 times. This enhancement is verified to be originated from the rough ultrathin-Au /Ni81Fe19 interface induced by the SiO2 deposition, which results in the enhancement of the interface spin-orbit scattering. We further show that the spin-torque generation efficiency from the ultrathin Au film can be reversibly manipulated by a factor of 2 using the ionic gating with an external electric field within a small range of 1 V. These results pave a way towards the efficient control of the spin-torque generation in spintronic applications.

  5. Switching characteristics for ferroelectric random access memory based on RC model in poly(vinylidene fluoride-trifluoroethylene) ultrathin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, ChangLi; Complex and Intelligent System Research Center, East China University of Science and Technology, Shanghai 200237; Wang, XueJun

    2016-05-15

    The switching characteristic of the poly(vinylidene fluoride-trifluoroethlene) (P(VDF-TrFE)) films have been studied at different ranges of applied electric field. It is suggest that the increase of the switching speed upon nucleation protocol and the deceleration of switching could be related to the presence of a non-ferroelectric layer. Remarkably, a capacitor and resistor (RC) links model plays significant roles in the polarization switching dynamics of the thin films. For P(VDF-TrFE) ultrathin films with electroactive interlayer, it is found that the switching dynamic characteristics are strongly affected by the contributions of resistor and non-ferroelectric (non-FE) interface factors. A corresponding experiment is designedmore » using poly(3,4-ethylene dioxythiophene):poly(styrene sulfonic) (PEDOT-PSSH) as interlayer with different proton concentrations, and the testing results show that the robust switching is determined by the proton concentration in interlayer and lower leakage current in circuit to reliable applications of such polymer films. These findings provide a new feasible method to enhance the polarization switching for the ferroelectric random access memory.« less

  6. Structure and strain relaxation mechanisms of ultrathin epitaxial Pr2O3 films on Si(111)

    NASA Astrophysics Data System (ADS)

    Schroeder, T.; Lee, T.-L.; Libralesso, L.; Joumard, I.; Zegenhagen, J.; Zaumseil, P.; Wenger, C.; Lupina, G.; Lippert, G.; Dabrowski, J.; Müssig, H.-J.

    2005-04-01

    The structure of ultrathin epitaxial Pr2O3 films on Si(111) was studied by synchrotron radiation-grazing incidence x-ray diffraction. The oxide film grows as hexagonal Pr2O3 phase with its (0001) plane attached to the Si(111) substrate. The hexagonal (0001) Pr2O3 plane matches the in-plane symmetry of the hexagonal Si(111) surface unit cell by aligning the ⟨101¯0⟩Pr2O3 along the ⟨112¯⟩ Si directions. The small lattice mismatch of 0.5% results in the growth of pseudomorphic oxide films of high crystalline quality with an average domain size of about 50 nm. The critical thickness tc for pseudomorphic growth amounts to 3.0±0.5nm. The relaxation of the oxide film from pseudomorphism to bulk behavior beyond tc causes the introduction of misfit dislocations, the formation of an in-plane small angle mosaicity structure, and the occurence of a phase transition towards a (111) oriented cubic Pr2O3 film structure. The observed phase transition highlights the influence of the epitaxial interface energy on the stability of Pr2O3 phases on Si(111). A mechanism is proposed which transforms the hexagonal (0001) into the cubic (111) Pr2O3 epilayer structure by rearranging the oxygen network but leaving the Pr sublattice almost unmodified.

  7. Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings

    NASA Astrophysics Data System (ADS)

    Kats, Mikhail A.; Byrnes, Steven J.; Blanchard, Romain; Kolle, Mathias; Genevet, Patrice; Aizenberg, Joanna; Capasso, Federico

    2013-09-01

    Recently a new class of optical interference coatings was introduced which comprises ultra-thin, highly absorbing dielectric layers on metal substrates. We show that these lossy coatings can be augmented by an additional transparent subwavelength layer. We fabricated a sample comprising a gold substrate, an ultra-thin film of germanium with a thickness gradient, and several alumina films. The experimental reflectivity spectra showed that the additional alumina layer increases the color range that can be obtained, in agreement with calculations. More generally, this transparent layer can be used to enhance optical absorption, protect against erosion, or as a transparent electrode for optoelectronic devices.

  8. Anionic poly(p-phenylenevinylene)/layered double hydroxide ordered ultrathin films with multiple quantum well structure: a combined experimental and theoretical study.

    PubMed

    Yan, Dongpeng; Lu, Jun; Ma, Jing; Wei, Min; Wang, Xinrui; Evans, David G; Duan, Xue

    2010-05-18

    The sulfonated phenylenevinylene polyanion derivate (APPV) and exfoliated Mg-Al-layered double hydroxide (LDH) monolayers were alternatively assembled into ordered ultrathin films (UTFs) employing a layer-by-layer method, which shows uniform yellow luminescence. UV-vis absorption and fluorescence spectroscopy present a stepwise and regular growth of the UTFs upon increasing deposited cycles. X-ray diffraction, atomic force microscopy, and scanning electron microscopy demonstrate that the UTFs are orderly periodical layered structure with a thickness of 3.3-3.5 nm per bilayer. The APPV/LDH UTFs exhibit well-defined polarized photoemission characteristic with the maximum luminescence anisotropy of approximately 0.3. Moreover, the UTF exhibit longer fluorescence lifetime (3-3.85-fold) and higher photostability than the drop-casting APPV film under UV irradiation, suggesting that the existence of a LDH monolayer enhances the optical performance of the APPV polyanion. A combination study of electrochemistry and periodic density functional theory was used to investigate the electronic structure of the APPV/LDH system, illustrating that the APPV/LDH UTF is a kind of organic-inorganic hybrid multiple quantum well (MQW) structure with a low band energy of 1.7-1.8 eV, where the valence electrons of APPV can be confined into the energy wells formed by the LDH monolayers effectively. Therefore, this work not only gives a feasible method for fabricating a luminescence ultrathin film but also provides a detailed understanding of the geometric and electronic structures of photoactive polyanions confined between the LDH monolayers.

  9. High-speed growth of TiO2 nanotube arrays with gradient pore diameter and ultrathin tube wall under high-field anodization

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaoliang; Zheng, Maojun; Ma, Li; Shen, Wenzhong

    2010-10-01

    Highly ordered TiO2 nanotubular arrays have been prepared by two-step anodization under high field. The high anodizing current densities lead to a high-speed film growth (0.40-1.00 µm min - 1), which is nearly 16 times faster than traditional fabrication of TiO2 at low field. It was found that an annealing process of Ti foil is an effective approach to get a monodisperse and double-pass TiO2 nanotubular layer with a gradient pore diameter and ultrathin tube wall (nearly 10 nm). A higher anodic voltage and longer anodization time are beneficial to the formation of ultrathin tube walls. This approach is simple and cost-effective in fabricating high-quality ordered TiO2 nanotubular arrays for practical applications.

  10. High-speed growth of TiO2 nanotube arrays with gradient pore diameter and ultrathin tube wall under high-field anodization.

    PubMed

    Yuan, Xiaoliang; Zheng, Maojun; Ma, Li; Shen, Wenzhong

    2010-10-08

    Highly ordered TiO(2) nanotubular arrays have been prepared by two-step anodization under high field. The high anodizing current densities lead to a high-speed film growth (0.40-1.00 microm min(-1)), which is nearly 16 times faster than traditional fabrication of TiO(2) at low field. It was found that an annealing process of Ti foil is an effective approach to get a monodisperse and double-pass TiO(2) nanotubular layer with a gradient pore diameter and ultrathin tube wall (nearly 10 nm). A higher anodic voltage and longer anodization time are beneficial to the formation of ultrathin tube walls. This approach is simple and cost-effective in fabricating high-quality ordered TiO(2) nanotubular arrays for practical applications.

  11. Studies of local structural distortions in strained ultrathin BaTiO3 films using scanning transmission electron microscopy.

    PubMed

    Park, Daesung; Herpers, Anja; Menke, Tobias; Heidelmann, Markus; Houben, Lothar; Dittmann, Regina; Mayer, Joachim

    2014-06-01

    Ultrathin ferroelectric heterostructures (SrTiO3/BaTiO3/BaRuO3/SrRuO3) were studied by scanning transmission electron microscopy (STEM) in terms of structural distortions and atomic displacements. The TiO2-termination at the top interface of the BaTiO3 layer was changed into a BaO-termination by adding an additional BaRuO3 layer. High-angle annular dark-field (HAADF) imaging by aberration-corrected STEM revealed that an artificially introduced BaO-termination can be achieved by this interface engineering. By using fast sequential imaging and frame-by-frame drift correction, the effect of the specimen drift was significantly reduced and the signal-to-noise ratio of the HAADF images was improved. Thus, a quantitative analysis of the HAADF images was feasible, and an in-plane and out-of-plane lattice spacing of the BaTiO3 layer of 3.90 and 4.22 Å were determined. A 25 pm shift of the Ti columns from the center of the unit cell of BaTiO3 along the c-axis was observed. By spatially resolved electron energy-loss spectroscopy studies, a reduction of the crystal field splitting (CFS, ΔL3=1.93 eV) and an asymmetric broadening of the eg peak were observed in the BaTiO3 film. These results verify the presence of a ferroelectric polarization in the ultrathin BaTiO3 film.

  12. Effective passivation of silicon surfaces by ultrathin atomic-layer deposited niobium oxide

    NASA Astrophysics Data System (ADS)

    Macco, B.; Bivour, M.; Deijkers, J. H.; Basuvalingam, S. B.; Black, L. E.; Melskens, J.; van de Loo, B. W. H.; Berghuis, W. J. H.; Hermle, M.; Kessels, W. M. M. Erwin

    2018-06-01

    This letter reports on effective surface passivation of n-type crystalline silicon by ultrathin niobium oxide (Nb2O5) films prepared by atomic layer deposition (ALD) and subjected to a forming gas anneal at 300 °C. A champion recombination parameter J0 of 20 fA/cm2 and a surface recombination velocity Seff of 4.8 cm/s have been achieved for ultrathin films of 1 nm. The surface pretreatment was found to have a strong impact on the passivation. Good passivation can be achieved on both HF-treated c-Si surfaces and c-Si surfaces with a wet-chemically grown interfacial silicon oxide layer. On HF-treated surfaces, a minimum film thickness of 3 nm is required to achieve a high level of surface passivation, whereas the use of a wet chemically-grown interfacial oxide enables excellent passivation even for Nb2O5 films of only 1 nm. This discrepancy in passivation between both surface types is attributed to differences in the formation and stoichiometry of interfacial silicon oxide, resulting in different levels of chemical passivation. On both surface types, the high level of passivation of ALD Nb2O5 is aided by field-effect passivation originating from a high fixed negative charge density of 1-2 × 1012 cm-3. Furthermore, it is demonstrated that the passivation level provided by 1 nm of Nb2O5 can be further enhanced through light-soaking. Finally, initial explorations show that a low contact resistivity can be obtained using Nb2O5-based contacts. Together, these properties make ALD Nb2O5 a highly interesting building block for high-efficiency c-Si solar cells.

  13. Out-of-plane chiral domain wall spin-structures in ultrathin in-plane magnets

    DOE PAGES

    Chen, Gong; Kang, Sang Pyo; Ophus, Colin; ...

    2017-05-19

    Chiral spin textures in ultrathin films, such as skyrmions or chiral domain walls, are believed to offer large performance advantages in the development of novel spintronics technologies. While in-plane magnetized films have been studied extensively as media for current- and field-driven domain wall dynamics with applications in memory or logic devices, the stabilization of chiral spin textures in in-plane magnetized films has remained rare. Here we report a phase of spin structures in an in-plane magnetized ultrathin film system where out-of-plane spin orientations within domain walls are stable. Moreover, while domain walls in in-plane films are generally expected to bemore » non-chiral, we show that right-handed spin rotations are strongly favoured in this system, due to the presence of the interfacial Dzyaloshinskii-Moriya interaction. These results constitute a platform to explore unconventional spin dynamics and topological phenomena that may enable high-performance in-plane spin-orbitronics devices.« less

  14. Ultra-thin silicon/electro-optic polymer hybrid waveguide modulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Feng; Spring, Andrew M.; Sato, Hiromu

    2015-09-21

    Ultra-thin silicon and electro-optic (EO) polymer hybrid waveguide modulators have been designed and fabricated. The waveguide consists of a silicon core with a thickness of 30 nm and a width of 2 μm. The cladding is an EO polymer. Optical mode calculation reveals that 55% of the optical field around the silicon extends into the EO polymer in the TE mode. A Mach-Zehnder interferometer (MZI) modulator was prepared using common coplanar electrodes. The measured half-wave voltage of the MZI with 7 μm spacing and 1.3 cm long electrodes is 4.6 V at 1550 nm. The evaluated EO coefficient is 70 pm/V, which is comparable to that ofmore » the bulk EO polymer film. Using ultra-thin silicon is beneficial in order to reduce the side-wall scattering loss, yielding a propagation loss of 4.0 dB/cm. We also investigated a mode converter which couples light from the hybrid EO waveguide into a strip silicon waveguide. The calculation indicates that the coupling loss between these two devices is small enough to exploit the potential fusion of a hybrid EO polymer modulator together with a silicon micro-photonics device.« less

  15. Strain-induced oxygen vacancies in ultrathin epitaxial CaMnO3 films

    NASA Astrophysics Data System (ADS)

    Chandrasena, Ravini; Yang, Weibing; Lei, Qingyu; Delgado-Jaime, Mario; de Groot, Frank; Arenholz, Elke; Kobayashi, Keisuke; Aschauer, Ulrich; Spaldin, Nicola; Xi, Xiaoxing; Gray, Alexander

    Dynamic control of strain-induced ionic defects in transition-metal oxides is considered to be an exciting new avenue towards creating materials with novel electronic, magnetic and structural properties. Here we use atomic layer-by-layer laser molecular beam epitaxy to synthesize high-quality ultrathin single-crystalline CaMnO3 films with systematically varying coherent tensile strain. We then utilize a combination of high-resolution soft x-ray absorption spectroscopy and bulk-sensitive hard x-ray photoemission spectroscopy in conjunction with first-principles theory and core-hole multiplet calculations to establish a direct link between the coherent in-plane strain and the oxygen-vacancy content. We show that the oxygen vacancies are highly mobile, which necessitates an in-situ-grown capping layer in order to preserve the original strain-induced oxygen-vacancy content. Our findings open the door for designing and controlling new ionically active properties in strongly-correlated transition-metal oxides.

  16. Surface morphology of ultrathin graphene oxide films obtained by the SAW atomization

    NASA Astrophysics Data System (ADS)

    Balachova, Olga V.; Balashov, Sergey M.; Costa, Carlos A. R.; Pavani Filho, A.

    2015-08-01

    Lately, graphene oxide (GO) thin films have attracted much attention: they can be used as humidity-sensitive coatings in the surface acoustic wave (SAW) sensors; being functionalized, they can be used in optoelectronic or biodevices, etc. In this research we study surface morphology of small-area thin GO films obtained on Si and quartz substrates by deposition of very small amounts of H2O-GO aerosols produced by the SAW atomizer. An important feature of this method is the ability to work with submicrovolumes of liquids during deposition that provides relatively good control over the film thickness and quality, in particular, minimization of the coffee ring effect. The obtained films were examined using AFM and electron microscopy. Image analysis showed that the films consist of GO sheets of different geometry and sizes and may form discrete or continuous coatings at the surface of the substrates with the minimum thickness of 1.0-1.8 nm which corresponds to one or two monolayers of GO. The thickness and quality of the deposited films depend on the parameters of the SAW atomization (number of atomized droplets, a volume of the initial droplet, etc.) and on sample surface preparation (activation in oxygen plasma). We discuss the structure of the obtained films, uniformity and the surface coverage as a function of parameters of the film deposition process and sample preparation. Qualitative analysis of adhesion of GO films is made by rinsing the samples in DI water and subsequent evaluation of morphology of the remained films.

  17. High-Performance Ultrathin Active Chiral Metamaterials.

    PubMed

    Wu, Zilong; Chen, Xiaodong; Wang, Mingsong; Dong, Jianwen; Zheng, Yuebing

    2018-05-22

    Ultrathin active chiral metamaterials with dynamically tunable and responsive optical chirality enable new optical sensors, modulators, and switches. Herein, we develop ultrathin active chiral metamaterials of highly tunable chiroptical responses by inducing tunable near-field coupling in the metamaterials and exploit the metamaterials as ultrasensitive sensors to detect trace amounts of solvent impurities. To demonstrate the active chiral metamaterials mediated by tunable near-field coupling, we design moiré chiral metamaterials (MCMs) as model metamaterials, which consist of two layers of identical Au nanohole arrays stacked upon one another in moiré patterns with a dielectric spacer layer between the Au layers. Our simulations, analytical fittings, and experiments reveal that spacer-dependent near-field coupling exists in the MCMs, which significantly enhances the spectral shift and line shape change of the circular dichroism (CD) spectra of the MCMs. Furthermore, we use a silk fibroin thin film as the spacer layer in the MCM. With the solvent-controllable swelling of the silk fibroin thin films, we demonstrate actively tunable near-field coupling and chiroptical responses of the silk-MCMs. Impressively, we have achieved the spectral shift over a wavelength range that is more than one full width at half-maximum and the sign inversion of the CD spectra in a single ultrathin (1/5 of wavelength in thickness) MCM. Finally, we apply the silk-MCMs as ultrasensitive sensors to detect trace amounts of solvent impurities down to 200 ppm, corresponding to an ultrahigh sensitivity of >10 5 nm/refractive index unit (RIU) and a figure of merit of 10 5 /RIU.

  18. Electrochemical preparation of poly(methylene blue)/graphene nanocomposite thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erçarıkcı, Elif; Dağcı, Kader; Topçu, Ezgi

    2014-07-01

    Highlights: • Poly(MB)/graphene thin films are prepared by a simple electrochemical approach. • Graphene layers in the film show a broad band in visible region of absorbance spectra. • Morphology of composite films indicates both disordered and ordered regions. • XRD reveals that nanocomposite films include rGO layers after electropolymerization process. • Chemically prepared graphene is better than electrochemically prepared graphene for electrooxidation of nitrite. - Abstract: Poly(methylene blue)/graphene nanocomposite thin films were prepared by electropolymerization of methylene blue in the presence of graphene which have been synthesized by two different methods of a chemical oxidation process and an electrochemicalmore » approach. Synthesized nanocomposite thin films were characterized by using cyclic voltammetry, UV–vis. absorption spectroscopy, powder X-ray diffraction, and scanning tunneling microscopy techniques. Electrocatalytical properties of prepared poly(methylene blue)/graphene nanocomposite films were compared toward electrochemical oxidation of nitrite. Under optimized conditions, electrocatalytical effect of nanocomposite films of chemically prepared graphene through electrochemical oxidation of nitrite was better than that of electrochemically prepared graphene.« less

  19. Flexible Mixed-Potential-Type (MPT) NO2 Sensor Based on An Ultra-Thin Ceramic Film

    PubMed Central

    You, Rui; Jing, Gaoshan; Yu, Hongyan; Cui, Tianhong

    2017-01-01

    A novel flexible mixed-potential-type (MPT) sensor was designed and fabricated for NO2 detection from 0 to 500 ppm at 200 °C. An ultra-thin Y2O3-doped ZrO2 (YSZ) ceramic film 20 µm thick was sandwiched between a heating electrode and reference/sensing electrodes. The heating electrode was fabricated by a conventional lift-off process, while the porous reference and the sensing electrodes were fabricated by a two-step patterning method using shadow masks. The sensor’s sensitivity is achieved as 58.4 mV/decade at the working temperature of 200 °C, as well as a detection limit of 26.7 ppm and small response time of less than 10 s at 200 ppm. Additionally, the flexible MPT sensor demonstrates superior mechanical stability after bending over 50 times due to the mechanical stability of the YSZ ceramic film. This simply structured, but highly reliable flexible MPT NO2 sensor may lead to wide application in the automobile industry for vehicle emission systems to reduce NO2 emissions and improve fuel efficiency. PMID:28758933

  20. Chemical vapor deposition of anisotropic ultrathin gold films on optical fibers: real-time sensing by tilted fiber Bragg gratings and use of a dielectric pre-coating

    NASA Astrophysics Data System (ADS)

    Mandia, David J.; Zhou, Wenjun; Ward, Matthew J.; Joress, Howie; Giorgi, Javier B.; Gordon, Peter; Albert, Jacques; Barry, Seán. T.

    2014-09-01

    Tilted fiber Bragg gratings (TFBGs) are refractometry-based sensor platforms that have been employed herein as devices for the real-time monitoring of chemical vapour deposition (CVD) in the near-infrared range (NIR). The coreguided light launched within the TFBG core is back-reflected off a gold mirror sputtered onto the fiber-end and is scattered out into the cladding where it can interact with a nucleating thin film. Evanescent fields of the growing gold nanostructures behave differently depending on the polarization state of the core-guided light interrogating the growing film, therefore the resulting spectral profile is typically decomposed into two separate peak families for the orthogonal S- and P-polarizations. Wavelength shifts and attenuation profiles generated from gold films in the thickness regime of 5-100 nm are typically degenerate for deposition directly onto the TFBG. However, a polarization-dependence can be imposed by adding a thin dielectric pre-coating onto the TFBG prior to using the device for CVD monitoring of the ultrathin gold films. It is found that addition of the pre-coating enhances the sensitivity of the P-polarized peak family to the deposition of ultrathin gold films and renders the films optically anisotropic. It is shown herein that addition of the metal oxide coating can increase the peak-to-peak wavelength separation between orthogonal polarization modes as well as allow for easy resonance tracking during deposition. This is also the first reporting of anisotropic gold films generated from this particular gold precursor and CVD process. Using an ensemble of x-ray techniques, the local fine structure of the gold films deposited directly on the TFBG is compared to gold films of similar thicknesses deposited on the Al2O3 pre-coated TFBG and witness slides.

  1. Chiral magnetic conductivity and surface states of Weyl semimetals in topological insulator ultra-thin film multilayer.

    PubMed

    Owerre, S A

    2016-06-15

    We investigate an ultra-thin film of topological insulator (TI) multilayer as a model for a three-dimensional (3D) Weyl semimetal. We introduce tunneling parameters t S, [Formula: see text], and t D, where the former two parameters couple layers of the same thin film at small and large momenta, and the latter parameter couples neighbouring thin film layers along the z-direction. The Chern number is computed in each topological phase of the system and we find that for [Formula: see text], the tunneling parameter [Formula: see text] changes from positive to negative as the system transits from Weyl semi-metallic phase to insulating phases. We further study the chiral magnetic effect (CME) of the system in the presence of a time dependent magnetic field. We compute the low-temperature dependence of the chiral magnetic conductivity and show that it captures three distinct phases of the system separated by plateaus. Furthermore, we propose and study a 3D lattice model of Porphyrin thin film, an organic material known to support topological Frenkel exciton edge states. We show that this model exhibits a 3D Weyl semi-metallic phase and also supports a 2D Weyl semi-metallic phase. We further show that this model recovers that of 3D Weyl semimetal in topological insulator thin film multilayer. Thus, paving the way for simulating a 3D Weyl semimetal in topological insulator thin film multilayer. We obtain the surface states (Fermi arcs) in the 3D model and the chiral edge states in the 2D model and analyze their topological properties.

  2. EDMOS in ultrathin FDSOI: Impact of the drift region properties

    NASA Astrophysics Data System (ADS)

    Litty, Antoine; Ortolland, Sylvie; Golanski, Dominique; Dutto, Christian; Cristoloveanu, Sorin

    2016-11-01

    The development of high-voltage MOSFET (HVMOS) is necessary for including power management or radiofrequency functionalities in CMOS technology. In this paper, we investigate the fabrication and optimization of an Extended Drain MOSFET (EDMOS) directly integrated in the ultra-thin SOI film (7 nm) of the 28 nm FDSOI CMOS technology node. Thanks to TCAD simulations, we analyse in detail the device behaviour as a function of the doping level and length of the drift region. The influence of the back-plane doping type and of the back-biasing schemes is discussed. DC measurements of fabricated EDMOS samples reveal promising performances in particular in terms of specific on-resistance versus breakdown voltage trade-off. The experimental results indicate that, even in an ultrathin film, the engineering of the drift region could be a lever to obtain integrated HVMOS (3.3-5 V).

  3. Transport properties of ultra-thin VO{sub 2} films on (001) TiO{sub 2} grown by reactive molecular-beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paik, Hanjong; Tashman, Joshua W.; Moyer, Jarrett A.

    2015-10-19

    We report the growth of (001)-oriented VO{sub 2} films as thin as 1.5 nm with abrupt and reproducible metal-insulator transitions (MIT) without a capping layer. Limitations to the growth of thinner films with sharp MITs are discussed, including the Volmer-Weber type growth mode due to the high energy of the (001) VO{sub 2} surface. Another key limitation is interdiffusion with the (001) TiO{sub 2} substrate, which we quantify using low angle annular dark field scanning transmission electron microscopy in conjunction with electron energy loss spectroscopy. We find that controlling island coalescence on the (001) surface and minimization of cation interdiffusion bymore » using a low growth temperature followed by a brief anneal at higher temperature are crucial for realizing ultrathin VO{sub 2} films with abrupt MIT behavior.« less

  4. Ultrathin metallized PBI paper

    NASA Technical Reports Server (NTRS)

    Chenevey, E. C.

    1978-01-01

    A study to determine the feasibility of preparing ultrathin papers with a target weight of 3.5 g/m squared from polybenzimidazole (PBI) fibrids was undertaken. Small hand sheets of target weight were fabricated. They were light brown, low density materials with sufficient strength to be readily handleable. Characterization of these sheets included strength, fold endurance, thermal gravimetric analysis in air and nitrogen and photomicrographs. Two different batches of PBI fibrids were studied and differences in fabrication performance were noted. In neither case could target weight papers be prepared using conventional paper making techniques.

  5. Dynamics and morphology of chiral magnetic bubbles in perpendicularly magnetized ultra-thin films

    NASA Astrophysics Data System (ADS)

    Sarma, Bhaskarjyoti; Garcia-Sanchez, Felipe; Nasseri, S. Ali; Casiraghi, Arianna; Durin, Gianfranco

    2018-06-01

    We study bubble domain wall dynamics using micromagnetic simulations in perpendicularly magnetized ultra-thin films with disorder and Dzyaloshinskii-Moriya interaction. Disorder is incorporated into the material as grains with randomly distributed sizes and varying exchange constant at the edges. As expected, magnetic bubbles expand asymmetrically along the axis of the in-plane field under the simultaneous application of out-of-plane and in-plane fields. Remarkably, the shape of the bubble has a ripple-like part which causes a kink-like (steep decrease) feature in the velocity versus in-plane field curve. We show that these ripples originate due to the nucleation and interaction of vertical Bloch lines. Furthermore, we show that the Dzyaloshinskii-Moriya interaction field is not constant but rather depends on the in-plane field. We also extend the collective coordinate model for domain wall motion to a magnetic bubble and compare it with the results of micromagnetic simulations.

  6. Nanowire decorated, ultra-thin, single crystalline silicon for photovoltaic devices.

    PubMed

    Aurang, Pantea; Turan, Rasit; Unalan, Husnu Emrah

    2017-10-06

    Reducing silicon (Si) wafer thickness in the photovoltaic industry has always been demanded for lowering the overall cost. Further benefits such as short collection lengths and improved open circuit voltages can also be achieved by Si thickness reduction. However, the problem with thin films is poor light absorption. One way to decrease optical losses in photovoltaic devices is to minimize the front side reflection. This approach can be applied to front contacted ultra-thin crystalline Si solar cells to increase the light absorption. In this work, homojunction solar cells were fabricated using ultra-thin and flexible single crystal Si wafers. A metal assisted chemical etching method was used for the nanowire (NW) texturization of ultra-thin Si wafers to compensate weak light absorption. A relative improvement of 56% in the reflectivity was observed for ultra-thin Si wafers with the thickness of 20 ± 0.2 μm upon NW texturization. NW length and top contact optimization resulted in a relative enhancement of 23% ± 5% in photovoltaic conversion efficiency.

  7. Ultrathin g-C3N4 films supported on Attapulgite nanofibers with enhanced photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Xu, Yongshuai; Zhang, Lili; Yin, Minghui; Xie, Dengyu; Chen, Jiaqi; Yin, Jingzhou; Fu, Yongsheng; Zhao, Pusu; Zhong, Hui; Zhao, Yijiang; Wang, Xin

    2018-05-01

    A novel visible-light-responsive photocatalyst is fabricated by introducing g-C3N4 ultrathin films onto the surface of attapulgite (ATP) via a simple in-situ depositing technique, in which ATP was pre-grafted using (3-Glycidyloxypropyl) trimethoxysilane (KH560) as the surfactant. A combination of XRD, FT-IR, BET, XPS, UV-vis, TEM and SEM techniques are utilized to characterize the composition, morphology and optical properties of the products. The results show that with the help of KH560, g-C3N4 presented as ultrathin layer is uniformly loaded onto the surface of ATP by forming a new chemical bond (Sisbnd Osbnd C). Comparing with g-C3N4 and ATP, ATP/g-C3N4 exhibits remarkably enhanced visible-light photocatalytic activity in degradation of methyl orange (MO) because of its high surface area, appropriate band gap and the synergistic effect between g-C3N4 and ATP. To achieve the best photocatalyst, the ratio of g-C3N4 was adjusted by controlling the mass portion between ATP-KH560 and melamine (r = m (ATP-KH560)/m (melamine)). The highest decomposition rate of methyl orange (MO) was 96.06% when r = 0.5 and this degradation efficiency remained unchanged after 4 cycles, which is 10 times as that of pure g-C3N4 particles. Possible photocatalytic mechanism is presented.

  8. Electrolyte-Sensing Transistor Decals Enabled by Ultrathin Microbial Nanocellulose

    PubMed Central

    Yuen, Jonathan D.; Walper, Scott A.; Melde, Brian J.; Daniele, Michael A.; Stenger, David A.

    2017-01-01

    We report an ultra-thin electronic decal that can simultaneously collect, transmit and interrogate a bio-fluid. The described technology effectively integrates a thin-film organic electrochemical transistor (sensing component) with an ultrathin microbial nanocellulose wicking membrane (sample handling component). As far as we are aware, OECTs have not been integrated in thin, permeable membrane substrates for epidermal electronics. The design of the biocompatible decal allows for the physical isolation of the electronics from the human body while enabling efficient bio-fluid delivery to the transistor via vertical wicking. High currents and ON-OFF ratios were achieved, with sensitivity as low as 1 mg·L−1. PMID:28102316

  9. Electrolyte-Sensing Transistor Decals Enabled by Ultrathin Microbial Nanocellulose

    NASA Astrophysics Data System (ADS)

    Yuen, Jonathan D.; Walper, Scott A.; Melde, Brian J.; Daniele, Michael A.; Stenger, David A.

    2017-01-01

    We report an ultra-thin electronic decal that can simultaneously collect, transmit and interrogate a bio-fluid. The described technology effectively integrates a thin-film organic electrochemical transistor (sensing component) with an ultrathin microbial nanocellulose wicking membrane (sample handling component). As far as we are aware, OECTs have not been integrated in thin, permeable membrane substrates for epidermal electronics. The design of the biocompatible decal allows for the physical isolation of the electronics from the human body while enabling efficient bio-fluid delivery to the transistor via vertical wicking. High currents and ON-OFF ratios were achieved, with sensitivity as low as 1 mg·L-1.

  10. New ultrathin film heterostructure for low-e application by sputtering technique: a theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Ruíz-Robles, M. A.; Abundiz-Cisneros, N.; Bender-Pérez, C. E.; Gutiérrez-Lazos, C. D.; Fundora-Cruz, A.; Solís-Pomar, F.; Pérez-Tijerina, E.

    2018-03-01

    The design and optical characterization by UV–vis transmittance of ultrathin low-emissivity (low-e) windows by reactive sputtering are reported. Two heterostructures on a glass substrate were considered for the low-e windows. The first heterostructure is Si3N4/TiO2/ZnO/Ag/SnO2/Si3N4 and the second is Si3N4/Ag/Si3N4. The transmittance and reflectance of these heterostructures were simulated to determine the required thickness of each layer. The first heterostructure exhibited maximum transmittance of 85% at 550 nm, slightly higher than the one determined by simulation and less than 50% transmittance in the near-infrared region (900 nm). The second heterostructure exhibited transmittance greater than 86% at 550 nm and <50% transmittance in the near-infrared region. In addition, we found that the bandwidth and maximum position of the transmittance depend on the Si3N4 layer thickness. Specifically, the thickness of the first Si3N4 layer allows the modulation of the transmittance bandwidth and the thickness of the second Si3N4 layer allows the modulation of the maximum position. The low-e windows were protected by the deposition of an ultrathin film of NiCr alloy (Ni 80%, Cr 20%) that preserved the optical characteristics and decreased the maximum of the transmittance only by 3%.

  11. Anomalously deep polarization in SrTiO3 (001) interfaced with an epitaxial ultrathin manganite film

    DOE PAGES

    Wang, Zhen; Tao, Jing; Yu, Liping; ...

    2016-10-17

    Using atomically-resolved imaging and spectroscopy, we reveal a remarkably deep polarization in non-ferroelectric SrTiO 3 near its interface with an ultrathin nonmetallic film of La 2/3Sr 1/3MnO 3. Electron holography shows an electric field near the interface in SrTiO 3, yielding a surprising spontaneous polarization density of ~ 21 μC/cm 2. Combining the experimental results with first principles calculations, we propose that the observed deep polarization is induced by the electric field originating from oxygen vacancies that extend beyond a dozen unit-cells from the interface, thus providing important evidence of the role of defects in the emergent interface properties ofmore » transition metal oxides.« less

  12. Modeling of UV laser-induced patterning of ultrathin Co films on bulk SiO2: verification of short- and long-range ordering mechanisms

    NASA Astrophysics Data System (ADS)

    Trice, Justin; Favazza, Christopher; Kalyanaraman, Ramki; Sureshkumar, R.

    2006-03-01

    Irradiating ultrathin Co films (1 to 10 nm) by a short-pulsed UV laser leads to pattern formation with both short- and long-range order (SRO, LRO). Single beam irradiation produces SRO, while two-beam interference irradiation produces a quasi-2D arrangement of nanoparticles with LRO and SRO. The pattern formation primarily occurs in the molten phase. An estimate of the thermal behavior of the film/substrate composite following a laser pulse is presented. The thermal behavior includes the lifetime of the liquid phase and the thermal gradient during interference heating. Based on this evidence, the SRO is attributed to spinodal dewetting of the film while surface tension gradients induced by the laser interference pattern appear to influence LRO [1]. [1] C.Favazza, J.Trice, H.Krishna, R.Sureshkumar, and R.Kalyanaraman, unpublished.

  13. Patchwork Coating of Fragmented Ultra-Thin Films and Their Biomedical Applications in Burn Therapy and Antithrombotic Coating

    PubMed Central

    Okamura, Yosuke; Nagase, Yu; Takeoka, Shinji

    2015-01-01

    We have proposed free-standing centimeter-sized ultra-thin films (nanosheets) for biomedical applications. Such nanosheets exhibit unique properties such as transparency, flexibility, and good adhesiveness. However, they are only easily adhered to broad and flat surfaces due to their dimensions. To this end, we recently proposed an innovative nanomaterial: the nanosheets fragmented into submillimeter-size pieces. Intriguingly, such fragmented nanosheets could be adhered to uneven and irregular surfaces in addition to flat surfaces in a spread-out “patchwork” manner. We herein review the fabrication procedure and characterization of fragmented nanosheets composed of biodegradable polyesters and thermostable bio-friendly polymers, and their biomedical applications in burn therapy and antithrombotic coating using a “patchwork coating”. PMID:28793663

  14. Patchwork Coating of Fragmented Ultra-Thin Films and Their Biomedical Applications in Burn Therapy and Antithrombotic Coating.

    PubMed

    Okamura, Yosuke; Nagase, Yu; Takeoka, Shinji

    2015-11-11

    We have proposed free-standing centimeter-sized ultra-thin films (nanosheets) for biomedical applications. Such nanosheets exhibit unique properties such as transparency, flexibility, and good adhesiveness. However, they are only easily adhered to broad and flat surfaces due to their dimensions. To this end, we recently proposed an innovative nanomaterial: the nanosheets fragmented into submillimeter-size pieces. Intriguingly, such fragmented nanosheets could be adhered to uneven and irregular surfaces in addition to flat surfaces in a spread-out "patchwork" manner. We herein review the fabrication procedure and characterization of fragmented nanosheets composed of biodegradable polyesters and thermostable bio-friendly polymers, and their biomedical applications in burn therapy and antithrombotic coating using a "patchwork coating".

  15. Magneto-optical Kerr rotation and color in ultrathin lossy dielectric

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Wang, Hai; Qu, Xin; Zhou, Yun song; Li, Li na

    2017-05-01

    Ultra-thin optical coating comprising nanometer-thick silicon absorbing films on iron substrates can display strong optical interference effects. A resonance peak of ∼1.6^\\circ longitudinal Kerr rotation with the silicon thickness of ∼47 \\text{nm} was found at the wavelength of 660 nm. The optical properties of silicon thin films were well controlled by the sputtering power. Non-iridescence color exhibition and Kerr rotation enhancement can be manipulated and encoded individually.

  16. Ambient pressure process for preparing aerogel thin films reliquified sols useful in preparing aerogel thin films

    DOEpatents

    Brinker, Charles Jeffrey; Prakash, Sai Sivasankaran

    1999-01-01

    A method for preparing aerogel thin films by an ambient-pressure, continuous process. The method of this invention obviates the use of an autoclave and is amenable to the formation of thin films by operations such as dip coating. The method is less energy intensive and less dangerous than conventional supercritical aerogel processing techniques.

  17. Loss/gain-induced ultrathin antireflection coatings

    PubMed Central

    Luo, Jie; Li, Sucheng; Hou, Bo; Lai, Yun

    2016-01-01

    Tradional antireflection coatings composed of dielectric layers usually require the thickness to be larger than quarter wavelength. Here, we demonstrate that materials with permittivity or permeability dominated by imaginary parts, i.e. lossy or gain media, can realize non-resonant antireflection coatings in deep sub-wavelength scale. Interestingly, while the reflected waves are eliminated as in traditional dielectric antireflection coatings, the transmitted waves can be enhanced or reduced, depending on whether gain or lossy media are applied, respectively. We provide a unified theory for the design of such ultrathin antireflection coatings, showing that under different polarizations and incident angles, different types of ultrathin coatings should be applied. Especially, under transverse magnetic polarization, the requirement shows a switch between gain and lossy media at Brewster angle. As a proof of principle, by using conductive films as a special type of lossy antireflection coatings, we experimentally demonstrate the suppression of Fabry-Pérot resonances in a broad frequency range for microwaves. This valuable functionality can be applied to remove undesired resonant effects, such as the frequency-dependent side lobes induced by resonances in dielectric coverings of antennas. Our work provides a guide for the design of ultrathin antireflection coatings as well as their applications in broadband reflectionless devices. PMID:27349750

  18. Preparation of a semiconductor thin film

    DOEpatents

    Pehnt, Martin; Schulz, Douglas L.; Curtis, Calvin J.; Ginley, David S.

    1998-01-01

    A process for the preparation of a semiconductor film. The process comprises depositing nanoparticles of a semiconductor material onto a substrate whose surface temperature during nanoparticle deposition thereon is sufficient to cause substantially simultaneous fusion of the nanoparticles to thereby coalesce with each other and effectuate film growth.

  19. Fluctuation conductance and the Berezinskii-Kosterlitz-Thouless transition in two dimensional epitaxial NbTiN ultra-thin films

    NASA Astrophysics Data System (ADS)

    K, Makise; H, Terai; T, Yamashita; S, Miki; Z, Wang; Uzawa Y, Y.; S, Ezaki; T, Odou; B, Shinozaki

    2012-12-01

    We study on the electric transport properties of epitaxial NbTiN ultrathin films in a range from 2 to 8nm. The films with 4 nm thick shows superconductivity of which mean-field superconducting transition temperature is TC0 = 9.43 K The excess conductance due to superconducting fluctuations was measured at temperatures above TC0. The paraconductivity shows a two-dimensional like behaviour at close to TC0. Experimental results are in good agreement with the sum of Aslamazov - Larkin and Maki - Thompson term for superconducting fluctuation theory. Decreasing temperature below TC0, the current-voltage characteristic shows a crossover from linear to nonlinear behaviour. The exponent α of current-voltage relation, V ~ Iα showed universal jump at TCBKT = 9.33 K As results, we find that there is a consistency between the parametrization of the2D characteristics of fluctuation paraconductivity above TC0 and Berezinskii-Kosterlitz-Thouless type behaviour below TC0.

  20. Preparation of a semiconductor thin film

    DOEpatents

    Pehnt, M.; Schulz, D.L.; Curtis, C.J.; Ginley, D.S.

    1998-01-27

    A process is disclosed for the preparation of a semiconductor film. The process comprises depositing nanoparticles of a semiconductor material onto a substrate whose surface temperature during nanoparticle deposition thereon is sufficient to cause substantially simultaneous fusion of the nanoparticles to thereby coalesce with each other and effectuate film growth.

  1. Patterning of ultrathin polymethylmethacrylate films by in-situ photodirecting of the Marangoni flow

    NASA Astrophysics Data System (ADS)

    Elashnikov, Roman; Fitl, Premysl; Svorcik, Vaclav; Lyutakov, Oleksiy

    2017-02-01

    Laser heating and Marangoni flow result in the formation of surface structures with different geometries and shape on thin polymer films. By laser beam irradiation combined with a sample movement the solid polymethylmethacrylate (PMMA) films are heated and undergo phase transition which leads to a material flow. Since the laser beam has a non-linear distribution of energy, the PMMA film is heated inhomogeneously and a surface tension gradient in a lateral direction is introduced. During this procedure additional phenomena such as "reversible" or cyclic polymer flow also take place. The careful choice of experimental conditions enables the preparation of patterns with sophisticated geometries and with hierarchical pattern organization. Depending on initial PMMA film thickness and speed of the sample movement line arrays are created, which can subsequently be transformed into the crimped lines or system of circular holes. In addition, the introduction of a constant acceleration in the sample movement or a laser beam distortion enables the preparation of regularly crimped lines, ordered hexagonal holes or overlapped plates.

  2. Preparation of graphene thin films for radioactive samples.

    PubMed

    Roteta, Miguel; Fernández-Martínez, Rodolfo; Mejuto, Marcos; Rucandio, Isabel

    2016-03-01

    A new method for the preparation of conductive thin films is presented. The metallization of VYNS films guarantees the electrical conductivity but it results in the breaking of a high proportion of them. Graphene, a two-dimensional nanostructure of monolayer or few layers graphite has attracted a great deal of attention because of its excellent properties such as a good chemical stability, mechanical resistance and extraordinary electronic transport properties. In this work, the possibilities of graphene have been explored as a way to produce electrical conductive thin films without an extra metallization process. The procedure starts with preparing homogenous suspensions of reduced graphene oxide (rGO) in conventional VYNS solutions. Ultra-sonication is used to ensure a good dispersibility of rGO. Graphene oxide (GO) is prepared via oxidation of graphite and subsequent exfoliation by sonication. Different chemically rGO were obtained by reaction with hydrazine sulfate, sodium borohydride, ascorbic acid and hydroiodic acid as reducing agents. The preparation of the thin graphene films is done in a similar way as the conventional VYNS foil preparation procedure. Drops of the solution are deposited onto water. The graphene films have been used to prepare sources containing some electron capture radionuclides ((109)Cd, (55)Fe, (139)Ce) with an activity in the order of 3kBq. The samples have been measured to test the attainable low energy electron efficiency and the energy resolution of Auger and conversion electrons by 4π (electron capture)-γ coincidence measurements. The 4π (electron capture)-γ coincidence setup includes a pressurized proportional counter and a NaI(Tl) detector. Tests with different pressures up to 1000kPa were carried out. All these tests show similar values in both parameters (efficiency and resolution) as those obtained by using the conventional metallized films without the drawback of the high percentage of broken films. Copyright © 2015

  3. All-solid-state flexible ultrathin micro-supercapacitors based on graphene.

    PubMed

    Niu, Zhiqiang; Zhang, Li; Liu, Lili; Zhu, Bowen; Dong, Haibo; Chen, Xiaodong

    2013-08-07

    Flexible, compact, ultrathin and all-solid-state micro-supercapacitors are prepared by coating H₃PO₄/PVA gel electrolyte onto micro-patterned rGO interdigitated electrodes prepared by combining photolithography with selective electrophoretic deposition. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Realistic absorption coefficient of ultrathin films

    NASA Astrophysics Data System (ADS)

    Cesaria, M.; Caricato, A. P.; Martino, M.

    2012-10-01

    Both a theoretical algorithm and an experimental procedure are discussed of a new route to determine the absorption/scattering properties of thin films deposited on transparent substrates. Notably, the non-measurable contribution of the film-substrate interface is inherently accounted for. While the experimental procedure exploits only measurable spectra combined according to a very simple algorithm, the theoretical derivation does not require numerical handling of the acquired spectra or any assumption on the film homogeneity and substrate thickness. The film absorption response is estimated by subtracting the measured absorption spectrum of the bare substrate from that of the film on the substrate structure but in a non-straightforward way. In fact, an assumption about the absorption profile of the overall structure is introduced and a corrective factor accounting for the relative film-to-substrate thickness. The method is tested on films of a well known material (ITO) as a function of the film structural quality and influence of the film-substrate interface, both deliberately changed by thickness tuning and doping. Results are found fully consistent with information obtained by standard optical analysis and band gap values reported in the literature. Additionally, comparison with a conventional method demonstrates that our route is generally more accurate even if particularly suited for very thin films.

  5. Low voltage operation of IGZO thin film transistors enabled by ultrathin Al2O3 gate dielectric

    NASA Astrophysics Data System (ADS)

    Ma, Pengfei; Du, Lulu; Wang, Yiming; Jiang, Ran; Xin, Qian; Li, Yuxiang; Song, Aimin

    2018-01-01

    An ultrathin, 5 nm, Al2O3 film grown by atomic-layer deposition was used as a gate dielectric for amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). The Al2O3 layer showed a low surface roughness of 0.15 nm, a low leakage current, and a high breakdown voltage of 6 V. In particular, a very high gate capacitance of 720 nF/cm2 was achieved, making it possible for the a-IGZO TFTs to not only operate at a low voltage of 1 V but also exhibit desirable properties including a low threshold voltage of 0.3 V, a small subthreshold swing of 100 mV/decade, and a high on/off current ratio of 1.2 × 107. Furthermore, even under an ultralow operation voltage of 0.6 V, well-behaved transistor characteristics were still observed with an on/off ratio as high as 3 × 106. The electron transport through the Al2O3 layer has also been analyzed, indicating the Fowler-Nordheim tunneling mechanism.

  6. Scaling of structure and electrical properties in ultrathin epitaxial ferroelectric heterostructures

    NASA Astrophysics Data System (ADS)

    Nagarajan, V.; Junquera, J.; He, J. Q.; Jia, C. L.; Waser, R.; Lee, K.; Kim, Y. K.; Baik, S.; Zhao, T.; Ramesh, R.; Ghosez, Ph.; Rabe, K. M.

    2006-09-01

    Scaling of the structural order parameter, polarization, and electrical properties was investigated in model ultrathin epitaxial SrRuO3/PbZr0.2Ti0.8O3/SrRuO3/SrTiO3 heterostructures. High-resolution transmission electron microscopy images revealed the interfaces to be sharp and fully coherent. Synchrotron x-ray studies show that a high tetragonality (c /a˜1.058) is maintained down to 50Å thick films, suggesting indirectly that ferroelectricity is fully preserved at such small thicknesses. However, measurement of the switchable polarization (ΔP) using a pulsed probe setup and the out-of-plane piezoelectric response (d33) revealed a systematic drop from ˜140μC/cm2 and 60pm/V for a 150Å thick film to 11μC/cm2 and 7pm/V for a 50Å thick film. This apparent contradiction between the structural measurements and the measured switchable polarization is explained by an increasing presence of a strong depolarization field, which creates a pinned 180° polydomain state for the thinnest films. Existence of a polydomain state is demonstrated by piezoresponse force microscopy images of the ultrathin films. These results suggest that the limit for a ferroelectric memory device may be much larger than the fundamental limit for ferroelectricity.

  7. MnO2 ultrathin films deposited by means of magnetron sputtering: Relationships between process conditions, structural properties and performance in transparent supercapacitors

    NASA Astrophysics Data System (ADS)

    Borysiewicz, Michał A.; Wzorek, Marek; Myśliwiec, Marcin; Kaczmarski, Jakub; Ekielski, Marek

    2016-12-01

    This study focuses on the relationships between the process parameters during magnetron sputter deposition of MnO2 and the resulting film properties. Three MnO2 phases were identified - γ, β and λ and the dependence of MnO2 phase presence on the oxygen content in the sputtering atmosphere was found. Selected MnO2 phases were subsequently applied as ultrathin coatings on top of nanostructured ZnO electrodes for transparent supercapacitors with LiCl-based gel electrolyte. The films containing λ-MnO2 exhibited both the highest optical transparency of 62% at 550 nm as well as the highest specific capacitance in the supercapacitor structure, equal to 73.1 μF/cm2. Initially lower, the capacitance was elevated by charge-discharge conditioning.

  8. Exploratory development and services for preparing and examining ultrathin polished sections of lunar rocks and particulates, part 1

    NASA Technical Reports Server (NTRS)

    Beauchamp, R. H.; Williford, J. F.; Gafford, E. L.

    1972-01-01

    Development of improved procedures is reported for three classes of lunar materials: dense rocks, breccias, and particulates. High quality ultrathin sections of these materials are obtained. Lists of equipment and supplies, procedures, photomicrographic documentation, and training are provided. Advantages of ultrathin polished sections for conventional and unconventional optical microscopy methods are described. Recommendations are provided for use of ultrathin sections in lunar rock studies, for further refinement of ultrathinning procedures, and for additional training efforts to establish a capability at the Manned Space Center. For Part 2, See N72-50754.

  9. Transparent and Flexible Capacitors with an Ultrathin Structure by Using Graphene as Bottom Electrodes.

    PubMed

    Guo, Tao; Zhang, Guozhen; Su, Xi; Zhang, Heng; Wan, Jiaxian; Chen, Xue; Wu, Hao; Liu, Chang

    2017-11-28

    Ultrathin, transparent and flexible capacitors using graphene as the bottom electrodes were directly fabricated on polyethylene naphthalate (PEN) substrates. ZrO₂ dielectric films were deposited on the treated surface of graphene by atomic layer deposition (ALD). The deposition process did not introduce any detectible defects in the graphene, as indicated by Raman measurements, guaranteeing the electrical performances of the graphene electrodes. The Aluminum-doped zinc oxide (AZO) films were prepared as the top electrodes using the ALD technique. The capacitors presented a high capacitance density (10.3 fF/μm² at 10 kHz) and a relatively low leakage current (5.3 × 10 -6 A/cm² at 1 V). Bending tests revealed that the capacitors were able to work normally at an outward bending radius of 10 mm without any deterioration of electrical properties. The capacitors exhibited an average optical transmittance of close to 70% at visible wavelengths. Thus, it opens the door to practical applications in transparent integrated circuits.

  10. Process for the preparation of metal-containing nanostructured films

    NASA Technical Reports Server (NTRS)

    Lu, Yunfeng (Inventor); Wang, Donghai (Inventor)

    2006-01-01

    Metal-containing nanostructured films are prepared by electrodepositing a metal-containing composition within the pores of a mesoporous silica template to form a metal-containing silica nanocomposite. The nanocomposite is annealed to strengthen the deposited metal-containing composition. The silica is then removed from the nanocomposite, e.g., by dissolving the silica in an etching solution to provide a self-supporting metal-containing nanostructured film. The nanostructured films have a nanowire or nanomesh architecture depending on the pore structure of the mesoporous silica template used to prepare the films.

  11. On-surface synthesis: a promising strategy toward the encapsulation of air unstable ultra-thin 2D materials.

    PubMed

    Li, Qiang; Zhao, Yinghe; Guo, Jiyuan; Zhou, Qionghua; Chen, Qian; Wang, Jinlan

    2018-02-22

    2D black phosphorus (BP) and transition metal chalcogenides (TMCs) have beneficial electronic, optical, and physical properties at the few-layer limit. However, irreversible degradation of exfoliated or chemical vapor deposition-grown ultrathin BP and TMCs like GaSe via oxidation under ambient conditions limits their applications. Herein, the on-surface growth of an oxidation-resistant 2D thin film of a metal coordination polymer is demonstrated by multiscale simulations. We show that the preparation of such heterostructures can be conducted in solution, in which pristine BP and GaSe present better stability than in an air environment. Our calculations reveal that the interaction between the polymer layer and 2D materials is dominated by van der Waals forces; thus, the electronic properties of pristine BP and GaSe are well preserved. Meanwhile, the isolation from oxygen and water can be achieved by monolayer polymers, due to the nature of their close-packed layers. Our facile strategy for enhancing the environmental stability of ultrathin materials is expected to accelerate efforts to implement 2D materials in electronic and optoelectronic applications.

  12. Covalent layer-by-layer films: chemistry, design, and multidisciplinary applications.

    PubMed

    An, Qi; Huang, Tao; Shi, Feng

    2018-05-16

    Covalent layer-by-layer (LbL) assembly is a powerful method used to construct functional ultrathin films that enables nanoscopic structural precision, componential diversity, and flexible design. Compared with conventional LbL films built using multiple noncovalent interactions, LbL films prepared using covalent crosslinking offer the following distinctive characteristics: (i) enhanced film endurance or rigidity; (ii) improved componential diversity when uncharged species or small molecules are stably built into the films by forming covalent bonds; and (iii) increased structural diversity when covalent crosslinking is employed in componential, spacial, or temporal (labile bonds) selective manners. In this review, we document the chemical methods used to build covalent LbL films as well as the film properties and applications achievable using various film design strategies. We expect to translate the achievement in the discipline of chemistry (film-building methods) into readily available techniques for materials engineers and thus provide diverse functional material design protocols to address the energy, biomedical, and environmental challenges faced by the entire scientific community.

  13. Controllable preparation of fluorine-containing fullerene-like carbon film

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Liang, Aimin; Wang, Fuguo; Xu, Longhua; Zhang, Junyan

    2016-05-01

    Fluorine-containing fullerene-like carbon (F-FLC) films were prepared by high frequency unipolar pulse plasma-enhanced chemical vapor deposition. The microstructures, mechanical properties as well as the tribological properties of the films were investigated. The results indicate that fullerene-like microstructures appear in amorphous carbon matrix and increase greatly with the increase of bias voltage from -600 to -1600 V. And the fluorine contents in F-FLC films also show a minor rise. In addition, the hardness enhances with the bias voltage and the outstanding elastic recovery maintains because of the formation of fullerene-like microstructures in the F-FLC films. Undoubtedly, the F-FLC film deposited under high bias voltage owns a superiorly low friction, which combines the merits of fluorinated carbon film and fullerene-like carbon film. Moreover, the film also shows a remarkable wear resistance, which is mainly attributed to the excellent mechanical properties. This study provides new insights for us to prepare fluorine-containing FLC films with good mechanical and tribological properties.

  14. Unexpected behavior of ultra-thin films of blends of polystyrene/poly(vinyl methyl ether) studied by specific heat spectroscopy

    NASA Astrophysics Data System (ADS)

    Madkour, Sherif; Szymoniak, Paulina; Schick, Christoph; Schönhals, Andreas

    2017-05-01

    Specific heat spectroscopy (SHS) employing AC nanochip calorimetry was used to investigate the glassy dynamics of ultra-thin films (thicknesses: 10 nm-340 nm) of a polymer blend, which is miscible in the bulk. In detail, a Poly(vinyl methyl ether) (PVME)/Polystyrene (PS) blend with the composition of 25/75 wt. % was studied. The film thickness was controlled by ellipsometry while the film topography was checked by atomic force microscopy. The results are discussed in the framework of the balance between an adsorbed and a free surface layer on the glassy dynamics. By a self-assembling process, a layer with a reduced mobility is irreversibly adsorbed at the polymer/substrate interface. This layer is discussed employing two different scenarios. In the first approach, it is assumed that a PS-rich layer is adsorbed at the substrate. Whereas in the second approach, a PVME-rich layer is suggested to be formed at the SiO2 substrate. Further, due to the lower surface tension of PVME, with respect to air, a nanometer thick PVME-rich surface layer, with higher molecular mobility, is formed at the polymer/air interface. By measuring the glassy dynamics of the thin films of PVME/PS in dependence on the film thickness, it was shown that down to 30 nm thicknesses, the dynamic Tg of the whole film was strongly influenced by the adsorbed layer yielding a systematic increase in the dynamic Tg with decreasing the film thickness. However, at a thickness of ca. 30 nm, the influence of the mobile surface layer becomes more pronounced. This results in a systematic decrease in Tg with the further decrease of the film thickness, below 30 nm. These results were discussed with respect to thin films of PVME/PS blend with a composition of 50/50 wt. % as well as literature results.

  15. Electrical and optical properties of sub-10 nm nickel silicide films for silicon solar cells

    NASA Astrophysics Data System (ADS)

    Brahmi, Hatem; Ravipati, Srikanth; Yarali, Milad; Shervin, Shahab; Wang, Weijie; Ryou, Jae-Hyun; Mavrokefalos, Anastassios

    2017-01-01

    Highly conductive and transparent films of ultra-thin p-type nickel silicide films have been prepared by RF magnetron sputtering of nickel on silicon substrates followed by rapid thermal annealing in an inert environment in the temperature range 400-600 °C. The films are uniform throughout the wafer with thicknesses in the range of 3-6 nm. The electrical and optical properties are presented for nickel silicide films with varying thickness. The Drude-Lorentz model and Fresnel equations were used to calculate the dielectric properties, sheet resistance, absorption and transmission of the films. These ultrathin nickel silicide films have excellent optoelectronic properties for p-type contacts with optical transparencies up to 80% and sheet resistance as low as ~0.15 µΩ cm. Furthermore, it was shown that the use of a simple anti-reflection (AR) coating can recover most of the reflected light approaching the values of a standard Si solar cell with the same AR coating. Overall, the combination of ultra-low thickness, high transmittance, low sheet resistance and ability to recover the reflected light by utilizing standard AR coating makes them ideal for utilization in silicon based photovoltaic technologies as a p-type transparent conductor.

  16. Insulator at the ultrathin limit: MgO on Ag(001).

    PubMed

    Schintke, S; Messerli, S; Pivetta, M; Patthey, F; Libioulle, L; Stengel, M; De Vita, A; Schneider, W D

    2001-12-31

    The electronic structure and morphology of ultrathin MgO films epitaxially grown on Ag(001) were investigated using low-temperature scanning tunneling spectroscopy and scanning tunneling microscopy. Layer-resolved differential conductance (dI/dU) measurements reveal that, even at a film thickness of three monolayers, a band gap of about 6 eV is formed corresponding to that of the MgO(001) single-crystal surface. This finding is confirmed by layer-resolved calculations of the local density of states based on density functional theory.

  17. Physics of Ultrathin Films and Heterostructures of Rare-Earth Nickelates

    DOE PAGES

    Middey, Srimanta; Chakhalian, J.; Mahadevan, P.; ...

    2016-04-06

    The electronic structure of transition metal oxides featuring correlated electrons can be rationalized within the Zaanen-Sawatzky-Allen framework. Following a brief description of the present paradigms of electronic behavior, we focus on the physics of rare-earth nickelates as an archetype of complexity emerging within the charge transfer regime. The intriguing prospect of realizing the physics of high- Tc cuprates through heterostructuring resulted in a massive endeavor to epitaxially stabilize these materials in ultrathin form. A plethora of new phenomena unfolded in such artificial structures due to the effect of epitaxial strain, quantum confinement, and interfacial charge transfer. Here we review themore » present status of artificial rare-earth nickelates in an effort to uncover the interconnection between the electronic and magnetic behavior and the underlying crystal structure. Here, we conclude by discussing future directions to disentangle the puzzle regarding the origin of the metal-insulator transition, the role of oxygen holes, and the true nature of the antiferromagnetic spin configuration in the ultrathin limit.« less

  18. Ultrathin planar graphene supercapacitors.

    PubMed

    Yoo, Jung Joon; Balakrishnan, Kaushik; Huang, Jingsong; Meunier, Vincent; Sumpter, Bobby G; Srivastava, Anchal; Conway, Michelle; Reddy, Arava Leela Mohana; Yu, Jin; Vajtai, Robert; Ajayan, Pulickel M

    2011-04-13

    With the advent of atomically thin and flat layers of conducting materials such as graphene, new designs for thin film energy storage devices with good performance have become possible. Here, we report an "in-plane" fabrication approach for ultrathin supercapacitors based on electrodes comprised of pristine graphene and multilayer reduced graphene oxide. The in-plane design is straightforward to implement and exploits efficiently the surface of each graphene layer for energy storage. The open architecture and the effect of graphene edges enable even the thinnest of devices, made from as grown 1-2 graphene layers, to reach specific capacities up to 80 μFcm(-2), while much higher (394 μFcm(-2)) specific capacities are observed multilayer reduced graphene oxide electrodes. The performances of devices with pristine as well as thicker graphene-based structures are examined using a combination of experiments and model calculations. The demonstrated all solid-state supercapacitors provide a prototype for a broad range of thin-film based energy storage devices.

  19. Ultrathin TiO(x) films on Pt(111): a LEED, XPS, and STM investigation.

    PubMed

    Sedona, Francesco; Rizzi, Gian Andrea; Agnoli, Stefano; Llabrés i Xamena, Francesc X; Papageorgiou, Anthoula; Ostermann, Dieter; Sambi, Mauro; Finetti, Paola; Schierbaum, Klaus; Granozzi, Gaetano

    2005-12-29

    Ultrathin ordered titanium oxide films on Pt(111) surface are prepared by reactive evaporation of Ti in oxygen. By varying the Ti dose and the annealing conditions (i.e., temperature and oxygen pressure), six different long-range ordered phases are obtained. They are characterized by means of low-energy electron diffraction (LEED), X-ray photoemission spectroscopy (XPS), and scanning tunneling microscopy (STM). By careful optimization of the preparative parameters, we find conditions where predominantly single phases of TiO(x), revealing distinct LEED pattern and STM images, are produced. XPS binding energy and photoelectron diffraction (XPD) data indicate that all the phases, except one (the stoichiometric rect-TiO2), are one monolayer thick and composed of a Ti-O bilayer with interfacial Ti. Atomically resolved STM images confirm that these TiO(x) phases wet the Pt surface, in contrast to rect-TiO2. This indicates their interface stabilization. At a low Ti dose (0.4 monolayer equivalents, MLE), an incommensurate kagomé-like low-density phase (k-TiO(x) phase) is observed where hexagons are sharing their vertexes. At a higher Ti dose (0.8 MLE), two denser phases are found, both characterized by a zigzag motif (z- and z'-TiO(x) phases), but with distinct rectangular unit cells. Among them, z'-TiO(x), which is obtained by annealing in ultrahigh vacuum (UHV), shows a larger unit cell. When the postannealing of the 0.8 MLE deposit is carried out at high temperatures and high oxygen partial pressures, the incommensurate nonwetting, fully oxidized rect-TiO2 is found The symmetry and lattice dimensions are almost identical with rect-VO2, observed in the system VO(x)/Pd(111). At a higher coverage (1.2 MLE), two commensurate hexagonal phases are formed, namely the w- [(square root(43) x square root(43)) R 7.6 degrees] and w'-TiO(x) phase [(7 x 7) R 21.8 degrees]. They show wagon-wheel-like structures and have slightly different lattice dimensions. Larger Ti deposits

  20. Rapid amperometric detection of trace metals by inhibition of an ultrathin polypyrrole-based glucose biosensor.

    PubMed

    Ayenimo, Joseph G; Adeloju, Samuel B

    2016-02-01

    A sensitive and reliable inhibitive amperometric glucose biosensor is described for rapid trace metal determination. The biosensor utilises a conductive ultrathin (55 nm thick) polypyrrole (PPy) film for entrapment of glucose oxidase (GOx) to permit rapid inhibition of GOx activity in the ultrathin film upon exposure to trace metals, resulting in reduced glucose amperometric response. The biosensor demonstrates a relatively fast response time of 20s and does not require incubation. Furthermore, a complete recovery of GOx activity in the ultrathin PPy-GOx biosensor is quickly achieved by washing in 2mM EDTA for only 10s. The minimum detectable concentrations achieved with the biosensor for Hg(2+), Cu(2+), Pb(2+) and Cd(2+) by inhibitive amperometric detection are 0.48, 1.5, 1.6 and 4.0 µM, respectively. Also, suitable linear concentration ranges were achieved from 0.48-3.3 µM for Hg(2+), 1.5-10 µM for Cu(2+), 1.6-7.7 µM for Pb(2+) and 4-26 µM for Cd(2+). The use of Dixon and Cornish-Bowden plots revealed that the suppressive effects observed with Hg(2+) and Cu(2+) were via non-competitive inhibition, while those of Pb(2+) and Cd(2+) were due to mixed and competitive inhibition. The stronger inhibition exhibited by the trace metals on GOx activity in the ultrathin PPy-GOx film was also confirmed by the low inhibition constant obtained from this analysis. The biosensor was successfully applied to the determination of trace metals in tap water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Polarity-driven oxygen vacancy formation in ultrathin LaNiO 3 films on SrTiO 3

    DOE PAGES

    Tung, I-Cheng; Luo, Guangfu; Lee, June Hyuk; ...

    2017-10-18

    Oxide heterostructures offer a pathway to control emergent phases in complex oxides, but their creation often leads to boundaries that have a polar discontinuity. In order to fabricate atomic-scale arrangements of dissimilar materials, we need a clear understanding of the pathways by which materials resolve polarity issues. By examining the real-time lattice structure in-situ during growth for the case of polar LaNiO 3 synthesized on non-polar SrTiO 3 (001), we demonstrate how films in ultra-thin limit form as LaNiO 2.5 and then evolve into LaNiO 3 as the thickness increases. Theory explains how the polar energetics drives the formation ofmore » oxygen vacancies and the stability of these phases with thickness and structure.« less

  2. Transmission electron microscopy of polyhydroxybutyrate-co-valerate (PHBV)/nanocrystalline cellulose (NCC) bio-nanocomposite prepared using cryo-ultramicrotomy

    NASA Astrophysics Data System (ADS)

    Ismarul, N. I.; Engku, A. H. E. U.; Siti, N. K.; Tay, K. Y.

    2017-12-01

    Environmental issues on disposal and end-of-life for product made from synthetic petroleum-derived polymers have gained increasing attention from materials scientist to search for new materials with similar physical and mechanical properties but environmental friendly in a way that they are renewable and biodegradable as well. This work is to study the effect of nanocrystalline cellulose in improving the thermal stability of polyhydroxybutyrate-co-valerate biopolymer for high temperature processing of packaging material. 10 % w/w PHBV-NCC bio-nanocomposite feedstock pellet prepared using RONDOL minilab compounder was used as the sample for the preparation of Transmission Electron Microscopy (TEM) sample. RMC Cryo-Ultramicrotomy equipment was used to prepare the ultra-thin slice of the bio-nanocomposite pellet under liquid nitrogen at - 60 °C. Diamond knife was used to slice off about 80-100 nm ultra-thin bio-nanocomposite films and was transferred into the lacey carbon film coated grid using cooled sugar solution. A few drops of phosphotungstic acid was used as negative stain to improve the contrast during the TEM analysis. HITACHI TEM systems was used to obtain the TEM micrograph of PHBV-NCC bio-nanocomposite using 80kV accelerating voltage. A well dispersed NCC in PHBV matrix, ranging from 5 to 25 nm in width was observed.

  3. Gold Nanoclusters@Ru(bpy)₃²⁺-Layered Double Hydroxide Ultrathin Film as a Cathodic Electrochemiluminescence Resonance Energy Transfer Probe.

    PubMed

    Yu, Yingchang; Lu, Chao; Zhang, Meining

    2015-08-04

    Herein, it is the first report that a cathodic electrochemiluminescence (ECL) resonance energy transfer (ERET) system is fabricated by layer-by-layer (LBL) electrostatic assembly of CoAl layered double hydroxide (LDH) nanosheets with a mixture of blue BSA-gold nanoclusters (AuNCs) and Ru(bpy)3(2+) (denoted as AuNCs@Ru) on an Au electrode. The possible ECL mechanism indicates that the appearance of CoAl-LDH nanosheets generates a long-range stacking order of the AuNCs@Ru on an Au electrode, facilitating the occurrence of the ERET between BSA-AuNC donors and Ru(bpy)3(2+) acceptors on the as-prepared AuNCs@Ru-LDH ultrathin films (UTFs). Furthermore, it is observed that the cathodic ECL intensity can be quenched efficiently in the presence of 6-mercaptopurine (6-MP) in a linear range of 2.5-100 nM with a detection limit of 1.0 nM. On the basis of these interesting phenomena, a facile cathodic ECL sensor has successfully distinguished 6-MP from other thiol-containing compounds (e.g., cysteine and glutathione) in human serum and urine samples. The proposed sensing scheme opens a way for employing the layered UTFs as a platform for the cathodic ECL of Ru(bpy)3(2+).

  4. On bistable states retention in ferroelectric Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Geivandov, A. R.; Palto, S. P.; Yudin, S. G.; Fridkin, V. M.; Blinov, L. M.; Ducharme, S.

    2003-08-01

    A new insight into the nature of ferroelectricity is emerging from the study of ultra-thin ferroelectric films prepared of poly(vinylidene fluoride with trifluoroethylene) copolymer using Langmuir-Blodgett (LB) technique. Unique properties of these films indicate the existence of two-dimensional ferroelectricity. The retention of two polarized states in ferroelectric polymer LB films is studied using nonlinear dielectric spectroscopy. The technique is based on phase sensitive measurements of nonlinear dielectric spectroscopy. The amplitude of the current response at the 2nd harmonic of the applied voltage is proportional to the magnitude of the remnant polarization, while its phase gives the sign. We have found that 10 - 20 mm thick LB films can show fast switching time and long retention of the two polarized states. Nevertheless, LB films show a pronounced asymmetry in switching to the opposite states. Possible mechanisms of such behavior are discussed.

  5. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics.

    PubMed

    Kim, Dae-Hyeong; Viventi, Jonathan; Amsden, Jason J; Xiao, Jianliang; Vigeland, Leif; Kim, Yun-Soung; Blanco, Justin A; Panilaitis, Bruce; Frechette, Eric S; Contreras, Diego; Kaplan, David L; Omenetto, Fiorenzo G; Huang, Yonggang; Hwang, Keh-Chih; Zakin, Mitchell R; Litt, Brian; Rogers, John A

    2010-06-01

    Electronics that are capable of intimate, non-invasive integration with the soft, curvilinear surfaces of biological tissues offer important opportunities for diagnosing and treating disease and for improving brain/machine interfaces. This article describes a material strategy for a type of bio-interfaced system that relies on ultrathin electronics supported by bioresorbable substrates of silk fibroin. Mounting such devices on tissue and then allowing the silk to dissolve and resorb initiates a spontaneous, conformal wrapping process driven by capillary forces at the biotic/abiotic interface. Specialized mesh designs and ultrathin forms for the electronics ensure minimal stresses on the tissue and highly conformal coverage, even for complex curvilinear surfaces, as confirmed by experimental and theoretical studies. In vivo, neural mapping experiments on feline animal models illustrate one mode of use for this class of technology. These concepts provide new capabilities for implantable and surgical devices.

  6. Dissolvable Films of Silk Fibroin for Ultrathin, Conformal Bio-Integrated Electronics

    PubMed Central

    Kim, Dae-Hyeong; Viventi, Jonathan; Amsden, Jason J.; Xiao, Jianliang; Vigeland, Leif; Kim, Yun-Soung; Blanco, Justin A.; Panilaitis, Bruce; Frechette, Eric S.; Contreras, Diego; Kaplan, David L.; Omenetto, Fiorenzo G.; Huang, Yonggang; Hwang, Keh-Chih; Zakin, Mitchell R.; Litt, Brian; Rogers, John A.

    2011-01-01

    Electronics that are capable of intimate, non-invasive integration with the soft, curvilinear surfaces of biological tissues offer important opportunities for diagnosing and treating disease and for improving brain-machine interfaces. This paper describes a material strategy for a type of bio-interfaced system that relies on ultrathin electronics supported by bioresorbable substrates of silk fibroin. Mounting such devices on tissue and then allowing the silk to dissolve and resorb initiates a spontaneous, conformal wrapping process driven by capillary forces at the biotic/abiotic interface. Specialized mesh designs and ultrathin forms for the electronics ensure minimal stresses on the tissue and highly conformal coverage, even for complex curvilinear surfaces, as confirmed by experimental and theoretical studies. In vivo, neural mapping experiments on feline animal models illustrate one mode of use for this class of technology. These concepts provide new capabilities for implantable or surgical devices. PMID:20400953

  7. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Hyeong; Viventi, Jonathan; Amsden, Jason J.; Xiao, Jianliang; Vigeland, Leif; Kim, Yun-Soung; Blanco, Justin A.; Panilaitis, Bruce; Frechette, Eric S.; Contreras, Diego; Kaplan, David L.; Omenetto, Fiorenzo G.; Huang, Yonggang; Hwang, Keh-Chih; Zakin, Mitchell R.; Litt, Brian; Rogers, John A.

    2010-06-01

    Electronics that are capable of intimate, non-invasive integration with the soft, curvilinear surfaces of biological tissues offer important opportunities for diagnosing and treating disease and for improving brain/machine interfaces. This article describes a material strategy for a type of bio-interfaced system that relies on ultrathin electronics supported by bioresorbable substrates of silk fibroin. Mounting such devices on tissue and then allowing the silk to dissolve and resorb initiates a spontaneous, conformal wrapping process driven by capillary forces at the biotic/abiotic interface. Specialized mesh designs and ultrathin forms for the electronics ensure minimal stresses on the tissue and highly conformal coverage, even for complex curvilinear surfaces, as confirmed by experimental and theoretical studies. In vivo, neural mapping experiments on feline animal models illustrate one mode of use for this class of technology. These concepts provide new capabilities for implantable and surgical devices.

  8. Magnetic Phase Transition in Ion-Irradiated Ultrathin CoN Films via Magneto-Optic Faraday Effect.

    PubMed

    Su, Chiung-Wu; Chang, Yen-Chu; Chang, Sheng-Chi

    2013-11-15

    The magnetic properties of 1 nm thick in-plane anisotropic Co ultrathin film on ZnO(0001) were investigated through successive 500 eV nitrogen-ion sputtering. Magneto-optical Faraday effects were used to observe the evolution of the ion-irradiated sample in longitudinal and perpendicular magnetic fields. The ferromagnetic phase of the initial in-plane anisotropic fcc β-Co phase transformation to β-Co(N) phase was terminated at paramagnetic CoN x phase. In-plane anisotropy with weak out-of-plane anisotropy of the Co/ZnO sample was initially observed in the as-grown condition. In the sputtering process, the N⁺ ions induced simultaneous sputtering and doping. An abrupt spin reorientation behavior from in-plane to out-of-plane was found under prolonged sputtering condition. The existence of perpendicular anisotropy measured from the out-of-plane Faraday effect may be attributed to the co-existence of residual β-Co and Co₄N exchange bonding force by the gradual depletion of Co-N thickness.

  9. Preparation of Modified Films with Protein from Grouper Fish

    PubMed Central

    Tecante, A.; Granados-Navarrete, S.; Martínez-García, C.

    2016-01-01

    A protein concentrate (PC) was obtained from Grouper fish skin and it was used to prepare films with different amounts of sorbitol and glycerol as plasticizers. The best performing films regarding resistance were then modified with various concentrations of CaCl2, CaSO4 (calcium salts), and glucono-δ-lactone (GDL) with the purpose of improving their mechanical and barrier properties. These films were characterized by determining their mechanical properties and permeability to water vapor and oxygen. Formulations with 5% (w/v) protein and 75% sorbitol and 4% (w/v) protein with a mixture of 15% glycerol and 15% sorbitol produced adequate films. Calcium salts and GDL increased the tensile fracture stress but reduced the fracture strain and decreased water vapor permeability compared with control films. The films prepared represent an attractive alternative for being used as food packaging materials. PMID:27597950

  10. Electrical Properties of Ultrathin Hf-Ti-O Higher k Gate Dielectric Films and Their Application in ETSOI MOSFET.

    PubMed

    Xiong, Yuhua; Chen, Xiaoqiang; Wei, Feng; Du, Jun; Zhao, Hongbin; Tang, Zhaoyun; Tang, Bo; Wang, Wenwu; Yan, Jiang

    2016-12-01

    Ultrathin Hf-Ti-O higher k gate dielectric films (~2.55 nm) have been prepared by atomic layer deposition. Their electrical properties and application in ETSOI (fully depleted extremely thin SOI) PMOSFETs were studied. It is found that at the Ti concentration of Ti/(Ti + Hf) ~9.4%, low equivalent gate oxide thickness (EOT) of ~0.69 nm and acceptable gate leakage current density of 0.61 A/cm 2 @ (V fb  - 1)V could be obtained. The conduction mechanism through the gate dielectric is dominated by the F-N tunneling in the gate voltage range of -0.5 to -2 V. Under the same physical thickness and process flow, lower EOT and higher I on /I off ratio could be obtained while using Hf-Ti-O as gate dielectric compared with HfO 2 . With Hf-Ti-O as gate dielectric, two ETSOI PMOSFETs with gate width/gate length (W/L) of 0.5 μm/25 nm and 3 μm/40 nm show good performances such as high I on , I on /I off ratio in the magnitude of 10 5 , and peak transconductance, as well as suitable threshold voltage (-0.3~-0.2 V). Particularly, ETSOI PMOSFETs show superior short-channel control capacity with DIBL <82 mV/V and subthreshold swing <70 mV/decade.

  11. Three-Component Integrated Ultrathin Organic Photosensors for Plastic Optoelectronics.

    PubMed

    Wang, Hanlin; Liu, Hongtao; Zhao, Qiang; Cheng, Cheng; Hu, Wenping; Liu, Yunqi

    2016-01-27

    By three-component integration, an integrated organic photosensor is presented using common organic dyes as building blocks. Gray-scale photosensing and signal amplification are achieved in the device within a wide range of light intensities. Moreover, with ultrathin film techniques, 470 nm thick devices are realized and continue to work when harshly bent. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se

    NASA Astrophysics Data System (ADS)

    Wu, Jinxiong; Yuan, Hongtao; Meng, Mengmeng; Chen, Cheng; Sun, Yan; Chen, Zhuoyu; Dang, Wenhui; Tan, Congwei; Liu, Yujing; Yin, Jianbo; Zhou, Yubing; Huang, Shaoyun; Xu, H. Q.; Cui, Yi; Hwang, Harold Y.; Liu, Zhongfan; Chen, Yulin; Yan, Binghai; Peng, Hailin

    2017-07-01

    High-mobility semiconducting ultrathin films form the basis of modern electronics, and may lead to the scalable fabrication of highly performing devices. Because the ultrathin limit cannot be reached for traditional semiconductors, identifying new two-dimensional materials with both high carrier mobility and a large electronic bandgap is a pivotal goal of fundamental research. However, air-stable ultrathin semiconducting materials with superior performances remain elusive at present. Here, we report ultrathin films of non-encapsulated layered Bi2O2Se, grown by chemical vapour deposition, which demonstrate excellent air stability and high-mobility semiconducting behaviour. We observe bandgap values of ˜0.8 eV, which are strongly dependent on the film thickness due to quantum-confinement effects. An ultrahigh Hall mobility value of >20,000 cm2 V-1 s-1 is measured in as-grown Bi2O2Se nanoflakes at low temperatures. This value is comparable to what is observed in graphene grown by chemical vapour deposition and at the LaAlO3-SrTiO3 interface, making the detection of Shubnikov-de Haas quantum oscillations possible. Top-gated field-effect transistors based on Bi2O2Se crystals down to the bilayer limit exhibit high Hall mobility values (up to 450 cm2 V-1 s-1), large current on/off ratios (>106) and near-ideal subthreshold swing values (˜65 mV dec-1) at room temperature. Our results make Bi2O2Se a promising candidate for future high-speed and low-power electronic applications.

  13. Optimizing ultrathin Ag films for high performance oxide-metal-oxide flexible transparent electrodes through surface energy modulation and template-stripping procedures

    PubMed Central

    Yang, Xi; Gao, Pingqi; Yang, Zhenhai; Zhu, Juye; Huang, Feng; Ye, Jichun

    2017-01-01

    Among new flexible transparent conductive electrode (TCE) candidates, ultrathin Ag film (UTAF) is attractive for its extremely low resistance and relatively high transparency. However, the performances of UTAF based TCEs critically depend on the threshold thickness for growth of continuous Ag films and the film morphologies. Here, we demonstrate that these two parameters could be strongly altered through the modulation of substrate surface energy. By minimizing the surface energy difference between the Ag film and substrate, a 9 nm UTAF with a sheet resistance down to 6.9 Ω sq−1 can be obtained using an electron-beam evaporation process. The resultant UTAF is completely continuous and exhibits smoother morphologies and smaller optical absorbances in comparison to the counterpart of granular-type Ag film at the same thickness without surface modulation. Template-stripping procedure is further developed to transfer the UTAFs to flexible polymer matrixes and construct Al2O3/Ag/MoOx (AAM) electrodes with excellent surface morphology as well as optical and electronic characteristics, including a root-mean-square roughness below 0.21 nm, a transparency up to 93.85% at 550 nm and a sheet resistance as low as 7.39 Ω sq−1. These AAM based electrodes also show superiority in mechanical robustness, thermal oxidation stability and shape memory property. PMID:28291229

  14. Optimizing ultrathin Ag films for high performance oxide-metal-oxide flexible transparent electrodes through surface energy modulation and template-stripping procedures

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Gao, Pingqi; Yang, Zhenhai; Zhu, Juye; Huang, Feng; Ye, Jichun

    2017-03-01

    Among new flexible transparent conductive electrode (TCE) candidates, ultrathin Ag film (UTAF) is attractive for its extremely low resistance and relatively high transparency. However, the performances of UTAF based TCEs critically depend on the threshold thickness for growth of continuous Ag films and the film morphologies. Here, we demonstrate that these two parameters could be strongly altered through the modulation of substrate surface energy. By minimizing the surface energy difference between the Ag film and substrate, a 9 nm UTAF with a sheet resistance down to 6.9 Ω sq-1 can be obtained using an electron-beam evaporation process. The resultant UTAF is completely continuous and exhibits smoother morphologies and smaller optical absorbances in comparison to the counterpart of granular-type Ag film at the same thickness without surface modulation. Template-stripping procedure is further developed to transfer the UTAFs to flexible polymer matrixes and construct Al2O3/Ag/MoOx (AAM) electrodes with excellent surface morphology as well as optical and electronic characteristics, including a root-mean-square roughness below 0.21 nm, a transparency up to 93.85% at 550 nm and a sheet resistance as low as 7.39 Ω sq-1. These AAM based electrodes also show superiority in mechanical robustness, thermal oxidation stability and shape memory property.

  15. Periodically pulsed wet annealing approach for low-temperature processable amorphous InGaZnO thin film transistors with high electrical performance and ultrathin thickness.

    PubMed

    Kim, Ye Kyun; Ahn, Cheol Hyoun; Yun, Myeong Gu; Cho, Sung Woon; Kang, Won Jun; Cho, Hyung Koun

    2016-05-20

    In this paper, a simple and controllable "wet pulse annealing" technique for the fabrication of flexible amorphous InGaZnO thin film transistors (a-IGZO TFTs) processed at low temperature (150 °C) by using scalable vacuum deposition is proposed. This method entailed the quick injection of water vapor for 0.1 s and purge treatment in dry ambient in one cycle; the supply content of water vapor was simply controlled by the number of pulse repetitions. The electrical transport characteristics revealed a remarkable performance of the a-IGZO TFTs prepared at the maximum process temperature of 150 °C (field-effect mobility of 13.3 cm(2) V(-1) s(-1); Ion/Ioff ratio ≈ 10(8); reduced I-V hysteresis), comparable to that of a-IGZO TFTs annealed at 350 °C in dry ambient. Upon analysis of the angle-resolved x-ray photoelectron spectroscopy, the good performance was attributed to the effective suppression of the formation of hydroxide and oxygen-related defects. Finally, by using the wet pulse annealing process, we fabricated, on a plastic substrate, an ultrathin flexible a-IGZO TFT with good electrical and bending performances.

  16. Thin-film preparation by back-surface irradiation pulsed laser deposition using metal powder targets

    NASA Astrophysics Data System (ADS)

    Kawasaki, Hiroharu; Ohshima, Tamiko; Yagyu, Yoshihito; Ihara, Takeshi; Yamauchi, Makiko; Suda, Yoshiaki

    2017-01-01

    Several kinds of functional thin films were deposited using a new thin-film preparation method named the back-surface irradiation pulsed laser deposition (BIPLD) method. In this BIPLD method, powder targets were used as the film source placed on a transparent target holder, and then a visible-wavelength pulsed laser was irradiated from the holder side to the substrate. Using this new method, titanium oxide and boron nitride thin films were deposited on the silicon substrate. Surface scanning electron microscopy (SEM) images suggest that all of the thin films were deposited on the substrate with some large droplets irrespective of the kind of target used. The deposition rate of the films prepared by using this method was calculated from film thickness and deposition time to be much lower than that of the films prepared by conventional PLD. X-ray diffraction (XRD) measurement results suggest that rutile and anatase TiO2 crystal peaks were formed for the films prepared using the TiO2 rutile powder target. Crystal peaks of hexagonal boron nitride were observed for the films prepared using the boron nitride powder target. The crystallinity of the prepared films was changed by annealing after deposition.

  17. MoS2 thin films prepared by sulfurization

    NASA Astrophysics Data System (ADS)

    Sojková, M.; Chromik, Å.; Rosová, A.; Dobročka, E.; Hutár, P.; Machajdík, D.; Kobzev, A. P.; Hulman, M.

    2017-08-01

    Sulfurization of a Mo layer is one of the most used methods for preparation of thin MoS2 films. In the method, a sulfur powder and Mo covered substrate are placed in different positions within a furnace, and heated separately. This requires a furnace having at least two zones. Here, we present a simplified version of the method where a one-zone tube furnace was used. A molybdenum film on a substrate and a sulfur powder were placed in the center of the furnace and heated at temperatures above 800°C. Mo films transform into MoS2 in vapors of sulphur at high temperatures. As-prepared films were characterized by number of techniques including X-ray diffraction (XRD), atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman, Rutherford backscattering (RBS) and X-ray photoelectron spectroscopy (XPS). It appears that one-zone sulfurization, with just one annealing temperature used, is a suitable method for fabrication of MoS2 thin films. This method is fast, cheap and easy to scale up.

  18. Characterization of film-forming solutions and films incorporating free and nanoencapsulated tea polyphenol prepared by gelatins with different Bloom values

    USDA-ARS?s Scientific Manuscript database

    Gelatin film-forming solutions and their films incorporating tea polyphenol (TP) and chitosan nanoparticles (CSNs) were prepared from gelatins with different Bloom values (100, 150 and 225). Blank gelatin film-forming solutions and films were prepared as controls. Gelatins with higher Bloom values h...

  19. Near infrared and extreme ultraviolet light pulses induced modifications of ultrathin Co films

    NASA Astrophysics Data System (ADS)

    Kisielewski, Jan; Sveklo, Iosif; Kurant, Zbigniew; Bartnik, Andrzej; Jakubowski, Marcin; Dynowska, ElŻbieta; Klinger, Dorota; Sobierajski, Ryszard; Wawro, Andrzej; Maziewski, Andrzej

    2017-05-01

    We report on comparative study of magnetic properties of Pt/Co/Pt trilayers after irradiation with different light sources. Ultrathin Pt/Co/Pt films were deposited by molecular beam epitaxy technique on sapphire (0001) substrates. Pt buffers were grown at room temperature (RT) and at 750°C (high temperature, HT). The samples were irradiated with a broad range of light energy densities (up to film ablation) using two different single pulse irradiation sources: (i) 40 fs laser with 800 nm wavelength and (ii) 3 ns laser-plasma source of extreme ultraviolet (EUV) with the most intense emission centered at 11 nm. The light pulse-driven irreversible structural and as a consequence, magnetic modifications were investigated using polar magneto-optical Kerr effect-based microscopy and atomic and magnetic force microscopies. The light pulse-induced transitions from the out-of-plane to in-plane magnetization state, and from in-plane to out-of-plane, were observed for both types of samples and irradiation methods. Diagrams of the magnetic states as a function of the Co layer thickness and energy density of the absorbed femtosecond pulses were constructed for the samples with both the RT and HT buffers. The energy density range responsible for the creation of the out-of-plane magnetization was wider for the HT than for RT buffer. This is correlated with the higher (for HT) crystalline quality and much smoother Pt/Co surface deduced from the X-ray diffraction studies. Submicrometer magnetic domains were observed in the irradiated region while approaching the out-of-plane magnetization state. Changes of Pt/Co/Pt structures are discussed for both types of light pulses.

  20. Transparent and Flexible Capacitors with an Ultrathin Structure by Using Graphene as Bottom Electrodes

    PubMed Central

    Guo, Tao; Zhang, Guozhen; Su, Xi; Zhang, Heng; Wan, Jiaxian; Chen, Xue; Wu, Hao; Liu, Chang

    2017-01-01

    Ultrathin, transparent and flexible capacitors using graphene as the bottom electrodes were directly fabricated on polyethylene naphthalate (PEN) substrates. ZrO2 dielectric films were deposited on the treated surface of graphene by atomic layer deposition (ALD). The deposition process did not introduce any detectible defects in the graphene, as indicated by Raman measurements, guaranteeing the electrical performances of the graphene electrodes. The Aluminum-doped zinc oxide (AZO) films were prepared as the top electrodes using the ALD technique. The capacitors presented a high capacitance density (10.3 fF/μm2 at 10 kHz) and a relatively low leakage current (5.3 × 10−6 A/cm2 at 1 V). Bending tests revealed that the capacitors were able to work normally at an outward bending radius of 10 mm without any deterioration of electrical properties. The capacitors exhibited an average optical transmittance of close to 70% at visible wavelengths. Thus, it opens the door to practical applications in transparent integrated circuits. PMID:29182551

  1. Synthesizing new types of ultrathin 2D metal oxide nanosheets via half-successive ion layer adsorption and reaction

    NASA Astrophysics Data System (ADS)

    Gao, Linjie; Li, Yaguang; Xiao, Mu; Wang, Shufang; Fu, Guangsheng; Wang, Lianzhou

    2017-06-01

    Two-dimensional (2D) metal oxide nanosheets have demonstrated their great potential in a broad range of applications. The existing synthesis strategies are mainly preparing 2D nanosheets from layered and specific transition metal oxides. How to prepare the other types of metal oxides as ultrathin 2D nanosheets remains unsolved, especially for metal oxides containing alkali, alkaline earth metal, and multiple metal elements. Herein, we developed a half-successive ion layer adsorption and reaction (SILAR) method, which could synthesize those types of metal oxides as ultrathin 2D nanosheets. The synthesized 2D metal oxides nanosheets are within 1 nm level thickness and 500 m2 · g-1 level surface area. This method allows us to develop many new types of ultrathin 2D metal oxides nanosheets that have never been prepared before.

  2. An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic-inorganic hybrid perovskite solar cells.

    PubMed

    Seo, Seongrok; Park, Ik Jae; Kim, Myungjun; Lee, Seonhee; Bae, Changdeuck; Jung, Hyun Suk; Park, Nam-Gyu; Kim, Jin Young; Shin, Hyunjung

    2016-06-02

    NiO is a wide band gap p-type oxide semiconductor and has potential for applications in solar energy conversion as a hole-transporting layer (HTL). It also has good optical transparency and high chemical stability, and the capability of aligning the band edges to the perovskite (CH3NH3PbI3) layers. Ultra-thin and un-doped NiO films with much less absorption loss were prepared by atomic layer deposition (ALD) with highly precise control over thickness without any pinholes. Thin enough (5-7.5 nm in thickness) NiO films with the thickness of few time the Debye length (LD = 1-2 nm for NiO) show enough conductivities achieved by overlapping space charge regions. The inverted planar perovskite solar cells with NiO films as HTLs exhibited the highest energy conversion efficiency of 16.40% with high open circuit voltage (1.04 V) and fill factor (0.72) with negligible current-voltage hysteresis.

  3. Robust Polymer Films: Nanoscale Stiffening as a Route to Strong Materials

    DTIC Science & Technology

    2011-10-20

    Rheological Methods," Drexel University, Philadelphia, PA, March 4, 2011. S.Xu, "Geometry and molecular architecture effects in nanobubble inflation...2007. G.B. McKenna, "The viscoelastic properties of ultrathin polymer films as measured with a novel nanobubble inflation technique.” March Meeting of...mechanical response of ultrathin polymer films using the Texas Tech nanobubble inflation technique as the means to determine the viscoelastic

  4. Giant Ferroelectric Polarization in Ultrathin Ferroelectrics via Boundary-Condition Engineering.

    PubMed

    Xie, Lin; Li, Linze; Heikes, Colin A; Zhang, Yi; Hong, Zijian; Gao, Peng; Nelson, Christopher T; Xue, Fei; Kioupakis, Emmanouil; Chen, Longqing; Schlom, Darrel G; Wang, Peng; Pan, Xiaoqing

    2017-08-01

    Tailoring and enhancing the functional properties of materials at reduced dimension is critical for continuous advancement of modern electronic devices. Here, the discovery of local surface induced giant spontaneous polarization in ultrathin BiFeO 3 ferroelectric films is reported. Using aberration-corrected scanning transmission electron microscopy, it is found that the spontaneous polarization in a 2 nm-thick ultrathin BiFeO 3 film is abnormally increased up to ≈90-100 µC cm -2 in the out-of-plane direction and a peculiar rumpled nanodomain structure with very large variation in c/a ratios, which is analogous to morphotropic phase boundaries (MPBs), is formed. By a combination of density functional theory and phase-field calculations, it is shown that it is the unique single atomic Bi 2 O 3 - x layer at the surface that leads to the enhanced polarization and appearance of the MPB-like nanodomain structure. This finding clearly demonstrates a novel route to the enhanced functional properties in the material system with reduced dimension via engineering the surface boundary conditions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Free-standing graphene films prepared via foam film method for great capacitive flexible supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhu, Yucan; Ye, Xingke; Tang, Zhonghua; Wan, Zhongquan; Jia, Chunyang

    2017-11-01

    Recently, graphene films have always attracted attention due to their excellent characteristics in energy storage. In this work, a novel graphene oxide (GO) film with excellent mechanical properties, whose thickness was regulated simply via changing the concentration of the surfactant, was successfully prepared by foam film method. After chemical reduction, the reduced GO (rGO) films have excellent electrical conductivity of ∼172 S cm-1. Moreover, the supercapacitors based on the rGO films exhibit satisfied capacitive performance of ∼56 mF cm-2 at 0.2 mA cm-2 in 6 M KOH aqueous solution. Meanwhile, the flexible all solid state supercapacitors (FSSCs) based on the rGO films also show great volumetric capacitance of ∼2810 mF cm-3 at 12 mA cm-3 (∼1607 mF cm-3 at 613 mA cm-3) with polyvinyl alcohol-KOH gel electrolyte. Besides, after 10000 cycles and continuously bent to 180° for 300 times, the volumetric capacitance of the FSSC remains at 81.4% and 90.4% of its initial capacitance value, respectively. Therefore, the free-standing rGO films prepared via foam film method could be considered as promising electrode materials for high performance flexible supercapacitors.

  6. Seeds screening aqueous synthesis, multiphase interfacial separation and in situ optical characterization of invisible ultrathin silver nanowires.

    PubMed

    Zhang, Xiao-Yang; Xue, Xiao-Mei; Zhou, Huan-Li; Zhao, Ning; Shan, Feng; Su, Dan; Liu, Yi-Ran; Zhang, Tong

    2018-06-21

    We report a multi-step synthetic method to obtain ultrathin silver nanowires (Ag NWs) from an aqueous solution with a ∼17 nm diameter average, and where some of them decreased down to 9 nm. Carefully designed seed screening processes including LED irradiation at high temperature for a short time, and then continuous H2O2 etching, and relative growth mechanisms of high-yield five-twinned pentagonal seeds and ultrathin Ag NWs in aqueous environment are detailed. Then, a rapid and simple multiphase interfacial assembly method particularly suitable for the separation of ultrathin Ag NWs from various by-products was demonstrated with a clear mechanism explanation. Next, a unique optical interaction between light and individual AG NWs, as well as feature structures in the AG NWs film, was investigated by a micro-domain optical confocal microscope measurement in situ together with a theoretical explanation using modal transmission theory. That revealed that the haze problem of AG NWs films was not only arising from the interaction between light and individual or crossed Ag NWs but was also greatly dependent on a weak coupling effect of leaky modes supported by adjacent Ag NWs with large distances which had not been considered before. We then provided direct experimental evidence and concluded how to obtain haze-free films with 100% transparency in the whole visible range based on ultrathin Ag NWs. This breakthrough in diameter confinement and purification of Ag NWs is a highly expected step to overcome the well-focused light diffusion and absorption problems of Ag NWs-based devices applied in various fields such as flexible electronics, high-clarity displays, visible transparent heaters, photovoltaics and various optoelectronic technologies.

  7. Surface chemical reactivity of ultrathin Pd(111) films on Ru(0001): Importance of orbital symmetry in the application of the d-band model

    DOE PAGES

    Yin, Xiangshi; Cooper, Valentino R.; Weitering, Hanno H.; ...

    2015-09-22

    The chemical bonding of adsorbate molecules on transition-metal surfaces is strongly influenced by the hybridization between the molecular orbitals and the metal d-band. The strength of this interaction is often correlated with the location of the metal d-band center relative to the Fermi level. Here, we exploit finite size effects in the electronic structure of ultrathin Pd(111) films grown on Ru(0001) to tune their reactivity by changing the film thickness one atom layer at a time, while keeping all other variables unchanged. Interestingly, while bulk Pd(111) is reactive toward oxygen, Pd(111) films below five monolayers are surprisingly inert. This observationmore » is fully in line with the d-band model prediction when applied to the orbitals involved in the bonding. The shift of the d-band center with film thickness is primarily attributed to shifts in the partial density of states associated with the 4d xz and 4d yz orbitals. This study provides an in-depth look into the orbital specific contributions to the surface chemical reactivity, providing new insights that could be useful in surface catalysis.« less

  8. Thermal conductivity of ultrathin nano-crystalline diamond films determined by Raman thermography assisted by silicon nanowires

    NASA Astrophysics Data System (ADS)

    Anaya, Julian; Rossi, Stefano; Alomari, Mohammed; Kohn, Erhard; Tóth, Lajos; Pécz, Béla; Kuball, Martin

    2015-06-01

    The thermal transport in polycrystalline diamond films near its nucleation region is still not well understood. Here, a steady-state technique to determine the thermal transport within the nano-crystalline diamond present at their nucleation site has been demonstrated. Taking advantage of silicon nanowires as surface temperature nano-sensors, and using Raman Thermography, the in-plane and cross-plane components of the thermal conductivity of ultra-thin diamond layers and their thermal barrier to the Si substrate were determined. Both components of the thermal conductivity of the nano-crystalline diamond were found to be well below the values of polycrystalline bulk diamond, with a cross-plane thermal conductivity larger than the in-plane thermal conductivity. Also a depth dependence of the lateral thermal conductivity through the diamond layer was determined. The results impact the design and integration of diamond for thermal management of AlGaN/GaN high power transistors and also show the usefulness of the nanowires as accurate nano-thermometers.

  9. Fe-Al alloy single-crystal thin film preparation for basic magnetic measurements

    NASA Astrophysics Data System (ADS)

    Abe, Tatsuya; Kawai, Tetsuroh; Futamoto, Masaaki; Ohtake, Mitsuru; Inaba, Nobuyuki

    2018-04-01

    Fe100-xAlx (x = 0, 4, 10, 20, 30 at. %) alloy films of 40 nm thickness are prepared on MgO(001) single-crystal substrates by varying substrate temperature from room temperature to 600 °C. Single-crystal films of (001) orientation with bcc-based disordered A2 structure are obtained for the Al content range of x = 0 - 20 at. %. An ordered phase of DO3 structure is observed in Fe70Al30 films prepared at temperatures higher than 200 °C, whereas (001) oriented single-crystal films of A2 structure are obtained when prepared at room temperature. The film surface profile does not depend much on the film composition, while the surface roughness increases with increasing substrate temperature. Island-like crystals are observed for films prepared at 600°C for all compositions. Difference in lattice spacing measured parallel and perpendicular to the substrate is noted for the single-crystal thin films and it increases with increasing Al content. The lattice strain in single-crystal film is caused possibly to accommodate the lattice mismatch with the MgO substrate. The (001)-oriented single-crystal films with A2 structure show four-fold symmetries in in-plane magnetic anisotropy with the easy magnetization axis A2[100] and the hard magnetization axis A2[110], whereas the films with DO3 ordered structure show almost isotropic magnetic properties.

  10. Surface profiles and modulation of ultra-thin perfluoropolyether lubricant in contact sliding

    NASA Astrophysics Data System (ADS)

    Sinha, S. K.; Kawaguchi, M.; Kato, T.

    2004-08-01

    Deformation in shear and associated tribological behaviours of ultra-thin lubricants are of significant importance for the lubrication of magnetic hard disks and for other applications such as micro-electromechanical systems, nano-fluidics and nanotechnology. This paper presents the characteristics of the perfluoropolyether ultra-thin lubricant, in terms of its surface profiles when subjected to a contact sliding test. The results indicate that for a several-monolayers thick (~4.0-4.5 nm) lubricant film, sliding produces a considerable amount of surface roughness due to peaks of lubricant that persist during sliding; however, it can flow back or return to a smooth profile after a lapse of time when the sliding is stopped. For a monolayer-thin (~1.4-1.57 nm) film, the lubricant flow is restricted, and the rough profile created due to sliding persists and almost becomes permanent on the wear track. During sliding, due to high shear stress, a characteristic feature of lubricant profile modulation is observed. This modulation, or waviness, is due to the accumulation of lubricant in piles or islands, giving certain amplitudes and frequencies, which themselves depend upon the percentage of lubricant molecules that are chemically bonded to the substrate and the lubricant thickness. The results indicate that ultra-thin lubricants (monolayer and thicker) behave more like a semi-solid (having some sliding characteristics similar to those of rubbers) than a liquid when subjected to a high shear rate during contact sliding.

  11. Ultrathin Composite Polymeric Membranes for CO2 /N2 Separation with Minimum Thickness and High CO2 Permeance.

    PubMed

    Benito, Javier; Sánchez-Laínez, Javier; Zornoza, Beatriz; Martín, Santiago; Carta, Mariolino; Malpass-Evans, Richard; Téllez, Carlos; McKeown, Neil B; Coronas, Joaquín; Gascón, Ignacio

    2017-10-23

    The use of ultrathin films as selective layers in composite membranes offers significant advantages in gas separation for increasing productivity while reducing the membrane size and energy costs. In this contribution, composite membranes have been obtained by the successive deposition of approximately 1 nm thick monolayers of a polymer of intrinsic microporosity (PIM) on top of dense membranes of the ultra-permeable poly[1-(trimethylsilyl)-1-propyne] (PTMSP). The ultrathin PIM films (30 nm in thickness) demonstrate CO 2 permeance up to seven times higher than dense PIM membranes using only 0.04 % of the mass of PIM without a significant decrease in CO 2 /N 2 selectivity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Improved Stability and Performance of Visible Photoelectrochemical Water Splitting on Solution-Processed Organic Semiconductor Thin Films by Ultrathin Metal Oxide Passivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lei; Yan, Danhua; Shaffer, David W.

    Solution-processable organic semiconductors have potentials as visible photoelectrochemical (PEC) water splitting photoelectrodes due to their tunable small band gap and electronic energy levels, but they are typically limited by poor stability and photocatalytic activity. In this study, we demonstrate the direct visible PEC water oxidation on solution-processed organic semiconductor thin films with improved stability and performance by ultrathin metal oxide passivation layers. N-type fullerene-derivative thin films passivated by sub-2 nm ZnO via atomic layer deposition enabled the visible PEC water oxidation at wavelengths longer than 600 nm in harsh alkaline electrolyte environments with up to 30 μA/cm 2 photocurrents atmore » the thermodynamic water-oxidation equilibrium potential and the photoanode half-lifetime extended to ~1000 s. The systematic investigation reveals the enhanced water oxidation catalytic activity afforded by ZnO passivation and the charge tunneling governing the hole transfer through passivation layers. Further enhanced PEC performances were realized by improving the bottom ohmic contact to the organic semiconductor, achieving ~60 μA/cm 2 water oxidation photocurrent at the equilibrium potential, the highest values reported for organic semiconductor thin films to our knowledge. The improved stability and performance of passivated organic photoelectrodes and discovered design rationales provide useful guidelines for realizing the stable visible solar PEC water splitting based on organic semiconductor thin films.« less

  13. Improved Stability and Performance of Visible Photoelectrochemical Water Splitting on Solution-Processed Organic Semiconductor Thin Films by Ultrathin Metal Oxide Passivation

    DOE PAGES

    Wang, Lei; Yan, Danhua; Shaffer, David W.; ...

    2017-12-27

    Solution-processable organic semiconductors have potentials as visible photoelectrochemical (PEC) water splitting photoelectrodes due to their tunable small band gap and electronic energy levels, but they are typically limited by poor stability and photocatalytic activity. In this study, we demonstrate the direct visible PEC water oxidation on solution-processed organic semiconductor thin films with improved stability and performance by ultrathin metal oxide passivation layers. N-type fullerene-derivative thin films passivated by sub-2 nm ZnO via atomic layer deposition enabled the visible PEC water oxidation at wavelengths longer than 600 nm in harsh alkaline electrolyte environments with up to 30 μA/cm 2 photocurrents atmore » the thermodynamic water-oxidation equilibrium potential and the photoanode half-lifetime extended to ~1000 s. The systematic investigation reveals the enhanced water oxidation catalytic activity afforded by ZnO passivation and the charge tunneling governing the hole transfer through passivation layers. Further enhanced PEC performances were realized by improving the bottom ohmic contact to the organic semiconductor, achieving ~60 μA/cm 2 water oxidation photocurrent at the equilibrium potential, the highest values reported for organic semiconductor thin films to our knowledge. The improved stability and performance of passivated organic photoelectrodes and discovered design rationales provide useful guidelines for realizing the stable visible solar PEC water splitting based on organic semiconductor thin films.« less

  14. Interparticle coupling effect of silver-gold heterodimer to enhance light harvesting in ultrathin perovskite solar cell

    NASA Astrophysics Data System (ADS)

    Hu, Zhaosheng; Ma, Tingli; Hayase, Shuzi

    2018-01-01

    Thin perovskite solar cells are under intensive interest since they reduce the amount of absorber layer, especially toxic lead in methylammonium lead iodide (MAPbI3) devices and have wide application in semitransparent and tandem solar cells. However, due to the decrease of the layer thickness, thin perovskite devices with weak light-harvesting have poor performance. Moreover, the performance of plasmonic thin perovskite devices by incorporating noncoupling metal NPs cannot give comparable performance with normal devices. In this perspective, we discuss the implication of employing random silver-gold heterodimers in MAPbI3 solar cells with the aim of establishing some guidelines for the efficient ultrathin perovskite solar cells. This method induces an extraordinarily high light-harvesting for ultrathin perovskite film. And the underlying physical mechanism behind the enhanced absorption is deeply investigated by plasmon hybridization, dipolar-dipolar coupling method and FDTD simulation. We notice that perovskite embedded silver-gold heterodimer overcomes the vanished antibonding plasmon resononse (σ * ) in nonjunction area of gold/silver homodimer. A 150-nm perovskite film with embedded random silver-gold heterodimers with 80 nm size and 25 nm gap distance processes 28.15% absorption enhancement compared to the reference film, which is higher than the reported 10% for gold homodimers. And we also predict a realistic solution-processed, easy, and low-cost fabrication method, which provide a means to realize highly efficient ultrathin perovskite solar cell including other absorber-based photovoltaics.

  15. Ultrathin (<1 μm) Substrate-Free Flexible Photodetector on Quantum Dot-Nanocellulose Paper

    PubMed Central

    Wu, Jingda; Lin, Lih Y.

    2017-01-01

    Conventional approaches to flexible optoelectronic devices typically require depositing the active materials on external substrates. This is mostly due to the weak bonding between individual molecules or nanocrystals in the active materials, which prevents sustaining a freestanding thin film. Herein we demonstrate an ultrathin freestanding ZnO quantum dot (QD) active layer with nanocellulose structuring, and its corresponding device fabrication method to achieve substrate-free flexible optoelectronic devices. The ultrathin ZnO QD-nanocellulose composite is obtained by hydrogel transfer printing and solvent-exchange processes to overcome the water capillary force which is detrimental to achieving freestanding thin films. We achieved an active nanocellulose paper with ~550 nm thickness, and >91% transparency in the visible wavelength range. The film retains the photoconductive and photoluminescent properties of ZnO QDs and is applied towards substrate-free Schottky photodetector applications. The device has an overall thickness of ~670 nm, which is the thinnest freestanding optoelectronic device to date, to the best of our knowledge, and functions as a self-powered visible-blind ultraviolet photodetector. This platform can be readily applied to other nano materials as well as other optoelectronic device applications. PMID:28266651

  16. Preparation of pure chitosan film using ternary solvents and its super absorbency.

    PubMed

    Wang, Xuejun; Lou, Tao; Zhao, Wenhua; Song, Guojun

    2016-11-20

    Chemical modification and graft copolymerization were commonly adopted to prepare super absorbent materials. However, physical microstructure of pure chitosan film was optimized to improve the water uptake capacity in this study. Chitosan films with micro-nanostructure were prepared by a ternary solvent system. The optimal process parameters are 1% acetic acid water solution: dioxane: dimethyl sulfoxide=90: 2.5: 7.5 (v/v/v) with chitosan concentration at 1.25% (w/v). The water uptake capacity of the chitosan film prepared under the optimal process parameters was 896g/g. The prepared chitosan films also exhibited high water uptake capacity in response to external stimuli such as temperature, pH and salt. This finding may provide another way for improving the water absorbency. The pure chitosan film may find potential applications especially in the fields of hygienic products and biomedicine due to its super water absorbency and nontoxicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Anisotropic effective permittivity of an ultrathin gold coating on optical fiber in air, water and saline solutions.

    PubMed

    Zhou, Wenjun; Mandia, David J; Barry, Seán T; Albert, Jacques

    2014-12-29

    The optical properties of an ultrathin discontinuous gold film in different dielectric surroundings are investigated experimentally by measuring the polarization-dependent wavelength shifts and amplitudes of the cladding mode resonances of a tilted fiber Bragg grating. The gold film was prepared by electron-beam evaporation and had an average thickness of 5.5 nm ( ± 1 nm). Scanning electron imaging was used to determine that the film is actually formed of individual particles with average lateral dimensions of 28 nm ( ± 8 nm). The complex refractive indices of the equivalent uniform film in air at a wavelength of 1570 nm were calculated from the measurements to be 4.84-i0.74 and 3.97-i0.85 for TM and TE polarizations respectively (compared to the value for bulk gold: 0.54-i10.9). Additionally, changes in the birefringence and dichroism of the films were measured as a function of the surrounding medium, in air, water and a saturated NaCl (salt) solution. These results show that the film has stronger dielectric behavior for TM light than for TE, a trend that increases with increasing surrounding index. Finally, the experimental results are compared to predictions from two widely used effective medium approximations, the generalized Maxwell-Garnett and Bruggeman theories for gold particles in a surrounding matrix. It is found that both of these methods fail to predict the observed behavior for the film considered.

  18. Enhanced light absorption in an ultrathin silicon solar cell utilizing plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Xiao, Sanshui; Mortensen, Niels A.

    2012-10-01

    Nowadays, bringing photovoltaics to the market is mainly limited by high cost of electricity produced by the photovoltaic solar cell. Thin-film photovoltaics offers the potential for a significant cost reduction compared to traditional photovoltaics. However, the performance of thin-film solar cells is generally limited by poor light absorption. We propose an ultrathin-film silicon solar cell configuration based on SOI structure, where the light absorption is enhanced by use of plasmonic nanostructures. By placing a one-dimensional plasmonic nanograting on the bottom of the solar cell, the generated photocurrent for a 200 nm-thickness crystalline silicon solar cell can be enhanced by 90% in the considered wavelength range. These results are paving a promising way for the realization of high-efficiency thin-film solar cells.

  19. Vanadium dioxide film protected with an atomic-layer-deposited Al{sub 2}O{sub 3} thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiao; Cao, Yunzhen, E-mail: yzhcao@mail.sic.ac.cn; Yang, Chao

    2016-01-15

    A VO{sub 2} film exposed to ambient air is prone to oxidation, which will degrade its thermochromic properties. In this work, the authors deposited an ultrathin Al{sub 2}O{sub 3} film with atomic layer deposition (ALD) to protect the underlying VO{sub 2} film from degradation, and then studied the morphology and crystalline structure of the films. To assess the protectiveness of the Al{sub 2}O{sub 3} capping layer, the authors performed a heating test and a damp heating test. An ultrathin 5-nm-thick ALD Al{sub 2}O{sub 3} film was sufficient to protect the underlying VO{sub 2} film heated at 350 °C. However, in amore » humid environment at prolonged durations, a thicker ALD Al{sub 2}O{sub 3} film (15 nm) was required to protect the VO{sub 2}. The authors also deposited and studied a TiO{sub 2}/Al{sub 2}O{sub 3} bilayer, which significantly improved the protectiveness of the Al{sub 2}O{sub 3} film in a humid environment.« less

  20. Parameter Space of Atomic Layer Deposition of Ultrathin Oxides on Graphene

    PubMed Central

    2016-01-01

    Atomic layer deposition (ALD) of ultrathin aluminum oxide (AlOx) films was systematically studied on supported chemical vapor deposition (CVD) graphene. We show that by extending the precursor residence time, using either a multiple-pulse sequence or a soaking period, ultrathin continuous AlOx films can be achieved directly on graphene using standard H2O and trimethylaluminum (TMA) precursors even at a high deposition temperature of 200 °C, without the use of surfactants or other additional graphene surface modifications. To obtain conformal nucleation, a precursor residence time of >2s is needed, which is not prohibitively long but sufficient to account for the slow adsorption kinetics of the graphene surface. In contrast, a shorter residence time results in heterogeneous nucleation that is preferential to defect/selective sites on the graphene. These findings demonstrate that careful control of the ALD parameter space is imperative in governing the nucleation behavior of AlOx on CVD graphene. We consider our results to have model system character for rational two-dimensional (2D)/non-2D material process integration, relevant also to the interfacing and device integration of the many other emerging 2D materials. PMID:27723305

  1. Electrochromic TiO2 Thin Film Prepared by Dip-Coating Technique

    NASA Astrophysics Data System (ADS)

    Suriani, S.; Kamisah, M. M.

    2002-12-01

    Titanium dioxide (TiO2) thin films were prepared by using sol-gel dip coating technique. The coating solutions were prepared by reacting titanium isopropoxide as precursors and ethanol as solvent. The films were formed on transparent ITO-coated glass by a dip coating technique and final dried at various temperatures up to 600 °C for 30 minutes. The films were characterized with the UV-Vis-NIR Spectrometer, Scanning Electron Microscopy (SEM) and X-ray diffractometer (XRD). XRD results show that the films dried at 600 °C form anatase structure. From the spectroscopic studies, the sample shows electrochromic property.

  2. Universal depinning transition of domain walls in ultrathin ferromagnets

    NASA Astrophysics Data System (ADS)

    Diaz Pardo, R.; Savero Torres, W.; Kolton, A. B.; Bustingorry, S.; Jeudy, V.

    2017-05-01

    We present a quantitative and comparative study of magnetic-field-driven domain-wall depinning transition in different ferromagnetic ultrathin films over a wide range of temperature. We reveal a universal scaling function accounting for both drive and thermal effects on the depinning transition, including critical exponents. The consistent description we obtain for both the depinning and subthreshold thermally activated creep motion should shed light on the universal glassy dynamics of thermally fluctuating elastic objects pinned by disordered energy landscapes.

  3. Formation of ultrathin Ni germanides: solid-phase reaction, morphology and texture

    NASA Astrophysics Data System (ADS)

    van Stiphout, K.; Geenen, F. A.; De Schutter, B.; Santos, N. M.; Miranda, S. M. C.; Joly, V.; Detavernier, C.; Pereira, L. M. C.; Temst, K.; Vantomme, A.

    2017-11-01

    The solid-phase reaction of ultrathin (⩽10 nm) Ni films with different Ge substrates (single-crystalline (1 0 0), polycrystalline, and amorphous) was studied. As thickness goes down, thin film texture becomes a dominant factor in both the film’s phase formation and morphological evolution. As a consequence, certain metastable microstructures are epitaxially stabilized on crystalline substrates, such as the ɛ-Ni5Ge3 phase or a strained NiGe crystal structure on the single-crystalline substrates. Similarly, the destabilizing effect of axiotaxial texture on the film’s morphology becomes more pronounced as film thicknesses become smaller. These effects are contrasted by the evolution of germanide films on amorphous substrates, on which neither epitaxy nor axiotaxy can form, i.e. none of the (de)stabilizing effects of texture are observed. The crystallization of such amorphous substrates however, drives the film breakup.

  4. Sol-gel preparation of silica and titania thin films

    NASA Astrophysics Data System (ADS)

    Thoř, Tomáš; Václavík, Jan

    2016-11-01

    Thin films of silicon dioxide (SiO2) and titanium dioxide (TiO2) for application in precision optics prepared via the solgel route are being investigated in this paper. The sol-gel process presents a low cost approach, which is capable of tailoring thin films of various materials in optical grade quality. Both SiO2 and TiO2 are materials well known for their application in the field of anti-reflective and also highly reflective optical coatings. For precision optics purposes, thickness control and high quality of such coatings are of utmost importance. In this work, thin films were deposited on microscope glass slides substrates using the dip-coating technique from a solution based on alkoxide precursors of tetraethyl orthosilicate (TEOS) and titanium isopropoxide (TIP) for SiO2 and TiO2, respectively. As-deposited films were studied using spectroscopic ellipsometry to determine their thickness and refractive index. Using a semi-empirical equation, a relationship between the coating speed and the heat-treated film thickness was described for both SiO2 and TiO2 thin films. This allows us to control the final heat-treated thin film thickness by simply adjusting the coating speed. Furthermore, films' surface was studied using the white-light interferometry. As-prepared films exhibited low surface roughness with the area roughness parameter Sq being on average of 0.799 nm and 0.33 nm for SiO2 and TiO2, respectively.

  5. Commissioning a hobby cutting device for radiochromic film preparation.

    PubMed

    Zolfaghari, Somayeh; Francis, Kirby E; Kairn, Tanya; Crowe, Scott B

    2017-06-01

    In addition to a high spatial resolution and well characterised dose response, one of the major advantages of radiochromic film as a dosimeter is that sheets of film can be cut into pieces suitable for use as calibration films, and for in vivo and phantom measurements. The cutting of film is typically done using scissors or a guillotine, and this process can be time-consuming, limited in precision, requires extensive handling and does not allow holes to be cut from the film without cutting from an existing edge. This study investigated the use of a Brother ScanNCut hobby cutting system for EBT3 film preparation. The optimal operating parameters (blade size, pressure, speed) that resulted in precise cuts with minimal delamination at cut edges were identified using test cutting patterns. These parameters were then used to cut a large film insert for a stereotactic head phantom for comparison against an insert cut with scissors. While the hobby cutting system caused a wider region of delamination at the film edge (1.8 mm) compared to scissors (1 mm), the hobby cutting system was found to be able to produce reproducible cuts more efficiently and more accurately than scissors. The use of the hobby cutting system is recommended for complex phantom inserts (containing sharp corners or holes for alignment rods) or in situations where large numbers of film pieces need to be prepared.

  6. Formation and prevention of fractures in sol-gel-derived thin films.

    PubMed

    Kappert, Emiel J; Pavlenko, Denys; Malzbender, Jürgen; Nijmeijer, Arian; Benes, Nieck E; Tsai, Peichun Amy

    2015-02-07

    Sol-gel-derived thin films play an important role as the functional coatings for various applications that require crack-free films to fully function. However, the fast drying process of a standard sol-gel coating often induces mechanical stresses, which may fracture the thin films. An experimental study on the crack formation in sol-gel-derived silica and organosilica ultrathin (submicron) films is presented. The relationships among the crack density, inter-crack spacing, and film thickness were investigated by combining direct micrograph analysis with spectroscopic ellipsometry. It is found that silica thin films are more prone to fracturing than organosilica films and have a critical film thickness of 300 nm, above which the film fractures. In contrast, the organosilica films can be formed without cracks in the experimentally explored regime of film thickness up to at least 1250 nm. These results confirm that ultrathin organosilica coatings are a robust silica substitute for a wide range of applications.

  7. Controllable synthesis of ultrathin vanadium oxide nanobelts via an EDTA-mediated hydrothermal process

    NASA Astrophysics Data System (ADS)

    Yu-Xiang, Qin; Cheng, Liu; Wei-Wei, Xie; Meng-Yang, Cui

    2016-02-01

    Ultrathin VO2 nanobelts with rough alignment features are prepared on the induction layer-coated substrates by an ethylenediaminetetraacetic acid (EDTA)-mediated hydrothermal process. EDTA acts as a chelating reagent and capping agent to facilitate the one-dimensional (1D) preferential growth of ultrathin VO2 nanobelts with high crystallinities and good uniformities. The annealed induction layer and concentration of EDTA are found to play crucial roles in the formation of aligned and ultrathin nanobelts. Variation in EDTA concentration can change the VO2 morphology of ultrathin nanobelts into that of thick nanoplates. Mild annealing of ultrathin VO2 nanobelts at 350 °C in air results in the formation of V2O5 nanobelts with a nearly unchanged ultrathin structure. The nucleation and growth mechanism involved in the formations of nanobelts and nanoplates are proposed. The ethanol gas sensing properties of the V2O5 nanobelt networks-based sensor are investigated in a temperature range from 100 °C to 300 °C over ethanol concentrations ranging from 3 ppm to 500 ppm. The results indicate that the V2O5 nanobelt network sensor exhibits high sensitivity, good reversibility, and fast response-recovery characteristics with an optimal working temperature of 250 °C. Project supported by the National Natural Science Foundation of China (Grant Nos. 61274074, 61271070, and 61574100).

  8. Periodically pulsed wet annealing approach for low-temperature processable amorphous InGaZnO thin film transistors with high electrical performance and ultrathin thickness

    PubMed Central

    Kim, Ye Kyun; Ahn, Cheol Hyoun; Yun, Myeong Gu; Cho, Sung Woon; Kang, Won Jun; Cho, Hyung Koun

    2016-01-01

    In this paper, a simple and controllable “wet pulse annealing” technique for the fabrication of flexible amorphous InGaZnO thin film transistors (a-IGZO TFTs) processed at low temperature (150 °C) by using scalable vacuum deposition is proposed. This method entailed the quick injection of water vapor for 0.1 s and purge treatment in dry ambient in one cycle; the supply content of water vapor was simply controlled by the number of pulse repetitions. The electrical transport characteristics revealed a remarkable performance of the a-IGZO TFTs prepared at the maximum process temperature of 150 °C (field-effect mobility of 13.3 cm2 V−1 s−1; Ion/Ioff ratio ≈ 108; reduced I-V hysteresis), comparable to that of a-IGZO TFTs annealed at 350 °C in dry ambient. Upon analysis of the angle-resolved x-ray photoelectron spectroscopy, the good performance was attributed to the effective suppression of the formation of hydroxide and oxygen-related defects. Finally, by using the wet pulse annealing process, we fabricated, on a plastic substrate, an ultrathin flexible a-IGZO TFT with good electrical and bending performances. PMID:27198067

  9. X-Ray Spectroscopy of Ultra-Thin Oxide/Oxide Heteroepitaxial Films: A Case Study of Single-Nanometer VO2/TiO2

    PubMed Central

    Quackenbush, Nicholas F.; Paik, Hanjong; Woicik, Joseph C.; Arena, Dario A.; Schlom, Darrell G.; Piper, Louis F. J.

    2015-01-01

    Epitaxial ultra-thin oxide films can support large percent level strains well beyond their bulk counterparts, thereby enabling strain-engineering in oxides that can tailor various phenomena. At these reduced dimensions (typically < 10 nm), contributions from the substrate can dwarf the signal from the epilayer, making it difficult to distinguish the properties of the epilayer from the bulk. This is especially true for oxide on oxide systems. Here, we have employed a combination of hard X-ray photoelectron spectroscopy (HAXPES) and angular soft X-ray absorption spectroscopy (XAS) to study epitaxial VO2/TiO2 (100) films ranging from 7.5 to 1 nm. We observe a low-temperature (300 K) insulating phase with evidence of vanadium-vanadium (V-V) dimers and a high-temperature (400 K) metallic phase absent of V-V dimers irrespective of film thickness. Our results confirm that the metal insulator transition can exist at atomic dimensions and that biaxial strain can still be used to control the temperature of its transition when the interfaces are atomically sharp. More generally, our case study highlights the benefits of using non-destructive XAS and HAXPES to extract out information regarding the interfacial quality of the epilayers and spectroscopic signatures associated with exotic phenomena at these dimensions. PMID:28793516

  10. X-Ray Spectroscopy of Ultra-Thin Oxide/Oxide Heteroepitaxial Films: A Case Study of Single-Nanometer VO2/TiO2.

    PubMed

    Quackenbush, Nicholas F; Paik, Hanjong; Woicik, Joseph C; Arena, Dario A; Schlom, Darrell G; Piper, Louis F J

    2015-08-21

    Epitaxial ultra-thin oxide films can support large percent level strains well beyond their bulk counterparts, thereby enabling strain-engineering in oxides that can tailor various phenomena. At these reduced dimensions (typically < 10 nm), contributions from the substrate can dwarf the signal from the epilayer, making it difficult to distinguish the properties of the epilayer from the bulk. This is especially true for oxide on oxide systems. Here, we have employed a combination of hard X-ray photoelectron spectroscopy (HAXPES) and angular soft X-ray absorption spectroscopy (XAS) to study epitaxial VO2/TiO2 (100) films ranging from 7.5 to 1 nm. We observe a low-temperature (300 K) insulating phase with evidence of vanadium-vanadium (V-V) dimers and a high-temperature (400 K) metallic phase absent of V-V dimers irrespective of film thickness. Our results confirm that the metal insulator transition can exist at atomic dimensions and that biaxial strain can still be used to control the temperature of its transition when the interfaces are atomically sharp. More generally, our case study highlights the benefits of using non-destructive XAS and HAXPES to extract out information regarding the interfacial quality of the epilayers and spectroscopic signatures associated with exotic phenomena at these dimensions.

  11. X-ray Spectroscopy of Ultra-thin Oxide/oxide Heteroepitaxial Films: A Case Study of Single-nanometer VO2/TiO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quackenbush, Nicholas F.; Paik, Hanjong; Woicik, Joseph C.

    2015-08-21

    Epitaxial ultra-thin oxide films can support large percent level strains well beyond their bulk counterparts, thereby enabling strain-engineering in oxides that can tailor various phenomena. At these reduced dimensions (typically < 10 nm), contributions from the substrate can dwarf the signal from the epilayer, making it difficult to distinguish the properties of the epilayer from the bulk. This is especially true for oxide on oxide systems. Here, we have employed a combination of hard X-ray photoelectron spectroscopy (HAXPES) and angular soft X-ray absorption spectroscopy (XAS) to study epitaxial VO2/TiO2 (100) films ranging from 7.5 to 1 nm. We observe amore » low-temperature (300 K) insulating phase with evidence of vanadium-vanadium (V-V) dimers and a high-temperature (400 K) metallic phase absent of V-V dimers irrespective of film thickness. Results confirm that the metal insulator transition can exist at atomic dimensions and that biaxial strain can still be used to control the temperature of its transition when the interfaces are atomically sharp. Generally, our case study highlights the benefits of using non-destructive XAS and HAXPES to extract out information regarding the interfacial quality of the epilayers and spectroscopic signatures associated with exotic phenomena at these dimensions.« less

  12. Ultra-thin multilayer capacitors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renk, Timothy Jerome; Monson, Todd C.

    2009-06-01

    The fabrication of ultra-thin lanthanum-doped lead zirconium titanate (PLZT) multilayer ceramic capacitors (MLCCs) using a high-power pulsed ion beam was studied. The deposition experiments were conducted on the RHEPP-1 facility at Sandia National Laboratories. The goal of this work was to increase the energy density of ceramic capacitors through the formation of a multilayer device with excellent materials properties, dielectric constant, and standoff voltage. For successful device construction, there are a number of challenging requirements including achieving correct stoichiometric and crystallographic composition of the deposited PLZT, as well as the creation of a defect free homogenous film. This report detailsmore » some success in satisfying these requirements, although 900 C temperatures were necessary for PLZT perovskite phase formation. These temperatures were applied to a previously deposited multi-layer film which was then post-annealed to this temperature. The film exhibited mechanical distress attributable to differences in the coefficient of thermal expansion (CTE) of the various layers. This caused significant defects in the deposited films that led to shorts across devices. A follow-on single layer deposition without post-anneal produced smooth layers with good interface behavior, but without the perovskite phase formation. These issues will need to be addressed in order for ion beam deposited MLCCs to become a viable technology. It is possible that future in-situ heating during deposition may address both the CTE issue, and result in lowered processing temperatures, which in turn could raise the probability of successful MLCC formation.« less

  13. Spatially and momentum resolved energy electron loss spectra from an ultra-thin PrNiO{sub 3} layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinyanjui, M. K., E-mail: michael.kinyanjui@uni-ulm.de; Kaiser, U.; Benner, G.

    2015-05-18

    We present an experimental approach which allows for the acquisition of spectra from ultra-thin films at high spatial, momentum, and energy resolutions. Spatially and momentum (q) resolved electron energy loss spectra have been obtained from a 12 nm ultra-thin PrNiO{sub 3} layer using a nano-beam electron diffraction based approach which enabled the acquisition of momentum resolved spectra from individual, differently oriented nano-domains and at different positions of the PrNiO{sub 3} thin layer. The spatial and wavelength dependence of the spectral excitations are obtained and characterized after the analysis of the experimental spectra using calculated dielectric and energy loss functions. The presentedmore » approach makes a contribution towards obtaining momentum-resolved spectra from nanostructures, thin film, heterostructures, surfaces, and interfaces.« less

  14. Exchange bias and perpendicular anisotropy study of ultrathin Pt-Co-Pt-IrMn multilayers sputtered on float glass

    NASA Astrophysics Data System (ADS)

    Laval, M.; Lüders, U.; Bobo, J. F.

    2007-09-01

    We have prepared ultrathin Pt-Co-Pt-IrMn polycrystalline multilayers on float-glass substrates by DC magnetron sputtering. We have determined the optimal set of thickness for both Pt layers, the Co layer and the IrMn biasing layer so that these samples exhibit at the same time out-of-plane magnetic anisotropy and exchange bias. Kerr microscopy domain structure imaging evidences an increase of nucleation rate accompanied with inhomogeneous magnetic behavior in the case of exchange-biased films compared to Pt-Co-Pt trilayers. Polar hysteresis loops are measured in obliquely applied magnetic field conditions, allowing us to determine both perpendicular anisotropy effective constant Keff and exchange-bias coupling JE, which are significantly different from the ones determined by standard switching field measurements.

  15. Structure, magnetic ordering, and spin filtering efficiency of NiFe{sub 2}O{sub 4}(111) ultrathin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzen, S.; Moussy, J.-B., E-mail: jean-baptiste.moussy@cea.fr; Wei, P.

    2014-05-05

    NiFe{sub 2}O{sub 4}(111) ultrathin films (3–5 nm) have been grown by oxygen-assisted molecular beam epitaxy and integrated as effective spin-filter barriers. Structural and magnetic characterizations have been performed in order to investigate the presence of defects that could limit the spin filtering efficiency. These analyses have revealed the full strain relaxation of the layers with a cationic order in agreement with the inverse spinel structure but also the presence of antiphase boundaries. A spin-polarization up to +25% has been directly measured by the Meservey-Tedrow technique in Pt(111)/NiFe{sub 2}O{sub 4}(111)/γ-Al{sub 2}O{sub 3}(111)/Al tunnel junctions. The unexpected positive sign and relatively small valuemore » of the spin-polarization are discussed, in comparison with predictions and previous indirect tunnelling magnetoresistance measurements.« less

  16. Antiferromagnetic exchange and magnetoresistance enhancement in ultrathin Co-Re sandwiches

    NASA Astrophysics Data System (ADS)

    Freitas, P. P.; Melo, L. V.; Trindade, I.; From, M.

    1992-10-01

    Co-Re ultrathin sandwiches were prepared that show antiferromagnetic coupling and enhanced saturation magnetoresistance for Re spacer thicknesses below 9 Å. A field of 2.5 kOe is needed to saturate the antiferromagnetically coupled Co layers. These results are similar to those found in Co-Re superlattices.

  17. Magnetic properties of ultrathin tetragonal Heusler D022-Mn3Ge perpendicular-magnetized films

    NASA Astrophysics Data System (ADS)

    Sugihara, A.; Suzuki, K. Z.; Miyazaki, T.; Mizukami, S.

    2015-05-01

    We investigated the crystal structure and magnetic properties of Manganese-germanium (Mn3Ge) films having the tetragonal D022 structure, with varied thicknesses (5-130 nm) prepared on chromium (Cr)-buffered single crystal MgO(001) substrates. A crystal lattice elongation in the in-plane direction, induced by the lattice mismatch between the D022-Mn3Ge and the Cr buffer layer, increased with decreasing thickness of the D022-Mn3Ge layer. The films exhibited clear magnetic hysteresis loops with a squareness ratio close to unity, and a step-like magnetization reversal even at a 5-nm thickness under an external field perpendicular to the film's plane. The uniaxial magnetic anisotropy constant of the films showed a reduction to less than 10 Merg/cm3 in the small thickness range (≤20 nm), likely due to the crystal lattice elongation in the in-plane direction.

  18. Anatase TiO2 ultrathin nanobelts derived from room-temperature-synthesized titanates for fast and safe lithium storage

    PubMed Central

    Wen, Wei; Wu, Jin-ming; Jiang, Yin-zhu; Yu, Sheng-lan; Bai, Jun-qiang; Cao, Min-hua; Cui, Jie

    2015-01-01

    Lithium-ion batteries (LIBs) are promising energy storage devices for portable electronics, electric vehicles, and power-grid applications. It is highly desirable yet challenging to develop a simple and scalable method for constructions of sustainable materials for fast and safe LIBs. Herein, we exploit a novel and scalable route to synthesize ultrathin nanobelts of anatase TiO2, which is resource abundant and is eligible for safe anodes in LIBs. The achieved ultrathin nanobelts demonstrate outstanding performances for lithium storage because of the unique nanoarchitecture and appropriate composition. Unlike conventional alkali-hydrothermal approaches to hydrogen titanates, the present room temperature alkaline-free wet chemistry strategy guarantees the ultrathin thickness for the resultant titanate nanobelts. The anatase TiO2 ultrathin nanobelts were achieved simply by a subsequent calcination in air. The synthesis route is convenient for metal decoration and also for fabricating thin films of one/three dimensional arrays on various substrates at low temperatures, in absence of any seed layers. PMID:26133276

  19. Growth and characterization of few unit-cell NbN superconducting films on 3C-SiC/Si substrate

    NASA Astrophysics Data System (ADS)

    Chang, H. W.; Wang, C. L.; Huang, Y. R.; Chen, T. J.; Wang, M. J.

    2017-11-01

    Superconducting δ-NbN ultrathin film has become a key element in extremely sensitive detector applications in recent decades because of its excellent electronic properties. We have realized the epitaxial growth of ultrathin δ-NbN films on (100)-oriented 3C-SiC/Si substrates by dc reactive magnetron sputtering at 760 °C with a deposition rate of 0.054 nm s-1. High-resolution transmission electron microscope images confirm the excellent epitaxy of these films. Even with a thickness of 1.3 nm (˜3 unit cells), the δ-NbN film shows a superconducting transition above 8 K. Furthermore, our ultrathin δ-NbN films demonstrate a long Ginzburg-Landau superconducting coherent length ({ξ }{{G}{{L}}}(0)> 5 {{nm}}) with a critical current density of about 2.2 MA cm-2, and good stability in an ambient environment.

  20. Polymer Based Thin Film Screen Preparation Technique

    NASA Astrophysics Data System (ADS)

    Valais, I.; Michail, C.; Fountzoula, C.; Fountos, G.; Saatsakis, G.; Karabotsos, A.; Panayiotakis, G. S.; Kandarakis, I.

    2017-11-01

    Phosphor screens, mainly prepared by electrophoresis, demonstrate brightness equal to the standard sedimentation on glass or quartz substrate process and are capable of very high resolution. Nevertheless, they are very fragile, the shape of the screen is limited to the substrate shape and in order to achieve adequate surface density for application in medical imaging, a significant quantity of the phosphor will be lost. Fluorescent films prepared by the dispersion of phosphor particles into a polymer matrix could solve the above disadvantages. The aim of this study is to enhance the stability of phosphor screens via the incorporation of phosphor particles into a PMMA (PolyMethyl MethAcrylate) matrix. PMMA is widely used as a plastic optical fiber, it shows almost nearly no dispersion effects and it is transparent in the whole visible spectral range. Different concentrations of PMMA in MMA (Methyl Methacrylate) were examined and a 37.5 % w/w solution was used for the preparation of the thin polymer film, since optical quality characteristics were found to depend on PMMA in MMA concentration. Scanning Electron Microscopy (SEM) images of the polymer screens demonstrated high packing density and uniform distribution of the phosphor particles. This method could be potentially used for phosphor screen preparation of any size and shape.

  1. Layered structure and related magnetic properties for annealed Fe/Ir(111) ultrathin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Pei-Cheng; Chen, Wei-Hsiang; Hsieh, Chen-Yuan

    2015-05-07

    After annealing treatments for fcc-Fe/Ir(111) below 600 K, the surface layers remain pseudomorphic. The Ir(111) substrate plays an important role on the expanded Fe lattice. At temperatures between 750 and 800 K, the surface composition shows a stable state and a c(2 × 4) structure is observed. We discover a layered structure composed of some Fe atoms on the top of a Fe{sub 0.5}Ir{sub 0.5} interfacial alloy supported on the Ir(111) substrate. The competition between the negative formation heat of Fe{sub 0.5}Ir{sub 0.5} and surface free energy of Fe causes the formation of layered structure. The existence of ferromagnetic dead layer coincides with themore » formation of fcc-Fe for ultrathin Fe on Fe{sub 0.5}Ir{sub 0.5}/Ir(111). For Fe films thicker than three monolayers, the linear increase of the Kerr intensity versus the Fe coverage is related to the growing of bcc-Fe on the surface where the Fe layer is incoherent to the underlying Fe{sub 0.5}Ir{sub 0.5}/Ir(111). These results emphasize the importance of the substrate induced strain and layered structure of Fe/Fe{sub 0.5}Ir{sub 0.5}/Ir(111) on the magnetic properties and provide valuable information for future applications.« less

  2. Fatigue resistance of ultrathin CAD/CAM complete crowns with a simplified cementation process.

    PubMed

    Magne, Pascal; Carvalho, Adriana O; Bruzi, Greciana; Giannini, Marcelo

    2015-10-01

    Traditional tooth preparation for complete crowns requires a substantial amount of hard tissue reduction. This is in contrast with the principles of minimally invasive dentistry. An ultrathin complete crown preparation is proposed instead. The purpose of this in vitro study was to assess the fatigue resistance and failure mode of computer-aided design and computer-aided manufacturing (CAD/CAM) ultrathin complete molar crowns placed with self-adhesive cement. Different restorative materials (resin nanoceramic [RNC], feldspathic ceramic [FEL], and lithium disilicate [LD]) were compared. Forty-five extracted molars with a standardized crown preparation were restored with the Cerec 3 CAD/CAM system using FEL, LD, or RNC (n=15). FEL and LD restorations were etched with hydrofluoric acid and silanated. RNC restorations and all preparations were treated with airborne-particle abrasion. All restorations (thickness=0.7 mm) were cemented with RelyX Unicem II Automix cement and submitted to cyclic isometric loading, beginning with a load of 200 N (5000 cycles) and followed by stages of 400, 600, 800, 1000, 1200, and 1400 N at a maximum of 30 000 cycles each. The specimens were loaded until failure or for a maximum of 185 000 cycles. The failure mode was categorized as "catastrophic," "possibly reparable," or "reparable." The groups were compared using life table survival analysis (log rank test at α=.05). Previously published data from the same authors about traditional complete crowns (thickness 1.5 mm) using the same experimental design were included for comparison. All specimens survived the fatigue test until the 600 N step. RNC, LD, and FEL failed at an average load of 1014 N (1 survival), 1123 N (2 survivals), and 987 N (no survivals), and no difference in survival rate was found. No catastrophic failures were reported after the fatigue test. Comparison with previously published data showed that 1.5-mm thick complete crowns demonstrated higher survival rates than

  3. Palladium-directed self-assembly of multi-titanium(IV)-porphyrin arrays on the substrate surface as sensitive ultrathin films for hydrogen peroxide sensing, photocurrent generation, and photochromism of viologen

    NASA Astrophysics Data System (ADS)

    He, Wen-Li; Fang, Fang; Ma, Dong-Mei; Chen, Meng; Qian, Dong-Jin; Liu, Minghua

    2018-01-01

    Multiporphyrin arrays are large, π-conjugated chromophores with high absorption efficiency and strong chemical stability that play an important role in supramolecular and advanced material sciences. Palladium-directed self-assembly of multiporphyrin array ultrathin films was achieved on substrate surfaces using oxo[5,10,15,20-tetra(4-pyridyl)porphyrinato]titanium (IV) complex [TiO(TPyP)] as a linker and sodium tetrachloropalladate (Na2PdCl4) as a connector. The Pd-TiOTPyP films as prepared were characterized by using UV-vis absorption and X-ray photoelectron spectroscopy, as well as by atomic force and scanning electron microscopy. The Soret absorption band of TiOTPyP was observed to red shift by 6 nm when the Pd-TiOTPyP multilayer-modified quartz substrate was immersed in an aqueous solution containing hydrogen peroxide. This was attributed to the formation of a TiO2TPyP monoperoxo complex. This oxidation reaction could be accelerated in an acidic solution. Furthermore, the immobilized Pd-TiOTPyP multilayers could act as light-harvesting units for photocurrent generation and photochromism of viologens, with strong stability, reproducibility, and recyclability. The photocurrent density could be enhanced in electrolyte solutions containing electron donors such as triethanolamine, or electron acceptors such as viologens. Finally, photoinduced reduction (photochromism) of viologens was investigated using the Pd-TiOTPyP multilayers as light sensitizers and EDTA as the electron donors.

  4. Compact low temperature scanning tunneling microscope with in-situ sample preparation capability.

    PubMed

    Kim, Jungdae; Nam, Hyoungdo; Qin, Shengyong; Kim, Sang-ui; Schroeder, Allan; Eom, Daejin; Shih, Chih-Kang

    2015-09-01

    We report on the design of a compact low temperature scanning tunneling microscope (STM) having in-situ sample preparation capability. The in-situ sample preparation chamber was designed to be compact allowing quick transfer of samples to the STM stage, which is ideal for preparing temperature sensitive samples such as ultra-thin metal films on semiconductor substrates. Conventional spring suspensions on the STM head often cause mechanical issues. To address this problem, we developed a simple vibration damper consisting of welded metal bellows and rubber pads. In addition, we developed a novel technique to ensure an ultra-high-vacuum (UHV) seal between the copper and stainless steel, which provides excellent reliability for cryostats operating in UHV. The performance of the STM was tested from 2 K to 77 K by using epitaxial thin Pb films on Si. Very high mechanical stability was achieved with clear atomic resolution even when using cryostats operating at 77 K. At 2 K, a clean superconducting gap was observed, and the spectrum was easily fit using the BCS density of states with negligible broadening.

  5. Epitaxial ternary nitride thin films prepared by a chemical solution method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Hongmei; Feldmann, David M; Wang, Haiyan

    2008-01-01

    It is indispensable to use thin films for many technological applications. This is the first report of epitaxial growth of ternary nitride AMN2 films. Epitaxial tetragonal SrTiN2 films have been successfully prepared by a chemical solution approach, polymer-assisted deposition. The structural, electrical, and optical properties of the films are also investigated.

  6. Ultrathin inorganic molecular nanowire based on polyoxometalates

    PubMed Central

    Zhang, Zhenxin; Murayama, Toru; Sadakane, Masahiro; Ariga, Hiroko; Yasuda, Nobuhiro; Sakaguchi, Norihito; Asakura, Kiyotaka; Ueda, Wataru

    2015-01-01

    The development of metal oxide-based molecular wires is important for fundamental research and potential practical applications. However, examples of these materials are rare. Here we report an all-inorganic transition metal oxide molecular wire prepared by disassembly of larger crystals. The wires are comprised of molybdenum(VI) with either tellurium(IV) or selenium(IV): {(NH4)2[XMo6O21]}n (X=tellurium(IV) or selenium(IV)). The ultrathin molecular nanowires with widths of 1.2 nm grow to micrometre-scale crystals and are characterized by single-crystal X-ray analysis, Rietveld analysis, scanning electron microscopy, X-ray photoelectron spectroscopy, ultraviolet–visible spectroscopy, thermal analysis and elemental analysis. The crystals can be disassembled into individual molecular wires through cation exchange and subsequent ultrasound treatment, as visualized by atomic force microscopy and transmission electron microscopy. The ultrathin molecular wire-based material exhibits high activity as an acid catalyst, and the band gap of the molecular wire-based crystal is tunable by heat treatment. PMID:26139011

  7. Preparation of Electrically Conductive Polystyrene/Carbon Nanofiber Nanocomposite Films

    ERIC Educational Resources Information Center

    Sun, Luyi; O'Reilly, Jonathan Y.; Tien, Chi-Wei; Sue, Hung-Jue

    2008-01-01

    A simple and effective approach to prepare conductive polystyrene/carbon nanofiber (PS/CNF) nanocomposite films via a solution dispersion method is presented. Inexpensive CNF, which has a structure similar to multi-walled carbon nanotubes, is chosen as a nanofiller in this experiment to achieve conductivity in PS films. A good dispersion is…

  8. Few-layered CoHPO4.3H2O ultrathin nanosheets for high performance of electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Pang, Huan; Wang, Shaomei; Shao, Weifang; Zhao, Shanshan; Yan, Bo; Li, Xinran; Li, Sujuan; Chen, Jing; Du, Weimin

    2013-06-01

    Ultrathin cobalt phosphate (CoHPO4.3H2O) nanosheets are successfully synthesized by a one pot hydrothermal method. Novel CoHPO4.3H2O ultrathin nanosheets are assembled for constructing the electrodes of supercapacitors. Benefiting from the nanostructures, the as-prepared electrode shows a specific capacitance of 413 F g-1, and no obvious decay even after 3000 charge-discharge cycles. Such a quasi-two-dimensional material is a new kind of supercapacitor electrode material with high performance.Ultrathin cobalt phosphate (CoHPO4.3H2O) nanosheets are successfully synthesized by a one pot hydrothermal method. Novel CoHPO4.3H2O ultrathin nanosheets are assembled for constructing the electrodes of supercapacitors. Benefiting from the nanostructures, the as-prepared electrode shows a specific capacitance of 413 F g-1, and no obvious decay even after 3000 charge-discharge cycles. Such a quasi-two-dimensional material is a new kind of supercapacitor electrode material with high performance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01460f

  9. Appearance and disappearance of ferromagnetism in ultrathin LaMnO3 on SrTiO3 substrate: A viewpoint from first principles

    NASA Astrophysics Data System (ADS)

    An, Ming; Weng, Yakui; Zhang, Huimin; Zhang, Jun-Jie; Zhang, Yang; Dong, Shuai

    2017-12-01

    The intrinsic magnetic state (ferromagnetic or antiferromagnetic) of ultrathin LaMnO3 films on the most commonly used SrTiO3 substrate is a long-existing question under debate. Either strain effect or nonstoichiometry was argued to be responsible for the experimental ferromagnetism. In a recent experiment [X. R. Wang, C. J. Li, W. M. Lü, T. R. Paudel, D. P. Leusink, M. Hoek, N. Poccia, A. Vailionis, T. Venkatesan, J. M. D. Coey, E. Y. Tsymbal, Ariando, and H. Hilgenkamp, Science 349, 716 (2015), 10.1126/science.aaa5198], one more mechanism, namely, the self-doping due to polar discontinuity, was argued to be the driving force of ferromagnetism beyond the critical thickness. Here systematic first-principles calculations have been performed to check these mechanisms in ultrathin LaMnO3 films as well as superlattices. Starting from the very precise descriptions of both LaMnO3 and SrTiO3, it is found that the compressive strain is the dominant force for the appearance of ferromagnetism, while the open surface with oxygen vacancies leads to the suppression of ferromagnetism. Within LaMnO3 layers, the charge reconstructions involve many competitive factors and certainly go beyond the intuitive polar catastrophe model established for LaAlO3/SrTiO3 heterostructures. Our paper not only explains the long-term puzzle regarding the magnetism of ultrathin LaMnO3 films but also sheds light on how to overcome the notorious magnetic dead layer in ultrathin manganites.

  10. Intrinsic stress evolution during amorphous oxide film growth on Al surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flötotto, D., E-mail: d.floetotto@is.mpg.de; Wang, Z. M.; Jeurgens, L. P. H.

    2014-03-03

    The intrinsic stress evolution during formation of ultrathin amorphous oxide films on Al(111) and Al(100) surfaces by thermal oxidation at room temperature was investigated in real-time by in-situ substrate curvature measurements and detailed atomic-scale microstructural analyses. During thickening of the oxide a considerable amount of growth stresses is generated in, remarkably even amorphous, ultrathin Al{sub 2}O{sub 3} films. The surface orientation-dependent stress evolutions during O adsorption on the bare Al surfaces and during subsequent oxide-film growth can be interpreted as a result of (i) adsorption-induced surface stress changes and (ii) competing processes of free volume generation and structural relaxation, respectively.

  11. Interplay between quantum confinement and surface effects in thickness selective stability of thin Ag and Eu films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaojie; Wang, Cai -Zhuang

    Using first-principles calculations, we show that both face-centered cubic (fcc) Ag (1 1 0) ultrathin films and body-centered cubic (bcc) Eu(1 1 0) ultrathin films exhibit thickness selective stability. Furthermore, the origin of such thickness selection is different. While the thickness selective stability in fcc Ag(1 1 0) films is mainly due to the well-known quantum well states ascribed to the quantum confinement effects in free-electron-like metal films, the thickness selection in bcc Eu(1 1 0) films is more complex and also strongly correlated with the occupation of the surface and surface resonance states.

  12. Interplay between quantum confinement and surface effects in thickness selective stability of thin Ag and Eu films

    DOE PAGES

    Liu, Xiaojie; Wang, Cai -Zhuang

    2017-04-03

    Using first-principles calculations, we show that both face-centered cubic (fcc) Ag (1 1 0) ultrathin films and body-centered cubic (bcc) Eu(1 1 0) ultrathin films exhibit thickness selective stability. Furthermore, the origin of such thickness selection is different. While the thickness selective stability in fcc Ag(1 1 0) films is mainly due to the well-known quantum well states ascribed to the quantum confinement effects in free-electron-like metal films, the thickness selection in bcc Eu(1 1 0) films is more complex and also strongly correlated with the occupation of the surface and surface resonance states.

  13. The effects of ultra-thin cerium fluoride film as the anode buffer layer on the electrical characteristics of organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Lu, Hsin-Wei; Tsai, Cheng-Che; Hong, Cheng-Shong; Kao, Po-Ching; Juang, Yung-Der; Chu, Sheng-Yuan

    2016-11-01

    In this study, the efficiency of organic light-emitting diodes (OLEDs) was enhanced by depositing a CeF3film as an ultra-thin buffer layer between the indium tin oxide (ITO) electrode and α-naphthylphenylbiphenyldiamine (NPB) hole transport layer, with the structure configuration ITO/CeF3 (0.5, 1, and 1.5 nm)/α-naphthylphenylbiphenyl diamine (NPB) (40 nm)/tris(8-hydroxyquinoline) aluminum (Alq3) (60 nm)/lithium fluoride (LiF) (1 nm)/Al (150 nm). The enhancement mechanism was systematically investigated via several approaches. The X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy results revealed the formation of the UV-ozone treated CeF3 film. The work function increased from 4.8 eV (standard ITO electrode) to 5.22 eV (0.5-nm-thick UV-ozone treated CeF3 film deposited on the ITO electrode). The surface roughness of the UV-ozone treated CeF3 film was smoother than that of the standard ITO electrode. Further, the UV-ozone treated CeF3 film increased both the surface energy and polarity, as determined from contact angle measurements. In addition, admittance spectroscopy measurements showed an increased capacitance and conductance of the OLEDs. Accordingly, the turn-on voltage decreased from 4.2 V to 3.6 V at 1 mA/cm2, the luminance increased from 7588 cd/m2 to 24760 cd/m2, and the current efficiency increased from 3.2 cd/A to 3.8 cd/A when the 0.5-nm-thick UV-ozone treated CeF3 film was inserted into the OLEDs.

  14. Preparation methodologies and nano/microstructural evaluation of metal/semiconductor thin films.

    PubMed

    Chen, Zhiwen; Jiao, Zheng; Wu, Minghong; Shek, Chan-Hung; Wu, C M Lawrence; Lai, Joseph K L

    2012-01-01

    Metal/semiconductor thin films are a class of unique materials that are widespread technological applications, particularly in the field of microelectronic devices. Assessment strategies of fractal and tures are of fundamental importance in the development of nano/microdevices. This review presents the preparation methodologies and nano/microstructural evaluation of metal/semiconductor thin films including Au/Ge bilayer films and Pd-Ge alloy thin films, which show in the form of fractals and nanocrystals. Firstly, the extended version of Au/Ge thin films for the fractal crystallization of amorphous Ge and the formation of nanocrystals developed with improved micro- and nanostructured features are described in Section 2. Secondly, the nano/microstructural characteristics of Pd/Ge alloy thin films during annealing have been investigated in detail and described in Section 3. Finally, we will draw the conclusions from the present work as shown in Section 4. It is expected that the preparation methodologies developed and the knowledge of nano/microstructural evolution gained in metal/semiconductor thin films, including Au/Ge bilayer films and Pd-Ge alloy thin films, will provide an important fundamental basis underpinning further interdisciplinary research in these fields such as physics, chemistry, materials science, and nanoscience and nanotechnology, leading to promising exciting opportunities for future technological applications involving these thin films.

  15. Room-temperature processed tin oxide thin film as effective hole blocking layer for planar perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Tao, Hong; Ma, Zhibin; Yang, Guang; Wang, Haoning; Long, Hao; Zhao, Hongyang; Qin, Pingli; Fang, Guojia

    2018-03-01

    Tin oxide (SnO2) film with high mobility and good transmittance has been reported as a promising semiconductor material for high performance perovskite solar cells (PSCs). In this study, ultrathin SnO2 film synthesized by radio frequency magnetron sputtering (RFMS) method at room temperature was employed as hole blocking layer for planar PSCs. The room-temperature sputtered SnO2 film not only shows favourable energy band structure but also improves the surface topography of fluorine doped SnO2 (FTO) substrate and perovskite (CH3NH3PbI3) layer. Thus, this SnO2 hole blocking layer can efficiently promote electron transport and suppress carrier recombination. Furthermore, the best efficiency of 13.68% was obtained for planar PSC with SnO2 hole blocking layer prepared at room temperature. This research highlights the room-temperature preparation process of hole blocking layer in PSC and has a certain reference significance for the usage of flexible and low-cost substrates.

  16. Preparation and characterization of thick-film Ni/MH battery.

    PubMed

    Do, Jing-Shan; Yu, Sen-Hao; Cheng, Suh-Fen

    2004-07-30

    Using the porous polypropylene (PP) films sputtered with gold and the Ni as current collectors, the electroactive materials (Ni(OH)2 and metal hydride (MH)) of positive and negative electrodes were prepared on the current collector using thick-film technology. Two types of cell configurations were prepared and the characteristics of these batteries were compared. The cycle number for the formation of batteries based on the porous PP film was found to be 2, which was significantly less than that of batteries based on the ceramic substrates. Using the porous PP film as substrate, the number of cycles for the formation of battery increased from 2 to 5 with the increase of the charge/discharge rate from 0.1C/0.025C to 2.0C/0.5C. The silver oxides dendrites formed by the oxidation of silver paste used to adhere the current collectors and the conducting wires in the charge/discharge process caused a short contact between the positive and negative electrodes, which then caused the battery failure. The cycle life of the battery based on the porous PP film was found to be greater than 400 when the charge/discharge rate was 2.0C/0.5C.

  17. Probing the thermal decomposition behaviors of ultrathin HfO2 films by an in situ high temperature scanning tunneling microscope.

    PubMed

    Xue, Kun; Wang, Lei; An, Jin; Xu, Jianbin

    2011-05-13

    The thermal decomposition of ultrathin HfO(2) films (∼0.6-1.2 nm) on Si by ultrahigh vacuum annealing (25-800 °C) is investigated in situ in real time by scanning tunneling microscopy. Two distinct thickness-dependent decomposition behaviors are observed. When the HfO(2) thickness is ∼ 0.6 nm, no discernible morphological changes are found below ∼ 700 °C. Then an abrupt reaction occurs at 750 °C with crystalline hafnium silicide nanostructures formed instantaneously. However, when the thickness is about 1.2 nm, the decomposition proceeds gradually with the creation and growth of two-dimensional voids at 800 °C. The observed thickness-dependent behavior is closely related to the SiO desorption, which is believed to be the rate-limiting step of the decomposition process.

  18. Capillary levelling as a probe of rheology in polymer thin films

    NASA Astrophysics Data System (ADS)

    McGraw, Joshua D.; Jago, Nick M.; Dalnoki-Veress, Kari

    2011-03-01

    While measuring the rheology of bulk polymer systems is routine, when the size of a system becomes comparable to the molecular size, flow properties are poorly understood and hard to measure. Here, we present the results of experiments that are easily performed and can probe the rheological properties of polymer films that are mere tens of nanometres in thickness. We prepare glassy bilayer polymer films with height profiles well approximated by a step function. Upon annealing above the glass transition, broadening of the height profiles due to gradients in the Laplace pressure is observed. By validating the technique as a probe of the rheology with a range of molecular weights, we will show that this robust technique can be used to investigate the effects of confinement and interfaces on the rheology of ultrathin polymer films. Financial support from NSERC of Canada is gratefully acknowledged.

  19. Ultrathin gas permeable oxide membranes for chemical sensing: Nanoporous Ta 2O 5 test study

    DOE PAGES

    Imbault, Alexander; Wang, Yue; Kruse, Peter; ...

    2015-09-25

    Conductometric gas sensors made of gas permeable metal oxide ultrathin membranes can combine the functions of a selective filter, preconcentrator, and sensing element and thus can be particularly promising for the active sampling of diluted analytes. Here we report a case study of the electron transport and gas sensing properties of such a membrane made of nanoporous Ta 2O 5. These membranes demonstrated a noticeable chemical sensitivity toward ammonia, ethanol, and acetone at high temperatures above 400 °C. Furthermore, different from traditional thin films, such gas permeable, ultrathin gas sensing elements can be made suspended enabling advanced architectures of ultrasensitivemore » analytical systems operating at high temperatures and in harsh environments.« less

  20. Preparation of dilute magnetic semiconductor films by metalorganic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Nouhi, Akbar (Inventor); Stirn, Richard J. (Inventor)

    1990-01-01

    A method for preparation of a dilute magnetic semiconductor (DMS) film is provided, wherein a Group II metal source, a Group VI metal source and a transition metal magnetic ion source are pyrolyzed in the reactor of a metalorganic chemical vapor deposition (MOCVD) system by contact with a heated substrate. As an example, the preparation of films of Cd.sub.1-x Mn.sub.x Te, wherein 0.ltoreq..times..ltoreq.0.7, on suitable substrates (e.g., GaAs) is described. As a source of manganese, tricarbonyl (methylcyclopentadienyl) maganese (TCPMn) is employed. To prevent TCPMn condensation during the introduction thereof int the reactor, the gas lines, valves and reactor tubes are heated. A thin-film solar cell of n-i-p structure, wherein the i-type layer comprises a DMS, is also described; the i-type layer is suitably prepared by MOCVD.

  1. Pathways from disordered to ordered nanostructures from defect guided dewetting of ultrathin bilayers.

    PubMed

    Hens, Abhiram; Mondal, Kartick; Biswas, Gautam; Bandyopadhyay, Dipankar

    2016-03-01

    Transitions from spinodal to pattern-guided dewetting of a bilayer of ultrathin films (<10nm) confined between a pair of patterned surfaces have been explored employing molecular dynamic (MD) simulations. The physical or chemical defects of different sizes and shapes are decorated on the confining substrates by either removal or addition of multiple layers of similar or dissimilar atoms. The simulations are performed to identify the transition from spinodal pathway to the heterogeneous nucleation route, with the variation in the size of the substrate patterns. The MD simulations reveal the limits beyond which the defects can guide the dewetting to generate ordered patterns of nanoscopic size and periodicity. Comparing the results obtained from the MD simulations with the more widely employed continuum dynamics approach highlights the importance of the MD approach in quantitatively analyzing the dynamics of the dewetting of ultrathin films. The study demonstrates that the pattern-guided dewetting of confined bilayers can lead to ordered holes, droplets, and stripes with size and periodicity less than 10nm, which are yet to be realized experimentally and can be of significance for a number of future applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Ultra-thin and -broadband microwave magnetic absorber enhanced by phase gradient metasurface incorporation

    NASA Astrophysics Data System (ADS)

    Fan, Ya; Wang, Jiafu; Li, Yongfeng; Pang, Yongqiang; Zheng, Lin; Xiang, Jiayu; Zhang, Jieqiu; Qu, Shaobo

    2018-05-01

    Based on the effect of anomalous reflection and refraction caused by the circularly cross-polarized phase gradient metasurface (PGM), an ultra-thin and -broadband composite absorber composed of metasurface and conventional magnetic absorbing film is proposed and demonstrated in this paper. In the case of keeping nearly the same thickness of absorbing layer, the equivalent thickness of magnetic absorbing film is enlarged by the effect of anomalous reflection and refraction, resulting in the expansion and improvement of the absorbing bandwidth and efficiency in low microwave frequency. A biarc metallic sub-cell for circularly crossed polarization is adopted to form a broadband phase gradient, by the means of rotating the Pancharatnam–Berry phases. As indicated in the experimental results, the fabricated 3.6 mm-thick absorber can averagely absorb microwave energy with the specular reflection below  ‑10 dB in the frequency interval of 2–12 GHz, which shows a good match with simulated results. Due to ultra-thin thickness and ultra-wide operating bandwidth, the proposed application of PGM in absorbing can provide an alternative way to enhance the absorbing property of current absorbing materials.

  3. Pd-Ni-MWCNT nanocomposite thin films: preparation and structure

    NASA Astrophysics Data System (ADS)

    Kozłowski, Mirosław; Czerwosz, ElŻbieta; Sobczak, Kamil

    2017-08-01

    The properties of nanocomposite palladium-nickel-multi-walled (Pd-Ni-MWCNT) films deposited on aluminum oxide (Al2O3) substrate have been prepared and investigated. These films were obtained by 3 step process consisted of PVD/CVD/PVD methods. The morphology and structure of the obtained films were characterized by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) techniques at various stages of the film formation. EDX spectrometer was used to measurements of elements segregation in the obtained film. TEM and STEM (Scanning Transmission Electron Microscopy) observations showed MWCNTs decorated with palladium nanoparticles in the film obtained in the last step of film formation (final PVD process). The average size of the palladium nanoparticles observed both on MWCNTs and carbonaceous matrix does not exceed 5 nm. The research was conducted on the use of the obtained films as potential sensors of gases (e.g. H2, NH3, CO2) and bio-sensors or optical sensors.

  4. Cellulose Nanofibers from Softwood, Hardwood, and Tunicate: Preparation-Structure-Film Performance Interrelation.

    PubMed

    Zhao, Yadong; Moser, Carl; Lindström, Mikael E; Henriksson, Gunnar; Li, Jiebing

    2017-04-19

    This work reveals the structural variations of cellulose nanofibers (CNF) prepared from different cellulose sources, including softwood (Picea abies), hardwood (Eucalyptus grandis × E. urophylla), and tunicate (Ciona intestinalis), using different preparation processes and their correlations to the formation and performance of the films prepared from the CNF. Here, the CNF are prepared from wood chemical pulps and tunicate isolated cellulose by an identical homogenization treatment subsequent to either an enzymatic hydrolysis or a 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO)-mediated oxidation. They show a large structural diversity in terms of chemical, morphological, and crystalline structure. Among others, the tunicate CNF consist of purer cellulose and have a degree of polymerization higher than that of wood CNF. Introduction of surface charges via the TEMPO-mediated oxidation is found to have significant impacts on the structure, morphology, optical, mechanical, thermal, and hydrophobic properties of the prepared films. For example, the film density is closely related to the charge density of the used CNF, and the tensile stress of the films is correlated to the crystallinity index of the CNF. In turn, the CNF structure is determined by the cellulose sources and the preparation processes. This study provides useful information and knowledge for understanding the importance of the raw material for the quality of CNF for various types of applications.

  5. Critical current enhancement driven by suppression of superconducting fluctuation in ion-gated ultrathin FeSe

    NASA Astrophysics Data System (ADS)

    Harada, T.; Shiogai, J.; Miyakawa, T.; Nojima, T.; Tsukazaki, A.

    2018-05-01

    The framework of phase transition, such as superconducting transition, occasionally depends on the dimensionality of materials. Superconductivity is often weakened in the experimental conditions of two-dimensional thin films due to the fragile superconducting state against defects and interfacial effects. In contrast to this general trend, superconductivity in the thin limit of FeSe exhibits an opposite trend, such as an increase in critical temperature (T c) and the superconducting gap exceeding the bulk values; however, the dominant mechanism is still under debate. Here, we measured thickness-dependent electrical transport properties of the ion-gated FeSe thin films to evaluate the superconducting critical current (I c) in the ultrathin FeSe. Upon systematically decreasing the FeSe thickness by the electrochemical etching technique in the Hall bar-shaped electric double-layer transistors, we observed a dramatic enhancement of I c reaching about 10 mA and corresponding to about 107 A cm‑2 in the thinnest condition. By analyzing the transition behavior, we clarify that the suppressed superconducting fluctuation is one of the origins of the large I c in the ion-gated ultrathin FeSe films. These results indicate the existence of a robust superconducting state possibly with dense Cooper pairs at the thin limit of FeSe.

  6. Magnetic properties and crystal texture of Co alloy thin films prepared on double bias Cr

    NASA Astrophysics Data System (ADS)

    Deng, Y.; Lambeth, D. N.; Lee, L.-L.; Laughlin, D. E.

    1993-05-01

    A double layer Cr film structure has been prepared by sputter depositing Cr on single crystal Si substrates first without substrate bias and then with various substrate bias voltages. Without substrate bias, Cr{200} texture grows on Si at room temperature; thus the first Cr layer acts like a seed Cr layer with the {200} texture, and the second Cr layer, prepared with substrate bias, tends to replicate the {200} texture epitaxially. CoCrTa and CoNiCr films prepared on these double Cr underlayers, therefore, tend to have a {112¯0} texture with their c-axes oriented in the plane of the film. At the same time, the bias sputtering of the second Cr layer increases the coercivity of the subsequently deposited magnetic films significantly. Comparison studies of δM curves show that the use of the double Cr underlayers reduces the intergranular exchange interactions. The films prepared on the Si substrates have been compared with the films prepared on canasite and glass substrates. It has also been found that the magnetic properties are similar for films on canasite and on glass.

  7. Ultrathin Polyaniline-based Buffer Layer for Highly Efficient Polymer Solar Cells with Wide Applicability

    PubMed Central

    Zhao, Wenchao; Ye, Long; Zhang, Shaoqing; Fan, Bin; Sun, Mingliang; Hou, Jianhui

    2014-01-01

    Interfacial buffer layers often attribute the improved device performance in organic optoelectronic device. Herein, a water-soluble hydrochloric acid doped polyanilines (HAPAN) were utilized as p-type electrode buffer layer in highly efficient polymer solar cells (PSC) based on PBDTTT-EFT and several representative polymers. The PBDTTT-EFT-based conventional PSC featuring ultrathin HAPAN (1.3 nm) delivered high PCE approximately 9%, which is one of the highest values among conventional PSC devices. Moreover, ultrathin HAPAN also exhibited wide applicability in a variety of efficient photovoltaic polymers including PBDTTT-C-T, PTB7, PBDTBDD, PBTTDPP-T, PDPP3T and P3HT. The excellent performances were originated from the high transparency, small film roughness and suitable work function. PMID:25300365

  8. The Ultrathin Limit and Dead-layer Effects in Local Polarization Switching of BiFeO3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maksymovych, Petro; Huijben, Mark; Pan, Minghu

    Using piezoresponse force microscopy in ultra-high vacuum, polarization switching has been detected and quantified in epitaxial BiFeO3 films from 200 down to ~ 4 unit cells. Local remnant piezoresponse was used to infer the applied electric field inside the ferroelectric volume, and account for the elusive effect of dead-layers in ultrathin films. The dead-layer manifested itself in the slower than anticipated decrease of the switching bias with film thickness, yielding apparent Kay-Dunn scaling of the switching field, while the statistical analysis of hysteresis loops revealed lateral variation of the dead-layer with sub-10 nm resolution.

  9. Films prepared from electrosterically stabilized nanocrystalline cellulose.

    PubMed

    Yang, Han; Tejado, Alvaro; Alam, Nur; Antal, Miro; van de Ven, Theo G M

    2012-05-22

    Electrosterically stabilized nanocrystalline cellulose (ENCC) was modified in three ways: (1) the hydroxyl groups on C2 and C3 of glucose repeat units of ENCC were converted to aldehyde groups by periodate oxidation to various extents; (2) the carboxyl groups in the sodium form on ENCC were converted to the acid form by treating them with an acid-type ion-exchange resin; and (3) ENCC was cross-linked in two different ways by employing adipic dihydrazide as a cross-linker and water-soluble 1-ethyl-3-[3-(dimethylaminopropyl)] carbodiimide as a carboxyl-activating agent. Films were prepared from these modified ENCC suspensions by vacuum filtration. The effects of these three modifications on the properties of films were investigated by a variety of techniques, including UV-visible spectroscopy, a tensile test, thermogravimetric analysis (TGA), the water vapor transmission rate (WVTR), and contact angle (CA) studies. On the basis of the results from UV spectra, the transmittance of these films was as high as 87%, which shows them to be highly transparent. The tensile strength of these films was increased with increasing aldehyde content. From TGA and WVTR experiments, cross-linked films showed much higher thermal stability and lower water permeability. Furthermore, although the original cellulose is hydrophilic, these films also exhibited a certain hydrophobic behavior. Films treated by trichloromethylsilane become superhydrophobic. The unique characteristics of these transparent films are very promising for potential applications in flexible packaging and other high-technology products.

  10. Preparation of Surlyn films reinforced with cellulose nanofibres and feasibility of applying the transparent composite films for organic photovoltaic encapsulation

    PubMed Central

    Lertngim, Anantaya; Phiriyawirut, Manisara; Yuwawech, Kitti; Sangkhun, Weradesh; Kumnorkaew, Pisist; Muangnapoh, Tanyakorn

    2017-01-01

    This research concerns the development of Surlyn film reinforced with micro-/nanofibrillated celluloses (MFC) for use as an encapsulant in organic photovoltaic (OPV) cells. The aim of this work was to investigate the effects of fibre types and the mixing methods on the structure–properties of the composite films. Three types of cellulose micro/nanofibrils were prepared: the as-received MFC, the dispersed MFC and the esterified MFC. The fibres were mixed with Surlyn via an extrusion process, using two different mixing methods. It was found that the extent of fibre disintegration and tensile modulus of the composite films prepared by the master-batching process was superior to that of the composite system prepared by the direct mixing method. Using the esterified MFC as a reinforcement, compatibility between polymer and the fibre increased, accompanied with the improvement of the percentage elongation of the Surlyn composite film. The percentage of light transmittance of the Surlyn/MFC films was above 88, regardless of the fibre types and fibre concentrations. The water vapour transmission rate of the Surlyn/esterified MFC film was 65% lower than that of the neat Surlyn film. This contributed to the longer lifetime of the OPV encapsulated with the Surlyn/esterified MFC film. PMID:29134083

  11. Preparation of Surlyn films reinforced with cellulose nanofibres and feasibility of applying the transparent composite films for organic photovoltaic encapsulation

    NASA Astrophysics Data System (ADS)

    Lertngim, Anantaya; Phiriyawirut, Manisara; Wootthikanokkhan, Jatuphorn; Yuwawech, Kitti; Sangkhun, Weradesh; Kumnorkaew, Pisist; Muangnapoh, Tanyakorn

    2017-10-01

    This research concerns the development of Surlyn film reinforced with micro-/nanofibrillated celluloses (MFC) for use as an encapsulant in organic photovoltaic (OPV) cells. The aim of this work was to investigate the effects of fibre types and the mixing methods on the structure-properties of the composite films. Three types of cellulose micro/nanofibrils were prepared: the as-received MFC, the dispersed MFC and the esterified MFC. The fibres were mixed with Surlyn via an extrusion process, using two different mixing methods. It was found that the extent of fibre disintegration and tensile modulus of the composite films prepared by the master-batching process was superior to that of the composite system prepared by the direct mixing method. Using the esterified MFC as a reinforcement, compatibility between polymer and the fibre increased, accompanied with the improvement of the percentage elongation of the Surlyn composite film. The percentage of light transmittance of the Surlyn/MFC films was above 88, regardless of the fibre types and fibre concentrations. The water vapour transmission rate of the Surlyn/esterified MFC film was 65% lower than that of the neat Surlyn film. This contributed to the longer lifetime of the OPV encapsulated with the Surlyn/esterified MFC film.

  12. NOL specular spin-valve heads using an ultrathin CoFe free layer

    NASA Astrophysics Data System (ADS)

    Fukuzawa, Hideaki; Koi, Katsuhiko; Tomita, Hiroshi; Fuke, Hiromi Niu; Kamiguchi, Yuzo; Iwasaki, Hitoshi; Sahashi, Masashi

    2001-10-01

    This paper reports the film and head performance of specular spin valves with nano-oxide layer (NOL-SPSV). A large MR ratio of 17% was obtained by using an ultrathin CoFe free layer with a high conductance Cu layer, which decreases the sense current field of a free layer and brings good soft magnetic characteristics. Prototype heads with a read track width of 0.47-0.61 μm were fabricated by using NOL-SPSV films with an MR ratio of 14-15%, Hua˜400 Oe, and Hc˜5 Oe. High output signal voltage of 8-11 mV/μm was realized in the NOL-SPSV heads.

  13. Nanocomposite film prepared by depositing xylan on cellulose nanowhiskers matrix

    Treesearch

    Qining Sun; Anurag Mandalika; Thomas Elder; Sandeep S. Nair; Xianzhi Meng; Fang Huang; Art J. Ragauskas

    2014-01-01

    Novel bionanocomposite films have been prepared by depositing xylan onto cellulose nanowhiskers through a pH adjustment. Analysis of strength properties, water vapour transmission, transparency, surface morphology and thermal decomposition showed the enhancement of film performance. This provides a new green route to the utilization of biomass for sustainable...

  14. The Effect of Film Thickness on the Gas Sensing Properties of Ultra-Thin TiO₂ Films Deposited by Atomic Layer Deposition.

    PubMed

    Wilson, Rachel L; Simion, Cristian Eugen; Blackman, Christopher S; Carmalt, Claire J; Stanoiu, Adelina; Di Maggio, Francesco; Covington, James A

    2018-03-01

    Analyte sensitivity for gas sensors based on semiconducting metal oxides should be highly dependent on the film thickness, particularly when that thickness is on the order of the Debye length. This thickness dependence has previously been demonstrated for SnO₂ and inferred for TiO₂. In this paper, TiO₂ thin films have been prepared by Atomic Layer Deposition (ALD) using titanium isopropoxide and water as precursors. The deposition process was performed on standard alumina gas sensor platforms and microscope slides (for analysis purposes), at a temperature of 200 °C. The TiO₂ films were exposed to different concentrations of CO, CH₄, NO₂, NH₃ and SO₂ to evaluate their gas sensitivities. These experiments showed that the TiO₂ film thickness played a dominant role within the conduction mechanism and the pattern of response for the electrical resistance towards CH₄ and NH₃ exposure indicated typical n -type semiconducting behavior. The effect of relative humidity on the gas sensitivity has also been demonstrated.

  15. Preparation of nonconducting infrared-absorbing thin films

    NASA Astrophysics Data System (ADS)

    Gradhand, Martin; Breitenstein, Otwin

    2005-05-01

    A simple procedure for preparing colloidal "black" bismuth films is introduced, which leaves the target cold and does not pollute the recipient. The Bi evaporation occurs in a closed box in the evaporation chamber with an internal radiation shield. The bismuth is evaporated from a tantalum boat at a residual air pressure of 2×102Pa. The resulting films with a thickness of about 10μm are structureless down to a spatial resolution of 5.6μm, they become electrically insulating after 48h storage time in air, and they show an IR absorbance of above 70% in the 3-5μm wavelength range. The films are easily removable in an ultrasonic water bath. Thus, these films are ideally appropriate to increase the IR emissivity of microelectronic structures in microthermal infrared failure analysis investigations such as lock-in thermography, as is demonstrated in an application example. The application of this film may improve the thermographic detection limit of heat sources below metallized areas by up to a factor of 10, leading to a saving in acquisition time by a factor of 100.

  16. One-step fabrication of large-area ultrathin MoS2 nanofilms with high catalytic activity for photovoltaic devices.

    PubMed

    Liang, Jia; Li, Jia; Zhu, Hongfei; Han, Yuxiang; Wang, Yanrong; Wang, Caixing; Jin, Zhong; Zhang, Gengmin; Liu, Jie

    2016-09-21

    Here we report a facile one-step solution-phase process to directly grow ultrathin MoS2 nanofilms on a transparent conductive glass as a novel high-performance counter electrode for dye-sensitized solar cells. After an appropriate reaction time, the entire surface of the conductive glass substrate was uniformly covered by ultrathin MoS2 nanofilms with a thickness of only several stacked layers. Electrochemical impedance spectroscopy and cyclic voltammetry reveal that the MoS2 nanofilms possess excellent catalytic activity towards tri-iodide reduction. When used in dye-sensitized solar cells, the MoS2 nanofilms show an impressive energy conversion efficiency of 8.3%, which is higher than that of a Pt-based electrode and very promising to be a desirable alternative counter electrode. Considering their ultrathin thickness, superior catalytic activity, simple preparation process and low cost, the as-prepared MoS2 nanofilms with high photovoltaic performance are expected to be widely employed in dye-sensitized solar cells.

  17. Supramolecular architectures of iron phthalocyanine Langmuir-Blodgett films: The role played by the solution solvents

    NASA Astrophysics Data System (ADS)

    Rubira, Rafael Jesus Gonçalves; Aoki, Pedro Henrique Benites; Constantino, Carlos José Leopoldo; Alessio, Priscila

    2017-09-01

    The developing of organic-based devices has been widely explored using ultrathin films as the transducer element, whose supramolecular architecture plays a central role in the device performance. Here, Langmuir and Langmuir-Blodgett (LB) ultrathin films were fabricated from iron phthalocyanine (FePc) solutions in chloroform (CHCl3), dichloromethane (CH2Cl2), dimethylformamide (DMF), and tetrahydrofuran (THF) to determine the influence of different solvents on the supramolecular architecture of the ultrathin films. The UV-vis absorption spectroscopy shows a strong dependence of the FePc aggregation on these solvents. As a consequence, the surface pressure vs. mean molecular area (π-A) isotherms and Brewster angle microscopy (BAM) reveal a more homogeneous (surface morphology) Langmuir film at the air/water interface for FePc in DMF. The same morphological pattern observed for the Langmuir films is preserved upon LB deposition onto solid substrates. The Raman and FTIR analyses indicate the DMF-FePc interaction relies on coordination bonds between N atom (from DMF) and Fe atom (from FePc). Besides, the FePc molecular organization was also found to be affected by the DMF-FePc chemical interaction. It is interesting to note that, if the DMF-FePc leads to less aggregated FePc either in solution or ultrathin films (Langmuir and LB), with time (one week) the opposite trend is found. Taking into account the N-Fe interaction, the performance of the FePc ultrathin films with distinct supramolecular architectures composing sensing units was explored as proof-of-principle in the detection of trace amounts of atrazine herbicide in water using impedance spectroscopy. Further statistical and computational analysis reveal not only the role played by FePc supramolecular architecture but also the sensitivity of the system to detect atrazine solutions down to 10-10 mol/L, which is sufficient to monitor the quality of drinking water even according to the most stringent international

  18. Preparation, characterization and gas sensing performance of BaTiO3 nanostructured thin films

    NASA Astrophysics Data System (ADS)

    Suryawanshi, Dinesh N.; Pathan, Idris G.; Bari, Anil. R.; Patil, Lalchand A.

    2018-05-01

    Spray pyrolysis techniques was employed to prepare BaTiO3 thin films. AR grade solutions of Barium chloride (0.05 M) and Titanium chloride (0.05 M) were mixed in the proportion of 30:70, 50:50 and 70:30. The solutions were sprayed on quartz substrate heated at 350°C temperature to obtain the films. These thin films were annealed for a two hours at 600°C in air medium respectively. The prepared thin films were characterized using XRD, FESEM, EDAX, TEM. The electrical and gas sensing properties of these films were investigated. 50:50 film showed better response to Liquid Petroleum Gas (LPG) as compare 30:70 and 70:30 films.

  19. Monolayer-Mediated Growth of Organic Semiconductor Films with Improved Device Performance.

    PubMed

    Huang, Lizhen; Hu, Xiaorong; Chi, Lifeng

    2015-09-15

    Increased interest in wearable and smart electronics is driving numerous research works on organic electronics. The control of film growth and patterning is of great importance when targeting high-performance organic semiconductor devices. In this Feature Article, we summarize our recent work focusing on the growth, crystallization, and device operation of organic semiconductors intermediated by ultrathin organic films (in most cases, only a monolayer). The site-selective growth, modified crystallization and morphology, and improved device performance of organic semiconductor films are demonstrated with the help of the inducing layers, including patterned and uniform Langmuir-Blodgett monolayers, crystalline ultrathin organic films, and self-assembled polymer brush films. The introduction of the inducing layers could dramatically change the diffusion of the organic semiconductors on the surface and the interactions between the active layer with the inducing layer, leading to improved aggregation/crystallization behavior and device performance.

  20. Synthesis of hexagonal ultrathin tungsten oxide nanowires with diameters below 5 nm for enhanced photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Lu, Huidan; Zhu, Qin; Zhang, Mengying; Yan, Yi; Liu, Yongping; Li, Ming; Yang, Zhishu; Geng, Peng

    2018-04-01

    Semiconductor with one dimension (1D) ultrathin nanostructure has been proved to be a promising nanomaterial in photocatalytic field. Great efforts were made on preparation of monoclinic ultrathin tungsten oxide nanowires. However, non-monoclinic phase tungsten oxides with 1D ultrathin structure, especially less than 5 nm width, have not been reported. Herein, we report the synthesis of hexagonal ultrathin tungsten oxide nanowires (U-WOx NW) by modified hydrothermal method. Microstructure characterization showed that U-WOx NW have the diameters of 1-3 nm below 5 nm and are hexagonal phase sub-stoichiometric WOx. U-WOx NW show absorption tail in the visible and near infrared region due to oxygen vacancies. For improving further photocatalytic performance, Ag co-catalyst was grown directly onto U-WOx NW surface by in situ redox reaction. Photocatalytic measurements revealed hexagonal U-WOx NW have better photodegradation activity, compared with commercial WO3(C-WO3) and oxidized U-WOx NW, ascribe to larger surface area, short diffusion length of photo-generated charge carriers and visible absorption of oxygen-vacancy-rich hexagonal ultrathin nanostructures. Moreover, the photocatalytic activity and stability of U-WOx NW using Ag co-catalyst were further improved.

  1. Preparation and characterization of cellulose acetate organic/inorganic hybrid films

    Treesearch

    Saeed S. Shojaie; Timothy G. Rials; Stephen S. Kelley

    1995-01-01

    A series of organic/inorganic hybrid (OIH) films were prepared using cellulose acetate (CA) as the organic component and tetraethyl orthosilicate (TEOS) as the inorganic component. The chemical, morphological, and mechanical properties of these films were evaluated with a variety of analytical techniques. The results of these evaluations showed that crosslinked CA OIH...

  2. Preparation of Macroporous Epitaxial Quartz Films on Silicon by Chemical Solution Deposition.

    PubMed

    Carretero-Genevrier, Adrián; Gich, Martí

    2015-12-21

    This work describes the detailed protocol for preparing piezoelectric macroporous epitaxial quartz films on silicon(100) substrates. This is a three-step process based on the preparation of a sol in a one-pot synthesis which is followed by the deposition of a gel film on Si(100) substrates by evaporation induced self-assembly using the dip-coating technique and ends with a thermal treatment of the material to induce the gel crystallization and the growth of the quartz film. The formation of a silica gel is based on the reaction of a tetraethyl orthosilicate and water, catalyzed by HCl, in ethanol. However, the solution contains two additional components that are essential for preparing mesoporous epitaxial quartz films from these silica gels dip-coated on Si. Alkaline earth ions, like Sr(2+) act as glass melting agents that facilitate the crystallization of silica and in combination with cetyl trimethylammonium bromide (CTAB) amphiphilic template form a phase separation responsible of the macroporosity of the films. The good matching between the quartz and silicon cell parameters is also essential in the stabilization of quartz over other SiO2 polymorphs and is at the origin of the epitaxial growth.

  3. Preparation of Macroporous Epitaxial Quartz Films on Silicon by Chemical Solution Deposition

    PubMed Central

    Carretero-Genevrier, Adrián; Gich, Martí

    2015-01-01

    This work describes the detailed protocol for preparing piezoelectric macroporous epitaxial quartz films on silicon(100) substrates. This is a three-step process based on the preparation of a sol in a one-pot synthesis which is followed by the deposition of a gel film on Si(100) substrates by evaporation induced self-assembly using the dip-coating technique and ends with a thermal treatment of the material to induce the gel crystallization and the growth of the quartz film. The formation of a silica gel is based on the reaction of a tetraethyl orthosilicate and water, catalyzed by HCl, in ethanol. However, the solution contains two additional components that are essential for preparing mesoporous epitaxial quartz films from these silica gels dip-coated on Si. Alkaline earth ions, like Sr2+ act as glass melting agents that facilitate the crystallization of silica and in combination with cetyl trimethylammonium bromide (CTAB) amphiphilic template form a phase separation responsible of the macroporosity of the films. The good matching between the quartz and silicon cell parameters is also essential in the stabilization of quartz over other SiO2 polymorphs and is at the origin of the epitaxial growth. PMID:26710210

  4. Preparation and characterization of collagen/hydroxypropyl methylcellulose (HPMC) blend film.

    PubMed

    Ding, Cuicui; Zhang, Min; Li, Guoying

    2015-03-30

    This study aimed to prepare and characterize the collagen/HPMC blend film (1/1). Thermogravimetric analysis and differential scanning calorimetry were used to investigate the thermal properties of the film. Both thermal decomposition temperature and denaturation temperature of the blend film were higher than those of the collagen film due to the intermolecular hydrogen bonding interaction between collagen and HPMC, which was demonstrated by Fourier transform infrared spectroscopy. Additionally, the morphologies, mechanical properties and hydrophilicity of films were examined. The blend film exhibited a more homogeneous and compact structure compared with that of the collagen film, as observed from scanning electron microscopy and atomic force microscopy. The tensile strength, ultimate elongation and hydrophilicity of the blend film were superior to those of the pure collagen film. Furthermore, the introduction of polyethylene glycol 1500 had almost no influence on the thermal properties of the blend film but obviously improved its stretch-ability and smoothness. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Preparation of Polyurethane/Graphite Composite Films with Stable Mechanical Property and Wear Resistance Underwater.

    PubMed

    Wang, Miaomiao; Wang, Zubin; Chen, Qirong; Meng, Xiangfu; Heng, Liping

    2018-06-01

    The wear resistance and stable mechanical properties affect the service life of the underwater functional materials to a certain extent. Unfortunately, the current study of underwater functional materials is rarely related to these aspects. Herein, we successfully designed and prepared polyurethane/graphite nanosheet (PU/GN) composite materials, which exhibited excellent wear resistance and stable mechanical properties underwater. The PU/GN composite films were prepared by evaporating a mixed solution of PU and GN on concave hexagonal honeycomb silicon templates. The mechanical properties of the composite films were determined by tensile test, and the wear resistance was evaluated by comparing the surface morphology before and after grind. By adjusting the content of graphite in the composite films, we found that the composite films containing 23 wt% GN had higher tensile strength and superior wear resistance. Moreover, this composite film showed an outstanding stability when expose to water. The impressive results along with simple preparation process made PU/GN composite films had potential applications in robust underwater functional materials.

  6. Preparation and characterization of gamma irradiated Starch/PVA/ZnO nanocomposite films

    NASA Astrophysics Data System (ADS)

    Akhavan, Azam; Khoylou, Farah; Ataeivarjovi, Ebrahim

    2017-09-01

    In this study starch/PVA/ZnO nanocomposite films with antibacterial activity were prepared and modified using gamma irradiation for packaging applications. ZnO nanoparticles (NPs) were synthesized from Zn(OH)2 using hydrothermal process and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The prepared ZnO NPs were incorporated into blend films of starch and poly (vinyl alcohol) (PVA) with different concentrations from 0.1 to 1 wt% using solution casting method. The results of SEM confirmed good dispersion of ZnO NPs into the films while FTIR spectroscopy showed interactions between ZnO particles and starch/PVA blend. The nanocomposite films were irradiated at the dose range of 1-5 kGy. It was found that gamma irradiation induces a significant reduction in water absorptions of the films at the dose of 3 kGy. Different trends were observed for the tensile and elongation properties of the irradiated films. Based on the results, the bacterial growth on the films was effectively inhibited when the dosage of ZnO NPs was only 0.5 wt%.

  7. Water-based preparation of spider silk films as drug delivery matrices.

    PubMed

    Agostini, Elisa; Winter, Gerhard; Engert, Julia

    2015-09-10

    The main focus of this work was to obtain a drug delivery matrix characterized by biocompatibility, water insolubility and good mechanical properties. Moreover the preparation process has to be compatible with protein encapsulation and the obtained matrix should be able to sustain release a model protein. Spider silk proteins represent exceptional natural polymers due to their mechanical properties in combination with biocompatibility. As both hydrophobic and slowly biodegrading biopolymers, recombinant spider silk proteins fulfill the required properties for a drug delivery system. In this work, we present the preparation of eADF4(C16) films as drug delivery matrices without the use of any organic solvent. Water-based spider silk films were characterized in terms of protein secondary structure, thermal stability, zeta-potential, solubility, mechanical properties, and water absorption and desorption. Additionally, this study includes an evaluation of their application as a drug delivery system for both small molecular weight drugs and high molecular weight molecules such as proteins. Our investigation focused on possible improvements in the film's mechanical properties including plasticizers in the film matrix. Furthermore, different film designs were prepared, such as: monolayer, coated monolayer, multilayer (sandwich), and coated multilayer. The release of the model protein BSA from these new systems was studied. Results indicated that spider silk films are a promising protein drug delivery matrix, capable of releasing the model protein over 90 days with a release profile close to zero order kinetic. Such films could be used for several pharmaceutical and medical purposes, especially when mechanical strength of a drug eluting matrix is of high importance. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Preparation of dilute magnetic semiconductor films by metalorganic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Nouhi, Akbar (Inventor); Stirn, Richard J. (Inventor)

    1988-01-01

    A method for preparation of a dilute magnetic semiconductor (DMS) film is provided, in which a Group II metal source, a Group VI metal source and a transition metal magnetic ion source are pyrolyzed in the reactor of a metalorganic chemical vapor deposition (MOCVD) system by contact with a heated substrate. As an example, the preparation of films of Cd(sub 1-x)Mn(sub x)Te, in which 0 is less than or equal to x less than or equal to 0.7, on suitable substrates (e.g., GaAs) is described. As a source of manganese, tricarbonyl (methylcyclopentadienyl) manganese (TCPMn) is employed. To prevent TCPMn condensation during its introduction into the reactor, the gas lines, valves and reactor tubes are heated. A thin-film solar cell of n-i-p structure, in which the i-type layer comprises a DMS, is also described; the i-type layer is suitably prepared by MOCVD.

  9. Ultra-thin carbon-fiber paper fabrication and carbon-fiber distribution homogeneity evaluation method

    NASA Astrophysics Data System (ADS)

    Zhang, L. F.; Chen, D. Y.; Wang, Q.; Li, H.; Zhao, Z. G.

    2018-01-01

    A preparation technology of ultra-thin Carbon-fiber paper is reported. Carbon fiber distribution homogeneity has a great influence on the properties of ultra-thin Carbon-fiber paper. In this paper, a self-developed homogeneity analysis system is introduced to assist users to evaluate the distribution homogeneity of Carbon fiber among two or more two-value images of carbon-fiber paper. A relative-uniformity factor W/H is introduced. The experimental results show that the smaller the W/H factor, the higher uniformity of the distribution of Carbon fiber is. The new uniformity-evaluation method provides a practical and reliable tool for analyzing homogeneity of materials.

  10. Breakthrough to Non-Vacuum Deposition of Single-Crystal, Ultra-Thin, Homogeneous Nanoparticle Layers: A Better Alternative to Chemical Bath Deposition and Atomic Layer Deposition

    PubMed Central

    Liao, Yu-Kuang; Liu, Yung-Tsung; Hsieh, Dan-Hua; Shen, Tien-Lin; Hsieh, Ming-Yang; Tzou, An-Jye; Chen, Shih-Chen; Tsai, Yu-Lin; Lin, Wei-Sheng; Chan, Sheng-Wen; Shen, Yen-Ping; Cheng, Shun-Jen; Chen, Chyong-Hua; Wu, Kaung-Hsiung; Chen, Hao-Ming; Kuo, Shou-Yi; Charlton, Martin D. B.; Hsieh, Tung-Po; Kuo, Hao-Chung

    2017-01-01

    Most thin-film techniques require a multiple vacuum process, and cannot produce high-coverage continuous thin films with the thickness of a few nanometers on rough surfaces. We present a new ”paradigm shift” non-vacuum process to deposit high-quality, ultra-thin, single-crystal layers of coalesced sulfide nanoparticles (NPs) with controllable thickness down to a few nanometers, based on thermal decomposition. This provides high-coverage, homogeneous thickness, and large-area deposition over a rough surface, with little material loss or liquid chemical waste, and deposition rates of 10 nm/min. This technique can potentially replace conventional thin-film deposition methods, such as atomic layer deposition (ALD) and chemical bath deposition (CBD) as used by the Cu(In,Ga)Se2 (CIGS) thin-film solar cell industry for decades. We demonstrate 32% improvement of CIGS thin-film solar cell efficiency in comparison to reference devices prepared by conventional CBD deposition method by depositing the ZnS NPs buffer layer using the new process. The new ZnS NPs layer allows reduction of an intrinsic ZnO layer, which can lead to severe shunt leakage in case of a CBD buffer layer. This leads to a 65% relative efficiency increase. PMID:28383488

  11. Ultra-thin alumina and silicon nitride MEMS fabricated membranes for the electron multiplication

    NASA Astrophysics Data System (ADS)

    Prodanović, V.; Chan, H. W.; Graaf, H. V. D.; Sarro, P. M.

    2018-04-01

    In this paper we demonstrate the fabrication of large arrays of ultrathin freestanding membranes (tynodes) for application in a timed photon counter (TiPC), a novel photomultiplier for single electron detection. Low pressure chemical vapour deposited silicon nitride (Si x N y ) and atomic layer deposited alumina (Al2O3) with thicknesses down to only 5 nm are employed for the membrane fabrication. Detailed characterization of structural, mechanical and chemical properties of the utilized films is carried out for different process conditions and thicknesses. Furthermore, the performance of the tynodes is investigated in terms of secondary electron emission, a fundamental attribute that determines their applicability in TiPC. Studied features and presented fabrication methods may be of interest for other MEMS application of alumina and silicon nitride as well, in particular where strong ultra-thin membranes are required.

  12. Fabricating pH-stable and swellable very thin hyperbranched poly(ethylene imine)-oligosaccharide films fabricated without precoating: first view on protein adsorption.

    PubMed

    Warenda, Monika; Richter, Anne; Schmidt, Diana; Janke, Andreas; Müller, Martin; Simon, Frank; Zimmermann, Ralf; Eichhorn, Klaus-Jochen; Voit, Brigitte; Appelhans, Dietmar

    2012-09-14

    For using successful (ultra)thin dendritic macromolecule films in (bio)sensing and microfluidic devices and for obtaining reproducible film properties, alteration effects arising from precoatings have to be avoided. Here, oligosaccharide-modified hyperbranched poly(ethylene imine)s (PEI-OS) were used to fabricate very thin PEI-OS films (15-20 nm in dry state), cross-linked with citric acid under condensation, and vacuum condition. However, no reactive precoating is necessary to obtain stable films, which allows very simple film preparation and avoids alteration of the PEIS-OS film properties arising from precoating. Several methods [(in situ) ellipsometry, AFM, XPS, (in situ) ATR-IR, streaming potential measurements] were applied to characterize homogeneity, surface morphology, and stability of these PEI-OS films between pH 2 and pH 10, but also the low protein adsorption behavior. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Transport properties of ultrathin YBa2Cu3O7 -δ nanowires: A route to single-photon detection

    NASA Astrophysics Data System (ADS)

    Arpaia, Riccardo; Golubev, Dmitri; Baghdadi, Reza; Ciancio, Regina; Dražić, Goran; Orgiani, Pasquale; Montemurro, Domenico; Bauch, Thilo; Lombardi, Floriana

    2017-08-01

    We report on the growth and characterization of ultrathin YBa2Cu3O7 -δ (YBCO) films on MgO (110) substrates, which exhibit superconducting properties at thicknesses down to 3 nm. YBCO nanowires, with thicknesses down to 10 nm and widths down to 65 nm, have also been successfully fabricated. The nanowires protected by a Au capping layer show superconducting properties close to the as-grown films and critical current densities, which are limited by only vortex dynamics. The 10-nm-thick YBCO nanowires without the Au capping present hysteretic current-voltage characteristics, characterized by a voltage switch which drives the nanowires directly from the superconducting to the normal state. We associate such bistability to the presence of localized normal domains within the superconductor. The presence of the voltage switch in ultrathin YBCO nanostructures, characterized by high sheet resistance values and high critical current values, makes our nanowires very attractive devices to engineer single-photon detectors.

  14. Ultrathin cellulose nanosheet membranes for superfast separation of oil-in-water nanoemulsions

    NASA Astrophysics Data System (ADS)

    Zhou, Ke; Zhang, Qiu Gen; Li, Hong Mei; Guo, Nan Nan; Zhu, Ai Mei; Liu, Qing Lin

    2014-08-01

    Oily wastewater is generated in diverse industrial processes, and its treatment has become crucial due to increasing environmental concerns. Herein, novel ultrathin nanoporous membranes of cellulose nanosheets have been fabricated for separation of oil-in-water nanoemulsions. The fabrication approach is facile and environmentally friendly, in which cellulose nanosheets are prepared by freeze-extraction of a very dilute cellulose solution. The as-prepared membranes have a cellulose nanosheet layer with a cut-off of 10-12 nm and a controllable thickness of 80-220 nm. They allow ultrafast water permeation and exhibit excellent size-selective separation properties. A 112 nm-thick membrane has a water flux of 1620 l m-2 h-1 bar-1 and a ferritin rejection of 92.5%. These membranes have been applied to remove oil from its aqueous nanoemulsions successfully, and they show an ultrafast and effective separation of oil-in-water nanoemulsions. The newly developed ultrathin cellulose membranes have a wide application in oily wastewater treatment, separation and purification of nanomaterials.Oily wastewater is generated in diverse industrial processes, and its treatment has become crucial due to increasing environmental concerns. Herein, novel ultrathin nanoporous membranes of cellulose nanosheets have been fabricated for separation of oil-in-water nanoemulsions. The fabrication approach is facile and environmentally friendly, in which cellulose nanosheets are prepared by freeze-extraction of a very dilute cellulose solution. The as-prepared membranes have a cellulose nanosheet layer with a cut-off of 10-12 nm and a controllable thickness of 80-220 nm. They allow ultrafast water permeation and exhibit excellent size-selective separation properties. A 112 nm-thick membrane has a water flux of 1620 l m-2 h-1 bar-1 and a ferritin rejection of 92.5%. These membranes have been applied to remove oil from its aqueous nanoemulsions successfully, and they show an ultrafast and effective

  15. Compact low temperature scanning tunneling microscope with in-situ sample preparation capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jungdae; Department of Physics and EHSRC, University of Ulsan, Ulsan 680-749; Nam, Hyoungdo

    2015-09-15

    We report on the design of a compact low temperature scanning tunneling microscope (STM) having in-situ sample preparation capability. The in-situ sample preparation chamber was designed to be compact allowing quick transfer of samples to the STM stage, which is ideal for preparing temperature sensitive samples such as ultra-thin metal films on semiconductor substrates. Conventional spring suspensions on the STM head often cause mechanical issues. To address this problem, we developed a simple vibration damper consisting of welded metal bellows and rubber pads. In addition, we developed a novel technique to ensure an ultra-high-vacuum (UHV) seal between the copper andmore » stainless steel, which provides excellent reliability for cryostats operating in UHV. The performance of the STM was tested from 2 K to 77 K by using epitaxial thin Pb films on Si. Very high mechanical stability was achieved with clear atomic resolution even when using cryostats operating at 77 K. At 2 K, a clean superconducting gap was observed, and the spectrum was easily fit using the BCS density of states with negligible broadening.« less

  16. Oromucosal film preparations: points to consider for patient centricity and manufacturing processes.

    PubMed

    Krampe, Raphael; Visser, J Carolina; Frijlink, Henderik W; Breitkreutz, Jörg; Woerdenbag, Herman J; Preis, Maren

    2016-01-01

    According to the European Pharmacopoeia, oromucosal films comprise mucoadhesive buccal films and orodispersible films. Both oral dosage forms receive considerable interest in the recent years as commercially available pharmaceutical products and as small scale personalized extemporaneous preparations. In this review, technological issues such as viscosity of the casting liquid, mechanical properties of the film, upscaling and the stability of the casting solution and produced films will be discussed. Furthermore, patient-related problems like appearance, mucosal irritation, taste, drug load, safety and biopharmaceutics are described. Current knowledge and directions for solutions are summarized. The viscosity of the casting solution is a key factor for producing suitable films. This parameter is amongst others dependent on the polymer and active pharmaceutical ingredient, and the further excipients that are used. For optimal patient compliance, an acceptable taste and palatability are desirable. Safe and inert excipients should be used and appropriate packaging should be provided to produced films. Absorption through the oral mucosa will vary for each active compound, formulation and patient, which gives rise to pharmacokinetic questions. Finally, the European Pharmacopoeia needs to specify methods, requirement and definitions for oromucosal film preparations based on bio-relevant data.

  17. Angularly resolved characterization of ion beams from laser-ultrathin foil interactions

    NASA Astrophysics Data System (ADS)

    Scullion, C.; Doria, D.; Romagnani, L.; Ahmed, H.; Alejo, A.; Ettlinger, O. C.; Gray, R. J.; Green, J.; Hicks, G. S.; Jung, D.; Naughton, K.; Padda, H.; Poder, K.; Scott, G. G.; Symes, D. R.; Kar, S.; McKenna, P.; Najmudin, Z.; Neely, D.; Zepf, M.; Borghesi, M.

    2016-09-01

    Methods and techniques used to capture and analyze beam profiles produced from the interaction of intense, ultrashort laser pulses and ultrathin foil targets using stacks of Radiochromic Film (RCF) and Columbia Resin #39 (CR-39) are presented. The identification of structure in the beam is particularly important in this regime, as it may be indicative of the dominance of specific acceleration mechanisms. Additionally, RCF can be used to deconvolve proton spectra with coarse energy resolution while mantaining angular information across the whole beam.

  18. Preparation of Ga-doped ZnO films by pulsed dc magnetron sputtering with cylindrical rotating target for thin film solar cell applications

    NASA Astrophysics Data System (ADS)

    Shin, Beom-Ki; Lee, Tae-Il; Park, Ji-Hyeon; Park, Kang-Il; Ahn, Kyung-Jun; Park, Sung-Kee; Lee, Woong; Myoung, Jae-Min

    2011-11-01

    Applicability of Ga-doped ZnO (GZO) films for thin film solar cells (TFSCs) was investigated by preparing GZO films via pulsed dc magnetron sputtering (PDMS) with rotating target. The GZO films showed improved crystallinity and increasing degree of Ga doping with increasing thickness to a limit of 1000 nm. The films also fulfilled requirements for the transparent electrodes of TFSCs in terms of electrical and optical properties. Moreover, the films exhibited good texturing potential based on etching studies with diluted HCl, which yielded an improved light trapping capability without significant degradation in electrical propreties. It is therefore suggested that the surface-textured GZO films prepared via PDMS and etching are promising candidates for indium-free transparent electrodes for TFSCs.

  19. Wrapping with a splash: High-speed encapsulation with ultrathin sheets

    NASA Astrophysics Data System (ADS)

    Kumar, Deepak; Paulsen, Joseph D.; Russell, Thomas P.; Menon, Narayanan

    2018-02-01

    Many complex fluids rely on surfactants to contain, protect, or isolate liquid drops in an immiscible continuous phase. Thin elastic sheets can wrap liquid drops in a spontaneous process driven by capillary forces. For encapsulation by sheets to be practically viable, a rapid, continuous, and scalable process is essential. We exploit the fast dynamics of droplet impact to achieve wrapping of oil droplets by ultrathin polymer films in a water phase. Despite the violence of splashing events, the process robustly yields wrappings that are optimally shaped to maximize the enclosed fluid volume and have near-perfect seams. We achieve wrappings of targeted three-dimensional (3D) shapes by tailoring the 2D boundary of the films and show the generality of the technique by producing both oil-in-water and water-in-oil wrappings.

  20. Hierarchical Ni-Co layered double hydroxide nanosheets on functionalized 3D-RGO films for high energy density asymmetric supercapacitor

    NASA Astrophysics Data System (ADS)

    Jiang, Liyang; Sui, Yanwei; Qi, Jiqiu; Chang, Yuan; He, Yezeng; Meng, Qingkun; Wei, Fuxiang; Sun, Zhi; Jin, Yunxue

    2017-12-01

    In this paper, ultrathin reduced graphene oxide films on nickel foam were fabricated via a facile dip-coating method combined with thermal reduction. Hierarchical Ni-Co layered double hydroxide nanosheets with network structure were electrodeposited on the ultrathin reduced graphene oxide films in a simple three-electrode system. The thickness of Ni-Co layered double hydroxide nanosheets can be controlled through adjusting the deposition temperature. The as-prepared electrode exhibited excellent electrochemical performance with specific capacitance of 1454.2 F g-1 at a current density of 1 A g-1. An asymmetric supercapacitor device was designed with the as-prepared composites as positive electrode material and Nitrogen-doped reduced graphene oxide as negative electrode material. This device could be operated in a working voltage range of 0-1.8 V in 1 M KOH aqueous electrolyte, delivering a high energy density of 56.4 W h kg-1 at a power density of 882.5 W kg-1. One supercapacitor can power two LEDs with rated voltage of 1.8-2.0 V. After 10,000 consecutive charge-discharge tests at 10 A g-1, this asymmetric supercapacitor revealed an excellent cycle life with 98.3% specific capacitance retention. These excellent electrochemical performances make it become one of most promising candidates for high energy supercapacitor device.

  1. Comparison of molecular orientation and phase transition behaviors in the two kinds of ordered ultrathin films of reversed duckweed polymer ES-3 studied by infrared grazing reflection-absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Xu, Weiqing; Zhao, Bing

    2003-03-01

    A multilayer LB film and a casting film of reversed duckweed polymer ES-3 on Au-evaporated glass slides were investigated by Fourier Transform infrared grazing reflection-absorption spectroscopy. It is found that the two kinds of ordered ultrathin films have different orientation of alkyl chains, nearly perpendicular to the substrate surface for the LB film while rather tilted for the casting film. The studies on their thermal transition behaviors indicate that both of the films have three phase transition processes, respectively, occurring near 65, 105 and 140 °C for the former while near 80, 105 and 140 °C for the latter, but show different transition behavior in the each corresponding transition process. It is referred that at room temperature there are island-like domain structures formed in the LB film, but no ones in the casting film; however, the latter can form the domain structures between the first two transition points due to the desorption of solvents. The formation of domain structure seems to play two important roles, one of which is to make alkyl chains more perpendicular to the substrate surface, and the other to make alkyl chains more packed closely. Thermal cyclic experiments reveal that neither of the films could return to its original state after thermal cyclic treatment up to the temperature, which is above the third transition point, although its alkyl chain becomes highly ordered again.

  2. Preparation and characterization of sprayed FTO thin films

    NASA Astrophysics Data System (ADS)

    Abd-Lefdil, M.; Diaz, R.; Bihri, H.; Aouaj, M. Ait; Rueda, F.

    2007-06-01

    Fluorine doped tin oxide (FTO) thin films have been prepared by spray pyrolysis technique with no further annealing. Films with 2.5% of fluorine grown at 400 °C present a single phase and exhibit a tetragonal structure with lattice parameters a = 4.687 Å and c = 3.160 Å. Scanning electron micrographs showed homogeneous surfaces with average grain size around 190 nm. The films are transparent in the visible zone and exhibit a high reflectance in the near infrared region. The best electrical resistivity was 6.3 × 10-4 Ω cm for FTO with 2.5% of fluorine. The ratio of transmittance in the visible to the sheet resistance are in the 0.57 × 10-2 1.96 × 10-2 {Ω }-1 range.

  3. Investigation of the dependence of BLS frequencies on angle of incidence for thin iron films

    NASA Astrophysics Data System (ADS)

    From, M.; Cochran, J. F.; Heinrich, B.; Celinski, Z.

    1993-05-01

    Brillouin light-scattering experiments have been done at various angles of incidence, θ, for four specimens prepared by molecular-beam epitaxy. The specimens were single ultrathin films of Fe deposited on single-crystal Ag substrates. Dependence of magnon frequency on θ is easily resolvable in all specimens. We find that the magnitude of this dependence is in good agreement with a theoretical calculation that takes into account magnetic anisotropies, dipole-dipole, and exchange interactions. Our results imply that magnetic excitations in these specimens are correlated over distances of at least 5000 Å.

  4. Designer stabilizer for preparation of pristine graphene/polysiloxane films and networks

    NASA Astrophysics Data System (ADS)

    Parviz, Dorsa; Yu, Ziniu; Hedden, Ronald C.; Green, Micah J.

    2014-09-01

    A conductive polymer film containing pristine graphene was prepared by designing a polysiloxane-based stabilizer for graphene. The stabilizer was prepared by grafting 1-ethynylpyrene to the backbone of a poly(dimethylsiloxane)-co-(methylhydrosiloxane) (PDMS-PHMS) random copolymer by Pt-catalyzed hydrosilylation with a SiH-ethynyl ratio of 1.0 : 1.3. The resulting copolymer was able to stabilize pristine graphene in chloroform solution via π-π interactions between the pyrene groups and graphene sheets. TEM and SEM images show a homogeneous distribution of the graphene in cast films deposited from chloroform. The conductivity of a graphene/PDMS film prepared from copolymer with a 1.7 vol.% graphene loading was measured as 220 S m-1 after the removal of unbound polymer by a simple separation technique. With a SiH-ethynyl ratio of 1.7 : 1.0, the copolymer self-crosslinked at 110 °C in the presence of adventitious moisture, providing a straightforward route to incorporate graphene into silicone elastomers. The crosslinking process (with and without added graphene) was characterized by FT-IR spectroscopy and by swelling and extraction of the obtained networks. Again, unbound polymer removal increases the conductivity of the composite.A conductive polymer film containing pristine graphene was prepared by designing a polysiloxane-based stabilizer for graphene. The stabilizer was prepared by grafting 1-ethynylpyrene to the backbone of a poly(dimethylsiloxane)-co-(methylhydrosiloxane) (PDMS-PHMS) random copolymer by Pt-catalyzed hydrosilylation with a SiH-ethynyl ratio of 1.0 : 1.3. The resulting copolymer was able to stabilize pristine graphene in chloroform solution via π-π interactions between the pyrene groups and graphene sheets. TEM and SEM images show a homogeneous distribution of the graphene in cast films deposited from chloroform. The conductivity of a graphene/PDMS film prepared from copolymer with a 1.7 vol.% graphene loading was measured as 220 S m-1 after

  5. Influence of interface layer on optical properties of sub-20 nm-thick TiO2 films

    NASA Astrophysics Data System (ADS)

    Shi, Yue-Jie; Zhang, Rong-Jun; Li, Da-Hai; Zhan, Yi-Qiang; Lu, Hong-Liang; Jiang, An-Quan; Chen, Xin; Liu, Juan; Zheng, Yu-Xiang; Wang, Song-You; Chen, Liang-Yao

    2018-02-01

    The sub-20 nm ultrathin titanium dioxide (TiO2) films with tunable thickness were deposited on Si substrates by atomic layer deposition (ALD). The structural and optical properties were acquired by transmission electron microscopy, atomic force microscopy and spectroscopic ellipsometry. Afterwards, a constructive and effective method of analyzing interfaces by applying two different optical models consisting of air/TiO2/Ti x Si y O2/Si and air/effective TiO2 layer/Si, respectively, was proposed to investigate the influence of interface layer (IL) on the analysis of optical constants and the determination of band gap of TiO2 ultrathin films. It was found that two factors including optical constants and changing components of the nonstoichiometric IL could contribute to the extent of the influence. Furthermore, the investigated TiO2 ultrathin films of 600 ALD cycles were selected and then annealed at the temperature range of 400-900 °C by rapid thermal annealing. Thicker IL and phase transition cause the variation of optical properties of TiO2 films after annealing and a shorter electron relaxation time reveals the strengthened electron-electron and electron-phonon interactions in the TiO2 ultrathin films at high temperature. The as-obtained results in this paper will play a role in other studies of high dielectric constants materials grown on Si substrates and in the applications of next generation metal-oxide-semiconductor devices.

  6. Silver/poly(vinyl alcohol) nanocomposite film prepared using water in oil microemulsion for antibacterial applications.

    PubMed

    Fatema, Ummul K; Rahman, M Muhibur; Islam, M Rakibul; Mollah, M Yousuf A; Susan, Md Abu Bin Hasan

    2018-03-15

    Water in oil microemulsion (w/o) is a simple preparative route for nanoparticles where water droplets (dispersed in continuous oil medium and stabilized by surfactants and cosurfactants) act as nanoreactors to carry out chemical reactions. If polymeric matrix is incorporated inside the core of the microemulsions, it should prevent the agglomeration of nanoparticles after separation from microemulsions. Thus polymer nanocomposite films prepared from w/o microemulsions are expected to give narrow and homogeneous size distribution of nanoparticles throughout the polymer host. Silver/poly(vinyl alcohol) (Ag/PVA) nanocomposite film was successfully prepared, for the first time, using Triton X-100 (TX-100)/1-butanol/cyclohexane/water microemulsion. Reduction of the metal salt was carried out in the core of w/o microemulsion droplets containing PVA polymeric matrix. After separation from the microemulsion, Ag/PVA nanocomposite film was then prepared by solution casting method. The antibacterial activity of the nanocomposites was tested against Gram-negative, Escherichia coli and Gram-positive, Staphylococcus aureus by agar diffusion method. Ag nanoparticles with an average diameter of 105 nm could be synthesized using PVA, whereas in the absence of PVA the nanoparticles agglomerated. The distribution of Ag nanoparticles on PVA surface of the nanocomposite film prepared using microemulsion was uniform, whereas the film prepared through in situ generation of Ag nanoparticles by chemical reduction process on PVA host showed non-uniform, coagulated, bunches of Ag nanoparticles. The film synthesized using microemulsion exhibited enhanced antibacterial efficacy compared to that prepared through in situ synthesis under the same test condition. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Preparation and biocompatibility of a chitin nanofiber/gelatin composite film.

    PubMed

    Ogawa, Yoko; Azuma, Kazuo; Izawa, Hironori; Morimoto, Minoru; Ochi, Kosuke; Osaki, Tomohiro; Ito, Norihiko; Okamoto, Yoshiharu; Saimoto, Hiroyuki; Ifuku, Shinsuke

    2017-11-01

    The development of chitin-based materials with favorable mechanical properties and biocompatibility is an important research goal owing to the wide-ranging practical applications. In this study, a composite film was prepared using chitin nanofibers and gelatin. The CNF/gelatin composite film was highly viscous and had a fine nanofiber structure. The transmittances indicated high transparency, regardless of nanofiber content. The water content of the CNF/gelatin composite film increased linearly as the gelatin content increased. Although the CNF/gelatin composite film did not induce severe inflammation, it strongly induced fibroblast proliferation, indicating high biocompatibility. Based on these results, the films are suitable for biological applications, e.g., tissue engineering, medicines, and cosmetics. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Phase separation enhanced magneto-electric coupling in La0.7Ca0.3MnO3/BaTiO3 ultra-thin films

    PubMed Central

    Alberca, A.; Munuera, C.; Azpeitia, J.; Kirby, B.; Nemes, N. M.; Perez-Muñoz, A. M.; Tornos, J.; Mompean, F. J.; Leon, C.; Santamaria, J.; Garcia-Hernandez, M.

    2015-01-01

    We study the origin of the magnetoelectric coupling in manganite films on ferroelectric substrates. We find large magnetoelectric coupling in La0.7Ca0.3MnO3/BaTiO3 ultra-thin films in experiments based on the converse magnetoelectric effect. The magnetization changes by around 30–40% upon applying electric fields on the order of 1 kV/cm to the BaTiO3 substrate, corresponding to magnetoelectric coupling constants on the order of α = (2–5)·10−7 s/m. Magnetic anisotropy is also affected by the electric field induced strain, resulting in a considerable reduction of coercive fields. We compare the magnetoelectric effect in pre-poled and unpoled BaTiO3 substrates. Polarized neutron reflectometry reveals a two-layer behavior with a depressed magnetic layer of around 30 Å at the interface. Magnetic force microscopy (MFM) shows a granular magnetic structure of the La0.7Ca0.3MnO3. The magnetic granularity of the La0.7Ca0.3MnO3 film and the robust magnetoelastic coupling at the La0.7Ca0.3MnO3/BaTiO3 interface are at the origin of the large magnetoelectric coupling, which is enhanced by phase separation in the manganite. PMID:26648002

  9. Development of hot-electron THz bolometric mixers using MgB2 thin films

    NASA Astrophysics Data System (ADS)

    Cunnane, Daniel; Kawamura, Jonathan; Karasik, Boris S.; Wolak, Matthaeus A.; Xi, X. X.

    2014-07-01

    Terahertz high-resolution spectroscopy of interstellar molecular clouds greatly relies on hot-electron superconducting bolometric (HEB) mixers. Current state-of-the-art receivers use mixer devices made from ultrathin (~ 3-5 nm) films of NbN with critical temperature ~ 9-11 K. Such mixers have been deployed on a number of groundbased, suborbital, and orbital platforms including the HIFI instrument on the Hershel Space Observatory. Despite its good sensitivity and well-established fabrication process, the NbN HEB mixer suffers from the narrow intermediate frequency (IF) bandwidth ~ 2-3 GHz and is limited to operation at liquid Helium temperature. As the heterodyne receivers are now trending towards "high THz" frequencies, the need in a larger IF bandwidth becomes more pressing since the same velocity resolution for a Doppler shifted line at 5 THz requires a 5-times greater IF bandwidth than at 1 THz. Our work is focusing on the realization of practical HEB mixers using ultrathin (10-20 nm) MgB2 films. They are prepared using a Hybrid Physical-Chemical Vapor Deposition (HPCVD) process yielding ultrathin films with critical temperature ~ 37-39 K. The expectation is that the combination of small thickness, high acoustic phonon transparency at the interface with the substrate, and very short electron-phonon relaxation time may lead to IF bandwidth ~ 10 GHz or even higher. SiC continues to be the most favorable substrate for MgB2 growth and as a result, a study has been conducted on the transparency of SiC at THz frequencies. FTIR measurements show that semi-insulating SiC substrates are at least as transparent as Si up to 2.5 THz. Currently films are passivated using a thin (10 nm) SiO2 layer which is deposited ex-situ via RF magnetron sputtering. Micron-sized spiral antenna-coupled HEB mixers have been fabricated using MgB2 films as thin as 10 nm. Fabrication was done using contact UV lithography and Ar Ion milling, with E-beam evaporated Au films deposited for the

  10. Pin-Hole Free Perovskite Film for Solar Cells Application Prepared by Controlled Two-Step Spin-Coating Method

    NASA Astrophysics Data System (ADS)

    Bahtiar, A.; Rahmanita, S.; Inayatie, Y. D.

    2017-05-01

    Morphology of perovskite film is a key important for achieving high performance perovskite solar cells. Perovskite films are commonly prepared by two-step spin-coating method. However, pin-holes are frequently formed in perovskite films due to incomplete conversion of lead-iodide (PbI2) into perovskite CH3NH3PbI3. Pin-holes in perovskite film cause large hysteresis in current-voltage curve of solar cells due to large series resistance between perovskite layer-hole transport material. Moreover, crystal structure and grain size of perovskite crystal are also other important parameters for achieving high performance solar cells, which are significantly affected by preparation of perovskite film. We studied the effect of preparation of perovskite film using controlled spin-coating parameters on crystal structure and morphological properties of perovskite film. We used two-step spin-coating method for preparation of perovskite film with varied spinning speed, spinning time and temperature of spin-coating process to control growth of perovskite crystal aimed to produce high quality perovskite crystal with pin-hole free and large grain size. All experiment was performed in air with high humidity (larger than 80%). The best crystal structure, pin-hole free with large grain crystal size of perovskite film was obtained from film prepared at room temperature with spinning speed 1000 rpm for 20 seconds and annealed at 100°C for 300 seconds.

  11. Tunable broadband near-infrared absorber based on ultrathin phase-change material

    NASA Astrophysics Data System (ADS)

    Hu, Er-Tao; Gu, Tong; Guo, Shuai; Zang, Kai-Yan; Tu, Hua-Tian; Yu, Ke-Han; Wei, Wei; Zheng, Yu-Xiang; Wang, Song-You; Zhang, Rong-Jun; Lee, Young-Pak; Chen, Liang-Yao

    2017-11-01

    In this work, a tunable broadband near-infrared light absorber was designed and fabricated with a simple and lithography free approach by introducing an ultrathin phase-change material Ge2Sb2Te5 (GST) layer into the metal-dielectric multilayered film structure with the structure parameters as that: SiO2 (72.7 nm)/Ge2Sb2Te5 (6.0 nm)/SiO2 (70.2 nm)/Cu (>100.0 nm). The film structure exhibits a modulation depth of ∼72.6% and an extinction ratio of ∼8.8 dB at the wavelength of 1410 nm. The high light absorption (95%) of the proposed film structure at the wavelength of 450 nm in both of the amorphous and crystalline phase of GST, indicates that the intensity of the reflectance in the infrared region can be rapidly tuned by the blue laser pulses. The proposed planar layered film structure with layer thickness as the only controllable parameter and large reflectivity tuning range shows the potential for practical applications in near-infrared light modulation and absorption.

  12. Preparation of Nanocellulose Reinforced Chitosan Films, Cross-Linked by Adipic Acid

    PubMed Central

    Falamarzpour, Pouria; Behzad, Tayebeh; Zamani, Akram

    2017-01-01

    Adipic acid, an abundant and nontoxic compound, was used to dissolve and cross-link chitosan. After the preparation of chitosan films through casting technique, the in situ amidation reaction was performed at 80–100 °C as verified by Fourier transform infrared (FT-IR). The reaction was accompanied by the release of water which was employed to investigate the reaction kinetics. Accordingly, the reaction rate followed the first-order model and Arrhenius equation, and the activation energy was calculated to be 18 kJ/mol. Furthermore, the mechanical properties of the chitosan films were comprehensively studied. First, optimal curing conditions (84 °C, 93 min) were introduced through a central composite design. In order to evaluate the effects of adipic acid, the mechanical properties of physically cross-linked (uncured), chemically cross-linked (cured), and uncross-linked (prepared by acetic acid) films were compared. The use of adipic acid improved the tensile strength of uncured and chemically cross-linked films more than 60% and 113%, respectively. Finally, the effect of cellulose nanofibrils (CNFs) on the mechanical performance of cured films, in the presence of glycerol as a plasticizer, was investigated. The plasticized chitosan films reinforced by 5 wt % CNFs showed superior properties as a promising material for the development of chitosan-based biomaterials. PMID:28208822

  13. Preparation of Nanocellulose Reinforced Chitosan Films, Cross-Linked by Adipic Acid.

    PubMed

    Falamarzpour, Pouria; Behzad, Tayebeh; Zamani, Akram

    2017-02-13

    Adipic acid, an abundant and nontoxic compound, was used to dissolve and cross-link chitosan. After the preparation of chitosan films through casting technique, the in situ amidation reaction was performed at 80-100 °C as verified by Fourier transform infrared (FT-IR). The reaction was accompanied by the release of water which was employed to investigate the reaction kinetics. Accordingly, the reaction rate followed the first-order model and Arrhenius equation, and the activation energy was calculated to be 18 kJ/mol. Furthermore, the mechanical properties of the chitosan films were comprehensively studied. First, optimal curing conditions (84 °C, 93 min) were introduced through a central composite design. In order to evaluate the effects of adipic acid, the mechanical properties of physically cross-linked (uncured), chemically cross-linked (cured), and uncross-linked (prepared by acetic acid) films were compared. The use of adipic acid improved the tensile strength of uncured and chemically cross-linked films more than 60% and 113%, respectively. Finally, the effect of cellulose nanofibrils (CNFs) on the mechanical performance of cured films, in the presence of glycerol as a plasticizer, was investigated. The plasticized chitosan films reinforced by 5 wt % CNFs showed superior properties as a promising material for the development of chitosan-based biomaterials.

  14. Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics

    PubMed Central

    Lei, Ting; Guan, Ming; Liu, Jia; Lin, Hung-Cheng; Pfattner, Raphael; McGuire, Allister F.; Huang, Tsung-Ching; Shao, Leilai; Cheng, Kwang-Ting; Tok, Jeffrey B.-H.; Bao, Zhenan

    2017-01-01

    Increasing performance demands and shorter use lifetimes of consumer electronics have resulted in the rapid growth of electronic waste. Currently, consumer electronics are typically made with nondecomposable, nonbiocompatible, and sometimes even toxic materials, leading to serious ecological challenges worldwide. Here, we report an example of totally disintegrable and biocompatible semiconducting polymers for thin-film transistors. The polymer consists of reversible imine bonds and building blocks that can be easily decomposed under mild acidic conditions. In addition, an ultrathin (800-nm) biodegradable cellulose substrate with high chemical and thermal stability is developed. Coupled with iron electrodes, we have successfully fabricated fully disintegrable and biocompatible polymer transistors. Furthermore, disintegrable and biocompatible pseudo-complementary metal–oxide–semiconductor (CMOS) flexible circuits are demonstrated. These flexible circuits are ultrathin (<1 μm) and ultralightweight (∼2 g/m2) with low operating voltage (4 V), yielding potential applications of these disintegrable semiconducting polymers in low-cost, biocompatible, and ultralightweight transient electronics. PMID:28461459

  15. Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics.

    PubMed

    Lei, Ting; Guan, Ming; Liu, Jia; Lin, Hung-Cheng; Pfattner, Raphael; Shaw, Leo; McGuire, Allister F; Huang, Tsung-Ching; Shao, Leilai; Cheng, Kwang-Ting; Tok, Jeffrey B-H; Bao, Zhenan

    2017-05-16

    Increasing performance demands and shorter use lifetimes of consumer electronics have resulted in the rapid growth of electronic waste. Currently, consumer electronics are typically made with nondecomposable, nonbiocompatible, and sometimes even toxic materials, leading to serious ecological challenges worldwide. Here, we report an example of totally disintegrable and biocompatible semiconducting polymers for thin-film transistors. The polymer consists of reversible imine bonds and building blocks that can be easily decomposed under mild acidic conditions. In addition, an ultrathin (800-nm) biodegradable cellulose substrate with high chemical and thermal stability is developed. Coupled with iron electrodes, we have successfully fabricated fully disintegrable and biocompatible polymer transistors. Furthermore, disintegrable and biocompatible pseudo-complementary metal-oxide-semiconductor (CMOS) flexible circuits are demonstrated. These flexible circuits are ultrathin (<1 μm) and ultralightweight (∼2 g/m 2 ) with low operating voltage (4 V), yielding potential applications of these disintegrable semiconducting polymers in low-cost, biocompatible, and ultralightweight transient electronics.

  16. Logic circuits composed of flexible carbon nanotube thin-film transistor and ultra-thin polymer gate dielectric

    PubMed Central

    Lee, Dongil; Yoon, Jinsu; Lee, Juhee; Lee, Byung-Hyun; Seol, Myeong-Lok; Bae, Hagyoul; Jeon, Seung-Bae; Seong, Hyejeong; Im, Sung Gap; Choi, Sung-Jin; Choi, Yang-Kyu

    2016-01-01

    Printing electronics has become increasingly prominent in the field of electronic engineering because this method is highly efficient at producing flexible, low-cost and large-scale thin-film transistors. However, TFTs are typically constructed with rigid insulating layers consisting of oxides and nitrides that are brittle and require high processing temperatures, which can cause a number of problems when used in printed flexible TFTs. In this study, we address these issues and demonstrate a method of producing inkjet-printed TFTs that include an ultra-thin polymeric dielectric layer produced by initiated chemical vapor deposition (iCVD) at room temperature and highly purified 99.9% semiconducting carbon nanotubes. Our integrated approach enables the production of flexible logic circuits consisting of CNT-TFTs on a polyethersulfone (PES) substrate that have a high mobility (up to 9.76 cm2 V−1 sec−1), a low operating voltage (less than 4 V), a high current on/off ratio (3 × 104), and a total device yield of 90%. Thus, it should be emphasized that this study delineates a guideline for the feasibility of producing flexible CNT-TFT logic circuits with high performance based on a low-cost and simple fabrication process. PMID:27184121

  17. Logic circuits composed of flexible carbon nanotube thin-film transistor and ultra-thin polymer gate dielectric

    NASA Astrophysics Data System (ADS)

    Lee, Dongil; Yoon, Jinsu; Lee, Juhee; Lee, Byung-Hyun; Seol, Myeong-Lok; Bae, Hagyoul; Jeon, Seung-Bae; Seong, Hyejeong; Im, Sung Gap; Choi, Sung-Jin; Choi, Yang-Kyu

    2016-05-01

    Printing electronics has become increasingly prominent in the field of electronic engineering because this method is highly efficient at producing flexible, low-cost and large-scale thin-film transistors. However, TFTs are typically constructed with rigid insulating layers consisting of oxides and nitrides that are brittle and require high processing temperatures, which can cause a number of problems when used in printed flexible TFTs. In this study, we address these issues and demonstrate a method of producing inkjet-printed TFTs that include an ultra-thin polymeric dielectric layer produced by initiated chemical vapor deposition (iCVD) at room temperature and highly purified 99.9% semiconducting carbon nanotubes. Our integrated approach enables the production of flexible logic circuits consisting of CNT-TFTs on a polyethersulfone (PES) substrate that have a high mobility (up to 9.76 cm2 V-1 sec-1), a low operating voltage (less than 4 V), a high current on/off ratio (3 × 104), and a total device yield of 90%. Thus, it should be emphasized that this study delineates a guideline for the feasibility of producing flexible CNT-TFT logic circuits with high performance based on a low-cost and simple fabrication process.

  18. Optical properties of titanium di-oxide thin films prepared by dip coating method

    NASA Astrophysics Data System (ADS)

    Biswas, Sayari; Rahman, Kazi Hasibur; Kar, Asit Kumar

    2018-05-01

    Titanium dioxide (TiO2) thin films were prepared by sol-gel dip coating method on ITO coated glass substrate. The sol was synthesized by hydrothermal method at 90°C. The sol was then used to make TiO2 films by dip coating. After dip coating the rest of the sol was dried at 100°C to make TiO2 powder. Thin films were made by varying the number of dipping cycles and were annealed at 500°C. XRD study was carried out for powder samples that confirms the formation of anatase phase. Transmission spectra of thin films show sharp rise in the violet-ultraviolet transition region and a maximum transmittance of ˜60%. Band gap of the prepared films varies from 3.15 eV to 3.22 eV.

  19. In Situ Ramp Anneal X-ray Diffraction Study of Atomic Layer Deposited Ultrathin TaN and Ta 1-x Al x N y Films for Cu Diffusion Barrier Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Consiglio, S.; Dey, S.; Yu, K.

    2016-01-01

    Ultrathin TaN and Ta 1-xAl xN y films with x = 0.21 to 0.88 were deposited by atomic layer deposition (ALD) and evaluated for Cu diffusion barrier effectiveness compared to physical vapor deposition (PVD) grown TaN. Cu diffusion barrier effectiveness was investigated using in-situ ramp anneal synchrotron X-ray diffraction (XRD) on Cu/1.8 nm barrier/Si stacks. A Kissinger-like analysis was used to assess the kinetics of Cu 3Si formation and determine the effective activation energy (E a) for Cu silicidation. Compared to the stack with a PVD TaN barrier, the stacks with the ALD films exhibited a higher crystallization temperature (Tmore » c) for Cu silicidation. The Ea values of Cu 3Si formation for stacks with the ALD films were close to the reported value for grain boundary diffusion of Cu whereas the Ea of Cu 3Si formation for the stack with PVD TaN is closer to the reported value for lattice diffusion. For 3 nm films, grazing incidence in-plane XRD showed evidence of nanocrystallites in an amorphous matrix with broad peaks corresponding to high density cubic phase for the ALD grown films and lower density hexagonal phase for the PVD grown film further elucidating the difference in initial failure mechanisms due to differences in barrier crystallinity and associated phase.« less

  20. Feasibility demonstration for electroplating ultra-thin polyimide film. [fabricating film for space erectable structures

    NASA Technical Reports Server (NTRS)

    Schneier, R.; Braswell, T. V.; Vaughn, R. W.

    1978-01-01

    The effect of electrodeposition variables on film thickness was investigated using a dilute polyimide solution as a bath into which aluminum (as foil or as a vapor deposited coating) was immersed. The electrodeposited film was dried for 2 hours at 93 C (primarily to remove solvent) and cured for 18 hours at 186 C. Infrared studies indicate that imide formation (curing) occurs at 149 C under vacuum. From a conceptual viewpoint, satisfactory film metallized on one side can be obtained by this method. The cured ultra thin polyimide film exhibits properties equivalent to those of commercial film, and the surface appearance of the strippable polyimide film compares favorably with that of a sample of commercial film of thicker gauge. The feasibility of manufacturing approximately one million sq m of ultra thin film capable of being joined to fabricate an 800 m by 9 800 m square from starting material 0.5 to 1 m wide for space erectable structures was demonstrated.

  1. Silicon nanomembranes as a means to evaluate stress evolution in deposited thin films

    Treesearch

    Anna M. Clausen; Deborah M. Paskiewicz; Alireza Sadeghirad; Joseph Jakes; Donald E. Savage; Donald S. Stone; Feng Liu; Max G. Lagally

    2014-01-01

    Thin-film deposition on ultra-thin substrates poses unique challenges because of the potential for a dynamic response to the film stress during deposition. While theoretical studies have investigated film stress related changes in bulk substrates, little has been done to learn how stress might evolve in a film growing on a compliant substrate. We use silicon...

  2. Dynamics of ultra-thin polystyrene with and without a (artificial) dead layer studied by resonance enhanced dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Vianna, S. D. B.; Lin, F. Y.; Plum, M. A.; Duran, H.; Steffen, W.

    2017-05-01

    Using non-invasive, marker-free resonance enhanced dynamic light scattering, the dynamics of capillary waves on ultrathin polystyrene films' coupling to the viscoelastic and mechanical properties have been studied. The dynamics of ultrathin polymer films is still debated. In particular the question of what influence either the solid substrate and/or the fluid-gas interface has on the dynamics and the mechanical properties of films of glass forming liquids as polymers is in the focus of the present research. As a consequence, e.g., viscosity close to interfaces and thus the average viscosity of very thin films are prone to change. This study is focused on atactic, non-entangled polystyrene thin films on the gold surface. A slow dynamic mode was observed with Vogel-Fulcher-Tammann temperature dependence, slowing down with decreasing film thickness. We tentatively attribute this relaxation mode to overdamped capillary waves because of its temperature dependence and the dispersion with a wave vector which was found. No signs of a more mobile layer at the air/polymer interface or of a "dead layer" at the solid/polymer interface were found. Therefore we investigated the influence of an artificially created dead layer on the capillary wave dynamics by introducing covalently bound polystyrene polymer brushes as anchors. The dynamics was slowed down to a degree more than expected from theoretical work on the increase of density close to the solid liquid interface—instead of a "dead layer" of 2 nm, the interaction seems to extend more than 10 nm into the polymer.

  3. Preparation of thin film silver fluoride electrodes from constituent elements

    NASA Technical Reports Server (NTRS)

    Odonnell, P. M.

    1972-01-01

    The feasibility of preparing thin-film metal fluoride electrodes from the elemental constituents has been demonstrated. Silver fluoride cathodes were prepared by deposition of silver on a conducting graphite substrate followed by fluorination under controlled conditions using elemental fluorine. The resulting electrodes were of high purity, and the variables such as size, shape, and thickness were easily controlled.

  4. Preparation of tris(8-hydroxyquinolinato)aluminum thin films by sputtering deposition using powder and pressed powder targets

    NASA Astrophysics Data System (ADS)

    Kawasaki, Hiroharu; Ohshima, Tamiko; Yagyu, Yoshihito; Ihara, Takeshi; Tanaka, Rei; Suda, Yoshiaki

    2017-06-01

    Tris(8-hydroxyquinolinato)aluminum (Alq3) thin films, for use in organic electroluminescence displays, were prepared by a sputtering deposition method using powder and pressed powder targets. Experimental results suggest that Alq3 thin films can be prepared using powder and pressed powder targets, although the films were amorphous. The surface color of the target after deposition became dark brown, and the Fourier transform infrared spectroscopy spectrum changed when using a pressed powder target. The deposition rate of the film using a powder target was higher than that using a pressed powder target. That may be because the electron and ion densities of the plasma generated using the powder target are higher than those when using pressed powder targets under the same deposition conditions. The properties of a thin film prepared using a powder target were almost the same as those of a film prepared using a pressed powder target.

  5. Impact of Ultrathin C60 on Perovskite Photovoltaic Devices.

    PubMed

    Liu, Dianyi; Wang, Qiong; Traverse, Christopher J; Yang, Chenchen; Young, Margaret; Kuttipillai, Padmanaban S; Lunt, Sophia Y; Hamann, Thomas W; Lunt, Richard R

    2018-01-23

    Halide perovskite solar cells have seen dramatic progress in performance over the past several years. Certified efficiencies of inverted structure (p-i-n) devices have now exceeded 20%. In these p-i-n devices, fullerene compounds are the most popular electron-transfer materials. However, the full function of fullerenes in perovskite solar cells is still under investigation, and the mechanism of photocurrent hysteresis suppression by fullerene remains unclear. In previous reports, thick fullerene layers (>20 nm) were necessary to fully cover the perovskite film surface to make good contact with perovskite film and avoid large leakage currents. In addition, the solution-processed fullerene layer has been broadly thought to infiltrate into the perovskite film to passivate traps on grain boundary surfaces, causing suppressed photocurrent hysteresis. In this work, we demonstrate an efficient perovskite photovoltaic device with only 1 nm C 60 deposited by vapor deposition as the electron-selective material. Utilizing a combination of fluorescence microscopy and impedance spectroscopy, we show that the ultrathin C 60 predominately acts to extract electrons from the perovskite film while concomitantly suppressing the photocurrent hysteresis by reducing space charge accumulation at the interface. This work ultimately helps to clarify the dominant role of fullerenes in perovskite solar cells while simplifying perovskite solar cell design to reduce manufacturing costs.

  6. The Effect of Film Thickness on the Gas Sensing Properties of Ultra-Thin TiO2 Films Deposited by Atomic Layer Deposition

    PubMed Central

    Wilson, Rachel L.; Blackman, Christopher S.; Carmalt, Claire J.; Stanoiu, Adelina; Di Maggio, Francesco

    2018-01-01

    Analyte sensitivity for gas sensors based on semiconducting metal oxides should be highly dependent on the film thickness, particularly when that thickness is on the order of the Debye length. This thickness dependence has previously been demonstrated for SnO2 and inferred for TiO2. In this paper, TiO2 thin films have been prepared by Atomic Layer Deposition (ALD) using titanium isopropoxide and water as precursors. The deposition process was performed on standard alumina gas sensor platforms and microscope slides (for analysis purposes), at a temperature of 200 °C. The TiO2 films were exposed to different concentrations of CO, CH4, NO2, NH3 and SO2 to evaluate their gas sensitivities. These experiments showed that the TiO2 film thickness played a dominant role within the conduction mechanism and the pattern of response for the electrical resistance towards CH4 and NH3 exposure indicated typical n-type semiconducting behavior. The effect of relative humidity on the gas sensitivity has also been demonstrated. PMID:29494504

  7. The impact of ultra-thin titania interlayers on open circuit voltage and carrier lifetime in thin film solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moerman, David; Colbert, Adam E.; Ginger, David S., E-mail: ginger@chem.washington.edu

    We study the effects of modifying indium tin oxide electrodes with ultrathin titania (TiO{sub 2}) layers grown via plasma-enhanced atomic layer deposition (PE-ALD). We find an optimal thickness of PE-ALD-grown titania by tracking performance, which initially increases, peaks, and eventually decreases with increasing TiO{sub 2} thickness. We use scanning Kelvin probe microscopy (SKPM) to measure both the local work function and its distribution as a function of TiO{sub 2} thickness. We find that the variance in contact potential difference across the surface of the film is related to either the amorphous or anatase TiO{sub 2} form. Finally, we use localmore » SKPM recombination rate experiments, supported by bulk transient photovoltage and charge extraction measurements. We show that the optimum TiO{sub 2} thickness is the one for which the carrier lifetime is the longest and the charge carrier density is the highest, when the TiO{sub 2} is amorphous, in agreement with the device measurements.« less

  8. Chemically prepared La2Se3 nanocubes thin film for supercapacitor application.

    PubMed

    Patil, S J; Lokhande, V C; Chodankar, N R; Lokhande, C D

    2016-05-01

    Lanthanum selenide (La2Se3) nanocubes thin film is prepared via successive ionic layer adsorption and reaction (SILAR) method and utilized for energy storage application. The prepared La2Se3 thin film is characterized by X-ray diffraction, field emission scanning electron microscopy and contact angle measurement techniques for structural, surface morphological and wettability studies, respectively. Energy dispersive X-ray microanalysis (EDAX) is performed in order to obtain the elemental composition of the thin film. The La2Se3 film electrode shows a maximum specific capacitance of 363 F g(-1) in a 0.8 M LiClO4/PC electrolyte at a scan rate of 5 mV s(-1) within 1.3 V/SCE potential range. The specific capacitive retention of 83 % of La2Se3 film electrode is obtained over 1000 cyclic voltammetry cycles. The predominant performance, such as high energy (80 Wh kg(-1)) and power density (2.5 kW kg(-1)), indicates that La2Se3 film electrode facilitates fast ion diffusion during redox processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Computational Study of In-Plane Phonon Transport in Si Thin Films

    PubMed Central

    Wang, Xinjiang; Huang, Baoling

    2014-01-01

    We have systematically investigated the in-plane thermal transport in Si thin films using an approach based on the first-principles calculations and lattice dynamics. The effects of phonon mode depletion induced by the phonon confinement and the corresponding variation in interphonon scattering, which may be important for the thermal conductivities of ultra-thin films but are often neglected in precedent studies, are considered in this study. The in-plane thermal conductivities of Si thin films with different thicknesses have been predicted over a temperature range from 80 K to 800 K and excellent agreements with experimental results are found. The validities of adopting the bulk phonon properties and gray approximation of surface specularity in thin film studies have been clarified. It is found that in ultra-thin films, while the phonon depletion will reduce the thermal conductivity of Si thin films, its effect is largely offset by the reduction in the interphonon scattering rate. The contributions of different phonon modes to the thermal transport and isotope effects in Si films with different thicknesses under various temperatures are also analyzed. PMID:25228061

  10. Preparation and analysis of particulate metal deposits

    NASA Technical Reports Server (NTRS)

    Poppa, H.; Moorhead, D.; Heinemann, K.

    1985-01-01

    Small particles and clusters of palladium were grown by deposition from the vapor phase under ultrahigh vacuum conditions. Amorphous and crystalline support films of Al2O3 and ultrathin amorphous carbon films were used as substrate materials. The growth of the metal deposit was monitored in situ by scanning transmission diffraction of energy-filtered 100 kV electrons and high resolution transmission electron microscopy (TEM) analysis was performed in a separate instrument. It was established by in situ TEM, however, that the transfer of specimens in this case did not unduly affect the size and distribution of deposit particles. It was found that the cleanness, stoichiometry, crystallinity and structural perfection of the support surface play an essential role in determining the crystalline perfection and structure of the particles. The smallest palladium clusters reproducibly prepared contained not more than six atoms but size determinations below 1 nm average particle diameter are very problematic with conventional TEM. Palladium particles grown on carbon supports feature an impurity-stabilized mosaic structure.

  11. Preparation of pentacene thin film deposited using organic material auto-feeding system for the fabrication of organic thin film transistor.

    PubMed

    Kim, Young Baek; Choi, Bum Ho; Lim, Yong Hwan; Yoo, Ha Na; Lee, Jong Ho; Kim, Jin Hyeok

    2011-02-01

    In this study, pentacene organic thin film was prepared using newly developed organic material auto-feeding system integrated with linear cell and characterized. The newly developed organic material auto-feeding system consists of 4 major parts: reservoir, micro auto-feeder, vaporizer, and linear cell. The deposition of organic thin film could be precisely controlled by adjusting feeding rate, main tube size, position and size of nozzle. 10 nm thick pentacene thin film prepared on glass substrate exhibited high uniformity of 3.46% which is higher than that of conventional evaporation method using point cell. The continuous deposition without replenishment of organic material can be performed over 144 hours with regulated deposition control. The grain size of pentacene film which affect to mobility of OTFT, was controlled as a function of the temperature.

  12. Preparation of bioactive titania films on titanium metal via anodic oxidation.

    PubMed

    Cui, X; Kim, H-M; Kawashita, M; Wang, L; Xiong, T; Kokubo, T; Nakamura, T

    2009-01-01

    To research the crystal structure and surface morphology of anodic films on titanium metal in different electrolytes under various electrochemical conditions and investigate the effect of the crystal structure of the oxide films on apatite-forming ability in simulated body fluid (SBF). Titanium oxide films were prepared using an anodic oxidation method on the surface of titanium metal in four different electrolytes: sulfuric acid, acetic acid, phosphoric acid and sodium sulfate solutions with different voltages for 1 min at room temperature. Anodic films that consisted of rutile and/or anatase phases with porous structures were formed on titanium metal after anodizing in H(2)SO(4) and Na(2)SO(4) electrolytes, while amorphous titania films were produced after anodizing in CH(3)COOH and H(3)PO(4) electrolytes. Titanium metal with the anatase and/or rutile crystal structure films showed excellent apatite-forming ability and produced a compact apatite layer covering all the surface of titanium after soaking in SBF for 7d, but titanium metal with amorphous titania layers was not able to induce apatite formation. The resultant apatite layer formed on titanium metal in SBF could enhance the bonding strength between living tissue and the implant. Anodic oxidation is believed to be an effective method for preparing bioactive titanium metal as an artificial bone substitute even under load-bearing conditions.

  13. Preparation and physical properties of tara gum film reinforced with cellulose nanocrystals.

    PubMed

    Ma, Qianyun; Hu, Dongying; Wang, Lijuan

    2016-05-01

    Cellulose nanocrystals (CNC) prepared from microcrystalline cellulose were blended in tara gum solution to prepare nanocomposite films. The morphology, crystallinity, and thermal properties of the CNC and films were evaluated by using transmission electron microscopy, X-ray diffractometry, and thermogravimetric analysis, respectively. The resultant CNC was rod-shaped with diameters of around 8.6 nm. The effect of CNC content on physical and thermal properties of films was studied. The composite film tensile strength increased from 27.86 to 65.73 MPa, elastic modulus increased from 160.98 MPa to 882.49 MPa and the contact angle increased from 55.8° to 98.7° with increasing CNC content from 0 to 6 wt%. However, CNC addition increased the thermal stability slightly and CNC content above 6 wt% decreased the tensile strength by CNC aggregation in the matrix. The nanocomposite film containing 6 wt% CNC possessed the highest light transmittance, mechanical properties, and lowest oxygen permeability. CNC addition is a suitable method to modify tara gum matrix polymer properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Solid-State Densification of Spun-Cast Self-Assembled Monolayers for Use in Ultra-Thin Hybrid Dielectrics.

    PubMed

    Hutchins, Daniel O; Acton, Orb; Weidner, Tobias; Cernetic, Nathan; Baio, Joe E; Castner, David G; Ma, Hong; Jen, Alex K-Y

    2012-11-15

    Ultra-thin self-assembled monolayer (SAM)-oxide hybrid dielectrics have gained significant interest for their application in low-voltage organic thin film transistors (OTFTs). A [8-(11-phenoxy-undecyloxy)-octyl]phosphonic acid (PhO-19-PA) SAM on ultrathin AlO x (2.5 nm) has been developed to significantly enhance the dielectric performance of inorganic oxides through reduction of leakage current while maintaining similar capacitance to the underlying oxide structure. Rapid processing of this SAM in ambient conditions is achieved by spin coating, however, as-cast monolayer density is not sufficient for dielectric applications. Thermal annealing of a bulk spun-cast PhO-19-PA molecular film is explored as a mechanism for SAM densification. SAM density, or surface coverage, and order are examined as a function of annealing temperature. These SAM characteristics are probed through atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and near edge X-ray absorption fine structure spectroscopy (NEXAFS). It is found that at temperatures sufficient to melt the as-cast bulk molecular film, SAM densification is achieved; leading to a rapid processing technique for high performance SAM-oxide hybrid dielectric systems utilizing a single wet processing step. To demonstrate low-voltage devices based on this hybrid dielectric (with leakage current density of 7.7×10 -8 A cm -2 and capacitance density of 0.62 µF cm -2 at 3 V), pentacene thin-film transistors (OTFTs) are fabricated and yield sub 2 V operation and charge carrier mobilites of up to 1.1 cm 2 V -1 s -1 .

  15. Solid-State Densification of Spun-Cast Self-Assembled Monolayers for Use in Ultra-Thin Hybrid Dielectrics

    PubMed Central

    Hutchins, Daniel O.; Acton, Orb; Weidner, Tobias; Cernetic, Nathan; Baio, Joe E.; Castner, David G.; Ma, Hong; Jen, Alex K.-Y.

    2013-01-01

    Ultra-thin self-assembled monolayer (SAM)-oxide hybrid dielectrics have gained significant interest for their application in low-voltage organic thin film transistors (OTFTs). A [8-(11-phenoxy-undecyloxy)-octyl]phosphonic acid (PhO-19-PA) SAM on ultrathin AlOx (2.5 nm) has been developed to significantly enhance the dielectric performance of inorganic oxides through reduction of leakage current while maintaining similar capacitance to the underlying oxide structure. Rapid processing of this SAM in ambient conditions is achieved by spin coating, however, as-cast monolayer density is not sufficient for dielectric applications. Thermal annealing of a bulk spun-cast PhO-19-PA molecular film is explored as a mechanism for SAM densification. SAM density, or surface coverage, and order are examined as a function of annealing temperature. These SAM characteristics are probed through atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and near edge X-ray absorption fine structure spectroscopy (NEXAFS). It is found that at temperatures sufficient to melt the as-cast bulk molecular film, SAM densification is achieved; leading to a rapid processing technique for high performance SAM-oxide hybrid dielectric systems utilizing a single wet processing step. To demonstrate low-voltage devices based on this hybrid dielectric (with leakage current density of 7.7×10−8 A cm−2 and capacitance density of 0.62 µF cm−2 at 3 V), pentacene thin-film transistors (OTFTs) are fabricated and yield sub 2 V operation and charge carrier mobilites of up to 1.1 cm2 V−1 s−1. PMID:24288423

  16. The Role of Partial Surface Charge Compensation in the Properties of Ferroelectric and Antiferroelectric Thin Films

    NASA Astrophysics Data System (ADS)

    Swedberg, Elena

    Ferroelectric and antiferroelectric ultrathin films have attracted a lot of attention recently due to their remarkable properties and their potential to allow for device miniaturization in numerous applications. However, when the ferroelectric films are scaled down, it brings about an unavoidable depolarizing field. A partial surface charge compensation allows to control the residual depolarizing field and manipulate the properties of ultrathin ferroelectric films. In this dissertation we take advantage of atomistic first-principles-based simulations to expand our understanding of the role of the partial surface charge compensation in the properties of ferroelectric and antiferroelectric ultrathin films. The application of our computational methodology to study the effect of the partial surface charge compensation in ferroelectric ultrathin films led to the prediction that, depending on the quality of the surface charge compensation, ferroelectric thin films respond to an electric field in a qualitatively different manner. They can be tuned to behave like a linear dielectric, a ferroelectric or even an antiferroelectric. This effect was shown to exist in films with different mechanical boundary conditions and different crystal symmetries. There are a number of potential applications where such properties of ferroelectric thin films can be used. One of these potential applications is energy storage. We will show that, in the antiferroelectric regime, ferroelectric thin films exhibit drastic enhancement of energy storage density which is a desirable property. One of the most promising applications of ferroelectric ultrathin films that emerged only recently is the harvesting of the giant electrocaloric effect. Interestingly, despite numerous studies of the electrocaloric effect in ferroelectric thin films, it is presently unknown how a residual depolarizing field affects the electrocaloric properties of such films. Application of state-of-the-art computational methods

  17. Preparation and pharmaceutical evaluation of glibenclamide slow release mucoadhesive buccal film

    PubMed Central

    Bahri-Najafi, R.; Tavakoli, N.; Senemar, M.; Peikanpour, M.

    2014-01-01

    Buccal mucoadhesive systems among novel drug delivery systems have attracted great attention in recent years due to their ability to adhere and remain on the oral mucosa and to release their drug content gradually. Buccal mucoadhesive films can improve the drug therapeutic effect by enhancement of drug absorption through oral mucosa increasing the drug bioavailability via reducing the hepatic first pass effect. The aim of the current study was to formulate the drug as buccal bioadhesive film, which releases the drug at sufficient concentration with a sustain manner reducing the frequency of the dosage form administration. One of the advantagees of this formulation is better patient compliances due to the ease of administration with no water to swallow the product. The mucoadhesive films of glibenclamide were prepared using hydroxypropyl methylcellulose (HPMC) K4M, K15M and Eudragit RL100 polymers and propylene glycol as plasticizer and co-solvent. Films were prepared using solvent casting method, and were evaluated with regard to drug content, thickness, weight variations, swelling index, tensile strength, ex vivo adhesion force and percentage of in vitro drug release. Films with high concentrations of HPMC K4M and K15M did not have favorable appearance and uniformity. The formulations prepared from Eudragit were transparent, uniform, flexible, and without bubble. The highest and the lowest percentages of swelling were observed for the films containing HPMC K15M and Eudragit RL100, respectively. Films made of HPMC K15M had adhesion force higher than those containing Eudragit RL100. Formulations with Eudragit RL100 showed the highest mean dissolution time (MDT). Drug release kinetics of all formulations followed Higuchi's model and the mechanism of diffusion was considered non-Fickian type. It was concluded that formulations containing Eudragit RL100 were more favorable than others with regard to uniformity, flexibility, rate and percentage of drug release. PMID

  18. Reversible optical switching of highly confined phonon-polaritons with an ultrathin phase-change material

    NASA Astrophysics Data System (ADS)

    Li, Peining; Yang, Xiaosheng; Maß, Tobias W. W.; Hanss, Julian; Lewin, Martin; Michel, Ann-Katrin U.; Wuttig, Matthias; Taubner, Thomas

    2016-08-01

    Surface phonon-polaritons (SPhPs), collective excitations of photons coupled with phonons in polar crystals, enable strong light-matter interaction and numerous infrared nanophotonic applications. However, as the lattice vibrations are determined by the crystal structure, the dynamical control of SPhPs remains challenging. Here, we realize the all-optical, non-volatile, and reversible switching of SPhPs by controlling the structural phase of a phase-change material (PCM) employed as a switchable dielectric environment. We experimentally demonstrate optical switching of an ultrathin PCM film (down to 7 nm, <λ/1,200) with single laser pulses and detect ultra-confined SPhPs (polariton wavevector kp > 70k0, k0 = 2π/λ) in quartz. Our proof of concept allows the preparation of all-dielectric, rewritable SPhP resonators without the need for complex fabrication methods. With optimized materials and parallelized optical addressing we foresee application potential for switchable infrared nanophotonic elements, for example, imaging elements such as superlenses and hyperlenses, as well as reconfigurable metasurfaces and sensors.

  19. Thickness-dependent appearance of ferromagnetism in Pd(100) ultrathin films

    NASA Astrophysics Data System (ADS)

    Sakuragi, S.; Sakai, T.; Urata, S.; Aihara, S.; Shinto, A.; Kageshima, H.; Sawada, M.; Namatame, H.; Taniguchi, M.; Sato, T.

    2014-08-01

    We report the appearance of ferromagnetism in thin films of Pd(100), which depends on film thickness in the range of 3-5 nm on SrTiO3(100) substrates. X-ray magnetic circular dichroism measurement shows the intrinsic nature of ferromagnetism in Pd(100) films. The spontaneous magnetization in Pd(100) films, corresponding to is 0.61μB/atom, is comparable to Ni, and it changes in an oscillatory manner depending on film thickness, where the period quantitatively agrees with the theoretical prediction based on the two-dimensional quantum well in the film. This indicates that the discrete electronic states in the quantum well shift to Fermi energy to satisfy the condition for ferromagnetism (Stoner criterion) at a specific film thickness.

  20. Preparation and characterization of ZnS thin films by the chemical bath deposition method (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ando, Shizutoshi; Iwashita, Taisuke

    2017-06-01

    Nowadays, the conversion efficiency of Cu(In・Ga)Se2 (CIGS)-based solar cell already reached over 20%. CdS thin films prepared by chemical bath deposition (CBD) method are used for CIGS-based thin film solar cells as the buffer layer. Over the past several years, a considerable number of studies have been conducted on ZnS buffer layer prepared by CBD in order to improve in conversion efficiency of CIGS-based solar cells. In addition, application to CIGS-based solar cell of ZnS buffer layer is expected as an eco-friendly solar cell by cadmium-free. However, it was found that ZnS thin films prepared by CBD included ZnO or Zn(OH)2 as different phase [1]. Nakata et. al reported that the conversion efficiency of CIGS-based solar cell using ZnS buffer layer (CBD-ZnS/CIGS) reached over 18% [2]. The problem which we have to consider next is improvement in crystallinity of ZnS thin films prepared by CBD. In this work, we prepared ZnS thin films on quarts (Si02) and SnO2/glass substrates by CBD with the self-catalysis growth process in order to improve crystallinity and quality of CBD-ZnS thin films. The solution to use for CBD were prepared by mixture of 0.2M ZnI2 or ZnSO4, 0.6M (NH2)2CS and 8.0M NH3 aq. In the first, we prepared the particles of ZnS on Si02 or SnO2/glass substrates by CBD at 80° for 20 min as initial nucleus (1st step ). After that, the particles of ZnS on Si02 or SnO2/glass substrates grew up to be ZnS thin films by CBD method at 80° for 40 min again (2nd step). We found that the surface of ZnS thin films by CBD with the self-catalyst growth process was flat and smooth. Consequently, we concluded that the CBD technique with self-catalyst growth process in order to prepare the particles of ZnS as initial nucleus layer was useful for improvement of crystallinity of ZnS thin films on SnO2/glass. [1] J.Vidal et,al., Thin Solid Films 419 (2002) 118. [2] T.Nakata et.al., Jpn. J. Appl. Phys. 41(2B), L165-L167 (2002)

  1. Preparation Of Copper Indium Gallium Diselenide Films For Solar Cells

    DOEpatents

    Bhattacharya, Raghu N.; Contreras, Miguel A.; Keane, James; Tennant, Andrew L. , Tuttle, John R.; Ramanathan, Kannan; Noufi, Rommel

    1998-08-08

    High quality thin films of copper-indium-gallium-diselenide useful in the production of solar cells are prepared by electrodepositing at least one of the constituent metals onto a glass/Mo substrate, followed by physical vapor deposition of copper and selenium or indium and selenium to adjust the final stoichiometry of the thin film to approximately Cu(In,Ga)Se.sub.2. Using an AC voltage of 1-100 KHz in combination with a DC voltage for electrodeposition improves the morphology and growth rate of the deposited thin film. An electrodeposition solution comprising at least in part an organic solvent may be used in conjunction with an increased cathodic potential to increase the gallium content of the electrodeposited thin film.

  2. Gold-carbon composite thin films for electrochemical gas sensor prepared by reactive plasma sputtering

    NASA Astrophysics Data System (ADS)

    Okamoto, A.; Suzuki, Y.; Yoshitake, M.; Ogawa, S.; Nakano, N.

    1997-01-01

    We have investigated the properties of gold-carbon composite thin films prepared by a plasma sputtering deposition using argon and methane mixture gas. These composite films have an uneven surface in submicron scale or consist of nano-scale particles of gold polycrystalline. Such morphological properties can be controlled by the sputtering voltage and the partial pressure of methane gas. The working electrode of electrochemical gas sensor has needed a stable gas sensitivity and a good gas selectivity. Our composite film is one of the excellent candidates for a thin film working electrode of electrochemical gas sensor. It is described that the output current of sensor is related to the preparation conditions of the thin films and increase linearly as the concentration of PH 3 gas ranging from 0.1 to 1.0 ppm is increasing.

  3. Mechanical and physicochemical properties study on gellan gum thin film prepared using film casting method

    NASA Astrophysics Data System (ADS)

    Ismail, Nur Arifah; Razali, Mohd Hasmizam; Amin, Khairul Anuar Mat

    2017-09-01

    The GG thin films were prepared by film casting technique using gelzan (GG1) and kelcogel (GG2) respectively. The physical appearances of the thin films were observed and their mechanical and chemical properties were investigated. Chemical characterizations were done by Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), UV-Vis Spectroscopy, and Scanning Electron Microscopy (SEM). Based on the ATR-FTIR result, GG1 and GG2 thin films show a broad peak in the range of 3600-3200 cm-1 assigned to -OH functional group. A broad peaks also was observed at 3000-2600 cm-1 and 1800-1600 cm-1 which are belong to -CH and C=O functional group, respectively. The UV-Vis Spectroscopy analysis shows that single absorption peak was observed at 260 nm for both films. For mechanical properties, GG1 thin film has high tensile strength (80±12), but low strain at break (2±1), on the other hand GG2 thin film has low tensile strength (3±0.08) but high strain at break (13±0.58). The Water Vapour Transmission Rates (WVTR) and swelling of GG1 and GG2 thin films were (422±113, 415±26) and (987±113, 902±63), respectively.

  4. Wafer-scale integrated micro-supercapacitors on an ultrathin and highly flexible biomedical platform.

    PubMed

    Maeng, Jimin; Meng, Chuizhou; Irazoqui, Pedro P

    2015-02-01

    We present wafer-scale integrated micro-supercapacitors on an ultrathin and highly flexible parylene platform, as progress toward sustainably powering biomedical microsystems suitable for implantable and wearable applications. All-solid-state, low-profile (<30 μm), and high-density (up to ~500 μF/mm(2)) micro-supercapacitors are formed on an ultrathin (~20 μm) freestanding parylene film by a wafer-scale parylene packaging process in combination with a polyaniline (PANI) nanowire growth technique assisted by surface plasma treatment. These micro-supercapacitors are highly flexible and shown to be resilient toward flexural stress. Further, direct integration of micro-supercapacitors into a radio frequency (RF) rectifying circuit is achieved on a single parylene platform, yielding a complete RF energy harvesting microsystem. The system discharging rate is shown to improve by ~17 times in the presence of the integrated micro-supercapacitors. This result suggests that the integrated micro-supercapacitor technology described herein is a promising strategy for sustainably powering biomedical microsystems dedicated to implantable and wearable applications.

  5. Freestanding films of crosslinked gold nanoparticles prepared via layer-by-layer spin-coating.

    PubMed

    Schlicke, Hendrik; Schröder, Jan H; Trebbin, Martin; Petrov, Alexey; Ijeh, Michael; Weller, Horst; Vossmeyer, Tobias

    2011-07-29

    A new, extremely efficient method for the fabrication of films comprised of gold nanoparticles (GNPs) crosslinked by organic dithiols is presented in this paper. The method is based on layer-by-layer spin-coating of both components, GNPs and crosslinker, and enables the deposition of films several tens of nanometers in thickness within a few minutes. X-ray diffraction and conductance measurements reveal the proper adjustment concentration of the crosslinker solution of the critical is in order to prevent the destabilization and coalescence of particles. UV/vis spectroscopy, atomic force microscopy, and conductivity measurements indicate that films prepared via layer-by-layer spin-coating are of comparable quality to coatings prepared via laborious layer-by-layer self-assembly using immersion baths. Because spin-coated films are not bound chemically to the substrate, they can be lifted-off by alkaline underetching and transferred onto 3d-electrodes to produce electrically addressable, freely suspended films. Comparative measurements of the sheet resistances indicate that the transfer process does not compromise the film quality.

  6. Freestanding films of crosslinked gold nanoparticles prepared via layer-by-layer spin-coating

    NASA Astrophysics Data System (ADS)

    Schlicke, Hendrik; Schröder, Jan H.; Trebbin, Martin; Petrov, Alexey; Ijeh, Michael; Weller, Horst; Vossmeyer, Tobias

    2011-07-01

    A new, extremely efficient method for the fabrication of films comprised of gold nanoparticles (GNPs) crosslinked by organic dithiols is presented in this paper. The method is based on layer-by-layer spin-coating of both components, GNPs and crosslinker, and enables the deposition of films several tens of nanometers in thickness within a few minutes. X-ray diffraction and conductance measurements reveal the proper adjustment concentration of the crosslinker solution of the critical is in order to prevent the destabilization and coalescence of particles. UV/vis spectroscopy, atomic force microscopy, and conductivity measurements indicate that films prepared via layer-by-layer spin-coating are of comparable quality to coatings prepared via laborious layer-by-layer self-assembly using immersion baths. Because spin-coated films are not bound chemically to the substrate, they can be lifted-off by alkaline underetching and transferred onto 3d-electrodes to produce electrically addressable, freely suspended films. Comparative measurements of the sheet resistances indicate that the transfer process does not compromise the film quality.

  7. Process for preparing superconducting film having substantially uniform phase development

    DOEpatents

    Bharacharya, Raghuthan; Parilla, Philip A.; Blaugher, Richard D.

    1995-01-01

    A process for preparing a superconducting film, such as a thallium-barium-calcium-copper oxide superconducting film, having substantially uniform phase development. The process comprises providing an electrodeposition bath having one or more soluble salts of one or more respective potentially superconducting metals in respective amounts adequate to yield a superconducting film upon subsequent appropriate treatment. Should all of the metals required for producing a superconducting film not be made available in the bath, such metals can be a part of the ambient during a subsequent annealing process. A soluble silver salt in an amount between about 0.1% and about 4.0% by weight of the provided other salts is also provided to the bath, and the bath is electrically energized to thereby form a plated film. The film is annealed in ambient conditions suitable to cause formation of a superconductor film. Doping with silver reduces the temperature at which the liquid phase appears during the annealing step, initiates a liquid phase throughout the entire volume of deposited material, and influences the nucleation and growth of the deposited material.

  8. Preparation and properties of nanometer silk fibroin peptide/polyvinyl alcohol blend films for cell growth.

    PubMed

    Luo, Qin; Chen, Zhongmin; Hao, Xuefei; Zhu, Qiangsong; Zhou, Yucheng

    2013-10-01

    Nanometer silk fibroin peptide (Nano-SFP) was prepared from silkworm cocoons through the process of dissolution, dialysis and enzymolysis. For comparison, silk fibroin was decomposed with α-chymotrypsin, trypsin and neutrase, respectively. From the SEM and particle size analysis results, the Nano-SFP prepared by neutrase was found to be the most desirable at about 50-200 nm. Nano-SFP/polyvinyl alcohol films (Nano-SFP/PVA) were prepared by blending Nano-SFP and PVA in water with different weight ratios of 10/90, 20/80, 30/70, and 40/60. The films were characterized by IR, SEM, TG, DSC and tensile strength test for investigating their structure, surface morphology, thermostability, and mechanical property. The results showed that Nano-SFP inserted in the PVA films with small linear particles, and Nano-SFP/PVA films exhibited smooth surface, good thermostability and tensile strength. The growth of Chinese hamster ovary (CHO) cells on films with and without Nano-SFP was investigated with MTT colorimetric assay to assess the films' ability to promote cell growth. It was observed that the Nano-SFP improved cell adhesion on the film surface, and the ability of promoting cell growth increased with the increasing content of Nano-SFP in the blend films. Nano-SFP/PVA film with the ratio of 30/70 was concluded to have the best properties. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Electroless plating of ultrathin palladium films: self-initiated deposition and application in microreactor fabrication

    NASA Astrophysics Data System (ADS)

    Muench, Falk; Oezaslan, Mehtap; Svoboda, Ingrid; Ensinger, Wolfgang

    2015-10-01

    We present new electroless palladium plating reactions, which can be applied to complex-shaped substrates and lead to homogeneous, dense and conformal palladium films consisting of small nanoparticles. Notably, autocatalytic and surface-selective metal deposition could be achieved on a wide range of materials without sensitization and activation pretreatments. This provides a facile and competitive route to directly deposit well-defined palladium nanofilms on e.g. carbon, paper, polymers or glass substrates. The reactions proceed at mild conditions and are based on easily accessible chemicals (reducing agent: hydrazine; metal source: PdCl2; ligands: ethylenediaminetetraacetic acid (EDTA), acetylacetone). Additionally, the water-soluble capping agent 4-dimethylaminopyridine (DMAP) is employed to increase the bath stability, to ensure the formation of small particles and to improve the film conformity. The great potential of the outlined reactions for micro- and nanofabrication is demonstrated by coating an ion-track etched polycarbonate membrane with a uniform Pd film of approximately 20 nm thickness. The as-prepared membrane is then employed as a highly miniaturized flow reactor, using the reduction of 4-nitrophenol with NaBH4 as a model reaction.

  10. Resistivity behavior of optimized PbTiO3 thin films prepared by spin coating method

    NASA Astrophysics Data System (ADS)

    Nurbaya, Z.; Wahid, M. H.; Rozana, M. D.; Alrokayan, S. A. H.; Khan, H. A.; Rusop, M.

    2018-05-01

    Th is study presents the resistivity behavior of PbTiO3 thin films which were prepared towards metal-insulator-metal capacitor device fabrication. The PbTiO3 thin films were prepared through sol-gel spin coating method that involved various deposition parameters that is (1) different molar concentration of PbTiO3 solutions, (2) various additional PbAc-content in PbTiO3 solutions, and (3) various annealing temperature on PbTiO3 thin films. Hence, an electrical measurement of current versus voltage was done to determine the resistivity behavior of PbTiO3 thin films.

  11. SERS activity studies of Ag/Au bimetallic films prepared by galvanic replacement

    NASA Astrophysics Data System (ADS)

    Wang, Chaonan; Fang, Jinghuai; Jin, Yonglong

    2012-10-01

    Ag films on Si substrates were fabricated by immersion plating, which served as sacrificial materials for preparation of Ag/Au bimetallic films by galvanic replacement method. SEM images displayed that the sacrificial Ag films presenting island morphology experienced interesting structural evolution process during galvanic replacement reaction, and nano-scaled holes were formed in the resultant bimetallic films. SERS measurements using crystal violet as an analyte showed that SERS intensities of bimetallic films were enhanced significantly compared with that of pure Ag films and related mechanisms were discussed. Immersion plating experiment carried out on Ag films on PEN substrates fabricated by photoinduced reduction method further confirmed that galvanic replacement is an easy method to fabricate Ag/Au bimetallic and a potential approach to improve the SERS performance of Ag films.

  12. Design and evaluation of bilayered buccal film preparations for local administration of lidocaine hydrochloride.

    PubMed

    Preis, Maren; Woertz, Christina; Schneider, Katharina; Kukawka, Jennifer; Broscheit, Jens; Roewer, Norbert; Breitkreutz, Jörg

    2014-04-01

    Bilayered oromucosal film preparations (buccal films) offer a promising way to enable drug administration via the oral cavity. Adding a non-soluble or slowly eroding/dissolving backing layer to a mucoadhesive drug-loaded layer enables unidirectional drug delivery. The aim of this study was to investigate different approaches to the manufacture of bilayered films and to examine their properties by applying different characterization methods including an optimized experimental setup for the study of drug release from bilayered films. A solvent suitability study was performed screening over 15 polymers with respect to their feasibility for viscous film formation for film preparation by solvent casting method. Two methods (double-casting and pasting) were found as suitable methods for bilayered film manufacturing. Results from drug release experiments indicated that slowly eroding hypromellose backing layer films revealed the best shielding of the drug-loaded layer to enable unidirectional drug release. In summary, manufacturing of bilayered films using the described methods was feasible. Furthermore, the use of an optimized experimental setup for drug dissolution studies enabled monitoring of drug release without delays in sampling. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Nanostructured ZnO films with various morphologies prepared by ultrasonic spray pyrolysis and its growing process

    NASA Astrophysics Data System (ADS)

    Ma, H. L.; Liu, Z. W.; Zeng, D. C.; Zhong, M. L.; Yu, H. Y.; Mikmekova, E.

    2013-10-01

    Nanostructured ZnO films were prepared by the ultrasonic spray pyrolysis method using Zn(CH3COO)2·2H2O as a precursor. The effects of substrate temperature (Ts) on the morphology and properties were systematically studied. As the Ts increased from 430 °C to 610 °C, the morphology of the film transforms from closed packed nanosheets to dense nanocrystalline film and then to hexagonal nanorod array. The dense film formed at a temperature of 550 °C has the lowest electric resistivity and highest carrier concentration. The optical transmittance for all prepared samples was higher than 90%. The photoluminescence (PL) properties varied with the Ts due to the internal defect difference. The growth mechanism of ZnO film involves island growth and diffusion, which was evident by observing the samples prepared at various times.

  14. Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose.

    PubMed

    Reddy, Jeevan Prasad; Rhim, Jong-Whan

    2014-09-22

    Crystallized nanocellulose (CNC) was separated from paper-mulberry (Broussonetia kazinoki Siebold) bast pulp by sulfuric acid hydrolysis method and they were blended with agar to prepare bionanocomposite films. The effect of CNC content (1, 3, 5 and 10 wt% based on agar) on the mechanical, water vapor permeability (WVP), and thermal properties of the nanocomposites were studied. Changes of the cellulose fibers in structure, morphology, crystallinity, and thermal properties of the films were evaluated using FT-IR, TEM, SEM, XRD, and TGA analysis methods. The CNC was composed of fibrous and spherical or elliptic granules of nano-cellulose with sizes of 50-60 nm. Properties of agar film such as mechanical and water vapor barrier properties were improved significantly (p<0.05) by blending with the CNC. The tensile modulus and tensile strength of agar film increased by 40% and 25%, respectively, in the composite film with 5 wt% of CNC, and the WVP of agar film decreased by 25% after formation of nanocomposite with 3 wt% of CNC. The CNC obtained from the paper-mulberry bast pulp can be used as a reinforcing agent for the preparation of bio-nanocomposites, and they have a high potential for the development of completely biodegradable food packaging materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Preparation of titanium dioxide films by sol-gel route for gas sensors

    NASA Astrophysics Data System (ADS)

    Schiopu, Vasilica; Matei, Alina; Cernica, Ileana; Podaru, Cecilia

    2009-01-01

    Semiconductor oxides such as SnO2, TiO2, WO3, ZnO2 etc. have been shown to be useful as gas sensor materials for monitoring various pollutant gases like H2S, NOx, NH3 etc. In this work, we would like to present the preparation of titanium dioxide films for gas sensor application, via the sol-gel technique. The coating solution was prepared by using titanium isopropoxide precursor, which was hydrolyzed with distilled water under the catalytic effect of different acids (HNO3, HCl or CH3COOH). Titanium dioxide films have been deposited using spin coating method and then synthesized at different temperatures. Fourier transform infrared spectroscopy observation has been used to analyze the sol-gel process. The morphology and the structure of the thin films were analyzed.

  16. Preparation of an agar-silver nanoparticles (A-AgNp) film for increasing the shelf-life of fruits.

    PubMed

    Gudadhe, Janhavi A; Yadav, Alka; Gade, Aniket; Marcato, Priscyla D; Durán, Nelson; Rai, Mahendra

    2014-12-01

    Preparation of protective coating possessing antimicrobial properties is present day need as they increase the shelf life of fruits and vegetables. In the present study, preparation of agar-silver nanoparticle film for increasing the shelf life of fruits is reported. Silver nanoparticles (Ag-NPs) biosynthesised using an extract of Ocimum sanctum leaves, were mixed with agar-agar to prepare an agar-silver nanoparticles (A-AgNp) film. This film was surface-coated over the fruits, Citrus aurantifolium (Thornless lime) and Pyrus malus (Apple), and evaluated for the determination of antimicrobial activity of A-AgNp films using disc diffusion method, weight loss and shelf life of fruits. This study demonstrates that these A-AgNp films possess antimicrobial activity and also increase the shelf life of fruits.

  17. High spin-polarization in ultrathin Co2MnSi/CoPd multilayers

    NASA Astrophysics Data System (ADS)

    Galanakis, I.

    2015-03-01

    Half-metallic Co2MnSi finds a broad spectrum of applications in spintronic devices either in the form of thin films or as spacer in multilayers. Using state-of-the-art ab-initio electronic structure calculations we exploit the electronic and magnetic properties of ultrathin Co2MnSi/CoPd multilayers. We show that these heterostructures combine high values of spin-polarization at the Co2MnSi spacer with the perpendicular magnetic anisotropy of binary compounds such as CoPd. Thus they could find application in spintronic/magnetoelectronic devices.

  18. Ultra-thin solid oxide fuel cells: Materials and devices

    NASA Astrophysics Data System (ADS)

    Kerman, Kian

    Solid oxide fuel cells are electrochemical energy conversion devices utilizing solid electrolytes transporting O2- that typically operate in the 800 -- 1000 °C temperature range due to the large activation barrier for ionic transport. Reducing electrolyte thickness or increasing ionic conductivity can enable lower temperature operation for both stationary and portable applications. This thesis is focused on the fabrication of free standing ultrathin (<100 nm) oxide membranes of prototypical O 2- conducting electrolytes, namely Y2O3-doped ZrO2 and Gd2O3-doped CeO2. Fabrication of such membranes requires an understanding of thin plate mechanics coupled with controllable thin film deposition processes. Integration of free standing membranes into proof-of-concept fuel cell devices necessitates ideal electrode assemblies as well as creative processing schemes to experimentally test devices in a high temperature dual environment chamber. We present a simple elastic model to determine stable buckling configurations for free standing oxide membranes. This guides the experimental methodology for Y 2O3-doped ZrO2 film processing, which enables tunable internal stress in the films. Using these criteria, we fabricate robust Y2O3-doped ZrO2 membranes on Si and composite polymeric substrates by semiconductor and micro-machining processes, respectively. Fuel cell devices integrating these membranes with metallic electrodes are demonstrated to operate in the 300 -- 500 °C range, exhibiting record performance at such temperatures. A model combining physical transport of electronic carriers in an insulating film and electrochemical aspects of transport is developed to determine the limits of performance enhancement expected via electrolyte thickness reduction. Free standing oxide heterostructures, i.e. electrolyte membrane and oxide electrodes, are demonstrated. Lastly, using Y2O3-doped ZrO2 and Gd2O 3-doped CeO2, novel electrolyte fabrication schemes are explored to develop oxide

  19. Nanoscale modeling for ultrathin liquid films: Spreading and coupled layering

    NASA Astrophysics Data System (ADS)

    Phillips, David Michael

    The hard disk drive (HDD) industry is currently experiencing a compound annual growth rate of 100% for the areal density. Current production drives have an areal density of 80 Gbit in-2, and drives with an areal density of 100 Gbit in-2 have been recently demonstrated. While much of this growth has been fueled by the development of new read/write heads, some of this gain was achieved by reducing the spacing between the heads and the magnetic media. This in turn reduces the spacing at the head-disk interface (HDI). The HDI in a HDD system consists of a slider, which contains the read/write heads, flying over the disk surface on an air bearing. The current designed separation distance, or fly height, is less than 10 nm. This spacing is expected to reduce to a mere 5 nm within the next few years. With the reduced fly height, intermittent contacts at the HDI become more probable. Only a thin lubricant film of perfluoropolyether (PFPE) and a sputtered carbon overcoat on the disk surface protect the slider and the stored data from mechanical and thermal damage. The PFPE film is quite thin, with a thickness of less than 2 nm or about a monolayer of molecules. During an HDI contact, the PFPE film is considered sacrificial and is often depleted in the contact area. In order to maintain adequate protection for the disk surface, PFPE molecules from the surrounding film must replenish the depleted area. This replenishment ability directly opposes the requirement that the PFPE film must not spin-off of the disk surface due to the disk rotation rate, which is as high as 10,000 RPM in current drives. To balance the PFPE films to sufficiently meet both requirements, HDD manufacturers functionalized the endgroups of the PFPE molecules to allow some portion of the lubricant film to reversibly bond with the disk overcoat. The result is a lubricant film that has a slower replenishment but does not spin-off. The work presented here focuses on the replenishment ability of thin films of

  20. Photocatalysis of zinc oxide nanotip array/titanium oxide film heterojunction prepared by aqueous solution deposition

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Kwei; Lee, Bo-Wei; Kao, Chen-Yu

    2017-05-01

    A TiO2 film was prepared on indium tin oxide (ITO)/glass by aqueous solution deposition (ASD) with precursors of ammonium hexafluoro-titanate and boric acid at 40 °C. The photocatalysis of annealed TiO2 film increases with increasing growth time and decreases with increasing growth times longer than 60 min. A ZnO nanotip array was prepared on ZnO seed layer/TiO2 film/glass by aqueous solution deposition with precursors of zinc nitrate and ammonium hydroxide at 70 °C. The photocatalysis of ASD-ZnO/ASD-TiO2 film/ITO glass can be better than that of P25.