Sample records for ultrathin transnasal esophagogastroduodenoscopy

  1. Ultrathin endoscope flexibility can predict discomfort associated with unsedated transnasal esophagogastroduodenoscopy

    PubMed Central

    Ono, Satoshi; Niimi, Keiko; Fujishiro, Mitsuhiro; Nakao, Tomoko; Suzuki, Kazushi; Ohike, Yumiko; Kodashima, Shinya; Yamamichi, Nobutake; Yamazaki, Tsutomu; Koike, Kazuhiko

    2013-01-01

    AIM: To evaluate the effects of choice of insertion route and ultrathin endoscope types. METHODS: This prospective study (January-June 2012) included 882 consecutive patients who underwent annual health checkups. Transnasal esophagogastroduodenoscopy (EGD) was performed in 503 patients and transoral EGD in 235 patients using six types of ultrathin endoscopes. Patients were given a choice of insertion route, either transoral or transnasal, prior to EGD examination. For transoral insertion, the endoscope was equipped with a thin-type mouthpiece and tongue depressor. Conscious sedation was not used for any patient. EGD-associated discomfort was assessed using a visual analog scale (VAS; no discomfort 0- maximum discomfort 10). RESULTS: Rates of preference for transnasal insertion were significantly higher in male (male/female 299/204 vs 118/117) and younger patients (56.8 ± 11.2 years vs 61.3 ± 13.0 years), although no significant difference was found in VAS scores between transoral and transnasal insertion (3.9 ± 2.3 vs 4.1 ± 2.5). Multivariate analysis revealed that gender, age, operator, and endoscope were independent significant predictors of VAS for transnasal insertion, although gender, age, and endoscope were those for transoral insertion. Further analysis revealed only the endoscopic flexibility index (EFI) as an independent significant predictor of VAS for transnasal insertion. Both EFI and tip diameter were independent significant predictors of VAS for transoral insertion. CONCLUSION: Flexibility of ultrathin endoscopes can be a predictor of EGD-associated discomfort, especially in transnasal insertion. PMID:23858379

  2. Unsedated transnasal small-caliber esophagogastroduodenoscopy in elderly and bedridden patients.

    PubMed

    Yuki, Mika; Amano, Yuji; Komazawa, Yoshinori; Fukuhara, Hiroyuki; Shizuku, Toshihiro; Yamamoto, Shun; Kinoshita, Yoshikazu

    2009-11-28

    To evaluate the safety of unsedated transnasal small-caliber esophagogastroduodenoscopy (EGD) for elderly and critically ill bedridden patients. One prospective randomized comparative study and one crossover comparative study between transnasal small-caliber EGD and transoral conventional EGD was done (Study 1). For the comparative study, we enrolled 240 elderly patients aged > 65 years old. For the crossover analysis, we enrolled 30 bedridden patients with percutaneous endoscopic gastrostomy (PEG) (Study 2). We evaluated cardiopulmonary effects by measuring arterial oxygen saturation (SpO(2)) and calculating the rate-pressure product (RPP) (pulse rate x systolic blood pressure/100) at baseline, 2 and 5 min after endoscopic intubation in Study 1. To assess the risk for endoscopy-related aspiration pneumonia during EGD, we also measured blood leukocyte counts and serum C-reactive protein (CRP) levels before and 3 d after EGD in Study 2. In Study 1, we observed significant decreases in SpO(2) during conventional transoral EGD, but not during transnasal small-caliber EGD (0.24% vs -0.24% after 2 min, and 0.18% vs -0.29% after 5 min, P = 0.034, P = 0.044). Significant differences of the RPP were not found between conventional transoral and transnasal small-caliber EGD. In Study 2, crossover analysis showed statistically significant increases of the RPP at 2 min after intubation and the end of endoscopy (26.8 and 34.6 vs 3.1 and 15.2, P = 0.044, P = 0.046), and decreases of SpO(2) (-0.8% vs -0.1%, P = 0.042) during EGD with transoral conventional in comparison with transnasal small-caliber endoscopy. Thus, for bedridden patients with PEG feeding, who were examined in the supine position, transoral conventional EGD more severely suppressed cardiopulmonary function than transnasal small-caliber EGD. There were also significant increases in the markers of inflammation, blood leukocyte counts and serum CRP values, in bedridden patients after transoral conventional EGD, but

  3. Unsedated transnasal small-caliber esophagogastroduodenoscopy in elderly and bedridden patients

    PubMed Central

    Yuki, Mika; Amano, Yuji; Komazawa, Yoshinori; Fukuhara, Hiroyuki; Shizuku, Toshihiro; Yamamoto, Shun; Kinoshita, Yoshikazu

    2009-01-01

    AIM: To evaluate the safety of unsedated transnasal small-caliber esophagogastroduodenoscopy (EGD) for elderly and critically ill bedridden patients. METHODS: One prospective randomized comparative study and one crossover comparative study between transnasal small-caliber EGD and transoral conventional EGD was done (Study 1). For the comparative study, we enrolled 240 elderly patients aged > 65 years old. For the crossover analysis, we enrolled 30 bedridden patients with percutaneous endoscopic gastrostomy (PEG) (Study 2). We evaluated cardiopulmonary effects by measuring arterial oxygen saturation (SpO2) and calculating the rate-pressure product (RPP) (pulse rate × systolic blood pressure/100) at baseline, 2 and 5 min after endoscopic intubation in Study 1. To assess the risk for endoscopy-related aspiration pneumonia during EGD, we also measured blood leukocyte counts and serum C-reactive protein (CRP) levels before and 3 d after EGD in Study 2. RESULTS: In Study 1, we observed significant decreases in SpO2 during conventional transoral EGD, but not during transnasal small-caliber EGD (0.24% vs -0.24% after 2 min, and 0.18% vs -0.29% after 5 min, P = 0.034, P = 0.044). Significant differences of the RPP were not found between conventional transoral and transnasal small-caliber EGD. In Study 2, crossover analysis showed statistically significant increases of the RPP at 2 min after intubation and the end of endoscopy (26.8 and 34.6 vs 3.1 and 15.2, P = 0.044, P = 0.046), and decreases of SpO2 (-0.8% vs -0.1%, P = 0.042) during EGD with transoral conventional in comparison with transnasal small-caliber endoscopy. Thus, for bedridden patients with PEG feeding, who were examined in the supine position, transoral conventional EGD more severely suppressed cardiopulmonary function than transnasal small-caliber EGD. There were also significant increases in the markers of inflammation, blood leukocyte counts and serum CRP values, in bedridden patients after transoral

  4. Analysis of cardiopulmonary stress during endoscopy: Is unsedated transnasal esophagogastroduodenoscopy appropriate for elderly patients?

    PubMed Central

    Uchiyama, Kazuhiko; Ishikawa, Takeshi; Sakamoto, Naoyuki; Kajikawa, Hirokazu; Takagi, Tomohisa; Handa, Osamu; Tatsumi, Yoshihide; Yagi, Nobuaki; Naito, Yuji; Itoh, Yoshito; Takemura, Shuhei

    2014-01-01

    BACKGROUND: Transnasal esophagogastroduodenoscopy (EGD) without sedation has been reported to be safe and tolerable. It has recently been used widely in Japan for the detection of upper gastrointestinal disease. Alternatively, transoral examination using a thin endoscope has also been reported to be highly tolerable. OBJECTIVE: To examine the cardiocirculatory effects of transoral versus transnasal EGD in an attempt to determine the most suitable endoscopic methods for patients ≥75 years of age. METHODS: Subjects who underwent monitoring of respiratory and circulatory dynamics without sedation during endoscopic screening examinations were enrolled at the New Ooe Hospital (Kyoto, Japan) between April 2008 and March 2009. A total of 165 patients (age ≥75 years) provided written informed consent and were investigated in the present study. Patients were randomly divided into three subgroups: UO group – thin endoscope; SO group – standard endoscope; and UT group – transnasal EGD. Percutaneous arterial blood oxygen saturation, heart rate and blood pressure were evaluated just before EGD and at five time points during EGD. After transnasal EGD, patients who had previously been examined using transoral EGD with a standard endoscope were asked about preferences for their next examination. RESULTS: There were no statistical differences in the characteristics among the groups. Percutaneous oxygen saturation in the UT group showed a transient drop compared with the SO and UO groups at the beginning of the endoscopic procedure. Heart rate showed no significant differences among the SO, UO and UT groups; Systolic blood pressure in the UO group was lower immediately after insertion compared with the SO and UT groups. The rate pressure product in the UO group was comparable with that in the UT group during endoscopy, and the SO group showed a continuously higher level than the UO and UT groups. More than one-half (54.4%) of patients were ‘willing to choose transnasal

  5. Evaluation of preferable insertion routes for esophagogastroduodenoscopy using ultrathin endoscopes

    PubMed Central

    Ono, Satoshi; Niimi, Keiko; Fujishiro, Mitsuhiro; Takahashi, Yu; Sakaguchi, Yoshiki; Nakayama, Chiemi; Minatsuki, Chihiro; Matsuda, Rie; Hirayama-Asada, Itsuko; Tsuji, Yosuke; Mochizuki, Satoshi; Kodashima, Shinya; Yamamichi, Nobutake; Ozeki, Atsuko; Matsumoto, Lumine; Ohike, Yumiko; Yamazaki, Tsutomu; Koike, Kazuhiko

    2014-01-01

    AIM: To evaluate the discomfort associated with esophagogastroduodenoscopy (EGD) using an ultrathin endoscope through different insertion routes. METHODS: This study (January 2012-March 2013) included 1971 consecutive patients [male/female (M/F), 1158/813, 57.5 ± 11.9 years] who visited a single institute for annual health checkups. Transnasal EGD was performed in 1394 patients and transoral EGD in 577. EGD-associated discomfort was assessed using a visual analog scale score (VAS score: 0-10). RESULTS: Multivariate analysis revealed gender (M vs F: 4.02 ± 2.15 vs 5.06 ± 2.43) as the only independent predictor of the VAS score in 180 patients who underwent EGD for the first time; whereas it revealed gender (M vs F 3.60 ± 2.20 vs 4.84 ± 2.37), operator, age group (A: < 39 years; B: 40-49 years; C: 50-59 years; D: 60-69 years; E: > 70 years; A/B/C/D/E: 4.99 ± 2.32/4.34 ± 2.49/4.19 ± 2.31/3.99 ± 2.27/3.63 ± 2.31), and type of insertion as independent predictors in the remaining patients. Subanalysis for gender, age group, and insertion route revealed that the VAS score decreased with age regardless of gender and insertion route, was high in female patients regardless of age and insertion route, and was low in males aged over 60 years who underwent transoral insertion. CONCLUSION: Although comprehensive analysis revealed that the insertion route may not be an independent predictor of the VAS score, transoral insertion may reduce EGD-associated discomfort in elderly patients. PMID:24803817

  6. A prospective randomized comparison of unsedated ultrathin versus standard esophagogastroduodenoscopy in routine outpatient gastroenterology practice: does it work better through the nose?

    PubMed

    Birkner, B; Fritz, N; Schatke, W; Hasford, J

    2003-08-01

    In an outpatient gastroenterological practice setting, highly effective diagnostic procedures and patient satisfaction play an important role. Ultrathin endoscopy in unsedated patients has been shown to be more cost-effective and time-efficient in comparison with standard endoscopy. A prospective randomized study was carried out in unsedated patients to compare performance, feasibility, safety, and patient tolerance between ultrathin transnasal (UT), ultrathin oral (UO), and standard (SO) esophagogastroduodenoscopy (EGD). A total of 200 of 600 eligible patients consented to participate in the study, and were randomly assigned to undergo UT, UO, or SO. Patients reported their tolerance of the procedure (anxiety, pain, gagging, and overall satisfaction; Likert scale 1-10), and the endoscopists reported the effectiveness of the procedure (handling, picture quality, and overall performance; Likert scale 1-10). Statistics were calculated using the Kruskal-Wallis test. After randomization, 65, 67, and 68 patients were allocated to the UT, UO, and SO groups, respectively. Failure to achieve complete EGD by the intended route occurred in 14 patients (22 %) in the UT group. Compared to the SO group, patients in the UT and UO groups rated anxiety before the procedure as being more intense - median score (10 % quantile estimate; 90 % quantile estimate): UT, 2.0 (1.0; 4.0); UO, 2.0 (1.0; 4.0); SO, 0.0 (0.0; 2.0); p < 0.0001), whereas SO patients experienced a higher level of anxiety during the procedure ( P < 0.0001). Pain during insertion of the endoscope was the least intense in the UO group: UT, 2.0 (1.0; 5.0); UO, 1.0 (1.0; 3.0); SO, 2.0 (1.0; 4.0); P < 0.001). Gagging during insertion was more pronounced in the UO group: UT, 2.0 (1.0; 4.0); UO, 3.0 (1.0; 7.0); SO, 2.0 (1.0; 5.0); P < 0.01). The patients' score for the overall assessment was better in the SO group ( P < 0.0001). The endoscopists' overall assessment for ultrathin EGD was poorer than for standard EGD: UT, 3

  7. Transnasal Endoscope Locked in a Bent Position Causing Difficult Withdrawal

    PubMed Central

    Kumada, Takashi; Hisanaga, Yasuhiro

    2014-01-01

    We report a rare but severe complication of routine transnasal esophagogastroduodenoscopy (EGD). The tip of a transnasal endoscope was locked in a bent position. Since the bent tip was unable to be returned to a neutral position, the snare from another endoscope inserted transorally was used to straighten it, which allowed the transnasal endoscope to be withdrawn with only mild injury to the gastric mucosa. Endoscopists should be aware of this complication and how to manage it. PMID:26157831

  8. An Ultrathin Endoscope with a 2.4-mm Working Channel Shortens the Esophagogastroduodenoscopy Time by Shortening the Suction Time

    PubMed Central

    Shinozaki, Satoshi; Miura, Yoshimasa; Ino, Yuji; Shinozaki, Kenjiro; Lefor, Alan Kawarai; Yamamoto, Hironori

    2015-01-01

    Background/Aims: Poor suction ability through a narrow working channel prolongs esophagogastroduodenoscopy (EGD). The aim of this study was to evaluate suction with a new ultrathin endoscope (EG-580NW2; Fujifilm Corp.) having a 2.4-mm working channel in clinical practice. Methods: To evaluate in vitro suction, 200 mL water was suctioned and the suction time was measured. The clinical data of 117 patients who underwent EGD were retrospectively reviewed on the basis of recorded video, and the suction time was measured by using a stopwatch. Results: In vitro, the suction time with the EG-580NW2 endoscope was significantly shorter than that with the use of an ultrathin endoscope with a 2.0-mm working channel (EG-580NW; mean ± standard deviation, 22.7±1.1 seconds vs. 34.7±2.2 seconds; p<0.001). We analyzed the total time and the suction time for routine EGD in 117 patients (50 in the EG-580NW2 group and 67 in the EG-580NW group). In the EG-580NW2 group, the total time for EGD was significantly shorter than that in the EG-580NW group (275.3±42.0 seconds vs. 300.6±46.5 seconds, p=0.003). In the EG-580NW2 group, the suction time was significantly shorter than that in the EG-580NW group (19.2±7.6 seconds vs. 38.0±15.9 seconds, p<0.001). Conclusions: An ultrathin endoscope with a 2.4-mm working channel considerably shortens the routine EGD time by shortening the suction time, in comparison with an endoscope with a 2.0-mm working channel. PMID:26668798

  9. Transnasal endoscopy: Technical considerations, advantages and limitations.

    PubMed

    Atar, Mustafa; Kadayifci, Abdurrahman

    2014-02-16

    Transnasal endoscopy (TNE) is an upper endoscopy method which is performed by the nasal route using a thin endoscope less than 6 mm in diameter. The primary goal of this method is to improve patient tolerance and convenience of the procedure. TNE can be performed without sedation and thus eliminates the risks associated with general anesthesia. In this way, TNE decreases the cost and total duration of endoscopic procedures, while maintaining the image quality of standard caliber endoscopes, providing good results for diagnostic purposes. However, the small working channel of the ultra-thin endoscope used for TNE makes it difficult to use for therapeutic procedures except in certain conditions which require a thinner endoscope. Biopsy is possible with special forceps less than 2 mm in diameter. Recently, TNE has been used for screening endoscopy in Far East Asia, including Japan. In most controlled studies, TNE was found to have better patient tolerance when compared to unsedated endoscopy. Nasal pain is the most significant symptom associated with endoscopic procedures but can be reduced with nasal pretreatment. Despite the potential advantage of TNE, it is not common in Western countries, usually due to a lack of training in the technique and a lack of awareness of its potential advantages. This paper briefly reviews the technical considerations as well as the potential advantages and limitations of TNE with ultra-thin scopes.

  10. Transnasal endoscopy: Technical considerations, advantages and limitations

    PubMed Central

    Atar, Mustafa; Kadayifci, Abdurrahman

    2014-01-01

    Transnasal endoscopy (TNE) is an upper endoscopy method which is performed by the nasal route using a thin endoscope less than 6 mm in diameter. The primary goal of this method is to improve patient tolerance and convenience of the procedure. TNE can be performed without sedation and thus eliminates the risks associated with general anesthesia. In this way, TNE decreases the cost and total duration of endoscopic procedures, while maintaining the image quality of standard caliber endoscopes, providing good results for diagnostic purposes. However, the small working channel of the ultra-thin endoscope used for TNE makes it difficult to use for therapeutic procedures except in certain conditions which require a thinner endoscope. Biopsy is possible with special forceps less than 2 mm in diameter. Recently, TNE has been used for screening endoscopy in Far East Asia, including Japan. In most controlled studies, TNE was found to have better patient tolerance when compared to unsedated endoscopy. Nasal pain is the most significant symptom associated with endoscopic procedures but can be reduced with nasal pretreatment. Despite the potential advantage of TNE, it is not common in Western countries, usually due to a lack of training in the technique and a lack of awareness of its potential advantages. This paper briefly reviews the technical considerations as well as the potential advantages and limitations of TNE with ultra-thin scopes. PMID:24567791

  11. Feasibility of transnasal endoscopy in screening for esophageal and gastric varices in patients with chronic liver disease

    PubMed Central

    de Faria, Anderson Antônio; Dias, Carlos Alberto Freitas; Dias Moetzsohn, Luciana; de Castro Carvalho, Silas; Ferrari, Tereza Abreu; Nunes Arantes, Vitor

    2017-01-01

    Background and study aims  Screening for esophageal and gastric varices is indicated for patients with portal hypertension or cirrhosis. Typically, conventional endoscopy is used; however, the need for sedation increases the costs and risks, especially in cirrhotic patients. Use of transnasal endoscopy with an ultrathin endoscope enables study of the upper gastrointestinal tract without the need for sedation. The objective of this study is to evaluate the feasibility of transnasal endoscopy in screening for esophageal and gastric varices in patients with chronic liver disease. Patients and methods  This was a prospective study in which transnasal endoscopy was carried out in patients with cirrhosis or portal hypertension who had indications for screening of esophageal and gastric varices. The following variables were evaluated: demographical data, duration of procedure, patient tolerance and acceptance, adverse events (AEs), endoscopic findings and interobserver agreement related to portal hypertension alterations ( kappa index). Results  A total of 50 patients entered the study. The most common cause of liver disease was chronic viral hepatitis (66 %). Among the cirrhotic patients, most of the patients were Child-Pugh A (74 %). In 5 patients (10 %), nasal intubation was not possible. Two patients (4 %) experienced minor epistaxis. Tolerance was excellent or good in 92 % according with a visual analogic scale. In 16 patients (32 %), esophageal varices were detected and in 2 patients (4 %) gastric varices were detected. The mean duration of the procedure was 7 minutes. Conclusions  Transnasal endoscopy is feasible, effective and well tolerated for screening of esophageal and gastric varices in patients with chronic liver disease. It can be performed in outpatient clinics safely and without the use of sedation. PMID:28691048

  12. [Exploration of transnasal endoscopic cranialbase approach].

    PubMed

    Xu, Geng; Li, Yuan; Xie, Minqiang; Wen, Weiping; Shi, Jianbo; Chen, Hexin; Lu, Jianting; Zhang, Gehua; Liu, Xian; Xu, Rui

    2002-12-01

    To study feasibility and indication of cranialbase surgery by transnasal endoscopic approach. Nine cases treated by transnasal were analysed. Those cases included foreign body, olfactory neuroblastoma, meningoma and inverted papilloma in anterior cranial fossa, sinuses sphenoidalis macrosis cyst invading middle cranial fossa, primary cholesteatoma and space occupying lesion in middle cranial fossa. The complications were not occurred in all cases. Follow-up survey 1-7 years, no-relapse was occurred. It is probability that surgery lesion be close skull base by transnasal endoscopic approach, but indication must be exactitude selected. The operator should be have firm anatomic, skilled operation and richness experience. The malignancy lesion should be compositive treatment after surgery.

  13. Transnasal endoscopic medial maxillectomy in recurrent maxillary sinus inverted papilloma.

    PubMed

    Kamel, Reda H; Abdel Fattah, Ahmed F; Awad, Ayman G

    2014-12-01

    Maxillary sinus inverted papilloma entails medial maxillectomy and is associated with high incidence of recurrence. To study the impact of prior surgery on recurrence rate after transnasal endoscopic medial maxillectomy. Eighteen patients with primary and 33 with recurrent maxillary sinus inverted papilloma underwent transnasal endoscopic medial maxillectomy. Caldwell-Luc operation was the primary surgery in 12 patients, transnasal endoscopic resection in 20, and midfacial degloving technique in one. The follow-up period ranged between 2 to 19.5 years with an average of 8.8 years. Recurrence was detected in 8/51 maxillary sinus inverted papilloma patients (15.7 %), 1/18 of primary cases (5.5 %), 7/33 of recurrent cases (21.2 %); 3/20 of the transnasal endoscopic resection group (15%) and 4/12 of the Caldwell-Luc group (33.3%). Redo transnasal endoscopic medial maxillectomy was followed by a single recurrence in the Caldwell-Luc group (25%), and no recurrence in the other groups. Recurrence is more common in recurrent maxillary sinus inverted papilloma than primary lesions. Recurrent maxillary sinus inverted papilloma after Caldwell-Luc operation has higher incidence of recurrence than after transnasal endoscopic resection.

  14. A combination of modified transnasal endoscopic maxillectomy via transnasal prelacrimal recess approach with or without radiotherapy for selected sinonasal malignancies.

    PubMed

    He, Shuangba; Bakst, Richard L; Guo, Tao; Sun, Jingwu

    2015-10-01

    An external approach for resection of sinonasal tumors is associated with increased morbidity. Therefore, we employed a modified transnasal endoscopic maxillectomy combined with pre and/or postoperative radiotherapy for early stage maxillary carcinomas. It aims to evaluate our early experience with endoscopic resection of selected malignant sinonasal tumors. The medical and radiology records of patients who underwent endonasal endoscopic resection of malignant sinonasal tumors between 2008 and 2012 were retrospectively reviewed. Ten cases of selected malignant tumor were performed to resect by modified transnasal endoscopic maxillectomy. All the patients were without evidence of disease at a mean follow-up of 26.8 months. No major complications were recorded. The mean hospitalization stay was 6.6 days. In very carefully selected cases of malignant tumors, modified transnasal endoscopic maxillectomy is acceptable. The postoperative complication rate is low, cosmetic outcome is excellent and patients do not require a long hospitalization.

  15. Comparison of endoscopic transnasal and transoral approaches to the craniovertebral junction.

    PubMed

    Seker, Askin; Inoue, Kohei; Osawa, Shigeyuki; Akakin, Akin; Kilic, Turker; Rhoton, Albert L

    2010-12-01

    The study compared the endoscopic anatomy of the transnasal and transoral approaches to the craniovertebral junction (CVJ). Structures examined and compared with both the straight and angled telescopes in 10 cadaveric specimens included the pharyngeal walls and adjacent musculature, resected anterior arch of the axis and odontoid, cruciform, axial, and apical ligaments, clival and dural openings, and the intradural exposure. There is considerable overlap at the pharyngeal level in the structures that can be viewed by the transoral and transnasal routes. The transoral approach provides a wider corridor with less restricted manipulation of instruments than the transnasal approach, but the transnasal approach provides a better view of the clivus, upper part of the CVJ, and the structures posterior to the removed odontoid and anterior arch of C1. Combining the two approaches provides significantly better access to the midline anterior CVJ than either approach alone, allows the scopes to be advanced in one cavity and the surgical instruments in the other cavity, and reduces the need to split the palate, tongue, or mandible in order to reach the target area. The transnasal approach also allows access to the superior part of the occipital condyles, paraclival areas, and hypoglossal canals without removal of the condyles, but these structures can be exposed by the transoral route only after at least partial removal of the condyles. The endoscopic transoral and transnasal approaches to the CVJ should be viewed as complementary routes as opposed to strict alternatives. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Transnasal endoscopy: no gagging no panic!

    PubMed Central

    Parker, Clare; Alexandridis, Estratios; Plevris, John; O'Hara, James; Panter, Simon

    2016-01-01

    Background Transnasal endoscopy (TNE) is performed with an ultrathin scope via the nasal passages and is increasingly used. This review covers the technical characteristics, tolerability, safety and acceptability of TNE and also diagnostic accuracy, use as a screening tool and therapeutic applications. It includes practical advice from an ear, nose, throat (ENT) specialist to optimise TNE practice, identify ENT pathology and manage complications. Methods A Medline search was performed using the terms “transnasal”, “ultrathin”, “small calibre”, “endoscopy”, “EGD” to identify relevant literature. Results There is increasing evidence that TNE is better tolerated than standard endoscopy as measured using visual analogue scales, and the main area of discomfort is nasal during insertion of the TN endoscope, which seems remediable with adequate topical anaesthesia. The diagnostic yield has been found to be similar for detection of Barrett's oesophagus, gastric cancer and GORD-associated diseases. There are some potential issues regarding the accuracy of TNE in detecting small early gastric malignant lesions, especially those in the proximal stomach. TNE is feasible and safe in a primary care population and is ideal for screening for upper gastrointestinal pathology. It has an advantage as a diagnostic tool in the elderly and those with multiple comorbidities due to fewer adverse effects on the cardiovascular system. It has significant advantages for therapeutic procedures, especially negotiating upper oesophageal strictures and insertion of nasoenteric feeding tubes. Conclusions TNE is well tolerated and a valuable diagnostic tool. Further evidence is required to establish its accuracy for the diagnosis of early and small gastric malignancies. There is an emerging role for TNE in therapeutic endoscopy, which needs further study. PMID:28839865

  17. Effect of budesonide transnasal nebulization in patients with eosinophilic chronic rhinosinusitis with nasal polyps.

    PubMed

    Wang, Chengshuo; Lou, Hongfei; Wang, Xiangdong; Wang, Yang; Fan, Erzhong; Li, Ying; Wang, Hong; Bachert, Claus; Zhang, Luo

    2015-04-01

    There is little evidence on the efficacy of glucocorticoid transnasal nebulization therapy in patients with eosinophilic chronic rhinosinusitis with nasal polyps (CRSwNP). We sought to evaluate the immunologic and remodeling effects of budesonide transnasal nebulization in patients with eosinophilic CRSwNP. Sixty patients with eosinophilic CRSwNP were randomized to receive budesonide or placebo treatment for 14 days by means of transnasal nebulization in a double-blind manner. Endoscopic polyp size scores (maximum = 6 points, Kennedy score) and visual analog scale scores for nasal symptoms were assessed before and after treatment. Similarly, polyp samples were evaluated for inflammatory cytokines, matrix metalloproteinases (MMPs), and tissue inhibitors of metalloproteinases (TIMPs) by using an immunoassay; collagen by using histochemistry; eosinophils by using hematoxylin and eosin stain; and T-cell subsets by using flow cytometry. Budesonide transnasal nebulization significantly reduced polyp size compared with placebo (mean difference between groups, -0.73 units; 95% CI, -1.15 to -0.32 units; P = .002) and improved symptoms. Polyp IL-5 and eotaxin expression decreased significantly, whereas TGF-β and IL-10 expression increased. Expression of IFN-γ and IL-17 was not altered. Budesonide transnasal nebulization consistently reduced eosinophil infiltration and TH2 cell frequency and increased natural regulatory T-cell and type 1 regulatory T-cell frequencies. Indices of remodeling, including albumin, MMP-2, MMP-7, MMP-8, and MMP-9, were significantly decreased, whereas collagen deposition and TIMP-1, TIMP-2, and TIMP-4 levels were significantly increased. Budesonide transnasal nebulization did not suppress the hypothalamic-pituitary-adrenal axis or cause any serious side effects. Short-term budesonide transnasal nebulization is an effective and safe treatment option in patients with eosinophilic CRSwNP, achieving clinical improvement by regulating remodeling

  18. Transnasal oesophagoscopy: diagnostic and management outcomes in a prospective cohort of 257 consecutive cases and practice implications.

    PubMed

    Abou-Nader, L; Wilson, J A; Paleri, V

    2014-04-01

    To determine the success rate, patient tolerability and impact of introducing transnasal oesophagoscopy on clinical practices. Prospective cohort with review of electronic patient records for outcomes. UK tertiary centre Otolaryngology Department. The cohort comprised of two hundred and fifty-seven patients, 128 females (50%) and 129 males (50%) with an age range of 20-91 years; mean age 59 years (sd 13.6). Success rates, indications, findings and outcomes of patients undergoing transnasal oesophagoscopy and impact on rigid examinations of the pharynx and oesophagus were also considered. Transnasal oesophagoscopy has a high success rate of 97%; it is well tolerated by patients, and poor views are uncommon. Pathology was detected in 44% of patients. The most common indications for transnasal oesophagoscopy were unexplained throat symptoms (50%) and dysphagia (25%). Common positive findings were hiatus hernia (7%), Barrett's oesophagus (5%), dysmotility (5%) and oesophageal candidiasis (5%). Following transnasal oesophagoscopy, 59% of patients were discharged to their referring clinician, 17% continued to undergo otolaryngology follow-up, and 13% were referred to our gastrointestinal colleagues. Following the introduction of transnasal oesophagoscopy, there was a reduction in the number of rigid examinations of the pharynx and oesophagus in the subsequent years, despite an increase in total referrals. Transnasal oesophagoscopy is a well-tolerated procedure that allows otolaryngologists to make management decisions on common referrals swiftly in the clinic setting avoiding unnecessary investigations, follow-up and referral. © 2014 John Wiley & Sons Ltd.

  19. The role of transnasal oesophagoscopy in the management of globus pharyngeus and non-progressive dysphagia.

    PubMed

    Sanyaolu, L N; Jemah, A; Stew, B; Ingrams, D R

    2016-01-01

    Introduction Transnasal oesophagoscopy is a relatively new method of examining the upper aerodigestive tract via the nasal passage as an outpatient procedure without the need for sedation. It has been shown to be a well tolerated, safe and accurate technique, that can therefore be used in the investigation of patients thought to have globus pharyngeus and other non sinister causes of dysphagia. Methods A total of 150 consecutive patients undergoing transnasal oesophagoscopy were analysed retrospectively. Results The main indications for this procedure were non-progressive dysphagia (n=68, 45%) and globus pharyngeus (n=60, 40%). Transnasal oesophagoscopy was normal in 65% of patients and 42% of patients were discharged from clinic at the same appointment with no further investigation. The most common positive findings were laryngeal erythema (13%) and oesophagitis (10%). Conclusions Transnasal oesophagoscopy is a useful adjunct to the management of patients with the symptoms of globus pharyngeus and non-progressive dysphagia.

  20. The role of transnasal oesophagoscopy in the management of globus pharyngeus and non-progressive dysphagia

    PubMed Central

    Sanyaolu, LN; Jemah, A; Stew, B; Ingrams, DR

    2016-01-01

    Introduction Transnasal oesophagoscopy is a relatively new method of examining the upper aerodigestive tract via the nasal passage as an outpatient procedure without the need for sedation. It has been shown to be a well tolerated, safe and accurate technique, that can therefore be used in the investigation of patients thought to have globus pharyngeus and other non sinister causes of dysphagia. Methods A total of 150 consecutive patients undergoing transnasal oesophagoscopy were analysed retrospectively. Results The main indications for this procedure were non-progressive dysphagia (n=68, 45%) and globus pharyngeus (n=60, 40%). Transnasal oesophagoscopy was normal in 65% of patients and 42% of patients were discharged from clinic at the same appointment with no further investigation. The most common positive findings were laryngeal erythema (13%) and oesophagitis (10%). Conclusions Transnasal oesophagoscopy is a useful adjunct to the management of patients with the symptoms of globus pharyngeus and non-progressive dysphagia. PMID:26688400

  1. Transnasal Endoscopic Optic Nerve Decompression in Post Traumatic Optic Neuropathy.

    PubMed

    Gupta, Devang; Gadodia, Monica

    2018-03-01

    To quantify the successful outcome in patients following optic nerve decompression in post traumatic unilateral optic neuropathy in form of improvement in visual acuity. A prospective study was carried out over a period of 5 years (January 2011 to June 2016) at civil hospital Ahmedabad. Total 20 patients were selected with optic neuropathy including patients with direct and indirect trauma to unilateral optic nerve, not responding to conservative management, leading to optic neuropathy and subsequent impairment in vision and blindness. Decompression was done via Transnasal-Ethmo-sphenoidal route and outcome was assessed in form of post-operative visual acuity improvement at 1 month, 6 months and 1 year follow up. After surgical decompression complete recovery of visual acuity was achieved in 16 (80%) patients and partial recovery in 4 (20%). Endoscopic transnasal approach is beneficial in traumatic optic neuropathy not responding to steroid therapy and can prevent permanent disability if earlier intervention is done prior to irreversible damage to the nerve. Endoscopic optic nerve surgery can decompress the traumatic and oedematous optic nerve with proper exposure of orbital apex and optic canal without any major intracranial, intraorbital and transnasal complications.

  2. Degenerative Pannus Mimicking Clival Chordoma Resected via an Endoscopic Transnasal Approach.

    PubMed

    Khaldi, Ahmad; Griauzde, Julius; Duckworth, Edward A M

    2011-05-01

    Lesions of the lower clivus represent a technically challenging subset of skull base disease that requires careful treatment. A 75-year-old woman with tongue atrophy was referred for resection of a presumed clival chordoma. The lesion was resected via an endoscopic transnasal transclival approach with no complications. Pathology revealed only chronic inflammatory tissue consistent with a degenerative pannus. Degenerative pannus should be included in the differential diagnosis of lower clival extradural lesions. The endoscopic transnasal transclival corridor should be considered for resection of such lesions as an alternative to larger, more morbid, traditional skull base approaches.

  3. Degenerative Pannus Mimicking Clival Chordoma Resected via an Endoscopic Transnasal Approach

    PubMed Central

    Khaldi, Ahmad; Griauzde, Julius; Duckworth, Edward A.M.

    2011-01-01

    Lesions of the lower clivus represent a technically challenging subset of skull base disease that requires careful treatment. A 75-year-old woman with tongue atrophy was referred for resection of a presumed clival chordoma. The lesion was resected via an endoscopic transnasal transclival approach with no complications. Pathology revealed only chronic inflammatory tissue consistent with a degenerative pannus. Degenerative pannus should be included in the differential diagnosis of lower clival extradural lesions. The endoscopic transnasal transclival corridor should be considered for resection of such lesions as an alternative to larger, more morbid, traditional skull base approaches. PMID:23984195

  4. Limits of the endoscopic transnasal transtubercular approach.

    PubMed

    Gellner, Verena; Tomazic, Peter V

    2018-06-01

    The endoscopic transnasal trans-sphenoidal transtubercular approach has become a standard alternative approach to neurosurgical transcranial routes for lesions of the anterior skull base in particular pathologies of the anterior tubercle, sphenoid plane, and midline lesions up to the interpeduncular cistern. For both the endoscopic and the transcranial approach indications must strictly be evaluated and tailored to the patients' morphology and condition. The purpose of this review was to evaluate the evidence in literature of the limitations of the endoscopic transtubercular approach. A PubMed/Medline search was conducted in January 2018 entering following keywords. Upon initial screening 7 papers were included in this review. There are several other papers describing the endoscopic transtubercular approach (ETTA). We tried to list the limitation factors according to the actual existing literature as cited. The main limiting factors are laterally extending lesions in relation to the optic canal and vascular encasement and/or unfavorable tumor tissue consistency. The ETTA is considered as a high level transnasal endoscopic extended skull base approach and requires excellent training, skills and experience.

  5. Changing trends in oesophageal endoscopy: a systematic review of transnasal oesophagoscopy.

    PubMed

    Sabirin, Junainah; Abd Rahman, Maharita; Rajan, Philip

    2013-01-01

    The safety, efficacy, and economic implications of using transnasal oesophagoscopy (TNE) are compared with conventional rigid or flexible oesophagoscopy for oesophageal disorders in otorhinolaryngology (ORL) clinics in this systematic review. Eleven electronic databases were searched for articles on transnasal oesophagoscopy. A total of 67 relevant titles were identified and 39 abstracts were screened of which 17 full- text articles were included in this report. There was fair level of evidence to suggest that TNE was effective for screening examination in patients with dysphagia, globus pharyngeus, and reflux symptoms and for detection of metachronous oesophageal carcinoma. TNE can also be used to biopsy suspicious lesions in the upper aerodigestive tract, placement of wireless pH capsule, transnasal balloon dilation of the oesophagus, secondary tracheoesophageal puncture, and management of foreign bodies. TNE was well tolerated and can be safely performed in an office setting with topical anaesthesia. Complications associated with TNE were mild and uncommon. There was evidence to suggest potential cost savings by performing TNE in the office setting compared with conventional investigation and examination for dysphagia. TNE may lead to a change in practice from investigation and treatment in the operating theatre or day care center to an office-based practice.

  6. Changing Trends in Oesophageal Endoscopy: A Systematic Review of Transnasal Oesophagoscopy

    PubMed Central

    Sabirin, Junainah; Abd Rahman, Maharita; Rajan, Philip

    2013-01-01

    The safety, efficacy, and economic implications of using transnasal oesophagoscopy (TNE) are compared with conventional rigid or flexible oesophagoscopy for oesophageal disorders in otorhinolaryngology (ORL) clinics in this systematic review. Eleven electronic databases were searched for articles on transnasal oesophagoscopy. A total of 67 relevant titles were identified and 39 abstracts were screened of which 17 full- text articles were included in this report. There was fair level of evidence to suggest that TNE was effective for screening examination in patients with dysphagia, globus pharyngeus, and reflux symptoms and for detection of metachronous oesophageal carcinoma. TNE can also be used to biopsy suspicious lesions in the upper aerodigestive tract, placement of wireless pH capsule, transnasal balloon dilation of the oesophagus, secondary tracheoesophageal puncture, and management of foreign bodies. TNE was well tolerated and can be safely performed in an office setting with topical anaesthesia. Complications associated with TNE were mild and uncommon. There was evidence to suggest potential cost savings by performing TNE in the office setting compared with conventional investigation and examination for dysphagia. TNE may lead to a change in practice from investigation and treatment in the operating theatre or day care center to an office-based practice. PMID:23984101

  7. Transnasal tendon suspension for the paralyzed lower eyelid.

    PubMed

    Yoo, John; Matic, Damir

    2015-08-01

    Paralytic ectropion is a significantly functional and esthetic problem leading to problems with lacrimation, corneal exposure, and poor palpebral closure. Limitations with traditional corrective procedures include poor apposition of the lid to the globe, suboptimal medial canthal position, and high recurrence rates. The objective of this study was to develop a technique of lower-lid suspension using transnasal wiring for the long-term maintenance of lid position. Twenty-three consecutive patients with complete unilateral facial nerve paralysis underwent the procedure, and they were followed up for a median of 27 months (1-73 months). Fifteen of 18 patients maintained their intraoperative lower-lid position beyond the 12-month follow-up. Three patients had a minimal scleral show at 3 months. One of these patients also developed lid laxity seen on the snap test. No perioperative complications were experienced. Transnasal wiring of the lower-lid tendon suspension provides consistent results that are maintained over time. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  8. Sinonasal organised haematoma: clinical features and successful application of modified transnasal endoscopic medial maxillectomy.

    PubMed

    Suzuki, M; Nakamura, Y; Ozaki, S; Yokota, M; Murakami, S

    2017-08-01

    Although organised haematoma often induces bone thinning and destruction similar to malignant diseases, the aetiology of organised haematoma and the optimal treatment remain unclear. This paper presents the clinical features of individuals with organised haematoma, and describes cases in which a novel modified approach was successfully applied for resection of organised haematoma in the maxillary sinus. Pre-operative examination data were evaluated retrospectively. Modified transnasal endoscopic medial maxillectomy was employed. Fourteen patients with organised haematoma were treated. Contrast-enhanced computed tomography showed heterogeneous enhancement in all patients. Eight patients underwent modified transnasal endoscopic medial maxillectomy, without complications such as facial numbness, tooth numbness, facial tingling, lacrimation and eye discharge. Dissection of the apertura piriformis and anterior maxillary wall was not necessary for any of these eight patients. No recurrence was observed. Pre-operative examinations can be helpful in determining the likelihood of organised haematoma. Modified transnasal endoscopic medial maxillectomy appears to be a safe and effective method for organised haematoma resection.

  9. An Innovate Robotic Endoscope Guidance System for Transnasal Sinus and Skull Base Surgery: Proof of Concept.

    PubMed

    Friedrich, D T; Sommer, F; Scheithauer, M O; Greve, J; Hoffmann, T K; Schuler, P J

    2017-12-01

    Objective  Advanced transnasal sinus and skull base surgery remains a challenging discipline for head and neck surgeons. Restricted access and space for instrumentation can impede advanced interventions. Thus, we present the combination of an innovative robotic endoscope guidance system and a specific endoscope with adjustable viewing angle to facilitate transnasal surgery in a human cadaver model. Materials and Methods  The applicability of the robotic endoscope guidance system with custom foot pedal controller was tested for advanced transnasal surgery on a fresh frozen human cadaver head. Visualization was enabled using a commercially available endoscope with adjustable viewing angle (15-90 degrees). Results  Visualization and instrumentation of all paranasal sinuses, including the anterior and middle skull base, were feasible with the presented setup. Controlling the robotic endoscope guidance system was effectively precise, and the adjustable endoscope lens extended the view in the surgical field without the common change of fixed viewing angle endoscopes. Conclusion  The combination of a robotic endoscope guidance system and an advanced endoscope with adjustable viewing angle enables bimanual surgery in transnasal interventions of the paranasal sinuses and the anterior skull base in a human cadaver model. The adjustable lens allows for the abandonment of fixed-angle endoscopes, saving time and resources, without reducing the quality of imaging.

  10. Transorbital and transnasal endoscopic repair of a meningoencephalocele.

    PubMed

    Schaberg, Madeleine; Murchison, Ann P; Rosen, Marc R; Evans, James J; Bilyk, Jurij R

    2011-10-01

    A 71-year-old female with a history of thyroid eye disease (TED) presented for evaluation of a skull base mass noted on neuroimaging. She had previously undergone bilateral orbital decompressions and strabismus surgery and had no neurologic symptoms. Successful resection of the menigoencephalocele and repair of the skull base defect was performed through a combined transnasal endoscopic and transorbital approach, obviating the need for craniotomy.

  11. Endoscopic transnasal odontoidectomy combined with posterior reduction to treat basilar invagination: technical note.

    PubMed

    Yu, Yong; Hu, Fan; Zhang, Xiaobiao; Ge, Junqi; Sun, Chongjing

    2013-11-01

    Transoral microscopic odontoidectomy has been accepted as a standard procedure to treat basilar invagination over the past several decades. In recent years the emergence of new technologies, including endoscopic odontoidectomy and posterior reduction, has presented a challenge to the traditional treatment algorithm. In this article, the authors describe 1 patient with basilar invagination who was successfully treated with endoscopic transnasal odontoidectomy combined with posterior reduction. The purpose of this report is to validate the effectiveness of this treatment algorithm in selected cases and describe several operative nuances and pearls based on the authors' experience. One patient with basilar invagination caused by a congenital osseous malformation underwent endoscopic transnasal odontoidectomy combined with posterior reduction in a single operative setting. The purely endoscopic transnasal odontoidectomy was first conducted with the patient supine. The favorable anatomical reduction was then achieved through a posterior approach after the patient was moved prone. The patient was extubated after recovery from anesthesia and allowed oral food intake the next day. No complications were noted, and the patient was discharged 4 days after the operation. Postoperative imaging demonstrated excellent decompression of the anterior cervicomedullary junction pathology. The patient was followed up for 12 months and remarkable neurological recovery was observed. The endoscopic transnasal odontoidectomy is a better minimally invasive approach for anterior decompression and can make the posterior reduction easier because the anterior resistant force is eliminated. The subsequent posterior reduction can make decompression of the ventral side of the cervicomedullary junction more effective because the C-2 vertebral body is pushed forward. A combination of these 2 approaches has the advantages of minimally invasive access and a faster patient recovery, and thus is a valid

  12. A novel anchorage technique for transnasal traction in rigid external maxillary distraction.

    PubMed

    Varol, A; Basa, S

    2013-12-01

    We describe an effective technique for anchorage of transnasal traction in the management of maxillary rotation during external distraction. Copyright © 2012 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  13. Endoscopic transnasal resection of anterior cranial fossa meningiomas.

    PubMed

    de Divitiis, Enrico; Esposito, Felice; Cappabianca, Paolo; Cavallo, Luigi M; de Divitiis, Oreste; Esposito, Isabella

    2008-01-01

    The extended transnasal approach, a recent surgical advancements for the ventral skull base, allows excellent midline access to and visibility of the anterior cranial fossa, which was previously thought to be approachable only via a transcranial route. The extended transnasal approach allows early decompression of the optic canals, obviates the need for brain retraction, and reduces neurovascular manipulation. Between 2004 and 2007, 11 consecutive patients underwent transnasal resection of anterior cranial fossa meningiomas--4 olfactory groove (OGM) and 7 tuberculum sellae (TSM) meningiomas. Age at surgery, sex, symptoms, and imaging studies were reviewed. Tumor size and tumor extension were estimated, and the anteroposterior, vertical, and horizontal diameters were measred on MR images. Medical records, surgical complications, and outcomes of the patients were collected. A gross-total removal of the lesion was achieved in 10 patients (91%), and in 1 patient with a TSM only a near-total (> 90%) resection was possible. Four patients with preoperative visual function defect had a complete recovery, whereas 3 patients experienced a transient worsening of vision, fully recovered within few days. In 3 patients (2 with TSMs and 1 with an OGM), a postoperative CSF leak occurred, requiring a endoscopic surgery for skull base defect repair. Another patient (a case involving a TSM) developed transient diabetes insipidus. The operative time ranged from 6 to 10 hours in the OGM group and from 4.5 to 9 hours in the TSM group. The mean duration of the hospital stay was 13.5 and 10 days in the OGM and TSM groups, respectively. Six patients (3 with OGMs and 3 with TSMs) required a blood transfusion. Surgery-related death occurred in 1 patient with TSM, in whom the tumor was successfully removed. The technique offers a minimally invasive route to the midline anterior skull base, allowing the surgeon to avoid using brain retraction and reducing manipulation of the large vessels and

  14. Clinical comparative study on Nitrous Oxide inhalation versus intravenous propofol and Midazolam sedation in Transnasal Gastroscopy.

    PubMed

    Xiaoqian, Zhou; Tao, Zhang; Bingsong, Luo; Jing, Li; Yu, Deng; Weilan, Zhong

    2017-01-01

    To investigate the Clinical practice value of nitrous oxide inhalation and intravenous propofol and midazolam sedation in transnasal gastroscopy. From December 2012 to April 2014, two hundred patients receiving painless transnasal gastroscopy on a voluntary basis were selected in Endoscopy center, The First People's Hospital of GuiYang. Patients were divided into two groups: Group-1 consisted of one hundred patients sedated by nitrous oxide inhalation and Group-2 consisted of one hundred patients sedated by intravenous propofol and midazolam. Patients were then examined by transnasal gastroscopy. Patient blood pressure, heart rate, pulse rate and oxygen saturation before, during and after gastroscopy were recorded for both groups. The duration of the gastroscopy and the time of awakening were also recorded. After examination, the patients were asked to assess the level of discomfort experiences during the gastroscopy procedure. All patients successfully underwent the transnasal gastroscopy. There were 57 males and 43 females in the nitrous oxide inhalation group with an average age of 43.11±8.27 years. The average duration of examination and time of awaking in the nitrous oxide inhalation group was of 152.7±9.80 secs and 50±7.89 secs respectively. For the intravenous propofol and midazolam sedation group, there were 53 males and 47 females with an average age of 41.26±7.98 years. The average duration of examination and time of awaking in the intravenous propofol and midazolam sedation group was of 149.07±10.25 seconds and 390±20.89 # seconds respectively. The two groups showed no significant difference in the duration of examination. There was no difference in the age or sex. The former had a less significant impact on heart rate, oxygen saturation and blood pressure, while the intravenous propofol and midazolam sedation decreased blood pressure dramatically and this effect persisted after examination. Nitrous oxide inhalation has higher safety and tolerance

  15. Simethicone for the Preparation before Esophagogastroduodenoscopy.

    PubMed

    Ahsan, Majid; Babaei, Leila; Gholamrezaei, Ali; Emami, Mohammad Hassan

    2011-01-01

    Aim. The presence of air bubbles and foam in stomach and duodenum is a common problem during esophagogastroduodenoscopy (EGD). Methods. Candidates of elective EGD received 40 mg chewable tablet of simethicone (n = 90) or placebo (n = 83), with 30 mL water, 15-30 min before the EGD. Foam/air bubbles during endoscopy were assessed and graded on a 4-point scale, and patients' satisfaction with the endoscopy was scored from 0 to 10. Results. The amount of gastric but not duodenal foam/air bubbles was significantly lower in the simethicone group compared with the placebo group (P = 0.002). Duration of endoscopy was, on average, one minute shorter in the simethicone group compared with the placebo group (P < 0.001). Patients' satisfaction with the procedure was the same in the two groups. Conclusion. Administration of simethicone prior to EGD reduces the amount of gastric foam and bubbles and provides better visibility for evaluating the mucosa. It also decreases the duration of endoscopy. Further trials are required to find the final effect of the drug on diagnosis of pathological lesions.

  16. Transnasal endoscopic management of frontal sinus mucopyocele with orbital and frontal lobe displacement as minimally invasive surgery.

    PubMed

    Bozza, F; Nisii, A; Parziale, G; Sherkat, S; Del Deo, V; Rizzo, A

    2010-03-01

    An obstructive condition of paranasal sinus secondary to surgery, trauma, flogosis or neoplasms could become a predisposing state to the occurrence of mucocele. Frontal sinus mucoceles, which can turn into mucopyoceles due to bacterial super-infections, may invade the orbit, erode the skull base and displace respectively the ocular bulb and the frontal lobe. The surgical treatment of this disease ranges from mini-invasive approaches, such as the transnasal endoscopic marsupialization, to a more aggressive surgery such as osteoplasty through coronal flap and frontal sinus exclusion by fat tissue. From 2005 to 2007, we treated with transnasal endoscopic surgery 10 patients, affected by frontal sinus mucopyoceles displacing both the ocular bulb and the frontal lobe. In the present study, we report the clinical and diagnostic features of this series, the treatment modalities and the achieved results and confirm the effectiveness of the mini-invasive transnasal endoscopic technique in the treatment of the frontal sinus mucopyocele.

  17. Transnasal endoscopic resection of a nasopharyngeal pleomorphic adenoma: a rare case report.

    PubMed

    Martínez-Capoccioni, Gabriel; Martín-Martín, Carlos; Espinosa-Restrepo, Federico

    2012-08-01

    Pleomorphic adenoma (PA) is the most common benign tumor of the major and minor salivary glands, but rarely found in the nasopharynx. A PA originating from the left lateral wall of the nasopharynx was found in a 52-year-old female who presented with nasal obstruction, left-side otalgia, aural fullness, tinnitus and subjective hearing loss. It was successfully removed by transnasal endoscopic surgery (TES) and navigator system assessed our location, due to the proximity of critical anatomic structures such as the left internal carotid. We believe that the TES for primary and recurrent nasopharyngeal benign tumors is feasible and safe in properly selected patients, due to superior functional and cosmetic results and a low complication rate. Tumor characteristics and location should be taken into account when selecting cases for the right procedure for this lesions; transnasal endoscopic surgery is safe and preferable, carrying less potential morbidity compared to open procedures.

  18. A new modified speculum guided single nostril technique for endoscopic transnasal transsphenoidal surgery: an analysis of nasal complications.

    PubMed

    Waran, Vicknes; Tang, Ing Ping; Karuppiah, Ravindran; Abd Kadir, Khairul Azmi; Chandran, Hari; Muthusamy, Kalai Arasu; Prepageran, Narayanan

    2013-12-01

    Abstract The endoscopic transnasal, transsphenoidal surgical technique for pituitary tumour excision has generally been regarded as a less invasive technique, ranging from single nostril to dual nostril techniques. We propose a single nostril technique using a modified nasal speculum as a preferred technique. We initially reviewed 25 patients who underwent pituitary tumour excision, via endoscopic transnasal transsphenoidal surgery, using this new modified speculum-guided single nostril technique. The results show shorter operation time with reduced intra- and post-operative nasal soft tissue injuries and complications.

  19. Simethicone for the Preparation before Esophagogastroduodenoscopy

    PubMed Central

    Ahsan, Majid; Babaei, Leila; Gholamrezaei, Ali; Emami, Mohammad Hassan

    2011-01-01

    Aim. The presence of air bubbles and foam in stomach and duodenum is a common problem during esophagogastroduodenoscopy (EGD). Methods. Candidates of elective EGD received 40 mg chewable tablet of simethicone (n = 90) or placebo (n = 83), with 30 mL water, 15–30 min before the EGD. Foam/air bubbles during endoscopy were assessed and graded on a 4-point scale, and patients' satisfaction with the endoscopy was scored from 0 to 10. Results. The amount of gastric but not duodenal foam/air bubbles was significantly lower in the simethicone group compared with the placebo group (P = 0.002). Duration of endoscopy was, on average, one minute shorter in the simethicone group compared with the placebo group (P < 0.001). Patients' satisfaction with the procedure was the same in the two groups. Conclusion. Administration of simethicone prior to EGD reduces the amount of gastric foam and bubbles and provides better visibility for evaluating the mucosa. It also decreases the duration of endoscopy. Further trials are required to find the final effect of the drug on diagnosis of pathological lesions. PMID:21826120

  20. Results of transnasal transostial sphenoidotomy in 79 cases of chronic sphenoid sinusitis.

    PubMed

    Massoubre, J; Saroul, N; Vokwely, J-E; Lietin, B; Mom, T; Gilain, L

    2016-09-01

    This study was designed to retrospectively review the postoperative results of transnasal transostial sphenoidotomy in 79 patients with isolated chronic sphenoid sinusitis operated between 1995 and 2013 and evaluate the recurrence rate due to postoperative closure of the sphenoidotomy. Seventy-nine patients, 44 women and 35 men (M:F sex ratio: 0.79) aged 10 to 84 years (mean age: 48), were included. The most common presenting symptom was headache in 61% of cases. Visual disturbances were present in three cases. The diagnostic work-up comprised nasal endoscopy, computed tomography (CT) and magnetic resonance imaging (MRI) of the sinuses. The surgical indication was based on failure of antibiotic therapy and/or the nature and severity of sphenoid sinusitis. All patients were operated by endoscopic transnasal transostial sphenoidotomy. Samples were taken for histological, bacteriological and mycological examination. No intraoperative or immediate postoperative complications were observed. Nature of the lesion: forty-seven patients (59.5%) presented nonspecific inflammatory lesions with negative bacterial or fungal culture and inflammatory mucosal changes, 19 patients (24%) had fungal sinusitis presenting as a fungus ball and 13 patients (16.4%) had documented bacterial sinusitis. Mean postoperative follow-up was 7.4 months (range: 6-48). No recurrence of the sinusitis or symptoms was observed in 71 cases (89.8%). Recurrence: eight cases (10.2%) of postoperative closure of the sphenoidotomy were observed, requiring one (6 cases) or several (2 cases) reoperations with a mean of 16.4 months after the initial procedure. Symptoms of recurrence consisted of varying degrees of headache, with similar symptoms to those of the first episode in 7 cases, and retro-orbital headache in 1 case. Reoperation was performed via a transnasal transostial approach in 6 cases and a transethmoidal approach in 2 cases. The transnasal transostial surgical approach is a safe and

  1. Infraorbital nerve transposition to expand the endoscopic transnasal maxillectomy.

    PubMed

    Salzano, Giovanni; Turri-Zanoni, Mario; Karligkiotis, Apostolos; Zocchi, Jacopo; Dell'Aversana Orabona, Giovanni; Califano, Luigi; Battaglia, Paolo; Castelnuovo, Paolo

    2017-02-01

    The infraorbital nerve (ION) is a terminal branch of the maxillary nerve (V2) providing sensory innervation to the malar skin. It is sometimes necessary to sacrifice the ION and its branches to obtain adequate maxillary sinus exposure for radical resection of sinonasal tumors. Consequently, patients suffer temporary or permanent paresthesia, hypoestesthia, and neuralgia of the face. We describe an innovative technique used for preservation of the ION while removing the anterior, superior, and lateral walls of the maxillary sinus through a medial endoscopic transnasal maxillectomy. All patients who underwent transnasal endoscopic maxillectomy with ION transposition in our institute were retrospectively reviewed. Two patients were identified who had been treated for sinonasal cancers using this approach. No major complications were observed. Transient loss of ION function was observed with complete recovery of skin sensory perception within 6 months of surgery. One patient referred to a mild permanent anesthesia of the upper incisors. No diplopia or enophthalmos were encountered in any of the patients. The ION transposition is useful for selected cases of benign and malignant sinonasal tumors that do not infiltrate the ION itself but involve the surrounding portion of the maxillary sinus. Anatomic preservation of the ION seems to be beneficial to the postoperative quality of life of such patients. © 2016 ARS-AAOA, LLC.

  2. Time to competency, reliability of flexible transnasal laryngoscopy by training level: a pilot study.

    PubMed

    Brook, Christopher D; Platt, Michael P; Russell, Kimberly; Grillone, Gregory A; Aliphas, Avner; Noordzij, J Pieter

    2015-05-01

    To determine the progression of flexible transnasal laryngoscopy reliability and competency in otolaryngology residency training. Prospective case control study. Academic otolaryngology department. Medical students, otolaryngology residents, and otolaryngology attending physicians. Fourteen otolaryngology residents from PGY-1 to PGY-5 and 3 attending otolaryngologists viewed 25 selected and digitally recorded flexible transnasal laryngoscopies. The evaluators were asked to rate 13 items relating to abnormalities in the oropharynx, hypopharynx, larynx, and subglottis. The level of concern and level of comfort with the diagnosis were assessed. Intraclass correlations were calculated for each topic and by level of training to determine reliability within each class and compare competency versus attending interpretations. Intraclass correlation of residents compared to attending physicians demonstrated significant improvements by year for left and right vocal fold immobility, subglottic stenosis, laryngeal mass, left and right vocal cord abnormalities, and level of concern. Additionally, pooled vocal cord mobility and pooled results in categories with good attending reliability demonstrated stepwise improvement as well. For these categories, resident reliability was found to be statistically similar to attending physicians in all categories by PGY-3. There were no trends for base of tongue abnormalities, pharyngeal abnormalities, and pharyngeal and hypopharyngeal masses. Resident competency for flexible transnasal laryngoscopy progresses during residency to reliability with attending otolaryngologists by the PGY-3 year over key facets of the examination. © American Academy of Otolaryngology-Head and Neck Surgery Foundation 2015.

  3. Can the 1.8 mm transnasal biopsy forceps instead of standard 2.2 mm alter rapid urease test and histological diagnosis?

    PubMed

    Jeon, Su Jin; Shin, Sung Jae; Lee, Kee Myung; Lim, Sun Kyu; Lee, Yoon Chul; Lee, Myung Hee; Hwang, Jae Cheol; Cheong, Jae Youn; Yoo, Byung Moo; Kim, Jin Hong

    2012-08-01

    Biopsy specimens are taken during transnasal esophagogastroduodenoscopy with 1.8 mm forceps. The aims of this study were to compare the concordance of the Campylobacter-like organism (CLO) test and histological diagnoses between biopsies taken with 1.8 mm and 2.2 mm forceps and to determine whether the concordance of the CLO test could be improved by increasing the number of specimens using 1.8 mm forceps. A total of 200 patients were enrolled. We first performed the CLO test twice using each sample taken with both forceps in 100 patients. The CLO test was conducted three times again after confirming the difference in the CLO test between two forceps: (i) one sample with 1.8 mm forceps; (ii) two with 1.8 mm; and (iii) one with 2.2 mm in the other 100 patients. Additionally, each specimen was taken from the same gastric lesions in 200 patients for the histological diagnosis using both forceps types. The concordance rate of the CLO test between each sample with 1.8 mm and 2.2 mm forceps was 83% (κ-value, 0.64), and that between two samples with 1.8 mm and one with 2.2 mm was 92% (κ-value, 0.83). The concordance rate of the histological diagnosis with 1.8 and 2.2 mm was 97% (κ-value, 0.84). At least two samples using 1.8 mm forceps might be needed to obtain similar results on the CLO test using 2.2 mm. But, the size difference between two forceps did not influence the histological diagnosis. © 2012 Journal of Gastroenterology and Hepatology Foundation and Blackwell Publishing Asia Pty Ltd.

  4. Fatal antiphospholipid syndrome following endoscopic transnasal-transsphenoidal surgery for a pituitary tumor: A case report.

    PubMed

    Li, Chiao-Zhu; Li, Chiao-Ching; Hsieh, Chih-Chuan; Lin, Meng-Chi; Hueng, Dueng-Yuan; Liu, Feng-Chen; Chen, Yuan-Hao

    2017-01-01

    The fatal type of antiphospholipid syndrome is a rare but life-threating condition. It may be triggered by surgery or infection. Endoscopic transnasal-transsphenoidal surgery is a common procedure for pituitary tumor. We report a catastrophic case of a young woman died of fatal antiphospholipid syndrome following endoscopic transnasal-transsphenoidal surgery. A 31-year-old woman of a history of stroke received endoscopic transnasal-transsphenoidal surgery for a pituitary tumor. The whole procedure was smooth. However, the patient suffered from acute delirium on postoperative day 4. Then, her consciousness became comatose state rapidly with dilatation of pupils. Urgent magnetic resonance imaging of brain demonstrated multiple acute lacunar infarcts. The positive antiphosphoipid antibody and severe thrombocytopenia were also noted. Fatal antiphospholipid syndrome was diagnosed. Plasma exchange, corticosteroids, anticoagulant agent were prescribed. The hemodynamic condition was gradually stable. However, the consciousness was still in deep coma. The patient died of organ donation 2 months later. If patients have a history of cerebral stroke in their early life, such as a young stroke, the APS and higher risk of developing fatal APS after major surgery should be considered. The optimal management of APS remains controversial. The best treatment strategies are only early diagnosis and aggressive therapies combing of anticoagulant, corticosteroid, and plasma exchange. The intravenous immunoglobulin is prescribed for patients with refractory APS.

  5. Rapid Induction of Therapeutic Hypothermia Using Transnasal High Flow Dry Air

    PubMed Central

    Chava, Raghuram; Raghavan, Madhavan Srinivas; Halperin, Henry; Maqbool, Farhan; Geocadin, Romergryko; Quinones-Hinojosa, Alfredo; Kolandaivelu, Aravindan; Rosen, Benjamin A.

    2017-01-01

    Early induction of therapeutic hypothermia (TH) is recommended in out-of-hospital cardiac arrest (CA); however, currently no reliable methods exist to initiate cooling. We investigated the effect of high flow transnasal dry air on brain and body temperatures in adult porcine animals. Adult porcine animals (n = 23) under general anesthesia were subject to high flow of transnasal dry air. Mouth was kept open to create a unidirectional airflow, in through the nostrils and out through the mouth. Brain, internal jugular, and aortic temperatures were recorded. The effect of varying airflow rate and the air humidity (0% or 100%) on the temperature profiles were recorded. The degree of brain cooling was measured as the differential temperature from baseline. A 10-minute exposure of high flow dry air caused rapid cooling of brain and gradual cooling of the jugular and the aortic temperatures in all animals. The degree of brain cooling was flow dependent and significantly higher at higher airflow rates (0.8°C ± 0.3°C, 1.03°C ± 0.6°C, and 1.3°C ± 0.7°C for 20, 40, and 80 L, respectively, p < 0.05 for all comparisons). Air temperature had minimal effect on the brain cooling over 10 minutes with similar decrease in temperature at 4°C and 30°C. At a constant flow rate (40 LPM) and temperature, the degree of cooling over 10 minutes during dry air exposure was significantly higher compared to humid air (100% saturation) (1.22°C ± 0.35°C vs. 0.21°C ± 0.12°C, p < 0.001). High flow transnasal dry air causes flow dependent cooling of the brain and the core temperatures in intubated porcine animals. The mechanism of cooling appears to be evaporation of nasal mucus as cooling is mitigated by humidifying the air. This mechanism may be exploited to initiate TH in CA. PMID:27635468

  6. Rapid Induction of Therapeutic Hypothermia Using Transnasal High Flow Dry Air.

    PubMed

    Chava, Raghuram; Zviman, Menekhem; Raghavan, Madhavan Srinivas; Halperin, Henry; Maqbool, Farhan; Geocadin, Romergryko; Quinones-Hinojosa, Alfredo; Kolandaivelu, Aravindan; Rosen, Benjamin A; Tandri, Harikrishna

    2017-03-01

    Early induction of therapeutic hypothermia (TH) is recommended in out-of-hospital cardiac arrest (CA); however, currently no reliable methods exist to initiate cooling. We investigated the effect of high flow transnasal dry air on brain and body temperatures in adult porcine animals. Adult porcine animals (n = 23) under general anesthesia were subject to high flow of transnasal dry air. Mouth was kept open to create a unidirectional airflow, in through the nostrils and out through the mouth. Brain, internal jugular, and aortic temperatures were recorded. The effect of varying airflow rate and the air humidity (0% or 100%) on the temperature profiles were recorded. The degree of brain cooling was measured as the differential temperature from baseline. A 10-minute exposure of high flow dry air caused rapid cooling of brain and gradual cooling of the jugular and the aortic temperatures in all animals. The degree of brain cooling was flow dependent and significantly higher at higher airflow rates (0.8°C ± 0.3°C, 1.03°C ± 0.6°C, and 1.3°C ± 0.7°C for 20, 40, and 80 L, respectively, p < 0.05 for all comparisons). Air temperature had minimal effect on the brain cooling over 10 minutes with similar decrease in temperature at 4°C and 30°C. At a constant flow rate (40 LPM) and temperature, the degree of cooling over 10 minutes during dry air exposure was significantly higher compared to humid air (100% saturation) (1.22°C ± 0.35°C vs. 0.21°C ± 0.12°C, p < 0.001). High flow transnasal dry air causes flow dependent cooling of the brain and the core temperatures in intubated porcine animals. The mechanism of cooling appears to be evaporation of nasal mucus as cooling is mitigated by humidifying the air. This mechanism may be exploited to initiate TH in CA.

  7. Transnasal stereotactic surgery of pituitary adenomas concomitant with acromegaly.

    PubMed

    Metyolkina, L; Peresedov, V

    1995-01-01

    Since 1960 we have performed stereotactic transsphenoidal cryohypophysectomy in 70 patients with pituitary adenomas, 42 women and 28 men, aged 11-59 years. The dominant clinical syndrome was acromegaly in 50 patients, galactorrhea in 9, amenorrhea in 5, adiposogenital dystrophy in 4 and gigantism with mild endocrine symptomatology in 2 patients. In 67 patients the histological structure of the tumor was established by biopsy (50 patients with eosinophil adenoma, 10 with mixed-type adenoma, 4 with chromophobe adenoma and 3 with basophil adenoma). Somatotropic hormone, human growth hormone, prolactin, ACTH and 17-ketosteroid levels indicated active/inactive adenomas. In 42 cases the adenoma was only intrasellar, which was confirmed by contrast X-ray investigations, CT scanning, angiography and ophthalmological investigation. Transnasal stereotactic cryohypophysectomy was performed in all 70 cases using a stereotactic apparatus especially designed for operations on the pituitary. All patients (except 2) tolerated the operation well. No complications occurred. Vision deteriorated after operation in 1 patient. Thrombosis of the left middle cerebral artery developed in another patient. All the other patients noted improvement directly after operation - rapid diminution of signs of acromegaly and rapid restoration of normal values in hormonal tests. Six patients with continuing growth of the tumor underwent a second operation 1.5-6 years after the first operation. We conclude from our own clinical experience and information from the literature that transnasal stereotactic cryodestruction is highly effective and relatively safe in the management of pituitary adenoma.

  8. A silastic sheet found during endoscopic transnasal dacryocystorhinostomy for acute dacryocystitis.

    PubMed

    Choi, Jin Seok; Lee, Jong Hyeok; Paik, Hae Jung

    2006-03-01

    To report the case of a silastic sheet that was found during an endoscopic transnasal dacryocystorhinostomy for treatment of acute dacryocystitis with necrosis of the lacrimal sac. A thirty-two year old male presented with painful swelling on the nasal side of his left lower lid two weeks prior to visiting this clinic. Fourteen years ago, the patient was involved in a traffic accident and underwent surgery to reconstruct the ethmoidal sinus. Lacrimal sac massage showed a regurgitation of a purulent discharge from the left lower punctum. Therefore, the patient was diagnosed with acute dacryocystitis and an endoscopic transnasal dacryocystostomy was performed the next day. The surgical finding showed severe necrosis around the lacrimal sac and a 20 x 15-mm sized silastic sheet was found crumpled within the purulent discharge. The sheet was removed, the lacrimal sac was irrigated with an antibiotic solution, and a silicone tube was intubated into the lacrimal pathway. After surgery, the painful swelling on the nasal side of left lower lid resolved gradually, and there were no symptomatic complications three months later. We report the first case where a silastic sheet applied during a facial reconstruction had migrated adjacent to the lacrimal sac resulting in severe inflammation.

  9. A Silastic Sheet found during Endoscopic Transnasal Dacryocystorhinostomy for Acute Dacryocystitis

    PubMed Central

    Choi, Jin Seok; Paik, Hae Jung

    2006-01-01

    Purpose To report the case of a silastic sheet that was found during an endoscopic transnasal dacryocystorhinostomy for treatment of acute dacryocystitis with necrosis of the lacrimal sac. Methods A thirty-two year old male presented with painful swelling on the nasal side of his left lower lid two weeks prior to visiting this clinic. Fourteen years ago, the patient was involved in a traffic accident and underwent surgery to reconstruct the ethmoidal sinus. Lacrimal sac massage showed a regurgitation of a purulent discharge from the left lower punctum. Therefore, the patient was diagnosed with acute dacryocystitis and an endoscopic transnasal dacryocystostomy was performed the next day. Results The surgical finding showed severe necrosis around the lacrimal sac and a 20 × 15-mm sized silastic sheet was found crumpled within the purulent discharge. The sheet was removed, the lacrimal sac was irrigated with an antibiotic solution, and a silicone tube was intubated into the lacrimal pathway. After surgery, the painful swelling on the nasal side of left lower lid resolved gradually, and there were no symptomatic complications three months later. Conclusions We report the first case where a silastic sheet applied during a facial reconstruction had migrated adjacent to the lacrimal sac resulting in severe inflammation. PMID:16768193

  10. Coblation assisted transnasal endoscopic resection of nasopharyngeal cyst: 10 years experience and outcomes

    PubMed Central

    Wang, Qinying; Chen, Haihong; Wang, Shenqing

    2015-01-01

    Objectives: To determine the outcomes of coblation assisted transnasal endoscopic resection of nasopharyngeal cyst. Method: Retrospective chart review outcomes in 12 patients who underwent endoscopic resect cysts of the nasopharynx at our department between 2001 and 2010. Twelve patient, aged 28 to 71 years, with cysts of the nasopharynx. The outcome variables of complications and the rate of recurrence were analyzed, respectively. Results: In 12 cases, retention cysts in 2 cases, branchial cyst in 1 case, adenoid middle fossa cyst infection in 6 cases, Tornwaldt’s cyst in 3 cases. The use of the coblation device was associated with a significant decrease in blood loss. There were no postoperative complications, and the overall follow-up period was 2-7 years and shows no signs of recurrence. Conclusions: We describe transnasal endoscopic procedures to resect cysts of the nasopharynx. We found that radiofrequency coblation is a useful and safe tool associated with minimal blood loss in the resection of these cysts. In our experience, it has been a highly successful, safe, and effective procedure. PMID:26131108

  11. Ultrathin Shape Change Smart Materials.

    PubMed

    Xu, Weinan; Kwok, Kam Sang; Gracias, David H

    2018-02-20

    With the discovery of graphene, significant research has focused on the synthesis, characterization, and applications of ultrathin materials. Graphene has also brought into focus other ultrathin materials composed of organics, polymers, inorganics, and their hybrids. Together, these ultrathin materials have unique properties of broad significance. For example, ultrathin materials have a large surface area and high flexibility which can enhance conformal contact in wearables and sensors leading to improved sensitivity. When porous, the short transverse diffusion length in these materials allows rapid mass transport. Alternatively, when impermeable, these materials behave as an ultrathin barrier. Such controlled permeability is critical in the design of encapsulation and drug delivery systems. Finally, ultrathin materials often feature defect-free and single-crystal-like two-dimensional atomic structures resulting in superior mechanical, optical, and electrical properties. A unique property of ultrathin materials is their low bending rigidity, which suggests that they could easily be bent, curved, or folded into 3D shapes. In this Account, we review the emerging field of 2D to 3D shape transformations of ultrathin materials. We broadly define ultrathin to include materials with a thickness below 100 nm and composed of a range of organic, inorganic, and hybrid compositions. This topic is important for both fundamental and applied reasons. Fundamentally, bending and curving of ultrathin films can cause atomistic and molecular strain which can alter their physical and chemical properties and lead to new 3D forms of matter which behave very differently from their planar precursors. Shape change can also lead to new 3D architectures with significantly smaller form factors. For example, 3D ultrathin materials would occupy a smaller space in on-chip devices or could permeate through tortuous media which is important for miniaturized robots and smart dust applications. Our

  12. [The efficacy and safety of budesonide inhalation suspension via transnasal nebulization compared with oral corticosteroids in chronic rhinosinusitis with nasal polyps].

    PubMed

    Lou, Hongfei; Wang, Chengshuo; Zhang, Luo

    2015-05-01

    To evaluate the efficacy and safety of a short course of nebulized budesonide via transnasal inhalation in chronic rhinosinusitis with nasal polyps. Fifty patients with severe eosinophilic nasal polyps were randomized devided into study group (n = 25) and control group (n = 25). The study group received budesonide inhalation suspension (1 mg twice daily) via transnasal nebulization for one week and the control group received oral prednisone (24 mg QD). Visual analogue scales (VAS) of nasal symptoms, endoscopic polyp scores (kennedy scores) and morning serum cortisol concentrations were assessed in both groups pre- and post-treatment. Operation time and surgical field bleeding were evaluated. Four subjects dropped out in control group. Budesonide transnasal nebulization caused a significant improvement in all nasal symptoms especially nasal obstruction (baseline: 8.25 ± 0.53; after treatment: 4.97 ± 0.97, P < 0.01) and reduced polyp size significantly (baseline: 4.64 ± 0.63; after treatment: 3.40 ± 0.76, P < 0.01) compared to pre-treatment. The patients treated with oral prednisone, however, showed more obvious improvement in nasal symptoms and polyp size, shorter operation time and better surgical field than budesonide group. Additionally, the morning serum cortisol concentration was mildly decreased after one week treatment in budesonide group [baseline (17.18 ± 2.83) μg/dl, after treatment (16.24 ± 2.93) μg/dl, P > 0.05], but all values were still located in normal range (normal range: 5-25 μg/dl). Conversely, the morning serum cortisol concentration in oral prednisone group was lower than normal limit [baseline (18.19 ± 2.81) μg/dl, after treatment (2.26 ± 0.70) μg/dl, P < 0.01]. Twice daily budesonide transnasal nebulization is an effective and safe treatment as evidenced by significant improvements in nasal symptoms and reduction in polyp size, coupled with an absence of hypothalamic-pituitary-adrenal axis suppression, which is safer than the

  13. Transnasal Endoscopic Biopsy Approach to Atlas Tumor with X-ray Assisted and Related Radiographic Measure.

    PubMed

    Li, Zhen-Feng; Shao, Xian-Hao; Zhang, Li-Qiang; Yang, Zhi-Ping; Li, Xin; Yang, Qiang; Li, Jian-Min

    2016-05-01

    To develop an endoscopic transnasal approach to atlas tumors and study its practicability. This article comprises two components: an illustrative case report and observational data on 50 volunteers. As to the case report, a 34 year old man presented with occipital pain for more than 3 months and underwent systematic investigation in Qilu Hospital of Shandong University. CT and MRI scans showed bony destruction in the craniovertebral junction (CVJ) suggestive of tumor. Via an endoscopic transnasal approach to the suspected atlas tumor through the inferior nasal meatus, a Gallini biopsy needle was used to obtain tissue for examination. The procedure was performed endoscopically with double orientation X-ray guidance and coaxial technology after establishing the shortest distance for the biopsy track and range of target tissue and was assisted by manual palpation. As to the observational data, 50 volunteers underwent atlas-related morphometric image measurement using gemstone CT equipment. Biopsy track angles, range for biopsy of the atlas and biopsy track distances were measured by a blinded operator on CT images. pathological examination of the biopsy resulted in diagnosis of a chordoma. There were no complications such as bleeding, infection or spinal cord injury. One month later, the patient underwent tumor resection and reconstruction in other hospital and the diagnosis of chordoma was confirmed by pathological examination of the resected specimen. Observational data: measurements obtained from CT scans of the 50 volunteers were as follows. Biopsy track angles: mean leaning inside angle 3.53° ± 0.39° and mean posterior slope angle 13.05° ± 1.39°. Range for atlas biopsy: transverse diameter 11.84 ± 1.24 mm and longitudinal diameter 9.67 ± 0.90 mm. Biopsy track distances: from atlas to nostril, and to anterior and posterior edges of the inferior turbinate mucosa were 94.52 ± 5.03 mm, 78.21 ± 4.63 mm, and 33.51 ± 3.13

  14. Expanded Endoscopic Transnasal Approach to the Chordoid Glioma of the Third Ventricle : The First Case Ever Reported.

    PubMed

    Zeinalizadeh, Mehdi; Sadrehosseini, Seyed Mousa; Tayebi Meybodi, Keyvan; Sharifabadi, Ali Heidari

    2016-11-01

    Chordoid glioma of the third ventricle is a rare and challenging tumor to surgery because of its unique anatomical location and its close juxtaposition to the neurovascular structures and hypothalamus. The authors report a case of chordoid glioma of the third ventricle in a 43-year-old woman, who presented with headache and somnolence. The tumor was approached by endoscopic transnasal technique with a favorable result. Histopathologic examination disclosed a neoplastic tissue composed of eosinophilic epithelioid cells, mucinous, periodic acid Schiff-diastase positive, extracellular matrix, and scattered lymphoplasmacytic infiltrates. The best treatment option remains controversial. Customarily, the surgical route to remove chordoid glioma is transcranial; however, the undersurface of the optic chiasm and optic nerves preclude an adequate surgical visualization. In contrast, an expanded endoscopic transnasal approach provides a direct midline corridor to this region without any brain retraction.

  15. Transnasal flexible esophagoscopy (TNE): an evaluation of the patient's experience and time management.

    PubMed

    Streckfuss, Alexandra; Bosch, Nikolaus; Plinkert, Peter K; Baumann, Ingo

    2014-02-01

    The aim of this study was to evaluate patient's experience when performing transnasal flexible endoscopy using EndoSheath Technology without sedation in an ENT outpatient department. Patients were seen at the laryngological clinic of the Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Heidelberg, presenting with complaints of reflux like throat cleaning, persistent cough, globus sensation, heartburn, or voice problems. First, we performed stroboscopy. In cases where physical examination findings revealed the presence of LPR, we performed a transnasal flexible esophagoscopy (TNE) using sterile EndoSheath Technology under local anesthesia. 55 patients were investigated and completed a questionnaire on subjective discomfort that they felt during the procedure. The different steps of the examination were assessed separately. Complications were noted down by the surgeon. All patients underwent a complete examination of the upper aerodigestive tract. The time needed for preparation, examination and cleaning measures was recorded as well. The average preparation time for each examination was 24 min. No complications were observed during the procedure. The procedure was well tolerated by all patients and was classified on average as "low-grade unpleasant". In summary, TNE is a safe, quick and well-tolerated procedure that can be performed in a regular examination room under local anesthesia without sedation.

  16. Treatment of spontaneous esophageal rupture with transnasal thoracic drainage and temporary esophageal stent and jejunal feeding tube placement.

    PubMed

    Wu, Gang; Zhao, Yan Shi; Fang, Yi; Qi, Yu; Li, Xiangnan; Jiao, Dechao; Ren, Kewei; Han, Xinwei

    2017-01-01

    Spontaneous rupture of the esophagus is a rare but life-threatening thoracic emergency, with high rates of clinical misdiagnosis and mortality. This article summarizes our experience in the treatment of spontaneous esophageal rupture with transnasal thoracic drainage and temporary esophageal stent and jejunal feeding tube placement. We retrospectively assessed the medical records of 19 patients with spontaneous esophageal rupture treated using our intervention protocol. Patients received local anesthesia and sedation prior to undergoing transnasal drainage catheter placement into the thoracic abscess cavity, followed by temporary esophageal stent and jejunal feeding tube placement. After the operation, abscess lavage, nutritional support, and anti-inflammatory treatment were given. The transnasal thoracic drainage catheter, esophageal stent, and feeding tube were removed after the healing of the abscess cavity. In all, 19 covered esophageal stents were placed in 19 patients with spontaneous esophageal rupture. All operations were technically successful. After an average of 84.06 days, the stents were successfully removed from 17 patients. No cases of massive hemorrhage, esophageal rupture, or other complications occurred during stent removal. An 82-year-old patient died of heart failure 2 months after the operation. One patient died of sudden massive hematemesis and hematochezia 55 days after the operation. In one patient, the esophageal injury failed to heal completely. Our treatment protocol is simple, minimally invasive, and efficacious and may be an alternative for patients who are not candidates for surgery, have a high risk of postoperative complications, or wish to undergo minimally invasive surgery. Therapeutic study, level V.

  17. Transnasal endoscopic approach with powered instrumentation for treating squamous papilloma in the nasopharyngeal surface of the soft palate.

    PubMed

    Lee, J-H; Lee, Y-O; Lee, C-H; Cho, K-S

    2013-05-01

    To demonstrate a safe and effective method for complete resection of squamous papilloma in the nasopharyngeal surface of the soft palate. This technique was used on a patient in whom the papilloma had twice recurred following uvulopalatopharyngoplasty. Case report and review of the relevant literature. The patient reported in this paper had recurrent squamous papilloma in the nasopharyngeal surface of the soft palate following uvulopalatopharyngoplasty. He also suffered from nasal regurgitation when drinking water. This lesion, which was difficult to access, was successfully treated via a transnasal endoscopic approach using powered instrumentation. This case report highlights a novel approach for the complete removal of a recurrent papilloma in a relatively inaccessible location. Compared with a transoral approach such as uvulopalatopharyngoplasty, the transnasal endoscopic approach using powered instrumentation could provide a safer, faster, easier and less invasive means of treating squamous papilloma in the nasopharyngeal surface of the soft palate, especially for a lesion that recurs following a transoral approach.

  18. Transnasal endoscopic evaluation of swallowing: a bedside technique to evaluate ability to swallow pureed diets in elderly patients with dysphagia.

    PubMed

    Sakamoto, Torao; Horiuchi, Akira; Nakayama, Yoshiko

    2013-08-01

    Endoscopic evaluation of swallowing (EES) is not commonly used by gastroenterologists to evaluate swallowing in patients with dysphagia. To use transnasal endoscopy to identify factors predicting successful or failed swallowing of pureed foods in elderly patients with dysphagia. EES of pureed foods was performed by a gastroenterologist using a small-calibre transnasal endoscope. Factors related to successful versus unsuccessful swallowing of pureed foods were analyzed with regard to age, comorbid diseases, swallowing activity, saliva pooling, vallecular residues, pharyngeal residues and airway penetration⁄aspiration. Unsuccessful swallowing was defined in patients who could not eat pureed foods at bedside during hospitalization. Logistic regression analysis was used to identify independent predictors of swallowing of pureed foods. During a six-year period, 458 consecutive patients (mean age 80 years [range 39 to 97 years]) were considered for the study, including 285 (62%) men. Saliva pooling, vallecular residues, pharyngeal residues and penetration⁄aspiration were found in 240 (52%), 73 (16%), 226 (49%) and 232 patients (51%), respectively. Overall, 247 patients (54%) failed to swallow pureed foods. Multivariate logistic regression analysis demonstrated that the presence of pharyngeal residues (OR 6.0) and saliva pooling (OR 4.6) occurred significantly more frequently in patients who failed to swallow pureed foods. Pharyngeal residues and saliva pooling predicted impaired swallowing of pureed foods. Transnasal EES performed by a gastroenterologist provided a unique bedside method of assessing the ability to swallow pureed foods in elderly patients with dysphagia.

  19. Transnasal endoscopic evaluation of swallowing: A bedside technique to evaluate ability to swallow pureed diets in elderly patients with dysphagia

    PubMed Central

    Sakamoto, Torao; Horiuchi, Akira; Nakayama, Yoshiko

    2013-01-01

    BACKGROUND: Endoscopic evaluation of swallowing (EES) is not commonly used by gastroenterologists to evaluate swallowing in patients with dysphagia. OBJECTIVE: To use transnasal endoscopy to identify factors predicting successful or failed swallowing of pureed foods in elderly patients with dysphagia. METHODS: EES of pureed foods was performed by a gastroenterologist using a small-calibre transnasal endoscope. Factors related to successful versus unsuccessful swallowing of pureed foods were analyzed with regard to age, comorbid diseases, swallowing activity, saliva pooling, vallecular residues, pharyngeal residues and airway penetration/aspiration. Unsuccessful swallowing was defined in patients who could not eat pureed foods at bedside during hospitalization. Logistic regression analysis was used to identify independent predictors of swallowing of pureed foods. RESULTS: During a six-year period, 458 consecutive patients (mean age 80 years [range 39 to 97 years]) were considered for the study, including 285 (62%) men. Saliva pooling, vallecular residues, pharyngeal residues and penetration/aspiration were found in 240 (52%), 73 (16%), 226 (49%) and 232 patients (51%), respectively. Overall, 247 patients (54%) failed to swallow pureed foods. Multivariate logistic regression analysis demonstrated that the presence of pharyngeal residues (OR 6.0) and saliva pooling (OR 4.6) occurred significantly more frequently in patients who failed to swallow pureed foods. CONCLUSIONS: Pharyngeal residues and saliva pooling predicted impaired swallowing of pureed foods. Transnasal EES performed by a gastroenterologist provided a unique bedside method of assessing the ability to swallow pureed foods in elderly patients with dysphagia. PMID:23936875

  20. [Color selection of ultrathin veneers in clinic].

    PubMed

    Feng, Sun

    2016-12-01

    Ultrathin veneer is a new therapeutic technology developed from minimally invasive theories. Ultrathin veneer alters the unwanted shape and color of a tooth through minimal or lack of preparation. The color of tooth after restoration is mixed with the natural color of tooth, the original color of veneer, and the color of bonding material because of ultrathin (approximately 0.2 mm) veneer. Thus, the color is affected by numerous variations. Full considerations are required for creating designs. The author summarizes clinical points and provides suggestions for ultrathin veneer in color.

  1. Comparison of treatment outcomes of transnasal vocal fold polypectomy versus microlaryngoscopic surgery.

    PubMed

    Wang, Chi-Te; Liao, Li-Jen; Huang, Tsung-Wei; Lo, Wu-Chia; Cheng, Po-Wen

    2015-05-01

    Office-based procedures have been proposed for the treatment of vocal polyps, including indirect laryngoscopic surgery and angiolytic laser photocoagulation. Our previous report documented good treatment outcomes by combining the two aforementioned procedures. This study was intended to further compare the treatment outcomes of office transnasal vocal fold polypectomy (VFP) with those of microlaryngoscopic surgery (MLS). A matched cohort study. This study retrospectively enrolled 50 age-, gender-, and size-matched patients with vocal polyps treated by VFP or MLS at a tertiary teaching hospital from January 2012 to October 2013. Treatment outcomes were evaluated before, 2 weeks, and 6 weeks after the procedures via perceptual rating of voice quality, acoustic measurement of the speech signal, 10-item voice-handicap index, maximal phonation time, subjective rating of voice quality, and videolaryngostroboscopic evaluation. Both VFP and MLS resulted in significant clinical improvements 2 and 6 weeks postoperatively. Study results exhibited similar objective outcomes between VFP and MLS, whereas patients who received VFP reported higher subjective voice quality than those receiving MLS 2 weeks postoperatively. Six weeks after the procedures, the objective and subjective treatment outcomes were not significantly different between the two treatment groups. This study shows that transnasal VFP may be used as an effective alternative treatment for small vocal polyps. Patients who received office VFP experienced rapid symptomatic relief with a higher degree of subjective effectiveness than MLS 2 weeks postoperatively, whereas the overall treatment outcomes showed a comparable level of effectiveness for both modalities. 3B. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  2. Ultra-modified rapid sequence induction with transnasal humidified rapid insufflation ventilatory exchange: Challenging convention.

    PubMed

    Kulkarni, Ketan Sakharam; Dave, Nandini; Saran, Shriyam; Garasia, Madhu; Parelkar, Sandesh

    2018-04-01

    During positive pressure ventilation, gastric inflation and subsequent pulmonary aspiration can occur. Rapid sequence induction (RSI) technique is an age-old formula to prevent this. We adopted a novel approach of RSI for patients with high risk of aspiration and evaluated it further in patients undergoing laparoscopic surgeries. We believe that, in patients with risk of gastric insufflation and pulmonary aspiration, transnasal humidified rapid-insufflation ventilatory exchange can be useful in facilitating pre- and apnoeic oxygenation till tracheal isolation is achieved.

  3. Intra-oral ignition of monopolar diathermy during transnasal humidified rapid-insufflation ventilatory exchange (THRIVE).

    PubMed

    Onwochei, D; El-Boghdadly, K; Oakley, R; Ahmad, I

    2017-06-01

    We present the case of unanticipated airway ignition during hard palate biopsy. Transnasal humidified rapid-insufflation ventilatory exchange (THRIVE) and monopolar diathermy were utilised for the procedure, during which an arc arose from the diathermy tip to a titanium implant, causing a brief ignition on the monopolar diathermy grip. This case highlights the need for maintained awareness of fire risk when using diathermy in the presence of THRIVE during airway surgery. © 2017 The Association of Anaesthetists of Great Britain and Ireland.

  4. Robot-assisted transnasal laryngoplasty in cadaveric models: Quantifying forces and identifying challenges.

    PubMed

    Groom, Kelly; Wang, Long; Simaan, Nabil; Netterville, James

    2015-05-01

    We expanded our prior work with transnasal robotic surgery (TNRS) in this study with the following aims: 1) use a cadaveric model to evaluate the feasibility of laryngoplasty with TNRS, 2) measure robot insertion times and forces, and 3) identify operational challenges to further guide the development of a flexible robotic system. Cadaveric study. A 5-mm robot was guided to the larynx via a transnasal approach. Insertion times and forces using TNRS and a 4-mm flexible fiberoptic laryngoscope (FFL) were measured. Target sites on the true vocal cords were marked, and the TNRS was telemanipulated to perform injection laryngoplasty. Insertion times averaged 5.05 seconds (range, 3.8-10.4 seconds) for the TNRS and 7.97 seconds (range, 6.2-11.6 seconds) for the FFL. Insertion forces averaged 2.06 newtons (range, 1.56-5.55 newtons) for the TNRS and 0.43 newtons (range, 0.157-1.138 newtons) for the FFL. The unpaired t test between times and forces revealed P values of .0024 and .0000658, respectively. Seven target injection sites on three vocal cords in two cadaveric larynxes were successfully injected. In two out of nine sites marked, we were unable to access the vocal cord due tongue base collapse that obscured the posterior airway. TNRS is able to effectively access the larynx, although in a supine model may be limited by tongue base collapse. Forces with TNRS were significantly higher than with the FFL, albeit within the same scale. Despite increased forces, there was no evidence of tissue trauma using TNRS. NA Laryngoscope, 125:1166-1168, 2015. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  5. Resection of a Retrochiasmatic Craniopharyngioma by Combined Modified Orbital Craniotomy and Transnasal Endoscopic Techniques.

    PubMed

    Patel, Nirav J; Dunn, Ian

    2018-04-01

    A 20-year-old patient presented with hydrocephalus but intact vision and hormone function. The MRI showed a large seller, suprasellar and third ventricular mass. We chose a combined approach utilizing the translyvian, lamina terminals route, with a possible interhemispheric approach. But, we also utilized a transnasal endoscopic approach for the tumor that remained below the diaphragma sellae. The patient did well, with complete tumor resection via a staged approach, but did require hormone replacement. The link to the video can be found at: https://youtu.be/yzpfOxzI4cQ .

  6. Upper Nasopharyngeal Corridor for Transnasal Endoscopic Drainage of Petroclival Cholesterol Granulomas: Alternative Access in Conchal Sphenoid Patients.

    PubMed

    Turan, Nefize; Baum, Griffin R; Holland, Christopher M; Ahmad, Faiz U; Henriquez, Oswaldo A; Pradilla, Gustavo

    2016-03-01

    Background Cholesterol granulomas arising at the petrous apex can be treated via traditional open surgical, endoscopic, and endoscopic-assisted approaches. Endoscopic approaches require access to the sphenoid sinus, which is technically challenging in patients with conchal sphenoidal anatomy. Clinical Presentation A 55-year-old woman presented with intermittent headaches and tinnitus. Formal audiometry demonstrated moderately severe bilateral hearing loss. CT of the temporal bones and sella revealed a well-demarcated expansile lytic mass. MRI of the face, orbit, and neck showed a right petrous apex mass measuring 22 × 18 × 19 mm that was hyperintense on T1- and T2-weighted images without enhancement, consistent with a cholesterol granuloma. The patient had a conchal sphenoidal anatomy. Operative Technique Herein, we present an illustrative case of a low-lying petroclival cholesterol granuloma in a patient with conchal sphenoidal anatomy to describe an alternative high nasopharyngeal corridor for endoscopic transnasal transclival access. Postoperative Course Postoperatively, the patient's symptoms recovered and no complications occurred. Follow-up imaging demonstrated a patent drainage tract without evidence of recurrence. Conclusion In patients with a conchal sphenoid sinus, endoscopic transnasal transclival access can be gained using a high nasopharyngeal approach. This corridor facilitates safe access to these lesions and others in this location.

  7. Preliminary comparison of the endoscopic transnasal vs the sublabial transseptal approach for clinically nonfunctioning pituitary macroadenomas.

    PubMed

    Sheehan, M T; Atkinson, J L; Kasperbauer, J L; Erickson, B J; Nippoldt, T B

    1999-07-01

    To assess the advantages and disadvantages of an endoscopic transnasal approach to pituitary surgery for a select group of clinically nonfunctioning macroadenomas and to compare results of this approach with the sublabial transseptal approach at a single institution. We retrospectively reviewed the records of 26 patients with clinically nonfunctioning pituitary macroadenomas approached endoscopically and 44 matched control patients with the same tumors approached sublabially between January 1, 1995, and October 31, 1997. At baseline, the groups were not significantly different for age, sex distribution, number of comorbid conditions, visual field defects, degree of anterior pituitary insufficiency, or preoperative assessment of tumor volume or invasiveness. Mean (SD) operative times were significantly reduced in the endoscopic group vs the sublabial group: 2.7 (0.7) hours vs 3.4 (0.9) hours (P < .001). Postoperative assessment of surgical resection and postoperative alterations of anterior pituitary function or visual fields were not significantly different between groups, and complication rates were similar in both groups. This endoscopic transnasal approach to pituitary resection results in significantly shorter operative time without compromising the extent of tumor resection. The distinct disadvantage of this approach is an off-center view of the sella and a diminished working channel to the sella turcica. For these reasons, the endoscopic approach or its variation is an alternative to the sublabial approach but should be considered only by experienced pituitary neurosurgeons.

  8. Ultrathin Ferroelectric Films: Growth, Characterization, Physics and Applications.

    PubMed

    Wang, Ying; Chen, Weijin; Wang, Biao; Zheng, Yue

    2014-09-11

    Ultrathin ferroelectric films are of increasing interests these years, owing to the need of device miniaturization and their wide spectrum of appealing properties. Recent advanced deposition methods and characterization techniques have largely broadened the scope of experimental researches of ultrathin ferroelectric films, pushing intensive property study and promising device applications. This review aims to cover state-of-the-art experimental works of ultrathin ferroelectric films, with a comprehensive survey of growth methods, characterization techniques, important phenomena and properties, as well as device applications. The strongest emphasis is on those aspects intimately related to the unique phenomena and physics of ultrathin ferroelectric films. Prospects and challenges of this field also have been highlighted.

  9. Ultrathin Ferroelectric Films: Growth, Characterization, Physics and Applications

    PubMed Central

    Wang, Ying; Chen, Weijin; Wang, Biao; Zheng, Yue

    2014-01-01

    Ultrathin ferroelectric films are of increasing interests these years, owing to the need of device miniaturization and their wide spectrum of appealing properties. Recent advanced deposition methods and characterization techniques have largely broadened the scope of experimental researches of ultrathin ferroelectric films, pushing intensive property study and promising device applications. This review aims to cover state-of-the-art experimental works of ultrathin ferroelectric films, with a comprehensive survey of growth methods, characterization techniques, important phenomena and properties, as well as device applications. The strongest emphasis is on those aspects intimately related to the unique phenomena and physics of ultrathin ferroelectric films. Prospects and challenges of this field also have been highlighted. PMID:28788196

  10. A novel lens cleaner to prevent water drop adhesions during colonoscopy and esophagogastroduodenoscopy

    PubMed Central

    Yoshida, Naohisa; Naito, Yuji; Yasuda, Ritsu; Murakami, Takaaki; Ogiso, Kiyoshi; Hirose, Ryohei; Inada, Yutaka; Dohi, Osamu; Okayama, Tetsuya; Kamada, Kazuhiro; Uchiyama, Kazuhiko; Ishikawa, Takeshi; Handa, Osamu; Konishi, Hideyuki; Rani, Rafiz Abdul; Itoh, Yoshito

    2017-01-01

    Background and study aims  Water drop adhesions (WDA) impair endoscopic view during gastrointestinal endoscopy. We developed a novel lens cleaner designed using two types of harmLess surfactants and it is reported to be useful for preventing lens cloudiness during colorectal ESD. In the current study, we examined the ability of it for preventing and removing WDA. Patients and methods  During laboratory experiments, the cleaner (Cleash; Fujifilm Co., Tokyo, Japan and Nagase Medicals Co., Hyogo, Japan) was applied to the endoscopic lens and an air/water device (AWD) (water 200 mL, dimethicone 1 mL, Cleash 1 mL). The endoscope was submerged in water 100 times for 5 cycles. Rates of WDA were calculated for various groups (lens and AWD with or without Cleash) and compared to a normal cleaner (SL cleaner). During clinical research, 30 colonoscopies and 30 esophagogastroduodenoscopies were analyzed. For the Cleash group, the cleaner was applied to both lens and AWD. The numbers of WDA and WDA with non-rapid removal were calculated, compared to those of the SL cleaner group. Results  The mean WDA rate for the Cleash setting (lens: Cleash; AWD: Cleash) was 11.0 %, which was significantly lower than other settings (lens: SL cleaner; AWD: water, 31.0 %; P  < 0.001) (lens: Cleash; AWD: water, 19.0 %; P  < 0.001). Clinical research of colonoscopies indicated that the numbers of WDA (number/15 sec) and WDA with non-rapid removal were 0.38 and 0.17 for the Cleash group and 0.91 and 0.46 for the SL cleaner groups ( P  < 0.001, P  < 0.001). For esophagogastroduodenoscopies, the results were 0.47 and 0.24 for the Cleash group and 0.54 and 0.42 for the SL cleaner group ( P  = 0.72, P  = 0.018). Conclusion  A clear and beautiful image without WDA is useful not only for routine endoscopy but also, more importantly, for magnifying endoscopy and other endoscopic treatments. The use of Cleash to lens and AWD showed positive results for

  11. Recent Advances in Ultrathin Two-Dimensional Nanomaterials.

    PubMed

    Tan, Chaoliang; Cao, Xiehong; Wu, Xue-Jun; He, Qiyuan; Yang, Jian; Zhang, Xiao; Chen, Junze; Zhao, Wei; Han, Shikui; Nam, Gwang-Hyeon; Sindoro, Melinda; Zhang, Hua

    2017-05-10

    Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocatalysis, batteries, supercapacitors, solar cells, photocatalysis, and sensing platforms. Finally, the challenges and outlooks in this promising field are featured on the basis of its current development.

  12. Fundamental limits of ultrathin metasurfaces

    PubMed Central

    Arbabi, Amir; Faraon, Andrei

    2017-01-01

    We present a set of universal relations which relate the local transmission, reflection, and polarization conversion coefficients of a general class of non-magnetic passive ultrathin metasurfaces. We show that these relations are a result of equal forward and backward scattering by single layer ultrathin metasurfaces, and they lead to confinement of the transmission, reflection, and polarization conversion coefficients to limited regions of the complex plane. Using these relations, we investigate the effect of the presence of a substrate, and show that the maximum polarization conversion efficiency for a transmissive metasurface decreases as the refractive index contrast between the substrate and cladding layer increases. Furthermore, we demonstrate that a single layer reflective metasurface can achieve full 2π phase shift coverage without altering the polarization if it is illuminated from the higher refractive index material. We also discuss two approaches for achieving asymmetric scattering from metasurfaces, and realizing metasurfaces which overcome the performance limitations of single layer ultrathin metasurfaces. PMID:28262739

  13. Electrochemical Corrosion Properties of Commercial Ultra-Thin Copper Foils

    NASA Astrophysics Data System (ADS)

    Yen, Ming-Hsuan; Liu, Jen-Hsiang; Song, Jenn-Ming; Lin, Shih-Ching

    2017-08-01

    Ultra-thin electrodeposited Cu foils have been developed for substrate thinning for mobile devices. Considering the corrosion by residual etchants from the lithography process for high-density circuit wiring, this study investigates the microstructural features of ultra-thin electrodeposited Cu foils with a thickness of 3 μm and their electrochemical corrosion performance in CuCl2-based etching solution. X-ray diffraction and electron backscatter diffraction analyses verify that ultra-thin Cu foils exhibit a random texture and equi-axed grains. Polarization curves show that ultra-thin foils exhibit a higher corrosion potential and a lower corrosion current density compared with conventional (220)-oriented foils with fan-like distributed fine-elongated columnar grains. Chronoamperometric results also suggest that ultra-thin foils possess superior corrosion resistance. The passive layer, mainly composed of CuCl and Cu2O, forms and dissolves in sequence during polarization.

  14. Outcomes of children after esophagogastroduodenoscopy for chronic abdominal pain.

    PubMed

    Thakkar, Kalpesh; Chen, Leon; Tessier, Mary E; Gilger, Mark A

    2014-06-01

    Chronic abdominal pain is the most common indication for esophagogastroduodenoscopy (EGD) in children. However, little is known about the accuracy of EGD-based diagnosis or the outcomes of the patients who undergo this procedure. We examined the diagnostic yield of EGD and short-term outcomes of children who underwent this procedure for chronic abdominal pain. We conducted a prospective study of 290 children (4-18 years old; mean age, 11.9 ± 3.5 years; 93 girls) who underwent EGD for the primary indication of chronic abdominal pain (216 with at least 1 alarm feature) at a US pediatric gastroenterology referral center. We collected data on demographic features (age, sex), clinical characteristics (alarm features, Rome III criteria), and EGD results for each patient. All subjects with diagnostic lesions were followed for at least 1 year after EGD to determine short-term outcomes. Overall, EGD provided an accurate diagnosis for 109 children (38%). Diagnoses included esophagitis (21.0%), eosinophilic gastroenteritis (4.1%), eosinophilic esophagitis (3.8%), Helicobacter pylori infection (2.0%), celiac disease (0.6%), and Crohn's disease (0.4%). Short-term outcomes were available for 81% of patients with diagnostic findings, and medical therapy was effective in approximately 67% of these children. EGD is valuable for the diagnosis of children with abdominal pain, with a 38% diagnostic yield. EGD identified disorders for which medical therapy was effective in 67% of children during the year after diagnosis. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  15. Terahertz carpet cloak based on ultrathin metasurface

    NASA Astrophysics Data System (ADS)

    Wei, Minggui; Yang, Quanlong; Zhang, Xueqian; Li, Yanfeng; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2018-01-01

    Ultrathin metasurfaces with local phase compensation deliver new schemes to cloaking devices. We demonstrate a remarkable large size carpet cloak realized by an ultrathin metasurface at terahertz frequencies. The metasurface cloak is constructed by periodically arranging 12 different elements. The reflected wave front is perfectly reconstructed by an ultrathin metasurface cloak, which perform well under both intensity-sensitive and phase-sensitive detectors. The invisibility is verified when the cloak is placed on a reflecting triangular surface (bump). The multi-step discrete phase design method would greatly simplify the design process and is probable to achieve large-dimension cloaks, for applications in radar and antenna systems as a thin and easy-to-fabricate solution for radio and terahertz frequencies.

  16. Endoscopic transnasal approach for the treatment of isolated medial orbital blow-out fractures: a prospective study of preoperative and postoperative orbital volume change.

    PubMed

    Kim, KyoungHoon; Song, KyeongHo; Choi, SooJong; Bae, YongChan; Choi, ChiWon; Oh, HeungChan; Lee, JaeWoo; Nam, SuBong

    2012-02-01

    Endoscopic transnasal reduction is a safe and effective technique for the treatment of blow-out fractures of the medial orbital wall. However, because this approach does not use rigid permanent material for reconstruction of the fractured medial orbital wall, some degree of herniation of the orbital contents may occur after the intraethmoidal packing material is removed. The purpose of this study was to evaluate the change in orbital volume in patients with medial orbital wall fractures treated through an endoscopic transnasal approach. This study was a prospective analysis that includes 20 patients who underwent endoscopic transnasal reduction of medial orbital wall fractures between April 2007 and December 2008. Computer-assisted orbital volume measurements were made using axial computed tomography. The mean (standard deviation [SD]) volume increase was 2.00 (0.92) cm(3) and the mean (SD) dimension of the fractured orbital wall was 2.76 (0.83) cm(2). After endoscopic surgery, an average (SD) volume decrease of 2.15 (0.91) cm(3) was achieved with ethmoid sinus packing. After removal of the packing materials, 1.14 (0.78) cm(3) increase of the orbital volume was observed. The dimension of the orbital wall fracture significantly correlated with the increased preoperative orbital volume (P = 0.002, r = 0.609); the preoperative increase in the orbital volume also significantly correlated with volume relapse after removal of the packing (P = 0.023, r = 0.452). These findings suggest that in broad orbital wall fractures, reconstruction of the orbital wall by rigid materials or prolongation of the packing period should be considered, because orbital volume can increase again after packing removal, and may thus lead to postoperative complications.

  17. Ultrathin 2D Photocatalysts: Electronic-Structure Tailoring, Hybridization, and Applications.

    PubMed

    Di, Jun; Xiong, Jun; Li, Huaming; Liu, Zheng

    2018-01-01

    As a sustainable technology, semiconductor photocatalysis has attracted considerable interest in the past several decades owing to the potential to relieve or resolve energy and environmental-pollution issues. By virtue of their unique structural and electronic properties, emerging ultrathin 2D materials with appropriate band structure show enormous potential to achieve efficient photocatalytic performance. Here, the state-of-the-art progress on ultrathin 2D photocatalysts is reviewed and a critical appraisal of the classification, controllable synthesis, and formation mechanism of ultrathin 2D photocatalysts is presented. Then, different strategies to tailor the electronic structure of ultrathin 2D photocatalysts are summarized, including component tuning, thickness tuning, doping, and defect engineering. Hybridization with the introduction of a foreign component and maintaining the ultrathin 2D structure is presented to further boost the photocatalytic performance, such as quantum dots/2D materials, single atoms/2D materials, molecular/2D materials, and 2D-2D stacking materials. More importantly, the advancement of versatile photocatalytic applications of ultrathin 2D photocatalysts in the fields of water oxidation, hydrogen evolution, CO 2 reduction, nitrogen fixation, organic syntheses, and removal pollutants is discussed. Finally, the future opportunities and challenges regarding ultrathin 2D photocatalysts to bring about new opportunities for future research in the field of photocatalysis are also presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Ultra-thin plasma panel radiation detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, Peter S.

    An ultra-thin radiation detector includes a radiation detector gas chamber having at least one ultra-thin chamber window and an ultra-thin first substrate contained within the gas chamber. The detector further includes a second substrate generally parallel to and coupled to the first substrate and defining a gas gap between the first substrate and the second substrate. The detector further includes a discharge gas between the substrates and contained within the gas chamber, where the discharge gas is free to circulate within the gas chamber and between the first and second substrates at a given gas pressure. The detector further includesmore » a first electrode coupled to one of the substrates and a second electrode electrically coupled to the first electrode. The detector further includes a first discharge event detector coupled to at least one of the electrodes for detecting a gas discharge counting event in the electrode.« less

  19. Biosensors Based on Ultrathin Film Composite Membranes

    DTIC Science & Technology

    1994-01-25

    composite membranes should have a number C •’ of potential advantages including fast response time, simplicity of construction, and applicability to a number...The support membrane for the ultrathin film composite was an Anopore ( Alltech Associates) microporous alumina filter, these membranes are 55 Pm thick...constant 02 concentration in this solution. Finally, one of the most important potential advantage of a sensor based on an ultrathin film composite

  20. Low-cost ultra-thin broadband terahertz beam-splitter.

    PubMed

    Ung, Benjamin S-Y; Fumeaux, Christophe; Lin, Hungyen; Fischer, Bernd M; Ng, Brian W-H; Abbott, Derek

    2012-02-27

    A low-cost terahertz beam-splitter is fabricated using ultra-thin LDPE plastic sheeting coated with a conducting silver layer. The beam splitting ratio is determined as a function of the thickness of the silver layer--thus any required splitting ratio can be printed on demand with a suitable rapid prototyping technology. The low-cost aspect is a consequence of the fact that ultra-thin LDPE sheeting is readily obtainable, known more commonly as domestic plastic wrap or cling wrap. The proposed beam-splitter has numerous advantages over float zone silicon wafers commonly used within the terahertz frequency range. These advantages include low-cost, ease of handling, ultra-thin thickness, and any required beam splitting ratio can be readily fabricated. Furthermore, as the beam-splitter is ultra-thin, it presents low loss and does not suffer from Fabry-Pérot effects. Measurements performed on manufactured prototypes with different splitting ratios demonstrate a good agreement with our theoretical model in both P and S polarizations, exhibiting nearly frequency-independent splitting ratios in the terahertz frequency range.

  1. Manipulation of Spin-Torque Generation Using Ultrathin Au

    NASA Astrophysics Data System (ADS)

    An, Hongyu; Haku, Satoshi; Kanno, Yusuke; Nakayama, Hiroyasu; Maki, Hideyuki; Shi, Ji; Ando, Kazuya

    2018-06-01

    The generation and the manipulation of current-induced spin-orbit torques are of essential interest in spintronics. However, in spite of the vital progress in spin orbitronics, electric control of the spin-torque generation still remains elusive and challenging. We report on electric control of the spin-torque generation using ionic-liquid gating of ultrathin Au. We show that by simply depositing a SiO2 capping layer on an ultrathin-Au /Ni81Fe19 bilayer, the spin-torque generation efficiency is drastically enhanced by a maximum of 7 times. This enhancement is verified to be originated from the rough ultrathin-Au /Ni81Fe19 interface induced by the SiO2 deposition, which results in the enhancement of the interface spin-orbit scattering. We further show that the spin-torque generation efficiency from the ultrathin Au film can be reversibly manipulated by a factor of 2 using the ionic gating with an external electric field within a small range of 1 V. These results pave a way towards the efficient control of the spin-torque generation in spintronic applications.

  2. Ultrathin zoom telescopic objective.

    PubMed

    Li, Lei; Wang, Di; Liu, Chao; Wang, Qiong-Hua

    2016-08-08

    We report an ultrathin zoom telescopic objective that can achieve continuous zoom change and has reduced compact volume. The objective consists of an annular folded lens and three electrowetting liquid lenses. The annular folded lens undertakes the main part of the focal power of the lens system. Due to a multiple-fold design, the optical path is folded in a lens with the thickness of ~1.98mm. The electrowetting liquid lenses constitute a zoom part. Based on the proposed objective, an ultrathin zoom telescopic camera is demonstrated. We analyze the properties of the proposed objective. The aperture of the proposed objective is ~15mm. The total length of the system is ~18mm with a tunable focal length ~48mm to ~65mm. Compared with the conventional zoom telescopic objective, the total length has been largely reduced.

  3. Growth hormone-secreting pituitary adenomas in childhood and adolescence: features and results of transnasal surgery.

    PubMed

    Abe, T; Tara, L A; Lüdecke, D K

    1999-07-01

    Pituitary tumors causing gigantism are rare in childhood and adolescence. In a review of 2367 patients with pituitary adenomas who were treated between 1970 and 1997, we found 15 cases (0.63%, 9 male and 6 female patients) of growth hormone-secreting pituitary adenomas in patients who were less than 20 years of age at the time of surgery, and we compared their characteristics with those of adenomas in an adult group. Patients were grouped according to their ages at the first operation, with five patients (33.3%) in the prepubescent group (0-11 yr), eight (53.3%) in the pubescent group (12-17 yr), and two (13.3%) in the postpubescent group (18-19 yr). All 15 patients exhibited the typical symptoms of growth hormone oversecretion. The incidence of hyperprolactinemia among patients with prepubescent onset was 66.7%. Radiological examinations demonstrated microadenomas in 4 patients (26.7%) and macroadenomas in 11 patients (73.3%). The mean follow-up period was 73.5 months. Direct transnasal explorations were performed for all patients. Tumor invasion into the cavernous sinus was observed in six patients (40%). Radical tumor resection was performed for four patients (80%) in the prepubescent group, for five patients (62.5%) in the pubescent group, and for neither patient in the postpubescent group. Surgical morbidity was caused by permanent diabetes insipidus in three patients (20%). Rapid growth was postoperatively improved in 80% of the prepubescent age group. The recurrence rate was 13.3% (2 of 15 patients). Transnasal pituitary surgery was found to be as safe in pediatric patients with gigantism as in adults. Growth hormone-secreting pituitary adenomas in childhood and adolescence were more likely to be invasive or aggressive than were those in adulthood. The clinical biological characteristics for children were different from those for adults.

  4. Skyrmion morphology in ultrathin magnetic films

    NASA Astrophysics Data System (ADS)

    Gross, I.; Akhtar, W.; Hrabec, A.; Sampaio, J.; Martínez, L. J.; Chouaieb, S.; Shields, B. J.; Maletinsky, P.; Thiaville, A.; Rohart, S.; Jacques, V.

    2018-02-01

    Nitrogen-vacancy magnetic microscopy is employed in the quenching mode as a noninvasive, high-resolution tool to investigate the morphology of isolated skyrmions in ultrathin magnetic films. The skyrmion size and shape are found to be strongly affected by local pinning effects and magnetic field history. Micromagnetic simulations including a static disorder, based on the physical model of grain-to-grain thickness variations, reproduce all experimental observations and reveal the key role of disorder and magnetic history in the stabilization of skyrmions in ultrathin magnetic films. This work opens the way to an in-depth understanding of skyrmion dynamics in real, disordered media.

  5. Ultrathin Quantum Dot Display Integrated with Wearable Electronics.

    PubMed

    Kim, Jaemin; Shim, Hyung Joon; Yang, Jiwoong; Choi, Moon Kee; Kim, Dong Chan; Kim, Junhee; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2017-10-01

    An ultrathin skin-attachable display is a critical component for an information output port in next-generation wearable electronics. In this regard, quantum dot (QD) light-emitting diodes (QLEDs) offer unique and attractive characteristics for future displays, including high color purity with narrow bandwidths, high electroluminescence (EL) brightness at low operating voltages, and easy processability. Here, ultrathin QLED displays that utilize a passive matrix to address individual pixels are reported. The ultrathin thickness (≈5.5 µm) of the QLED display enables its conformal contact with the wearer's skin and prevents its failure under vigorous mechanical deformation. QDs with relatively thick shells are employed to improve EL characteristics (brightness up to 44 719 cd m -2 at 9 V, which is the record highest among wearable LEDs reported to date) by suppressing the nonradiative recombination. Various patterns, including letters, numbers, and symbols can be successfully visualized on the skin-mounted QLED display. Furthermore, the combination of the ultrathin QLED display with flexible driving circuits and wearable sensors results in a fully integrated QLED display that can directly show sensor data. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Metal Immiscibility Route to Synthesis of Ultrathin Carbides, Borides, and Nitrides.

    PubMed

    Wang, Zixing; Kochat, Vidya; Pandey, Prafull; Kashyap, Sanjay; Chattopadhyay, Soham; Samanta, Atanu; Sarkar, Suman; Manimunda, Praveena; Zhang, Xiang; Asif, Syed; Singh, Abhisek K; Chattopadhyay, Kamanio; Tiwary, Chandra Sekhar; Ajayan, Pulickel M

    2017-08-01

    Ultrathin ceramic coatings are of high interest as protective coatings from aviation to biomedical applications. Here, a generic approach of making scalable ultrathin transition metal-carbide/boride/nitride using immiscibility of two metals is demonstrated. Ultrathin tantalum carbide, nitride, and boride are grown using chemical vapor deposition by heating a tantalum-copper bilayer with corresponding precursor (C 2 H 2 , B powder, and NH 3 ). The ultrathin crystals are found on the copper surface (opposite of the metal-metal junction). A detailed microscopy analysis followed by density functional theory based calculation demonstrates the migration mechanism, where Ta atoms prefer to stay in clusters in the Cu matrix. These ultrathin materials have good interface attachment with Cu, improving the scratch resistance and oxidation resistance of Cu. This metal-metal immiscibility system can be extended to other metals to synthesize metal carbide, boride, and nitride coatings. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Ultrathin Optical Panel And A Method Of Making An Ultrathin Optical Panel.

    DOEpatents

    Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard; Veligdan, James T.

    2005-02-15

    An ultrathin optical panel, and a method of producing an ultrathin optical panel, are disclosed, including stacking a plurality of glass sheets, which sheets may be coated with a transparent cladding substance or may be uncoated, fastening together the plurality of stacked coated glass sheets using an epoxy or ultraviolet adhesive, applying uniform pressure to the stack, curing the stack, sawing the stack to form an inlet face on a side of the stack and an outlet face on an opposed side of the stack, bonding a coupler to the inlet face of the stack, and fastening the stack, having the coupler bonded thereto, within a rectangular housing having an open front which is aligned with the outlet face, the rectangular housing having therein a light generator which is optically aligned with the coupler. The light generator is preferably placed parallel to and proximate with the inlet face, thereby allowing for a reduction in the depth of the housing.

  8. Ultrathin Optical Panel And A Method Of Making An Ultrathin Optical Panel.

    DOEpatents

    Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard; Veligdan, James T.

    2005-05-17

    An ultrathin optical panel, and a method of producing an ultrathin optical panel, are disclosed, including stacking a plurality of glass sheets, which sheets may be coated with a transparent cladding substance or may be uncoated, fastening together the plurality of stacked coated glass sheets using an epoxy or ultraviolet adhesive, applying uniform pressure to the stack, curing the stack, sawing the stack to form an inlet face on a side of the stack and an outlet face on an opposed side of the stack, bonding a coupler to the inlet face of the stack, and fastening the stack, having the coupler bonded thereto, within a rectangular housing having an open front which is aligned with the outlet face, the rectangular housing having therein a light generator which is optically aligned with the coupler. The light generator is preferably placed parallel to and proximate with the inlet face, thereby allowing for a reduction in the depth of the housing.

  9. Ultrathin optical panel and a method of making an ultrathin optical panel

    DOEpatents

    Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard; Veligdan, James T.

    2003-02-11

    An ultrathin optical panel, and a method of producing an ultrathin optical panel, are disclosed, including stacking a plurality of glass sheets, which sheets may be coated with a transparent cladding substance or may be uncoated, fastening together the plurality of stacked coated glass sheets using an epoxy or ultraviolet adhesive, applying uniform pressure to the stack, curing the stack, sawing the stack to form an inlet face on a side of the stack and an outlet face on an opposed side of the stack, bonding a coupler to the inlet face of the stack, and fastening the stack, having the coupler bonded thereto, within a rectangular housing having an open front which is aligned with the outlet face, the rectangular housing having therein a light generator which is optically aligned with the coupler. The light generator is preferably placed parallel to and proximate with the inlet face, thereby allowing for a reduction in the depth of the housing.

  10. Ultrathin optical panel and a method of making an ultrathin optical panel

    DOEpatents

    Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard; Veligdan, James T.

    2001-10-09

    An ultrathin optical panel, and a method of producing an ultrathin optical panel, are disclosed, including stacking a plurality of glass sheets, which sheets may be coated with a transparent cladding substance or may be uncoated, fastening together the plurality of stacked coated glass sheets using an epoxy or ultraviolet adhesive, applying uniform pressure to the stack, curing the stack, sawing the stack to form an inlet face on a side of the stack and an outlet face on an opposed side of the stack, bonding a coupler to the inlet face of the stack, and fastening the stack, having the coupler bonded thereto, within a rectangular housing having an open front which is aligned with the outlet face, the rectangular housing having therein a light generator which is optically aligned with the coupler. The light generator is preferably placed parallel to and proximate with the inlet face, thereby allowing for a reduction in the depth of the housing.

  11. Ultrathin optical panel and a method of making an ultrathin optical panel

    DOEpatents

    Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard; Veligdan, James T.

    2002-01-01

    An ultrathin optical panel, and a method of producing an ultrathin optical panel, are disclosed, including stacking a plurality of glass sheets, which sheets may be coated With a transparent cladding substance or may be uncoated, fastening together the plurality of stacked coated glass sheets using an epoxy or ultraviolet adhesive, applying uniform pressure to the stack, curing the stack, sawing the stack to form an inlet face on a side of the stack and an outlet face on an opposed side of the stack, bonding a coupler to the inlet face of the stack, and fastening the stack, having the coupler bonded thereto, within a rectangular housing having an open front which is aligned with the outlet face, the rectangular housing having therein a light generator which is optically aligned with the coupler. The light generator is preferably placed parallel to and proximate with the inlet face, thereby allowing for a reduction in the depth of the housing.

  12. Image-guided transnasal cryoablation of a recurrent nasal adenocarcinoma in a dog.

    PubMed

    Murphy, S M; Lawrence, J A; Schmiedt, C W; Davis, K W; Lee, F T; Forrest, L J; Bjorling, D E

    2011-06-01

    An eight-year-old female spayed Airedale terrier with rapid recurrence of a nasal adenocarcinoma following image-guided intensity-modulated radiation therapy was treated with transnasal, image-guided cryotherapy. Ice ball size and location were monitored real-time with computed tomography-fluoroscopy to verify that the entire tumour was enveloped in ice. Serial computed tomography scans demonstrated reduction in and subsequent resolution of the primary tumour volume corresponding visually with the ice ball imaged during the ablation procedure. Re-imaging demonstrated focallysis of the cribriform plate following ablation that spontaneously resolved by 13 months. While mild chronic nasal discharge developed following cryoablation, no other clinical signs of local nasal neoplasia were present. Twenty-one months after nasal tumour cryoablation the dog was euthanased as a result of acute haemoabdomen. Image-guided cryotherapy may warrant further investigation for the management of focal residual or recurrent tumours in dogs, especially in regions where critical structures preclude surgical intervention. © 2011 British Small Animal Veterinary Association.

  13. Ultrathin planar hematite film for solar photoelectrochemical water splitting

    DOE PAGES

    Liu, Dong; Bierman, David M.; Lenert, Andrej; ...

    2015-10-08

    Hematite holds promise for photoelectrochemical (PEC) water splitting due to its stability, low-cost, abundance and appropriate bandgap. However, it suffers from a mismatch between the hole diffusion length and light penetration length. We have theoretically designed and characterized an ultrathin planar hematite/silver nanohole array/silver substrate photoanode. Due to the supported destructive interference and surface plasmon resonance, photons are efficiently absorbed in an ultrathin hematite film. In conclusion, compared with ultrathin hematite photoanodes with nanophotonic structures, this photoanode has comparable photon absorption but with intrinsically lower recombination losses due to its planar structure and promises to exceed the state-of-the-art photocurrent ofmore » hematite photoanodes.« less

  14. Fabrication and Characterization of Ultrathin-ring Electrodes for Pseudo-steady-state Amperometric Detection.

    PubMed

    Kitazumi, Yuki; Hamamoto, Katsumi; Noda, Tatsuo; Shirai, Osamu; Kano, Kenji

    2015-01-01

    The fabrication of ultrathin-ring electrodes with a diameter of 2 mm and a thickness of 100 nm is established. The ultrathin-ring electrodes provide a large density of pseudo-steady-state currents, and realize pseudo-steady-state amperometry under quiescent conditions without a Faraday cage. Under the limiting current conditions, the current response at the ultrathin-ring electrode can be well explained by the theory of the microband electrode response. Cyclic voltammograms at the ultrathin-ring electrode show sigmoidal characteristics with some hysteresis. Numerical simulation reveals that the hysteresis can be ascribed to the time-dependence of pseudo-steady-state current. The performance of amperometry with the ultrathin-ring electrode has been verified in its application to redox enzyme kinetic measurements.

  15. Mechanically Assisted Self-Healing of Ultrathin Gold Nanowires.

    PubMed

    Wang, Binjun; Han, Ying; Xu, Shang; Qiu, Lu; Ding, Feng; Lou, Jun; Lu, Yang

    2018-04-17

    As the critical feature sizes of integrated circuits approaching sub-10 nm, ultrathin gold nanowires (diameter <10 nm) have emerged as one of the most promising candidates for next-generation interconnects in nanoelectronics. Also due to their ultrasmall dimensions, however, the structures and morphologies of ultrathin gold nanowires are more prone to be damaged during practical services, for example, Rayleigh instability can significantly alter their morphologies upon Joule heating, hindering their applications as interconnects. Here, it is shown that upon mechanical perturbations, predamaged, nonuniform ultrathin gold nanowires can quickly recover into uniform diameters and restore their smooth surfaces, via a simple mechanically assisted self-healing process. By examining the local self-healing process through in situ high-resolution transmission electron microscopy, the underlying mechanism is believed to be associated with surface atomic diffusion as evidenced by molecular dynamics simulations. In addition, mechanical manipulation can assist the atoms to overcome the diffusion barriers, as suggested by ab initio calculations, to activate more surface adatoms to diffuse and consequently speed up the self-healing process. This result can provide a facile method to repair ultrathin metallic nanowires directly in functional devices, and quickly restore their microstructures and morphologies by simple global mechanical perturbations. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Curie temperature of ultrathin ferromagnetic layer with Dzyaloshinskii-Moriya interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Chun-Yeol

    2014-08-07

    We investigate the effect of the Dzyaloshinskii-Moriya interaction (DMI) on the Curie temperature of the ultrathin ferromagnetic layers. It has been known that the Curie temperature of the ferromagnet depends on spin wave excitation energies, and they are affected by DMI. Therefore, the ferromagnetic transition temperature of the ultrathin ferromagnetic layer must be sensitive on the DMI. We find that the Curie temperature depends on the DMI by using the double time Green's function method. Since the DMI is arisen by the inversion symmetry breaking structure, the DMI is always important in the inversion symmetry breaking ultrathin ferromagnetic layers.

  17. Extracellular ultrathin fibers sensitive to intracellular reactive oxygen species: Formation of intercellular membrane bridges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Se-Hui; Park, Jin-Young; Joo, Jung-Hoon

    2011-07-15

    Membrane bridges are key cellular structures involved in intercellular communication; however, dynamics for their formation are not well understood. We demonstrated the formation and regulation of novel extracellular ultrathin fibers in NIH3T3 cells using confocal and atomic force microscopy. At adjacent regions of neighboring cells, phorbol 12-myristate 13-acetate (PMA) and glucose oxidase induced ultrathin fiber formation, which was prevented by Trolox, a reactive oxygen species (ROS) scavenger. The height of ROS-sensitive ultrathin fibers ranged from 2 to 4 nm. PMA-induced formation of ultrathin fibers was inhibited by cytochalasin D, but not by Taxol or colchicine, indicating that ultrathin fibers mainlymore » comprise microfilaments. PMA-induced ultrathin fibers underwent dynamic structural changes, resulting in formation of intercellular membrane bridges. Thus, these fibers are formed by a mechanism(s) involving ROS and involved in formation of intercellular membrane bridges. Furthermore, ultrastructural imaging of ultrathin fibers may contribute to understanding the diverse mechanisms of cell-to-cell communication and the intercellular transfer of biomolecules, including proteins and cell organelles.« less

  18. Controllable fabrication of ultrathin free-standing graphene films

    PubMed Central

    Chen, Jianyi; Guo, Yunlong; Huang, Liping; Xue, Yunzhou; Geng, Dechao; Liu, Hongtao; Wu, Bin; Yu, Gui; Hu, Wenping; Liu, Yunqi; Zhu, Daoben

    2014-01-01

    Graphene free-standing film-like or paper-like materials have attracted great attention due to their intriguing electronic, optical and mechanical properties and potential application in chemical filters, molecular storage and supercapacitors. Although significant progress has been made in fabricating graphene films or paper, there is still no effective method targeting ultrathin free-standing graphene films (UFGFs). Here, we present a modified filtration assembly method to prepare these ultrathin films. With this approach, we have fabricated a series of ultrathin free-standing graphene oxide films and UFGFs, up to 40 mm in diameter, with controllable thickness from micrometre to nanoscale (approx. 40 nm) dimensions. This method can be easily scaled up and the films display excellent optical, electrical and electrochemical properties. The ability to produce UFGFs from graphene oxide with a scalable, low-cost approach should take us a step closer to real-world applications of graphene. PMID:24615152

  19. Loss/gain-induced ultrathin antireflection coatings

    PubMed Central

    Luo, Jie; Li, Sucheng; Hou, Bo; Lai, Yun

    2016-01-01

    Tradional antireflection coatings composed of dielectric layers usually require the thickness to be larger than quarter wavelength. Here, we demonstrate that materials with permittivity or permeability dominated by imaginary parts, i.e. lossy or gain media, can realize non-resonant antireflection coatings in deep sub-wavelength scale. Interestingly, while the reflected waves are eliminated as in traditional dielectric antireflection coatings, the transmitted waves can be enhanced or reduced, depending on whether gain or lossy media are applied, respectively. We provide a unified theory for the design of such ultrathin antireflection coatings, showing that under different polarizations and incident angles, different types of ultrathin coatings should be applied. Especially, under transverse magnetic polarization, the requirement shows a switch between gain and lossy media at Brewster angle. As a proof of principle, by using conductive films as a special type of lossy antireflection coatings, we experimentally demonstrate the suppression of Fabry-Pérot resonances in a broad frequency range for microwaves. This valuable functionality can be applied to remove undesired resonant effects, such as the frequency-dependent side lobes induced by resonances in dielectric coverings of antennas. Our work provides a guide for the design of ultrathin antireflection coatings as well as their applications in broadband reflectionless devices. PMID:27349750

  20. Fabrication of Ultra-thin Color Films with Highly Absorbing Media Using Oblique Angle Deposition.

    PubMed

    Yoo, Young Jin; Lee, Gil Ju; Jang, Kyung-In; Song, Young Min

    2017-08-29

    Ultra-thin film structures have been studied extensively for use as optical coatings, but performance and fabrication challenges remain.  We present an advanced method for fabricating ultra-thin color films with improved characteristics. The proposed process addresses several fabrication issues, including large area processing. Specifically, the protocol describes a process for fabricating ultra-thin color films using an electron beam evaporator for oblique angle deposition of germanium (Ge) and gold (Au) on silicon (Si) substrates.  Film porosity produced by the oblique angle deposition induces color changes in the ultra-thin film. The degree of color change depends on factors such as deposition angle and film thickness. Fabricated samples of the ultra-thin color films showed improved color tunability and color purity. In addition, the measured reflectance of the fabricated samples was converted into chromatic values and analyzed in terms of color. Our ultra-thin film fabricating method is expected to be used for various ultra-thin film applications such as flexible color electrodes, thin film solar cells, and optical filters. Also, the process developed here for analyzing the color of the fabricated samples is broadly useful for studying various color structures.

  1. Nanowire decorated, ultra-thin, single crystalline silicon for photovoltaic devices.

    PubMed

    Aurang, Pantea; Turan, Rasit; Unalan, Husnu Emrah

    2017-10-06

    Reducing silicon (Si) wafer thickness in the photovoltaic industry has always been demanded for lowering the overall cost. Further benefits such as short collection lengths and improved open circuit voltages can also be achieved by Si thickness reduction. However, the problem with thin films is poor light absorption. One way to decrease optical losses in photovoltaic devices is to minimize the front side reflection. This approach can be applied to front contacted ultra-thin crystalline Si solar cells to increase the light absorption. In this work, homojunction solar cells were fabricated using ultra-thin and flexible single crystal Si wafers. A metal assisted chemical etching method was used for the nanowire (NW) texturization of ultra-thin Si wafers to compensate weak light absorption. A relative improvement of 56% in the reflectivity was observed for ultra-thin Si wafers with the thickness of 20 ± 0.2 μm upon NW texturization. NW length and top contact optimization resulted in a relative enhancement of 23% ± 5% in photovoltaic conversion efficiency.

  2. Endoscopic transnasal management of sinonasal malignancies – our initial experience

    PubMed Central

    Osuch-Wójcikiewicz, Ewa; Held-Ziółkowska, Marta; Kużmińska, Magdalena; Niemczyk, Kazimierz

    2014-01-01

    Introduction Malignant tumors of the paranasal sinuses are traditionally managed through external approaches. Advances in endoscopic transnasal surgery have allowed for the endoscopic treatment of some of these tumors. Aim To present the results of treatment of a series of patients with paranasal sinus malignancies treated with an endoscopic approach at a single institution. Material and methods The data on tumor type, operative technique, perioperative complications and postoperative course were analyzed. Results Eleven patients meeting the inclusion criteria were identified. The histopathology was as follows: malignant melanoma in 3 patients, squamous cell carcinoma in 2, adenocarcinoma in 2, poorly differentiated carcinoma in 1, hemangiopericytoma in 1, adenoid cystic carcinoma in 1 and fibrosarcoma in 1. There were no severe perioperative complications with the exception of 1 case of cerebrospinal fluid leak, which was successfully closed. The mean observation period was 13.5 months. One of the patients died of disease, another was lost to follow-up, and one was reoperated on due to recurrence. The remaining 8 patients are alive with no signs of recurrence. Conclusions Our initial experience seems to confirm results obtained by other authors indicating that in selected cases endoscopic surgery of sinonasal malignancies is similarly effective as external approach surgery. PMID:25097677

  3. Ultra-thin plasma radiation detector

    DOEpatents

    Friedman, Peter S.

    2017-01-24

    A position-sensitive ionizing-radiation counting detector includes a radiation detector gas chamber having at least one ultra-thin chamber window and an ultra-thin first substrate contained within the gas chamber. The detector further includes a second substrate generally parallel to and coupled to the first substrate and defining a gas gap between the first substrate and the second substrate. The detector further includes a discharge gas between the substrates and contained within the gas chamber, where the discharge gas is free to circulate within the gas chamber and between the first and second substrates at a given gas pressure. The detector further includes a first electrode coupled to one of the substrates and a second electrode electrically coupled to the first electrode. The detector further includes a first discharge event detector coupled to at least one of the electrodes for detecting a gas discharge counting event in the electrode.

  4. Theoretical Methods of Domain Structures in Ultrathin Ferroelectric Films: A Review

    PubMed Central

    Liu, Jianyi; Chen, Weijin; Wang, Biao; Zheng, Yue

    2014-01-01

    This review covers methods and recent developments of the theoretical study of domain structures in ultrathin ferroelectric films. The review begins with an introduction to some basic concepts and theories (e.g., polarization and its modern theory, ferroelectric phase transition, domain formation, and finite size effects, etc.) that are relevant to the study of domain structures in ultrathin ferroelectric films. Basic techniques and recent progress of a variety of important approaches for domain structure simulation, including first-principles calculation, molecular dynamics, Monte Carlo simulation, effective Hamiltonian approach and phase field modeling, as well as multiscale simulation are then elaborated. For each approach, its important features and relative merits over other approaches for modeling domain structures in ultrathin ferroelectric films are discussed. Finally, we review recent theoretical studies on some important issues of domain structures in ultrathin ferroelectric films, with an emphasis on the effects of interfacial electrostatics, boundary conditions and external loads. PMID:28788198

  5. Method for laser welding ultra-thin metal foils

    DOEpatents

    Pernicka, J.C.; Benson, D.K.; Tracy, C.E.

    1996-03-26

    A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld. 5 figs.

  6. Method for laser welding ultra-thin metal foils

    DOEpatents

    Pernicka, John C.; Benson, David K.; Tracy, C. Edwin

    1996-01-01

    A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld.

  7. Ultrathin Nickel Hydroxide and Oxide Nanosheets: Synthesis, Characterizations and Excellent Supercapacitor Performances

    PubMed Central

    Zhu, Youqi; Cao, Chuanbao; Tao, Shi; Chu, Wangsheng; Wu, Ziyu; Li, Yadong

    2014-01-01

    High-quality ultrathin two-dimensional nanosheets of α-Ni(OH)2 are synthesized at large scale via microwave-assisted liquid-phase growth under low-temperature atmospheric conditions. After heat treatment, non-layered NiO nanosheets are obtained while maintaining their original frame structure. The well-defined and freestanding nanosheets exhibit a micron-sized planar area and ultrathin thickness (<2 nm), suggesting an ultrahigh surface atom ratio with unique surface and electronic structure. The ultrathin 2D nanostructure can make most atoms exposed outside with high activity thus facilitate the surface-dependent electrochemical reaction processes. The ultrathin α-Ni(OH)2 and NiO nanosheets exhibit enhanced supercapacitor performances. Particularly, the α-Ni(OH)2 nanosheets exhibit a maximum specific capacitance of 4172.5 F g−1 at a current density of 1 A g−1. Even at higher rate of 16 A g−1, the specific capacitance is still maintained at 2680 F g−1 with 98.5% retention after 2000 cycles. Even more important, we develop a facile and scalable method to produce high-quality ultrathin transition metal hydroxide and oxide nanosheets and make a possibility in commercial applications. PMID:25168127

  8. On the persistence of polar domains in ultrathin ferroelectric capacitors.

    PubMed

    Zubko, Pavlo; Lu, Haidong; Bark, Chung-Wung; Martí, Xavi; Santiso, José; Eom, Chang-Beom; Catalan, Gustau; Gruverman, Alexei

    2017-07-19

    The instability of ferroelectric ordering in ultra-thin films is one of the most important fundamental issues pertaining realization of a number of electronic devices with enhanced functionality, such as ferroelectric and multiferroic tunnel junctions or ferroelectric field effect transistors. In this paper, we investigate the polarization state of archetypal ultrathin (several nanometres) ferroelectric heterostructures: epitaxial single-crystalline BaTiO 3 films sandwiched between the most habitual perovskite electrodes, SrRuO 3 , on top of the most used perovskite substrate, SrTiO 3 . We use a combination of piezoresponse force microscopy, dielectric measurements and structural characterization to provide conclusive evidence for the ferroelectric nature of the relaxed polarization state in ultrathin BaTiO 3 capacitors. We show that even the high screening efficiency of SrRuO 3 electrodes is still insufficient to stabilize polarization in SrRuO 3 /BaTiO 3 /SrRuO 3 heterostructures at room temperature. We identify the key role of domain wall motion in determining the macroscopic electrical properties of ultrathin capacitors and discuss their dielectric response in the light of the recent interest in negative capacitance behaviour.

  9. Direct peroral cholangioscopy using an ultrathin endoscope: making technique easier.

    PubMed

    Sola-Vera, Javier; Uceda, Francisco; Cuesta, Rubén; Vázquez, Narcís

    2014-01-01

    Cholangioscopy is a useful tool for the study and treatment of biliary pathology. Ultrathin upper endoscopes allow direct peroral cholangioscopy (DPC) but have some drawbacks. The aim of the study was to evaluate the success rate of DPC with an ultrathin endoscope using a balloon catheter to reach the biliary confluence. Prospective observational study. An ultrathin endoscope (Olympus XP180N, outer diameter 5.5 mm, working channel 2 mm) was used. To access the biliary tree, free-hand technique was used. To reach the biliary confluence an intraductal balloon catheter (Olympus B5-2Q diameter 1.9 mm) and a 0.025 inch guide wire was used. In all cases sphincterotomy and/or sphincteroplasty was performed. The success rate was defined as the percentage of cases in which the biliary confluence could be reached with the ultrathin endoscope. Fifteen patients (8 men/7 women) were included. Mean age was 77.7 + or - 10.8 years (range 45-91). The indications for cholangioscopy were suspected bile duct stones (n = 9), electrohydraulic lithotripsy for the treatment of difficult choledocholithiasis (n = 5) and evaluation of biliary stricture (n = 1). Access to the bile duct was achieved in 14/15 cases (93.3%). Biliary confluence was reached in 13/15 cases (86.7%). One complication was observed in one patient (oxigen desaturation). DPC with an ultrathin endoscope can be done with the free-hand technique. Intraductal balloon-guided DPC allows full examination of the common bile duct in most cases.

  10. [Endoscopic transnasal approach for nasopharyngeal angiofibroma without arterial embolism].

    PubMed

    Yang, Donghui; Qiu, Qianhui; Liang, Minzhi; Tan, Xianggao; Xia, Guangsheng

    2014-01-01

    To explore the feasibility of endoscopic resection without arterial embolism for nasopharyngeal angiofibroma and the strategy of decreasing the bleeding during the operation. The clinical data of twenty-five cases of nasopharyngeal angiofibroma were retrospective analyzed, including 3 cases of Radowski stageIIa, 5 cases of stageIIb, 4 cases of stageIIc and with 13 cases of stage IIIa. All cases did not receive the arterial embolism, and controlled hypotension were adopted under endoscopic transnasal approach during the tumor resection. Two cases were added the labiogingival incision. During the operation, under the opening vision, cutting out the outside of the infratemporal fossa, and the pterygoid process to adequate exposure the pterygopalatine fossa and infratemporal fossa.Early recognition of anatomical landmarks and establish the safety plane, along the periphery of the tumor to proceed with micro-separation, early blocking tumor nutrient vessels, en bloc resection of the tumor and some other ways to reduce bleeding and tumor resection. Amount of bleeding during operation was 600-1500 ml, none of them had internal carotid artery injury and intracranial injury or some other complication.Follow-up 2-3 years was available in all patients, except 1 case with residual of tumor surrounding the optic nerve, the other 24 cases had no residual tumor and relapses. The preoperative occlusion and artery ligation may not be needed.Surgical technique is the key to reduce blood loss, and it is feasible to have endoscopic resection of nasopharyngeal angiofibroma with proper operating technique.

  11. Pilot randomized crossover study comparing the efficacy of transnasal disposable endosheath with standard endoscopy to detect Barrett's esophagus.

    PubMed

    Shariff, Mohammed K; Varghese, Sibu; O'Donovan, Maria; Abdullahi, Zarah; Liu, Xinxue; Fitzgerald, Rebecca C; di Pietro, Massimiliano

    2016-02-01

    The transnasal endosheath endoscope is a new disposable technology with potential applicability to the primary care setting. The aim of this study was to evaluate the efficacy of transnasal endosheath endoscopy (TEE) for the detection of Barrett's esophagus, by comparing the diagnostic accuracy of TEE with that of standard endoscopy. This was a prospective, randomized, crossover study performed in a single tertiary referral center. Consecutive patients undergoing surveillance for Barrett's esophagus or referred for diagnostic assessment were recruited. All patients were randomized to undergo TEE followed by standard endoscopy or the reverse. Endoscopy experiences and patient preferences were evaluated using a questionnaire. Endoscopic and histologic diagnosis of Barrett's esophagus, and optical image quality of both endoscopic procedures, were compared. A total of 21 of 25 patients completed the study. TEE had sensitivity and specificity of 100 % for an endoscopic diagnosis of Barrett's esophagus, and of 66.7 % and 100 %, respectively, for the histologic diagnosis of Barrett's esophagus. The mean optical quality of standard endoscopy was significantly better than that of TEE (7.11 ± 0.42 vs. 4.06 ± 0.27; P < 0.0001). However, following endoscopy, patients reported a significantly better experience with TEE compared with standard endoscopy (7.05 ± 0.49 vs. 4.35 ± 0.53; P = 0.0006), with 60 % preferring TEE and 25 % preferring sedated standard endoscopy. In this study, TEE had equal accuracy for an endoscopic diagnosis of Barrett's esophagus compared with standard endoscopy, at the expense of reduced image quality and a lower yield of intestinal metaplasia on biopsy. TEE was better tolerated and preferred by patients. Hence, TEE needs further evaluation in primary care as an initial diagnostic tool. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Controllable synthesis of ultrathin vanadium oxide nanobelts via an EDTA-mediated hydrothermal process

    NASA Astrophysics Data System (ADS)

    Yu-Xiang, Qin; Cheng, Liu; Wei-Wei, Xie; Meng-Yang, Cui

    2016-02-01

    Ultrathin VO2 nanobelts with rough alignment features are prepared on the induction layer-coated substrates by an ethylenediaminetetraacetic acid (EDTA)-mediated hydrothermal process. EDTA acts as a chelating reagent and capping agent to facilitate the one-dimensional (1D) preferential growth of ultrathin VO2 nanobelts with high crystallinities and good uniformities. The annealed induction layer and concentration of EDTA are found to play crucial roles in the formation of aligned and ultrathin nanobelts. Variation in EDTA concentration can change the VO2 morphology of ultrathin nanobelts into that of thick nanoplates. Mild annealing of ultrathin VO2 nanobelts at 350 °C in air results in the formation of V2O5 nanobelts with a nearly unchanged ultrathin structure. The nucleation and growth mechanism involved in the formations of nanobelts and nanoplates are proposed. The ethanol gas sensing properties of the V2O5 nanobelt networks-based sensor are investigated in a temperature range from 100 °C to 300 °C over ethanol concentrations ranging from 3 ppm to 500 ppm. The results indicate that the V2O5 nanobelt network sensor exhibits high sensitivity, good reversibility, and fast response-recovery characteristics with an optimal working temperature of 250 °C. Project supported by the National Natural Science Foundation of China (Grant Nos. 61274074, 61271070, and 61574100).

  13. Molecular dynamics simulation on adsorption of pyrene-polyethylene onto ultrathin single-walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Cai, Lu; Lv, Wenzhen; Zhu, Hong; Xu, Qun

    2016-07-01

    The mechanism of the adsorption of pyrene-polyethylene (Py-PE) onto ultrathin single-walled carbon nanotube (SWNT) was studied by using all-atom molecular dynamics (MD) simulations. We found that solvent polarity and pyrene group are two critical factors in the Py-PE decoration on ultrathin SWNT. Combined MD simulations with free energy calculations, our results indicate that larger solvent polarity can decrease the contribution of conformation entropy, but contributes little to the interaction energy, moreover, larger SWNT diameter can decrease the contribution of conformation entropy but lead to the increasing of the interaction energy. In polar organic solvent (N, N-Dimethylacetamide), the pyrene group plays a key role in the adsorption of Py-PE onto ultrathin SWNT, not only facilitates the spontaneous adsorption of Py-PE onto ultrathin SWNT, but also helps to form compact structure between themselves in the final adsorption states. While in aqueous solution, pyrene group no longer works as an anchor, but still affects a lot to the final adsorption conformation. Our present work provides detailed theoretical clue to understand the noncovalent interaction between aromatic segment appended polymer and ultrathin SWNT, and helps to explore the potential application of ultrathin SWNT in the fields of hybrid material, biomedical and electronic materials.

  14. Room Temperature Ferroelectricity in Ultrathin SnTe Films

    NASA Astrophysics Data System (ADS)

    Chang, Kai; Liu, Junwei; Lin, Haicheng; Zhao, Kun; Zhong, Yong; Ji, Shuai-Hua; He, Ke; Wang, Lili; Ma, Xucun; Fu, Liang; Chen, Xi; Xue, Qi-Kun

    2015-03-01

    The ultrathin SnTe films with several unit cell thickness grown on graphitized SiC(0001) surface have been studied by the scanning tunneling microscopy and spectroscopy (STM/S). The domain structures, local lattice distortion and the electronic band bending at film edges induced by the in-plane spontaneous polarization along < 110 > have been revealed at atomic scale. The experiments at variant temperature show that the Curie temperature Tc of the one unit cell thick (two atomic layers) SnTe film is as high as 280K, much higher than that of the bulk counterpart (~100K) and the 2-4 unit cell thick films even indicate robust ferroelectricity at room temperature. This Tc enhancement is attributed to the stress-free interface, larger electronic band gap and greatly reduced Sn vacancy concentration in the ultrathin films. The lateral domain size varies from several tens to several hundreds of nanometers, and the spontaneous polarization direction could be modified by STM tip. Those properties of ultrathin SnTe films show the potential application on ferroelectric devices. The work was financially supported by Ministry of Science and Technology of China, National Science Foundation and Ministry of Education of China.

  15. High-Performance Ultrathin Active Chiral Metamaterials.

    PubMed

    Wu, Zilong; Chen, Xiaodong; Wang, Mingsong; Dong, Jianwen; Zheng, Yuebing

    2018-05-22

    Ultrathin active chiral metamaterials with dynamically tunable and responsive optical chirality enable new optical sensors, modulators, and switches. Herein, we develop ultrathin active chiral metamaterials of highly tunable chiroptical responses by inducing tunable near-field coupling in the metamaterials and exploit the metamaterials as ultrasensitive sensors to detect trace amounts of solvent impurities. To demonstrate the active chiral metamaterials mediated by tunable near-field coupling, we design moiré chiral metamaterials (MCMs) as model metamaterials, which consist of two layers of identical Au nanohole arrays stacked upon one another in moiré patterns with a dielectric spacer layer between the Au layers. Our simulations, analytical fittings, and experiments reveal that spacer-dependent near-field coupling exists in the MCMs, which significantly enhances the spectral shift and line shape change of the circular dichroism (CD) spectra of the MCMs. Furthermore, we use a silk fibroin thin film as the spacer layer in the MCM. With the solvent-controllable swelling of the silk fibroin thin films, we demonstrate actively tunable near-field coupling and chiroptical responses of the silk-MCMs. Impressively, we have achieved the spectral shift over a wavelength range that is more than one full width at half-maximum and the sign inversion of the CD spectra in a single ultrathin (1/5 of wavelength in thickness) MCM. Finally, we apply the silk-MCMs as ultrasensitive sensors to detect trace amounts of solvent impurities down to 200 ppm, corresponding to an ultrahigh sensitivity of >10 5 nm/refractive index unit (RIU) and a figure of merit of 10 5 /RIU.

  16. Fabrication of Large-area Free-standing Ultrathin Polymer Films

    PubMed Central

    Stadermann, Michael; Baxamusa, Salmaan H.; Aracne-Ruddle, Chantel; Chea, Maverick; Li, Shuaili; Youngblood, Kelly; Suratwala, Tayyab

    2015-01-01

    This procedure describes a method for the fabrication of large-area and ultrathin free-standing polymer films. Typically, ultrathin films are prepared using either sacrificial layers, which may damage the film or affect its mechanical properties, or they are made on freshly cleaved mica, a substrate that is difficult to scale. Further, the size of ultrathin film is typically limited to a few square millimeters. In this method, we modify a surface with a polyelectrolyte that alters the strength of adhesion between polymer and deposition substrate. The polyelectrolyte can be shown to remain on the wafer using spectroscopy, and a treated wafer can be used to produce multiple films, indicating that at best minimal amounts of the polyelectrolyte are added to the film. The process has thus far been shown to be limited in scalability only by the size of the coating equipment, and is expected to be readily scalable to industrial processes. In this study, the protocol for making the solutions, preparing the deposition surface, and producing the films is described. PMID:26066738

  17. Ultrathin zoom lens system based on liquid lenses

    NASA Astrophysics Data System (ADS)

    Li, Lei; Liu, Chao; Wang, Qiong-Hua

    2015-07-01

    In this paper, we propose an ultrathin zoom lens system based on liquid lenses. The proposed system consists of an annular folded lens and three electrowetting liquid lenses. The annular folded lens has several concentric surfaces. The annular folded lens is used to get the main power and correct aberrations. The three liquid lenses are used to change the focal length and correct aberration. An analysis of the proposed system is presented along with the design, fabrication, and testing of a prototype. All the elements in the proposed system are very thin, so the system is an ultrathin zoom lens system, which has potential application as lightweight, thin, high-quality imagers for aerospace, consumer, and military applications.

  18. Physicochemically functional ultrathin films by interfacial polymerization

    DOEpatents

    Lonsdale, Harold K.; Babcock, Walter C.; Friensen, Dwayne T.; Smith, Kelly L.; Johnson, Bruce M.; Wamser, Carl C.

    1990-01-01

    Interfacially-polymerized ultrathin films containing physicochemically functional groups are disclosed, both with and without supports. Various applications are disclsoed, including membrane electrodes, selective membranes and sorbents, biocompatible materials, targeted drug delivery, and narrow band optical absorbers.

  19. Patterned FePt nanostructures using ultrathin self-organized templates

    NASA Astrophysics Data System (ADS)

    Deng, Chen Hua; Zhang, Min; Wang, Fang; Xu, Xiao Hong

    2018-02-01

    Patterned magnetic thin films are both scientifically interesting and technologically useful. Ultrathin self-organized anodic aluminum oxide (AAO) template can be used to fabricate large area nanodot and antidot arrays. The magnetic properties of these nanostructures may be tuned by the morphology of the AAO template, which in turn can be controlled by synthetic parameters. In this work, ultrathin AAO templates were used as etching masks for the fabrication of both FePt nanodot and antidot arrays with high areal density. The perpendicular magnetic anisotropy of L10 FePt thin films are preserved in the nanostructures.

  20. Generalized Self-Doping Engineering towards Ultrathin and Large-Sized Two-Dimensional Homologous Perovskites.

    PubMed

    Chen, Junnian; Wang, Yaguang; Gan, Lin; He, Yunbin; Li, Huiqiao; Zhai, Tianyou

    2017-11-20

    Two-dimensional (2D) homologous perovskites are arousing intense interest in photovoltaics and light-emitting fields, attributing to significantly improved stability and increasing optoelectronic performance. However, investigations on 2D homologous perovskites with ultrathin thickness and large lateral dimension have been seldom reported, being mainly hindered by challenges in synthesis. A generalized self-doping directed synthesis of ultrathin 2D homologous (BA) 2 (MA) n-1 Pb n Br 3n+1 (1Ultrathin (BA) 2 (MA) n-1 Pb n Br 3n+1 perovskites are formed via an intercalation-merging mechanism, with thickness shrinking down to 4.2 nm and the lateral dimension to 57 μm. The ultrathin 2D homologous (BA) 2 (MA) n-1 Pb n Br 3n+1 perovskites are potential materials for photodetectors with promising photoresponse and stability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Novel disposable transnasal endoscopy for assessment of esophageal motor function.

    PubMed

    Lim, Chul-Hyun; Choi, Myung-Gyu; Baeg, Myong-Ki; Moon, Sung Jin; Kim, Jin Su; Cho, Yu Kyung; Park, Jae Myung; Lee, In Seok; Kim, Sang Woo; Choi, Kyu Yong

    2014-01-01

    A novel disposable transnasal endoscopy (DTE) with a portable system has been developed to provide unsedated esophagoscopy by modifying capsule endoscopy. The aim of this study was to assess the feasibility of DTE to evaluate esophageal motor function. Patients with or suspected esophageal motility disorders and healthy volunteers were enrolled. Participants underwent esophageal high-resolution manometry and DTE in random order on different days. Motility was observed with DTE at 1, 8, and 16 cm above the gastroesophageal junction. Twenty healthy volunteers and 20 symptomatic subjects participated (8 achalasia, 5 scleroderma, 3 diffuse esophageal spasm, 1 hypertensive peristalsis, 1 peristaltic dysfunction, and 22 normal esophageal function). The normal findings on DTE were as follows. As the subject swallowed water, swallow-induced relaxation with elevation of the lower esophageal sphincter caused the endoscope to cross the Z-line into the gastric lumen. After the passage of water and air, complete closure of the lower esophageal sphincter occurred, with the return of the endoscope to its previous position. During the resting stage of the esophageal body, an air bubble could be seen in the center of the radially wrinkled and occluded lumen. The endoscopic diagnosis was in agreement with the clinical diagnosis in all but 2. Most of the participants reported acceptable discomfort during DTE and 62.5% of the subjects preferred DTE to manometry. DTE can accurately characterize normal esophageal motor function, allowing the diagnosis of esophageal motility disorders. DTE has potential widespread applications, especially in outpatient clinics.

  2. Electron transport in ultra-thin films and ballistic electron emission microscopy

    NASA Astrophysics Data System (ADS)

    Claveau, Y.; Di Matteo, S.; de Andres, P. L.; Flores, F.

    2017-03-01

    We have developed a calculation scheme for the elastic electron current in ultra-thin epitaxial heterostructures. Our model uses a Keldysh’s non-equilibrium Green’s function formalism and a layer-by-layer construction of the epitaxial film. Such an approach is appropriate to describe the current in a ballistic electron emission microscope (BEEM) where the metal base layer is ultra-thin and generalizes a previous one based on a decimation technique appropriated for thick slabs. This formalism allows a full quantum mechanical description of the transmission across the epitaxial heterostructure interface, including multiple scattering via the Dyson equation, which is deemed a crucial ingredient to describe interfaces of ultra-thin layers properly in the future. We introduce a theoretical formulation needed for ultra-thin layers and we compare with results obtained for thick Au(1 1 1) metal layers. An interesting effect takes place for a width of about ten layers: a BEEM current can propagate via the center of the reciprocal space (\\overlineΓ ) along the Au(1 1 1) direction. We associate this current to a coherent interference finite-width effect that cannot be found using a decimation technique. Finally, we have tested the validity of the handy semiclassical formalism to describe the BEEM current.

  3. Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films

    PubMed Central

    Wang, Xuewen; He, Xuexia; Zhu, Hongfei; Sun, Linfeng; Fu, Wei; Wang, Xingli; Hoong, Lai Chee; Wang, Hong; Zeng, Qingsheng; Zhao, Wu; Wei, Jun; Jin, Zhong; Shen, Zexiang; Liu, Jie; Zhang, Ting; Liu, Zheng

    2016-01-01

    Driven by the development of high-performance piezoelectric materials, actuators become an important tool for positioning objects with high accuracy down to nanometer scale, and have been used for a wide variety of equipment, such as atomic force microscopy and scanning tunneling microscopy. However, positioning at the subatomic scale is still a great challenge. Ultrathin piezoelectric materials may pave the way to positioning an object with extreme precision. Using ultrathin CdS thin films, we demonstrate vertical piezoelectricity in atomic scale (three to five space lattices). With an in situ scanning Kelvin force microscopy and single and dual ac resonance tracking piezoelectric force microscopy, the vertical piezoelectric coefficient (d33) up to 33 pm·V−1 was determined for the CdS ultrathin films. These findings shed light on the design of next-generation sensors and microelectromechanical devices. PMID:27419234

  4. Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films.

    PubMed

    Wang, Xuewen; He, Xuexia; Zhu, Hongfei; Sun, Linfeng; Fu, Wei; Wang, Xingli; Hoong, Lai Chee; Wang, Hong; Zeng, Qingsheng; Zhao, Wu; Wei, Jun; Jin, Zhong; Shen, Zexiang; Liu, Jie; Zhang, Ting; Liu, Zheng

    2016-07-01

    Driven by the development of high-performance piezoelectric materials, actuators become an important tool for positioning objects with high accuracy down to nanometer scale, and have been used for a wide variety of equipment, such as atomic force microscopy and scanning tunneling microscopy. However, positioning at the subatomic scale is still a great challenge. Ultrathin piezoelectric materials may pave the way to positioning an object with extreme precision. Using ultrathin CdS thin films, we demonstrate vertical piezoelectricity in atomic scale (three to five space lattices). With an in situ scanning Kelvin force microscopy and single and dual ac resonance tracking piezoelectric force microscopy, the vertical piezoelectric coefficient (d 33) up to 33 pm·V(-1) was determined for the CdS ultrathin films. These findings shed light on the design of next-generation sensors and microelectromechanical devices.

  5. Physicochemically functional ultrathin films by interfacial polymerization

    DOEpatents

    Lonsdale, H.K.; Babcock, W.C.; Friensen, D.T.; Smith, K.L.; Johnson, B.M.; Wamser, C.C.

    1990-08-14

    Interfacially-polymerized ultrathin films containing physicochemically functional groups are disclosed, both with and without supports. Various applications are disclosed, including membrane electrodes, selective membranes and sorbents, biocompatible materials, targeted drug delivery, and narrow band optical absorbers. 3 figs.

  6. Is a fecal occult blood test a useful tool for judging whether to perform capsule endoscopy in low-dose aspirin users with negative colonoscopy and esophagogastroduodenoscopy?

    PubMed

    Endo, Hiroki; Kato, Takayuki; Sakai, Eiji; Taniguchi, Leo; Arimoto, Jun; Kawamura, Harunobu; Higurashi, Takuma; Ohkubo, Hidenori; Nonaka, Takashi; Taguri, Masataka; Inamori, Masahiko; Yamanaka, Takeharu; Sakaguchi, Takashi; Hata, Yasuo; Nagase, Hajime; Nakajima, Atsushi

    2017-02-01

    Aspirin use is reportedly not to be associated with fecal immunochemical occult blood test (FIT) false-positive results for the detection of colorectal cancer. The need for additional small bowel exploration in FIT-positive, low-dose aspirin users with a negative colonoscopy is controversial. The aim of this study was to assess the ability of FIT to judge whether capsule endoscopy (CE) should be performed in low-dose aspirin users with negative colonoscopy and esophagogastroduodenoscopy findings by comparing FIT results with CE findings. A total of 264 consecutive low-dose aspirin users with negative colonoscopy and esophagogastroduodenoscopy who were scheduled to undergo CE at five hospitals in Japan were enrolled. Patients had been offered FIT prior to the CE. The association between the FIT results and the CE findings was then assessed. One hundred and fifty-seven patients were included in the final analysis. Eighty-four patients (53.5 %) had positive FIT results. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of positive FIT results for small bowel ulcers were 0.56, 0.47, 0.30, and 0.73, respectively. Furthermore, the NPV of positive FIT results for severe small bowel injury (Lewis score ≥790) was markedly high (0.90). When the analysis was performed only in low-dose aspirin users with anemia, the sensitivity of the positive FIT results was notably improved (0.72). Small bowel evaluation using CE is not recommended for FIT-negative, low-dose aspirin users. However, small bowel evaluation using CE should be considered in both FIT-positive and anemic low-dose aspirin users.

  7. Modified transnasal endoscopic medial maxillectomy through prelacrimal duct approach.

    PubMed

    Suzuki, Motohiko; Nakamura, Yoshihisa; Yokota, Makoto; Ozaki, Shinya; Murakami, Shingo

    2017-10-01

    We previously reported a modified endoscopic medial maxillectomy (modified transnasal endoscopic medial maxillectomy through prelacrimal duct approach [MTEMMPDA]) to resect inverted papilloma (IP), for which the inferior turbinate (IT) and nasolacrimal duct (ND) can be preserved. MTEMMPDA is a safe and effective method to obtain wide, straight access to the maxillary sinus (MS). However, there are few reported cases of patients who underwent MTEMMPDA, and even fewer of patients who underwent partial osteotomy of the apertura piriformis and the anterior wall of the MS. In this study, we analyzed the outcomes of 51 patients who underwent MTEMMPDA. Retrospective review. All patients who underwent MTEMMPDA at our hospital between January 2004 and December 2015 were included in this study. Fifty-one patients with sinonasal IP in the MS underwent MTEMMPDA. Recurrence was seen in the MS of one patient (follow-up of 2-138 months). The IT remained unchanged in all 51 patients without atrophy. We have not observed epiphora, eye discharge, dry nose, or persistent crusting after this surgery. Although seven patients had numbness around the upper lip after surgery, this had disappeared by 1 year after surgery. Additional partial osteotomy of the apertura piriformis and the anterior wall of the MS were done in eight patients. Deformation of the external nose was not seen. This approach appears to be a safe and effective method to resect IP in the MS, even if there is additional partial osteotomy of the apertura piriformis and the anterior wall of the MS. 4. Laryngoscope, 127:2205-2209, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  8. Electrolyte-Sensing Transistor Decals Enabled by Ultrathin Microbial Nanocellulose

    PubMed Central

    Yuen, Jonathan D.; Walper, Scott A.; Melde, Brian J.; Daniele, Michael A.; Stenger, David A.

    2017-01-01

    We report an ultra-thin electronic decal that can simultaneously collect, transmit and interrogate a bio-fluid. The described technology effectively integrates a thin-film organic electrochemical transistor (sensing component) with an ultrathin microbial nanocellulose wicking membrane (sample handling component). As far as we are aware, OECTs have not been integrated in thin, permeable membrane substrates for epidermal electronics. The design of the biocompatible decal allows for the physical isolation of the electronics from the human body while enabling efficient bio-fluid delivery to the transistor via vertical wicking. High currents and ON-OFF ratios were achieved, with sensitivity as low as 1 mg·L−1. PMID:28102316

  9. Electrolyte-Sensing Transistor Decals Enabled by Ultrathin Microbial Nanocellulose

    NASA Astrophysics Data System (ADS)

    Yuen, Jonathan D.; Walper, Scott A.; Melde, Brian J.; Daniele, Michael A.; Stenger, David A.

    2017-01-01

    We report an ultra-thin electronic decal that can simultaneously collect, transmit and interrogate a bio-fluid. The described technology effectively integrates a thin-film organic electrochemical transistor (sensing component) with an ultrathin microbial nanocellulose wicking membrane (sample handling component). As far as we are aware, OECTs have not been integrated in thin, permeable membrane substrates for epidermal electronics. The design of the biocompatible decal allows for the physical isolation of the electronics from the human body while enabling efficient bio-fluid delivery to the transistor via vertical wicking. High currents and ON-OFF ratios were achieved, with sensitivity as low as 1 mg·L-1.

  10. Controlled Growth of Ultrathin Film of Organic Semiconductors by Balancing the Competitive Processes in Dip-Coating for Organic Transistors.

    PubMed

    Wu, Kunjie; Li, Hongwei; Li, Liqiang; Zhang, Suna; Chen, Xiaosong; Xu, Zeyang; Zhang, Xi; Hu, Wenping; Chi, Lifeng; Gao, Xike; Meng, Yancheng

    2016-06-28

    Ultrathin film with thickness below 15 nm of organic semiconductors provides excellent platform for some fundamental research and practical applications in the field of organic electronics. However, it is quite challenging to develop a general principle for the growth of uniform and continuous ultrathin film over large area. Dip-coating is a useful technique to prepare diverse structures of organic semiconductors, but the assembly of organic semiconductors in dip-coating is quite complicated, and there are no reports about the core rules for the growth of ultrathin film via dip-coating until now. In this work, we develop a general strategy for the growth of ultrathin film of organic semiconductor via dip-coating, which provides a relatively facile model to analyze the growth behavior. The balance between the three direct factors (nucleation rate, assembly rate, and recession rate) is the key to determine the growth of ultrathin film. Under the direction of this rule, ultrathin films of four organic semiconductors are obtained. The field-effect transistors constructed on the ultrathin film show good field-effect property. This work provides a general principle and systematic guideline to prepare ultrathin film of organic semiconductors via dip-coating, which would be highly meaningful for organic electronics as well as for the assembly of other materials via solution processes.

  11. Coexistence of Topological Edge State and Superconductivity in Bismuth Ultrathin Film.

    PubMed

    Sun, Hao-Hua; Wang, Mei-Xiao; Zhu, Fengfeng; Wang, Guan-Yong; Ma, Hai-Yang; Xu, Zhu-An; Liao, Qing; Lu, Yunhao; Gao, Chun-Lei; Li, Yao-Yi; Liu, Canhua; Qian, Dong; Guan, Dandan; Jia, Jin-Feng

    2017-05-10

    Ultrathin freestanding bismuth film is theoretically predicted to be one kind of two-dimensional topological insulators. Experimentally, the topological nature of bismuth strongly depends on the situations of the Bi films. Film thickness and interaction with the substrate often change the topological properties of Bi films. Using angle-resolved photoemission spectroscopy, scanning tunneling microscopy or spectroscopy and first-principle calculation, the properties of Bi(111) ultrathin film grown on the NbSe 2 superconducting substrate have been studied. We find the band structures of the ultrathin film is quasi-freestanding, and one-dimensional edge state exists on Bi(111) film as thin as three bilayers. Superconductivity is also detected on different layers of the film and the pairing potential exhibits an exponential decay with the layer thicknesses. Thus, the topological edge state can coexist with superconductivity, which makes the system a promising platform for exploring Majorana Fermions.

  12. Magnetotransport Properties in High-Quality Ultrathin Two-Dimensional Superconducting Mo2C Crystals.

    PubMed

    Wang, Libin; Xu, Chuan; Liu, Zhibo; Chen, Long; Ma, Xiuliang; Cheng, Hui-Ming; Ren, Wencai; Kang, Ning

    2016-04-26

    Ultrathin transition metal carbides are a class of developing two-dimensional (2D) materials with superconductivity and show great potentials for electrical energy storage and other applications. Here, we report low-temperature magnetotransport measurements on high-quality ultrathin 2D superconducting α-Mo2C crystals synthesized by a chemical vapor deposition method. The magnetoresistance curves exhibit reproducible oscillations at low magnetic fields for temperature far below the superconducting transition temperature of the crystals. We interpret the oscillatory magnetoresistance as a consequence of screening currents circling around the boundary of triangle-shaped terraces found on the surface of ultrathin Mo2C crystals. As the sample thickness decreases, the Mo2C crystals exhibit negative magnetoresistance deep in the superconducting transition regime, which reveals strong phase fluctuations of the superconducting order parameters associated with the superconductor-insulator transition. Our results demonstrate that the ultrathin superconducting Mo2C crystals provide an interesting system for studying rich transport phenomena in a 2D crystalline superconductor with enhanced quantum fluctuations.

  13. A broadband terahertz ultrathin multi-focus lens

    PubMed Central

    He, Jingwen; Ye, Jiasheng; Wang, Xinke; Kan, Qiang; Zhang, Yan

    2016-01-01

    Ultrathin transmission metasurface devices are designed on the basis of the Yang-Gu amplitude-phase retrieval algorithm for focusing the terahertz (THz) radiation into four or nine spots with focal spacing of 2 or 3 mm at a frequency of 0.8 THz. The focal properties are experimentally investigated in detail, and the results agree well with the theoretical expectations. The designed THz multi-focus lens (TMFL) demonstrates a good focusing function over a broad frequency range from 0.3 to 1.1 THz. As a transmission-type device based on metasurface, the diffraction efficiency of the TMFL can be as high as 33.92% at the designed frequency. The imaging function of the TMFL is also demonstrated experimentally and clear images are obtained. The proposed method produces an ultrathin, low-cost, and broadband multi-focus lens for THz-band application PMID:27346430

  14. Increased risk of prosthetic joint infection associated with esophago-gastro-duodenoscopy with biopsy.

    PubMed

    Coelho-Prabhu, Nayantara; Oxentenko, Amy S; Osmon, Douglas R; Baron, Todd H; Hanssen, Arlen D; Wilson, Walter R; Steckelberg, James M; Baddour, Larry M; Harmsen, William S; Mandrekar, Jay; Berbari, Elie F

    2013-02-01

    There are no prospective data regarding the risk of prosthetic joint infection following routine gastrointestinal endoscopic procedures. We wanted to determine the risk of prosthetic hip or knee infection following gastrointestinal endoscopic procedures in patients with joint arthroplasty. We conducted a prospective, single-center, case-control study at a single, tertiary-care referral center. Cases were defined as adult patients hospitalized for prosthetic joint infection of the hip or knee between December 1, 2001 and May 31, 2006. Controls were adult patients with hip or knee arthroplasties but without a diagnosis of joint infection, hospitalized during the same time period at the same orthopedic hospital. The main outcome measure was the odds ratio (OR) of prosthetic joint infection after gastrointestinal endoscopic procedures performed within 2 years before admission. 339 cases and 339 controls were included in the study. Of these, 70 cases (21%) cases and 82 controls (24%) had undergone a gastrointestinal endoscopic procedure in the preceding 2 years. Among gastrointestinal procedures that were assessed, esophago-gastro-duodenoscopy (EGD) with biopsy was associated with an increased risk of prosthetic joint infection (OR = 3, 95% CI: 1.1-7). In a multivariable analysis adjusting for sex, age, joint age, immunosuppression, BMI, presence of wound drain, prior arthroplasty, malignancy, ASA score, and prothrombin time, the OR for infection after EGD with biopsy was 4 (95% CI: 1.5-10). EGD with biopsy was associated with an increased risk of prosthetic joint infection in patients with hip or knee arthroplasties. This association will need to be confirmed in other epidemiological studies and adequately powered prospective clinical trials prior to recommending antibiotic prophylaxis in these patients.

  15. Exploratory development and services for preparing and examining ultrathin polished sections of lunar rocks and particulates, part 1

    NASA Technical Reports Server (NTRS)

    Beauchamp, R. H.; Williford, J. F.; Gafford, E. L.

    1972-01-01

    Development of improved procedures is reported for three classes of lunar materials: dense rocks, breccias, and particulates. High quality ultrathin sections of these materials are obtained. Lists of equipment and supplies, procedures, photomicrographic documentation, and training are provided. Advantages of ultrathin polished sections for conventional and unconventional optical microscopy methods are described. Recommendations are provided for use of ultrathin sections in lunar rock studies, for further refinement of ultrathinning procedures, and for additional training efforts to establish a capability at the Manned Space Center. For Part 2, See N72-50754.

  16. Metal Adatoms and Clusters on Ultrathin Zirconia Films

    PubMed Central

    2016-01-01

    Nucleation and growth of transition metals on zirconia has been studied by scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. Since STM requires electrical conductivity, ultrathin ZrO2 films grown by oxidation of Pt3Zr(0001) and Pd3Zr(0001) were used as model systems. DFT studies were performed for single metal adatoms on supported ZrO2 films as well as the (1̅11) surface of monoclinic ZrO2. STM shows decreasing cluster size, indicative of increasing metal–oxide interaction, in the sequence Ag < Pd ≈ Au < Ni ≈ Fe. Ag and Pd nucleate mostly at steps and domain boundaries of ZrO2/Pt3Zr(0001) and form three-dimensional clusters. Deposition of low coverages of Ni and Fe at room temperature leads to a high density of few-atom clusters on the oxide terraces. Weak bonding of Ag to the oxide is demonstrated by removing Ag clusters with the STM tip. DFT calculations for single adatoms show that the metal–oxide interaction strength increases in the sequence Ag < Au < Pd < Ni on monoclinic ZrO2, and Ag ≈ Au < Pd < Ni on the supported ultrathin ZrO2 film. With the exception of Au, metal nucleation and growth on ultrathin zirconia films follow the usual rules: More reactive (more electropositive) metals result in a higher cluster density and wet the surface more strongly than more noble metals. These bind mainly to the oxygen anions of the oxide. Au is an exception because it can bind strongly to the Zr cations. Au diffusion may be impeded by changing its charge state between −1 and +1. We discuss differences between the supported ultrathin zirconia films and the surfaces of bulk ZrO2, such as the possibility of charge transfer to the substrate of the films. Due to their large in-plane lattice constant and the variety of adsorption sites, ZrO2{111} surfaces are more reactive than many other oxygen-terminated oxide surfaces. PMID:27213024

  17. Investigations of Topological Surface States in Sb (111) Ultrathin Films by STM/STS Experiments and DFT Calculations

    NASA Astrophysics Data System (ADS)

    Luo, Ziyu; Yao, Guanggeng; Xu, Wentao; Feng, Yuanping; Wang, Xue-Sen

    2014-03-01

    Bulk Sb was regarded as a semimetal with a nontrivial topological order. It is worth exploring whether the Sb ultrathin film has the potential to be an elementary topological insulator. In the presence of quantum confinement effect, we investigated the evolution of topological surface states in Sb (111) ultrathin films with different thickness by the scanning tunneling microscopy/ spectroscopy (STM/STS) experiments and density functional theory (DFT) calculations. By comparing the quasiparticle interference (QPI) patterns obtained from Fourier-transform scanning tunneling spectroscopy (FT-STS) and from DFT calculations, we successfully derive the spin properties of topological surface states on Sb (111) ultrathin films. In addition, based on the DFT calculations, the 8BL Sb (111) ultrathin film was proved to possess up to 30% spinseparated topological surface states within the bandgap. Therefore, the highquality 8BL Sb (111) ultrathin film could be regarded as an elementary topological insulator.

  18. A sextuple-band ultra-thin metamaterial absorber with perfect absorption

    NASA Astrophysics Data System (ADS)

    Yu, Dingwang; Liu, Peiguo; Dong, Yanfei; Zhou, Dongming; Zhou, Qihui

    2017-08-01

    This paper presents the design, simulation and measurement of a sextuple-band ultra-thin metamaterial absorber (MA). The unit cell of this proposed structure is composed of triangular spiral-shaped complementary structures imprinted on the dielectric substrate backed by a metal ground. The measured results are in good agreement with simulations with high absorptivities of more than 90% at all six absorption frequencies. In addition, this proposed absorber has good performances of ultra-thin, polarization insensitivity and a wide-angle oblique incidence, which can easily be used in many potential applications such as detection, imaging and sensing.

  19. Early esophagogastroduodenoscopy is associated with better Outcomes in upper gastrointestinal bleeding: a nationwide study

    PubMed Central

    Garg, Sushil K.; Anugwom, Chimaobi; Campbell, James; Wadhwa, Vaibhav; Gupta, Nancy; Lopez, Rocio; Shergill, Sukhman; Sanaka, Madhusudhan R.

    2017-01-01

    Background and study aims We analyzed NIS (National Inpatient Sample) database from 2007 – 2013 to determine if early esophagogastroduodenoscopy (EGD) (24 hours) for upper gastrointestinal bleeding improved the outcomes in terms of mortality, length of stay and costs. Patients and methods Patients were classified as having upper gastrointestinal hemorrhage by querying all diagnostic codes for the ICD-9-CM codes corresponding to upper gastrointestinal bleeding. For these patients, performance of EGD during admission was determined by querying all procedural codes for the ICD-9-CM codes corresponding to EGD; early EGD was defined as having EGD performed within 24 hours of admission and late EGD was defined as having EGD performed after 24 hours of admission. Results A total of 1,789,532 subjects with UGIH were identified. Subjects who had an early EGD were less likely to have hypovolemia, acute renal failure and acute respiratory failure. On multivariable analysis, we found that subjects without EGD were 3 times more likely to die during the admission than those with early EGD. In addition, those with late EGD had 50 % higher odds of dying than those with an early EGD. Also, after adjusting for all factors in the model, hospital stay was on average 3 and 3.7 days longer for subjects with no or late EGD, respectively, then for subjects with early EGD. Conclusion Early EGD (within 24 hours) is associated with lower in-hospital mortality, morbidity, shorter length of stay and lower total hospital costs. PMID:28512647

  20. Laser cutting of ultra-thin glasses based on a nonlinear laser interaction effect

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Wu, Zhouling

    2013-07-01

    Glass panel substrates have been widely used in consumer electronics such as in flat panel TVs, laptops, and cell phones. With the advancement in the industry, the glass substrates are becoming thinner and stronger for reduced weight and volume, which brings great challenges for traditional mechanical processes in terms of cut quality, yield, and throughput. Laser glass cutting provides a non-contact process with minimum impact and superior quality compared to the mechanical counterparts. In this paper, we presented recent progresses in advanced laser processing of ultra-thin glass substrates, especially laser-cutting of ultra-thin glasses by a high power laser through a nonlinear interaction effect. Our results indicate that this technique has great potential of application for mass production of ultra-thin glass substrates.

  1. Ultrathin metallized PBI paper

    NASA Technical Reports Server (NTRS)

    Chenevey, E. C.

    1978-01-01

    A study to determine the feasibility of preparing ultrathin papers with a target weight of 3.5 g/m squared from polybenzimidazole (PBI) fibrids was undertaken. Small hand sheets of target weight were fabricated. They were light brown, low density materials with sufficient strength to be readily handleable. Characterization of these sheets included strength, fold endurance, thermal gravimetric analysis in air and nitrogen and photomicrographs. Two different batches of PBI fibrids were studied and differences in fabrication performance were noted. In neither case could target weight papers be prepared using conventional paper making techniques.

  2. Ultrathin inorganic molecular nanowire based on polyoxometalates

    PubMed Central

    Zhang, Zhenxin; Murayama, Toru; Sadakane, Masahiro; Ariga, Hiroko; Yasuda, Nobuhiro; Sakaguchi, Norihito; Asakura, Kiyotaka; Ueda, Wataru

    2015-01-01

    The development of metal oxide-based molecular wires is important for fundamental research and potential practical applications. However, examples of these materials are rare. Here we report an all-inorganic transition metal oxide molecular wire prepared by disassembly of larger crystals. The wires are comprised of molybdenum(VI) with either tellurium(IV) or selenium(IV): {(NH4)2[XMo6O21]}n (X=tellurium(IV) or selenium(IV)). The ultrathin molecular nanowires with widths of 1.2 nm grow to micrometre-scale crystals and are characterized by single-crystal X-ray analysis, Rietveld analysis, scanning electron microscopy, X-ray photoelectron spectroscopy, ultraviolet–visible spectroscopy, thermal analysis and elemental analysis. The crystals can be disassembled into individual molecular wires through cation exchange and subsequent ultrasound treatment, as visualized by atomic force microscopy and transmission electron microscopy. The ultrathin molecular wire-based material exhibits high activity as an acid catalyst, and the band gap of the molecular wire-based crystal is tunable by heat treatment. PMID:26139011

  3. Mechanism of Antiwear Property Under High Pressure of Synthetic Oil-Soluble Ultrathin MoS2 Sheets as Lubricant Additives.

    PubMed

    Chen, Zhe; Liu, Yuhong; Gunsel, Selda; Luo, Jianbin

    2018-01-30

    Wear occurs between two rubbing surfaces. Severe wear due to seizure under high pressure leads to catastrophic failures of mechanical systems and raises wide concerns. In this paper, a kind of synthetic oil-soluble ultrathin MoS 2 sheets is synthesized and investigated as lubricant additives between steel surfaces. It is found that, with the ultrathin MoS 2 sheets, the wear can be controlled under the nominal pressure of about 1 GPa, whereas the bearable nominal pressure for traditional lubricants is only a few hundred megapascals. It is found that when wear is under control, the real pressure between the asperities agrees with the breaking strength of ultrathin MoS 2 . Therefore, it is believed that, because of the good oil solubility and ultrasmall thickness, the ultrathin MoS 2 sheets can easily enter the contact area between the contacting asperities. Then, the localized seizure and further wear are prevented because there will be no metal-to-metal contact as long as the real pressure between the asperities is below the breaking strength of ultrathin MoS 2 . In this way, the upper limit pressure the lubricant can work is dependent on the mechanical properties of the containing ultrathin two-dimensional (2D) sheets. Additionally, ultrathin MoS 2 sheets with various lateral sizes are compared, and it is found that sheets with a larger size show better lubrication performance. This work discovers the lubrication mechanism of ultrathin MoS 2 sheets as lubricant additives and provides an inspiration to develop a novel generation of lubricant additives with high-strength ultrathin 2D materials.

  4. Ultrathin nondoped emissive layers for efficient and simple monochrome and white organic light-emitting diodes.

    PubMed

    Zhao, Yongbiao; Chen, Jiangshan; Ma, Dongge

    2013-02-01

    In this paper, highly efficient and simple monochrome blue, green, orange, and red organic light emitting diodes (OLEDs) based on ultrathin nondoped emissive layers (EMLs) have been reported. The ultrathin nondoped EML was constructed by introducing a 0.1 nm thin layer of pure phosphorescent dyes between a hole transporting layer and an electron transporting layer. The maximum external quantum efficiencies (EQEs) reached 17.1%, 20.9%, 17.3%, and 19.2% for blue, green, orange, and red monochrome OLEDs, respectively, indicating the universality of the ultrathin nondoped EML for most phosphorescent dyes. On the basis of this, simple white OLED structures are also demonstrated. The demonstrated complementary blue/orange, three primary blue/green/red, and four color blue/green/orange/red white OLEDs show high efficiency and good white emission, indicating the advantage of ultrathin nondoped EMLs on constructing simple and efficient white OLEDs.

  5. Transnasal Humidified Rapid-Insufflation Ventilatory Exchange (THRIVE): a physiological method of increasing apnoea time in patients with difficult airways.

    PubMed

    Patel, A; Nouraei, S A R

    2015-03-01

    Emergency and difficult tracheal intubations are hazardous undertakings where successive laryngoscopy-hypoxaemia-re-oxygenation cycles can escalate to airway loss and the 'can't intubate, can't ventilate' scenario. Between 2013 and 2014, we extended the apnoea times of 25 patients with difficult airways who were undergoing general anaesthesia for hypopharyngeal or laryngotracheal surgery. This was achieved through continuous delivery of transnasal high-flow humidified oxygen, initially to provide pre-oxygenation, and continuing as post-oxygenation during intravenous induction of anaesthesia and neuromuscular blockade until a definitive airway was secured. Apnoea time commenced at administration of neuromuscular blockade and ended with commencement of jet ventilation, positive-pressure ventilation or recommencement of spontaneous ventilation. During this time, upper airway patency was maintained with jaw-thrust. Transnasal Humidified Rapid-Insufflation Ventilatory Exchange (THRIVE) was used in 15 males and 10 females. Mean (SD [range]) age at treatment was 49 (15 [25-81]) years. The median (IQR [range]) Mallampati grade was 3 (2-3 [2-4]) and direct laryngoscopy grade was 3 (3-3 [2-4]). There were 12 obese patients and nine patients were stridulous. The median (IQR [range]) apnoea time was 14 (9-19 [5-65]) min. No patient experienced arterial desaturation < 90%. Mean (SD [range]) post-apnoea end-tidal (and in four patients, arterial) carbon dioxide level was 7.8 (2.4 [4.9-15.3]) kPa. The rate of increase in end-tidal carbon dioxide was 0.15 kPa.min(-1) . We conclude that THRIVE combines the benefits of 'classical' apnoeic oxygenation with continuous positive airway pressure and gaseous exchange through flow-dependent deadspace flushing. It has the potential to transform the practice of anaesthesia by changing the nature of securing a definitive airway in emergency and difficult intubations from a pressured stop-start process to a smooth and unhurried undertaking

  6. Primary Endoscopic Transnasal Transsphenoidal Surgery for Giant Pituitary Adenoma.

    PubMed

    Kuo, Chao-Hung; Yen, Yu-Shu; Wu, Jau-Ching; Chang, Peng-Yuan; Chang, Hsuan-Kan; Tu, Tsung-Hsi; Huang, Wen-Cheng; Cheng, Henrich

    2016-07-01

    Giant pituitary adenoma (>4 cm) remains challenging because the optimal surgical approach is uncertain. Consecutive patients with giant pituitary adenoma who underwent endoscopic transnasal transsphenoidal surgery (ETTS) as the first and primary treatment were retrospectively reviewed. Inclusion criteria were tumor diameter ≥4 cm in at least 1 direction, and tumor volume ≥10 cm(3). Exclusion criteria were follow-ups <2 years and diseases other than pituitary adenoma. All the clinical and radiologic outcomes were evaluated. A total of 38 patients, average age 50.8 years, were analyzed with a mean follow-up of 72.9 months. All patients underwent ETTS as the first and primary treatment, and 8 (21.1%) had complete resection without any evidence of recurrence at the latest follow-up. Overall, mean tumor volume decreased from 29.7 to 3.2 cm(3) after surgery. Residual and recurrent tumors (n = 30) were managed with 1 of the following: Gamma Knife radiosurgery (GKRS), reoperation (redo ETTS), both GKRS and ETTS, medication, conventional radiotherapy, or none. At last follow-up, most of the patients had favorable outcomes, including 8 (21.1%) who were cured and 29 (76.3%) who had a stable residual condition without progression. Only 1 (2.6%) had late recurrence at 66 months after GKRS. The overall progression-free rate was 97.4%, with few complications. In this series of giant pituitary adenoma, primary (ie, the first) ETTS yielded complete resection and cure in 21.1%. Along with adjuvant therapies, including GKRS, most patients (97.4%) were stable and free of disease progression. Therefore, primary ETTS appeared to be an effective surgical approach for giant pituitary adenoma. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Ultrathin MoS2 Nanosheets with Superior Extreme Pressure Property as Boundary Lubricants.

    PubMed

    Chen, Zhe; Liu, Xiangwen; Liu, Yuhong; Gunsel, Selda; Luo, Jianbin

    2015-08-07

    In this paper, a new kind of oil-soluble ultrathin MoS2 nanosheets is prepared through a one-pot process. A superior extreme pressure property, which has not been attained with other nano-additives, is discovered when the nanosheets are used as lubricant additives. The as-synthesized MoS2 nanosheet is only a few atomic layers thick and tens of nanometers wide, and it is surface-modified with oleylamine so it can be well dispersed in oil or lubricant without adscititious dispersants or surfactants. By adding 1 wt% ultrathin MoS2 nanosheets, at the temperature of 120 °C, the highest load liquid paraffin can bear is tremendously improved from less than 50 N to more than 2000 N. Based on the tribological tests and analysis of the wear scar, a lubrication mechanism is proposed. It is believed that the good dispersion and the ultrathin shape of the nanosheets ensure that they can enter the contact area of the opposite sliding surfaces and act like a protective film to prevent direct contact and seizure between them. This work enriches the investigation of ultrathin MoS2 and has potential application in the mechanical industry.

  8. Ultrathin MoS2 Nanosheets with Superior Extreme Pressure Property as Boundary Lubricants

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Liu, Xiangwen; Liu, Yuhong; Gunsel, Selda; Luo, Jianbin

    2015-08-01

    In this paper, a new kind of oil-soluble ultrathin MoS2 nanosheets is prepared through a one-pot process. A superior extreme pressure property, which has not been attained with other nano-additives, is discovered when the nanosheets are used as lubricant additives. The as-synthesized MoS2 nanosheet is only a few atomic layers thick and tens of nanometers wide, and it is surface-modified with oleylamine so it can be well dispersed in oil or lubricant without adscititious dispersants or surfactants. By adding 1 wt% ultrathin MoS2 nanosheets, at the temperature of 120 °C, the highest load liquid paraffin can bear is tremendously improved from less than 50 N to more than 2000 N. Based on the tribological tests and analysis of the wear scar, a lubrication mechanism is proposed. It is believed that the good dispersion and the ultrathin shape of the nanosheets ensure that they can enter the contact area of the opposite sliding surfaces and act like a protective film to prevent direct contact and seizure between them. This work enriches the investigation of ultrathin MoS2 and has potential application in the mechanical industry.

  9. Predictability of outcome of caustic ingestion by esophagogastroduodenoscopy in children

    PubMed Central

    Temiz, Abdulkerim; Oguzkurt, Pelin; Ezer, Semire Serin; Ince, Emine; Hicsonmez, Akgun

    2012-01-01

    AIM: To assess the necessity of esophagogastroduodenoscopy (EGD) to predict the outcome of caustic ingestion in children. METHODS: The study included 206 children who underwent EGD because of ingestion of caustic substances between January 2005 and August 2010. Retrospective analysis of data of the patients was performed. RESULTS: The male/female ratio was 1.6 and mean age was 38.1 ± 28.8 mo. The caustic substances were acidic in 72 (34.9%) cases, alkaline in 56 (27.2%), liquid household bleach in 62 (30.1%), and unknown in 16 (7.8%). Fifty-seven (27.7%) patients were symptom-free. Significant clinical findings were observed in 149 (72.3%) patients. Upper gastrointestinal endoscopy findings of esophageal injury were grade 0 in 86 (41.7%) patients, grade 1 in 49 (23.8%), grade 2a in 42 (20.4%), grade 2b in 28 (13.6%), and grade 3a in 1 (0.5%) patient. 35 patients with grade 2a, 2b, and 3a injuries underwent esophageal dilation at second week of ingestion. Esophageal stricture, which necessitated a regular dilation program developed in 13 of the aforementioned 35 patients. There is no statistically significant difference in the rate of development of esophageal stricture between the patients who ingested acidic (15.3%) and alkaline (8.9%) substances (P = 0.32). Severe gastric injury was detected in 38 (18.5%) patients. The rate of development of gastric injury was significantly higher in the acidic group (14%) than in the alkaline group (2.9%) (P = 0.001). Out of 149 patients with clinical findings, 49 (32.9%) patients had no esophageal injury and 117 (78.5%) patients had no gastric lesion. Esophageal and severe gastric injuries were detected in 20 (35.1%) and 8 (14%) of patients with no clinical findings respectively. Pyloric stenosis developed in 6 patients. Pyloric obstruction improved with balloon dilation in 2 patients. Mean hospitalization time were 1.2 ± 0.5 d for grade 0 and 2.3 ± 5 d for grade 1 and 6.3 ± 6.2 d for grade 2a and 15.8 ± 18.6 d for grade 2

  10. The role of liquid simethicone in enhancing endoscopic visibility prior to esophagogastroduodenoscopy (EGD): A prospective, randomized, double-blinded, placebo-controlled trial.

    PubMed

    Keeratichananont, Suriya; Sobhonslidsuk, Abhasnee; Kitiyakara, Taya; Achalanan, Narin; Soonthornpun, Supamai

    2010-08-01

    Simethicone improves endoscopic visibility and diagnostic accuracy during colonoscopy and capsule endoscopy. Nevertheless, there have been limited data on its usefulness in esophagogastroduodenoscopy (EGD). To evaluate the effectiveness of simethicone on enhancing endoscopic visibility in patients undergoing EGD. 121 patients were randomized to take 2 ml ofeither liquid simethicone or placebo in 60 ml of water at 15-30 minutes before EGD. The severity scores of foam and bubbles at the esophagus, stomach and duodenum were compared. Simethicone improved endoscopic visibility by diminishing mean cumulative (6.83 +/- 2.4 vs. 11.05 +/- 2.6, p < 0.001) and local scores offoam and bubbles at all areas, and decreased the number and timing ofadjunctive simethicone washing (17.5% vs. 74.1%, p < 0.001 and 0 vs. 19 seconds, p < 0.001). Simethicone increased endoscopist and patient satisfaction significantly without having adverse effects. Using simethicone before EGD enhances endoscopic visibility, reduces adjunctive simethicone washing and increases endoscopist and patient satisfaction.

  11. Synthesis of hexagonal ultrathin tungsten oxide nanowires with diameters below 5 nm for enhanced photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Lu, Huidan; Zhu, Qin; Zhang, Mengying; Yan, Yi; Liu, Yongping; Li, Ming; Yang, Zhishu; Geng, Peng

    2018-04-01

    Semiconductor with one dimension (1D) ultrathin nanostructure has been proved to be a promising nanomaterial in photocatalytic field. Great efforts were made on preparation of monoclinic ultrathin tungsten oxide nanowires. However, non-monoclinic phase tungsten oxides with 1D ultrathin structure, especially less than 5 nm width, have not been reported. Herein, we report the synthesis of hexagonal ultrathin tungsten oxide nanowires (U-WOx NW) by modified hydrothermal method. Microstructure characterization showed that U-WOx NW have the diameters of 1-3 nm below 5 nm and are hexagonal phase sub-stoichiometric WOx. U-WOx NW show absorption tail in the visible and near infrared region due to oxygen vacancies. For improving further photocatalytic performance, Ag co-catalyst was grown directly onto U-WOx NW surface by in situ redox reaction. Photocatalytic measurements revealed hexagonal U-WOx NW have better photodegradation activity, compared with commercial WO3(C-WO3) and oxidized U-WOx NW, ascribe to larger surface area, short diffusion length of photo-generated charge carriers and visible absorption of oxygen-vacancy-rich hexagonal ultrathin nanostructures. Moreover, the photocatalytic activity and stability of U-WOx NW using Ag co-catalyst were further improved.

  12. Utility of the transnasal esophagoscope in the management of chemoradiation-induced esophageal stenosis.

    PubMed

    Peng, Kevin A; Feinstein, Aaron J; Salinas, Jonathan B; Chhetri, Dinesh K

    2015-03-01

    This study aimed to describe management of esophageal stenosis after chemoradiation therapy for head and neck squamous cell carcinoma (HNSCC), with particular emphasis on techniques and outcomes with the use of the transnasal esophagoscope (TNE) in the office as well as operating room settings. Retrospective analysis of all patients with esophageal stenosis following head and neck cancer radiation, with or without chemotherapy, and managed with TNE-assisted esophageal dilation over a 5-year period. Preoperative and postoperative swallowing function were assessed objectively with the Functional Outcome Swallowing Scale (FOSS; ranging from score 0, a normal diet, to score 5, complete dependence on nonoral nutrition). Twenty-five patients met inclusion criteria. The mean pretreatment FOSS score was 4.4, whereas the mean posttreatment FOSS score was 2.7 (Wilcoxon signed-rank test, P<.001). Prior to dilation, 16 patients were completely gastrostomy-tube dependent (FOSS 5), of whom 12 (75%) were able to tolerate oral nutrition for a majority of their diet following treatment according to our protocol. No complications were noted. Dysphagia following chemoradiation therapy for HNSCC is often related to esophageal stenosis. With the aid of TNE, we have developed a successful treatment strategy for esophageal stenosis with improved success rates. © The Author(s) 2014.

  13. Ultrathin Coating of Confined Pt Nanocatalysts by Atomic Layer Deposition for Enhanced Catalytic Performance in Hydrogenation Reactions.

    PubMed

    Wang, Meihua; Gao, Zhe; Zhang, Bin; Yang, Huimin; Qiao, Yan; Chen, Shuai; Ge, Huibin; Zhang, Jiankang; Qin, Yong

    2016-06-13

    Metal-support interfaces play a prominent role in heterogeneous catalysis. However, tailoring the metal-support interfaces to realize full utilization remains a major challenge. In this work, we propose a graceful strategy to maximize the metal-oxide interfaces by coating confined nanoparticles with an ultrathin oxide layer. This is achieved by sequential deposition of ultrathin Al2 O3 coats, Pt, and a thick Al2 O3 layer on carbon nanocoils templates by atomic layer deposition (ALD), followed by removal of the templates. Compared with the Pt catalysts confined in Al2 O3 nanotubes without the ultrathin coats, the ultrathin coated samples have larger Pt-Al2 O3 interfaces. The maximized interfaces significantly improve the activity and the protecting Al2 O3 nanotubes retain the stability for hydrogenation reactions of 4-nitrophenol. We believe that applying ALD ultrathin coats on confined catalysts is a promising way to achieve enhanced performance for other catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Real-Time Deposition Monitor for Ultrathin Conductive Films

    NASA Technical Reports Server (NTRS)

    Hines, Jacqueline

    2011-01-01

    A device has been developed that can be used for the real-time monitoring of ultrathin (2 or more) conductive films. The device responds in less than two microseconds, and can be used to monitor film depositions up to about 60 thick. Actual thickness monitoring capability will vary based on properties of the film being deposited. This is a single-use device, which, due to the very low device cost, can be disposable. Conventional quartz/crystal microbalance devices have proven inadequate to monitor the thickness of Pd films during deposition of ultrathin films for hydrogen sensor devices. When the deposited film is less than 100 , the QCM measurements are inadequate to allow monitoring of the ultrathin films being developed. Thus, an improved, high-sensitivity, real-time deposition monitor was needed to continue Pd film deposition development. The new deposition monitor utilizes a surface acoustic wave (SAW) device in a differential delay-line configuration to produce both a reference response and a response for the portion of the device on which the film is being deposited. Both responses are monitored simultaneously during deposition. The reference response remains unchanged, while the attenuation of the sensing path (where the film is being deposited) varies as the film thickness increases. This device utilizes the fact that on high-coupling piezoelectric substrates, the attenuation of an SAW undergoes a transition from low to very high, and back to low as the conductivity of a film on the device surface goes from nonconductive to highly conductive. Thus, the sensing path response starts with a low insertion loss, and as a conductive film is deposited, the film conductivity increases, causing the device insertion loss to increase dramatically (by up to 80 dB or more), and then with continued film thickness increases (and the corresponding conductivity increases), the device insertion loss goes back down to the low level at which it started. This provides a

  15. Design of Ultrathin Pt-Based Multimetallic Nanostructures for Efficient Oxygen Reduction Electrocatalysis.

    PubMed

    Lai, Jianping; Guo, Shaojun

    2017-12-01

    Nanocatalysts with high platinum (Pt) utilization efficiency are attracting extensive attention for oxygen reduction reactions (ORR) conducted at the cathode of fuel cells. Ultrathin Pt-based multimetallic nanostructures show obvious advantages in accelerating the sluggish cathodic ORR due to their ultrahigh Pt utilization efficiency. A focus on recent important developments is provided in using wet chemistry techniques for making/tuning the multimetallic nanostructures with high Pt utilization efficiency for boosting ORR activity and durability. First, new synthetic methods for multimetallic core/shell nanoparticles with ultrathin shell sizes for achieving highly efficient ORR catalysts are reviewed. To obtain better ORR activity and stability, multimetallic nanowires or nanosheets with well-defined structure and surface are further highlighted. Furthermore, ultrathin Pt-based multimetallic nanoframes that feature 3D molecularly accessible surfaces for achieving more efficient ORR catalysis are discussed. Finally, the remaining challenges and outlooks for the future will be provided for this promising research field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Thermoelectric properties of an ultra-thin topological insulator.

    PubMed

    Islam, S K Firoz; Ghosh, T K

    2014-04-23

    Thermoelectric coefficients of an ultra-thin topological insulator are presented here. The hybridization between top and bottom surface states of a topological insulator plays a significant role. In the absence of a magnetic field, the thermopower increases and thermal conductivity decreases with an increase in the hybridization energy. In the presence of a magnetic field perpendicular to the ultra-thin topological insulator, thermoelectric coefficients exhibit quantum oscillations with inverse magnetic field, whose frequency is strongly modified by the Zeeman energy and whose phase factor is governed by the product of the Landé g-factor and the hybridization energy. In addition to the numerical results, the low-temperature approximate analytical results for the thermoelectric coefficients are also provided. It is also observed that for a given magnetic field these transport coefficients oscillate with hybridization energy, at a frequency that depends on the Landé g-factor.

  17. Quantitative Analysis of Transnasal Anterior Skull Base Approach: Report of Technology for Intraoperative Assessment of Instrument Motion.

    PubMed

    Berens, Angelique M; Harbison, Richard Alex; Li, Yangming; Bly, Randall A; Aghdasi, Nava; Ferreira, Manuel; Hannaford, Blake; Moe, Kris S

    2017-08-01

    To develop a method to measure intraoperative surgical instrument motion. This model will be applicable to the study of surgical instrument kinematics including surgical training, skill verification, and the development of surgical warning systems that detect aberrant instrument motion that may result in patient injury. We developed an algorithm to automate derivation of surgical instrument kinematics in an endoscopic endonasal skull base surgery model. Surgical instrument motion was recorded during a cadaveric endoscopic transnasal approach to the pituitary using a navigation system modified to record intraoperative time-stamped Euclidian coordinates and Euler angles. Microdebrider tip coordinates and angles were referenced to the cadaver's preoperative computed tomography scan allowing us to assess surgical instrument kinematics over time. A representative cadaveric endoscopic endonasal approach to the pituitary was performed to demonstrate feasibility of our algorithm for deriving surgical instrument kinematics. Technical feasibility of automatically measuring intraoperative surgical instrument motion and deriving kinematics measurements was demonstrated using standard navigation equipment.

  18. Transnasal endoscopic partial maxillectomy: Operative nuances and proposal for a comprehensive classification system based on 1378 cases.

    PubMed

    Turri-Zanoni, Mario; Battaglia, Paolo; Karligkiotis, Apostolos; Lepera, Davide; Zocchi, Jacopo; Dallan, Iacopo; Bignami, Maurizio; Castelnuovo, Paolo

    2017-04-01

    Despite the development of functional endoscopic endonasal surgery, there are still areas of the maxillary sinus that remain technically difficult to access using a standard middle meatal antrostomy as well as deep-seated skull base lesions requiring expanded transmaxillary approaches. All patients who underwent transnasal endoscopic partial maxillectomy (TEPM) in a single institution from 2000 to 2014 were retrospectively reviewed. The TEPM was classified into 5 types according to the anatomic structures progressively removed and to the access provided. The TEPM was performed in 1378 patients for the management of: inflammatory diseases in 513 cases (37%), benign sinonasal tumors in 425 cases (31%), skull base malignancies in 285 cases (21%), and as a corridor to address deep-seated skull base lesions in 155 cases (11%). The TEPM is a stepwise approach offering increasing access that can be tailored to different maxillary, sinonasal, and skull base pathologies with minimal morbidity for patients. © 2016 Wiley Periodicals, Inc. Head Neck 39: 754-766, 2017. © 2016 Wiley Periodicals, Inc.

  19. Ultrathin MoS2 Nanosheets with Superior Extreme Pressure Property as Boundary Lubricants

    PubMed Central

    Chen, Zhe; Liu, Xiangwen; Liu, Yuhong; Gunsel, Selda; Luo, Jianbin

    2015-01-01

    In this paper, a new kind of oil-soluble ultrathin MoS2 nanosheets is prepared through a one-pot process. A superior extreme pressure property, which has not been attained with other nano-additives, is discovered when the nanosheets are used as lubricant additives. The as-synthesized MoS2 nanosheet is only a few atomic layers thick and tens of nanometers wide, and it is surface-modified with oleylamine so it can be well dispersed in oil or lubricant without adscititious dispersants or surfactants. By adding 1 wt% ultrathin MoS2 nanosheets, at the temperature of 120 °C, the highest load liquid paraffin can bear is tremendously improved from less than 50 N to more than 2000 N. Based on the tribological tests and analysis of the wear scar, a lubrication mechanism is proposed. It is believed that the good dispersion and the ultrathin shape of the nanosheets ensure that they can enter the contact area of the opposite sliding surfaces and act like a protective film to prevent direct contact and seizure between them. This work enriches the investigation of ultrathin MoS2 and has potential application in the mechanical industry. PMID:26249536

  20. TOPICAL REVIEW: Ultra-thin film encapsulation processes for micro-electro-mechanical devices and systems

    NASA Astrophysics Data System (ADS)

    Stoldt, Conrad R.; Bright, Victor M.

    2006-05-01

    A range of physical properties can be achieved in micro-electro-mechanical systems (MEMS) through their encapsulation with solid-state, ultra-thin coatings. This paper reviews the application of single source chemical vapour deposition and atomic layer deposition (ALD) in the growth of submicron films on polycrystalline silicon microstructures for the improvement of microscale reliability and performance. In particular, microstructure encapsulation with silicon carbide, tungsten, alumina and alumina-zinc oxide alloy ultra-thin films is highlighted, and the mechanical, electrical, tribological and chemical impact of these overlayers is detailed. The potential use of solid-state, ultra-thin coatings in commercial microsystems is explored using radio frequency MEMS as a case study for the ALD alloy alumina-zinc oxide thin film.

  1. Ultra-thin, light-trapping silicon solar cells

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1989-01-01

    Design concepts for ultra-thin (2 to 10 microns) high efficiency single-crystal silicon cells are discussed. Light trapping allows more light to be absorbed at a given thickness, or allows thinner cells of a given Jsc. Extremely thin cells require low surface recombination velocity at both surfaces, including the ohmic contacts. Reduction of surface recombination by growth of heterojunctions of ZnS and GaP on Si has been demonstrated. The effects of these improvements on AM0 efficiency is shown. The peak efficiency increases, and the optimum thickness decreases. Cells under 10 microns thickness can retain almost optimum power. The increase of absorptance due to light trapping is considered. This is not a problem if the light-trapping cells are sufficiently thin. Ultra-thin cells have high radiation tolerance. A 2 microns thick light-trapping cell remains over 18 percent efficient after the equivalent of 20 years in geosynchronous orbit. Including a 50 microns thick coverglass, the thin cells had specific power after irradiation over ten times higher than the baseline design.

  2. Molecular Imaging of Ultrathin Pentacene Films: Evidence for Homoepitaxy

    NASA Astrophysics Data System (ADS)

    Wu, Yanfei; Haugstad, Greg; Frisbie, C. Daniel

    2013-03-01

    Ultrathin polycrystalline films of organic semiconductors have received intensive investigations due to the critical role they play in governing the performance of organic thin film transistors. In this work, a variety of scanning probe microscopy (SPM) techniques have been employed to investigate ultrathin polycrystalline films (1-3 nm) of the benchmark organic semiconductor pentacene. By using spatially resolved Friction Force Microscopy (FFM), Kelvin Probe Force Microscopy (KFM) and Electrostatic Force Microscopy (EFM), an interesting multi-domain structure is revealed within the second layer of the films, characterized as two distinct friction and surface potential domains correlating with each other. The existence of multiple homoepitaxial modes within the films is thus proposed and examined. By employing lattice-revolved imaging using contact mode SPM, direct molecular evidence for the unusual homoepitaxy is obtained.

  3. Comparison of dye doping and ultrathin emissive layer in white organic light-emitting devices with dual emissive layers

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Qi, Yige; Yu, Junsheng

    2014-09-01

    White organic light-emitting devices (WOLEDs) with combined doping emissive layer (EML) and ultrathin EML have been fabricated to investigate the effect of each EML on the electroluminescent (EL) performance of the WOLEDs. Through tailoring doping concentration of bis[(4,6-difluorophenyl)-pyridinato-N,C2'](picolinate) iridium(III) (FIrpic) and thickness of ultrathin bis[2-(4-tertbutylphenyl)benzothiazolato-N,C2'] iridium (acetylacetonate) [(tbt)2Ir(acac)] EML, it is found that the change in the doping ratio of FIrpic significantly influenced the EL efficiencies and spectra, while the alteration of ultrathin EML thickness had much milder effect on the EL performance. The results indicated that ultrathin EML is in favor of reproducibility in mass production compared with doping method.

  4. Single crystalline silicene consist of various superstructures using a flexible ultrathin Ag(111) template on Si(111)

    NASA Astrophysics Data System (ADS)

    Hsu, Hung-Chang; Lu, Yi-Hung; Su, Tai-Lung; Lin, Wen-Chin; Fu, Tsu-Yi

    2018-07-01

    Using scanning tunneling microscopy, we studied the formation of silicene on an ultrathin Ag(111) film with a thickness of 6–12 monolayers, which was prepared on a Si(111) substrate. A low-energy electron diffraction pattern with an oval spot indicated that the ultrathin Ag(111) film is more disordered than the single-crystal Ag(111). After Si epitaxy growth, we still measured the classical 4 × 4, √13 × √13, and 2√3 × 2√3 silicene superstructures, which are the same as the silicene superstructure on single-crystal Ag(111). Growing silicene on a single-crystal Ag(111) bulk usually results in the formation of a defect boundary due to the inconsistent orientation of various superstructures. By comparing the angles and boundary conditions between various silicene superstructures on the ultrathin film and single-crystal Ag(111), we discovered that a consistent orientation of various superstructures without obvious boundary defects formed on the ultrathin Ag(111) film. The results indicated single crystalline silicene formation, which was attributed to the domain rotation and lateral shift of the disordered ultrathin Ag(111) film.

  5. Atomic layer deposition of ultrathin blocking layer for low-temperature solid oxide fuel cell on nanoporous substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Wonjong; Cho, Gu Young; Noh, Seungtak

    2015-01-15

    An ultrathin yttria-stabilized zirconia (YSZ) blocking layer deposited by atomic layer deposition (ALD) was utilized for improving the performance and reliability of low-temperature solid oxide fuel cells (SOFCs) supported by an anodic aluminum oxide substrate. Physical vapor-deposited YSZ and gadolinia-doped ceria (GDC) electrolyte layers were deposited by a sputtering method. The ultrathin ALD YSZ blocking layer was inserted between the YSZ and GDC sputtered layers. To investigate the effects of an inserted ultrathin ALD blocking layer, SOFCs with and without an ultrathin ALD blocking layer were electrochemically characterized. The open circuit voltage (1.14 V) of the ALD blocking-layered SOFC was visiblymore » higher than that (1.05 V) of the other cell. Furthermore, the ALD blocking layer augmented the power density and improved the reproducibility.« less

  6. Electron Microscopy of Ultrathin Sections of Sporosarcina ureae

    PubMed Central

    Mazanec, K.; Kocur, M.; Martinec, T.

    1965-01-01

    Mazanec, K. (J. E. Purkyně University, Brno, Czechoslovakia), M. Kocur, and T. Martinec. Electron microscopy of ultrathin sections of Sporosarcina ureae. J. Bacteriol. 90:808–816. 1965.—Ultrathin sections of Sporosarcina ureae cells were studied by means of electron microscopy. The cell wall consists of several layers and is 340 A thick. The cytoplasm is of globular structure and includes ribosomelike structures, occasional mesosomes, and inclusions not precisely identifiable. The nuclear area has various shapes and is formed by filaments 10 to 20 A thick which proceed in various directions. Cell division occurs similarly to that of sarcinate. Both synchronic and asynchronic cell division was observed. The spores of S. ureae consist of an outer coat having several layers, a cortex, a spore wall, and cytoplasm. The results of the present investigation substantiate our previous suggestion that S. ureae should be transferred from the family Micrococcaceae to the family Bacillaceae. Images PMID:16562085

  7. Enhanced magnetic moment in ultrathin Fe-doped CoFe2O4 films

    NASA Astrophysics Data System (ADS)

    Moyer, J. A.; Vaz, C. A. F.; Kumah, D. P.; Arena, D. A.; Henrich, V. E.

    2012-11-01

    The effect of film thickness on the magnetic properties of ultrathin Fe-doped cobalt ferrite (Co1-xFe2+xO4) grown on MgO (001) substrates is investigated by superconducting quantum interference device magnetometry and x-ray magnetic linear dichroism, while the distribution of the Co2+ cations between the octahedral and tetrahedral lattice sites is studied with x-ray absorption spectroscopy. For films thinner than 10 nm, there is a large enhancement of the magnetic moment; conversely, the remanent magnetization and coercive fields both decrease, while the magnetic spin axes of all the cations become less aligned with the [001] crystal direction. In particular, at 300 K the coercive fields of the thinnest films vanish. The spectroscopy data show that no changes occur in the cation distribution as a function of film thickness, ruling this out as the origin of the enhanced magnetic moment. However, the magnetic measurements all support the possibility that these ultrathin Fe-doped CoFe2O4 films are transitioning into a superparamagnetic state, as has been seen in ultrathin Fe3O4. A weakening of the magnetic interactions at the antiphase boundaries, leading to magnetically independent domains within the film, could explain the enhanced magnetic moment in ultrathin Fe-doped CoFe2O4 and the onset of superparamagnetism at room temperature.

  8. Nano-Photonic Structures for Light Trapping in Ultra-Thin Crystalline Silicon Solar Cells

    PubMed Central

    Pathi, Prathap; Peer, Akshit; Biswas, Rana

    2017-01-01

    Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a dense mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm) and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm) and is slightly lower (by ~5%) at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm) silicon and just 1%–2% for thicker (>100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm2 photo-current and >20% efficiency. This architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping. PMID:28336851

  9. Nano-photonic structures for light trapping in ultra-thin crystalline silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pathi, Prathap; Peer, Akshit; Biswas, Rana

    Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a densemore » mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm) and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm) and is slightly lower (by ~5%) at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm) silicon and just 1%–2% for thicker (>100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm2 photo-current and >20% efficiency. Furthermore, this architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping.« less

  10. Nano-Photonic Structures for Light Trapping in Ultra-Thin Crystalline Silicon Solar Cells.

    PubMed

    Pathi, Prathap; Peer, Akshit; Biswas, Rana

    2017-01-13

    Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a dense mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm) and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm) and is slightly lower (by ~5%) at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm) silicon and just 1%-2% for thicker (>100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm² photo-current and >20% efficiency. This architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping.

  11. Nano-photonic structures for light trapping in ultra-thin crystalline silicon solar cells

    DOE PAGES

    Pathi, Prathap; Peer, Akshit; Biswas, Rana

    2017-01-13

    Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a densemore » mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm) and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm) and is slightly lower (by ~5%) at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm) silicon and just 1%–2% for thicker (>100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm2 photo-current and >20% efficiency. Furthermore, this architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping.« less

  12. Ultrathin and lightweight organic solar cells with high flexibility

    PubMed Central

    Kaltenbrunner, Martin; White, Matthew S.; Głowacki, Eric D.; Sekitani, Tsuyoshi; Someya, Takao; Sariciftci, Niyazi Serdar; Bauer, Siegfried

    2012-01-01

    Application-specific requirements for future lighting, displays and photovoltaics will include large-area, low-weight and mechanical resilience for dual-purpose uses such as electronic skin, textiles and surface conforming foils. Here we demonstrate polymer-based photovoltaic devices on plastic foil substrates less than 2 μm thick, with equal power conversion efficiency to their glass-based counterparts. They can reversibly withstand extreme mechanical deformation and have unprecedented solar cell-specific weight. Instead of a single bend, we form a random network of folds within the device area. The processing methods are standard, so the same weight and flexibility should be achievable in light emitting diodes, capacitors and transistors to fully realize ultrathin organic electronics. These ultrathin organic solar cells are over ten times thinner, lighter and more flexible than any other solar cell of any technology to date. PMID:22473014

  13. Ultrathin Au-Alloy Nanowires at the Liquid-Liquid Interface.

    PubMed

    Chatterjee, Dipanwita; Shetty, Shwetha; Müller-Caspary, Knut; Grieb, Tim; Krause, Florian F; Schowalter, Marco; Rosenauer, Andreas; Ravishankar, Narayanan

    2018-03-14

    Ultrathin bimetallic nanowires are of importance and interest for applications in electronic devices such as sensors and heterogeneous catalysts. In this work, we have designed a new, highly reproducible and generalized wet chemical method to synthesize uniform and monodispersed Au-based alloy (AuCu, AuPd, and AuPt) nanowires with tunable composition using microwave-assisted reduction at the liquid-liquid interface. These ultrathin alloy nanowires are below 4 nm in diameter and about 2 μm long. Detailed microstructural characterization shows that the wires have an face centred cubic (FCC) crystal structure, and they have low-energy twin-boundary and stacking-fault defects along the growth direction. The wires exhibit remarkable thermal and mechanical stability that is critical for important applications. The alloy wires exhibit excellent electrocatalytic activity for methanol oxidation in an alkaline medium.

  14. Designing metal hemispheres on silicon ultrathin film solar cells for plasmonic light trapping.

    PubMed

    Gao, Tongchuan; Stevens, Erica; Lee, Jung-kun; Leu, Paul W

    2014-08-15

    We systematically investigate the design of two-dimensional silver (Ag) hemisphere arrays on crystalline silicon (c-Si) ultrathin film solar cells for plasmonic light trapping. The absorption in ultrathin films is governed by the excitation of Fabry-Perot TEMm modes. We demonstrate that metal hemispheres can enhance absorption in the films by (1) coupling light to c-Si film waveguide modes and (2) exciting localized surface plasmon resonances (LSPRs). We show that hemisphere arrays allow light to couple to fundamental TEm and TMm waveguide modes in c-Si film as well as higher-order versions of these modes. The near-field light concentration of LSPRs also may increase absorption in the c-Si film, though these resonances are associated with significant parasitic absorption in the metal. We illustrate how Ag plasmonic hemispheres may be utilized for light trapping with 22% enhancement in short-circuit current density compared with that of a bare 100 nm thick c-Si ultrathin film solar cell.

  15. Structure Formation of Ultrathin PEO Films at Solid Interfaces—Complex Pattern Formation by Dewetting and Crystallization

    PubMed Central

    Braun, Hans-Georg; Meyer, Evelyn

    2013-01-01

    The direct contact of ultrathin polymer films with a solid substrate may result in thin film rupture caused by dewetting. With crystallisable polymers such as polyethyleneoxide (PEO), molecular self-assembly into partial ordered lamella structures is studied as an additional source of pattern formation. Morphological features in ultrathin PEO films (thickness < 10 nm) result from an interplay between dewetting patterns and diffusion limited growth pattern of ordered lamella growing within the dewetting areas. Besides structure formation of hydrophilic PEO molecules, n-alkylterminated (hydrophobic) PEO oligomers are investigated with respect to self-organization in ultrathin films. Morphological features characteristic for pure PEO are not changed by the presence of the n-alkylgroups. PMID:23385233

  16. Magnetic x-ray linear dichroism of ultrathin Fe-Ni alloy films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumann, F.O.; Willis, R.F.; Goodman, K.W.

    1997-04-01

    The authors have studied the magnetic structure of ultrathin Fe-Ni alloy films as a function of Fe concentration by measuring the linear dichroism of the 3p-core levels in angle-resolved photoemission spectroscopy. The alloy films, grown by molecular-beam epitaxy on Cu(001) surfaces, were fcc and approximately four monolayers thick. The intensity of the Fe dichroism varied with Fe concentration, with larger dichroisms at lower Fe concentrations. The implication of these results to an ultrathin film analogue of the bulk Invar effect in Fe-Ni alloys will be discussed. These measurements were performed at the Spectromicroscopy Facility (Beamline 7.0.1) of the Advanced Lightmore » Source.« less

  17. Spin fluctuation induced linear magnetoresistance in ultrathin superconducting FeSe films

    DOE PAGES

    Wang, Qingyan; Zhang, Wenhao; Chen, Weiwei; ...

    2017-07-21

    The discovery of high-temperature superconductivity in FeSe/STO has trigged great research interest to reveal a range of exotic physical phenomena in this novel material. Here we present a temperature dependent magnetotransport measurement for ultrathin FeSe/STO films with different thickness and protection layers. Remarkably, a surprising linear magnetoresistance (LMR) is observed around the superconducting transition temperatures but absent otherwise. The experimental LMR can be reproduced by magnetotransport calculations based on a model of magnetic field dependent disorder induced by spin fluctuation. Thus, the observed LMR in coexistence with superconductivity provides the first magnetotransport signature for spin fluctuation around the superconducting transitionmore » region in ultrathin FeSe/STO films.« less

  18. Pre-operative assessment of patients undergoing endoscopic, transnasal, transsphenoidal pituitary surgery.

    PubMed

    Lubbe, D; Semple, P

    2008-06-01

    To demonstrate the importance of pre-operative ear, nose and throat assessment in patients undergoing endoscopic, transsphenoidal surgery for pituitary tumours. Literature pertaining to the pre-operative otorhinolaryngological assessment and management of patients undergoing endoscopic anterior skull base surgery is sparse. We describe two cases from our series of 59 patients undergoing endoscopic pituitary surgery. The first case involved a young male patient with a large pituitary macroadenoma. His main complaint was visual impairment. He had no previous history of sinonasal pathology and did not complain of any nasal symptoms during the pre-operative neurosurgical assessment. At the time of surgery, a purulent nasal discharge was seen emanating from both middle meati. Surgery was abandoned due to the risk of post-operative meningitis, and postponed until the patient's chronic rhinosinusitis was optimally managed. The second patient was a 47-year-old woman with a large pituitary macroadenoma, who presented to the neurosurgical department with a main complaint of diplopia. She too gave no history of previous nasal problems, and she underwent uneventful surgery using the endoscopic, transnasal approach. Two weeks after surgery, she presented to the emergency unit with severe epistaxis. A previous diagnosis of hereditary haemorrhagic telangiectasia was discovered, and further surgical and medical intervention was required before the epistaxis was finally controlled. Pre-operative otorhinolaryngological assessment is essential prior to endoscopic pituitary or anterior skull base surgery. A thorough otorhinolaryngological history will determine whether any co-morbid diseases exist which could affect the surgical field. Nasal anatomy can be assessed via nasal endoscopy and sinusitis excluded. Computed tomography imaging is a valuable aid to decisions regarding additional procedures needed to optimise access to the pituitary fossa.

  19. Extremely Vivid, Highly Transparent, and Ultrathin Quantum Dot Light-Emitting Diodes.

    PubMed

    Choi, Moon Kee; Yang, Jiwoong; Kim, Dong Chan; Dai, Zhaohe; Kim, Junhee; Seung, Hyojin; Kale, Vinayak S; Sung, Sae Jin; Park, Chong Rae; Lu, Nanshu; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2018-01-01

    Displaying information on transparent screens offers new opportunities in next-generation electronics, such as augmented reality devices, smart surgical glasses, and smart windows. Outstanding luminance and transparency are essential for such "see-through" displays to show vivid images over clear background view. Here transparent quantum dot light-emitting diodes (Tr-QLEDs) are reported with high brightness (bottom: ≈43 000 cd m -2 , top: ≈30 000 cd m -2 , total: ≈73 000 cd m -2 at 9 V), excellent transmittance (90% at 550 nm, 84% over visible range), and an ultrathin form factor (≈2.7 µm thickness). These superb characteristics are accomplished by novel electron transport layers (ETLs) and engineered quantum dots (QDs). The ETLs, ZnO nanoparticle assemblies with ultrathin alumina overlayers, dramatically enhance durability of active layers, and balance electron/hole injection into QDs, which prevents nonradiative recombination processes. In addition, the QD structure is further optimized to fully exploit the device architecture. The ultrathin nature of Tr-QLEDs allows their conformal integration on various shaped objects. Finally, the high resolution patterning of red, green, and blue Tr-QLEDs (513 pixels in. -1 ) shows the potential of the full-color transparent display. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Capillary sample introduction of polymerase chain reaction (PCR) products separated in ultrathin slab gels.

    PubMed

    Bullard, K M; Hietpas, P B; Ewing, A G

    1998-01-01

    Polymerase chain reaction (PCR) amplified short tandem repeat (STR) samples from the HUMVWF locus have been analyzed using a unique sample introduction and separation technique. A single capillary is used to transfer samples onto an ultrathin slab gel (57 microm thin). This ultrathin nondenaturing polyacrylamide gel is used to separate the amplified fragments, and laser-induced fluorescence with ethidium bromide is used for detection. The feasibility of performing STR analysis using this system has been investigated by examining the reproducibility for repeated samples. Reproducibility is examined by comparing the migration of the 14 and 17 HUMVWF alleles on three consecutive separations on the ultrathin slab gel. Using one locus, separations match in migration time with the two alleles 42 s apart for each of the three consecutive separations. This technique shows potential to increase sample throughput in STR analysis techniques although separation resolution still needs to be improved.

  1. Ultra-thin whitetopping for general aviation airports in New Mexico.

    DOT National Transportation Integrated Search

    2002-06-01

    Whitetopping is a pavement rehabilitation construction practice where portland cement concrete (PCC) is placed over an existing asphalt concrete pavement as an overlay. Ultra-thin whitetopping (UTW) is generally a thin overlay with a thickness betwee...

  2. Transport properties of ultrathin BaFe1.84Co0.16As2 superconducting nanowires

    NASA Astrophysics Data System (ADS)

    Yuan, Pusheng; Xu, Zhongtang; Li, Chen; Quan, Baogang; Li, Junjie; Gu, Changzhi; Ma, Yanwei

    2018-07-01

    Superconducting nanowire single-photon detectors (SNSPDs) have an absolute advantage over other types of single-photon detectors, except for the low operating temperature. Therefore, much effort has been devoted to finding high-temperature superconducting materials that are suitable for preparing SNSPDs. Copper-based and MgB2 ultrathin superconducting nanowires have already been reported. However, the transport properties of iron-based ultrathin superconducting nanowires have not been studied. In this work, a 10 nm thick × 200 nm wide × 30 μm long high-quality superconducting nanowire was fabricated from ultrathin BaFe1.84Co0.16As2 films by a lift-off process. The precursor BaFe1.84Co0.16As2 film with a thickness of 10 nm and root-mean-square roughness of 1 nm was grown on CaF2 substrates by pulsed laser deposition. The nanowire shows a high superconducting critical temperature {T}{{c}}{{zero}} = 20 K with a narrow transition width of ΔT = 2.5 K and exhibits a high critical current density J c of 1.8 × 107 A cm-2 at 10 K. These results of ultrathin BaFe1.84Co0.16As2 nanowire will attract interest in electronic applications, including SNSPDs.

  3. Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes.

    PubMed

    Gu, Yu; Wang, Wei-Wei; Li, Yi-Juan; Wu, Qi-Hui; Tang, Shuai; Yan, Jia-Wei; Zheng, Ming-Sen; Wu, De-Yin; Fan, Chun-Hai; Hu, Wei-Qiang; Chen, Zhao-Bin; Fang, Yuan; Zhang, Qing-Hong; Dong, Quan-Feng; Mao, Bing-Wei

    2018-04-09

    Dendrite growth of alkali metal anodes limited their lifetime for charge/discharge cycling. Here, we report near-perfect anodes of lithium, sodium, and potassium metals achieved by electrochemical polishing, which removes microscopic defects and creates ultra-smooth ultra-thin solid-electrolyte interphase layers at metal surfaces for providing a homogeneous environment. Precise characterizations by AFM force probing with corroborative in-depth XPS profile analysis reveal that the ultra-smooth ultra-thin solid-electrolyte interphase can be designed to have alternating inorganic-rich and organic-rich/mixed multi-layered structure, which offers mechanical property of coupled rigidity and elasticity. The polished metal anodes exhibit significantly enhanced cycling stability, specifically the lithium anodes can cycle for over 200 times at a real current density of 2 mA cm -2 with 100% depth of discharge. Our work illustrates that an ultra-smooth ultra-thin solid-electrolyte interphase may be robust enough to suppress dendrite growth and thus serve as an initial layer for further improved protection of alkali metal anodes.

  4. Suppression of superconductivity in epitaxial MgB2 ultrathin films

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Wang, Yue; Wang, Da; Zhang, Yan; Liu, Zheng-Hao; Feng, Qing-Rong; Gan, Zi-Zhao

    2013-07-01

    MgB2 ultrathin films have potential to make sensitive superconducting devices such as superconducting single-photon detectors working at relatively high temperatures. We have grown epitaxial MgB2 films in thicknesses ranging from about 40 nm to 6 nm by using the hybrid physical-chemical vapor deposition method and performed electrical transport measurements to study the thickness dependence of the superconducting critical temperature Tc. With reducing film thickness d, although a weak depression of the Tc has been observed, which could be attributed to an increase of disorder (interband impurity scattering) in the film, the Tc retains close to the bulk value of MgB2 (39 K), being about 35 K in the film of 6 nm thick. We show that this result, beneficial to the application of MgB2 ultrathin films and in accordance with recent theoretical calculations, is in contrast to previous findings in MgB2 films prepared by other methods such as co-evaporation and molecular-beam epitaxy, where a severe Tc suppression has been observed with Tc about one third of the bulk value in films of ˜5 nm thick. We discuss this apparent discrepancy in experiments and suggest that, towards the ultrathin limit, the different degrees of Tc suppression displayed in currently obtained MgB2 films by various techniques may arise from the different levels of disorder present in the film or different extents of proximity effect at the film surface or film-substrate interface.

  5. Validation of computer simulation training for esophagogastroduodenoscopy: Pilot study.

    PubMed

    Sedlack, Robert E

    2007-08-01

    Little is known regarding the value of esophagogastroduodenoscopy (EGD) simulators in education. The purpose of the present paper was to validate the use of computer simulation in novice EGD training. In phase 1, expert endoscopists evaluated various aspects of simulation fidelity as compared to live endoscopy. Additionally, computer-recorded performance metrics were assessed by comparing the recorded scores from users of three different experience levels. In phase 2, the transfer of simulation-acquired skills to the clinical setting was assessed in a two-group, randomized pilot study. The setting was a large gastroenterology (GI) Fellowship training program; in phase 1, 21 subjects (seven expert, intermediate and novice endoscopist), made up the three experience groups. In phase 2, eight novice GI fellows were involved in the two-group, randomized portion of the study examining the transfer of simulation skills to the clinical setting. During the initial validation phase, each of the 21 subjects completed two standardized EDG scenarios on a computer simulator and their performance scores were recorded for seven parameters. Following this, staff participants completed a questionnaire evaluating various aspects of the simulator's fidelity. Finally, four novice GI fellows were randomly assigned to receive 6 h of simulator-augmented training (SAT group) in EGD prior to beginning 1 month of patient-based EGD training. The remaining fellows experienced 1 month of patient-based training alone (PBT group). Results of the seven measured performance parameters were compared between three groups of varying experience using a Wilcoxon ranked sum test. The staffs' simulator fidelity survey used a 7-point Likert scale (1, very unrealistic; 4, neutral; 7, very realistic) for each of the parameters examined. During the second phase of this study, supervising staff rated both SAT and PBT fellows' patient-based performance daily. Scoring in each skill was completed using a 7-point

  6. Determining thickness and refractive index from free-standing ultra-thin polymer films with spectroscopic ellipsometry

    DOE PAGES

    Hilfiker, James N.; Stadermann, Michael; Sun, Jianing; ...

    2016-08-27

    It is a well-known challenge to determine refractive index (n) from ultra-thin films where the thickness is less than about 10 nm. In this paper, we discovered an interesting exception to this issue while characterizing spectroscopic ellipsometry (SE) data from isotropic, free-standing polymer films. Ellipsometry analysis shows that both thickness and refractive index can be independently determined for free-standing films as thin as 5 nm. Simulations further confirm an orthogonal separation between thickness and index effects on the experimental SE data. Effects of angle of incidence and wavelength on the data and sensitivity are discussed. Finally, while others have demonstratedmore » methods to determine refractive index from ultra-thin films, our analysis provides the first results to demonstrate high-sensitivity to the refractive index from ultra-thin layers.« less

  7. Nonbolometric bottleneck in electron-phonon relaxation in ultrathin WSi films

    NASA Astrophysics Data System (ADS)

    Sidorova, Mariia V.; Kozorezov, A. G.; Semenov, A. V.; Korneeva, Yu. P.; Mikhailov, M. Yu.; Devizenko, A. Yu.; Korneev, A. A.; Chulkova, G. M.; Goltsman, G. N.

    2018-05-01

    We developed the model of the internal phonon bottleneck to describe the energy exchange between the acoustically soft ultrathin metal film and acoustically rigid substrate. Discriminating phonons in the film into two groups, escaping and nonescaping, we show that electrons and nonescaping phonons may form a unified subsystem, which is cooled down only due to interactions with escaping phonons, either due to direct phonon conversion or indirect sequential interaction with an electronic system. Using an amplitude-modulated absorption of the sub-THz radiation technique, we studied electron-phonon relaxation in ultrathin disordered films of tungsten silicide. We found an experimental proof of the internal phonon bottleneck. The experiment and simulation based on the proposed model agree well, resulting in τe -ph˜14 0 -19 0 ps at TC=3.4 K , supporting the results of earlier measurements by independent techniques.

  8. EDMOS in ultrathin FDSOI: Impact of the drift region properties

    NASA Astrophysics Data System (ADS)

    Litty, Antoine; Ortolland, Sylvie; Golanski, Dominique; Dutto, Christian; Cristoloveanu, Sorin

    2016-11-01

    The development of high-voltage MOSFET (HVMOS) is necessary for including power management or radiofrequency functionalities in CMOS technology. In this paper, we investigate the fabrication and optimization of an Extended Drain MOSFET (EDMOS) directly integrated in the ultra-thin SOI film (7 nm) of the 28 nm FDSOI CMOS technology node. Thanks to TCAD simulations, we analyse in detail the device behaviour as a function of the doping level and length of the drift region. The influence of the back-plane doping type and of the back-biasing schemes is discussed. DC measurements of fabricated EDMOS samples reveal promising performances in particular in terms of specific on-resistance versus breakdown voltage trade-off. The experimental results indicate that, even in an ultrathin film, the engineering of the drift region could be a lever to obtain integrated HVMOS (3.3-5 V).

  9. Ultra-thin smart acoustic metasurface for low-frequency sound insulation

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Xiao, Yong; Wen, Jihong; Yu, Dianlong; Wen, Xisen

    2016-04-01

    Insulating low-frequency sound is a conventional challenge due to the high areal mass required by mass law. In this letter, we propose a smart acoustic metasurface consisting of an ultra-thin aluminum foil bonded with piezoelectric resonators. Numerical and experimental results show that the metasurface can break the conventional mass law of sound insulation by 30 dB in the low frequency regime (<1000 Hz), with an ultra-light areal mass density (<1.6 kg/m2) and an ultra-thin thickness (1000 times smaller than the operating wavelength). The underlying physical mechanism of such extraordinary sound insulation performance is attributed to the infinite effective dynamic mass density produced by the smart resonators. It is also demonstrated that the excellent sound insulation property can be conveniently tuned by simply adjusting the external circuits instead of modifying the structure of the metasurface.

  10. Anatase TiO2 ultrathin nanobelts derived from room-temperature-synthesized titanates for fast and safe lithium storage

    PubMed Central

    Wen, Wei; Wu, Jin-ming; Jiang, Yin-zhu; Yu, Sheng-lan; Bai, Jun-qiang; Cao, Min-hua; Cui, Jie

    2015-01-01

    Lithium-ion batteries (LIBs) are promising energy storage devices for portable electronics, electric vehicles, and power-grid applications. It is highly desirable yet challenging to develop a simple and scalable method for constructions of sustainable materials for fast and safe LIBs. Herein, we exploit a novel and scalable route to synthesize ultrathin nanobelts of anatase TiO2, which is resource abundant and is eligible for safe anodes in LIBs. The achieved ultrathin nanobelts demonstrate outstanding performances for lithium storage because of the unique nanoarchitecture and appropriate composition. Unlike conventional alkali-hydrothermal approaches to hydrogen titanates, the present room temperature alkaline-free wet chemistry strategy guarantees the ultrathin thickness for the resultant titanate nanobelts. The anatase TiO2 ultrathin nanobelts were achieved simply by a subsequent calcination in air. The synthesis route is convenient for metal decoration and also for fabricating thin films of one/three dimensional arrays on various substrates at low temperatures, in absence of any seed layers. PMID:26133276

  11. Vivostat®: an autologous fibrin sealant as useful adjunct in endoscopic transnasal CSF-leak repair.

    PubMed

    Tomazic, Peter Valentin; Edlinger, Stefan; Gellner, Verena; Koele, Wolfgang; Gerstenberger, Claus; Braun, Hannes; Mokry, Michael; Stammberger, Heinz

    2015-06-01

    The benefit of fibrin glue for reduction of postoperative CSF-leaks after endoscopic skull base surgery is not clearly evident in literature. However, its use is supposed to be beneficial in fixing grafting material. As of today there is no specific data available for otolaryngological procedures. A retrospective data analysis at a tertiary care referral center on 73 patients treated endoscopically transnasally for CSF-leaks at the ENT-department Graz between 2009 and 2012 was performed. Primary closure rate between conventional fibrin glue and autologous fibrin glue were analyzed. The Vivostat(®) system was used in 33 CSF-leak closures and in 40 cases conventional fibrin glue was used. Comparing the two methods the primary closure rate using the autologous Vivostat(®) system was 75.8 and 85.0 % with conventional fibrin glue. The secondary closure the rates were 90.9 % with Vivostat(®) 92.5 % with conventional fibrin glue. The Vivosat(®) system is a useful adjunct in endoscopic CSF-leak closure. Its advantages over conventional fibrin glue are its application system for fixation of grafting material particularly in underlay techniques. Despite this advantage it cannot replace grafting material or is a substitute for proper endoscopic closure which is reflected by the closure rates.

  12. Endoscopic trans-nasal approach for biopsy of orbital tumours using image-guided neuro-navigation system.

    PubMed

    Sieskiewicz, A; Lyson, T; Mariak, Z; Rogowski, M

    2008-05-01

    Histopathological diagnosis of intraorbital tumours is of crucial value for planning further therapy. The aim of the study was to explore clinical utility of image-guided endoscopy for biopsy of orbital tumours. Trans-nasal endoscopic biopsy of intraorbital mass lesions was performed in 6 patients using a neuro-navigation system (Medtronic Stealth Station Treon plus). The CT and MRI 1 mm slice images were fused by the system in order to visualise both bony and soft tissue structures. The anatomic fiducial registration protocol was used during the procedure. All lesions were precisely localised and the biopsies could be taken from the representative part of the pathological mass. None of the patients developed aggravation of ocular symptoms after the procedure. The operative corridor as well as the size of orbital wall fenestration could be limited to a minimum. The accuracy of neuro-navigation remained high and stable during the entire procedure. The image-guided neuro-navigation system facilitated endoscopic localisation and biopsy of intraorbital tumours and contributed to the reduction of surgical trauma during the procedure. The technique was particularly useful in small, medially located, retrobulbar tumours and in unclear situations when the structure of the lesion resembled surrounding intraorbital tissue.

  13. The transnasal approach to the skull base. From sinus surgery to skull base surgery

    PubMed Central

    Wagenmann, Martin; Schipper, Jörg

    2012-01-01

    The indications for endonasal endoscopic approaches to diseases of the skull base and its adjacent structures have expanded considerably during the last decades. This is not only due to improved technical possibilities such as intraoperative navigation, the development of specialized instruments, and the compilation of anatomical studies from the endoscopic perspective but also related to the accumulating experience with endoscopic procedures of the skull base by multidisciplinary centers. Endoscopic endonasal operations permit new approaches to deeply seated lesions and are characterized by a reduced manipulation of neurovascular structures and brain parenchyma while at the same time providing improved visualization. They reduce the trauma caused by the approach, avoid skin incisions and minimize the surgical morbidity. Transnasal endoscopic procedures for the closure of small and large skull base defects have proven to be reliable and more successful than operations with craniotomies. The development of new local and regional vascularized flaps like the Hadad-flap have contributed to this. These reconstructive techniques are furthermore effectively utilized in tumor surgery in this region. This review delineates the classification of expanded endonasal approaches in detail. They provide access to lesions of the anterior, middle and partly also to the posterior cranial fossa. Successful management of these complex procedures requires a close interdisciplinary collaboration as well as continuous education and training of all team members. PMID:22558058

  14. Ultrathin cerium orthovanadate nanobelts for high-performance flexible all-solid-state asymmetric supercapacitors.

    PubMed

    He, Junzhi; Zhao, Junhong; Run, Zhen; Sun, Mengjun; Pang, Huan

    2015-02-01

    Ultrathin CeVO4 nanobelts were successfully synthesized by a hydrothermal method. The thickness of a single nanobelt is about 2.4 nm, which can effectively shorten the ion diffusion and fasten the charge pathway. More importantly, ultrathin CeVO4 nanobelts and graphene are easily assembled as a flexible all-solid-state asymmetric device, which shows a highly flexible property and achieves a maximum energy density of 0.78 mW h cm(-3) and a high life cycle of >6000 cycles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings

    NASA Astrophysics Data System (ADS)

    Kats, Mikhail A.; Byrnes, Steven J.; Blanchard, Romain; Kolle, Mathias; Genevet, Patrice; Aizenberg, Joanna; Capasso, Federico

    2013-09-01

    Recently a new class of optical interference coatings was introduced which comprises ultra-thin, highly absorbing dielectric layers on metal substrates. We show that these lossy coatings can be augmented by an additional transparent subwavelength layer. We fabricated a sample comprising a gold substrate, an ultra-thin film of germanium with a thickness gradient, and several alumina films. The experimental reflectivity spectra showed that the additional alumina layer increases the color range that can be obtained, in agreement with calculations. More generally, this transparent layer can be used to enhance optical absorption, protect against erosion, or as a transparent electrode for optoelectronic devices.

  16. Numeric simulation of occlusal interferences in molars restored with ultrathin occlusal veneers.

    PubMed

    Magne, Pascal; Cheung, Raymond

    2017-01-01

    Selecting material for a minimally invasive occlusal veneer reconstruction concept requires an understanding of how stresses are distributed during functional and parafunctional forces. The purpose of this in vitro study was to investigate stress distribution in a maxillary molar restored with ultrathin occlusal veneers and subjected by an antagonistic mandibular molar to clenching and working and nonworking movements. A maxillary first molar was modeled from microcomputed tomography (micro-CT) data, using medical image processing software, stereolithography editing/optimizing software, and finite element software. Simulated ultrathin occlusal veneer materials were used. The mandibular molar antagonist was a solid nondeformable geometric entity. Loads simulated clenching, working, and nonworking movements with loading of 500 N. The values of the maximum principal stress were recorded. In the clenching load situation, maximum tensile stresses were located at the occlusal veneer (52 MPa for composite resin versus 47 MPa for ceramic). In the working movement, significant additional tensile stresses were found on the palatal root (87 MPa for composite resin and 85 MPa for ceramic). In the nonworking movement, tensile stress on the ultrathin occlusal veneer increased to 118 MPa for composite resin and 143 MPa for ceramic veneers. Tensile stress peaks shifted to the mesiobuccal root (75 MPa for composite resin and 74 MPa for ceramic). The topography of stresses generated by the various occlusal interferences were clearly identified. Significant tensile stress concentrations were found within the restoration's occlusal topography and root, with the nonworking interference being the most harmful and also the most revealing of the difference between the composite resin and ceramic ultrathin occlusal veneers. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  17. Coupling of microphase separation and dewetting in weakly segregated diblock co-polymer ultrathin films.

    PubMed

    Yan, Derong; Huang, Haiying; He, Tianbai; Zhang, Fajun

    2011-10-04

    We have studied the coupling behavior of microphase separation and autophobic dewetting in weakly segregated poly(ε-caprolactone)-block-poly(L-lactide) (PCL-b-PLLA) diblock co-polymer ultrathin films on carbon-coated mica substrates. At temperatures higher than the melting point of the PLLA block, the co-polymer forms a lamellar structure in bulk with a long period of L ∼ 20 nm, as determined using small-angle X-ray scattering. The relaxation procedure of ultrathin films with an initial film thickness of h = 10 nm during annealing has been followed by atomic force microscopy (AFM). In the experimental temperature range (100-140 °C), the co-polymer dewets to an ultrathin film of itself at about 5 nm because of the strong attraction of both blocks with the substrate. Moreover, the dewetting velocity increases with decreasing annealing temperatures. This novel dewetting kinetics can be explained by a competition effect of the composition fluctuation driven by the microphase separation with the dominated dewetting process during the early stage of the annealing process. While dewetting dominates the relaxation procedure and leads to the rupture of the ultrathin films, the composition fluctuation induced by the microphase separation attempts to stabilize them because of the matching of h to the long period (h ∼ 1/2L). The temperature dependence of these two processes leads to this novel relaxation kinetics of co-polymer thin films. © 2011 American Chemical Society

  18. Ultrathin and Atomically Flat Transition-Metal Oxide: Promising Building Blocks for Metal-Insulator Electronics.

    PubMed

    Cui, Qingsong; Sakhdari, Maryam; Chamlagain, Bhim; Chuang, Hsun-Jen; Liu, Yi; Cheng, Mark Ming-Cheng; Zhou, Zhixian; Chen, Pai-Yen

    2016-12-21

    We present a new and viable template-assisted thermal synthesis method for preparing amorphous ultrathin transition-metal oxides (TMOs) such as TiO 2 and Ta 2 O 5 , which are converted from crystalline two-dimensional (2D) transition-metal dichalcogenides (TMDs) down to a few atomic layers. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning transmission electron microscopy (STEM) were used to characterize the chemical composition and bonding, surface morphology, and atomic structure of these ultrathin amorphous materials to validate the effectiveness of our synthesis approach. Furthermore, we have fabricated metal-insulator-metal (MIM) diodes using the TiO 2 and Ta 2 O 5 as ultrathin insulating layers with low potential barrier heights. Our MIM diodes show a clear transition from direct tunneling to Fowler-Nordheim tunneling, which was not observed in previously reported MIM diodes with TiO 2 or Ta 2 O 5 as the insulating layer. We attribute the improved performance of our MIM diodes to the excellent flatness and low pinhole/defect densities in our TMO insulting layers converted from 2D TMDs, which enable the low-threshold and controllable electron tunneling transport. We envision that it is possible to use the ultrathin TMOs converted from 2D TMDs as the insulating layer of a wide variety of metal-insulator and field-effect electronic devices for various applications ranging from microwave mixing, parametric conversion, infrared photodetection, emissive energy harvesting, to ultrafast electronic switching.

  19. Arrays of ultrathin silicon solar microcells

    DOEpatents

    Rogers, John A.; Rockett, Angus A.; Nuzzo, Ralph; Yoon, Jongseung; Baca, Alfred

    2015-08-11

    Provided are solar cells, photovoltaics and related methods for making solar cells, wherein the solar cell is made of ultrathin solar grade or low quality silicon. In an aspect, the invention is a method of making a solar cell by providing a solar cell substrate having a receiving surface and assembling a printable semiconductor element on the receiving surface of the substrate via contact printing. The semiconductor element has a thickness that is less than or equal to 100 .mu.m and, for example, is made from low grade Si.

  20. Arrays of ultrathin silicon solar microcells

    DOEpatents

    Rogers, John A; Rockett, Angus A; Nuzzo, Ralph; Yoon, Jongseung; Baca, Alfred

    2014-03-25

    Provided are solar cells, photovoltaics and related methods for making solar cells, wherein the solar cell is made of ultrathin solar grade or low quality silicon. In an aspect, the invention is a method of making a solar cell by providing a solar cell substrate having a receiving surface and assembling a printable semiconductor element on the receiving surface of the substrate via contact printing. The semiconductor element has a thickness that is less than or equal to 100 .mu.m and, for example, is made from low grade Si.

  1. Tg and Structural Recovery of Single Ultrathin Films

    NASA Astrophysics Data System (ADS)

    Simon, Sindee

    The behavior of materials confined at the nanoscale has been of considerable interest over the past two decades. Here, the focus is on recent results for single polystyrene ultrathin films studied with ultrafast scanning chip calorimetry. The Tg depression of a 20 nm-thick high-molecular-weight polystyrene film is found to be a function of cooling rate, decreasing with increasing cooling rate; whereas, at high enough cooling rates (e.g., 1000 K/s), Tg is the same as the bulk within the error of the measurements. Structural recovery is also performed with chip calorimetry as a function of aging time and temperature, and the evolution of the fictive temperature is followed. The advantages of the Flash DSC include sufficient sensitivity to measure enthalpy recovery for a single 20 nm-thick film, as well as extension of the measurements to aging temperatures as high as 15 K above nominal Tg and to aging times as short as 0.01 s. The aging behavior and relaxation time-temperature map for single ultrathin films are compared to those for bulk material. Comparison to behavior in other geometries will also be discussed.

  2. Extraordinary optical transmission in nanopatterned ultrathin metal films without holes

    DOE PAGES

    Peer, Akshit; Biswas, Rana

    2016-02-01

    In this study, we experimentally and theoretically demonstrate that a continuous gold film on a periodically textured substrate exhibits extraordinary optical transmission, even though no holes were etched in the film. Our film synthesis started by nanoimprinting a periodic array of nanocups with a period of ~750 nm on a polystyrene film over a glass substrate. A thin non-conformal gold film was sputter-deposited on the polystyrene by angle-directed deposition. The gold film was continuous with spatial thickness variation, the film being thinnest at the bottom of the nanocup. Measurements revealed an extraordinary transmission peak at a wavelength just smaller thanmore » the period, with an enhancement of ~2.5 compared to the classically expected value. Scattering matrix simulations model well the transmission and reflectance measurements when an ultrathin gold layer (~5 nm), smaller than the skin depth is retained at the bottom of the nanocups. Electric field intensities are enhanced by >100 within the nanocup, and ~40 in the ultrathin gold layer causing transmission through it. We show a wavelength red-shift of ~30 nm in the extraordinary transmission peak when the nanocups are coated with a thin film of a few nanometers, which can be utilized for biosensing. The continuous corrugated metal films are far simpler structures to observe extraordinary transmission, circumventing the difficult process of etching the metal film. Such continuous metal films with ultrathin regions are simple platforms for non-linear optics, plasmonics, and biological and chemical sensing.« less

  3. Hydrogen peroxide sensing using ultrathin platinum-coated gold nanoparticles with core@shell structure.

    PubMed

    Li, Yongxin; Lu, Qiufang; Wu, Shengnan; Wang, Lun; Shi, Xianming

    2013-03-15

    Ultrathin platinum-coated gold (Pt@Au) nanoparticles with core@shell structure have been developed by under-potential deposition (UPD) redox replacement technique. A single UPD Cu replacement with Pt(2+) produced a uniform Pt monolayer on the surface of gold nanoparticles, which are immobilized on glassy carbon electrode (GCE) surface based on electrostatic interaction. The ultrathin Pt@Au nanoparticles were confirmed by cyclic voltammetry and X-ray photoelectron spectroscopy (XPS). Voltammetry and amperometric methodologies were used to evaluate the electrocatalytic activity of the Pt@Au nanoparticles modified electrode towards the reduction of hydrogen peroxide under the physiological condition. The present results show that ultrathin Pt coating greatly enhances the electrocatalytic activity towards the reduction of hydrogen peroxide, which can be utilized to fabricate the hydrogen peroxide sensor. Chronoamperometric experiments showed that at an applied potential of 0.08 V (vs. Ag/AgCl), the current reduction of hydrogen peroxide was linear to its concentration in the range of 1-450 μΜ, and the detection limit was found to be 0.18 μM (signal-to-noise ratio, S/N=3). Copyright © 2012 Elsevier B.V. All rights reserved.

  4. All-solid-state flexible ultrathin micro-supercapacitors based on graphene.

    PubMed

    Niu, Zhiqiang; Zhang, Li; Liu, Lili; Zhu, Bowen; Dong, Haibo; Chen, Xiaodong

    2013-08-07

    Flexible, compact, ultrathin and all-solid-state micro-supercapacitors are prepared by coating H₃PO₄/PVA gel electrolyte onto micro-patterned rGO interdigitated electrodes prepared by combining photolithography with selective electrophoretic deposition. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effective NaBH4-exfoliated ultrathin multilayer Co(OH)2 nanosheets arrays and sulfidation for energy storage

    NASA Astrophysics Data System (ADS)

    Yang, Wanjun; Qu, Gan; Chen, Mingyue; Ma, Wenhao; Li, Wenhui; Tang, Yiwen

    2018-07-01

    Facile engineering ultrathin nano structural materials is still a huge challenge for material science. Thereinto, the strategy of exfoliating shows great advantages. In this work, we develop a convenient approach to exfoliate Co(OH)2 nanosheets into ultrathin Co(OH)2 nanoflakes through NaBH4-exfoliation method. Moreover, the microstructures of the Co(OH)2 nanosheets are conveniently controlled by varying the exfoliation time. As a result, the obtained ultrathin Co(OH)2-72 h nanosheets deliver the excellent electrochemical performance. In order to improve the energy storage properties, the obtained ultrathin Co(OH)2 nanosheets are further modified to enhance the conductivity via sulfidation. Consequently, the synthesized Co(OH)2-72 h/CoS2 composites exhibit a specific capacitance of 2536 F g‑1 at 1 A g‑1, which is more outstanding than that of Co(OH)2-72 h. What’s more, the Co(OH)2-72 h/CoS2 composites show a capacitance retention of 83.3% after 10 000 cycles. Besides, the assembled asymmetric supercapacitor displays a power density of 482 W kg‑1 at an energy density of 36 Wh kg‑1, demonstrating a large potential for application.

  6. Effective NaBH4-exfoliated ultrathin multilayer Co(OH)2 nanosheets arrays and sulfidation for energy storage.

    PubMed

    Yang, Wanjun; Qu, Gan; Chen, Mingyue; Ma, Wenhao; Li, Wenhui; Tang, Yiwen

    2018-07-20

    Facile engineering ultrathin nano structural materials is still a huge challenge for material science. Thereinto, the strategy of exfoliating shows great advantages. In this work, we develop a convenient approach to exfoliate Co(OH) 2 nanosheets into ultrathin Co(OH) 2 nanoflakes through NaBH 4 -exfoliation method. Moreover, the microstructures of the Co(OH) 2 nanosheets are conveniently controlled by varying the exfoliation time. As a result, the obtained ultrathin Co(OH) 2 -72 h nanosheets deliver the excellent electrochemical performance. In order to improve the energy storage properties, the obtained ultrathin Co(OH) 2 nanosheets are further modified to enhance the conductivity via sulfidation. Consequently, the synthesized Co(OH) 2 -72 h/CoS 2 composites exhibit a specific capacitance of 2536 F g -1 at 1 A g -1 , which is more outstanding than that of Co(OH) 2 -72 h. What's more, the Co(OH) 2 -72 h/CoS 2 composites show a capacitance retention of 83.3% after 10 000 cycles. Besides, the assembled asymmetric supercapacitor displays a power density of 482 W kg -1 at an energy density of 36 Wh kg -1 , demonstrating a large potential for application.

  7. Esophagogastroduodenoscopy in chronic hemodialysis patients: 2-year clinical experience in a renal unit.

    PubMed

    Fabbian, F; Catalano, C; Bordin, V; Balbi, T; Di Landro, D

    2002-07-01

    Upper gastrointestinal (UGI) disorders are frequent in uremic patients and esophagogastroduodenoscopy (OGD) is an important investigation for their management. From January 1, 1997 to December 31, 1998, 57 endoscopies were performed in 96 hemodialysis patients (aged 65+/-12 years, 68 M, 28 F, dialysis duration 51+/-58 months) chronically treated in our unit in that period. The reasons for prescribing OGD were: anemia, after exclusion of poor response to EPO, in 26 patients (mean decrease in hemoglobin (Hb) levels 2.6+/-1.3 g/dl: the reference Hb level was the mean value measured before Hb decrease), dyspepsia in 11 and in preparation for renal transplantation in 20 patients. Twelve patients were diabetics, 24 smokers, 41 alcohol drinkers, 13 had hepatitis B or C, 6 were non-steroidal anti-inflammatory drugs (NSAIDs) abusers for bone pain and 21 were taking H2 receptor antagonists or proton-pump inhibitors chronically. Multiple biopsies of gastric mucosa were performed in 38 patients. Endoscopy revealed normal mucosa in 17.5% of cases, whilst chronic gastritis was diagnosed in 30%. Chronic gastritis was also the commonest microscopic abnormality diagnosed in 71.5% of biopsies. Anemic and non-anemic patients were matched and the 2 groups did not show significant differences in endoscopic findings and histological appearance. Thirteen patients had Helicobacter pylori (HP) infection demonstrated by biopsy specimen examination and were treated by metronidazole, clarithromycin and omeprazole. A logistic regression analysis was carried out in all subjects, considering the decrement in Hb as a dependent variable and demographic and clinical characteristics as independent variables. The analysis demonstrates that age (odds ratio 1.05; p < 0.05), NSAIDs abuse (odds ratio 15.6; p < 0.05) and HP infection (odds ratio 16.7; p < 0.01) were independently related to Hb decrease. In our experience, non-EPO-related anemia and dyspepsia are frequent features in hemodialysis patients

  8. Electric field effect on exchange interaction in ultrathin Co films with ionic liquids

    NASA Astrophysics Data System (ADS)

    Ishibashi, Mio; Yamada, Kihiro T.; Shiota, Yoichi; Ando, Fuyuki; Koyama, Tomohiro; Kakizakai, Haruka; Mizuno, Hayato; Miwa, Kazumoto; Ono, Shimpei; Moriyama, Takahiro; Chiba, Daichi; Ono, Teruo

    2018-06-01

    Electric-field modulations of magnetic properties have been extensively studied not only for practical applications but also for fundamental interest. In this study, we investigated the electric field effect on the exchange interaction in ultrathin Co films with ionic liquids. The exchange coupling J was characterized from the direct magnetization measurement as a function of temperature using Pt/ultrathin Co/MgO structures. The trend of the electric field effect on J is in good agreement with that of the theoretical prediction, and a large change in J by applying a gate voltage was observed by forming an electric double layer using ionic liquids.

  9. Ultra-thin carbon-fiber paper fabrication and carbon-fiber distribution homogeneity evaluation method

    NASA Astrophysics Data System (ADS)

    Zhang, L. F.; Chen, D. Y.; Wang, Q.; Li, H.; Zhao, Z. G.

    2018-01-01

    A preparation technology of ultra-thin Carbon-fiber paper is reported. Carbon fiber distribution homogeneity has a great influence on the properties of ultra-thin Carbon-fiber paper. In this paper, a self-developed homogeneity analysis system is introduced to assist users to evaluate the distribution homogeneity of Carbon fiber among two or more two-value images of carbon-fiber paper. A relative-uniformity factor W/H is introduced. The experimental results show that the smaller the W/H factor, the higher uniformity of the distribution of Carbon fiber is. The new uniformity-evaluation method provides a practical and reliable tool for analyzing homogeneity of materials.

  10. Superior Robust Ultrathin Single-Crystalline Silicon Carbide Membrane as a Versatile Platform for Biological Applications.

    PubMed

    Nguyen, Tuan-Khoa; Phan, Hoang-Phuong; Kamble, Harshad; Vadivelu, Raja; Dinh, Toan; Iacopi, Alan; Walker, Glenn; Hold, Leonie; Nguyen, Nam-Trung; Dao, Dzung Viet

    2017-12-06

    Micromachined membranes are promising platforms for cell culture thanks to their miniaturization and integration capabilities. Possessing chemical inertness, biocompatibility, and integration, silicon carbide (SiC) membranes have attracted great interest toward biological applications. In this paper, we present the batch fabrication, mechanical characterizations, and cell culture demonstration of robust ultrathin epitaxial deposited SiC membranes. The as-fabricated ultrathin SiC membranes, with an ultrahigh aspect ratio (length/thickness) of up to 20 000, possess high a fracture strength up to 2.95 GPa and deformation up to 50 μm. A high optical transmittance of above 80% at visible wavelengths was obtained for 50 nm membranes. The as-fabricated membranes were experimentally demonstrated as an excellent substrate platform for bio-MEMS/NEMS cell culture with the cell viability rate of more than 92% after 72 h. The ultrathin SiC membrane is promising for in vitro observations/imaging of bio-objects with an extremely short optical access.

  11. The effect of esophagogastroduodenoscopy probe insertion on the intracuff pressure of airway devices in children during general anesthesia.

    PubMed

    Balaban, Onur; Kamata, Mineto; Hakim, Mumin; Tumin, Dmitry; Tobias, Joseph D

    2017-04-01

    Given the size of the esophagogastroduodenoscopy (EGD) probe and the compressibility of the pediatric airway, the EGD probe may increase the intracuff pressure (IP) of an airway device. The current study evaluated IP changes during EGD examination under general anesthesia in pediatric patients. Following the induction of anesthesia, a laryngeal mask airway (LMA) or endotracheal tube (ETT) was placed without neuromuscular blockade. The IP was measured at baseline, during EGD probe insertion, while the EGD probe was in place, and after probe removal. The study cohort included 101 patients (mean age 11.3 years). The airway was secured with an LMA and an ETT in 88 and 13 patients, respectively. The IP increased from 27 ± 15 cmH 2 O at baseline to 34 ± 17 cmH 2 O during probe insertion (p < 0.001), remained at 33 ± 16 cmH 2 O while the probe was in place, and decreased to 26 ± 14 cmH 2 O after probe removal. The IP of the LMA or ETT increased during EGD probe insertion and remained elevated while the probe was in place. High IP may compromise mucosal perfusion resulting in a sore throat when using an LMA or the potential for airway damage if an ETT is used. Removal of air from the cuff and titration of the IP should be considered after EGD insertion.

  12. Flexible ultrathin-body single-photon avalanche diode sensors and CMOS integration.

    PubMed

    Sun, Pengfei; Ishihara, Ryoichi; Charbon, Edoardo

    2016-02-22

    We proposed the world's first flexible ultrathin-body single-photon avalanche diode (SPAD) as photon counting device providing a suitable solution to advanced implantable bio-compatible chronic medical monitoring, diagnostics and other applications. In this paper, we investigate the Geiger-mode performance of this flexible ultrathin-body SPAD comprehensively and we extend this work to the first flexible SPAD image sensor with in-pixel and off-pixel electronics integrated in CMOS. Experimental results show that dark count rate (DCR) by band-to-band tunneling can be reduced by optimizing multiplication doping. DCR by trap-assisted avalanche, which is believed to be originated from the trench etching process, could be further reduced, resulting in a DCR density of tens to hundreds of Hertz per micrometer square at cryogenic temperature. The influence of the trench etching process onto DCR is also proved by comparison with planar ultrathin-body SPAD structures without trench. Photon detection probability (PDP) can be achieved by wider depletion and drift regions and by carefully optimizing body thickness. PDP in frontside- (FSI) and backside-illumination (BSI) are comparable, thus making this technology suitable for both modes of illumination. Afterpulsing and crosstalk are negligible at 2µs dead time, while it has been proved, for the first time, that a CMOS SPAD pixel of this kind could work in a cryogenic environment. By appropriate choice of substrate, this technology is amenable to implantation for biocompatible photon-counting applications and wherever bended imaging sensors are essential.

  13. Dynamic response of ultrathin highly dense ZIF-8 nanofilms.

    PubMed

    Cookney, Joanna; Ogieglo, Wojciech; Hrabanek, Pavel; Vankelecom, Ivo; Fila, Vlastimil; Benes, Nieck E

    2014-10-11

    Ultrathin ZIF-8 nanofilms are prepared by facile step-by-step dip coating. A critical withdrawal speed allows for films with a very uniform minimum thickness. The high refractive index of the films denotes the absence of mesopores. The dynamic response of the films to CO2 exposure resembles behaviour observed for non-equilibrium organic polymers.

  14. Substrateless ultra-thin quarter meta-waveplate based on Babinet’s Principle

    NASA Astrophysics Data System (ADS)

    Loo, Y. L.; Guo, B. S.; Ong, C. K.

    2018-06-01

    This work proposes a substrateless ultrathin metamaterial for converting an incident electromagnetic (EM) wave from linear to a circular state of polarization within the frequency range of 10 to 14 GHz. Owing to the absence of a substrate, the polarization converter can realize a remarkable ultra-thin thickness of approximately 400 times smaller than the central working wavelength. In addition, simulated results demonstrate its capability of achieving a 3 dB axial ratio bandwidth of 34.5% at normal incidence and more than 25% for an oblique incidence angle up to 40°. The metamaterial experimental transmission coefficients for horizontal and vertical polarized EM fields show excellent agreement with the simulated results. The metasurface, which comprises of a self-complementary L-shaped structure, is designed based on Babinet’s principle, and fabricated using an advanced method for precise cutting of metal.

  15. Ultra-thin microporous/hybrid materials

    DOEpatents

    Jiang, Ying-Bing [Albuquerque, NM; Cecchi, Joseph L [Albuquerque, NM; Brinker, C Jeffrey [Albuquerque, NM

    2012-05-29

    Ultra-thin hybrid and/or microporous materials and methods for their fabrication are provided. In one embodiment, the exemplary hybrid membranes can be formed including successive surface activation and reaction steps on a porous support that is patterned or non-patterned. The surface activation can be performed using remote plasma exposure to locally activate the exterior surfaces of porous support. Organic/inorganic hybrid precursors such as organometallic silane precursors can be condensed on the locally activated exterior surfaces, whereby ALD reactions can then take place between the condensed hybrid precursors and a reactant. Various embodiments can also include an intermittent replacement of ALD precursors during the membrane formation so as to enhance the hybrid molecular network of the membranes.

  16. Antiferromagnetic exchange and magnetoresistance enhancement in ultrathin Co-Re sandwiches

    NASA Astrophysics Data System (ADS)

    Freitas, P. P.; Melo, L. V.; Trindade, I.; From, M.

    1992-10-01

    Co-Re ultrathin sandwiches were prepared that show antiferromagnetic coupling and enhanced saturation magnetoresistance for Re spacer thicknesses below 9 Å. A field of 2.5 kOe is needed to saturate the antiferromagnetically coupled Co layers. These results are similar to those found in Co-Re superlattices.

  17. Temporally and Spatially Resolved Plasma Spectroscopy in Pulsed Laser Deposition of Ultra-Thin Boron Nitride Films (Postprint)

    DTIC Science & Technology

    2015-04-24

    AFRL-RX-WP-JA-2016-0196 TEMPORALLY AND SPATIALLY RESOLVED PLASMA SPECTROSCOPY IN PULSED LASER DEPOSITION OF ULTRA-THIN BORON NITRIDE...AND SPATIALLY RESOLVED PLASMA SPECTROSCOPY IN PULSED LASER DEPOSITION OF ULTRA-THIN BORON NITRIDE FILMS (POSTPRINT) 5a. CONTRACT NUMBER FA8650...distributions within a PVD plasma plume ablated from a boron nitride (BN) target by a KrF laser at different pressures of nitrogen gas were investigated

  18. Soft Ultrathin Electronics Innervated Adaptive Fully Soft Robots.

    PubMed

    Wang, Chengjun; Sim, Kyoseung; Chen, Jin; Kim, Hojin; Rao, Zhoulyu; Li, Yuhang; Chen, Weiqiu; Song, Jizhou; Verduzco, Rafael; Yu, Cunjiang

    2018-03-01

    Soft robots outperform the conventional hard robots on significantly enhanced safety, adaptability, and complex motions. The development of fully soft robots, especially fully from smart soft materials to mimic soft animals, is still nascent. In addition, to date, existing soft robots cannot adapt themselves to the surrounding environment, i.e., sensing and adaptive motion or response, like animals. Here, compliant ultrathin sensing and actuating electronics innervated fully soft robots that can sense the environment and perform soft bodied crawling adaptively, mimicking an inchworm, are reported. The soft robots are constructed with actuators of open-mesh shaped ultrathin deformable heaters, sensors of single-crystal Si optoelectronic photodetectors, and thermally responsive artificial muscle of carbon-black-doped liquid-crystal elastomer (LCE-CB) nanocomposite. The results demonstrate that adaptive crawling locomotion can be realized through the conjugation of sensing and actuation, where the sensors sense the environment and actuators respond correspondingly to control the locomotion autonomously through regulating the deformation of LCE-CB bimorphs and the locomotion of the robots. The strategy of innervating soft sensing and actuating electronics with artificial muscles paves the way for the development of smart autonomous soft robots. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Few-layered CoHPO4.3H2O ultrathin nanosheets for high performance of electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Pang, Huan; Wang, Shaomei; Shao, Weifang; Zhao, Shanshan; Yan, Bo; Li, Xinran; Li, Sujuan; Chen, Jing; Du, Weimin

    2013-06-01

    Ultrathin cobalt phosphate (CoHPO4.3H2O) nanosheets are successfully synthesized by a one pot hydrothermal method. Novel CoHPO4.3H2O ultrathin nanosheets are assembled for constructing the electrodes of supercapacitors. Benefiting from the nanostructures, the as-prepared electrode shows a specific capacitance of 413 F g-1, and no obvious decay even after 3000 charge-discharge cycles. Such a quasi-two-dimensional material is a new kind of supercapacitor electrode material with high performance.Ultrathin cobalt phosphate (CoHPO4.3H2O) nanosheets are successfully synthesized by a one pot hydrothermal method. Novel CoHPO4.3H2O ultrathin nanosheets are assembled for constructing the electrodes of supercapacitors. Benefiting from the nanostructures, the as-prepared electrode shows a specific capacitance of 413 F g-1, and no obvious decay even after 3000 charge-discharge cycles. Such a quasi-two-dimensional material is a new kind of supercapacitor electrode material with high performance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01460f

  20. The cutting of ultrathin sections with the thickness less than 20 nm from biological specimens embedded in resin blocks.

    PubMed

    Nebesářová, Jana; Hozák, Pavel; Frank, Luděk; Štěpan, Petr; Vancová, Marie

    2016-06-01

    Low voltage electron microscopes working in transmission mode, like LVEM5 (Delong Instruments, Czech Republic) working at accelerating voltage 5 kV or scanning electron microscope working in transmission mode with accelerating voltage below 1 kV, require ultrathin sections with the thickness below 20 nm. Decreasing of the primary electron energy leads to enhancement of image contrast, which is especially useful in the case of biological samples composed of elements with low atomic numbers. As a result treatments with heavy metals, like post-fixation with osmium tetroxide or ultrathin section staining, can by omitted. The disadvantage is reduced penetration ability of incident electrons influencing the usable thickness of the specimen resulting in the need of ultrathin sections of under 20 nm thickness. In this study we want to answer basic questions concerning the cutting of extremely ultrathin sections: Is it possible routinely and reproducibly to cut extremely thin sections of biological specimens embedded in commonly used resins with contemporary ultramicrotome techniques and under what conditions? Microsc. Res. Tech. 79:512-517, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Ultrathin hexagonal MgO nanoflakes coated medical textiles and their enhanced antibacterial activity

    NASA Astrophysics Data System (ADS)

    Veeran Ponnuvelu, Dinesh; Selvaraj, Aravind; Prema Suriyaraj, Shanmugam; Selvakumar, Rajendran; Pulithadathail, Biji

    2016-10-01

    A facile hydrothermal method for development of ultrathin MgO nanoplates from different precursors and their enhanced antibacterial activity after coating onto medical textiles is reported. Ultrathin MgO nanoplates having hexagonal structure were characterized using UV-visible spectroscopy, atomic force microscopy, field emission scanning electron microscopy, x-ray diffraction and high resolution transmission electron microscopy. The formation of MgO nanoplates was found to exhibit profound anionic effect leading to ultrathin, planar structures with exposed MgO [111] facets, which may be responsible for enhanced antimicrobial activity. Medical fabrics (bleached 100% cotton) were coated with MgO nanoplates using pad-dry-cure method. The antibacterial activity of these fabrics was tested against Bacillus subtilis and Escherichia coli. The MgO nanoplates coated onto the fabric were found to have good adherence properties owing to their two-dimensional structure and were durable even after repeated washings without substantial reduction in the antimicrobial activity. The enhanced antibacterial activity may be attributed to the presence of oxygen vacancies, surface oxygen anions and hydroxyl groups on the surface of MgO nanoplates. This cost-effective functional finish (anti-microbial) to cotton fabric using MgO nanoplates may be suitable for many prospective medical applications and can serve as an alternative to the costlier silver based antimicrobial textiles.

  2. Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kyu-Tae; Seo, Sungyong; Yong Lee, Jae

    We present transmission visible wavelength filters based on strong interference behaviors in an ultrathin semiconductor material between two metal layers. The proposed devices were fabricated on 2 cm × 2 cm glass substrate, and the transmission characteristics show good agreement with the design. Due to a significantly reduced light propagation phase change associated with the ultrathin semiconductor layer and the compensation in phase shift of light reflecting from the metal surface, the filters show an angle insensitive performance up to ±70°, thus, addressing one of the key challenges facing the previously reported photonic and plasmonic color filters. This principle, described in this paper, canmore » have potential for diverse applications ranging from color display devices to the image sensors.« less

  3. Fatigue resistance of ultrathin CAD/CAM complete crowns with a simplified cementation process.

    PubMed

    Magne, Pascal; Carvalho, Adriana O; Bruzi, Greciana; Giannini, Marcelo

    2015-10-01

    Traditional tooth preparation for complete crowns requires a substantial amount of hard tissue reduction. This is in contrast with the principles of minimally invasive dentistry. An ultrathin complete crown preparation is proposed instead. The purpose of this in vitro study was to assess the fatigue resistance and failure mode of computer-aided design and computer-aided manufacturing (CAD/CAM) ultrathin complete molar crowns placed with self-adhesive cement. Different restorative materials (resin nanoceramic [RNC], feldspathic ceramic [FEL], and lithium disilicate [LD]) were compared. Forty-five extracted molars with a standardized crown preparation were restored with the Cerec 3 CAD/CAM system using FEL, LD, or RNC (n=15). FEL and LD restorations were etched with hydrofluoric acid and silanated. RNC restorations and all preparations were treated with airborne-particle abrasion. All restorations (thickness=0.7 mm) were cemented with RelyX Unicem II Automix cement and submitted to cyclic isometric loading, beginning with a load of 200 N (5000 cycles) and followed by stages of 400, 600, 800, 1000, 1200, and 1400 N at a maximum of 30 000 cycles each. The specimens were loaded until failure or for a maximum of 185 000 cycles. The failure mode was categorized as "catastrophic," "possibly reparable," or "reparable." The groups were compared using life table survival analysis (log rank test at α=.05). Previously published data from the same authors about traditional complete crowns (thickness 1.5 mm) using the same experimental design were included for comparison. All specimens survived the fatigue test until the 600 N step. RNC, LD, and FEL failed at an average load of 1014 N (1 survival), 1123 N (2 survivals), and 987 N (no survivals), and no difference in survival rate was found. No catastrophic failures were reported after the fatigue test. Comparison with previously published data showed that 1.5-mm thick complete crowns demonstrated higher survival rates than

  4. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics.

    PubMed

    Kim, Dae-Hyeong; Viventi, Jonathan; Amsden, Jason J; Xiao, Jianliang; Vigeland, Leif; Kim, Yun-Soung; Blanco, Justin A; Panilaitis, Bruce; Frechette, Eric S; Contreras, Diego; Kaplan, David L; Omenetto, Fiorenzo G; Huang, Yonggang; Hwang, Keh-Chih; Zakin, Mitchell R; Litt, Brian; Rogers, John A

    2010-06-01

    Electronics that are capable of intimate, non-invasive integration with the soft, curvilinear surfaces of biological tissues offer important opportunities for diagnosing and treating disease and for improving brain/machine interfaces. This article describes a material strategy for a type of bio-interfaced system that relies on ultrathin electronics supported by bioresorbable substrates of silk fibroin. Mounting such devices on tissue and then allowing the silk to dissolve and resorb initiates a spontaneous, conformal wrapping process driven by capillary forces at the biotic/abiotic interface. Specialized mesh designs and ultrathin forms for the electronics ensure minimal stresses on the tissue and highly conformal coverage, even for complex curvilinear surfaces, as confirmed by experimental and theoretical studies. In vivo, neural mapping experiments on feline animal models illustrate one mode of use for this class of technology. These concepts provide new capabilities for implantable and surgical devices.

  5. Dissolvable Films of Silk Fibroin for Ultrathin, Conformal Bio-Integrated Electronics

    PubMed Central

    Kim, Dae-Hyeong; Viventi, Jonathan; Amsden, Jason J.; Xiao, Jianliang; Vigeland, Leif; Kim, Yun-Soung; Blanco, Justin A.; Panilaitis, Bruce; Frechette, Eric S.; Contreras, Diego; Kaplan, David L.; Omenetto, Fiorenzo G.; Huang, Yonggang; Hwang, Keh-Chih; Zakin, Mitchell R.; Litt, Brian; Rogers, John A.

    2011-01-01

    Electronics that are capable of intimate, non-invasive integration with the soft, curvilinear surfaces of biological tissues offer important opportunities for diagnosing and treating disease and for improving brain-machine interfaces. This paper describes a material strategy for a type of bio-interfaced system that relies on ultrathin electronics supported by bioresorbable substrates of silk fibroin. Mounting such devices on tissue and then allowing the silk to dissolve and resorb initiates a spontaneous, conformal wrapping process driven by capillary forces at the biotic/abiotic interface. Specialized mesh designs and ultrathin forms for the electronics ensure minimal stresses on the tissue and highly conformal coverage, even for complex curvilinear surfaces, as confirmed by experimental and theoretical studies. In vivo, neural mapping experiments on feline animal models illustrate one mode of use for this class of technology. These concepts provide new capabilities for implantable or surgical devices. PMID:20400953

  6. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Hyeong; Viventi, Jonathan; Amsden, Jason J.; Xiao, Jianliang; Vigeland, Leif; Kim, Yun-Soung; Blanco, Justin A.; Panilaitis, Bruce; Frechette, Eric S.; Contreras, Diego; Kaplan, David L.; Omenetto, Fiorenzo G.; Huang, Yonggang; Hwang, Keh-Chih; Zakin, Mitchell R.; Litt, Brian; Rogers, John A.

    2010-06-01

    Electronics that are capable of intimate, non-invasive integration with the soft, curvilinear surfaces of biological tissues offer important opportunities for diagnosing and treating disease and for improving brain/machine interfaces. This article describes a material strategy for a type of bio-interfaced system that relies on ultrathin electronics supported by bioresorbable substrates of silk fibroin. Mounting such devices on tissue and then allowing the silk to dissolve and resorb initiates a spontaneous, conformal wrapping process driven by capillary forces at the biotic/abiotic interface. Specialized mesh designs and ultrathin forms for the electronics ensure minimal stresses on the tissue and highly conformal coverage, even for complex curvilinear surfaces, as confirmed by experimental and theoretical studies. In vivo, neural mapping experiments on feline animal models illustrate one mode of use for this class of technology. These concepts provide new capabilities for implantable and surgical devices.

  7. Influence of Thickness on the Electrical Transport Properties of Exfoliated Bi2Te3 Ultrathin Films

    NASA Astrophysics Data System (ADS)

    Mo, D. L.; Wang, W. B.; Cai, Q.

    2016-08-01

    In this work, the mechanical exfoliation method has been utilized to fabricate Bi2Te3 ultrathin films. The thickness of the ultrathin films is revealed to be several tens of nanometers. Weak antilocalization effects and Shubnikov de Haas oscillations have been observed in the magneto-transport measurements on individual films with different thickness, and the two-dimensional surface conduction plays a dominant role. The Fermi level is found to be 81 meV above the Dirac point, and the carrier mobility can reach ~6030 cm2/(Vs) for the 10-nm film. When the film thickness decreases from 30 to 10 nm, the Fermi level will move 8 meV far from the bulk valence band. The coefficient α in the Hikami-Larkin-Nagaoka equation is shown to be ~0.5, manifesting that only the bottom surface of the Bi2Te3 ultrathin films takes part in transport conductions. These will pave the way for understanding thoroughly the surface transport properties of topological insulators.

  8. Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li-ion batteries.

    PubMed

    Wu, Feng; Li, Ning; Su, Yuefeng; Zhang, Linjing; Bao, Liying; Wang, Jing; Chen, Lai; Zheng, Yu; Dai, Liqin; Peng, Jingyuan; Chen, Shi

    2014-06-11

    Lack of high-performance cathode materials has become a technological bottleneck for the commercial development of advanced Li-ion batteries. We have proposed a biomimetic design and versatile synthesis of ultrathin spinel membrane-encapsulated layered lithium-rich cathode, a modification by nanocoating. The ultrathin spinel membrane is attributed to the superior high reversible capacity (over 290 mAh g(-1)), outstanding rate capability, and excellent cycling ability of this cathode, and even the stubborn illnesses of the layered lithium-rich cathode, such as voltage decay and thermal instability, are found to be relieved as well. This cathode is feasible to construct high-energy and high-power Li-ion batteries.

  9. New possibilities for tuning ultrathin cobalt film magnetic properties by a noble metal overlayer.

    PubMed

    Kisielewski, M; Maziewski, A; Tekielak, M; Wawro, A; Baczewski, L T

    2002-08-19

    Complementary multiscale magneto-optical studies based on the polar Kerr effect are carried out on an ultrathin cobalt wedge covered with a silver wedge and subsequently with the Au thick layer. A few monolayers of Ag are found to have a substantial effect on magnetic anisotropy, the coercivity field, and Kerr rotation. The silver overlayer thickness-driven magnetic reorientation from easy axis to easy plane generates a new type of 90 degrees magnetic wall for cobalt thicknesses between 1.3 and 1.8 nm. The tuning of the wall width in a wide range is possible. Tailoring of the overlayer structure can be used for ultrathin film magnetic patterning.

  10. Flexible Ultrathin Endoscope Integrated with Irrigation Suction Apparatus for Assisting Microneurosurgery.

    PubMed

    Otani, Naoki; Morimoto, Yuji; Fujii, Kazuya; Toyooka, Terushige; Wada, Kojiro; Mori, Kentaro

    2017-12-01

    Endoscopy can observe the anatomical components in a deeply located and/or hidden area during neurosurgical procedures under the operating microscope. We have newly developed a flexible ultrathin endoscope integrated with irrigation suction apparatus (FUEISA) to visualize deeply located and/or hidden areas for assisting microneurosurgery. The present study investigated the usefulness of the FUEISA system for direct clipping surgery of cerebral aneurysms. Twenty-one patients underwent microneurosurgery assisted with the FUEISA system for direct clipping of cerebral aneurysms. The flexible ultrathin endoscope (outer diameter 0.75mm) consists of an image guide (6000 dpi) and a light guide, integrated with the irrigation suction apparatus. This endoscopic system was inserted before and after clipping to observe the anatomical conditions surrounding the lesions. In all cases, handling and operation of the FUEISA was technically successful during the surgical procedure. The ultrathin endoscope was adequately integrated with the irrigation suction apparatus in all cases. General anatomy visualization including the lenticulostriate arteries, medial striate arteries, and/or internal carotid artery perforators was possible, and the correct clip positioning and vessel conditions were easily checked. The endoscope revealed that the clip had been positioned incorrectly in one case. No complications associated with the endoscopic system occurred. The FUEISA system can be applied with safe manipulation, which was remarkably useful for confirmation of the presence of perforators and cranial nerves behind the lesions, particularly anatomical components located in deep and/or hidden areas during clipping of cerebral aneurysms. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Ultrathin SnO2 nanorods: template- and surfactant-free solution phase synthesis, growth mechanism, optical, gas-sensing, and surface adsorption properties.

    PubMed

    Xi, Guangcheng; Ye, Jinhua

    2010-03-01

    A novel template- and surfactant-free low temperature solution-phase method has been successfully developed for the controlled synthesis of ultrathin SnO(2) single-crystalline nanorods for the first time. The ultrathin SnO(2) single-crystalline nanorods are 2.0 +/- 0.5 nm in diameter, which is smaller than its exciton Bohr radius. The ultrathin SnO(2) nanorods show a high specific area (191.5 m(2) g(-1)). Such a thin SnO(2) single-crystalline nanorod is new in the family of SnO(2) nanostrucures and presents a strong quantum confinement effect. Its formation depends on the reaction temperature as well as on the concentration of the urea solution. A nonclassical crystallization process, Ostwald ripening process followed by an oriented attachment mechanism, is proposed based on the detailed observations from a time-dependent crystal evolution process. Importantly, such structured SnO(2) has shown a strong structure-induced enhancement of gas-sensing properties and has exhibited greatly enhanced gas-sensing property for the detection of ethanol than that of other structured SnO(2), such as the powders of nanobelts and microrods. Moreover, these ultrathin SnO(2) nanorods exhibit excellent ability to remove organic pollutant in wastewater by enormous surface adsorption. These properties are mainly attributed to its higher surface-to-volume ratio and ultrathin diameter. This work provides a novel low temperature, green, and inexpensive pathway to the synthesis of ultrathin nanorods, offering a new material form for sensors, solar cells, catalysts, water treatments, and other applications.

  12. Structural performance of ultra-thin whitetopping on Illinois roadways and parking lots.

    DOT National Transportation Integrated Search

    2014-08-01

    A performance evaluation of ultra-thin whitetopping (UTW) pavements in Illinois was undertaken in 20122014 : to evaluate current design procedures and to determine design life criteria for future projects. The two main : components of this evaluat...

  13. High-mobility ultrathin semiconducting films prepared by spin coating

    NASA Astrophysics Data System (ADS)

    Mitzi, David B.; Kosbar, Laura L.; Murray, Conal E.; Copel, Matthew; Afzali, Ali

    2004-03-01

    The ability to deposit and tailor reliable semiconducting films (with a particular recent emphasis on ultrathin systems) is indispensable for contemporary solid-state electronics. The search for thin-film semiconductors that provide simultaneously high carrier mobility and convenient solution-based deposition is also an important research direction, with the resulting expectations of new technologies (such as flexible or wearable computers, large-area high-resolution displays and electronic paper) and lower-cost device fabrication. Here we demonstrate a technique for spin coating ultrathin (~50Å), crystalline and continuous metal chalcogenide films, based on the low-temperature decomposition of highly soluble hydrazinium precursors. We fabricate thin-film field-effect transistors (TFTs) based on semiconducting SnS2-xSex films, which exhibit n-type transport, large current densities (>105Acm-2) and mobilities greater than 10cm2V-1s-1-an order of magnitude higher than previously reported values for spin-coated semiconductors. The spin-coating technique is expected to be applicable to a range of metal chalcogenides, particularly those based on main group metals, as well as for the fabrication of a variety of thin-film-based devices (for example, solar cells, thermoelectrics and memory devices).

  14. Impact of esophagogastroduodenoscopy and ileocolonoscopy on diagnosis and therapy in patients with rheumatic diseases-a retrospective cohort study.

    PubMed

    Schäfer, Valentin Sebastian; Fleck, Martin; Ehrenstein, Boris; Peters, Ann-Kathrin; Hartung, Wolfgang

    2016-07-01

    Many rheumatic diseases as well as their medications may cause gastrointestinal (GI) pathologies; in addition, some primary GI diseases may contribute or lead to rheumatic disease manifestations. The aim of this study is to analyze the clinical relevance of esophagogastroduodenoscopy (EGD) and ileocolonoscopy (IC) in patients suffering from inflammatory rheumatic diseases. A retrospective chart review was performed for all rheumatological inpatients who underwent EGD and/or IC within 2 years. Within 2 years, 456 patients (261 female, 195 male) underwent 752 endoscopic investigations of the GI tract (419 EGDs and 333 ICs). Of all patients, 152 (33.3%) did not report any GI complaints. However, 28 of these asymptomatic patients (18.4%) suffered from esophagitis, a gastric ulcer could be identified in 20 patients (13%), whereas unspecific colitis was diagnosed in 19 patients (12.5%). In addition, 14 patients (9.2%) suffered from clinically unapparent Crohn's disease and two patients from Whipple's disease. In one patient with polymyalgia rheumatica, colon cancer was diagnosed. Altogether 304 patients reported GI complaints. Of these, 292 (39%) endoscopic investigations had impact on the final diagnosis or therapeutic strategy. The antirheumatic medication or the concomitant medication was changed in 18% of the patients due to the endoscopic findings; in 29 patients (6.5%) the initially clinically presumed diagnosis had to be corrected. In 70 patients (15%) with an undefined rheumatic diagnosis prior to endoscopy, endoscopic findings were decisive to establish the final diagnosis. EGD and IC have a high diagnostic impact on patients with rheumatic diseases presenting with or without concomitant GI symptoms.

  15. Broadband enhancement of dielectric light trapping nanostructure used in ultra-thin solar cells

    NASA Astrophysics Data System (ADS)

    Yang, Dong; Xu, Zhaopeng; Bian, Fei; Wang, Haiyan; Wang, Jiazhuang; Sun, Lu

    2018-03-01

    A dielectric fishnet nanostructure is designed to increase the light trapping capability of ultra-thin solar cells. The complex performance of ultra-thin cells such as the optical response and electrical response are fully quantified in simulation through a complete optoelectronic investigation. The results show that the optimized light trapping nanostructure can enhances the electromagnetic resonance in active layer then lead to extraordinary enhancement of both absorption and light-conversion capabilities in the solar cell. The short-circuit current density increases by 49.46% from 9.40 mA/cm2 to 14.05 mA/cm2 and light-conversion efficiency increases by 51.84% from 9.51% to 14.44% compared to the benchmark, a solar cell with an ITO-GaAs-Ag structure.

  16. Three-Component Integrated Ultrathin Organic Photosensors for Plastic Optoelectronics.

    PubMed

    Wang, Hanlin; Liu, Hongtao; Zhao, Qiang; Cheng, Cheng; Hu, Wenping; Liu, Yunqi

    2016-01-27

    By three-component integration, an integrated organic photosensor is presented using common organic dyes as building blocks. Gray-scale photosensing and signal amplification are achieved in the device within a wide range of light intensities. Moreover, with ultrathin film techniques, 470 nm thick devices are realized and continue to work when harshly bent. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A Comparison of Dexmedetomidine and Clonidine in Attenuating the Hemodynamic Responses at Various Surgical Stages in Patients Undergoing Elective Transnasal Transsphenoidal Resection of Pituitary Tumors

    PubMed Central

    Jan, Summaira; Ali, Zulfiqar; Nisar, Yasir; Naqash, Imtiaz Ahmad; Zahoor, Syed Amer; Langoo, Shabir Ahmad; Azhar, Khan

    2017-01-01

    Background: Transsphenoidal approach to pituitary tumors is a commonly performed procedure with the advantage of a rapid midline access to the sella with minimal complications. It may be associated with wide fluctuations in hemodynamic parameters due to intense noxious stimulus at various stages of the surgery. As duration of the surgery is short and the patients have nasal packs, it is prudent to use an anesthestic technique with an early predictable recovery. Materials and Methods: A total of 60 patients of either sex between 18 and 65 years of age, belonging to the American Society of Anesthesiologists I and II who were undergoing elective transnasal transsphenoidal pituitary surgery were chosen for this study. Patients were randomly allocated into two groups, Group C (clonidine) and Group D (dexmedetomidine), with each group consisting of 30 patients. Patients in Group C received 200 μg tablet of clonidine and those in Group D received a pantoprazole tablet as placebo at the same time. Patients in the Group D received an intravenous infusion of dexmedetomidine diluted in 50 ml saline (200 μg in 50 ml saline) 10 min before induction and patients in Group C received 0.9% normal saline (50 ml) as placebo. The hemodynamic variables (heart rate, mean arterial pressure) were noted at various stages of the surgery. Statistical analysis of the data was performed. Results: A total of 60 patients were recruited. The mean age, sex, weight and duration of surgery among the two groups were comparable (P > 0.05). Both dexmedetomidine and clonidine failed to blunt the increase in hemodynamic responses (heart rate and blood pressure) during intubation, nasal packing, speculum insertion and extubation. However when the hemodynamic response was compared between the patients receiving dexmedetomidine and clonidine it was seen that patients who received dexmedetomidine had a lesser increase in heart rate and blood pressure (P < 0.05) when compared to clonidine. Conclusions: A

  18. A Comparison of Dexmedetomidine and Clonidine in Attenuating the Hemodynamic Responses at Various Surgical Stages in Patients Undergoing Elective Transnasal Transsphenoidal Resection of Pituitary Tumors.

    PubMed

    Jan, Summaira; Ali, Zulfiqar; Nisar, Yasir; Naqash, Imtiaz Ahmad; Zahoor, Syed Amer; Langoo, Shabir Ahmad; Azhar, Khan

    2017-01-01

    Transsphenoidal approach to pituitary tumors is a commonly performed procedure with the advantage of a rapid midline access to the sella with minimal complications. It may be associated with wide fluctuations in hemodynamic parameters due to intense noxious stimulus at various stages of the surgery. As duration of the surgery is short and the patients have nasal packs, it is prudent to use an anesthestic technique with an early predictable recovery. A total of 60 patients of either sex between 18 and 65 years of age, belonging to the American Society of Anesthesiologists I and II who were undergoing elective transnasal transsphenoidal pituitary surgery were chosen for this study. Patients were randomly allocated into two groups, Group C (clonidine) and Group D (dexmedetomidine), with each group consisting of 30 patients. Patients in Group C received 200 μg tablet of clonidine and those in Group D received a pantoprazole tablet as placebo at the same time. Patients in the Group D received an intravenous infusion of dexmedetomidine diluted in 50 ml saline (200 μg in 50 ml saline) 10 min before induction and patients in Group C received 0.9% normal saline (50 ml) as placebo. The hemodynamic variables (heart rate, mean arterial pressure) were noted at various stages of the surgery. Statistical analysis of the data was performed. A total of 60 patients were recruited. The mean age, sex, weight and duration of surgery among the two groups were comparable ( P > 0.05). Both dexmedetomidine and clonidine failed to blunt the increase in hemodynamic responses (heart rate and blood pressure) during intubation, nasal packing, speculum insertion and extubation. However when the hemodynamic response was compared between the patients receiving dexmedetomidine and clonidine it was seen that patients who received dexmedetomidine had a lesser increase in heart rate and blood pressure ( P < 0.05) when compared to clonidine. A continuous intravenous infusion of dexmedetomidine as

  19. Superstable Ultrathin Water Film Confined in a Hydrophilized Carbon Nanotube.

    PubMed

    Tomo, Yoko; Askounis, Alexandros; Ikuta, Tatsuya; Takata, Yasuyuki; Sefiane, Khellil; Takahashi, Koji

    2018-03-14

    Fluids confined in a nanoscale space behave differently than in the bulk due to strong interactions between fluid molecules and solid atoms. Here, we observed water confined inside "open" hydrophilized carbon nanotubes (CNT), with diameter of tens of nanometers, using transmission electron microscopy (TEM). A 1-7 nm water film adhering to most of the inner wall surface was observed and remained stable in the high vacuum (order of 10 -5 Pa) of the TEM. The superstability of this film was attributed to a combination of curvature, nanoroughness, and confinement resulting in a lower vapor pressure for water and hence inhibiting its vaporization. Occasional, suspended ultrathin water film with thickness of 3-20 nm were found and remained stable inside the CNT. This film thickness is 1 order of magnitude smaller than the critical film thickness (about 40 nm) reported by the Derjaguin-Landau-Verwey-Overbeek theory and previous experimental investigations. The stability of the suspended ultrathin water film is attributed to the additional molecular interactions due to the extended water meniscus, which balances the rest of the disjoining pressures.

  20. Physics of Ultrathin Films and Heterostructures of Rare-Earth Nickelates

    DOE PAGES

    Middey, Srimanta; Chakhalian, J.; Mahadevan, P.; ...

    2016-04-06

    The electronic structure of transition metal oxides featuring correlated electrons can be rationalized within the Zaanen-Sawatzky-Allen framework. Following a brief description of the present paradigms of electronic behavior, we focus on the physics of rare-earth nickelates as an archetype of complexity emerging within the charge transfer regime. The intriguing prospect of realizing the physics of high- Tc cuprates through heterostructuring resulted in a massive endeavor to epitaxially stabilize these materials in ultrathin form. A plethora of new phenomena unfolded in such artificial structures due to the effect of epitaxial strain, quantum confinement, and interfacial charge transfer. Here we review themore » present status of artificial rare-earth nickelates in an effort to uncover the interconnection between the electronic and magnetic behavior and the underlying crystal structure. Here, we conclude by discussing future directions to disentangle the puzzle regarding the origin of the metal-insulator transition, the role of oxygen holes, and the true nature of the antiferromagnetic spin configuration in the ultrathin limit.« less

  1. An ultra-thin compact polarization-independent hexa-band metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Munaga, Praneeth; Bhattacharyya, Somak; Ghosh, Saptarshi; Srivastava, Kumar Vaibhav

    2018-04-01

    In this paper, an ultra-thin compact hexa-band metamaterial absorber has been presented using single layer of dielectric. The proposed design is polarization independent in nature owing to its fourfold symmetry and exhibits high angular stability up to 60° angles of incidences for both TE and TM polarizations. The structure is ultrathin in nature with 2 mm thickness, which corresponds to λ/11.4 ( λ is the operating wavelength with respect to the highest frequency of absorption). Six distinct absorption frequencies are obtained from the design, which can be distributed among three regions, namely lower band, middle band and higher band; each region consists of two closely spaced frequencies. Thereafter, the dimensions of the proposed structure are adjusted in such a way that bandwidth enhancement occurs at each region separately. Simultaneous bandwidth enhancements at middle and higher bands have also been achieved by proper optimization of the geometrical parameters. The structure with simultaneous bandwidth enhancements at X- and Ku-bands is later fabricated and the experimental absorptivity response is in agreement with the simulated one.

  2. Surface profiles and modulation of ultra-thin perfluoropolyether lubricant in contact sliding

    NASA Astrophysics Data System (ADS)

    Sinha, S. K.; Kawaguchi, M.; Kato, T.

    2004-08-01

    Deformation in shear and associated tribological behaviours of ultra-thin lubricants are of significant importance for the lubrication of magnetic hard disks and for other applications such as micro-electromechanical systems, nano-fluidics and nanotechnology. This paper presents the characteristics of the perfluoropolyether ultra-thin lubricant, in terms of its surface profiles when subjected to a contact sliding test. The results indicate that for a several-monolayers thick (~4.0-4.5 nm) lubricant film, sliding produces a considerable amount of surface roughness due to peaks of lubricant that persist during sliding; however, it can flow back or return to a smooth profile after a lapse of time when the sliding is stopped. For a monolayer-thin (~1.4-1.57 nm) film, the lubricant flow is restricted, and the rough profile created due to sliding persists and almost becomes permanent on the wear track. During sliding, due to high shear stress, a characteristic feature of lubricant profile modulation is observed. This modulation, or waviness, is due to the accumulation of lubricant in piles or islands, giving certain amplitudes and frequencies, which themselves depend upon the percentage of lubricant molecules that are chemically bonded to the substrate and the lubricant thickness. The results indicate that ultra-thin lubricants (monolayer and thicker) behave more like a semi-solid (having some sliding characteristics similar to those of rubbers) than a liquid when subjected to a high shear rate during contact sliding.

  3. Quantum dots in single electron transistors with ultrathin silicon-on-insulator structures

    NASA Astrophysics Data System (ADS)

    Ihara, S.; Andreev, A.; Williams, D. A.; Kodera, T.; Oda, S.

    2015-07-01

    We report on fabrication and transport properties of lithographically defined single quantum dots (QDs) in single electron transistors with ultrathin silicon-on-insulator (SOI) substrate. We observed comparatively large charging energy E C ˜ 20 meV derived from the stability diagram at a temperature of 4.2 K. We also carried out three-dimensional calculations of the capacitance matrix and transport properties through the QD for the real structure geometry and found an excellent quantitative agreement with experiment of the calculated main parameters of stability diagram (charging energy, period of Coulomb oscillations, and asymmetry of the diamonds). The obtained results confirm fabrication of well-defined integrated QDs as designed with ultrathin SOI that makes it possible to achieve relatively large QD charging energies, which is useful for stable and high temperature operation of single electron devices.

  4. Morphology, mechanical stability, and protective properties of ultrathin gallium oxide coatings.

    PubMed

    Lawrenz, Frank; Lange, Philipp; Severin, Nikolai; Rabe, Jürgen P; Helm, Christiane A; Block, Stephan

    2015-06-02

    Ultrathin gallium oxide layers with a thickness of 2.8 ± 0.2 nm were transferred from the surface of liquid gallium onto solid substrates, including conjugated polymer poly(3-hexylthiophene) (P3HT). The gallium oxide exhibits high mechanical stability, withstanding normal pressures of up to 1 GPa in contact mode scanning force microscopy imaging. Moreover, it lowers the rate of photodegradation of P3HT by 4 orders of magnitude, as compared to uncovered P3HT. This allows us to estimate the upper limits for oxygen and water vapor transmission rates of 0.08 cm(3) m(-2) day(-1) and 0.06 mg m(-2) day(-1), respectively. Hence, similar to other highly functional coatings such as graphene, ultrathin gallium oxide layers can be regarded as promising candidates for protective layers in flexible organic (opto-)electronics and photovoltaics because they offer permeation barrier functionalities in conjunction with high optical transparency.

  5. Synthesizing new types of ultrathin 2D metal oxide nanosheets via half-successive ion layer adsorption and reaction

    NASA Astrophysics Data System (ADS)

    Gao, Linjie; Li, Yaguang; Xiao, Mu; Wang, Shufang; Fu, Guangsheng; Wang, Lianzhou

    2017-06-01

    Two-dimensional (2D) metal oxide nanosheets have demonstrated their great potential in a broad range of applications. The existing synthesis strategies are mainly preparing 2D nanosheets from layered and specific transition metal oxides. How to prepare the other types of metal oxides as ultrathin 2D nanosheets remains unsolved, especially for metal oxides containing alkali, alkaline earth metal, and multiple metal elements. Herein, we developed a half-successive ion layer adsorption and reaction (SILAR) method, which could synthesize those types of metal oxides as ultrathin 2D nanosheets. The synthesized 2D metal oxides nanosheets are within 1 nm level thickness and 500 m2 · g-1 level surface area. This method allows us to develop many new types of ultrathin 2D metal oxides nanosheets that have never been prepared before.

  6. Ultrathin Two-Dimensional Covalent Organic Framework Nanosheets: Preparation and Application in Highly Sensitive and Selective DNA Detection.

    PubMed

    Peng, Yongwu; Huang, Ying; Zhu, Yihan; Chen, Bo; Wang, Liying; Lai, Zhuangchai; Zhang, Zhicheng; Zhao, Meiting; Tan, Chaoliang; Yang, Nailiang; Shao, Fangwei; Han, Yu; Zhang, Hua

    2017-06-28

    The ability to prepare ultrathin two-dimensional (2D) covalent organic framework (COF) nanosheets (NSs) in high yield is of great importance for the further exploration of their unique properties and potential applications. Herein, by elaborately designing and choosing two flexible molecules with C 3v molecular symmetry as building units, a novel imine-linked COF, namely, TPA-COF, with a hexagonal layered structure and sheet-like morphology, is synthesized. Since the flexible building units are integrated into the COF skeletons, the interlayer stacking becomes weak, resulting in the easy exfoliation of TPA-COF into ultrathin 2D NSs. Impressively, for the first time, the detailed structural information, i.e., the pore channels and individual building units in the NSs, is clearly visualized by using the recently developed low-dose imaging technique of transmission electron microscopy (TEM). As a proof-of-concept application, the obtained ultrathin COF NSs are used as a novel fluorescence sensing platform for the highly sensitive and selective detection of DNA.

  7. Glutatione modified ultrathin SnS2 nanosheets with highly photocatalytic activity for wastewater treatment

    NASA Astrophysics Data System (ADS)

    Wei, Renjie; Zhou, Tengfei; Hu, Juncheng; Li, Jinlin

    2014-04-01

    L-Glutatione (GSH) modified ultrathin SnS2 nanosheets were successfully synthesized via a one-pot, facile and rapid solvothermal approach. During the process, the GSH not only served as the sulfur sources, the structure-directing agent, but also as the surface modified ligands. The as-synthesized samples mainly consist of ultrathin nanosheets with the thickness of about 10 nm. Inspiringly, even under the visible light (λ > 420 nm) irradiation, the as-synthesized products exhibited highly photocatalytic activities for both the degradation of methyl orange (MO) and the reductive conversion of Cr (VI) in aqueous solution. The superior performance was presented by completely removed the methyl orange and aqueous Cr(VI) in 20 min and 60 min, respectively. It was much higher than the pure samples, which suggested that these obtained photocatalysts have the potential for wastewater treatment in a green way. The high-efficiency of photocatalytic properties could attribute to the ultrathin size of the photocatalysts and the chelation between GSH and Sn (IV), which have the advantages of electron-hole pairs separation. Moreover, modified organic compounds with common electron donors would also enhance the spectral response even to the near infrared region through ligand-to-metal charge transfer (LMCT) mechanism.

  8. Room-temperature synthesis of two-dimensional ultrathin gold nanowire parallel array with tunable spacing.

    PubMed

    Morita, Clara; Tanuma, Hiromitsu; Kawai, Chika; Ito, Yuki; Imura, Yoshiro; Kawai, Takeshi

    2013-02-05

    A series of long-chain amidoamine derivatives with different alkyl chain lengths (CnAA where n is 12, 14, 16, or 18) were synthesized and studied with regard to their ability to form organogels and to act as soft templates for the production of Au nanomaterials. These compounds were found to self-assemble into lamellar structures and exhibited gelation ability in some apolar solvents. The gelation concentration, gel-sol phase transition temperature, and lattice spacing of the lamellar structures in organic solvent all varied on the basis of the alkyl chain length of the particular CnAA compound employed. The potential for these molecules to function as templates was evaluated through the synthesis of Au nanowires (NWs) in their organogels. Ultrathin Au NWs were obtained from all CnAA/toluene gel systems, each within an optimal temperature range. Interestingly, in the case of C12AA and C14AA, it was possible to fabricate ultrathin Au NWs at room temperature. In addition, two-dimensional parallel arrays of ultrathin Au NWs were self-assembled onto TEM copper grids as a result of the drying of dispersion solutions of these NWs. The use of CnAA compounds with differing alkyl chain lengths enabled precise tuning of the distance between the Au NWs in these arrays.

  9. Rapid amperometric detection of trace metals by inhibition of an ultrathin polypyrrole-based glucose biosensor.

    PubMed

    Ayenimo, Joseph G; Adeloju, Samuel B

    2016-02-01

    A sensitive and reliable inhibitive amperometric glucose biosensor is described for rapid trace metal determination. The biosensor utilises a conductive ultrathin (55 nm thick) polypyrrole (PPy) film for entrapment of glucose oxidase (GOx) to permit rapid inhibition of GOx activity in the ultrathin film upon exposure to trace metals, resulting in reduced glucose amperometric response. The biosensor demonstrates a relatively fast response time of 20s and does not require incubation. Furthermore, a complete recovery of GOx activity in the ultrathin PPy-GOx biosensor is quickly achieved by washing in 2mM EDTA for only 10s. The minimum detectable concentrations achieved with the biosensor for Hg(2+), Cu(2+), Pb(2+) and Cd(2+) by inhibitive amperometric detection are 0.48, 1.5, 1.6 and 4.0 µM, respectively. Also, suitable linear concentration ranges were achieved from 0.48-3.3 µM for Hg(2+), 1.5-10 µM for Cu(2+), 1.6-7.7 µM for Pb(2+) and 4-26 µM for Cd(2+). The use of Dixon and Cornish-Bowden plots revealed that the suppressive effects observed with Hg(2+) and Cu(2+) were via non-competitive inhibition, while those of Pb(2+) and Cd(2+) were due to mixed and competitive inhibition. The stronger inhibition exhibited by the trace metals on GOx activity in the ultrathin PPy-GOx film was also confirmed by the low inhibition constant obtained from this analysis. The biosensor was successfully applied to the determination of trace metals in tap water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Ultrathin niobium nanofilms on fiber optical tapers - a new route towards low-loss hybrid plasmonic modes

    NASA Astrophysics Data System (ADS)

    Wieduwilt, Torsten; Tuniz, Alessandro; Linzen, Sven; Goerke, Sebastian; Dellith, Jan; Hübner, Uwe; Schmidt, Markus A.

    2015-11-01

    Due to the ongoing improvement in nanostructuring technology, ultrathin metallic nanofilms have recently gained substantial attention in plasmonics, e.g. as building blocks of metasurfaces. Typically, noble metals such as silver or gold are the materials of choice, due to their excellent optical properties, however they also possess some intrinsic disadvantages. Here, we introduce niobium nanofilms (~10 nm thickness) as an alternate plasmonic platform. We demonstrate functionality by depositing a niobium nanofilm on a plasmonic fiber taper, and observe a dielectric-loaded niobium surface-plasmon excitation for the first time, with a modal attenuation of only 3-4 dB/mm in aqueous environment and a refractive index sensitivity up to 15 μm/RIU if the analyte index exceeds 1.42. We show that the niobium nanofilm possesses bulk optical properties, is continuous, homogenous, and inert against any environmental influence, thus possessing several superior properties compared to noble metal nanofilms. These results demonstrate that ultrathin niobium nanofilms can serve as a new platform for biomedical diagnostics, superconducting photonics, ultrathin metasurfaces or new types of optoelectronic devices.

  11. Ultrathin Polymer Films, Patterned Arrays, and Microwells

    NASA Astrophysics Data System (ADS)

    Yan, Mingdi

    2002-05-01

    The ability to control and tailor the surface and interface properties of materials is important in microelectronics, cell growth control, and lab-on-a-chip devices. Modification of material surfaces with ultrathin polymer films is attractive due to the availability of a variety of polymers either commercially or by synthesis. We have developed two approaches to the attachment of ultrathin polymer films on solid substrates. In the first method, a silane-functionalized perfluorophenyl azide (PFPA-silane) was synthesized and used to covalently immobilize polymer thin films on silicon wafers. Silanization of the wafer surface with the PFPA-silane introduced a monolayer of azido groups which in turn covalently attached the polymer film by way of photochemically initiated insertion reactions. The thickness of the film could be adjusted by the type and the molecular weight of the polymer. The method is versatile due to the general C-H and/or N-H insertion reactions of crosslinker; and therefore, no specific reactive functional groups on the polymers are required. Using this method, a new type of microwell array was fabricated from covalently immobilized polymer thin films on flat substrates. The arrays were characterized with AFM, XPS, and TOF-SIMS. The second method describes the attachment of polymer thin films on solid substrates via UV irradiation. The procedure consisted of spin-coating a polymer film and irradiating the film with UV light. Following solvent extraction, a thin film remained. The thickness of the film, from a few to over a hundred nanometers, was controlled by varying solution concentration and the molecular weight of the polymer.

  12. Ultrathin planar graphene supercapacitors.

    PubMed

    Yoo, Jung Joon; Balakrishnan, Kaushik; Huang, Jingsong; Meunier, Vincent; Sumpter, Bobby G; Srivastava, Anchal; Conway, Michelle; Reddy, Arava Leela Mohana; Yu, Jin; Vajtai, Robert; Ajayan, Pulickel M

    2011-04-13

    With the advent of atomically thin and flat layers of conducting materials such as graphene, new designs for thin film energy storage devices with good performance have become possible. Here, we report an "in-plane" fabrication approach for ultrathin supercapacitors based on electrodes comprised of pristine graphene and multilayer reduced graphene oxide. The in-plane design is straightforward to implement and exploits efficiently the surface of each graphene layer for energy storage. The open architecture and the effect of graphene edges enable even the thinnest of devices, made from as grown 1-2 graphene layers, to reach specific capacities up to 80 μFcm(-2), while much higher (394 μFcm(-2)) specific capacities are observed multilayer reduced graphene oxide electrodes. The performances of devices with pristine as well as thicker graphene-based structures are examined using a combination of experiments and model calculations. The demonstrated all solid-state supercapacitors provide a prototype for a broad range of thin-film based energy storage devices.

  13. Coexistence of colossal stress and texture gradients in sputter deposited nanocrystalline ultra-thin metal films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuru, Yener; Welzel, Udo; Mittemeijer, Eric J.

    2014-12-01

    This paper demonstrates experimentally that ultra-thin, nanocrystalline films can exhibit coexisting colossal stress and texture depth gradients. Their quantitative determination is possible by X-ray diffraction experiments. Whereas a uniform texture by itself is known to generally cause curvature in so-called sin{sup 2}ψ plots, it is shown that the combined action of texture and stress gradients provides a separate source of curvature in sin{sup 2}ψ plots (i.e., even in cases where a uniform texture does not induce such curvature). On this basis, the texture and stress depth profiles of a nanocrystalline, ultra-thin (50 nm) tungsten film could be determined.

  14. The influence of the surface parameter changes onto the phonon states in ultrathin crystalline films

    NASA Astrophysics Data System (ADS)

    Šetrajčić, Jovan P.; Ilić, Dušan I.; Jaćimovski, Stevo K.

    2018-04-01

    In this paper, we have analytically investigated how the changes in boundary surface parameters influence the phonon dispersion law in ultrathin films of the simple cubic crystalline structure. Spectra of possible phonon states are analyzed using the method of two-time dependent Green's functions and for the diverse combination of boundary surface parameters, this problem was presented numerically and graphically. It turns out that for certain values and combinations of parameters, displacement of dispersion branches outside of bulk zone occurs, leading to the creation of localized phonon states. This fact is of great importance for the heat removal, electrical conductivity and superconducting properties of ultrathin films.

  15. Thickness-dependence of optical constants for Ta2O5 ultrathin films

    NASA Astrophysics Data System (ADS)

    Zhang, Dong-Xu; Zheng, Yu-Xiang; Cai, Qing-Yuan; Lin, Wei; Wu, Kang-Ning; Mao, Peng-Hui; Zhang, Rong-Jun; Zhao, Hai-bin; Chen, Liang-Yao

    2012-09-01

    An effective method for determining the optical constants of Ta2O5 thin films deposited on crystal silicon (c-Si) using spectroscopic ellipsometry (SE) measurement with a two-film model (ambient-oxide-interlayer-substrate) was presented. Ta2O5 thin films with thickness range of 1-400 nm have been prepared by the electron beam evaporation (EBE) method. We find that the refractive indices of Ta2O5 ultrathin films less than 40 nm drop with the decreasing thickness, while the other ones are close to those of bulk Ta2O5. This phenomenon was due to the existence of an interfacial oxide region and the surface roughness of the film, which was confirmed by the measurement of atomic force microscopy (AFM). Optical properties of ultrathin film varying with the thickness are useful for the design and manufacture of nano-scaled thin-film devices.

  16. High-mobility ultrathin semiconducting films prepared by spin coating.

    PubMed

    Mitzi, David B; Kosbar, Laura L; Murray, Conal E; Copel, Matthew; Afzali, Ali

    2004-03-18

    The ability to deposit and tailor reliable semiconducting films (with a particular recent emphasis on ultrathin systems) is indispensable for contemporary solid-state electronics. The search for thin-film semiconductors that provide simultaneously high carrier mobility and convenient solution-based deposition is also an important research direction, with the resulting expectations of new technologies (such as flexible or wearable computers, large-area high-resolution displays and electronic paper) and lower-cost device fabrication. Here we demonstrate a technique for spin coating ultrathin (approximately 50 A), crystalline and continuous metal chalcogenide films, based on the low-temperature decomposition of highly soluble hydrazinium precursors. We fabricate thin-film field-effect transistors (TFTs) based on semiconducting SnS(2-x)Se(x) films, which exhibit n-type transport, large current densities (>10(5) A cm(-2)) and mobilities greater than 10 cm2 V(-1) s(-1)--an order of magnitude higher than previously reported values for spin-coated semiconductors. The spin-coating technique is expected to be applicable to a range of metal chalcogenides, particularly those based on main group metals, as well as for the fabrication of a variety of thin-film-based devices (for example, solar cells, thermoelectrics and memory devices).

  17. Chemical gating of epitaxial graphene through ultrathin oxide layers.

    PubMed

    Larciprete, Rosanna; Lacovig, Paolo; Orlando, Fabrizio; Dalmiglio, Matteo; Omiciuolo, Luca; Baraldi, Alessandro; Lizzit, Silvano

    2015-08-07

    We achieved a controllable chemical gating of epitaxial graphene grown on metal substrates by exploiting the electrostatic polarization of ultrathin SiO2 layers synthesized below it. Intercalated oxygen diffusing through the SiO2 layer modifies the metal-oxide work function and hole dopes graphene. The graphene/oxide/metal heterostructure behaves as a gated plane capacitor with the in situ grown SiO2 layer acting as a homogeneous dielectric spacer, whose high capacity allows the Fermi level of graphene to be shifted by a few hundreds of meV when the oxygen coverage at the metal substrate is of the order of 0.5 monolayers. The hole doping can be finely tuned by controlling the amount of interfacial oxygen, as well as by adjusting the thickness of the oxide layer. After complete thermal desorption of oxygen the intrinsic doping of SiO2 supported graphene is evaluated in the absence of contaminants and adventitious adsorbates. The demonstration that the charge state of graphene can be changed by chemically modifying the buried oxide/metal interface hints at the possibility of tuning the level and sign of doping by the use of other intercalants capable of diffusing through the ultrathin porous dielectric and reach the interface with the metal.

  18. Ultra-thin silicon/electro-optic polymer hybrid waveguide modulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Feng; Spring, Andrew M.; Sato, Hiromu

    2015-09-21

    Ultra-thin silicon and electro-optic (EO) polymer hybrid waveguide modulators have been designed and fabricated. The waveguide consists of a silicon core with a thickness of 30 nm and a width of 2 μm. The cladding is an EO polymer. Optical mode calculation reveals that 55% of the optical field around the silicon extends into the EO polymer in the TE mode. A Mach-Zehnder interferometer (MZI) modulator was prepared using common coplanar electrodes. The measured half-wave voltage of the MZI with 7 μm spacing and 1.3 cm long electrodes is 4.6 V at 1550 nm. The evaluated EO coefficient is 70 pm/V, which is comparable to that ofmore » the bulk EO polymer film. Using ultra-thin silicon is beneficial in order to reduce the side-wall scattering loss, yielding a propagation loss of 4.0 dB/cm. We also investigated a mode converter which couples light from the hybrid EO waveguide into a strip silicon waveguide. The calculation indicates that the coupling loss between these two devices is small enough to exploit the potential fusion of a hybrid EO polymer modulator together with a silicon micro-photonics device.« less

  19. Precisely Controlled Ultrathin Conjugated Polymer Films for Large Area Transparent Transistors and Highly Sensitive Chemical Sensors.

    PubMed

    Khim, Dongyoon; Ryu, Gi-Seong; Park, Won-Tae; Kim, Hyunchul; Lee, Myungwon; Noh, Yong-Young

    2016-04-13

    A uniform ultrathin polymer film is deposited over a large area with molecularlevel precision by the simple wire-wound bar-coating method. The bar-coated ultrathin films not only exhibit high transparency of up to 90% in the visible wavelength range but also high charge carrier mobility with a high degree of percolation through the uniformly covered polymer nanofibrils. They are capable of realizing highly sensitive multigas sensors and represent the first successful report of ethylene detection using a sensor based on organic field-effect transistors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Characterization of a high performance ultra-thin heat pipe cooling module for mobile hand held electronic devices

    NASA Astrophysics Data System (ADS)

    Ahamed, Mohammad Shahed; Saito, Yuji; Mashiko, Koichi; Mochizuki, Masataka

    2017-11-01

    In recent years, heat pipes have been widely used in various hand held mobile electronic devices such as smart phones, tablet PCs, digital cameras. With the development of technology these devices have different user friendly features and applications; which require very high clock speeds of the processor. In general, a high clock speed generates a lot of heat, which needs to be spreaded or removed to eliminate the hot spot on the processor surface. However, it is a challenging task to achieve proper cooling of such electronic devices mentioned above because of their confined spaces and concentrated heat sources. Regarding this challenge, we introduced an ultra-thin heat pipe; this heat pipe consists of a special fiber wick structure named as "Center Fiber Wick" which can provide sufficient vapor space on the both sides of the wick structure. We also developed a cooling module that uses this kind of ultra-thin heat pipe to eliminate the hot spot issue. This cooling module consists of an ultra-thin heat pipe and a metal plate. By changing the width, the flattened thickness and the effective length of the ultra-thin heat pipe, several experiments have been conducted to characterize the thermal properties of the developed cooling module. In addition, other experiments were also conducted to determine the effects of changes in the number of heat pipes in a single module. Characterization and comparison of the module have also been conducted both experimentally and theoretically.

  1. [Adult Grisel Syndrome and Cervical Skull instability. Transnasal endoscopic odontoidectomy and occipito-cervical fusion. Case report and literature review].

    PubMed

    Herrera, Roberto; Rojas, Héctor; Estramian, Ariel; Gómez, Julieta; Ledesma, José Luis; Pablo, José; Pastore, Julián

    2018-01-01

    Craniocervical junction pathology is infrequent in daily neurosurgical practice. In general, most of these lesions are of traumatic or rheumatic origin. Atlantoaxial instability of inflammatory origin (Grisel syndrome) is a rare entity of which only 16 adult cases have been reported in the literature. This pathology is characterized by the development of an osteolytic lesion at the level of the atlantoaxial joint after an infectious event, usually of the upper airways. We present the case of a 76-year-old patient who attended our office for clinical symptoms of spinal instability secondary to an osteolytic lesion, with involvement of C1 and C2. The symptomatology began after an infectious respiratory process. A posterior cervical occiput fixation and an endoscopic transnasal odontoidectomy with anterior decompression were performed. The patient evolved with complete resolution of symptoms. The cultures were negative, and the pathological anatomy study concluded nonspecific inflammatory changes. Until a few years ago, the only option to address this pathology was the transoral pathway with microsurgical technique. Nowadays, endoscopy offers many technical advantages. This is an option to be considered when planning approaches to craniocervical junction.

  2. Ultrathin layered double hydroxide nanosheets with Ni(III) active species obtained by exfoliation for highly efficient ethanol electrooxidation.

    PubMed

    Xu, Liang; Wang, Zhe; Chen, Xu; Qu, Zongkai; Li, Feng; Yang, Wensheng

    2018-01-10

    The development of non-precious metal electrocatalysts for renewable energy conversion and storage is compelling but greatly challenging due to low activity of the existing catalysts. Herein, the ultrathin NiAl-layered double hydroxide nanosheets (NiAl-LDH-NSs) are prepared by simple liquid-exfoliation of bulk NiAl-LDHs and first used as ethanol electrooxidation catalysts. The ultrathin two-dimensional (2D) structure ensures that the LDH nanosheets expose a greater number of active sites. More importantly, much Ni(III) active species (NiOOH) in the ultrathin nanosheets are formed by the exfoliation process, which play an authentic catalytic role in the ethanol oxidation reaction (EOR). The presence of NiOOH remarkably improves the reactivity and electrical conductivity of LDH nanosheets. These synergistic effects lead to strikingly more than 30 times enhanced EOR activity of NiAl-LDH-NSs compared to bulk NiAl-LDHs. The obtained electrocatalytic activity is also much better than those of most Ni- and LDH-based EOR catalysts reported to date. In addition, the ultrathin NiAl-LDH-NS electrocatalyst also exhibits good long-term stability (maintain 81.8% of the original value after 10000 s). This study not only provides a highly competitive EOR catalyst, but also opens new avenues toward the design of highly efficient electrode materials that have various potential applications in supercapacitor, Ni-MH battery and other electrocatalytic systems.

  3. Ultrathin layered double hydroxide nanosheets with Ni(III) active species obtained by exfoliation for highly efficient ethanol electrooxidation

    PubMed Central

    Xu, Liang; Wang, Zhe; Chen, Xu; Qu, Zongkai; Li, Feng; Yang, Wensheng

    2018-01-01

    The development of non-precious metal electrocatalysts for renewable energy conversion and storage is compelling but greatly challenging due to low activity of the existing catalysts. Herein, the ultrathin NiAl-layered double hydroxide nanosheets (NiAl-LDH-NSs) are prepared by simple liquid-exfoliation of bulk NiAl-LDHs and first used as ethanol electrooxidation catalysts. The ultrathin two-dimensional (2D) structure ensures that the LDH nanosheets expose a greater number of active sites. More importantly, much Ni(III) active species (NiOOH) in the ultrathin nanosheets are formed by the exfoliation process, which play an authentic catalytic role in the ethanol oxidation reaction (EOR). The presence of NiOOH remarkably improves the reactivity and electrical conductivity of LDH nanosheets. These synergistic effects lead to strikingly more than 30 times enhanced EOR activity of NiAl-LDH-NSs compared to bulk NiAl-LDHs. The obtained electrocatalytic activity is also much better than those of most Ni- and LDH-based EOR catalysts reported to date. In addition, the ultrathin NiAl-LDH-NS electrocatalyst also exhibits good long-term stability (maintain 81.8% of the original value after 10000 s). This study not only provides a highly competitive EOR catalyst, but also opens new avenues toward the design of highly efficient electrode materials that have various potential applications in supercapacitor, Ni-MH battery and other electrocatalytic systems. PMID:29622818

  4. Ultrathin Polyaniline-based Buffer Layer for Highly Efficient Polymer Solar Cells with Wide Applicability

    PubMed Central

    Zhao, Wenchao; Ye, Long; Zhang, Shaoqing; Fan, Bin; Sun, Mingliang; Hou, Jianhui

    2014-01-01

    Interfacial buffer layers often attribute the improved device performance in organic optoelectronic device. Herein, a water-soluble hydrochloric acid doped polyanilines (HAPAN) were utilized as p-type electrode buffer layer in highly efficient polymer solar cells (PSC) based on PBDTTT-EFT and several representative polymers. The PBDTTT-EFT-based conventional PSC featuring ultrathin HAPAN (1.3 nm) delivered high PCE approximately 9%, which is one of the highest values among conventional PSC devices. Moreover, ultrathin HAPAN also exhibited wide applicability in a variety of efficient photovoltaic polymers including PBDTTT-C-T, PTB7, PBDTBDD, PBTTDPP-T, PDPP3T and P3HT. The excellent performances were originated from the high transparency, small film roughness and suitable work function. PMID:25300365

  5. Usefulness of esophagogastroduodenoscopy and 18F-fluorodeoxyglucose positron-emission tomography in detecting synchronous multiple primary cancers with oral cancer.

    PubMed

    Ishibashi-Kanno, Naomi; Yamagata, Kenji; Uchida, Fumihiko; Hasegawa, Shogo; Yanagawa, Toru; Bukawa, Hiroki

    2017-12-01

    The purpose of this study is to compare the value of screening for synchronous multiple primary cancers in other organs by esophagogastroduodenoscopy (EGD) or 18 F-fluorodeoxyglucose positron-emission tomography (PET-CT) in patients newly diagnosed with oral cancer. We retrospectively examined consecutive Japanese patients who were diagnosed with oral squamous cell carcinoma (OSCC) and were screened for synchronous multiple primary cancers in other organs by EGD and/or PET-CT between January 2010 and December 2015 at our institution. The study included 190 patients (106 males and 84 females) from 36 to 93 years of age (median age 68.8 years). The patients were screened by EGD, PET-CT, or both before beginning treatment for OSCC. Of 190 Japanese patients with OSCC, 15 had multiple primary cancers: 13 patients had double cancer and two had triple cancers. The sites of the 17 multiple primary cancers were gastric (6), esophageal (4), and lung (3), and ovarian, colon, liver, and thyroid (1 each). All of the gastric and esophageal cancers were found by EGD and were not detected by PET-CT. For three patients, the detection of multiple cancers affected the treatment modality or order of treatment selected for the OSCC. In two cases, the oral cancer and multiple primary cancer(s) in another organ were resected simultaneously by joint surgical teams. PET-CT for oral cancer patients is an effective supporting diagnostic tool. However, the ability of PET-CT has some limitations. Especially for early detection of the upper gastrointestinal cancers, it is necessary to be supplemented by EGD.

  6. Giant Ferroelectric Polarization in Ultrathin Ferroelectrics via Boundary-Condition Engineering.

    PubMed

    Xie, Lin; Li, Linze; Heikes, Colin A; Zhang, Yi; Hong, Zijian; Gao, Peng; Nelson, Christopher T; Xue, Fei; Kioupakis, Emmanouil; Chen, Longqing; Schlom, Darrel G; Wang, Peng; Pan, Xiaoqing

    2017-08-01

    Tailoring and enhancing the functional properties of materials at reduced dimension is critical for continuous advancement of modern electronic devices. Here, the discovery of local surface induced giant spontaneous polarization in ultrathin BiFeO 3 ferroelectric films is reported. Using aberration-corrected scanning transmission electron microscopy, it is found that the spontaneous polarization in a 2 nm-thick ultrathin BiFeO 3 film is abnormally increased up to ≈90-100 µC cm -2 in the out-of-plane direction and a peculiar rumpled nanodomain structure with very large variation in c/a ratios, which is analogous to morphotropic phase boundaries (MPBs), is formed. By a combination of density functional theory and phase-field calculations, it is shown that it is the unique single atomic Bi 2 O 3 - x layer at the surface that leads to the enhanced polarization and appearance of the MPB-like nanodomain structure. This finding clearly demonstrates a novel route to the enhanced functional properties in the material system with reduced dimension via engineering the surface boundary conditions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Transport in ultrathin gold films decorated with magnetic Gd atoms

    NASA Astrophysics Data System (ADS)

    Alemani, Micol; Helgren, Erik; Hugel, Addison; Hellman, Frances

    2008-03-01

    We have performed four-probe transport measurements of ultrathin Au films decorated with Gd ad-atoms. The samples were prepared by quench condensation, i.e., sequential evaporation on a cryogenically cooled substrate under UHV conditions while monitoring the film thickness and resistance. Electrically continuous Au films at thickness of about 2 mono-layers of material are grown on an amorphous Ge wetting layer. The quench condensation method provides a sensitive control on the sample growth process, allowing us to tune the morphological and electrical configuration of the system. The ultrathin gold films develop from an insulating to a metallic state as a function of film thickness. The temperature dependence of the Au conductivity for different thickness is studied. It evolves from hopping transport for the insulating films, to a ln T dependence for thicker films. For gold films in the insulating regime we found a decreasing resistance by adding Gd. This is in agreement with a decreasing tunneling barrier height between metallic atoms. The Gd magnetic moments are randomly oriented for isolated atoms. This magnetic disorder leads to scattering of the charge carriers and a reduced conductivity compared to nonmagnetic materials.

  8. Cirugía transnasal endoscópica para tumores de hipófisis

    PubMed Central

    Ajler, Pablo; Hem, Santiago; Goldschmidt, Ezequiel; Landriel, Federico; Campero, Alvaro; Yampolsky, Claudio; Carrizo, Antonio

    2012-01-01

    Introducción: Exponer la técnica utilizada y los resultados obtenidos en los primeros 52 pacientes portadores de tumores hipofisarios tratados por la vía endoscópica transnasal en el Hospital Italiano de Buenos Aires Métodos: Se llevó a cabo un análisis retrospectivo de 52 cirugías endoscópicas transnasales utilizadas en el tratamiento de tumores hipofisários. Las mismas fueron realizadas en el Hospital Italiano de Buenos Aires durante el período junio del 2011 a junio del 2012. Se analizaron las características demográficas de los pacientes, la patología de base y la morbimortalidad asociada a la cirugía. Resultados: La edad media de los pacientes fue de 41,52 años con un rango de 18-79. La distribución fue similar entre hombres y mujeres. Las patologías más frecuentes fueron: adenomas no funcionantes (40.4%), tumores productores de GH/Acromegalia (25%) y tumores productores de ACTH/Enfermedad de Cushing (23.1%). Aproximadamente el 70 % correspondieron a macroadenomas. Sólo un paciente presentó complicaciones. No se registro ningún óbito. Conclusión: Si bien podremos objetivar fehacientemente resultados más concluyentes en futuros trabajos, podemos decir a priori que, en la endoscopía el detalle anatómico es claramente superior al microscópico y que la posibilidad de la introducción del endoscopio en la silla turca permite la visualización directa de remanentes tumorales, de sitios de fístula y como así también de la glándula normal, ventajas que potencialmente podrían permitir obtener mejores resultados quirúrgicos, en términos de control de la enfermedad y tasa de complicaciones. PMID:23596553

  9. Ultra-thin alumina and silicon nitride MEMS fabricated membranes for the electron multiplication

    NASA Astrophysics Data System (ADS)

    Prodanović, V.; Chan, H. W.; Graaf, H. V. D.; Sarro, P. M.

    2018-04-01

    In this paper we demonstrate the fabrication of large arrays of ultrathin freestanding membranes (tynodes) for application in a timed photon counter (TiPC), a novel photomultiplier for single electron detection. Low pressure chemical vapour deposited silicon nitride (Si x N y ) and atomic layer deposited alumina (Al2O3) with thicknesses down to only 5 nm are employed for the membrane fabrication. Detailed characterization of structural, mechanical and chemical properties of the utilized films is carried out for different process conditions and thicknesses. Furthermore, the performance of the tynodes is investigated in terms of secondary electron emission, a fundamental attribute that determines their applicability in TiPC. Studied features and presented fabrication methods may be of interest for other MEMS application of alumina and silicon nitride as well, in particular where strong ultra-thin membranes are required.

  10. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires

    NASA Astrophysics Data System (ADS)

    Gong, Shu; Schwalb, Willem; Wang, Yongwei; Chen, Yi; Tang, Yue; Si, Jye; Shirinzadeh, Bijan; Cheng, Wenlong

    2014-02-01

    Ultrathin gold nanowires are mechanically flexible yet robust, which are novel building blocks with potential applications in future wearable optoelectronic devices. Here we report an efficient, low-cost fabrication strategy to construct a highly sensitive, flexible pressure sensor by sandwiching ultrathin gold nanowire-impregnated tissue paper between two thin polydimethylsiloxane sheets. The entire device fabrication process is scalable, enabling facile large-area integration and patterning for mapping spatial pressure distribution. Our gold nanowires-based pressure sensors can be operated at a battery voltage of 1.5 V with low energy consumption (<30 μW), and are able to detect pressing forces as low as 13 Pa with fast response time (<17 ms), high sensitivity (>1.14 kPa-1) and high stability (>50,000 loading-unloading cycles). In addition, our sensor can resolve pressing, bending, torsional forces and acoustic vibrations. The superior sensing properties in conjunction with mechanical flexibility and robustness enabled real-time monitoring of blood pulses as well as detection of small vibration forces from music.

  11. Imaging ATUM ultrathin section libraries with WaferMapper: a multi-scale approach to EM reconstruction of neural circuits

    PubMed Central

    Hayworth, Kenneth J.; Morgan, Josh L.; Schalek, Richard; Berger, Daniel R.; Hildebrand, David G. C.; Lichtman, Jeff W.

    2014-01-01

    The automated tape-collecting ultramicrotome (ATUM) makes it possible to collect large numbers of ultrathin sections quickly—the equivalent of a petabyte of high resolution images each day. However, even high throughput image acquisition strategies generate images far more slowly (at present ~1 terabyte per day). We therefore developed WaferMapper, a software package that takes a multi-resolution approach to mapping and imaging select regions within a library of ultrathin sections. This automated method selects and directs imaging of corresponding regions within each section of an ultrathin section library (UTSL) that may contain many thousands of sections. Using WaferMapper, it is possible to map thousands of tissue sections at low resolution and target multiple points of interest for high resolution imaging based on anatomical landmarks. The program can also be used to expand previously imaged regions, acquire data under different imaging conditions, or re-image after additional tissue treatments. PMID:25018701

  12. One-step fabrication of large-area ultrathin MoS2 nanofilms with high catalytic activity for photovoltaic devices.

    PubMed

    Liang, Jia; Li, Jia; Zhu, Hongfei; Han, Yuxiang; Wang, Yanrong; Wang, Caixing; Jin, Zhong; Zhang, Gengmin; Liu, Jie

    2016-09-21

    Here we report a facile one-step solution-phase process to directly grow ultrathin MoS2 nanofilms on a transparent conductive glass as a novel high-performance counter electrode for dye-sensitized solar cells. After an appropriate reaction time, the entire surface of the conductive glass substrate was uniformly covered by ultrathin MoS2 nanofilms with a thickness of only several stacked layers. Electrochemical impedance spectroscopy and cyclic voltammetry reveal that the MoS2 nanofilms possess excellent catalytic activity towards tri-iodide reduction. When used in dye-sensitized solar cells, the MoS2 nanofilms show an impressive energy conversion efficiency of 8.3%, which is higher than that of a Pt-based electrode and very promising to be a desirable alternative counter electrode. Considering their ultrathin thickness, superior catalytic activity, simple preparation process and low cost, the as-prepared MoS2 nanofilms with high photovoltaic performance are expected to be widely employed in dye-sensitized solar cells.

  13. Light-absorption enhancement design of ultrathin perovskite solar cells with conformal structure

    NASA Astrophysics Data System (ADS)

    Tan, Xinyu; Sun, Lei; Deng, Can; Tu, Yiteng; Shen, Guangming; Tan, Fengxue; Guan, Li; Yan, Wensheng

    2018-06-01

    We report a structural design of ultrathin perovskite solar cells based on a conformal structure at the rear surface for potential applications in both single-junction and tandem cells. The light transmittances of the front and the rear surfaces are calculated in the wavelength range of 300–800 nm via the finite difference time domain numerical simulation method. Compared with the reference cell, significant photocurrent density enhancement of 27.5% and 29.7% are achieved when the ratios of height to width of the fluorine doped tin oxide nanoblock are 2 and 3, respectively. For the case with a hole transport material layer, the enhancements of photocurrent density enhancements are 19.2% and 29.0%, respectively. When back Au is removed, the photocurrent density also has notable enhancements of 23.3% and 45.9%, respectively. The achieved results are beneficial for the development of efficient ultrathin single-junction and tandem perovskite solar cells.

  14. Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss.

    PubMed

    Zhang, Yinan; Stokes, Nicholas; Jia, Baohua; Fan, Shanhui; Gu, Min

    2014-05-13

    The cost-effectiveness of market-dominating silicon wafer solar cells plays a key role in determining the competiveness of solar energy with other exhaustible energy sources. Reducing the silicon wafer thickness at a minimized efficiency loss represents a mainstream trend in increasing the cost-effectiveness of wafer-based solar cells. In this paper we demonstrate that, using the advanced light trapping strategy with a properly designed nanoparticle architecture, the wafer thickness can be dramatically reduced to only around 1/10 of the current thickness (180 μm) without any solar cell efficiency loss at 18.2%. Nanoparticle integrated ultra-thin solar cells with only 3% of the current wafer thickness can potentially achieve 15.3% efficiency combining the absorption enhancement with the benefit of thinner wafer induced open circuit voltage increase. This represents a 97% material saving with only 15% relative efficiency loss. These results demonstrate the feasibility and prospect of achieving high-efficiency ultra-thin silicon wafer cells with plasmonic light trapping.

  15. Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics

    PubMed Central

    Lei, Ting; Guan, Ming; Liu, Jia; Lin, Hung-Cheng; Pfattner, Raphael; McGuire, Allister F.; Huang, Tsung-Ching; Shao, Leilai; Cheng, Kwang-Ting; Tok, Jeffrey B.-H.; Bao, Zhenan

    2017-01-01

    Increasing performance demands and shorter use lifetimes of consumer electronics have resulted in the rapid growth of electronic waste. Currently, consumer electronics are typically made with nondecomposable, nonbiocompatible, and sometimes even toxic materials, leading to serious ecological challenges worldwide. Here, we report an example of totally disintegrable and biocompatible semiconducting polymers for thin-film transistors. The polymer consists of reversible imine bonds and building blocks that can be easily decomposed under mild acidic conditions. In addition, an ultrathin (800-nm) biodegradable cellulose substrate with high chemical and thermal stability is developed. Coupled with iron electrodes, we have successfully fabricated fully disintegrable and biocompatible polymer transistors. Furthermore, disintegrable and biocompatible pseudo-complementary metal–oxide–semiconductor (CMOS) flexible circuits are demonstrated. These flexible circuits are ultrathin (<1 μm) and ultralightweight (∼2 g/m2) with low operating voltage (4 V), yielding potential applications of these disintegrable semiconducting polymers in low-cost, biocompatible, and ultralightweight transient electronics. PMID:28461459

  16. Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics.

    PubMed

    Lei, Ting; Guan, Ming; Liu, Jia; Lin, Hung-Cheng; Pfattner, Raphael; Shaw, Leo; McGuire, Allister F; Huang, Tsung-Ching; Shao, Leilai; Cheng, Kwang-Ting; Tok, Jeffrey B-H; Bao, Zhenan

    2017-05-16

    Increasing performance demands and shorter use lifetimes of consumer electronics have resulted in the rapid growth of electronic waste. Currently, consumer electronics are typically made with nondecomposable, nonbiocompatible, and sometimes even toxic materials, leading to serious ecological challenges worldwide. Here, we report an example of totally disintegrable and biocompatible semiconducting polymers for thin-film transistors. The polymer consists of reversible imine bonds and building blocks that can be easily decomposed under mild acidic conditions. In addition, an ultrathin (800-nm) biodegradable cellulose substrate with high chemical and thermal stability is developed. Coupled with iron electrodes, we have successfully fabricated fully disintegrable and biocompatible polymer transistors. Furthermore, disintegrable and biocompatible pseudo-complementary metal-oxide-semiconductor (CMOS) flexible circuits are demonstrated. These flexible circuits are ultrathin (<1 μm) and ultralightweight (∼2 g/m 2 ) with low operating voltage (4 V), yielding potential applications of these disintegrable semiconducting polymers in low-cost, biocompatible, and ultralightweight transient electronics.

  17. Selective coherent perfect absorption of subradiant mode in ultrathin bi-layer metamaterials via antisymmetric excitation

    NASA Astrophysics Data System (ADS)

    Tan, Wei; Zhang, Caihong; Li, Chun; Zhou, Xiaoying; Jia, Xiaoqing; Feng, Zheng; Su, Juan; Jin, Biaobing

    2017-05-01

    We demonstrate that the subradiant mode in ultrathin bi-layer metamaterials can be exclusively excited under two-antisymmetric-beam illumination (or equivalently, at a node of the standing wave field), while the superradiant mode is fully suppressed due to their different mode symmetry. Coherent perfect absorption (CPA) with the Lorentzian lineshape can be achieved corresponding to the subradiant mode. A theoretical model is established to distinguish the different behaviors of these two modes and to elucidate the CPA condition. Terahertz ultrathin bi-layer metamaterials on flexible polyimide substrates are fabricated and tested, exhibiting excellent agreement with theoretical predictions. This work provides physical insight into how to selectively excite the antisymmetric subradiant mode via coherence incidence.

  18. Ultrathin gas permeable oxide membranes for chemical sensing: Nanoporous Ta 2O 5 test study

    DOE PAGES

    Imbault, Alexander; Wang, Yue; Kruse, Peter; ...

    2015-09-25

    Conductometric gas sensors made of gas permeable metal oxide ultrathin membranes can combine the functions of a selective filter, preconcentrator, and sensing element and thus can be particularly promising for the active sampling of diluted analytes. Here we report a case study of the electron transport and gas sensing properties of such a membrane made of nanoporous Ta 2O 5. These membranes demonstrated a noticeable chemical sensitivity toward ammonia, ethanol, and acetone at high temperatures above 400 °C. Furthermore, different from traditional thin films, such gas permeable, ultrathin gas sensing elements can be made suspended enabling advanced architectures of ultrasensitivemore » analytical systems operating at high temperatures and in harsh environments.« less

  19. Facile Synthesis of Ultrathin Nickel-Cobalt Phosphate 2D Nanosheets with Enhanced Electrocatalytic Activity for Glucose Oxidation.

    PubMed

    Shu, Yun; Li, Bing; Chen, Jingyuan; Xu, Qin; Pang, Huan; Hu, Xiaoya

    2018-01-24

    Two-dimensional (2D) ultrathin nickel-cobalt phosphate nanosheets were synthesized using a simple one-step hydrothermal method. The morphology and structure of nanomaterials synthesized under different Ni/Co ratios were investigated by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Moreover, the influence of nanomaterials' structure on the electrochemical performance for glucose oxidation was investigated. It is found that the thinnest nickel-cobalt phosphate nanosheets synthesized with a Ni/Co ratio of 2:5 showed the best electrocatalytic activity for glucose oxidation. Also, the ultrathin nickel-cobalt phosphate nanosheet was used as an electrode material to construct a nonenzymatic electrochemical glucose sensor. The sensor showed a wide linear range (2-4470 μM) and a low detection limit (0.4 μM) with a high sensitivity of 302.99 μA·mM -1 ·cm -2 . Furthermore, the application of the as-prepared sensor in detection of glucose in human serum was successfully demonstrated. These superior performances prove that ultrathin 2D nickel-cobalt phosphate nanosheets are promising materials in the field of electrochemical sensing.

  20. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se

    NASA Astrophysics Data System (ADS)

    Wu, Jinxiong; Yuan, Hongtao; Meng, Mengmeng; Chen, Cheng; Sun, Yan; Chen, Zhuoyu; Dang, Wenhui; Tan, Congwei; Liu, Yujing; Yin, Jianbo; Zhou, Yubing; Huang, Shaoyun; Xu, H. Q.; Cui, Yi; Hwang, Harold Y.; Liu, Zhongfan; Chen, Yulin; Yan, Binghai; Peng, Hailin

    2017-07-01

    High-mobility semiconducting ultrathin films form the basis of modern electronics, and may lead to the scalable fabrication of highly performing devices. Because the ultrathin limit cannot be reached for traditional semiconductors, identifying new two-dimensional materials with both high carrier mobility and a large electronic bandgap is a pivotal goal of fundamental research. However, air-stable ultrathin semiconducting materials with superior performances remain elusive at present. Here, we report ultrathin films of non-encapsulated layered Bi2O2Se, grown by chemical vapour deposition, which demonstrate excellent air stability and high-mobility semiconducting behaviour. We observe bandgap values of ˜0.8 eV, which are strongly dependent on the film thickness due to quantum-confinement effects. An ultrahigh Hall mobility value of >20,000 cm2 V-1 s-1 is measured in as-grown Bi2O2Se nanoflakes at low temperatures. This value is comparable to what is observed in graphene grown by chemical vapour deposition and at the LaAlO3-SrTiO3 interface, making the detection of Shubnikov-de Haas quantum oscillations possible. Top-gated field-effect transistors based on Bi2O2Se crystals down to the bilayer limit exhibit high Hall mobility values (up to 450 cm2 V-1 s-1), large current on/off ratios (>106) and near-ideal subthreshold swing values (˜65 mV dec-1) at room temperature. Our results make Bi2O2Se a promising candidate for future high-speed and low-power electronic applications.

  1. Ultrathin solution-processed single crystals of thiophene-phenylene co-oligomers for organic field-effect devices

    NASA Astrophysics Data System (ADS)

    Glushkova, Anastasia V.; Poimanova, Elena Yu.; Bruevich, Vladimir V.; Luponosov, Yuriy N.; Ponomarenko, Sergei A.; Paraschuk, Dmitry Yu.

    2017-08-01

    Thiophene-phenylene co-oligomers (TPCO) single crystals are promising materials for organic light-emitting devices, e.g., light-emitting transistors (OLETs), due to their ability to combine high luminescence and efficient charge transport. However, optical confinement in platy single crystals strongly decreases light emission from their top surface degrading the device performance. To avoid optical waveguiding, single crystals thinner than 100 nm would be beneficial. Herein, we report on solution-processed ultrathin single crystals of TPCO and study their charge transport properties. As materials we used 1,4-bis(5'-hexyl-2,2'-bithiophene-5-yl)benzene (DH-TTPTT) and 1,4-bis(5'-decyl-2,2'-bithiophene-5-yl)benzene (DD-TTPTT). The ultrathin single crystals were studied by optical polarization, atomic-force, and transmission electron microscopies, and as active layers in organic field effect transistors (OFET). The OFET hole mobility was increased tenfold for the oligomer with longer alkyl substituents (DD-TTPTT) reaching 0.2 cm2/Vs. Our studies of crystal growth indicate that if the substrate is wetted, it has no significant effect on the crystal growth. We conclude that solution-processed ultrathin TPCO single crystals are a promising platform for organic optoelectronic field-effect devices.

  2. Cells Recognize and Prefer Bone-like Hydroxyapatite: Biochemical Understanding of Ultrathin Mineral Platelets in Bone.

    PubMed

    Liu, Cuilian; Zhai, Halei; Zhang, Zhisen; Li, Yaling; Xu, Xurong; Tang, Ruikang

    2016-11-09

    Hydroxyapatite (HAP) nanocrystallites in all types of bones are distinguished by their ultrathin characteristics, which are uniaxially oriented with fibrillar collagen to uniquely expose the (100) faces. We speculate that living organisms prefer the specific crystal morphology and orientation of HAP because of the interactions between cells and crystals at the mineral-cell interface. Here, bone-like platy HAP (p-HAP) and two different rod-like HAPs were synthesized to investigate the ultrathin mineral modulating effect on cell bioactivity and bone generation. Cell viability and osteogenic differentiation of mesenchymal stem cells (MSCs) were significantly promoted by the platy HAP with (100) faces compared to rod-like HAPs with (001) faces as the dominant crystal orientation, which indicated that MSCs can recognize the crystal face and prefer the (100) HAP faces. This face-specific preference is dependent on the selective adsorption of fibronectin (FN), a plasma protein that plays a central role in cell adhesion, on the HAP surface. This selective adsorption is further confirmed by molecule dynamics (MD) simulation. Our results demonstrate that it is an intelligent choice for cells to use ultrathin HAP with a large (100) face as a basic building block in the hierarchical structure of bone, which is crucial to the promotion of MSCs osteoinductions during bone formation.

  3. Topological superconductivity in an ultrathin, magnetically-doped topological insulator proximity coupled to a conventional superconductor

    NASA Astrophysics Data System (ADS)

    Kim, Youngseok; Philip, Timothy M.; Park, Moon Jip; Gilbert, Matthew J.; University of Illinois at Urbana; Champaign Team

    As a promising candidate system to realize topological superconductivity (SC), 3D time-reversal invariant topological insulators (TI) proximity-coupled to s-wave superconductors have been intensively studied. Recent experiments on proximity-coupled TI have shown that superconductivity may be induced in ultrathin TI. One proposal to observe the topological SC in proximity-coupled ultrathin TI system is to add magnetic dopants to the TI. However, detailed study on the impact of the experimental parameters on possible topological phase is sparse. In this work, we investigate ultrathin, magnetically-doped, proximity-coupled TI in order to determine the experimentally relevant parameters needed to observe topological SC. We find that, due to the spin-momentum locked nature of the surface states in TI, the induced s-wave order parameter within the surface states persists even at large magnitudes of the Zeeman energy, allowing us to explore the system in parameter space. We elucidate the phase diagram as a function of: the hybridization gap, Zeeman energy, and chemical potential of the TI system. Our findings provide a useful guide in choosing relevant parameters to facilitate the observation of topological SC in thin film TI-superconductor hybrid systems. National Science Foundation (NSF) under Grant CAREER ECCS-1351871.

  4. Universal depinning transition of domain walls in ultrathin ferromagnets

    NASA Astrophysics Data System (ADS)

    Diaz Pardo, R.; Savero Torres, W.; Kolton, A. B.; Bustingorry, S.; Jeudy, V.

    2017-05-01

    We present a quantitative and comparative study of magnetic-field-driven domain-wall depinning transition in different ferromagnetic ultrathin films over a wide range of temperature. We reveal a universal scaling function accounting for both drive and thermal effects on the depinning transition, including critical exponents. The consistent description we obtain for both the depinning and subthreshold thermally activated creep motion should shed light on the universal glassy dynamics of thermally fluctuating elastic objects pinned by disordered energy landscapes.

  5. The Effect of the Pore Entrance on Particle Motion in Slit Pores: Implications for Ultrathin Membranes

    PubMed Central

    Delavari, Armin; Baltus, Ruth

    2017-01-01

    Membrane rejection models generally neglect the effect of the pore entrance on intrapore particle transport. However, entrance effects are expected to be particularly important with ultrathin membranes, where membrane thickness is typically comparable to pore size. In this work, a 2D model was developed to simulate particle motion for spherical particles moving at small Re and infinite Pe from the reservoir outside the pore into a slit pore. Using a finite element method, particles were tracked as they accelerated across the pore entrance until they reached a steady velocity in the pore. The axial position in the pore where particle motion becomes steady is defined as the particle entrance length (PEL). PELs were found to be comparable to the fluid entrance length, larger than the pore size and larger than the thickness typical of many ultrathin membranes. Results also show that, in the absence of particle diffusion, hydrodynamic particle–membrane interactions at the pore mouth result in particle “funneling” in the pore, yielding cross-pore particle concentration profiles focused at the pore centerline. The implications of these phenomena on rejection from ultrathin membranes are examined. PMID:28796197

  6. FABRICATION AND OPTOELECTRONIC PROPERTIES OF MgxZn1-xO ULTRATHIN FILMS BY LANGMUIR-BLODGETT TECHNOLOGY

    NASA Astrophysics Data System (ADS)

    Tang, Dongyan; Feng, Qian; Jiang, Enying; He, Baozhu

    2012-08-01

    By transferring MgxZn1-xO sol and stearic acid onto a hydrophilic silicon wafer or glass plate, the Langmuir-Blodgett (LB) multilayers of MgxZn1-xO (x:0, 0.2, 0.4) were deposited. After calcinations at 350°C for 0.5 h and at 500°C for 3 h, MgxZn1-xO ultrathin films were fabricated. The optimized parameters for monolayer formation and multilayer deposition were determined by the surface pressure-surface (Π-A) area and the transfer coefficient, respectively. The expended areas of stearic acid with MgxZn1-xO sols under Π-A isotherms inferred the interaction of stearic acid with MgxZn1-xO sols during the formation of monolayer at air-water interface. X-ray diffraction (XRD) was used to determine the crystal structures of MgxZn1-xO nanoparticles and ultrathin films. The surface morphologies of MgxZn1-xO ultrathin films were observed by scanning probe microscopy (AFM). And the optoelectronic properties of MgxZn1-xO were detected and discussed based on photoluminescence (PL) spectra.

  7. [Ropivacaine use in transnasal sphenopalatine ganglion block for post dural puncture headache in obstetric patients - case series].

    PubMed

    Furtado, Inês; Lima, Isabel Flor de; Pedro, Sérgio

    2018-02-02

    Sphenopalatine ganglion block is widely accepted in chronic pain; however it has been underestimated in post dural puncture headache treatment. The ganglion block does not restore normal cerebrospinal fluid dynamics but effectively reduces symptoms associated with resultant hypotension. When correctly applied it may avoid performance of epidural blood patch. The transnasal approach is a simple and minimally invasive technique. In the cases presented, we attempted to perform and report the ganglion block effectiveness and duration, using ropivacaine. We present four obstetrics patients with post dural puncture headache, after epidural or combined techniques, with Tuohy needle 18G that underwent a safe and successful Sphenopalatine ganglion block. We performed the block 24-48h after dural puncture, with 4mL of ropivacaine 0.75% in each nostril. In three cases pain recurred within 12-48h, although less intense. In one patient a second block was performed with complete relief and without further recurrence. In the other two patients a blood patch was performed without success. All patients were asymptomatic within 7 days. The average duration of analgesic effect of the block remains poorly defined. In the cases reported, blocking with ropivacaine was a simple, safe and effective technique, with immediate and sustained pain relief for at least 12-24h. Copyright © 2017 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  8. A molecular dynamics analysis of ion irradiation of ultrathin amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Qi, J.; Komvopoulos, K.

    2016-09-01

    Molecular dynamics (MD) simulations provide insight into nanoscale problems where continuum description breaks down, such as the modeling of ultrathin films. Amorphous carbon (a-C) films are commonly used as protective overcoats in various contemporary technologies, including microelectromechanical systems, bio-implantable devices, optical lenses, and hard-disk drives. In all of these technologies, the protective a-C film must be continuous and very thin. For example, to achieve high storage densities (e.g., on the order of 1 Tb/in.2) in magnetic recording, the thickness of the a-C film used to protect the magnetic media and the recording head against mechanical wear and corrosion must be 2-3 nm. Inert ion irradiation is an effective post-deposition method for reducing the film thickness, while preserving the mechanical and chemical characteristics. In this study, MD simulations of Ar+ ion irradiated a-C films were performed to elucidate the effects of the ion incidence angle and ion kinetic energy on the film thickness and structure. The MD results reveal that the film etching rate exhibits a strong dependence on the ion kinetic energy and ion incidence angle, with a maximum etching rate corresponding to an ion incidence angle of ˜20°. It is also shown that Ar+ ion irradiation mainly affects the structure of the upper half of the ultrathin a-C film and that carbon atom hybridization is a strong function of the ion kinetic energy and ion incidence angle. The results of this study elucidate the effects of important ion irradiation parameters on the structure and thickness of ultrathin films and provide fundamental insight into the physics of dry etching.

  9. Chemical surface deposition of ultra-thin semiconductors

    DOEpatents

    McCandless, Brian E.; Shafarman, William N.

    2003-03-25

    A chemical surface deposition process for forming an ultra-thin semiconducting film of Group IIB-VIA compounds onto a substrate. This process eliminates particulates formed by homogeneous reactions in bath, dramatically increases the utilization of Group IIB species, and results in the formation of a dense, adherent film for thin film solar cells. The process involves applying a pre-mixed liquid coating composition containing Group IIB and Group VIA ionic species onto a preheated substrate. Heat from the substrate causes a heterogeneous reaction between the Group IIB and VIA ionic species of the liquid coating composition, thus forming a solid reaction product film on the substrate surface.

  10. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity.

    PubMed

    Yin, Huajie; Zhao, Shenlong; Zhao, Kun; Muqsit, Abdul; Tang, Hongjie; Chang, Lin; Zhao, Huijun; Gao, Yan; Tang, Zhiyong

    2015-03-02

    Design and synthesis of effective electrocatalysts for hydrogen evolution reaction in alkaline environments is critical to reduce energy losses in alkaline water electrolysis. Here we report a hybrid nanomaterial comprising of one-dimensional ultrathin platinum nanowires grown on two-dimensional single-layered nickel hydroxide. Judicious surface chemistry to generate the fully exfoliated nickel hydroxide single layers is explored to be the key for controllable growth of ultrathin platinum nanowires with diameters of about 1.8 nm. Impressively, this hybrid nanomaterial exhibits superior electrocatalytic activity for hydrogen evolution reaction in alkaline solution, which outperforms currently reported catalysts, and the obviously improved catalytic stability. We believe that this work may lead towards the development of single-layered metal hydroxide-based hybrid materials for applications in catalysis and energy conversion.

  11. Effect of processing parameters on microstructure of MoS{sub 2} ultra-thin films synthesized by chemical vapor deposition method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Yang; You, Suping; Sun, Kewei

    2015-06-15

    MoS{sub 2} ultra-thin layers are synthesized using a chemical vapor deposition method based on the sulfurization of molybdenum trioxide (MoO{sub 3}). The ultra-thin layers are characterized by X-ray diffraction (XRD), photoluminescence (PL) spectroscopy and atomic force microscope (AFM). Based on our experimental results, all the processing parameters, such as the tilt angle of substrate, applied voltage, heating time and the weight of source materials have effect on the microstructures of the layers. In this paper, the effects of such processing parameters on the crystal structures and morphologies of the as-grown layers are studied. It is found that the film obtainedmore » with the tilt angle of 0.06° is more uniform. A larger applied voltage is preferred to the growth of MoS{sub 2} thin films at a certain heating time. In order to obtain the ultra-thin layers of MoS{sub 2}, the weight of 0.003 g of source materials is preferred. Under our optimal experimental conditions, the surface of the film is smooth and composed of many uniformly distributed and aggregated particles, and the ultra-thin MoS{sub 2} atomic layers (1∼10 layers) covers an area of more than 2 mm×2 mm.« less

  12. Ultrathin cellulose nanosheet membranes for superfast separation of oil-in-water nanoemulsions

    NASA Astrophysics Data System (ADS)

    Zhou, Ke; Zhang, Qiu Gen; Li, Hong Mei; Guo, Nan Nan; Zhu, Ai Mei; Liu, Qing Lin

    2014-08-01

    Oily wastewater is generated in diverse industrial processes, and its treatment has become crucial due to increasing environmental concerns. Herein, novel ultrathin nanoporous membranes of cellulose nanosheets have been fabricated for separation of oil-in-water nanoemulsions. The fabrication approach is facile and environmentally friendly, in which cellulose nanosheets are prepared by freeze-extraction of a very dilute cellulose solution. The as-prepared membranes have a cellulose nanosheet layer with a cut-off of 10-12 nm and a controllable thickness of 80-220 nm. They allow ultrafast water permeation and exhibit excellent size-selective separation properties. A 112 nm-thick membrane has a water flux of 1620 l m-2 h-1 bar-1 and a ferritin rejection of 92.5%. These membranes have been applied to remove oil from its aqueous nanoemulsions successfully, and they show an ultrafast and effective separation of oil-in-water nanoemulsions. The newly developed ultrathin cellulose membranes have a wide application in oily wastewater treatment, separation and purification of nanomaterials.Oily wastewater is generated in diverse industrial processes, and its treatment has become crucial due to increasing environmental concerns. Herein, novel ultrathin nanoporous membranes of cellulose nanosheets have been fabricated for separation of oil-in-water nanoemulsions. The fabrication approach is facile and environmentally friendly, in which cellulose nanosheets are prepared by freeze-extraction of a very dilute cellulose solution. The as-prepared membranes have a cellulose nanosheet layer with a cut-off of 10-12 nm and a controllable thickness of 80-220 nm. They allow ultrafast water permeation and exhibit excellent size-selective separation properties. A 112 nm-thick membrane has a water flux of 1620 l m-2 h-1 bar-1 and a ferritin rejection of 92.5%. These membranes have been applied to remove oil from its aqueous nanoemulsions successfully, and they show an ultrafast and effective

  13. Colored ultra-thin hybrid photovoltaics with high quantum efficiency for decorative PV applications (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Guo, L. Jay

    2015-10-01

    This talk will describe an approach to create architecturally compatible and decorative thin-film-based hybrid photovoltaics [1]. Most current solar panels are fabricated via complex processes using expensive semiconductor materials, and they are rigid and heavy with a dull, black appearance. As a result of their non-aesthetic appearance and weight, they are primarily installed on rooftops to minimize their negative impact on building appearance. Recently we introduced dual-function solar cells based on ultra-thin dopant-free amorphous silicon embedded in an optical cavity that not only efficiently extract the photogenerated carriers but also display distinctive colors with the desired angle-insensitive appearances [1,2]. The angle-insensitive behavior is the result of an interesting phase cancellation effect in the optical cavity with respect to angle of light propagation [3]. In order to produce the desired optical effect, the semiconductor layer should be ultra-thin and the traditional doped layers need to be eliminated. We adopted the approach of employing charge transport/blocking layers used in organic solar cells to meet this demand. We showed that the ultra-thin (6 to 31 nm) undoped amorphous silicon/organic hybrid solar cell can transmit desired wavelength of light and that most of the absorbed photons in the undoped a-Si layer contributed to the extracted electric charges. This is because the a-Si layer thickness is smaller than the charge diffusion length, therefore the electron-hole recombination is strongly suppressed in such ultra-thin layer. Reflective colored PVs can be made in a similar fashion. Light-energy-harvesting colored signage was demonstrated. Furthermore, a cascaded photovoltaics scheme based on tunable spectrum splitting can be employed to increase power efficiency by absorbing a broader band of light energy. Our work provides a guideline for optimizing a photoactive layer thickness in high efficiency hybrid PV design, which can be

  14. Diffractive intermediate layer enables broadband light trapping for high efficiency ultrathin c-Si tandem cells

    NASA Astrophysics Data System (ADS)

    Li, Guijun; Ho, Jacob Y. L.; Li, He; Kwok, Hoi-Sing

    2014-06-01

    Light management through the intermediate reflector in the tandem cell configuration is of great practical importance for achieving high stable efficiency and also low cost production. So far, however, the intermediate reflectors employed currently are mainly focused on the light absorption enhancement of the top cell. Here, we present a diffractive intermediate layer that allows for light trapping over a broadband wavelength for the ultrathin c-Si tandem solar cell. Compared with the standard intermediate reflector, this nanoscale architectural intermediate layer results in a 35% and 21% remarkable enhancement of the light absorption in the top (400-800 nm) and bottom (800-1100 nm) cells simultaneously, and ultrathin c-Si tandem cells with impressive conversion efficiency of 13.3% are made on the glass substrate.

  15. Green Fabrication of Ultrathin Co3O4 Nanosheets from Metal-Organic Framework for Robust High-Rate Supercapacitors.

    PubMed

    Xiao, Zhenyu; Fan, Lili; Xu, Ben; Zhang, Shanqing; Kang, Wenpei; Kang, Zixi; Lin, Huan; Liu, Xiuping; Zhang, Shiyu; Sun, Daofeng

    2017-12-06

    Two-dimensional cobalt oxide (Co 3 O 4 ) is a promising candidate for robust electrochemical capacitors with high performance. Herein, we use 2,3,5,6-tetramethyl-1,4-diisophthalate as a recyclable ligand to construct a Co-based metal-organic framework of UPC-9, and subsequently, we obtain ultrathin hierarchical Co 3 O 4 hexagonal nanosheets with a thickness of 3.5 nm through a hydrolysis and calcination process. A remarkable and excellent specific capacitance of 1121 F·g -1 at a current density of 1 A·g -1 and 873 F·g -1 at a current density of 25 A·g -1 were achieved for the as-prepared asymmetric supercapacitor, which can be attributed to the ultrathin 2D morphology and the rich macroporous and mesoporous structures of the ultrathin Co 3 O 4 nanosheets. This synthesis strategy is environmentally benign and economically viable due to the fact that the costly organic ligand molecules are recycled, reducing the materials cost as well as the environmental cost for the synthesis process.

  16. Fabrication of silicon-on-diamond substrate with an ultrathin SiO2 bonding layer

    NASA Astrophysics Data System (ADS)

    Nagata, Masahiro; Shirahama, Ryouya; Duangchan, Sethavut; Baba, Akiyoshi

    2018-06-01

    We proposed and demonstrated a sputter etching method to prepare both a flat surface (root-mean-square surface roughness of approximately 0.2–0.3 nm) and an ultrathin SiO2 bonding layer at an accuracy of approximately 5 nm in thickness to fabricate a silicon-on-diamond substrate (SOD). We also investigated a plasma activation method on a SiO2 surface using various gases. We found that O2 plasma activation is more suitable for the bonding between SiO2 and Si than N2 or Ar plasma activation. We speculate that the concentration of hydroxyl groups on the SiO2 surface was increased by O2 plasma activation. We fabricated the SOD substrate with an ultrathin (15 nm in thickness) SiO2 bonding layer using the sputter etching and O2 plasma activation methods.

  17. Seeds screening aqueous synthesis, multiphase interfacial separation and in situ optical characterization of invisible ultrathin silver nanowires.

    PubMed

    Zhang, Xiao-Yang; Xue, Xiao-Mei; Zhou, Huan-Li; Zhao, Ning; Shan, Feng; Su, Dan; Liu, Yi-Ran; Zhang, Tong

    2018-06-21

    We report a multi-step synthetic method to obtain ultrathin silver nanowires (Ag NWs) from an aqueous solution with a ∼17 nm diameter average, and where some of them decreased down to 9 nm. Carefully designed seed screening processes including LED irradiation at high temperature for a short time, and then continuous H2O2 etching, and relative growth mechanisms of high-yield five-twinned pentagonal seeds and ultrathin Ag NWs in aqueous environment are detailed. Then, a rapid and simple multiphase interfacial assembly method particularly suitable for the separation of ultrathin Ag NWs from various by-products was demonstrated with a clear mechanism explanation. Next, a unique optical interaction between light and individual AG NWs, as well as feature structures in the AG NWs film, was investigated by a micro-domain optical confocal microscope measurement in situ together with a theoretical explanation using modal transmission theory. That revealed that the haze problem of AG NWs films was not only arising from the interaction between light and individual or crossed Ag NWs but was also greatly dependent on a weak coupling effect of leaky modes supported by adjacent Ag NWs with large distances which had not been considered before. We then provided direct experimental evidence and concluded how to obtain haze-free films with 100% transparency in the whole visible range based on ultrathin Ag NWs. This breakthrough in diameter confinement and purification of Ag NWs is a highly expected step to overcome the well-focused light diffusion and absorption problems of Ag NWs-based devices applied in various fields such as flexible electronics, high-clarity displays, visible transparent heaters, photovoltaics and various optoelectronic technologies.

  18. Synthesis of metal free ultrathin graphitic carbon nitride sheet for photocatalytic dye degradation of Rhodamine B under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Rahman, Shakeelur; Momin, Bilal; Higgins M., W.; Annapure, Uday S.; Jha, Neetu

    2018-04-01

    In recent times, low cost and metal free photocatalyts driven under visible light have attracted a lot of interest. One such photo catalyst researched extensively is bulk graphitic carbon nitride sheets. But the low surface area and weak mobility of photo generated electrons limits its photocatalytic performance in the visible light spectrum. Here we present the facile synthesis of ultrathin graphitic carbon nitride using a cost effective melamine precursor and its application in highly efficient photocatalytic dye degradation of Rhodamine B molecules. Compared to bulk graphitic carbon nitride, the synthesized ultrathin graphitic carbon nitride shows an increase in surface area, a a decrease in optical band gap and effective photogenerated charge separation which facilitates the harvest of visible light irradiation. Due to these optimal properties of ultrathin graphitic carbon nitride, it shows excellent photocatalytic activity with photocatalytic degradation of about 95% rhodamine B molecules in 1 hour.

  19. Magneto-optical Kerr rotation and color in ultrathin lossy dielectric

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Wang, Hai; Qu, Xin; Zhou, Yun song; Li, Li na

    2017-05-01

    Ultra-thin optical coating comprising nanometer-thick silicon absorbing films on iron substrates can display strong optical interference effects. A resonance peak of ∼1.6^\\circ longitudinal Kerr rotation with the silicon thickness of ∼47 \\text{nm} was found at the wavelength of 660 nm. The optical properties of silicon thin films were well controlled by the sputtering power. Non-iridescence color exhibition and Kerr rotation enhancement can be manipulated and encoded individually.

  20. Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation.

    PubMed

    Mao, Junjie; Chen, Wenxing; He, Dongsheng; Wan, Jiawei; Pei, Jiajing; Dong, Juncai; Wang, Yu; An, Pengfei; Jin, Zhao; Xing, Wei; Tang, Haolin; Zhuang, Zhongbin; Liang, Xin; Huang, Yu; Zhou, Gang; Wang, Leyu; Wang, Dingsheng; Li, Yadong

    2017-08-01

    Developing cost-effective, active, and durable electrocatalysts is one of the most important issues for the commercialization of fuel cells. Ultrathin Pt-Mo-Ni nanowires (NWs) with a diameter of ~2.5 nm and lengths of up to several micrometers were synthesized via a H 2 -assisted solution route (HASR). This catalyst was designed on the basis of the following three points: (i) ultrathin NWs with high numbers of surface atoms can increase the atomic efficiency of Pt and thus decrease the catalyst cost; (ii) the incorporation of Ni can isolate Pt atoms on the surface and produce surface defects, leading to high catalytic activity (the unique structure and superior activity were confirmed by spherical aberration-corrected electron microscopy measurements and ethanol oxidation tests, respectively); and (iii) the incorporation of Mo can stabilize both Ni and Pt atoms, leading to high catalytic stability, which was confirmed by experiments and density functional theory calculations. Furthermore, the developed HASR strategy can be extended to synthesize a series of Pt-Mo-M (M = Fe, Co, Mn, Ru, etc.) NWs. These multimetallic NWs would open up new opportunities for practical fuel cell applications.

  1. Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation

    PubMed Central

    Mao, Junjie; Chen, Wenxing; He, Dongsheng; Wan, Jiawei; Pei, Jiajing; Dong, Juncai; Wang, Yu; An, Pengfei; Jin, Zhao; Xing, Wei; Tang, Haolin; Zhuang, Zhongbin; Liang, Xin; Huang, Yu; Zhou, Gang; Wang, Leyu; Wang, Dingsheng; Li, Yadong

    2017-01-01

    Developing cost-effective, active, and durable electrocatalysts is one of the most important issues for the commercialization of fuel cells. Ultrathin Pt-Mo-Ni nanowires (NWs) with a diameter of ~2.5 nm and lengths of up to several micrometers were synthesized via a H2-assisted solution route (HASR). This catalyst was designed on the basis of the following three points: (i) ultrathin NWs with high numbers of surface atoms can increase the atomic efficiency of Pt and thus decrease the catalyst cost; (ii) the incorporation of Ni can isolate Pt atoms on the surface and produce surface defects, leading to high catalytic activity (the unique structure and superior activity were confirmed by spherical aberration–corrected electron microscopy measurements and ethanol oxidation tests, respectively); and (iii) the incorporation of Mo can stabilize both Ni and Pt atoms, leading to high catalytic stability, which was confirmed by experiments and density functional theory calculations. Furthermore, the developed HASR strategy can be extended to synthesize a series of Pt-Mo-M (M = Fe, Co, Mn, Ru, etc.) NWs. These multimetallic NWs would open up new opportunities for practical fuel cell applications. PMID:28875160

  2. Ultrathin lightweight plate-type acoustic metamaterials with positive lumped coupling resonant

    NASA Astrophysics Data System (ADS)

    Ma, Fuyin; Huang, Meng; Wu, Jiu Hui

    2017-01-01

    The experimental realization and theoretical understanding of a two-dimensional multiple cells lumped ultrathin lightweight plate-type acoustic metamaterials structures have been presented, wherein broadband excellent sound attenuation ability at low frequencies is realized by employing a lumped element coupling resonant effect. The basic unit cell of the metamaterials consists of an ultrathin stiff nylon plate clamped by two elastic ethylene-vinyl acetate copolymer or acrylonitrile butadiene styrene frames. The strong sound attenuation (up to nearly 99%) at low frequencies is experimentally revealed by the precisely designed metamaterials, for which the physical mechanism of the sound attenuation could be explicitly understood using the finite element simulations. As to the designed samples, the lumped effect from the frame compliance leads to a coupling flexural resonance at designable low frequencies. As a result, the whole composite structure become strongly anti-resonant with the incident sound waves, followed by a higher sound attenuation, i.e., the lumped resonant effect has been effectively reversed to be positive from negative for sound attenuation, and the acoustic metamaterial design could be extended to the lumped element containing multiple cells, rather than confined to a single cell.

  3. Parameter Space of Atomic Layer Deposition of Ultrathin Oxides on Graphene

    PubMed Central

    2016-01-01

    Atomic layer deposition (ALD) of ultrathin aluminum oxide (AlOx) films was systematically studied on supported chemical vapor deposition (CVD) graphene. We show that by extending the precursor residence time, using either a multiple-pulse sequence or a soaking period, ultrathin continuous AlOx films can be achieved directly on graphene using standard H2O and trimethylaluminum (TMA) precursors even at a high deposition temperature of 200 °C, without the use of surfactants or other additional graphene surface modifications. To obtain conformal nucleation, a precursor residence time of >2s is needed, which is not prohibitively long but sufficient to account for the slow adsorption kinetics of the graphene surface. In contrast, a shorter residence time results in heterogeneous nucleation that is preferential to defect/selective sites on the graphene. These findings demonstrate that careful control of the ALD parameter space is imperative in governing the nucleation behavior of AlOx on CVD graphene. We consider our results to have model system character for rational two-dimensional (2D)/non-2D material process integration, relevant also to the interfacing and device integration of the many other emerging 2D materials. PMID:27723305

  4. Ultrathin nanofibrous films prepared from cadmium hydroxide nanostrands and anionic surfactants.

    PubMed

    Peng, Xinsheng; Karan, Santanu; Ichinose, Izumi

    2009-08-04

    We developed a simple fabrication method of ultrathin nanofibrous films from the dispersion of cadmium hydroxide nanostrands and anionic surfactants. The nanostrands were prepared in a dilute aqueous solution of cadmium chloride by using 2-aminoethanol. They were highly positively charged and gave bundlelike fibers upon mixing an aqueous solution of anionic surfactant. The nanostrand/surfactant composite fibers were filtered on an inorganic membrane filter. The resultant nanofibrous film was very uniform in the area of a few centimeters square when the thickness was not less than 60 nm. The films obtained with sodium tetradecyl sulfate (STS) had a composition close to the electroneutral complex, [Cd37(OH)68(H2O)n] x 6(STS), as confirmed by energy dispersive X-ray analysis. They were water-repellent with a contact angle of 117 degrees, and the value slightly decreased with the alkyl chain length of anionic surfactants. Ultrathin nanofibrous films were stable enough to be used for ultrafiltration at pressure difference of 90 kPa. We could effectively separate Au nanoparticles of 40 nm at an extremely high filtration rate of 14000 L/(h m2 bar).

  5. Ultra-thin distributed Bragg reflectors via stacked single-crystal silicon nanomembranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Minkyu; Seo, Jung-Hun; Lee, Jaeseong

    2015-05-04

    In this paper, we report ultra-thin distributed Bragg reflectors (DBRs) via stacked single-crystal silicon (Si) nanomembranes (NMs). Mesh hole-free single-crystal Si NMs were released from a Si-on-insulator substrate and transferred to quartz and Si substrates. Thermal oxidation was applied to the transferred Si NM to form high-quality SiO{sub 2} and thus a Si/SiO{sub 2} pair with uniform and precisely controlled thicknesses. The Si/SiO{sub 2} layers, as smooth as epitaxial grown layers, minimize scattering loss at the interface and in between the layers. As a result, a reflection of 99.8% at the wavelength range from 1350 nm to 1650 nm can be measuredmore » from a 2.5-pair DBR on a quartz substrate and 3-pair DBR on a Si substrate with thickness of 0.87 μm and 1.14 μm, respectively. The high reflection, ultra-thin DBRs developed here, which can be applied to almost any devices and materials, holds potential for application in high performance optoelectronic devices and photonics applications.« less

  6. Hierarchical ultrathin alumina membrane for the fabrication of unique nanodot arrays

    NASA Astrophysics Data System (ADS)

    Wang, Yuyang; Wang, Yi; Wang, Hailong; Wang, Xinnan; Cong, Ming; Xu, Weiqing; Xu, Shuping

    2016-01-01

    Ultrathin alumina membranes (UTAMs) as evaporation masks have been a powerful tool for the fabrication of high-density nanodot arrays and have received much attention in magnetic memory devices, photovoltaics, and nanoplasmonics. In this paper, we report the fabrication of a hierarchical ultrathin alumina membrane (HUTAM) with highly ordered submicro/nanoscale channels and its application as an evaporation mask for the realization of unique non-hexagonal nanodot arrays dependent on the geometrical features of the HUTAM. This is the first report of a UTAM with a hierarchical geometry, breaking the stereotype that only limited sets of nanopatterns can be realized using the UTAM method (with typical inter-pore distance of 100 nm). The fabrication of a HUTAM is discussed in detail. An improved, longer wet etching time than previously reported is found to effectively remove the barrier layer and widen the pores of a HUTAM. A growth sustainability issue brought about by pre-patterning is discussed. Spectral comparison was made to distinguish the UTAM nanodots and HUTAM nanodots. Our results can be an inspiration for more sophisticated applications of pre-patterned anodized aluminum oxide in photocatalysis, photovoltaics, and nanoplasmonics.

  7. Enhanced Hydrogen Transport over Palladium Ultrathin Films through Surface Nanostructure Engineering.

    PubMed

    Abate, Salvatore; Giorgianni, Gianfranco; Gentiluomo, Serena; Centi, Gabriele; Perathoner, Siglinda

    2015-11-01

    Palladium ultrathin films (around 2 μm) with different surface nanostructures are characterized by TEM, SEM, AFM, and temperature programmed reduction (TPR), and evaluated in terms of H2 permeability and H2-N2 separation. A change in the characteristics of Pd seeds by controlled oxidation-reduction treatments produces films with the same thickness, but different surface and bulk nanostructure. In particular, the films have finer and more homogeneous Pd grains, which results in lower surface roughness. Although all samples show high permeo-selectivity to H2 , the samples with finer grains exhibit enhanced permeance and lower activation energy for H2 transport. The analysis of the data suggests that grain boundaries between the Pd grains at the surface favor H2 transfer from surface to subsurface. Thus, the surface nanostructure plays a relevant role in enhancing the transport of H2 over the Pd ultrathin film, which is an important aspect to develop improved membranes that function at low temperatures and toward new integrated process architectures in H2 and syngas production with enhanced sustainability. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Probing the Band Structure of Ultrathin MoTe2 via Strain

    NASA Astrophysics Data System (ADS)

    Aslan, Burak; Datye, Isha; Kuo, Hsueh-Hui; Mleczko, Michal; Fisher, Ian; Pop, Eric; Heinz, Tony

    Molybdenum ditelluride (MoTe2) is a semiconducting layered group VI transition metal dichalcogenide with an optical band gap of 1.1 and 0.9 eV in the monolayer and bulk, respectively. The bulk crystal possesses an indirect gap whereas the monolayer has a direct one. It is still under debate whether the direct-to-indirect gap crossover occurs at the monolayer or bilayer limit at room temperature, resulting from the fact that the two gaps are very close to one another in ultrathin crystals. We take advantage of this closeness by tuning the two gaps with in-plane tensile strain. In particular, we employ photoluminescence and absorption spectroscopy to probe the near-band-edge optical transitions and study their line-shapes to distinguish the direct and indirect gaps in few-layer MoTe2. We observe that the applied strain redshifts the direct and indirect gaps at different rates and strongly affects the spectral widths of the optical transitions. Our observations help us understand what contributes to the broadening of the A exciton peak in ultrathin MoTe2 and how the direct-to-indirect gap crossover occurs with decreasing thickness.

  9. Perpendicular magnetic tunnel junctions with Mn-modified ultrathin MnGa layer

    NASA Astrophysics Data System (ADS)

    Suzuki, K. Z.; Miura, Y.; Ranjbar, R.; Bainsla, L.; Ono, A.; Sasaki, Y.; Mizukami, S.

    2018-02-01

    Perpendicular magnetic tunnel junctions (p-MTJs) with a MgO barrier and a 1-nm-thick MnGa electrode were investigated by inserting several monolayers (MLs) of Mn. The tunnel magnetoresistance (TMR) ratio systematically increased when increasing the Mn layer thickness with a maximum of 18 (38.4)% at 300 (5) K for a Mn layer thickness of 0.6-0.8 nm. This ratio is five times higher compared to that without the Mn layer. The perpendicular magnetic anisotropy (PMA) field and the PMA constant of the ultrathin MnGa layer also increased up to 62-90 kOe and 6.2-11.3 Merg/cm3, respectively, with an increase in the Mn interlayer thickness, even for the ultrathin regime of the MnGa layer. For p-MTJs showing a high TMR and PMA, electron microscopy indicated the presence of 3-4 MLs of Mn at the MnGa/MgO interface; thus, the Mn modification enhanced the TMR as well as improved the PMA. This may be a promising finding to develop a Mn-based free layer for spin-transfer-torque devices for high-recording-density magnetoresistive random access memory and a sub-THz oscillator/detector.

  10. New Insight into the Angle Insensitivity of Ultrathin Planar Optical Absorbers for Broadband Solar Energy Harvesting.

    PubMed

    Liu, Dong; Yu, Haitong; Duan, Yuanyuan; Li, Qiang; Xuan, Yimin

    2016-09-01

    Two challenging problems still remain for optical absorbers consisting of an ultrathin planar semiconductor film on top of an opaque metallic substrate. One is the angle-insensitive mechanism and the other is the system design needed for broadband solar energy harvesting. Here, first we theoretically demonstrates that the high refractive index, instead of the ultrathin feature as reported in previous studies, is the physical origin of the angle insensitivity for ultrathin planar optical absorbers. They exhibit omnidirectional resonance for TE polarization due to the high complex refractive index difference between the semiconductor and the air, while for TM polarization the angle insensitivity persists up to an incident angle related to the semiconductor refractive index. These findings were validated by fabricating and characterizing an 18 nm Ge/Ag absorber sample (representative of small band gap semiconductors for photovoltaic applications) and a 22 nm hematite/Ag sample (representative of large band gap semiconductors for photoelectrochemical applications). Then, we took advantage of angle insensitivity and designed a spectrum splitting configuration for broadband solar energy harvesting. The cascaded solar cell and unassisted solar water splitting systems have photovoltaic and photoelectrochemical cells that are also spectrum splitters, so an external spectrum splitting element is not needed.

  11. Coherent control of double deflected anomalous modes in ultrathin trapezoid-shaped slit metasurface.

    PubMed

    Zhu, Z; Liu, H; Wang, D; Li, Y X; Guan, C Y; Zhang, H; Shi, J H

    2016-11-22

    Coherent light-matter interaction in ultrathin metamaterials has been demonstrated to dynamically modulate intensity, polarization and propagation direction of light. The gradient metasurface with a transverse phase variation usually exhibits an anomalous refracted beam of light dictated by so-called generalized Snell's law. However, less attention has been paid to coherent control of the metasurface with multiple anomalous refracted beams. Here we propose an ultrathin gradient metasurface with single trapezoid-shaped slot antenna as its building block that allows one normal and two deflected transmitted beams. It is numerically demonstrated that such metasurface with multiple scattering modes can be coherently controlled to modulate output intensities by changing the relative phase difference between two counterpropagating coherent beams. Each mode can be coherently switched on/off and two deflected anomalous beams can be synchronously dictated by the phase difference. The coherent control effect in the trapezoid-shaped slit metasurface will offer a promising opportunity for multichannel signals modulation, multichannel sensing and wave front shaping.

  12. Coherent control of double deflected anomalous modes in ultrathin trapezoid-shaped slit metasurface

    PubMed Central

    Zhu, Z.; Liu, H.; Wang, D.; Li, Y. X.; Guan, C. Y.; Zhang, H.; Shi, J. H.

    2016-01-01

    Coherent light-matter interaction in ultrathin metamaterials has been demonstrated to dynamically modulate intensity, polarization and propagation direction of light. The gradient metasurface with a transverse phase variation usually exhibits an anomalous refracted beam of light dictated by so-called generalized Snell’s law. However, less attention has been paid to coherent control of the metasurface with multiple anomalous refracted beams. Here we propose an ultrathin gradient metasurface with single trapezoid-shaped slot antenna as its building block that allows one normal and two deflected transmitted beams. It is numerically demonstrated that such metasurface with multiple scattering modes can be coherently controlled to modulate output intensities by changing the relative phase difference between two counterpropagating coherent beams. Each mode can be coherently switched on/off and two deflected anomalous beams can be synchronously dictated by the phase difference. The coherent control effect in the trapezoid-shaped slit metasurface will offer a promising opportunity for multichannel signals modulation, multichannel sensing and wave front shaping. PMID:27874053

  13. Understanding Metal-Insulator transitions in ultra-thin films of LaNiO3

    NASA Astrophysics Data System (ADS)

    Ravichandran, Jayakanth; King, Philip D. C.; Schlom, Darrell G.; Shen, Kyle M.; Kim, Philip

    2014-03-01

    LaNiO3 (LNO) is a bulk paramagnetic metal and a member of the family of RENiO3 Nickelates (RE = Rare Earth Metals), which is on the verge of the metal-insulator transition. Ultra-thin films of LNO has been studied extensively in the past and due to its sensitivity to disorder, the true nature of the metal-insulator transition in these films have been hard to decipher. We grow high quality ultra-thin films of LNO using reactive molecular beam epitaxy (MBE) and use a combination of ionic liquid gating and magneto-transport measurements to understand the nature and tunability of metal-insulator transition as a function of thickness for LNO. The underlying mechanisms for the transition are discussed in the framework of standard transport models. These results are discussed in the light of other Mott insulators such as Sr2IrO4, where we have performed similar measurements around the insulating state.

  14. Wafer-scale integrated micro-supercapacitors on an ultrathin and highly flexible biomedical platform.

    PubMed

    Maeng, Jimin; Meng, Chuizhou; Irazoqui, Pedro P

    2015-02-01

    We present wafer-scale integrated micro-supercapacitors on an ultrathin and highly flexible parylene platform, as progress toward sustainably powering biomedical microsystems suitable for implantable and wearable applications. All-solid-state, low-profile (<30 μm), and high-density (up to ~500 μF/mm(2)) micro-supercapacitors are formed on an ultrathin (~20 μm) freestanding parylene film by a wafer-scale parylene packaging process in combination with a polyaniline (PANI) nanowire growth technique assisted by surface plasma treatment. These micro-supercapacitors are highly flexible and shown to be resilient toward flexural stress. Further, direct integration of micro-supercapacitors into a radio frequency (RF) rectifying circuit is achieved on a single parylene platform, yielding a complete RF energy harvesting microsystem. The system discharging rate is shown to improve by ~17 times in the presence of the integrated micro-supercapacitors. This result suggests that the integrated micro-supercapacitor technology described herein is a promising strategy for sustainably powering biomedical microsystems dedicated to implantable and wearable applications.

  15. Freestanding ultrathin single-crystalline SiC substrate by MeV H ion-slicing

    NASA Astrophysics Data System (ADS)

    Jia, Qi; Huang, Kai; You, Tiangui; Yi, Ailun; Lin, Jiajie; Zhang, Shibin; Zhou, Min; Zhang, Bin; Zhang, Bo; Yu, Wenjie; Ou, Xin; Wang, Xi

    2018-05-01

    SiC is a widely used wide-bandgap semiconductor, and the freestanding ultrathin single-crystalline SiC substrate provides the material platform for advanced devices. Here, we demonstrate the fabrication of a freestanding ultrathin single-crystalline SiC substrate with a thickness of 22 μm by ion slicing using 1.6 MeV H ion implantation. The ion-slicing process performed in the MeV energy range was compared to the conventional case using low-energy H ion implantation in the keV energy range. The blistering behavior of the implanted SiC surface layer depends on both the implantation temperature and the annealing temperature. Due to the different straggling parameter for two implant energies, the distribution of implantation-induced damage is significantly different. The impact of implantation temperature on the high-energy and low-energy slicing was opposite, and the ion-slicing SiC in the MeV range initiates at a much higher temperature.

  16. A Hydrogel of Ultrathin Pure Polyaniline Nanofibers: Oxidant-Templating Preparation and Supercapacitor Application.

    PubMed

    Zhou, Kun; He, Yuan; Xu, Qingchi; Zhang, Qin'e; Zhou, An'an; Lu, Zihao; Yang, Li-Kun; Jiang, Yuan; Ge, Dongtao; Liu, Xiang Yang; Bai, Hua

    2018-05-15

    Although challenging, fabrication of porous conducting polymeric materials with excellent electronic properties is crucial for many applications. We developed a fast in situ polymerization approach to pure polyaniline (PANI) hydrogels, with vanadium pentoxide hydrate nanowires as both the oxidant and sacrifice template. A network comprised of ultrathin PANI nanofibers was generated during the in situ polymerization, and the large aspect ratio of these PANI nanofibers allowed the formation of hydrogels at a low solid content of 1.03 wt %. Owing to the ultrathin fibril structure, PANI hydrogels functioning as a supercapacitor electrode display a high specific capacitance of 636 F g -1 , a rate capability, and good cycling stability (∼83% capacitance retention after 10,000 cycles). This method was also extended to the preparation of polypyrrole and poly(3,4-ethylenedioxythiophene) hydrogels. This template polymerization method represents a rational strategy for design of conducing polymer networks, which can be readily integrated in high-performance devices or a further platform for functional composites.

  17. Out-of-plane chiral domain wall spin-structures in ultrathin in-plane magnets

    DOE PAGES

    Chen, Gong; Kang, Sang Pyo; Ophus, Colin; ...

    2017-05-19

    Chiral spin textures in ultrathin films, such as skyrmions or chiral domain walls, are believed to offer large performance advantages in the development of novel spintronics technologies. While in-plane magnetized films have been studied extensively as media for current- and field-driven domain wall dynamics with applications in memory or logic devices, the stabilization of chiral spin textures in in-plane magnetized films has remained rare. Here we report a phase of spin structures in an in-plane magnetized ultrathin film system where out-of-plane spin orientations within domain walls are stable. Moreover, while domain walls in in-plane films are generally expected to bemore » non-chiral, we show that right-handed spin rotations are strongly favoured in this system, due to the presence of the interfacial Dzyaloshinskii-Moriya interaction. These results constitute a platform to explore unconventional spin dynamics and topological phenomena that may enable high-performance in-plane spin-orbitronics devices.« less

  18. Structural phase diagram for ultra-thin epitaxial Fe 3O 4 / MgO(0 01) films: thickness and oxygen pressure dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alraddadi, S.; Hines, W.; Yilmaz, T.

    2016-02-19

    A systematic investigation of the thickness and oxygen pressure dependence for the structural properties of ultra-thin epitaxial magnetite (Fe 3O 4) films has been carried out; for such films, the structural properties generally differ from those for the bulk when the thickness ≤10 nm. Iron oxide ultra-thin films with thicknesses varying from 3 nm to 20 nm were grown on MgO (001) substrates using molecular beam epitaxy under different oxygen pressures ranging from 1 × 10 -7 torr to 1 × 10 -5 torr. The crystallographic and electronic structures of the films were characterized using low energy electron diffraction (LEED)more » and x-ray photoemission spectroscopy (XPS), respectively. Moreover, the quality of the epitaxial Fe 3O 4 ultra-thin films was judged by magnetic measurements of the Verwey transition, along with complementary XPS spectra. We observed that under the same growth conditions the stoichiometry of ultra-thin films under 10 nm transforms from the Fe 3O 4 phase to the FeO phase. In this work, a phase diagram based on thickness and oxygen pressure has been constructed to explain the structural phase transformation. It was found that high-quality magnetite films with thicknesses ≤20 nm formed within a narrow range of oxygen pressure. An optimal and controlled growth process is a crucial requirement for the accurate study of the magnetic and electronic properties for ultra-thin Fe 3O 4 films. Furthermore, these results are significant because they may indicate a general trend in the growth of other oxide films, which has not been previously observed or considered.« less

  19. Direct synthesis of ultrathin SOI structure by extremely low-energy oxygen implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoshino, Yasushi, E-mail: yhoshino@kanagawa-u.ac.jp; Yachida, Gosuke; Inoue, Kodai

    2016-06-15

    We performed extremely low-energy {sup 16}O{sup +} implantation at 10 keV (R{sub p} ∼ 25 nm) followed by annealing aiming at directly synthesizing an ultrathin Si layer separated by a buried SiO{sub 2} layer in Si(001) substrates, and then investigated feasible condition of recrystallization and stabilization of the superficial Si and the buried oxide layer by significantly low temperature annealing. The elemental compositions were analyzed by Rutherford backscattering (RBS) and secondary ion mass spectroscopy (SIMS). The crystallinity of the superficial Si layer was quantitatively confirmed by ananlyzing RBS-channeling spectra. Cross-sectional morphologies and atomic configurations were observed by transmission electron microscopemore » (TEM). As a result, we succeeded in directly synthesizing an ultrathin single-crystalline silicon layer with ≤20 nm thick separated by a thin buried stoichiometric SiO{sub 2} layer with ≤20 nm thick formed by extremely low-energy {sup 16}O{sup +} implantation followed by surprisingly low temperature annealing at 1050{sup ∘} C.« less

  20. Electronic-Reconstruction-Enhanced Tunneling Conductance at Terrace Edges of Ultrathin Oxide Films.

    PubMed

    Wang, Lingfei; Kim, Rokyeon; Kim, Yoonkoo; Kim, Choong H; Hwang, Sangwoon; Cho, Myung Rae; Shin, Yeong Jae; Das, Saikat; Kim, Jeong Rae; Kalinin, Sergei V; Kim, Miyoung; Yang, Sang Mo; Noh, Tae Won

    2017-11-01

    Quantum mechanical tunneling of electrons across ultrathin insulating oxide barriers has been studied extensively for decades due to its great potential in electronic-device applications. In the few-nanometers-thick epitaxial oxide films, atomic-scale structural imperfections, such as the ubiquitously existed one-unit-cell-high terrace edges, can dramatically affect the tunneling probability and device performance. However, the underlying physics has not been investigated adequately. Here, taking ultrathin BaTiO 3 films as a model system, an intrinsic tunneling-conductance enhancement is reported near the terrace edges. Scanning-probe-microscopy results demonstrate the existence of highly conductive regions (tens of nanometers wide) near the terrace edges. First-principles calculations suggest that the terrace-edge geometry can trigger an electronic reconstruction, which reduces the effective tunneling barrier width locally. Furthermore, such tunneling-conductance enhancement can be discovered in other transition metal oxides and controlled by surface-termination engineering. The controllable electronic reconstruction can facilitate the implementation of oxide electronic devices and discovery of exotic low-dimensional quantum phases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Ideal square quantum wells achieved in AlGaN/GaN superlattices using ultrathin blocking-compensation pair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiaohong; Xu, Hongmei; Xu, Fuchun

    A technique for achieving square-shape quantum wells (QWs) against the intrinsic polar discontinuity and interfacial diffusion through self-compensated pair interlayers is reported. Ultrathin low-and-high % pair interlayers that have diffusion-blocking and self-compensation capacities is proposed to resist the elemental diffusion at nanointerfaces and to grow the theoretically described abrupt rectangular AlGaN/GaN superlattices by metal-organic chemical vapor deposition. Light emission efficiency in such nanostructures is effectively enhanced and the quantum-confined Stark effect could be partially suppressed. This concept could effectively improve the quality of ultrathin QWs in functional nanostructures with other semiconductors or through other growth methods.

  2. Free-standing ultrathin CoMn2O4 nanosheets anchored on reduced graphene oxide for high-performance supercapacitors.

    PubMed

    Gao, Guoxin; Lu, Shiyao; Xiang, Yang; Dong, Bitao; Yan, Wei; Ding, Shujiang

    2015-11-21

    Ultrathin CoMn2O4 nanosheets supported on reduced graphene oxide (rGO) are successfully synthesized through a simple co-precipitation method with a post-annealing treatment. With the assistance of citrate, the free-standing CoMn2O4 ultrathin nanosheets can form porous overlays on both sides of the rGO sheets. Such a novel hybrid nanostructure can effectively promote charge transport and accommodate volume variation upon prolonged charge/discharge cycling. When evaluated as a promising electrode for supercapacitors in a 6 M KOH solution electrolyte, the hybrid nanocomposites demonstrate highly enhanced capacitance and excellent cycling stability.

  3. Highly efficient ultrathin-film amorphous silicon solar cells on top of imprinted periodic nanodot arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Wensheng, E-mail: yws118@gmail.com; Gu, Min, E-mail: mgu@swin.edu.au; Tao, Zhikuo

    2015-03-02

    The addressing of the light absorption and conversion efficiency is critical to the ultrathin-film hydrogenated amorphous silicon (a-Si:H) solar cells. We systematically investigate ultrathin a-Si:H solar cells with a 100 nm absorber on top of imprinted hexagonal nanodot arrays. Experimental evidences are demonstrated for not only notable silver nanodot arrays but also lower-cost ITO and Al:ZnO nanodot arrays. The measured external quantum efficiency is explained by the simulation results. The J{sub sc} values are 12.1, 13.0, and 14.3 mA/cm{sup 2} and efficiencies are 6.6%, 7.5%, and 8.3% for ITO, Al:ZnO, and silver nanodot arrays, respectively. Simulated optical absorption distribution shows high lightmore » trapping within amorphous silicon layer.« less

  4. Theoretical requirements for broadband perfect absorption of acoustic waves by ultra-thin elastic meta-films

    PubMed Central

    Duan, Yuetao; Luo, Jie; Wang, Guanghao; Hang, Zhi Hong; Hou, Bo; Li, Jensen; Sheng, Ping; Lai, Yun

    2015-01-01

    We derive and numerically demonstrate that perfect absorption of elastic waves can be achieved in two types of ultra-thin elastic meta-films: one requires a large value of almost pure imaginary effective mass density and a free space boundary, while the other requires a small value of almost pure imaginary effective modulus and a hard wall boundary. When the pure imaginary density or modulus exhibits certain frequency dispersions, the perfect absorption effect becomes broadband, even in the low frequency regime. Through a model analysis, we find that such almost pure imaginary effective mass density with required dispersion for perfect absorption can be achieved by elastic metamaterials with large damping. Our work provides a feasible approach to realize broadband perfect absorption of elastic waves in ultra-thin films. PMID:26184117

  5. Wavelength Shifting in InP based Ultra-thin Quantum Well Infrared Photodetectors

    NASA Technical Reports Server (NTRS)

    Sengupta, D. K.; Gunapala, S. D.; Bandara, S. V.; Pool, F.; Liu, J. K.; McKelvy, M.

    1998-01-01

    We have demonstrated red-shifting of the wavelength response of a bound-to-continuum p-type ultra-thin InGaAs/Inp quantum well infrared photodetector after growth via rapid thermal annealing. Compared to the as-grown detector, the peak spectral response of the annealed detector was shifted to longer wavelength without any major degradation in responsivity characteristics.

  6. Microscopic Perspective on Photovoltaic Reciprocity in Ultrathin Solar Cells

    NASA Astrophysics Data System (ADS)

    Aeberhard, Urs; Rau, Uwe

    2017-06-01

    The photovoltaic reciprocity theory relates the electroluminescence spectrum of a solar cell under applied bias to the external photovoltaic quantum efficiency of the device as measured at short circuit conditions. Its derivation is based on detailed balance relations between local absorption and emission rates in optically isotropic media with nondegenerate quasiequilibrium carrier distributions. In many cases, the dependence of density and spatial variation of electronic and optical device states on the point of operation is modest and the reciprocity relation holds. In nanostructure-based photovoltaic devices exploiting confined modes, however, the underlying assumptions are no longer justifiable. In the case of ultrathin absorber solar cells, the modification of the electronic structure with applied bias is significant due to the large variation of the built-in field. Straightforward use of the external quantum efficiency as measured at short circuit conditions in the photovoltaic reciprocity theory thus fails to reproduce the electroluminescence spectrum at large forward bias voltage. This failure is demonstrated here by numerical simulation of both spectral quantities at normal incidence and emission for an ultrathin GaAs p -i -n solar cell using an advanced quantum kinetic formalism based on nonequilibrium Green's functions of coupled photons and charge carriers. While coinciding with the semiclassical relations under the conditions of their validity, the theory provides a consistent microscopic relationship between absorption, emission, and charge carrier transport in photovoltaic devices at arbitrary operating conditions and for any shape of optical and electronic density of states.

  7. Microscopic Perspective on Photovoltaic Reciprocity in Ultrathin Solar Cells.

    PubMed

    Aeberhard, Urs; Rau, Uwe

    2017-06-16

    The photovoltaic reciprocity theory relates the electroluminescence spectrum of a solar cell under applied bias to the external photovoltaic quantum efficiency of the device as measured at short circuit conditions. Its derivation is based on detailed balance relations between local absorption and emission rates in optically isotropic media with nondegenerate quasiequilibrium carrier distributions. In many cases, the dependence of density and spatial variation of electronic and optical device states on the point of operation is modest and the reciprocity relation holds. In nanostructure-based photovoltaic devices exploiting confined modes, however, the underlying assumptions are no longer justifiable. In the case of ultrathin absorber solar cells, the modification of the electronic structure with applied bias is significant due to the large variation of the built-in field. Straightforward use of the external quantum efficiency as measured at short circuit conditions in the photovoltaic reciprocity theory thus fails to reproduce the electroluminescence spectrum at large forward bias voltage. This failure is demonstrated here by numerical simulation of both spectral quantities at normal incidence and emission for an ultrathin GaAs p-i-n solar cell using an advanced quantum kinetic formalism based on nonequilibrium Green's functions of coupled photons and charge carriers. While coinciding with the semiclassical relations under the conditions of their validity, the theory provides a consistent microscopic relationship between absorption, emission, and charge carrier transport in photovoltaic devices at arbitrary operating conditions and for any shape of optical and electronic density of states.

  8. Multicolor 4D Fluorescence Microscopy using Ultrathin Bessel Light Sheets

    PubMed Central

    Zhao, Teng; Lau, Sze Cheung; Wang, Ying; Su, Yumian; Wang, Hao; Cheng, Aifang; Herrup, Karl; Ip, Nancy Y.; Du, Shengwang; Loy, M. M. T.

    2016-01-01

    We demonstrate a simple and efficient method for producing ultrathin Bessel (‘non-diffracting’) light sheets of any color using a line-shaped beam and an annulus filter. With this robust and cost-effective technology, we obtained two-color, 3D images of biological samples with lateral/axial resolution of 250 nm/400 nm, and high-speed, 4D volume imaging of 20 μm sized live sample at 1 Hz temporal resolution. PMID:27189786

  9. Theoretical Study of the Structure, Stability and Oxygen Reduction Activity of Ultrathin Platinum Nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matanovic, Ivana; Kent, Paul; Garzon, Fernando

    2012-10-10

    We use density functional theory to study the difference in the structure, stability and catalytic reactivity between ultrathin, 0.5- 1.0 nm diameter, platinum nanotubes and nanowires. Model nanowires were formed by inserting an inner chain of platinum atoms in small diameter nanotubes. In this way more stable, nonhollow structures were formed. The difference in the electronic structure of platinum nanotubes and nanowires was examined by inspecting the density of surface states and band structure. Furthermore, reactivity towards the oxygen reduction reaction of platinum nanowires was addressed by studying the change in the chemisorption energies of oxygen and hydroxyl groups, inducedmore » by inserting the inner chain of platinum atoms into the hollow nanotubes. Both ultrathin platinum nanotubes and nanowires show distinct properties compared to bulk platinum. Nanotubes with diameters larger than 1 nm show promise for use as oxygen reduction catalysts.« less

  10. Side-to-Side Cold Welding for Controllable Nanogap Formation from "Dumbbell" Ultrathin Gold Nanorods.

    PubMed

    Dai, Gaole; Wang, Binjun; Xu, Shang; Lu, Yang; Shen, Yajing

    2016-06-01

    Cold welding has been regarded as a promising bottom-up nanofabrication technique because of its ability to join metallic nanostructures at room temperature with low applied stress and without introducing damage. Usually, the cold welding process can be done instantaneously for ultrathin nanowires (diameter <10 nm) in "head-to-head" joining. Here, we demonstrate that "dumbbell" shaped ultrathin gold nanorods can be cold welded in the "side-to-side" mode in a highly controllable manner and can form an extremely small nanogap via a relatively slow welding process (up to tens of minutes, allowing various functional applications). By combining in situ high-resolution transmission electron microscopic analysis and molecular dynamic simulations, we further reveal the underlying mechanism for this "side-to-side" welding process as being dominated by atom kinetics instead of thermodynamics, which provides critical insights into three-dimensional nanosystem integration as well as the building of functional nanodevices.

  11. A novel revision to the classical transnasal topical sphenopalatine ganglion block for the treatment of headache and facial pain.

    PubMed

    Candido, Kenneth D; Massey, Scott T; Sauer, Ruben; Darabad, Raheleh Rahimi; Knezevic, Nebojsa Nick

    2013-01-01

    The sphenopalatine ganglion (SPG) is located with some degree of variability near the tail or posterior aspect of the middle nasal turbinate. The SPG has been implicated as a strategic target in the treatment of various headache and facial pain conditions, some of which are featured in this manuscript. Interventions for blocking the SPG range from minimally to highly invasive procedures often associated with great cost and unfavorable risk profiles. The purpose of this pilot study was to present a novel, FDA-cleared medication delivery device, the Tx360® nasal applicator, incorporating a transnasal needleless topical approach for SPG blocks. This study features the technical aspects of this new device and presents some limited clinical experience observed in a small series of head and face pain cases. Case series. Pain management center, part of teaching-community hospital, major metropolitan city, United States. After Institutional Review Board (IRB) approval, the technical aspects of this technique were examined on 3 patients presenting with various head and face pain conditions including trigeminal neuralgia (TN), chronic migraine headache (CM), and post-herpetic neuralgia (PHN). The subsequent response to treatment and quality of life was quantified using the following tools: the 11-point Numeric Rating Scale (NRS), Modified Brief Pain Inventory - short form (MBPI-sf), Patient Global Impression of Change (PGIC), and patient satisfaction surveys. The Tx360® nasal applicator was used to deliver 0.5 mL of ropivacaine 0.5% and 2 mg of dexamethasone for SPG block. Post-procedural assessments were repeated at 15 and 30 minutes, and on days one, 7, 14, and 21 with a final assessment at 28 days post-treatment. All patients were followed for one year. Individual patients received up to 10 SPG blocks, as clinically indicated, after the initial 28 days. Three women, ages 43, 18, and 15, presented with a variety of headache and face pain disorders including TN, CM, and

  12. Ultrathin gold nanoribbons synthesized within the interior cavity of a self-assembled peptide nanoarchitecture.

    PubMed

    Tomizaki, Kin-ya; Wakizaka, Shota; Yamaguchi, Yuichi; Kobayashi, Akitsugu; Imai, Takahito

    2014-01-28

    There is increasing interest in gold nanocrystals due to their unique physical, chemical, and biocompatible properties. In order to develop a template-assisted method for the fabrication of gold nanocrystals, we demonstrate here the de novo design and synthesis of a β-sheet-forming nonapeptide (RU006: Ac-AIAKAXKIA-NH2, X = L-2-naphthylalanine) which undergoes self-assembly to form disk-like nanoarchitectures approximately 100 nm wide and 2.5 nm high. These self-assemblies tend to form a network of higher-order assemblies in ultrapure water. Using RU006 as a template molecule, we fabricated ultrathin gold nanoribbons 50-100 nm wide, 2.5 nm high, and micrometers long without external reductants. Furthermore, in order to determine the mechanism of ultrathin gold nanoribbon formation, we synthesized four different RU006 analogues. On the basis of the results obtained using RU006 and these analogues, we propose the following mechanism for the self-assembly of RU006. First, RU006 forms a network by the cooperative association of disk-like assemblies in the presence of AuCl4(-) ions that are encapsulated and concentrated within the interior cavity of the network architectures. This is followed by electron transfer from the naphthalene rings to Au(III), resulting in slow growth to form ultrathin gold nanoribbons along the template network architectures under ambient conditions. The resulting ribbons retain the dimensions of the cavity of the template architecture. Our approach will allow the construction of diverse template architectural morphologies and will find applications in the construction of a variety of metallic nanoarchitectures.

  13. Few-layered CoHPO4 · 3H2O ultrathin nanosheets for high performance of electrode materials for supercapacitors.

    PubMed

    Pang, Huan; Wang, Shaomei; Shao, Weifang; Zhao, Shanshan; Yan, Bo; Li, Xinran; Li, Sujuan; Chen, Jing; Du, Weimin

    2013-07-07

    Ultrathin cobalt phosphate (CoHPO4 · 3H2O) nanosheets are successfully synthesized by a one pot hydrothermal method. Novel CoHPO4 · 3H2O ultrathin nanosheets are assembled for constructing the electrodes of supercapacitors. Benefiting from the nanostructures, the as-prepared electrode shows a specific capacitance of 413 F g(-1), and no obvious decay even after 3000 charge-discharge cycles. Such a quasi-two-dimensional material is a new kind of supercapacitor electrode material with high performance.

  14. Dissolvable Films of Silk Fibroin for Ultrathin Conformal Bio-Integrated Electronics

    DTIC Science & Technology

    2010-06-01

    the systems described in the following, ultrathin, spin- cast films of polyimide (PI) served as a support for arrays of electrodes designed for...micropatterning of optically transparent, mechanically robust, biocompatible silk fibroin films. Adv. Mater. 20, 3070–3072 (2008). 20. Murphy, A. R., John, P. S...analysis of induced colour change on periodically nanopatterned silk films. Opt. Express 17, 21271–21279 (2009). 25. Parker, S. T. et al. Biocompatible

  15. Ultrathin Carbon Film Protected Silver Nanostructures for Surface-Enhanced Raman Scattering.

    PubMed

    Peng, Yinshan; Zheng, Xianliang; Tian, Hongwei; Cui, Xiaoqiang; Chen, Hong; Zheng, Weitao

    2016-06-23

    In this article, ultrathin carbon film protected silver substrate (Ag/C) was prepared via a plasma-enhanced chemical vapor deposition (PECVD) method. The morphological evolution of silver nanostructures underneath, as well as the surface-enhanced Raman scattering (SERS) activity of Ag/C hybrid can be tuned by controlling the deposition time. The stability and reproducibility of the as-prepared hybrid were also studied. © The Author(s) 2016.

  16. Interface plasmonic properties of silver coated by ultrathin metal oxides

    NASA Astrophysics Data System (ADS)

    Sytchkova, A.; Zola, D.; Grilli, M. L.; Piegari, A.; Fang, M.; He, H.; Shao, J.

    2011-09-01

    Many fields of high technology take advantage of conductor-dielectric interface properties. Deeper knowledge of physical processes that determine the optical response of the structures containing metal-dielectric interfaces is important for improving the performance of thin film devices containing such materials. Here we present a study on optical properties of several ultrathin metal oxides deposited over thin silver layers. Some widely used materials (Al2O3, SiO2, Y2O3, HfO2) were selected for deposition by r.f. sputtering, and the created metal-dielectric structures with two of them, alumina and silica, were investigated in this work using attenuated total reflectance (ATR) technique and by variable-angle spectroscopic ellipsometry (VASE). VASE was performed with a help of a commercial ellipsometer at various incident angles and in a wide spectral range. A home-made sample holder manufactured for WVASE ellipsometer and operational in Otto configuration has been implemented for angle-resolved and spectral ATR measurements. Simultaneous analysis of data obtained by these two independent techniques allows elaboration of a representative model for plasmonic-related phenomena at metal-dielectric interface. The optical constants of the interface layers formed between metal and ultrathin oxide layers are investigated. A series of oxides chosen for this study allows a comparative analysis aimed for selection of the most appropriate materials for different applications.

  17. Ultrathin triple-band polarization-insensitive wide-angle compact metamaterial absorber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, Shuai; Yang, Shizhong; Tao, Lu

    2016-07-15

    In this study, the design, realization, and characterization of an ultrathin triple-band polarization-insensitive wide-angle metamaterial absorber are reported. The metamaterial absorber comprises a periodic array of modified six-fold symmetric snowflake-shaped resonators with strip spiral line load, which is printed on a dielectric substrate backed by a metal ground plane. It is shown that the absorber exhibits three distinct near-unity absorption peaks, which are distributed across C, X, Ku bands, respectively. Owing to the six-fold symmetry, the absorber is insensitive to the polarization of the incident radiation. In addition, the absorber shows excellent absorption performance over wide oblique incident angles formore » both transverse electric and transverse magnetic polarizations. Simulated surface current and field distributions at the three absorption peaks are demonstrated to understand the absorption mechanism. Particularly, the absorption modes come from the fundamental and high-order dipole resonances. Furthermore, the experimental verification of the designed absorber is conducted, and the measured results are in reasonable agreement with the simulated ones. The proposed ultrathin (∼0.018λ{sub 0}, λ{sub 0} corresponding to the lowest peak absorption frequency) compact (0.168λ{sub 0}×0.168λ{sub 0} corresponding to the area of a unit cell) absorber enables potential applications such as stealth technology, electromagnetic interference and spectrum identification.« less

  18. Controllable Preparation of Ultrathin Sandwich-Like Membrane with Porous Organic Framework and Graphene Oxide for Molecular Filtration

    NASA Astrophysics Data System (ADS)

    Zhu, Yuanzhi; Xu, Danyun; Zhao, Qingshan; Li, Yang; Peng, Wenchao; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin

    2015-10-01

    Porous organic frameworks (POFs) based membranes have potential applications in molecular filtration, despite the lack of a corresponding study. This study reports an interesting strategy to get processable POFs dispersion and a novel ultrathin sandwich-like membrane design. It was accidentally found that the hydrophobic N-rich Schiff based POFs agglomerates could react with lithium-ethylamine and formed stable dispersion in water. By successively filtrating the obtained POFs dispersion and graphene oxide (GO), we successfully prepared ultrathin sandwich-like hybrid membranes with layered structure, which showed significantly improved separation efficiency in molecular filtration of organic dyes. This study may provide a universal way to the preparation of processable POFs and their hybrid membranes with GO.

  19. Ultra-thin enhanced-absorption long-wave infrared detectors

    NASA Astrophysics Data System (ADS)

    Wang, Shaohua; Yoon, Narae; Kamboj, Abhilasha; Petluru, Priyanka; Zheng, Wanhua; Wasserman, Daniel

    2018-02-01

    We propose an architecture for enhanced absorption in ultra-thin strained layer superlattice detectors utilizing a hybrid optical cavity design. Our detector architecture utilizes a designer-metal doped semiconductor ground plane beneath the ultra-subwavelength thickness long-wavelength infrared absorber material, upon which we pattern metallic antenna structures. We demonstrate the potential for near 50% detector absorption in absorber layers with thicknesses of approximately λ0/50, using realistic material parameters. We investigate detector absorption as a function of wavelength and incidence angle, as well as detector geometry. The proposed device architecture offers the potential for high efficiency detectors with minimal growth costs and relaxed design parameters.

  20. Design of an ultrathin cold neutron detector

    NASA Astrophysics Data System (ADS)

    Osovizky, A.; Pritchard, K.; Yehuda-Zada, Y.; Ziegler, J.; Binkley, E.; Tsai, P.; Thompson, A.; Hadad, N.; Jackson, M.; Hurlbut, C.; Baltic, G. M.; Majkrzak, C. F.; Maliszewskyj, N. C.

    2018-06-01

    We describe the design and performance of an ultrathin (<2 mm) cold neutron detector consisting of 6LiF:ZnS(Ag) scintillator in which wavelength shifting fibers have been embedded to conduct scintillation photons out of the medium to a silicon photomultiplier photosensor. The counter has a neutron sensitive volume of 12 mm wide × 30 mm high × 1.4 mm deep. Twenty-four 0.5 mm diameter wavelength shifting fibers conduct the scintillation light out of the plane of the detector and are concentrated onto a 3 mm × 3 mm silicon photomultiplier. The detector is demonstrated to possess a neutron detection efficiency of 93% for 3.27 meV neutrons with a gamma ray rejection ratio on the order of 10-7.

  1. A Ga2O3 underlayer as an isomorphic template for ultrathin hematite films toward efficient photoelectrochemical water splitting.

    PubMed

    Hisatomi, Takashi; Brillet, Jérémie; Cornuz, Maurin; Le Formal, Florian; Tétreault, Nicolas; Sivula, Kevin; Grätzel, Michael

    2012-01-01

    Hematite photoanodes for photoelectrochemical (PEC) water splitting are often fabricated as extremely-thin films to minimize charge recombination because of the short diffusion lengths of photoexcited carriers. However, poor crystallinity caused by structural interaction with a substrate negates the potential of ultrathin hematite photoanodes. This study demonstrates that ultrathin Ga2O3 underlayers, which were deposited on conducting substrates prior to hematite layers by atomic layer deposition, served as an isomorphic (corundum-type) structural template for ultrathin hematite and improved the photocurrent onset of PEC water splitting by 0.2 V. The benefit from Ga2O3 underlayers was most pronounced when the thickness of the underlayer was approximately 2 nm. Thinner underlayers did not work effectively as a template presumably because of insufficient crystallinity of the underlayer, while thicker ones diminished the PEC performance of hematite because the underlayer prevented electron injection from hematite to a conductive substrate due to the large conduction band offset. The enhancement of PEC performance by a Ga2O3 underlayer was more significant for thinner hematite layers owing to greater margins for improving the crystallinity of ultrathin hematite. It was confirmed that a Ga2O3 underlayer was applicable to a rough conducting substrate loaded with Sb-doped SnO2 nanoparticles, improving the photocurrent by a factor of 1.4. Accordingly, a Ga2O3 underlayer could push forward the development of host-guest-type nanocomposites consisting of highly-rough substrates and extremely-thin hematite absorbers.

  2. Ultrathin TiO2 layer coated-CdS spheres core-shell nanocomposite with enhanced visible-light photoactivity.

    PubMed

    Chen, Zhang; Xu, Yi-Jun

    2013-12-26

    Development of various strategies for controllable fabrication of core-shell nanocomposites (CSNs) with highly active photocatalytic performance has been attracting ever-increasing research attention. In particular, control of the ultrathin layer TiO2 shell in constructing CSNs in an aqueous phase is a significant but technologically challenging issue. Here, this paper demonstrates the interface assembly synthesis of CdS nanospheres@TiO2 core-shell photocatalyst via the electrostatic interaction of negatively charged water-stable titania precursor with positively charged CdS nanospheres (CdS NSPs), followed by the formation of the ultrathin-layer TiO2 shell through a facile refluxing process in aqueous phase. The as-formed CdS NSPs@TiO2 core-shell nanohybrid exhibits a high visible-light-driven photoactivity for selective transformation and reduction of heavy metal ions. The ultrathin TiO2 layer coated on CdS NSPs results in excellent light transmission property, enhanced adsorption capacity, and improved transfer of charge carriers and lifespan of photoinduced electron-hole pairs, which would prominently contribute to the significant photoactivity enhancement. It is anticipated that this facile aqueous-phase synthesis strategy could be extended to design a variety of more efficient CSN photocatalysts with controllable morphology toward target applications in diverse photoredox processes.

  3. Electrical transport of spin-polarized carriers in disordered ultrathin films.

    PubMed

    Hernandez, L M; Bhattacharya, A; Parendo, Kevin A; Goldman, A M

    2003-09-19

    Slow, nonexponential relaxation of electrical transport accompanied by memory effects has been induced in quench-condensed ultrathin amorphous Bi films by the application of a parallel magnetic field. This behavior, which is very similar to space-charge limited current flow, is found in extremely thin films well on the insulating side of the thickness-tuned superconductor-insulator transition. It may be the signature of a collective state that forms when the carriers are spin polarized at low temperatures and in high magnetic fields.

  4. "Self-Peel-Off" Transfer Produces Ultrathin Polyvinylidene-Fluoride-Based Flexible Nanodevices.

    PubMed

    Tai, Yanlong; Lubineau, Gilles

    2017-04-01

    Here, a new strategy, self-peel-off transfer, for the preparation of ultrathin flexible nanodevices made from polyvinylidene-fluoride (PVDF) is reported. In this process, a functional pattern of nanoparticles is transferred via peeling from a temporary substrate to the final PVDF film. This peeling process takes advantage of the differences in the work of adhesion between the various layers (the PVDF layer, the nanoparticle-pattern layer and the substrate layer) and of the high stresses generated by the differential thermal expansion of the layers. The work of adhesion is mainly guided by the basic physical/chemical properties of these layers and is highly sensitive to variations in temperature and moisture in the environment. The peeling technique is tested on a variety of PVDF-based functional films using gold/palladium nanoparticles, carbon nanotubes, graphene oxide, and lithium iron phosphate. Several PVDF-based flexible nanodevices are prepared, including a single-sided wireless flexible humidity sensor in which PVDF is used as the substrate and a double-sided flexible capacitor in which PVDF is used as the ferroelectric layer and the carrier layer. Results show that the nanodevices perform with high repeatability and stability. Self-peel-off transfer is a viable preparation strategy for the design and fabrication of flexible, ultrathin, and light-weight nanodevices.

  5. Selective Pyroelectric Detection of Millimetre Waves Using Ultra-Thin Metasurface Absorbers

    PubMed Central

    Kuznetsov, Sergei A.; Paulish, Andrey G.; Navarro-Cía, Miguel; Arzhannikov, Andrey V.

    2016-01-01

    Sensing infrared radiation is done inexpensively with pyroelectric detectors that generate a temporary voltage when they are heated by the incident infrared radiation. Unfortunately the performance of these detectors deteriorates for longer wavelengths, leaving the detection of, for instance, millimetre-wave radiation to expensive approaches. We propose here a simple and effective method to enhance pyroelectric detection of the millimetre-wave radiation by combining a compact commercial infrared pyro-sensor with a metasurface-enabled ultra-thin absorber, which provides spectrally- and polarization-discriminated response and is 136 times thinner than the operating wavelength. It is demonstrated that, due to the small thickness and therefore the thermal capacity of the absorber, the detector keeps the high response speed and sensitivity to millimetre waves as the original infrared pyro-sensor does against the regime of infrared detection. An in-depth electromagnetic analysis of the ultra-thin resonant absorbers along with their complex characterization by a BWO-spectroscopy technique is presented. Built upon this initial study, integrated metasurface absorber pyroelectric sensors are implemented and tested experimentally, showing high sensitivity and very fast response to millimetre-wave radiation. The proposed approach paves the way for creating highly-efficient inexpensive compact sensors for spectro-polarimetric applications in the millimetre-wave and terahertz bands. PMID:26879250

  6. Confined Transformation Derived Ultrathin Titanate Nanosheets/ Graphene Films for Excellent Na/K Ion Storage.

    PubMed

    Zeng, Cheng; Xie, Fangxi; Yang, Xianfeng; Jaroniec, Mietek; Zhang, Lei; Qiao, Shizhang

    2018-05-02

    Confined transformation of assembled two-dimensional MXene (titanium carbide) and reduced graphene oxide (rGO) nanosheets was employed to prepare the free-standing films of the integrated ultrathin sodium titanate (NTO)/potassium titanate (KTO) nanosheets sandwiched between graphene layers. The ultrathin Ti-based nanosheets reduce the diffusion distance while rGO layers enhance conductivity. Incorporation of graphene into the titanate films produced efficient binder-free anodes for ion storage. The resulting NTO/rGO electrode for sodium ion batteries exhibited an excellent rate performance and long cycling stability characterized by reversible capacity of 72 mA h g-1 at 5 A g-1 after 10000 cycles. Moreover, flexible KTO/rGO electrode for potassium ion batteries maintained a reversible capacity of 75 mA h g-1 after 700 cycles at 2 A g-1. These results demonstrate the superiority of the unique sandwich-type electrodes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Development and ultra-structure of an ultra-thin silicone epidermis of bioengineered alternative tissue.

    PubMed

    Wessels, Quenton; Pretorius, Etheresia

    2015-08-01

    Burn wound care today has a primary objective of temporary or permanent wound closure. Commercially available engineered alternative tissues have become a valuable adjunct to the treatment of burn injuries. Their constituents can be biological, alloplastic or a combination of both. Here the authors describe the aspects of the development of a siloxane epidermis for a collagen-glycosaminoglycan and for nylon-based artificial skin replacement products. A method to fabricate an ultra-thin epidermal equivalent is described. Pores, to allow the escape of wound exudate, were punched and a tri-filament nylon mesh or collagen scaffold was imbedded and silicone polymerisation followed at 120°C for 5 minutes. The ultra-structure of these bilaminates was assessed through scanning electron microscopy. An ultra-thin biomedical grade siloxane film was reliably created through precision coating on a pre-treated polyethylene terephthalate carrier. © 2013 The Authors. International Wound Journal © 2013 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  8. Restoring the magnetism of ultrathin LaMn O3 films by surface symmetry engineering

    NASA Astrophysics Data System (ADS)

    Peng, J. J.; Song, C.; Li, F.; Gu, Y. D.; Wang, G. Y.; Pan, F.

    2016-12-01

    The frustration of magnetization and conductivity properties of ultrathin manganite is detrimental to their device performance, preventing their scaling down process. Here we demonstrate that the magnetism of ultrathin LaMn O3 films can be restored by a SrTi O3 capping layer, which engineers the surface from a symmetry breaking induced out-of-plane orbital occupancy to the recovered in-plane orbital occupancy. The stabilized in-plane orbital occupancy would strengthen the intralayer double exchange and thus recovers the robust magnetism. This method is proved to be effective for films as thin as 2 unit cells, greatly shrinking the critical thickness of 6 unit cells for ferromagnetic LaMn O3 as demonstrated previously [Wang et al., Science 349, 716 (2015), 10.1126/science.aaa5198]. The achievement made in this work opens up new perspectives to an active control of surface states and thereby tailors the surface functional properties of transition metal oxides.

  9. Optical bandgap of single- and multi-layered amorphous germanium ultra-thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Pei; Zaslavsky, Alexander; Longo, Paolo

    2016-01-07

    Accurate optical methods are required to determine the energy bandgap of amorphous semiconductors and elucidate the role of quantum confinement in nanometer-scale, ultra-thin absorbing layers. Here, we provide a critical comparison between well-established methods that are generally employed to determine the optical bandgap of thin-film amorphous semiconductors, starting from normal-incidence reflectance and transmittance measurements. First, we demonstrate that a more accurate estimate of the optical bandgap can be achieved by using a multiple-reflection interference model. We show that this model generates more reliable results compared to the widely accepted single-pass absorption method. Second, we compare two most representative methods (Taucmore » and Cody plots) that are extensively used to determine the optical bandgap of thin-film amorphous semiconductors starting from the extracted absorption coefficient. Analysis of the experimental absorption data acquired for ultra-thin amorphous germanium (a-Ge) layers demonstrates that the Cody model is able to provide a less ambiguous energy bandgap value. Finally, we apply our proposed method to experimentally determine the optical bandgap of a-Ge/SiO{sub 2} superlattices with single and multiple a-Ge layers down to 2 nm thickness.« less

  10. Determination of magnetic anisotropy constants in Fe ultrathin film on vicinal Si(111) by anisotropic magnetoresistance

    PubMed Central

    Ye, Jun; He, Wei; Wu, Qiong; Liu, Hao-Liang; Zhang, Xiang-Qun; Chen, Zi-Yu; Cheng, Zhao-Hua

    2013-01-01

    The epitaxial growth of ultrathin Fe film on Si(111) surface provides an excellent opportunity to investigate the contribution of magnetic anisotropy to magnetic behavior. Here, we present the anisotropic magnetoresistance (AMR) effect of Fe single crystal film on vicinal Si(111) substrate with atomically flat ultrathin p(2 × 2) iron silicide as buffer layer. Owing to the tiny misorientation from Fe(111) plane, the symmetry of magnetocrystalline anisotropy energy changes from the six-fold to a superposition of six-fold, four-fold and a weakly uniaxial contribution. Furthermore, the magnitudes of various magnetic anisotropy constants were derived from torque curves on the basis of AMR results. Our work suggests that AMR measurements can be employed to figure out precisely the contributions of various magnetic anisotropy constants. PMID:23828508

  11. Mixed-Penetrant Sorption in Ultrathin Films of Polymer of Intrinsic Microporosity PIM-1.

    PubMed

    Ogieglo, Wojciech; Furchner, Andreas; Ghanem, Bader; Ma, Xiaohua; Pinnau, Ingo; Wessling, Matthias

    2017-11-02

    Mixed-penetrant sorption into ultrathin films of a superglassy polymer of intrinsic microporosity (PIM-1) was studied for the first time by using interference-enhanced in situ spectroscopic ellipsometry. PIM-1 swelling and the concurrent changes in its refractive index were determined in ultrathin (12-14 nm) films exposed to pure and mixed penetrants. The penetrants included water, n-hexane, and ethanol and were chosen on the basis of their significantly different penetrant-penetrant and penetrant-polymer affinities. This allowed studying microporous polymer responses at diverse ternary compositions and revealed effects such as competition for the sorption sites (for water/n-hexane or ethanol/n-hexane) or enhancement in sorption of typically weakly sorbing water in the presence of more highly sorbing ethanol. The results reveal details of the mutual sorption effects which often complicate comprehension of glassy polymers' behavior in applications such as high-performance membranes, adsorbents, or catalysts. Mixed-penetrant effects are typically very challenging to study directly, and their understanding is necessary owing to a broadly recognized inadequacy of simple extrapolations from measurements in a pure component environment.

  12. Stress analysis of ultra-thin silicon chip-on-foil electronic assembly under bending

    NASA Astrophysics Data System (ADS)

    Wacker, Nicoleta; Richter, Harald; Hoang, Tu; Gazdzicki, Pawel; Schulze, Mathias; Angelopoulos, Evangelos A.; Hassan, Mahadi-Ul; Burghartz, Joachim N.

    2014-09-01

    In this paper we investigate the bending-induced uniaxial stress at the top of ultra-thin (thickness \\leqslant 20 μm) single-crystal silicon (Si) chips adhesively attached with the aid of an epoxy glue to soft polymeric substrate through combined theoretical and experimental methods. Stress is first determined analytically and numerically using dedicated models. The theoretical results are validated experimentally through piezoresistive measurements performed on complementary metal-oxide-semiconductor (CMOS) transistors built on specially designed chips, and through micro-Raman spectroscopy investigation. Stress analysis of strained ultra-thin chips with CMOS circuitry is crucial, not only for the accurate evaluation of the piezoresistive behavior of the built-in devices and circuits, but also for reliability and deformability analysis. The results reveal an uneven bending-induced stress distribution at the top of the Si-chip that decreases from the central area towards the chip's edges along the bending direction, and increases towards the other edges. Near these edges, stress can reach very high values, facilitating the emergence of cracks causing ultimate chip failure.

  13. Optimization of ion-atomic beam source for deposition of GaN ultrathin films.

    PubMed

    Mach, Jindřich; Šamořil, Tomáš; Kolíbal, Miroslav; Zlámal, Jakub; Voborny, Stanislav; Bartošík, Miroslav; Šikola, Tomáš

    2014-08-01

    We describe the optimization and application of an ion-atomic beam source for ion-beam-assisted deposition of ultrathin films in ultrahigh vacuum. The device combines an effusion cell and electron-impact ion beam source to produce ultra-low energy (20-200 eV) ion beams and thermal atomic beams simultaneously. The source was equipped with a focusing system of electrostatic electrodes increasing the maximum nitrogen ion current density in the beam of a diameter of ≈15 mm by one order of magnitude (j ≈ 1000 nA/cm(2)). Hence, a successful growth of GaN ultrathin films on Si(111) 7 × 7 substrate surfaces at reasonable times and temperatures significantly lower (RT, 300 °C) than in conventional metalorganic chemical vapor deposition technologies (≈1000 °C) was achieved. The chemical composition of these films was characterized in situ by X-ray Photoelectron Spectroscopy and morphology ex situ using Scanning Electron Microscopy. It has been shown that the morphology of GaN layers strongly depends on the relative Ga-N bond concentration in the layers.

  14. Two-dimensional ZnO ultrathin nanosheets decorated with Au nanoparticles for effective photocatalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jin; You, Ning; Yu, Zhe

    Two-dimensional (2D) materials, especially the inorganic 2D nanosheets (NSs), are of particular interest due to their unique structural and electronic properties, which are favorable for photoelectronic applications such as photocatalysis. Here, we design and fabricate the ultrathin 2D ZnO NSs decorated with Au nanoparticles (AuNPs), though molecular modelling 2D hydrothermal growth and followed by surface modification are used as an effective photocatalyst for photocatalytic organic dye degradation and hydrogen production. The ultrathin 2D nature enables ultrahigh atom ratio near surface to proliferate the active sites, and the Au plasmon plays a promoting role in the visible-light absorption and photogenerated chargemore » separation, thus integrating the synergistic benefits to boost the redox reactions at catalyst/electrolyte interface. The AuNPs-decorated ZnO NSs yield the impressive photocatalytic activities such as the dye degradation rate constant of 7.69 × 10{sup −2} min{sup −1} and the hydrogen production rate of 350 μmol h{sup −1} g{sup −1}.« less

  15. Prediction of transmittance spectra for transparent composite electrodes with ultra-thin metal layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Zhao; Alford, T. L., E-mail: TA@asu.edu; Khorasani, Arash Elhami

    2015-11-28

    Recent interest in indium-free transparent composite-electrodes (TCEs) has motivated theoretical and experimental efforts to better understand and enhance their electrical and optical properties. Various tools have been developed to calculate the optical transmittance of multilayer thin-film structures based on the transfer-matrix method. However, the factors that affect the accuracy of these calculations have not been investigated very much. In this study, two sets of TCEs, TiO{sub 2}/Au/TiO{sub 2} and TiO{sub 2}/Ag/TiO{sub 2}, were fabricated to study the factors that affect the accuracy of transmittance predictions. We found that the predicted transmittance can deviate significantly from measured transmittance for TCEs thatmore » have ultra-thin plasmonic metal layers. The ultrathin metal layer in the TCE is typically discontinuous. When light interacts with the metallic islands in this discontinuous layer, localized surface plasmons are generated. This causes extra light absorption, which then leads to the actual transmittance being lower than the predicted transmittance.« less

  16. Kink effect in ultrathin FDSOI MOSFETs

    NASA Astrophysics Data System (ADS)

    Park, H. J.; Bawedin, M.; Choi, H. G.; Cristoloveanu, S.

    2018-05-01

    Systematic experiments demonstrate the presence of the kink effect even in FDSOI MOSFETs. The back-gate bias controls the kink effect via the formation of a back accumulation channel. The kink is more or less pronounced according to the film thickness and channel length. However, in ultrathin (<10 nm) and/or very short transistors (L < 50 nm), the kink is totally absent as a consequence of super-coupling effect. For the first time, thanks to the availability of body contacts, the body potential is probed to evidence the impact of majority carrier accumulation and drain pulse duration on the kink effect onset. He is currently working toward the Ph.D. degree in FDSOI device characterization and simulation at a laboratory of IMEP-lahc, Université Grenoble Alpes, Minatec, Grenoble, France. His research interests include residual floating body effects, electrical characterization, and device simulation for ultra FDSOI MOSFETs.

  17. Wood-Derived Ultrathin Carbon Nanofiber Aerogels.

    PubMed

    Li, Si-Cheng; Hu, Bi-Cheng; Ding, Yan-Wei; Liang, Hai-Wei; Li, Chao; Yu, Zi-You; Wu, Zhen-Yu; Chen, Wen-Shuai; Yu, Shu-Hong

    2018-06-11

    Carbon aerogels with 3D networks of interconnected nanometer-sized particles exhibit fascinating physical properties and show great application potential. Efficient and sustainable methods are required to produce high-performance carbon aerogels on a large scale to boost their practical applications. An economical and sustainable method is now developed for the synthesis of ultrathin carbon nanofiber (CNF) aerogels from the wood-based nanofibrillated cellulose (NFC) aerogels via a catalytic pyrolysis process, which guarantees high carbon residual and well maintenance of the nanofibrous morphology during thermal decomposition of the NFC aerogels. The wood-derived CNF aerogels exhibit excellent electrical conductivity, a large surface area, and potential as a binder-free electrode material for supercapacitors. The results suggest great promise in developing new families of carbon aerogels based on the controlled pyrolysis of economical and sustainable nanostructured precursors. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Twinning to slip transition in ultrathin BCC Fe nanowires

    NASA Astrophysics Data System (ADS)

    Sainath, G.; Choudhary, B. K.

    2018-04-01

    We report twinning to slip transition with decreasing size and increasing temperature in ultrathin <100> BCC Fe nanowires. Molecular dynamics simulations have been performed on different nanowire size in the range 0.404-3.634 nm at temperatures ranging from 10 to 900 K. The results indicate that slip mode dominates at low sizes and high temperatures, while deformation twinning is promoted at high sizes and low temperatures. The temperature, at which the nanowires show twinning to slip transition, increases with increasing size. The different modes of deformation are also reflected appropriately in the respective stress-strain behaviour of the nanowires.

  19. Insulator at the ultrathin limit: MgO on Ag(001).

    PubMed

    Schintke, S; Messerli, S; Pivetta, M; Patthey, F; Libioulle, L; Stengel, M; De Vita, A; Schneider, W D

    2001-12-31

    The electronic structure and morphology of ultrathin MgO films epitaxially grown on Ag(001) were investigated using low-temperature scanning tunneling spectroscopy and scanning tunneling microscopy. Layer-resolved differential conductance (dI/dU) measurements reveal that, even at a film thickness of three monolayers, a band gap of about 6 eV is formed corresponding to that of the MgO(001) single-crystal surface. This finding is confirmed by layer-resolved calculations of the local density of states based on density functional theory.

  20. Graphene-based ultrathin microporous carbon with smaller sulfur molecules for excellent rate performance of lithium-sulfur cathode

    NASA Astrophysics Data System (ADS)

    Peng, Zhenhuan; Fang, Wenying; Zhao, Hongbin; Fang, Jianhui; Cheng, Hongwei; Doan, The Nam Long; Xu, Jiaqiang; Chen, Pu

    2015-05-01

    Ultrathin microporous carbon (UMPC) for lithium-sulfur (Li-S) cathode with uniform pore width of approximately 0.6 nm and dozens nm in thickness is synthesized with graphene oxide as template by glucose hydrothermal carbonization and surfactant-assisted assembling method. The UMPC supplies desirable S pregnancy space and the intimate contact between UMPC and S, therefore improving the conductivity of S@UMPC composite and dynamic performance. Smaller sulfur molecules limited in UMPC thoroughly prevent the formation of electrolyte-soluble polysulfides, hence excellent cycling performance with 900 mAh g-1 after 150 cycles is kept. Ultrathin three-dimensional carbon nanosheets are significant to fast electron transfer and Li+ diffusion contributing to excellent dynamic performance (710 mAh g-1 at 3 C).

  1. SERS Taper-Fiber Nanoprobe Modified by Gold Nanoparticles Wrapped with Ultrathin Alumina Film by Atomic Layer Deposition

    PubMed Central

    Xu, Wenjie; Chen, Zhenyi; Chen, Na; Zhang, Heng; Liu, Shupeng; Hu, Xinmao; Wen, Jianxiang; Wang, Tingyun

    2017-01-01

    A taper-fiber SERS nanoprobe modified by gold nanoparticles (Au-NPs) with ultrathin alumina layers was fabricated and its ability to perform remote Raman detection was demonstrated. The taper-fiber nanoprobe (TFNP) with a nanoscale tip size under 80 nm was made by heated pulling combined with the chemical etching method. The Au-NPs were deposited on the TFNP surface with the electrostatic self-assembly technology, and then the TFNP was wrapped with ultrathin alumina layers by the atomic layer deposition (ALD) technique. The results told us that with the increasing thickness of the alumina film, the Raman signals decreased. With approximately 1 nm alumina film, the remote detection limit for R6G aqueous solution reached 10−6 mol/L. PMID:28245618

  2. A repeated halving approach to fabricate ultrathin single-walled carbon nanotube films for transparent supercapacitors.

    PubMed

    Niu, Zhiqiang; Zhou, Weiya; Chen, Jun; Feng, Guoxing; Li, Hong; Hu, Yongsheng; Ma, Wenjun; Dong, Haibo; Li, Jinzhu; Xie, Sishen

    2013-02-25

    Ultrathin SWCNT transparent and conductive films on flexible and transparent substrates are prepared via repeatedly halving the directly grown SWCNT films and flexible and transparent supercapacitors with excellent performance were fabricated. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. An Ultrathin Nanoporous Membrane Evaporator.

    PubMed

    Lu, Zhengmao; Wilke, Kyle L; Preston, Daniel J; Kinefuchi, Ikuya; Chang-Davidson, Elizabeth; Wang, Evelyn N

    2017-10-11

    Evaporation is a ubiquitous phenomenon found in nature and widely used in industry. Yet a fundamental understanding of interfacial transport during evaporation remains limited to date owing to the difficulty of characterizing the heat and mass transfer at the interface, especially at high heat fluxes (>100 W/cm 2 ). In this work, we elucidated evaporation into an air ambient with an ultrathin (≈200 nm thick) nanoporous (≈130 nm pore diameter) membrane. With our evaporator design, we accurately monitored the temperature of the liquid-vapor interface, reduced the thermal-fluidic transport resistance, and mitigated the clogging risk associated with contamination. At a steady state, we demonstrated heat fluxes of ≈500 W/cm 2 across the interface over a total evaporation area of 0.20 mm 2 . In the high flux regime, we showed the importance of convective transport caused by evaporation itself and that Fick's first law of diffusion no longer applies. This work improves our fundamental understanding of evaporation and paves the way for high flux phase-change devices.

  4. Charge transfer from an adsorbed ruthenium-based photosensitizer through an ultra-thin aluminium oxide layer and into a metallic substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, Andrew J.; Temperton, Robert H.; Handrup, Karsten

    2014-06-21

    The interaction of the dye molecule N3 (cis-bis(isothiocyanato)bis(2,2-bipyridyl-4,4′-dicarbo-xylato) -ruthenium(II)) with the ultra-thin oxide layer on a AlNi(110) substrate, has been studied using synchrotron radiation based photoelectron spectroscopy, resonant photoemission spectroscopy, and near edge X-ray absorption fine structure spectroscopy. Calibrated X-ray absorption and valence band spectra of the monolayer and multilayer coverages reveal that charge transfer is possible from the molecule to the AlNi(110) substrate via tunnelling through the ultra-thin oxide layer and into the conduction band edge of the substrate. This charge transfer mechanism is possible from the LUMO+2 and 3 in the excited state but not from the LUMO,more » therefore enabling core-hole clock analysis, which gives an upper limit of 6.0 ± 2.5 fs for the transfer time. This indicates that ultra-thin oxide layers are a viable material for use in dye-sensitized solar cells, which may lead to reduced recombination effects and improved efficiencies of future devices.« less

  5. White organic light-emitting diodes based on doped and ultrathin Rubrene layer

    NASA Astrophysics Data System (ADS)

    Li, Yi; Jiang, Yadong; Wen, Wen; Yu, Junsheng

    2010-10-01

    Based on a yellow fluorescent dye of 5, 6, 11, 12-tetraphenylnaphthacene (Rubrene), WOLEDs were fabricated, with doping structure and ultrathin layer structure utilized in the devices. By doping Rubrene into blue-emitting N,N'-bis-(1- naphthyl)-N,N'-biphenyl-1,1'-biphenyl-4,4'-diamine (NPB), the device with a structure of indium-tin-oxide (ITO)/NPB (40 nm)/NPB:Rubrene (0.25 wt%, 7 nm)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) (30 nm)/Mg:Ag exhibited a warm white light with Commissions Internationale De L'Eclairage (CIE) coordinates of (0.38, 0.41) at 12 V. The electroluminescent spectrum of the OLED consisted of blue and yellow fluorescent emissions, the intensity of blue emission increased gradually relative to the orange emission with increasing voltage. This is mainly due to the recombination zone shifted towards the anode side as the transmission rate of electrons grows faster than that of holes under higher bias voltage. A maximum luminance of 7300 cd/m2 and a maximum power efficiency of 0.57 lm/W were achieved. Comparatively, by utilizing ultrathin dopant layer, the device with a structure of ITO/NPB (40 nm)/Rubrene (0.3 nm)/NPB (7 nm)/BCP (30 nm)/Mg:Ag achieved a low turn-on voltage of 3 V and a more stable white light. The peaks of EL spectra located at 430 and 560 nm corresponding to the CIE coordinates of (0.32, 0.32) under bias voltage ranging from 5 to 15 V. A maximum luminance of 5630 cd/m2 and a maximum power efficiency of 0.6 lm/W were achieved. The balanced spectra were attributed to the stable confining of charge carriers and exciton by the thin emitting layers. Hence, with simple device structure and fabricating process, the device with ultrathin layer achieved low turn-on voltage, stable white light emitting and higher power efficiency.

  6. Density Functional Study of the Structure, Stability and Oxygen Reduction Activity of Ultrathin Platinum Nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matanovic, Ivana; Kent, Paul; Garzon, Fernando

    2013-03-14

    We used density functional theory to study the difference in the structure, stability and catalytic reactivity between ultrathin, 0.5–1.0 nm diameter, platinum nanotubes and nanowires. Model nanowires were formed by inserting an inner chain of platinum atoms in small diameter nanotubes. In this way more stable, non-hollow structures were formed. The difference in the electronic structure of platinum nanotubes and nanowires was examined by inspecting the density of surface states and band structure. Furthermore, reactivity toward the oxygen reduction reaction of platinum nanowires was assessed by studying the change in the chemisorption energies of oxygen, hydroxyl, and hydroperoxyl groups, inducedmore » by converting the nanotube models to nanowires. Both ultrathin platinum nanotubes and nanowires show distinct properties compared to bulk platinum. Single-wall nanotubes and platinum nanowires with diameters larger than 1 nm show promise for use as oxygen reduction catalysts.« less

  7. Exploitation of a Self-limiting Process for Reproducible Formation of Ultrathin Ni(1-x)Pt(x) Silicide Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Z Zhang; B Yang; Y Zhu

    This letter reports on a process scheme to obtain highly reproducible Ni{sub 1-x}Pt{sub x} silicide films of 3-6 nm thickness formed on a Si(100) substrate. Such ultrathin silicide films are readily attained by sputter deposition of metal films, metal stripping in wet chemicals, and final silicidation by rapid thermal processing. This process sequence warrants an invariant amount of metal intermixed with Si in the substrate surface region independent of the initial metal thickness, thereby leading to a self-limiting formation of ultrathin silicide films. The crystallographic structure, thickness, uniformity, and morphological stability of the final silicide films depend sensitively on themore » initial Pt fraction.« less

  8. High-efficiency/CRI/color stability warm white organic light-emitting diodes by incorporating ultrathin phosphorescence layers in a blue fluorescence layer

    NASA Astrophysics Data System (ADS)

    Miao, Yanqin; Wang, Kexiang; Zhao, Bo; Gao, Long; Tao, Peng; Liu, Xuguang; Hao, Yuying; Wang, Hua; Xu, Bingshe; Zhu, Furong

    2018-01-01

    By incorporating ultrathin (<0.1 nm) green, yellow, and red phosphorescence layers with different sequence arrangements in a blue fluorescence layer, four unique and simplified fluorescence/phosphorescence (F/P) hybrid, white organic light-emitting diodes (WOLEDs) were obtained. All four devices realize good warm white light emission, with high color rending index (CRI) of >80, low correlated color temperature of <3600 K, and high color stability at a wide voltage range of 5 V-9 V. These hybrid WOLEDs also reveal high forward-viewing external quantum efficiencies (EQE) of 17.82%-19.34%, which are close to the theoretical value of 20%, indicating an almost complete exciton harvesting. In addition, the electroluminescence spectra of the hybrid WOLEDs can be easily improved by only changing the incorporating sequence of the ultrathin phosphorescence layers without device efficiency loss. For example, the hybrid WOLED with an incorporation sequence of ultrathin red/yellow/green phosphorescence layers exhibits an ultra-high CRI of 96 and a high EQE of 19.34%. To the best of our knowledge, this is the first WOLED with good tradeoff among device efficiency, CRI, and color stability. The introduction of ultrathin (<0.1 nm) phosphorescence layers can also greatly reduce the consumption of phosphorescent emitters as well as simplify device structures and fabrication process, thus leading to low cost. Such a finding is very meaningful for the potential commercialization of hybrid WOLEDs.

  9. Synergistically Enhanced Performance of Ultrathin Nanostructured Silicon Solar Cells Embedded in Plasmonically Assisted, Multispectral Luminescent Waveguides.

    PubMed

    Lee, Sung-Min; Dhar, Purnim; Chen, Huandong; Montenegro, Angelo; Liaw, Lauren; Kang, Dongseok; Gai, Boju; Benderskii, Alexander V; Yoon, Jongseung

    2017-04-25

    Ultrathin silicon solar cells fabricated by anisotropic wet chemical etching of single-crystalline wafer materials represent an attractive materials platform that could provide many advantages for realizing high-performance, low-cost photovoltaics. However, their intrinsically limited photovoltaic performance arising from insufficient absorption of low-energy photons demands careful design of light management to maximize the efficiency and preserve the cost-effectiveness of solar cells. Herein we present an integrated flexible solar module of ultrathin, nanostructured silicon solar cells capable of simultaneously exploiting spectral upconversion and downshifting in conjunction with multispectral luminescent waveguides and a nanostructured plasmonic reflector to compensate for their weak optical absorption and enhance their performance. The 8 μm-thick silicon solar cells incorporating a hexagonally periodic nanostructured surface relief are surface-embedded in layered multispectral luminescent media containing organic dyes and NaYF 4 :Yb 3+ ,Er 3+ nanocrystals as downshifting and upconverting luminophores, respectively, via printing-enabled deterministic materials assembly. The ultrathin nanostructured silicon microcells in the composite luminescent waveguide exhibit strongly augmented photocurrent (∼40.1 mA/cm 2 ) and energy conversion efficiency (∼12.8%) than devices with only a single type of luminescent species, owing to the synergistic contributions from optical downshifting, plasmonically enhanced upconversion, and waveguided photon flux for optical concentration, where the short-circuit current density increased by ∼13.6 mA/cm 2 compared with microcells in a nonluminescent medium on a plain silver reflector under a confined illumination.

  10. Synergistically Enhanced Performance of Ultrathin Nanostructured Silicon Solar Cells Embedded in Plasmonically Assisted, Multispectral Luminescent Waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sung-Min; Dhar, Purnim; Chen, Huandong

    Ultrathin silicon solar cells fabricated by anisotropic wet chemical etching of single-crystalline wafer materials represent an attractive materials platform that could provide many advantages for realizing high-performance, low-cost photovoltaics. However, their intrinsically limited photovoltaic performance arising from insufficient absorption of low-energy photons demands careful design of light management to maximize the efficiency and preserve the cost-effectiveness of solar cells. Herein we present an integrated flexible solar module of ultrathin, nanostructured silicon solar cells capable of simultaneously exploiting spectral upconversion and downshifting in conjunction with multispectral luminescent waveguides and a nanostructured plasmonic reflector to compensate for their weak optical absorption andmore » enhance their performance. The 8 μm-thick silicon solar cells incorporating a hexagonally periodic nanostructured surface relief are surface-embedded in layered multispectral luminescent media containing organic dyes and NaYF4:Yb3+,Er3+ nanocrystals as downshifting and upconverting luminophores, respectively, via printing-enabled deterministic materials assembly. The ultrathin nanostructured silicon microcells in the composite luminescent waveguide exhibit strongly augmented photocurrent (~40.1 mA/cm2) and energy conversion efficiency (~12.8%) than devices with only a single type of luminescent species, owing to the synergistic contributions from optical downshifting, plasmonically enhanced upconversion, and waveguided photon flux for optical concentration, where the short-circuit current density increased by ~13.6 mA/cm2 compared with microcells in a nonluminescent medium on a plain silver reflector under a confined illumination.« less

  11. Interparticle coupling effect of silver-gold heterodimer to enhance light harvesting in ultrathin perovskite solar cell

    NASA Astrophysics Data System (ADS)

    Hu, Zhaosheng; Ma, Tingli; Hayase, Shuzi

    2018-01-01

    Thin perovskite solar cells are under intensive interest since they reduce the amount of absorber layer, especially toxic lead in methylammonium lead iodide (MAPbI3) devices and have wide application in semitransparent and tandem solar cells. However, due to the decrease of the layer thickness, thin perovskite devices with weak light-harvesting have poor performance. Moreover, the performance of plasmonic thin perovskite devices by incorporating noncoupling metal NPs cannot give comparable performance with normal devices. In this perspective, we discuss the implication of employing random silver-gold heterodimers in MAPbI3 solar cells with the aim of establishing some guidelines for the efficient ultrathin perovskite solar cells. This method induces an extraordinarily high light-harvesting for ultrathin perovskite film. And the underlying physical mechanism behind the enhanced absorption is deeply investigated by plasmon hybridization, dipolar-dipolar coupling method and FDTD simulation. We notice that perovskite embedded silver-gold heterodimer overcomes the vanished antibonding plasmon resononse (σ * ) in nonjunction area of gold/silver homodimer. A 150-nm perovskite film with embedded random silver-gold heterodimers with 80 nm size and 25 nm gap distance processes 28.15% absorption enhancement compared to the reference film, which is higher than the reported 10% for gold homodimers. And we also predict a realistic solution-processed, easy, and low-cost fabrication method, which provide a means to realize highly efficient ultrathin perovskite solar cell including other absorber-based photovoltaics.

  12. Quantification of strain and charge co-mediated magnetoelectric coupling on ultra-thin Permalloy/PMN-PT interface.

    PubMed

    Nan, Tianxiang; Zhou, Ziyao; Liu, Ming; Yang, Xi; Gao, Yuan; Assaf, Badih A; Lin, Hwaider; Velu, Siddharth; Wang, Xinjun; Luo, Haosu; Chen, Jimmy; Akhtar, Saad; Hu, Edward; Rajiv, Rohit; Krishnan, Kavin; Sreedhar, Shalini; Heiman, Don; Howe, Brandon M; Brown, Gail J; Sun, Nian X

    2014-01-14

    Strain and charge co-mediated magnetoelectric coupling are expected in ultra-thin ferromagnetic/ferroelectric multiferroic heterostructures, which could lead to significantly enhanced magnetoelectric coupling. It is however challenging to observe the combined strain charge mediated magnetoelectric coupling, and difficult in quantitatively distinguish these two magnetoelectric coupling mechanisms. We demonstrated in this work, the quantification of the coexistence of strain and surface charge mediated magnetoelectric coupling on ultra-thin Ni0.79Fe0.21/PMN-PT interface by using a Ni0.79Fe0.21/Cu/PMN-PT heterostructure with only strain-mediated magnetoelectric coupling as a control. The NiFe/PMN-PT heterostructure exhibited a high voltage induced effective magnetic field change of 375 Oe enhanced by the surface charge at the PMN-PT interface. Without the enhancement of the charge-mediated magnetoelectric effect by inserting a Cu layer at the PMN-PT interface, the electric field modification of effective magnetic field was 202 Oe. By distinguishing the magnetoelectric coupling mechanisms, a pure surface charge modification of magnetism shows a strong correlation to polarization of PMN-PT. A non-volatile effective magnetic field change of 104 Oe was observed at zero electric field originates from the different remnant polarization state of PMN-PT. The strain and charge co-mediated magnetoelectric coupling in ultra-thin magnetic/ferroelectric heterostructures could lead to power efficient and non-volatile magnetoelectric devices with enhanced magnetoelectric coupling.

  13. In Situ Integration of Ultrathin PtCu Nanowires with Reduced Graphene Oxide Nanosheets for Efficient Electrocatalytic Oxygen Reduction.

    PubMed

    Yan, Xiaoxiao; Chen, Yifan; Deng, Sihui; Yang, Yifan; Huang, Zhenna; Ge, Cunwang; Xu, Lin; Sun, Dongmei; Fu, Gengtao; Tang, Yawen

    2017-11-27

    Ultrathin Pt-based nanowires are considered as promising electrocatalysts owing to their high atomic utilization efficiency and structural robustness. Moreover, integration of Pt-based nanowires with graphene oxide (GO) could further increase the electrocatalytic performance, yet remains challenging to date. Herein, for the first time we demonstrate the in situ synthesis of ultrathin PtCu nanowires grown over reduced GO (PtCu-NWs/rGO) by a one-pot hydrothermal approach with the aid of amine-terminated poly(N-isopropyl acrylamide) (PNIPAM-NH 2 ). The judicious selection of PNIPAM-NH 2 facilitates the in situ nucleation and anisotropic growth of nanowires on the rGO surface and oriented attachment mechanism accounts for the formation of PtCu ultrathin nanowires. Owing to the synergy between PtCu NWs and rGO support, the PtCu-NWs/rGO outperforms the rGO supported PtCu nanoparticles (PtCu-NPs/rGO), PtCu-NWs, and commercial Pt/C toward the oxygen reduction reaction (ORR) with higher activity and better stability, making it a promising cathodic electrocatalyst for both fuel cells and metal-air cells. Moreover, the present synthetic strategy could inspire the future design of other metal alloy nanowires/carbon hybrid catalysts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Ultrathin Bi2WO6 nanosheet decorated with Pt nanoparticles for efficient formaldehyde removal at room temperature

    NASA Astrophysics Data System (ADS)

    Sun, Dong; Le, Yao; Jiang, Chuanjia; Cheng, Bei

    2018-05-01

    Two-dimensional (2D) ultrathin bismuth tungstate (Bi2WO6) nanosheets (BWO-NS) with a thickness of approximately 4.0 nm were synthesized by a one-step hydrothermal method, and decorated with platinum (Pt) nanoparticles (NPs) via an impregnation/borohydride-reduction approach. The as-prepared ultrathin Pt-BWO-NS exhibited superior catalytic activity for removing gaseous formaldehyde (HCHO) at ambient temperature, in comparison with bulk counterpart with Bi2WO6 sheet thickness of tens of nanometers. The ultrathin structure endowed the Pt-BWO-NS sample with larger specific surface area, which can provide abundant surface active sites for HCHO adsorption and facilitate the homogeneous dispersion of Pt NPs. X-ray photoelectron spectroscopy and hydrogen temperature-programmed reduction analyses revealed the interaction between the Bi2WO6 support and Pt species, which is crucial for activating surface oxygen atoms to participate in the catalytic HCHO oxidation process. By conducting in situ diffuse reflectance infrared Fourier transform spectroscopy under different atmospheres, i.e., gaseous HCHO in nitrogen or oxygen (O2), the reaction mechanism and the role of O2 were elucidated, with dioxymethylene, formate and linearly adsorbed carbon monoxide identified as the main reaction intermediates. This study may provide new enlightenment on fabricating novel 2D nanomaterials for efficient indoor air purification and potentially other environmental applications.

  15. Electron tunneling through atomically flat and ultrathin hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Lee, Gwan-Hyoung; Yu, Young-Jun; Lee, Changgu; Dean, Cory; Shepard, Kenneth L.; Kim, Philip; Hone, James

    2011-12-01

    Electron tunneling through atomically flat and ultrathin hexagonal boron nitride (h-BN) on gold-coated mica was investigated using conductive atomic force microscopy. Low-bias direct tunneling was observed in mono-, bi-, and tri-layer h-BN. For all thicknesses, Fowler-Nordheim tunneling (FNT) occurred at high bias, showing an increase of breakdown voltage with thickness. Based on the FNT model, the barrier height for tunneling (3.07 eV) and dielectric strength (7.94 MV/cm) of h-BN are obtained; these values are comparable to those of SiO2.

  16. Ultrathin endoscopes based on multicore fibers and adaptive optics: a status review and perspectives.

    PubMed

    Andresen, Esben Ravn; Sivankutty, Siddharth; Tsvirkun, Viktor; Bouwmans, Géraud; Rigneault, Hervé

    2016-12-01

    We take stock of the progress that has been made into developing ultrathin endoscopes assisted by wave front shaping. We focus our review on multicore fiber-based lensless endoscopes intended for multiphoton imaging applications. We put the work into perspective by comparing with alternative approaches and by outlining the challenges that lie ahead.

  17. High-Percentage Pathological Findings in Obese Patients Suggest that Esophago-gastro-duodenoscopy Should Be Made Mandatory Prior to Bariatric Surgery.

    PubMed

    D'Silva, Mizelle; Bhasker, Aparna Govil; Kantharia, Nimisha S; Lakdawala, Muffazal

    2018-04-21

    ᅟ: Obesity is a global epidemic and will soon become the number one priority in healthcare management. Bariatric surgery causes a significant improvement in obesity and its related complications. Pre-operative esophago-gastro-duodenoscopy (EGD) is done by several bariatric surgical teams across the world but is still not mandatory. To study the percentage of symptomatic and asymptomatic pathological EGD findings in obese patients undergoing bariatric surgery and to analyze whether these findings influence the eventual choice of bariatric surgery. All patients posted for bariatric surgery at our institute from January 2015 to March 2017 had a pre-operative EGD done by the same team of endoscopists. In this study, totally, 675 patients were assessed prior to routine bariatric surgery. 78.52% of all pre-operative patients had an abnormal EGD. The most common endoscopic abnormalities found were hiatus hernia (52.44%), gastritis (46.22%), presence of Helicobacter (H.) pylori (46.67%), reflux esophagitis (16.89%), Barrett's esophagus (1.78%), gastric erosions (13.19%), and polyps (7.41%). Fifty patients had upper gastrointestinal polyps: 41 in the stomach, 3 in the esophagus, and 6 in the duodenum, mostly benign hyperplastic or inflammatory polyps. Two patients had gastrointestinal stromal tumor (GIST), 6 leiomyoma, and 6 neuroendocrine tumors (NET). Of those with endoscopic evidence of gastroesophageal reflux disease (GERD), 70 (60.03%) of patients were asymptomatic. The pre-operative EGD findings resulted in a change of the planned surgical procedure in 67 (9.93%) patients. Our study suggests that a large percentage of patients undergoing bariatric surgery have pathologically significant endoscopic findings of which a significant number are asymptomatic; this can lead to a change in the planned bariatric procedure in a section of patients; hence, we believe that EGD should be made mandatory as a pre-operative investigation in all bariatric surgery patients.

  18. Ultrathin microwave absorber based on metamaterial

    NASA Astrophysics Data System (ADS)

    Kim, Y. J.; Yoo, Y. J.; Hwang, J. S.; Lee, Y. P.

    2016-11-01

    We suggest that ultrathin broadband metamaterial is a perfect absorber in the microwave regime by utilizing the properties of a resistive sheet and metamaterial. Meta-atoms are composed of four-leaf clover-shape metallic patterns and a metal plane separated by three intermediate resistive sheet layers between four dielectric layers. We interpret the absorption mechanism of the broadband by using the distribution of surface currents at specific frequencies. The simulated absorption was over 99% in 1.8-4.2 GHz. The corresponding experimental absorption was also over 99% in 2.62-4.2 GHz; however, the absorption was slightly lower than 99% in 1.8-2.62 GHz because of the sheet resistance and the changed values for the dielectric constant. Furthermore, it is independent of incident angle. The results of this research indicate the possibility of applications, due to the suppression of noxious exposure, in cell phones, computers and microwave equipments.

  19. Scaling of structure and electrical properties in ultrathin epitaxial ferroelectric heterostructures

    NASA Astrophysics Data System (ADS)

    Nagarajan, V.; Junquera, J.; He, J. Q.; Jia, C. L.; Waser, R.; Lee, K.; Kim, Y. K.; Baik, S.; Zhao, T.; Ramesh, R.; Ghosez, Ph.; Rabe, K. M.

    2006-09-01

    Scaling of the structural order parameter, polarization, and electrical properties was investigated in model ultrathin epitaxial SrRuO3/PbZr0.2Ti0.8O3/SrRuO3/SrTiO3 heterostructures. High-resolution transmission electron microscopy images revealed the interfaces to be sharp and fully coherent. Synchrotron x-ray studies show that a high tetragonality (c /a˜1.058) is maintained down to 50Å thick films, suggesting indirectly that ferroelectricity is fully preserved at such small thicknesses. However, measurement of the switchable polarization (ΔP) using a pulsed probe setup and the out-of-plane piezoelectric response (d33) revealed a systematic drop from ˜140μC/cm2 and 60pm/V for a 150Å thick film to 11μC/cm2 and 7pm/V for a 50Å thick film. This apparent contradiction between the structural measurements and the measured switchable polarization is explained by an increasing presence of a strong depolarization field, which creates a pinned 180° polydomain state for the thinnest films. Existence of a polydomain state is demonstrated by piezoresponse force microscopy images of the ultrathin films. These results suggest that the limit for a ferroelectric memory device may be much larger than the fundamental limit for ferroelectricity.

  20. Camphor-Enabled Transfer and Mechanical Testing of Centimeter-Scale Ultrathin Films.

    PubMed

    Wang, Bin; Luo, Da; Li, Zhancheng; Kwon, Youngwoo; Wang, Meihui; Goo, Min; Jin, Sunghwan; Huang, Ming; Shen, Yongtao; Shi, Haofei; Ding, Feng; Ruoff, Rodney S

    2018-05-21

    Camphor is used to transfer centimeter-scale ultrathin films onto custom-designed substrates for mechanical (tensile) testing. Compared to traditional transfer methods using dissolving/peeling to remove the support-layers, camphor is sublimed away in air at low temperature, thereby avoiding additional stress on the as-transferred films. Large-area ultrathin films can be transferred onto hollow substrates without damage by this method. Tensile measurements are made on centimeter-scale 300 nm-thick graphene oxide film specimens, much thinner than the ≈2 μm minimum thickness of macroscale graphene-oxide films previously reported. Tensile tests were also done on two different types of large-area samples of adlayer free CVD-grown single-layer graphene supported by a ≈100 nm thick polycarbonate film; graphene stiffens this sample significantly, thus the intrinsic mechanical response of the graphene can be extracted. This is the first tensile measurement of centimeter-scale monolayer graphene films. The Young's modulus of polycrystalline graphene ranges from 637 to 793 GPa, while for near single-crystal graphene, it ranges from 728 to 908 GPa (folds parallel to the tensile loading direction) and from 683 to 775 GPa (folds orthogonal to the tensile loading direction), demonstrating the mechanical performance of large-area graphene in a size scale relevant to many applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Portable disposable ultrathin endoscopy tested through percutaneous endoscopic gastrostomy.

    PubMed

    Baeg, Myong Ki; Lim, Chul-Hyun; Kim, Jin Su; Cho, Yu Kyung; Park, Jae Myung; Lee, Bo-In; Lee, In-Seok; Choi, Myung-Gyu

    2016-11-01

    A portable disposable ultrathin endoscope (DUE) with high visual quality and maneuverability would reduce the need for expensive facilities and emergency endoscopy could be available anywhere. It would increase patient satisfaction, prevent unnecessary sedation, and reduce infection. Our aim was to evaluate the usefulness of portable DUE in performing percutaneous endoscopic gastrostomy (PEG). We prospectively enrolled patients who underwent PEG under DUE guidance and compared them with historical controls who underwent PEG under conventional ultrathin endoscopy (CUE) guidance. The primary outcomes were successful stomach visualization and PEG tube insertion. Twenty-five patients (19 male) were enrolled and compared with 25 gender and indication-matched controls. The most common indications for PEG were aspiration due to stroke or brain injury, dementia, and head and neck cancer. Entrance into the stomach was achieved in 92.0% (23/25) and 96% (24/25) in the DUE and CUE groups, and PEG was performed in 91.3% (21/23) and 95.8% (23/24), respectively. The mean insertion time for the DUE and CUE groups were 22.7 ± 9.3 minutes and 17.1 ± 5.7 minutes (P = 0.044). The 3 cases of failure to reach the stomach in both groups were caused by esophageal blockage. The 3 cases of failed PEG tube insertion were caused by poor visualization of the insertion site. Bleeding and pneumoperitoneum occurred in 1 and 2 patients in the DUE group. One case of fever was noted in the CUE group. All adverse events were conservatively managed. Our study shows that portable DUE in facilities without endoscopy equipment may be clinically feasible.

  2. Ultrathin Terahertz Quarter-wave plate based on Split Ring Resonator and Wire Grating hybrid Metasurface.

    PubMed

    Nouman, Muhammad Tayyab; Hwang, Ji Hyun; Jang, Jae-Hyung

    2016-12-13

    Planar metasurface based quarter-wave plates offer various advantages over conventional waveplates in terms of compactness, flexibility and simple fabrication; however they offer very narrow bandwidth of operation. Here, we demonstrate a planar terahertz (THz) metasurface capable of linear to circular polarization conversion and vice versa in a wide frequency range. The proposed metasurface is based on horizontally connected split ring resonators and is realized on an ultrathin (0.05λ) zeonor substrate. The fabricated quarter waveplate realizes linear to circular polarization conversion in two broad frequency bands comprising 0.64-0.82 THz and 0.96-1.3 THz with an insertion loss ranging from -3.9 to -10 dB. By virtue of ultrathin sub wavelength thickness, the proposed waveplate design is well suited for application in near field THz optical systems. Additionally, the proposed metasurface design offers novel transmission phase characteristics that present further opportunities to realize dynamic polarization control of incident waves.

  3. Ultrathin Terahertz Quarter-wave plate based on Split Ring Resonator and Wire Grating hybrid Metasurface

    PubMed Central

    Nouman, Muhammad Tayyab; Hwang, Ji Hyun; Jang, Jae-Hyung

    2016-01-01

    Planar metasurface based quarter-wave plates offer various advantages over conventional waveplates in terms of compactness, flexibility and simple fabrication; however they offer very narrow bandwidth of operation. Here, we demonstrate a planar terahertz (THz) metasurface capable of linear to circular polarization conversion and vice versa in a wide frequency range. The proposed metasurface is based on horizontally connected split ring resonators and is realized on an ultrathin (0.05λ) zeonor substrate. The fabricated quarter waveplate realizes linear to circular polarization conversion in two broad frequency bands comprising 0.64–0.82 THz and 0.96–1.3 THz with an insertion loss ranging from −3.9 to −10 dB. By virtue of ultrathin sub wavelength thickness, the proposed waveplate design is well suited for application in near field THz optical systems. Additionally, the proposed metasurface design offers novel transmission phase characteristics that present further opportunities to realize dynamic polarization control of incident waves. PMID:27958358

  4. Ultra-thin optical vortex phase plate based on the metasurface and the angular momentum transformation

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Yan; Guo, Zhongyi; Li, Rongzhen; Zhang, Jingran; Zhang, Anjun; Qu, Shiliang

    2015-04-01

    The ultra-thin optical vortex phase plate (VPP) has been designed and investigated based on the metasurface of the metal rectangular split-ring resonators (MRSRRs) array. The circularly polarized incident light can convert into corresponding cross-polarization transmission light, and the phase and the amplitude of cross-polarization transmission light can be simultaneously governed by modulating two arms of the MRSRR. The MRSRR has been arranged in a special order for forming an ultra-thin optical VPP that can covert a plane wave into a vortex beam with a variety of the topological charges, and the transformation between spin angular momentum (SAM) and orbital angular momentum (OAM) has been discussed in detail. The multi-spectral characteristics of the VPP have also been investigated, and the operating bandwidth of the designed VPP is 190 nm (in the range of 710-900 nm), which enable a potential implication for integrated optics and vortex optics.

  5. Field-dependent magnetization of BiFeO 3 in ultrathin La 0.7Sr 0.3MnO 3/BiFeO 3 superlattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzsimmons, Michael R.; Jia, Quanxi X.; Singh, Surendra

    2015-12-02

    We report the observation of field-induced magnetization of BiFeO 3 (BFO) in an ultrathin La 0.7Sr 0.3MnO 3 (LSMO)/BFO superlattice using polarized neutron reflectivity (PNR). The depth dependent structure and magnetic characterization of subnano layer thick (thickness ~ 0.7 nm each) LSMO/BFO hetrostructure is carried out using X-ray reflectivity and PNR techniques. Our PNR results indicate parallel alignment of magnetization as well as enhancement in magnetic moment across LSMO/BFO interfaces. The study showed an increase in average magnetization on increasing applied magnetic field at 10K. As a result, we observed a saturation magnetization of 110 ± 15 kA/m (~0.8 μmore » B/Fe) for ultrathin BFO layer (~2 unit cell) sandwiched between ultrathin LSMO layers (~ 2 unit cell).« less

  6. A cost-effective nanoporous ultrathin film electrode based on nanoporous gold/IrO2 composite for proton exchange membrane water electrolysis

    NASA Astrophysics Data System (ADS)

    Zeng, Yachao; Guo, Xiaoqian; Shao, Zhigang; Yu, Hongmei; Song, Wei; Wang, Zhiqiang; Zhang, Hongjie; Yi, Baolian

    2017-02-01

    A cost-effective nanoporous ultrathin film (NPUF) electrode based on nanoporous gold (NPG)/IrO2 composite has been constructed for proton exchange membrane (PEM) water electrolysis. The electrode was fabricated by integrating IrO2 nanoparticles into NPG through a facile dealloying and thermal decomposition method. The NPUF electrode is featured in its 3D interconnected nanoporosity and ultrathin thickness. The nanoporous ultrathin architecture is binder-free and beneficial for improving electrochemical active surface area, enhancing mass transport and facilitating releasing of oxygen produced during water electrolysis. Serving as anode, a single cell performance of 1.728 V (@ 2 A cm-2) has been achieved by NPUF electrode with a loading of IrO2 and Au at 86.43 and 100.0 μg cm-2 respectively, the electrolysis voltage is 58 mV lower than that of conventional electrode with an Ir loading an order of magnitude higher. The electrolysis voltage kept relatively constant up to 300 h (@250 mA cm-2) during the course of durability test, manifesting that NPUF electrode is promising for gas evolution.

  7. Distinguishing triplet energy transfer and trap-assisted recombination in multi-color organic light-emitting diode with an ultrathin phosphorescent emissive layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Qin, E-mail: xueqin19851202@163.com; Liu, Shouyin; Xie, Guohua

    2014-03-21

    An ultrathin layer of deep-red phosphorescent emitter tris(1-phenylisoquinoline) iridium (III) (Ir(piq){sub 3}) is inserted within different positions of the electron blocking layer fac-tris (1-phenylpyrazolato-N,C{sup 2′})-iridium(III) (Ir(ppz){sub 3}) to distinguish the contribution of the emission from the triplet exciton energy transfer/diffusion from the adjacent blue phosphorescent emitter and the trap-assisted recombination from the narrow band-gap emitter itself. The charge trapping effect of the narrow band-gap deep-red emitter which forms a quantum-well-like structure also plays a role in shaping the electroluminescent characteristics of multi-color organic light-emitting diodes. By accurately controlling the position of the ultrathin sensing layer, it is considerably easy tomore » balance the white emission which is quite challenging for full-color devices with multiple emission zones. There is nearly no energy transfer detectable if 7 nm thick Ir(ppz){sub 3} is inserted between the blue phosphorescent emitter and the ultrathin red emitter.« less

  8. Archetypal structure of ultrathin alumina films: Grazing-incidence x-ray diffraction on Ni(111)

    NASA Astrophysics Data System (ADS)

    Prévot, G.; Le Moal, S.; Bernard, R.; Croset, B.; Lazzari, R.; Schmaus, D.

    2012-05-01

    We have studied by grazing-incidence x-ray diffraction the atomic structure of an ultrathin alumina film grown on Ni(111). We show that, since there is neither registry between the film and the substrate nor induced Ni relaxations, this system appears to be a prototypical freestanding oxide layer. We have been able to unambiguously determine the three-dimensional structure of the film, which consists of a substrate/Al16/O24/Al24/O28 stacking within a (18.23 × 10.53 Å) R0° unit cell. From the different Al coordinations (3/4/5) in the layer and from the precise determination of the Al-O interatomic distances, we conclude that the film structure presents some similarities with the η phase of bulk alumina, which also has a high surface/bulk ratio. The precise comparison between these two structures allows us to explain that the perfect 3 ratio between the two sides of the mesh of the film is governed by the stacking of the two central planes, combining oxygen close-packed atoms below Al atoms in tetrahedral or pyramidal positions. Moreover, Al atoms at the interface plane of the ultrathin film adopt a quasitrihedral configuration, which confirms that, in the alumina η phase, Al atoms with such a coordination are located near the surface of the nanocrystals. The atomic structure is also very close to the one first proposed by Kresse [G. Kresse, M. Schmid, E. Napetschnig, M. Shishkin, L. Köhler, and P. Varga, ScienceSCIEAS0036-807510.1126/science.1107783 308, 1440 (2005)] for alumina films on NiAl(110). This strongly suggests that this atomic model, within small variations, can be extended to ultrathin alumina film on numerous other metal substrates and may be quasi-intrinsic to a freestanding layer rather than governed by the interactions between the film and the substrate.

  9. Angularly resolved characterization of ion beams from laser-ultrathin foil interactions

    NASA Astrophysics Data System (ADS)

    Scullion, C.; Doria, D.; Romagnani, L.; Ahmed, H.; Alejo, A.; Ettlinger, O. C.; Gray, R. J.; Green, J.; Hicks, G. S.; Jung, D.; Naughton, K.; Padda, H.; Poder, K.; Scott, G. G.; Symes, D. R.; Kar, S.; McKenna, P.; Najmudin, Z.; Neely, D.; Zepf, M.; Borghesi, M.

    2016-09-01

    Methods and techniques used to capture and analyze beam profiles produced from the interaction of intense, ultrashort laser pulses and ultrathin foil targets using stacks of Radiochromic Film (RCF) and Columbia Resin #39 (CR-39) are presented. The identification of structure in the beam is particularly important in this regime, as it may be indicative of the dominance of specific acceleration mechanisms. Additionally, RCF can be used to deconvolve proton spectra with coarse energy resolution while mantaining angular information across the whole beam.

  10. Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings

    NASA Astrophysics Data System (ADS)

    Li, Zhongyang; Palacios, Edgar; Butun, Serkan; Kocer, Hasan; Aydin, Koray

    2015-10-01

    Resonant absorbers based on nanostructured materials are promising for variety of applications including optical filters, thermophotovoltaics, thermal emitters, and hot-electron collection. One of the significant challenges for such micro/nanoscale featured medium or surface, however, is costly lithographic processes for structural patterning which restricted from industrial production of complex designs. Here, we demonstrate lithography-free, broadband, polarization-independent optical absorbers based on a three-layer ultrathin film composed of subwavelength chromium (Cr) and oxide film coatings. We have measured almost perfect absorption as high as 99.5% across the entire visible regime and beyond (400-800 nm). In addition to near-ideal absorption, our absorbers exhibit omnidirectional independence for incidence angle over ±60 degrees. Broadband absorbers introduced in this study perform better than nanostructured plasmonic absorber counterparts in terms of bandwidth, polarization and angle independence. Improvements of such “blackbody” samples based on uniform thin-film coatings is attributed to extremely low quality factor of asymmetric highly-lossy Fabry-Perot cavities. Such broadband absorber designs are ultrathin compared to carbon nanotube based black materials, and does not require lithographic processes. This demonstration redirects the broadband super absorber design to extreme simplicity, higher performance and cost effective manufacturing convenience for practical industrial production.

  11. Facile and environmentally friendly synthesis of ultrathin nickel hydroxide nanosheets with excellent supercapacitor performances

    NASA Astrophysics Data System (ADS)

    Hu, Xiaowei; Liu, Sheng; Li, Chenghui; Huang, Jiahao; Luv, Jixing; Xu, Pan; Liu, Jian; You, Xiao-Zeng

    2016-06-01

    In this article, we report a facile and environmentally friendly glutamic acid-assisted hydrothermal strategy for the preparation of ultrathin two-dimensional (2D) β-Ni(OH)2 nanosheets with a thickness of about 2 nm, which exhibit a maximum specific capacitance of 2537.4 F g-1 at a current density of 1 A g-1, even at 10 A g-1, the specific capacitance is still maintained at 2290.0 F g-1 with 77.6% retention after 3000 cycles.In this article, we report a facile and environmentally friendly glutamic acid-assisted hydrothermal strategy for the preparation of ultrathin two-dimensional (2D) β-Ni(OH)2 nanosheets with a thickness of about 2 nm, which exhibit a maximum specific capacitance of 2537.4 F g-1 at a current density of 1 A g-1, even at 10 A g-1, the specific capacitance is still maintained at 2290.0 F g-1 with 77.6% retention after 3000 cycles. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02912d

  12. Design of an ultra-thin dual band infrared system

    NASA Astrophysics Data System (ADS)

    Du, Ke; Cheng, Xuemin; Lv, Qichao; Hu, YiFei

    2014-11-01

    The ultra-thin imaging system using reflective multiple-fold structure has smaller volume and less weight while maintaining high resolution compared with conventional optical systems. The multi-folded approach can significantly extend focal distance within wide spectral range without incurring chromatic aberrations. In this paper, we present a dual infrared imaging system of four-folded reflection with two air-spaced concentric reflective surfaces. The dual brand IR system has 107mm effective focal length, 0.7NA, +/-4° FOV, and 50mm effective aperture with 80mm outer diameter into a 25mm total thickness, which spectral response is 3~12μm.

  13. Low thermal conductivity in ultrathin carbon nanotube (2, 1)

    PubMed Central

    Zhu, Liyan; Li, Baowen

    2014-01-01

    Molecular dynamic simulations reveal that the ultrathin carbon nanotube (CNT) (2, 1) with a reconstructed structure exhibits a surprisingly low thermal conductivity, which is only ~16–30% of those in regular CNTs, e.g. CNT (2, 2) and (5, 5). Detailed lattice dynamic calculations suggest that the acoustic phonon modes greatly soften in CNT (2, 1) as compared to regular CNTs. Moreover, both phonon group velocities and phonon lifetimes strikingly decrease in CNT (2, 1), which result in the remarkable reduction of thermal conductivity. Besides, isotope doping and chemical functionalization enable the further reduction of thermal conductivity in CNT (2, 1). PMID:24815003

  14. Ultrathin Composite Polymeric Membranes for CO2 /N2 Separation with Minimum Thickness and High CO2 Permeance.

    PubMed

    Benito, Javier; Sánchez-Laínez, Javier; Zornoza, Beatriz; Martín, Santiago; Carta, Mariolino; Malpass-Evans, Richard; Téllez, Carlos; McKeown, Neil B; Coronas, Joaquín; Gascón, Ignacio

    2017-10-23

    The use of ultrathin films as selective layers in composite membranes offers significant advantages in gas separation for increasing productivity while reducing the membrane size and energy costs. In this contribution, composite membranes have been obtained by the successive deposition of approximately 1 nm thick monolayers of a polymer of intrinsic microporosity (PIM) on top of dense membranes of the ultra-permeable poly[1-(trimethylsilyl)-1-propyne] (PTMSP). The ultrathin PIM films (30 nm in thickness) demonstrate CO 2 permeance up to seven times higher than dense PIM membranes using only 0.04 % of the mass of PIM without a significant decrease in CO 2 /N 2 selectivity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Pathways from disordered to ordered nanostructures from defect guided dewetting of ultrathin bilayers.

    PubMed

    Hens, Abhiram; Mondal, Kartick; Biswas, Gautam; Bandyopadhyay, Dipankar

    2016-03-01

    Transitions from spinodal to pattern-guided dewetting of a bilayer of ultrathin films (<10nm) confined between a pair of patterned surfaces have been explored employing molecular dynamic (MD) simulations. The physical or chemical defects of different sizes and shapes are decorated on the confining substrates by either removal or addition of multiple layers of similar or dissimilar atoms. The simulations are performed to identify the transition from spinodal pathway to the heterogeneous nucleation route, with the variation in the size of the substrate patterns. The MD simulations reveal the limits beyond which the defects can guide the dewetting to generate ordered patterns of nanoscopic size and periodicity. Comparing the results obtained from the MD simulations with the more widely employed continuum dynamics approach highlights the importance of the MD approach in quantitatively analyzing the dynamics of the dewetting of ultrathin films. The study demonstrates that the pattern-guided dewetting of confined bilayers can lead to ordered holes, droplets, and stripes with size and periodicity less than 10nm, which are yet to be realized experimentally and can be of significance for a number of future applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Ultra-thin and -broadband microwave magnetic absorber enhanced by phase gradient metasurface incorporation

    NASA Astrophysics Data System (ADS)

    Fan, Ya; Wang, Jiafu; Li, Yongfeng; Pang, Yongqiang; Zheng, Lin; Xiang, Jiayu; Zhang, Jieqiu; Qu, Shaobo

    2018-05-01

    Based on the effect of anomalous reflection and refraction caused by the circularly cross-polarized phase gradient metasurface (PGM), an ultra-thin and -broadband composite absorber composed of metasurface and conventional magnetic absorbing film is proposed and demonstrated in this paper. In the case of keeping nearly the same thickness of absorbing layer, the equivalent thickness of magnetic absorbing film is enlarged by the effect of anomalous reflection and refraction, resulting in the expansion and improvement of the absorbing bandwidth and efficiency in low microwave frequency. A biarc metallic sub-cell for circularly crossed polarization is adopted to form a broadband phase gradient, by the means of rotating the Pancharatnam–Berry phases. As indicated in the experimental results, the fabricated 3.6 mm-thick absorber can averagely absorb microwave energy with the specular reflection below  ‑10 dB in the frequency interval of 2–12 GHz, which shows a good match with simulated results. Due to ultra-thin thickness and ultra-wide operating bandwidth, the proposed application of PGM in absorbing can provide an alternative way to enhance the absorbing property of current absorbing materials.

  17. Fabrication of Gold-Coated Ultra-Thin Anodic Porous Alumina Substrates for Augmented SERS

    PubMed Central

    Toccafondi, Chiara; Proietti Zaccaria, Remo; Dante, Silvia; Salerno, Marco

    2016-01-01

    Anodic porous alumina (APA) is a nanostructured material used as a template in several nanotechnological applications. We propose the use of APA in ultra-thin form (<100 nm) for augmented surface-enhanced Raman scattering (SERS). Here, the effect of in-depth thinning of the APA nanostructures for possible maximization of SERS was addressed. Anodization was carried out on ultra-thin films of aluminum on glass and/or silicon, followed by pore-opening. Gold (Au) was overcoated and micro-Raman/SERS measurements were carried out on test target analytes. Finite integration technique simulations of the APA-Au substrate were used both for the experimental design and simulations. It was observed that, under optimized conditions of APA and Au thickness, the SERS enhancement is higher than on standard APA-Au substrates based on thin (~100 nm) APA by up to a factor of ~20 for test molecules of mercaptobenzoic acid. The agreement between model and experimental results confirms the current understanding of SERS as being mainly due to the physical origin of plasmon resonances. The reported results represent one step towards micro-technological, integrated, disposable, high-sensitivity SERS chemical sensors and biosensors based on similar substrates. PMID:28773525

  18. Individual Magnetic Molecules on Ultrathin Insulating Surfaces

    NASA Astrophysics Data System (ADS)

    El Hallak, Fadi; Warner, Ben; Hirjibehedin, Cyrus

    2012-02-01

    Single molecule magnets have attracted ample interest because of their exciting magnetic and quantum properties. Recent studies have demonstrated that some of these molecules can be evaporated on surfaces without losing their magnetic properties [M. Mannini et al., Nature 468, 417, (2010)]. This remarkable progress enhances the chances of real world applications for these molecules. We present STM imaging and spectroscopy data on iron phthalocyanine molecules deposited on Cu(100) and on a Cu2N ultrathin insulating surface. These molecules have been shown to display a large magnetic anisotropy on another thin insulating surface, oxidized Cu(110) [N. Tsukahara et al., Phys. Rev. Lett. 102, 167203 (2009)]. By using a combination of elastic and inelastic electron tunnelling spectroscopy, we investigate the binding of the molecules to the surface and the impact that the surface has on their electronic and magnetic properties.

  19. Interfacial structure and electrical properties of ultrathin HfO2 dielectric films on Si substrates by surface sol-gel method

    NASA Astrophysics Data System (ADS)

    Gong, You-Pin; Li, Ai-Dong; Qian, Xu; Zhao, Chao; Wu, Di

    2009-01-01

    Ultrathin HfO2 films with about ~3 nm thickness were deposited on n-type (1 0 0) silicon substrates using hafnium chloride (HfCl4) source by the surface sol-gel method and post-deposition annealing (PDA). The interfacial structure and electrical properties of ultrathin HfO2 films were investigated. The HfO2 films show amorphous structures and smooth surface morphologies with a very thin interfacial oxide layer of ~0.5 nm and small surface roughness (~0.45 nm). The 500 °C PDA treatment forms stronger Hf-O bonds, leading to passivated traps, and the interfacial layer is mainly Hf silicate (HfxSiyOz). Equivalent oxide thickness of around 0.84 nm of HfO2/Si has been obtained with a leakage current density of 0.7 A cm-2 at Vfb + 1 V after 500 °C PDA. It was found that the current conduction mechanism of HfO2/Si varied from Schottky-Richardson emission to Fowler-Nordheim tunnelling at an applied higher positive voltage due to the activated partial traps remaining in the ultrathin HfO2 films.

  20. Development of an ultra-thin film comprised of a graphene membrane and carbon nanotube vein support.

    PubMed

    Lin, Xiaoyang; Liu, Peng; Wei, Yang; Li, Qunqing; Wang, Jiaping; Wu, Yang; Feng, Chen; Zhang, Lina; Fan, Shoushan; Jiang, Kaili

    2013-01-01

    Graphene, exhibiting superior mechanical, thermal, optical and electronic properties, has attracted great interest. Considering it being one-atom-thick, and the reduced mechanical strength at grain boundaries, the fabrication of large-area suspended chemical vapour deposition graphene remains a challenge. Here we report the fabrication of an ultra-thin free-standing carbon nanotube/graphene hybrid film, inspired by the vein-membrane structure found in nature. Such a square-centimetre-sized hybrid film can realize the overlaying of large-area single-layer chemical vapour deposition graphene on to a porous vein-like carbon nanotube network. The vein-membrane-like hybrid film, with graphene suspended on the carbon nanotube meshes, possesses excellent mechanical performance, optical transparency and good electrical conductivity. The ultra-thin hybrid film features an electron transparency close to 90%, which makes it an ideal gate electrode in vacuum electronics and a high-performance sample support in transmission electron microscopy.

  1. Aerosol-assisted chemical vapor deposition of ultra-thin CuOx films as hole transport material for planar perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Zhixin; Chen, Shuqun; Li, Pingping; Li, Hongyi; Wu, Junshu; Hu, Peng; Wang, Jinshu

    This paper reports on the fabrication of CuOx films to be used as hole transporting layer (HTL) in CH3NH3PbI3 perovskite solar cells (PSCs). Ultra-thin CuOx coatings were grown onto FTO substrates for the first time via aerosol-assisted chemical vapor deposition (AACVD) of copper acetylacetonate in methanol. After incorporating into the PSCs prepared at ambient air, a highest power conversion efficiency (PCE) of 8.26% with HTL and of 3.34% without HTL were achieved. Our work represents an important step in the development of low-cost CVD technique for fabricating ultra-thin metal oxide functional layers in thin film photovoltaics.

  2. Three-dimensional TiO2 nanowire@NiMoO4 ultrathin nanosheet core-shell arrays for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Cao, Minglei; Bu, Yi; Lv, Xiaowei; Jiang, Xingxing; Wang, Lichuan; Dai, Sirui; Wang, Mingkui; Shen, Yan

    2018-03-01

    This study reports a general and rational two-step hydrothermal strategy to fabricate three-dimensional (3D) TiO2 nanowire@NiMoO4 ultrathin nanosheet core-shell arrays (TNAs-NMO) as additives-free anodes for lithium-ion batteries (LIBs). The TNAs-NMO electrode delivers a reversible capacity of up to 446.6 mA h g-1 over 120 cycles at the current density of 0.2 A g-1 and a high rate capacity of 234.2 mA h g-1 at 2.0 A g-1. Impressively, the capacity retention efficiency is 74.7% after 2500 cycles at the high rate of 2.0 A g-1. In addition, the full cell consisting of TNAs-NMO anode and LCO cathode can afford a specific energy of up to 220.3 W h kg-1 (based on the entire mass of both electrodes). The high electrochemical performance of the TNAs-NMO electrode is ascribed to its 3D core-shell nanowire array architecture, in which the TiO2 nanowire arrays (TNAs) and the ultrathin NiMoO4 nanosheets exhibit strong synergistic effects. The TNAs maintain mechanical integrity of the electrode and the ultrathin NiMoO4 nanosheets contribute to high capacity and favorable electronic conductivity.

  3. Electric-Field-Driven Dual Vacancies Evolution in Ultrathin Nanosheets Realizing Reversible Semiconductor to Half-Metal Transition.

    PubMed

    Lyu, Mengjie; Liu, Youwen; Zhi, Yuduo; Xiao, Chong; Gu, Bingchuan; Hua, Xuemin; Fan, Shaojuan; Lin, Yue; Bai, Wei; Tong, Wei; Zou, Youming; Pan, Bicai; Ye, Bangjiao; Xie, Yi

    2015-12-02

    Fabricating a flexible room-temperature ferromagnetic resistive-switching random access memory (RRAM) device is of fundamental importance to integrate nonvolatile memory and spintronics both in theory and practice for modern information technology and has the potential to bring about revolutionary new foldable information-storage devices. Here, we show that a relatively low operating voltage (+1.4 V/-1.5 V, the corresponding electric field is around 20,000 V/cm) drives the dual vacancies evolution in ultrathin SnO2 nanosheets at room temperature, which causes the reversible transition between semiconductor and half-metal, accompanyied by an abrupt conductivity change up to 10(3) times, exhibiting room-temperature ferromagnetism in two resistance states. Positron annihilation spectroscopy and electron spin resonance results show that the Sn/O dual vacancies in the ultrathin SnO2 nanosheets evolve to isolated Sn vacancy under electric field, accounting for the switching behavior of SnO2 ultrathin nanosheets; on the other hand, the different defect types correspond to different conduction natures, realizing the transition between semiconductor and half-metal. Our result represents a crucial step to create new a information-storage device realizing the reversible transition between semiconductor and half-metal with flexibility and room-temperature ferromagnetism at low energy consumption. The as-obtained half-metal in the low-resistance state broadens the application of the device in spintronics and the semiconductor to half-metal transition on the basis of defects evolution and also opens up a new avenue for exploring random access memory mechanisms and finding new half-metals for spintronics.

  4. Use of anticoagulant or antiplatelet agents is not related to epistaxis in patients undergoing transnasal endoscopy

    PubMed Central

    Kobayashi, Yoshiya; Komazawa, Yoshinori; Yuki, Mika; Ishitobi, Hitomi; Nagaoka, Makoto; Takahashi, Yoshiko; Nakashima, Sayaka; Shizuku, Toshihiro; Kinoshita, Yoshikazu

    2018-01-01

    Background and study aims  Unsedated transnasal endoscopy (uTNE) has become accepted as a safe and tolerable method for upper gastrointestinal tact examinations. Epistaxis is 1 of the major complications of TNE, though its risk factors have not been elucidated. Generally, patients administered an anticoagulant or antiplatelet drug are considered to have an increased risk of epistaxis during TNE. Here, we investigated risk factors of epistaxis in patients undergoing uTNE, with focus on those who received antithrombotic agents. Patients and methods  We enrolled 6860 patients (average age 55.6 ± 12.97 years; 3405 males, 3455 females) who underwent uTNE and received the same preparations for the procedure. Epistaxis was evaluated using endoscopic images obtained while withdrawing the scope through the nostril. We also noted current use of medications including anticoagulant or antiplatelet agents prior to the endoscopic examination. Results  Epistaxis occurred in 3.6 % of the enrolled patients (245/6860), and that rate was significantly higher in younger patients (average age 49.31 ± 11.8 years for epistaxis group vs. 55.83 ± 13.0 years for no epistaxis group, P  < 0.01) as well as females (4.78 % vs. 2.35 %, P  < 0.01). The odds ratio for occurrence of epistaxis was 2.31 (95 %CI: 1.746 – 3.167) in the younger patients and 2.02 (95 % CI: 1.542 – 2.659) in females. In contrast, there was no significant difference for rate of epistaxis between patients with and without treatment with an antithrombotic agent (3.0 % vs. 3.6 %). Conclusions  The rate of epistaxis was higher in younger and female patients. Importantly, that rate was not significantly increased in patients who were administered an antithrombotic agent. PMID:29344570

  5. High Efficient Ultra-Thin Flat Optics Based on Dielectric Metasurfaces

    NASA Astrophysics Data System (ADS)

    Ozdemir, Aytekin

    Metasurfaces which emerged as two-dimensional counterparts of metamaterials, facilitate the realization of arbitrary phase distributions using large arrays with subwavelength and ultra-thin features. Even if metasurfaces are ultra-thin, they still effectively manipulate the phase, amplitude, and polarization of light in transmission or reflection mode. In contrast, conventional optical components are bulky, and they lose their functionality at sub-wavelength scales, which requires conceptually new types of nanoscale optical devices. On the other hand, as the optical systems shrink in size day by day, conventional bulky optical components will have tighter alignment and fabrication tolerances. Since metasurfaces can be fabricated lithographically, alignment can be done during lithographic fabrication, thus eliminating the need for post-fabrication alignments. In this work, various types of metasurface applications are thoroughly investigated for robust wavefront engineering with enhanced characteristics in terms of broad bandwidth, high efficiency and active tunability, while beneficial for application. Plasmonic metasurfaces are not compatible with the CMOS process flow, and, additionally their high absorption and ohmic loss is problematic in transmission based applications. Dielectric metasurfaces, however, offer a strong magnetic response at optical frequencies, and thus they can offer great opportunities for interacting not only with the electric component of a light field, but also with its magnetic component. They show great potential to enable practical device functionalities at optical frequencies, which motivates us to explore them one step further on wavefront engineering and imaging sensor platforms. Therefore, we proposed an efficient ultra-thin flat metalens at near-infrared regime constituted by silicon nanodisks which can support both electric and magnetic dipolar Mie-type resonances. These two dipole resonances can be overlapped at the same frequency

  6. Surface passivation investigation on ultra-thin atomic layer deposited aluminum oxide layers for their potential application to form tunnel layer passivated contacts

    NASA Astrophysics Data System (ADS)

    Xin, Zheng; Ling, Zhi Peng; Nandakumar, Naomi; Kaur, Gurleen; Ke, Cangming; Liao, Baochen; Aberle, Armin G.; Stangl, Rolf

    2017-08-01

    The surface passivation performance of atomic layer deposited ultra-thin aluminium oxide layers with different thickness in the tunnel layer regime, i.e., ranging from one atomic cycle (∼0.13 nm) to 11 atomic cycles (∼1.5 nm) on n-type silicon wafers is studied. The effect of thickness and thermal activation on passivation performance is investigated with corona-voltage metrology to measure the interface defect density D it(E) and the total interface charge Q tot. Furthermore, the bonding configuration variation of the AlO x films under various post-deposition thermal activation conditions is analyzed by Fourier transform infrared spectroscopy. Additionally, poly(3,4-ethylenedioxythiophene) poly(styrene sulfonate) is used as capping layer on ultra-thin AlO x tunneling layers to further reduce the surface recombination current density to values as low as 42 fA/cm2. This work is a useful reference for using ultra-thin ALD AlO x layers as tunnel layers in order to form hole selective passivated contacts for silicon solar cells.

  7. Portable disposable ultrathin endoscopy tested through percutaneous endoscopic gastrostomy

    PubMed Central

    Baeg, Myong Ki; Lim, Chul-Hyun; Kim, Jin Su; Cho, Yu Kyung; Park, Jae Myung; Lee, Bo-In; Lee, In-Seok; Choi, Myung-Gyu

    2016-01-01

    Abstract Background: A portable disposable ultrathin endoscope (DUE) with high visual quality and maneuverability would reduce the need for expensive facilities and emergency endoscopy could be available anywhere. It would increase patient satisfaction, prevent unnecessary sedation, and reduce infection. Our aim was to evaluate the usefulness of portable DUE in performing percutaneous endoscopic gastrostomy (PEG). Methods: We prospectively enrolled patients who underwent PEG under DUE guidance and compared them with historical controls who underwent PEG under conventional ultrathin endoscopy (CUE) guidance. The primary outcomes were successful stomach visualization and PEG tube insertion. Results: Twenty-five patients (19 male) were enrolled and compared with 25 gender and indication-matched controls. The most common indications for PEG were aspiration due to stroke or brain injury, dementia, and head and neck cancer. Entrance into the stomach was achieved in 92.0% (23/25) and 96% (24/25) in the DUE and CUE groups, and PEG was performed in 91.3% (21/23) and 95.8% (23/24), respectively. The mean insertion time for the DUE and CUE groups were 22.7 ± 9.3 minutes and 17.1 ± 5.7 minutes (P = 0.044). The 3 cases of failure to reach the stomach in both groups were caused by esophageal blockage. The 3 cases of failed PEG tube insertion were caused by poor visualization of the insertion site. Bleeding and pneumoperitoneum occurred in 1 and 2 patients in the DUE group. One case of fever was noted in the CUE group. All adverse events were conservatively managed. Conclusions: Our study shows that portable DUE in facilities without endoscopy equipment may be clinically feasible. PMID:27902596

  8. Spatially and momentum resolved energy electron loss spectra from an ultra-thin PrNiO{sub 3} layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinyanjui, M. K., E-mail: michael.kinyanjui@uni-ulm.de; Kaiser, U.; Benner, G.

    2015-05-18

    We present an experimental approach which allows for the acquisition of spectra from ultra-thin films at high spatial, momentum, and energy resolutions. Spatially and momentum (q) resolved electron energy loss spectra have been obtained from a 12 nm ultra-thin PrNiO{sub 3} layer using a nano-beam electron diffraction based approach which enabled the acquisition of momentum resolved spectra from individual, differently oriented nano-domains and at different positions of the PrNiO{sub 3} thin layer. The spatial and wavelength dependence of the spectral excitations are obtained and characterized after the analysis of the experimental spectra using calculated dielectric and energy loss functions. The presentedmore » approach makes a contribution towards obtaining momentum-resolved spectra from nanostructures, thin film, heterostructures, surfaces, and interfaces.« less

  9. Ultrathin Lutetium Oxide Film as an Epitaxial Hole-Blocking Layer for Crystalline Bismuth Vanadate Water Splitting Photoanodes

    DOE PAGES

    Zhang, Wenrui; Yan, Danhua; Tong, Xiao; ...

    2018-01-08

    Here a novel ultrathin lutetium oxide (Lu 2O 3) interlayer is integrated with crystalline bismuth vanadate (BiVO4) thin film photoanodes to facilitate carrier transport through atomic-scale interface control. The epitaxial Lu 2O 32O 3

  10. Ultrathin Nonlinear Metasurface for Optical Image Encoding.

    PubMed

    Walter, Felicitas; Li, Guixin; Meier, Cedrik; Zhang, Shuang; Zentgraf, Thomas

    2017-05-10

    Security of optical information is of great importance in modern society. Many cryptography techniques based on classical and quantum optics have been widely explored in the linear optical regime. Nonlinear optical encryption in which encoding and decoding involve nonlinear frequency conversions represents a new strategy for securing optical information. Here, we demonstrate that an ultrathin nonlinear photonic metasurface, consisting of meta-atoms with 3-fold rotational symmetry, can be used to hide optical images under illumination with a fundamental wave. However, the hidden image can be read out from second harmonic generation (SHG) waves. This is achieved by controlling the destructive and constructive interferences of SHG waves from two neighboring meta-atoms. In addition, we apply this concept to obtain gray scale SHG imaging. Nonlinear metasurfaces based on space variant optical interference open new avenues for multilevel image encryption, anticounterfeiting, and background free image reconstruction.

  11. Ultrathin microwave metamaterial absorber utilizing embedded resistors

    NASA Astrophysics Data System (ADS)

    Kim, Young Ju; Hwang, Ji Sub; Yoo, Young Joon; Khuyen, Bui Xuan; Rhee, Joo Yull; Chen, Xianfeng; Lee, YoungPak

    2017-10-01

    We numerically and experimentally studied an ultrathin and broadband perfect absorber by enhancing the bandwidth with embedded resistors into the metamaterial structure, which is easy to fabricate in order to lower the Q-factor and by using multiple resonances with the patches of different sizes. We analyze the absorption mechanism in terms of the impedance matching with the free space and through the distribution of surface current at each resonance frequency. The magnetic field, induced by the antiparallel surface currents, is formed strongly in the direction opposite to the incident electromagnetic wave, to cancel the incident wave, leading to the perfect absorption. The corresponding experimental absorption was found to be higher than 97% in 0.88-3.15 GHz. The agreement between measurement and simulation was good. The aspects of our proposed structure can be applied to future electronic devices, for example, advanced noise-suppression sheets in the microwave regime.

  12. Synthesis of Ultrathin ta-C Films by Twist-Filtered Cathodic Arc Carbon Plasmas

    DTIC Science & Technology

    2001-04-01

    system. Ultrathin tetrahedral amorphous carbon (ta-C) films have been deposited on 6 inch wafers. Film properties have been investigated with respect to...Diamondlike films are characterized by an outstanding combination of advantageous properties : they can be very hard, tough, super-smooth, chemically...5 nm) hard carbon films are being used as protective overcoats on hard disks and read-write heads. The tribological properties of the head-disk

  13. Ultrathin nitrogen-doped graphitized carbon shell encapsulating CoRu bimetallic nanoparticles for enhanced electrocatalytic hydrogen evolution.

    PubMed

    Xu, You; Li, Yinghao; Yin, Shuli; Yu, Hongjie; Xue, Hairong; Li, Xiaonian; Wang, Hongjing; Wang, Liang

    2018-06-01

    Design of highly active and cost-effective electrocatalysts is very important for the generation of hydrogen by electrochemical water-splitting. Herein, we report the fabrication of ultrathin nitrogen-doped graphitized carbon shell encapsulating CoRu bimetallic nanoparticles (CoRu@NCs) and demonstrate their promising feasibility for efficiently catalyzing the hydrogen evolution reaction (HER) over a wide pH range. The resultant CoRu@NC nanohybrids possess an alloy-carbon core-shell structure with encapsulated low-ruthenium-content CoRu bimetallic alloy nanoparticles (10-30 nm) as the core and ultrathin nitrogen-doped graphitized carbon layers (2-6 layers) as the shell. Remarkably, the optimized catalyst (CoRu@NC-2 sample) with a Ru content as low as 2.04 wt% shows superior catalytic activity and excellent durability for HER in acidic, neutral, and alkaline conditions. This work offers a new method for the design and synthesis of non-platium-based electrocatalysts for HER in all-pH.

  14. Flexible asymmetric supercapacitors based on ultrathin two-dimensional nanosheets with outstanding electrochemical performance and aesthetic property

    PubMed Central

    Shi, Shan; Xu, Chengjun; Yang, Cheng; Chen, Yanyi; Liu, Juanjuan; Kang, Feiyu

    2013-01-01

    Flexible asymmetric supercapacitors with excellent electrochemical performance and aesthetic property are realized by using ultrathin two-dimensional (2D) MnO2 and graphene nanosheets as cathode and anode materials, respectively. 2D MnO2 nanosheets (MSs) with a thickness of ca. 2 nm are synthesized with a soft template method for the first time, which achieve a high specific capacitance of 774 F g−1 even after 10000 cycles. Asymmetric supercapacitors based on ultrathin MSs and graphene exhibit a very high energy density up to 97.2 Wh kg−1 with no more than 3% capacitance loss after 10000 cycles in aqueous electrolyte. Most interestingly, we show that the energy storage device can have an aesthetic property. For instance, a “Chinese panda” supercapacitor is capable of lighting up a red light emitting diode. This work has another, quite different aspect that a supercapacitor is no longer a cold industry product, but could have the meaning of art. PMID:24008931

  15. Ultra-thin flexible GaAs photovoltaics in vertical forms printed on metal surfaces without interlayer adhesives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Juho; Song, Kwangsun; Kim, Namyun

    2016-06-20

    Wearable flexible electronics often require sustainable power sources that are also mechanically flexible to survive the extreme bending that accompanies their general use. In general, thinner microelectronic devices are under less strain when bent. This paper describes strategies to realize ultra-thin GaAs photovoltaics through the interlayer adhesiveless transfer-printing of vertical-type devices onto metal surfaces. The vertical-type GaAs photovoltaic devices recycle reflected photons by means of bottom electrodes. Systematic studies with four different types of solar microcells indicate that the vertical-type solar microcells, at only a quarter of the thickness of similarly designed lateral-type cells, generate a level of electric powermore » similar to that of thicker cells. The experimental results along with the theoretical analysis conducted here show that the ultra-thin vertical-type solar microcells are durable under extreme bending and thus suitable for use in the manufacturing of wearable flexible electronics.« less

  16. Ultrathin nitrogen-doped graphitized carbon shell encapsulating CoRu bimetallic nanoparticles for enhanced electrocatalytic hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Xu, You; Li, Yinghao; Yin, Shuli; Yu, Hongjie; Xue, Hairong; Li, Xiaonian; Wang, Hongjing; Wang, Liang

    2018-06-01

    Design of highly active and cost-effective electrocatalysts is very important for the generation of hydrogen by electrochemical water-splitting. Herein, we report the fabrication of ultrathin nitrogen-doped graphitized carbon shell encapsulating CoRu bimetallic nanoparticles (CoRu@NCs) and demonstrate their promising feasibility for efficiently catalyzing the hydrogen evolution reaction (HER) over a wide pH range. The resultant CoRu@NC nanohybrids possess an alloy–carbon core–shell structure with encapsulated low-ruthenium-content CoRu bimetallic alloy nanoparticles (10–30 nm) as the core and ultrathin nitrogen-doped graphitized carbon layers (2–6 layers) as the shell. Remarkably, the optimized catalyst (CoRu@NC-2 sample) with a Ru content as low as 2.04 wt% shows superior catalytic activity and excellent durability for HER in acidic, neutral, and alkaline conditions. This work offers a new method for the design and synthesis of non-platium-based electrocatalysts for HER in all-pH.

  17. Appearance and disappearance of ferromagnetism in ultrathin LaMnO3 on SrTiO3 substrate: A viewpoint from first principles

    NASA Astrophysics Data System (ADS)

    An, Ming; Weng, Yakui; Zhang, Huimin; Zhang, Jun-Jie; Zhang, Yang; Dong, Shuai

    2017-12-01

    The intrinsic magnetic state (ferromagnetic or antiferromagnetic) of ultrathin LaMnO3 films on the most commonly used SrTiO3 substrate is a long-existing question under debate. Either strain effect or nonstoichiometry was argued to be responsible for the experimental ferromagnetism. In a recent experiment [X. R. Wang, C. J. Li, W. M. Lü, T. R. Paudel, D. P. Leusink, M. Hoek, N. Poccia, A. Vailionis, T. Venkatesan, J. M. D. Coey, E. Y. Tsymbal, Ariando, and H. Hilgenkamp, Science 349, 716 (2015), 10.1126/science.aaa5198], one more mechanism, namely, the self-doping due to polar discontinuity, was argued to be the driving force of ferromagnetism beyond the critical thickness. Here systematic first-principles calculations have been performed to check these mechanisms in ultrathin LaMnO3 films as well as superlattices. Starting from the very precise descriptions of both LaMnO3 and SrTiO3, it is found that the compressive strain is the dominant force for the appearance of ferromagnetism, while the open surface with oxygen vacancies leads to the suppression of ferromagnetism. Within LaMnO3 layers, the charge reconstructions involve many competitive factors and certainly go beyond the intuitive polar catastrophe model established for LaAlO3/SrTiO3 heterostructures. Our paper not only explains the long-term puzzle regarding the magnetism of ultrathin LaMnO3 films but also sheds light on how to overcome the notorious magnetic dead layer in ultrathin manganites.

  18. Nucleation of C60 on ultrathin SiO2

    NASA Astrophysics Data System (ADS)

    Conrad, Brad; Groce, Michelle; Cullen, William; Pimpinelli, Alberto; Williams, Ellen; Einstein, Ted

    2012-02-01

    We utilize scanning tunneling microscopy to characterize the nucleation, growth, and morphology of C60 on ultrathin SiO2 grown at room temperature. C60 thin films are deposited in situ by physical vapor deposition with thicknesses varying from <0.05 to ˜1 ML. Island size and capture zone distributions are examined for a varied flux rate and substrate deposition temperature. The C60 critical nucleus size is observed to change between monomers and dimers non-monotonically from 300 K to 500 K. Results will be discussed in terms of recent capture zone studies and analysis methods. Relation to device fabrication will be discussed. doi:10.1016/j.susc.2011.08.020

  19. Multiscale Relaxation Dynamics in Ultrathin Metallic Glass-Forming Films

    NASA Astrophysics Data System (ADS)

    Bi, Q. L.; Lü, Y. J.; Wang, W. H.

    2018-04-01

    The density layering phenomenon originating from a free surface gives rise to the layerlike dynamics and stress heterogeneity in ultrathin Cu-Zr glassy films, which facilitates the occurrence of multistep relaxations in the timescale of computer simulations. Taking advantage of this condition, we trace the relaxation decoupling and evolution with temperature simply via the intermediate scattering function. We show that the β relaxation hierarchically follows fast and slow modes in films, and there is a β -relaxation transition as the film is cooled close to the glass transition. We provide the direct observation of particle motions responsible for the β relaxation and reveal the dominant mechanism varying from the thermal activated to the cooperative jumps across the transition.

  20. Spin-Swapping Transport and Torques in Ultrathin Magnetic Bilayers

    NASA Astrophysics Data System (ADS)

    Saidaoui, Hamed Ben Mohamed; Manchon, A.

    2016-07-01

    Planar spin transport in disordered ultrathin magnetic bilayers comprising a ferromagnet and a normal metal (typically used for spin pumping, spin Seebeck and spin-orbit torque experiments) is investigated theoretically. Using a tight-binding model that puts the extrinsic spin Hall effect and spin swapping on equal footing, we show that the nature of spin-orbit coupled transport dramatically depends on the ratio between the layer thickness d and the mean free path λ . While the spin Hall effect dominates in the diffusive limit (d ≫λ ), spin swapping dominates in the Knudsen regime (d ≲λ ). A remarkable consequence is that spin swapping induces a substantial fieldlike torque in the Knudsen regime.

  1. Carbon Nanotube Networks as Nanoscaffolds for Fabricating Ultrathin Carbon Molecular Sieve Membranes.

    PubMed

    Hou, Jue; Zhang, Huacheng; Hu, Yaoxin; Li, Xingya; Chen, Xiaofang; Kim, Seungju; Wang, Yuqi; Simon, George P; Wang, Huanting

    2018-06-13

    Carbon molecular sieve (CMS) membranes have shown great potential for gas separation owing to their low cost, good chemical stability, and high selectivity. However, most of the conventional CMS membranes exhibit low gas permeance due to their thick active layer, which limits their practical applications. Herein, we report a new strategy for fabricating CMS membranes with a 100 nm-thick ultrathin active layer using poly(furfuryl alcohol) (PFA) as a carbon precursor and carbon nanotubes (CNTs) as nanoscaffolds. CNT networks are deposited on a porous substrate as nanoscaffolds, which guide PFA solution to effectively spread over the substrate and form a continuous layer, minimizing the penetration of PFA into the pores of the substrate. After pyrolysis process, the CMS membranes with 100-1000 nm-thick active layer can be obtained by adjusting the CNT loading. The 322 nm-thick CMS membrane exhibits the best trade-off between the gas permeance and selectivity, a H 2 permeance of 4.55 × 10 -8 mol m -2 s -1 Pa -1 , an O 2 permeance of 2.1 × 10 -9 mol m -2 s -1 Pa -1 , and an O 2 /N 2 ideal selectivity of 10.5, which indicates the high quality of the membrane produced by this method. This work provides a simple, efficient strategy for fabricating ultrathin CMS membranes with high selectivity and improved gas flux.

  2. Electrical properties of spin coated ultrathin titanium oxide films on GaAs

    NASA Astrophysics Data System (ADS)

    Dutta, Shankar; Pal, Ramjay; Chatterjee, Ratnamala

    2015-04-01

    In recent years, ultrathin (<50 nm) metal oxide films have been being extensively studied as high-k dielectrics for future metal oxide semiconductor (MOS) technology. This paper discusses deposition of ultrathin TiO2 films (˜10 nm) on GaAs substrates (one sulfur-passivated, another unpassivated) by spin coating technique. The sulfur passivation is done to reduce the surface states of GaAs substrate. After annealing at 400 °C in a nitrogen environment, the TiO2 films are found to be polycrystalline in nature with rutile phase. The TiO2 films exhibit consistent grain size of 10-20 nm with thickness around 10-12 nm. Dielectric constants of the films are found to be 65.4 and 47.1 corresponding to S-passivated and unpassivated substrates, respectively. Corresponding threshold voltages of the MOS structures are measured to be -0.1 V to -0.3 V for the S-passivated and unpassivated samples, respectively. The S-passivated TiO2 film showed improved (lower) leakage current density (5.3 × 10-4 A cm-2 at 3 V) compared to the unpassivated film (1.8 × 10-3 A/cm2 at 3 V). Dielectric breakdown-field of the TiO2 films on S-passivated and unpassivated GaAs samples are found to be 8.4 MV cm-1 and 7.2 MV cm-1 respectively.

  3. Atomic layer deposition-A novel method for the ultrathin coating of minitablets.

    PubMed

    Hautala, Jaana; Kääriäinen, Tommi; Hoppu, Pekka; Kemell, Marianna; Heinämäki, Jyrki; Cameron, David; George, Steven; Juppo, Anne Mari

    2017-10-05

    We introduce atomic layer deposition (ALD) as a novel method for the ultrathin coating (nanolayering) of minitablets. The effects of ALD coating on the tablet characteristics and taste masking were investigated and compared with the established coating method. Minitablets containing bitter tasting denatonium benzoate were coated by ALD using three different TiO 2 nanolayer thicknesses (number of deposition cycles). The established coating of minitablets was performed in a laboratory-scale fluidized-bed apparatus using four concentration levels of aqueous Eudragit ® E coating polymer. The coated minitablets were studied with respect to the surface morphology, taste masking capacity, in vitro disintegration and dissolution, mechanical properties, and uniformity of content. The ALD thin coating resulted in minimal increase in the dimensions and weight of minitablets in comparison to original tablet cores. Surprisingly, ALD coating with TiO 2 nanolayers decreased the mechanical strength, and accelerated the in vitro disintegration of minitablets. Unlike previous studies, the studied levels of TiO 2 nanolayers on tablets were also inadequate for effective taste masking. In summary, ALD permits a simple and rapid method for the ultrathin coating (nanolayering) of minitablets, and provides nanoscale-range TiO 2 coatings on porous minitablets. More research, however, is needed to clarify its potential in tablet taste masking applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Manipulation of Optoelectronic Properties and Band Structure Engineering of Ultrathin Te Nanowires by Chemical Adsorption.

    PubMed

    Roy, Ahin; Amin, Kazi Rafsanjani; Tripathi, Shalini; Biswas, Sangram; Singh, Abhishek K; Bid, Aveek; Ravishankar, N

    2017-06-14

    Band structure engineering is a powerful technique both for the design of new semiconductor materials and for imparting new functionalities to existing ones. In this article, we present a novel and versatile technique to achieve this by surface adsorption on low dimensional systems. As a specific example, we demonstrate, through detailed experiments and ab initio simulations, the controlled modification of band structure in ultrathin Te nanowires due to NO 2 adsorption. Measurements of the temperature dependence of resistivity of single ultrathin Te nanowire field-effect transistor (FET) devices exposed to increasing amounts of NO 2 reveal a gradual transition from a semiconducting to a metallic state. Gradual quenching of vibrational Raman modes of Te with increasing concentration of NO 2 supports the appearance of a metallic state in NO 2 adsorbed Te. Ab initio simulations attribute these observations to the appearance of midgap states in NO 2 adsorbed Te nanowires. Our results provide fundamental insights into the effects of ambient on the electronic structures of low-dimensional materials and can be exploited for designing novel chemical sensors.

  5. Polarity compensation in ultra-thin films of complex oxides: The case of a perovskite nickelate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middey, S.; Rivero, P.; Meyers, D.

    2014-10-29

    In this study, we address the fundamental issue of growth of perovskite ultra-thin films under the condition of a strong polar mismatch at the heterointerface exemplified by the growth of a correlated metal LaNiO 3 on the band insulator SrTiO 3 along the pseudo cubic [111] direction. While in general the metallic LaNiO 3 film can effectively screen this polarity mismatch, we establish that in the ultra-thin limit, films are insulating in nature and require additional chemical and structural reconstruction to compensate for such mismatch. A combination of in-situ reflection high-energy electron diffraction recorded during the growth, X-ray diffraction, andmore » synchrotron based resonant X-ray spectroscopy reveal the formation of a chemical phase La 2Ni 2O 5 (Ni 2+) for a few unit-cell thick films. First-principles layer-resolved calculations of the potential energy across the nominal LaNiO 3/SrTiO 3 interface confirm that the oxygen vacancies can efficiently reduce the electric field at the interface.« less

  6. Hierarchical, ultrathin single-crystal nanowires of CdS conveniently produced in laser-induced thermal field

    DOE PAGES

    Han, Li -Li; Xin, Huolin L.; Kulinich, Sergei A.; ...

    2015-07-16

    Hierarchical nanowires (HNWs) exhibit unique properties and have wide applications, while often suffering from imperfect structure. We report a facile strategy toward ultrathin CdS HNWs with monocrystal structure, where a continuous-wave (CW) Nd:YAG laser is employed to irradiate an oleic acid (OA) solution containing precursors and a light absorber. The high heating rate and large temperature gradient generated by the CW laser lead to the rapid formation of tiny zinc-blende CdS nanocrystals which then line up into nanowires with the help of OA molecules. Next, the nanowires experience a phase transformation from zinc-blende to wurtzite structure, and the transformation-induced stressmore » creates terraces on their surface, which promotes the growth of side branches and eventually results in monocrystal HNWs with an ultrathin diameter of 24 nm. The one-step synthesis of HNWs is conducted in air and completes in just 40 seconds, thus being very simple and rapid. The prepared CdS HNWs display photocatalytic performance superior to their nanoparticle counterparts, thus showing promise for catalytic applications in the future.« less

  7. Probing photoresponse of aligned single-walled carbon nanotube doped ultrathin MoS2.

    PubMed

    Wang, Rui; Wang, Tianjiao; Hong, Tu; Xu, Ya-Qiong

    2018-08-24

    We report a facile method to produce ultrathin molybdenum disulfide (MoS 2 ) hybrids with polarized near-infrared (NIR) photoresponses, in which horizontally-aligned single-walled carbon nanotubes (SWNTs) are integrated with single- and few-layer MoS 2 through a two-step chemical vapor deposition process. The photocurrent generation mechanisms in SWNT-MoS 2 hybrids are systematically investigated through wavelength- and polarization-dependent scanning photocurrent measurements. When the incident photon energy is above the direct bandgap of MoS 2 , isotropic photocurrent signals are observed, which can be primarily attributed to the direct bandgap transition in MoS 2 . In contrast, if the incident photon energy in the NIR region is below the direct bandgap of MoS 2 , the maximum photocurrent response occurs when the incident light is polarized in the direction along the SWNTs, indicating that photocurrent signals mainly result from the anisotropic absorption of SWNTs. More importantly, these two-dimensional (2D) hybrid structures inherit the electrical transport properties from MoS 2 , displaying n-type characteristics at a zero gate voltage. These fundamental studies provide a new way to produce ultrathin MoS 2 hybrids with inherited electrical properties and polarized NIR photoresponses, opening doors for engineering various 2D hybrid materials for future broadband optoelectronic applications.

  8. Limitation of Optical Enhancement in Ultra-thin Solar Cells Imposed by Contact Selectivity.

    PubMed

    Islam, Raisul; Saraswat, Krishna

    2018-06-11

    Ultra-thin crystalline silicon (c-Si) solar cell suffers both from poor light absorption and minority carrier recombination at the contacts resulting in low contact selectivity. Yet most of the research focuses on improving the light absorption by introducing novel light trapping technique. Our work shows that for ultra-thin absorber, the benefit of optical enhancement is limited by low contact selectivity. Using simulation we observe that performance enhancement from light trapping starts to saturate as the absorber scales down because of the increase in probability of the photo-generated carriers to recombine at the metal contact. Therefore, improving the carrier selectivity of the contacts, which reduces the recombination at contacts, is important to improve the performance of the solar cell beyond what is possible by enhancing light absorption only. The impact of improving contact selectivity increases as the absorber thickness scales below 20 micrometer (μm). Light trapping provides better light management and improving contact selectivity provides better photo-generated carrier management. When better light management increases the number of photo-generated carriers, better carrier management is a useful optimization knob to achieve the efficiency close to the thermodynamic limit. Our work explores a design trade-off in detail which is often overlooked by the research community.

  9. Ultrathin (<1 μm) Substrate-Free Flexible Photodetector on Quantum Dot-Nanocellulose Paper

    PubMed Central

    Wu, Jingda; Lin, Lih Y.

    2017-01-01

    Conventional approaches to flexible optoelectronic devices typically require depositing the active materials on external substrates. This is mostly due to the weak bonding between individual molecules or nanocrystals in the active materials, which prevents sustaining a freestanding thin film. Herein we demonstrate an ultrathin freestanding ZnO quantum dot (QD) active layer with nanocellulose structuring, and its corresponding device fabrication method to achieve substrate-free flexible optoelectronic devices. The ultrathin ZnO QD-nanocellulose composite is obtained by hydrogel transfer printing and solvent-exchange processes to overcome the water capillary force which is detrimental to achieving freestanding thin films. We achieved an active nanocellulose paper with ~550 nm thickness, and >91% transparency in the visible wavelength range. The film retains the photoconductive and photoluminescent properties of ZnO QDs and is applied towards substrate-free Schottky photodetector applications. The device has an overall thickness of ~670 nm, which is the thinnest freestanding optoelectronic device to date, to the best of our knowledge, and functions as a self-powered visible-blind ultraviolet photodetector. This platform can be readily applied to other nano materials as well as other optoelectronic device applications. PMID:28266651

  10. Effect of nanoconfinement on the sputter yield in ultrathin polymeric films: Experiments and model

    NASA Astrophysics Data System (ADS)

    Cristaudo, Vanina; Poleunis, Claude; Delcorte, Arnaud

    2018-06-01

    This fundamental contribution on secondary ion mass spectrometry (SIMS) polymer depth-profiling by large argon clusters investigates the dependence of the sputter yield volume (Y) on the thickness (d) of ultrathin films as a function of the substrate nature, i.e. hard vs soft. For this purpose, thin films of polystyrene (PS) oligomers (∼4,000 amu) are spin-coated, respectively, onto silicon and poly (methyl methacrylate) supports and, then, bombarded by 10 keV Ar3000+ ions. The investigated thickness ranges from 15 to 230 nm. Additionally, the influence of the polymer molecular weight on Y(d) for PS thin films on Si is explored. The sputtering efficiency is found to be strongly dependent on the overlayer thickness, only in the case of the silicon substrate. A simple phenomenological model is proposed for the description of the thickness influence on the sputtering yield. Molecular dynamics (MD) simulations conducted on amorphous films of polyethylene-like oligomers of increasing thickness (from 2 to 20 nm), under comparable cluster bombardment conditions, predict a significant increase of the sputtering yield for ultrathin layers on hard substrates, induced by energy confinement in the polymer, and support our phenomenological model.

  11. Endoscopic anatomy for transnasal transsphenoidal pituitary surgery in the presence of a persistent trigeminal artery.

    PubMed

    Warnke, Jan-Peter; Tschabitscher, M; Thalwitzer, J; Galzio, R

    2009-11-01

    Endoscopic procedures are becoming increasingly important for transnasal transsphenoidal approaches to the skull base and particularly for pituitary surgery. A persistent trigeminal artery (PTA) is rare. Its presence, if it goes unnoticed or if the surgeon is not aware of such a variant, may endanger the success of surgery. During an endoscopic inspection using a supraorbital approach in a fresh cadaveric specimen in which the arteries had been injected with latex glue, the presence of an anomalous intracranial artery, suggestive for PTA, was disclosed. The specimen was then fixed and a CT scan with 3D reconstruction of the circle of Willis was done to evaluate the imaging of such an anatomical variation. Thereafter an endoscopic transsphenoidal approach to the pituitary fossa was performed, to verify the endoscopic anatomy. The performed CT scan allowed visualization of the entire course of the anomalous vessel, confirming a PTA. During the endoscopic transsphenoidal approach, the presence of the vascular anomaly, altering the bony bulging of the internal carotid artery on the lateral side of the sphenoidal roof, was disclosed. The parasellar course of the PTA could be exposed by drilling the overhanging bone. The presence of the anatomical variant did not interfere with surgical manoeuvres and the procedure, simulating a transsphenoidal approach to the pituitary, could be safely completed. Variants such as PTA are rare and routine preoperative imaging for pituitary procedures does not always include studies to detect this vascular anomaly. The occasional intraoperative detection of a PTA during an endoscopic transsphenoidal procedure can be managed; almost any surgical manipulation is possible and pituitary surgery can be successfully completed, provided the surgeon is aware of the possible existence of this variant and its irregular anatomical course. However, the presence of a PTA may have dramatic consequences if surgery is directed to the lateral parasellar

  12. Immunocytochemical localization of amelogenin in rat incisor ameloblasts using ultrathin frozen sections.

    PubMed

    Nishikawa, S; Takagi, T; Sasa, S

    1990-01-01

    The localization of amelogenin, an enamel matrix protein, was examined by ultrastructural immunocytochemistry using unembedded ultrathin frozen sections of undecalcified rat incisor ameloblasts. Antibody against bovine amelogenin labeled Golgi complexes, secretory granules, and lysosomal structures in the preameloblasts and inner enamel-secretory ameloblasts as well as the enamel. The antibody also labeled dentin matrix facing preameloblasts. These results support the findings in previous reports using conventional epon embedded specimens. However, rough-surfaced endoplasmic reticulum failed to be labeled by this antibody.

  13. Ultrathin Nitrogen-Doped Carbon Layer Uniformly Supported on Graphene Frameworks as Ultrahigh-Capacity Anode for Lithium-Ion Full Battery.

    PubMed

    Huang, Yanshan; Li, Ke; Yang, Guanhui; Aboud, Mohamed F Aly; Shakir, Imran; Xu, Yuxi

    2018-03-01

    The designable structure with 3D structure, ultrathin 2D nanosheets, and heteroatom doping are considered as highly promising routes to improve the electrochemical performance of carbon materials as anodes for lithium-ion batteries. However, it remains a significant challenge to efficiently integrate 3D interconnected porous frameworks with 2D tunable heteroatom-doped ultrathin carbon layers to further boost the performance. Herein, a novel nanostructure consisting of a uniform ultrathin N-doped carbon layer in situ coated on a 3D graphene framework (NC@GF) through solvothermal self-assembly/polymerization and pyrolysis is reported. The NC@GF with the nanosheets thickness of 4.0 nm and N content of 4.13 at% exhibits an ultrahigh reversible capacity of 2018 mA h g -1 at 0.5 A g -1 and an ultrafast charge-discharge feature with a remarkable capacity of 340 mA h g -1 at an ultrahigh current density of 40 A g -1 and a superlong cycle life with a capacity retention of 93% after 10 000 cycles at 40 A g -1 . More importantly, when coupled with LiFePO 4 cathode, the fabricated lithium-ion full cells also exhibit high capacity and excellent rate and cycling performances, highlighting the practicability of this NC@GF. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. [Normal and pathological elastic tissue under the electron microscope on thin and ultrathin sections (author's transl)].

    PubMed

    Adnet, J J; Pinteaux, A; Pousse, G; Caulet, T

    1976-04-01

    Three simple methods (adapted from optical techniques) for normal and pathological elastic tissue caracterisation in electron microscopy on thin and ultrathin sections are proposed. Two of these methods (orcein and fuchsin resorcin) seem to have a specificity for arterial and breast cancer elastic tissue. Weigert's method gives the best contrast.

  15. Gigantic Dzyaloshinskii-Moriya interaction in the MnBi ultrathin films

    NASA Astrophysics Data System (ADS)

    Yu, Jie-Xiang; Zang, Jiadong; Zang's Team

    The magnetic skyrmion, a swirling-like spin texture with nontrivial topology, is driven by strong Dzyaloshinskii-Moriya (DM) interaction originated from the spin-orbit coupling in inversion symmetry breaking systems. Here, based on first-principles calculations, we predict a new material, MnBi ultrathin film, with gigantic DM interactions. The ratio of the DM interaction to the Heisenberg exchange is about 0.3, exceeding any values reported so far. Its high Curie temperature, high coercivity, and large perpendicular magnetoanisotropy make MnBi a good candidate for future spintronics studies. Topologically nontrivial spin textures are emergent in this system. We expect further experimental efforts will be devoted into this systems.

  16. Ultrathin Polymer Membranes with Patterned, Micrometric Pores for Organs-on-Chips.

    PubMed

    Pensabene, Virginia; Costa, Lino; Terekhov, Alexander Y; Gnecco, Juan S; Wikswo, John P; Hofmeister, William H

    2016-08-31

    The basal lamina or basement membrane (BM) is a key physiological system that participates in physicochemical signaling between tissue types. Its formation and function are essential in tissue maintenance, growth, angiogenesis, disease progression, and immunology. In vitro models of the BM (e.g., Boyden and transwell chambers) are common in cell biology and lab-on-a-chip devices where cells require apical and basolateral polarization. Extravasation, intravasation, membrane transport of chemokines, cytokines, chemotaxis of cells, and other key functions are routinely studied in these models. The goal of the present study was to integrate a semipermeable ultrathin polymer membrane with precisely positioned pores of 2 μm diameter in a microfluidic device with apical and basolateral chambers. We selected poly(l-lactic acid) (PLLA), a transparent biocompatible polymer, to prepare the semipermeable ultrathin membranes. The pores were generated by pattern transfer using a three-step method coupling femtosecond laser machining, polymer replication, and spin coating. Each step of the fabrication process was characterized by scanning electron microscopy to investigate reliability of the process and fidelity of pattern transfer. In order to evaluate the compatibility of the fabrication method with organs-on-a-chip technology, porous PLLA membranes were embedded in polydimethylsiloxane (PDMS) microfluidic devices and used to grow human umbilical vein endothelial cells (HUVECS) on top of the membrane with perfusion through the basolateral chamber. Viability of cells, optical transparency of membranes and strong adhesion of PLLA to PDMS were observed, thus confirming the suitability of the prepared membranes for use in organs-on-a-chip devices.

  17. Atomic Scale Control of Competing Electronic Phases in Ultrathin Correlated Oxides

    NASA Astrophysics Data System (ADS)

    Shen, Kyle

    2015-03-01

    Ultrathin epitaxial thin films offer a number of unique advantages for engineering the electronic properties of correlated transition metal oxides. For example, atomically thin films can be synthesized to artificially confine electrons in two dimensions. Furthermore, using a substrate with a mismatched lattice constant can impose large biaxial strains of larger than 3% (Δa / a), much larger than can achieved in bulk single crystals. Since these dimensionally confined or strained systems may necessarily be less than a few unit cells thick, investigating their properties and electronic structure can be particularly challenging. We employ a combination of reactive oxide molecular beam epitaxy (MBE) and angle-resolved photoemission spectroscopy (ARPES) to investigate how dimensional confinement and epitaxial strain can be used to manipulate electronic properties and structure in correlated transition metal oxide thin films. We describe some of our recent work manipulating and studying the electronic structure of ultrathin LaNiO3 through a thickness-driven metal-insulator transition between three and two unit cells (Nature Nanotechnology 9, 443, 2014), where coherent Fermi liquid-like quasiparticles are suppressed at the metal-insulator transition observed in transport. We also will describe some recent unpublished work using epitaxial strain to drive a Lifshitz transition in atomically thin films of the spin-triplet ruthenate superconductor Sr2RuO4, where we also can dramatically alter the quasiparticle scattering rates and drive the system towards non-Fermi liquid behavior near the critical point (B. Burganov, C. Adamo, in preparation). Funding provided by the Office of Naval Research and Air Force Office of Scientific Research.

  18. Fabrication of ultrathin film capacitors by chemical solution deposition

    DOE PAGES

    Brennecka, Geoff L.; Tuttle, Bruce A.

    2007-10-01

    We present that a facile solution-based processing route using standard spin-coating deposition techniques has been developed for the production of reliable capacitors based on lead lanthanum zirconate titanate (PLZT) with active areas of ≥1 mm 2 and dielectric layer thicknesses down to 50 nm. With careful control of the dielectric phase development through improved processing, ultrathin capacitors exhibited slim ferroelectric hysteresis loops and dielectric constants of >1000, similar to those of much thicker films. Furthermore, it has been demonstrated that chemical solution deposition is a viable route to the production of capacitor films which are as thin as 50 nmmore » but are still macroscopically addressable with specific capacitance values >160 nF/mm 2.« less

  19. Low-reflection beam refractions by ultrathin Huygens metasurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Sheng Li; State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096; Synergetic Innovation Center of Wireless Communication Technology, Southeast University, Nanjing 210096

    2015-06-15

    We propose a Huygens source unit cell to develop an ultrathin low-reflection metasurface, which could provide extreme controls of phases of the transmitted waves. Both electric and magnetic currents are supported by the proposed unit cell, thus leading to highly efficient and full controls of phases. The coupling between electric and magnetic responses is negligible, which will significantly reduce the difficulty of design. Since the unit cell of metasurface is printed on two bonded boards, the fabrication process is simplified and the thickness of metasurface is reduced. Based on the proposed unit cell, a beam-refracting metasurface with low-reflection is designedmore » and manufactured. Both near-field and far-field characteristics of the beam-refracting metasurface are investigated by simulations and measurements, which indicate that the proposed Huygens metasurface performs well in controlling electromagnetic waves.« less

  20. Ultrathin pyrolytic carbon films on a magnetic substrate

    NASA Astrophysics Data System (ADS)

    Umair, Ahmad; Raza, Tehseen Z.; Raza, Hassan

    2016-07-01

    We report the growth of ultrathin pyrolytic carbon (PyC) films on nickel substrate by using chemical vapor deposition at 1000 °C under methane ambience. We find that the ultra-fast cooling is crucial for PyC film uniformity by controlling the segregation of carbon on nickel. We characterize the in-plane crystal size of the PyC film by using Raman spectroscopy. The Raman peaks at ˜1354 and ˜1584 cm-1 wavenumbers are used to extract the D and G bands. The corresponding peak intensities are then used in an excitation energy dependent equation to calculate the in-plane crystal size. Using Raman area mapping, the mean value of in-plane crystal size over an area of 100 μm × 100 μm is about 22.9 nm with a standard deviation of about 2.4 nm.

  1. Synthesis of ultrathin mesoporous NiCo2O4 nanosheets on carbon fiber paper as integrated high-performance electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Deng, Fangze; Yu, Lin; Cheng, Gao; Lin, Ting; Sun, Ming; Ye, Fei; Li, Yongfeng

    2014-04-01

    Two-dimensional ultrathin mesoporous NiCo2O4 nanosheets on carbon fiber paper (CFP) are synthesized through a facile solvothermal method combined with a post thermal treatment. The well interconnected ultrathin NiCo2O4 nanosheets directly grown on the carbon nanofibers could allow for easy diffusion of the electrolyte, shorten the transport path of ion and electron and accommodate the strain during cycling. As a result, superior pseudocapacitive performance is achieved with large specific capacitance of 999 F g-1 at a high current density of 20 A g-1. The capacitance loss is 15.6% after 3000 cycles at a current density of 10 A g-1, displaying good cycle ability and high rate capability.

  2. Experimental evidence of mobility enhancement in short-channel ultra-thin body double-gate MOSFETs by magnetoresistance technique

    NASA Astrophysics Data System (ADS)

    Chaisantikulwat, W.; Mouis, M.; Ghibaudo, G.; Cristoloveanu, S.; Widiez, J.; Vinet, M.; Deleonibus, S.

    2007-11-01

    Double-gate transistor with ultra-thin body (UTB) has proved to offer advantages over bulk device for high-speed, low-power applications. There is thus a strong need to obtain an accurate understanding of carrier transport and mobility in such device. In this work, we report for the first time an experimental evidence of mobility enhancement in UTB double-gate (DG) MOSFETs using magnetoresistance mobility extraction technique. Mobility in planar DG transistor operating in single- and double-gate mode is compared. The influence of different scattering mechanisms in the channel is also investigated by obtaining mobility values at low temperatures. The results show a clear mobility improvement in double-gate mode compared to single-gate mode mobility at the same inversion charge density. This is explained by the role of volume inversion in ultra-thin body transistor operating in DG mode. Volume inversion is found to be especially beneficial in terms of mobility gain at low-inversion densities.

  3. Fabrication of Ultra-Thin Printed Organic TFT CMOS Logic Circuits Optimized for Low-Voltage Wearable Sensor Applications.

    PubMed

    Takeda, Yasunori; Hayasaka, Kazuma; Shiwaku, Rei; Yokosawa, Koji; Shiba, Takeo; Mamada, Masashi; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo

    2016-05-09

    Ultrathin electronic circuits that can be manufactured by using conventional printing technologies are key elements necessary to realize wearable health sensors and next-generation flexible electronic devices. Due to their low level of power consumption, complementary (CMOS) circuits using both types of semiconductors can be easily employed in wireless devices. Here, we describe ultrathin CMOS logic circuits, for which not only the source/drain electrodes but also the semiconductor layers were printed. Both p-type and n-type organic thin film transistor devices were employed in a D-flip flop circuit in the newly developed stacked structure and exhibited excellent electrical characteristics, including good carrier mobilities of 0.34 and 0.21 cm(2) V(-1) sec(-1), and threshold voltages of nearly 0 V with low operating voltages. These printed organic CMOS D-flip flop circuits exhibit operating frequencies of 75 Hz and demonstrate great potential for flexible and printed electronics technology, particularly for wearable sensor applications with wireless connectivity.

  4. Fabrication of Ultra-Thin Printed Organic TFT CMOS Logic Circuits Optimized for Low-Voltage Wearable Sensor Applications

    PubMed Central

    Takeda, Yasunori; Hayasaka, Kazuma; Shiwaku, Rei; Yokosawa, Koji; Shiba, Takeo; Mamada, Masashi; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo

    2016-01-01

    Ultrathin electronic circuits that can be manufactured by using conventional printing technologies are key elements necessary to realize wearable health sensors and next-generation flexible electronic devices. Due to their low level of power consumption, complementary (CMOS) circuits using both types of semiconductors can be easily employed in wireless devices. Here, we describe ultrathin CMOS logic circuits, for which not only the source/drain electrodes but also the semiconductor layers were printed. Both p-type and n-type organic thin film transistor devices were employed in a D-flip flop circuit in the newly developed stacked structure and exhibited excellent electrical characteristics, including good carrier mobilities of 0.34 and 0.21 cm2 V−1 sec−1, and threshold voltages of nearly 0 V with low operating voltages. These printed organic CMOS D-flip flop circuits exhibit operating frequencies of 75 Hz and demonstrate great potential for flexible and printed electronics technology, particularly for wearable sensor applications with wireless connectivity. PMID:27157914

  5. Duodenal perforation following esophagogastroduodenoscopy (EGD) with cautery and epinephrine injection for peptic ulcer disease: An interesting case of nonoperative management in the medical intensive care unit (MICU).

    PubMed

    Chertoff, Jason; Khullar, Vikas; Burke, Lucas

    2015-01-01

    The utilization of esophagogastroduodenoscopy (EGD) and related procedures continues to rise. Due to this increase in utilization is an inevitable rise in serious complications such as hemorrhage and perforation. One understudied and dreaded complication of EGD causing significant morbidity and mortality is duodenal perforation. We present the case of a 63-year-old male who presented to our institution's emergency room with dyspepsia, melanic stools, tachycardia, and hypotension. Initial laboratory evaluation was significant for severe anemia, lactic acidosis, and acute kidney injury, while CT scan of the abdomen pelvis did not suggest retroperitoneal hematoma or bowel perforation. An emergent EGD was performed which showed multiple bleeding duodenal ulcers that were cauterized and injected with epinephrine. Post-procedure the patient developed worsening abdominal pain, distension, diaphoresis, and tachypnea, requiring emergent intubation. A CT scan of the abdomen and pelvis with oral contrast confirmed pneumoperitoneum and duodenal perforation. Due to the patient's hemodynamic instability and multiple comorbidities, he was treated non-operatively with strict bowel rest and intravenous antibiotics. The patient ultimately had a 19-day hospital course complicated by renal failure requiring hemodialysis and an ischemic limb necessitating above knee amputation. This case describes an unsuccessful attempt at nonoperative management of duodenal perforation following EGD. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Thickness and composition of ultrathin SiO2 layers on Si

    NASA Astrophysics Data System (ADS)

    van der Marel, C.; Verheijen, M. A.; Tamminga, Y.; Pijnenburg, R. H. W.; Tombros, N.; Cubaynes, F.

    2004-07-01

    Ultrathin SiO2 layers are of importance for the semiconductor industry. One of the techniques that can be used to determine the chemical composition and thickness of this type of layers is x-ray photoelectron spectroscopy (XPS). As shown by Seah and Spencer [Surf. Interface Anal. 33, 640 (2002)], it is not trivial to characterize this type of layer by means of XPS in a reliable way. We have investigated a series of ultrathin layers of SiO2 on Si (in the range from 0.3 to 3 nm) using XPS. The samples were also analyzed by means of transmission electron microscopy (TEM), Rutherford backscattering (RBS), and ellipsometry. The thickness of the SiO2 layers (d) was determined from the XPS results using three different approaches: the ``standard'' equation (Seah and Spencer) for d, an overlayer-substrate model calculation, and the QUASES-Tougaard [Surf. Interface Anal. 26, 249 (1998), QUASES-Tougaard: Software package for Quantitative Analysis of Surfaces by Electron Spectroscopy, version 4.4 (2000); http://www.quases.com] method. Good agreement was obtained between the results of XPS analyses using the ``standard'' equation, the overlayer-substrate model calculation, and RBS results. The QUASES-Tougaard results were approximately 62% above the other XPS results. The optical values for the thickness were always slightly higher than the thickness according to XPS or RBS. Using the model calculation, these (relatively small) deviations from the optical results could be explained as being a consequence of surface contaminations with hydrocarbons. For a thickness above 2.5 nm, the TEM results were in good agreement with the results obtained from the other techniques (apart from QUASES-Tougaard). Below 2.5 nm, significant deviations were found between RBS, XPS, and optical data on the one hand and TEM results on the other hand; the deviations became larger as the thickness of the SiO2 decreased. This effect may be related to interface states of oxygen, which have been

  7. Simplified treatment of severe dental erosion with ultrathin CAD-CAM composite occlusal veneers and anterior bilaminar veneers.

    PubMed

    Schlichting, Luís Henrique; Resende, Tayane Holz; Reis, Kátia Rodrigues; Magne, Pascal

    2016-10-01

    Restorative treatment for patients with dental erosion requires an analysis of the degree of structural damage. Patients affected by moderate to severe dental erosion are particularly challenging because complex occlusal reconstruction will be needed. Ultrathin bonded occlusal veneers represent a conservative alternative to traditional onlays and complete coverage crowns for the treatment of severe erosion. This article describes a complete mouth rehabilitation with ultrathin computer-aided design and computer-aided manufacturing (CAD-CAM) composite resin occlusal veneers in a patient with a severely eroded dentition. In the maxillary anterior teeth, the bilaminar approach was chosen with lingual composite resin veneers and labial porcelain veneers. The main benefit of this approach is the possibility of using additive adhesive techniques, allowing only strategic reduction of sound dental structure or no preparation. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  8. Multilayer-Grown Ultrathin Nanostructured GaAs Solar Cells as a Cost-Competitive Materials Platform for III-V Photovoltaics.

    PubMed

    Gai, Boju; Sun, Yukun; Lim, Haneol; Chen, Huandong; Faucher, Joseph; Lee, Minjoo L; Yoon, Jongseung

    2017-01-24

    Large-scale deployment of GaAs solar cells in terrestrial photovoltaics demands significant cost reduction for preparing device-quality epitaxial materials. Although multilayer epitaxial growth in conjunction with printing-based materials assemblies has been proposed as a promising route to achieve this goal, their practical implementation remains challenging owing to the degradation of materials properties and resulting nonuniform device performance between solar cells grown in different sequences. Here we report an alternative approach to circumvent these limitations and enable multilayer-grown GaAs solar cells with uniform photovoltaic performance. Ultrathin single-junction GaAs solar cells having a 300-nm-thick absorber (i.e., emitter and base) are epitaxially grown in triple-stack releasable multilayer assemblies by molecular beam epitaxy using beryllium as a p-type impurity. Microscale (∼500 × 500 μm 2 ) GaAs solar cells fabricated from respective device layers exhibit excellent uniformity (<3% relative) of photovoltaic performance and contact properties owing to the suppressed diffusion of p-type dopant as well as substantially reduced time of epitaxial growth associated with ultrathin device configuration. Bifacial photon management employing hexagonally periodic TiO 2 nanoposts and a vertical p-type metal contact serving as a metallic back-surface reflector together with specialized epitaxial design to minimize parasitic optical losses for efficient light trapping synergistically enable significantly enhanced photovoltaic performance of such ultrathin absorbers, where ∼17.2% solar-to-electric power conversion efficiency under simulated AM1.5G illumination is demonstrated from 420-nm-thick single-junction GaAs solar cells grown in triple-stack epitaxial assemblies.

  9. Current Modulation of a Heterojunction Structure by an Ultra-Thin Graphene Base Electrode.

    PubMed

    Alvarado Chavarin, Carlos; Strobel, Carsten; Kitzmann, Julia; Di Bartolomeo, Antonio; Lukosius, Mindaugas; Albert, Matthias; Bartha, Johann Wolfgang; Wenger, Christian

    2018-02-27

    Graphene has been proposed as the current controlling element of vertical transport in heterojunction transistors, as it could potentially achieve high operation frequencies due to its metallic character and 2D nature. Simulations of graphene acting as a thermionic barrier between the transport of two semiconductor layers have shown cut-off frequencies larger than 1 THz. Furthermore, the use of n-doped amorphous silicon, (n)-a-Si:H, as the semiconductor for this approach could enable flexible electronics with high cutoff frequencies. In this work, we fabricated a vertical structure on a rigid substrate where graphene is embedded between two differently doped (n)-a-Si:H layers deposited by very high frequency (140 MHz) plasma-enhanced chemical vapor deposition. The operation of this heterojunction structure is investigated by the two diode-like interfaces by means of temperature dependent current-voltage characterization, followed by the electrical characterization in a three-terminal configuration. We demonstrate that the vertical current between the (n)-a-Si:H layers is successfully controlled by the ultra-thin graphene base voltage. While current saturation is yet to be achieved, a transconductance of ~230 μ S was obtained, demonstrating a moderate modulation of the collector-emitter current by the ultra-thin graphene base voltage. These results show promising progress towards the application of graphene base heterojunction transistors.

  10. High spin-polarization in ultrathin Co2MnSi/CoPd multilayers

    NASA Astrophysics Data System (ADS)

    Galanakis, I.

    2015-03-01

    Half-metallic Co2MnSi finds a broad spectrum of applications in spintronic devices either in the form of thin films or as spacer in multilayers. Using state-of-the-art ab-initio electronic structure calculations we exploit the electronic and magnetic properties of ultrathin Co2MnSi/CoPd multilayers. We show that these heterostructures combine high values of spin-polarization at the Co2MnSi spacer with the perpendicular magnetic anisotropy of binary compounds such as CoPd. Thus they could find application in spintronic/magnetoelectronic devices.

  11. Approximating the near-edge mass absorption coefficients for Ni using an ultra-thin bimetal foil

    DOE PAGES

    Alkire, Randall W.

    2016-11-01

    In an effort to improve the characteristics of a fluorescing metal-foil-based beam position monitor, a new bimetal ultra-thin (0.98/0.67 µm) Ti–Ni foil was introduced to replace an existing single-element ultra-thin 0.5 µm thick Cr foil. During characterization it was determined that absorption measurements on the bimetal foil could be used to fit the Ni mass absorption coefficients accurately in the vicinity of the NiKedge. Comparison with experimental results from the literature demonstrated that the fitting procedure produced coefficients with uncertainties of the order of ±1%. Once determined, these fit coefficients allowed the thickness of an independently mounted 8 µm thickmore » Ni foil to be computed from absorption measurements instead of relying on a tool-based measurement of the foil thickness. Using the 8 µm thick foil, a continuous map of Ni mass absorption coefficients was produced at 1 eV resolution throughout the near-edge region. Lastly, this high-resolution map marks a significant improvement over the existing NIST XCOM or FFAST database mass absorption coefficients, which have estimated errors of 10–20% for the near-edge region.« less

  12. Controlled Growth of NiCo2O4 Nanorods and Ultrathin Nanosheets on Carbon Nanofibers for High-performance Supercapacitors

    PubMed Central

    Zhang, Genqiang; (David) Lou, Xiong Wen

    2013-01-01

    Two one-dimensional hierarchical hybrid nanostructures composed of NiCo2O4 nanorods and ultrathin nanosheets on carbon nanofibers (CNFs) are controllably synthesized through facile solution methods combined with a simple thermal treatment. The structure of NiCo2O4 can be easily controlled to be nanorods or nanosheets by using different additives in the synthesis. These two different nanostructures are evaluated as electrodes for high performance supercapacitors, in view of their apparent advantages, such as high electroactive surface area, ultrathin and porous features, robust mechanical strength, shorter ion and electron transport path. Their electrochemical performance is systematically studied, and both of these two hierarchical hybrid nanostructures exhibit high capacitance and excellent cycling stability. The remarkable electrochemical performance will undoubtedly make these hybrid structures attractive for high-performance supercapacitors with high power and energy densities. PMID:23503561

  13. Using Ultrathin Parylene Films as an Organic Gate Insulator in Nanowire Field-Effect Transistors.

    PubMed

    Gluschke, J G; Seidl, J; Lyttleton, R W; Carrad, D J; Cochrane, J W; Lehmann, S; Samuelson, L; Micolich, A P

    2018-06-27

    We report the development of nanowire field-effect transistors featuring an ultrathin parylene film as a polymer gate insulator. The room temperature, gas-phase deposition of parylene is an attractive alternative to oxide insulators prepared at high temperatures using atomic layer deposition. We discuss our custom-built parylene deposition system, which is designed for reliable and controlled deposition of <100 nm thick parylene films on III-V nanowires standing vertically on a growth substrate or horizontally on a device substrate. The former case gives conformally coated nanowires, which we used to produce functional Ω-gate and gate-all-around structures. These give subthreshold swings as low as 140 mV/dec and on/off ratios exceeding 10 3 at room temperature. For the gate-all-around structure, we developed a novel fabrication strategy that overcomes some of the limitations with previous lateral wrap-gate nanowire transistors. Finally, we show that parylene can be deposited over chemically treated nanowire surfaces, a feature generally not possible with oxides produced by atomic layer deposition due to the surface "self-cleaning" effect. Our results highlight the potential for parylene as an alternative ultrathin insulator in nanoscale electronic devices more broadly, with potential applications extending into nanobioelectronics due to parylene's well-established biocompatible properties.

  14. Operando SXRD of E-ALD deposited sulphides ultra-thin films: Crystallite strain and size

    NASA Astrophysics Data System (ADS)

    Giaccherini, Andrea; Russo, Francesca; Carlà, Francesco; Guerri, Annalisa; Picca, Rosaria Anna; Cioffi, Nicola; Cinotti, Serena; Montegrossi, Giordano; Passaponti, Maurizio; Di Benedetto, Francesco; Felici, Roberto; Innocenti, Massimo

    2018-02-01

    Electrochemical Atomic Layer Deposition (E-ALD), exploiting surface limited electrodeposition of atomic layers, can easily grow highly ordered ultra-thin films and 2D structures. Among other compounds CuxZnyS grown by means of E-ALD on Ag(111) has been found particularly suitable for the solar energy conversion due to its band gap (1.61 eV). However its growth seems to be characterized by a micrometric thread-like structure, probably overgrowing a smooth ultra-thin films. On this ground, a SXRD investigation has been performed, to address the open questions about the structure and the growth of CuxZnyS by means of E-ALD. The experiment shows a pseudo single crystal pattern as well as a powder pattern, confirming that part of the sample grows epitaxially on the Ag(111) substrate. The growth of the film was monitored by following the evolution of the Bragg peaks and Debye rings during the E-ALD steps. Breadth and profile analysis of the Bragg peaks lead to a qualitative interpretation of the growth mechanism. This study confirms that Zn lead to the growth of a strained Cu2S-like structure, while the growth of the thread-like structure is probably driven by the release of the stress from the epitaxial phase.

  15. Synthesis of ultrathin nitrogen-doped graphitic carbon nanocages as advanced electrode materials for supercapacitor.

    PubMed

    Tan, Yueming; Xu, Chaofa; Chen, Guangxu; Liu, Zhaohui; Ma, Ming; Xie, Qingji; Zheng, Nanfeng; Yao, Shouzhuo

    2013-03-01

    Synthesis of nitrogen-doped carbons with large surface area, high conductivity, and suitable pore size distribution is highly desirable for high-performance supercapacitor applications. Here, we report a novel protocol for template synthesis of ultrathin nitrogen-doped graphitic carbon nanocages (CNCs) derived from polyaniline (PANI) and their excellent capacitive properties. The synthesis of CNCs involves one-pot hydrothermal synthesis of Mn3O4@PANI core-shell nanoparticles, carbonization to produce carbon coated MnO nanoparticles, and then removal of the MnO cores by acidic treatment. The CNCs prepared at an optimum carbonization temperature of 800 °C (CNCs-800) have regular frameworks, moderate graphitization, high specific surface area, good mesoporosity, and appropriate N doping. The CNCs-800 show high specific capacitance (248 F g(-1) at 1.0 A g(-1)), excellent rate capability (88% and 76% capacitance retention at 10 and 100 A g(-1), respectively), and outstanding cycling stability (~95% capacitance retention after 5000 cycles) in 6 M KOH aqueous solution. The CNCs-800 can also exhibit great pseudocapacitance in 0.5 M H2SO4 aqueous solution besides the large electrochemical double-layer capacitance. The excellent capacitance performance coupled with the facile synthesis of ultrathin nitrogen-doped graphitic CNCs indicates their great application potential in supercapacitors.

  16. Ultra-Thin Solid-State Nanopores: Fabrication and Applications

    NASA Astrophysics Data System (ADS)

    Kuan, Aaron Tzeyang

    Solid-state nanopores are a nanofluidic platform with unique advantages for single-molecule analysis and filtration applications. However, significant improvements in device performance and scalable fabrication methods are needed to make nanopore devices competitive with existing technologies. This dissertation investigates the potential advantages of ultra-thin nanopores in which the thickness of the membrane is significantly smaller than the nanopore diameter. Novel, scalable fabrication methods were first developed and then utilized to examine device performance for water filtration and single molecule sensing applications. Fabrication of nanometer-thin pores in silicon nitride membranes was achieved using a feedback-controlled ion beam method in which ion sputtering is arrested upon detection of the first few ions that drill through the membrane. Performing fabrication at liquid nitrogen temperatures prevents surface atom rearrangements that have previously complicated similar processes. A novel cross-sectional imaging method was also developed to allow careful examination of the full nanopore geometry. Atomically-thin graphene nanopores were fabricated via an electrical pulse method in which sub-microsecond electrical pulses applied across a graphene membrane in electrolyte solution are used to create a defect in the membrane and controllably enlarge it into a nanopore. This method dramatically increases the accuracy and reliability of graphene nanopore production, allowing consistent production of single nanopores down to subnanometer sizes. In filtration applications in which nanopores are used to selectively restrict the passage of dissolved contaminants, ultra-thin nanopores minimize the flow resistance, increasing throughput and energy-efficiency. The ability of graphene nanopores to separate different ions was characterized via ionic conductance and reversal potential measurements. Graphene nanopores were observed to conduct cations preferentially over

  17. Two breakdown mechanisms in ultrathin alumina barrier magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Oliver, Bryan; Tuttle, Gary; He, Qing; Tang, Xuefei; Nowak, Janusz

    2004-02-01

    Two breakdown mechanisms are observed in magnetic tunnel junctions having an ultrathin alumina barrier. The two breakdown mechanisms manifest themselves differently when considering large ensembles of nominally identical devices under different stress conditions. The results suggest that one type of breakdown occurs because of the intrinsic breakdown of a well-formed oxide barrier that can be described by the E model of dielectric breakdown. The other is an extrinsic breakdown related to defects in the barrier rather than the failure of the oxide integrity. The characteristic of extrinsic breakdown suggests that a pre-existing pinhole in the barriers grows in area by means of dissipative (Joule) heating and/or an electric field across the pinhole circumference.

  18. Bandgap Shifting of an Ultra-Thin InGaAs/InP Quantum Well Infrared Photodetector

    NASA Technical Reports Server (NTRS)

    Sengupta, D. K.; Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Luong, E.; Hong, W.; Mumolo, J.; Bae, Y.; Stillman, G. E.; Jackson, S. L.; hide

    1998-01-01

    We demonstrate that SiO(sub 2) cap annealing in the ultra-thin p-type InGaAs/InP quantum wells can be used to produce large blue shifts of the band edge. A substantial bandgap blue shift, as much a 292.5 meV at 900 degrees C have been measured and the value of the bandgap shift can be controlled by the anneal time.

  19. Ultra-thin multilayer capacitors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renk, Timothy Jerome; Monson, Todd C.

    2009-06-01

    The fabrication of ultra-thin lanthanum-doped lead zirconium titanate (PLZT) multilayer ceramic capacitors (MLCCs) using a high-power pulsed ion beam was studied. The deposition experiments were conducted on the RHEPP-1 facility at Sandia National Laboratories. The goal of this work was to increase the energy density of ceramic capacitors through the formation of a multilayer device with excellent materials properties, dielectric constant, and standoff voltage. For successful device construction, there are a number of challenging requirements including achieving correct stoichiometric and crystallographic composition of the deposited PLZT, as well as the creation of a defect free homogenous film. This report detailsmore » some success in satisfying these requirements, although 900 C temperatures were necessary for PLZT perovskite phase formation. These temperatures were applied to a previously deposited multi-layer film which was then post-annealed to this temperature. The film exhibited mechanical distress attributable to differences in the coefficient of thermal expansion (CTE) of the various layers. This caused significant defects in the deposited films that led to shorts across devices. A follow-on single layer deposition without post-anneal produced smooth layers with good interface behavior, but without the perovskite phase formation. These issues will need to be addressed in order for ion beam deposited MLCCs to become a viable technology. It is possible that future in-situ heating during deposition may address both the CTE issue, and result in lowered processing temperatures, which in turn could raise the probability of successful MLCC formation.« less

  20. An ultrathin invisibility skin cloak for visible light.

    PubMed

    Ni, Xingjie; Wong, Zi Jing; Mrejen, Michael; Wang, Yuan; Zhang, Xiang

    2015-09-18

    Metamaterial-based optical cloaks have thus far used volumetric distribution of the material properties to gradually bend light and thereby obscure the cloaked region. Hence, they are bulky and hard to scale up and, more critically, typical carpet cloaks introduce unnecessary phase shifts in the reflected light, making the cloaks detectable. Here, we demonstrate experimentally an ultrathin invisibility skin cloak wrapped over an object. This skin cloak conceals a three-dimensional arbitrarily shaped object by complete restoration of the phase of the reflected light at 730-nanometer wavelength. The skin cloak comprises a metasurface with distributed phase shifts rerouting light and rendering the object invisible. In contrast to bulky cloaks with volumetric index variation, our device is only 80 nanometer (about one-ninth of the wavelength) thick and potentially scalable for hiding macroscopic objects. Copyright © 2015, American Association for the Advancement of Science.

  1. High-speed growth of TiO2 nanotube arrays with gradient pore diameter and ultrathin tube wall under high-field anodization

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaoliang; Zheng, Maojun; Ma, Li; Shen, Wenzhong

    2010-10-01

    Highly ordered TiO2 nanotubular arrays have been prepared by two-step anodization under high field. The high anodizing current densities lead to a high-speed film growth (0.40-1.00 µm min - 1), which is nearly 16 times faster than traditional fabrication of TiO2 at low field. It was found that an annealing process of Ti foil is an effective approach to get a monodisperse and double-pass TiO2 nanotubular layer with a gradient pore diameter and ultrathin tube wall (nearly 10 nm). A higher anodic voltage and longer anodization time are beneficial to the formation of ultrathin tube walls. This approach is simple and cost-effective in fabricating high-quality ordered TiO2 nanotubular arrays for practical applications.

  2. High-speed growth of TiO2 nanotube arrays with gradient pore diameter and ultrathin tube wall under high-field anodization.

    PubMed

    Yuan, Xiaoliang; Zheng, Maojun; Ma, Li; Shen, Wenzhong

    2010-10-08

    Highly ordered TiO(2) nanotubular arrays have been prepared by two-step anodization under high field. The high anodizing current densities lead to a high-speed film growth (0.40-1.00 microm min(-1)), which is nearly 16 times faster than traditional fabrication of TiO(2) at low field. It was found that an annealing process of Ti foil is an effective approach to get a monodisperse and double-pass TiO(2) nanotubular layer with a gradient pore diameter and ultrathin tube wall (nearly 10 nm). A higher anodic voltage and longer anodization time are beneficial to the formation of ultrathin tube walls. This approach is simple and cost-effective in fabricating high-quality ordered TiO(2) nanotubular arrays for practical applications.

  3. Chain and mirophase-separated structures of ultrathin polyurethane films

    NASA Astrophysics Data System (ADS)

    Kojio, Ken; Uchiba, Yusuke; Yamamoto, Yasunori; Motokucho, Suguru; Furukawa, Mutsuhisa

    2009-08-01

    Measurements are presented how chain and microphase-separated structures of ultrathin polyurethane (PU) films are controlled by the thickness. The film thickness is varied by a solution concentration for spin coating. The systems are PUs prepared from commercial raw materials. Fourier-transform infrared spectroscopic measurement revealed that the degree of hydrogen bonding among hard segment chains decreased and increased with decreasing film thickness for strong and weak microphase separation systems, respectively. The microphase-separated structure, which is formed from hard segment domains and a surrounding soft segment matrix, were observed by atomic force microscopy. The size of hard segment domains decreased with decreasing film thickness, and possibility of specific orientation of the hard segment chains was exhibited for both systems. These results are due to decreasing space for the formation of the microphase-separated structure.

  4. Transport properties of ultrathin YBa2Cu3O7 -δ nanowires: A route to single-photon detection

    NASA Astrophysics Data System (ADS)

    Arpaia, Riccardo; Golubev, Dmitri; Baghdadi, Reza; Ciancio, Regina; Dražić, Goran; Orgiani, Pasquale; Montemurro, Domenico; Bauch, Thilo; Lombardi, Floriana

    2017-08-01

    We report on the growth and characterization of ultrathin YBa2Cu3O7 -δ (YBCO) films on MgO (110) substrates, which exhibit superconducting properties at thicknesses down to 3 nm. YBCO nanowires, with thicknesses down to 10 nm and widths down to 65 nm, have also been successfully fabricated. The nanowires protected by a Au capping layer show superconducting properties close to the as-grown films and critical current densities, which are limited by only vortex dynamics. The 10-nm-thick YBCO nanowires without the Au capping present hysteretic current-voltage characteristics, characterized by a voltage switch which drives the nanowires directly from the superconducting to the normal state. We associate such bistability to the presence of localized normal domains within the superconductor. The presence of the voltage switch in ultrathin YBCO nanostructures, characterized by high sheet resistance values and high critical current values, makes our nanowires very attractive devices to engineer single-photon detectors.

  5. Ultra-thin narrow-band, complementary narrow-band, and dual-band metamaterial absorbers for applications in the THz regime

    NASA Astrophysics Data System (ADS)

    Astorino, Maria Denise; Frezza, Fabrizio; Tedeschi, Nicola

    2017-02-01

    In this paper, ultra-thin narrow-band, complementary narrow-band, and dual-band metamaterial absorbers (MMAs), exploiting the same electric ring resonator configuration, are investigated at normal and oblique incidence for both transverse electric (TE) and transverse magnetic (TM) polarizations, and with different physical properties in the THz regime. In the analysis of the ultra-thin narrow-band MMA, the limit of applicability of the transmission line model has been overcome with the introduction of a capacitance which considers the z component of the electric field. These absorbing structures have shown a wide angular response and a polarization-insensitive behavior due to the introduction of a conducting ground plane and to the four-fold rotational symmetry of the resonant elements around the propagation axis. We have adopted a retrieval procedure to extract the effective electromagnetic parameters of the proposed MMAs and we have compared the simulated and analytical results through the interference theory.

  6. Novel self-organization mechanism in ultrathin liquid films: theory and experiment.

    PubMed

    Trice, Justin; Favazza, Christopher; Thomas, Dennis; Garcia, Hernando; Kalyanaraman, Ramki; Sureshkumar, Radhakrishna

    2008-07-04

    When an ultrathin metal film of thickness h (<20 nm) is melted by a nanosecond pulsed laser, the film temperature is a nonmonotonic function of h and achieves its maximum at a certain thickness h*. This is a consequence of the h and time dependence of energy absorption and heat flow. Linear stability analysis and nonlinear dynamical simulations that incorporate such intrinsic interfacial thermal gradients predict a characteristic pattern length scale Lambda that decreases for h>h*, in contrast to the classical spinodal dewetting behavior where Lambda increases monotonically as h2. These predictions agree well with experimental observations for Co and Fe films on SiO2.

  7. Ultrathin thermoresponsive self-folding 3D graphene

    PubMed Central

    Xu, Weinan; Qin, Zhao; Chen, Chun-Teh; Kwag, Hye Rin; Ma, Qinli; Sarkar, Anjishnu; Buehler, Markus J.; Gracias, David H.

    2017-01-01

    Graphene and other two-dimensional materials have unique physical and chemical properties of broad relevance. It has been suggested that the transformation of these atomically planar materials to three-dimensional (3D) geometries by bending, wrinkling, or folding could significantly alter their properties and lead to novel structures and devices with compact form factors, but strategies to enable this shape change remain limited. We report a benign thermally responsive method to fold and unfold monolayer graphene into predesigned, ordered 3D structures. The methodology involves the surface functionalization of monolayer graphene using ultrathin noncovalently bonded mussel-inspired polydopamine and thermoresponsive poly(N-isopropylacrylamide) brushes. The functionalized graphene is micropatterned and self-folds into ordered 3D structures with reversible deformation under a full control by temperature. The structures are characterized using spectroscopy and microscopy, and self-folding is rationalized using a multiscale molecular dynamics model. Our work demonstrates the potential to design and fabricate ordered 3D graphene structures with predictable shape and dynamics. We highlight applicability by encapsulating live cells and creating nonlinear resistor and creased transistor devices. PMID:28989963

  8. The detection of oesophageal varices using a novel, disposable, probe-based transnasal endoscope: a prospective diagnostic pilot study.

    PubMed

    Sami, Sarmed S; Ragunath, Krish; Wilkes, Emilie A; James, Martin; Mansilla-Vivar, Rodrigo; Ortiz-Fernández-Sordo, Jacobo; White, Jonathan; Khanna, Amardeep; Coletta, Marina; Samuel, Sunil; Aithal, Guruprasad P; Guha, Indra Neil

    2016-11-01

    Screening for oesophageal varices (OV) using conventional oesophagogastroduodenoscopy (C-OGD) is invasive and requires costly monitoring, recovery, and decontamination facilities. We aimed to evaluate the technical feasibility, acceptability and accuracy of a novel, portable and disposable office-based transnasal endoscope (EG Scan ™ ) compared to C-OGD as the reference standard. This was a prospective cohort study. Consecutive adult patients with cirrhosis were invited to participate. All subjects underwent the two procedures on the same day performed by two endoscopists in a blinded design. Patients completed preference and validated tolerability (10-point visual analogue scale (VAS)) questionnaires on day 0 and day 14 post procedures. Forty-five of 50 patients (90%) completed both interventions. Mean age was 59 years and OV prevalence was 49%. Patients reported higher preference (percentage) and better experience (mean VAS) with EG Scan compared to C-OGD on day 0 (76.5% vs. 23.5%, P < 0.001; 7.8 vs. 6.8, P = 0.058, respectively) and day 14 (77.8% vs. 22.2%, P < 0.001; 7.0 vs. 5.5, P = 0.0013 respectively). Sensitivity and specificity of the EG Scan for the diagnosis of any size OV were 0.82 (95% confidence interval (CI) 0.60-0.95), and 0.78 (95% CI 0.56-0.93) respectively. Corresponding values for the diagnosis of clinically significant (medium/large) OV were 0.92 (95% CI 0.62-1.0), 0.97 (95% CI 0.84-1.0) respectively. No serious adverse events occurred. EG Scan accuracy was higher for the diagnosis of medium/large OV compared to any size OV. Patients' preference and overall experience of the EG Scan was favourable compared to C-OGD 14 days after procedures. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Layered ultra-thin coherent structures used as electrical resistors having low-temperature coefficient of resistivity

    DOEpatents

    Werner, T.R.; Falco, C.M.; Schuller, I.K.

    1982-08-31

    A thin film resistor having a controlled temperature coefficient of resistance (TCR) ranging from negative to positive degrees kelvin and having relatively high resistivity. The resistor is a multilayer superlattice crystal containing a plurality of alternating, ultra-thin layers of two different metals. TCR is varied by controlling the thickness of the individual layers. The resistor can be readily prepared by methods compatible with thin film circuitry manufacturing techniques.

  10. Multi-Layer Coating of Ultrathin Polymer Films on Nanoparticles of Alumina by a Plasma Treatment

    DTIC Science & Technology

    2001-01-01

    Proc. Vol. 635 © 2001 Materials Research Society Multi-Layer Coating of Ultrathin Polymer Films on Nanoparticles of Alumina by a Plasma Treatment Donglu...interconnected organic and inorganic networks results in coatings with a very low permeability for gases and liquids. Hybrid materials are very suitable for... materials consist of a clear alcoholic solution that can easily be processed by classical application techniques such as dipping, spraying, or spin coating

  11. Numerical experiments on evaporation and explosive boiling of ultra-thin liquid argon film on aluminum nanostructure substrate

    NASA Astrophysics Data System (ADS)

    Wang, Weidong; Zhang, Haiyan; Tian, Conghui; Meng, Xiaojie

    2015-04-01

    Evaporation and explosive boiling of ultra-thin liquid film are of great significant fundamental importance for both science and engineering applications. The evaporation and explosive boiling of ultra-thin liquid film absorbed on an aluminum nanostructure solid wall are investigated by means of molecular dynamics simulations. The simulated system consists of three regions: liquid argon, vapor argon, and an aluminum substrate decorated with nanostructures of different heights. Those simulations begin with an initial configuration for the complex liquid-vapor-solid system, followed by an equilibrating system at 90 K, and conclude with two different jump temperatures, including 150 and 310 K which are far beyond the critical temperature. The space and time dependences of temperature, pressure, density number, and net evaporation rate are monitored to investigate the phase transition process on a flat surface with and without nanostructures. The simulation results reveal that the nanostructures are of great help to raise the heat transfer efficiency and that evaporation rate increases with the nanostructures' height in a certain range.

  12. Numerical experiments on evaporation and explosive boiling of ultra-thin liquid argon film on aluminum nanostructure substrate.

    PubMed

    Wang, Weidong; Zhang, Haiyan; Tian, Conghui; Meng, Xiaojie

    2015-01-01

    Evaporation and explosive boiling of ultra-thin liquid film are of great significant fundamental importance for both science and engineering applications. The evaporation and explosive boiling of ultra-thin liquid film absorbed on an aluminum nanostructure solid wall are investigated by means of molecular dynamics simulations. The simulated system consists of three regions: liquid argon, vapor argon, and an aluminum substrate decorated with nanostructures of different heights. Those simulations begin with an initial configuration for the complex liquid-vapor-solid system, followed by an equilibrating system at 90 K, and conclude with two different jump temperatures, including 150 and 310 K which are far beyond the critical temperature. The space and time dependences of temperature, pressure, density number, and net evaporation rate are monitored to investigate the phase transition process on a flat surface with and without nanostructures. The simulation results reveal that the nanostructures are of great help to raise the heat transfer efficiency and that evaporation rate increases with the nanostructures' height in a certain range.

  13. The effect of ultraviolet irradiation on the ultra-thin HfO{sub 2} based CO gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karaduman, Irmak; Barin, Özlem; Acar, Selim

    2015-11-07

    In this work, an effort has been made to fabricate ultrathin HfO{sub 2}/Al{sub 2}O{sub 3} sample by atomic layer deposition method for the fast detection of CO gas at room temperature. The effect of the operating temperature and the UV light on the gas sensing characteristics has been studied. We investigated the optimum operating temperature for the sample by sensing 25 ppm CO and CO{sub 2} gases from room temperature to 150 °C for 10 °C steps. The maximum response was obtained at 150 °C for both gases in the measurement temperature range. Also, the photoresponse measurements clearly show the effect of UV lightmore » on the sample. At room temperature, sensor showed superior response (14%) for 5 ppm CO gas. The response time of sensor is 6 s to 5 ppm CO gas concentration. The ultrathin HfO{sub 2} based sample shows acceptable gas sensitivity for 5 ppm CO gas at room temperature under UV light irradiation.« less

  14. On-surface synthesis: a promising strategy toward the encapsulation of air unstable ultra-thin 2D materials.

    PubMed

    Li, Qiang; Zhao, Yinghe; Guo, Jiyuan; Zhou, Qionghua; Chen, Qian; Wang, Jinlan

    2018-02-22

    2D black phosphorus (BP) and transition metal chalcogenides (TMCs) have beneficial electronic, optical, and physical properties at the few-layer limit. However, irreversible degradation of exfoliated or chemical vapor deposition-grown ultrathin BP and TMCs like GaSe via oxidation under ambient conditions limits their applications. Herein, the on-surface growth of an oxidation-resistant 2D thin film of a metal coordination polymer is demonstrated by multiscale simulations. We show that the preparation of such heterostructures can be conducted in solution, in which pristine BP and GaSe present better stability than in an air environment. Our calculations reveal that the interaction between the polymer layer and 2D materials is dominated by van der Waals forces; thus, the electronic properties of pristine BP and GaSe are well preserved. Meanwhile, the isolation from oxygen and water can be achieved by monolayer polymers, due to the nature of their close-packed layers. Our facile strategy for enhancing the environmental stability of ultrathin materials is expected to accelerate efforts to implement 2D materials in electronic and optoelectronic applications.

  15. Confinement of Aggregation-Induced Emission Molecular Rotors in Ultrathin Two-Dimensional Porous Organic Nanosheets for Enhanced Molecular Recognition.

    PubMed

    Dong, Jinqiao; Li, Xu; Zhang, Kang; Di Yuan, Yi; Wang, Yuxiang; Zhai, Linzhi; Liu, Guoliang; Yuan, Daqiang; Jiang, Jianwen; Zhao, Dan

    2018-03-21

    Despite the rapid development of molecular rotors over the past decade, it still remains a huge challenge to understand their confined behavior in ultrathin two-dimensional (2D) nanomaterials for molecular recognition. Here, we report an all-carbon, 2D π-conjugated aromatic polymer, named NUS-25, containing flexible tetraphenylethylene (TPE) units as aggregation-induced emission (AIE) molecular rotors. NUS-25 bulk powder can be easily exfoliated into micrometer-sized lamellar freestanding nanosheets with a thickness of 2-5 nm. The dynamic behavior of the TPE rotors is partially restricted through noncovalent interactions in the ultrathin 2D nanosheets, which is proved by comparative experimental studies including AIE characteristics, size-selective molecular recognition, and theoretical calculations of rotary energy barrier. Because of the partially restricted TPE rotors, NUS-25 nanosheets are highly fluorescent. This property allows NUS-25 nanosheets to be used as a chemical sensor for the specific detection of acenaphthylene among a series of polycyclic aromatic hydrocarbons (PAHs) via fluorescent quenching mechanism. Further investigations show that NUS-25 nanosheets have much higher sensitivity and selectivity than their stacked bulk powder and other similar polymers containing dynamic TPE rotors. The highly efficient molecular recognition can be attributed to the photoinduced electron transfer (PET) from NUS-25 nanosheets to acenaphthylene, which is investigated by time-resolved photoluminescence measurements (TRPL), excitation and emission spectra, and density functional theory (DFT) calculations. Our findings demonstrate that confinement of AIE molecular rotors in 2D nanomaterials can enhance the molecular recognition. We anticipate that the material design strategy demonstrated in this study will inspire the development of other ultrathin 2D nanomaterials equipped with smart molecular machines for various applications.

  16. Ultra-Thin Dual-Band Polarization-Insensitive and Wide-Angle Perfect Metamaterial Absorber Based on a Single Circular Sector Resonator Structure

    NASA Astrophysics Data System (ADS)

    Luo, Hao; Cheng, Yong Zhi

    2018-01-01

    We present a simple design for an ultra-thin dual-band polarization-insensitive and wide-angle perfect metamaterial absorber (PMMA) based on a single circular sector resonator structure (CSRS). Both simulation and experimental results reveal that two resonance peaks with average absorption above 99% can be achieved. The dual-band PMMA is ultra-thin with total thickness of 0.5 mm, which is

  17. Magnetic and structural characterization of ultra-thin Fe (222) films

    NASA Astrophysics Data System (ADS)

    Loving, Melissa G.; Brown, Emily E.; Rizzo, Nicholas D.; Ambrose, Thomas F.

    2018-05-01

    Varied thickness body centered cubic (BCC) ultrathin Fe films (10-50Å) have been sputter deposited onto Si (111) substrates. BCC Fe with the novel (222) texture was obtained by H- terminating the Si (111) starting substrate then immediately depositing the magnetic films. Structural results derived from grazing incidence x-ray diffraction and x-ray reflectivity confirm the crystallographic texture, film thickness, and interface roughness. Magnetic results indicate that Fe (222) exhibits soft magnetic switching (easy axis), high anisotropy (hard axis), which is maintained across the thickness range, and a positive magnetostriction (for the thicker film layers). The observed soft magnetic switching in this system makes it an ideal candidate for future magnetic memory development as well as other microelectronics applications that utilize magnetic materials.

  18. Ultrathin NiO nanoflakes electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Xiao, Huanhao; Qu, Fengyu; Wu, Xiang

    2016-01-01

    In this work, large scale ultrathin NiO nanoflakes grown on nickel foam have been successfully obtained by a facile, low cost and eco-friendly route under mild temperature. The average thickness of the as-obtained NiO nanoflakes is about 10 nm. And they possess large surface area of 89.56 m2 g-1 and the dominant pore size of 2.313 nm. The electrochemical properties of the obtained product were evaluated by cyclic voltammetry (CV), galvanostatic charge-discharge measurement and electrochemical impedance spectroscopy (EIS). The electrochemical tests demonstrate the highest discharge areal capacitance of 870 mF cm-2 at 1 mA cm-2 and excellent long cycle-life stability with 84.2% of its discharge areal capacitance retention after 6000 cycles at the current density of 10 mA cm-2. The remarkable electrochemical capacitive performance revealed NiO nanoflakes grown on nickel foam might be promising supercapacitor electrode materials for future energy storage applications.

  19. Colored ultrathin hybrid photovoltaics with high quantum efficiency

    DOE PAGES

    Lee, Kyu -Tae; Lee, Jae Yong; Seo, Sungyong; ...

    2014-10-24

    Most current solar panels are fabricated via complex processes using expensive semiconductor materials, and they are rigid and heavy with a dull, black appearance. As a result of their non-aesthetic appearance and weight, they are primarily installed on rooftops to minimize their negative impact on building appearance. The large surfaces and interiors of modern buildings are not efficiently utilized for potential electric power generation. Here, we introduce dual-function solar cells based on ultrathin dopant-free amorphous silicon embedded in an optical cavity that not only efficiently extract the photogenerated carriers but also display distinctive colors with the desired angle-insensitive appearances. Light-energy-harvestingmore » colored signage is demonstrated. Furthermore, a cascaded photovoltaics scheme based on tunable spectrum splitting can be employed to increase power efficiency by absorbing a broader band of light energy. Furthermore, this study pioneers a new approach to architecturally compatible and decorative thin-film photovoltaics.« less

  20. Colored ultrathin hybrid photovoltaics with high quantum efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kyu -Tae; Lee, Jae Yong; Seo, Sungyong

    Most current solar panels are fabricated via complex processes using expensive semiconductor materials, and they are rigid and heavy with a dull, black appearance. As a result of their non-aesthetic appearance and weight, they are primarily installed on rooftops to minimize their negative impact on building appearance. The large surfaces and interiors of modern buildings are not efficiently utilized for potential electric power generation. Here, we introduce dual-function solar cells based on ultrathin dopant-free amorphous silicon embedded in an optical cavity that not only efficiently extract the photogenerated carriers but also display distinctive colors with the desired angle-insensitive appearances. Light-energy-harvestingmore » colored signage is demonstrated. Furthermore, a cascaded photovoltaics scheme based on tunable spectrum splitting can be employed to increase power efficiency by absorbing a broader band of light energy. Furthermore, this study pioneers a new approach to architecturally compatible and decorative thin-film photovoltaics.« less

  1. Effect of structure on the tribology of ultrathin graphene and graphene oxide films.

    PubMed

    Chen, Hang; Filleter, Tobin

    2015-03-27

    The friction and wear properties of graphene and graphene oxide (GO) with varying C/O ratio were investigated using friction force microscopy. When applied as solid lubricants between a sliding contact of a silicon (Si) tip and a SiO2/Si substrate, graphene and ultrathin GO films (as thin as 1-2 atomic layers) were found to reduce friction by ∼6 times and ∼2 times respectively as compared to the unlubricated contact. The differences in measured friction were attributed to different interfacial shear strengths. Ultrathin films of GO with a low C/O ratio of ∼2 were found to wear easily under small normal load. The onset of wear, and the location of wear initiation, is attributed to differences in the local shear strength of the sliding interface as a result of the non-homogeneous surface structure of GO. While the exhibited low friction of GO as compared to SiO2 makes it an economically viable coating for micro/nano-electro-mechanical systems with the potential to extend the lifetime of devices, its higher propensity for wear may limit its usefulness. To address this limitation, the wear resistance of GO samples with a higher C/O ratio (∼4) was also studied. The higher C/O ratio GO was found to exhibit much improved wear resistance which approached that of the graphene samples. This demonstrates the potential of tailoring the structure of GO to achieve graphene-like tribological properties.

  2. Probing the Optical Properties and Strain-Tuning of Ultrathin Mo1- xW xTe2.

    PubMed

    Aslan, Ozgur Burak; Datye, Isha M; Mleczko, Michal J; Sze Cheung, Karen; Krylyuk, Sergiy; Bruma, Alina; Kalish, Irina; Davydov, Albert V; Pop, Eric; Heinz, Tony F

    2018-04-11

    Ultrathin transition metal dichalcogenides (TMDCs) have recently been extensively investigated to understand their electronic and optical properties. Here we study ultrathin Mo 0.91 W 0.09 Te 2 , a semiconducting alloy of MoTe 2 , using Raman, photoluminescence (PL), and optical absorption spectroscopy. Mo 0.91 W 0.09 Te 2 transitions from an indirect to a direct optical band gap in the limit of monolayer thickness, exhibiting an optical gap of 1.10 eV, very close to its MoTe 2 counterpart. We apply tensile strain, for the first time, to monolayer MoTe 2 and Mo 0.91 W 0.09 Te 2 to tune the band structure of these materials; we observe that their optical band gaps decrease by 70 meV at 2.3% uniaxial strain. The spectral widths of the PL peaks decrease with increasing strain, which we attribute to weaker exciton-phonon intervalley scattering. Strained MoTe 2 and Mo 0.91 W 0.09 Te 2 extend the range of band gaps of TMDC monolayers further into the near-infrared, an important attribute for potential applications in optoelectronics.

  3. Efficient photocatalytic selective nitro-reduction and C-H bond oxidation over ultrathin sheet mediated CdS flowers.

    PubMed

    Pahari, Sandip Kumar; Pal, Provas; Srivastava, Divesh N; Ghosh, Subhash Ch; Panda, Asit Baran

    2015-06-28

    We report here a visible light driven selective nitro-reduction and oxidation of saturated sp(3) C-H bonds using ultrathin (0.8 nm) sheet mediated uniform CdS flowers as catalyst under a household 40 W CFL lamp and molecular oxygen as oxidant. The CdS flowers were synthesized using a simple surfactant assisted hydrothermal method.

  4. Heterogeneity in ultrathin films simulated by Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Sun, Jiebing; Hannon, James B.; Kellogg, Gary L.; Pohl, Karsten

    2007-03-01

    The 3D composition profile of ultra-thin Pd films on Cu(001) has been experimentally determined using low energy electron microscopy (LEEM).^[1] Quantitative measurements of the alloy concentration profile near steps show that the Pd distribution in the 3^rd layer is heterogeneous due to step overgrowth during Pd deposition. Interestingly, the Pd distribution in the 2^nd layer is also heterogeneous, and appears to be correlated with the distribution in the 1^st layer. We describe Monte Carlo simulations that show that correlation is due to Cu-Pd attraction, and that the 2^nd layer Pd is, in fact, laterally equilibrated. By comparing measured and simulated concentration profiles, we can estimate this attraction within a simple bond counting model. [1] J. B. Hannon, J. Sun, K. Pohl, G. L. Kellogg, Phys. Rev. Lett. 96, 246103 (2006)

  5. Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces

    PubMed Central

    Li, Yong; Liang, Bin; Gu, Zhong-ming; Zou, Xin-ye; Cheng, Jian-chun

    2013-01-01

    The introduction of metasurfaces has renewed the Snell's law and opened up new degrees of freedom to tailor the optical wavefront at will. Here, we theoretically demonstrate that the generalized Snell's law can be achieved for reflected acoustic waves based on ultrathin planar acoustic metasurfaces. The metasurfaces are constructed with eight units of a solid structure to provide discrete phase shifts covering the full 2π span with steps of π/4 by coiling up the space. By careful selection of the phase profiles in the transverse direction of the metasurfaces, some fascinating wavefront engineering phenomena are demonstrated, such as anomalous reflections, conversion of propagating waves into surface waves, planar aberration-free lens and nondiffracting Bessel beam generated by planar acoustic axicon. Our results could open up a new avenue for acoustic wavefront engineering and manipulations. PMID:23986034

  6. Performance enhancement in organic photovoltaic solar cells using iridium (Ir) ultra-thin surface modifier (USM)

    NASA Astrophysics Data System (ADS)

    Pandey, Rina; Lim, Ju Won; Kim, Jung Hyuk; Angadi, Basavaraj; Choi, Ji Won; Choi, Won Kook

    2018-06-01

    In this study, Iridium (Ir) metallic layer as an ultra-thin surface modifier (USM) was deposited on ITO coated glass substrate using radio frequency magnetron sputtering for improving the photo-conversion efficiency of organic photovoltaic cells. Ultra-thin Ir acts as a surface modifier replacing the conventional hole transport layer (HTL) PEDOT:PSS in organic photovoltaic (OPV) cells with two different active layers P3HT:PC60BM and PTB7:PC70BM. The Ir USM (1.0 nm) coated on ITO glass substrate showed transmittance of 84.1% and work function of >5.0 eV, which is higher than that of ITO (4.5-4.7 eV). The OPV cells with Ir USM (1.0 nm) exhibits increased power conversion efficiency of 3.70% (for P3HT:PC60BM active layer) and 7.28% (for PTB7:PC70BM active layer) under 100 mW/cm2 illumination (AM 1.5G) which are higher than those of 3.26% and 6.95% for the same OPV cells but with PEDOT:PSS as HTL instead of Ir USM. The results reveal that the chemically stable Ir USM layer could be used as an alternative material for PEDOT:PSS in organic photovoltaic cells.

  7. Critical current enhancement driven by suppression of superconducting fluctuation in ion-gated ultrathin FeSe

    NASA Astrophysics Data System (ADS)

    Harada, T.; Shiogai, J.; Miyakawa, T.; Nojima, T.; Tsukazaki, A.

    2018-05-01

    The framework of phase transition, such as superconducting transition, occasionally depends on the dimensionality of materials. Superconductivity is often weakened in the experimental conditions of two-dimensional thin films due to the fragile superconducting state against defects and interfacial effects. In contrast to this general trend, superconductivity in the thin limit of FeSe exhibits an opposite trend, such as an increase in critical temperature (T c) and the superconducting gap exceeding the bulk values; however, the dominant mechanism is still under debate. Here, we measured thickness-dependent electrical transport properties of the ion-gated FeSe thin films to evaluate the superconducting critical current (I c) in the ultrathin FeSe. Upon systematically decreasing the FeSe thickness by the electrochemical etching technique in the Hall bar-shaped electric double-layer transistors, we observed a dramatic enhancement of I c reaching about 10 mA and corresponding to about 107 A cm‑2 in the thinnest condition. By analyzing the transition behavior, we clarify that the suppressed superconducting fluctuation is one of the origins of the large I c in the ion-gated ultrathin FeSe films. These results indicate the existence of a robust superconducting state possibly with dense Cooper pairs at the thin limit of FeSe.

  8. Ultrathin MoS2 and WS2 layers on silver nano-tips as electron emitters

    NASA Astrophysics Data System (ADS)

    Loh, Tamie A. J.; Tanemura, Masaki; Chua, Daniel H. C.

    2016-09-01

    2-dimensional (2D) inorganic analogues of graphene such as MoS2 and WS2 present interesting opportunities for field emission technology due to their high aspect ratio and good electrical conductivity. However, research on 2D MoS2 and WS2 as potential field emitters remains largely undeveloped compared to graphene. Herein, we present an approach to directly fabricate ultrathin MoS2 and WS2 onto Ag nano-tips using pulsed laser deposition at low temperatures of 450-500 °C. In addition to providing a layer of chemical and mechanical protection for the Ag nano-tips, the growth of ultrathin MoS2 and WS2 layers on Ag led to enhanced emission properties over that of pristine nano-tips due to a reduction of the effective barrier height arising from charge injection from Ag to the overlying MoS2 or WS2. For WS2 on Ag nano-tips, the phasic mixture was also an important factor influencing the field emission performance. The presence of 1T-WS2 at the metal-WS2 interface in a hybrid film of 2H/1T-WS2 leads to improvement in the field emission capabilities as compared to pure 2H-WS2 on Ag nano-tips.

  9. Role of ultrathin metal fluoride layer in organic photovoltaic cells: mechanism of efficiency and lifetime enhancement.

    PubMed

    Lim, Kyung-Geun; Choi, Mi-Ri; Kim, Ji-Hoon; Kim, Dong Hun; Jung, Gwan Ho; Park, Yongsup; Lee, Jong-Lam; Lee, Tae-Woo

    2014-04-01

    Although rapid progress has been made recently in bulk heterojunction organic solar cells, systematic studies on an ultrathin interfacial layer at the electron extraction contact have not been conducted in detail, which is important to improve both the device efficiency and the lifetime. We find that an ultrathin BaF2 layer at the electron extraction contact strongly influences the open-circuit voltage (Voc ) as the nanomorphology evolves with increasing BaF2 thickness. A vacuum-deposited ultrathin BaF2 layer grows by island growth, so BaF2 layers with a nominal thickness less than that of single-coverage layer (≈3 nm) partially cover the polymeric photoactive layer. As the nominal thickness of the BaF2 layer increased to that of a single-coverage layer, the Voc and power conversion efficiency (PCE) of the organic photovoltaic cells (OPVs) increased but the short-circuit current remained almost constant. The fill factor and the PCE decreased abruptly as the thickness of the BaF2 layer exceeded that of a single-coverage layer, which was ascribed to the insulating nature of BaF2 . We find the major cause of the increased Voc observed in these devices is the lowered work function of the cathode caused by the reaction and release of Ba from thin BaF2 films upon deposition of Al. The OPV device with the BaF2 layer showed a slightly improved maximum PCE (4.0 %) and a greatly (approximately nine times) increased device half-life under continuous simulated solar irradiation at 100 mW cm(-2) as compared with the OPV without an interfacial layer (PCE=2.1 %). We found that the photodegradation of the photoactive layer was not a major cause of the OPV degradation. The hugely improved lifetime with cathode interface modification suggests a significant role of the cathode interfacial layer that can help to prolong device lifetimes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces.

    PubMed

    Aieta, Francesco; Genevet, Patrice; Kats, Mikhail A; Yu, Nanfang; Blanchard, Romain; Gaburro, Zeno; Capasso, Federico

    2012-09-12

    The concept of optical phase discontinuities is applied to the design and demonstration of aberration-free planar lenses and axicons, comprising a phased array of ultrathin subwavelength-spaced optical antennas. The lenses and axicons consist of V-shaped nanoantennas that introduce a radial distribution of phase discontinuities, thereby generating respectively spherical wavefronts and nondiffracting Bessel beams at telecom wavelengths. Simulations are also presented to show that our aberration-free designs are applicable to high-numerical aperture lenses such as flat microscope objectives.

  11. Plasmonic excitation-assisted optical and electric enhancement in ultra-thin solar cells: the influence of nano-strip cross section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabaeian, Mohammad, E-mail: sabaiean@scu.ac.ir; Heydari, Mehdi; Ajamgard, Narges

    The effects of Ag nano-strips with triangle, rectangular and trapezoid cross sections on the optical absorption, generation rate, and short-circuit current density of ultra-thin solar cells were investigated. By putting the nano-strips as a grating structure on the top of the solar cells, the waveguide, surface plasmon polariton (SPP), and localized surface plasmon (LSP) modes, which are excited with the assistance of nano-strips, were evaluated in TE and TM polarizations. The results show, firstly, the TM modes are more influential than TE modes in optical and electrical properties enhancement of solar cell, because of plasmonic excitations in TM mode. Secondly,more » the trapezoid nano-strips reveal noticeable impact on the optical absorption, generation rate, and short-circuit current density enhancement than triangle and rectangular ones. In particular, the absorption of long wavelengths which is a challenge in ultra-thin solar cells is significantly improved by using Ag trapezoid nano-strips.« less

  12. In situ study of the electronic structure of atomic layer deposited oxide ultrathin films upon oxygen adsorption using ambient pressure XPS

    DOE PAGES

    Mao, Bao-Hua; Crumlin, Ethan; Tyo, Eric C.; ...

    2016-07-21

    In this work, ambient pressure X-ray photoelectron spectroscopy (APXPS) was used to investigate the effect of oxygen adsorption on the band bending and electron affinity of Al 2O 3, ZnO and TiO 2 ultrathin films (~1 nm in thickness) deposited on a Si substrate by atomic layer deposition (ALD). Upon exposure to oxygen at room temperature (RT), upward band bending was observed on all three samples, and a decrease in electron affinity was observed on Al 2O 3 and ZnO ultrathin films at RT. At 80°C, the magnitude of the upward band bending decreased, and the change in the electronmore » affinity vanished. These results indicate the existence of two surface oxygen species: a negatively charged species that is strongly adsorbed and responsible for the observed upward band bending, and a weakly adsorbed species that is polarized, lowering the electron affinity. Based on the extent of upward band bending on the three samples, the surface coverage of the strongly adsorbed species exhibits the following order: Al 2O 3 > ZnO > TiO 2. This finding is in stark contrast to the trend expected on the surface of these bulk oxides, and highlights the unique surface activity of ultrathin oxide films with important implications, for example, in oxidation reactions taking place on these films or in catalyst systems where such oxides are used as a support material.« less

  13. Electrochemical Partial Reforming of Ethanol into Ethyl Acetate Using Ultrathin Co3O4 Nanosheets as a Highly Selective Anode Catalyst

    PubMed Central

    2016-01-01

    Electrochemical partial reforming of organics provides an alternative strategy to produce valuable organic compounds while generating H2 under mild conditions. In this work, highly selective electrochemical reforming of ethanol into ethyl acetate is successfully achieved by using ultrathin Co3O4 nanosheets with exposed (111) facets as an anode catalyst. Those nanosheets were synthesized by a one-pot, templateless hydrothermal method with the use of ammonia. NH3 was demonstrated critical to the overall formation of ultrathin Co3O4 nanosheets. With abundant active sites on Co3O4 (111), the as-synthesized ultrathin Co3O4 nanosheets exhibited enhanced electrocatalytic activities toward water and ethanol oxidations in alkaline media. More importantly, over the Co3O4 nanosheets, the electrooxidation from ethanol to ethyl acetate was so selective that no other oxidation products were yielded. With such a high selectivity, an electrolyzer cell using Co3O4 nanosheets as the anode electrocatalyst and Ni–Mo nanopowders as the cathode electrocatalyst has been successfully built for ethanol reforming. The electrolyzer cell was readily driven by a 1.5 V battery to achieve the effective production of both H2 and ethyl acetate. After the bulk electrolysis, about 95% of ethanol was electrochemically reformed into ethyl acetate. This work opens up new opportunities in designing a material system for building unique devices to generate both hydrogen and high-value organics at room temperature by utilizing electric energy from renewable sources. PMID:27610415

  14. Electrochemical Partial Reforming of Ethanol into Ethyl Acetate Using Ultrathin Co3O4 Nanosheets as a Highly Selective Anode Catalyst.

    PubMed

    Dai, Lei; Qin, Qing; Zhao, Xiaojing; Xu, Chaofa; Hu, Chengyi; Mo, Shiguang; Wang, Yu Olivia; Lin, Shuichao; Tang, Zichao; Zheng, Nanfeng

    2016-08-24

    Electrochemical partial reforming of organics provides an alternative strategy to produce valuable organic compounds while generating H2 under mild conditions. In this work, highly selective electrochemical reforming of ethanol into ethyl acetate is successfully achieved by using ultrathin Co3O4 nanosheets with exposed (111) facets as an anode catalyst. Those nanosheets were synthesized by a one-pot, templateless hydrothermal method with the use of ammonia. NH3 was demonstrated critical to the overall formation of ultrathin Co3O4 nanosheets. With abundant active sites on Co3O4 (111), the as-synthesized ultrathin Co3O4 nanosheets exhibited enhanced electrocatalytic activities toward water and ethanol oxidations in alkaline media. More importantly, over the Co3O4 nanosheets, the electrooxidation from ethanol to ethyl acetate was so selective that no other oxidation products were yielded. With such a high selectivity, an electrolyzer cell using Co3O4 nanosheets as the anode electrocatalyst and Ni-Mo nanopowders as the cathode electrocatalyst has been successfully built for ethanol reforming. The electrolyzer cell was readily driven by a 1.5 V battery to achieve the effective production of both H2 and ethyl acetate. After the bulk electrolysis, about 95% of ethanol was electrochemically reformed into ethyl acetate. This work opens up new opportunities in designing a material system for building unique devices to generate both hydrogen and high-value organics at room temperature by utilizing electric energy from renewable sources.

  15. Selective, ultrathin membrane skins prepared by deposition of novel polymer films on porous alumina supports

    NASA Astrophysics Data System (ADS)

    Balachandra, Anagi Manjula

    Membrane-based separations are attractive in industrial processes because of their low energy costs and simple operation. However, low permeabilities often make membrane processes uneconomical. Since flux is inversely proportional to membrane thickness, composite membranes consisting of ultrathin, selective skins on highly permeable supports are required to simultaneously achieve high throughput and high selectivity. However, the synthesis of defect-free skins with thicknesses less than 50 nm is difficult, and thus flux is often limited. Layer-by-layer deposition of oppositely charged polyelectrolytes on porous supports is an attractive method to synthesize ultrathin ion-separation membranes with high flux and high selectivity. The ion-transport selectivity of multilayer polyelectrolyte membranes (MPMs) is primarily due to Donnan exclusion; therefore increase in fixed charge density should yield high selectivity. However, control over charge density in MPMs is difficult because charges on polycations are electrostatically compensated by charges on polyanions, and the net charge in the bulk of these films is small. To overcome this problem, we introduced a templating method to create ion-exchange sites in the bulk of the membrane. This strategy involves alternating deposition of a Cu2+-poly(acrylic acid) complex and poly(allylamine hydrochloride) on a porous alumina support followed by removal of Cu2+ and deprotonation to yield free -COO- ion-exchange sites. Diffusion dialysis studies showed that the Cl-/SO42-. Selectivity of Cu2+-templated membranes is 4-fold higher than that of membranes prepared in the absence of Cu2+. Post-deposition cross-linking of these membranes by heat-induced amide bond formation further increased Cl-/SO42- selectivity to values as high as 600. Room-temperature, surface-initiated atom transfer radical polymerization (ATRP) provides another convenient method for formation of ultrathin polymer skins. This process involves attachment of

  16. Interface effects in ultra-thin films: Magnetic and chemical properties

    NASA Astrophysics Data System (ADS)

    Park, Sungkyun

    When the thickness of a magnetic layer is comparable to (or smaller than) the electron mean free path, the interface between magnetic and non-magnetic layers becomes very important factor to determine magnetic properties of the ultra-thin films. The quality of interface can enhance (or reduce) the desired properties. Several interesting physical phenomena were studied using these interface effects. The magnetic anisotropy of ultra-thin Co films is studied as function of non-magnetic underlayer thickness and non- magnetic overlayer materials using ex situ Brillouin light scattering (BLS). I observed that perpendicular magnetic anisotropy (PMA) increases with underlayer thickness and saturates after 5 ML. This saturation can be understood as a relaxation of the in-plane lattice parameter of Au(111) on top of Cu(111) to its bulk value. For the overlayer study, Cu, Al, and Au are used. An Au overlayer gives the largest PMA due to the largest in-plane lattice mismatch between Co and Au. An unusual effect was found by adding an additional layer on top of the Au overlayer. An additional Al capping layer on top of the Au overlayer reduces the PMA significantly. The possible explanation is that the misfit strain at the interface between the Al and the Au can be propagated through the Au layer to affect the magnetic properties of Co even though the in- plane lattice mismatch is less than 1%. Another interesting problem in interface interdiffusion and thermal stability in magnetic tunnel junction (MTJ) structures is studied using X-ray photoelectron spectroscopy (XPS). Since XPS is a very chemically sensitive technique, it allows us to monitor interface interdiffusion of the MTJ structures as-deposited and during post-deposition processing. For the plasma- oxidized samples, Fe only participates in the oxidation reduction process. In contrast to plasma-oxidized samples, there were no noticeable chemical shifts as- deposited and during post-deposition processing in air

  17. Solution-processed ultrathin chemically derived graphene films as soft top contacts for solid-state molecular electronic junctions.

    PubMed

    Li, Tao; Hauptmann, Jonas Rahlf; Wei, Zhongming; Petersen, Søren; Bovet, Nicolas; Vosch, Tom; Nygård, Jesper; Hu, Wenping; Liu, Yunqi; Bjørnholm, Thomas; Nørgaard, Kasper; Laursen, Bo W

    2012-03-08

    A novel method using solution-processed ultrathin chemically derived graphene films as soft top contacts for the non-destructive fabrication of molecular junctions is demonstrated. We believe this protocol will greatly enrich the solid-state test beds for molecular electronics due to its low-cost, easy-processing and flexible nature. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Simulations of ion acceleration from ultrathin targets with the VEGA petawatt laser

    NASA Astrophysics Data System (ADS)

    Stockhausen, Luca C.; Torres, Ricardo; Conejero Jarque, Enrique

    2015-05-01

    The Spanish Pulsed Laser Centre (CLPU) is a new high-power laser facility for users. Its main system, VEGA, is a CPA Ti:Sapphire laser which, in its final phase, will be able to reach petawatt peak powers in pulses of 30 fs with a pulse contrast of 1 : 1010 at 1 ps. The extremely low level of pre-pulse intensity makes this system ideally suited for studying the laser interaction with ultrathin targets. We have used the particle-in-cell (PIC) code OSIRIS to carry out 2D simulations of the acceleration of ions from ultrathin solid targets under the unique conditions provided by VEGA, with laser intensities up to 1022Wcm-2 impinging normally on 5 - 40 nm thick overdense plasmas, with different polarizations and pre-plasma scale lengths. We show how signatures of the radiation pressure dominated regime, such as layer compression and bunch formation, are only present with circular polarization. By passively shaping the density gradient of the plasma, we demonstrate an enhancement in peak energy up to tens of MeV and monoenergetic features. On the contrary linear polarization at the same intensity level causes the target to blow up, resulting in much lower energies and broader spectra. One limiting factor of Radiation Pressure Acceleration is the development of Rayleigh-Taylor like instabilities at the interface of the plasma and photon fluid. This results in the formation of bubbles in the spatial profile of laser-accelerated proton beams. These structures were previously evidenced both experimentally and theoretically. We have performed 2D simulations to characterize this bubble-like structure and report on the dependency on laser and target parameters.

  19. Remote N2 plasma treatment to deposit ultrathin high-k dielectric as tunneling contact layer for single-layer MoS2 MOSFET

    NASA Astrophysics Data System (ADS)

    Qian, Qingkai; Zhang, Zhaofu; Hua, Mengyuan; Wei, Jin; Lei, Jiacheng; Chen, Kevin J.

    2017-12-01

    Remote N2 plasma treatment is explored as a surface functionalization technique to deposit ultrathin high-k dielectric on single-layer MoS2. The ultrathin dielectric is used as a tunneling contact layer, which also serves as an interfacial layer below the gate region for fabricating top-gate MoS2 metal-oxide-semiconductor field-effect transistors (MOSFETs). The fabricated devices exhibited small hysteresis and mobility as high as 14 cm2·V-1·s-1. The contact resistance was significantly reduced, which resulted in the increase of drain current from 20 to 56 µA/µm. The contact resistance reduction can be attributed to the alleviated metal-MoS2 interface reaction and the preserved conductivity of MoS2 below the source/drain metal contact.

  20. Study of anisotropy, magnetization reversal and damping in ultrathin Co films on MgO (0 0 1) substrate

    NASA Astrophysics Data System (ADS)

    Mallik, Srijani; Bedanta, Subhankar

    2018-01-01

    Ultrathin Co films of 3 nm thickness have been prepared on MgO (0 0 1) substrate in presence or absence of substrate pre-annealing. Uniaxial anisotropy is induced in the samples due to the deposition under oblique angle of incidence. Along with the oblique deposition induced anisotropy, another uniaxial anisotropy contribution has been observed due to pre-annealing. However, no cubic anisotropy has been observed here as compared to the thicker films. Angle dependent ferromagnetic resonance (FMR) measurement confirms the presence of two anisotropies in the pre-annealed sample with ∼18° misalignment with each other. The two anisotropy constants were calculated from both superconducting quantum interference device (SQUID) magnetometry and FMR spectroscopy. The magnetization reversal is governed by nucleation dominated aftereffect followed by domain wall motion for the pre-annealed sample. Branched domains are observed for the sample prepared without pre-annealing which indicates grain disorientation of Co. However, in the thicker (25 nm) Co films ripple domains were observed in contrary to ultrathin (3 nm) films.