Sample records for ultrathin tropical tropopause

  1. Tropical Convection's Roles in Tropical Tropopause Cirrus

    NASA Technical Reports Server (NTRS)

    Boehm, Matthew T.; Starr, David OC.; Verlinde, Johannes; Lee, Sukyoung

    2002-01-01

    The results presented here show that tropical convection plays a role in each of the three primary processes involved in the in situ formation of tropopause cirrus. First, tropical convection transports moisture from the surface into the upper troposphere. Second, tropical convection excites Rossby waves that transport zonal momentum toward the ITCZ, thereby generating rising motion near the equator. This rising motion helps transport moisture from where it is detrained from convection to the cold-point tropopause. Finally, tropical convection excites vertically propagating tropical waves (e.g. Kelvin waves) that provide one source of large-scale cooling near the cold-point tropopause, leading to tropopause cirrus formation.

  2. Recent variability of the tropical tropopause inversion layer

    NASA Astrophysics Data System (ADS)

    Wang, Wuke; Matthes, Katja; Schmidt, Torsten; Neef, Lisa

    2013-12-01

    The recent variability of the tropopause temperature and the tropopause inversion layer (TIL) are investigated with Global Positioning System Radio Occultation data and simulations with the National Center for Atmospheric Research's Whole Atmosphere Community Climate Model (WACCM). Over the past decade (2001-2011) the data show an increase of 0.8 K in the tropopause temperature and a decrease of 0.4 K in the strength of the tropopause inversion layer in the tropics, meaning that the vertical temperature gradient has declined, and therefore that the stability above the tropopause has weakened. WACCM simulations with finer vertical resolution show a more realistic TIL structure and variability. Model simulations show that the increased tropopause temperature and the weaker tropopause inversion layer are related to weakened upwelling in the tropics. Such changes in the thermal structure of the upper troposphere and lower stratosphere may have important implications for climate, such as a possible rise in water vapor in the lower stratosphere.

  3. Characteristics of multiple tropopauses in the tropics

    NASA Astrophysics Data System (ADS)

    Mehta, Sanjay Kumar; Ratnam Madineni, Venkat; Krishna Murthy, B. V.

    The characteristics of multiple tropopauses (MTs) in the tropics are studied using radiosonde data from 5 stations (Truk,Rochambeau, Singapore, Seychelles and Darwin) in the tropical belt during 1999 to 2008 and COSMIC GPS RO data during 2006-2008. In this study we emphasized the limitations of the WMO criteria for identifying the MTs and evolved an alternative criterion to effectively delineate MTs over tropical region. The current method is based on cold point tropopause (CPT) and points of inflections in the temperature profile rather than lapse rate as in WMO criteria. The points of inflection can occur both below and above the CPT. The one which occurs below the CPT is designated as the lower tropopause (LT) and those occurring above the CPT as second tropopause (ST) and third tropopause (TT) according to their heights of occurrence with CPT as the first tropopause. The percentage occurrences (25-50) of MTs are observed to be higher using the current method than by the WMO criteria (10-30). There is significant seasonal variation in the LT, CPT and ST temperatures (heights) with lower (higher) values occurring in the Northern Hemisphere winter. While the CPT temperatures are lowest at the equator the CPT heights are not highest at the equator. The occurrences of MTs are higher over equator and decrease away towards higher latitudes in the tropics. Longitudinal variation of the MTs is observed with relatively high occurrences during NH summer season over placeIndian Ocean. The equatorial minimum in the CPT temperature is broader and colder in the eastern hemisphere than the western hemisphere It is found that MTs can either occur on consecutive days in groups or on isolated days. The plausible causative mechanisms will be presented in the conference.

  4. Ice Nucleation and Dehydration in the Tropical Tropopause Layer

    NASA Technical Reports Server (NTRS)

    Jensen, Eric J.; Diskin, Glenn S.; Lawson, R Paul; Lance, Sara; Bui, Thaopaul Van; Hlavka, Dennis L.; Mcgill, Matthew J.; Pfister, Leonhard; Toon, Owen B.; Gao, Rushan

    2013-01-01

    Optically thin cirrus near the tropical tropopause regulate the humidity of air entering the stratosphere, which in turn has a strong influence on the Earth's radiation budget and climate. Recent highaltitude, unmanned aircraft measurements provide evidence for two distinct classes of cirrus formed in the tropical tropopause region: (i) vertically extensive cirrus with low ice number concentrations, low extinctions, and large supersaturations (up to approx. 70%) with respect to ice; and (ii) vertically thin cirrus layers with much higher ice concentrations that effectively deplete the vapor in excess of saturation. The persistent supersaturation in the former class of cirrus is consistent with the long time-scales (several hours or longer) for quenching of vapor in excess of saturation given the low ice concentrations and cold tropical tropopause temperatures. The low-concentration clouds are likely formed on a background population of insoluble particles with concentrations less than 100 L-1 (often less than 20 L-1), whereas the high ice concentration layers (with concentrations up to 10,000 L-1) can only be produced by homogeneous freezing of an abundant population of aqueous aerosols. These measurements, along with past high-altitude aircraft measurements, indicate that the low-concentration cirrus occur frequently in the tropical tropopause region, whereas the high-concentration cirrus occur infrequently. The predominance of the low-concentration clouds means cirrus near the tropical tropopause may typically allow entry of air into the stratosphere with as much as approx. 1.7 times the ice saturation mixing ratio.

  5. Ice nucleation and dehydration in the Tropical Tropopause Layer.

    PubMed

    Jensen, Eric J; Diskin, Glenn; Lawson, R Paul; Lance, Sara; Bui, T Paul; Hlavka, Dennis; McGill, Matthew; Pfister, Leonhard; Toon, Owen B; Gao, Rushan

    2013-02-05

    Optically thin cirrus near the tropical tropopause regulate the humidity of air entering the stratosphere, which in turn has a strong influence on the Earth's radiation budget and climate. Recent high-altitude, unmanned aircraft measurements provide evidence for two distinct classes of cirrus formed in the tropical tropopause region: (i) vertically extensive cirrus with low ice number concentrations, low extinctions, and large supersaturations (up to ∼70%) with respect to ice; and (ii) vertically thin cirrus layers with much higher ice concentrations that effectively deplete the vapor in excess of saturation. The persistent supersaturation in the former class of cirrus is consistent with the long time-scales (several hours or longer) for quenching of vapor in excess of saturation given the low ice concentrations and cold tropical tropopause temperatures. The low-concentration clouds are likely formed on a background population of insoluble particles with concentrations less than 100 L(-1) (often less than 20 L(-1)), whereas the high ice concentration layers (with concentrations up to 10,000 L(-1)) can only be produced by homogeneous freezing of an abundant population of aqueous aerosols. These measurements, along with past high-altitude aircraft measurements, indicate that the low-concentration cirrus occur frequently in the tropical tropopause region, whereas the high-concentration cirrus occur infrequently. The predominance of the low-concentration clouds means cirrus near the tropical tropopause may typically allow entry of air into the stratosphere with as much as ∼1.7 times the ice saturation mixing ratio.

  6. The tropical tropopause inversion layer: variability and modulation by equatorial waves

    NASA Astrophysics Data System (ADS)

    Pilch Kedzierski, Robin; Matthes, Katja; Bumke, Karl

    2016-09-01

    The tropical tropopause layer (TTL) acts as a transition layer between the troposphere and the stratosphere over several kilometers, where air has both tropospheric and stratospheric properties. Within this region, a fine-scale feature is located: the tropopause inversion layer (TIL), which consists of a sharp temperature inversion at the tropopause and the corresponding high static stability values right above, which theoretically affect the dispersion relations of atmospheric waves like Rossby or inertia-gravity waves and hamper stratosphere-troposphere exchange (STE). Therefore, the TIL receives increasing attention from the scientific community, mainly in the extratropics so far. Our goal is to give a detailed picture of the properties, variability and forcings of the tropical TIL, with special emphasis on small-scale equatorial waves and the quasi-biennial oscillation (QBO).We use high-resolution temperature profiles from the COSMIC satellite mission, i.e., ˜ 2000 measurements per day globally, between 2007 and 2013, to derive TIL properties and to study the fine-scale structures of static stability in the tropics. The situation at near tropopause level is described by the 100 hPa horizontal wind divergence fields, and the vertical structure of the QBO is provided by the equatorial winds at all levels, both from the ERA-Interim reanalysis.We describe a new feature of the equatorial static stability profile: a secondary stability maximum below the zero wind line within the easterly QBO wind regime at about 20-25 km altitude, which is forced by the descending westerly QBO phase and gives a double-TIL-like structure. In the lowermost stratosphere, the TIL is stronger with westerly winds. We provide the first evidence of a relationship between the tropical TIL strength and near-tropopause divergence, with stronger (weaker) TIL with near-tropopause divergent (convergent) flow, a relationship analogous to that of TIL strength with relative vorticity in the

  7. Airborne Tropical TRopopause EXperiment (ATTREX) 2014 Western Pacific Campaign

    NASA Technical Reports Server (NTRS)

    Jensen, E.; Pfister, L.

    2014-01-01

    The NASA Airborne Tropical TRopopause EXperiment (ATTREX) is a series of airborne campaigns focused on understanding physical processes in the Tropical Tropopause Layer (TTL) and their role in atmospheric chemistry and climate. ATTREX is using the high-altitude, long-duration NASA Global Hawk Unmanned Air System to make in situ and remote-sensing measurements spanning the Pacific. A particular ATTREX emphasis is to better understand the dehydration of air as it passes through the cold tropical tropopause region. The ATTREX payload contains 12 in situ and remote sensing instruments that measure water vapor, carbon dioxide, methane, nonmethane hydrocarbons, sulfur hexafluoride, chlorofluorocarbons, nitrous oxide), reactive chemical compounds (ozone, bromine, nitrous oxide), meteorological parameters, and radiative fluxes. During January-March, 2014, the Global Hawk was deployed to Guam for ATTREX flights. Six science flights were conducted from Guam (in addition to the transits across the Pacific), resulting in over 100 hours of Western Pacific TTL sampling and about 180 vertical profiles through the TTL. I will provide an overview of the dataset, with examples of the measurements including meteorological parameters, clouds and water vapor, and chemical tracers.

  8. Airborne measurements of organic bromine compounds in the Pacific tropical tropopause layer

    PubMed Central

    Navarro, Maria A.; Atlas, Elliot L.; Saiz-Lopez, Alfonso; Rodriguez-Lloveras, Xavier; Kinnison, Douglas E.; Lamarque, Jean-Francois; Tilmes, Simone; Filus, Michal; Harris, Neil R. P.; Meneguz, Elena; Ashfold, Matthew J.; Manning, Alistair J.; Cuevas, Carlos A.; Schauffler, Sue M.; Donets, Valeria

    2015-01-01

    Very short-lived brominated substances (VSLBr) are an important source of stratospheric bromine, an effective ozone destruction catalyst. However, the accurate estimation of the organic and inorganic partitioning of bromine and the input to the stratosphere remains uncertain. Here, we report near-tropopause measurements of organic brominated substances found over the tropical Pacific during the NASA Airborne Tropical Tropopause Experiment campaigns. We combine aircraft observations and a chemistry−climate model to quantify the total bromine loading injected to the stratosphere. Surprisingly, despite differences in vertical transport between the Eastern and Western Pacific, VSLBr (organic + inorganic) contribute approximately similar amounts of bromine [∼6 (4−9) parts per thousand] to the stratospheric input at the tropical tropopause. These levels of bromine cause substantial ozone depletion in the lower stratosphere, and any increases in future abundances (e.g., as a result of aquaculture) will lead to larger depletions. PMID:26504212

  9. Overview of the Airborne Tropical TRopopause EX

    NASA Technical Reports Server (NTRS)

    Singh, Hanwant B.; Jensen, Eric J.; Pfister, Leonhard

    2014-01-01

    The NASA Airborne Tropical TRopopause EXperiment (ATTREX) is a series of airborne campaigns focused on understanding physical processes in the Tropical Tropopause Layer (TTL) and their role in atmospheric chemistry and climate. ATTREX is using the high-altitude, long-duration NASA Global Hawk Unmanned Air System to make in situ and remote-sensing measurements spanning the Pacific. A particular ATIREX emphasis is to better understand the dehydration of air as it passes through the cold tropical tropopause region. The ATTREX payload contains 12 in situ and remote sensing instruments that measure water vapor, clouds, multiple gaseous tracers (CO, CO2, CH4, NMHC, SF6, CFCs, N2O), reactive chemical compounds (O3, BrO, NO2), meteorological parameters, and radiative fluxes. ATTREX flight series have been conducted in the fall of 2011 from Armstrong Flight Research Center (AFRC) in California, in the winter of 2013 from AFRC, and in the winter/spring of 2014 from Guam. The first two f light series provided extensive sampling of the central and eastern Pacific, whereas the last flight series permitted sampling in the western Pacific. The sampling strategy has primarily involved repeated ascents and descents through the depth of the TTL (about 13-19 km). Over 100 TTL profiles were obtained on each flight series. The ATTREX dataset includes TTL water vapor measurements with unprecedented accuracy, ice crystal size distributions and habits. The cloud and water measurements provide unique information about TTL cloud formation, the persistence of supersaturation with respect to ice, and dehydration. The plethora of tracers measured on the Global Hawk flights are providing unique information about TTL transport pathways and time scales. The meteorological measurements are revealing dynamical phenomena controlling the TTL thermal structure, and the radiation measurements are providing information about heating rates associated with TTL clouds and water vapor. This presentation

  10. An Investigation of High Frequency Motions in the Tropical Tropopause Layer near Convection

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Bui, T. P.; Dean-Day, Jon; Lim, Boon; Lawson, Paul

    2016-01-01

    Indirect evidence indicates a role for vertical mixing in the Tropical Tropopause Layer (TTL). In the past 20 years, high altitude NASA aircraft such as the ER-2, WB-57, and GLobal Hawk have been making 20hz measurements of vertical velocity and other meteorological parameters in the Upper Tropospere-Lower Stratosphere region, many in the tropics, most recently in connection with the Airborne Tropical TRopopause EXperiment (ATTREX). In the stable environment of the UTLS, high frequency activity occurs in bursts, presumably in connection with nearby convection or strong vertical shear associated with larger scale gravity waves. This paper examines tropical high frequency aircraft data to obtain some basic information about the distribution and character of high frequency activity in vertical velocity in the TTL. In particular, we focus on relating the high frequency activity to nearby tropical convection.

  11. The NASA Airborne Tropical TRopopause EXperiment (ATTREX):High-Altitude Aircraft Measurements in the Tropical Western Pacific

    NASA Technical Reports Server (NTRS)

    Jensen, E. J.; Pfister, L.; Jordan, D. E.; Bui, T. V.; Ueyama, R.; Singh, H. B.; Lawson, P.; Thornberry, T.; Diskin, G.; McGill, M.; hide

    2016-01-01

    The February through March 2014 deployment of the NASA Airborne Tropical TRopopause EXperiment (ATTREX) provided unique in situ measurements in the western Pacific Tropical Tropopause Layer (TTL). Six flights were conducted from Guam with the long-range, high-altitude, unmanned Global Hawk aircraft. The ATTREX Global Hawk payload provided measurements of water vapor, meteorological conditions, cloud properties, tracer and chemical radical concentrations, and radiative fluxes. The campaign was partially coincident with the CONTRAST and CAST airborne campaigns based in Guam using lower-altitude aircraft The ATTREX dataset is being used for investigations of TTL cloud, transport, dynamical, and chemical processes as well as for evaluation and improvement of global-model representations of TTL processes.

  12. Small-scale variability in tropical tropopause layer humidity

    NASA Astrophysics Data System (ADS)

    Jensen, E. J.; Ueyama, R.; Pfister, L.; Karcher, B.; Podglajen, A.; Diskin, G. S.; DiGangi, J. P.; Thornberry, T. D.; Rollins, A. W.; Bui, T. V.; Woods, S.; Lawson, P.

    2016-12-01

    Recent advances in statistical parameterizations of cirrus cloud processes for use in global models are highlighting the need for information about small-scale fluctuations in upper tropospheric humidity and the physical processes that control the humidity variability. To address these issues, we have analyzed high-resolution airborne water vapor measurements obtained in the Airborne Tropical TRopopause EXperiment over the tropical Pacific between 14 and 20 km. Using accurate and precise 1-Hz water vapor measurements along approximately-level aircraft flight legs, we calculate structure functions spanning horizontal scales ranging from about 0.2 to 50 km, and we compare the water vapor variability in the lower (about 14 km) and upper (16-19 km) Tropical Tropopause Layer (TTL). We also compare the magnitudes and scales of variability inside TTL cirrus versus in clear-sky regions. The measurements show that in the upper TTL, water vapor concentration variance is stronger inside cirrus than in clear-sky regions. Using simulations of TTL cirrus formation, we show that small variability in clear-sky humidity is amplified by the strong sensitivity of ice nucleation rate to supersaturation, which results in highly-structured clouds that subsequently drive variability in the water vapor field. In the lower TTL, humidity variability is correlated with recent detrainment from deep convection. The structure functions indicate approximately power-law scaling with spectral slopes ranging from about -5/3 to -2.

  13. Ice Cloud Formation and Dehydration in the Tropical Tropopause Layer

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Pfister, Leonhard; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Stratospheric water vapor is important not only for its greenhouse forcing, but also because it plays a significant role in stratospheric chemistry. several recent studies have focused on the potential for dehydration due to ice cloud formation in air rising slowly through the tropical tropopause layer. Holton and Gettelman showed that temperature variations associated with horizontal transport of air in the tropopause layer can drive ice cloud formation and dehydration, and Gettelman et al. recently examined the cloud formation and dehydration along kinematic trajectories using simple assumptions about the cloud properties. In this study, we use a Lagrangian, one-dimensional cloud model to further investigate cloud formation and dehydration as air is transported horizontally and vertically through the tropical tropopause layer. Time-height curtains of temperature are extracted from meteorological analyses. The model tracks the growth and sedimentation of individual cloud particles. The regional distribution of clouds simulated in the model is comparable to the subvisible cirrus distribution indicated by SAGE II. The simulated cloud properties depend strongly on the assumed ice supersaturation threshold for ice nucleation. with effective nuclei present (low supersaturation threshold), ice number densities are high (0.1--10 cm(circumflex)-3), and ice crystals do not grow large enough to fall very far, resulting in limited dehydration. With higher supersaturation thresholds, ice number densities are much lower (less than 0.01 cm(circumflex)-3), and ice crystals grow large enough to fall substantially; however, supersaturated air often crosses the tropopause without cloud formation. The clouds typically do not dehydrate the air along trajectories down to the temperature minimum saturation mixing ratio. Rather the water vapor mixing ratio crossing the tropopause along trajectories is typically 10-50% larger than the saturation mixing ratio.

  14. Overview of the Airborne Tropical TRopopause EXperiment (ATTREX)

    NASA Technical Reports Server (NTRS)

    Jensen, Eric

    2015-01-01

    The NASA Airborne Tropical TRopopause EXperiment (ATTREX) is a series of airborne campaigns focused on understanding physical processes in the Tropical Tropopause Layer (TTL) and their role in atmospheric chemistry and climate. ATTREX is using the high-altitude, long-duration NASA Global Hawk Unmanned Air System to make in situ and remote-sensing measurements spanning the Pacific. A particular ATTREX emphasis is to better understand the dehydration of air as it passes through the cold tropical tropopause region. The ATTREX payload contains 12 in situ and remote sensing instruments that measure water vapor, clouds, multiple gaseous tracers (CO, CO2, CH4, NMHC, SF6, CFCs, N2O), reactive chemical compounds (O3, BrO, NO2), meteorological parameters, and radiative fluxes. ATTREX flight series have been conducted in the fall of 2011 from Armstrong Flight Research Center (AFRC) in California, in the winter of 2013 from AFRC, and in the winter/spring of 2014 from Guam. The first two flight series provided extensive sampling of the central and eastern Pacific, whereas the last flight series permitted sampling in the western Pacific. The sampling strategy has primarily involved repeated ascents and descents through the depth of the TTL (about 13-19 km). Over 100 TTL profiles were obtained on each flight series. The ATTREX dataset includes TTL water vapor measurements with unprecedented accuracy, ice crystal size distributions and habits. The cloud and water measurements provide unique information about TTL cloud formation, the persistence of super-saturation with respect to ice, and dehydration. The plethora of tracers measured on the Global Hawk flights are providing unique information about TTL transport pathways and time scales. The meteorological measurements are revealing dynamical phenomena controlling the TTL thermal structure, and the radiation measurements are providing information about heating rates associated with TTL clouds and water vapor. This presentation

  15. The NASA Airborne Tropical TRopopause EXperiment (ATTREX): High-Altitude Aircraft Measurements in the Tropical Western Pacific

    NASA Technical Reports Server (NTRS)

    Jensen, Eric J.; Pfister, Leonhard; Jordan, David E.; Bui, Thaopaul V.; Ueyama, Rei; Singh, Hanwant B.; Thornberry, Troy; Rollins, Andrew W.; Gao, Ru-Shan; Fahey, David W.; hide

    2017-01-01

    The February through March 2014 deployment of the NASA Airborne Tropical TRopopause EXperiment (ATTREX) provided unique in situ measurements in the western Pacific Tropical Tropopause Layer (TTL). Six flights were conducted from Guam with the long-range, high-altitude, unmanned Global Hawk aircraft. The ATTREX Global Hawk payload provided measurements of water vapor, meteorological conditions, cloud properties, tracer and chemical radical concentrations, and radiative fluxes. The campaign was partially coincident with the CONTRAST and CAST airborne campaigns based in Guam using lower-altitude aircraft (see companion articles in this issue). The ATTREX dataset is being used for investigations of TTL cloud, transport, dynamical, and chemical processes as well as for evaluation and improvement of global-model representations of TTL processes. The ATTREX data is openly available at https:espoarchive.nasa.gov.

  16. Using Wind and Temperature Fields to Study Dehydration Mechanisms in the Tropical Tropopause Layer

    NASA Technical Reports Server (NTRS)

    Pittman, Jasna; Miller, Timothy; Robertson, Franklin

    2008-01-01

    The tropics are the main region for troposphere-to-stratosphere transport (TST) of air. One of the dominant mechanisms that control tropical TST of water vapor is freeze-drying by the cold tropical tropopause. This mechanism is supported by evidence from satellite observations of the "tape recorder", where seasonal changes in stratospheric water vapor are in phase with seasonal changes in tropopause temperatures in the tropics. Over the last few years, however, the concept of the tropical tropopause has evolved from a single material surface to a layer called the Tropical Tropopause Layer (TTL). A recent hypothesis on dehydration mechanisms suggests that dehydration and entry point into the stratosphere are not always co-located (Holton and Gettelman, 2001). Instead, dehydration can occur during horizontal advection through Lagrangian 'cold pools', or coldest regions along a parcel's trajectory, as air ascends within the TTL while the entry point into the stratosphere occurs at a different geographical location. In this study, we investigate the impact that these Lagrangian cold pools have on TTL moisture. For this purpose, we use in situ measurements of TTL water vapor obtained aboard NASA's WB-57 aircraft over the Eastern Tropical Pacific, and we compare these measurements to minimum saturation water vapor mixing ratios obtained from three-dimensional backward trajectory calculations. Aircraft measurements show frequent unsaturated conditions, which suggest that the entry value of stratospheric water vapor in this region was not set by local saturation conditions. Trajectory calculations, driven by both ECMWF operational analysis and reanalysis winds and temperature fields, are used to explore the impact (e.g., geographical location, timing, dehydration magnitude) of the Lagrangian cold pools intercepted by the parcels sampled by the aircraft. We find noteworthy differences in the location of the Lagrangian cold pools using the two ECMWF data sets, namely

  17. Decadal variability of tropical tropopause temperature and its relationship to the Pacific Decadal Oscillation.

    PubMed

    Wang, Wuke; Matthes, Katja; Omrani, Nour-Eddine; Latif, Mojib

    2016-07-12

    Tropopause temperatures (TPTs) control the amount of stratospheric water vapour, which influences chemistry, radiation and circulation in the stratosphere, and is also an important driver of surface climate. Decadal variability and long-term trends in tropical TPTs as well as stratospheric water vapour are largely unknown. Here, we present for the first time evidence, from reanalysis and state-of-the-art climate model simulations, of a link between decadal variability in tropical TPTs and the Pacific Decadal Oscillation (PDO). The negative phase of the PDO is associated with anomalously cold sea surface temperatures (SSTs) in the tropical east and central Pacific, which enhance the zonal SST gradient across the equatorial Pacific. The latter drives a stronger Walker Circulation and a weaker Hadley Circulation, which leads to less convection and subsequently a warmer tropopause over the central equatorial Pacific. Over the North Pacific, positive sea level pressure anomalies occur, which damp vertical wave propagation into the stratosphere. This in turn slows the Brewer-Dobson circulation, and hence warms the tropical tropopause, enabling more water vapour to enter the stratosphere. The reverse chain of events holds for the positive phase of the PDO. Such ocean-troposphere-stratosphere interactions may provide an important feedback on the Earth's global surface temperature.

  18. Decadal variability of tropical tropopause temperature and its relationship to the Pacific Decadal Oscillation

    PubMed Central

    Wang, Wuke; Matthes, Katja; Omrani, Nour-Eddine; Latif, Mojib

    2016-01-01

    Tropopause temperatures (TPTs) control the amount of stratospheric water vapour, which influences chemistry, radiation and circulation in the stratosphere, and is also an important driver of surface climate. Decadal variability and long-term trends in tropical TPTs as well as stratospheric water vapour are largely unknown. Here, we present for the first time evidence, from reanalysis and state-of-the-art climate model simulations, of a link between decadal variability in tropical TPTs and the Pacific Decadal Oscillation (PDO). The negative phase of the PDO is associated with anomalously cold sea surface temperatures (SSTs) in the tropical east and central Pacific, which enhance the zonal SST gradient across the equatorial Pacific. The latter drives a stronger Walker Circulation and a weaker Hadley Circulation, which leads to less convection and subsequently a warmer tropopause over the central equatorial Pacific. Over the North Pacific, positive sea level pressure anomalies occur, which damp vertical wave propagation into the stratosphere. This in turn slows the Brewer-Dobson circulation, and hence warms the tropical tropopause, enabling more water vapour to enter the stratosphere. The reverse chain of events holds for the positive phase of the PDO. Such ocean-troposphere-stratosphere interactions may provide an important feedback on the Earth’s global surface temperature. PMID:27404090

  19. Regionally Varying Assessments of Tropical Width in Reanalyses and CMIP5 Models Using a Tropopause Break Metric

    NASA Astrophysics Data System (ADS)

    Homeyer, C. R.; Martin, E. R.; McKinzie, R.; McCarthy, K.

    2017-12-01

    The boundary between the tropics and the extratropics in each hemisphere is not fixed in space or time. Variations in the north-south width of the tropics are directly connected to changes in weather and climate. These fluctuations have been shown to impact tropical biodiversity, the spread of vector borne diseases, atmospheric chemistry, and additional natural and human sectors. However, there is no unanimous definition of the tropical boundary. This has led to a disagreement on the magnitude of changes in the tropical width during the past 30 years and a lack of understanding concerning its spatial and temporal variability. This study identifies the variability of the tropical width in modern reanalyses (ERA-Interim, JRA-55, CFSR, MERRA, and MERRA-2) and CMIP5 models (all models with available 6-hourly output) using a novel analysis metric: the tropopause "break" (i.e., the sharp discontinuity in tropopause altitude between the tropics and extratropics). Similarities and differences are found amongst the reanalyses, with some degree of tropical narrowing in the Eastern Pacific between 1981 and 2010. Historical simulations from the CMIP5 models agree well with the tropopause break latitudes depicted by the reanalyses, with considerable differences in estimated trends over the relatively short overlapping time period of the datasets. For future projections under the RCP8.5 scenario from 2006 to 2100, CMIP5 models generally show statistically significant increases in tropical width (at the 99% level) throughout each hemisphere, with regional variability of 1-2 degrees in poleward latitude trends. The impact of CMIP5 model grid resolution and other factors on the results of the tropopause break analysis will be discussed.

  20. Indo-Pacific Warm Pool Area Expansion, Modoki Activity, and Tropical Cold-Point Tropopause Temperature Variations

    PubMed Central

    Xie, Fei; Li, Jianping; Tian, Wenshou; Li, Yanjie; Feng, Juan

    2014-01-01

    The tropical cold-point tropopause temperature (CPTT), a potentially important indicator of global climate change, is of particular importance for understanding changes in stratospheric water vapor levels. Since the 1980s, the tropical CPTT has shown not only interannual variations, but also a decreasing trend. However, the factors controlling the variations in the tropical CPTT since the 1980s remain elusive. The present study reveals that the continuous expansion of the area of the Indo-Pacific warm pool (IPWP) since the 1980s represents an increase in the total heat energy of the IPWP available to heat the tropospheric air, which is likely to expand as a result. This process lifts the tropical cold-point tropopause height (CPTH) and leads to the observed long-term cooling trend of the tropical CPTT. In addition, our analysis shows that Modoki activity is an important factor in modulating the interannual variations of the tropical CPTT through significant effects on overshooting convection. PMID:24686481

  1. Effect of Convection on the Tropical Tropopause Layer over the Tropical Americas

    NASA Technical Reports Server (NTRS)

    Pittman, Jasna; Robertson, Franklin

    2007-01-01

    Water vapor and ozone are the most important gases that regulate the radiative balance of the Tropical Tropopause Layer (TTL). Their radiative contribution dictates the height within the TTL and the rate at which air either ascends into the tropical stratosphere or subsides back to the tropical troposphere. The details of the mechanisms that control their concentration, however, are poorly understood. One of such mechanisms is convection that reaches into the TTL. ill this study, we will present evidence from space-borne observations of the impact that convection has on water vapor, ozone, and temperature in the TTL over the Tropical Americas where deep and overshooting convection have the highest frequency of occurrence in the tropics. We explore the effect of convective systems such as hurricanes during the 2005 season using the Microwave Limb Sounder (MLS) on Aura version 1.5 data and more recent tropical systems using the newly released version 2 data with higher vertical resolution. ill order to provide the horizontal extent and the vertical structure of the convective systems, we use data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Aqua, the Microwave Humidity Sensor (MHS) on NOAA18, and CloudSat when available.

  2. Dehydration of the Upper Troposphere and Lower Stratosphere by Subvisible Cirrus Clouds Near the Tropical Tropopause

    NASA Technical Reports Server (NTRS)

    Jensen, Eric J.; Toon, Owen B.; Pfister, Leonhard; Selkirk, Henry B.

    1996-01-01

    The extreme dryness of the lower stratosphere is believed to be caused by freeze-drying of air as it enters the stratosphere through the cold tropical tropopause. Previous investigations have been focused on dehydration occurring at the tops of deep convective cloud systems, However, recent observations of a ubiquitous stratiform cirrus cloud layer near the tropical tropopause suggest the possibility of dehydration as air is slowly lifted by large-scale motions, In this study, we have evaluated this possibility using a detailed ice cloud model. Simulations of ice cloud formation in the temperature minima of gravity waves (wave periods of 1 - 2 hours) indicate that large numbers of ice crystals will likely form due to the low temperatures and rapid cooling. As a result, the crystals do not grow larger than about 10 microns, fallspeeds are no greater than a few cm/s, and little or no precipitation or dehydration occurs. However, ice cloud's formed by large-scale vertical motions (with lifetimes of a day or more) should have,fever crystals and more time for crystal sedimentation to occur, resulting in water vapor depletions as large as 1 ppmv near the tropopause. We suggest that gradual lifting near the tropical tropopause, accompanied by formation of thin cirrus, may account for the dehydration.

  3. Processes governing the temperature structure of the tropical tropopause layer (Invited)

    NASA Astrophysics Data System (ADS)

    Birner, T.

    2013-12-01

    The tropical tropopause layer (TTL) is among the most important but least understood regions of the global climate system. The TTL sets the boundary condition for atmospheric tracers entering the stratosphere. Specifically, TTL temperatures control stratospheric water vapor concentrations, which play a key role in the radiative budget of the entire stratosphere with implications for tropospheric and surface climate. The TTL shows a curious stratification structure: temperature continues to decrease beyond the level of main convective outflow (~200 hPa) up to the cold point tropopause (~100 hPa), but TTL lapse rates are smaller than in the upper troposphere. A cold point tropopause well separated from the level of main convective outflow requires TTL cooling which may be the result of: 1) the detailed radiative balance in the TTL, 2) large-scale upwelling (forced by extratropical or tropical waves), 3) the large-scale hydrostatic response aloft deep convective heating, 4) overshooting convection, 5) breaking gravity waves. All of these processes may act in isolation or combine to produce the observed TTL temperature structure. Here, a critical discussion of these processes / mechanisms and their role in lifting the cold point tropopause above the level of main convective outflow is presented. Results are based on idealized radiative-convective equilibrium model simulations, contrasting single-column with cloud-resolving simulations, as well on simulations with chemistry-climate models and reanalysis data. While all of the above processes are capable of producing a TTL-like region in isolation, their combination is found to produce important feedbacks. In particular, both water vapor and ozone are found to have strong radiative effects on TTL temperatures, highlighting important feedbacks between transport circulations setting temperatures and tracer structures and the resulting tracer structures in turn affecting temperatures.

  4. Measurements of Trace Gases in the Tropical Tropopause Layer

    NASA Technical Reports Server (NTRS)

    Marcy, T. P.; Popp, P. J.; Gao, R. S.; Fahey, D. W.; Ray, E. A.; Richard, E. C.; Thompson, T. L.; Atlas, E. L.; Lowenstein, M.; Wofsy, S. C.; hide

    2008-01-01

    A unique dataset of airborne in situ observations of HCl, O3, HNO3, H2O, CO, CO2 and CH3Cl has been made in and near the tropical tropopause layer (TTL). A total of 16 profiles across the tropopause were obtained at latitudes between 10degN and 3degs from the NASA WB-57F high-altitude aircraft flying from Costa Rica. Few in situ measurements of these gases, particularly HCl and HNO3, have been reported for the TTL. The general features of the trace gas vertical profiles are consistent with the concept of the TTL as distinct from the lower troposphere and lower stratosphere. A combination of the tracer profiles and correlations with O3 is used to show that a measurable amount of stratospheric air is mixed into this region. The HCl measurements offer an important constraint on stratospheric mixing into the TTL because once the contribution from halocarbon decomposition is quantified, the remaining HCl (>60% in this study) must have a stratospheric source. Stratospheric HCl in the TTL brings with it a proportional amount of stratospheric O3. Quantifying the sources of O3 in the TTL is important because O3 is particularly effective as a greenhouse gas in the tropopause region.

  5. Uncertainty and dispersion in air parcel trajectories near the tropical tropopause

    NASA Astrophysics Data System (ADS)

    Bergman, John; Jensen, Eric; Pfister, Leonhard; Bui, Thoapaul

    2016-04-01

    The Tropical Tropopause Layer (TTL) is important as the gateway to the stratosphere for chemical constituents produced at the Earth's surface. As such, understanding the processes that transport air through the upper tropical troposphere is important for a number of current scientific issues such as the impact of stratospheric water vapor on the global radiative budget and the depletion of ozone by both anthropogenically- and naturally-produced halocarbons. Compared to the lower troposphere, transport in the TTL is relatively unaffected by turbulent motion. Consequently, Lagrangian particle models are thought to provide reasonable estimates of parcel pathways through the TTL. However, there are complications that make trajectory analyses difficult to interpret; uncertainty in the wind data used to drive these calculations and trajectory dispersion being among the most important. These issues are examined using ensembles of backward air parcel trajectories that are initially tightly grouped near the tropical tropopause using three approaches: A Monte Carlo ensemble, in which different members use identical resolved wind fluctuations but different realizations of stochastic, multi-fractal simulations of unresolved winds, perturbed initial location ensembles, in which members use identical resolved wind fields but initial locations are displaced 2° in latitude and longitude, and a multi-model ensemble that uses identical initial conditions but different resolved wind fields and/or trajectory formulations. Comparisons among the approaches distinguish, to some degree, physical dispersion from that due to data uncertainty and the impact of unresolved wind fluctuations from that of resolved variability.

  6. Internally mixed sulfate and organic particles as potential ice nuclei in the tropical tropopause region

    PubMed Central

    Tolbert, Margaret A.

    2010-01-01

    Cirrus clouds are ubiquitous in the tropical tropopause region and play a major role in the Earth’s climate. Any changes to cirrus abundance due to natural or anthropogenic influences must be considered to evaluate future climate change. The detailed impact of cirrus clouds on climate depends on ice particle number, size, morphology, and composition. These properties depend in turn on the nucleation mechanism of the ice particles. Although it is often assumed that ice nucleates via a homogeneous mechanism, recent work points to the possibility that heterogeneous ice nucleation is important in the tropical tropopause region. However, there are very few studies of depositional ice nucleation on the complex types of particles likely to be found in this region of the atmosphere. Here, we use a unique method to probe depositional ice nucleation on internally mixed ammonium sulfate/palmitic acid particles, namely optical microscopy coupled with Raman microscopy. The deliquescence and efflorescence phase transitions of the mixed particles were first studied to gain insight into whether the particles are likely to be liquid or solid in the tropical tropopause region. The ice nucleating ability of the particles was then measured under typical upper tropospheric conditions. It was found that coating the particles with insoluble palmitic acid had little effect on the deliquescence, efflorescence, or ice nucleating ability of ammonium sulfate. Additional experiments involving Raman mapping provide new insights into how the composition and morphology of mixed particles impact their ability to nucleate ice. PMID:20388912

  7. Small Scale Motions Observed by Aircraft in the Tropical Tropopause Layer - Convective and Non-Convective Environments

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Bui, T. P.; Dean-Day, J.

    2016-01-01

    Indirect evidence indicates a role for vertical mixing in the Tropical Tropopause Layer (TTL). In particular, detailed model studies suggest that such vertical mixing may be required to explain the value of the water vapor minimum in the TTL. There have been previous observations during the STEP Tropical aircraft campaign (1987) of bursts of high frequency activity associated with convectively generated gravity waves in the tropical western Pacific. Higher frequency, higher quality measurements from NASA high altitude aircraft (ER-2, WB-57, and Global Hawk) have been made available in the last 20 years. These include measurements of vertical velocity and other meteorological parameters. Most recently, during the ATTREX Global Hawk aircraft mission (Airborne Tropical TRopopause EXperiment), there have been extensive measurements at all altitudes of the TTL in both convective (winter western Pacific) and less convective (winter eastern Pacific) regions. This presentation represents an initial analysis of high frequency small scale (a few km max) meteorological measurements from the ATTREX dataset. We obtain some basic information about the distribution and character of high frequency activity in vertical velocity in the TTL. In particular, we focus on relating the high frequency activity to nearby tropical convection and to vertical shears associated with gravity and inertia-gravity waves.

  8. Synoptic Formation of Double Tropopauses

    NASA Astrophysics Data System (ADS)

    Liu, Chengji; Barnes, Elizabeth

    2018-01-01

    Double tropopauses are ubiquitous in the midlatitude winter hemisphere and represent the vertical stacking of two stable tropopause layers separated by a less stable layer. By analyzing COSMIC GPS data, reanalysis, and eddy life cycle simulations, we demonstrate that they often occur during Rossby wave breaking and act to increase the stratosphere-to-troposphere exchange of mass. We further investigate the adiabatic formation of double tropopauses and propose two mechanisms by which they can occur. The first mechanism operates at the tropopause break in the subtropics where the higher tropical tropopause sits on one side of the break and the lower extratropical tropopause sits on the other. The double tropopauses are then formed by differential meridional advection of the higher and lower tropopauses on the two sides of the tropopause break. We show that anticyclonic wave breaking can form double tropopauses mainly by providing stronger poleward advection of the higher tropopause in its poleward lobe. Cyclonic wave breaking mainly forms double tropopauses by providing stronger equatorward advection of the lower tropopause in its equatorward lobe. We demonstrate in the COSMIC GPS data and reanalysis that about half of the double tropopauses in the Northern Hemisphere winter can be directly attributed to such differential advection. For the second mechanism, adiabatic destabilization of the air above the tropopause contributes to the formation of a double tropopause. In this case, a tropopause inversion layer is necessary for this destabilization to result in a double tropopause.

  9. Dehydration and Lagrangian Cold Point in the extratropical Tropopause region

    NASA Astrophysics Data System (ADS)

    Hoor, P.; Wernli, H.

    2012-04-01

    The tropopause region of the tropics and extratropics is sensitive to modifications of the radiation budget through changes of radiatively active substances like ozone and water vapour. Both may also modify the temperature structure and the strengths of the tropopause inversion layer (TIL). Stratospheric water vapour is mainly controlled by dehydration in the tropics. Ascending air masses encounter their minimum temperature in the TTL region (tropical tropopause layer) which determines the water vapour fraction which enters the stratosphere. In the lowermost stratosphere of the extratropics however, the tropical signal might be lost due to mixing with airmasses which crossed the tropopause (TST: troposphere to stratosphere) at higher temperatures, therefore carrying more water vapour to the extratropical stratosphere. We investigate statistical 90 day backward trajectories to investigate the role of dehydration at the extratropical tropopause for the water vapour budget at the tropopause at mid and high latitudes. We use a set of 800000 trajectories for summer and winter, respectively, on the basis of ECMWF-T799L91 operational data (kinematic wind fields). We analyze the trajectories for the time and locations of their cold point and TST. Our results indicate that : 1) TST and dehydration occur at different locations 2) Dehydration occurs in general before trajectories enter the stratosphere 3) Dehydration of TST trajectories can occur in northern winter after TST in the region of high tropopauses over Siberia

  10. Observations of ozone-poor air in the tropical tropopause layer

    NASA Astrophysics Data System (ADS)

    Newton, Richard; Vaughan, Geraint; Hintsa, Eric; Filus, Michal T.; Pan, Laura L.; Honomichl, Shawn; Atlas, Elliot; Andrews, Stephen J.; Carpenter, Lucy J.

    2018-04-01

    Ozonesondes reaching the tropical tropopause layer (TTL) over the west Pacific have occasionally measured layers of very low ozone concentrations - less than 15 ppbv - raising the question of how prevalent such layers are and how they are formed. In this paper, we examine aircraft measurements from the Airborne Tropical Tropopause Experiment (ATTREX), the Coordinated Airborne Studies in the Tropics (CAST) and the Convective Transport of Active Species in the Tropics (CONTRAST) experiment campaigns based in Guam in January-March 2014 for evidence of very low ozone concentrations and their relation to deep convection. The study builds on results from the ozonesonde campaign conducted from Manus Island, Papua New Guinea, as part of CAST, where ozone concentrations as low as 12 ppbv were observed between 100 and 150 hPa downwind of a deep convective complex. TTL measurements from the Global Hawk unmanned aircraft show a marked contrast between the hemispheres, with mean ozone concentrations in profiles in the Southern Hemisphere between 100 and 150 hPa of between 10.7 and 15.2 ppbv. By contrast, the mean ozone concentrations in profiles in the Northern Hemisphere were always above 15.4 ppbv and normally above 20 ppbv at these altitudes. The CAST and CONTRAST aircraft sampled the atmosphere between the surface and 120 hPa, finding very low ozone concentrations only between the surface and 700 hPa; mixing ratios as low as 7 ppbv were regularly measured in the boundary layer, whereas in the free troposphere above 200 hPa concentrations were generally well in excess of 15 ppbv. These results are consistent with uplift of almost-unmixed boundary-layer air to the TTL in deep convection. An interhemispheric difference was found in the TTL ozone concentrations, with values < 15 ppbv measured extensively in the Southern Hemisphere but seldom in the Northern Hemisphere. This is consistent with a similar contrast in the low-level ozone between the two hemispheres found by

  11. Effects of Overshooting Convection on the Tropical Tropopause Layer Temperature Structure and Trends

    NASA Astrophysics Data System (ADS)

    Ramsay, H.; Sherwood, S. C.; Singh, M.

    2017-12-01

    A series of idealised cloud-resolving simulations are performed to investigate the impact of spatial/and or temporal inhomogeneity of tropical deep convection (in particular, convective overshoots that penetrate well into the tropical tropopause layer) on upper tropospheric/lower stratospheric (UTLS) temperature structure and trends under surface warming. Two sets of simulations are studied: one in which the sea surface temperature (SST) is increased uniformly, and a second in which convective updrafts are intensified periodically by specifying a diurnally-varying skin temperature. All simulations are run to radiative-convective equilibrium so as to capture the mean-state response at time scales of weeks to months. We discuss the implications of our results for the interpretation of observed and modelled trends in the UTLS, as well as the diurnal cycle of tropical deep convection.

  12. Temperature Control of the Variability of Tropical Tropopause Layer Cirrus Clouds

    NASA Astrophysics Data System (ADS)

    Tseng, Hsiu-Hui; Fu, Qiang

    2017-10-01

    This study examines the temperature control of variability of tropical tropopause layer (TTL) cirrus clouds (i.e., clouds with bases higher than 14.5 km) by using 8 years (2006-2014) of observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC). It is found that the temporal variability of vertical structure of TTL cirrus cloud fraction averaged between 15°N and 15°S can be well explained by the vertical temperature gradient below 17.5 km but by the local temperature above for both seasonal and interannual time scales. It is also found that the TTL cirrus cloud fraction at a given altitude is best correlated with the temperature at a higher altitude and this vertical displacement increases with a decrease of the cirrus altitude. It is shown that the TTL cirrus cloud fractions at all altitudes are significantly correlated with tropical cold point tropopause (CPT) temperature. The plausible mechanisms that might be responsible for the observed relations between TTL cirrus fraction and temperature-based variables are discussed, which include ice particle sediments, cooling associated with wave propagations, change of atmospheric stability, and vertical gradient of water vapor mixing ratio. We further examine the spatial covariability of TTL total cirrus cloud fraction and CPT temperature for the interannual time scale. It is found that the El Niño-Southern Oscillation and quasi-biennial oscillation are the leading factors in controlling the spatial variability of the TTL cirrus clouds and temperatures.

  13. Convective transport of reactive constituents to the tropical and mid-latitude tropopause region: I. Observations

    NASA Technical Reports Server (NTRS)

    Ridley, B.; Atlas, E.; Selkirk, H.; Pfister, L.; Montzka, D.; Walega, J.; Donnelly, S.; Stroud, V.; Richard, E.; Kelly, K.

    2004-01-01

    Measurements of ozone, reactive carbon and nitrogen, and other trace constituents from flights of the NASA WB-57F aircraft in the upper troposphere and lower stratosphere reveal that convection in the tropics can present a complex mix of surface-emitted constituents right up to the altitude of the lapse rate tropopause. At higher latitudes over the southern US, the strongest transport signal, in terms of constituent mixing ratios, occurred in the potential temperature range of 340-350K or approximately over the altitude range of 9-11km. Weaker convective signals were also seen up to near the tropopause. There was no evidence of convective transport directly into the lower stratosphere from these flights. $CPY 2003 Elsevier Ltd. All rights reserved.

  14. Climatology and Impact of Convection on the Tropical Tropopause Layer

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin; Pittman, Jasna

    2007-01-01

    Water vapor plays an important role in controlling the radiative balance and the chemical composition of the Tropical Tropopause Layer (TTL). Mechanisms ranging from slow transport and dehydration under thermodynamic equilibrium conditions to fast transport in convection have been proposed as regulators of the amount of water vapor in this layer. However,.details of these mechanisms and their relative importance remain poorly understood, The recently completed Tropical Composition, Cloud, and Climate Coupling (TC4) campaign had the opportunity to sample the.TTL over the Eastern Tropical Pacific using ground-based, airborne, and spaceborne instruments. The main goal of this study is to provide the climatological context for this campaign of deep and overshooting convective activity using various satellite observations collected during the summertime. We use the Microwave Humidity Sensor (MRS) aboard the NOAA-18 satellite to investigate the horizontal extent.and the frequency of convection reaching and penetrating into the TTL. We use the Moderate Resolution I1l1aging Spectroradiometer (MODIS) aboard the Aqua satellite to investigate the frequency distribution of daytime cirrus clouds. We use the Tropical Rainfall Measuring Mission(TRMM) and CloudSat to investigate the vertical structure and distribution of hydrometeors in the convective cells, In addition to cloud measurements; we investigate the impact that convection has on the concentration of radiatively important gases such as water vapor and ozone in the TTL by examining satellite measurement obtained from the Microwave Limb Sounder(MLS) aboard the Aura satellite.

  15. An Atmospheric Tape Recorder: The Imprint of Tropical Tropopause Temperatures on Stratospheric Water Vapor

    NASA Technical Reports Server (NTRS)

    Mote, Philip W.; Rosenlof, Karen H.; McIntyre, Michael E.; Carr, Ewan S.; Gille, John C.; Holton, James R.; Kinnersley, Jonathan S.; Pumphrey, Hugh C.; Russell, James M., III; Waters, Joe W.

    1996-01-01

    We describe observations of tropical stratospheric water vapor q that show clear evidence of large-scale upward advection of the signal from annual fluctuations in the effective 'entry mixing ratio' q(sub E) of air entering the tropical stratosphere. In other words, air is 'marked,' on emergence above the highest cloud tops, like a signal recorded on an upward moving magnetic tape. We define q(sub E) as the mean water vapor mixing ratio, at the tropical tropopause, of air that will subsequently rise and enter the stratospheric 'overworld' at about 400 K. The observations show a systematic phase lag, increasing with altitude, between the annual cycle in q(sub E) and the annual cycle in q at higher altitudes. The observed phase lag agrees with the phase lag calculated assuming advection by the transformed Eulerian-mean vertical velocity of a q(sub E) crudely estimated from 100-hPa temperatures, which we use as a convenient proxy for tropopause temperatures. The phase agreement confirms the overall robustness of the calculation and strongly supports the tape recorder hypothesis. Establishing a quantitative link between q(sub E) and observed tropopause temperatures, however, proves difficult because the process of marking the tape depends subtly on both small- and large-scale processes. The tape speed, or large-scale upward advection speed, has a substantial annual variation and a smaller variation due to the quasi-biennial oscillation, which delays or accelerates the arrival of the signal by a month or two in the middle stratosphere. As the tape moves upward, the signal is attenuated with an e-folding time of about 7 to 9 months between 100 and 50 hPa and about 15 to 18 months between 50 and 20 hPa, constraining possible orders of magnitude both of vertical diffusion K(sub z) and of rates of mixing in from the extratropics. For instance, if there were no mixing in, then K(sub z) would be in the range 0.03-0.09 m(exp 2)/s; this is an upper bound on K(sub z).

  16. Observations of supersaturation in the presence of cirrus at the tropical and sub-tropical tropopause

    NASA Astrophysics Data System (ADS)

    Smith, J. B.; Weinstock, E. M.; Pittman, J. V.; Sayres, D.; Moyer, E. J.; Anderson, J. G.; Herman, R. L.; Bui, T. P.; Thompson, T. L.

    2003-04-01

    We present in situ observations of water vapor and total water in the tropical and sub-tropical upper troposphere obtained aboard the WB-57 aircraft on flights out of Costa Rica during the Clouds and Water Vapor in the Climate System mission in August of 2001, and out of Key West, Florida during the CRYSTAL-FACE mission in July of 2002. The recently developed Harvard total water instrument merges the established Lyman-alpha photo-fragment fluorescence detection technique with a specially designed sampling inlet and heater, to make accurate and precise measurements of water in both the vapor and condensed phase. The combination of the Harvard total water and water vapor instruments allows for simultaneous measurement of water vapor, total water, and the net ice water content of cirrus. Data from the two instruments agree in dry air and demonstrate sufficient sensitivity to detect thin cirrus. Further analysis indicates frequent ice-supersaturation both in clear air and in cirrus. These data present a substantial contribution to in situ observations of ice-supersaturation, particularly in the presence of cirrus near the cold tropical tropopause. We will discuss the implications of high ice-supersaturation in the context of cloud microphysics, and the processes controlling water vapor in the upper troposphere and lower stratosphere.

  17. Structural diagnostics of the tropopause inversion layer and its evolution

    NASA Astrophysics Data System (ADS)

    Gettelman, A.; Wang, T.

    2015-01-01

    The Tropopause Inversion Layer (TIL) is marked by a peak in static stability directly above the tropopause. The TIL is quantitatively defined with new diagnostics using Global Positioning System Radio Occultation temperature soundings and reanalysis data. A climatology of the TIL is developed from reanalysis data (1980-2011) using diagnostics for the position, depth, and strength of the TIL based on the TIL peak in static stability. TIL diagnostics have defined relationships to the synoptic situation in the Upper Troposphere and Lower Stratosphere. The TIL is present nearly all the time. The TIL becomes hard to define in the subtropics where tropical air overlies midlatitude air, in a region of complex static stability profiles. The mean position of the subtropical TIL gradient is sharp and is co-located with the subtropical tropopause break. Over the period 1980-2011 the TIL depth below the tropopause has decreased by 5% per decade and increased above the tropical tropopause by a similar percentage. Furthermore, the latitude of the abrupt change in the TIL from tropical to extratropical in the lower stratosphere appears to have shifted poleward in each hemisphere by ˜1° latitude per decade, depending on the diagnostic examined. Reanalysis trends should be treated with caution.

  18. Evaluation of Near-Tropopause Ozone Distributions in the Global Modeling Initiative Combined Stratosphere/Troposphere Model with Ozonesonde Data

    NASA Technical Reports Server (NTRS)

    Considine, David B.; Logan, Jennifer A.; Olsen, Mark A.

    2008-01-01

    The NASA Global Modeling Initiative has developed a combined stratosphere/troposphere chemistry and transport model which fully represents the processes governing atmospheric composition near the tropopause. We evaluate model ozone distributions near the tropopause, using two high vertical resolution monthly mean ozone profile climatologies constructed with ozonesonde data, one by averaging on pressure levels and the other relative to the thermal tropopause. Model ozone is high biased at the SH tropical and NH midlatitude tropopause by approx. 45% in a 4 deg. latitude x 5 deg. longitude model simulation. Increasing the resolution to 2 deg. x 2.5 deg. increases the NH tropopause high bias to approx. 60%, but decreases the tropical tropopause bias to approx. 30%, an effect of a better-resolved residual circulation. The tropopause ozone biases appear not to be due to an overly vigorous residual circulation or excessive stratosphere/troposphere exchange, but are more likely due to insufficient vertical resolution or excessive vertical diffusion near the tropopause. In the upper troposphere and lower stratosphere, model/measurement intercomparisons are strongly affected by the averaging technique. NH and tropical mean model lower stratospheric biases are less than 20%. In the upper troposphere, the 2 deg. x 2.5 deg. simulation exhibits mean high biases of approx. 20% and approx. 35% during April in the tropics and NH midlatitudes, respectively, compared to the pressure averaged climatology. However, relative-to-tropopause averaging produces upper troposphere high biases of approx. 30% and 70% in the tropics and NH midlatitudes. This is because relative-to-tropopause averaging better preserves large cross-tropopause O3 gradients, which are seen in the daily sonde data, but not in daily model profiles. The relative annual cycle of ozone near the tropopause is reproduced very well in the model Northern Hemisphere midlatitudes. In the tropics, the model amplitude of the

  19. Characteristics of cirrus clouds and tropical tropopause layer: Seasonal variation and long-term trends

    NASA Astrophysics Data System (ADS)

    Pandit, Amit Kumar; Gadhavi, Harish; Ratnam, M. Venkat; Jayaraman, A.; Raghunath, K.; Rao, S. Vijaya Bhaskara

    2014-12-01

    In the present study, characteristics of tropical cirrus clouds observed during 1998-2013 using a ground-based lidar located at Gadanki (13.5°N, 79.2°E), India, are presented. Altitude occurrences of cirrus clouds as well as its top and base heights are estimated using the advanced mathematical tool, wavelet covariance transform (WCT). The association of observed cirrus cloud properties with the characteristics of tropical tropopause layer (TTL) is investigated using co-located radiosonde measurements available since 2006. In general, cirrus clouds occurred for about 44% of the total lidar observation time (6246 h). The most probable altitude at which cirrus clouds occurr is 14.5 km. The occurrence of cirrus clouds exhibited a strong seasonal dependence with maximum occurrence during monsoon season (76%) and minimum occurrence during winter season (33%) which is consistent with the results reported recently using space-based lidar measurements. Most of the time, cirrus top was located within the TTL (between cold point and convective outflow level) while cirrus base occurred near the convective outflow level. The geometrical thickness of the cirrus cloud is found to be higher during monsoon season compared to winter and there exists a weak inverse relation with TTL thickness. During the observation period the percentage occurrence of cirrus clouds near the tropopause showed an 8.4% increase at 70% confidence level. In the last 16 years, top and base heights of cirrus cloud increased by 0.56 km and 0.41 km, respectively.

  20. Ice Cloud Formation and Dehydration in the Tropical Tropopause Layer

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Stratospheric water vapor is important not only for its greenhouse forcing, but also because it plays a significant role in stratospheric chemistry. Several recent studies have focused on the potential for dehydration due to ice cloud formation in air rising slowly through the tropical tropopause layer (TTL). Holton and Gettelman showed that temperature variations associated with horizontal transport of air in the TTL can drive ice cloud formation and dehydration, and Gettelman et al. recently examined the cloud formation and dehydration along kinematic trajectories using simple assumptions about the cloud properties. In this study, a Lagrangian, one-dimensional cloud model has been used to further investigate cloud formation and dehydration as air is transported horizontally and vertically through the TTL. Time-height curtains of temperature are extracted from meteorological analyses. The model tracks the growth, advection, and sedimentation of individual cloud particles. The regional distribution of clouds simulated in the model is comparable to the subvisible cirrus distribution indicated by SAGE II. The simulated cloud properties and cloud frequencies depend strongly on the assumed supersaturation threshold for ice nucleation. The clouds typically do not dehydrate the air along trajectories down to the temperature minimum saturation mixing ratio. Rather the water vapor mixing ratio crossing the tropopause along trajectories is 10-50% larger than the saturation mixing ratio. I will also discuss the impacts of Kelvin waves and gravity waves on cloud properties and dehydration efficiency. These simulations can be used to determine whether observed lower stratospheric water vapor mixing ratios can be explained by dehydration associated with in situ TTL cloud formation alone.

  1. Observations of Subvisible Cirrus Clouds and Gravity Waves at the Tropical Tropopause

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Browell, E. V.; Hipskind, R. Stephen (Technical Monitor)

    1998-01-01

    Thin, subvisible cirrus (SVC) clouds at the tropical tropopause have been observed by a number of methods in a variety of observational programs, including in situ sampling and aircraft and space-based lidar. Modeling studies suggest that these clouds play an important role in dehydrating tropospheric air as it enters the stratosphere. This is because particles large enough to have significant fall speeds can form under the conditions of slow cooling that are implied by the large horizontal extent of the SVC sheets. The IR radiation that these clouds absorb, and the upward vertical motion this implies, also makes them candidates for a tropical troposphere-to-stratosphere mass transfer mechanism. They may also play a role in the earth's radiation budget. These sheets were observed on five flights during the Tropical Ozone Transport Experiment (TOTE) by the NASA Langley DIAL lidar aboard NASA's DC-8 research aircraft operating during December 1995 and February 1996 south of Hawaii. The relationship of the SVC's observed during TOTE to convection was not a simple one. One class of SVC's are within 1000 km of the persistent strong convection near 15S (the SPCZ). Trajectory analyses indicated that the SVC air masses have in fact passed through the SPCZ within a few days of observation. These clouds are very close to the tropopause, with maximum potential temperatures not much higher than 370K, consistent with in situ water and total water measurements near the tropopause made during the Stratosphere Troposphere Exchange Project in January 1987 at Darwin, Australia. A second class of SVC's are not immediately downstream of convection. These clouds tend to be higher, reaching potential temperatures of 390K or more. Trajectory analyses indicate that the air in these SVC's originates either in the equatorial western Pacific or along the subtropical jet. In any case, the warm temperatures the SVC air masses encounter just prior to the observation time along the back

  2. Ice Nucleation in the Tropical Tropopause Layer: Implications for Cirrus Occurrence, Cirrus Microphysical Properties, and Dehydration of Air Entering the Stratosphere

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Kaercher, Bernd; Ueyama, Rei; Pfister, Leonhard

    2017-01-01

    Recent laboratory experiments have advanced our understanding of the physical properties and ice nucleating abilities of aerosol particles atlow temperatures. In particular, aerosols containing organics will transition to a glassy state at low temperatures, and these glassy aerosols are moderately effective as ice nuclei. These results have implications for ice nucleation in the cold Tropical Tropopause Layer (TTL; 13-19 km). We have developed a detailed cloud microphysical model that includes heterogeneous nucleation on a variety of aerosol types and homogeneous freezing of aqueous aerosols. This model has been incorporated into one-dimensional simulations of cirrus and water vapor driven by meteorological analysis temperature and wind fields. The model includes scavenging of ice nuclei by sedimenting ice crystals. The model is evaluated by comparing the simulated cloud properties and water vapor concentrations with aircraft and satellite measurements. In this presentation, I will discuss the relative importance of homogeneous and heterogeneous ice nucleation, the impact of ice nuclei scavenging as air slowly ascends through the TTL, and the implications for the final dehydration of air parcels crossing the tropical cold-point tropopause and entering the tropical stratosphere.

  3. Analyzing nearly four decades of historical radiosonde observations of tropical tropopause layer and cold-point temperatures

    NASA Astrophysics Data System (ADS)

    Gilford, D.; Randel, W. J.

    2017-12-01

    An understanding of historical trends and variability in the thermal structure of the tropical tropopause layer (TTL) is important for assessing climate and investigating TTL processes. In particular, the cold-point tropopause (CPT) plays an important role in stratospheric dehydration, the potential intensities of tropical cyclones, and other forms of stratospheric-tropospheric coupling. Uncertainties and biases of in-situ observations, however, make long-term estimation of TTL temperatures challenging, especially in the early decades of the satellite era. The goal of this study is to construct and analyze a long-term record of radiosondes temperatures with minimal biases. Temperature observations from 1979-present are drawn from the Integrated Global Radiosonde Archive version 2 (IGRA2). Vertically integrated radiosonde temperatures are compared with brightness temperatures from the Microwave Sounding Units (MSU) Lower Stratosphere channel to identify the radiosonde stations with the smallest temporal discontinuities. Insights from this comparison highlight the importance of independent measurements when evaluating TTL temperatures. The 38-year dataset constructed from IGRA2 stations with the smallest biases spans the tropics and has high vertical resolution, permitting reasonable estimates of the CPT temperature. Radiosonde temperatures show good agreement with GPS radio occultation measurements over the past decade. A multivariate regression model incorporating the Quasi-Biennial Oscillation and the El Nino Southern Oscillation is fit to the deseasonalized data to evaluate the spatial and temporal structures in its variability. Long-term trends in CPT temperatures are considered in the context of historical estimates from climate models. Correlations with TTL water vapor concentrations from the Stratospheric Water and OzOne Satellite Homogenized (SWOOSH) data set suggest a strong relationship between the historically observed CPT temperatures and dehydration.

  4. Convectively Driven Tropopause-Level Cooling and Its Influences on Stratospheric Moisture

    NASA Astrophysics Data System (ADS)

    Kim, Joowan; Randel, William J.; Birner, Thomas

    2018-01-01

    Characteristics of the tropopause-level cooling associated with tropical deep convection are examined using CloudSat radar and Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) GPS radio occultation measurements. Extreme deep convection is sampled based on the cloud top height (>17 km) from CloudSat, and colocated temperature profiles from COSMIC are composited around the deep convection. Response of moisture to the tropopause-level cooling is also examined in the upper troposphere and lower stratosphere using microwave limb sounder measurements. The composite temperature shows an anomalous warming in the troposphere and a significant cooling near the tropopause (at 16-19 km) when deep convection occurs over the western Pacific, particularly during periods with active Madden-Julian Oscillation (MJO). The composite of the tropopause cooling has a large horizontal scale ( 6,000 km in longitude) with minimum temperature anomaly of -2 K, and it lasts more than 2 weeks with support of mesoscale convective clusters embedded within the envelope of the MJO. The water vapor anomalies show strong correlation with the temperature anomalies (i.e., dry anomaly in the cold anomaly), showing that the convectively driven tropopause cooling actively dehydrate the lower stratosphere in the western Pacific region. The moisture is also affected by anomalous Matsuno-Gill-type circulation associated with the cold anomaly, in which dry air spreads over a wide range in the tropical tropopause layer (TTL). These results suggest that convectively driven tropopause cooling and associated transient circulation play an important role in the large-scale dehydration process in the TTL.

  5. Frequency and morphology of tropical tropopause layer cirrus from CALIPSO observations: Are isolated cirrus different from those connected to deep convection?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riihimaki, Laura D.; McFarlane, Sally A.

    2010-09-16

    Tropical Tropopause Layer cirrus (TTLC) profiles identified from CALIPSO LIDAR measurements are grouped into cloud objects and classified according to whether or not they are connected to deep convection. TTLC objects connected to deep convection are optically and physically thicker than isolated objects, consistent with what would be expected if connected objects were formed from convective detrainment and isolated objects formed in situ. In the tropics (±20 Latitude), 36% of TTLC profiles are classified as connected to deep convection, 43% as isolated, and the remaining 21% are part of lower, thicker cirrus clouds. Regions with higher occurence of deep convectionmore » also have higher occurrence of TTLC, and a greater percentage of those TTLC are connected to deep convection. Cloud top heights of both isolated and connected clouds are distributed similarly with respect to the height of the cold point tropopause. No difference in thickness or optical depth was found between TTLC above deep convection or above clear sky, though both cloud base and top heights are higher over deep convection than over clear sky.« less

  6. Convective sources of trajectories traversing the tropical tropopause layer

    NASA Astrophysics Data System (ADS)

    Tissier, Ann-Sophie; Legras, Bernard

    2016-03-01

    Transit properties across the tropical tropopause layer are studied using extensive forward and backward Lagrangian diabatic trajectories between cloud tops and the reference surface 380 K. After dividing the tropical domain into 11 subregions according to the distribution of land and convection, we estimate the contribution of each region to the upward mass flux across the 380 K surface and to the vertical distribution of convective sources and transit times over the period 2005-2008. The good agreement between forward and backward statistics is the basis of the results presented here. It is found that about 85 % of the tropical parcels at 380 K originate from convective sources throughout the year. From November to April, the sources are dominated by the warm pool which accounts for up to 70 % of the upward flux. During boreal summer, the Asian monsoon region is the largest contributor with similar contributions from the maritime and continental parts of the region; however, the vertical distributions and transit times associated with these two subregions are very different. Convective sources are generally higher over the continental part of the Asian monsoon region, with shorter transit times. We estimate the monthly averaged upward mass flux on the 380 K surface and show that the contribution from convective outflow accounts for 80 % on average and explains most of its seasonal variations. The largest contributor to the convective flux is the South Asian Pacific region (warm pool) at 39 % throughout the year followed by oceanic regions surrounding continental Asia at 18 % and Africa at 10.8 %. Continental Asian lowlands account for 8 %. The Tibetan Plateau is a minor overall contributor (0.8 %), but transport from convective sources in this region is very efficient due to its central location beneath the Asian upper level anticyclone. The core results are robust to uncertainties in data and methods, but the vertical source distributions and transit times

  7. Cold trap dehydration in the Tropical Tropopause Layer characterised by SOWER chilled-mirror hygrometer network data in the Tropical Pacific

    NASA Astrophysics Data System (ADS)

    Hasebe, F.; Inai, Y.; Shiotani, M.; Fujiwara, M.; Vömel, H.; Nishi, N.; Ogino, S.-Y.; Shibata, T.; Iwasaki, S.; Komala, N.; Peter, T.; Oltmans, S. J.

    2013-04-01

    A network of balloon-borne radiosonde observations employing chilled-mirror hygrometers for water and electrochemical concentration cells for ozone has been operated since the late 1990s in the Tropical Pacific to capture the evolution of dehydration of air parcels advected quasi-horizontally in the Tropical Tropopause Layer (TTL). The analysis of this dataset is made on isentropes taking advantage of the conservative properties of tracers moving adiabatically. The existence of ice particles is diagnosed by lidars simultaneously operated with sonde flights. Characteristics of the TTL dehydration are presented on the basis of individual soundings and statistical features. Supersaturations close to 80% in relative humidity with respect to ice (RHice) have been observed in subvisible cirrus clouds located near the cold point tropopause at extremely low temperatures around 180 K. Although further observational evidence is needed to confirm the credibility of such high values of RHice, the evolution of TTL dehydration is evident from the data in isentropic scatter plots between the sonde-observed mixing ratio (OMR) and the minimum saturation mixing ratio (SMRmin) along the back trajectories associated with the observed air mass. Supersaturation exceeding the critical value of homogeneous ice nucleation (OMR > 1.6 × SMRmin) is frequently observed on the 360 and 365 K surfaces indicating that cold trap dehydration is in progress in the TTL. The near correspondence between the two (OMR ~ SMRmin) at 380 K on the other hand implies that this surface is not sufficiently cold for the advected air parcels to be dehydrated. Above 380 K, cold trap dehydration would scarcely function while some moistening occurs before the air parcels reach the lowermost stratosphere at around 400 K where OMR is generally smaller than SMRmin.

  8. Relative Humidity in the Tropopause Saturation Layer

    NASA Astrophysics Data System (ADS)

    Selkirk, H. B.; Schoeberl, M. R.; Pfister, L.; Thornberry, T. D.; Bui, T. V.

    2017-12-01

    The tropical tropopause separates two very different atmospheric regimes: the stable lower stratosphere where the air is both extremely dry and nearly always so, and a transition layer in the uppermost tropical troposphere, where humidity on average increases rapidly downward but can undergo substantial temporal fluctuations. The processes that control the humidity in this layer below the tropopause include convective detrainment (which can result in either a net hydration or dehydration), slow ascent, wave motions and advection. Together these determine the humidity of the air that eventually passes through the tropopause and into the stratosphere, and we refer to this layer as the tropopause saturation layer or TSL. We know from in situ water vapor observations such as Ticosonde's 12-year balloonsonde record at Costa Rica that layers of supersaturation are frequently observed in the TSL. While their frequency is greatest during the local rainy season from June through October, supersaturation is also observed in the boreal winter dry season when deep convection is well south of Costa Rica. In other words, local convection is not a necessary condition for the presence of supersaturation. Furthermore, there are indications from airborne measurements during the recent POSIDON campaign at Guam that if anything deep convection tends to `reset' the TSL locally to a state of just-saturation. Conversely, it may be that layers of supersaturation are the result of slow ascent. To explore these ideas we take Ticosonde water vapor observations from the TSL, stratify them on the basis of relative humidity and report on the differences in the the history of upstream convective influence between supersaturated parcels and those that are not.

  9. On the structure of climate variability near the tropopause and its relationship to equatorial planetary waves

    NASA Astrophysics Data System (ADS)

    Grise, Kevin M.

    The tropopause is an important interface in the climate system, separating the unique dynamical, chemical, and radiative regimes of the troposphere and stratosphere. Previous studies have demonstrated that the long-term mean structure and variability of the tropopause results from a complex interaction of stratospheric and tropospheric processes. This project provides new insight into the processes involved in the global tropopause region through two perspectives: (1) a high vertical resolution climatology of static stability and (2) an observational analysis of equatorial planetary waves. High vertical resolution global positioning system radio occultation profiles are used to document fine-scale features of the global static stability field near the tropopause. Consistent with previous studies, a region of enhanced static stability, known as the tropopause inversion layer (TIL), exists in a narrow layer above the extratropical tropopause and is strongest over polar regions during summer. However, in the tropics, the TIL possesses a unique horizontally and vertically varying structure with maxima located at ˜17 and ˜19 km. The upper feature peaks during boreal winter and has its largest magnitude between 10º and 15º latitude in both hemispheres; the lower feature exhibits a weaker seasonal cycle and is centered at the Equator. The spatial structure of both features resembles the equatorial planetary wave response to the climatological distribution of deep convection. Equatorial planetary waves not only dominate the climatological-mean general circulation near the tropical tropopause but also play an important role in its intraseasonal and interannual variability. The structure of the equatorial planetary waves emerges as the leading pattern of variability of the zonally asymmetric tropical atmospheric circulation. Regressions on an index of the equatorial planetary waves reveal that they are associated with a distinct pattern of equatorially symmetric climate

  10. The double tropopause and its dynamical relationship to the tropopause inversion layer in storm track regions

    NASA Astrophysics Data System (ADS)

    Peevey, T. R.; Gille, J. C.; Homeyer, C. R.; Manney, G. L.

    2014-09-01

    Using High Resolution Dynamic Limb Sounder observations and ERA-Interim reanalysis this study demonstrates that the warm conveyor belt (WCB) is a mechanism responsible for the relationship between the double tropopause (DT) and the tropopause inversion layer (TIL), a relationship recently suggested in the literature based on idealized model simulations of baroclinic disturbances. Using these data sets, spatial and temporal characteristics of the DT-TIL relationship are examined over a 3 year period, 2005-2008. In the extratropics, results from satellite data show that as the TIL increases in strength, so does the frequency of the DT, regardless of season or hemisphere. The inverse relationship is found in the tropics. Using only DT profiles, zonal composites of wind, relative vorticity, and temperature from reanalysis data show that as the TIL increases in strength, the upper tropospheric circulation switches from cyclonic to anticyclonic, and the upward vertical motion increases. This result suggests the WCB as a mechanism since it is on the anticyclonic side of the jet and is characterized by the movement of tropical air poleward and upward from the surface. To verify this relationship, the vertical and horizontal development of a synoptic-scale baroclinic system is analyzed over a 4 day period. Results show the equatorward extension of the polar tropopause, and thus the formation of the DT, due to the strengthening of the TIL in the region of vertical motion associated with the WCB. Moreover, this result suggests that air movement within the DT could originate from high latitudes when associated with a baroclinic disturbance.

  11. Physical Processes Controlling the Spatial Distributions of Relative Humidity in the Tropical Tropopause Layer Over the Pacific

    NASA Technical Reports Server (NTRS)

    Jensen, Eric J.; Thornberry, Troy D.; Rollins, Andrew W.; Ueyama, Rei; Pfister, Leonhard; Bui, Thaopaul; Diskin, Glenn S.; Digangi, Joshua P.; Hintsa, Eric; Gao, Ru-Shan; hide

    2017-01-01

    The spatial distribution of relative humidity with respect to ice (RHI) in the boreal wintertime tropical tropopause layer (TTL, is asymptotically Equal to 14-18 km) over the Pacific is examined with the measurements provided by the NASA Airborne Tropical TRopopause EXperiment. We also compare the measured RHI distributions with results from a transport and microphysical model driven by meteorological analysis fields. Notable features in the distribution of RHI versus temperature and longitude include (1) the common occurrence of RHI values near ice saturation over the western Pacific in the lower to middle TTL; (2) low RHI values in the lower TTL over the central and eastern Pacific; (3) common occurrence of RHI values following a constant mixing ratio in the middle to upper TTL (temperatures between 190 and 200 K); (4) RHI values typically near ice saturation in the coldest airmasses sampled; and (5) RHI values typically near 100% across the TTL temperature range in air parcels with ozone mixing ratios less than 50 ppbv. We suggest that the typically saturated air in the lower TTL over the western Pacific is likely driven by a combination of the frequent occurrence of deep convection and the predominance of rising motion in this region. The nearly constant water vapor mixing ratios in the middle to upper TTL likely result from the combination of slow ascent (resulting in long residence times) and wave-driven temperature variability. The numerical simulations generally reproduce the observed RHI distribution features, and sensitivity tests further emphasize the strong influence of convective input and vertical motions on TTL relative humidity.

  12. Regulation of H2O and CO in Tropical Tropopause Layer by the Madden-Julian Oscillation

    NASA Technical Reports Server (NTRS)

    Wong, Sun; Dessler, Andrew E.

    2007-01-01

    Impacts of the Madden-Julian oscillation (MJO) on the water vapor (H2O) and carbon monoxide (CO) abundances in the tropical tropopause layer (TTL) are investigated using Aura Microwave Limb Sounder (MLS) data for November 2004 to May 2005. The effects of the eastward propagation of MJO on H2O and CO abundances in the TTL are evident. Deep convection transports H20 into the upper troposphere up to about the 355-365 K level. Around the 365-375 K level, a dry anomaly is collocated with a cold anomaly, which is above a warm anomaly located near the region of convection enhancement. Tropical mean H20 at 375 K is regulated by the MJO through convection enhancement and coherent with the local MJO-related temperature variation. The locations of dehydration follow the eastward propagation of convection enhancement and its area extent depends on the phase of the MJO. Enhancement of deep convection associated with the MJO also injects CO from the lower troposphere to the TTL up to 375 K. However, tropical mean CO at 375 K responds instantaneously to the large injection event occurring over the African continent.

  13. Deep convective clouds at the tropopause

    NASA Astrophysics Data System (ADS)

    Aumann, H. H.; Desouza-Machado, S. G.

    2010-07-01

    Data from the Advanced Infrared Sounder (AIRS) on the EOS Aqua spacecraft identify thousands of cloud tops colder than 225 K, loosely referred to as Deep Convective Clouds (DCC). Many of these cloud tops have "inverted" spectra, i.e. areas of strong water vapor, CO2 and ozone opacity, normally seen in absorption, are now seen in emission. We refer to these inverted spectra as DCCi. They are found in about 0.4% of all spectra from the tropical oceans excluding the Western Tropical Pacific (WTP), 1.1% in the WTP. The cold clouds are the anvils capping thunderstorms and consist of optically thick cirrus ice clouds. The precipitation rate associated with DCCi suggests that imbedded in these clouds, protruding above them, and not spatially resolved by the AIRS 15 km FOV, are even colder bubbles, where strong convection pushes clouds to within 5 hPa of the pressure level of the tropopause cold point. Associated with DCCi is a local upward displacement of the tropopause, a cold "bulge", which can be seen directly in the brightness temperatures of AIRS and AMSU channels with weighting function peaking between 40 and 2 hPa, without the need for a formal temperature retrieval. The bulge is not resolved by the analysis in numerical weather prediction models. The locally cold cloud tops relative to the analysis give the appearance (in the sense of an "illusion") of clouds overshooting the tropopause and penetrating into the stratosphere. Based on a simple model of optically thick cirrus clouds, the spectral inversions seen in the AIRS data do not require these clouds to penetrate into the stratosphere. However, the contents of the cold bulge may be left in the lower stratosphere as soon as the strong convection subsides. The heavy precipitation and the distortion of the temperature structure near the tropopause indicate that DCCi are associated with intense storms. Significant long-term trends in the statistical properties of DCCi could be interesting indicators of climate

  14. Evaluation of Inter-Hemispheric Characteristics of the Tropopause-Stratopause-Mesopause Over Sub-Tropical Regions

    NASA Astrophysics Data System (ADS)

    Sharma, Som; Kumar, Prashant; Vaishnav, Rajesh; Jethva, Chintan; Bencherif, Hassan

    2018-03-01

    The transition regions in thermal structure viz. Tropopause, stratopause and mesopause play a vital role in the vertical coupling of the Earth's atmosphere. For the first time, inter-hemispheric characteristics of the transition regions over two subtropical regions are studied using temperature observations from the SABER onboard TIMED satellite and the ERA Interim reanalysis during year 2002 to 2015. Results show that tropopause height is higher over Reunion Island (21.11°S, 55.53°E) in the Southern Hemisphere (SH) as compared to Mt. Abu region (24.59°N, 72.70°E) in the Northern Hemisphere (NH). Temporal variation of tropopause temperature reveals a decreasing ( 4 K) trend from year 2002 to 2008 and beyond this, an increasing ( 1.5 K) trend is found in tropopause temperature. These features are reinforcing for Mesopause as compared to tropopause temperature. The SH shows stronger variations in Mesopause temperature ( 7 K) compared to NH during year 2002 to 2008. The occurrence frequency of mesopause and stratopause height shows that the maximum occurrence frequency ( 60%) of mesopause at 100 km in NH, while frequency is found to be 55% in the SH. Results show that stratopause (mesopause) is cooler (warmer) in NH as compared SH. Moreover, Lomb Scargle Periodogram and wavelet transform techniques are used to investigate the periodicity of mesopause, stratopause and tropopause temperatures and heights. Investigations revealed prominent annual oscillations in the tropopause and stratopause temperatures in both hemispheres. These findings will be of immense use for the vertical and inter-hemispheric atmospheric coupling studies.

  15. Dehydration in the tropical tropopause layer: implications from the UARS Microwave Limb Sounder

    NASA Technical Reports Server (NTRS)

    Read, W. G.; Wu, D. L.; Waters, J. W.

    2004-01-01

    The new MLS data are consistent with convective input of H(sub 2)O into the bottom of the TTL followed by slow ascent with a maximum relative amplitude in the seasonal cycle occurring near the tropopause nearly in phase with the tropopause temperature seasonal cycle.

  16. Effects of convective ice evaporation on interannual variability of tropical tropopause layer water vapor

    NASA Astrophysics Data System (ADS)

    Ye, Hao; Dessler, Andrew E.; Yu, Wandi

    2018-04-01

    Water vapor interannual variability in the tropical tropopause layer (TTL) is investigated using satellite observations and model simulations. We break down the influences of the Brewer-Dobson circulation (BDC), the quasi-biennial oscillation (QBO), and the tropospheric temperature (ΔT) on TTL water vapor as a function of latitude and longitude using a two-dimensional multivariate linear regression. This allows us to examine the spatial distribution of the impact of each process on TTL water vapor. In agreement with expectations, we find that the impacts from the BDC and QBO act on TTL water vapor by changing TTL temperature. For ΔT, we find that TTL temperatures alone cannot explain the influence. We hypothesize a moistening role for the evaporation of convective ice from increased deep convection as the troposphere warms. Tests using a chemistry-climate model, the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM), support this hypothesis.

  17. Evidence of horizontal and vertical transport of water in the Southern Hemisphere tropical tropopause layer (TTL) from high-resolution balloon observations

    NASA Astrophysics Data System (ADS)

    Khaykin, Sergey M.; Pommereau, Jean-Pierre; Riviere, Emmanuel D.; Held, Gerhard; Ploeger, Felix; Ghysels, Melanie; Amarouche, Nadir; Vernier, Jean-Paul; Wienhold, Frank G.; Ionov, Dmitry

    2016-09-01

    High-resolution in situ balloon measurements of water vapour, aerosol, methane and temperature in the upper tropical tropopause layer (TTL) and lower stratosphere are used to evaluate the processes affecting the stratospheric water budget: horizontal transport (in-mixing) and hydration by cross-tropopause overshooting updrafts. The obtained in situ evidence of these phenomena are analysed using satellite observations by Aura MLS (Microwave Limb Sounder) and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) together with trajectory and transport modelling performed using CLaMS (Chemical Lagrangian Model of the Stratosphere) and HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) model. Balloon soundings were conducted during March 2012 in Bauru, Brazil (22.3° S) in the frame of the TRO-Pico campaign for studying the impact of convective overshooting on the stratospheric water budget. The balloon payloads included two stratospheric hygrometers: FLASH-B (Fluorescence Lyman-Alpha Stratospheric Hygrometer for Balloon) and Pico-SDLA instrument as well as COBALD (Compact Optical Backscatter Aerosol Detector) sondes, complemented by Vaisala RS92 radiosondes. Water vapour vertical profiles obtained independently by the two stratospheric hygrometers are in excellent agreement, ensuring credibility of the vertical structures observed. A signature of in-mixing is inferred from a series of vertical profiles, showing coincident enhancements in water vapour (of up to 0.5 ppmv) and aerosol at the 425 K (18.5 km) level. Trajectory analysis unambiguously links these features to intrusions from the Southern Hemisphere extratropical stratosphere, containing more water and aerosol, as demonstrated by MLS and CALIPSO global observations. The in-mixing is successfully reproduced by CLaMS simulations, showing a relatively moist filament extending to 20° S. A signature of local cross-tropopause transport of water is observed in a particular

  18. The Observed Relationship Between Water Vapor and Ozone in the Tropical Tropopause Saturation Layer and the Influence of Meridional Transport

    NASA Technical Reports Server (NTRS)

    Selkirk, Henry B.; Schoeberl, M. R.; Olsen, M. A.; Douglass, A. R.

    2011-01-01

    We examine balloonsonde observations of water vapor and ozone from three Ticosonde campaigns over San Jose, Costa Rica [10 N, 84 W] during northern summer and a fourth during northern winter. The data from the summer campaigns show that the uppermost portion of the tropical tropopause layer between 360 and 380 K, which we term the tropopause saturation layer or TSL, is characterized by water vapor mixing ratios from proximately 3 to 15 ppmv and ozone from approximately 50 ppbv to 250 ppbv. In contrast, the atmospheric water vapor tape recorder at 380 K and above displays a more restricted 4-7 ppmv range in water vapor mixing ratio. From this perspective, most of the parcels in the TSL fall into two classes - those that need only additional radiative heating to rise into the tape recorder and those requiring some combination of additional dehydration and mixing with drier air. A substantial fraction of the latter class have ozone mixing ratios greater than 150 ppbv, and with water vapor greater than 7 ppmv this air may well have been transported into the tropics from the middle latitudes in conjunction with high-amplitude equatorial waves. We examine this possibility with both trajectory analysis and transport diagnostics based on HIRDLS ozone data. We apply the same approach to study the winter season. Here a very different regime obtains as the ozone-water vapor scatter diagram of the sonde data shows the stratosphere and troposphere to be clearly demarcated with little evidence of mixing in of middle latitude air parcels.

  19. Formation of Large (Approximately 100 micrometers) Ice Crystals Near the Tropical Tropopause

    NASA Technical Reports Server (NTRS)

    Jensen, E. J.; Pfister, L.; Bui, T. V.; Lawson, P.; Baker, B.; Mo, Q.; Baumgardner, D.; Weinstock, E. M.; Smith, J. B.; Moyer, E. J.; hide

    2008-01-01

    Recent high-altitude aircraft measurements with in situ imaging instruments indicated the presence of relatively large (approx.100 microns length), thin (aspect ratios of approx.6:1 or larger) hexagonal plate ice crystals near the tropical tropopause in very low concentrations (<0.01/L). These crystals were not produced by deep convection or aggregation. We use simple growth-sedimentation calculations as well as detailed cloud simulations to evaluate the conditions required to grow the large crystals. Uncertainties in crystal aspect ratio leave a range of possibilities, which could be constrained by knowledge of the water vapor concentration in the air where the crystal growth occurred. Unfortunately, water vapor measurements made in the cloud formation region near the tropopause with different instruments ranged from <2 ppmv to approx.3.5 ppmv. The higher water vapor concentrations correspond to very large ice supersaturations (relative humidities with respect to ice of about 200%). If the aspect ratios of the hexagonal plate crystals are as small as the image analysis suggests (6:1, see companion paper (Lawson et al., 2008)) then growth of the large crystals before they sediment out of the supersaturated layer would only be possible if the water vapor concentration were on the high end of the range indicated by the different measurements (>3 ppmv). On the other hand, if the crystal aspect ratios are quite a bit larger (approx.10:1), then H2O concentrations toward the low end of the measurement range (approx.2-2.5 ppmv) would suffice to grow the large crystals. Gravity-wave driven temperature and vertical wind perturbations only slightly modify the H2O concentrations needed to grow the crystals. We find that it would not be possible to grow the large crystals with water concentrations less than 2 ppmv, even with assumptions of a very high aspect ratio of 15 and steady upward motion of 2 cm/s to loft the crystals in the tropopause region. These calculations would

  20. Activity of convective coupled equatorial wave in tropical Tropopause layer in reanalysis and high-top CMIP5 models

    NASA Astrophysics Data System (ADS)

    Harza, Alia; Lubis, Sandro W.; Setiawan, Sonni

    2018-05-01

    The activity of convectively coupled equatorial waves (CCEWs), including Kelvin waves, Mixed Rossby-Gravity (MRG), and Equatorial Rossby (ER), in the tropical tropopause layer (TTL) is investigated in the Reanalysis and nine high-top CMIP5 models using the zonal wave number-frequency spectral analysis with equatorially symmetric-antisymmetric decomposition. We found that the TTL activities in the high-top CMIP5 models show significant difference among the high-top CMIP5 models with respect to the observation. The MIROC and HadGEM2-CC models work best in simulating Kelvin wave in the TTL, while the HadGEM2-CC and MPI-ESM-LR models work best in simulating MRG waves. The ER waves in TTL are best simulated in the MRI-CGCM model. None of the models are good in simulating all waves at once. It is concluded that the broad range of wave activity found in the different CMIP5 models depend on the convective parameterization used by each model and the representation of the tropical stratosphere variability, including the QBO.

  1. Multimodel assessment of the upper troposphere and lower stratosphere: Tropics and global trends

    NASA Astrophysics Data System (ADS)

    Gettelman, A.; Hegglin, M. I.; Son, S.-W.; Kim, J.; Fujiwara, M.; Birner, T.; Kremser, S.; Rex, M.; AñEl, J. A.; Akiyoshi, H.; Austin, J.; Bekki, S.; Braesike, P.; Brühl, C.; Butchart, N.; Chipperfield, M.; Dameris, M.; Dhomse, S.; Garny, H.; Hardiman, S. C.; JöCkel, P.; Kinnison, D. E.; Lamarque, J. F.; Mancini, E.; Marchand, M.; Michou, M.; Morgenstern, O.; Pawson, S.; Pitari, G.; Plummer, D.; Pyle, J. A.; Rozanov, E.; Scinocca, J.; Shepherd, T. G.; Shibata, K.; Smale, D.; TeyssèDre, H.; Tian, W.

    2010-01-01

    The performance of 18 coupled Chemistry Climate Models (CCMs) in the Tropical Tropopause Layer (TTL) is evaluated using qualitative and quantitative diagnostics. Trends in tropopause quantities in the tropics and the extratropical Upper Troposphere and Lower Stratosphere (UTLS) are analyzed. A quantitative grading methodology for evaluating CCMs is extended to include variability and used to develop four different grades for tropical tropopause temperature and pressure, water vapor and ozone. Four of the 18 models and the multi-model mean meet quantitative and qualitative standards for reproducing key processes in the TTL. Several diagnostics are performed on a subset of the models analyzing the Tropopause Inversion Layer (TIL), Lagrangian cold point and TTL transit time. Historical decreases in tropical tropopause pressure and decreases in water vapor are simulated, lending confidence to future projections. The models simulate continued decreases in tropopause pressure in the 21st century, along with ˜1K increases per century in cold point tropopause temperature and 0.5-1 ppmv per century increases in water vapor above the tropical tropopause. TTL water vapor increases below the cold point. In two models, these trends are associated with 35% increases in TTL cloud fraction. These changes indicate significant perturbations to TTL processes, specifically to deep convective heating and humidity transport. Ozone in the extratropical lowermost stratosphere has significant and hemispheric asymmetric trends. O3 is projected to increase by nearly 30% due to ozone recovery in the Southern Hemisphere (SH) and due to enhancements in the stratospheric circulation. These UTLS ozone trends may have significant effects in the TTL and the troposphere.

  2. Where is Tropopause?

    NASA Technical Reports Server (NTRS)

    Mahoney, Michael J.

    2004-01-01

    Much of the earth science that is being proposed for the Stratospheric Observatory for Infrared Astronomy (SOFIA) Upper-Deck Research Facility (SURF) deals with issues related to the tropopause, which will be near SOFIA'S flight level at mid-latitudes. Interpreting in situ or remote aerosol, hydrometeor, and trace gas measurements will require accurate knowledge of the tropopause location. Examples of such measurements are presented, and a brief discussion is given on the Microwave Temperature Profiler (MTP), which the earth science community has used in the past to determine the tropopause height.

  3. Seasonal variations of water vapor in the tropical lower statosphere

    NASA Technical Reports Server (NTRS)

    Mote, Philip W.; Rosenlof, Karen H.; Holton, James R.; Harwood, Robert S.; Waters, Joe W.

    1995-01-01

    Measurments of stratospheric water vapor by the Microwave Limb Sounder (MLS) aboard the Upper Atmosphere Research Satellite (UARS) show that in the tropical lower statosphere, low-frequency variations are closely related to the annual cycle in tropical tropopause temperatures. Tropical stratospheric air appears to retain information about the tropopause conditions it enconters for over a year as it rises through the stratosphere. A two-dimensional Lagrangian model is used to relate MLS measurements to the temperature that tropical air parcels encounter when crossing the 100 hPa surface.

  4. Long-lived contrails and convective cirrus above the tropical tropopause

    NASA Astrophysics Data System (ADS)

    Schumann, Ulrich; Kiemle, Christoph; Schlager, Hans; Weigel, Ralf; Borrmann, Stephan; D'Amato, Francesco; Krämer, Martina; Matthey, Renaud; Protat, Alain; Voigt, Christiane; Volk, C. Michael

    2017-02-01

    This study has two objectives: (1) it characterizes contrails at very low temperatures and (2) it discusses convective cirrus in which the contrails occurred. (1) Long-lived contrails and cirrus from overshooting convection are investigated above the tropical tropopause at low temperatures down to -88 °C from measurements with the Russian high-altitude research aircraft M-55 Geophysica, as well as related observations during the SCOUT-O3 field experiment near Darwin, Australia, in 2005. A contrail was observed to persist below ice saturation at low temperatures and low turbulence in the stratosphere for nearly 1 h. The contrail occurred downwind of the decaying convective system Hector of 16 November 2005. The upper part of the contrail formed at 19 km altitude in the tropical lower stratosphere at ˜ 60 % relative humidity over ice at -82 °C. The ˜ 1 h lifetime is explained by engine water emissions, slightly enhanced humidity from Hector, low temperature, low turbulence, and possibly nitric acid hydrate formation. The long persistence suggests large contrail coverage in case of a potential future increase of air traffic in the lower stratosphere. (2) Cirrus observed above the strongly convective Hector cloud on 30 November 2005 was previously interpreted as cirrus from overshooting convection. Here we show that parts of the cirrus were caused by contrails or are mixtures of convective and contrail cirrus. The in situ data together with data from an upward-looking lidar on the German research aircraft Falcon, the CPOL radar near Darwin, and NOAA-AVHRR satellites provide a sufficiently complete picture to distinguish between contrail and convective cirrus parts. Plume positions are estimated based on measured or analyzed wind and parameterized wake vortex descent. Most of the non-volatile aerosol measured over Hector is traceable to aircraft emissions. Exhaust emission indices are derived from a self-match experiment of the Geophysica in the

  5. Implications of Enhanced Relative Humidity in Cold Tropical Cirrus

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Pfister, Leonhard

    2004-01-01

    In situ measurements of water vapor concentration and temperature in tropical cirrus during the CRYSTAL-FACE and Pre-AVE missions indicate that the steady-state relative humidity within cirrus at T less than 200 K is about 20-30% higher than ice saturation. These measurements challenge the conventional belief, that any water vapor in excess of ice saturation should be depleted by crystal growth given sufficient time. Detailed simulations of thin cirrus near the tropopause indicate that this enhanced steady-state relative humidity increases ice number densities, decreases crystal sizes and extends cloud lifetimes. The areal coverage of thin cirrus in the tropics is increased rather than decreased as indicated by simpler conceptual models. Perhaps most significantly, the increased steady-state H2O saturation mixing ratio over ice in thin cirrus near the tropopause results in about a 0.5-1 ppmv increase in the amount of water that can enter the stratosphere across the tropical tropopause cold trap. Hence, the enhanced steady-state relative humidity in cold cirrus implies that lower tropopause temperatures are required to explain the observed stratospheric water vapor mixing ratios than previously assumed.

  6. Reanalysis comparisons of upper tropospheric-lower stratospheric jets and multiple tropopauses

    NASA Astrophysics Data System (ADS)

    Manney, Gloria L.; Hegglin, Michaela I.; Lawrence, Zachary D.; Wargan, Krzysztof; Millán, Luis F.; Schwartz, Michael J.; Santee, Michelle L.; Lambert, Alyn; Pawson, Steven; Knosp, Brian W.; Fuller, Ryan A.; Daffer, William H.

    2017-09-01

    The representation of upper tropospheric-lower stratospheric (UTLS) jet and tropopause characteristics is compared in five modern high-resolution reanalyses for 1980 through 2014. Climatologies of upper tropospheric jet, subvortex jet (the lowermost part of the stratospheric vortex), and multiple tropopause frequency distributions in MERRA (Modern-Era Retrospective analysis for Research and Applications), ERA-I (ERA-Interim; the European Centre for Medium-Range Weather Forecasts, ECMWF, interim reanalysis), JRA-55 (the Japanese 55-year Reanalysis), and CFSR (the Climate Forecast System Reanalysis) are compared with those in MERRA-2. Differences between alternate products from individual reanalysis systems are assessed; in particular, a comparison of CFSR data on model and pressure levels highlights the importance of vertical grid spacing. Most of the differences in distributions of UTLS jets and multiple tropopauses are consistent with the differences in assimilation model grids and resolution - for example, ERA-I (with coarsest native horizontal resolution) typically shows a significant low bias in upper tropospheric jets with respect to MERRA-2, and JRA-55 (the Japanese 55-year Reanalysis) a more modest one, while CFSR (with finest native horizontal resolution) shows a high bias with respect to MERRA-2 in both upper tropospheric jets and multiple tropopauses. Vertical temperature structure and grid spacing are especially important for multiple tropopause characterizations. Substantial differences between MERRA and MERRA-2 are seen in mid- to high-latitude Southern Hemisphere (SH) winter upper tropospheric jets and multiple tropopauses as well as in the upper tropospheric jets associated with tropical circulations during the solstice seasons; some of the largest differences from the other reanalyses are seen in the same times and places. Very good qualitative agreement among the reanalyses is seen between the large-scale climatological features in UTLS jet and

  7. Temperature properties in the tropical tropopause layer and their correlations with Outgoing Longwave Radiation: FORMOSAT-3/COSMIC observations

    NASA Astrophysics Data System (ADS)

    Wang, Kaiti; Wu, Yi-chao; Lin, Jia-Ting; Tan, Pei-Hua

    2018-06-01

    The properties of temperature at the level of lapse rate minimum (LRM) in the tropical tropopause layer between 20°S and 20°N are investigated using 3-year radio occultation observations based on the FORMOSAT-3/COSMIC mission from November of 2006 to October of 2009. The correlations between this LRM temperature and Outgoing Longwave Radiation (OLR) are analyzed by 5° × 5° grids in longitude and latitude. Two primary regions, one from 60°E to 180°E and the other from 90°W to 30°E, are found to have higher correlations and can be associated with regions of lower OLR values. The patterns of this spatial distributions of regions with higher correlations begin to change more obviously when the altitude ascends to the level of Cold Point Tropopause (CPT). This correlation at the LRM altitude in annual and seasonal scales also shows spatial distributions associated with OLR intensities. The altitudinal dependence of the correlations between temperature and OLR is further analyzed based on grids of high correlations with significance at LRM altitude, for the two primary regions. The results show that for the different time scales in this analysis (3-year, annual, and seasonal), the correlations all gradually decrease above the LRM levels but maintain a significant level to as high as 2.5-3.5 km. Below the LRM level, the correlation decreases with a slower rate as the altitude descends and still keeps significant at the deep 5 km level. These suggest that the vertical temperature profiles could be affected by the convection mechanism for a wide range of altitudes in the troposphere even above LRM altitude. Applying the same analysis on one complete La Niña event during the survey period also reveals similar features.

  8. Tropopause inversion layer and water vapour

    NASA Astrophysics Data System (ADS)

    Peinke, Isabel; Reutter, Philipp; Hoor, Peter; Spichtinger, Peter

    2013-04-01

    The tropopause inversion layer (TIL) is a phenomenon located close to the tropopause, characterized by an enhanced static stability (N2) right above the temperature inversion of the tropopause and by its adjacent minima. There is low understanding of formation and maintenance of the TIL, but different hypotheses exist. On one hand, the balanced dynamic in this region has an important impact on the evolution and sustainment of the TIL. On the other hand, the radiative effects of ozone and water vapor near the tropopause might play an important role for the formation and maintenance of the TIL. We use high resolution radiosonde data over the Meteorological Observatory Lindenberg, Germany for the period February 2000 to April 2001 to investigate the impact of water vapor on the TIL. Starting from the mean profiles, we analyze the main features of the tropopause and the TIL. As it is known from the literature, we find a stronger TIL in summer compared to winter. However, our results show a complementary behavior in the seasonal cycle of the tropopause height and the TIL strength. The influence of the relative humidity over ice (RHi) on the TIL was also investigated. We show that high values of RHi lead to a cooler tropopause temperature and an enhanced strength of the TIL. This means that the maximum of the static stability is higher for high values of RHi and the adjacent minima are smaller than for low values of RHi.

  9. Statistics of the tropopause inversion layer over Beijing

    NASA Astrophysics Data System (ADS)

    Bian, Jianchun; Chen, Hongbin

    2008-05-01

    High resolution radiosonde data from Beijing, China in 2002 are used to study the strong tropopause inversion layer (TIL) in the extratropical regions in eastern Asia. The analysis, based on the tropopause-based mean (TB-mean) method, shows that the TIL over Beijing has similar features as over other sites in the same latitude in Northern America. The reduced values of buoyancy frequency in 13 17 km altitude in winter-spring are attributed to the higher occurrence frequency of the secondary tropopause in this season. In the monthly mean temperature profile relative to the secondary tropopause, there also exists a TIL with somewhat enhanced static stability directly over the secondary sharp thermal tropopause, and a 4 km thickness layer with reduced values of buoyancy frequency just below the tropopause, which corresponds to the 13 17 km layer in the first TB-mean thermal profile. In the monthly mean temperature profile relative to the secondary tropopause, a TIL also exists but it is not as strong. For individual cases, a modified definition of the TIL, focusing on the super stability and the small distance from the tropopause, is introduced. The analysis shows that the lower boundary of the newly defined TIL is about 0.42 km above the tropopause, and that it is higher in winter and lower in summer; the thickness of the TIL is larger in winter-spring.

  10. A mechanism to explain the variations of tropopause and tropopause inversion layer in the Arctic region during a sudden stratospheric warming in 2009

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Tomikawa, Yoshihiro; Nakamura, Takuji; Huang, Kaiming; Zhang, Shaodong; Zhang, Yehui; Yang, Huigen; Hu, Hongqiao

    2016-10-01

    The mechanism to explain the variations of tropopause and tropopause inversion layer (TIL) in the Arctic region during a sudden stratospheric warming (SSW) in 2009 was studied with the Modern-Era Retrospective analysis for Research and Applications reanalysis data and GPS/Constellation Observing system for Meteorology, Ionosphere, and Climate (COSMIC) temperature data. During the prominent SSW in 2009, the cyclonic system changed to the anticyclonic system due to the planetary wave with wave number 2 (wave2). The GPS/COSMIC temperature data showed that during the SSW in 2009, the tropopause height in the Arctic decreased accompanied with the tropopause temperature increase and the TIL enhancement. The variations of the tropopause and TIL were larger in higher latitudes. A static stability analysis showed that the variations of the tropopause and TIL were associated with the variations of the residual circulation and the static stability due to the SSW. Larger static stability appeared in the upper stratosphere and moved downward to the narrow region just above the tropopause. The descent of strong downward flow was faster in higher latitudes. The static stability tendency analysis showed that the strong downward residual flow induced the static stability change in the stratosphere and around the tropopause. The strong downwelling in the stratosphere was mainly induced by wave2, which led to the tropopause height and temperature changes due to the adiabatic heating. Around the tropopause, a pair of downwelling above the tropopause and upwelling below the tropopause due to wave2 contributed to the enhancement of static stability in the TIL immediately after the SSW.

  11. The Role of Sulfur Dioxide in Stratospheric Aerosol Formation Evaluated Using In-Situ Measurements in the Tropical Lower Stratosphere

    PubMed Central

    Rollins, A. W.; Thornberry, T. D.; Watts, L. A.; Yu, P.; Rosenlof, K. H.; Mills, M.; Baumann, E.; Giorgetta, F. R.; Bui, T. V.; Höpfner, M.; Walker, K. A.; Boone, C.; Bernath, P. F.; Colarco, P. R.; Newman, P. A.; Fahey, D. W.; Gao, R. S.

    2017-01-01

    Stratospheric aerosols (SAs) are a variable component of the Earth's albedo that may be intentionally enhanced in the future to offset greenhouse gases (geoengineering). The role of tropospheric-sourced sulfur dioxide (SO2) in maintaining background SAs has been debated for decades without in-situ measurements of SO2 at the tropical tropopause to inform this issue. Here we clarify the role of SO2 in maintaining SAs by using new in-situ SO2 measurements to evaluate climate models and satellite retrievals. We then use the observed tropical tropopause SO2 mixing ratios to estimate the global flux of SO2 across the tropical tropopause. These analyses show that the tropopause background SO2 is about 5 times smaller than reported by the average satellite observations that have been used recently to test atmospheric models. This shifts the view of SO2 as a dominant source of SAs to a near-negligible one, possibly revealing a significant gap in the SA budget. PMID:29225384

  12. The Role of Sulfur Dioxide in Stratospheric Aerosol Formation Evaluated Using In Situ Measurements in the Tropical Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Rollins, A. W.; Thornberry, T. D.; Watts, L. A.; Yu, P.; Rosenlof, K. H.; Mills, M.; Baumann, E.; Girogetta, F. R.; Bui, T. V.; Hopfner, M.; hide

    2017-01-01

    Stratospheric aerosols (SAs) are a variable component of the Earth's albedo that may be intentionally enhanced in the future to offset greenhouse gases (geoengineering). The role of tropospheric-sourced sulfur dioxide (SO2) in maintaining background SAs has been debated for decades without in-situ measurements of SO2 at the tropical tropopause to inform this issue. Here we clarify the role of SO2 in maintaining SAs by using new in-situ SO2 measurements to evaluate climate models and satellite retrievals. We then use the observed tropical tropopause SO2 mixing ratios to estimate the global flux of SO2 across the tropical tropopause. These analyses show that the tropopause background SO2 is about 5 times smaller than reported by the average satellite observations that have been used recently to test atmospheric models. This shifts the view of SO2 as a dominant source of SAs to a near-negligible one, possibly revealing a significant gap in the SA budget.

  13. The Role of Sulfur Dioxide in Stratospheric Aerosol Formation Evaluated Using In-Situ Measurements in the Tropical Lower Stratosphere.

    PubMed

    Rollins, A W; Thornberry, T D; Watts, L A; Yu, P; Rosenlof, K H; Mills, M; Baumann, E; Giorgetta, F R; Bui, T V; Höpfner, M; Walker, K A; Boone, C; Bernath, P F; Colarco, P R; Newman, P A; Fahey, D W; Gao, R S

    2017-05-16

    Stratospheric aerosols (SAs) are a variable component of the Earth's albedo that may be intentionally enhanced in the future to offset greenhouse gases (geoengineering). The role of tropospheric-sourced sulfur dioxide (SO 2 ) in maintaining background SAs has been debated for decades without in-situ measurements of SO 2 at the tropical tropopause to inform this issue. Here we clarify the role of SO 2 in maintaining SAs by using new in-situ SO 2 measurements to evaluate climate models and satellite retrievals. We then use the observed tropical tropopause SO 2 mixing ratios to estimate the global flux of SO 2 across the tropical tropopause. These analyses show that the tropopause background SO 2 is about 5 times smaller than reported by the average satellite observations that have been used recently to test atmospheric models. This shifts the view of SO 2 as a dominant source of SAs to a near-negligible one, possibly revealing a significant gap in the SA budget.

  14. Cross tropopause flux observed at sub-daily scales over the south Indian monsoon regions

    NASA Astrophysics Data System (ADS)

    Hemanth Kumar, A.; Venkat Ratnam, M.; Sunilkumar, S. V.; Parameswaran, K.; Krishna Murthy, B. V.

    2018-03-01

    The effect of deep convection on the thermal structure and dynamics of the tropical tropopause at sub daily scales is investigated using data from radiosondes launched over two sites in the Indian Monsoon region (Gadanki (13.5°N, 79.2°E) and Trivandrum (8.5°N, 76.9°E)) conducted between December 2010 and March 2014. The data from these soundings are classified into 5 convective categories based on the past, present and future cloudiness over the launching region after the radiosonde has reached tropopause altitude. They are denoted as category 1 (no convection), category 2 (convection may occur in any of the next 3 h), category 3 (convection occurred prior 3 h), category 4 (convection terminated within 3 h of launching) and category 5 (convection persistent throughout the considered period). The anomalies from the background in temperature, relative humidity and wind speed are grouped into the aforementioned five different convective categories for both the stations. Cooling and moisture anomalies are found during the active convection (category 5). The horizontal wind speed showed a strong anomaly indicating the presence of synoptic scale features. Vertical wind obtained simultaneously from the MST radar over Gadanki clearly showed strong updraft during the active convection. The ozone profiles from ozonesondes launched during the same period are also segregated according to the above convective categories. During the active convection, high and low ozone values are found in the upper troposphere and the lower troposphere, respectively. The cross tropopause ozone mass flux and vertical wind at the tropopause and convective outflow level estimated from the ozonesonde, and MST radar/ERA-Interim data showed positive values indicating the transport of ozone between troposphere and stratosphere during deep convection. Similarly, the total mass flux crossing the cold point tropopause over Gadanki showed upward flux during the active convection. The variability of

  15. Boulder Ozone Sonde Data Analyses for Multiple Tropopause Origins

    NASA Astrophysics Data System (ADS)

    Petropavlovskikh, I. V.; Manney, G. L.; Johnson, B.; Minschwaner, K.; Torres, L.; Lawrence, Z. D.

    2014-12-01

    Boulder ozone profile measurements tend to feature structures with multiple layers in the troposphere, so called laminae. These have been shown to be related to several phenomena, including stratospheric air intrusions that are transported to the location of measurements and local gravity wave perturbations (Boulder is located near the Rocky Mountain range where gravity waves are prevalent). In addition, observations indicate that air from the tropical tropopause layer can be transported into regions with multiple tropopauses over the middle latitudes in the vicinity of the subtropical jets. We use GMAO's GEOS-5 data assimilation system products, including Modern-Era Retrospective analysis for Research and Applications (MERRA), interpolated to Boulder, Colorado, USA (40N, 105W) to assess incidence of upper tropospheric jets that influence UTLS ozone distribution. The proximity of the subtropical jet to Boulder results in frequent observations of multiple tropopauses. We analyze ozonesonde data launched in June-July 2014 to determine the origins of laminae observed in the upper troposphere/lower stratosphere (UTLS). Our tools include back trajectory analysis coupled with 4D satellite ozone profile data, including those from NASA's Aura Microwave Limb Sounder instrument. Filaments causing laminae in ozone profiles observed at Boulder will be tracked to origins in either stratospheric or tropospheric intrusions using reverse domain-filling (RDF) trajectory methods. Detailed studies of several ozone profiles collected over Boulder in June/July 2014 will help determine techniques for future analysis of a larger dataset that goes back to 1978. Ozone variability in the UTLS over Boulder is of importance for studies of local climatological ozone conditions, their causes/attribution, and with regard to EPA ozone regulations at the mountain sites across the USA.

  16. On the occurrence of the coldest region in the stratosphere and tropical tropopause stability: A study using COSMIC/FORMOSAT-3 satellite measurements

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Dhaka, S. K.; Choudhary, R. K.; Ho, Shu-Peng; Yoden, S.; Reddy, K. K.

    2014-12-01

    The occurrence of coldest region in the lower and middle stratosphere has been investigated using COSMIC/FORMASAT-3 radio occultation measurements. Observations from January 2007 to December 2011, comprising of 2,871,811 numbers of occultations uniformly spread over land and sea, have been used in this study. Using vertical profiles of temperature upto 40 km altitude, zonally averaged at each 5° latitude band between 90°N and 90°S, it is shown that the coldest region in the upper atmosphere occurs during winter in high latitude stratosphere (latitudes >45°) in both the hemispheres with southern hemisphere (temperature less than <-85 °C) cooler than northern hemisphere (temperature ~-75 °C). The spatial extent of the region of low temperature region found between 10 km and 30 km altitude, indicating a 20 km vertical thick layer of cold temperature. In the southern hemisphere, such a region of coldest temperature remains for more than six months (April-October), in the Northern hemispheric polar region (~-75 °C) it is seen mostly during four winter months between October and January. Using NCEP-DOE reanalysis data, we show that cold temperature in the stratospheric region coexists with the jet streams prevalent in those regions. Strong wind jet is surmised to make stratosphere colder. The absence of sunlight in the coldest region is known to cause jet streams. Impact of stratospheric quasi-biennial oscillation (QBO) on the sharpness of tropical tropopause (stability) has also been investigated. Observations suggest that during westerly phase of QBO, the stability of the tropopause increases.

  17. The Correlation Between Tropical Convection and Upper Tropospheric Momentum Flux Convergence

    NASA Technical Reports Server (NTRS)

    O'CStarr, David; Boehm, Matthew T.

    2003-01-01

    In this study, the relationship between tropical convection and the meridional convergence of zonal momentum flux in the tropical upper troposphere is investigated using NOAA interpolated outgoing longwave radiation data and NCEP-NCAR reanalysis wind data. In particular, a variety of correlation coefficients are calculated between the data sets, both of which are filtered to isolate disturbances with frequencies and wavenumbers consistent with the Madden-Julian oscillation. The results show regions of significant correlation during each season, with the magnitude and area covered by significant correlation coefficients varying with season. Furthermore, it is found that the correlation structures look very similar to theoretical calculations of the atmospheric response to a region of tropical heating. This result suggests that tropical waves, in particular mixed Rossby-gravity waves, play an important role in the meridional transport zonal momentum into the deep tropical upper troposphere. Finally, these findings have implications to the generation of rising motion near the tropical tropopause, which in turn has ramifications for vertical moisture transport and tropopause cirrus formation.

  18. Lidar observations of high altitude cirrus near the tropical tropopause

    NASA Astrophysics Data System (ADS)

    Parameswaran, K.; Kumar, S. Sunil; Krishna Murthy, B.

    High altitude cirrus plays a significant role in atmospheric chemistry, radiation and troposphere-stratosphere exchanges. Studies on their global morphology using satellite data (SAGE) suggests that over the tropics these clouds occur quite frequently in the altitude region around 14 to 16 km with favoured locations centred over Southern Asia, India and Mexico. A monostatic Nd:YAG lidar (operating at 532 nm wavelength) located at National MST Radar Facility (NMRF), Gadanki (13.5°N, 79.2°E) provides an excellent opportunity to study the properties of these clouds. Lidar observations for ~120 nights during the period January 1999 to March 2000 are used to investigate the physical and optical properties of these clouds aswell as their spatial (altitude) and temporal variability. Based on optical depth ( c ) cirrus clouds are classified as Sub-visual Cirrus (SVC) with c 0.03, Thin Cirrus (TC) with 0.030.3. While SVCs are observed anywhere in the altitude region 12 to 18 km, with favoured altitude above 15 km, TCs and DCs usually occur around 14.5+/-1km. The altitude region 14 to 16km appears to be more conducive for cirrus formation. Even though the geometrical thickness (vertical extent) of these clouds varies from 0.3 to 3 km, they are mostly confined to altitudes below the level of tropopause temperature inversion. The cloud optical depth maximises around the post-mid-night period. These clouds also introduce significant depolarisation for the backscattered radiation indicating presence of abundant non-spherical particles presumably ice-crystals. Under favourable conditions these ice-crystals get aligned horizontally to enhance the co - polarized component of lidar backscatter signal through specular reflection, leading to a decrease in cloud depolarisation () below the ambient molecular depolarisation (m ). Such conditions are usually encountered in the case of optically dense clouds. Altitude profile of backscatter ratio

  19. Observational characteristics of the tropopause inversion layer derived from CHAMP/GRACE radio occultations and MOZAIC aircraft data

    NASA Astrophysics Data System (ADS)

    Schmidt, Torsten; Heise, Stefan; Wickert, Jens; Haser, Antonia; Cammas, Jean-Pierre; Smit, Herman G. J.

    In this study we discuss characteristics of the tropopause inversion layer (TIL) based on two datasets. Temperature measurements from GPS radio occultation (RO) data (CHAMP and GRACE) for the time interval 2001-2009 are used to exhibit seasonal properties of the TIL on a global scale. In agreement with previous studies the vertical structure of the TIL is investigated using the square of the buoyancy frequency N. For the extratropics on both hemispheres N2 has an universal distribution independent from season: a local minimum about 2 km below the lapse rate tropopause height (LRTH), an absolute maximum about 1 km above the LRTH, and a local minimum about 4 km above the LRTH. In the tropics (15° N-15° S) the N2 maximum above the tropopause is 200-300 m higher compared with the extratropics and the local minimum of N2 below the tropopause appears about 4 km below the LRTH. Trace gas measurements onboard commercial aircrafts from 2001-2008 are used as a complementary dataset (MOZAIC program). We demonstrate that the mixing ratio gradients of ozone, carbon monoxide and water vapor are suitable parameters for characterizing the TIL reproducing most of the vertical structure of N2 . We also show that the LRTH is strongly correlated with the absolute maxima of ozone and carbon monoxide mixing ratio gradients.

  20. Investigation of Tropical Dynamics and Transport with UARS Data

    NASA Technical Reports Server (NTRS)

    Jackman, Charles (Technical Monitor); Dunkerton, Timothy J.; Mote, Philip W.

    2003-01-01

    Our research focused on Kelvin waves in the tropical lower stratosphere, and resulted in three papers published or submitted to the Journal of Geophysical Research. The first of these, published in 2002, used temperature data from the Microwave Limb Sounder to examine the amplitude, frequency, phase, and spatial structure of leading modes of Kelvin waves. The second and third, submitted late in 2002 and currently in revision, described the response to Kelvin waves of various trace constituents measured by MLS and CLAES (methane, nitrous oxide, CFC-12, and ozone in the second paper; water vapor in the third paper). Water vapor is a special case because the vertical structure induced by Kelvin waves is convolved with water vapor's seasonally varying vertical profile induced by seasonal variations in temperature at the tropical tropopause. Forward modeling indicated that the vertical resolution of MLS was indeed adequate to capture this complicated structure, yet it was not visible in the MLS data, though the Kelvin wave signature was clear on certain UARS levels. The effects of Kelvin waves on the tropical tropopause and on stratosphere- troposphere exchange cannot be quantified from UARS data because of poor vertical resolution and sensitivity in that region. It is recommended that this analysis be repeated using data from the new MLS and HIRDLS instruments aboard Aura, and that priority be given to fine-scale retrievals of temperature, water vapor, and ozone in the tropical tropopause region.

  1. Probing the subtropical lowermost stratosphere and the tropical upper troposphere and tropopause layer for inorganic bromine

    NASA Astrophysics Data System (ADS)

    Werner, Bodo; Stutz, Jochen; Spolaor, Max; Scalone, Lisa; Raecke, Rasmus; Festa, James; Fedele Colosimo, Santo; Cheung, Ross; Tsai, Catalina; Hossaini, Ryan; Chipperfield, Martyn P.; Taverna, Giorgio S.; Feng, Wuhu; Elkins, James W.; Fahey, David W.; Gao, Ru-Shan; Hintsa, Erik J.; Thornberry, Troy D.; Moore, Free Lee; Navarro, Maria A.; Atlas, Elliot; Daube, Bruce C.; Pittman, Jasna; Wofsy, Steve; Pfeilsticker, Klaus

    2017-01-01

    We report measurements of CH4 (measured in situ by the Harvard University Picarro Cavity Ringdown Spectrometer (HUPCRS) and NOAA Unmanned Aircraft System Chromatograph for Atmospheric Trace Species (UCATS) instruments), O3 (measured in situ by the NOAA dual-beam ultraviolet (UV) photometer), NO2, BrO (remotely detected by spectroscopic UV-visible (UV-vis) limb observations; see the companion paper of Stutz et al., 2016), and of some key brominated source gases in whole-air samples of the Global Hawk Whole Air Sampler (GWAS) instrument within the subtropical lowermost stratosphere (LS) and the tropical upper troposphere (UT) and tropopause layer (TTL). The measurements were performed within the framework of the NASA-ATTREX (National Aeronautics and Space Administration - Airborne Tropical Tropopause Experiment) project from aboard the Global Hawk (GH) during six deployments over the eastern Pacific in early 2013. These measurements are compared with TOMCAT/SLIMCAT (Toulouse Off-line Model of Chemistry And Transport/Single Layer Isentropic Model of Chemistry And Transport) 3-D model simulations, aiming at improvements of our understanding of the bromine budget and photochemistry in the LS, UT, and TTL.Changes in local O3 (and NO2 and BrO) due to transport processes are separated from photochemical processes in intercomparisons of measured and modeled CH4 and O3. After excellent agreement is achieved among measured and simulated CH4 and O3, measured and modeled [NO2] are found to closely agree with ≤ 15 ppt in the TTL (which is the detection limit) and within a typical range of 70 to 170 ppt in the subtropical LS during the daytime. Measured [BrO] ranges between 3 and 9 ppt in the subtropical LS. In the TTL, [BrO] reaches 0.5 ± 0.5 ppt at the bottom (150 hPa/355 K/14 km) and up to about 5 ppt at the top (70 hPa/425 K/18.5 km; see Fueglistaler et al., 2009 for the definition of the TTL used), in overall good agreement with the model simulations. Depending on the

  2. Tropopause inversion layer: Seasonal and latitudinal variations and representation in standard radiosonde data and global models

    NASA Astrophysics Data System (ADS)

    Bell, Shaun W.; Geller, Marvin A.

    2008-03-01

    Previous publications have given information on the seasonal and latitudinal variations of the tropopause inversion layer (TIL), as seen in high-resolution radiosonde data sets, when soundings are averaged using the tropopause as a reference level. This paper presents a more quantitative analysis of the latitudinal and seasonal structure of the TIL than has been given previously. To do this, we define the region over which the static stability relaxes from its overshoot value at the tropopause to its local minimum in the stratosphere. This region is seen to increase monotonically in thickness from about 1 km at low latitudes to about 4 to 5 km at high latitudes. When the seasons are defined as winter (DJF), spring (MAM), summer (JJA), and fall (SON), the transition from tropical behavior occurs a little poleward of 20°N in both DJF and MAM and moves to a little poleward of 30°N in JJA and SON. Somewhat surprisingly, it is also shown that almost identical information about the TIL can be derived from standard radiosonde data for our period of analysis because of their reporting of the tropopause and other "significant levels," but caution needs to be used in doing this since the number of reported significant levels has varied significantly over the long term and with some distinct discontinuities. Finally, we discuss what sort of information on the TIL can be obtained from global models given their relatively coarse vertical resolution.

  3. Propagation of gravity waves across the tropopause

    NASA Astrophysics Data System (ADS)

    Bense, Vera; Spichtinger, Peter

    2015-04-01

    The tropopause region is characterised by strong gradients in various atmospheric quantities that exhibit different properties in the troposphere compared to the stratosphere. The temperature lapse rate typically changes from negative to near-zero values resulting in a strong increase in stability. Accordingly, the buoyancy frequency often undergoes a jump at the tropopause. Analysis of radiosounding data also shows the existence of a strong inversion layer (tropopause inversion layer, TIL) characterised by a strong maximum in buoyancy frequency just above the tropopause, see e.g. Birner et al. (2002). Additionally, the magnitude of the vertical wind shear of the horizontal wind maximizes at the tropopause and the region also exhibits characteristical gradients of trace gases. Vertically propagating gravity waves can be excited in the troposphere by several mechanisms, e.g. by flow over topography (e.g. Durran, 1990), by jets and fronts (for a recent review: Plougonven and Zhang, 1990) or by convection (e.g. Clark et al., 1986). When these waves enter the tropopause region, their properties can be changed drastically by the changing stratification and strong wind shear. Within this work, the EULAG (Eulerian/semi-Lagrangian fluid solver, see e.g. Smolarkiewicz and Margolin, 1997) model is used to investigate the impact of the tropopause on vertically propagating gravity waves excited by flows over topography. The choice of topography (sine-shaped mountains, bell-shaped mountain) along with horizontal wind speed and tropospheric value of buoyancy frequency determine the spectrum of waves (horizontal and vertical wavelengths) that is excited in the tropsphere. In order to analyse how these spectra change for several topographies when a tropopause is present, we investigate different idealized cases in a two-dimensional domain. By varying the vertical profiles of buoyancy frequency (step-wise vs. continuos change, including TIL) and wind shear, the tropopause

  4. A model for tropical-extratropical transport of volcanic ash in the lower stratosphere

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1993-01-01

    Large nonspherical volcanic ash particles up to 30 micrometer in size were collected between 17-19 km altitude over the Northern Hemisphere at high latitudes between October 1988 and April 1990. These particles may be derived from minor Plinian eruptions in the tropics rather than from localized volcanic activity close to the collection region. Ash particles were injected into the lower equatorial stratosphere where they entered a regime of efficient transport just above the tropopause from the tropical region towards the northern extratropical region. Transport is enhanced by stable autorotation that generates a sufficient lift force to loft nonspherical ash with a rough surface during transport, and by the gradually decreasing altitude of the tropopause from the tropics to the polar regions.

  5. Observational evidence of the downstream impact on tropical rainfall from stratospheric Kelvin waves

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Karnauskas, Kristopher B.; Weiss, Jeffrey B.; Polvani, Lorenzo M.

    2017-08-01

    Analysis of one continuous decade of daily, high-vertical resolution sounding data from five proximate islands in the western equatorial Pacific region reveals eastward and downward propagating Kelvin waves in the tropical stratosphere, with a zonal wave number one structure and a period of 15 days. By defining an initiation index, we find that these waves are primarily generated over the western Pacific warm pool and South America-tropical Atlantic sector, consistent with regions of frequent deep convection. The zonal phase speed of the stratospheric Kelvin waves (SKWs) is relatively slow ( 10 m s-1) over the initiation region due to coupling with deep convection, and becomes much faster ( 30-40 m s-1) once decoupled from the downstream troposphere. SKWs have significant impacts on downstream tropical rainfall through modulation of tropopause height. The cold phase of SKWs at tropopause leads to higher tropopause heights and more convection in tropics—with opposite impacts associated with the warm phase. Downstream tropical precipitation anomalies associated with these SKWs also propagate eastward with the same speed and zonal scale as observed SKWs. Interannual variability of the amplitude of the SKWs is shown to be associated with the Quasi-Biennial oscillation (QBO); implications for predictability are discussed.

  6. A Study of the Extratropical Tropopause from Observations and Models

    NASA Astrophysics Data System (ADS)

    Wang, Shu Meir

    The extratropical tropopause is a familiar feature in meteorology; however, the understanding of the mechanisms for its existence, formation, maintenance and sharpness is still an active area of research. Son and Povalni (2007) used a simple general circulation model to produce the TIL (Tropopause Inversion Layer), and they found that the extratropical tropopause is more sensitive to the change of the horizontal resolution than to the change of the vertical resolution. The extratropical tropopause is sharper and lower in higher horizontal resolution. They also successfully mimicked the seasonal variation of the extratropical tropopause by changing the Equator-to-Pole temperature difference. They found these features of the extratropical tropopause, but they did not explain why these features were seen in their simplified model. In this research, we try to explain why these features of the extratropical tropopause are seen from both observations and the models. I have shown in my MS thesis that the distance from the jet is more associated with the extratropical tropopause than is the upper tropospheric relative vorticity (Wirth, 2001) from observations. In this research, the reproduction of the work is done from both the idealized and the full model run, and the results are similar to those from the observations, which show that even on synoptic time scales, the distance from the jet is more important in determining the extratropical tropopause height than is the upper tropospheric relative vorticity. It also explains the seasonal variations of the extratropical tropopause since the jet is more poleward in summer than in winter (the Equator-to-Pole temperature difference is smaller in summer than in winter), thus there is larger area at south of the jet which means the extratropical tropopause is sharper and higher at midlatitudes in summer than in winter. We believe that baroclinic mixing of PV is the key factor that sharpens the extratropical tropopause, and

  7. Regional Variability in Ozone in the Tropical and Subtropical Free Troposphere and Tropopause Transition Layer based on Aura-Era SHADOZ Data (2005-2009)

    NASA Astrophysics Data System (ADS)

    Miller, S. K.; Thompson, A. M.; Witte, J. C.; Balashov, N. V.; Kollonige, D. E.

    2012-12-01

    The more than 5000 sets of ozone and P-T-U profiles provided for the tropics and subtropics by the Southern Hemisphere Additional Ozonesondes (SHADOZ) since 1998 have provided a wealth of insights into convective and mixing processes, especially in the upper troposphere through lower stratosphere. The observations have been used in evaluations of satellite ozone and chemical-transport and climate-chemistry models. Recently, we analyzed a climatology of ozone profiles based on the 2005-2009 SHADOZ data when 4 new stations joined the network (15 stations total), giving latitudinal coverage from 25S to 21N. We answer the following questions: How do ozone distributions at two new subtropical stations, Hanoi and Hilo in the northern hemisphere, compare to those at the southern subtropical stations, Irene and La Réunion? Are there better-defined regional classifications of tropospheric and tropopause transition layer (TTL) SHADOZ ozone profiles in the tropics, defined as within + 18 degrees latitude, than the Atlantic-Pacific differentiation identified in published studies with 1998-2004 SHADOZ data? Three distinct regions of the tropics are identified based on the criteria: ozone structure in the TTL; convective influence inferred from laminar identification (LID) of ozone and potential temperature; degree of pollution in the free troposphere (FT). These are: (1) western Pacific/eastern Indian Ocean; (2) equatorial Americas (San Cristóbal, Alajuela, Paramaribo); (3) Atlantic Ocean and Africa. In addition, we have re-examined potential trends in FT and TTL ozone at several SHADOZ stations for which data extend back to the early 1990s.

  8. Formation of a Tropopause Cirrus Layer Observed over Florida during CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Pfister, Leonhard; Bui, Thaopaul; Weinheimer, Andrew; Weinstock, Elliot; Smith, Jessica; Pittman, Jasna; Baumgardner, Darrel; Lawson, Paul; McGill, Matthew J.

    2005-01-01

    On July 13, 2002 a widespread, subvisible tropopause cirrus layer occurred over the Florida region. This cloud was observed in great detail with the NASA Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) instrumentation, including in situ measurements with the WB-57 aircraft. In this paper, we use the 13 July cloud as a case study to evaluate the physical processes controlling the formation and evolution of tropopause cirrus layers. Microphysics measurements indicate that ice crystal diameters in the cloud layer ranged from about 7 to 50 microns, and the peak number mode was about 10-25 microns. In situ water vapor and temperature measurements in the cloud indicated supersaturation with respect to ice throughout, with ice saturation ratios as large as 1.8. Even when the ice surface area density was as high as about 500 sq microns/cu cm, ice supersaturations of 20-30% were observed. Trajectory analysis shows that the air sampled near the tropopause on this day generally came from the north and cooled considerably during the previous few days. Examination of infrared satellite imagery along air parcel back trajectories from the WB-57 flight track indicates that the tropopause cloud layer formation was, in general, not simply left over ice from recently generated anvil cirrus. Simulations of cloud formation using time-height curtains of temperature along the trajectory paths show that the cloud could have formed in situ near the tropopause as the air was advected into the south Florida region and cooled to unusually low temperatures. If we assume a high threshold for ice nucleation via homogeneous freezing of aqueous sulfate aerosols, the model reproduces the observed cloud structure, ice crystal size distributions, and ice supersaturation statistics. Inclusion of observed gravity wave temperature perturbations in the simulations is essential to reproduce the observed cloud properties. Without waves, crystal

  9. Jet and Tropopause Products for Analysis and Characterization (JETPAC)

    NASA Technical Reports Server (NTRS)

    Manney, Gloria L.; Daffer, William H.

    2012-01-01

    This suite of IDL programs provides identification and comprehensive characterization of the dynamical features of the jet streams in the upper troposphere, the lower stratospheric polar night jet, and the tropopause. The output of this software not only provides comprehensive information on the jets and tropopause, but also gives this information in a form that facilitates studies of observations in relation to the jets and tropopauses.

  10. The Tropopause Inversion Layer in Baroclinic Life Cycle Experiments

    NASA Astrophysics Data System (ADS)

    Wirth, Volkmar; Erler, Andre

    2010-05-01

    The Tropopause Inversion Layer (TIL) is a region of enhanced static stability just above the thermal tropopause. It is a ubiquitous feature in midlatitudes and is well characterized by observations; however, it still lacks a full theoretical explanation. The current study uses adiabatic baroclinic life-cycle experiments in order to investigate dynamical mechanisms that lead to the formation of a TIL. Consistent with earlier results, no TIL is found above cyclonic anomalies, while a pronounced TIL is found above anticyclonic anomalies early during the life cycle. Interestingly, regarding tropopause based global mean profiles, a TIL can be seen only much later during the life cycle, at a time when wave breaking starts to occur. There is a significant rise of the thermal tropopause, which is spatially and temporally correlated with TIL formation. In contrast, the dynamical tropopause does not rise significantly and does not exhibit a TIL in the global mean. The results of these experiments are interpreted using earlier results about the nonlinear dependence of the TIL amplitude on the scale of the tropopause anomaly. The analysis suggests that the TIL (as a global mean feature) is linked to a strongly asymmetric distribution of cyclonic and anticyclonic anomalies, which occurs after the wave breaking event.

  11. The tropopause inversion layer in models and analyses

    NASA Astrophysics Data System (ADS)

    Birner, T.; Sankey, D.; Shepherd, T. G.

    2006-07-01

    Recent high-resolution radiosonde climatologies have revealed a tropopause inversion layer (TIL) in the extratropics: temperature strongly increases just above a sharp local cold point tropopause. Here, it is asked to what extent a TIL exists in current general circulation models (GCMs) and meteorological analyses. Only a weak hint of a TIL exists in NCEP/NCAR reanalysis data. In contrast, the Canadian Middle Atmosphere Model (CMAM), a comprehensive GCM, exhibits a TIL of realistic strength. However, in data assimilation mode CMAM exhibits a much weaker TIL, especially in the Southern Hemisphere where only coarse satellite data are available. The discrepancy between the analyses and the GCM is thus hypothesized to be mainly due to data assimilation acting to smooth the observed strong curvature in temperature around the tropopause. This is confirmed in the reanalysis where the stratification around the tropopause exhibits a strong discontinuity at the start of the satellite era.

  12. Observational characteristics of the tropopause inversion layer derived from CHAMP/GRACE radio occultations and MOZAIC aircraft data

    NASA Astrophysics Data System (ADS)

    Schmidt, Torsten; Cammas, Jean-Pierre; Heise, Stefan; Wickert, Jens; Haser, Antonia

    2010-05-01

    In this study we discuss characteristics of the tropopause inversion layer (TIL) based on two datasets. Temperature measurements from GPS radio occultation (RO) data (CHAMP and GRACE) for the time interval 2001-2009 are used to exhibit seasonal properties of the TIL on a global scale. In agreement with previous studies the vertical structure of the TIL is investigated using the square of the buoyancy frequency N. For the extratropics on both hemispheres N2 has an universal distribution independent from season: a local minimum about 2 km below the lapse rate tropopause height (LRTH), an absolute maximum about 1 km above the LRTH, and a local minimum about 4 km above the LRTH. In the tropics (15°N-15°S) the N2 maximum above the tropopause is 200-300 m higher compared with the extratropics and the local minimum of N2 below the tropopause appears about 4 km below the LRTH. Trace gas measurements onboard commercial aircrafts from 2001-2007 are used as a complementary dataset (MOZAIC program). We demonstrate that the mixing ratio gradients of ozone, carbon monoxide and water vapor are suitable parameters for characterizing the TIL reproducing most of the vertical structure of N2. We also show that the LRTH is strongly correlated with the absolute maxima of ozone and carbon monoxide mixing ratio gradients. Mean deviations of the heights of the absolute maxima of mixing ratio gradients from O3 and CO to the LRTH are (-0.02±1.51) km and (-0.35±1.28) km, respectively.

  13. Observed Evolution of the Upper-level Thermal Structure in Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Rivoire, L.; Birner, T.; Knaff, J. A.

    2016-12-01

    Tropical cyclones (TCs) are associated with tropopause-level cooling above the well-known tropospheric warm core. While the investigation of tropopause-level structures started as early as 1951, there is no clear consensus on the mechanisms involved. In addition, the large-scale average vertical and radial structure of the tropopause-level cooling is yet to be examined. Tropopause-level cooling destabilizes the upper atmosphere to convection, which potentially allows existing convection to reach higher altitudes. This is of particular importance during the early stages of tropical cyclogenesis. Other important characteristics of the tropopause-level cooling include its amplitude, its position relative to that of the warm core, its radial extent, and its evolution during the lifetime of TCs. These potentially influence TC structure, surface pressure gradients and maximum winds, intensity evolution, and outflow entropy. We use the 322 hurricane-strength TCs from the best-track archive in 2007-2014, along with high vertical resolution temperature measurements from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC). These measurements are composited about the Lifetime Maximum Intensity (LMI) to examine the evolution of the fine-scale upper-level thermal structure inside TCs. We find that the tropopause-cooling has an amplitude similar to that of the warm core. Relative to the far-field structure (the area average between 1300-1500 km radii), tropopause-level cooling is found to occur several days before the warm core is established. Cold anomalies extend up to 1000 km away from the storm center, and may take part in a large-scale poleward transport of cold, dry air in the UTLS. Lastly, cold air masses move away from the storm center (and warm core) after LMI, and their remains lie around the 400-700 km radius -essentially inward of the radius of maximum tangential anticyclonic winds in the outflow layer. We discuss these results in the

  14. Correlations of TOMS total ozone data (Nimbus-7 satellite) with tropopause height

    NASA Technical Reports Server (NTRS)

    Munteanu, Marie-Jeanne

    1987-01-01

    Two correlation studies of Total Ozone Mapping Spectrometer (TOMS) data with tropopause height from radiosondes performed over Europe showed a correlation coefficient of 0.94 and 0.96. As a result, the rms error in the prediction of tropopause height from total ozone was found to be 20 mb. Correlation between tropopause height and TOMS data was the highest of all the other correlations with variables directly derived from radiosondes or simulated thermal radiances over the location of radiosondes. Comparing the two dimensional fields of TOMS, tropopause height from radiosondes and tropopause height field from TIROS-N retrievals, we can say that the first field is much closer to the true field from radiosondes than the third. The correlation coefficient for a ten-day study between TOMS data and tropopause height from radiosondes is between 0.85 and 0.9 for 30-70N. Tropopause analysis provided by GLA model also shows a very high correlation with TOMS data.

  15. Cirrus and Water Vapor Transport in the Tropical Tropopause Layer

    NASA Astrophysics Data System (ADS)

    Dinh, Tra Phuong

    Simulations of tropical-tropopause-layer (TTL) cirrus under the influence of a large-scale equatorial Kelvin wave have been performed in two dimensions. These simulations show that, even under the influence of the large-scale wave, radiatively induced dynamics in TTL cirrus plays an important role in the transport of water vapor in the vertical direction. In a typical TTL cirrus, the heating that results from absorption of radiation by ice crystals induces a mesoscale circulation. Advection of ice and water vapor by the radiatively induced circulation leads to the persistence of the cloud and upward advection of the cloudy air. Upward advection of the cloudy air is equivalent to upward transport of water vapor when the air above the cloud is drier than the cloudy air, and downward transport otherwise. In TTL cirrus, microphysical processes also contribute to transport of water vapor in the vertical direction. Ice nucleation and growth, followed by sedimentation and sublimation, always lead to downward transport of water vapor. The magnitude of the downward transport by microphysical processes increases with the relative humidity of the air surrounding the cloud. Moisture in the surrounding environment is important because there is continuous interactions between the cloudy and environmental air throughout the cloud boundary. In our simulations, when the air surrounding the cloud is subsaturated, hence drier than the cloudy air, the magnitude of the downward transport due to microphysical processes is smaller than that of the upward transport due to the radiatively induced advection of water vapor. The net result is upward transport of water vapor, and equivalently hydration of the lower stratosphere. On the other hand, when the surrounding air is supersaturated, hence moister than the cloudy air, microphysical and radiatively induced dynamical processes work in concert to induce downward transport of water vapor, that is dehydration of the lower stratosphere. TTL

  16. Sub-seasonal temperature variability in the tropical upper troposphere and lower stratosphere observed with GPS radio occultation

    NASA Astrophysics Data System (ADS)

    Scherllin-Pirscher, Barbara; Randel, William J.; Kim, Joowan

    2017-04-01

    We investigate sub-seasonal temperature variability in the tropical upper troposphere and lower stratosphere (UTLS) region using daily gridded fields of GPS radio occultation measurements. The unprecedented vertical resolution (from about 100 m in the troposphere to about 1.5 km in the stratosphere) and high accuracy and precision (0.7 K to 1 K between 8 km and 25 km) make these data ideal for characterizing temperature oscillations with short vertical wavelengths. Long-term behavior of sub-seasonal temperature variability is investigated using the entire RO record from January 2002 to December 2014 (13 years of data). Transient sub-seasonal waves including eastward-propagating Kelvin waves (isolated with space-time spectral analysis) dominate large-scale zonal temperature variability in the tropical tropopause region and in the lower stratosphere. Above 20 km, Kelvin waves are strongly modulated by the quasi-biennial oscillation (QBO). Enhanced wave activity can be found during the westerly shear phase of the QBO. In the tropical tropopause region, however, sub-seasonal waves are highly transient in time. Several peaks of Kelvin-wave activity coincide with short-term fluctuations in tropospheric deep convection, but other episodes are not evidently related. Also, there are no obvious relationships with zonal winds or stability fields near the tropical tropopause. Further investigations of convective forcing and atmospheric background conditions along the waves' trajectories are needed to better understand sub-seasonal temperature variability near the tropopause. For more details, see Scherllin-Pirscher, B., Randel, W. J., and Kim, J.: Tropical temperature variability and Kelvin-wave activity in the UTLS from GPS RO measurements, Atmos. Chem. Phys., 17, 793-806, doi:10.5194/acp-17-793-2017, 2017. http://www.atmos-chem-phys.net/17/793/2017/acp-17-793-2017.html

  17. Contrail formation in the tropopause region caused by emissions from an Ariane 5 rocket

    NASA Astrophysics Data System (ADS)

    Voigt, Ch.; Schumann, U.; Graf, K.

    2016-07-01

    Rockets directly inject water vapor and aerosol into the atmosphere, which promotes the formation of ice clouds in ice supersaturated layers of the atmosphere. Enhanced mesospheric cloud occurrence has frequently been detected near 80-kilometer altitude a few days after rocket launches. Here, unique evidence for cirrus formation in the tropopause region caused by ice nucleation in the exhaust plume from an Ariane 5-ECA rocket is presented. Meteorological reanalysis data from the European Centre for Medium-Range Weather Forecasts show significant ice supersaturation at the 100-hectopascal level in the American tropical tropopause region on November 26, 2011. Near 17-kilometer altitudes, the temperatures are below the Schmidt-Appleman threshold temperature for rocket condensation trail formation on that day. Immediately after the launch from the Ariane 5-ECA at 18:39 UT (universal time) from Kourou, French Guiana, the formation of a rocket contrail is detected in the high resolution visible channel from the SEVIRI (Spinning Enhanced Visible and InfraRed Imager) on the METEOSAT9 satellite. The rocket contrail is transported to the south and its dispersion is followed in SEVIRI data for almost 2 h. The ice crystals predominantly nucleated on aluminum oxide particles emitted by the Ariane 5-ECA solid booster and further grow by uptake of water vapor emitted from the cryogenic main stage and entrained from the ice supersaturated ambient atmosphere. After rocket launches, the formation of rocket contrails can be a frequent phenomenon under ice supersaturated conditions. However, at present launch rates, the global climate impact from rocket contrail cirrus in the tropopause region is small.

  18. A warming tropical central Pacific dries the lower stratosphere

    NASA Astrophysics Data System (ADS)

    Ding, Qinghua; Fu, Qiang

    2018-04-01

    The amount of water vapor in the tropical lower stratosphere (TLS), which has an important influence on the radiative energy budget of the climate system, is modulated by the temperature variability of the tropical tropopause layer (TTL). The TTL temperature variability is caused by a complex combination of the stratospheric quasi-biennial oscillation (QBO), tropospheric convective processes in the tropics, and the Brewer-Dobson circulation (BDC) driven by mid-latitude and subtropical atmospheric waves. In 2000, the TLS water vapor amount exhibited a stepwise transition to a dry phase, apparently caused by a change in the BDC. In this study, we present observational and modeling evidence that the epochal change of water vapor between the periods of 1992-2000 and 2001-2005 was also partly caused by a concurrent sea surface temperature (SST) warming in the tropical central Pacific. This SST warming cools the TTL above by enhancing the equatorial wave-induced upward motion near the tropopause, which consequently reduces the amount of water vapor entering the stratosphere. The QBO affects the TLS water vapor primarily on inter-annual timescales, whereas a classical El Niño southern oscillation (ENSO) event has small effect on tropical mean TLS water vapor because its responses are longitudinally out of phase. This study suggests that the tropical central Pacific SST is another driver of TLS water vapor variability on inter-decadal timescales and the tropical SST changes could contribute to about 30% of the step-wise drop of the lower stratospheric water vapor from 1992-2000 to 2001-2005.

  19. Seasonal Variation of Ozone in the Tropical Lower Stratosphere: Southern Tropics are Different from Northern Tropics

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.; Waugh, Darryn W.; Wang, Lei,; Oman, Luke D.; Douglass, Anne R.; Newman, Paul A.

    2014-01-01

    We examine the seasonal behavior of ozone by using measurements from various instruments including ozonesondes, Aura Microwave Limb Sounder, and Stratospheric Aerosol and Gas Experiment II. We find that the magnitude of the annual variation in ozone, as a percentage of the mean ozone, exhibits a maximum at or slightly above the tropical tropopause. The maximum is larger in the northern tropics than in the southern tropics, and the annual maximum of ozone in the southern tropics occurs 2 months later than that in the northern tropics, in contrast to usual assumption that the tropics can be treated as a horizontally homogeneous region. The seasonal cycles of ozone and other species in this part of the lower stratosphere result from a combination of the seasonal variation of the Brewer-Dobson circulation and the seasonal variation of tropical and midlatitude mixing. In the Northern Hemisphere, the impacts of upwelling and mixing between the tropics and midlatitudes on ozone are in phase and additive. In the Southern Hemisphere, they are not in phase. We apply a tropical leaky pipe model independently to each hemisphere to examine the relative roles of upwelling and mixing in the northern and southern tropical regions. Reasonable assumptions of the seasonal variation of upwelling and mixing yield a good description of the seasonal magnitude and phase in both the southern and northern tropics. The differences in the tracers and transport between the northern and southern tropical stratospheres suggest that the paradigm of well-mixed tropics needs to be revised to consider latitudinal variations within the tropics.

  20. Potential Vorticity Streamers as Precursors to Tropical Cyclone Genesis in the Western Pacific

    DTIC Science & Technology

    2012-03-01

    study a developing system with an extratropical precursor (TCS-037) developing into Tropical Storm 16W (TS 16W)” (Schönenberger 2010). This subsection...tropopause maps), the TC genesis event is termed a tropical transition (TT) case. If no such extratropical feature 38 is present, the storm in... extratropical origin is deemed to play an important role in the dynamical evolution leading to tropical cyclogenesis. In contrast, non-TT storms

  1. Synoptic-Scale Behavior of the Extratropical Tropopause Inversion Layer

    NASA Astrophysics Data System (ADS)

    Pilch Kedzierski, Robin; Matthes, Katja; Bumke, Karl

    2015-04-01

    The Tropopause Inversion Layer (TIL) is a climatological feature of the tropopause region, characterized by enhanced static stability and strong temperature inversion in a thin layer (about 1km deep) right above the tropopause. It was discovered recently via tropopause-based averaging [Birner 2002]. The sharp static stability, temperature and wind shear gradients of the TIL theoretically shall inhibit stratosphere-troposphere exchange and influence the vertical propagation of planetary scale Rossby and small-scale gravity waves. High vertically resolved radiosonde and GPS radio occultation measurements show that the strength of the TIL is positively correlated with the tropopause height and anticyclonic conditions, and that it reaches its maximum strength in polar regions during summer [Birner 2006] [Randel and Wu, 2007 and 2010]. Our study takes advantage of the high density of vertical profiles (~2000 measurements per day, globally) measured by the COSMIC satellites (2007-present), in order to describe the synoptic-scale structures of the TIL and the differences between the seasonal climatologies from earlier studies and the real-time TIL. Also, using ERA-Interim reanalysis wind fields, we split relative vorticity into shear and curl terms and study separately their relation to TIL strength in cyclonic-anticyclonic conditions. We find that the TIL has a rich zonal structure, especially in midlatitude winter, and that its strength is instantly adjusted to the synoptic situation at near-tropopause level. The peaks of strongest TIL at midlatitude ridges in winter are stronger and much more frequent than any peaks found in polar summer. The roles of shear and curl vorticity differ substantially towards higher values of relative vorticity (both cyclonic and anticyclonic).

  2. Quasi-biennial modulation of the Northern Hemisphere tropopause height and temperature

    NASA Astrophysics Data System (ADS)

    Ribera, P.; PeñA-Ortiz, C.; AñEl, J. A.; Gimeno, L.; de la Torre, L.; Gallego, D.

    2008-04-01

    The influence of the quasi-biennial oscillation (QBO) on the tropopause pressure and temperature is studied through the application of the multitaper-singular value decomposition method (MTM-SVD). Reanalysis data (ERA-40) from the European Centre for Medium-Range Weather Forecasts (ECMWF) and radiosonde data from the Integrated Global Radiosonde Archive (IGRA) covering the period 1979-1999 are used. The results show a strong response of the height and temperature of the tropopause to the QBO not limited to the equatorial latitudes but affecting the entire Northern Hemisphere. A cooling (warming) of the tropopause temperature over polar (equatorial) latitudes during a QBO positive phase is observed, being particularly noticeable over polar latitudes. The anomalies in the tropopause height confirm these results, with the tropopause being at higher (lower) levels in polar (equatorial) latitudes during QBO positive phase. Results for the QBO negative phase are of opposite sign. We also found that the results obtained using raw radiosonde data and reanalysis are in very good agreement. Finally, the evolution of the mass stream function through a QBO cycle is used to justify the differences observed in the evolution of the tropopause characteristics at low and high latitudes through the QBO cycle.

  3. Modeling the Chemical Effect of Tropopause-penetrating Convection using NEXRAD Observations

    NASA Astrophysics Data System (ADS)

    Clapp, C.; Anderson, J. G.

    2017-12-01

    Water vapor in the upper troposphere and lower stratosphere (UTLS) from the tropics to the poles is important both radiatively and chemically. Chemically, water vapor is the dominant source of OH in the lower stratosphere, and increases in water vapor concentrations promote stratospheric ozone loss by raising the reactivity of several key heterogeneous reactions as well as by promoting the growth of reactive surface area. We examine the chemical impact of the convective contribution of boundary layer air to stratospheric chemistry over the mid-latitude United States. Using NEXRAD observations of tropopause penetrating events during the summers of 2004 through 2013 (with approximately 3300 events reaching 390K in potential temperature per year), we calculate the loss of stratospheric ozone due to an average event and the seasonal impact.

  4. The importance of the tropopause inversion layer in double tropopause formation, an observational analysis

    NASA Astrophysics Data System (ADS)

    Peevey, T. R.; Gille, J. C.

    2012-12-01

    Over the past decade the tropopause inversion layer (TIL), a layer of enhanced stability above the thermal tropopause, has been studied in earnest. This atmospheric feature is located within the upper troposphere lower stratosphere (UTLS) region of the atmosphere, a region of key importance for the Earth's radiative budget and hence the climate system. Another atmospheric feature of similar interest to the UTLS community is the double tropopause (DT). A recent modeling studied looked at the development of the DT during the LC1 and LC2 lifecycles and found that the DT would not form without the presence of the TIL and that as the TIL increased in strength so did the DT frequency. This study builds on that recent work by analyzing this relationship using observations to first see if the relationship exists and then to understand why it does exist. For this study HIRDLS temperature data is primarily used and shows that as the strength/stability of the TIL increases in the extratropics so does the frequency of DTs. Other datasets, such as COSMIC and WACCM, are also used in this work to verify these results since HIRDLS could miss shallow (<1 km) TIL layers. The relationship between the TIL and the DT is analyzed further by examining vertical profiles within specified latitude regions and by examining events that specifically highlight their relationship. Further research is already planned which will expand upon this study using model simulations to track air movement within these UTLS structures.

  5. Signals of El Niño Modoki in the tropical tropopause layer and stratosphere

    NASA Astrophysics Data System (ADS)

    Xie, F.; Li, J.; Tian, W.; Feng, J.

    2012-02-01

    The effects of El Niño Modoki events on the tropical tropopause layer (TTL) and on the stratosphere were investigated using European Center for Medium Range Weather Forecasting (ECMWF) reanalysis data, satellite observations from the Aura satellite Microwave Limb Sounder (MLS), oceanic El Niño indices, and general climate model outputs. El Niño Modoki events tend to depress convective activities in the western and eastern Pacific but enhance convective activities in the central and northern Pacific. Consequently, during Modoki events, negative water vapor anomalies occur in the western and eastern Pacific upper troposphere, whereas there are positive anomalies in the central and northern Pacific upper troposphere. The spatial patterns of the outgoing longwave radiation (OLR) and upper tropospheric water vapor anomalies exhibit a tripolar form. The empirical orthogonal function (EOF) analysis of the OLR and upper tropospheric water vapor anomalies reveals that canonical El Niño events are associated with the leading mode of the EOF, while El Niño Modoki events correspond to the second mode. El Niño Modoki activities tend to moisten the lower and middle stratosphere, but dry the upper stratosphere. It was also found that the canonical El Niño signal can overlay linearly on the QBO signal in the stratosphere, whereas the interaction between the El Niño Modoki and QBO signals is non-linear. Because of these non-linear interactions, El Niño Modoki events have a reverse effect on high latitudes stratosphere, as compared with the effects of typical Modoki events, i.e. the northern polar vortex is stronger and colder but the southern polar vortex is weaker and warmer during El Niño Modoki events. However, simulations suggest that canonical El Niño and El Niño Modoki activities actually have the same influence on high latitudes stratosphere, in the absence of interactions between QBO and ENSO signals. The present results also reveal that canonical El Ni

  6. Effect of convection on the thermal structure of the troposphere and lower stratosphere including the tropical tropopause layer in the South Asian monsoon region

    NASA Astrophysics Data System (ADS)

    Muhsin, M.; Sunilkumar, S. V.; Venkat Ratnam, M.; Parameswaran, K.; Krishna Murthy, B. V.; Emmanuel, Maria

    2018-04-01

    Influence of convection on the thermal structure of Troposphere and Lower Stratosphere (TLS) is investigated using radiosonde data, obtained from Trivandrum (8.5°N, 76.9°E), Gadanki (13.5°N, 79.2°E), Bhubaneswar (20.25°N, 85.83°E), Kolkata (22.65°N, 88.45°E) and Singapore (1.37°N, 103.98°E), collected during different convective categories classified based on the altitude of deep convective cloud tops (CT) in the period 2008-2014. During deep convective events, the temperature showed lower tropospheric cooling, an upper tropospheric warming and an anomalous cooling (warming) below (above) the cold point tropopause (CPT) with respect to the clear-sky value. While warming in the upper troposphere is strongest (∼2-4 K) around 10-12 km, anomalous cooling (warming) below (above) the CPT is maximum around 15.5 km (17.5 km) with values in the range of-2 to -4 K (3-6 K). These temperature perturbations are observed 5-6 days prior to the convective events. In response to deep convection, surface cooling up to ∼ -4 K is also observed. This study showed that the magnitude of cold and warm anomalies increases with strength of convection. During deep convection, the potential temperature (θ) shows a decrease (<5 K) in the tropical tropopause layer (TTL) from the TTL-base up to CPT compared to that on clear-sky days, confirming the vertical mixing of convective air from the lower atmosphere to the TTL-levels. Correlation analysis between different TTL parameters suggests that, as the cloud top altitude increases, along with the adiabatic process, diabatic process also plays a major role in the TTL. An interesting feature observed during deep convection is the ascent of TTL-base by ∼1.5 km and descent of CPT and TTL-top by 0.5 km, which effectively thins the TTL by ∼2 km.

  7. Extending water vapor trend observations over Boulder into the tropopause region: Trend uncertainties and resulting radiative forcing.

    PubMed

    Kunz, A; Müller, R; Homonnai, V; Jánosi, I M; Hurst, D; Rap, A; Forster, P M; Rohrer, F; Spelten, N; Riese, M

    2013-10-16

    Thirty years of balloon-borne measurements over Boulder (40°N, 105°W) are used to investigate the water vapor trend in the tropopause region. This analysis extends previously published trends, usually focusing on altitudes greater than 16 km, to lower altitudes. Two new concepts are applied: (1) Trends are presented in a thermal tropopause (TP) relative coordinate system from -2 km below to 10 km above the TP, and (2) sonde profiles are selected according to TP height. Tropical (TP z > 14 km), extratropical (TP z < 12 km), and transitional air mass types (12 km < TP z < 14 km) reveal three different water vapor reservoirs. The analysis based on these concepts reduces the dynamically induced water vapor variability at the TP and principally favors refined water vapor trend studies in the upper troposphere and lower stratosphere. Nonetheless, this study shows how uncertain trends are at altitudes -2 to +4 km around the TP. This uncertainty in turn has an influence on the uncertainty and interpretation of water vapor radiative effects at the TP, which are locally estimated for the 30 year period to be of uncertain sign. The much discussed decrease in water vapor at the beginning of 2001 is not detectable between -2 and 2 km around the TP. On lower stratospheric isentropes, the water vapor change at the beginning of 2001 is more intense for extratropical than for tropical air mass types. This suggests a possible link with changing dynamics above the jet stream such as changes in the shallow branch of the Brewer-Dobson circulation.

  8. On Relations Between the Ozonosphere and the General Atmospheric Circulation in Tropics

    NASA Astrophysics Data System (ADS)

    Kuznetsov, G. I.; Kramarova, N. A.

    2006-05-01

    The main features of temporal and spatial ozone distribution over tropics and their relations with peculiarities of the general atmospheric circulation are obtained using the total ozone data for the tropical region (Ozone Data for the World and TOMS (version 8)). Among the factors influencing ozone regime in tropics the properties of the region, like intertropical convergence zone and a structure of tropical tropopause, and processes such as stratosphere-troposphere exchange, migration of ozone equator, Quasi Biennial Oscillation are analyzed. To investigate the long term variability of tropical ozone detrended and de-seasonalized fields of TOMS observations are analyzed by means of EOF method. The first four EOFs explain about 75% of residual total ozone variability in tropical region. Spatial patterns of EOFs and corresponding time coefficients are closely connected with the Quasi-Biennial Oscillation (EOF-1), the 11-years Solar Cycle (EOF-2), the QBO-annual beat (EOF-3) and with the South Oscillation (EOF-4) correspondingly. The detailed analyses of temporal and spatial distribution of ozone EOF patterns reveals a distinct change of ozone fields to the both sides of equator at 10-15 latitude as well as at the zones of tropical tropopause break. A time delay of ozone QBO phase is observed while moving towards higher latitudes. Some features of the tropical ozone regime manifest themselves in the peculiarities of Antarctic Ozone Anomalies. A time variability of ozone QBO passes three months ahead of the Singapore 30 mbar zonal wind. Obtained relations let us to construct a linear regression model based on EOF decomposition to estimate total ozone monthly means over tropics. This model is successfully applied to predict 30 mbar zonal wind in dependence on tropical ozone behavior.

  9. Tropopause sharpening by data assimilation

    NASA Astrophysics Data System (ADS)

    Pilch Kedzierski, R.; Neef, L.; Matthes, K.

    2016-08-01

    Data assimilation was recently suggested to smooth out the sharp gradients that characterize the tropopause inversion layer (TIL) in systems that did not assimilate TIL-resolving observations. We investigate whether this effect is present in the ERA-Interim reanalysis and the European Centre for Medium-Range Weather Forecasts (ECMWF) operational forecast system (which assimilate high-resolution observations) by analyzing the 4D-Var increments and how the TIL is represented in their data assimilation systems. For comparison, we also diagnose the TIL from high-resolution GPS radio occultation temperature profiles from the COSMIC satellite mission, degraded to the same vertical resolution as ERA-Interim and ECMWF operational analyses. Our results show that more recent reanalysis and forecast systems improve the representation of the TIL, updating the earlier hypothesis. However, the TIL in ERA-Interim and ECMWF operational analyses is still weaker and farther away from the tropopause than GPS radio occultation observations of the same vertical resolution.

  10. Impact of inter-seasonal solar variability on the association of lower troposphere and cold point tropopause in the tropics: Observations using RO data from COSMIC

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Dhaka, S. K.; Ho, Shu-Peng; Singh, Narendra; Singh, Vir; Reddy, K. K.; Chun, H.-Y.

    2017-12-01

    Association of lower tropospheric variations with the cold point tropopause (CPT) is examined on inter-seasonal basis over the tropical region (30°N-30°S) during 2007-2010 using COSMIC/FORMOST-3 Radio Occultation (RO) data. Temperature analyses for this association are shown over different regions of the globe having contrast topography namely over Western Pacific sector, Indian sector, and African sector. Correlation coefficient (r), taken as a measurement of association, show specific longitudinal differences between the lower troposphere (from 1 km to 5 km height) and the CPT. The northern and southern hemispheres show contrast coupling of temperature variation between lower tropospheric region and the CPT. Land and ocean effects are found to contribute in a different way to the correlation coefficient. Analyses show symmetrical structure of 'r' on both sides of the equator over the African region, as data include mostly land region on both side of equator. Data represent positive correlation (r 0.5) over 15°-20° latitudes on either side of the equator over the African region, suggesting strong hold of the inter-seasonal variation of solar diabatic heating influence over the tropic of Cancer and tropic of Capricorn. On the other hand, there is a contrast behaviour over the Indian region, 'r' is nearly negative ( - 1.0) each year in the southern hemisphere (SH) and positive ( 0.4) in the northern hemisphere (NH) with a maxima near tropic of Cancer. Western Pacific region is found to display a linear increase in 'r' from negative ( - 1.0) in SH to positive ( 0.8) in NH. In general, 'r' (positive) maximizes over the land region around 15°-20° latitudes, suggesting a control of in phase inter-seasonal solar heating on the coupling of boundary layer/lower troposphere and CPT region, whereas it turns negative over water body. Analyses suggest that variabilities in CPT over different regions of globe show significant inter-seasonal association with the lower

  11. The Tropopause Inversion Layer: New Observations, New Theories

    NASA Astrophysics Data System (ADS)

    Tandon, N.; Randel, W. J.; Pan, L.; Son, S.; Polvani, L. M.

    2009-12-01

    There is now great interest in the tropopause inversion inversion layer (TIL), a 1-2 km region just above the tropopause where there is a spike in static stability. Radio occultation data from the COSMIC GPS mission are providing an unprecedented level of spatial and temporal resolution with which to analyze the TIL. We start by showing the agreement between GPS data and radiosondes. We then examine the causes and consequences of the TIL. Observations from the ACE satellite and fixed dynamical heating calculations suggest strong roles for water vapor and ozone in the formation and modulation of the TIL. This agrees with observations showing a large TIL in the polar winter, where water vapor levels are persistently high. It is also clear that TIL strength is related to vorticity, but observations and models have important differences that need to be reconciled. These dynamical considerations dovetail with observations showing high TIL variability in the storm-track regions. Finally there is evidence from ozonesonde data that the TIL may be coupled to transport across the tropopause.

  12. Synoptic-scale behavior of the extratropical tropopause inversion layer

    NASA Astrophysics Data System (ADS)

    Pilch Kedzierski, Robin; Matthes, Katja; Bumke, Karl

    2015-11-01

    High-resolution GPS radio occultation temperature profiles from the COSMIC satellite mission (2007-2013) are used to obtain daily snapshots of the strength of the extratropical tropopause inversion layer (TIL). Its horizontal structure and day-to-day variability are linked to the synoptic situation at near-tropopause level. The strength of the TIL in cyclonic as well as anticyclonic conditions is investigated by separating relative vorticity into curl and shear terms. The analysis shows that the TIL has high zonal variability, and its strength is instantaneously adjusted to the synoptic situation at near-tropopause level. Our key finding is that the TIL within midlatitude ridges in winter is as strong as or stronger than the TIL in polar summer. The strongest TIL in anticyclonic conditions is related to the shear term, while the weaker TIL in cyclonic conditions is enhanced by the curl term.

  13. Tropospheric Ozone from Assimilation of Aura Data using Different Definitions of the Tropopause

    NASA Technical Reports Server (NTRS)

    Stajner, Ivanka; Wargan, K.; Chang, L.-P.; Hayashi, H.; Pawson, S.; Pawson, Steven; Livesey, N.; Bhartia, P. K.

    2006-01-01

    Ozone data from Aura OMI and MLS instruments were assimilated into the general circulation model (GCM) constrained by assimilated meteorological fields from the Global Modeling and Assimilation Office at NASA Goddard. Properties of tropospheric ozone and their sensitivity to the definition of the tropopause are investigated. Three definitions of the tropopause are considered: (1) dynamical (using potential vorticity and potential temperature), (2) using temperature lapse rate, and (3) using a fixed ozone value. Comparisons of the tropospheric ozone columns using these tropopause definitions will be presented and evaluated against coincident profiles from ozone sondes. Assimilated ozone profiles are used to identify possible tropopause folding events, which are important for stratosphere-troposphere exchange. Each profile is searched for multiple levels at which ozone attains the value typical of the troposphere-stratosphere transition in order to identify possible tropopause folds. Constrained by the dynamics from a global model and by assimilation of Aura ozone data every 3-hours, this data set provides an opportunity to study ozone evolution in the upper troposphere and lower stratosphere with high temporal resolution.

  14. Ten Year Analysis of Tropopause-Overshooting Convection Using GridRad Data

    NASA Astrophysics Data System (ADS)

    Cooney, John W.; Bowman, Kenneth P.; Homeyer, Cameron R.; Fenske, Tyler M.

    2018-01-01

    Convection that penetrates the tropopause (overshooting convection) rapidly transports air from the lower troposphere to the lower stratosphere, potentially mixing air between the two layers. This exchange of air can have a substantial impact on the composition, radiation, and chemistry of the upper troposphere and lower stratosphere (UTLS). In order to improve our understanding of the role convection plays in the transport of trace gases across the tropopause, this study presents a 10 year analysis of overshooting convection for the eastern two thirds of the contiguous United States for March through August of 2004 to 2013 based on radar observations. Echo top altitudes are estimated at hourly intervals using high-resolution, three-dimensional, gridded, radar reflectivity fields created by merging observations from available radars in the National Oceanic and Atmospheric Administration Next Generation Weather Radar (NEXRAD) network. Overshooting convection is identified by comparing echo top altitudes with tropopause altitudes derived from the ERA-Interim reanalysis. It is found that overshooting convection is most common in the central United States, with a weak secondary maximum along the southeast coast. The maximum number of overshooting events occur consistently between 2200 and 0200 UTC. Most overshooting events occur in May, June, and July when convection is deepest and the tropopause altitude is relatively low. Approximately 45% of the analyzed overshooting events (those with echo tops at least 1 km above the tropopause) have echo tops extending above the 380 K level into the stratospheric overworld.

  15. Idealized numerical studies of gravity wave alteration in the tropopause region

    NASA Astrophysics Data System (ADS)

    Bense, Vera; Spichtinger, Peter

    2017-04-01

    When travelling through the tropopause region, characterised by strong gradients in static stability, wind shear and trace gases, the properties of gravity waves often change drastically. Within this work, the EULAG model (Prusa et al., 2008) is used to provide an idealized setup for sensitivity studies on these modifications. The characteristics of the tropopause are introduced by specifiying environmental profiles for Brunt-Väisälä frequency and horizontal wind speed, partly extracted from measurement and reanalysis data. Tropospheric and stratospheric wave spectra extracted for flows under varying tropopause sharpness are analysed, respectively. In particular, different regimes for transmission behaviour are classified for a series of Brunt-Väisälä frequency profiles showing a tropopause inversion layer (TIL, see e.g. Birner et al., 2002). Furthermore, this study focusses on the comparison of transmission coefficients deduced from numerical simulations with values derived from asymptotical analysis of the governing equations and investigates where the threshold of linear behaviour are for the respective setups, The wave generation is implemented in the model both through topography at the lower model domain and through the prescription of wave packets at initialization of the simulations. References: Prusa, J. M., P. K. Smolarkiewicz, P. K. and A. A. Wyszogrodzki, 2008: EULAG, a computational model for multiscale flows, Computers & Fluids 37, 1193-1207 Birner, T., A. Doernbrack, and U. Schumann, 2002: How sharp is the tropopause at midlatitudes?, Geophys. Res. Lett., 29, 1700, doi:10.1029/2002GL015142.

  16. High static stability in the mixing layer above the extratropical tropopause

    NASA Astrophysics Data System (ADS)

    Kunz, A.; Konopka, P.; Müller, R.; Pan, L. L.; Schiller, C.; Rohrer, F.

    2009-08-01

    The relationship between the static stability N2 and the mixing in the tropopause inversion layer (TIL) is investigated using in situ aircraft observations during SPURT (trace gas transport in the tropopause region). With a new simple measure of mixing degree based on O3-CO tracer correlations, high N2 related to an enhanced mixing in the extratropical mixing layer is found. This relation becomes even more pronounced if fresh mixing events are excluded, indicating that mixing within the TIL occurs on a larger than synoptic timescale. A temporal variance analysis of N2 suggests that processes responsible for the composition of the TIL take place on seasonal timescales. Using radiative transfer calculations, we simulate the influence of a change in O3 and H2O vertical gradients on the temperature gradient and thus on the static stability above the tropopause, which are contrasted in an idealized nonmixed atmosphere and in a reference mixed atmosphere. The results show that N2 increases with enhanced mixing degree near the tropopause. At the same time, the temperature above the tropopause decreases together with the development of an inversion and the TIL. In the idealized case of nonmixed profiles the TIL vanishes. Furthermore, the results suggest that H2O plays a major role in maintaining the temperature inversion and the TIL structure compared to O3. The results substantiate the link between the extratropical mixing layer and the TIL.

  17. Overshooting cloud top, variation of tropopause and severe storm formation

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Smith, R. E.

    1984-01-01

    The development of severe multicell thunderstorms leading to the touchdown of six tornados near Pampa, TX, on May 19-20, 1982, is characterized in detail on the basis of weather maps, rawinsonde data, and radar summaries, and the results are compared with GOES rapid-scan IR images. The multicell storm cloud is shown to have formed beginning at 1945 GMT at the point of highest horizontal moisture convergence and lowest tropopause height and to have penetrated the tropopause at 2130 GMT, reaching a maximum altitude and a cloud-top black-body temperature 9 C lower than the tropopause temperature at 2245 GMT and collapsing about 20 min, when the firt tornado touched down. The value of the real-time vertical profiles provided by satellite images in predicting which severe storms will produce tornados or other violent phenomena is stressed.

  18. Backscatter-depolarisation lidars on high-altitude research aircraft

    NASA Astrophysics Data System (ADS)

    Mitev, Valentin; Matthey, Renaud; Makarov, Vladislav

    2014-11-01

    This article presents an overview of the development and the applications of two compact elastic backscatter depolarisation lidars, installed on-board the high-altitude research aircraft Myasishchev M-55 Geophysica. The installation of the lidars is intended for simultaneous probing of air parcels respectively upward and downward from the aircraft flight altitude to identify the presence of clouds (or aerosol )above and below the aircraft and to collocate them with in situ instruments. The lidar configuration and the procedure for its on-ground validation is outlined. Example of airborne measurements include polar stratospheric clouds, both synoptical and in lee-waves, ultra-thin cirrus clouds around the tropical tropopause and observation of aerosol layers emerging from the top of deep tropical convection.

  19. Evidence for Tropopause Layer Moistening by Convection During CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Ackerman, A.; Fridlind, A.; Jensen, E.; Miloshevich, L.; Heymsfield, G.; McGill, M.

    2003-01-01

    Measurements and analysis of the impact of deep convection on tropopause layer moisture are easily confounded by difficulties making precise observations with sufficient spatial coverage before and after convective events and difficulties distinguishing between changes due to local convection versus large-scale advection. The interactions between cloud microphysics and dynamics in the convective transport of moisture into the tropopause layer also result in a sufficiently complex and poorly characterized system to allow for considerable freedom in theoretical models of stratosphere-troposphere exchange. In this work we perform detailed large-eddy simulations with an explicit cloud microphysics model to study the impact of deep convection on tropopause layer moisture profiles observed over southern Florida during CRYSTALFACE. For four days during the campaign (July 11, 16, 28, and 29) we initialize a 100-km square domain with temperature and moisture profiles measured prior to convection at the PARSL ground site, and initiate convection with a warm bubble that produces an anvil at peak elevations in agreement with lidar and radar observations on that day. Comparing the moisture field after the anvils decay with the initial state, we find that convection predominantly moistens the tropopause layer (as defined by minimum temperature and minimum potential temperature lapse rate), although some drying is also predicted in localized layers. We will also present results of sensitivity tests designed to separate the roles of cloud microphysics and dynamics.

  20. Isentropic Transport of Ozone Across the Tropopause on 345K

    NASA Astrophysics Data System (ADS)

    Jing, P.; Cunnold, D.

    2002-05-01

    Quantifying the transport of ozone from the stratosphere to the troposphere has been a challenge for many years. There are two types of cross-tropopause transport: the vertical diabatic transport and the quasi-horizontal isentropic transport. Because isentropic transport generally occurs more frequently than diabatic transport [Chen, 1995], it is a potentially important path for ozone to exchange between the stratosphere and the troposphere and to influence the chemistry in both regions. Based on the technique of contour advection, a method is developed to quantify the isentropic transport of ozone across the tropopause on the isentropic surface of 345K for the year 1990. This study employs the GSFC Data Assimilation Office assimilated products. It is shown that isentropic transport of ozone is a two-way process, but the annually integrated isentropic mass flux of ozone across the tropopause is directed from the stratosphere into the troposphere. The seasonality of the isentropic transport of ozone is also analyzed.

  1. Observational estimation of the 'cold trap' dehydration in the tropical tropopause layer: The water vapor match

    NASA Astrophysics Data System (ADS)

    Inai, Y.; Hasebe, F.; Fujiwara, M.; Shiotani, M.; Nishi, N.; Ogino, S.; Voemel, H.

    2008-12-01

    Stratospheric water vapor is controlled by the degree of dehydration the air parcels experienced on their entry into the stratosphere. The dehydration takes place in the tropical tropopause layer (TTL) over the western Pacific, where the air parcels are exposed to the lowest temperature during horizontal advection (cold trap hypothesis (Holton and Gettelman, 2001; Hatsushika and Yamazaki, 2003)). While, simplified treatment of the dehydration processes combined with trajectories reproduce water vapor variations reasonably well (Fueglistaler et al., 2005), extreme super saturation has been often observed in the TTL (Peter et al., 2006). Thus observational data are needed to quantify the efficiency of dehydration. We have been conducting the project Soundings of Ozone and Water in the Equatorial Region (SOWER) using chilled-mirror hygrometers in the western Pacific. Hasebe et al. (2007) suggested that the water content in the observed air parcels on many occasions was about twice as much as that expected from the minimum saturation mixing ratio during horizontal advection prior to sonde observation. To make this argument more quantitative, however, it is necessary to estimate the changed amount of water vapor by repeated observation of the same air parcel, the water vapor match. The match pairs are sought from the SOWER campaign network observations with the use of isentropic trajectories. For those pairs identified, extensive screening procedures are performed to verify the representativeness of the air parcel and to check possible water injection by deep convection. The match pairs are rejected when the sonde-observed temperature does not agree with spatio-temporary interpolated temperature of the ECMWF analysis field within a reasonable range, or the ozone mixing ratio is not conserved between the paired observations. Among those survived, we sought the cases which showed statistically significant dehydration. We estimated the ratios of the water mixing ratio

  2. Stellar refraction - A tool to monitor the height of the tropopause from space

    NASA Technical Reports Server (NTRS)

    Schuerman, D. W.; Giovane, F.; Greenberg, J. M.

    1975-01-01

    Calculations of stellar refraction for a setting or rising star as viewed from a spacecraft show that the tropopause is a discernible feature in a plot of refraction vs time. The height of the tropopause is easily obtained from such a plot. Since the refraction suffered by the starlight appears to be measurable with some precision from orbital altitudes, this technique is suggested as a method for remotely monitoring the height of the tropopause. Although limited to nighttime measurements, the method is independent of supporting data or model fitting and easily lends itself to on-line data reduction.

  3. Signals of El Niño Modoki in the tropical tropopause layer and stratosphere

    NASA Astrophysics Data System (ADS)

    Xie, F.; Li, J.; Tian, W.; Feng, J.; Huo, Y.

    2012-06-01

    The effects of El Niño Modoki events on the tropical tropopause layer (TTL) and on the stratosphere were investigated using European Center for Medium Range Weather Forecasting (ECMWF) reanalysis data, oceanic El Niño indices, and general climate model outputs. El Niño Modoki events tend to depress convective activities in the western and eastern Pacific but enhance convective activities in the central and northern Pacific. Consequently, during El Niño Modoki events, negative water vapor anomalies occur in the western and eastern Pacific upper troposphere, whereas there are positive anomalies in the central and northern Pacific upper troposphere. The spatial patterns of the outgoing longwave radiation (OLR) and upper tropospheric water vapor anomalies exhibit a tripolar form. The empirical orthogonal function (EOF) analysis of the OLR and upper tropospheric water vapor anomalies reveals that canonical El Niño events are associated with the leading mode of the EOF, while El Niño Modoki events correspond to the second mode. The composite analysis based on ERA-interim data indicate that El Niño Modoki events have a reverse effect on middle-high latitudes stratosphere, as compared with the effect of typical El Niño events, i.e., the northern polar vortex is stronger and colder but the southern polar vortex is weaker and warmer during El Niño Modoki events. According to the simulation' results, we found that the reverse effect on the middle-high latitudes stratosphere is resulted from a complicated interaction between quasi-biennial oscillation (QBO) signal of east phase and El Niño Modoki signal. This interaction is not a simply linear overlay of QBO signal and El Niño Modoki signal in the stratosphere, it is El Niño Modoki that leads to different tropospheric zonal wind anomalies with QBO forcing from that caused by typical El Niño, thus, the planetary wave propagation from troposphere to the stratosphere during El Niño Modoki events is different from

  4. The tropopause cold trap in the Australian Monsoon during STEP/AMEX 1987

    NASA Technical Reports Server (NTRS)

    Selkirk, Henry B.

    1993-01-01

    The relationship between deep convection and tropopause cold trap conditions is examined for the tropical northern Australia region during the 1986-87 summer monsoon season, emphasizing the Australia Monsoon Experiment (AMEX) period when the NASA Stratosphere-Troposphere Exchange Project (STEP) was being conducted. The factors related to the spatial and temporal variability of the cold point potential temperature (CPPT) are investigated. A framework is developed for describing the relationships among surface average equivalent potential temperature in the surface layer (AEPTSL) the height of deep convection, and stratosphere-troposphere exchange. The time-mean pattern of convection, large-scale circulation, and surface AEPTSL in the Australian monsoon and the evolution of the convective environment during the monsoon period and the extended transition season which preceded it are described. The time-mean fields of cold point level variables are examined and the statistical relationships between mean CPPT, surface AEPTSL, and deep convection are described. Day-to-day variations of CPPT are examined in terms of these time mean relationships.

  5. Seasonal Variation of Mass Transport Across the Tropopause

    NASA Technical Reports Server (NTRS)

    Appenzeller, Christof; Holton, James R.; Rosenlof, Karen H.

    1996-01-01

    The annual cycle of the net mass transport across the extratropical tropopause is examined. Contributions from both the global-scale meridional circulation and the mass variation of the lowermost stratosphere are included. For the northern hemisphere the mass of the lowermost stratosphere has a distinct annual cycle, whereas for the southern hemisphere, the corresponding variation is weak. The net mass transport across the tropopause in the northern hemisphere has a maximum in late spring and a distinct minimum in autumn. This variation and its magnitude compare well with older estimates based on representative Sr-90 mixing ratios. For the southern hemisphere the seasonal cycle of the net mass transport is weaker and follows roughly the annual variation of the net mass flux across a nearby isentropic surface.

  6. Solar and anthropogenic forcing of tropical hydrology

    NASA Astrophysics Data System (ADS)

    Shindell, Drew T.; Faluvegi, Greg; Miller, Ron L.; Schmidt, Gavin A.; Hansen, James E.; Sun, Shan

    2006-12-01

    Holocene climate proxies suggest substantial correlations between tropical meteorology and solar variations, but these have thus far not been explained. Using a coupled ocean-atmosphere-composition model forced by sustained multi-decadal irradiance increases, we show that greater tropical temperatures alter the hydrologic cycle, enhancing the climatological precipitation maxima in the tropics while drying the subtropical subsidence regions. The shift is enhanced by tropopause region ozone increases, and the model captures the pattern inferred from paleoclimate records. The physical process we describe likely affected past civilizations, including the Maya, Moche, and Ancestral Puebloans who experienced drought coincident with increased irradiance during the late medieval (~900-1250). Similarly, decreased irradiance may have affected cultures via a weakened monsoon during the Little Ice Age (~1400-1750). Projections of 21st-century climate change yield hydrologic cycle changes via similar processes, suggesting a strong likelihood of increased subtropical drought as climate warms.

  7. The Tropical Upper Troposphere and Lower Stratosphere in the GEOS-2 GCM

    NASA Technical Reports Server (NTRS)

    Pawson, S.; Takacs, L.; Molod, A.; Nebuda, S.; Chen, M.; Rood, R.; Read, W. L.; Fiorino, M.

    1999-01-01

    The structure of the tropical upper troposphere and lower stratosphere in the GEOS-2 General Circulation Model (GCM) is discussed. The emphasis of this study is on the reality of monthly-mean temperature and water vapor distributions in the model, compared to reasonable observational estimates. It is shown that although the zonal-mean temperature is in good agreement with observations, the GCM supports an excessive zonal asymmetry near the tropopause compared to the ECMWF Reanalyses. In reality there is a QBO-related variability in the zonally averaged lower stratospheric temperature which is not captured by the model. The observed upper tropospheric temperature and humidity fields show variations related to those in the sea surface temperature, which are not incorporated in the GCM; nevertheless, there is some interannual variability in the GCM, indicating a component arising from internal processes. The model is too moist in the middle troposphere (500 hPa) but too dry in the upper troposphere, suggesting that there is too little vertical transport or too much drying in the GCM. Transport into the stratosphere shows a pronounced annual cycle, with drier air entering the tropical stratosphere when the tropopause is coldest in northern winter; while the alternating dry and moist air masses can be traced ascending through the tropical lower stratosphere, the progression of the anomalies is too rapid.

  8. Overshooting of Clean Tropospheric Air in the Tropical Lower Stratosphere as Seen by the CALIPSO Lidar

    NASA Technical Reports Server (NTRS)

    Vernier, J. P.; Pommereau, J. P.; Thomason, L. W.; Pelon, J.; Garnier, A.; Deshler, T.; Jumelet, J.; Nielsen, J. K.

    2011-01-01

    The evolution of aerosols in the tropical upper troposphere/lower stratosphere between June 2006 and October 2009 is examined using the observations of the space borne CALIOP lidar aboard the CALIPSO satellite. Superimposed on several volcanic plumes and soot from an extreme biomass-burning event in 2009, the measurements reveal the existence of fast cleansing episodes of the lower stratosphere to altitudes as high as 20 km. The cleansing of the full 14-20km layer takes place within 1-4 months. Its coincidence with the maximum of convective activity in the southern tropics, suggests that the cleansing is the result of a large number of overshooting towers, injecting aerosol-poor tropospheric air into the lower stratosphere. The enhancements of aerosols at the tropopause level during the NH summer may be due to the same transport process but associated with intense sources of aerosols at the surface. Since, the tropospheric air flux derived from CALIOP observations during North Hemisphere winter is 5 20 times larger than the slow ascent by radiative heating usually assumed, the observations suggest that convective overshooting is a major contributor to troposphere-to-stratosphere transport with concommitant implications to the Tropical Tropopause Layer top height, chemistry and thermal structure.

  9. Observational Characteristics of the Tropopause Inversion Layer derived from CHAMP/GRACE Radio Occultations and MOZAIC Aircraft Data

    NASA Astrophysics Data System (ADS)

    Schmidt, T.; Cammas, J.; Heise, S.; Wickert, J.; Haser, A.

    2010-12-01

    In this study we discuss characteristics of the northern hemisphere (NH) midlatitude (40°N-60°N) tropopause inversion layer (TIL) based on two datasets. First, temperature measurements from GPS radio occultation data (CHAMP and GRACE) for the time interval 2001-2009 are used to exhibit seasonal properties of the TIL bottom height defined here as the height of the squared buoyancy frequency minimum N2 below the thermal tropopause, the TIL maximum height as the height of the N2 maximum above the tropopause and the TIL top height as the height of the temperature maximum above the tropopause. Mean values of the TIL bottom, TIL maximum and TIL top heights relative to the thermal tropopause for the NH midlatitudes are (-2.08±0.35) km, (0.52±0.10) km and (2.10±0.23) km, respectively. A seasonal cycle of the TIL bottom and TIL top height is observed with values closer to the thermal tropopause during summer. Secondly, high-resolution temperature and trace gas profile measurements onboard commercial aircrafts (MOZAIC program) from 2001-2008 for the NH midlatitude (40°N-60°N) region are used to characterize the TIL as a mixing layer around the tropopause. Mean TIL bottom, TIL maximum and TIL top heights based on the MOZAIC temperature (N2) measurements confirm the results from the GPS data, even though most of the MOZAIC profiles used here are available under cyclonic situations. Further, we demonstrate that the mixing ratio gradients of ozone (O3) and carbon monoxide (CO) are suitable parameters for characterizing the TIL structure. Using O3-CO correlations we also show that on average the highest mixing occurs in a layer less than 1 km above the thermal tropopause, i.e., within the TIL.

  10. The effect of a jet stream on the generation of mountain wave-induced mean flows and turbulence near the tropopause

    NASA Astrophysics Data System (ADS)

    Dörnbrack, Andreas; Sharman, Robert

    2015-04-01

    Observational evidence indicates a higher incidence of turbulence near the tropopause, especially over mountainous terrain. Previous work by McHugh and Sharman (2013) indicate this may be due to nonlinear amplification of topographically-induced gravity waves as they impinge on the tropopause. However, that study did not consider nonlinear topography amplification effects, nor did it consider the more realistic case of a jet stream in the vicinity of the tropopause. This study extends the McHugh and Sharman study by considering these effects using fully nonlinear simulations with the jet modeled as a sech**2 profile. Sensitivity studies are performed to study such effects as the location of the nose of the jet relative to the tropopause height, the jet width, the height of the tropopause, and the size and shape of the obstacle. Momentum and energy flux profiles are used to deduce those configurations most conducive to gravity wave amplification, breakdown and turbulence near the tropopause. McHugh J., Sharman R., 2013: Generation of mountain wave-induced mean flows and turbulence near the tropopause. Q. J. R. Meteorol. Soc. 139: 1632-1642. DOI:10.1002/qj.2035

  11. CALIPSO Detection of an Asian Tropopause Aerosol Layer

    NASA Technical Reports Server (NTRS)

    Vemier, J.-P.; Thomason, L. W.; Kar, J.

    2011-01-01

    The first four years of the CALIPSO lidar measurements have revealed the existence of an aerosol layer at the tropopause level associated with the Asian monsoon season in June, July and August. This Asian Tropopause Aerosol Layer (ATAL) extends geographically from Eastern Mediterranean (down to North Africa) to Western China (down to Thailand), and vertically from 13 to 18 km. The Scattering Ratio inferred from CALIPSO shows values between 1.10. 1.15 on average with associated depolarization ratio of less than 5%. The Gaussian distribution of the points indicates that the mean value is statistically driven by an enhancement of the background aerosol level and not by episodic events such as a volcanic eruption or cloud contamination. Further satellite observations of aerosols and gases as well as field campaigns are urgently needed to characterize this layer, which is likely to be a significant source of non-volcanic aerosols for the global upper troposphere with a potential impact on its radiative and chemical balance

  12. Detailed Structure of the Tropical Upper Troposphere and Lower Stratosphere as Revealed by Balloon Sonde Observations of Water Vapor, Ozone, Temperature, and Winds During the NASA TCSP and TC4 Campaigns

    NASA Technical Reports Server (NTRS)

    Selkirk, Henry B.; Vomel, Holger; Canossa, Jessica Maria Valverde; Pfister, Leonhard; Diaz, Jorge Andres; Fernandez, Walter; Amador, Jorge; Stolz, Werner; Peng, Grace S.

    2010-01-01

    We report on balloon sonde measurements of water vapor and ozone using the cryogenic frost point hygrometer and electrochemical concentration cell ozonesondes made at Alajuela, Costa Rica (10.0 N, 84.2 W) during two NASA airborne campaigns: the Tropical Convective Systems and Processes (TCSP) mission in July 2005 and the Tropical Composition, Clouds, and Climate Coupling Experiment (TC4), July - August 2007. In both campaigns we found an upper troposphere that was frequently supersaturated but no evidence that deep convection had reached the tropopause. The balloon sondes were complemented by campaigns of 4 times daily high-resolution radiosondes from mid-June through mid-August in both years. The radiosonde data reveal vertically propagating equatorial waves that caused a large increase in the variability of temperature in the tropical tropopause layer (TTL). These waves episodically produced cold point tropopauses (CPTs) above 18 km, yet in neither campaign was saturation observed above approx 380 K or 17 km. The averages of the water vapor minima below this level were 5.2 ppmv in TCSP and 4.8 ppmv in TC4, and the individual profile minima all lay at or above approx 360 K. The average minima in this 360 C380 K layer provide a better estimate of the effective stratospheric entry value than the average mixing ratio at the CPT. We refer to this upper portion of the TTL as the tropopause saturation layer and consider it to be the locus of the final dehydration of nascent stratospheric air. As such, it is the local equivalent to the tape head of the water vapor tape recorder.

  13. Satellite Observations of Stratospheric Gravity Waves Associated With the Intensification of Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Hoffmann, Lars; Wu, Xue; Alexander, M. Joan

    2018-02-01

    Forecasting the intensity of tropical cyclones is a challenging problem. Rapid intensification is often preceded by the formation of "hot towers" near the eyewall. Driven by strong release of latent heat, hot towers are high-reaching tropical cumulonimbus clouds that penetrate the tropopause. Hot towers are a potentially important source of stratospheric gravity waves. Using 13.5 years (2002-2016) of Atmospheric Infrared Sounder observations of stratospheric gravity waves and tropical cyclone data from the International Best Track Archive for Climate Stewardship, we found empirical evidence that stratospheric gravity wave activity is associated with the intensification of tropical cyclones. The Atmospheric Infrared Sounder and International Best Track Archive for Climate Stewardship data showed that strong gravity wave events occurred about twice as often for tropical cyclone intensification compared to storm weakening. Observations of stratospheric gravity waves, which are not affected by obscuring tropospheric clouds, may become an important future indicator of storm intensification.

  14. Ultrathin Shape Change Smart Materials.

    PubMed

    Xu, Weinan; Kwok, Kam Sang; Gracias, David H

    2018-02-20

    With the discovery of graphene, significant research has focused on the synthesis, characterization, and applications of ultrathin materials. Graphene has also brought into focus other ultrathin materials composed of organics, polymers, inorganics, and their hybrids. Together, these ultrathin materials have unique properties of broad significance. For example, ultrathin materials have a large surface area and high flexibility which can enhance conformal contact in wearables and sensors leading to improved sensitivity. When porous, the short transverse diffusion length in these materials allows rapid mass transport. Alternatively, when impermeable, these materials behave as an ultrathin barrier. Such controlled permeability is critical in the design of encapsulation and drug delivery systems. Finally, ultrathin materials often feature defect-free and single-crystal-like two-dimensional atomic structures resulting in superior mechanical, optical, and electrical properties. A unique property of ultrathin materials is their low bending rigidity, which suggests that they could easily be bent, curved, or folded into 3D shapes. In this Account, we review the emerging field of 2D to 3D shape transformations of ultrathin materials. We broadly define ultrathin to include materials with a thickness below 100 nm and composed of a range of organic, inorganic, and hybrid compositions. This topic is important for both fundamental and applied reasons. Fundamentally, bending and curving of ultrathin films can cause atomistic and molecular strain which can alter their physical and chemical properties and lead to new 3D forms of matter which behave very differently from their planar precursors. Shape change can also lead to new 3D architectures with significantly smaller form factors. For example, 3D ultrathin materials would occupy a smaller space in on-chip devices or could permeate through tortuous media which is important for miniaturized robots and smart dust applications. Our

  15. What is the role of laminar cirrus cloud on regulating the cross-tropopause water vapor transport?

    NASA Astrophysics Data System (ADS)

    Wu, D. L.; Gong, J.; Tsai, V.

    2016-12-01

    Laminar cirrus is an extremely thin ice cloud found persistently inhabit in the tropical and subtropical tropopause. Due to its sub-visible optical depth and high formation altitude, knowledge about the characteristics of this special type of cloud is very limited, and debates are ongoing about its role on regulating the cross-tropopause transport of water vapor. The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard the CALIPSO satellite has been continuously providing us with unprecedented details of the laminar cirrus since its launch in 2006. In this research, we adapted Winker and Trepte (1998)'s eyeball detection method. A JAVA-based applet and graphical user interface (GUI) is developed to manually select the laminar, which then automatically record the cloud properties, such as spatial location, shape, thickness, tilt angle, and whether its isolated or directly above a deep convective cloud. Monthly statistics of the laminar cirrus are then separately analyzed according to the orbit node, isolated/convective, banded/non-banded, etc. Monthly statistics support a diurnal difference in the occurring frequency and formation height of the laminar cirrus. Also, isolated and convective laminars show diverse behaviors (height, location, distribution, etc.), which strongly implies that their formation mechanisms and their roles on depleting the upper troposphere water vapor are distinct. We further study the relationship between laminar characteristics and collocated and coincident water vapor gradient measurements from Aura Microwave Limb Sounder (MLS) observations below and above the laminars. The identified relationship provides a quantitative answer to the role laminar cirrus plays on regulating the water vapor entering the stratosphere.

  16. Observational characteristics of the tropopause inversion layer derived from CHAMP/GRACE radio occultations and MOZAIC aircraft data

    NASA Astrophysics Data System (ADS)

    Schmidt, T.; Cammas, J.-P.; Smit, H. G. J.; Heise, S.; Wickert, J.; Haser, A.

    2010-12-01

    In this study we discuss characteristics of the Northern Hemisphere (NH) midlatitude (40°N-60°N) tropopause inversion layer (TIL) based on two data sets. First, temperature measurements from GPS radio occultation data (CHAMP and GRACE) for the time interval 2001-2009 are used to exhibit seasonal properties of the TIL bottom height defined here as the height of the squared buoyancy frequency minimum N2 below the thermal tropopause, the TIL maximum height as the height of the N2 maximum above the tropopause, and the TIL top height as the height of the temperature maximum above the tropopause. Mean values of the TIL bottom, TIL maximum, and TIL top heights relative to the thermal tropopause for the NH midlatitudes are (-2.08 ± 0.35) km, (0.52 ± 0.10) km and (2.10 ± 0.23) km, respectively. A seasonal cycle of the TIL bottom and TIL top height is observed with values closer to the thermal tropopause during summer. Secondly, high-resolution temperature and trace gas profile measurements on board commercial aircrafts (Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) program) from 2001-2008 for the NH midlatitude (40°N-60°N) region are used to characterize the TIL as a mixing layer around the tropopause. Mean TIL bottom, TIL maximum, and TIL top heights based on the MOZAIC temperature (N2) measurements confirm the results from the GPS data, even though most of the MOZAIC profiles used here are available under cyclonic situations. Further, we demonstrate that the mixing ratio gradients of ozone (O3) and carbon monoxide (CO) are suitable parameters for characterizing the TIL structure.

  17. Modelling trends in tropical column ozone with the UKCA chemistry-climate model

    NASA Astrophysics Data System (ADS)

    Keeble, James; Bednarz, Ewa; Banerjee, Antara; Abraham, Luke; Harris, Neil; Maycock, Amanda; Pyle, John

    2016-04-01

    Trends in tropical column ozone under a number of different emissions scenarios are explored with the UM-UKCA coupled chemistry climate model. A transient 1960-2100 simulation was run following the RCP6 scenario. Tropical averaged (10S-10N) total column ozone values decrease from the 1970s, reaching a minimum around 2000, and return to their 1980 values around 2040, consistent with the use and emission of ozone depleting substances, and their later controls under the Montreal Protocol. However, when the total column is subdivided into three partial columns, extending from the surface to the tropopause, the tropopause to 30km, and 30km to 50km, significant differences to the total column trend are seen. Modelled tropospheric column values increase from 1960-2000 before remaining steady throughout the 21st Century. Lower stratospheric column values decrease rapidly from 1960-2000, remain steady until 2050 before slowly decreasing to 2100, never recovering to their 1980s values. Upper stratospheric values decrease from 1960-2000, before rapidly increasing throughout the 21st Century, recovering to 1980s values by ~2020 and are significantly increased above the 1980s values by 2100. Using a series of idealised model simulations with varying concentrations of greenhouse gases and ozone depleting substances, we assess the physical processes driving the partial column response in the troposphere, lower stratosphere and upper stratosphere, and assess how these processes change under different emissions scenarios. Finally, we present a simple, linearised model for predicting tropical column ozone values based on greenhouse gas and ozone depleting substance scenarios.

  18. Southern Hemisphere Additional Ozonesondes (SHADOZ) Ozone Climatology (2005-2009): Tropospheric and Tropical Tropopause Layer (TTL) Profiles with Comparisons to Omi-based Ozone Products

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Miller, Sonya K.; Tilmes, Simone; Kollonige, Debra W.; Witte, Jacquelyn C.; Oltmans, Samuel J.; Johnson, Brian J.; Fujiwara, Masatomo; Schmidlin, F. J.; Coetzee, G. J. R.; hide

    2012-01-01

    We present a regional and seasonal climatology of SHADOZ ozone profiles in the troposphere and tropical tropopause layer (TTL) based on measurements taken during the first five years of Aura, 2005-2009, when new stations joined the network at Hanoi, Vietnam; Hilo, Hawaii; Alajuela Heredia, Costa Rica; Cotonou, Benin. In all, 15 stations operated during that period. A west-to-east progression of decreasing convective influence and increasing pollution leads to distinct tropospheric ozone profiles in three regions: (1) western Pacific eastern Indian Ocean; (2) equatorial Americas (San Cristobal, Alajuela, Paramaribo); (3) Atlantic and Africa. Comparisons in total ozone column from soundings, the Ozone Monitoring Instrument (OMI, on Aura, 2004-) satellite and ground-based instrumentation are presented. Most stations show better agreement with OMI than they did for EPTOMS comparisons (1998-2004; Earth-ProbeTotal Ozone Mapping Spectrometer), partly due to a revised above-burst ozone climatology. Possible station biases in the stratospheric segment of the ozone measurement noted in the first 7 years of SHADOZ ozone profiles are re-examined. High stratospheric bias observed during the TOMS period appears to persist at one station. Comparisons of SHADOZ tropospheric ozone and the daily Trajectory-enhanced Tropospheric Ozone Residual (TTOR) product (based on OMIMLS) show that the satellite-derived column amount averages 25 low. Correlations between TTOR and the SHADOZ sondes are quite good (typical r2 0.5-0.8), however, which may account for why some published residual-based OMI products capture tropospheric interannual variability fairly realistically. On the other hand, no clear explanations emerge for why TTOR-sonde discrepancies vary over a wide range at most SHADOZ sites.

  19. Southern Hemisphere Additional Ozonesondes (SHADOZ) ozone climatology (2005-2009): Tropospheric and tropical tropopause layer (TTL) profiles with comparisons to OMI-based ozone products

    NASA Astrophysics Data System (ADS)

    Thompson, Anne M.; Miller, Sonya K.; Tilmes, Simone; Kollonige, Debra W.; Witte, Jacquelyn C.; Oltmans, Samuel J.; Johnson, Bryan J.; Fujiwara, Masatomo; Schmidlin, F. J.; Coetzee, G. J. R.; Komala, Ninong; Maata, Matakite; Bt Mohamad, Maznorizan; Nguyo, J.; Mutai, C.; Ogino, S.-Y.; da Silva, F. Raimundo; Leme, N. M. Paes; Posny, Francoise; Scheele, Rinus; Selkirk, Henry B.; Shiotani, Masato; Stübi, René; Levrat, Gilbert; Calpini, Bertrand; Thouret, ValéRie; Tsuruta, Haruo; Canossa, Jessica Valverde; VöMel, Holger; Yonemura, S.; Diaz, Jorge AndréS.; Tan Thanh, Nguyen T.; Thuy Ha, Hoang T.

    2012-12-01

    We present a regional and seasonal climatology of SHADOZ ozone profiles in the troposphere and tropical tropopause layer (TTL) based on measurements taken during the first five years of Aura, 2005-2009, when new stations joined the network at Hanoi, Vietnam; Hilo, Hawaii; Alajuela/Heredia, Costa Rica; Cotonou, Benin. In all, 15 stations operated during that period. A west-to-east progression of decreasing convective influence and increasing pollution leads to distinct tropospheric ozone profiles in three regions: (1) western Pacific/eastern Indian Ocean; (2) equatorial Americas (San Cristóbal, Alajuela, Paramaribo); (3) Atlantic and Africa. Comparisons in total ozone column from soundings, the Ozone Monitoring Instrument (OMI, on Aura, 2004-) satellite and ground-based instrumentation are presented. Most stations show better agreement with OMI than they did for EP/TOMS comparisons (1998-2004; Earth-Probe/Total Ozone Mapping Spectrometer), partly due to a revised above-burst ozone climatology. Possible station biases in the stratospheric segment of the ozone measurement noted in the first 7 years of SHADOZ ozone profiles are re-examined. High stratospheric bias observed during the TOMS period appears to persist at one station. Comparisons of SHADOZ tropospheric ozone and the daily Trajectory-enhanced Tropospheric Ozone Residual (TTOR) product (based on OMI/MLS) show that the satellite-derived column amount averages 25% low. Correlations between TTOR and the SHADOZ sondes are quite good (typical r2= 0.5-0.8), however, which may account for why some published residual-based OMI products capture tropospheric interannual variability fairly realistically. On the other hand, no clear explanations emerge for why TTOR-sonde discrepancies vary over a wide range at most SHADOZ sites.

  20. Can inertia-gravity waves persistently alter the tropopause inversion layer?

    NASA Astrophysics Data System (ADS)

    Kunkel, Daniel; Hoor, Peter; Wirth, Volkmar

    2014-11-01

    Previous simulations of baroclinic life cycles have shown, among many other features, the evolution of a tropopause inversion layer (TIL) as well as the spontaneous emission of inertia-gravity waves (IGWs). This study suggests that the latter two are related to each other, i.e., that IGWs may affect the TIL in a persistent manner. The IGWs are emitted along the jet and grow to large amplitudes, leading to the appearance of low-gradient Richardson numbers that indicate Kelvin-Helmholtz instability. Ensuing energy dissipation, local heating, and turbulence may persistently alter the thermodynamical structure of the tropopause region and, therefore, contribute to TIL formation or alter an existing TIL. Moreover, the flow in the region of the IGW favors the occurrence of wave capture, which may enhance the effect of wave breaking.

  1. Titan's Tropopause Temperatures from CIRS: Implications for Stratospheric Methane Cloud Formation

    NASA Technical Reports Server (NTRS)

    Anderson, C. M.; Samuelson, R. E.; Achterberg, R. K.; Barnes, J. W.; Flasar, F. M.

    2012-01-01

    Analysis of Cassini Composite Infrared Spectrometer (CIRS) far-IR spectra enable the construction of Titan's temperature profile in the altitude region containing the tropopause. Whereas the methane V4 band at 1306/cm (7.7 microns) is the primary opacity source for deducing thermal structure between 100 km and 500 km, N2-N2 collision-induced absorption between 70 and 140/cm (143 microns and 71 microns) is utilized to determine temperatures at Titan's tropopause. Additional opacity due to aerosol and nitrile ices must also be taken into account in this part of the far-IR spectral region. The spectral characteristics of these particulate opacities have been deduced from CIRS limb data at 58degS, 15degS, 15degN, and 85degN. Empirically, the spectral shapes of these opacities appear to be independent of both latitude and altitude below 300 km (Anderson and Samuelson, 2011, Icarus 212, 762-778), justifying the extension of these spectral properties to all latitudes. We find that Titan's tropopause temperature is cooler than the HAS! value of 70.5K by approx. 6K. This leads to the possibility that subsidence at high northern latitudes can cause methane condensation in the winter polar stratosphere. A search for methane clouds in this region is in progress.

  2. Impact of Tropopause Structures on Deep Convective Transport Observed during MACPEX

    NASA Astrophysics Data System (ADS)

    Mullendore, G. L.; Bigelbach, B. C.; Christensen, L. E.; Maddox, E.; Pinkney, K.; Wagner, S.

    2016-12-01

    Deep convection is the most efficient method of transporting boundary layer mass to the upper troposphere and stratosphere (UTLS). The Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) was conducted during April of 2011 over the central U.S. With a focus on cirrus clouds, the campaign flights often sampled large cirrus anvils downstream from deep convection and included an extensive observational suite of chemical measurements on a high altitude aircraft. As double-tropopause structures are a common feature in the central U.S. during the springtime, the MACPEX campaign provides a good opportunity to gather cases of deep convective transport in the context of both single and double tropopause structures. Sampling of chemical plumes well downstream from convection allows for sampling in relatively quiescent conditions and analysis of irreversible transport. The analysis presented includes multiple methods to assess air mass source and possible convective processing, including back trajectories and ratios of chemical concentrations. Although missions were flown downstream of deep convection, recent processing by convection does not seem likely in all cases that high altitude carbon monoxide plumes were observed. Additionally, the impact of single and double tropopause structures on deep convective transport is shown to be strongly dependent on high stability layers.

  3. Processes Controlling Water Vapor in the Winter Arctic Tropopause Region

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Selkirk, Henry B.; Jensen, Eric J.; Podolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark R.; Hipskino, R. Stephen (Technical Monitor)

    2001-01-01

    This work describes transport and thermodynamic processes that control water vapor near the tropopause during the SAGE Ozone Loss and Validation Experiment (SOLVE), held during the Arctic 1999-2000 winter season. Aircraft based water vapor, carbon monoxide, and ozone measurements are analyzed so as to establish how deeply tropospheric air mixes into the arctic lower-most stratosphere, and what the implications are for cloud formation and water vapor removal in this region of the atmosphere. There are three major findings. First, troposphere-to- stratosphere exchange extends into the arctic stratosphere to about 13 km. Penetration is to similar levels throughout the winter, however, because ozone increases idly in the early spring, tropospheric air mixes with the highest values of ozone in that season. The effect of this upward mixing is to elevate water vapor mixing ratios significantly above their prevailing stratospheric values of about 5 ppmv. Second, the potential for cloud formation in the stratosphere is highest during early spring, with about 20\\% of the parcels which have ozone values of 300-350ppbv experiencing ice saturation in a given 10 day period. Third, during early Spring temperatures at the tropopause are cold enough so that 5-10\\% of parcels experience relative humidities above 100\\%, even if the water content is as low as 5 ppmv. The implication is that during, this period the arctic tropopause can play an important role in maintaining a very dry upper troposphere during early Spring.

  4. Processes Controlling Water Vapor in the Winter Arctic Tropopause Region

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Selkirk, Henry B.; Jensen, Eric J.; Padolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark R.; Mahoney, Michael J.; Richard, Erik

    2002-01-01

    This work describes transport and thermodynamic processes that control water vapor near the tropopause during the SAGE III-Ozone Loss and Validation Experiment (SOLVE), held during the Arctic 1999/2000 winter season. Aircraft-based water vapor, carbon monoxide, and ozone measurements were analyzed so as to establish how deeply tropospheric air mixes into the Arctic lowermost stratosphere and what the implications are for cloud formation and water vapor removal in this region of the atmosphere. There are three major findings. First, troposphere-to-stratosphere exchange extends into the Arctic stratosphere to about 13 km. Penetration is to similar levels throughout the winter, however, because ozone increases with altitude most rapidly in the early spring, tropospheric air mixes with the highest values of ozone in that season. The effect of this upward mixing is to elevate water vapor mixing ratios significantly above their prevailing stratospheric values of above 5ppmv. Second, the potential for cloud formation in the stratosphere is highest during early spring, with about 20% of the parcels which have ozone values of 300-350 ppbv experiencing ice saturation in a given 10 day period. Third, during early spring, temperatures at the troposphere are cold enough so that 5-10% of parcels experience relative humidities above 100%, even if the water content is as low as 5 ppmv. The implication is that during this period, dynamical processes near the Arctic tropopause can dehydrate air and keep the Arctic tropopause region very dry during early spring.

  5. Frequency of Tropical Ocean Deep Convection and Global Warming

    NASA Astrophysics Data System (ADS)

    Aumann, H. H.; Behrangi, A.; Ruzmaikin, A.

    2017-12-01

    The average of 36 CMIP5 models predicts about 3K of warming and a 4.7% increase in precipitation for the tropical oceans with a doubling of the CO2 by the end of this century. For this scenario we evaluate the increase in the frequency of Deep Convective Clouds (DCC) in the tropical oceans. We select only DCC which reach or penetrate the tropopause in the 15 km AIRS footprint. The evaluation is based on Probability Distribution Functions (PDFs) of the current temperatures of the tropical oceans, those predicted by the mean of the CMIP5 models and the PDF of the DCC process. The PDF of the DCC process is derived from the Atmospheric Infrared Sounder (AIRS) between the years 2003 and 2016. During this time the variability due Enso years provided a 1 K p-p change in the mean tropical SST. The key parameter is the SST associated with the onset of the DCC process. This parameter shifts only 0.5 K for each K of warming of the oceans. As a result the frequency of DCC is expected to increases by the end of this century by about 50% above the current frequency.

  6. Convective Formation of Pileus Cloud Near the Tropopause

    NASA Technical Reports Server (NTRS)

    Garrett, Timothy J.; Dean-Day, Jonathan; Liu, Chuntao; Barnett, Brian K.; Mace, Gerald G.; Baumgardner, Darrel G.; Webster, Christopher R.; Bui, T. Paul; Read, William G.; Minnis, Patrick

    2005-01-01

    Pileus clouds form where humid, stably stratified air is mechanically displaced vertically ahead of rising convection. This paper describes convective formation of pileus cloud in the tropopause transition layer (TTL), and explores a possible link to the formation of long-lasting cirrus at cold temperatures. In-situ measurements from off the coast of Honduras during the July 2002 CRYSTALFACE experiment show an example of TTL cirrus associated with, and penetrated by, deep convection. The cirrus was enriched with total water compared to its surroundings, but composed of extremely small ice crystals with effective radii between 2 and 4 m. Through gravity wave analysis, and intercomparison of measured and simulated cloud microphysics, it is argued that the TTL cirrus in this case originated neither from convectively-forced gravity wave motions nor environmental mixing alone. Rather, it is hypothesized that some combination was involved in which, first, convection forced pileus cloud to form from TTL air; second, it punctured the pileus layer, contributing larger ice crystals through interfacial mixing; third, the addition of condensate inhibited evaporation of the original pileus ice crystals in the warm phase of the ensuing gravity wave; fourth, through successive pulses, deep convection formed the observed layer of TTL cirrus. While the general incidence and longevity of pileus cloud remains unknown, in-situ measurements, and satellite-based Microwave Limb Sounder retrievals, suggest that much of the tropical TTL is sufficiently humid to be susceptible to its formation. Where these clouds form and persist, there is potential for an irreversible repartition from water vapor to ice at cold temperatures.

  7. Intercontinental Transport of Ozone from Tropical Biomass Burning

    NASA Technical Reports Server (NTRS)

    Thompson, A. M.

    2003-01-01

    Researchers have been looking at the connection between tropical biomass burning and ozone formation and long-range transport for roughly 15 years. One can see the linkage and transport patterns from satellite though aircraft and/or balloon-sonde profiles are required to observe the fine structure (ozone transport over thousands of km often happens in thin layers). In this review, I survey the pyrogenic ozone transport in the large oceanic basins - Indian Ocean, Pacific and Atlantic. Mechanistic complexities are discussed and examples shown from satellite, aircraft and soundings, including NASA results from TOMS, the GTE experiments and the SHADOZ sounding program. Experiments referred to include SAFARI-92, TRACE-A, INDOEX, PEM-Tropics and TRACE-P. augmented by subsidence, a variable tropopause height, and lightning - even ozone pollution from the Indian Ocean has been implicated. Over the Indian Ocean, pollution interacts with convection and the monsoon cycle.

  8. Tropopause inversion layer formation and stratosphere-troposphere exchange during idealized baroclinic wave life cycle experiments

    NASA Astrophysics Data System (ADS)

    Kunkel, Daniel; Wirth, Volkmar; Hoor, Peter

    2014-05-01

    Recent simulations of baroclinic wave life cycles revealed that the tropopause inversion layer (TIL), commonly situated just above the thermal tropopause, is evident in such experiments and emerges after the onset of wave breaking. Furthermore, bidirectional stratosphere-troposphere exchange (STE) occurs during this non-linear stage of the wave evolution and might be affected by the appearance of the TIL. We study the evolution and the impact of the TIL on STE by using the COSMO model in an idealized mid-latitude channel geometry configuration without physical sub-grid scale parameterizations. We initialize the model with a geostrophically balanced upper level jet stream which is disturbed by an anomaly of potential vorticity to trigger the evolution of the baroclinic waves. Moreover, we use passive tracers of tropospheric or stratospheric origin to identify regions of potential STE. Our results show that the static stability is low in regions of stratosphere to troposphere exchange (STT), while it is high in regions dominated by exchange in the opposite direction (TST). Furthermore, inertia gravity waves, originating from regions with strong ageostrophic wind components, modulate the static stability as well as the vertical shear of the horizontal wind near and above the tropopause. While propagating away from their source, the inertia gravity waves lead to large values of the squared Brunt Vaisala frequency in regions which are simultaneously characterized by low bulk Richardson numbers. Thus, these regions are statically stable and turbulent at the same time and might be crucial for TST, thereby explaining tropospheric mixing ratio changes of e.g. CO across the tropopause which commonly change from tropospheric to stratospheric values a few hundred meters above the local thermal tropopause.

  9. Investigation of mesoscale trace gas distributions across an Arctic tropopause fold affected by gravity wave activity

    NASA Astrophysics Data System (ADS)

    Woiwode, Wolfgang; Oelhaf, Hermann; Dörnbrack, Andreas; Bramberger, Martina; Diekmann, Christopher; Friedl-Vallon, Felix; Höpfner, Michael; Hoor, Peter; Johansson, Sören; Krause, Jens; Kunkel, Daniel; Orphal, Johannes; Preusse, Peter; Ruhnke, Roland; Schlage, Romy; Schröter, Jennifer; Sinnhuber, Björn-Martin; Ungermann, Jörn; Zahn, Andreas

    2017-04-01

    Tropopause folds are known of enabling efficient exchange of trace constituents between the stratosphere and troposphere. In particular, the modification of the vertical distributions of radiatively important H2O and other reactive trace gases associated with tropopause folds is relevant for accurate model simulations of the upper troposphere and lower stratosphere composition. During the POLSTRACC/GW-LCYCLE/SALSA flight on 12 January 2016, the HALO (High Altitude LOng range) aircraft crossed twice an extended tropopause fold in the vicinity of the Arctic polar vortex. At the same time, the ECMWF operational analysis shows that the meteorological scenario probed above Italy was accompanied by wide-spread gravity wave activity induced by north-westerly winds. Using high spectral resolution limb-observations by the GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) spectrometer aboard HALO and associated observations, we investigate the vertical distributions of H2O, O3, temperature, and associated parameters across the tropopause fold. In combination with a high-resolution simulation by the ICON-ART (ICOsahedral Nonhydrostatic- Aerosol and Reactive Trace gases) model, we search for indications for irreversible trace gas exchange between the stratosphere and troposphere and the potential influence of gravity waves.

  10. Seasonal and Interannual Variabilities in Tropical Tropospheric Ozone

    NASA Technical Reports Server (NTRS)

    Ziemke, J. R.; Chandra, S.

    1999-01-01

    This paper presents a detailed characterization of seasonal and interannual variability in tropical tropospheric column ozone (TCO). TCO time series are derived from 20 years (1979-1998) of total ozone mapping spectrometer (TOMS) data using the convective cloud differential (CCD) method. Our study identifies three regions in the tropics with distinctly different zonal characteristics related to seasonal and interannual variability. These three regions are the eastern Pacific, Atlantic, and western Pacific. Results show that in both the eastern and western Pacific seasonal-cycle variability of northern hemisphere (NH) TCO exhibits maximum amount during NH spring whereas largest amount in southern hemisphere (SH) TCO occurs during SH spring. In the Atlantic, maximum TCO in both hemispheres occurs in SH spring. These seasonal cycles are shown to be comparable to seasonal cycles present in ground-based ozonesonde measurements. Interannual variability in the Atlantic region indicates a quasi-biennial oscillation (QBO) signal that is out of phase with the QBO present in stratospheric column ozone (SCO). This is consistent with high pollution and high concentrations of mid-to-upper tropospheric O3-producing precursors in this region. The out of phase relation suggests a UV modulation of tropospheric photochemistry caused by the QBO in stratospheric O3. During El Nino events there is anomalously low TCO in the eastern Pacific and high values in the western Pacific, indicating the effects of convectively-driven transport of low-value boundary layer O3 (reducing TCO) and O3 precursors including H2O and OH. A simplified technique is proposed to derive high-resolution maps of TCO in the tropics even in the absence of tropopause-level clouds. This promising approach requires only total ozone gridded measurements and utilizes the small variability observed in TCO near the dateline. This technique has an advantage compared to the CCD method because the latter requires high

  11. Electrification in Hurricanes over the Tropical Americas: Implication for Stratospheric Water Vapor

    NASA Technical Reports Server (NTRS)

    Pittman, Jasna V.; Chronis, Themis G.; Robertson, Franklin R.; Miller, Timothy L.

    2007-01-01

    This study explores the relation between lightning activity and water vapor in the Tropical Tropopause Layer (TTL) over hurricane systems in the Tropical Americas. The hypothesis herein is that hurricanes that exhibit enhanced lightning activity are associated with stronger updrafts that can transport more moisture directly into the TTL (and subsequently into the tropical stratosphere) or even directly into the tropical stratosphere over this region. The TTL over the Tropical Americas, which includes the Caribbean and Gulf of Mexico, is of particular interest, because summertime cold point tropopause is the lowest in height and thus the warmest in temperature over the tropics. The latter condition implies higher saturation values and thus potential for more water vapor to enter the stratosphere. Climate forecast is very sensitive to stratospheric water vapor abundance, because of the key role that water vapor plays in regulating the chemical and radiative properties of the stratosphere. Given the potential for increases in hurricane intensity and frequency under predicted warmer conditions, it becomes essential to understand the effect of hurricanes on stratospheric water vapor. In this study, we use a combination of ground and space-borne observations as well as trajectory calculations. The observations include: cloud-to-ground (CG) lightning data from the U.S. National Lightning Detection Network (NLDN), geostationary infrared observations from the National Climatic Data Center Hurricane Satellite (HURSAT) data set, cloud properties from Aqua-MODIS, and water vapor from Aura-MLS. We analyze hurricanes from the 2005 season when Aura-MLS data are available, namely: Dennis, Emily, Katrina, Rita, and Wilma. Our analysis consists of examining CG lightning, cloud-top properties, and TTL water vapor (i.e., 100 and 147 mb) over the hurricane while it remains over water in the Tropical Americas region. We investigate daily as well as diurnal statistical properties. The

  12. Wave modulation of the extratropical tropopause inversion layer

    NASA Astrophysics Data System (ADS)

    Pilch Kedzierski, Robin; Matthes, Katja; Bumke, Karl

    2017-03-01

    This study aims to quantify how much of the observed strength and variability in the zonal-mean extratropical tropopause inversion layer (TIL) comes from the modulation of the temperature field and its gradients around the tropopause by planetary- and synoptic-scale waves. By analyzing high-resolution observations, it also puts other TIL enhancing mechanisms into context.Using gridded Global Positioning System radio occultation (GPS-RO) temperature profiles from the COSMIC mission (2007-2013), we are able to extract the extratropical wave signal by a simplified wavenumber-frequency domain filtering method and quantify the resulting TIL enhancement. By subtracting the extratropical wave signal, we show how much of the TIL is associated with other processes, at mid- and high latitudes, for both hemispheres and all seasons.The transient and reversible modulation by planetary- and synoptic-scale waves is almost entirely responsible for the TIL in midlatitudes. This means that wave-mean flow interactions, inertia-gravity waves and the residual circulation are of minor importance for the strength and variability in the midlatitude TIL.At polar regions, the extratropical wave modulation is dominant for the TIL strength as well, but there is also a clear fingerprint from sudden stratospheric warmings (SSWs) and final warmings in both hemispheres. Therefore, polar vortex breakups are partially responsible for the observed polar TIL strength in winter (if SSWs occur) and spring. Also, part of the polar summer TIL strength cannot be explained by extratropical wave modulation.We suggest that our wave modulation mechanism integrates several TIL enhancing mechanisms proposed in previous literature while robustly disclosing the overall outcome of the different processes involved. By analyzing observations only, our study identifies which mechanisms dominate the extratropical TIL strength and their relative contribution. It remains to be determined, however, which roles the

  13. Dehydration in the Winter Arctic Tropopause Region

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Jensen, Eric; Podolske, James; Selkirk, Henry; Anderson, Bruce; Avery, Melody; Diskin. Glenn

    2004-01-01

    Recent work has shown that limited amounts of tropospheric air can penetrate as much as 1 km into the middleworld stratosphere during the arctic winter. This, coupled with temperatures that are cold enough to produce saturation mixing ratios of less than 5 ppmv at the tropopause, results in stratospheric cloud formation and upper tropospheric dehydration. Even though these "cold outbreaks" occupy only a small portion of the area in the arctic (1-2%), their importance is magnified by an order of magnitude because of the air flow through them. This is reinforced by evidence of progressive drying through the winter measured during SOLVE-1. The significance of this process lies in its effect on the upper tropospheric water content of the middle and high latitude tropopause region, which plays an important role in regulating the earth's radiative balance. There appears to be significant year-to-year variability in the incidence of the cold outbreaks. This work has two parts. First, we describe case studies of dehydration taken from the SOLVE and SOLVE2 aircraft sampling missions during the Arctic winters of 2000 and 2003 respectively. Trajectory based microphysical modeling is employed to examine the sensitivity of the dehydration to microphysical parameters and the nature of sub-grid scale temperature fluctuations. We then examine the year-to-year variations in potential dehydration using a trajectory climatology.

  14. A meridional structure of static stability and ozone vertical gradient around the tropopause in the Southern Hemisphere extratropics

    NASA Astrophysics Data System (ADS)

    Tomikawa, Y.; Yamanouchi, T.

    2010-08-01

    An analysis of the static stability and ozone vertical gradient in the ozone tropopause based (OTB) coordinate is applied to the ozonesonde data at 10 stations in the Southern Hemisphere (SH) extratropics. The tropopause inversion layer (TIL) with a static stability maximum just above the tropopause shows similar seasonal variations at two Antarctic stations, which are latitudinally far from each other. Since the sunshine hour varies with time in a quite different way between these two stations, it implies that the radiative heating due to solar ultraviolet absorption of ozone does not contribute to the seasonal variation of the TIL. A meridional section of the static stability in the OTB coordinate shows that the static stability just above the tropopause has a large latitudinal gradient between 60° S and 70° S in austral winter because of the absence of the TIL over the Antarctic. It is accompanied by an increase of westerly shear with height above the tropopause, so that the polar-night jet is formed above this latitude region. This result suggests a close relationship between the absence of the TIL and the stratospheric polar vortex in the Antarctic winter. A vertical gradient of ozone mixing ratio, referred to as ozone vertical gradient, around the tropopause shows similar latitudinal and seasonal variations with the static stability in the SH extratropics. In a height region above the TIL, a small ozone vertical gradient in the midlatitudes associated with the Antarctic ozone hole is observed in a height region of the subvortex but not around the polar vortex. This is a clear evidence of active latitudinal mixing between the midlatitudes and subvortex.

  15. The interaction between the tropopause inversion layer and the inertial gravity wave activities revealed by radiosonde observations at a midlatitude station

    NASA Astrophysics Data System (ADS)

    Zhang, Yehui; Zhang, Shaodong; Huang, Chunming; Huang, Kaiming; Gong, Yun; Gan, Quan

    2015-08-01

    The interaction between the tropopause inversion layer (TIL) and the inertial gravity wave (IGW) activities is first presented by using a high vertical resolution radiosonde data set at a midlatitude station, Boise, Idaho (43.57°N, 116.22°W), for the period 1998-2008. The tropopause-based vertical coordinate is used for the TIL detection, and for meticulously studying the IGW variation around the TIL, the broad spectral method is used for the IGW extraction. Generally, the TIL at the midlatitude station is stronger and thicker in winter and spring, which is consistent with previous studies. Our study confirmed the intense interaction between the TIL and IGW. It is found that the TIL not only could inhibit the upward propagation of IGWs from below but also imply the possible excitation links between the TIL and IGW. The results also indicate that the enhanced wind shear layer just 1 km above the tropopause may result in instability and finally leads to the IGW breaking and intensive turbulence. Subsequently, the IGW-induced intensive turbulence leads to strong wave energy dissipation and a downward heat flux. This downward heat transportation could significantly cool the tropopause, while it has only negligible thermal effect on the atmosphere above the tropopause. Then, the IGW-induced cooling at the tropopause makes the tropopause colder and sharper and finally forms the TIL. These suggest besides previously proposed mechanisms that IGWs also contribute greatly to the formation of TIL, which is consistent with a recent related simulation study.

  16. Air mass origins and troposphere-to-stratosphere exchange associated with mid-latitude cyclogenesis and tropopause folding inferred from Be-7 measurements

    NASA Technical Reports Server (NTRS)

    Kritz, Mark A.; Rosner, Stefan W.; Danielsen, Edwin F.; Selkirk, Henry B.

    1991-01-01

    The 1984 extratropical mission of NASA's Stratosphere-Troposphere Exchange Project (STEP) studied cross-jet transport in regions of cyclogenesis and tropopause folding. Correlations of Be-7, ozone, water vapor, and potential vorticity measured on a NASA U-2 research aircraft flying in high shear regions above the jet core are indicative of mixing between the cyclonic and the anticyclonic sides of the jet and are consistent with the hypothesis that small-scale entrainments of upper tropospheric air into the lower stratosphere during cyclogenesis are important in maintaining the vertical gradients of Be-7, ozone, water vapor and other trace constituents in the lower few kilometers of the midlatitude stratosphere. Correlations between Be-7, and ozone suggest a lower tropical stratospheric origin for the ozone-poor lamina observed above the jet core.

  17. Seasonal Differences in Tropical Western Pacific Cloud Ice, Water Vapor and Aerosols Observed From Space During ATTREX-III and POSIDON

    NASA Astrophysics Data System (ADS)

    Avery, M. A.; Rosenlof, K. H.; Vaughan, M.; Getzewich, B. J.; Thornberry, T. D.; Gao, R. S.; Rollins, A. W.; Woods, S.; Yorks, J. E.; Jensen, E. J.

    2017-12-01

    Recent aircraft missions sampling the tropical tropopause layer (TTL) in the tropical Western Pacific have provided a wealth of detailed cloud microphysical and associated aerosol, water vapor and temperature data for understanding processes that regulate stratospheric composition and hydration. This presentation seeks to provide a regional context for these measurements by comparing and contrasting active space-based observations from these time periods (Feb-Mar 2014 for ATTREX-III and Oct 2016 for POSIDON), primarily from the Clouds and Aerosol Lidar with Orthogonal Polarization (CALIOP), with the addition of Cloud Profiling Radar (CPR) and the Cloud-Aerosol Transport System (CATS) where these data sets are available. While the ATTREX III and POSIDON aircraft field missions both took place from Guam in the Western Pacific, there were striking differences between the amount, geographical distribution and properties of cirrus clouds and aerosols in the Tropical TTL. In addition to cloud and aerosol amount and location, we present geometric properties, including cloud top heights, transparent cloud and aerosol layer thicknesses and location of the 532 nm backscatter centroid, which is roughly equivalent to the layer vertical center of mass. We also present differences in the distribution of cirrus cloud extinction coefficients and ice water content, and aerosol optical depths, as detected from space, and compare these with in situ measurements and with temperature and water vapor distributions from the Microwave Limb Sounder (MLS). We find that there is more intense convection reaching the tropical tropopause during the POSIDON mission, and consequently more associated cloud ice observed during POSIDON than during ATTREX-III.

  18. High Static Stability in the Mixed Layer Above the Extratropical Tropopause

    NASA Astrophysics Data System (ADS)

    Kunz, A.; Konopka, P.; Müller, R.; Schiller, C.

    2008-12-01

    A strong relationship between the static stability N2 and the strength of mixing in the mixed layer above the extratropical tropopause is evident from in-situ data observed during the SPURT aircraft campaigns. We present a method for quantifying the strength of mixing from O3/CO tracer correlations and we find that N2 is positively correlated with the strength of mixing. Age of air simulations with the CLaMS model reveal two different types of mixed regions. One type consisting of older airmasses with higher values of N2 which are created by radiative adjustment after a mixing event. These airmasses are within the TIL (Tropopause Inversion Layer), considering the TIL as part of the mixing layer. The second type comprises younger airmasses with somehow lower stratospheric N2 values within the mixing layer, because of recent intrusion processes due to the permeability or so-called mid-latitude-breaks associated with the jet stream. With the help of radiative transfer calculations we simulate the influence of trace gases such as O3 and H2O on the temperature gradient and thus on the static stability above the tropopause in the idealized case of non-mixing (L-shape) O3 and H2O profiles and in the reference case of mixed profiles. Within the altitude range of the SPURT campaigns the mean vertical SPURT profiles are used as reference, which are fitted to the HALOE climatological profiles above the UT/LS.

  19. On the role of tropopause folds in summertime tropospheric ozone over the eastern Mediterranean and the Middle East

    NASA Astrophysics Data System (ADS)

    Akritidis, Dimitris; Pozzer, Andrea; Zanis, Prodromos; Tyrlis, Evangelos; Škerlak, Bojan; Sprenger, Michael; Lelieveld, Jos

    2016-11-01

    We study the contribution of tropopause folds in the summertime pool of tropospheric ozone over the eastern Mediterranean and the Middle East (EMME) with the aid of the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model. Tropopause fold events in EMAC simulations were identified with a 3-D labeling algorithm that detects folds at grid points where multiple crossings of the dynamical tropopause are computed. Subsequently the events featuring the largest horizontal and vertical extent were selected for further study. For the selection of these events we identified a significant contribution of the stratospheric ozone reservoir to the high concentrations of ozone in the middle and lower free troposphere over the EMME. A distinct increase of ozone is found over the EMME in the middle troposphere during summer as a result of the fold activity, shifting towards the southeast and decreasing altitude. We find that the interannual variability of near-surface ozone over the eastern Mediterranean (EM) during summer is related to that of both tropopause folds and ozone in the free troposphere.

  20. Resolution dependence of cross-tropopause ozone transport over east Asia

    NASA Astrophysics Data System (ADS)

    Büker, M. L.; Hitchman, Matthew H.; Tripoli, Gregory J.; Pierce, R. B.; Browell, E. V.; Avery, M. A.

    2005-02-01

    Detailed analysis of mesoscale transport of ozone across the tropopause over east Asia during the spring of 2001 is conducted using regional simulations with the University of Wisconsin Nonhydrostatic Modeling System (UWNMS), in situ flight data, and a new two-scale approach to diagnosing this ozone flux. From late February to early April, synoptic activity regularly deformed the tropopause, leading to observations of ozone-rich (concentration exceeding 80 ppbv) stratospheric intrusions and filaments at tropospheric altitudes. Since model resolution is generally not sufficient to capture detailed small-scale mixing processes, an upper bound on the flux is proposed by assuming that there exists a dynamical division by spatial scale, above which the wind conservatively advects large-scale structures, while below it the wind leads to irreversible transport through nonconservative random strain. A formulation for this diagnosis is given and applied to ozone flux across the dynamical tropopause. Simulations were chosen to correspond with DC-8 flight 15 on 26-27 March over east Asia during the Transport and Chemical Evolution Over the Pacific (TRACE-P) campaign. Local and domain-averaged flux values using this method agree with other numerical and observational studies in similar synoptic environments. Sensitivity to numerical resolution, prescribed divisional spatial scale, and potential vorticity (PV) level is investigated. Divergent residual flow in regions of high ozone, and PV gradients tended to maximize flux magnitudes. We estimated the domain-integrated flow of ozone out of the lowermost stratosphere to be about 0.127 Tg/day. Spectral analysis of the wind field lends support for utilization of this dynamical division in this methodology.

  1. Combining laboratory results, numerical modeling, and in situ measurements to investigate the relative contributions of homogeneous and heterogeneous nucleation to ice formation in the tropical tropopause layer

    NASA Astrophysics Data System (ADS)

    Jensen, E. J.; Karcher, B.; Ueyama, R.; Pfister, L.; Bui, T. V.; Diskin, G. S.; DiGangi, J. P.; Woods, S.; Lawson, P.; Froyd, K. D.; Murphy, D. M.

    2017-12-01

    Laboratory experiments over the past decade have advanced our understanding of the physical state and ice nucleation efficacy of aerosols with atmospherically-relevant compositions at low temperatures. We use these laboratory results along with measurements of upper-tropospheric aerosol composition to develop a parameterization if the ice nuclei number, and activity dependence on ice supersaturation and temperature in the cold tropical tropopause layer (TTL, 13-18 km). We show that leading candidates for aerosol types serving as effective ice nuclei are glassy organic-containing aerosols, crystalline ammonium sulfate, and mineral dust. We apply the low-temperature heterogeneous ice nucleation parameterization in a detailed model of TTL transport and cirrus formation. The model treats heterogeneous ice nucleation and homogeneous freezing of aqueous aerosols, deposition growth and sublimation of ice crystals, and sedimentation of ice crystals. The model is driven by meteorological fields with high-frequency waves superimposed, and simulated cirrus microphysical properties are statistically compared with recent measurements of TTL cirrus microphysical properties and ice supersaturation from recent high-altitude aircraft campaigns. We show that effective ice nuclei concentrations on the order of 50-100/L can dominate over homogeneous freezing production of TTL cirrus ice crystals. Glassy organic-containing aerosols or crystalline ammonium sulfate could conceivably provide more abundant sources of ice nuclei, but the simulations indicate that high concentrations of effective IN would prevent observed occurrence of large supersaturations and high ice concentrations. We will also show the impact of heterogeneous ice nuclei on TTL cirrus microphysical properties and occurrence frequencies.

  2. Tropopause Inversion Layer and Stratosphere-Troposphere Exchange in Baroclinic Life Cycles: The Role of Diabatic Processes

    NASA Astrophysics Data System (ADS)

    Kunkel, D.; Hoor, P. M.; Wirth, V.

    2014-12-01

    Observations and model simulations of temperature and tracer profiles in the extratropical upper troposphere/lower stratosphere (UTLS) show the presence of an inversion layer just above the thermal tropopause, i.e., the tropopause inversion layer (TIL), which is situated in a region affected by stratosphere-troposphere exchange (STE). Moreover, from a dynamical perspective the extratropical UTLS is highly affected by baroclinic life cycles. Since both the TIL and STE emerge, amongst many other features, during simulated baroclinic life cycles, we study whether there is a relationship between the TIL and STE. We use the non-hydrostatic model COSMO in an idealized mid-latitude channel configuration to simulate baroclinic life cycles. In a first step contributions of individual diabatic processes from turbulence, radiation, and cloud microphysics to the formation of the TIL are analyzed. These results are compared to those from adiabatic simulations in which the TIL forms during the life cycles with the limitation of being less sharp than in observations. Furthermore, passive tropospheric and stratospheric tracers are used to identify STE. Regions of STE are then analyzed with respect to the temporal evolution of the static stability above the tropopause. The results suggest that radiative effects, especially from water vapor, have the largest additional contribution to the TIL formation, while additional individual effects of cloud microphysics are almost negligible. STE occurs in all diabatic simulations but its strength depends highly on how the underlying diabatic process can affect the thermal and dynamical structure in the tropopause region. Weak STE is found when considering cloud microphysics, while STE is stronger in case of using turbulence and radiation. Tropopause-based vertical profiles of the tropospheric tracers show in some cases similarities with observed tracer profiles of CO.

  3. Impact of diabatic processes on the tropopause inversion layer formation in baroclinic life cycles

    NASA Astrophysics Data System (ADS)

    Kunkel, Daniel; Hoor, Peter; Wirth, Volkmar

    2015-04-01

    Observations of temperature profiles in the extratropical upper troposphere/lower stratosphere (UTLS) show the presence of an inversion layer just above the thermal tropopause, i.e., the tropopause inversion layer (TIL). In recent studies both diabatic and adiabatic processes have been identified to contribute to the formation of this layer. In particular, adiabatic simulations indicate a TIL formation without the explicit simulation of diabatic, i.e. radiative or humidity related, processes after wave breaking during baroclinic life cycles. One goal of this study is to assess the additional contribution of diabatic processes to the formation and strength of the TIL in such life cycles. Moreover, since irreversible stratosphere-troposphere exchange (STE) is another inherent feature of baroclinic life cycles and a consequence of diabatic processes, we study whether there is a relationship between STE and TIL. We use the non-hydrostatic model COSMO in an idealized mid-latitude channel configuration to simulate baroclinic life cycles. In a first step contributions of individual diabatic processes from turbulence, radiation, and cloud microphysics to the formation of the TIL are analyzed. These results are compared to those from adiabatic simulations of baroclinic life cycles in which the TIL forms during the life cycle with the limitation of being less sharp than in observations. In a second step the combined effects of several diabatic processes are studied to further include interactions between these processes as well as to advance towards a more realistic model setup. The results suggest a much more vigorous development of the TIL due to microphysics and the release of latent heat. Moreover, radiative effects can foster an increase in static stability above the thermal tropopause when large gradients of either water vapor or cloud ice are present at the level of the tropopause. By additionally adding sub-grid scale turbulence, a co-location of high static

  4. Time lag between the tropopause height and the levels of 7Be concentration in near surface air

    NASA Astrophysics Data System (ADS)

    Ioannidou, A.; Vasileiadis, A.; Melas, D.

    2012-04-01

    The concentration of 7Be at near surface air has been determined over 2009, a year of a deep solar minimum, in the region of Thessaloniki, Greece at 40°62' N, 22°95'E. In geomagnetic latitudes over 40° N, the elevation of the tropopause during the warm summer months and the vertical exchange of air masses within the troposphere cause greater mixture of the air masses resulting in higher concentration levels for 7Be in surface air. The positive correlation between the monthly activity concentration of 7Be and the tropopause height (0.94, p < 0.0001), and also between 7Be concentration and the temperature T (°C) (R = 0.97, p < 0.001), confirm that the increased rate of vertical transport within the troposphere, especially during warmer summer months, has as a result the descent to surface of air masses enriched in 7Be. However, the 7Be concentration levels in near surface air are not expected to respond immediately to the change of elevation of the tropopause. It was found that there's a time lag of ~ 3 days between the change in the daily surface concentrations of 7Be the change in the elevation of the tropopause.

  5. Observations of the UTLS: An analysis of the double tropopause and its relationship to Rossby waves and the tropopause inversion layer

    NASA Astrophysics Data System (ADS)

    Peevey, Tanya

    The upper troposphere lower stratosphere (UTLS) is a region of minimum temperatures that contains the tropopause. As a transition region between the troposphere and the stratosphere, the UTLS contains various processes that facilitate stratosphere-troposphere exchange (STE) which can redistribute radiatively important species such as water vapor or ozone. One potential marker for STE is the double tropopause (DT). Therefore this study seeks to further understand how DTs form and how they could enhance the current understanding of some STE processes in the UTLS. Using data from the High Resolution Dynamic Limb Sounder (HIRDLS), a data set with high vertical and horizontal resolution, newly discovered DT structures are found over the Pacific and Atlantic oceans that suggest a relationship between the DT and both storm tracks and Rossby waves. The association between DTs and storm tracks is examined by further analyzing the recently discovered and unexpected relationship between the DT and the tropopause inversion layer (TIL) in a developing baroclinic disturbance. Results show an increase in the number of DTs when the lapse rate of the extratropical TIL is less than -2°C/km, i.e. when the TIL is stronger and the local stability is higher. Composites of ERA-Interim DT profiles for three different TIL strengths shows that the vertical motion and relative vorticity both decrease as the TIL increases, which suggests the warm conveyor belt as a mechanism. This is investigated further with a case study analysis of a developing extratropical cyclone in the Pacific Ocean. Additionally, an analysis of DTs in relation to the large scale flow responsible for storm development shows a strong correlation between monthly Rossby wave activity, ozone laminae and DT variability. Further examination shows that if these waves break a DT will be found with a wave breaking event about 30% of the time in the eastern Pacific and eastern Atlantic oceans, both regions of poleward wave

  6. [Color selection of ultrathin veneers in clinic].

    PubMed

    Feng, Sun

    2016-12-01

    Ultrathin veneer is a new therapeutic technology developed from minimally invasive theories. Ultrathin veneer alters the unwanted shape and color of a tooth through minimal or lack of preparation. The color of tooth after restoration is mixed with the natural color of tooth, the original color of veneer, and the color of bonding material because of ultrathin (approximately 0.2 mm) veneer. Thus, the color is affected by numerous variations. Full considerations are required for creating designs. The author summarizes clinical points and provides suggestions for ultrathin veneer in color.

  7. Upscaling the impact of convective overshooting (COV) through BRAMS: a continental and wet-season scale study of the water vapour (WV) budget in the tropical tropopause layer (TTL).

    NASA Astrophysics Data System (ADS)

    Behera, Abhinna; Rivière, Emmanuel; Marécal, Virginie; Rysman, Jean-François; Claud, Chantal; Burgalat, Jérémie

    2017-04-01

    The stratospheric water vapour (WV) has a conceding impact on the radiative and chemical budget of Earth's atmosphere. The convective overshooting (COV) at the tropics is well admitted for playing a role in transporting directly WV to the stratosphere. Nonetheless, its impact on the lower stratosphere is yet to be determined at global scale, as the satellite and other air-borne measurements are not of having fine enough resolution to quantify this impact at large scale. Therefore, efforts have been made to quantify the influence of COV over the WV budget in the tropical tropopause layer (TTL) through modelling. Our approach is to build two synthetic tropical wet-seasons; where one would be having only deep convection (DC) but no COV at all, and the second one would be having the COV, and in both cases the WV budget in the TTL would be estimated. Before that, a French-Brazilian TRO-pico campaign was carried out at Bauru, Brazil in order to understand the influence of COV on the WV budget in the TTL. The radio-sounding, and the small balloon-borne WV measurements from the campaign are being utilized to validate the model simulation. Brazilian version of Regional Atmospheric Modeling System (BRAMS) is used with a single grid system to simulate a WV variability in a wet-season. Grell's convective parameterization with ensemble closure, microphysics with double moment scheme and 7 types of hydrometeors are incorporated to simulate the WV variability for a wet-season at the tropics. The grid size of simulation is chosen to be 20 km x 20 km horizontally and from surface to 30 km altitude, so that there cannot be COV at all, only DC due to such a relatively coarse resolution. The European Centre for Medium-range Weather Forecasts (ECMWF) operational analyses data are used every 6 hours for grid initialization and boundary conditions, and grid center nudging. The simulation is carried out for a full wet-season (Nov 2012 - Mar 2013) at Brazilian scale, so that it would

  8. A global view of the extratropical tropopause transition layer from Atmospheric Chemistry Experiment Fourier Transform Spectrometer O3, H2O, and CO

    NASA Astrophysics Data System (ADS)

    Hegglin, M. I.; Boone, C. D.; Manney, G. L.; Walker, K. A.

    2009-04-01

    The global behavior of the extratropical tropopause transition layer (ExTL) is investigated using O3, H2O, and CO measurements from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) on Canada's SCISAT-1 satellite obtained between February 2004 and May 2007. The ExTL depth is derived using H2O-O3 and CO-O3 correlations. The ExTL top derived from H2O-O3 shows an increase from roughly 1-1.5 km above the thermal tropopause in the subtropics to 3-4 km (2.5-3.5 km) in the north (south) polar region, implying somewhat weaker troposphere-stratosphere-transport in the Southern Hemisphere. The ExTL bottom extends ˜1 km below the thermal tropopause, indicating a persistent stratospheric influence on the troposphere at all latitudes. The ExTL top derived from the CO-O3 correlation is lower, at 2 km or ˜345 K (1.5 km or ˜335 K) in the Northern (Southern) Hemisphere. Its annual mean coincides with the relative temperature maximum just above the thermal tropopause. The vertical CO gradient maximizes at the thermal tropopause, indicating a local minimum in mixing within the tropopause region. The seasonal changes in and the scales of the vertical H2O gradients show a similar pattern as the static stability structure of the tropopause inversion layer (TIL), which provides observational support for the hypothesis that H2O plays a radiative role in forcing and maintaining the structure of the TIL.

  9. The Quasi-biennial Oscillation and Annual Variations in Tropical Ozone from SHADOZ and HALOE

    NASA Technical Reports Server (NTRS)

    Witte, J. C.; Schoeberl, M. R.; Douglass, A. R.; Thompson, A. M.

    2008-01-01

    We examine the tropical ozone mixing ratio perturbation fields generated from a monthly ozone climatology using 1998 to 2006 ozonesonde data from the Southern Hemisphere Additional Ozonesondes (SHADOZ) network and the 13-year satellite record from 1993 to 2005 obtained from the Halogen Occultation Experiment (HALOE). The long time series and high vertical resolution of the ozone and temperature profiles from the SHADOZ sondes coupled with good tropical coverage north and south of the equator gives a detailed picture of the ozone structure in the lowermost stratosphere down through the tropopause where the picture obtained from HALOE measurements is blurred by coarse vertical resolution. Ozone perturbations respond to annual variations in the Brewer-Dobson Circulation (BDC) in the region just above the cold-point tropopause to around 20 km. Annual cycles in ozone and temperature are well correlated. Above 20 km, ozone and temperature perturbations are dominated by the Quasi-biennial Oscillation (QBO). Both satellite and sonde records show good agreement between positive and negative ozone mixing ratio anomalies and alternating QBO westerly and easterly wind shears from the Singapore rawinsondes with a mean periodicity of 26 months for SHADOZ and 25 months for HALOE. There is a temporal offset of one to three months with the QBO wind shear ahead of the ozone anomaly field. The meridional length scales for the annual cycle and the QBO, obtained using the temperature anomalies and wind shears in the thermal wind equation, compare well with theoretical calculations.

  10. Towards a theory of tropical/midlatitude mass exchange from the earth's surface through the stratosphere

    NASA Technical Reports Server (NTRS)

    Hartley, Dana

    1995-01-01

    The main focus of this work is to understand the dynamics of mass exchange between the tropics and the midlatitudes and to determine any links between tropospheric exchange and that in the stratosphere. We have approached this problem from two different perspectives. The first is aimed towards understanding the troposphere's role in inducing lower stratospheric tropical/midlatitude exchange. For this project we focus on observational analysis of the lower stratosphere to assess the key regions of transport in/out of the tropics and to what extent this transport is driven by tropospheric processes. The second approach is to determine the extent to which stratospheric processes influence the troposphere. In this project we are performing potential vorticity (PV) inversions to assess the winds induced near the tropopause when the stratospheric polar vortex is displaced equatorward. These are each discussed in more detail in the subsections below. Also, we have organized a session on Tropical/Midlatitude Interaction and Transport at the Fall AGU where we will be showing our latest results.

  11. Vertical distribution of ozone and the variation of tropopause heights based on ozonesonde and satellite observations. [Contract title: Internal Wave Motion

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liu, J. M.

    1986-01-01

    The distribution of atmospheric ozone is nonuniform both in space and time. Local ozone concentration vary with altitude, latitude, longitude, and season. Two year ozonesonde data, January 1981 to December 1982, observed at four Canadian stations and 2.5 year backscattered ultraviolet experiment data on the Nimbus-4 satellite, April 1970 to August 1972, observed over five American stations were used to study the relationship between the total ozone, vertical height distribution of the ozone mixing ratio, vertical height distribution of half total ozone, and the local tropopause height. The results show that there is a postive correlation between total ozone in Dobson Units and the tropopause height in terms of atmospheric pressure. This result suggests that local intrusion of the statosphere into the troposphere, or the local decreasing of tropopause height could occur if there is a local increasing of total ozone. A comparison of the vertical height distribution of the ozone mixing ratio, the modified pressure height of half total ozone and the tropopause height shows that the pressure height of an ozone mixing ratio of 0.3 micrograms/g, and the modified pressure height of half total ozone are very well correlated with the tropopause pressure height.

  12. A Study of the Vertical Structure of Tropical (20 deg S-20 deg N) Optically Thin Clouds from SAGE II Observations

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Minnis, Patrick; McCormick, M. Patrick; Kent, Geoffrey S.; Yue, Glenn K.; Young, David F.; Skeens, Kristi M.

    1998-01-01

    The tropical cloud data obtained by the satellite instrument of the Stratospheric Aerosol and Gas Experiment (SAGE) II from October 1984 to May 1991 have been used to study cloud vertical distribution, including thickness and multilayer structure, and to estimate cloud optical depth. The results indicate that the SAGE-II-observed clouds are generally optically thin clouds, corresponding to a range of optical depth between approximately 8 x 10(exp -4) and 3 x 10(exp -1) with a mean of about 0.035. Two-thirds are classified as subvisual cirrus and one-third thin cirrus. Clouds between 2- to 3-km thick occur most frequently. Approximately 30% of the SAGE II cloud measurements are isolated single-layer clouds, while 65% are high clouds contiguous with an underlying opaque cloud that terminates the SAGE II profile. Thin clouds above detached opaque clouds at altitudes greater than 6.5 km occur less often. Only about 3% of the SAGE II single-layer clouds are located above the tropopause, while 58% of the cloud layers never reach the tropopause. More than one-third of the clouds appear at the tropopause. This study also shows that clouds occur more frequently and extend higher above the tropopause over the western Pacific than than over the eastern Pacific, especially during northern winter. The uncertainty of the derived results due to the SAGE II sampling constraints, data processing, and cloud characteristics is discussed.

  13. DOE ASR Final Report on “Use of ARM Observations to Investigate the Role of Tropical Radiative Processes and Cloud Radiative Effects in Climate Simulations”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Qiang; Comstock, Jennifer

    The overall objective of this ASR funded project is to investigate the role of cloud radiative effects, especially those associated with tropical thin cirrus clouds in the tropical tropopause layer, by analyzing the ARM observations combined with numerical models. In particular, we have processed and analyzed the observations from the Raman lidar at the ARM SGP and TWP sites. In the tenure of the project (8/15/2013 – 8/14/2016 and with a no-cost extension to 8/14/2017), we have been concentrating on (i) developing an automated feature detection scheme of clouds and aerosols for the ARM Raman lidar; (ii) developing an automatedmore » retrieval of cloud and aerosol extinctions for the ARM Raman lidar; (iii) investigating cloud radiative effects based on the observations on the simulated temperatures in the tropical tropopause layer using a radiative-convective model; and (iv) examining the effect of changes of atmospheric composition on the tropical lower-stratospheric temperatures. In addition, we have examined the biases in the CALIPSO-inferred aerosol direct radiative effects using ground-based Raman lidars at the ARM SGP and TWP sites, and estimated the impact of lidar detection sensitivity on assessing global aerosol direct radiative effects. We have also investigated the diurnal cycle of clouds and precipitation at the ARM site using the cloud radar observations along with simulations from the multiscale modeling framework. The main results of our research efforts are reported in the six referred journal publications that acknowledge the DOE Grant DE-SC0010557.« less

  14. The Effect of Tropopause Seeing on Solar Telescope Site Testing

    NASA Astrophysics Data System (ADS)

    Beckers, Jacques M.

    2017-08-01

    The site testing for and seeing correction planning of the 4-m solar telescopes has failed to take into account the significant amount of seeing at tropopause levels (10-20 km altitude).The worst aspect of that seeing layer is its small isoplanatic patch size which at low solar elevations can be significantly less than 1 arcsec. The CLEAR/ATST/DKIST SDIMM seeing monitor is insensitive to this type of seeing. A correction for this missed seeing significantly decreases the measured seeing qualities for the sites tested especially in the early morning and late afternoon. It clearly shows the lake site to be superior with mid-day observations much to be preferred. The small tropopause isoplanatic patch size values also complicate the implementation of the solar MCAO systems aimed at large field-of-view sun imaging. Currently planned systems only correct for lower-layer seeing for which the isoplanatic patch size is about one arc minute. To fully achieve the diffraction limit of the 4-meter class (0.025 arcsec at 500 nm), over a large enough field-of-view to be of scientific interest, complicated Multi-Conjugate Adaptive Optics systems will be needed.

  15. Monsoon Circulations and Tropical Heterogeneous Chlorine Chemistry in the Stratosphere

    NASA Astrophysics Data System (ADS)

    Kinnison, Doug; Solomon, Susan; Garcia, Rolando; Bandoro, Justin; Wilka, Catherine; Neeley, Ryan, III; Schmidt, Anja; Barnes, John; Vernier, Jean-Paul; Höpfner, Michael; Mills, Michael

    2017-04-01

    Heterogeneous chlorine chemistry on and in liquid polar stratospheric particles is thought to play a significant role in polar and subpolar ozone depletion. Previous studies have not provided evidence for heterogeneous chlorine chemistry occurring in the tropical stratosphere. Using the current best understanding of liquid stratospheric particle chemistry in a state-of-the-art numerical model, we examine whether such processes should be expected to affect tropical composition, particularly at and slightly above the cold tropical tropopause, in association with the Asian and North American summer (June-July-August) monsoons. The Specified Dynamics version of the Community Earth System Model version 1 (CESM1) Whole Atmosphere Community Climate Model (WACCM) is used in this study. This model is nudged to externally specified dynamical fields for temperature, zonal and meridional winds, and surface pressure fields from the NASA Modern Era Retrospective Analysis for Research and Applications (MERRA). Model simulations suggest that transport processes associated with the summer monsoons bring increased abundances of hydrochloric acid (HCl) into contact with liquid sulfate aerosols in the cold tropical lowermost stratosphere, leading to heterogeneous chemical activation of chlorine species. The calculations indicate that the spatial and seasonal distributions of chlorine monoxide (ClO) and chlorine nitrate (ClONO2) near the monsoon regions of the northern hemisphere tropical and subtropical lowermost stratosphere could provide indicators of heterogeneous chlorine processing. In the model, these processes impact the local ozone budget and decrease ozone abundances, implying a chemical contribution to longer-term northern tropical ozone profile changes at 16-19 km.

  16. The impact of gravity waves and cloud nucleation threshold on stratospheric water and tropical tropospheric cloud fraction

    NASA Astrophysics Data System (ADS)

    Schoeberl, Mark; Dessler, Andrew; Ye, Hao; Wang, Tao; Avery, Melody; Jensen, Eric

    2016-08-01

    Using the Modern Era Retrospective-Analysis for Research and Applications (MERRA) and MERRA-2 reanalysis winds, temperatures, and anvil cloud ice, we explore the impact of varying the cloud nucleation threshold relative humidity (RH) and high-frequency gravity waves on stratospheric water vapor (H2O) and upper tropical tropopause cloud fraction (TCF). Our model results are compared to 2008/2009 winter TCF derived from Cloud-Aerosol Lidar with Orthogonal Polarization and H2O observations from the Microwave Limb Sounder (MLS). The RH threshold affects both model H2O and TCF, while high-frequency gravity waves mostly impact TCF. Adjusting the nucleation RH and the amplitude of high-frequency gravity waves allows us to tune the model to observations. Reasonable observational agreement is obtained with a nucleation threshold between 130% and 150% RH consistent with airborne observations. For the MERRA reanalysis, we lower the tropopause temperature by 0.5 K roughly consistent with GPS radio occultation measurements and include ~0.1 K high-frequency gravity wave temperature oscillations in order to match TCF and H2O observations. For MERRA-2 we do not need to adjust the tropopause temperature nor add gravity waves, because there are sufficient high-frequency temperature oscillations already present in the MERRA-2 reanalysis to reproduce the observed TCF.

  17. Upper-tropospheric inversion and easterly jet in the tropics

    NASA Astrophysics Data System (ADS)

    Fujiwara, M.; Xie, S.-P.; Shiotani, M.; Hashizume, H.; Hasebe, F.; VöMel, H.; Oltmans, S. J.; Watanabe, T.

    2003-12-01

    Shipboard radiosonde measurements revealed a persistent temperature inversion layer with a thickness of ˜200 m at 12-13 km in a nonconvective region over the tropical eastern Pacific, along 2°N, in September 1999. Simultaneous relative humidity measurements indicated that the thin inversion layer was located at the top of a very wet layer with a thickness of 3-4 km, which was found to originate from the intertropical convergence zone (ITCZ) to the north. Radiative transfer calculations suggested that this upper tropospheric inversion (UTI) was produced and maintained by strong longwave cooling in this wet layer. A strong easterly jet stream was also observed at 12-13 km, centered around 4°-5°N. This easterly jet was in the thermal wind balance, with meridional temperature gradients produced by the cloud and radiative processes in the ITCZ and the wet outflow. Furthermore, the jet, in turn, acted to spread inversions further downstream through the transport of radiatively active water vapor. This feedback mechanism may explain the omnipresence of temperature inversions and layering structures in trace gases in the tropical troposphere. Examination of high-resolution radiosonde data at other sites in the tropical Pacific indicates that similar UTIs often appear around 12-15 km. The UTI around 12-15 km may thus be characterized as one of the "climatological" inversions in the tropical troposphere, forming the lower boundary of the so-called tropical tropopause layer, where the tropospheric air is processed photochemically and microphysically before entering the stratosphere.

  18. Homogeneous Aerosol Freezing in the Tops of High-Altitude Tropical Cumulonimbus Clouds

    NASA Technical Reports Server (NTRS)

    Jensen, E. J.; Ackerman, A. S.

    2006-01-01

    Numerical simulations of deep, intense continental tropical convection indicate that when the cloud tops extend more than a few kilometers above the liquid water homogeneous freezing level, ice nucleation due to freezing of entrained aqueous sulfate aerosols generates large concentrations of small crystals (diameters less than approx. equal to 20 micrometers). The small crystals produced by aerosol freezing have the largest impact on cloud-top ice concentration for convective clouds with strong updrafts but relatively low aerosol concentrations. An implication of this result is that cloud-top ice concentrations in high anvil cirrus can be controlled primarily by updraft speeds in the tops of convective plumes and to a lesser extent by aerosol concentrations in the uppermost troposphere. While larger crystals precipitate out and sublimate in subsaturated air below, the population of small crystals can persist in the saturated uppermost troposphere for many hours, thereby prolonging the lifetime of remnants from anvil cirrus in the tropical tropopause layer.

  19. Weakened stratospheric quasibiennial oscillation driven by increased tropical mean upwelling.

    PubMed

    Kawatani, Yoshio; Hamilton, Kevin

    2013-05-23

    The zonal wind in the tropical stratosphere switches between prevailing easterlies and westerlies with a period of about 28 months. In the lowermost stratosphere, the vertical structure of this quasibiennial oscillation (QBO) is linked to the mean upwelling, which itself is a key factor in determining stratospheric composition. Evidence for changes in the QBO have until now been equivocal, raising questions as to the extent of stratospheric circulation changes in a global warming context. Here we report an analysis of near-equatorial radiosonde observations for 1953-2012, and reveal a long-term trend of weakening amplitude in the zonal wind QBO in the tropical lower stratosphere. The trend is particularly notable at the 70-hectopascal pressure level (an altitude of about 19 kilometres), where the QBO amplitudes dropped by roughly one-third over the period. This trend is also apparent in the global warming simulations of the four models in the Coupled Model Intercomparison Project Phase 5 (CMIP5) that realistically simulate the QBO. The weakening is most reasonably explained as resulting from a trend of increased mean tropical upwelling in the lower stratosphere. Almost all comprehensive climate models have projected an intensifying tropical upwelling in global warming scenarios, but attempts to estimate changes in the upwelling by using observational data have yielded ambiguous, inconclusive or contradictory results. Our discovery of a weakening trend in the lower-stratosphere QBO amplitude provides strong support for the existence of a long-term trend of enhanced upwelling near the tropical tropopause.

  20. Ultrathin Ferroelectric Films: Growth, Characterization, Physics and Applications.

    PubMed

    Wang, Ying; Chen, Weijin; Wang, Biao; Zheng, Yue

    2014-09-11

    Ultrathin ferroelectric films are of increasing interests these years, owing to the need of device miniaturization and their wide spectrum of appealing properties. Recent advanced deposition methods and characterization techniques have largely broadened the scope of experimental researches of ultrathin ferroelectric films, pushing intensive property study and promising device applications. This review aims to cover state-of-the-art experimental works of ultrathin ferroelectric films, with a comprehensive survey of growth methods, characterization techniques, important phenomena and properties, as well as device applications. The strongest emphasis is on those aspects intimately related to the unique phenomena and physics of ultrathin ferroelectric films. Prospects and challenges of this field also have been highlighted.

  1. Ultrathin Ferroelectric Films: Growth, Characterization, Physics and Applications

    PubMed Central

    Wang, Ying; Chen, Weijin; Wang, Biao; Zheng, Yue

    2014-01-01

    Ultrathin ferroelectric films are of increasing interests these years, owing to the need of device miniaturization and their wide spectrum of appealing properties. Recent advanced deposition methods and characterization techniques have largely broadened the scope of experimental researches of ultrathin ferroelectric films, pushing intensive property study and promising device applications. This review aims to cover state-of-the-art experimental works of ultrathin ferroelectric films, with a comprehensive survey of growth methods, characterization techniques, important phenomena and properties, as well as device applications. The strongest emphasis is on those aspects intimately related to the unique phenomena and physics of ultrathin ferroelectric films. Prospects and challenges of this field also have been highlighted. PMID:28788196

  2. The Influence of the 2006 Indonesian Biomass Burning Aerosols on Tropical Dynamics Studied with the GEOS-5 AGCM

    NASA Technical Reports Server (NTRS)

    Ott, Lesley; Duncan, Bryan; Pawson, Steven; Colarco, Peter; Chin, Mian; Randles, Cynthia; Diehl, Thomas; Nielsen, Eric

    2009-01-01

    The direct and semi-direct effects of aerosols produced by Indonesian biomass burning (BB) during August November 2006 on tropical dynamics have been examined using NASA's Goddard Earth Observing System, Version 5 (GEOS-5) atmospheric general circulation model (AGCM). The AGCM includes CO, which is transported by resolved and sub-grid processes and subject to a linearized chemical loss rate. Simulations were driven by two sets of aerosol forcing fields calculated offline, one that included Indonesian BB aerosol emissions and one that did not. In order to separate the influence of the aerosols from internal model variability, the means of two ten-member ensembles were compared. Diabatic heating from BB aerosols increased temperatures over Indonesia between 150 and 400 hPa. The higher temperatures resulted in strong increases in upward grid-scale vertical motion, which increased water vapor and CO over Indonesia. In October, the largest increases in water vapor were found in the mid-troposphere (25%) while the largest increases in CO occurred just below the tropopause (80 ppbv or 50%). Diabatic heating from the Indonesian BB aerosols caused CO to increase by 9% throughout the tropical tropopause layer in November and 5% in the lower stratosphere in December. The results demonstrate that aerosol heating plays an important role in the transport of BB pollution and troposphere-to-stratosphere transport. Changes in vertical motion and cloudiness induced by aerosol heating can also alter the transport and phase of water vapor in the upper troposphere/lower stratosphere.

  3. The gradient of meteorological and chemical variables across the tropopause

    NASA Technical Reports Server (NTRS)

    Dickerson, Russell R.; Doddridge, Bruce G.; Poulida, Olga; Owens, Melody A.

    1994-01-01

    The downward transport of air through the tropopause can bring substantial amounts of ozone and reactive nitrogen into the upper troposphere. In this cold region of the atmosphere, O3 is particularly effective as a greenhouse gas. As part of the North Dakota Thunderstorm Project in June 1989, the NCAR Sabreliner made five flights through the tropopause. We measured ozone, nitric oxide (NO), total reactive nitrogen (NO(y)), carbon monoxide (CO), and water vapor (H2)), and took grab samples for hydrocarbon (HC) analysis. Hydrocarbons, CO, and H2O, species with sources primarily at the earth's surface, showed a strong concentration decrease with increasing altitude, while O3 and NO(y), species with a source in the stratosphere, showed a strong concentration increase with increasing altitude. Stratospheric concentrations of NO(x), NO(y), and H2O were all high relative to winter observations made during NASA's AASE. We suggest that midlatitude thunderstorms may inject wet, NO-rich air into the lower stratosphere. Calculation based on measured ratios of NO(x) and NO(y) to O3 yield a total flux of reactive nitrogen from the Northern Hemisphere stratosphere into the troposphere of 1 to 2 Tg(N) yr(exp -1) with about 8 percent in the form of NO(x). This value is higher than reported estimates of total stratospheric nitrogen fixation.

  4. Recent Advances in Ultrathin Two-Dimensional Nanomaterials.

    PubMed

    Tan, Chaoliang; Cao, Xiehong; Wu, Xue-Jun; He, Qiyuan; Yang, Jian; Zhang, Xiao; Chen, Junze; Zhao, Wei; Han, Shikui; Nam, Gwang-Hyeon; Sindoro, Melinda; Zhang, Hua

    2017-05-10

    Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocatalysis, batteries, supercapacitors, solar cells, photocatalysis, and sensing platforms. Finally, the challenges and outlooks in this promising field are featured on the basis of its current development.

  5. The Extratropical Tropopause Inversion Layer

    NASA Astrophysics Data System (ADS)

    Ming, Alison; Haynes, Peter

    2013-04-01

    The extratropical tropopause inversion layer (TIL) is studied by analyzing numerical simulations with a dry idealized global circulation model. The model temperature field is relaxed towards different restoration profiles. We demonstrate that in simulations with the Held and Suarez restoration profile, a TIL is present in the steady state, whereas for a different restoration profile no TIL arises. Neither restoration profile includes a TIL-like structure and if an enhancement in the static stability occurs, it is a result of the model dynamics. We consider the mechanisms by which the TIL forms following previous work in attributing the formation to the structure of the residual circulation, but by further examining the relation of the residual circulation to the structure of the Eliassen-Palm flux convergence using the downward control principle. The presence of two separate regions of convergence of the Eliassen-Palm flux, one in the troposphere and the other in the stratosphere, is found to be necessary to the formation of the TIL. We also discuss the relations to other theories that emphasize the role of vertical gradients in radiatively active species.

  6. Fundamental limits of ultrathin metasurfaces

    PubMed Central

    Arbabi, Amir; Faraon, Andrei

    2017-01-01

    We present a set of universal relations which relate the local transmission, reflection, and polarization conversion coefficients of a general class of non-magnetic passive ultrathin metasurfaces. We show that these relations are a result of equal forward and backward scattering by single layer ultrathin metasurfaces, and they lead to confinement of the transmission, reflection, and polarization conversion coefficients to limited regions of the complex plane. Using these relations, we investigate the effect of the presence of a substrate, and show that the maximum polarization conversion efficiency for a transmissive metasurface decreases as the refractive index contrast between the substrate and cladding layer increases. Furthermore, we demonstrate that a single layer reflective metasurface can achieve full 2π phase shift coverage without altering the polarization if it is illuminated from the higher refractive index material. We also discuss two approaches for achieving asymmetric scattering from metasurfaces, and realizing metasurfaces which overcome the performance limitations of single layer ultrathin metasurfaces. PMID:28262739

  7. Electrochemical Corrosion Properties of Commercial Ultra-Thin Copper Foils

    NASA Astrophysics Data System (ADS)

    Yen, Ming-Hsuan; Liu, Jen-Hsiang; Song, Jenn-Ming; Lin, Shih-Ching

    2017-08-01

    Ultra-thin electrodeposited Cu foils have been developed for substrate thinning for mobile devices. Considering the corrosion by residual etchants from the lithography process for high-density circuit wiring, this study investigates the microstructural features of ultra-thin electrodeposited Cu foils with a thickness of 3 μm and their electrochemical corrosion performance in CuCl2-based etching solution. X-ray diffraction and electron backscatter diffraction analyses verify that ultra-thin Cu foils exhibit a random texture and equi-axed grains. Polarization curves show that ultra-thin foils exhibit a higher corrosion potential and a lower corrosion current density compared with conventional (220)-oriented foils with fan-like distributed fine-elongated columnar grains. Chronoamperometric results also suggest that ultra-thin foils possess superior corrosion resistance. The passive layer, mainly composed of CuCl and Cu2O, forms and dissolves in sequence during polarization.

  8. Vertical distribution of CH4 and N2O over the tropical site Hyderabad

    NASA Technical Reports Server (NTRS)

    Lal, Shyam; Subbaraya, B. H.; Fabian, Peter; Borchers, R.

    1994-01-01

    Vertical distribution profiles of N2O and CH4 have been measured from Hyderabad, India using a balloon-borne cryogenic air sampler. The samples have been analyzed using gas chromatographic techniques. Results for two balloon flights made in 1987 and 1990 show effects of tropical characteristics like higher tropopause and upwelling motion due to Hadley circulation. These profiles also exhibit perturbations around 25 km height, which are likely to be due to dynamical effects. A comparison with the SAMS data show that the SAMS values for both these gases are higher by a factor of about 1.5 to 2 around 30 km height.

  9. Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau

    PubMed Central

    Fu, Rong; Hu, Yuanlong; Wright, Jonathon S.; Jiang, Jonathan H.; Dickinson, Robert E.; Chen, Mingxuan; Filipiak, Mark; Read, William G.; Waters, Joe W.; Wu, Dong L.

    2006-01-01

    During boreal summer, much of the water vapor and CO entering the global tropical stratosphere is transported over the Asian monsoon/Tibetan Plateau (TP) region. Studies have suggested that most of this transport is carried out either by tropical convection over the South Asian monsoon region or by extratropical convection over southern China. By using measurements from the newly available National Aeronautics and Space Administration Aura Microwave Limb Sounder, along with observations from the Aqua and Tropical Rainfall-Measuring Mission satellites, we establish that the TP provides the main pathway for cross-tropopause transport in this region. Tropospheric moist convection driven by elevated surface heating over the TP is deeper and detrains more water vapor, CO, and ice at the tropopause than over the monsoon area. Warmer tropopause temperatures and slower-falling, smaller cirrus cloud particles in less saturated ambient air at the tropopause also allow more water vapor to travel into the lower stratosphere over the TP, effectively short-circuiting the slower ascent of water vapor across the cold tropical tropopause over the monsoon area. Air that is high in water vapor and CO over the Asian monsoon/TP region enters the lower stratosphere primarily over the TP, and it is then transported toward the Asian monsoon area and disperses into the large-scale upward motion of the global stratospheric circulation. Thus, hydration of the global stratosphere could be especially sensitive to changes of convection over the TP. PMID:16585523

  10. Implications of Observed High Supersaturation for TTL Cloud Formation and Dehydration

    NASA Technical Reports Server (NTRS)

    Jensen, Eric

    2004-01-01

    In situ measurements of water vapor concentration made during the CRYSTAL-FACE and Pre-AVE missions indicate higher than expected supersaturations in both clear and cloudy air near the cold tropical tropopause: (1) steady-state ice supersaturations of 20-30% were measured within cirrus at T < 200 K; (2) supersaturations exceeding 100% (near water saturation) were observed under cloud-free conditions near 187 K. The in-cloud measurements challenge the conventional belief that any water vapor in excess of ice saturation should be depleted by crystal growth given sufficient time. The high clear-sky supersaturations imply that thresholds for ice nucleation due to homogeneous freezing of aerosols (or any other mechanism) are much higher than those inferred from laboratory measurements. We will use simulations of Tropical Tropopause Layer (TTL) transport and cloud formation throughout the tropics to show that these effects have important implications for TTL cloud frequency and freeze-drying of air crossing the tropical tropopause cold trap.

  11. Terahertz carpet cloak based on ultrathin metasurface

    NASA Astrophysics Data System (ADS)

    Wei, Minggui; Yang, Quanlong; Zhang, Xueqian; Li, Yanfeng; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2018-01-01

    Ultrathin metasurfaces with local phase compensation deliver new schemes to cloaking devices. We demonstrate a remarkable large size carpet cloak realized by an ultrathin metasurface at terahertz frequencies. The metasurface cloak is constructed by periodically arranging 12 different elements. The reflected wave front is perfectly reconstructed by an ultrathin metasurface cloak, which perform well under both intensity-sensitive and phase-sensitive detectors. The invisibility is verified when the cloak is placed on a reflecting triangular surface (bump). The multi-step discrete phase design method would greatly simplify the design process and is probable to achieve large-dimension cloaks, for applications in radar and antenna systems as a thin and easy-to-fabricate solution for radio and terahertz frequencies.

  12. Observations of Convective and Dynamical Instabilities in Tropopause Folds and their Contribution to Stratosphere-Troposphere Exchange

    NASA Technical Reports Server (NTRS)

    Cho, John Y. N.; Newell, Reginald E.; Bui, T. Paul; Browell, Edward V.; Fenn, Martha A.; Gary, Bruce L.; Mahoney, Michael J.; Gregory, Gerald L.; Sachse, Glen W.; Vay, Stephanie A.

    1999-01-01

    With aircraft-mounted in-situ and remote sensing instruments for dynamical, thermal. and chemical measurements, we studied two cases of tropopause folding. In both folds we found Kelvin-Helmholtz billows with horizontal wavelength of about 900 m and thickness of about 120 m. In one case the instability was effectively mixing the bottomside of the fold, leading to the transfer of stratospheric air into the troposphere. Also we discovered in both cases small-scale secondary ozone maxima shortly after the aircraft ascended past the topside of the fold that corresponded to regions of convective instability. We interpreted this phenomenon as convectively breaking gravity waves. Therefore, we posit that convectively breaking gravity waves acting on tropopause folds must be added to the list of important irreversible mixing mechanisms leading to stratosphere-troposphere exchange.

  13. BrO and inferred Bry profiles over the western Pacific: relevance of inorganic bromine sources and a Bry minimum in the aged tropical tropopause layer

    NASA Astrophysics Data System (ADS)

    Koenig, Theodore K.; Volkamer, Rainer; Baidar, Sunil; Dix, Barbara; Wang, Siyuan; Anderson, Daniel C.; Salawitch, Ross J.; Wales, Pamela A.; Cuevas, Carlos A.; Fernandez, Rafael P.; Saiz-Lopez, Alfonso; Evans, Mathew J.; Sherwen, Tomás; Jacob, Daniel J.; Schmidt, Johan; Kinnison, Douglas; Lamarque, Jean-François; Apel, Eric C.; Bresch, James C.; Campos, Teresa; Flocke, Frank M.; Hall, Samuel R.; Honomichl, Shawn B.; Hornbrook, Rebecca; Jensen, Jørgen B.; Lueb, Richard; Montzka, Denise D.; Pan, Laura L.; Reeves, J. Michael; Schauffler, Sue M.; Ullmann, Kirk; Weinheimer, Andrew J.; Atlas, Elliot L.; Donets, Valeria; Navarro, Maria A.; Riemer, Daniel; Blake, Nicola J.; Chen, Dexian; Huey, L. Gregory; Tanner, David J.; Hanisco, Thomas F.; Wolfe, Glenn M.

    2017-12-01

    We report measurements of bromine monoxide (BrO) and use an observationally constrained chemical box model to infer total gas-phase inorganic bromine (Bry) over the tropical western Pacific Ocean (tWPO) during the CONTRAST field campaign (January-February 2014). The observed BrO and inferred Bry profiles peak in the marine boundary layer (MBL), suggesting the need for a bromine source from sea-salt aerosol (SSA), in addition to organic bromine (CBry). Both profiles are found to be C-shaped with local maxima in the upper free troposphere (FT). The median tropospheric BrO vertical column density (VCD) was measured as 1.6×1013 molec cm-2, compared to model predictions of 0.9×1013 molec cm-2 in GEOS-Chem (CBry but no SSA source), 0.4×1013 molec cm-2 in CAM-Chem (CBry and SSA), and 2.1×1013 molec cm-2 in GEOS-Chem (CBry and SSA). Neither global model fully captures the C-shape of the Bry profile. A local Bry maximum of 3.6 ppt (2.9-4.4 ppt; 95 % confidence interval, CI) is inferred between 9.5 and 13.5 km in air masses influenced by recent convective outflow. Unlike BrO, which increases from the convective tropical tropopause layer (TTL) to the aged TTL, gas-phase Bry decreases from the convective TTL to the aged TTL. Analysis of gas-phase Bry against multiple tracers (CFC-11, H2O / O3 ratio, and potential temperature) reveals a Bry minimum of 2.7 ppt (2.3-3.1 ppt; 95 % CI) in the aged TTL, which agrees closely with a stratospheric injection of 2.6 ± 0.6 ppt of inorganic Bry (estimated from CFC-11 correlations), and is remarkably insensitive to assumptions about heterogeneous chemistry. Bry increases to 6.3 ppt (5.6-7.0 ppt; 95 % CI) in the stratospheric "middleworld" and 6.9 ppt (6.5-7.3 ppt; 95 % CI) in the stratospheric "overworld". The local Bry minimum in the aged TTL is qualitatively (but not quantitatively) captured by CAM-Chem, and suggests a more complex partitioning of gas-phase and aerosol Bry species than previously recognized. Our data

  14. Aerosol elemental concentrations in the tropopause region from intercontinental flights with the Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container (CARIBIC) platform

    NASA Astrophysics Data System (ADS)

    Papaspiropoulos, Giorgos; Martinsson, Bengt G.; Zahn, Andreas; Brenninkmeijer, Carl A. M.; Hermann, Markus; Heintzenberg, Jost; Fischer, Herbert; van Velthoven, Peter F. J.

    2002-12-01

    This study with the Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container (CARIBIC) platform investigates the aerosol elemental concentrations at 9-11 km altitude in the northern hemisphere. Measurements from 31 intercontinental flights over a 2-year period between Germany and Sri Lanka/Maldives in the Indian Ocean are presented. Aerosol samples were collected with an impaction technique and were analyzed for the concentration of 18 elements using particle-induced X-ray emission (PIXE). Additional measurements of particle number concentrations, ozone and carbon monoxide concentrations, and meteorological modeling were included in the interpretation of the aerosol elemental concentrations. Particulate sulphur was found to be by far the most abundant element. Its upper tropospheric concentration increased, on average, by a factor of 2 from the tropics to midlatitudes, with another factor 2 higher concentrations in the lowermost stratosphere over midlatitudes. Correlation patterns and source profiles suggest contributions from crustal sources and biomass burning, but not from meteor ablation. Coinciding latitudinal gradients in particulate sulphur concentrations and emissions suggest that fossil fuel combustion is an important source of the aerosol in the upper troposphere and lowermost stratosphere. The measurements indicate aerosol transport along isentropic surfaces across the tropopause into the lowermost stratosphere. As a result of the prolonged residence time, ageing via oxidation of sulphur dioxide in the lowermost stratosphere was found to be a likely high-altitude, strong source that, along with downward transport of stratospheric air, could explain the vertical gradient of particulate sulphur mass concentration around the extratropical tropopause.

  15. Ultrathin 2D Photocatalysts: Electronic-Structure Tailoring, Hybridization, and Applications.

    PubMed

    Di, Jun; Xiong, Jun; Li, Huaming; Liu, Zheng

    2018-01-01

    As a sustainable technology, semiconductor photocatalysis has attracted considerable interest in the past several decades owing to the potential to relieve or resolve energy and environmental-pollution issues. By virtue of their unique structural and electronic properties, emerging ultrathin 2D materials with appropriate band structure show enormous potential to achieve efficient photocatalytic performance. Here, the state-of-the-art progress on ultrathin 2D photocatalysts is reviewed and a critical appraisal of the classification, controllable synthesis, and formation mechanism of ultrathin 2D photocatalysts is presented. Then, different strategies to tailor the electronic structure of ultrathin 2D photocatalysts are summarized, including component tuning, thickness tuning, doping, and defect engineering. Hybridization with the introduction of a foreign component and maintaining the ultrathin 2D structure is presented to further boost the photocatalytic performance, such as quantum dots/2D materials, single atoms/2D materials, molecular/2D materials, and 2D-2D stacking materials. More importantly, the advancement of versatile photocatalytic applications of ultrathin 2D photocatalysts in the fields of water oxidation, hydrogen evolution, CO 2 reduction, nitrogen fixation, organic syntheses, and removal pollutants is discussed. Finally, the future opportunities and challenges regarding ultrathin 2D photocatalysts to bring about new opportunities for future research in the field of photocatalysis are also presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The Asian Tropopause Aerosol Layer Through Satellite and Balloon-Borne Measurements Combined With Modeling Approaches

    NASA Technical Reports Server (NTRS)

    Vernier, J.-P.; Fairlie, T. D.; Natarajan, M.; Wegner, T.; Baker, N.; Crawford, J.; Moore, J.; Deshler, T.; Gadhavi, H.; Jayaraman, A.; hide

    2016-01-01

    The Asian Tropopause Aerosol Layer-ATAL is a confined area of enhanced aerosol associated Summer Asia Monsoon spanning from the E. Med Sea to W. China. It essentially extends from top of convective outflow over much of SE Asia Existence recognize through CALIPSO observations.

  17. Unique airborne measurements at the tropopause of Fukushima Xe-133, aerosol, and aerosol precursors indicate aerosol formation via homogeneous and cosmic ray induced nucleation

    NASA Astrophysics Data System (ADS)

    Schlager, Hans; Arnold, Frank; Aufmhoff, Heinfried; Minikin, Andreas; Baumann, Robert; Simgen, Hardy; Lindemann, Stefan; Rauch, Ludwig; Kaether, Frank; Pirjola, Liisa; Schumann, Ulrich

    2014-05-01

    We report unique airborne measurements, at the tropopause, of the Fukushima radio nuclide Xe-133, aerosol particles (size, shape, number concentration, volatility), aerosol precursor gases (particularly SO2, HNO3, H2O). Our measurements and accompanying model simulations indicate homogeneous and cosmic ray induced aerosol formation at the tropopause. Using an extremely sensitive detection method, we managed to detect Fukushima Xe-133, an ideal transport tracer, at and even above the tropopause. To our knowledge, these airborne Xe-133 measurements are the only of their kind. Our investigations represent a striking example how a pioneering measurement of a Fukshima radio nuclide, employing an extremely sensitive method, can lead to new insights into an important atmospheric process. After the Fukushima accidential Xe-133 release (mostly during 11-15 March 2011), we have conducted two aircraft missions, which took place over Central Europe, on 23 March and 11 April 2011. In the air masses, encountered by the research aircraft on 23 March, we have detected Fukushima Xe-133 by an extremely sensitive method, at and even above the tropopause. Besides increased concentrations of Xe-133, we have detected also increased concentrations of the gases SO2, HNO3, and H2O. The Xe-133 data and accompanying transport model simulations indicate that a West-Pacific Warm Conveyor Belt (WCB) lifted East-Asian planetary boundary layer air to and even above the tropopause, followed by relatively fast quasi-horizontal advection to Europe. Along with Xe-133, anthropogenic SO2, NOx (mostly released from East-Asian ground-level combustion sources), and warer vapour were also lifted by the WCB. After the lift, SO2 and NOx experienced efficient solar UV-radiation driven conversion to the important aerosol precursors gases H2SO4 and HNO3. Our investigations indicate that, increased concentrations of the gases SO2, HNO3, and H2O promoted homogeneous and cosmic ray induced aerosol formation at and

  18. Ultra-thin plasma panel radiation detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, Peter S.

    An ultra-thin radiation detector includes a radiation detector gas chamber having at least one ultra-thin chamber window and an ultra-thin first substrate contained within the gas chamber. The detector further includes a second substrate generally parallel to and coupled to the first substrate and defining a gas gap between the first substrate and the second substrate. The detector further includes a discharge gas between the substrates and contained within the gas chamber, where the discharge gas is free to circulate within the gas chamber and between the first and second substrates at a given gas pressure. The detector further includesmore » a first electrode coupled to one of the substrates and a second electrode electrically coupled to the first electrode. The detector further includes a first discharge event detector coupled to at least one of the electrodes for detecting a gas discharge counting event in the electrode.« less

  19. The tropopause inversion layer in baroclinic life-cycle experiments: the role of diabatic processes

    NASA Astrophysics Data System (ADS)

    Kunkel, D.; Hoor, P.; Wirth, V.

    2016-01-01

    Recent studies on the formation of a quasi-permanent layer of enhanced static stability above the thermal tropopause revealed the contributions of dynamical and radiative processes. Dry dynamics leads to the evolution of a tropopause inversion layer (TIL), which is, however, too weak compared to observations and thus diabatic contributions are required. In this study we aim to assess the importance of diabatic processes in the understanding of TIL formation at midlatitudes. The non-hydrostatic model COSMO (COnsortium for Small-scale MOdelling) is applied in an idealized midlatitude channel configuration to simulate baroclinic life cycles. The effect of individual diabatic processes related to humidity, radiation, and turbulence is studied first to estimate the contribution of each of these processes to the TIL formation in addition to dry dynamics. In a second step these processes are stepwise included in the model to increase the complexity and finally estimate the relative importance of each process. The results suggest that including turbulence leads to a weaker TIL than in a dry reference simulation. In contrast, the TIL evolves stronger when radiation is included but the temporal evolution is still comparable to the reference. Using various cloud schemes in the model shows that latent heat release and consecutive increased vertical motions foster an earlier and stronger appearance of the TIL than in all other life cycles. Furthermore, updrafts moisten the upper troposphere and as such increase the radiative effect from water vapor. Particularly, this process becomes more relevant for maintaining the TIL during later stages of the life cycles. Increased convergence of the vertical wind induced by updrafts and by propagating inertia-gravity waves, which potentially dissipate, further contributes to the enhanced stability of the lower stratosphere. Finally, radiative feedback of ice clouds reaching up to the tropopause is identified to potentially further affect

  20. Biosensors Based on Ultrathin Film Composite Membranes

    DTIC Science & Technology

    1994-01-25

    composite membranes should have a number C •’ of potential advantages including fast response time, simplicity of construction, and applicability to a number...The support membrane for the ultrathin film composite was an Anopore ( Alltech Associates) microporous alumina filter, these membranes are 55 Pm thick...constant 02 concentration in this solution. Finally, one of the most important potential advantage of a sensor based on an ultrathin film composite

  1. Airborne Measurements of BrO and the Sum of HOBr and Br2 over the Tropical West Pacific from 1 to 15 Km During the CONvective TRansport of Active Species in the Tropics (CONTRAST) Experiment

    NASA Technical Reports Server (NTRS)

    Chen, Dexian; Huey, L. Gregory; Tanner, David J.; Salawitch, Ross J.; Anderson, Daniel C.; Wales, Pamela A.; Pan, Laura L.; Atlas, Elliot L.; Hornbrook, Rebecca S.; Apel, Eric C.; hide

    2016-01-01

    A chemical ionization mass spectrometer was used to measure BrO and HOBr + Br2 over the Tropical West Pacific Ocean within the altitude range of 1 to 15 km, during the CONvective TRansport of Active Species in the Tropics (CONTRAST) campaign in 2014. Isolated episodes of elevated BrO (up to 6.6 pptv) and/or HOBr + Br2 (up to 7.3 pptv) were observed in the tropical free troposphere (TFT) and were associated with biomass burning. However, most of the time we did not observe significant BrO or HOBr + Br2 in the TFT and the tropical tropopause layer (TTL) above our limits of detection (LOD). The 1 min average LOD for BrO ranged from 0.6 to 1.6 pptv and for HOBr + Br2 ranged from 1.3 to 3.5 pptv. During one flight, BrO observations from the TTL to the extratropical lowermost stratosphere were used to infer a profile of inorganic bromine (Br(sub y)). Based on this profile, we estimated the product gas injection of bromine species into the stratosphere to be 2 pptv. Analysis of Br(sub y) partitioning further indicates that BrO levels are likely very low in the TFT environment and that future studies should target the measurement of HBr or atomic Br.

  2. Low-cost ultra-thin broadband terahertz beam-splitter.

    PubMed

    Ung, Benjamin S-Y; Fumeaux, Christophe; Lin, Hungyen; Fischer, Bernd M; Ng, Brian W-H; Abbott, Derek

    2012-02-27

    A low-cost terahertz beam-splitter is fabricated using ultra-thin LDPE plastic sheeting coated with a conducting silver layer. The beam splitting ratio is determined as a function of the thickness of the silver layer--thus any required splitting ratio can be printed on demand with a suitable rapid prototyping technology. The low-cost aspect is a consequence of the fact that ultra-thin LDPE sheeting is readily obtainable, known more commonly as domestic plastic wrap or cling wrap. The proposed beam-splitter has numerous advantages over float zone silicon wafers commonly used within the terahertz frequency range. These advantages include low-cost, ease of handling, ultra-thin thickness, and any required beam splitting ratio can be readily fabricated. Furthermore, as the beam-splitter is ultra-thin, it presents low loss and does not suffer from Fabry-Pérot effects. Measurements performed on manufactured prototypes with different splitting ratios demonstrate a good agreement with our theoretical model in both P and S polarizations, exhibiting nearly frequency-independent splitting ratios in the terahertz frequency range.

  3. Manipulation of Spin-Torque Generation Using Ultrathin Au

    NASA Astrophysics Data System (ADS)

    An, Hongyu; Haku, Satoshi; Kanno, Yusuke; Nakayama, Hiroyasu; Maki, Hideyuki; Shi, Ji; Ando, Kazuya

    2018-06-01

    The generation and the manipulation of current-induced spin-orbit torques are of essential interest in spintronics. However, in spite of the vital progress in spin orbitronics, electric control of the spin-torque generation still remains elusive and challenging. We report on electric control of the spin-torque generation using ionic-liquid gating of ultrathin Au. We show that by simply depositing a SiO2 capping layer on an ultrathin-Au /Ni81Fe19 bilayer, the spin-torque generation efficiency is drastically enhanced by a maximum of 7 times. This enhancement is verified to be originated from the rough ultrathin-Au /Ni81Fe19 interface induced by the SiO2 deposition, which results in the enhancement of the interface spin-orbit scattering. We further show that the spin-torque generation efficiency from the ultrathin Au film can be reversibly manipulated by a factor of 2 using the ionic gating with an external electric field within a small range of 1 V. These results pave a way towards the efficient control of the spin-torque generation in spintronic applications.

  4. High Static Stability in the Mixed Layer Above the Extratropical Tropopause

    NASA Astrophysics Data System (ADS)

    Kunz, A.; Konopka, P.; Müller, R.; Pan, L. L.; Schiller, C.

    2009-04-01

    A strong relationship between the static stability N2 in the tropopause inversion layer (TIL) and the intensity of mixing is evident from in-situ observations during SPURT. With a new simple measure of mixing intensity based on O3/CO tracer correlations, a very high mixing intensity connected to a high N2 is found in the extratropical mixing layer. Using radiative transfer calculations we simulate the influence of trace gases such as O3 and H2O on the temperature gradient and thus on the static stability above the tropopause in an idealized (L-shaped) non-mixed and reference mixed atmosphere. N2 enhances due to an intensifying mixing in the LS. At the same time the temperature decreases together with a development of an inversion and the TIL. Hereby H2O plays the dominant role in maintenance the temperature inversion and the TIL structure. In case of non mixed profiles the TIL vanishes. The results motivate a link between the mixing layer and the TIL. The mixing layer contains on the one hand older air masses, with high values of N2 due to radiative adjustment. This part of the mixing layer is spatial identically to the TIL. On the other hand, there are younger air masses with somehow lower N2 values within the mixing layer, because of fast intrusion processes from the troposphere due to the permeability or so-called mid-latitude-breaks associated with the jet.

  5. A potential relation between stratosphere-troposphere exchange and the tropopause inversion layer in idealized baroclinic life cycle experiments

    NASA Astrophysics Data System (ADS)

    Kunkel, Daniel; Kaluza, Thorsten; Wirth, Volkmar; Hoor, Peter

    2017-04-01

    The tropopause inversion layer (TIL) as a well known feature of the lower stratosphere in the extratropics has often been suspected of impeding the exchange between stratospheric and tropospheric air masses (STE). However, it is still an open question whether a physical relation between STE and the TIL exists. We use a non-hydrostatic limited area model to simulate idealized baroclinic life cycles along with different diagnostics for STE such as Eulerian passive tracers and Lagrangian trajectories. Recent findings suggest a strenghtening of the TIL during such life cycles due to diabatic tropospheric processes as well as wave breaking. Moreover, STE also occurs frequently during such baroclinic life cycles, e.g., in the vicinity of tropopause folds, cut-off lows, or stratospheric streamers. Contradicting to current knowledge the analysis of static stability above the thermal tropopause and the identification of regions of STE show that a temporal and spatial co-location of a strong TIL and regions of transport from the troposphere into the stratosphere is possible. Evidence is further presented that such a co-location is related to tropospheric updrafts and small scale waves in the lower stratosphere. These findings are also supported by an analysis of baroclinic life cycles in high resolution operational analysis data from the European Center for Medium-Range Weather Forecasts (ECMWF).

  6. Strong variations in water vapor in the Asian Monsoon UTLS region observed during the 2017 StratoClim campaign

    NASA Astrophysics Data System (ADS)

    Moyer, E. J.; Clouser, B.; Sarkozy, L.; Gaeta, D. C.; Singer, C. E.

    2017-12-01

    The StratoClim campaign in July/August 2017 provided the first in-situ sampling in the UTLS region over the Asian monsoon. Preliminary results from high-precision water vapor measurements from a new instrument, the Chicago Water Isotope Spectrometer, imply substantial variation in water vapor above the local cold-point tropopause and above the 380 K potential temperature surface. Profiles across the cold-point tropopause and attendant variability appear to differ from those both in the Tropical Tropopause Layer in the deep tropics and in the North American Monsoon region. We discuss how these water vapor fluctuations relate to implied convective influence and variations in long-range transport. In at least some cases, enhanced water at high altitudes appears correlated with relative isotopic enhancement, suggesting convective influence. Although results at the time of writing are necessarily very preliminary, measurements suggest that the monsoon anticyclone region is characterized by dynamic transport and convective influence up to and beyond the local cold-point tropopause.

  7. Ultrathin zoom telescopic objective.

    PubMed

    Li, Lei; Wang, Di; Liu, Chao; Wang, Qiong-Hua

    2016-08-08

    We report an ultrathin zoom telescopic objective that can achieve continuous zoom change and has reduced compact volume. The objective consists of an annular folded lens and three electrowetting liquid lenses. The annular folded lens undertakes the main part of the focal power of the lens system. Due to a multiple-fold design, the optical path is folded in a lens with the thickness of ~1.98mm. The electrowetting liquid lenses constitute a zoom part. Based on the proposed objective, an ultrathin zoom telescopic camera is demonstrated. We analyze the properties of the proposed objective. The aperture of the proposed objective is ~15mm. The total length of the system is ~18mm with a tunable focal length ~48mm to ~65mm. Compared with the conventional zoom telescopic objective, the total length has been largely reduced.

  8. Convective Hydration and Dehydration in the Tropical Upper Troposphere

    NASA Astrophysics Data System (ADS)

    Schoeberl, M. R.; Pfister, L.; Ueyama, R.; Jensen, E. J.; Avery, M. A.; Dessler, A. E.

    2017-12-01

    As air moves up through the tropical tropopause layer (TTL), water vapor condenses and ice falls out irreversibly dehydrating the air. Convection penetrates the TTL changing the concentration of water vapor. Using a Lagrangian model, we find that convection hydrates the local TTL if the air is sub-saturated, and dehydrates the air if the layer is super-saturated. We analyze the frequency and location of both types of convective events using our forward domain filling trajectory model with satellite observed convection. We find that hydration events exceed dehydration events at all levels above 360K although because few convective events penetrate to the upper TTL, the net water vapor impact weakens with altitude. Maps of hydration and dehydration events show that both types of events occur where convection is strongest The average, convection above 360K adds about 0.5 ppmv of water to the stratosphere.

  9. Comparison of three retrievals of COSMIC GPS radio occultation results in the tropical upper troposphere and lower stratosphere

    NASA Astrophysics Data System (ADS)

    Noersomadi; Tsuda, Toshitaka

    2017-09-01

    Combining geometrical optics (GO) and wave optics (WO), the COSMIC data analysis and archive center (CDAAC) retrieved two sets of dry atmosphere temperatures ( T) from COSMIC GPS radio occultation (GPS-RO), which are called atmPrf2010 and atmPrf2013. In atmPrf2010, the sewing height between WO and GO varies between 10 and 20 km, but is fixed at 20 km for atmPrf2013. The height resolution of the atmPrf2010 depends on the sewing height, while the T profiles by atmPrf2013 are smoothed over 500 m. We also derived T by applying WO throughout the troposphere and the stratosphere up to a 30-km altitude, which is called rishfsi2013. The three retrievals have different characteristics in the height resolution around the tropopause. Therefore, we aim to examine a possible discrepancy in the statistical results of the cold-point tropopause (CPT) and the lapse rate tropopause (LRT) among the three datasets, conducting their inter-comparisons as well as the comparison between GPS-RO and the simultaneous radiosonde dataset. We investigate the T variations in the upper troposphere and lower stratosphere (UTLS) over the tropics from October 1, 2011, to March 31, 2012, when radiosonde soundings were conducted as the CINDY-DYNAMO 2011 campaign. The mean T profiles are consistent between atmPrf2010 and atmPrf2013, but rishfsi2013 results are colder (warmer) than the CDAAC retrievals below (above) the tropopause. The mean T difference between atmPrf2013 and atmPrf2010 is 0.17 K at the cold-point tropopause (CPT) and -0.38 K at the lapse rate tropopause (LRT). On the other hand, rishfsi2013 shows a colder T at CPT by -0.77 and -0.59 K relative to atmPrf2013 and atmPrf2010, respectively, and the warmer T by 0.60 and 0.20 Kd at LRT. During CINDY-DYNAMO, we found 134 radiosonde soundings that coincide with GPS-RO within ±3 h and are collocated within 200 km from GPS-RO. The mean T difference at CPT from the radiosondes is 0.32, 0.49 and -0.24 K for atmPrf2010, atmPrf2013 and rishfsi2013

  10. Skyrmion morphology in ultrathin magnetic films

    NASA Astrophysics Data System (ADS)

    Gross, I.; Akhtar, W.; Hrabec, A.; Sampaio, J.; Martínez, L. J.; Chouaieb, S.; Shields, B. J.; Maletinsky, P.; Thiaville, A.; Rohart, S.; Jacques, V.

    2018-02-01

    Nitrogen-vacancy magnetic microscopy is employed in the quenching mode as a noninvasive, high-resolution tool to investigate the morphology of isolated skyrmions in ultrathin magnetic films. The skyrmion size and shape are found to be strongly affected by local pinning effects and magnetic field history. Micromagnetic simulations including a static disorder, based on the physical model of grain-to-grain thickness variations, reproduce all experimental observations and reveal the key role of disorder and magnetic history in the stabilization of skyrmions in ultrathin magnetic films. This work opens the way to an in-depth understanding of skyrmion dynamics in real, disordered media.

  11. Ultrathin Quantum Dot Display Integrated with Wearable Electronics.

    PubMed

    Kim, Jaemin; Shim, Hyung Joon; Yang, Jiwoong; Choi, Moon Kee; Kim, Dong Chan; Kim, Junhee; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2017-10-01

    An ultrathin skin-attachable display is a critical component for an information output port in next-generation wearable electronics. In this regard, quantum dot (QD) light-emitting diodes (QLEDs) offer unique and attractive characteristics for future displays, including high color purity with narrow bandwidths, high electroluminescence (EL) brightness at low operating voltages, and easy processability. Here, ultrathin QLED displays that utilize a passive matrix to address individual pixels are reported. The ultrathin thickness (≈5.5 µm) of the QLED display enables its conformal contact with the wearer's skin and prevents its failure under vigorous mechanical deformation. QDs with relatively thick shells are employed to improve EL characteristics (brightness up to 44 719 cd m -2 at 9 V, which is the record highest among wearable LEDs reported to date) by suppressing the nonradiative recombination. Various patterns, including letters, numbers, and symbols can be successfully visualized on the skin-mounted QLED display. Furthermore, the combination of the ultrathin QLED display with flexible driving circuits and wearable sensors results in a fully integrated QLED display that can directly show sensor data. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Metal Immiscibility Route to Synthesis of Ultrathin Carbides, Borides, and Nitrides.

    PubMed

    Wang, Zixing; Kochat, Vidya; Pandey, Prafull; Kashyap, Sanjay; Chattopadhyay, Soham; Samanta, Atanu; Sarkar, Suman; Manimunda, Praveena; Zhang, Xiang; Asif, Syed; Singh, Abhisek K; Chattopadhyay, Kamanio; Tiwary, Chandra Sekhar; Ajayan, Pulickel M

    2017-08-01

    Ultrathin ceramic coatings are of high interest as protective coatings from aviation to biomedical applications. Here, a generic approach of making scalable ultrathin transition metal-carbide/boride/nitride using immiscibility of two metals is demonstrated. Ultrathin tantalum carbide, nitride, and boride are grown using chemical vapor deposition by heating a tantalum-copper bilayer with corresponding precursor (C 2 H 2 , B powder, and NH 3 ). The ultrathin crystals are found on the copper surface (opposite of the metal-metal junction). A detailed microscopy analysis followed by density functional theory based calculation demonstrates the migration mechanism, where Ta atoms prefer to stay in clusters in the Cu matrix. These ultrathin materials have good interface attachment with Cu, improving the scratch resistance and oxidation resistance of Cu. This metal-metal immiscibility system can be extended to other metals to synthesize metal carbide, boride, and nitride coatings. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Ultrathin Optical Panel And A Method Of Making An Ultrathin Optical Panel.

    DOEpatents

    Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard; Veligdan, James T.

    2005-02-15

    An ultrathin optical panel, and a method of producing an ultrathin optical panel, are disclosed, including stacking a plurality of glass sheets, which sheets may be coated with a transparent cladding substance or may be uncoated, fastening together the plurality of stacked coated glass sheets using an epoxy or ultraviolet adhesive, applying uniform pressure to the stack, curing the stack, sawing the stack to form an inlet face on a side of the stack and an outlet face on an opposed side of the stack, bonding a coupler to the inlet face of the stack, and fastening the stack, having the coupler bonded thereto, within a rectangular housing having an open front which is aligned with the outlet face, the rectangular housing having therein a light generator which is optically aligned with the coupler. The light generator is preferably placed parallel to and proximate with the inlet face, thereby allowing for a reduction in the depth of the housing.

  14. Ultrathin Optical Panel And A Method Of Making An Ultrathin Optical Panel.

    DOEpatents

    Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard; Veligdan, James T.

    2005-05-17

    An ultrathin optical panel, and a method of producing an ultrathin optical panel, are disclosed, including stacking a plurality of glass sheets, which sheets may be coated with a transparent cladding substance or may be uncoated, fastening together the plurality of stacked coated glass sheets using an epoxy or ultraviolet adhesive, applying uniform pressure to the stack, curing the stack, sawing the stack to form an inlet face on a side of the stack and an outlet face on an opposed side of the stack, bonding a coupler to the inlet face of the stack, and fastening the stack, having the coupler bonded thereto, within a rectangular housing having an open front which is aligned with the outlet face, the rectangular housing having therein a light generator which is optically aligned with the coupler. The light generator is preferably placed parallel to and proximate with the inlet face, thereby allowing for a reduction in the depth of the housing.

  15. Ultrathin optical panel and a method of making an ultrathin optical panel

    DOEpatents

    Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard; Veligdan, James T.

    2003-02-11

    An ultrathin optical panel, and a method of producing an ultrathin optical panel, are disclosed, including stacking a plurality of glass sheets, which sheets may be coated with a transparent cladding substance or may be uncoated, fastening together the plurality of stacked coated glass sheets using an epoxy or ultraviolet adhesive, applying uniform pressure to the stack, curing the stack, sawing the stack to form an inlet face on a side of the stack and an outlet face on an opposed side of the stack, bonding a coupler to the inlet face of the stack, and fastening the stack, having the coupler bonded thereto, within a rectangular housing having an open front which is aligned with the outlet face, the rectangular housing having therein a light generator which is optically aligned with the coupler. The light generator is preferably placed parallel to and proximate with the inlet face, thereby allowing for a reduction in the depth of the housing.

  16. Ultrathin optical panel and a method of making an ultrathin optical panel

    DOEpatents

    Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard; Veligdan, James T.

    2001-10-09

    An ultrathin optical panel, and a method of producing an ultrathin optical panel, are disclosed, including stacking a plurality of glass sheets, which sheets may be coated with a transparent cladding substance or may be uncoated, fastening together the plurality of stacked coated glass sheets using an epoxy or ultraviolet adhesive, applying uniform pressure to the stack, curing the stack, sawing the stack to form an inlet face on a side of the stack and an outlet face on an opposed side of the stack, bonding a coupler to the inlet face of the stack, and fastening the stack, having the coupler bonded thereto, within a rectangular housing having an open front which is aligned with the outlet face, the rectangular housing having therein a light generator which is optically aligned with the coupler. The light generator is preferably placed parallel to and proximate with the inlet face, thereby allowing for a reduction in the depth of the housing.

  17. Ultrathin optical panel and a method of making an ultrathin optical panel

    DOEpatents

    Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard; Veligdan, James T.

    2002-01-01

    An ultrathin optical panel, and a method of producing an ultrathin optical panel, are disclosed, including stacking a plurality of glass sheets, which sheets may be coated With a transparent cladding substance or may be uncoated, fastening together the plurality of stacked coated glass sheets using an epoxy or ultraviolet adhesive, applying uniform pressure to the stack, curing the stack, sawing the stack to form an inlet face on a side of the stack and an outlet face on an opposed side of the stack, bonding a coupler to the inlet face of the stack, and fastening the stack, having the coupler bonded thereto, within a rectangular housing having an open front which is aligned with the outlet face, the rectangular housing having therein a light generator which is optically aligned with the coupler. The light generator is preferably placed parallel to and proximate with the inlet face, thereby allowing for a reduction in the depth of the housing.

  18. Water vapor and cloud water measurements over Darwin during the STEP 1987 tropical mission

    NASA Technical Reports Server (NTRS)

    Kelly, K. K.; Proffitt, M. H.; Chan, K. R.; Loewenstein, M.; Podolske, J. R.; Strahan, E.; Wilson, J. C.; Kley, D.

    1993-01-01

    Measurements of stratospheric and upper tropospheric cloud water plus water vapor (total water) and water vapor were made with two Lyman alpha hygrometers as part of the STEP tropical experiment. The in situ measurements were made in the Darwin, Australia, area in January and February of 1987 on an ER-2 aircraft. Average stratospheric water vapor at a potential temperature of 375 K (the average value of Theta at the tropopause) was 2.4 parts per million by volume (ppmv). This water mixing ratio is below the 3.0 to 4.0 ppmv necessary to be consistent with the observed upper stratospheric dryness. Saturation with respect to ice and the potential for dehydration was observed up to Theta = 402 K.

  19. A numerical experiment on the formation of the tropopause inversion layer associated with an explosive cyclogenesis: possible role of gravity waves

    NASA Astrophysics Data System (ADS)

    Otsuka, Shigenori; Takeshita, Megumi; Yoden, Shigeo

    2014-12-01

    The tropopause inversion layer (TIL) is a persistent layer with high static stability. Although some mechanisms for the formation of the TIL have been proposed, the time evolution of the TIL under realistic conditions especially when factoring in the contribution of small-scale processes such as gravity waves is not well understood. To gain an understanding of this factor, we conducted a numerical experiment on an explosive cyclogenesis in mid-latitudes using a nonhydrostatic regional atmospheric model. Although the TIL in the model is consistent with previous observations in the sense that it is stronger in the negative vorticity areas, the relationship is clear only in the development and mature stages of a cyclone, suggesting that the evolution of the cyclone plays an important role in the formation of the TIL. To ascertain the effects of gravity waves on the TIL, vertical convergence at the tropopause is analyzed. Histograms of maximum buoyancy frequency squared within the TIL show that regions of vertical convergence have higher , in addition to regions with high ∂ 2 w/ ∂ z 2, implying that waves having downward phase propagation also play an important role in the dynamical formation of the TIL. This tendency is clearer in regions of negative relative vorticity at the tropopause. By taking account of the fact that the gravity wave activities associated with the cyclone and the jet streak are enhanced during the development and mature stages of the cyclone, vertical convergence due to gravity waves associated with synoptic weather systems can be seen to be a key process in the formation of the negative correlation between the strength of the TIL and the local relative vorticity at the tropopause.

  20. The Convective Transport of Active Species in the Tropics (CONTRAST) Experiment

    NASA Technical Reports Server (NTRS)

    Pan, L. L.; Atlas, E. L.; Salawitch, R.J.; Honomichl, S. B.; Bresch, J. F.; Randel, W. J.; Apel, E. C.; Hornbrook, R. S.; Weinheimer, A. J.; Anderson, D. C.; hide

    2017-01-01

    The Convective Transport of Active Species in the Tropics (CONTRAST) experiment was conducted from Guam (13.5degN, 144.8degE) during January-February 2014. Using the NSF/NCAR Gulfstream V research aircraft, the experiment investigated the photochemical environment over the tropical western Pacific (TWP) warm pool, a region of massive deep convection and the major pathway for air to enter the stratosphere during Northern Hemisphere (NH) winter. The new observations provide a wealth of information for quantifying the influence of convection on the vertical distributions of active species. The airborne in situ measurements up to 15-km altitude fill a significant gap by characterizing the abundance and altitude variation of a wide suite of trace gases. These measurements, together with observations of dynamical and microphysical parameters, provide significant new data for constraining and evaluating global chemistry climate models. Measurements include precursor and product gas species of reactive halogen compounds that impact ozone in the upper troposphere/lower stratosphere. High-accuracy, in situ measurements of ozone obtained during CONTRAST quantify ozone concentration profiles in the upper troposphere, where previous observations from balloon-borne ozonesondes were often near or below the limit of detection. CONTRAST was one of the three coordinated experiments to observe the TWP during January-February 2014. Together, CONTRAST, Airborne Tropical Tropopause Experiment (ATTREX), and Coordinated Airborne Studies in the Tropics (CAST), using complementary capabilities of the three aircraft platforms as well as ground-based instrumentation, provide a comprehensive quantification of the regional distribution and vertical structure of natural and pollutant trace gases in the TWP during NH winter, from the oceanic boundary to the lower stratosphere.

  1. On the existence of tropical anvil clouds

    NASA Astrophysics Data System (ADS)

    Seeley, J.; Jeevanjee, N.; Langhans, W.; Romps, D.

    2017-12-01

    In the deep tropics, extensive anvil clouds produce a peak in cloud cover below the tropopause. The dominant paradigm for cloud cover attributes this anvil peak to a layer of enhanced mass convergence in the clear-sky upper-troposphere, which is presumed to force frequent detrainment of convective anvils. However, cloud cover also depends on the lifetime of cloudy air after it detrains, which raises the possibility that anvil clouds may be the signature of slow cloud decay rather than enhanced detrainment. Here we measure the cloud decay timescale in cloud-resolving simulations, and find that cloudy updrafts that detrain in the upper troposphere take much longer to dissipate than their shallower counterparts. We show that cloud lifetimes are long in the upper troposphere because the saturation specific humidity becomes orders of magnitude smaller than the typical condensed water loading of cloudy updrafts. This causes evaporative cloud decay to act extremely slowly, thereby prolonging cloud lifetimes in the upper troposphere. As a consequence, extensive anvil clouds still occur in a convecting atmosphere that is forced to have no preferential clear-sky convergence layer. On the other hand, when cloud lifetimes are fixed at a characteristic lower-tropospheric value, extensive anvil clouds do not form. Our results support a revised understanding of tropical anvil clouds, which attributes their existence to the microphysics of slow cloud decay rather than a peak in clear-sky convergence.

  2. Large differences in reanalyses of diabatic heating in the tropical upper troposphere and lower stratosphere

    NASA Astrophysics Data System (ADS)

    Wright, J. S.; Fueglistaler, S.

    2013-09-01

    We present the time mean heat budgets of the tropical upper troposphere (UT) and lower stratosphere (LS) as simulated by five reanalysis models: the Modern-Era Retrospective Analysis for Research and Applications (MERRA), European Reanalysis (ERA-Interim), Climate Forecast System Reanalysis (CFSR), Japanese 25-yr Reanalysis and Japan Meteorological Agency Climate Data Assimilation System (JRA-25/JCDAS), and National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) Reanalysis 1. The simulated diabatic heat budget in the tropical UTLS differs significantly from model to model, with substantial implications for representations of transport and mixing. Large differences are apparent both in the net heat budget and in all comparable individual components, including latent heating, heating due to radiative transfer, and heating due to parameterised vertical mixing. We describe and discuss the most pronounced differences. Discrepancies in latent heating reflect continuing difficulties in representing moist convection in models. Although these discrepancies may be expected, their magnitude is still disturbing. We pay particular attention to discrepancies in radiative heating (which may be surprising given the strength of observational constraints on temperature and tropospheric water vapour) and discrepancies in heating due to turbulent mixing (which have received comparatively little attention). The largest differences in radiative heating in the tropical UTLS are attributable to differences in cloud radiative heating, but important systematic differences are present even in the absence of clouds. Local maxima in heating and cooling due to parameterised turbulent mixing occur in the vicinity of the tropical tropopause.

  3. Ultrathin planar hematite film for solar photoelectrochemical water splitting

    DOE PAGES

    Liu, Dong; Bierman, David M.; Lenert, Andrej; ...

    2015-10-08

    Hematite holds promise for photoelectrochemical (PEC) water splitting due to its stability, low-cost, abundance and appropriate bandgap. However, it suffers from a mismatch between the hole diffusion length and light penetration length. We have theoretically designed and characterized an ultrathin planar hematite/silver nanohole array/silver substrate photoanode. Due to the supported destructive interference and surface plasmon resonance, photons are efficiently absorbed in an ultrathin hematite film. In conclusion, compared with ultrathin hematite photoanodes with nanophotonic structures, this photoanode has comparable photon absorption but with intrinsically lower recombination losses due to its planar structure and promises to exceed the state-of-the-art photocurrent ofmore » hematite photoanodes.« less

  4. Fabrication and Characterization of Ultrathin-ring Electrodes for Pseudo-steady-state Amperometric Detection.

    PubMed

    Kitazumi, Yuki; Hamamoto, Katsumi; Noda, Tatsuo; Shirai, Osamu; Kano, Kenji

    2015-01-01

    The fabrication of ultrathin-ring electrodes with a diameter of 2 mm and a thickness of 100 nm is established. The ultrathin-ring electrodes provide a large density of pseudo-steady-state currents, and realize pseudo-steady-state amperometry under quiescent conditions without a Faraday cage. Under the limiting current conditions, the current response at the ultrathin-ring electrode can be well explained by the theory of the microband electrode response. Cyclic voltammograms at the ultrathin-ring electrode show sigmoidal characteristics with some hysteresis. Numerical simulation reveals that the hysteresis can be ascribed to the time-dependence of pseudo-steady-state current. The performance of amperometry with the ultrathin-ring electrode has been verified in its application to redox enzyme kinetic measurements.

  5. Mechanically Assisted Self-Healing of Ultrathin Gold Nanowires.

    PubMed

    Wang, Binjun; Han, Ying; Xu, Shang; Qiu, Lu; Ding, Feng; Lou, Jun; Lu, Yang

    2018-04-17

    As the critical feature sizes of integrated circuits approaching sub-10 nm, ultrathin gold nanowires (diameter <10 nm) have emerged as one of the most promising candidates for next-generation interconnects in nanoelectronics. Also due to their ultrasmall dimensions, however, the structures and morphologies of ultrathin gold nanowires are more prone to be damaged during practical services, for example, Rayleigh instability can significantly alter their morphologies upon Joule heating, hindering their applications as interconnects. Here, it is shown that upon mechanical perturbations, predamaged, nonuniform ultrathin gold nanowires can quickly recover into uniform diameters and restore their smooth surfaces, via a simple mechanically assisted self-healing process. By examining the local self-healing process through in situ high-resolution transmission electron microscopy, the underlying mechanism is believed to be associated with surface atomic diffusion as evidenced by molecular dynamics simulations. In addition, mechanical manipulation can assist the atoms to overcome the diffusion barriers, as suggested by ab initio calculations, to activate more surface adatoms to diffuse and consequently speed up the self-healing process. This result can provide a facile method to repair ultrathin metallic nanowires directly in functional devices, and quickly restore their microstructures and morphologies by simple global mechanical perturbations. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Tropical convection regimes in climate models: evaluation with satellite observations

    NASA Astrophysics Data System (ADS)

    Steiner, Andrea K.; Lackner, Bettina C.; Ringer, Mark A.

    2018-04-01

    High-quality observations are powerful tools for the evaluation of climate models towards improvement and reduction of uncertainty. Particularly at low latitudes, the most uncertain aspect lies in the representation of moist convection and interaction with dynamics, where rising motion is tied to deep convection and sinking motion to dry regimes. Since humidity is closely coupled with temperature feedbacks in the tropical troposphere, a proper representation of this region is essential. Here we demonstrate the evaluation of atmospheric climate models with satellite-based observations from Global Positioning System (GPS) radio occultation (RO), which feature high vertical resolution and accuracy in the troposphere to lower stratosphere. We focus on the representation of the vertical atmospheric structure in tropical convection regimes, defined by high updraft velocity over warm surfaces, and investigate atmospheric temperature and humidity profiles. Results reveal that some models do not fully capture convection regions, particularly over land, and only partly represent strong vertical wind classes. Models show large biases in tropical mean temperature of more than 4 K in the tropopause region and the lower stratosphere. Reasonable agreement with observations is given in mean specific humidity in the lower to mid-troposphere. In moist convection regions, models tend to underestimate moisture by 10 to 40 % over oceans, whereas in dry downdraft regions they overestimate moisture by 100 %. Our findings provide evidence that RO observations are a unique source of information, with a range of further atmospheric variables to be exploited, for the evaluation and advancement of next-generation climate models.

  7. Coordinated Airborne Studies in the Tropics (CAST) Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughan, Geraint

    The last field campaign held at the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility site on Manus Island, Papua New Guinea (PNG), was conducted in February 2014 as part of the Co-ordinated Airborne Studies in the Tropics (CAST) campaign. This campaign was a collaboration between the National Aeronautics and Space Administration (NASA), National Center for Atmospheric Research (NCAR), and the United Kingdom’s (UK) Natural Environment Research Council (NERC) to study the composition of the Tropical Tropopause Layer (TTL) and the impact of deep convection on this composition. There are three main areas of interest: i)more » transport of trace gases in the tropical atmosphere (especially short-lived halogenated compounds that can be lifted rapidly into the TTL, where they augment the stratospheric loading of these species); ii) formation of cirrus and its impact on the TTL; and iii) the upper-atmosphere water vapor budget. Overall, the aim was to improve understanding of the dynamical, radiative, and chemical role of the TTL. The Manus operation was a joint experiment between the Universities of Manchester and Cambridge and the UK National Centre for Atmospheric Science (NCAS). It consisted of two elements: an ozonesonde campaign to measure ozone vertical profiles through the TTL, and ground-based monitoring of ozone, halogenated hydrocarbons, and greenhouse gases to determine the composition of lower-boundary-layer air in the Warm Pool region. Thanks to the support from the ARM Climate Research Facility and the exemplary collaboration of ARM staff in the region, the campaign was very successful.« less

  8. Curie temperature of ultrathin ferromagnetic layer with Dzyaloshinskii-Moriya interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Chun-Yeol

    2014-08-07

    We investigate the effect of the Dzyaloshinskii-Moriya interaction (DMI) on the Curie temperature of the ultrathin ferromagnetic layers. It has been known that the Curie temperature of the ferromagnet depends on spin wave excitation energies, and they are affected by DMI. Therefore, the ferromagnetic transition temperature of the ultrathin ferromagnetic layer must be sensitive on the DMI. We find that the Curie temperature depends on the DMI by using the double time Green's function method. Since the DMI is arisen by the inversion symmetry breaking structure, the DMI is always important in the inversion symmetry breaking ultrathin ferromagnetic layers.

  9. Mixing Layer Formation near the Tropopause Due to Gravity Wave Critical Level Interactions in a Cloud-Resolving Model.

    NASA Astrophysics Data System (ADS)

    Moustaoui, Mohamed; Joseph, Binson; Teitelbaum, Hector

    2004-12-01

    A plausible mechanism for the formation of mixing layers in the lower stratosphere above regions of tropical convection is demonstrated numerically using high-resolution, two-dimensional (2D), anelastic, nonlinear, cloud-resolving simulations. One noteworthy point is that the mixing layer simulated in this study is free of anvil clouds and well above the cloud anvil top located in the upper troposphere. Hence, the present mechanism is complementary to the well-known process by which overshooting cloud turrets causes mixing within stratospheric anvil clouds. The paper is organized as a case study verifying the proposed mechanism using atmospheric soundings obtained during the Central Equatorial Pacific Experiment (CEPEX), when several such mixing layers, devoid of anvil clouds, had been observed. The basic dynamical ingredient of the present mechanism is (quasi stationary) gravity wave critical level interactions, occurring in association with a reversal of stratospheric westerlies to easterlies below the tropopause region. The robustness of the results is shown through simulations at different resolutions. The insensitivity of the qualitative results to the details of the subgrid scheme is also evinced through further simulations with and without subgrid mixing terms. From Lagrangian reconstruction of (passive) ozone fields, it is shown that the mixing layer is formed kinematically through advection by the resolved-scale (nonlinear) velocity field.


  10. Extracellular ultrathin fibers sensitive to intracellular reactive oxygen species: Formation of intercellular membrane bridges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Se-Hui; Park, Jin-Young; Joo, Jung-Hoon

    2011-07-15

    Membrane bridges are key cellular structures involved in intercellular communication; however, dynamics for their formation are not well understood. We demonstrated the formation and regulation of novel extracellular ultrathin fibers in NIH3T3 cells using confocal and atomic force microscopy. At adjacent regions of neighboring cells, phorbol 12-myristate 13-acetate (PMA) and glucose oxidase induced ultrathin fiber formation, which was prevented by Trolox, a reactive oxygen species (ROS) scavenger. The height of ROS-sensitive ultrathin fibers ranged from 2 to 4 nm. PMA-induced formation of ultrathin fibers was inhibited by cytochalasin D, but not by Taxol or colchicine, indicating that ultrathin fibers mainlymore » comprise microfilaments. PMA-induced ultrathin fibers underwent dynamic structural changes, resulting in formation of intercellular membrane bridges. Thus, these fibers are formed by a mechanism(s) involving ROS and involved in formation of intercellular membrane bridges. Furthermore, ultrastructural imaging of ultrathin fibers may contribute to understanding the diverse mechanisms of cell-to-cell communication and the intercellular transfer of biomolecules, including proteins and cell organelles.« less

  11. BrO and Inferred Bry Profiles over the Western Pacific: Relevance of Inorganic Bromine Sources and a Bry Minimum in the Aged Tropical Tropopause Layer

    NASA Technical Reports Server (NTRS)

    Koenig, Theodore K.; Volkamer, Rainer; Baidar, Sunil; Dix, Barbara; Wang, Siyuan; Anderson, Daniel C.; Salawitch, Ross J.; Wales, Pamela A.; Cuevas, Carlos A.; Fernandez, Rafael P.; hide

    2017-01-01

    We report measurements of bromine monoxide (BrO) and use an observationally constrained chemical box model to infer total gas-phase inorganic bromine (Br(sub y)) over the tropical western Pacific Ocean (tWPO) during the CONTRAST field campaign (January-February 2014). The observed BrO and inferred Bry profiles peak in the marine boundary layer (MBL), suggesting the need for a bromine source from sea-salt aerosol (SSA), in addition to organic bromine (CBry ). Both profiles are found to be C-shaped with local maxima in the upper free troposphere (FT). The median tropospheric BrO vertical column density (VCD) was measured as 1.6 x 10(exp 13) molec cm(exp -2), compared to model predictions of 0.9 x 10(exp 13) molec cm(exp -2) in GEOS-Chem (CBr(sub y) but no SSA source), 0.4 x 10(exp 13) molec cm(exp -2) in CAM-Chem (CBr(sub y) and SSA), and 2.1 x 10(exp 13) molec cm(exp -2) in GEOS-Chem (CBry and SSA). Neither global model fully captures the Cshape of the Br(sun y) profile. A local Br(sub y) maximum of 3.6 ppt (2.9-4.4 ppt; 95% confidence interval, CI) is inferred between 9.5 and 13.5 km in air masses influenced by recent convective outflow. Unlike BrO, which increases from the convective tropical tropopause layer (TTL) to the aged TTL, gas-phase Br(sub y) decreases from the convective TTL to the aged TTL. Analysis of gas-phase Br(sub y) against multiple tracers (CFC-11, H2O/O3 ratio, and potential temperature) reveals a Br(sub y) minimum of 2.7 ppt (2.3-3.1 ppt; 95% CI) in the aged TTL, which agrees closely with a stratospheric injection of 2.6 +/- 0.6 ppt of inorganic Br(sub y) (estimated from CFC-11 correlations), and is remarkably insensitive to assumptions about heterogeneous chemistry. Bry increases to 6.3 ppt (5.6-7.0 ppt; 95% CI) in the stratospheric "middleworld" and 6.9 ppt (6.5-7.3 ppt; 95% CI) in the stratospheric "overworld". The local Br(sub y) minimum in the aged TTL is qualitatively (but not quantitatively) captured by CAM-Chem, and suggests a more

  12. The tropopause inversion layer in baroclinic life cycles experiments: the role of diabatic and mixing processes

    NASA Astrophysics Data System (ADS)

    Kunkel, D.; Hoor, P.; Wirth, V.

    2015-08-01

    Recent studies on the formation of a quasi-permanent layer of enhanced static stability above the thermal tropopause revealed the contributions of dynamical and radiative processes. Dry dynamics lead to the evolution of a tropopause inversion layer (TIL) which is, however, too weak compared to observations and thus diabatic contributions are required. In this study we aim to assess the importance of diabatic as well as mixing processes in the understanding of TIL formation at midlatitudes. The non-hydrostatic model COSMO is applied in an idealized mid-latitude channel configuration to simulate baroclinic life cycles. The effect of individual diabatic, i.e. related to humidity and radiation, and turbulent processes is studied first to estimate the additional contribution of these processes to dry dynamics. In a second step these processes are stepwise included in the model to increase the complexity and finally estimate the relative importance of each process. The results suggest that including turbulence leads to a weaker TIL than in a dry reference simulation. In contrast, the TIL evolves stronger when radiation is included but the temporal occurrence is still comparable to the reference. Using various cloud schemes in the model shows that latent heat release and consecutive increased vertical motions foster an earlier and stronger appearance of the TIL than in all other life cycles. Furthermore, updrafts moisten the upper troposphere and as such increase the radiative effect from water vapor. Particularly, this process becomes more relevant for maintaining the TIL during later stages of the life cycles. Increased convergence of the vertical wind induced by updrafts and by propagating and potentially dissipating inertia-gravity waves further contributes to the enhanced stability of the lower stratosphere. Furthermore, radiative feedback of ice clouds reaching up to the tropopause is identified to potentially further affect the strength of the TIL in the region of

  13. Partial spline models for the inclusion of tropopause and frontal boundary information in otherwise smooth two- and three-dimensional objective analysis

    NASA Technical Reports Server (NTRS)

    Shiau, Jyh-Jen; Wahba, Grace; Johnson, Donald R.

    1986-01-01

    A new method, based on partial spline models, is developed for including specified discontinuities in otherwise smooth two- and three-dimensional objective analyses. The method is appropriate for including tropopause height information in two- and three-dimensinal temperature analyses, using the O'Sullivan-Wahba physical variational method for analysis of satellite radiance data, and may in principle be used in a combined variational analysis of observed, forecast, and climate information. A numerical method for its implementation is described and a prototype two-dimensional analysis based on simulated radiosonde and tropopause height data is shown. The method may also be appropriate for other geophysical problems, such as modeling the ocean thermocline, fronts, discontinuities, etc.

  14. Gravity and Rossby Wave Signatures in the Tropical Troposphere and Lower Stratosphere Based on Southern Hemisphere Additional Ozonesondes (SHADOZ), 1998-2007

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Allen, Amber L.; Lee, Sukyoung; Miller, Sonya K.; Witte, Jacquelyn C.

    2011-01-01

    Prior investigations attempted to determine the relative influence of advection and convective processes on ozone and water vapor distributions in the tropical tropopause layer (TTL) through analyses of tracers, related physical parameters (e.g., outgoing long-wave radiation, precipitable water, and temperature), or with models. In this study, stable laminae in Southern Hemisphere Additional Ozonesonde Network (SHADOZ) ozone profIles from 1998 to 2007 are interpreted in terms of gravity waves (GW) or Rossby waves (RW) that are identified with vertical and quasi-horizontal displacements, respectively. Using the method of Pierce and Grant (1998) as applied by Thompson et al. (2007a, 2007b, 2010, 2011), amplitudes and frequencies in ozone laminae are compared among representative SHADOZ sites over Africa and the Pacific, Indian, and Atlantic oceans. GW signals maximize in the TTL and lower stratosphere. Depending on site and season, GW are identified in up to 90% of the soundings. GW are most prevalent over the Pacific and eastern Indian oceans, a distribution consistent with vertically propagating equatorial Kelvin waves. Ozone laminae from RW occur more often below the tropical tropopause and with lower frequency 20%). Gravity wave and Rossby wave indices (GWI, RWI) are formulated to facilitate analysis of interannual variability of wave signatures among sites. GWI is positively correlated with a standard ENSO (El Nino-Southern Oscillation) index over American Samoa (14degS, 171degW) and negatively correlated at Watukosek, Java (7.5degS, 114degE), Kuala Lumpur (3degN, 102degE), and Ascension Island (80degS, 15degW). Generally, the responses of GW and RW to ENSO are consistent with prior studies.

  15. Controllable fabrication of ultrathin free-standing graphene films

    PubMed Central

    Chen, Jianyi; Guo, Yunlong; Huang, Liping; Xue, Yunzhou; Geng, Dechao; Liu, Hongtao; Wu, Bin; Yu, Gui; Hu, Wenping; Liu, Yunqi; Zhu, Daoben

    2014-01-01

    Graphene free-standing film-like or paper-like materials have attracted great attention due to their intriguing electronic, optical and mechanical properties and potential application in chemical filters, molecular storage and supercapacitors. Although significant progress has been made in fabricating graphene films or paper, there is still no effective method targeting ultrathin free-standing graphene films (UFGFs). Here, we present a modified filtration assembly method to prepare these ultrathin films. With this approach, we have fabricated a series of ultrathin free-standing graphene oxide films and UFGFs, up to 40 mm in diameter, with controllable thickness from micrometre to nanoscale (approx. 40 nm) dimensions. This method can be easily scaled up and the films display excellent optical, electrical and electrochemical properties. The ability to produce UFGFs from graphene oxide with a scalable, low-cost approach should take us a step closer to real-world applications of graphene. PMID:24615152

  16. Loss/gain-induced ultrathin antireflection coatings

    PubMed Central

    Luo, Jie; Li, Sucheng; Hou, Bo; Lai, Yun

    2016-01-01

    Tradional antireflection coatings composed of dielectric layers usually require the thickness to be larger than quarter wavelength. Here, we demonstrate that materials with permittivity or permeability dominated by imaginary parts, i.e. lossy or gain media, can realize non-resonant antireflection coatings in deep sub-wavelength scale. Interestingly, while the reflected waves are eliminated as in traditional dielectric antireflection coatings, the transmitted waves can be enhanced or reduced, depending on whether gain or lossy media are applied, respectively. We provide a unified theory for the design of such ultrathin antireflection coatings, showing that under different polarizations and incident angles, different types of ultrathin coatings should be applied. Especially, under transverse magnetic polarization, the requirement shows a switch between gain and lossy media at Brewster angle. As a proof of principle, by using conductive films as a special type of lossy antireflection coatings, we experimentally demonstrate the suppression of Fabry-Pérot resonances in a broad frequency range for microwaves. This valuable functionality can be applied to remove undesired resonant effects, such as the frequency-dependent side lobes induced by resonances in dielectric coverings of antennas. Our work provides a guide for the design of ultrathin antireflection coatings as well as their applications in broadband reflectionless devices. PMID:27349750

  17. Fabrication of Ultra-thin Color Films with Highly Absorbing Media Using Oblique Angle Deposition.

    PubMed

    Yoo, Young Jin; Lee, Gil Ju; Jang, Kyung-In; Song, Young Min

    2017-08-29

    Ultra-thin film structures have been studied extensively for use as optical coatings, but performance and fabrication challenges remain.  We present an advanced method for fabricating ultra-thin color films with improved characteristics. The proposed process addresses several fabrication issues, including large area processing. Specifically, the protocol describes a process for fabricating ultra-thin color films using an electron beam evaporator for oblique angle deposition of germanium (Ge) and gold (Au) on silicon (Si) substrates.  Film porosity produced by the oblique angle deposition induces color changes in the ultra-thin film. The degree of color change depends on factors such as deposition angle and film thickness. Fabricated samples of the ultra-thin color films showed improved color tunability and color purity. In addition, the measured reflectance of the fabricated samples was converted into chromatic values and analyzed in terms of color. Our ultra-thin film fabricating method is expected to be used for various ultra-thin film applications such as flexible color electrodes, thin film solar cells, and optical filters. Also, the process developed here for analyzing the color of the fabricated samples is broadly useful for studying various color structures.

  18. Condensed-Phase Nitric Acid in a Tropical Subvisible Cirrus Cloud

    NASA Technical Reports Server (NTRS)

    Popp, P. J.; Marcy, T. P.; Watts, O. A.; Gao, R. S.; Fahey, D. W.; Weinstock, E. M.; Smith, J. B.; Herman, R. L.; Tropy, R. F.; Webster, C. r.; hide

    2007-01-01

    In situ observations in a tropical subvisible cirrus cloud during the Costa Rica Aura Validation Experiment on 2 February 2006 show the presence of condensed-phase nitric acid. The cloud was observed near the tropopause at altitudes of 16.3-17.7 km in an extremely cold (183-191 K) and dry 5 ppm H2O) air mass. Relative humidities with respect to ice ranged from 150-250% throughout most of the cloud. Optical particle measurements indicate the presence of ice crystals as large as 90 microns in diameter. Condensed RN031H20 molar ratios observed in the cloud particles were 1-2 orders of magnitude greater than ratios observed previously in cirrus clouds at similar RN03 partial pressures. Nitric acid trihydrate saturation ratios were 10 or greater during much of the cloud encounter, indicating that RN03 may be present in the cloud particles as a stable condensate and not simply physically adsorbed on or trapped in the particles.

  19. Nanowire decorated, ultra-thin, single crystalline silicon for photovoltaic devices.

    PubMed

    Aurang, Pantea; Turan, Rasit; Unalan, Husnu Emrah

    2017-10-06

    Reducing silicon (Si) wafer thickness in the photovoltaic industry has always been demanded for lowering the overall cost. Further benefits such as short collection lengths and improved open circuit voltages can also be achieved by Si thickness reduction. However, the problem with thin films is poor light absorption. One way to decrease optical losses in photovoltaic devices is to minimize the front side reflection. This approach can be applied to front contacted ultra-thin crystalline Si solar cells to increase the light absorption. In this work, homojunction solar cells were fabricated using ultra-thin and flexible single crystal Si wafers. A metal assisted chemical etching method was used for the nanowire (NW) texturization of ultra-thin Si wafers to compensate weak light absorption. A relative improvement of 56% in the reflectivity was observed for ultra-thin Si wafers with the thickness of 20 ± 0.2 μm upon NW texturization. NW length and top contact optimization resulted in a relative enhancement of 23% ± 5% in photovoltaic conversion efficiency.

  20. Ultra-thin plasma radiation detector

    DOEpatents

    Friedman, Peter S.

    2017-01-24

    A position-sensitive ionizing-radiation counting detector includes a radiation detector gas chamber having at least one ultra-thin chamber window and an ultra-thin first substrate contained within the gas chamber. The detector further includes a second substrate generally parallel to and coupled to the first substrate and defining a gas gap between the first substrate and the second substrate. The detector further includes a discharge gas between the substrates and contained within the gas chamber, where the discharge gas is free to circulate within the gas chamber and between the first and second substrates at a given gas pressure. The detector further includes a first electrode coupled to one of the substrates and a second electrode electrically coupled to the first electrode. The detector further includes a first discharge event detector coupled to at least one of the electrodes for detecting a gas discharge counting event in the electrode.

  1. Characteristics of tropical cyclones and overshooting from GPS radio occultation data

    NASA Astrophysics Data System (ADS)

    Biondi, Riccardo; Rieckh, Therese; Steiner, Andrea; Kirchengast, Gottfried

    2014-05-01

    Tropical cyclones (TCs) are extreme weather events causing every year huge damages and several deaths. In some countries they are the natural catastrophes accounting for the major economic damages. The thermal structure of TCs gives important information on the cloud top height allowing for a better understanding of the troposphere-stratosphere transport, which is still poorly understood. The measurement of atmospheric parameters (such as temperature, pressure and humidity) with high vertical resolution and accuracy in the upper troposphere and lower stratosphere (UTLS) is difficult especially during severe weather events (e.g TCs). Satellite remote sensing has improved the TC forecast and monitoring accuracy. In the last decade the Global Positioning Systems (GPS) Radio Occultation (RO) technique contributed to improve our knowledge especially at high troposphere altitudes and in remote regions of the globe thanks to the high vertical resolution, avoiding temperature smoothing issues (given by microwave and infrared instruments) in the UTLS and improving the poor temporal resolution and global coverage given by lidars and radars. We selected more than twenty-thousand GPS RO profiles co-located with TC best tracks for the period 2001 to 2012 and computed temperature anomaly profiles relative to a RO background climatology in order to detect TC cloud tops. We characterized the thermal structure for different ocean basins and for different TC intensities, distinguishing between tropical and extra-tropical cases. The analysis shows that all investigated storms have a common feature: they warm the troposphere and cool the UTLS near the cloud top. This behavior is amplified in the extra-tropical areas. Results reveal that the storms' cloud tops in the southern hemisphere basins reach higher altitudes and lower temperatures than in the northern hemisphere basins. We furthermore compared the cloud top height of each profile with the mean tropopause altitude (from the RO

  2. Organic Halogen and Related Trace Gases in the Tropical Atmosphere: Results from Recent Airborne Campaigns Over the Pacific

    NASA Astrophysics Data System (ADS)

    Atlas, E. L.; Navarro, M. A.; Donets, V.; Schauffler, S.; Lueb, R.; Hendershot, R.; Gabbard, S.; Hornbrook, R. S.; Apel, E. C.; Riemer, D. D.; Pan, L.; Salawitch, R. J.; Nicely, J. M.; Montzka, S. A.; Miller, B.; Moore, F. L.; Elkins, J. W.; Hintsa, E. J.; Campos, T. L.; Quack, B.; Zhu, X.; Pope, L.

    2014-12-01

    Organic halogen gases, especially containing bromine and iodine, play a significant role as precursors to active halogen chemistry and ozone catalytic loss. Much of the reactive organic halogen originates from biological processes in the surface ocean, which can be quite variable by season and location. The tropics and coastal margins are potentially important sources that are being examined. The recent coordinated CONTRAST/ATTREX/CAST missions were conducted in the Western Tropical Pacific, a region that is a major transport pathway for tropospheric air entering the stratosphere. One of the goals of the missions was to identify sources, distributions, and transport of organic halogens from the ocean surface into the tropical lower stratosphere. The missions were conducted during the NH winter season, Jan-Feb, 2014. In this presentation, we will discuss the distributions and variability of organic halogen gases in the study region and will examine the input of organic halogen species into the Tropical Tropopause Layer (TTL). Comparison with other tracers, such as methyl nitrate and NMHC, will help identify source regions for these gases. We will focus on the measurements obtained in the CONTRAST and ATTREX missions with data from in-situ GC/MS measurements and whole air samples collected on the NSF GV and NASA Global Hawk aircraft. Comparisons with other recent airborne campaigns, such as HIPPO and TC4, and with several ship-based studies will provide an additional context for evaluating the variability of organic halogen species in the tropical atmosphere and their role in transporting reactive halogen compounds into the UT/LS.

  3. Simulating the Past, Present and Future of the Upper Troposphere and Lower Stratosphere

    NASA Astrophysics Data System (ADS)

    Gettelman, Andrew; Hegglin, Michaela

    2010-05-01

    A comprehensive assessment of coupled chemistry climate model (CCM) performance in the upper troposphere and lower stratosphere has been conducted with 18 models. Both qualitative and quantitative comparisons of model representation of UTLS dynamical, radiative and chemical structure have been conducted, using a collection of quantitative grading techniques. The models are able to reproduce the observed climatology of dynamical, radiative and chemical structure in the tropical and extratropical UTLS, despite relatively coarse vertical and horizontal resolution. Diagnostics of the Tropical Tropopause Layer (TTL), Tropopause Inversion Layer (TIL) and Extra-tropical Transition Layer (ExTL) are analyzed. The results provide new insight into the key processes that govern the dynamics and transport in the tropics and extra-tropicsa. The presentation will explain how models are able to reproduce key features of the UTLS, what features they do not reproduce, and why. Model trends over the historical period are also assessed and interannual variability is included in the metrics. Finally, key trends in the UTLS for the future with a given halogen and greenhouse gas scenario are presented, indicating significant changes in tropopause height and temperature, as well as UTLS ozone concentrations in the 21st century due to climate change and ozone recovery.

  4. Theoretical Methods of Domain Structures in Ultrathin Ferroelectric Films: A Review

    PubMed Central

    Liu, Jianyi; Chen, Weijin; Wang, Biao; Zheng, Yue

    2014-01-01

    This review covers methods and recent developments of the theoretical study of domain structures in ultrathin ferroelectric films. The review begins with an introduction to some basic concepts and theories (e.g., polarization and its modern theory, ferroelectric phase transition, domain formation, and finite size effects, etc.) that are relevant to the study of domain structures in ultrathin ferroelectric films. Basic techniques and recent progress of a variety of important approaches for domain structure simulation, including first-principles calculation, molecular dynamics, Monte Carlo simulation, effective Hamiltonian approach and phase field modeling, as well as multiscale simulation are then elaborated. For each approach, its important features and relative merits over other approaches for modeling domain structures in ultrathin ferroelectric films are discussed. Finally, we review recent theoretical studies on some important issues of domain structures in ultrathin ferroelectric films, with an emphasis on the effects of interfacial electrostatics, boundary conditions and external loads. PMID:28788198

  5. Method for laser welding ultra-thin metal foils

    DOEpatents

    Pernicka, J.C.; Benson, D.K.; Tracy, C.E.

    1996-03-26

    A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld. 5 figs.

  6. Method for laser welding ultra-thin metal foils

    DOEpatents

    Pernicka, John C.; Benson, David K.; Tracy, C. Edwin

    1996-01-01

    A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld.

  7. The tropopause inversion layer at midlatitudes: Formation processes and relation to stratosphere-troposphere exchange

    NASA Astrophysics Data System (ADS)

    Kunkel, D.; Hoor, P. M.; Wirth, V.

    2016-12-01

    Recent studies revealed the existence of a quasi-permanent layer of enhanced static stability above the thermal tropopause. This so-called tropopause inversion layer (TIL) is evident in adiabatic baroclinic life cycles suggesting that dry dynamics contribute to its formation. However, compared to observations the TIL in these life cycles is too weak, indicating that other contributions from diabatic processes are relevant. Such processes could be related to moisture or radiation, or other non-linear, subgrid-scale processes such as gravity wave breaking. Moreover, whether there is a causal relation between the occurrence of the TIL and stratosphere-troposphere exchange (STE) is still under debate. In this study various types of baroclinic life cycles are simulated using a non-hydrostatic model in an idealized mid-latitude channel configuration. A simulation using only the dynamical core of the model serves as base simulation, which is modified subsequently by adding different processes. First, these processes such as vertical turbulence, cloud microphysics, radiation as well as surface fluxes for heat and momentum are added individually. In a second set of simulations combinations of these processes are studied to assess the relative importance of the individual processes in the formation of the TIL. Finally, the static stability is analyzed in regions of STE. These regions are identified with the help of passive tracer as well as a Lagrangian trajectory analysis.

  8. Ultrathin Nickel Hydroxide and Oxide Nanosheets: Synthesis, Characterizations and Excellent Supercapacitor Performances

    PubMed Central

    Zhu, Youqi; Cao, Chuanbao; Tao, Shi; Chu, Wangsheng; Wu, Ziyu; Li, Yadong

    2014-01-01

    High-quality ultrathin two-dimensional nanosheets of α-Ni(OH)2 are synthesized at large scale via microwave-assisted liquid-phase growth under low-temperature atmospheric conditions. After heat treatment, non-layered NiO nanosheets are obtained while maintaining their original frame structure. The well-defined and freestanding nanosheets exhibit a micron-sized planar area and ultrathin thickness (<2 nm), suggesting an ultrahigh surface atom ratio with unique surface and electronic structure. The ultrathin 2D nanostructure can make most atoms exposed outside with high activity thus facilitate the surface-dependent electrochemical reaction processes. The ultrathin α-Ni(OH)2 and NiO nanosheets exhibit enhanced supercapacitor performances. Particularly, the α-Ni(OH)2 nanosheets exhibit a maximum specific capacitance of 4172.5 F g−1 at a current density of 1 A g−1. Even at higher rate of 16 A g−1, the specific capacitance is still maintained at 2680 F g−1 with 98.5% retention after 2000 cycles. Even more important, we develop a facile and scalable method to produce high-quality ultrathin transition metal hydroxide and oxide nanosheets and make a possibility in commercial applications. PMID:25168127

  9. On the persistence of polar domains in ultrathin ferroelectric capacitors.

    PubMed

    Zubko, Pavlo; Lu, Haidong; Bark, Chung-Wung; Martí, Xavi; Santiso, José; Eom, Chang-Beom; Catalan, Gustau; Gruverman, Alexei

    2017-07-19

    The instability of ferroelectric ordering in ultra-thin films is one of the most important fundamental issues pertaining realization of a number of electronic devices with enhanced functionality, such as ferroelectric and multiferroic tunnel junctions or ferroelectric field effect transistors. In this paper, we investigate the polarization state of archetypal ultrathin (several nanometres) ferroelectric heterostructures: epitaxial single-crystalline BaTiO 3 films sandwiched between the most habitual perovskite electrodes, SrRuO 3 , on top of the most used perovskite substrate, SrTiO 3 . We use a combination of piezoresponse force microscopy, dielectric measurements and structural characterization to provide conclusive evidence for the ferroelectric nature of the relaxed polarization state in ultrathin BaTiO 3 capacitors. We show that even the high screening efficiency of SrRuO 3 electrodes is still insufficient to stabilize polarization in SrRuO 3 /BaTiO 3 /SrRuO 3 heterostructures at room temperature. We identify the key role of domain wall motion in determining the macroscopic electrical properties of ultrathin capacitors and discuss their dielectric response in the light of the recent interest in negative capacitance behaviour.

  10. Direct peroral cholangioscopy using an ultrathin endoscope: making technique easier.

    PubMed

    Sola-Vera, Javier; Uceda, Francisco; Cuesta, Rubén; Vázquez, Narcís

    2014-01-01

    Cholangioscopy is a useful tool for the study and treatment of biliary pathology. Ultrathin upper endoscopes allow direct peroral cholangioscopy (DPC) but have some drawbacks. The aim of the study was to evaluate the success rate of DPC with an ultrathin endoscope using a balloon catheter to reach the biliary confluence. Prospective observational study. An ultrathin endoscope (Olympus XP180N, outer diameter 5.5 mm, working channel 2 mm) was used. To access the biliary tree, free-hand technique was used. To reach the biliary confluence an intraductal balloon catheter (Olympus B5-2Q diameter 1.9 mm) and a 0.025 inch guide wire was used. In all cases sphincterotomy and/or sphincteroplasty was performed. The success rate was defined as the percentage of cases in which the biliary confluence could be reached with the ultrathin endoscope. Fifteen patients (8 men/7 women) were included. Mean age was 77.7 + or - 10.8 years (range 45-91). The indications for cholangioscopy were suspected bile duct stones (n = 9), electrohydraulic lithotripsy for the treatment of difficult choledocholithiasis (n = 5) and evaluation of biliary stricture (n = 1). Access to the bile duct was achieved in 14/15 cases (93.3%). Biliary confluence was reached in 13/15 cases (86.7%). One complication was observed in one patient (oxigen desaturation). DPC with an ultrathin endoscope can be done with the free-hand technique. Intraductal balloon-guided DPC allows full examination of the common bile duct in most cases.

  11. The roles of static stability and tropical-extratropical interactions in the summer interannual variability of the North Atlantic sector

    NASA Astrophysics Data System (ADS)

    Mbengue, Cheikh Oumar; Woollings, Tim; Dacre, Helen F.; Hodges, Kevin I.

    2018-04-01

    Summer seasonal forecast skill in the North Atlantic sector is lower than winter skill. To identify potential controls on predictability, the sensitivity of North Atlantic baroclinicity to atmospheric drivers is quantified. Using ERA-INTERIM reanalysis data, North Atlantic storm-track baroclinicity is shown to be less sensitive to meridional temperature-gradient variability in summer. Static stability shapes the sector's interannual variability by modulating the sensitivity of baroclinicity to variations in meridional temperature gradients and tropopause height and by modifying the baroclinicity itself. High static stability anomalies at upper levels result in more zonal extratropical cyclone tracks and higher eddy kinetic energy over the British Isles in the summertime. These static stability anomalies are not strongly related to the summer NAO; but they are correlated with the suppression of convection over the tropical Atlantic and with a poleward-shifted subtropical jet. These results suggest a non-local driver of North Atlantic variability. Furthermore, they imply that improved representations of convection over the south-eastern part of North America and the tropical Atlantic might improve summer seasonal forecast skill.

  12. Observations of Overshooting Convective Tops and Dynamical Implications

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Halverson, Jeffrey; Fitzgerald, Mike; Dominquez, Rose; Starr, David OC. (Technical Monitor)

    2002-01-01

    Convective tops overshooting the tropopause have been suggested in the literature to play an important role in modifying the tropical tropopause. The structure of thunderstorm tops overshooting the tropopause have been difficult to measure due to the intensity of the convection and aircraft safety. This paper presents remote observations of overshooting convective tops with the high-altitude ER-2 aircraft during several of the Tropical Rain Measuring Mission (TRMM) and (Convection and Moisture Experiment) CAMEX campaigns. The ER-2 was instrumented with the down-looking ER-2 Doppler Radar (EDOP), a new dropsonde system (ER-2 High Altitude Dropsonde, EHAD), and an IR radiometer (Modis Airborne Simulator, MAS). Measurements were collected in Florida and Amazonia (Brazil). In this study, we utilize the radar cloud top information and cloud top infrared temperatures to document the amount of overshoot and temperature difference relative to the soundings provided by dropsondes and conventional upsondes. The radar measurements provide the details of the updraft structure near cloud top, and it is found that tops of stronger convective cells can overshoot by 1-2 km and with temperatures 5C colder than the tropopause minimum temperature. The negatively buoyant cloud tops are also evidenced in the Doppler measurements by strong subsiding flow along the sides of the convective tops . These findings support some of the conceptual and modeling studies of deep convection penetrating the tropopause.

  13. Controllable synthesis of ultrathin vanadium oxide nanobelts via an EDTA-mediated hydrothermal process

    NASA Astrophysics Data System (ADS)

    Yu-Xiang, Qin; Cheng, Liu; Wei-Wei, Xie; Meng-Yang, Cui

    2016-02-01

    Ultrathin VO2 nanobelts with rough alignment features are prepared on the induction layer-coated substrates by an ethylenediaminetetraacetic acid (EDTA)-mediated hydrothermal process. EDTA acts as a chelating reagent and capping agent to facilitate the one-dimensional (1D) preferential growth of ultrathin VO2 nanobelts with high crystallinities and good uniformities. The annealed induction layer and concentration of EDTA are found to play crucial roles in the formation of aligned and ultrathin nanobelts. Variation in EDTA concentration can change the VO2 morphology of ultrathin nanobelts into that of thick nanoplates. Mild annealing of ultrathin VO2 nanobelts at 350 °C in air results in the formation of V2O5 nanobelts with a nearly unchanged ultrathin structure. The nucleation and growth mechanism involved in the formations of nanobelts and nanoplates are proposed. The ethanol gas sensing properties of the V2O5 nanobelt networks-based sensor are investigated in a temperature range from 100 °C to 300 °C over ethanol concentrations ranging from 3 ppm to 500 ppm. The results indicate that the V2O5 nanobelt network sensor exhibits high sensitivity, good reversibility, and fast response-recovery characteristics with an optimal working temperature of 250 °C. Project supported by the National Natural Science Foundation of China (Grant Nos. 61274074, 61271070, and 61574100).

  14. Formation of the Double Tropopause in midlatitudes: an analysis using both observations and models

    NASA Astrophysics Data System (ADS)

    Peevey, Tanya; Konopka, Paul; Homeyer, Cameron; Mueller, Rolf

    2014-05-01

    The double tropopause (DT) is defined using the thermal definition of the tropopause, is found in the upper troposphere lower stratosphere (UTLS) region of the atmosphere, and forms primarily poleward of the subtropical jets. Studies have shown that this thermal structure is associated with the poleward transport of upper tropospheric air into the lower stratosphere during Rossby wave breaking events. The potential for subsequent mixing of radiatively important species in the lower stratosphere highlights the potential importance of the DT in further understanding the dynamics and structure of the UTLS. A few recent studies have drawn attention to this by showing that our knowledge of the DT is not complete. These efforts specifically show that the origin of air within the DT is still under debate since there are currently three different answers to the same question: low latitudes, midlatitudes and high latitudes. Additionally, one of these studies also shows that the DT can not form with out the tropopause inversion layer (TIL) and that as the strength of the TIL increases so does the DT frequency of occurrence. This is interesting because those results emphasis a current gap in knowledge in our understanding of the DT and, consequently, the UTLS. The focus of this work is to address some of these current open questions. This study utilizes both observations from HIRDLS, a satellite instrument funded by NASA, and model output from CLaMS, a Lagrangian model developed at Forschungzentrum Juelich. Initially the DT is analysed within the baroclinic system to understand its relationship to the TIL. Results from a case study, which examines a baroclinic disturbance over the Pacific Ocean, shows that as the disturbance develop the DT extends equatorward as the TIL forms and increases in strength. The work presented here explores this further by investigating the movement of air within the DT as it expands and contracts meridionally during the growth and decay of this

  15. Molecular dynamics simulation on adsorption of pyrene-polyethylene onto ultrathin single-walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Cai, Lu; Lv, Wenzhen; Zhu, Hong; Xu, Qun

    2016-07-01

    The mechanism of the adsorption of pyrene-polyethylene (Py-PE) onto ultrathin single-walled carbon nanotube (SWNT) was studied by using all-atom molecular dynamics (MD) simulations. We found that solvent polarity and pyrene group are two critical factors in the Py-PE decoration on ultrathin SWNT. Combined MD simulations with free energy calculations, our results indicate that larger solvent polarity can decrease the contribution of conformation entropy, but contributes little to the interaction energy, moreover, larger SWNT diameter can decrease the contribution of conformation entropy but lead to the increasing of the interaction energy. In polar organic solvent (N, N-Dimethylacetamide), the pyrene group plays a key role in the adsorption of Py-PE onto ultrathin SWNT, not only facilitates the spontaneous adsorption of Py-PE onto ultrathin SWNT, but also helps to form compact structure between themselves in the final adsorption states. While in aqueous solution, pyrene group no longer works as an anchor, but still affects a lot to the final adsorption conformation. Our present work provides detailed theoretical clue to understand the noncovalent interaction between aromatic segment appended polymer and ultrathin SWNT, and helps to explore the potential application of ultrathin SWNT in the fields of hybrid material, biomedical and electronic materials.

  16. Sulfate and nitrate collected by filter sampling near the tropopause

    NASA Technical Reports Server (NTRS)

    Humenik, F. M.; Lezberg, E. A.; Otterson, D. A.

    1980-01-01

    Filter samples collected near the tropopause with an F-106 aircraft and two Boeing 747 aircraft were analyzed for sulfate and nitrate ion content. Within the range of routine commercial flight altitudes (at or below 12.5 km), stratospheric mass mixing ratios for the winter-spring group averaged 0.26 ppbm for sulfate and 0.35 ppbm for nitrate. For the summer-fall group, stratosphere mixing ratios averaged 0.13 ppbm and 0.25 ppbm for sulfate and nitrate, respectively. Winter-spring group tropospheric mass mixing ratios averaged 0.08 ppbm for sulfate and 0.10 ppbm for nitrate, while summer-fall group tropospheric mixing ratios averaged 0.05 ppbm for sulfate and 0.08 ppbm for nitrate. Correlations of the filter data with available ozone data suggest that the sulfate and nitrate are transported from the stratosphere to the troposphere.

  17. Room Temperature Ferroelectricity in Ultrathin SnTe Films

    NASA Astrophysics Data System (ADS)

    Chang, Kai; Liu, Junwei; Lin, Haicheng; Zhao, Kun; Zhong, Yong; Ji, Shuai-Hua; He, Ke; Wang, Lili; Ma, Xucun; Fu, Liang; Chen, Xi; Xue, Qi-Kun

    2015-03-01

    The ultrathin SnTe films with several unit cell thickness grown on graphitized SiC(0001) surface have been studied by the scanning tunneling microscopy and spectroscopy (STM/S). The domain structures, local lattice distortion and the electronic band bending at film edges induced by the in-plane spontaneous polarization along < 110 > have been revealed at atomic scale. The experiments at variant temperature show that the Curie temperature Tc of the one unit cell thick (two atomic layers) SnTe film is as high as 280K, much higher than that of the bulk counterpart (~100K) and the 2-4 unit cell thick films even indicate robust ferroelectricity at room temperature. This Tc enhancement is attributed to the stress-free interface, larger electronic band gap and greatly reduced Sn vacancy concentration in the ultrathin films. The lateral domain size varies from several tens to several hundreds of nanometers, and the spontaneous polarization direction could be modified by STM tip. Those properties of ultrathin SnTe films show the potential application on ferroelectric devices. The work was financially supported by Ministry of Science and Technology of China, National Science Foundation and Ministry of Education of China.

  18. High-Performance Ultrathin Active Chiral Metamaterials.

    PubMed

    Wu, Zilong; Chen, Xiaodong; Wang, Mingsong; Dong, Jianwen; Zheng, Yuebing

    2018-05-22

    Ultrathin active chiral metamaterials with dynamically tunable and responsive optical chirality enable new optical sensors, modulators, and switches. Herein, we develop ultrathin active chiral metamaterials of highly tunable chiroptical responses by inducing tunable near-field coupling in the metamaterials and exploit the metamaterials as ultrasensitive sensors to detect trace amounts of solvent impurities. To demonstrate the active chiral metamaterials mediated by tunable near-field coupling, we design moiré chiral metamaterials (MCMs) as model metamaterials, which consist of two layers of identical Au nanohole arrays stacked upon one another in moiré patterns with a dielectric spacer layer between the Au layers. Our simulations, analytical fittings, and experiments reveal that spacer-dependent near-field coupling exists in the MCMs, which significantly enhances the spectral shift and line shape change of the circular dichroism (CD) spectra of the MCMs. Furthermore, we use a silk fibroin thin film as the spacer layer in the MCM. With the solvent-controllable swelling of the silk fibroin thin films, we demonstrate actively tunable near-field coupling and chiroptical responses of the silk-MCMs. Impressively, we have achieved the spectral shift over a wavelength range that is more than one full width at half-maximum and the sign inversion of the CD spectra in a single ultrathin (1/5 of wavelength in thickness) MCM. Finally, we apply the silk-MCMs as ultrasensitive sensors to detect trace amounts of solvent impurities down to 200 ppm, corresponding to an ultrahigh sensitivity of >10 5 nm/refractive index unit (RIU) and a figure of merit of 10 5 /RIU.

  19. Ozone peaks associated with a subtropical tropopause fold and with the trade wind inversion: A case study from the airborne campaign TROPOZ II over the Caribbean in winter

    NASA Astrophysics Data System (ADS)

    Gouget, Hervé; Cammas, Jean-Pierre; Marenco, Alain; Rosset, Robert; JonquièRes, Isabelle

    1996-11-01

    Aircraft measurements of ozone, methane, carbon monoxide, relative humidity, and equivalent potential temperature were performed during the TROPOZ II campaign. During the aircraft descent down to Pointe-à-Pitre (16.3°N, 61.5°W), at 2100 UTC on January 12, 1991, two ozone peaks (75 ppb) are observed, one at an altitude of 7.5 km and the other at 3.0 km. A physicochemical interpretation for each ozone peak is proposed in connection with the meteorological context, using radiosounding data, total ozone content from TOMS/NIMBUS 7 and diagnoses issued from analyses by the European Centre for Medium-Range Weather Forecasts, Reading, England. The stratospheric origin of the 7.5-km ozone peak is inferred from negative correlations between ozone and its precursors and from diagnoses based on potential vorticity and ageostrophic circulations depicting the structure of the tropopause fold embedded in the subtropical jet front system. Using an appropriate method to isolate cross- and along-front ageostrophic circulations, we show that much of the observed structure of the tropopause fold can be ascribed to transverse and vertical circulations associated with the irrotational part of the flow. Though the downward extent of the subtropical tropopause fold (400 hPa) is restricted in comparison with typical extratropical tropopause ones (700 hPa), the present results suggest that subtropical tropopause folds may significantly contribute to the global stratosphere-troposphere ozone exchange. The origin of the 3.0-km ozone peak trapped just below the trade wind inversion cannot be ascribed precisely. Analogies with other measurements of dust and aerosols transported over the Atlantic or Pacific in the summer season are discussed. Various possibilities are examined: (1) an earlier stratospheric intrusion event, (2) long-range transport by the trade winds of biomass burning species emitted over West Africa, and (3) fast photochemical ozone formation occurring just below the trade

  20. Fabrication of Large-area Free-standing Ultrathin Polymer Films

    PubMed Central

    Stadermann, Michael; Baxamusa, Salmaan H.; Aracne-Ruddle, Chantel; Chea, Maverick; Li, Shuaili; Youngblood, Kelly; Suratwala, Tayyab

    2015-01-01

    This procedure describes a method for the fabrication of large-area and ultrathin free-standing polymer films. Typically, ultrathin films are prepared using either sacrificial layers, which may damage the film or affect its mechanical properties, or they are made on freshly cleaved mica, a substrate that is difficult to scale. Further, the size of ultrathin film is typically limited to a few square millimeters. In this method, we modify a surface with a polyelectrolyte that alters the strength of adhesion between polymer and deposition substrate. The polyelectrolyte can be shown to remain on the wafer using spectroscopy, and a treated wafer can be used to produce multiple films, indicating that at best minimal amounts of the polyelectrolyte are added to the film. The process has thus far been shown to be limited in scalability only by the size of the coating equipment, and is expected to be readily scalable to industrial processes. In this study, the protocol for making the solutions, preparing the deposition surface, and producing the films is described. PMID:26066738

  1. An Aircraft-Based Upper Troposphere Lower Stratosphere O3, CO, and H2O Climatology for the Northern Hemisphere

    NASA Technical Reports Server (NTRS)

    Tilmes, S.; Pan, L. L.; Hoor, P.; Atlas, E.; Avery, M. A.; Campos, T.; Christensen, L. E.; Diskin, G. S.; Gao, R.-S.; Herman, R. L.; hide

    2010-01-01

    We present a climatology of O3, CO, and H2O for the upper troposphere and lower stratosphere (UTLS), based on a large collection of high ]resolution research aircraft data taken between 1995 and 2008. To group aircraft observations with sparse horizontal coverage, the UTLS is divided into three regimes: the tropics, subtropics, and the polar region. These regimes are defined using a set of simple criteria based on tropopause height and multiple tropopause conditions. Tropopause ]referenced tracer profiles and tracer ]tracer correlations show distinct characteristics for each regime, which reflect the underlying transport processes. The UTLS climatology derived here shows many features of earlier climatologies. In addition, mixed air masses in the subtropics, identified by O3 ]CO correlations, show two characteristic modes in the tracer ]tracer space that are a result of mixed air masses in layers above and below the tropopause (TP). A thin layer of mixed air (1.2 km around the tropopause) is identified for all regions and seasons, where tracer gradients across the TP are largest. The most pronounced influence of mixing between the tropical transition layer and the subtropics was found in spring and summer in the region above 380 K potential temperature. The vertical extent of mixed air masses between UT and LS reaches up to 5 km above the TP. The tracer correlations and distributions in the UTLS derived here can serve as a reference for model and satellite data evaluation

  2. Ultrathin zoom lens system based on liquid lenses

    NASA Astrophysics Data System (ADS)

    Li, Lei; Liu, Chao; Wang, Qiong-Hua

    2015-07-01

    In this paper, we propose an ultrathin zoom lens system based on liquid lenses. The proposed system consists of an annular folded lens and three electrowetting liquid lenses. The annular folded lens has several concentric surfaces. The annular folded lens is used to get the main power and correct aberrations. The three liquid lenses are used to change the focal length and correct aberration. An analysis of the proposed system is presented along with the design, fabrication, and testing of a prototype. All the elements in the proposed system are very thin, so the system is an ultrathin zoom lens system, which has potential application as lightweight, thin, high-quality imagers for aerospace, consumer, and military applications.

  3. Physicochemically functional ultrathin films by interfacial polymerization

    DOEpatents

    Lonsdale, Harold K.; Babcock, Walter C.; Friensen, Dwayne T.; Smith, Kelly L.; Johnson, Bruce M.; Wamser, Carl C.

    1990-01-01

    Interfacially-polymerized ultrathin films containing physicochemically functional groups are disclosed, both with and without supports. Various applications are disclsoed, including membrane electrodes, selective membranes and sorbents, biocompatible materials, targeted drug delivery, and narrow band optical absorbers.

  4. Patterned FePt nanostructures using ultrathin self-organized templates

    NASA Astrophysics Data System (ADS)

    Deng, Chen Hua; Zhang, Min; Wang, Fang; Xu, Xiao Hong

    2018-02-01

    Patterned magnetic thin films are both scientifically interesting and technologically useful. Ultrathin self-organized anodic aluminum oxide (AAO) template can be used to fabricate large area nanodot and antidot arrays. The magnetic properties of these nanostructures may be tuned by the morphology of the AAO template, which in turn can be controlled by synthetic parameters. In this work, ultrathin AAO templates were used as etching masks for the fabrication of both FePt nanodot and antidot arrays with high areal density. The perpendicular magnetic anisotropy of L10 FePt thin films are preserved in the nanostructures.

  5. Generalized Self-Doping Engineering towards Ultrathin and Large-Sized Two-Dimensional Homologous Perovskites.

    PubMed

    Chen, Junnian; Wang, Yaguang; Gan, Lin; He, Yunbin; Li, Huiqiao; Zhai, Tianyou

    2017-11-20

    Two-dimensional (2D) homologous perovskites are arousing intense interest in photovoltaics and light-emitting fields, attributing to significantly improved stability and increasing optoelectronic performance. However, investigations on 2D homologous perovskites with ultrathin thickness and large lateral dimension have been seldom reported, being mainly hindered by challenges in synthesis. A generalized self-doping directed synthesis of ultrathin 2D homologous (BA) 2 (MA) n-1 Pb n Br 3n+1 (1Ultrathin (BA) 2 (MA) n-1 Pb n Br 3n+1 perovskites are formed via an intercalation-merging mechanism, with thickness shrinking down to 4.2 nm and the lateral dimension to 57 μm. The ultrathin 2D homologous (BA) 2 (MA) n-1 Pb n Br 3n+1 perovskites are potential materials for photodetectors with promising photoresponse and stability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The Life Cycle of Stratospheric Aerosol Particles

    NASA Technical Reports Server (NTRS)

    Hamill, Patrick; Jensen, Eric J.; Russell, P. B.; Bauman, Jill J.

    1997-01-01

    This paper describes the life cycle of the background (nonvolcanic) stratospheric sulfate aerosol. The authors assume the particles are formed by homogeneous nucleation near the tropical tropopause and are carried aloft into the stratosphere. The particles remain in the Tropics for most of their life, and during this period of time a size distribution is developed by a combination of coagulation, growth by heteromolecular condensation, and mixing with air parcels containing preexisting sulfate particles. The aerosol eventually migrates to higher latitudes and descends across isentropic surfaces to the lower stratosphere. The aerosol is removed from the stratosphere primarily at mid- and high latitudes through various processes, mainly by isentropic transport across the tropopause from the stratosphere into the troposphere.

  7. Electron transport in ultra-thin films and ballistic electron emission microscopy

    NASA Astrophysics Data System (ADS)

    Claveau, Y.; Di Matteo, S.; de Andres, P. L.; Flores, F.

    2017-03-01

    We have developed a calculation scheme for the elastic electron current in ultra-thin epitaxial heterostructures. Our model uses a Keldysh’s non-equilibrium Green’s function formalism and a layer-by-layer construction of the epitaxial film. Such an approach is appropriate to describe the current in a ballistic electron emission microscope (BEEM) where the metal base layer is ultra-thin and generalizes a previous one based on a decimation technique appropriated for thick slabs. This formalism allows a full quantum mechanical description of the transmission across the epitaxial heterostructure interface, including multiple scattering via the Dyson equation, which is deemed a crucial ingredient to describe interfaces of ultra-thin layers properly in the future. We introduce a theoretical formulation needed for ultra-thin layers and we compare with results obtained for thick Au(1 1 1) metal layers. An interesting effect takes place for a width of about ten layers: a BEEM current can propagate via the center of the reciprocal space (\\overlineΓ ) along the Au(1 1 1) direction. We associate this current to a coherent interference finite-width effect that cannot be found using a decimation technique. Finally, we have tested the validity of the handy semiclassical formalism to describe the BEEM current.

  8. Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films

    PubMed Central

    Wang, Xuewen; He, Xuexia; Zhu, Hongfei; Sun, Linfeng; Fu, Wei; Wang, Xingli; Hoong, Lai Chee; Wang, Hong; Zeng, Qingsheng; Zhao, Wu; Wei, Jun; Jin, Zhong; Shen, Zexiang; Liu, Jie; Zhang, Ting; Liu, Zheng

    2016-01-01

    Driven by the development of high-performance piezoelectric materials, actuators become an important tool for positioning objects with high accuracy down to nanometer scale, and have been used for a wide variety of equipment, such as atomic force microscopy and scanning tunneling microscopy. However, positioning at the subatomic scale is still a great challenge. Ultrathin piezoelectric materials may pave the way to positioning an object with extreme precision. Using ultrathin CdS thin films, we demonstrate vertical piezoelectricity in atomic scale (three to five space lattices). With an in situ scanning Kelvin force microscopy and single and dual ac resonance tracking piezoelectric force microscopy, the vertical piezoelectric coefficient (d33) up to 33 pm·V−1 was determined for the CdS ultrathin films. These findings shed light on the design of next-generation sensors and microelectromechanical devices. PMID:27419234

  9. Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films.

    PubMed

    Wang, Xuewen; He, Xuexia; Zhu, Hongfei; Sun, Linfeng; Fu, Wei; Wang, Xingli; Hoong, Lai Chee; Wang, Hong; Zeng, Qingsheng; Zhao, Wu; Wei, Jun; Jin, Zhong; Shen, Zexiang; Liu, Jie; Zhang, Ting; Liu, Zheng

    2016-07-01

    Driven by the development of high-performance piezoelectric materials, actuators become an important tool for positioning objects with high accuracy down to nanometer scale, and have been used for a wide variety of equipment, such as atomic force microscopy and scanning tunneling microscopy. However, positioning at the subatomic scale is still a great challenge. Ultrathin piezoelectric materials may pave the way to positioning an object with extreme precision. Using ultrathin CdS thin films, we demonstrate vertical piezoelectricity in atomic scale (three to five space lattices). With an in situ scanning Kelvin force microscopy and single and dual ac resonance tracking piezoelectric force microscopy, the vertical piezoelectric coefficient (d 33) up to 33 pm·V(-1) was determined for the CdS ultrathin films. These findings shed light on the design of next-generation sensors and microelectromechanical devices.

  10. Physicochemically functional ultrathin films by interfacial polymerization

    DOEpatents

    Lonsdale, H.K.; Babcock, W.C.; Friensen, D.T.; Smith, K.L.; Johnson, B.M.; Wamser, C.C.

    1990-08-14

    Interfacially-polymerized ultrathin films containing physicochemically functional groups are disclosed, both with and without supports. Various applications are disclosed, including membrane electrodes, selective membranes and sorbents, biocompatible materials, targeted drug delivery, and narrow band optical absorbers. 3 figs.

  11. Tropopause Pressure May Explain California Droughts and Wet Period

    NASA Astrophysics Data System (ADS)

    Mazdiyasni, O.; AghaKouchak, A.

    2017-12-01

    Sea surface temperatures and teleconnection patterns such as El Nino/La Nina are considered the main culprits behind major California droughts. However, the underlying relationship between sea surface temperatures (SSTs) and precipitation anomalies is relatively weak. In 2015-2016 the most extreme El Nino did not lead to a wet season as expected, which triggered a series of studies on this topic. Here we show that tropopause level pressure in a region in the northeastern Pacific Ocean (dubbed the PARS-NEP region) plays a major role in whether California will experience a wet or dry year and often dominates the role of SST-based teleconnections. Our results indicate that pressure in the PARS-NEP region Granger-Causes precipitation in California during the wet season. We show that when pressure in the PARS-NEP region is in the lower (upper) tertile, 85% of wet seasons across California have a positive (negative) precipitation anomaly. The observed relationship between PARS-NEP and California precipitation is stronger than all the commonly used SST-based climatic indictors frequently used for understanding causes of droughts.

  12. Tracer transport in the tropical lower stratosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trepte, C.R.

    1993-12-31

    Distributions of aerosol extinction ratio ({beta}{sub r}) and ozone, derived from the Stratospheric Aerosol and Gas Experiment (SAGE I/II) satellite experiments (1979-1981 and 1984-1992), are used in conjunction with conventional meteorological analyses to deduce patterns of stratospheric tracer transport. Following volcanic eruptions at low latitudes, the aerosol observations suggest that two transport regimes exist in the tropical lower stratosphere. Aerosols disperse rapidly poleward and downward within a layer several kilometers above the tropopause. More pronounced transport is biased toward the winter hemisphere. At higher altitudes, however, volcanic aerosols tend to remain over the equator in a reservoir bounded by strongmore » meridional gradients near 20{degrees}N and S. Over the equator, enhanced lofting of aerosols occurs during QBO easterly shear, while subsidence relative to the mean meridional flow takes place during QBO westerly shear. While particle growth and evaporation effects are important, many interesting features of the aerosol distribution can only be explained by air motions. It is also shown that QBO induced ozone anomalies over the equator are also consistent with QBO aerosol variations. In the upper transport regime, the subtropical gradients of {beta}{sub r} coincide with the location of a meridional gradient in potential vorticity. Since isentropic transport is inhibited across potential vorticity gradients, the tropics are temporarily isolated from eddy mixing taking place in the winter extratropics. Zonal mean distributions of ozone; however, do not have similar meridional gradients in the subtropics. Detrainment of aerosol from the equatorial reservoir depends upon the phase of the QBO and the strength of winter eddy disturbances in the subtropics. Anticyclonic circulation systems form occasionally in the subtropics and can shear-off enhanced {beta}{sub r} air from the periphery of the aerosol reservoir.« less

  13. Electrolyte-Sensing Transistor Decals Enabled by Ultrathin Microbial Nanocellulose

    PubMed Central

    Yuen, Jonathan D.; Walper, Scott A.; Melde, Brian J.; Daniele, Michael A.; Stenger, David A.

    2017-01-01

    We report an ultra-thin electronic decal that can simultaneously collect, transmit and interrogate a bio-fluid. The described technology effectively integrates a thin-film organic electrochemical transistor (sensing component) with an ultrathin microbial nanocellulose wicking membrane (sample handling component). As far as we are aware, OECTs have not been integrated in thin, permeable membrane substrates for epidermal electronics. The design of the biocompatible decal allows for the physical isolation of the electronics from the human body while enabling efficient bio-fluid delivery to the transistor via vertical wicking. High currents and ON-OFF ratios were achieved, with sensitivity as low as 1 mg·L−1. PMID:28102316

  14. Electrolyte-Sensing Transistor Decals Enabled by Ultrathin Microbial Nanocellulose

    NASA Astrophysics Data System (ADS)

    Yuen, Jonathan D.; Walper, Scott A.; Melde, Brian J.; Daniele, Michael A.; Stenger, David A.

    2017-01-01

    We report an ultra-thin electronic decal that can simultaneously collect, transmit and interrogate a bio-fluid. The described technology effectively integrates a thin-film organic electrochemical transistor (sensing component) with an ultrathin microbial nanocellulose wicking membrane (sample handling component). As far as we are aware, OECTs have not been integrated in thin, permeable membrane substrates for epidermal electronics. The design of the biocompatible decal allows for the physical isolation of the electronics from the human body while enabling efficient bio-fluid delivery to the transistor via vertical wicking. High currents and ON-OFF ratios were achieved, with sensitivity as low as 1 mg·L-1.

  15. Controlled Growth of Ultrathin Film of Organic Semiconductors by Balancing the Competitive Processes in Dip-Coating for Organic Transistors.

    PubMed

    Wu, Kunjie; Li, Hongwei; Li, Liqiang; Zhang, Suna; Chen, Xiaosong; Xu, Zeyang; Zhang, Xi; Hu, Wenping; Chi, Lifeng; Gao, Xike; Meng, Yancheng

    2016-06-28

    Ultrathin film with thickness below 15 nm of organic semiconductors provides excellent platform for some fundamental research and practical applications in the field of organic electronics. However, it is quite challenging to develop a general principle for the growth of uniform and continuous ultrathin film over large area. Dip-coating is a useful technique to prepare diverse structures of organic semiconductors, but the assembly of organic semiconductors in dip-coating is quite complicated, and there are no reports about the core rules for the growth of ultrathin film via dip-coating until now. In this work, we develop a general strategy for the growth of ultrathin film of organic semiconductor via dip-coating, which provides a relatively facile model to analyze the growth behavior. The balance between the three direct factors (nucleation rate, assembly rate, and recession rate) is the key to determine the growth of ultrathin film. Under the direction of this rule, ultrathin films of four organic semiconductors are obtained. The field-effect transistors constructed on the ultrathin film show good field-effect property. This work provides a general principle and systematic guideline to prepare ultrathin film of organic semiconductors via dip-coating, which would be highly meaningful for organic electronics as well as for the assembly of other materials via solution processes.

  16. Coexistence of Topological Edge State and Superconductivity in Bismuth Ultrathin Film.

    PubMed

    Sun, Hao-Hua; Wang, Mei-Xiao; Zhu, Fengfeng; Wang, Guan-Yong; Ma, Hai-Yang; Xu, Zhu-An; Liao, Qing; Lu, Yunhao; Gao, Chun-Lei; Li, Yao-Yi; Liu, Canhua; Qian, Dong; Guan, Dandan; Jia, Jin-Feng

    2017-05-10

    Ultrathin freestanding bismuth film is theoretically predicted to be one kind of two-dimensional topological insulators. Experimentally, the topological nature of bismuth strongly depends on the situations of the Bi films. Film thickness and interaction with the substrate often change the topological properties of Bi films. Using angle-resolved photoemission spectroscopy, scanning tunneling microscopy or spectroscopy and first-principle calculation, the properties of Bi(111) ultrathin film grown on the NbSe 2 superconducting substrate have been studied. We find the band structures of the ultrathin film is quasi-freestanding, and one-dimensional edge state exists on Bi(111) film as thin as three bilayers. Superconductivity is also detected on different layers of the film and the pairing potential exhibits an exponential decay with the layer thicknesses. Thus, the topological edge state can coexist with superconductivity, which makes the system a promising platform for exploring Majorana Fermions.

  17. Magnetotransport Properties in High-Quality Ultrathin Two-Dimensional Superconducting Mo2C Crystals.

    PubMed

    Wang, Libin; Xu, Chuan; Liu, Zhibo; Chen, Long; Ma, Xiuliang; Cheng, Hui-Ming; Ren, Wencai; Kang, Ning

    2016-04-26

    Ultrathin transition metal carbides are a class of developing two-dimensional (2D) materials with superconductivity and show great potentials for electrical energy storage and other applications. Here, we report low-temperature magnetotransport measurements on high-quality ultrathin 2D superconducting α-Mo2C crystals synthesized by a chemical vapor deposition method. The magnetoresistance curves exhibit reproducible oscillations at low magnetic fields for temperature far below the superconducting transition temperature of the crystals. We interpret the oscillatory magnetoresistance as a consequence of screening currents circling around the boundary of triangle-shaped terraces found on the surface of ultrathin Mo2C crystals. As the sample thickness decreases, the Mo2C crystals exhibit negative magnetoresistance deep in the superconducting transition regime, which reveals strong phase fluctuations of the superconducting order parameters associated with the superconductor-insulator transition. Our results demonstrate that the ultrathin superconducting Mo2C crystals provide an interesting system for studying rich transport phenomena in a 2D crystalline superconductor with enhanced quantum fluctuations.

  18. A broadband terahertz ultrathin multi-focus lens

    PubMed Central

    He, Jingwen; Ye, Jiasheng; Wang, Xinke; Kan, Qiang; Zhang, Yan

    2016-01-01

    Ultrathin transmission metasurface devices are designed on the basis of the Yang-Gu amplitude-phase retrieval algorithm for focusing the terahertz (THz) radiation into four or nine spots with focal spacing of 2 or 3 mm at a frequency of 0.8 THz. The focal properties are experimentally investigated in detail, and the results agree well with the theoretical expectations. The designed THz multi-focus lens (TMFL) demonstrates a good focusing function over a broad frequency range from 0.3 to 1.1 THz. As a transmission-type device based on metasurface, the diffraction efficiency of the TMFL can be as high as 33.92% at the designed frequency. The imaging function of the TMFL is also demonstrated experimentally and clear images are obtained. The proposed method produces an ultrathin, low-cost, and broadband multi-focus lens for THz-band application PMID:27346430

  19. Exploratory development and services for preparing and examining ultrathin polished sections of lunar rocks and particulates, part 1

    NASA Technical Reports Server (NTRS)

    Beauchamp, R. H.; Williford, J. F.; Gafford, E. L.

    1972-01-01

    Development of improved procedures is reported for three classes of lunar materials: dense rocks, breccias, and particulates. High quality ultrathin sections of these materials are obtained. Lists of equipment and supplies, procedures, photomicrographic documentation, and training are provided. Advantages of ultrathin polished sections for conventional and unconventional optical microscopy methods are described. Recommendations are provided for use of ultrathin sections in lunar rock studies, for further refinement of ultrathinning procedures, and for additional training efforts to establish a capability at the Manned Space Center. For Part 2, See N72-50754.

  20. Metal Adatoms and Clusters on Ultrathin Zirconia Films

    PubMed Central

    2016-01-01

    Nucleation and growth of transition metals on zirconia has been studied by scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. Since STM requires electrical conductivity, ultrathin ZrO2 films grown by oxidation of Pt3Zr(0001) and Pd3Zr(0001) were used as model systems. DFT studies were performed for single metal adatoms on supported ZrO2 films as well as the (1̅11) surface of monoclinic ZrO2. STM shows decreasing cluster size, indicative of increasing metal–oxide interaction, in the sequence Ag < Pd ≈ Au < Ni ≈ Fe. Ag and Pd nucleate mostly at steps and domain boundaries of ZrO2/Pt3Zr(0001) and form three-dimensional clusters. Deposition of low coverages of Ni and Fe at room temperature leads to a high density of few-atom clusters on the oxide terraces. Weak bonding of Ag to the oxide is demonstrated by removing Ag clusters with the STM tip. DFT calculations for single adatoms show that the metal–oxide interaction strength increases in the sequence Ag < Au < Pd < Ni on monoclinic ZrO2, and Ag ≈ Au < Pd < Ni on the supported ultrathin ZrO2 film. With the exception of Au, metal nucleation and growth on ultrathin zirconia films follow the usual rules: More reactive (more electropositive) metals result in a higher cluster density and wet the surface more strongly than more noble metals. These bind mainly to the oxygen anions of the oxide. Au is an exception because it can bind strongly to the Zr cations. Au diffusion may be impeded by changing its charge state between −1 and +1. We discuss differences between the supported ultrathin zirconia films and the surfaces of bulk ZrO2, such as the possibility of charge transfer to the substrate of the films. Due to their large in-plane lattice constant and the variety of adsorption sites, ZrO2{111} surfaces are more reactive than many other oxygen-terminated oxide surfaces. PMID:27213024

  1. Investigations of Topological Surface States in Sb (111) Ultrathin Films by STM/STS Experiments and DFT Calculations

    NASA Astrophysics Data System (ADS)

    Luo, Ziyu; Yao, Guanggeng; Xu, Wentao; Feng, Yuanping; Wang, Xue-Sen

    2014-03-01

    Bulk Sb was regarded as a semimetal with a nontrivial topological order. It is worth exploring whether the Sb ultrathin film has the potential to be an elementary topological insulator. In the presence of quantum confinement effect, we investigated the evolution of topological surface states in Sb (111) ultrathin films with different thickness by the scanning tunneling microscopy/ spectroscopy (STM/STS) experiments and density functional theory (DFT) calculations. By comparing the quasiparticle interference (QPI) patterns obtained from Fourier-transform scanning tunneling spectroscopy (FT-STS) and from DFT calculations, we successfully derive the spin properties of topological surface states on Sb (111) ultrathin films. In addition, based on the DFT calculations, the 8BL Sb (111) ultrathin film was proved to possess up to 30% spinseparated topological surface states within the bandgap. Therefore, the highquality 8BL Sb (111) ultrathin film could be regarded as an elementary topological insulator.

  2. A sextuple-band ultra-thin metamaterial absorber with perfect absorption

    NASA Astrophysics Data System (ADS)

    Yu, Dingwang; Liu, Peiguo; Dong, Yanfei; Zhou, Dongming; Zhou, Qihui

    2017-08-01

    This paper presents the design, simulation and measurement of a sextuple-band ultra-thin metamaterial absorber (MA). The unit cell of this proposed structure is composed of triangular spiral-shaped complementary structures imprinted on the dielectric substrate backed by a metal ground. The measured results are in good agreement with simulations with high absorptivities of more than 90% at all six absorption frequencies. In addition, this proposed absorber has good performances of ultra-thin, polarization insensitivity and a wide-angle oblique incidence, which can easily be used in many potential applications such as detection, imaging and sensing.

  3. GPM observations of a tropical-like hailstorm over the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Cinzia Marra, Anna; Panegrossi, Giulia; Casella, Daniele; Sanò, Paolo; Dietrich, Stefano; Baldini, Luca; Petracca, Marco; Porcù, Federico

    2016-04-01

    In the last years tropical-like precipitation systems, i.e., with large horizontal extent, tropical cyclone features (i.e., Medicanes), or characterized by very deep and intense convection, have become more and more frequent also at mid-latitudes. On September 05, 2015 a violent hailstorm hit the Gulf and the city of Naples in Italy. The storm was caused by a southward plunge of the jet stream that carved into Western Europe, sending an upper disturbance into the Italian peninsula. That instability, associated with high Sea Surface Temperature (SST), and low-level convergence, stirred up an impressive severe thunderstorm with intense lightning activity and strong winds, that started developing around 0600 UTC over the Thyrrenian Sea off the coast of Naples, and reached maturity by 0637 UTC, hitting the coast around 0900 UTC, moving inland afterwards, until its complete dissipation around 1200 UTC. The storm dropped 5-8 cm diameter hailstones along its path over the sea, and in Pozzuoli, near Naples. Meteosat Second Generation (MSG) SEVIRI VIS/IR images show the extremely rapid development of the thunderstorm, with cloud-top temperatures (at 10.8 μm) dropping from 270 K at 0657 UTC to the extremely low value of 205 K at 0637 UTC (65 K in 40 minutes). The occurrence of a very well defined convective overshooting top is evidenced by the VIS images. Sounding at Pratica di Mare station (180 km NE of Naples) at 0000 UTC shows the tropopause height at about 13.5 km and the typical "loaded gun" features providing a strong capping inversion inhibiting the premature release of the convective instability: moist air in the boundary layer, due to the low-level southerly flow, with warm and dry air aloft. The LINET ground-based lightning detection network registered over 37000 strokes between 0500 and 1200 UTC. During its mature phase, at 0845 UTC, the hailstorm was captured by one overpass of Global Precipitation Measurement (GPM) satellite launched in February 2014. The GPM

  4. Laser cutting of ultra-thin glasses based on a nonlinear laser interaction effect

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Wu, Zhouling

    2013-07-01

    Glass panel substrates have been widely used in consumer electronics such as in flat panel TVs, laptops, and cell phones. With the advancement in the industry, the glass substrates are becoming thinner and stronger for reduced weight and volume, which brings great challenges for traditional mechanical processes in terms of cut quality, yield, and throughput. Laser glass cutting provides a non-contact process with minimum impact and superior quality compared to the mechanical counterparts. In this paper, we presented recent progresses in advanced laser processing of ultra-thin glass substrates, especially laser-cutting of ultra-thin glasses by a high power laser through a nonlinear interaction effect. Our results indicate that this technique has great potential of application for mass production of ultra-thin glass substrates.

  5. Ultrathin metallized PBI paper

    NASA Technical Reports Server (NTRS)

    Chenevey, E. C.

    1978-01-01

    A study to determine the feasibility of preparing ultrathin papers with a target weight of 3.5 g/m squared from polybenzimidazole (PBI) fibrids was undertaken. Small hand sheets of target weight were fabricated. They were light brown, low density materials with sufficient strength to be readily handleable. Characterization of these sheets included strength, fold endurance, thermal gravimetric analysis in air and nitrogen and photomicrographs. Two different batches of PBI fibrids were studied and differences in fabrication performance were noted. In neither case could target weight papers be prepared using conventional paper making techniques.

  6. Ultrathin inorganic molecular nanowire based on polyoxometalates

    PubMed Central

    Zhang, Zhenxin; Murayama, Toru; Sadakane, Masahiro; Ariga, Hiroko; Yasuda, Nobuhiro; Sakaguchi, Norihito; Asakura, Kiyotaka; Ueda, Wataru

    2015-01-01

    The development of metal oxide-based molecular wires is important for fundamental research and potential practical applications. However, examples of these materials are rare. Here we report an all-inorganic transition metal oxide molecular wire prepared by disassembly of larger crystals. The wires are comprised of molybdenum(VI) with either tellurium(IV) or selenium(IV): {(NH4)2[XMo6O21]}n (X=tellurium(IV) or selenium(IV)). The ultrathin molecular nanowires with widths of 1.2 nm grow to micrometre-scale crystals and are characterized by single-crystal X-ray analysis, Rietveld analysis, scanning electron microscopy, X-ray photoelectron spectroscopy, ultraviolet–visible spectroscopy, thermal analysis and elemental analysis. The crystals can be disassembled into individual molecular wires through cation exchange and subsequent ultrasound treatment, as visualized by atomic force microscopy and transmission electron microscopy. The ultrathin molecular wire-based material exhibits high activity as an acid catalyst, and the band gap of the molecular wire-based crystal is tunable by heat treatment. PMID:26139011

  7. Coupled-Circulation-Chemistry Studies with the Finite-Volume CCM: Trace Gas Transport in the Tropopause Region

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Lin, Shian-Jiann; Rood, Richard B.; Nebuda, Sharon; Nielsen, J. Eric; Douglass, Anne R.

    2000-01-01

    A joint project between the Data Assimilation Office at NASA GSFC and NCAR involves linking the physical packages from the Community Climate Model (CCM) with the flux-form semi-Lagrangian dynamical core developed by Lin and Rood in the DAO. A further development of this model includes the implementation of a chemical package developed by Douglass and colleagues in the Atmospheric Chemistry and Dynamics Branch at NASA GSFC. Results from this coupled dynamics-radiation-chemistry model will be presented, focussing on trace gas transport in the tropopause region.

  8. Mechanism of Antiwear Property Under High Pressure of Synthetic Oil-Soluble Ultrathin MoS2 Sheets as Lubricant Additives.

    PubMed

    Chen, Zhe; Liu, Yuhong; Gunsel, Selda; Luo, Jianbin

    2018-01-30

    Wear occurs between two rubbing surfaces. Severe wear due to seizure under high pressure leads to catastrophic failures of mechanical systems and raises wide concerns. In this paper, a kind of synthetic oil-soluble ultrathin MoS 2 sheets is synthesized and investigated as lubricant additives between steel surfaces. It is found that, with the ultrathin MoS 2 sheets, the wear can be controlled under the nominal pressure of about 1 GPa, whereas the bearable nominal pressure for traditional lubricants is only a few hundred megapascals. It is found that when wear is under control, the real pressure between the asperities agrees with the breaking strength of ultrathin MoS 2 . Therefore, it is believed that, because of the good oil solubility and ultrasmall thickness, the ultrathin MoS 2 sheets can easily enter the contact area between the contacting asperities. Then, the localized seizure and further wear are prevented because there will be no metal-to-metal contact as long as the real pressure between the asperities is below the breaking strength of ultrathin MoS 2 . In this way, the upper limit pressure the lubricant can work is dependent on the mechanical properties of the containing ultrathin two-dimensional (2D) sheets. Additionally, ultrathin MoS 2 sheets with various lateral sizes are compared, and it is found that sheets with a larger size show better lubrication performance. This work discovers the lubrication mechanism of ultrathin MoS 2 sheets as lubricant additives and provides an inspiration to develop a novel generation of lubricant additives with high-strength ultrathin 2D materials.

  9. Ultrathin nondoped emissive layers for efficient and simple monochrome and white organic light-emitting diodes.

    PubMed

    Zhao, Yongbiao; Chen, Jiangshan; Ma, Dongge

    2013-02-01

    In this paper, highly efficient and simple monochrome blue, green, orange, and red organic light emitting diodes (OLEDs) based on ultrathin nondoped emissive layers (EMLs) have been reported. The ultrathin nondoped EML was constructed by introducing a 0.1 nm thin layer of pure phosphorescent dyes between a hole transporting layer and an electron transporting layer. The maximum external quantum efficiencies (EQEs) reached 17.1%, 20.9%, 17.3%, and 19.2% for blue, green, orange, and red monochrome OLEDs, respectively, indicating the universality of the ultrathin nondoped EML for most phosphorescent dyes. On the basis of this, simple white OLED structures are also demonstrated. The demonstrated complementary blue/orange, three primary blue/green/red, and four color blue/green/orange/red white OLEDs show high efficiency and good white emission, indicating the advantage of ultrathin nondoped EMLs on constructing simple and efficient white OLEDs.

  10. Ultrathin MoS2 Nanosheets with Superior Extreme Pressure Property as Boundary Lubricants.

    PubMed

    Chen, Zhe; Liu, Xiangwen; Liu, Yuhong; Gunsel, Selda; Luo, Jianbin

    2015-08-07

    In this paper, a new kind of oil-soluble ultrathin MoS2 nanosheets is prepared through a one-pot process. A superior extreme pressure property, which has not been attained with other nano-additives, is discovered when the nanosheets are used as lubricant additives. The as-synthesized MoS2 nanosheet is only a few atomic layers thick and tens of nanometers wide, and it is surface-modified with oleylamine so it can be well dispersed in oil or lubricant without adscititious dispersants or surfactants. By adding 1 wt% ultrathin MoS2 nanosheets, at the temperature of 120 °C, the highest load liquid paraffin can bear is tremendously improved from less than 50 N to more than 2000 N. Based on the tribological tests and analysis of the wear scar, a lubrication mechanism is proposed. It is believed that the good dispersion and the ultrathin shape of the nanosheets ensure that they can enter the contact area of the opposite sliding surfaces and act like a protective film to prevent direct contact and seizure between them. This work enriches the investigation of ultrathin MoS2 and has potential application in the mechanical industry.

  11. Ultrathin MoS2 Nanosheets with Superior Extreme Pressure Property as Boundary Lubricants

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Liu, Xiangwen; Liu, Yuhong; Gunsel, Selda; Luo, Jianbin

    2015-08-01

    In this paper, a new kind of oil-soluble ultrathin MoS2 nanosheets is prepared through a one-pot process. A superior extreme pressure property, which has not been attained with other nano-additives, is discovered when the nanosheets are used as lubricant additives. The as-synthesized MoS2 nanosheet is only a few atomic layers thick and tens of nanometers wide, and it is surface-modified with oleylamine so it can be well dispersed in oil or lubricant without adscititious dispersants or surfactants. By adding 1 wt% ultrathin MoS2 nanosheets, at the temperature of 120 °C, the highest load liquid paraffin can bear is tremendously improved from less than 50 N to more than 2000 N. Based on the tribological tests and analysis of the wear scar, a lubrication mechanism is proposed. It is believed that the good dispersion and the ultrathin shape of the nanosheets ensure that they can enter the contact area of the opposite sliding surfaces and act like a protective film to prevent direct contact and seizure between them. This work enriches the investigation of ultrathin MoS2 and has potential application in the mechanical industry.

  12. Effect of Sulfate Aerosol Geoengineering on Tropical cyclones

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Moore, J.; Ji, D.

    2017-12-01

    Variation in tropical cyclone (TC) number and intensity is driven in part by changes in the thermodynamics that can be defined by ocean and atmospheric variables. Genesis Potential Index (GPI) and ventilation index (VI) are combinations of potential intensity, vertical wind shear, relative humidity, midlevel entropy deficit, and absolute vorticity that quantify thermodynamic forcing of TC activity under changed climates, and can be calculated from climate model output. Here we use five CMIP5 models running the RCP45 experiment the Geoengineering Model Intercomparison Project (GeoMIP) stratospheric aerosol injection G4 experiment to calculate the two indices over the 2020 to 2069 period. Globally, GPI under G4 is lower than under RCP45, though both have a slight increasing trend. Spatial patterns in the relative effectiveness of geoengineering show reductions in TC in all models in the North Atlantic basin, and northern Indian Ocean in all except NorESM1-M. In the North Pacific, most models also show relative reductions under G4. VI generally coincide with the GPI patterns. Most models project Potential intensity and Relative Humidity to be the dominant variable to affect genesis potential. Changes in vertical wind shear and vorticity are small with scatter across different models and ocean basins. We find that tropopause temperature maybe as important as sea surface temperature in effecting TC genesis. Thus stratospheric aerosol geoengineering impacts on potential intensity and hence TC intensity are reasonably consistent, but probably underestimated by statistical forecasts of Tropical North Atlantic hurricane activity driven by sea surface temperatures alone. However the impacts of geoengineering on other ocean basins are more difficult to assess, and require more complete understanding of their driving parameters under present day climates. Furthermore, the possible effects of stratospheric injection on chemical reactions in the stratosphere, such as ozone, are

  13. Synthesis of hexagonal ultrathin tungsten oxide nanowires with diameters below 5 nm for enhanced photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Lu, Huidan; Zhu, Qin; Zhang, Mengying; Yan, Yi; Liu, Yongping; Li, Ming; Yang, Zhishu; Geng, Peng

    2018-04-01

    Semiconductor with one dimension (1D) ultrathin nanostructure has been proved to be a promising nanomaterial in photocatalytic field. Great efforts were made on preparation of monoclinic ultrathin tungsten oxide nanowires. However, non-monoclinic phase tungsten oxides with 1D ultrathin structure, especially less than 5 nm width, have not been reported. Herein, we report the synthesis of hexagonal ultrathin tungsten oxide nanowires (U-WOx NW) by modified hydrothermal method. Microstructure characterization showed that U-WOx NW have the diameters of 1-3 nm below 5 nm and are hexagonal phase sub-stoichiometric WOx. U-WOx NW show absorption tail in the visible and near infrared region due to oxygen vacancies. For improving further photocatalytic performance, Ag co-catalyst was grown directly onto U-WOx NW surface by in situ redox reaction. Photocatalytic measurements revealed hexagonal U-WOx NW have better photodegradation activity, compared with commercial WO3(C-WO3) and oxidized U-WOx NW, ascribe to larger surface area, short diffusion length of photo-generated charge carriers and visible absorption of oxygen-vacancy-rich hexagonal ultrathin nanostructures. Moreover, the photocatalytic activity and stability of U-WOx NW using Ag co-catalyst were further improved.

  14. The prediction of tropopause height from clusters of brightness temperatures and its application in the stratified regression temperature retrievals using microwave and infrared satellite measurements

    NASA Technical Reports Server (NTRS)

    Munteanu, M. J.; Piraino, P.; Jakubowicz, O.

    1984-01-01

    A total of 1575 radiosondes and the corresponding simulated brightness temperatures were used in an effort to derive a temperature retrieval based on the clusters of brightness temperatures. The 8 simulated channels, namely, 3 MSU and 5 IR of the TIROS-N satellite are used by the GLAS temperature retrieval method. The 3 MSU and 5 IR brightness temperatures were clustered into 17 cluster groups and a regression for the prediction of the tropopause height in mb was generated. The overall r.m.s. for the tropopause prediction is excellent, namely, around 16 mb for the summer and 23 mb for the winter. The correct cluster of brightness temperatures can be identified 98% of the time by the method of discriminatory classification if it is approximately a normal distribution or, in general, by the method of the nearest neighbor.

  15. Ultrathin Coating of Confined Pt Nanocatalysts by Atomic Layer Deposition for Enhanced Catalytic Performance in Hydrogenation Reactions.

    PubMed

    Wang, Meihua; Gao, Zhe; Zhang, Bin; Yang, Huimin; Qiao, Yan; Chen, Shuai; Ge, Huibin; Zhang, Jiankang; Qin, Yong

    2016-06-13

    Metal-support interfaces play a prominent role in heterogeneous catalysis. However, tailoring the metal-support interfaces to realize full utilization remains a major challenge. In this work, we propose a graceful strategy to maximize the metal-oxide interfaces by coating confined nanoparticles with an ultrathin oxide layer. This is achieved by sequential deposition of ultrathin Al2 O3 coats, Pt, and a thick Al2 O3 layer on carbon nanocoils templates by atomic layer deposition (ALD), followed by removal of the templates. Compared with the Pt catalysts confined in Al2 O3 nanotubes without the ultrathin coats, the ultrathin coated samples have larger Pt-Al2 O3 interfaces. The maximized interfaces significantly improve the activity and the protecting Al2 O3 nanotubes retain the stability for hydrogenation reactions of 4-nitrophenol. We believe that applying ALD ultrathin coats on confined catalysts is a promising way to achieve enhanced performance for other catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The tropopause inversion layer in baroclinic life cycles over the North Atlantic: a pre-WISE case study and climatology

    NASA Astrophysics Data System (ADS)

    Kaluza, Thorsten; Hoor, Peter; Kunkel, Daniel

    2017-04-01

    Studies of baroclinic life cycles recently revelead that the tropopause inversion layer (TIL) in the extratropics is significantly strengthened by diabatic processes related to moist tropospheric dynamics as well as by breaking of the baroclinic wave itself. However, these findings summarize the results from idealized model simulations and the contribution from processes related to baroclinic life cycles relative to other processes enhancing the lower stratospheric static stability (stratospheric dynamics, seasonal variation of radiative feedbacks) to the observed TIL at midlatitudes has yet to be assessed. Further the role of the TIL for stratosphere-troposphere exchange (STE) is currently still under debate. In preparation of the up-coming field campaign WISE (Wave driven isentropic exchange) we explore the state and variability of the TIL over the North Atlantic between August and October in analysis model data. We use high resolution operational analysis from the European Center for Medium Range Weather Forecast to study the mesoscale structure of the TIL. The main focus is on case studies of the TIL in real baroclinic life cycles, in particular on small scale enhancements within the baroclinic disturbances and the relation to STE. Moreover, a summary is presented about the quasi climatological state of the tropopause location and sharpness over the North Atlantic over recent years.

  17. Real-Time Deposition Monitor for Ultrathin Conductive Films

    NASA Technical Reports Server (NTRS)

    Hines, Jacqueline

    2011-01-01

    A device has been developed that can be used for the real-time monitoring of ultrathin (2 or more) conductive films. The device responds in less than two microseconds, and can be used to monitor film depositions up to about 60 thick. Actual thickness monitoring capability will vary based on properties of the film being deposited. This is a single-use device, which, due to the very low device cost, can be disposable. Conventional quartz/crystal microbalance devices have proven inadequate to monitor the thickness of Pd films during deposition of ultrathin films for hydrogen sensor devices. When the deposited film is less than 100 , the QCM measurements are inadequate to allow monitoring of the ultrathin films being developed. Thus, an improved, high-sensitivity, real-time deposition monitor was needed to continue Pd film deposition development. The new deposition monitor utilizes a surface acoustic wave (SAW) device in a differential delay-line configuration to produce both a reference response and a response for the portion of the device on which the film is being deposited. Both responses are monitored simultaneously during deposition. The reference response remains unchanged, while the attenuation of the sensing path (where the film is being deposited) varies as the film thickness increases. This device utilizes the fact that on high-coupling piezoelectric substrates, the attenuation of an SAW undergoes a transition from low to very high, and back to low as the conductivity of a film on the device surface goes from nonconductive to highly conductive. Thus, the sensing path response starts with a low insertion loss, and as a conductive film is deposited, the film conductivity increases, causing the device insertion loss to increase dramatically (by up to 80 dB or more), and then with continued film thickness increases (and the corresponding conductivity increases), the device insertion loss goes back down to the low level at which it started. This provides a

  18. Origin, Maintenance and Variability of the Asian Tropopause Aerosol Layer (ATAL): The Roles of Monsoon Dynamics

    NASA Astrophysics Data System (ADS)

    Lau, W. K. M.; Yuan, C.; Li, Z.

    2017-12-01

    Using NASA MERRA2 daily reanalysis data, we have investigated the origin, maintenance and variability of the Asian Tropopause Aerosol Layer (ATAL) in relation to intrinsic variations of the Asia Monsoon Anticyclone (AMA) during the summer of 2008. Results show that during the pre- and early monsoon period (May to June) abundant quantities of carbon monoxide (CO), carbonaceous aerosols (CA) and dust are found from the earth surface to the upper troposphere (up to 10-12 km) in monsoon and adjacent desert regions, arising from enhanced emissions from the heated desert surface, increased biomass burning over monsoon regions and strong vertical transport by dry convection. During the peak monsoon period (July-August) strong westerlies transport large quantities of dusts from the deserts in the Middle East, North Africa, and West Asia into the Asian monsoon regions. Despite strong precipitation washout, ambient CO, CA and dust are transported by orography-forced deep convection into the UTLS ( 12-16 km) via two key pathways over the heavily polluted regions of a) the Himalayas-Gangetic Plain in northern India, and b) the Sichuan Basin of southwestern China. Upon entering the UTLS via these two pathways, the pollutants are capped by a stable layer near the tropopause, advected, and dispersed by the anticyclonic circulation of AMA, establishing the ATAL in the shape of a "double-stem chimney cloud". The development and variability of the ATAL are strongly linked to the seasonal march, and dominant monsoon intraseasonal (20-30 days) oscillations of the Asian summer monsoon.

  19. Design of Ultrathin Pt-Based Multimetallic Nanostructures for Efficient Oxygen Reduction Electrocatalysis.

    PubMed

    Lai, Jianping; Guo, Shaojun

    2017-12-01

    Nanocatalysts with high platinum (Pt) utilization efficiency are attracting extensive attention for oxygen reduction reactions (ORR) conducted at the cathode of fuel cells. Ultrathin Pt-based multimetallic nanostructures show obvious advantages in accelerating the sluggish cathodic ORR due to their ultrahigh Pt utilization efficiency. A focus on recent important developments is provided in using wet chemistry techniques for making/tuning the multimetallic nanostructures with high Pt utilization efficiency for boosting ORR activity and durability. First, new synthetic methods for multimetallic core/shell nanoparticles with ultrathin shell sizes for achieving highly efficient ORR catalysts are reviewed. To obtain better ORR activity and stability, multimetallic nanowires or nanosheets with well-defined structure and surface are further highlighted. Furthermore, ultrathin Pt-based multimetallic nanoframes that feature 3D molecularly accessible surfaces for achieving more efficient ORR catalysis are discussed. Finally, the remaining challenges and outlooks for the future will be provided for this promising research field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Thermoelectric properties of an ultra-thin topological insulator.

    PubMed

    Islam, S K Firoz; Ghosh, T K

    2014-04-23

    Thermoelectric coefficients of an ultra-thin topological insulator are presented here. The hybridization between top and bottom surface states of a topological insulator plays a significant role. In the absence of a magnetic field, the thermopower increases and thermal conductivity decreases with an increase in the hybridization energy. In the presence of a magnetic field perpendicular to the ultra-thin topological insulator, thermoelectric coefficients exhibit quantum oscillations with inverse magnetic field, whose frequency is strongly modified by the Zeeman energy and whose phase factor is governed by the product of the Landé g-factor and the hybridization energy. In addition to the numerical results, the low-temperature approximate analytical results for the thermoelectric coefficients are also provided. It is also observed that for a given magnetic field these transport coefficients oscillate with hybridization energy, at a frequency that depends on the Landé g-factor.

  1. Ultrathin MoS2 Nanosheets with Superior Extreme Pressure Property as Boundary Lubricants

    PubMed Central

    Chen, Zhe; Liu, Xiangwen; Liu, Yuhong; Gunsel, Selda; Luo, Jianbin

    2015-01-01

    In this paper, a new kind of oil-soluble ultrathin MoS2 nanosheets is prepared through a one-pot process. A superior extreme pressure property, which has not been attained with other nano-additives, is discovered when the nanosheets are used as lubricant additives. The as-synthesized MoS2 nanosheet is only a few atomic layers thick and tens of nanometers wide, and it is surface-modified with oleylamine so it can be well dispersed in oil or lubricant without adscititious dispersants or surfactants. By adding 1 wt% ultrathin MoS2 nanosheets, at the temperature of 120 °C, the highest load liquid paraffin can bear is tremendously improved from less than 50 N to more than 2000 N. Based on the tribological tests and analysis of the wear scar, a lubrication mechanism is proposed. It is believed that the good dispersion and the ultrathin shape of the nanosheets ensure that they can enter the contact area of the opposite sliding surfaces and act like a protective film to prevent direct contact and seizure between them. This work enriches the investigation of ultrathin MoS2 and has potential application in the mechanical industry. PMID:26249536

  2. TOPICAL REVIEW: Ultra-thin film encapsulation processes for micro-electro-mechanical devices and systems

    NASA Astrophysics Data System (ADS)

    Stoldt, Conrad R.; Bright, Victor M.

    2006-05-01

    A range of physical properties can be achieved in micro-electro-mechanical systems (MEMS) through their encapsulation with solid-state, ultra-thin coatings. This paper reviews the application of single source chemical vapour deposition and atomic layer deposition (ALD) in the growth of submicron films on polycrystalline silicon microstructures for the improvement of microscale reliability and performance. In particular, microstructure encapsulation with silicon carbide, tungsten, alumina and alumina-zinc oxide alloy ultra-thin films is highlighted, and the mechanical, electrical, tribological and chemical impact of these overlayers is detailed. The potential use of solid-state, ultra-thin coatings in commercial microsystems is explored using radio frequency MEMS as a case study for the ALD alloy alumina-zinc oxide thin film.

  3. Ultra-thin, light-trapping silicon solar cells

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1989-01-01

    Design concepts for ultra-thin (2 to 10 microns) high efficiency single-crystal silicon cells are discussed. Light trapping allows more light to be absorbed at a given thickness, or allows thinner cells of a given Jsc. Extremely thin cells require low surface recombination velocity at both surfaces, including the ohmic contacts. Reduction of surface recombination by growth of heterojunctions of ZnS and GaP on Si has been demonstrated. The effects of these improvements on AM0 efficiency is shown. The peak efficiency increases, and the optimum thickness decreases. Cells under 10 microns thickness can retain almost optimum power. The increase of absorptance due to light trapping is considered. This is not a problem if the light-trapping cells are sufficiently thin. Ultra-thin cells have high radiation tolerance. A 2 microns thick light-trapping cell remains over 18 percent efficient after the equivalent of 20 years in geosynchronous orbit. Including a 50 microns thick coverglass, the thin cells had specific power after irradiation over ten times higher than the baseline design.

  4. Molecular Imaging of Ultrathin Pentacene Films: Evidence for Homoepitaxy

    NASA Astrophysics Data System (ADS)

    Wu, Yanfei; Haugstad, Greg; Frisbie, C. Daniel

    2013-03-01

    Ultrathin polycrystalline films of organic semiconductors have received intensive investigations due to the critical role they play in governing the performance of organic thin film transistors. In this work, a variety of scanning probe microscopy (SPM) techniques have been employed to investigate ultrathin polycrystalline films (1-3 nm) of the benchmark organic semiconductor pentacene. By using spatially resolved Friction Force Microscopy (FFM), Kelvin Probe Force Microscopy (KFM) and Electrostatic Force Microscopy (EFM), an interesting multi-domain structure is revealed within the second layer of the films, characterized as two distinct friction and surface potential domains correlating with each other. The existence of multiple homoepitaxial modes within the films is thus proposed and examined. By employing lattice-revolved imaging using contact mode SPM, direct molecular evidence for the unusual homoepitaxy is obtained.

  5. Characteristics of turbulence in the troposphere and lower stratosphere over the Indian Peninsula

    NASA Astrophysics Data System (ADS)

    Sunilkumar, S. V.; Muhsin, M.; Parameswaran, K.; Venkat Ratnam, M.; Ramkumar, Geetha; Rajeev, K.; Krishna Murthy, B. V.; Sambhu Namboodiri, K. V.; Subrahmanyam, K. V.; Kishore Kumar, K.; Shankar Das, Siddarth

    2015-10-01

    Characteristics of turbulence in the troposphere and lower stratosphere at Trivandrum (8.5°N, 76.9°E) and Gadanki (13.5°N, 79.2°E), two tropical stations located in the Indian Peninsula, are studied using GPS-radiosonde observations during the period of December 2010 to March 2014 as part of the Tropical Tropopause Dynamics (TTD) Experiment under the CAWSES-India program. This study relies on the detection of turbulence applying Thorpe analysis to the temperature profile, taking into account the impact of atmospheric moisture and instrumental noise on static stability. In general, the tropospheric turbulence is largely intermittent in space and time. The altitude region very close to the convective tropopause (COT), 10-15 km, is relatively more turbulent than the lower troposphere from 3 to 8 km. Though the occurrence of turbulence decreases significantly above the COT, occasionally a rather thin layer of turbulence (thickness <1 km) is observed in the tropical tropopause layer (TTL) very close to the cold point tropopause (CPT). Even though broad turbulent layers, with thickness >2 km, are the persisting features that can be observed in the 5-15 km altitude region in multiple observations at both the sites at least during Asian Summer Monsoon (ASM) season, prominent multiple thin layers of stratified turbulence in the lower troposphere lasting for a day or less are observed only at Trivandrum in all seasons. In general, the turbulence strength in the 5-15 km altitude region at Gadanki is generally larger than that at Trivandrum. Below 15 km, while the turbulence is mainly governed by the convective instability at Gadanki, wind-shear driven (dynamic) instability also contributes considerably for the generation of turbulence at Trivandrum. While the generation of turbulence above 15 km is dominated by dynamic instability, in the lower stratosphere (LS) it is mainly due to strong wind shears.

  6. Deep convection in the tropical area: Hector a case study using TRMM data and high resolution model simulation.

    NASA Astrophysics Data System (ADS)

    Gentile, Sabrina; Ferretti, Rossella; Silvio Marzano, Frank

    2010-05-01

    The tropics are one of the most important regions for the exchange and transport of water vapor and chemical species from the upper troposphere to the lower stratosphere; changes in emissions of chemicals at the ground or how quickly they are carried aloft could cause the chemistry of the stratosphere to change and as a consequence the net radiative balance. The tropical storms are one of the main devices for this type of interaction. In Australia, the tropical thunderstorms have different possible sources; in particular the development of equatorial events is related to convergence zones typical of the ITCZ (Intertropical Convergence Zone). One of the deepest convective systems of the globe is the tropical thunderstorm Hector that develops almost daily in the Tiwi Islands, near Darwin city (tropical northern Australia), during the pre-monsoon period and break monsoon. The thunderstorm Hector has been observed to reach to altitudes of 20 km and thus potentially in the lower stratosphere, so it represents one of processes for exchange between the troposphere and the stratosphere. Hector is the topics of numerous campaigns because of difficulties in its predictability: during the SCOUT-O3 project (Stratosphere-Climate Links with emphasis on the Upper Troposphere and Lower Stratosphere), a campaign was held on Tiwi Islands to the purposes of improving the understanding of the interaction between convection and the tropical tropopause layer. In the framework of this UE project a study of Hector tropical thunderstorm is performed to the aim of evaluating the vertical transport. The triggering factor together with the microphysical structure of this deep tropical cyclone has been investigated using MM5V3 and the new model WRF with data from the TRMM Precipitation Radar and from TRMM Microwave Imager. A comparison between the hydrometers retrieved by the TRMM Precipitation Radar (PR) and the one detected by the TRMM Microwave Imager (TMI) has been carried out. The model

  7. Comparison of dye doping and ultrathin emissive layer in white organic light-emitting devices with dual emissive layers

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Qi, Yige; Yu, Junsheng

    2014-09-01

    White organic light-emitting devices (WOLEDs) with combined doping emissive layer (EML) and ultrathin EML have been fabricated to investigate the effect of each EML on the electroluminescent (EL) performance of the WOLEDs. Through tailoring doping concentration of bis[(4,6-difluorophenyl)-pyridinato-N,C2'](picolinate) iridium(III) (FIrpic) and thickness of ultrathin bis[2-(4-tertbutylphenyl)benzothiazolato-N,C2'] iridium (acetylacetonate) [(tbt)2Ir(acac)] EML, it is found that the change in the doping ratio of FIrpic significantly influenced the EL efficiencies and spectra, while the alteration of ultrathin EML thickness had much milder effect on the EL performance. The results indicated that ultrathin EML is in favor of reproducibility in mass production compared with doping method.

  8. Single crystalline silicene consist of various superstructures using a flexible ultrathin Ag(111) template on Si(111)

    NASA Astrophysics Data System (ADS)

    Hsu, Hung-Chang; Lu, Yi-Hung; Su, Tai-Lung; Lin, Wen-Chin; Fu, Tsu-Yi

    2018-07-01

    Using scanning tunneling microscopy, we studied the formation of silicene on an ultrathin Ag(111) film with a thickness of 6–12 monolayers, which was prepared on a Si(111) substrate. A low-energy electron diffraction pattern with an oval spot indicated that the ultrathin Ag(111) film is more disordered than the single-crystal Ag(111). After Si epitaxy growth, we still measured the classical 4 × 4, √13 × √13, and 2√3 × 2√3 silicene superstructures, which are the same as the silicene superstructure on single-crystal Ag(111). Growing silicene on a single-crystal Ag(111) bulk usually results in the formation of a defect boundary due to the inconsistent orientation of various superstructures. By comparing the angles and boundary conditions between various silicene superstructures on the ultrathin film and single-crystal Ag(111), we discovered that a consistent orientation of various superstructures without obvious boundary defects formed on the ultrathin Ag(111) film. The results indicated single crystalline silicene formation, which was attributed to the domain rotation and lateral shift of the disordered ultrathin Ag(111) film.

  9. Atomic layer deposition of ultrathin blocking layer for low-temperature solid oxide fuel cell on nanoporous substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Wonjong; Cho, Gu Young; Noh, Seungtak

    2015-01-15

    An ultrathin yttria-stabilized zirconia (YSZ) blocking layer deposited by atomic layer deposition (ALD) was utilized for improving the performance and reliability of low-temperature solid oxide fuel cells (SOFCs) supported by an anodic aluminum oxide substrate. Physical vapor-deposited YSZ and gadolinia-doped ceria (GDC) electrolyte layers were deposited by a sputtering method. The ultrathin ALD YSZ blocking layer was inserted between the YSZ and GDC sputtered layers. To investigate the effects of an inserted ultrathin ALD blocking layer, SOFCs with and without an ultrathin ALD blocking layer were electrochemically characterized. The open circuit voltage (1.14 V) of the ALD blocking-layered SOFC was visiblymore » higher than that (1.05 V) of the other cell. Furthermore, the ALD blocking layer augmented the power density and improved the reproducibility.« less

  10. Electron Microscopy of Ultrathin Sections of Sporosarcina ureae

    PubMed Central

    Mazanec, K.; Kocur, M.; Martinec, T.

    1965-01-01

    Mazanec, K. (J. E. Purkyně University, Brno, Czechoslovakia), M. Kocur, and T. Martinec. Electron microscopy of ultrathin sections of Sporosarcina ureae. J. Bacteriol. 90:808–816. 1965.—Ultrathin sections of Sporosarcina ureae cells were studied by means of electron microscopy. The cell wall consists of several layers and is 340 A thick. The cytoplasm is of globular structure and includes ribosomelike structures, occasional mesosomes, and inclusions not precisely identifiable. The nuclear area has various shapes and is formed by filaments 10 to 20 A thick which proceed in various directions. Cell division occurs similarly to that of sarcinate. Both synchronic and asynchronic cell division was observed. The spores of S. ureae consist of an outer coat having several layers, a cortex, a spore wall, and cytoplasm. The results of the present investigation substantiate our previous suggestion that S. ureae should be transferred from the family Micrococcaceae to the family Bacillaceae. Images PMID:16562085

  11. Enhanced magnetic moment in ultrathin Fe-doped CoFe2O4 films

    NASA Astrophysics Data System (ADS)

    Moyer, J. A.; Vaz, C. A. F.; Kumah, D. P.; Arena, D. A.; Henrich, V. E.

    2012-11-01

    The effect of film thickness on the magnetic properties of ultrathin Fe-doped cobalt ferrite (Co1-xFe2+xO4) grown on MgO (001) substrates is investigated by superconducting quantum interference device magnetometry and x-ray magnetic linear dichroism, while the distribution of the Co2+ cations between the octahedral and tetrahedral lattice sites is studied with x-ray absorption spectroscopy. For films thinner than 10 nm, there is a large enhancement of the magnetic moment; conversely, the remanent magnetization and coercive fields both decrease, while the magnetic spin axes of all the cations become less aligned with the [001] crystal direction. In particular, at 300 K the coercive fields of the thinnest films vanish. The spectroscopy data show that no changes occur in the cation distribution as a function of film thickness, ruling this out as the origin of the enhanced magnetic moment. However, the magnetic measurements all support the possibility that these ultrathin Fe-doped CoFe2O4 films are transitioning into a superparamagnetic state, as has been seen in ultrathin Fe3O4. A weakening of the magnetic interactions at the antiphase boundaries, leading to magnetically independent domains within the film, could explain the enhanced magnetic moment in ultrathin Fe-doped CoFe2O4 and the onset of superparamagnetism at room temperature.

  12. Nano-Photonic Structures for Light Trapping in Ultra-Thin Crystalline Silicon Solar Cells

    PubMed Central

    Pathi, Prathap; Peer, Akshit; Biswas, Rana

    2017-01-01

    Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a dense mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm) and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm) and is slightly lower (by ~5%) at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm) silicon and just 1%–2% for thicker (>100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm2 photo-current and >20% efficiency. This architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping. PMID:28336851

  13. Nano-photonic structures for light trapping in ultra-thin crystalline silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pathi, Prathap; Peer, Akshit; Biswas, Rana

    Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a densemore » mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm) and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm) and is slightly lower (by ~5%) at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm) silicon and just 1%–2% for thicker (>100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm2 photo-current and >20% efficiency. Furthermore, this architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping.« less

  14. Nano-Photonic Structures for Light Trapping in Ultra-Thin Crystalline Silicon Solar Cells.

    PubMed

    Pathi, Prathap; Peer, Akshit; Biswas, Rana

    2017-01-13

    Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a dense mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm) and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm) and is slightly lower (by ~5%) at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm) silicon and just 1%-2% for thicker (>100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm² photo-current and >20% efficiency. This architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping.

  15. Nano-photonic structures for light trapping in ultra-thin crystalline silicon solar cells

    DOE PAGES

    Pathi, Prathap; Peer, Akshit; Biswas, Rana

    2017-01-13

    Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a densemore » mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm) and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm) and is slightly lower (by ~5%) at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm) silicon and just 1%–2% for thicker (>100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm2 photo-current and >20% efficiency. Furthermore, this architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping.« less

  16. Ultrathin and lightweight organic solar cells with high flexibility

    PubMed Central

    Kaltenbrunner, Martin; White, Matthew S.; Głowacki, Eric D.; Sekitani, Tsuyoshi; Someya, Takao; Sariciftci, Niyazi Serdar; Bauer, Siegfried

    2012-01-01

    Application-specific requirements for future lighting, displays and photovoltaics will include large-area, low-weight and mechanical resilience for dual-purpose uses such as electronic skin, textiles and surface conforming foils. Here we demonstrate polymer-based photovoltaic devices on plastic foil substrates less than 2 μm thick, with equal power conversion efficiency to their glass-based counterparts. They can reversibly withstand extreme mechanical deformation and have unprecedented solar cell-specific weight. Instead of a single bend, we form a random network of folds within the device area. The processing methods are standard, so the same weight and flexibility should be achievable in light emitting diodes, capacitors and transistors to fully realize ultrathin organic electronics. These ultrathin organic solar cells are over ten times thinner, lighter and more flexible than any other solar cell of any technology to date. PMID:22473014

  17. Ultrathin Au-Alloy Nanowires at the Liquid-Liquid Interface.

    PubMed

    Chatterjee, Dipanwita; Shetty, Shwetha; Müller-Caspary, Knut; Grieb, Tim; Krause, Florian F; Schowalter, Marco; Rosenauer, Andreas; Ravishankar, Narayanan

    2018-03-14

    Ultrathin bimetallic nanowires are of importance and interest for applications in electronic devices such as sensors and heterogeneous catalysts. In this work, we have designed a new, highly reproducible and generalized wet chemical method to synthesize uniform and monodispersed Au-based alloy (AuCu, AuPd, and AuPt) nanowires with tunable composition using microwave-assisted reduction at the liquid-liquid interface. These ultrathin alloy nanowires are below 4 nm in diameter and about 2 μm long. Detailed microstructural characterization shows that the wires have an face centred cubic (FCC) crystal structure, and they have low-energy twin-boundary and stacking-fault defects along the growth direction. The wires exhibit remarkable thermal and mechanical stability that is critical for important applications. The alloy wires exhibit excellent electrocatalytic activity for methanol oxidation in an alkaline medium.

  18. The latitudinal structure of recent changes in the boreal Brewer-Dobson circulation

    NASA Astrophysics Data System (ADS)

    Shi, C.; Guo, D.; Xu, J.; Powell, A. M., Jr.; Xu, T.

    2015-09-01

    Upwelling branch of the Brewer-Dobson circulation (BDC) controls the tropical lower stratospheric water vapor (WV) through dynamic cooling near the tropopause. Downwelling branch of BDC dominates the extratropical middle-lower stratospheric Hydrogen Chloride (HCl) by dynamic transport. Climatologically, a symmetric weakening BDC indicates increasing tropical lower stratospheric WV and decreasing extratropical middle-lower stratospheric HCl. However, the global ozone chemistry and related trace gas data records for the stratosphere data (GOZCARDS) show that the tropical lowermost stratospheric WV increased by 18 % decade-1 during 2001-2011 and the boreal mid-latitude lower stratospheric HCl rose 25 % decade-1 after 2006. We interpret this as resulting from a slowdown of the tropical upwelling and a speedup of the mid-latitude downwelling. This interpretation is supported by composite analysis of Eliasen-Palm Flux (EPF), zonal wind and regression of temperature on the EPF from the ERA-Interim data. Results present that the enhancing polar vortex and weakening planetary wave activity leads to a downwelling branch narrowing equatorward and a local speedup of 24 % at 20 hPa in the mid-latitudes. Moreover, there are regressive temperature increase of 1.5 K near the tropical tropopause and that of 0.5 K in the mid-latitude middle stratosphere, which also indicates the tropical upwelling slowdown and the mid-latitude downwelling speedup during 2001-2011.

  19. Trace gas measurements during aircraft flights in the tropopause region over Europe and North Africa

    NASA Astrophysics Data System (ADS)

    Schmidt, M.; Borchers, R.; Fabian, P.; Flentje, G.; Matthews, W. A.; Szabo, A.; Lal, S.

    During aircraft flights in May 1981 from Munich (40 deg N) to north of the Spitsbergen Islands (82 deg N) and to Monrovia, Liberia (6 deg N), air samples were obtained in the altitude range of 8 to 11 km and during the ascents and descents near the airports. These samples have been analyzed for the trace gas mixing ratios of CH4, CO and N2O. The results of these analyses are presented and discussed. The results provide new evidence of tropospheric-stratospheric exchange events in the vicinity of the subpolar and subtropical tropopause foldings and possibly show a case of transport of CO-enriched air in the upper troposphere above the North Atlantic Ocean.

  20. Transport across the tropical tropopause layer and convection

    NASA Astrophysics Data System (ADS)

    Tissier, Ann-Sophie; Legras, Bernard; Tzella, Alexandra

    2015-04-01

    We investigate how air parcels detrained from convective sources enter the TTL. The approach is based on the comparison of unidimensional trajectories and Lagrangian backward and forward trajectories, using TRACZILLA and ERA-Interim. Backward trajectories are launched at 380K and run until they hit a deep convective cloud. Forward trajectories are launched at the top of high convective clouds identified by brightness temperature from CLAUS dataset. 1D trajectories are computed using Gardiner's method. Results show that the warm pool region during winter and the Bay of Bengal / Sea of China during summer are the prevalent sources as already identified in many previous studies and we quantify the respective role of the various regions. We show that the 1D model explains qualitatively and often quantitatively the 3d results. We also show that in spite of generating very high convection, Africa is quite ineffective as providing air that remains in the TTL while on the opposite the Tibetan Plateau is the most effective region in this respect although its total contribution is minor. Finally, we compare ERA-Interim, JRA-55 and MERRA reanalysis and find large similarities between the two formers.

  1. Designing metal hemispheres on silicon ultrathin film solar cells for plasmonic light trapping.

    PubMed

    Gao, Tongchuan; Stevens, Erica; Lee, Jung-kun; Leu, Paul W

    2014-08-15

    We systematically investigate the design of two-dimensional silver (Ag) hemisphere arrays on crystalline silicon (c-Si) ultrathin film solar cells for plasmonic light trapping. The absorption in ultrathin films is governed by the excitation of Fabry-Perot TEMm modes. We demonstrate that metal hemispheres can enhance absorption in the films by (1) coupling light to c-Si film waveguide modes and (2) exciting localized surface plasmon resonances (LSPRs). We show that hemisphere arrays allow light to couple to fundamental TEm and TMm waveguide modes in c-Si film as well as higher-order versions of these modes. The near-field light concentration of LSPRs also may increase absorption in the c-Si film, though these resonances are associated with significant parasitic absorption in the metal. We illustrate how Ag plasmonic hemispheres may be utilized for light trapping with 22% enhancement in short-circuit current density compared with that of a bare 100 nm thick c-Si ultrathin film solar cell.

  2. Modeling the QBO-Improvements resulting from higher-model vertical resolution.

    PubMed

    Geller, Marvin A; Zhou, Tiehan; Shindell, D; Ruedy, R; Aleinov, I; Nazarenko, L; Tausnev, N L; Kelley, M; Sun, S; Cheng, Y; Field, R D; Faluvegi, G

    2016-09-01

    Using the NASA Goddard Institute for Space Studies (GISS) climate model, it is shown that with proper choice of the gravity wave momentum flux entering the stratosphere and relatively fine vertical layering of at least 500 m in the upper troposphere-lower stratosphere (UTLS), a realistic stratospheric quasi-biennial oscillation (QBO) is modeled with the proper period, amplitude, and structure down to tropopause levels. It is furthermore shown that the specified gravity wave momentum flux controls the QBO period whereas the width of the gravity wave momentum flux phase speed spectrum controls the QBO amplitude. Fine vertical layering is required for the proper downward extension to tropopause levels as this permits wave-mean flow interactions in the UTLS region to be resolved in the model. When vertical resolution is increased from 1000 to 500 m, the modeled QBO modulation of the tropical tropopause temperatures increasingly approach that from observations, and the "tape recorder" of stratospheric water vapor also approaches the observed. The transport characteristics of our GISS models are assessed using age-of-air and N 2 O diagnostics, and it is shown that some of the deficiencies in model transport that have been noted in previous GISS models are greatly improved for all of our tested model vertical resolutions. More realistic tropical-extratropical transport isolation, commonly referred to as the "tropical pipe," results from the finer vertical model layering required to generate a realistic QBO.

  3. The role and production of polar/subtropical jet superpositions in two high-impact weather events over North America

    NASA Astrophysics Data System (ADS)

    Winters, Andrew C.

    Careful observational work has demonstrated that the tropopause is typically characterized by a three-step pole-to-equator structure, with each break between steps in the tropopause height associated with a jet stream. While the two jet streams, the polar and subtropical jets, typically occupy different latitude bands, their separation can occasionally vanish, resulting in a vertical superposition of the two jets. A cursory examination of a number of historical and recent high-impact weather events over North America and the North Atlantic indicates that superposed jets can be an important component of their evolution. Consequently, this dissertation examines two recent jet superposition cases, the 18--20 December 2009 Mid-Atlantic Blizzard and the 1--3 May 2010 Nashville Flood, in an effort (1) to determine the specific influence that a superposed jet can have on the development of a high-impact weather event and (2) to illuminate the processes that facilitated the production of a superposition in each case. An examination of these cases from a basic-state variable and PV inversion perspective demonstrates that elements of both the remote and local synoptic environment are important to consider while diagnosing the development of a jet superposition. Specifically, the process of jet superposition begins with the remote production of a cyclonic (anticyclonic) tropopause disturbance at high (low) latitudes. The cyclonic circulation typically originates at polar latitudes, while organized tropical convection can encourage the development of an anticyclonic circulation anomaly within the tropical upper-troposphere. The concurrent advection of both anomalies towards middle latitudes subsequently allows their individual circulations to laterally displace the location of the individual tropopause breaks. Once the two circulation anomalies position the polar and subtropical tropopause breaks in close proximity to one another, elements within the local environment, such as

  4. Tropical High Cloud Fraction Controlled by Cloud Lifetime Rather Than Clear-sky Convergence

    NASA Astrophysics Data System (ADS)

    Seeley, J.; Jeevanjee, N.; Romps, D. M.

    2016-12-01

    Observations and simulations show a peak in cloud fraction below the tropopause. This peak is usually attributed to a roughly co-located peak in radiatively-driven clear-sky convergence, which is presumed to force convective detrainment and thus promote large cloud fraction. Using simulations of radiative-convective equilibrium forced by various radiative cooling profiles, we refute this mechanism by showing that an upper-tropospheric peak in cloud fraction persists even in simulations with no peak in clear-sky convergence. Instead, cloud fraction profiles seem to be controlled by cloud lifetimes — i.e., how long it takes for clouds to dissipate after they have detrained. A simple model of cloud evaporation shows that the small saturation deficit in the upper troposphere greatly extends cloud lifetimes there, while the large saturation deficit in the lower troposphere causes condensate to evaporate quickly. Since cloud mass flux must go to zero at the tropopause, a peak in cloud fraction emerges at a "sweet spot" below the tropopause where cloud lifetimes are long and there is still sufficient mass flux to be detrained.

  5. Structure Formation of Ultrathin PEO Films at Solid Interfaces—Complex Pattern Formation by Dewetting and Crystallization

    PubMed Central

    Braun, Hans-Georg; Meyer, Evelyn

    2013-01-01

    The direct contact of ultrathin polymer films with a solid substrate may result in thin film rupture caused by dewetting. With crystallisable polymers such as polyethyleneoxide (PEO), molecular self-assembly into partial ordered lamella structures is studied as an additional source of pattern formation. Morphological features in ultrathin PEO films (thickness < 10 nm) result from an interplay between dewetting patterns and diffusion limited growth pattern of ordered lamella growing within the dewetting areas. Besides structure formation of hydrophilic PEO molecules, n-alkylterminated (hydrophobic) PEO oligomers are investigated with respect to self-organization in ultrathin films. Morphological features characteristic for pure PEO are not changed by the presence of the n-alkylgroups. PMID:23385233

  6. Tracer transport in the tropical lower stratosphere. Ph.D. Thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trepte, C.R.

    1993-01-01

    Distributions of aerosol extinction ratio (beta r) and ozone, derived from the Stratospheric Aerosol and Gas Experiment (SAGE 1/2) satellite experiments (1979-1981 and 1984-1992), are used in conjunction with conventional meteorological analyses to deduce patterns of stratospheric tracer transport. Following volcanic eruptions at low latitudes, the aerosol observations suggest that two transport regimes exist in the tropical lower stratosphere. Aerosols disperse rapidly poleward and downward within a layer several kilometers above the tropopause. More pronounced transport is biased toward the winter hemisphere. At higher altitudes, however, volcanic aerosols tend to remain over the equator in a reservoir bounded by strongmore » meridional gradients near 20 deg N and S. Over the equator, enhanced lofting of aerosols occurs during QBO easterly shear, while subsidence relative to the mean meridional flow takes place during QBO westerly shear. While particle growth and evaporation effects are important, many interesting features of the aerosol distribution can only be explained by air motions. It is also shown that QBO induced ozone anomalies over the equator are also consistent with QBO aerosol variations. In the upper transport regime, the subtropical gradients of beta r coincide with the location of a meridional gradient in potential vorticity. Since isentropic transport is inhibited across potential vorticity gradients, the tropics are temporarily isolated from eddy mixing taking place in the winter extratropics. Zonal mean distributions of ozone; however, do not have similar meridional gradients in the subtropics. This difference probably reflects a different source/sink distribution for ozone in comparison to that for aerosol and potential vorticity. Detrainment of aerosol from the equatorial reservoir depends upon the phase of the QBO and the strength of winter eddy disturbances in the subtropics.« less

  7. ATTREX Data and Information Page

    Atmospheric Science Data Center

    2017-02-17

    ... payload is designed to address the following three science objectives: 1) the role of stratospheric water vapor in Earth's energy ... of tropospheric air entering the stratosphere; and 3) the physical processes and chemical composition of the Tropical Tropopause Layer ...

  8. Horizontal Variability of Water and Its Relationship to Cloud Fraction near the Tropical Tropopause: Using Aircraft Observations of Water Vapor to Improve the Representation of Grid-scale Cloud Formation in GEOS-5

    NASA Technical Reports Server (NTRS)

    Selkirk, Henry B.; Molod, Andrea M.

    2014-01-01

    Large-scale models such as GEOS-5 typically calculate grid-scale fractional cloudiness through a PDF parameterization of the sub-gridscale distribution of specific humidity. The GEOS-5 moisture routine uses a simple rectangular PDF varying in height that follows a tanh profile. While below 10 km this profile is informed by moisture information from the AIRS instrument, there is relatively little empirical basis for the profile above that level. ATTREX provides an opportunity to refine the profile using estimates of the horizontal variability of measurements of water vapor, total water and ice particles from the Global Hawk aircraft at or near the tropopause. These measurements will be compared with estimates of large-scale cloud fraction from CALIPSO and lidar retrievals from the CPL on the aircraft. We will use the variability measurements to perform studies of the sensitivity of the GEOS-5 cloud-fraction to various modifications to the PDF shape and to its vertical profile.

  9. Magnetic x-ray linear dichroism of ultrathin Fe-Ni alloy films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumann, F.O.; Willis, R.F.; Goodman, K.W.

    1997-04-01

    The authors have studied the magnetic structure of ultrathin Fe-Ni alloy films as a function of Fe concentration by measuring the linear dichroism of the 3p-core levels in angle-resolved photoemission spectroscopy. The alloy films, grown by molecular-beam epitaxy on Cu(001) surfaces, were fcc and approximately four monolayers thick. The intensity of the Fe dichroism varied with Fe concentration, with larger dichroisms at lower Fe concentrations. The implication of these results to an ultrathin film analogue of the bulk Invar effect in Fe-Ni alloys will be discussed. These measurements were performed at the Spectromicroscopy Facility (Beamline 7.0.1) of the Advanced Lightmore » Source.« less

  10. Spin fluctuation induced linear magnetoresistance in ultrathin superconducting FeSe films

    DOE PAGES

    Wang, Qingyan; Zhang, Wenhao; Chen, Weiwei; ...

    2017-07-21

    The discovery of high-temperature superconductivity in FeSe/STO has trigged great research interest to reveal a range of exotic physical phenomena in this novel material. Here we present a temperature dependent magnetotransport measurement for ultrathin FeSe/STO films with different thickness and protection layers. Remarkably, a surprising linear magnetoresistance (LMR) is observed around the superconducting transition temperatures but absent otherwise. The experimental LMR can be reproduced by magnetotransport calculations based on a model of magnetic field dependent disorder induced by spin fluctuation. Thus, the observed LMR in coexistence with superconductivity provides the first magnetotransport signature for spin fluctuation around the superconducting transitionmore » region in ultrathin FeSe/STO films.« less

  11. Extremely Vivid, Highly Transparent, and Ultrathin Quantum Dot Light-Emitting Diodes.

    PubMed

    Choi, Moon Kee; Yang, Jiwoong; Kim, Dong Chan; Dai, Zhaohe; Kim, Junhee; Seung, Hyojin; Kale, Vinayak S; Sung, Sae Jin; Park, Chong Rae; Lu, Nanshu; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2018-01-01

    Displaying information on transparent screens offers new opportunities in next-generation electronics, such as augmented reality devices, smart surgical glasses, and smart windows. Outstanding luminance and transparency are essential for such "see-through" displays to show vivid images over clear background view. Here transparent quantum dot light-emitting diodes (Tr-QLEDs) are reported with high brightness (bottom: ≈43 000 cd m -2 , top: ≈30 000 cd m -2 , total: ≈73 000 cd m -2 at 9 V), excellent transmittance (90% at 550 nm, 84% over visible range), and an ultrathin form factor (≈2.7 µm thickness). These superb characteristics are accomplished by novel electron transport layers (ETLs) and engineered quantum dots (QDs). The ETLs, ZnO nanoparticle assemblies with ultrathin alumina overlayers, dramatically enhance durability of active layers, and balance electron/hole injection into QDs, which prevents nonradiative recombination processes. In addition, the QD structure is further optimized to fully exploit the device architecture. The ultrathin nature of Tr-QLEDs allows their conformal integration on various shaped objects. Finally, the high resolution patterning of red, green, and blue Tr-QLEDs (513 pixels in. -1 ) shows the potential of the full-color transparent display. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Capillary sample introduction of polymerase chain reaction (PCR) products separated in ultrathin slab gels.

    PubMed

    Bullard, K M; Hietpas, P B; Ewing, A G

    1998-01-01

    Polymerase chain reaction (PCR) amplified short tandem repeat (STR) samples from the HUMVWF locus have been analyzed using a unique sample introduction and separation technique. A single capillary is used to transfer samples onto an ultrathin slab gel (57 microm thin). This ultrathin nondenaturing polyacrylamide gel is used to separate the amplified fragments, and laser-induced fluorescence with ethidium bromide is used for detection. The feasibility of performing STR analysis using this system has been investigated by examining the reproducibility for repeated samples. Reproducibility is examined by comparing the migration of the 14 and 17 HUMVWF alleles on three consecutive separations on the ultrathin slab gel. Using one locus, separations match in migration time with the two alleles 42 s apart for each of the three consecutive separations. This technique shows potential to increase sample throughput in STR analysis techniques although separation resolution still needs to be improved.

  13. Ultra-thin whitetopping for general aviation airports in New Mexico.

    DOT National Transportation Integrated Search

    2002-06-01

    Whitetopping is a pavement rehabilitation construction practice where portland cement concrete (PCC) is placed over an existing asphalt concrete pavement as an overlay. Ultra-thin whitetopping (UTW) is generally a thin overlay with a thickness betwee...

  14. Nonlinear response of tropical lower-stratospheric temperature and water vapor to ENSO

    NASA Astrophysics Data System (ADS)

    Garfinkel, Chaim I.; Gordon, Amit; Oman, Luke D.; Li, Feng; Davis, Sean; Pawson, Steven

    2018-04-01

    A series of simulations using the NASA Goddard Earth Observing System Chemistry-Climate Model are analyzed in order to aid in the interpretation of observed interannual and sub-decadal variability in the tropical lower stratosphere over the past 35 years. The impact of El Niño-Southern Oscillation on temperature and water vapor in this region is nonlinear in boreal spring. While moderate El Niño events lead to cooling in this region, strong El Niño events lead to warming, even as the response of the large-scale Brewer-Dobson circulation appears to scale nearly linearly with El Niño. This nonlinearity is shown to arise from the response in the Indo-West Pacific to El Niño: strong El Niño events lead to tropospheric warming extending into the tropical tropopause layer and up to the cold point in this region, where it allows for more water vapor to enter the stratosphere. The net effect is that both strong La Niña and strong El Niño events lead to enhanced entry water vapor and stratospheric moistening in boreal spring and early summer. These results lead to the following interpretation of the contribution of sea surface temperatures to the decline in water vapor in the early 2000s: the very strong El Niño event in 1997/1998, followed by more than 2 consecutive years of La Niña, led to enhanced lower-stratospheric water vapor. As this period ended in early 2001, entry water vapor concentrations declined. This effect accounts for approximately one-quarter of the observed drop.

  15. Transport properties of ultrathin BaFe1.84Co0.16As2 superconducting nanowires

    NASA Astrophysics Data System (ADS)

    Yuan, Pusheng; Xu, Zhongtang; Li, Chen; Quan, Baogang; Li, Junjie; Gu, Changzhi; Ma, Yanwei

    2018-07-01

    Superconducting nanowire single-photon detectors (SNSPDs) have an absolute advantage over other types of single-photon detectors, except for the low operating temperature. Therefore, much effort has been devoted to finding high-temperature superconducting materials that are suitable for preparing SNSPDs. Copper-based and MgB2 ultrathin superconducting nanowires have already been reported. However, the transport properties of iron-based ultrathin superconducting nanowires have not been studied. In this work, a 10 nm thick × 200 nm wide × 30 μm long high-quality superconducting nanowire was fabricated from ultrathin BaFe1.84Co0.16As2 films by a lift-off process. The precursor BaFe1.84Co0.16As2 film with a thickness of 10 nm and root-mean-square roughness of 1 nm was grown on CaF2 substrates by pulsed laser deposition. The nanowire shows a high superconducting critical temperature {T}{{c}}{{zero}} = 20 K with a narrow transition width of ΔT = 2.5 K and exhibits a high critical current density J c of 1.8 × 107 A cm-2 at 10 K. These results of ultrathin BaFe1.84Co0.16As2 nanowire will attract interest in electronic applications, including SNSPDs.

  16. Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes.

    PubMed

    Gu, Yu; Wang, Wei-Wei; Li, Yi-Juan; Wu, Qi-Hui; Tang, Shuai; Yan, Jia-Wei; Zheng, Ming-Sen; Wu, De-Yin; Fan, Chun-Hai; Hu, Wei-Qiang; Chen, Zhao-Bin; Fang, Yuan; Zhang, Qing-Hong; Dong, Quan-Feng; Mao, Bing-Wei

    2018-04-09

    Dendrite growth of alkali metal anodes limited their lifetime for charge/discharge cycling. Here, we report near-perfect anodes of lithium, sodium, and potassium metals achieved by electrochemical polishing, which removes microscopic defects and creates ultra-smooth ultra-thin solid-electrolyte interphase layers at metal surfaces for providing a homogeneous environment. Precise characterizations by AFM force probing with corroborative in-depth XPS profile analysis reveal that the ultra-smooth ultra-thin solid-electrolyte interphase can be designed to have alternating inorganic-rich and organic-rich/mixed multi-layered structure, which offers mechanical property of coupled rigidity and elasticity. The polished metal anodes exhibit significantly enhanced cycling stability, specifically the lithium anodes can cycle for over 200 times at a real current density of 2 mA cm -2 with 100% depth of discharge. Our work illustrates that an ultra-smooth ultra-thin solid-electrolyte interphase may be robust enough to suppress dendrite growth and thus serve as an initial layer for further improved protection of alkali metal anodes.

  17. Suppression of superconductivity in epitaxial MgB2 ultrathin films

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Wang, Yue; Wang, Da; Zhang, Yan; Liu, Zheng-Hao; Feng, Qing-Rong; Gan, Zi-Zhao

    2013-07-01

    MgB2 ultrathin films have potential to make sensitive superconducting devices such as superconducting single-photon detectors working at relatively high temperatures. We have grown epitaxial MgB2 films in thicknesses ranging from about 40 nm to 6 nm by using the hybrid physical-chemical vapor deposition method and performed electrical transport measurements to study the thickness dependence of the superconducting critical temperature Tc. With reducing film thickness d, although a weak depression of the Tc has been observed, which could be attributed to an increase of disorder (interband impurity scattering) in the film, the Tc retains close to the bulk value of MgB2 (39 K), being about 35 K in the film of 6 nm thick. We show that this result, beneficial to the application of MgB2 ultrathin films and in accordance with recent theoretical calculations, is in contrast to previous findings in MgB2 films prepared by other methods such as co-evaporation and molecular-beam epitaxy, where a severe Tc suppression has been observed with Tc about one third of the bulk value in films of ˜5 nm thick. We discuss this apparent discrepancy in experiments and suggest that, towards the ultrathin limit, the different degrees of Tc suppression displayed in currently obtained MgB2 films by various techniques may arise from the different levels of disorder present in the film or different extents of proximity effect at the film surface or film-substrate interface.

  18. Determining thickness and refractive index from free-standing ultra-thin polymer films with spectroscopic ellipsometry

    DOE PAGES

    Hilfiker, James N.; Stadermann, Michael; Sun, Jianing; ...

    2016-08-27

    It is a well-known challenge to determine refractive index (n) from ultra-thin films where the thickness is less than about 10 nm. In this paper, we discovered an interesting exception to this issue while characterizing spectroscopic ellipsometry (SE) data from isotropic, free-standing polymer films. Ellipsometry analysis shows that both thickness and refractive index can be independently determined for free-standing films as thin as 5 nm. Simulations further confirm an orthogonal separation between thickness and index effects on the experimental SE data. Effects of angle of incidence and wavelength on the data and sensitivity are discussed. Finally, while others have demonstratedmore » methods to determine refractive index from ultra-thin films, our analysis provides the first results to demonstrate high-sensitivity to the refractive index from ultra-thin layers.« less

  19. Nonbolometric bottleneck in electron-phonon relaxation in ultrathin WSi films

    NASA Astrophysics Data System (ADS)

    Sidorova, Mariia V.; Kozorezov, A. G.; Semenov, A. V.; Korneeva, Yu. P.; Mikhailov, M. Yu.; Devizenko, A. Yu.; Korneev, A. A.; Chulkova, G. M.; Goltsman, G. N.

    2018-05-01

    We developed the model of the internal phonon bottleneck to describe the energy exchange between the acoustically soft ultrathin metal film and acoustically rigid substrate. Discriminating phonons in the film into two groups, escaping and nonescaping, we show that electrons and nonescaping phonons may form a unified subsystem, which is cooled down only due to interactions with escaping phonons, either due to direct phonon conversion or indirect sequential interaction with an electronic system. Using an amplitude-modulated absorption of the sub-THz radiation technique, we studied electron-phonon relaxation in ultrathin disordered films of tungsten silicide. We found an experimental proof of the internal phonon bottleneck. The experiment and simulation based on the proposed model agree well, resulting in τe -ph˜14 0 -19 0 ps at TC=3.4 K , supporting the results of earlier measurements by independent techniques.

  20. EDMOS in ultrathin FDSOI: Impact of the drift region properties

    NASA Astrophysics Data System (ADS)

    Litty, Antoine; Ortolland, Sylvie; Golanski, Dominique; Dutto, Christian; Cristoloveanu, Sorin

    2016-11-01

    The development of high-voltage MOSFET (HVMOS) is necessary for including power management or radiofrequency functionalities in CMOS technology. In this paper, we investigate the fabrication and optimization of an Extended Drain MOSFET (EDMOS) directly integrated in the ultra-thin SOI film (7 nm) of the 28 nm FDSOI CMOS technology node. Thanks to TCAD simulations, we analyse in detail the device behaviour as a function of the doping level and length of the drift region. The influence of the back-plane doping type and of the back-biasing schemes is discussed. DC measurements of fabricated EDMOS samples reveal promising performances in particular in terms of specific on-resistance versus breakdown voltage trade-off. The experimental results indicate that, even in an ultrathin film, the engineering of the drift region could be a lever to obtain integrated HVMOS (3.3-5 V).

  1. Ultra-thin smart acoustic metasurface for low-frequency sound insulation

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Xiao, Yong; Wen, Jihong; Yu, Dianlong; Wen, Xisen

    2016-04-01

    Insulating low-frequency sound is a conventional challenge due to the high areal mass required by mass law. In this letter, we propose a smart acoustic metasurface consisting of an ultra-thin aluminum foil bonded with piezoelectric resonators. Numerical and experimental results show that the metasurface can break the conventional mass law of sound insulation by 30 dB in the low frequency regime (<1000 Hz), with an ultra-light areal mass density (<1.6 kg/m2) and an ultra-thin thickness (1000 times smaller than the operating wavelength). The underlying physical mechanism of such extraordinary sound insulation performance is attributed to the infinite effective dynamic mass density produced by the smart resonators. It is also demonstrated that the excellent sound insulation property can be conveniently tuned by simply adjusting the external circuits instead of modifying the structure of the metasurface.

  2. 16-year Climatology of Cirrus cloud properties using ground-based Lidar over Gadanki (13.45˚N, 79.18˚E)

    NASA Astrophysics Data System (ADS)

    Pandit, Amit Kumar; Raghunath, Karnam; Jayaraman, Achuthan; Venkat Ratnam, Madineni; Gadhavi, Harish

    Cirrus clouds are ubiquitous high level cold clouds predominantly consisting of ice-crystals. With their highest coverage over the tropics, these are one of the most vital and complex components of Tropical Tropopause Layer (TTL) due to their strong radiative feedback and dehydration in upper troposphere and lower stratosphere (UTLS) regions. The continuous changes in their coverage, position, thickness, and ice-crystal size and shape distributions bring uncertainties in the estimates of cirrus cloud radiative forcing. Long-term changes in the distribution of aerosols and water vapour in the TTL can influence cirrus properties. This necessitates long-term studies of tropical cirrus clouds, which are only few. The present study provides 16-year climatology of physical and optical properties of cirrus clouds observed using a ground-based Lidar located at Gadanki (13.45(°) N, 79.18(°) ˚E and 375 m amsl) in south-India. In general, cirrus clouds occurred for about 44% of the total Lidar observation time. Owing to the increased convective activities, the occurrence of cirrus clouds during the southwest-monsoon season is highest while it is lowest during the winter. Altitude distribution of cirrus clouds reveals that the peak occurrence was about 25% at 14.5 km. The most probable base and top height of cirrus clouds are 14 and 15.5 km, respectively. This is also reflected in the bulk extinction coefficient profile (at 532 nm) of cirrus clouds. These results are compared with the CALIPSO observations. Most of the time cirrus clouds are located within the TTL bounded by convective outflow level and cold-point tropopause. Cirrus clouds are thick during the monsoon season as compared to that during winter. An inverse relation between the thickness of cirrus clouds and TTL thickness is found. The occurrence of cirrus clouds at an altitude close to the tropopause (16 km) showed an increase of 8.4% in the last 16 years. Base and top heights of cirrus clouds also showed

  3. Anatase TiO2 ultrathin nanobelts derived from room-temperature-synthesized titanates for fast and safe lithium storage

    PubMed Central

    Wen, Wei; Wu, Jin-ming; Jiang, Yin-zhu; Yu, Sheng-lan; Bai, Jun-qiang; Cao, Min-hua; Cui, Jie

    2015-01-01

    Lithium-ion batteries (LIBs) are promising energy storage devices for portable electronics, electric vehicles, and power-grid applications. It is highly desirable yet challenging to develop a simple and scalable method for constructions of sustainable materials for fast and safe LIBs. Herein, we exploit a novel and scalable route to synthesize ultrathin nanobelts of anatase TiO2, which is resource abundant and is eligible for safe anodes in LIBs. The achieved ultrathin nanobelts demonstrate outstanding performances for lithium storage because of the unique nanoarchitecture and appropriate composition. Unlike conventional alkali-hydrothermal approaches to hydrogen titanates, the present room temperature alkaline-free wet chemistry strategy guarantees the ultrathin thickness for the resultant titanate nanobelts. The anatase TiO2 ultrathin nanobelts were achieved simply by a subsequent calcination in air. The synthesis route is convenient for metal decoration and also for fabricating thin films of one/three dimensional arrays on various substrates at low temperatures, in absence of any seed layers. PMID:26133276

  4. Ultrathin cerium orthovanadate nanobelts for high-performance flexible all-solid-state asymmetric supercapacitors.

    PubMed

    He, Junzhi; Zhao, Junhong; Run, Zhen; Sun, Mengjun; Pang, Huan

    2015-02-01

    Ultrathin CeVO4 nanobelts were successfully synthesized by a hydrothermal method. The thickness of a single nanobelt is about 2.4 nm, which can effectively shorten the ion diffusion and fasten the charge pathway. More importantly, ultrathin CeVO4 nanobelts and graphene are easily assembled as a flexible all-solid-state asymmetric device, which shows a highly flexible property and achieves a maximum energy density of 0.78 mW h cm(-3) and a high life cycle of >6000 cycles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings

    NASA Astrophysics Data System (ADS)

    Kats, Mikhail A.; Byrnes, Steven J.; Blanchard, Romain; Kolle, Mathias; Genevet, Patrice; Aizenberg, Joanna; Capasso, Federico

    2013-09-01

    Recently a new class of optical interference coatings was introduced which comprises ultra-thin, highly absorbing dielectric layers on metal substrates. We show that these lossy coatings can be augmented by an additional transparent subwavelength layer. We fabricated a sample comprising a gold substrate, an ultra-thin film of germanium with a thickness gradient, and several alumina films. The experimental reflectivity spectra showed that the additional alumina layer increases the color range that can be obtained, in agreement with calculations. More generally, this transparent layer can be used to enhance optical absorption, protect against erosion, or as a transparent electrode for optoelectronic devices.

  6. Numeric simulation of occlusal interferences in molars restored with ultrathin occlusal veneers.

    PubMed

    Magne, Pascal; Cheung, Raymond

    2017-01-01

    Selecting material for a minimally invasive occlusal veneer reconstruction concept requires an understanding of how stresses are distributed during functional and parafunctional forces. The purpose of this in vitro study was to investigate stress distribution in a maxillary molar restored with ultrathin occlusal veneers and subjected by an antagonistic mandibular molar to clenching and working and nonworking movements. A maxillary first molar was modeled from microcomputed tomography (micro-CT) data, using medical image processing software, stereolithography editing/optimizing software, and finite element software. Simulated ultrathin occlusal veneer materials were used. The mandibular molar antagonist was a solid nondeformable geometric entity. Loads simulated clenching, working, and nonworking movements with loading of 500 N. The values of the maximum principal stress were recorded. In the clenching load situation, maximum tensile stresses were located at the occlusal veneer (52 MPa for composite resin versus 47 MPa for ceramic). In the working movement, significant additional tensile stresses were found on the palatal root (87 MPa for composite resin and 85 MPa for ceramic). In the nonworking movement, tensile stress on the ultrathin occlusal veneer increased to 118 MPa for composite resin and 143 MPa for ceramic veneers. Tensile stress peaks shifted to the mesiobuccal root (75 MPa for composite resin and 74 MPa for ceramic). The topography of stresses generated by the various occlusal interferences were clearly identified. Significant tensile stress concentrations were found within the restoration's occlusal topography and root, with the nonworking interference being the most harmful and also the most revealing of the difference between the composite resin and ceramic ultrathin occlusal veneers. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  7. Coupling of microphase separation and dewetting in weakly segregated diblock co-polymer ultrathin films.

    PubMed

    Yan, Derong; Huang, Haiying; He, Tianbai; Zhang, Fajun

    2011-10-04

    We have studied the coupling behavior of microphase separation and autophobic dewetting in weakly segregated poly(ε-caprolactone)-block-poly(L-lactide) (PCL-b-PLLA) diblock co-polymer ultrathin films on carbon-coated mica substrates. At temperatures higher than the melting point of the PLLA block, the co-polymer forms a lamellar structure in bulk with a long period of L ∼ 20 nm, as determined using small-angle X-ray scattering. The relaxation procedure of ultrathin films with an initial film thickness of h = 10 nm during annealing has been followed by atomic force microscopy (AFM). In the experimental temperature range (100-140 °C), the co-polymer dewets to an ultrathin film of itself at about 5 nm because of the strong attraction of both blocks with the substrate. Moreover, the dewetting velocity increases with decreasing annealing temperatures. This novel dewetting kinetics can be explained by a competition effect of the composition fluctuation driven by the microphase separation with the dominated dewetting process during the early stage of the annealing process. While dewetting dominates the relaxation procedure and leads to the rupture of the ultrathin films, the composition fluctuation induced by the microphase separation attempts to stabilize them because of the matching of h to the long period (h ∼ 1/2L). The temperature dependence of these two processes leads to this novel relaxation kinetics of co-polymer thin films. © 2011 American Chemical Society

  8. Ultrathin and Atomically Flat Transition-Metal Oxide: Promising Building Blocks for Metal-Insulator Electronics.

    PubMed

    Cui, Qingsong; Sakhdari, Maryam; Chamlagain, Bhim; Chuang, Hsun-Jen; Liu, Yi; Cheng, Mark Ming-Cheng; Zhou, Zhixian; Chen, Pai-Yen

    2016-12-21

    We present a new and viable template-assisted thermal synthesis method for preparing amorphous ultrathin transition-metal oxides (TMOs) such as TiO 2 and Ta 2 O 5 , which are converted from crystalline two-dimensional (2D) transition-metal dichalcogenides (TMDs) down to a few atomic layers. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning transmission electron microscopy (STEM) were used to characterize the chemical composition and bonding, surface morphology, and atomic structure of these ultrathin amorphous materials to validate the effectiveness of our synthesis approach. Furthermore, we have fabricated metal-insulator-metal (MIM) diodes using the TiO 2 and Ta 2 O 5 as ultrathin insulating layers with low potential barrier heights. Our MIM diodes show a clear transition from direct tunneling to Fowler-Nordheim tunneling, which was not observed in previously reported MIM diodes with TiO 2 or Ta 2 O 5 as the insulating layer. We attribute the improved performance of our MIM diodes to the excellent flatness and low pinhole/defect densities in our TMO insulting layers converted from 2D TMDs, which enable the low-threshold and controllable electron tunneling transport. We envision that it is possible to use the ultrathin TMOs converted from 2D TMDs as the insulating layer of a wide variety of metal-insulator and field-effect electronic devices for various applications ranging from microwave mixing, parametric conversion, infrared photodetection, emissive energy harvesting, to ultrafast electronic switching.

  9. Aerosol nucleation and growth in the TTL, due to tropical convection, during the ACTIVE campaign

    NASA Astrophysics Data System (ADS)

    Waddicor, D.; Vaughan, G.; Choularton, T.

    2009-04-01

    The Aerosol and Chemical Transport In tropical convection (ACTIVE) campaign took place between October 2005 and February 2006. This investigation involved the sampling of deep convective storms that occur in the Tropics; the campaign was based in Darwin, Northern Territory, Australia - the latter half of the campaign coincided with the monsoon season. A range of scientific equipment was used to sample the inflow and outflow air from these storms; of particular importance were the NERC Dornier (low-level) and ARA Egrett (high-level outflow) aircraft. The Dornier held a range of aerosol, particle and chemical detectors for the purpose of analysing the planetary boundary layer (PBL), in the vicinity of tropical convection. The Egrett contained detection instrumentation for a range of sizes of aerosol and cloud particles (2 Condensation Particle Counters (CPC), CAPS, CIP, CPI) in the storm outflow. This allowed a quantifiable measurement to be made of the effect of deep tropical convection on the aerosol population in the Tropical Tropopause Layer (TTL). The ACTIVE campaign found that there were large numbers of aerosol particles in the 10 - 100 nm (up to 25,000 /cm3 STP) and 100 - 1000 nm (up to 600 /cm3) size ranges. These values, in many instances, surpassed those found in the PBL. The higher levels of aerosol found in the TTL compared to the PBL could indicate that aerosol nucleation was occurring in the TTL as a direct result of convective activity. Furthermore, the Egrett aircraft found distinct boundaries between the high levels of aerosol, which were found in cloud free regions, and very low numbers of aerosol, which were found in the cloudy regions (storm anvil). The air masses were determined, from back trajectories, to have been through convective uplift and were formerly part of the anvil cloud. The cloudy regions would have contained high levels of entrapped precursor gases. Reduced nucleation and cloud particle scavenging of aerosol and gases would give a

  10. Arrays of ultrathin silicon solar microcells

    DOEpatents

    Rogers, John A.; Rockett, Angus A.; Nuzzo, Ralph; Yoon, Jongseung; Baca, Alfred

    2015-08-11

    Provided are solar cells, photovoltaics and related methods for making solar cells, wherein the solar cell is made of ultrathin solar grade or low quality silicon. In an aspect, the invention is a method of making a solar cell by providing a solar cell substrate having a receiving surface and assembling a printable semiconductor element on the receiving surface of the substrate via contact printing. The semiconductor element has a thickness that is less than or equal to 100 .mu.m and, for example, is made from low grade Si.

  11. Arrays of ultrathin silicon solar microcells

    DOEpatents

    Rogers, John A; Rockett, Angus A; Nuzzo, Ralph; Yoon, Jongseung; Baca, Alfred

    2014-03-25

    Provided are solar cells, photovoltaics and related methods for making solar cells, wherein the solar cell is made of ultrathin solar grade or low quality silicon. In an aspect, the invention is a method of making a solar cell by providing a solar cell substrate having a receiving surface and assembling a printable semiconductor element on the receiving surface of the substrate via contact printing. The semiconductor element has a thickness that is less than or equal to 100 .mu.m and, for example, is made from low grade Si.

  12. Tg and Structural Recovery of Single Ultrathin Films

    NASA Astrophysics Data System (ADS)

    Simon, Sindee

    The behavior of materials confined at the nanoscale has been of considerable interest over the past two decades. Here, the focus is on recent results for single polystyrene ultrathin films studied with ultrafast scanning chip calorimetry. The Tg depression of a 20 nm-thick high-molecular-weight polystyrene film is found to be a function of cooling rate, decreasing with increasing cooling rate; whereas, at high enough cooling rates (e.g., 1000 K/s), Tg is the same as the bulk within the error of the measurements. Structural recovery is also performed with chip calorimetry as a function of aging time and temperature, and the evolution of the fictive temperature is followed. The advantages of the Flash DSC include sufficient sensitivity to measure enthalpy recovery for a single 20 nm-thick film, as well as extension of the measurements to aging temperatures as high as 15 K above nominal Tg and to aging times as short as 0.01 s. The aging behavior and relaxation time-temperature map for single ultrathin films are compared to those for bulk material. Comparison to behavior in other geometries will also be discussed.

  13. Extraordinary optical transmission in nanopatterned ultrathin metal films without holes

    DOE PAGES

    Peer, Akshit; Biswas, Rana

    2016-02-01

    In this study, we experimentally and theoretically demonstrate that a continuous gold film on a periodically textured substrate exhibits extraordinary optical transmission, even though no holes were etched in the film. Our film synthesis started by nanoimprinting a periodic array of nanocups with a period of ~750 nm on a polystyrene film over a glass substrate. A thin non-conformal gold film was sputter-deposited on the polystyrene by angle-directed deposition. The gold film was continuous with spatial thickness variation, the film being thinnest at the bottom of the nanocup. Measurements revealed an extraordinary transmission peak at a wavelength just smaller thanmore » the period, with an enhancement of ~2.5 compared to the classically expected value. Scattering matrix simulations model well the transmission and reflectance measurements when an ultrathin gold layer (~5 nm), smaller than the skin depth is retained at the bottom of the nanocups. Electric field intensities are enhanced by >100 within the nanocup, and ~40 in the ultrathin gold layer causing transmission through it. We show a wavelength red-shift of ~30 nm in the extraordinary transmission peak when the nanocups are coated with a thin film of a few nanometers, which can be utilized for biosensing. The continuous corrugated metal films are far simpler structures to observe extraordinary transmission, circumventing the difficult process of etching the metal film. Such continuous metal films with ultrathin regions are simple platforms for non-linear optics, plasmonics, and biological and chemical sensing.« less

  14. Hydrogen peroxide sensing using ultrathin platinum-coated gold nanoparticles with core@shell structure.

    PubMed

    Li, Yongxin; Lu, Qiufang; Wu, Shengnan; Wang, Lun; Shi, Xianming

    2013-03-15

    Ultrathin platinum-coated gold (Pt@Au) nanoparticles with core@shell structure have been developed by under-potential deposition (UPD) redox replacement technique. A single UPD Cu replacement with Pt(2+) produced a uniform Pt monolayer on the surface of gold nanoparticles, which are immobilized on glassy carbon electrode (GCE) surface based on electrostatic interaction. The ultrathin Pt@Au nanoparticles were confirmed by cyclic voltammetry and X-ray photoelectron spectroscopy (XPS). Voltammetry and amperometric methodologies were used to evaluate the electrocatalytic activity of the Pt@Au nanoparticles modified electrode towards the reduction of hydrogen peroxide under the physiological condition. The present results show that ultrathin Pt coating greatly enhances the electrocatalytic activity towards the reduction of hydrogen peroxide, which can be utilized to fabricate the hydrogen peroxide sensor. Chronoamperometric experiments showed that at an applied potential of 0.08 V (vs. Ag/AgCl), the current reduction of hydrogen peroxide was linear to its concentration in the range of 1-450 μΜ, and the detection limit was found to be 0.18 μM (signal-to-noise ratio, S/N=3). Copyright © 2012 Elsevier B.V. All rights reserved.

  15. All-solid-state flexible ultrathin micro-supercapacitors based on graphene.

    PubMed

    Niu, Zhiqiang; Zhang, Li; Liu, Lili; Zhu, Bowen; Dong, Haibo; Chen, Xiaodong

    2013-08-07

    Flexible, compact, ultrathin and all-solid-state micro-supercapacitors are prepared by coating H₃PO₄/PVA gel electrolyte onto micro-patterned rGO interdigitated electrodes prepared by combining photolithography with selective electrophoretic deposition. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Effective NaBH4-exfoliated ultrathin multilayer Co(OH)2 nanosheets arrays and sulfidation for energy storage

    NASA Astrophysics Data System (ADS)

    Yang, Wanjun; Qu, Gan; Chen, Mingyue; Ma, Wenhao; Li, Wenhui; Tang, Yiwen

    2018-07-01

    Facile engineering ultrathin nano structural materials is still a huge challenge for material science. Thereinto, the strategy of exfoliating shows great advantages. In this work, we develop a convenient approach to exfoliate Co(OH)2 nanosheets into ultrathin Co(OH)2 nanoflakes through NaBH4-exfoliation method. Moreover, the microstructures of the Co(OH)2 nanosheets are conveniently controlled by varying the exfoliation time. As a result, the obtained ultrathin Co(OH)2-72 h nanosheets deliver the excellent electrochemical performance. In order to improve the energy storage properties, the obtained ultrathin Co(OH)2 nanosheets are further modified to enhance the conductivity via sulfidation. Consequently, the synthesized Co(OH)2-72 h/CoS2 composites exhibit a specific capacitance of 2536 F g‑1 at 1 A g‑1, which is more outstanding than that of Co(OH)2-72 h. What’s more, the Co(OH)2-72 h/CoS2 composites show a capacitance retention of 83.3% after 10 000 cycles. Besides, the assembled asymmetric supercapacitor displays a power density of 482 W kg‑1 at an energy density of 36 Wh kg‑1, demonstrating a large potential for application.

  17. Effective NaBH4-exfoliated ultrathin multilayer Co(OH)2 nanosheets arrays and sulfidation for energy storage.

    PubMed

    Yang, Wanjun; Qu, Gan; Chen, Mingyue; Ma, Wenhao; Li, Wenhui; Tang, Yiwen

    2018-07-20

    Facile engineering ultrathin nano structural materials is still a huge challenge for material science. Thereinto, the strategy of exfoliating shows great advantages. In this work, we develop a convenient approach to exfoliate Co(OH) 2 nanosheets into ultrathin Co(OH) 2 nanoflakes through NaBH 4 -exfoliation method. Moreover, the microstructures of the Co(OH) 2 nanosheets are conveniently controlled by varying the exfoliation time. As a result, the obtained ultrathin Co(OH) 2 -72 h nanosheets deliver the excellent electrochemical performance. In order to improve the energy storage properties, the obtained ultrathin Co(OH) 2 nanosheets are further modified to enhance the conductivity via sulfidation. Consequently, the synthesized Co(OH) 2 -72 h/CoS 2 composites exhibit a specific capacitance of 2536 F g -1 at 1 A g -1 , which is more outstanding than that of Co(OH) 2 -72 h. What's more, the Co(OH) 2 -72 h/CoS 2 composites show a capacitance retention of 83.3% after 10 000 cycles. Besides, the assembled asymmetric supercapacitor displays a power density of 482 W kg -1 at an energy density of 36 Wh kg -1 , demonstrating a large potential for application.

  18. Characterizing the Asian Tropopause Aerosol Layer using in situ balloon measurements: the BATAL campaigns of 2014-2017

    NASA Astrophysics Data System (ADS)

    Fairlie, T. D.; Vernier, J. P.; Deshler, T.; Pandit, A. K.; Ratnam, M. V.; Gadhavi, H. S.; Liu, H.; Natarajan, M.; Jayaraman, A.; Kumar, S.; Singh, A. K.; Stenchikov, G. L.; Wienhold, F.; Vignelles, D.; Bedka, K. M.; Avery, M. A.

    2017-12-01

    We present in situ balloon observations of the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols in the upper troposphere and lower stratosphere (UTLS), associated with Asian Summer Monsoon (ASM). The ATAL was first revealed by CALIPSO satellite data, and has been linked with deep convection of boundary layer pollution into the UTLS. The ATAL has potential implications for regional cloud properties, radiative transfer, and chemical processes in the UTLS. The "Balloon measurements of the Asian Tropopause Aerosol Layer (BATAL)" field campaigns to India and Saudi Arabia in were designed to characterize the physical and optical properties of the ATAL, to explore its composition, and its relationship with clouds in the UTLS. We launched 55 balloon flights from 4 locations, in summers 2014-2016. We return to India to make more balloon flights in summer 2017. Balloon payloads range from 500g to 50 kg, making measurements of meteorological parameters, ozone, water vapor, aerosol optical properties, concentration, volatility, and composition in the UTLS region. This project represents the most important effort to date to study UTLS aerosols during the ASM, given few in situ observations. We complement the in situ data presented with 3-d chemical transport simulations, designed to further explore the ATAL's chemical composition, the sensitivity of such to scavenging in parameterized deep convection, and the relative contribution of regional vs. rest-of-the-world pollution sources. The BATAL project has been a successful partnership between institutes in the US, India, Saudi Arabia, and Europe, and continues for the next 3-4 years, sponsored by the NASA Upper Atmosphere Research program. This partnership may provide a foundation for potential high-altitude airborne measurement studies during the ASM in the future.

  19. Electric field effect on exchange interaction in ultrathin Co films with ionic liquids

    NASA Astrophysics Data System (ADS)

    Ishibashi, Mio; Yamada, Kihiro T.; Shiota, Yoichi; Ando, Fuyuki; Koyama, Tomohiro; Kakizakai, Haruka; Mizuno, Hayato; Miwa, Kazumoto; Ono, Shimpei; Moriyama, Takahiro; Chiba, Daichi; Ono, Teruo

    2018-06-01

    Electric-field modulations of magnetic properties have been extensively studied not only for practical applications but also for fundamental interest. In this study, we investigated the electric field effect on the exchange interaction in ultrathin Co films with ionic liquids. The exchange coupling J was characterized from the direct magnetization measurement as a function of temperature using Pt/ultrathin Co/MgO structures. The trend of the electric field effect on J is in good agreement with that of the theoretical prediction, and a large change in J by applying a gate voltage was observed by forming an electric double layer using ionic liquids.

  20. Ultra-thin carbon-fiber paper fabrication and carbon-fiber distribution homogeneity evaluation method

    NASA Astrophysics Data System (ADS)

    Zhang, L. F.; Chen, D. Y.; Wang, Q.; Li, H.; Zhao, Z. G.

    2018-01-01

    A preparation technology of ultra-thin Carbon-fiber paper is reported. Carbon fiber distribution homogeneity has a great influence on the properties of ultra-thin Carbon-fiber paper. In this paper, a self-developed homogeneity analysis system is introduced to assist users to evaluate the distribution homogeneity of Carbon fiber among two or more two-value images of carbon-fiber paper. A relative-uniformity factor W/H is introduced. The experimental results show that the smaller the W/H factor, the higher uniformity of the distribution of Carbon fiber is. The new uniformity-evaluation method provides a practical and reliable tool for analyzing homogeneity of materials.

  1. Superior Robust Ultrathin Single-Crystalline Silicon Carbide Membrane as a Versatile Platform for Biological Applications.

    PubMed

    Nguyen, Tuan-Khoa; Phan, Hoang-Phuong; Kamble, Harshad; Vadivelu, Raja; Dinh, Toan; Iacopi, Alan; Walker, Glenn; Hold, Leonie; Nguyen, Nam-Trung; Dao, Dzung Viet

    2017-12-06

    Micromachined membranes are promising platforms for cell culture thanks to their miniaturization and integration capabilities. Possessing chemical inertness, biocompatibility, and integration, silicon carbide (SiC) membranes have attracted great interest toward biological applications. In this paper, we present the batch fabrication, mechanical characterizations, and cell culture demonstration of robust ultrathin epitaxial deposited SiC membranes. The as-fabricated ultrathin SiC membranes, with an ultrahigh aspect ratio (length/thickness) of up to 20 000, possess high a fracture strength up to 2.95 GPa and deformation up to 50 μm. A high optical transmittance of above 80% at visible wavelengths was obtained for 50 nm membranes. The as-fabricated membranes were experimentally demonstrated as an excellent substrate platform for bio-MEMS/NEMS cell culture with the cell viability rate of more than 92% after 72 h. The ultrathin SiC membrane is promising for in vitro observations/imaging of bio-objects with an extremely short optical access.

  2. Quantifying the Amount of Ice in Cold Tropical Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Avery, Melody A.; Winker, David M.; Garnier, Anne; Lawson, R. Paul; Heymsfield, Andrew J.; Mo, Qixu; Schoeberl, Mark R.; Woods, Sarah; Lance, Sara; Young, Stuart A.; hide

    2014-01-01

    How much ice is there in the Tropical Tropopause layer, globally? How does one begin to answer that question? Clouds are currently the largest source of uncertainty in climate models, and the ice water content (IWC) of cold cirrus clouds is needed to understand the total water and radiation budgets of the upper troposphere and lower stratosphere (UT/LS). The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, originally a "pathfinder" mission only expected to last for three years, has now been operational for more than eight years. Lidar data from CALIPSO can provide information about how IWC is vertically distributed in the UT/LS, and about inter-annual variability and seasonal changes in cloud ice. However, cloud IWC is difficult to measure accurately with either remote or in situ instruments because IWC from cold cirrus clouds is derived from the particle cross-sectional area or visible extinction coefficient. Assumptions must be made about the relationship between the area, volume and density of ice particles with various crystal habits. Recently there have been numerous aircraft field campaigns providing detailed information about cirrus ice water content from cloud probes. This presentation evaluates the assumptions made when creating the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) global IWC data set, using recently reanalyzed aircraft particle probe measurements of very cold, thin TTL cirrus from the 2006 CR-AVE.

  3. Linkages Between the Great Arctic Cyclone of August 2012 and Tropopause Polar Vortices

    NASA Astrophysics Data System (ADS)

    Biernat, K.; Keyser, D.; Bosart, L. F.

    2017-12-01

    Coherent vortices in the vicinity of the tropopause, referred to as tropopause polar vortices (TPVs), are common features in the Arctic. TPVs may interact with and strengthen jet streams, as well as act as precursor disturbances for the development of Arctic cyclones. Arctic cyclones may be associated with strong surface winds and poleward advection of warm, moist air, contributing to reductions in Arctic sea-ice extent. Also, heavy precipitation, strong surface winds, and large waves accompanying Arctic cyclones may pose hazards to ships moving through open passageways in the Arctic Ocean. The Great Arctic Cyclone of August 2012 (hereafter AC12) is an example of an intense Arctic cyclone. AC12 formed on 2 August 2012 over central Siberia and attained a minimum sea level pressure (SLP) of 964 hPa on 6 August 2012 over the Arctic. Strong surface winds associated with AC12 led to reductions in Arctic sea-ice extent during a time in which sea ice was thin. Two TPVs are hypothesized to play a role in the life cycle of AC12. The purpose of this study is to investigate the linkages between AC12 and the two TPVs. The ERA-Interim dataset was utilized to examine the linkages between AC12 and the two TPVs. The two TPVs, TPV 1 and TPV 2, were tracked objectively using a TPV tracking algorithm. AC12 was tracked manually by following the locations of minimum SLP. During early August 2012, as TPV 1 approached and interacted with AC12 in a region of strong baroclinicity, it likely played an important role in the subsequent intensification of AC12. In addition, TPV-jet interactions involving both TPV 1 and TPV 2 likely contributed to the formation of a dual-jet configuration and jet coupling over AC12. The presence of warm, moist air and relatively strong lower-tropospheric ascent in the region of jet coupling and the subsequent interaction between both TPVs likely facilitated the intensification of AC12. After attaining its minimum SLP, AC12 moved slowly over the Arctic, where

  4. Flexible ultrathin-body single-photon avalanche diode sensors and CMOS integration.

    PubMed

    Sun, Pengfei; Ishihara, Ryoichi; Charbon, Edoardo

    2016-02-22

    We proposed the world's first flexible ultrathin-body single-photon avalanche diode (SPAD) as photon counting device providing a suitable solution to advanced implantable bio-compatible chronic medical monitoring, diagnostics and other applications. In this paper, we investigate the Geiger-mode performance of this flexible ultrathin-body SPAD comprehensively and we extend this work to the first flexible SPAD image sensor with in-pixel and off-pixel electronics integrated in CMOS. Experimental results show that dark count rate (DCR) by band-to-band tunneling can be reduced by optimizing multiplication doping. DCR by trap-assisted avalanche, which is believed to be originated from the trench etching process, could be further reduced, resulting in a DCR density of tens to hundreds of Hertz per micrometer square at cryogenic temperature. The influence of the trench etching process onto DCR is also proved by comparison with planar ultrathin-body SPAD structures without trench. Photon detection probability (PDP) can be achieved by wider depletion and drift regions and by carefully optimizing body thickness. PDP in frontside- (FSI) and backside-illumination (BSI) are comparable, thus making this technology suitable for both modes of illumination. Afterpulsing and crosstalk are negligible at 2µs dead time, while it has been proved, for the first time, that a CMOS SPAD pixel of this kind could work in a cryogenic environment. By appropriate choice of substrate, this technology is amenable to implantation for biocompatible photon-counting applications and wherever bended imaging sensors are essential.

  5. Ultrathin endoscope flexibility can predict discomfort associated with unsedated transnasal esophagogastroduodenoscopy

    PubMed Central

    Ono, Satoshi; Niimi, Keiko; Fujishiro, Mitsuhiro; Nakao, Tomoko; Suzuki, Kazushi; Ohike, Yumiko; Kodashima, Shinya; Yamamichi, Nobutake; Yamazaki, Tsutomu; Koike, Kazuhiko

    2013-01-01

    AIM: To evaluate the effects of choice of insertion route and ultrathin endoscope types. METHODS: This prospective study (January-June 2012) included 882 consecutive patients who underwent annual health checkups. Transnasal esophagogastroduodenoscopy (EGD) was performed in 503 patients and transoral EGD in 235 patients using six types of ultrathin endoscopes. Patients were given a choice of insertion route, either transoral or transnasal, prior to EGD examination. For transoral insertion, the endoscope was equipped with a thin-type mouthpiece and tongue depressor. Conscious sedation was not used for any patient. EGD-associated discomfort was assessed using a visual analog scale (VAS; no discomfort 0- maximum discomfort 10). RESULTS: Rates of preference for transnasal insertion were significantly higher in male (male/female 299/204 vs 118/117) and younger patients (56.8 ± 11.2 years vs 61.3 ± 13.0 years), although no significant difference was found in VAS scores between transoral and transnasal insertion (3.9 ± 2.3 vs 4.1 ± 2.5). Multivariate analysis revealed that gender, age, operator, and endoscope were independent significant predictors of VAS for transnasal insertion, although gender, age, and endoscope were those for transoral insertion. Further analysis revealed only the endoscopic flexibility index (EFI) as an independent significant predictor of VAS for transnasal insertion. Both EFI and tip diameter were independent significant predictors of VAS for transoral insertion. CONCLUSION: Flexibility of ultrathin endoscopes can be a predictor of EGD-associated discomfort, especially in transnasal insertion. PMID:23858379

  6. Dynamic response of ultrathin highly dense ZIF-8 nanofilms.

    PubMed

    Cookney, Joanna; Ogieglo, Wojciech; Hrabanek, Pavel; Vankelecom, Ivo; Fila, Vlastimil; Benes, Nieck E

    2014-10-11

    Ultrathin ZIF-8 nanofilms are prepared by facile step-by-step dip coating. A critical withdrawal speed allows for films with a very uniform minimum thickness. The high refractive index of the films denotes the absence of mesopores. The dynamic response of the films to CO2 exposure resembles behaviour observed for non-equilibrium organic polymers.

  7. Seasonal Ozone Variations in the Isentropic Layer between 330 and 380 K as Observed by SAGE 2: Implications of Extratropical Cross-Tropopause Transport

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Cunnold, Derek M.; Zawodny, Joseph M.; Pierce, R. Bradley; Olson, Jennifer R.; Kent, Geoffrey S.; Skeens, Kristi, M.

    1998-01-01

    To provide observational evidence on the extratropical cross-tropopause transport between the stratosphere and the troposphere via quasi-isentropic processes in the middleworld (the part of the atmosphere in which the isentropic surfaces intersect the tropopause), this report presents an analysis of the seasonal variations of the ozone latitudinal distribution in the isentropic layer between 330 K and 380 K based on the measurements from the Stratospheric Aerosol and Gas Experiment (SAGE) II. The results from SAGE II data analysis are consistent with (1) the buildup of ozone-rich air in the extratropical middleworld through the large-scale descending mass circulation during winter, (2) the spread of ozone-rich air in the isentropic layer from midlatitudes to subtropics via quasi-isentropic transport during spring, (3) significant photochemical ozone removal and the absence of an ozone-rich supply of air to the layer during summer, and (4) air mass exchange between the subtropics and the extratropics during the summer monsoon period. Thus the SAGE II observed ozone seasonal variations in the middleworld are consistent with the existing model calculated annual cycle of the diabatic circulation as well as the conceptual role of the eddy quasi-adiabatic transport in the stratosphere-troposphere exchange reported in the literature.

  8. Substrateless ultra-thin quarter meta-waveplate based on Babinet’s Principle

    NASA Astrophysics Data System (ADS)

    Loo, Y. L.; Guo, B. S.; Ong, C. K.

    2018-06-01

    This work proposes a substrateless ultrathin metamaterial for converting an incident electromagnetic (EM) wave from linear to a circular state of polarization within the frequency range of 10 to 14 GHz. Owing to the absence of a substrate, the polarization converter can realize a remarkable ultra-thin thickness of approximately 400 times smaller than the central working wavelength. In addition, simulated results demonstrate its capability of achieving a 3 dB axial ratio bandwidth of 34.5% at normal incidence and more than 25% for an oblique incidence angle up to 40°. The metamaterial experimental transmission coefficients for horizontal and vertical polarized EM fields show excellent agreement with the simulated results. The metasurface, which comprises of a self-complementary L-shaped structure, is designed based on Babinet’s principle, and fabricated using an advanced method for precise cutting of metal.

  9. Ultra-thin microporous/hybrid materials

    DOEpatents

    Jiang, Ying-Bing [Albuquerque, NM; Cecchi, Joseph L [Albuquerque, NM; Brinker, C Jeffrey [Albuquerque, NM

    2012-05-29

    Ultra-thin hybrid and/or microporous materials and methods for their fabrication are provided. In one embodiment, the exemplary hybrid membranes can be formed including successive surface activation and reaction steps on a porous support that is patterned or non-patterned. The surface activation can be performed using remote plasma exposure to locally activate the exterior surfaces of porous support. Organic/inorganic hybrid precursors such as organometallic silane precursors can be condensed on the locally activated exterior surfaces, whereby ALD reactions can then take place between the condensed hybrid precursors and a reactant. Various embodiments can also include an intermittent replacement of ALD precursors during the membrane formation so as to enhance the hybrid molecular network of the membranes.

  10. Observations of O3, NO2 and BrO and in the tropical UT/LS during the 2013/2014 NASA ATTREX experiment

    NASA Astrophysics Data System (ADS)

    Werner, Bodo; Stutz, Jochen; Spolaor, Max; Tsai, Catalina; Colosimo, Fedele; Cheung, Ross; Deutschmann, Tim; Raecke, Rasmus; Tricoli, Ugo; Scalone, Lisa; Pfeilsticker, Klaus

    2014-05-01

    Reactive bromine plays an important role for the chemistry of ozone in the stratosphere and likely also in the upper troposphere. It is thus crucial to understand the sources and sinks of inorganic bromine species as well as their transport and that of their organic precursors into the stratosphere. Much progress has been made in recent years in understanding the budget of inorganic bromine through field observations of very short-lived organic bromine precursors, such as CHBr3 und CH2Br2 and inorganic product gases at stratospheric entry level. Nevertheless a number of processes influencing bromine chemistry require better quantification, including the transport of organic and inorganic bromine through the tropical TTL region and the interaction of inorganic bromine species with ice particles in cirrus clouds. Here we report on BrO, NO2, and O3 profile measurements performed within the TTL from aboard the NASA's unmanned high-altitude Global Hawk aircraft during the Airborne Tropical TRopopause EXperiment (ATTREX) deployments in 2011 - 2014. The technique involves limb scanning of UV/vis skylight spectra, spectral retrieval via Differential Optical Absorption Spectroscopy (DOAS), forward modelling of the radiative transfer for each observation and a non-linear optimal estimation of the targeted atmospheric parameters. Key features of the technique are reported and first retrieval results are discussed.

  11. Convective Influence and Transport Pathways Controlling the Tropical Distribution of Carbon Monoxide at 100 Hpa

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Bergman, John; Pfister, Leonard; Ueyama, Rei; Kinnison, Doug

    2014-01-01

    Trajectory calculations with convective influence diagnosed from geostationary-satellite cloud measurements are used to evaluate the relative importance of different Tropical Tropopause Layer (TTL) transport pathways for establishing the distribution of carbon monoxide (CO) at 100 hPa as observed by the Microwave Limb Sounder (MLS) on board the Aura satellite. Carbon monoxide is a useful tracer for investigating TTL transport and convective influence because the CO lifetime is comparable to the time require for slow ascent through the TTL (a couple of months). Offline calculations of TTL radiative heating are used to determine the vertical motion field. The simple trajectory model does a reasonable job of reproducing the MLS CO distributions during Boreal wintertime and summertime. The broad maximum in CO concentration over the Pacific is primarily a result of the strong radiative heating (indicating upward vertical motion) associated with the abundant TTL cirrus in this region. Sensitivity tests indicate that the distinct CO maximum in the Asian monsoon anticyclone is strongly impacted by extreme convective systems with detrainment of polluted air above 360 K potential temperature. The relative importance of different CO source regions will also be discussed.

  12. Antiferromagnetic exchange and magnetoresistance enhancement in ultrathin Co-Re sandwiches

    NASA Astrophysics Data System (ADS)

    Freitas, P. P.; Melo, L. V.; Trindade, I.; From, M.

    1992-10-01

    Co-Re ultrathin sandwiches were prepared that show antiferromagnetic coupling and enhanced saturation magnetoresistance for Re spacer thicknesses below 9 Å. A field of 2.5 kOe is needed to saturate the antiferromagnetically coupled Co layers. These results are similar to those found in Co-Re superlattices.

  13. Temporally and Spatially Resolved Plasma Spectroscopy in Pulsed Laser Deposition of Ultra-Thin Boron Nitride Films (Postprint)

    DTIC Science & Technology

    2015-04-24

    AFRL-RX-WP-JA-2016-0196 TEMPORALLY AND SPATIALLY RESOLVED PLASMA SPECTROSCOPY IN PULSED LASER DEPOSITION OF ULTRA-THIN BORON NITRIDE...AND SPATIALLY RESOLVED PLASMA SPECTROSCOPY IN PULSED LASER DEPOSITION OF ULTRA-THIN BORON NITRIDE FILMS (POSTPRINT) 5a. CONTRACT NUMBER FA8650...distributions within a PVD plasma plume ablated from a boron nitride (BN) target by a KrF laser at different pressures of nitrogen gas were investigated

  14. Investigation of the radiative forcings of thin cirrus in the tropical atmosphere using remote sensing data

    NASA Astrophysics Data System (ADS)

    Yue, Qing

    Cirrus clouds have a unique influence on the climate system through their effects on the radiation budget of the earth and the atmosphere. To better understand the radiative effect of cirrus clouds, the microphysical and radiative properties of these clouds, especially tropical thin cirrus clouds, are studied based on both insitu cirrus measurements and satellite remote sensing observations. We perform a correlation analysis involving ice water content (IWC) and mean effective diameter (De) for applications to radiative transfer calculations and climate models using insitu measurements obtained from numerous field campaigns in the tropics, midlatitude, and Arctic regions. In conjunction with the study of cirrus clouds, we develop a high-resolution spectral infrared radiative transfer model for thin cirrus cloudy atmosphere, which is employed to retrieve De and cirrus optical depth from the Atmospheric Infrared Sounder (AIRS) infrared spectra. Numerical simulations show that cirrus cloudy radiances in the 800-1130 cm-1 thermal infrared window are sufficiently sensitive to variations in cirrus optical depth, and ice crystal size and habit. A number of nighttime thin cirrus scenes over the Atmospheric Radiation Measurement (ARM) program's Tropical Western Pacific sites have been selected from AIRS datasets for this study. The radiative transfer model is applied to these selected cases to determine cirrus optical depth, De and habit factors. Solar and infrared radiative forcings and heating rates produced by thin cirrus in the tropical atmosphere have been calculated using the retrieved cirrus optical and microphysical properties along with a modified Fu and Liou broadband radiative transfer scheme to analyze their dependence on cirrus cloud properties. Generally, larger TOA warming and smaller surface warming are associated with higher cirrus clouds. To cross-check the validity of our model, the collocated and coincident surface radiation measurements taken by ARM

  15. Tropical Glaciers

    NASA Astrophysics Data System (ADS)

    Fountain, Andrew

    The term "tropical glacier" calls to mind balmy nights and palm trees on one hand and cold, blue ice on the other. Certainly author Gabriel Garcia Marqez exploited this contrast in One Hundred Years of Solitude. We know that tropical fish live in warm, Sun-kissed waters and tropical plants provide lush, dense foliage populated by colorful tropical birds. So how do tropical glaciers fit into this scene? Like glaciers everywhere, tropical glaciers form where mass accumulation—usually winter snow—exceeds mass loss, which is generally summer melt. Thus, tropical glaciers exist at high elevations where precipitation can occur as snowfall exceeds melt and sublimation losses, such as the Rwenzori Mountains in east Africa and the Maoke Range of Irian Jaya.

  16. High-Resolution Modeling to Assess Tropical Cyclone Activity in Future Climate Regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lackmann, Gary

    2013-06-10

    Applied research is proposed with the following objectives: (i) to determine the most likely level of tropical cyclone intensity and frequency in future climate regimes, (ii) to provide a quantitative measure of uncertainty in these predictions, and (iii) to improve understanding of the linkage between tropical cyclones and the planetary-scale circulation. Current mesoscale weather forecasting models, such as the Weather Research and Forecasting (WRF) model, are capable of simulating the full intensity of tropical cyclones (TC) with realistic structures. However, in order to accurately represent both the primary and secondary circulations in these systems, model simulations must be configured withmore » sufficient resolution to explicitly represent convection (omitting the convective parameterization scheme). Most previous numerical studies of TC activity at seasonal and longer time scales have not utilized such explicit convection (EC) model runs. Here, we propose to employ the moving nest capability of WRF to optimally represent TC activity on a seasonal scale using a downscaling approach. The statistical results of a suite of these high-resolution TC simulations will yield a realistic representation of TC intensity on a seasonal basis, while at the same time allowing analysis of the feedback that TCs exert on the larger-scale climate system. Experiments will be driven with analyzed lateral boundary conditions for several recent Atlantic seasons, spanning a range of activity levels and TC track patterns. Results of the ensemble of WRF simulations will then be compared to analyzed TC data in order to determine the extent to which this modeling setup can reproduce recent levels of TC activity. Next, the boundary conditions (sea-surface temperature, tropopause height, and thermal/moisture profiles) from the recent seasons will be altered in a manner consistent with various future GCM/RCM scenarios, but that preserves the large-scale shear and incipient disturbance

  17. Constructing Ozone Profile Climatologies with Self-Organizing Maps: Illustrations with CONUS Ozonesonde Data

    NASA Astrophysics Data System (ADS)

    Thompson, A. M.; Stauffer, R. M.; Young, G. S.

    2015-12-01

    Ozone (O3) trends analysis is typically performed with monthly or seasonal averages. Although this approach works well for stratospheric or total O3, uncertainties in tropospheric O3 amounts may be large due to rapid meteorological changes near the tropopause and in the lower free troposphere (LFT) where pollution has a days-weeks lifetime. We use self-organizing maps (SOM), a clustering technique, as an alternative for creating tropospheric climatologies from O3 soundings. In a previous study of 900 tropical ozonesondes, clusters representing >40% of profiles deviated > 1-sigma from mean O­3. Here SOM are based on 15 years of data from four sites in the contiguous US (CONUS; Boulder, CO; Huntsville, AL; Trinidad Head, CA; Wallops Island, VA). Ozone profiles from 2 - 12 km are used to evaluate the impact of tropopause variability on climatology; 2 - 6 km O3 profile segments are used for the LFT. Near-tropopause O­3 is twice the mean O­3 mixing ratio in three clusters of 2 - 12 km O3, representing > 15% of profiles at each site. Large mid and lower-tropospheric O3 deviations from monthly means are found in clusters of both 2 - 12 and 2 - 6 km O3. Positive offsets result from pollution and stratosphere-to-troposphere exchange. In the LFT the lowest tropospheric O3 is associated with subtropical air. Some clusters include profiles with common seasonality but other factors, e.g., tropopause height or LFT column amount, characterize other SOM nodes. Thus, as for tropical profiles, CONUS O­3 averages can be a poor choice for a climatology.

  18. Soft Ultrathin Electronics Innervated Adaptive Fully Soft Robots.

    PubMed

    Wang, Chengjun; Sim, Kyoseung; Chen, Jin; Kim, Hojin; Rao, Zhoulyu; Li, Yuhang; Chen, Weiqiu; Song, Jizhou; Verduzco, Rafael; Yu, Cunjiang

    2018-03-01

    Soft robots outperform the conventional hard robots on significantly enhanced safety, adaptability, and complex motions. The development of fully soft robots, especially fully from smart soft materials to mimic soft animals, is still nascent. In addition, to date, existing soft robots cannot adapt themselves to the surrounding environment, i.e., sensing and adaptive motion or response, like animals. Here, compliant ultrathin sensing and actuating electronics innervated fully soft robots that can sense the environment and perform soft bodied crawling adaptively, mimicking an inchworm, are reported. The soft robots are constructed with actuators of open-mesh shaped ultrathin deformable heaters, sensors of single-crystal Si optoelectronic photodetectors, and thermally responsive artificial muscle of carbon-black-doped liquid-crystal elastomer (LCE-CB) nanocomposite. The results demonstrate that adaptive crawling locomotion can be realized through the conjugation of sensing and actuation, where the sensors sense the environment and actuators respond correspondingly to control the locomotion autonomously through regulating the deformation of LCE-CB bimorphs and the locomotion of the robots. The strategy of innervating soft sensing and actuating electronics with artificial muscles paves the way for the development of smart autonomous soft robots. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Temperature Trends in the Tropical Upper Troposphere and Lower Stratosphere: Connections with Sea Surface Temperatures and Implications for Water Vapor and Ozone

    NASA Technical Reports Server (NTRS)

    Garfinkel, C. I.; Waugh, D. W.; Oman, L. D.; Wang, L.; Hurwitz, M. M.

    2013-01-01

    Satellite observations and chemistry-climate model experiments are used to understand the zonal structure of tropical lower stratospheric temperature, water vapor, and ozone trends. The warming in the tropical upper troposphere over the past 30 years is strongest near the Indo-Pacific warm pool, while the warming trend in the western and central Pacific is much weaker. In the lower stratosphere, these trends are reversed: the historical cooling trend is strongest over the Indo-Pacific warm pool and is weakest in the western and central Pacific. These zonal variations are stronger than the zonal-mean response in boreal winter. Targeted experiments with a chemistry-climate model are used to demonstrate that sea surface temperature (hereafter SST) trends are driving the zonal asymmetry in upper tropospheric and lower stratospheric tropical temperature trends. Warming SSTs in the Indian Ocean and in the warm pool region have led to enhanced moist heating in the upper troposphere, and in turn to a Gill-like response that extends into the lower stratosphere. The anomalous circulation has led to zonal structure in the ozone and water vapor trends near the tropopause, and subsequently to less water vapor entering the stratosphere. The radiative impact of these changes in trace gases is smaller than the direct impact of the moist heating. Projected future SSTs appear to drive a temperature and water vapor response whose zonal structure is similar to the historical response. In the lower stratosphere, the changes in water vapor and temperature due to projected future SSTs are of similar strength to, though slightly weaker than, that due directly to projected future CO2, ozone, and methane.

  20. Few-layered CoHPO4.3H2O ultrathin nanosheets for high performance of electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Pang, Huan; Wang, Shaomei; Shao, Weifang; Zhao, Shanshan; Yan, Bo; Li, Xinran; Li, Sujuan; Chen, Jing; Du, Weimin

    2013-06-01

    Ultrathin cobalt phosphate (CoHPO4.3H2O) nanosheets are successfully synthesized by a one pot hydrothermal method. Novel CoHPO4.3H2O ultrathin nanosheets are assembled for constructing the electrodes of supercapacitors. Benefiting from the nanostructures, the as-prepared electrode shows a specific capacitance of 413 F g-1, and no obvious decay even after 3000 charge-discharge cycles. Such a quasi-two-dimensional material is a new kind of supercapacitor electrode material with high performance.Ultrathin cobalt phosphate (CoHPO4.3H2O) nanosheets are successfully synthesized by a one pot hydrothermal method. Novel CoHPO4.3H2O ultrathin nanosheets are assembled for constructing the electrodes of supercapacitors. Benefiting from the nanostructures, the as-prepared electrode shows a specific capacitance of 413 F g-1, and no obvious decay even after 3000 charge-discharge cycles. Such a quasi-two-dimensional material is a new kind of supercapacitor electrode material with high performance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01460f

  1. The cutting of ultrathin sections with the thickness less than 20 nm from biological specimens embedded in resin blocks.

    PubMed

    Nebesářová, Jana; Hozák, Pavel; Frank, Luděk; Štěpan, Petr; Vancová, Marie

    2016-06-01

    Low voltage electron microscopes working in transmission mode, like LVEM5 (Delong Instruments, Czech Republic) working at accelerating voltage 5 kV or scanning electron microscope working in transmission mode with accelerating voltage below 1 kV, require ultrathin sections with the thickness below 20 nm. Decreasing of the primary electron energy leads to enhancement of image contrast, which is especially useful in the case of biological samples composed of elements with low atomic numbers. As a result treatments with heavy metals, like post-fixation with osmium tetroxide or ultrathin section staining, can by omitted. The disadvantage is reduced penetration ability of incident electrons influencing the usable thickness of the specimen resulting in the need of ultrathin sections of under 20 nm thickness. In this study we want to answer basic questions concerning the cutting of extremely ultrathin sections: Is it possible routinely and reproducibly to cut extremely thin sections of biological specimens embedded in commonly used resins with contemporary ultramicrotome techniques and under what conditions? Microsc. Res. Tech. 79:512-517, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Ultrathin hexagonal MgO nanoflakes coated medical textiles and their enhanced antibacterial activity

    NASA Astrophysics Data System (ADS)

    Veeran Ponnuvelu, Dinesh; Selvaraj, Aravind; Prema Suriyaraj, Shanmugam; Selvakumar, Rajendran; Pulithadathail, Biji

    2016-10-01

    A facile hydrothermal method for development of ultrathin MgO nanoplates from different precursors and their enhanced antibacterial activity after coating onto medical textiles is reported. Ultrathin MgO nanoplates having hexagonal structure were characterized using UV-visible spectroscopy, atomic force microscopy, field emission scanning electron microscopy, x-ray diffraction and high resolution transmission electron microscopy. The formation of MgO nanoplates was found to exhibit profound anionic effect leading to ultrathin, planar structures with exposed MgO [111] facets, which may be responsible for enhanced antimicrobial activity. Medical fabrics (bleached 100% cotton) were coated with MgO nanoplates using pad-dry-cure method. The antibacterial activity of these fabrics was tested against Bacillus subtilis and Escherichia coli. The MgO nanoplates coated onto the fabric were found to have good adherence properties owing to their two-dimensional structure and were durable even after repeated washings without substantial reduction in the antimicrobial activity. The enhanced antibacterial activity may be attributed to the presence of oxygen vacancies, surface oxygen anions and hydroxyl groups on the surface of MgO nanoplates. This cost-effective functional finish (anti-microbial) to cotton fabric using MgO nanoplates may be suitable for many prospective medical applications and can serve as an alternative to the costlier silver based antimicrobial textiles.

  3. Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kyu-Tae; Seo, Sungyong; Yong Lee, Jae

    We present transmission visible wavelength filters based on strong interference behaviors in an ultrathin semiconductor material between two metal layers. The proposed devices were fabricated on 2 cm × 2 cm glass substrate, and the transmission characteristics show good agreement with the design. Due to a significantly reduced light propagation phase change associated with the ultrathin semiconductor layer and the compensation in phase shift of light reflecting from the metal surface, the filters show an angle insensitive performance up to ±70°, thus, addressing one of the key challenges facing the previously reported photonic and plasmonic color filters. This principle, described in this paper, canmore » have potential for diverse applications ranging from color display devices to the image sensors.« less

  4. Stratospheric water vapor feedback.

    PubMed

    Dessler, A E; Schoeberl, M R; Wang, T; Davis, S M; Rosenlof, K H

    2013-11-05

    We show here that stratospheric water vapor variations play an important role in the evolution of our climate. This comes from analysis of observations showing that stratospheric water vapor increases with tropospheric temperature, implying the existence of a stratospheric water vapor feedback. We estimate the strength of this feedback in a chemistry-climate model to be +0.3 W/(m(2)⋅K), which would be a significant contributor to the overall climate sensitivity. One-third of this feedback comes from increases in water vapor entering the stratosphere through the tropical tropopause layer, with the rest coming from increases in water vapor entering through the extratropical tropopause.

  5. Stratospheric water vapor feedback

    PubMed Central

    Dessler, A. E.; Schoeberl, M. R.; Wang, T.; Davis, S. M.; Rosenlof, K. H.

    2013-01-01

    We show here that stratospheric water vapor variations play an important role in the evolution of our climate. This comes from analysis of observations showing that stratospheric water vapor increases with tropospheric temperature, implying the existence of a stratospheric water vapor feedback. We estimate the strength of this feedback in a chemistry–climate model to be +0.3 W/(m2⋅K), which would be a significant contributor to the overall climate sensitivity. One-third of this feedback comes from increases in water vapor entering the stratosphere through the tropical tropopause layer, with the rest coming from increases in water vapor entering through the extratropical tropopause. PMID:24082126

  6. Fatigue resistance of ultrathin CAD/CAM complete crowns with a simplified cementation process.

    PubMed

    Magne, Pascal; Carvalho, Adriana O; Bruzi, Greciana; Giannini, Marcelo

    2015-10-01

    Traditional tooth preparation for complete crowns requires a substantial amount of hard tissue reduction. This is in contrast with the principles of minimally invasive dentistry. An ultrathin complete crown preparation is proposed instead. The purpose of this in vitro study was to assess the fatigue resistance and failure mode of computer-aided design and computer-aided manufacturing (CAD/CAM) ultrathin complete molar crowns placed with self-adhesive cement. Different restorative materials (resin nanoceramic [RNC], feldspathic ceramic [FEL], and lithium disilicate [LD]) were compared. Forty-five extracted molars with a standardized crown preparation were restored with the Cerec 3 CAD/CAM system using FEL, LD, or RNC (n=15). FEL and LD restorations were etched with hydrofluoric acid and silanated. RNC restorations and all preparations were treated with airborne-particle abrasion. All restorations (thickness=0.7 mm) were cemented with RelyX Unicem II Automix cement and submitted to cyclic isometric loading, beginning with a load of 200 N (5000 cycles) and followed by stages of 400, 600, 800, 1000, 1200, and 1400 N at a maximum of 30 000 cycles each. The specimens were loaded until failure or for a maximum of 185 000 cycles. The failure mode was categorized as "catastrophic," "possibly reparable," or "reparable." The groups were compared using life table survival analysis (log rank test at α=.05). Previously published data from the same authors about traditional complete crowns (thickness 1.5 mm) using the same experimental design were included for comparison. All specimens survived the fatigue test until the 600 N step. RNC, LD, and FEL failed at an average load of 1014 N (1 survival), 1123 N (2 survivals), and 987 N (no survivals), and no difference in survival rate was found. No catastrophic failures were reported after the fatigue test. Comparison with previously published data showed that 1.5-mm thick complete crowns demonstrated higher survival rates than

  7. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics.

    PubMed

    Kim, Dae-Hyeong; Viventi, Jonathan; Amsden, Jason J; Xiao, Jianliang; Vigeland, Leif; Kim, Yun-Soung; Blanco, Justin A; Panilaitis, Bruce; Frechette, Eric S; Contreras, Diego; Kaplan, David L; Omenetto, Fiorenzo G; Huang, Yonggang; Hwang, Keh-Chih; Zakin, Mitchell R; Litt, Brian; Rogers, John A

    2010-06-01

    Electronics that are capable of intimate, non-invasive integration with the soft, curvilinear surfaces of biological tissues offer important opportunities for diagnosing and treating disease and for improving brain/machine interfaces. This article describes a material strategy for a type of bio-interfaced system that relies on ultrathin electronics supported by bioresorbable substrates of silk fibroin. Mounting such devices on tissue and then allowing the silk to dissolve and resorb initiates a spontaneous, conformal wrapping process driven by capillary forces at the biotic/abiotic interface. Specialized mesh designs and ultrathin forms for the electronics ensure minimal stresses on the tissue and highly conformal coverage, even for complex curvilinear surfaces, as confirmed by experimental and theoretical studies. In vivo, neural mapping experiments on feline animal models illustrate one mode of use for this class of technology. These concepts provide new capabilities for implantable and surgical devices.

  8. Dissolvable Films of Silk Fibroin for Ultrathin, Conformal Bio-Integrated Electronics

    PubMed Central

    Kim, Dae-Hyeong; Viventi, Jonathan; Amsden, Jason J.; Xiao, Jianliang; Vigeland, Leif; Kim, Yun-Soung; Blanco, Justin A.; Panilaitis, Bruce; Frechette, Eric S.; Contreras, Diego; Kaplan, David L.; Omenetto, Fiorenzo G.; Huang, Yonggang; Hwang, Keh-Chih; Zakin, Mitchell R.; Litt, Brian; Rogers, John A.

    2011-01-01

    Electronics that are capable of intimate, non-invasive integration with the soft, curvilinear surfaces of biological tissues offer important opportunities for diagnosing and treating disease and for improving brain-machine interfaces. This paper describes a material strategy for a type of bio-interfaced system that relies on ultrathin electronics supported by bioresorbable substrates of silk fibroin. Mounting such devices on tissue and then allowing the silk to dissolve and resorb initiates a spontaneous, conformal wrapping process driven by capillary forces at the biotic/abiotic interface. Specialized mesh designs and ultrathin forms for the electronics ensure minimal stresses on the tissue and highly conformal coverage, even for complex curvilinear surfaces, as confirmed by experimental and theoretical studies. In vivo, neural mapping experiments on feline animal models illustrate one mode of use for this class of technology. These concepts provide new capabilities for implantable or surgical devices. PMID:20400953

  9. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Hyeong; Viventi, Jonathan; Amsden, Jason J.; Xiao, Jianliang; Vigeland, Leif; Kim, Yun-Soung; Blanco, Justin A.; Panilaitis, Bruce; Frechette, Eric S.; Contreras, Diego; Kaplan, David L.; Omenetto, Fiorenzo G.; Huang, Yonggang; Hwang, Keh-Chih; Zakin, Mitchell R.; Litt, Brian; Rogers, John A.

    2010-06-01

    Electronics that are capable of intimate, non-invasive integration with the soft, curvilinear surfaces of biological tissues offer important opportunities for diagnosing and treating disease and for improving brain/machine interfaces. This article describes a material strategy for a type of bio-interfaced system that relies on ultrathin electronics supported by bioresorbable substrates of silk fibroin. Mounting such devices on tissue and then allowing the silk to dissolve and resorb initiates a spontaneous, conformal wrapping process driven by capillary forces at the biotic/abiotic interface. Specialized mesh designs and ultrathin forms for the electronics ensure minimal stresses on the tissue and highly conformal coverage, even for complex curvilinear surfaces, as confirmed by experimental and theoretical studies. In vivo, neural mapping experiments on feline animal models illustrate one mode of use for this class of technology. These concepts provide new capabilities for implantable and surgical devices.

  10. Influence of Thickness on the Electrical Transport Properties of Exfoliated Bi2Te3 Ultrathin Films

    NASA Astrophysics Data System (ADS)

    Mo, D. L.; Wang, W. B.; Cai, Q.

    2016-08-01

    In this work, the mechanical exfoliation method has been utilized to fabricate Bi2Te3 ultrathin films. The thickness of the ultrathin films is revealed to be several tens of nanometers. Weak antilocalization effects and Shubnikov de Haas oscillations have been observed in the magneto-transport measurements on individual films with different thickness, and the two-dimensional surface conduction plays a dominant role. The Fermi level is found to be 81 meV above the Dirac point, and the carrier mobility can reach ~6030 cm2/(Vs) for the 10-nm film. When the film thickness decreases from 30 to 10 nm, the Fermi level will move 8 meV far from the bulk valence band. The coefficient α in the Hikami-Larkin-Nagaoka equation is shown to be ~0.5, manifesting that only the bottom surface of the Bi2Te3 ultrathin films takes part in transport conductions. These will pave the way for understanding thoroughly the surface transport properties of topological insulators.

  11. Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li-ion batteries.

    PubMed

    Wu, Feng; Li, Ning; Su, Yuefeng; Zhang, Linjing; Bao, Liying; Wang, Jing; Chen, Lai; Zheng, Yu; Dai, Liqin; Peng, Jingyuan; Chen, Shi

    2014-06-11

    Lack of high-performance cathode materials has become a technological bottleneck for the commercial development of advanced Li-ion batteries. We have proposed a biomimetic design and versatile synthesis of ultrathin spinel membrane-encapsulated layered lithium-rich cathode, a modification by nanocoating. The ultrathin spinel membrane is attributed to the superior high reversible capacity (over 290 mAh g(-1)), outstanding rate capability, and excellent cycling ability of this cathode, and even the stubborn illnesses of the layered lithium-rich cathode, such as voltage decay and thermal instability, are found to be relieved as well. This cathode is feasible to construct high-energy and high-power Li-ion batteries.

  12. New possibilities for tuning ultrathin cobalt film magnetic properties by a noble metal overlayer.

    PubMed

    Kisielewski, M; Maziewski, A; Tekielak, M; Wawro, A; Baczewski, L T

    2002-08-19

    Complementary multiscale magneto-optical studies based on the polar Kerr effect are carried out on an ultrathin cobalt wedge covered with a silver wedge and subsequently with the Au thick layer. A few monolayers of Ag are found to have a substantial effect on magnetic anisotropy, the coercivity field, and Kerr rotation. The silver overlayer thickness-driven magnetic reorientation from easy axis to easy plane generates a new type of 90 degrees magnetic wall for cobalt thicknesses between 1.3 and 1.8 nm. The tuning of the wall width in a wide range is possible. Tailoring of the overlayer structure can be used for ultrathin film magnetic patterning.

  13. Flexible Ultrathin Endoscope Integrated with Irrigation Suction Apparatus for Assisting Microneurosurgery.

    PubMed

    Otani, Naoki; Morimoto, Yuji; Fujii, Kazuya; Toyooka, Terushige; Wada, Kojiro; Mori, Kentaro

    2017-12-01

    Endoscopy can observe the anatomical components in a deeply located and/or hidden area during neurosurgical procedures under the operating microscope. We have newly developed a flexible ultrathin endoscope integrated with irrigation suction apparatus (FUEISA) to visualize deeply located and/or hidden areas for assisting microneurosurgery. The present study investigated the usefulness of the FUEISA system for direct clipping surgery of cerebral aneurysms. Twenty-one patients underwent microneurosurgery assisted with the FUEISA system for direct clipping of cerebral aneurysms. The flexible ultrathin endoscope (outer diameter 0.75mm) consists of an image guide (6000 dpi) and a light guide, integrated with the irrigation suction apparatus. This endoscopic system was inserted before and after clipping to observe the anatomical conditions surrounding the lesions. In all cases, handling and operation of the FUEISA was technically successful during the surgical procedure. The ultrathin endoscope was adequately integrated with the irrigation suction apparatus in all cases. General anatomy visualization including the lenticulostriate arteries, medial striate arteries, and/or internal carotid artery perforators was possible, and the correct clip positioning and vessel conditions were easily checked. The endoscope revealed that the clip had been positioned incorrectly in one case. No complications associated with the endoscopic system occurred. The FUEISA system can be applied with safe manipulation, which was remarkably useful for confirmation of the presence of perforators and cranial nerves behind the lesions, particularly anatomical components located in deep and/or hidden areas during clipping of cerebral aneurysms. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Ultrathin SnO2 nanorods: template- and surfactant-free solution phase synthesis, growth mechanism, optical, gas-sensing, and surface adsorption properties.

    PubMed

    Xi, Guangcheng; Ye, Jinhua

    2010-03-01

    A novel template- and surfactant-free low temperature solution-phase method has been successfully developed for the controlled synthesis of ultrathin SnO(2) single-crystalline nanorods for the first time. The ultrathin SnO(2) single-crystalline nanorods are 2.0 +/- 0.5 nm in diameter, which is smaller than its exciton Bohr radius. The ultrathin SnO(2) nanorods show a high specific area (191.5 m(2) g(-1)). Such a thin SnO(2) single-crystalline nanorod is new in the family of SnO(2) nanostrucures and presents a strong quantum confinement effect. Its formation depends on the reaction temperature as well as on the concentration of the urea solution. A nonclassical crystallization process, Ostwald ripening process followed by an oriented attachment mechanism, is proposed based on the detailed observations from a time-dependent crystal evolution process. Importantly, such structured SnO(2) has shown a strong structure-induced enhancement of gas-sensing properties and has exhibited greatly enhanced gas-sensing property for the detection of ethanol than that of other structured SnO(2), such as the powders of nanobelts and microrods. Moreover, these ultrathin SnO(2) nanorods exhibit excellent ability to remove organic pollutant in wastewater by enormous surface adsorption. These properties are mainly attributed to its higher surface-to-volume ratio and ultrathin diameter. This work provides a novel low temperature, green, and inexpensive pathway to the synthesis of ultrathin nanorods, offering a new material form for sensors, solar cells, catalysts, water treatments, and other applications.

  15. Structural performance of ultra-thin whitetopping on Illinois roadways and parking lots.

    DOT National Transportation Integrated Search

    2014-08-01

    A performance evaluation of ultra-thin whitetopping (UTW) pavements in Illinois was undertaken in 20122014 : to evaluate current design procedures and to determine design life criteria for future projects. The two main : components of this evaluat...

  16. High-mobility ultrathin semiconducting films prepared by spin coating

    NASA Astrophysics Data System (ADS)

    Mitzi, David B.; Kosbar, Laura L.; Murray, Conal E.; Copel, Matthew; Afzali, Ali

    2004-03-01

    The ability to deposit and tailor reliable semiconducting films (with a particular recent emphasis on ultrathin systems) is indispensable for contemporary solid-state electronics. The search for thin-film semiconductors that provide simultaneously high carrier mobility and convenient solution-based deposition is also an important research direction, with the resulting expectations of new technologies (such as flexible or wearable computers, large-area high-resolution displays and electronic paper) and lower-cost device fabrication. Here we demonstrate a technique for spin coating ultrathin (~50Å), crystalline and continuous metal chalcogenide films, based on the low-temperature decomposition of highly soluble hydrazinium precursors. We fabricate thin-film field-effect transistors (TFTs) based on semiconducting SnS2-xSex films, which exhibit n-type transport, large current densities (>105Acm-2) and mobilities greater than 10cm2V-1s-1-an order of magnitude higher than previously reported values for spin-coated semiconductors. The spin-coating technique is expected to be applicable to a range of metal chalcogenides, particularly those based on main group metals, as well as for the fabrication of a variety of thin-film-based devices (for example, solar cells, thermoelectrics and memory devices).

  17. Broadband enhancement of dielectric light trapping nanostructure used in ultra-thin solar cells

    NASA Astrophysics Data System (ADS)

    Yang, Dong; Xu, Zhaopeng; Bian, Fei; Wang, Haiyan; Wang, Jiazhuang; Sun, Lu

    2018-03-01

    A dielectric fishnet nanostructure is designed to increase the light trapping capability of ultra-thin solar cells. The complex performance of ultra-thin cells such as the optical response and electrical response are fully quantified in simulation through a complete optoelectronic investigation. The results show that the optimized light trapping nanostructure can enhances the electromagnetic resonance in active layer then lead to extraordinary enhancement of both absorption and light-conversion capabilities in the solar cell. The short-circuit current density increases by 49.46% from 9.40 mA/cm2 to 14.05 mA/cm2 and light-conversion efficiency increases by 51.84% from 9.51% to 14.44% compared to the benchmark, a solar cell with an ITO-GaAs-Ag structure.

  18. Three-Component Integrated Ultrathin Organic Photosensors for Plastic Optoelectronics.

    PubMed

    Wang, Hanlin; Liu, Hongtao; Zhao, Qiang; Cheng, Cheng; Hu, Wenping; Liu, Yunqi

    2016-01-27

    By three-component integration, an integrated organic photosensor is presented using common organic dyes as building blocks. Gray-scale photosensing and signal amplification are achieved in the device within a wide range of light intensities. Moreover, with ultrathin film techniques, 470 nm thick devices are realized and continue to work when harshly bent. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Superstable Ultrathin Water Film Confined in a Hydrophilized Carbon Nanotube.

    PubMed

    Tomo, Yoko; Askounis, Alexandros; Ikuta, Tatsuya; Takata, Yasuyuki; Sefiane, Khellil; Takahashi, Koji

    2018-03-14

    Fluids confined in a nanoscale space behave differently than in the bulk due to strong interactions between fluid molecules and solid atoms. Here, we observed water confined inside "open" hydrophilized carbon nanotubes (CNT), with diameter of tens of nanometers, using transmission electron microscopy (TEM). A 1-7 nm water film adhering to most of the inner wall surface was observed and remained stable in the high vacuum (order of 10 -5 Pa) of the TEM. The superstability of this film was attributed to a combination of curvature, nanoroughness, and confinement resulting in a lower vapor pressure for water and hence inhibiting its vaporization. Occasional, suspended ultrathin water film with thickness of 3-20 nm were found and remained stable inside the CNT. This film thickness is 1 order of magnitude smaller than the critical film thickness (about 40 nm) reported by the Derjaguin-Landau-Verwey-Overbeek theory and previous experimental investigations. The stability of the suspended ultrathin water film is attributed to the additional molecular interactions due to the extended water meniscus, which balances the rest of the disjoining pressures.

  20. Physics of Ultrathin Films and Heterostructures of Rare-Earth Nickelates

    DOE PAGES

    Middey, Srimanta; Chakhalian, J.; Mahadevan, P.; ...

    2016-04-06

    The electronic structure of transition metal oxides featuring correlated electrons can be rationalized within the Zaanen-Sawatzky-Allen framework. Following a brief description of the present paradigms of electronic behavior, we focus on the physics of rare-earth nickelates as an archetype of complexity emerging within the charge transfer regime. The intriguing prospect of realizing the physics of high- Tc cuprates through heterostructuring resulted in a massive endeavor to epitaxially stabilize these materials in ultrathin form. A plethora of new phenomena unfolded in such artificial structures due to the effect of epitaxial strain, quantum confinement, and interfacial charge transfer. Here we review themore » present status of artificial rare-earth nickelates in an effort to uncover the interconnection between the electronic and magnetic behavior and the underlying crystal structure. Here, we conclude by discussing future directions to disentangle the puzzle regarding the origin of the metal-insulator transition, the role of oxygen holes, and the true nature of the antiferromagnetic spin configuration in the ultrathin limit.« less

  1. An ultra-thin compact polarization-independent hexa-band metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Munaga, Praneeth; Bhattacharyya, Somak; Ghosh, Saptarshi; Srivastava, Kumar Vaibhav

    2018-04-01

    In this paper, an ultra-thin compact hexa-band metamaterial absorber has been presented using single layer of dielectric. The proposed design is polarization independent in nature owing to its fourfold symmetry and exhibits high angular stability up to 60° angles of incidences for both TE and TM polarizations. The structure is ultrathin in nature with 2 mm thickness, which corresponds to λ/11.4 ( λ is the operating wavelength with respect to the highest frequency of absorption). Six distinct absorption frequencies are obtained from the design, which can be distributed among three regions, namely lower band, middle band and higher band; each region consists of two closely spaced frequencies. Thereafter, the dimensions of the proposed structure are adjusted in such a way that bandwidth enhancement occurs at each region separately. Simultaneous bandwidth enhancements at middle and higher bands have also been achieved by proper optimization of the geometrical parameters. The structure with simultaneous bandwidth enhancements at X- and Ku-bands is later fabricated and the experimental absorptivity response is in agreement with the simulated one.

  2. Surface profiles and modulation of ultra-thin perfluoropolyether lubricant in contact sliding

    NASA Astrophysics Data System (ADS)

    Sinha, S. K.; Kawaguchi, M.; Kato, T.

    2004-08-01

    Deformation in shear and associated tribological behaviours of ultra-thin lubricants are of significant importance for the lubrication of magnetic hard disks and for other applications such as micro-electromechanical systems, nano-fluidics and nanotechnology. This paper presents the characteristics of the perfluoropolyether ultra-thin lubricant, in terms of its surface profiles when subjected to a contact sliding test. The results indicate that for a several-monolayers thick (~4.0-4.5 nm) lubricant film, sliding produces a considerable amount of surface roughness due to peaks of lubricant that persist during sliding; however, it can flow back or return to a smooth profile after a lapse of time when the sliding is stopped. For a monolayer-thin (~1.4-1.57 nm) film, the lubricant flow is restricted, and the rough profile created due to sliding persists and almost becomes permanent on the wear track. During sliding, due to high shear stress, a characteristic feature of lubricant profile modulation is observed. This modulation, or waviness, is due to the accumulation of lubricant in piles or islands, giving certain amplitudes and frequencies, which themselves depend upon the percentage of lubricant molecules that are chemically bonded to the substrate and the lubricant thickness. The results indicate that ultra-thin lubricants (monolayer and thicker) behave more like a semi-solid (having some sliding characteristics similar to those of rubbers) than a liquid when subjected to a high shear rate during contact sliding.

  3. Quantum dots in single electron transistors with ultrathin silicon-on-insulator structures

    NASA Astrophysics Data System (ADS)

    Ihara, S.; Andreev, A.; Williams, D. A.; Kodera, T.; Oda, S.

    2015-07-01

    We report on fabrication and transport properties of lithographically defined single quantum dots (QDs) in single electron transistors with ultrathin silicon-on-insulator (SOI) substrate. We observed comparatively large charging energy E C ˜ 20 meV derived from the stability diagram at a temperature of 4.2 K. We also carried out three-dimensional calculations of the capacitance matrix and transport properties through the QD for the real structure geometry and found an excellent quantitative agreement with experiment of the calculated main parameters of stability diagram (charging energy, period of Coulomb oscillations, and asymmetry of the diamonds). The obtained results confirm fabrication of well-defined integrated QDs as designed with ultrathin SOI that makes it possible to achieve relatively large QD charging energies, which is useful for stable and high temperature operation of single electron devices.

  4. Morphology, mechanical stability, and protective properties of ultrathin gallium oxide coatings.

    PubMed

    Lawrenz, Frank; Lange, Philipp; Severin, Nikolai; Rabe, Jürgen P; Helm, Christiane A; Block, Stephan

    2015-06-02

    Ultrathin gallium oxide layers with a thickness of 2.8 ± 0.2 nm were transferred from the surface of liquid gallium onto solid substrates, including conjugated polymer poly(3-hexylthiophene) (P3HT). The gallium oxide exhibits high mechanical stability, withstanding normal pressures of up to 1 GPa in contact mode scanning force microscopy imaging. Moreover, it lowers the rate of photodegradation of P3HT by 4 orders of magnitude, as compared to uncovered P3HT. This allows us to estimate the upper limits for oxygen and water vapor transmission rates of 0.08 cm(3) m(-2) day(-1) and 0.06 mg m(-2) day(-1), respectively. Hence, similar to other highly functional coatings such as graphene, ultrathin gallium oxide layers can be regarded as promising candidates for protective layers in flexible organic (opto-)electronics and photovoltaics because they offer permeation barrier functionalities in conjunction with high optical transparency.

  5. Synthesizing new types of ultrathin 2D metal oxide nanosheets via half-successive ion layer adsorption and reaction

    NASA Astrophysics Data System (ADS)

    Gao, Linjie; Li, Yaguang; Xiao, Mu; Wang, Shufang; Fu, Guangsheng; Wang, Lianzhou

    2017-06-01

    Two-dimensional (2D) metal oxide nanosheets have demonstrated their great potential in a broad range of applications. The existing synthesis strategies are mainly preparing 2D nanosheets from layered and specific transition metal oxides. How to prepare the other types of metal oxides as ultrathin 2D nanosheets remains unsolved, especially for metal oxides containing alkali, alkaline earth metal, and multiple metal elements. Herein, we developed a half-successive ion layer adsorption and reaction (SILAR) method, which could synthesize those types of metal oxides as ultrathin 2D nanosheets. The synthesized 2D metal oxides nanosheets are within 1 nm level thickness and 500 m2 · g-1 level surface area. This method allows us to develop many new types of ultrathin 2D metal oxides nanosheets that have never been prepared before.

  6. Very short-lived bromomethanes measured by the CARIBIC observatory over the North Atlantic, Africa and Southeast Asia during 2009-2013

    NASA Astrophysics Data System (ADS)

    Wisher, A.; Oram, D. E.; Laube, J. C.; Mills, G. P.; van Velthoven, P.; Zahn, A.; Brenninkmeijer, C. A. M.

    2014-04-01

    Short-lived organic brominated compounds make up a significant part of the organic bromine budget in the atmosphere. Emissions of these compounds are highly variable and there are limited measurements, particularly in the extra-tropical upper troposphere/lower stratosphere and tropical troposphere. Measurements of five very short-lived bromomethanes (VSLB) were made in air samples collected on the CARIBIC project aircraft over three flight routes; Germany to Venezuela/Columbia during 2009-2011, Germany to South Africa during 2010 and 2011 and Germany to Thailand/Kuala Lumpur, Malaysia during 2012 and 2013. In the tropical troposphere, as the most important entrance region to the stratosphere, we observe a total mean organic bromine derived from these compounds across all flights at 10-12 km altitude of 3.4 ± 1.5 ppt. Individual mean tropical tropospheric mixing ratios across all flights were 0.43, 0.74, 0.14, 0.23 and 0.11 ppt for CHBr3, CH2Br2, CHBr2Cl, CHBrCl2 and CH2BrCl respectively. The highest levels of VSLB-derived bromine (4.20 ± 0.56 ppt) were observed in flights between Bangkok and Kuala Lumpur indicating that the South China Sea is an important source region for these compounds. Across all routes, CHBr3 and CH2Br2 accounted for 34% (4.7-71) and 48% (14-73) respectively of total bromine derived from the analysed VSLB in the tropical mid-upper troposphere totalling 82% (54-89). In samples collected between Germany and Venezuela/Columbia, we find decreasing mean mixing ratios with increasing potential temperature in the extra-tropics. Tropical mean mixing ratios are higher than extra-tropical values between 340-350 K indicating that rapid uplift is important in determining mixing ratios in the lower tropical tropopause layer in the West Atlantic tropics. O3 was used as a tracer for stratospherically influenced air and we detect rapidly decreasing mixing ratios for all VSLB above ∼100 ppb O3 corresponding to the extra-tropical tropopause layer.

  7. Very short-lived bromomethanes measured by the CARIBIC observatory over the North Atlantic, Africa and South-East Asia during 2009-2013

    NASA Astrophysics Data System (ADS)

    Wisher, A.; Oram, D. E.; Laube, J. C.; Mills, G. P.; van Velthoven, P.; Zahn, A.; Brenninkmeijer, C. A. M.

    2013-11-01

    Short-lived organic brominated compounds make up a significant part (~20%) of the organic bromine budget in the atmosphere. Emissions of these compounds are highly variable and there are limited measurements, particularly in the extra-tropical upper troposphere/lower stratosphere and tropical troposphere. Measurements of five short-lived bromomethanes (VSLB) were made in air samples collected on the CARIBIC project aircraft over three flight routes; Germany to Venezuela/Columbia during 2009-2011, Germany to South Africa during 2010 and 2011 and Germany to Thailand/Kuala Lumpur, Malaysia during 2012 and 2013. In the tropical troposphere, as the most important entrance region to the stratosphere, we observe a total mean organic bromine derived from these compounds across all flights at 10-12 km altitude of 3.4 ± 1.5 ppt. Individual mean tropical tropospheric mixing ratios across all flights were 0.43, 0.74, 0.14, 0.23 and 0.11 ppt for CHBr3, CH2Br2, CHBr2Cl, CHBrCl2 and CH2BrCl respectively. The highest levels of VSLS-derived bromine (4.20 ± 0.56 ppt) were observed in flights between Bangkok and Kuala Lumpur indicating that the South China Sea is an important source region for these compounds. Across all routes, CHBr3 and CH2Br2 accounted for 34% (4.7-71) and 48% (14-73) respectively of total bromine derived from the analysed VSLB in the tropical mid-upper troposphere totalling 82% (54-89). In samples collected between Germany and Venezuela/Columbia, we find decreasing mean mixing ratios with increasing potential temperature in the extra-tropics. Tropical mean mixing ratios are higher than extra-tropical values between 340-350 K indicating that rapid uplift is important in determining mixing ratios in the lower tropical tropopause layer in the West Atlantic tropics. O3 was used as a tracer for stratospherically influenced air and we detect rapidly decreasing mixing ratios for all VSLB above ~100 ppb O3 corresponding to the extra-tropical tropopause layer.

  8. Seasonal Variability of Middle Latitude Ozone in the Lowermost Stratosphere Derived from Probability Distribution Functions

    NASA Technical Reports Server (NTRS)

    Rood, Richard B.; Douglass, Anne R.; Cerniglia, Mark C.; Sparling, Lynn C.; Nielsen, J. Eric

    1999-01-01

    We present a study of the distribution of ozone in the lowermost stratosphere with the goal of characterizing the observed variability. The air in the lowermost stratosphere is divided into two population groups based on Ertel's potential vorticity at 300 hPa. High (low) potential vorticity at 300 hPa indicates that the tropopause is low (high), and the identification of these two groups is made to account for the dynamic variability. Conditional probability distribution functions are used to define the statistics of the ozone distribution from both observations and a three-dimensional model simulation using winds from the Goddard Earth Observing System Data Assimilation System for transport. Ozone data sets include ozonesonde observations from northern midlatitude stations (1991-96) and midlatitude observations made by the Halogen Occultation Experiment (HALOE) on the Upper Atmosphere Research Satellite (UARS) (1994- 1998). The conditional probability distribution functions are calculated at a series of potential temperature surfaces spanning the domain from the midlatitude tropopause to surfaces higher than the mean tropical tropopause (approximately 380K). The probability distribution functions are similar for the two data sources, despite differences in horizontal and vertical resolution and spatial and temporal sampling. Comparisons with the model demonstrate that the model maintains a mix of air in the lowermost stratosphere similar to the observations. The model also simulates a realistic annual cycle. Results show that during summer, much of the observed variability is explained by the height of the tropopause. During the winter and spring, when the tropopause fluctuations are larger, less of the variability is explained by tropopause height. This suggests that more mixing occurs during these seasons. During all seasons, there is a transition zone near the tropopause that contains air characteristic of both the troposphere and the stratosphere. The

  9. Ultrathin Two-Dimensional Covalent Organic Framework Nanosheets: Preparation and Application in Highly Sensitive and Selective DNA Detection.

    PubMed

    Peng, Yongwu; Huang, Ying; Zhu, Yihan; Chen, Bo; Wang, Liying; Lai, Zhuangchai; Zhang, Zhicheng; Zhao, Meiting; Tan, Chaoliang; Yang, Nailiang; Shao, Fangwei; Han, Yu; Zhang, Hua

    2017-06-28

    The ability to prepare ultrathin two-dimensional (2D) covalent organic framework (COF) nanosheets (NSs) in high yield is of great importance for the further exploration of their unique properties and potential applications. Herein, by elaborately designing and choosing two flexible molecules with C 3v molecular symmetry as building units, a novel imine-linked COF, namely, TPA-COF, with a hexagonal layered structure and sheet-like morphology, is synthesized. Since the flexible building units are integrated into the COF skeletons, the interlayer stacking becomes weak, resulting in the easy exfoliation of TPA-COF into ultrathin 2D NSs. Impressively, for the first time, the detailed structural information, i.e., the pore channels and individual building units in the NSs, is clearly visualized by using the recently developed low-dose imaging technique of transmission electron microscopy (TEM). As a proof-of-concept application, the obtained ultrathin COF NSs are used as a novel fluorescence sensing platform for the highly sensitive and selective detection of DNA.

  10. Glutatione modified ultrathin SnS2 nanosheets with highly photocatalytic activity for wastewater treatment

    NASA Astrophysics Data System (ADS)

    Wei, Renjie; Zhou, Tengfei; Hu, Juncheng; Li, Jinlin

    2014-04-01

    L-Glutatione (GSH) modified ultrathin SnS2 nanosheets were successfully synthesized via a one-pot, facile and rapid solvothermal approach. During the process, the GSH not only served as the sulfur sources, the structure-directing agent, but also as the surface modified ligands. The as-synthesized samples mainly consist of ultrathin nanosheets with the thickness of about 10 nm. Inspiringly, even under the visible light (λ > 420 nm) irradiation, the as-synthesized products exhibited highly photocatalytic activities for both the degradation of methyl orange (MO) and the reductive conversion of Cr (VI) in aqueous solution. The superior performance was presented by completely removed the methyl orange and aqueous Cr(VI) in 20 min and 60 min, respectively. It was much higher than the pure samples, which suggested that these obtained photocatalysts have the potential for wastewater treatment in a green way. The high-efficiency of photocatalytic properties could attribute to the ultrathin size of the photocatalysts and the chelation between GSH and Sn (IV), which have the advantages of electron-hole pairs separation. Moreover, modified organic compounds with common electron donors would also enhance the spectral response even to the near infrared region through ligand-to-metal charge transfer (LMCT) mechanism.

  11. Room-temperature synthesis of two-dimensional ultrathin gold nanowire parallel array with tunable spacing.

    PubMed

    Morita, Clara; Tanuma, Hiromitsu; Kawai, Chika; Ito, Yuki; Imura, Yoshiro; Kawai, Takeshi

    2013-02-05

    A series of long-chain amidoamine derivatives with different alkyl chain lengths (CnAA where n is 12, 14, 16, or 18) were synthesized and studied with regard to their ability to form organogels and to act as soft templates for the production of Au nanomaterials. These compounds were found to self-assemble into lamellar structures and exhibited gelation ability in some apolar solvents. The gelation concentration, gel-sol phase transition temperature, and lattice spacing of the lamellar structures in organic solvent all varied on the basis of the alkyl chain length of the particular CnAA compound employed. The potential for these molecules to function as templates was evaluated through the synthesis of Au nanowires (NWs) in their organogels. Ultrathin Au NWs were obtained from all CnAA/toluene gel systems, each within an optimal temperature range. Interestingly, in the case of C12AA and C14AA, it was possible to fabricate ultrathin Au NWs at room temperature. In addition, two-dimensional parallel arrays of ultrathin Au NWs were self-assembled onto TEM copper grids as a result of the drying of dispersion solutions of these NWs. The use of CnAA compounds with differing alkyl chain lengths enabled precise tuning of the distance between the Au NWs in these arrays.

  12. Rapid amperometric detection of trace metals by inhibition of an ultrathin polypyrrole-based glucose biosensor.

    PubMed

    Ayenimo, Joseph G; Adeloju, Samuel B

    2016-02-01

    A sensitive and reliable inhibitive amperometric glucose biosensor is described for rapid trace metal determination. The biosensor utilises a conductive ultrathin (55 nm thick) polypyrrole (PPy) film for entrapment of glucose oxidase (GOx) to permit rapid inhibition of GOx activity in the ultrathin film upon exposure to trace metals, resulting in reduced glucose amperometric response. The biosensor demonstrates a relatively fast response time of 20s and does not require incubation. Furthermore, a complete recovery of GOx activity in the ultrathin PPy-GOx biosensor is quickly achieved by washing in 2mM EDTA for only 10s. The minimum detectable concentrations achieved with the biosensor for Hg(2+), Cu(2+), Pb(2+) and Cd(2+) by inhibitive amperometric detection are 0.48, 1.5, 1.6 and 4.0 µM, respectively. Also, suitable linear concentration ranges were achieved from 0.48-3.3 µM for Hg(2+), 1.5-10 µM for Cu(2+), 1.6-7.7 µM for Pb(2+) and 4-26 µM for Cd(2+). The use of Dixon and Cornish-Bowden plots revealed that the suppressive effects observed with Hg(2+) and Cu(2+) were via non-competitive inhibition, while those of Pb(2+) and Cd(2+) were due to mixed and competitive inhibition. The stronger inhibition exhibited by the trace metals on GOx activity in the ultrathin PPy-GOx film was also confirmed by the low inhibition constant obtained from this analysis. The biosensor was successfully applied to the determination of trace metals in tap water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Ultrathin niobium nanofilms on fiber optical tapers - a new route towards low-loss hybrid plasmonic modes

    NASA Astrophysics Data System (ADS)

    Wieduwilt, Torsten; Tuniz, Alessandro; Linzen, Sven; Goerke, Sebastian; Dellith, Jan; Hübner, Uwe; Schmidt, Markus A.

    2015-11-01

    Due to the ongoing improvement in nanostructuring technology, ultrathin metallic nanofilms have recently gained substantial attention in plasmonics, e.g. as building blocks of metasurfaces. Typically, noble metals such as silver or gold are the materials of choice, due to their excellent optical properties, however they also possess some intrinsic disadvantages. Here, we introduce niobium nanofilms (~10 nm thickness) as an alternate plasmonic platform. We demonstrate functionality by depositing a niobium nanofilm on a plasmonic fiber taper, and observe a dielectric-loaded niobium surface-plasmon excitation for the first time, with a modal attenuation of only 3-4 dB/mm in aqueous environment and a refractive index sensitivity up to 15 μm/RIU if the analyte index exceeds 1.42. We show that the niobium nanofilm possesses bulk optical properties, is continuous, homogenous, and inert against any environmental influence, thus possessing several superior properties compared to noble metal nanofilms. These results demonstrate that ultrathin niobium nanofilms can serve as a new platform for biomedical diagnostics, superconducting photonics, ultrathin metasurfaces or new types of optoelectronic devices.

  14. NASA Experiment on Tropospheric-Stratospheric Water Vapor Transport in the Intertropical Convergence Zone

    NASA Technical Reports Server (NTRS)

    Page, William A.

    1982-01-01

    The following six papers report preliminary results obtained from a field experiment designed to study the role of tropical cumulo-nimbus clouds in the transfer of water vapor from the troposphere to the stratosphere over the region of Panama. The measurements were made utilizing special NOAA enhanced IR satellite images, radiosonde-ozonesondes and a NASA U-2 aircraft carrying. nine experiments. The experiments were provided by a group of NASA, NOAA, industry, and university scientists. Measurements included atmospheric humidity, air and cloud top temperatures, atmospheric tracer constituents, cloud particle characteristics and cloud morphology. The aircraft made a total of eleven flights from August 30 through September 18, 1980, from Howard Air Force Base, Panama; the pilots obtained horizontal and vertical profiles in and near convectively active regions and flew around and over cumulo-nimbus towers and through the extended anvils in the stratosphere. Cumulo-nimbus clouds in the tropics appear to play an important role in upward water vapor transport and may represent the principal source influencing the stratospheric water vapor budget. The clouds provide strong vertical circulation in the troposphere, mixing surface air and its trace materials (water vapor, CFM's sulfur compounds, etc.) quickly up to the tropopause. It is usually assumed that large scale mean motions or eddy scale motions transport the trace materials through the tropopause and into the stratosphere where they are further dispersed and react with other stratospheric constituents. The important step between the troposphere and stratosphere for water vapor appears to depend upon the processes occurring at or near the tropopause at the tops of the cumulo-nimbus towers. Several processes have been sugested: (1) The highest towers penetrate the tropopause and carry water in the form of small ice particles directly into the stratosphere. (2) Water vapor from the tops of the cumulonimbus clouds is

  15. Ultrathin Polymer Films, Patterned Arrays, and Microwells

    NASA Astrophysics Data System (ADS)

    Yan, Mingdi

    2002-05-01

    The ability to control and tailor the surface and interface properties of materials is important in microelectronics, cell growth control, and lab-on-a-chip devices. Modification of material surfaces with ultrathin polymer films is attractive due to the availability of a variety of polymers either commercially or by synthesis. We have developed two approaches to the attachment of ultrathin polymer films on solid substrates. In the first method, a silane-functionalized perfluorophenyl azide (PFPA-silane) was synthesized and used to covalently immobilize polymer thin films on silicon wafers. Silanization of the wafer surface with the PFPA-silane introduced a monolayer of azido groups which in turn covalently attached the polymer film by way of photochemically initiated insertion reactions. The thickness of the film could be adjusted by the type and the molecular weight of the polymer. The method is versatile due to the general C-H and/or N-H insertion reactions of crosslinker; and therefore, no specific reactive functional groups on the polymers are required. Using this method, a new type of microwell array was fabricated from covalently immobilized polymer thin films on flat substrates. The arrays were characterized with AFM, XPS, and TOF-SIMS. The second method describes the attachment of polymer thin films on solid substrates via UV irradiation. The procedure consisted of spin-coating a polymer film and irradiating the film with UV light. Following solvent extraction, a thin film remained. The thickness of the film, from a few to over a hundred nanometers, was controlled by varying solution concentration and the molecular weight of the polymer.

  16. Ultrathin planar graphene supercapacitors.

    PubMed

    Yoo, Jung Joon; Balakrishnan, Kaushik; Huang, Jingsong; Meunier, Vincent; Sumpter, Bobby G; Srivastava, Anchal; Conway, Michelle; Reddy, Arava Leela Mohana; Yu, Jin; Vajtai, Robert; Ajayan, Pulickel M

    2011-04-13

    With the advent of atomically thin and flat layers of conducting materials such as graphene, new designs for thin film energy storage devices with good performance have become possible. Here, we report an "in-plane" fabrication approach for ultrathin supercapacitors based on electrodes comprised of pristine graphene and multilayer reduced graphene oxide. The in-plane design is straightforward to implement and exploits efficiently the surface of each graphene layer for energy storage. The open architecture and the effect of graphene edges enable even the thinnest of devices, made from as grown 1-2 graphene layers, to reach specific capacities up to 80 μFcm(-2), while much higher (394 μFcm(-2)) specific capacities are observed multilayer reduced graphene oxide electrodes. The performances of devices with pristine as well as thicker graphene-based structures are examined using a combination of experiments and model calculations. The demonstrated all solid-state supercapacitors provide a prototype for a broad range of thin-film based energy storage devices.

  17. Coexistence of colossal stress and texture gradients in sputter deposited nanocrystalline ultra-thin metal films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuru, Yener; Welzel, Udo; Mittemeijer, Eric J.

    2014-12-01

    This paper demonstrates experimentally that ultra-thin, nanocrystalline films can exhibit coexisting colossal stress and texture depth gradients. Their quantitative determination is possible by X-ray diffraction experiments. Whereas a uniform texture by itself is known to generally cause curvature in so-called sin{sup 2}ψ plots, it is shown that the combined action of texture and stress gradients provides a separate source of curvature in sin{sup 2}ψ plots (i.e., even in cases where a uniform texture does not induce such curvature). On this basis, the texture and stress depth profiles of a nanocrystalline, ultra-thin (50 nm) tungsten film could be determined.

  18. The influence of the surface parameter changes onto the phonon states in ultrathin crystalline films

    NASA Astrophysics Data System (ADS)

    Šetrajčić, Jovan P.; Ilić, Dušan I.; Jaćimovski, Stevo K.

    2018-04-01

    In this paper, we have analytically investigated how the changes in boundary surface parameters influence the phonon dispersion law in ultrathin films of the simple cubic crystalline structure. Spectra of possible phonon states are analyzed using the method of two-time dependent Green's functions and for the diverse combination of boundary surface parameters, this problem was presented numerically and graphically. It turns out that for certain values and combinations of parameters, displacement of dispersion branches outside of bulk zone occurs, leading to the creation of localized phonon states. This fact is of great importance for the heat removal, electrical conductivity and superconducting properties of ultrathin films.

  19. Thickness-dependence of optical constants for Ta2O5 ultrathin films

    NASA Astrophysics Data System (ADS)

    Zhang, Dong-Xu; Zheng, Yu-Xiang; Cai, Qing-Yuan; Lin, Wei; Wu, Kang-Ning; Mao, Peng-Hui; Zhang, Rong-Jun; Zhao, Hai-bin; Chen, Liang-Yao

    2012-09-01

    An effective method for determining the optical constants of Ta2O5 thin films deposited on crystal silicon (c-Si) using spectroscopic ellipsometry (SE) measurement with a two-film model (ambient-oxide-interlayer-substrate) was presented. Ta2O5 thin films with thickness range of 1-400 nm have been prepared by the electron beam evaporation (EBE) method. We find that the refractive indices of Ta2O5 ultrathin films less than 40 nm drop with the decreasing thickness, while the other ones are close to those of bulk Ta2O5. This phenomenon was due to the existence of an interfacial oxide region and the surface roughness of the film, which was confirmed by the measurement of atomic force microscopy (AFM). Optical properties of ultrathin film varying with the thickness are useful for the design and manufacture of nano-scaled thin-film devices.

  20. High-mobility ultrathin semiconducting films prepared by spin coating.

    PubMed

    Mitzi, David B; Kosbar, Laura L; Murray, Conal E; Copel, Matthew; Afzali, Ali

    2004-03-18

    The ability to deposit and tailor reliable semiconducting films (with a particular recent emphasis on ultrathin systems) is indispensable for contemporary solid-state electronics. The search for thin-film semiconductors that provide simultaneously high carrier mobility and convenient solution-based deposition is also an important research direction, with the resulting expectations of new technologies (such as flexible or wearable computers, large-area high-resolution displays and electronic paper) and lower-cost device fabrication. Here we demonstrate a technique for spin coating ultrathin (approximately 50 A), crystalline and continuous metal chalcogenide films, based on the low-temperature decomposition of highly soluble hydrazinium precursors. We fabricate thin-film field-effect transistors (TFTs) based on semiconducting SnS(2-x)Se(x) films, which exhibit n-type transport, large current densities (>10(5) A cm(-2)) and mobilities greater than 10 cm2 V(-1) s(-1)--an order of magnitude higher than previously reported values for spin-coated semiconductors. The spin-coating technique is expected to be applicable to a range of metal chalcogenides, particularly those based on main group metals, as well as for the fabrication of a variety of thin-film-based devices (for example, solar cells, thermoelectrics and memory devices).

  1. Chemical gating of epitaxial graphene through ultrathin oxide layers.

    PubMed

    Larciprete, Rosanna; Lacovig, Paolo; Orlando, Fabrizio; Dalmiglio, Matteo; Omiciuolo, Luca; Baraldi, Alessandro; Lizzit, Silvano

    2015-08-07

    We achieved a controllable chemical gating of epitaxial graphene grown on metal substrates by exploiting the electrostatic polarization of ultrathin SiO2 layers synthesized below it. Intercalated oxygen diffusing through the SiO2 layer modifies the metal-oxide work function and hole dopes graphene. The graphene/oxide/metal heterostructure behaves as a gated plane capacitor with the in situ grown SiO2 layer acting as a homogeneous dielectric spacer, whose high capacity allows the Fermi level of graphene to be shifted by a few hundreds of meV when the oxygen coverage at the metal substrate is of the order of 0.5 monolayers. The hole doping can be finely tuned by controlling the amount of interfacial oxygen, as well as by adjusting the thickness of the oxide layer. After complete thermal desorption of oxygen the intrinsic doping of SiO2 supported graphene is evaluated in the absence of contaminants and adventitious adsorbates. The demonstration that the charge state of graphene can be changed by chemically modifying the buried oxide/metal interface hints at the possibility of tuning the level and sign of doping by the use of other intercalants capable of diffusing through the ultrathin porous dielectric and reach the interface with the metal.

  2. Ultra-thin silicon/electro-optic polymer hybrid waveguide modulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Feng; Spring, Andrew M.; Sato, Hiromu

    2015-09-21

    Ultra-thin silicon and electro-optic (EO) polymer hybrid waveguide modulators have been designed and fabricated. The waveguide consists of a silicon core with a thickness of 30 nm and a width of 2 μm. The cladding is an EO polymer. Optical mode calculation reveals that 55% of the optical field around the silicon extends into the EO polymer in the TE mode. A Mach-Zehnder interferometer (MZI) modulator was prepared using common coplanar electrodes. The measured half-wave voltage of the MZI with 7 μm spacing and 1.3 cm long electrodes is 4.6 V at 1550 nm. The evaluated EO coefficient is 70 pm/V, which is comparable to that ofmore » the bulk EO polymer film. Using ultra-thin silicon is beneficial in order to reduce the side-wall scattering loss, yielding a propagation loss of 4.0 dB/cm. We also investigated a mode converter which couples light from the hybrid EO waveguide into a strip silicon waveguide. The calculation indicates that the coupling loss between these two devices is small enough to exploit the potential fusion of a hybrid EO polymer modulator together with a silicon micro-photonics device.« less

  3. Precisely Controlled Ultrathin Conjugated Polymer Films for Large Area Transparent Transistors and Highly Sensitive Chemical Sensors.

    PubMed

    Khim, Dongyoon; Ryu, Gi-Seong; Park, Won-Tae; Kim, Hyunchul; Lee, Myungwon; Noh, Yong-Young

    2016-04-13

    A uniform ultrathin polymer film is deposited over a large area with molecularlevel precision by the simple wire-wound bar-coating method. The bar-coated ultrathin films not only exhibit high transparency of up to 90% in the visible wavelength range but also high charge carrier mobility with a high degree of percolation through the uniformly covered polymer nanofibrils. They are capable of realizing highly sensitive multigas sensors and represent the first successful report of ethylene detection using a sensor based on organic field-effect transistors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Characterization of a high performance ultra-thin heat pipe cooling module for mobile hand held electronic devices

    NASA Astrophysics Data System (ADS)

    Ahamed, Mohammad Shahed; Saito, Yuji; Mashiko, Koichi; Mochizuki, Masataka

    2017-11-01

    In recent years, heat pipes have been widely used in various hand held mobile electronic devices such as smart phones, tablet PCs, digital cameras. With the development of technology these devices have different user friendly features and applications; which require very high clock speeds of the processor. In general, a high clock speed generates a lot of heat, which needs to be spreaded or removed to eliminate the hot spot on the processor surface. However, it is a challenging task to achieve proper cooling of such electronic devices mentioned above because of their confined spaces and concentrated heat sources. Regarding this challenge, we introduced an ultra-thin heat pipe; this heat pipe consists of a special fiber wick structure named as "Center Fiber Wick" which can provide sufficient vapor space on the both sides of the wick structure. We also developed a cooling module that uses this kind of ultra-thin heat pipe to eliminate the hot spot issue. This cooling module consists of an ultra-thin heat pipe and a metal plate. By changing the width, the flattened thickness and the effective length of the ultra-thin heat pipe, several experiments have been conducted to characterize the thermal properties of the developed cooling module. In addition, other experiments were also conducted to determine the effects of changes in the number of heat pipes in a single module. Characterization and comparison of the module have also been conducted both experimentally and theoretically.

  5. A theory for the atmospheric energy spectrum: depth-limited temperature anomalies at the tropopause.

    PubMed

    Tulloch, R; Smith, K S

    2006-10-03

    The horizontal spectra of atmospheric wind and temperature at the tropopause have a steep -3 slope at synoptic scales, but transition to -5/3 at wavelengths of the order of 500-1,000 km [Nastrom, G. D. & Gage, K. S. (1985) J. Atmos. Sci. 42, 950-960]. Here we demonstrate that a model that assumes zero potential vorticity and constant stratification N over a finite-depth H in the troposphere exhibits the same type of spectra. In this model, temperature perturbations generated at the planetary scale excite a direct cascade of energy with a slope of -3 at large scales, -5/3 at small scales, and a transition near horizontal wavenumber k(t) = f/NH, where f is the Coriolis parameter. Ballpark atmospheric estimates for N, f, and H give a transition wavenumber near that observed, and numerical simulations of the previously undescribed model verify the expected behavior. Despite its simplicity, the model is consistent with a number of perplexing features in the observations and demonstrates that a complete theory for mesoscale dynamics must take temperature advection at boundaries into account.

  6. Ultrathin layered double hydroxide nanosheets with Ni(III) active species obtained by exfoliation for highly efficient ethanol electrooxidation.

    PubMed

    Xu, Liang; Wang, Zhe; Chen, Xu; Qu, Zongkai; Li, Feng; Yang, Wensheng

    2018-01-10

    The development of non-precious metal electrocatalysts for renewable energy conversion and storage is compelling but greatly challenging due to low activity of the existing catalysts. Herein, the ultrathin NiAl-layered double hydroxide nanosheets (NiAl-LDH-NSs) are prepared by simple liquid-exfoliation of bulk NiAl-LDHs and first used as ethanol electrooxidation catalysts. The ultrathin two-dimensional (2D) structure ensures that the LDH nanosheets expose a greater number of active sites. More importantly, much Ni(III) active species (NiOOH) in the ultrathin nanosheets are formed by the exfoliation process, which play an authentic catalytic role in the ethanol oxidation reaction (EOR). The presence of NiOOH remarkably improves the reactivity and electrical conductivity of LDH nanosheets. These synergistic effects lead to strikingly more than 30 times enhanced EOR activity of NiAl-LDH-NSs compared to bulk NiAl-LDHs. The obtained electrocatalytic activity is also much better than those of most Ni- and LDH-based EOR catalysts reported to date. In addition, the ultrathin NiAl-LDH-NS electrocatalyst also exhibits good long-term stability (maintain 81.8% of the original value after 10000 s). This study not only provides a highly competitive EOR catalyst, but also opens new avenues toward the design of highly efficient electrode materials that have various potential applications in supercapacitor, Ni-MH battery and other electrocatalytic systems.

  7. Ultrathin layered double hydroxide nanosheets with Ni(III) active species obtained by exfoliation for highly efficient ethanol electrooxidation

    PubMed Central

    Xu, Liang; Wang, Zhe; Chen, Xu; Qu, Zongkai; Li, Feng; Yang, Wensheng

    2018-01-01

    The development of non-precious metal electrocatalysts for renewable energy conversion and storage is compelling but greatly challenging due to low activity of the existing catalysts. Herein, the ultrathin NiAl-layered double hydroxide nanosheets (NiAl-LDH-NSs) are prepared by simple liquid-exfoliation of bulk NiAl-LDHs and first used as ethanol electrooxidation catalysts. The ultrathin two-dimensional (2D) structure ensures that the LDH nanosheets expose a greater number of active sites. More importantly, much Ni(III) active species (NiOOH) in the ultrathin nanosheets are formed by the exfoliation process, which play an authentic catalytic role in the ethanol oxidation reaction (EOR). The presence of NiOOH remarkably improves the reactivity and electrical conductivity of LDH nanosheets. These synergistic effects lead to strikingly more than 30 times enhanced EOR activity of NiAl-LDH-NSs compared to bulk NiAl-LDHs. The obtained electrocatalytic activity is also much better than those of most Ni- and LDH-based EOR catalysts reported to date. In addition, the ultrathin NiAl-LDH-NS electrocatalyst also exhibits good long-term stability (maintain 81.8% of the original value after 10000 s). This study not only provides a highly competitive EOR catalyst, but also opens new avenues toward the design of highly efficient electrode materials that have various potential applications in supercapacitor, Ni-MH battery and other electrocatalytic systems. PMID:29622818

  8. Ultrathin Polyaniline-based Buffer Layer for Highly Efficient Polymer Solar Cells with Wide Applicability

    PubMed Central

    Zhao, Wenchao; Ye, Long; Zhang, Shaoqing; Fan, Bin; Sun, Mingliang; Hou, Jianhui

    2014-01-01

    Interfacial buffer layers often attribute the improved device performance in organic optoelectronic device. Herein, a water-soluble hydrochloric acid doped polyanilines (HAPAN) were utilized as p-type electrode buffer layer in highly efficient polymer solar cells (PSC) based on PBDTTT-EFT and several representative polymers. The PBDTTT-EFT-based conventional PSC featuring ultrathin HAPAN (1.3 nm) delivered high PCE approximately 9%, which is one of the highest values among conventional PSC devices. Moreover, ultrathin HAPAN also exhibited wide applicability in a variety of efficient photovoltaic polymers including PBDTTT-C-T, PTB7, PBDTBDD, PBTTDPP-T, PDPP3T and P3HT. The excellent performances were originated from the high transparency, small film roughness and suitable work function. PMID:25300365

  9. The Effect of Cirrus Clouds on Water Vapor Transport in the Upper Troposphere and Lower Stratosphere

    NASA Astrophysics Data System (ADS)

    Lei, L.; McCormick, M. P.; Anderson, J.

    2017-12-01

    Water vapor plays an important role in the Earth's radiation budget and stratospheric chemistry. It is widely accepted that a large percentage of water vapor entering the stratosphere travels through the tropical tropopause and is dehydrated by the cold tropopause temperature. The vertical transport of water vapor is also affected by the radiative effects of cirrus clouds in the tropical tropopause layer. This latter effect of cirrus clouds was investigated in this research. The work focuses on the tropical and mid-latitude region (50N-50S). Water vapor data from the Microwave Limb Sounder (MLS) and cirrus cloud data from the Cloud-Aerosol Lidar and Infrared pathfinder Satellite Observation (CALIPSO) instruments were used to investigate the relationship between the water vapor and the occurrence of cirrus cloud. A 10-degree in longitude by 10-degree in latitude resolution was chosen to bin the MLS and CALIPSO data. The result shows that the maximum water vapor in the upper troposphere (below 146 hPa) is matched very well with the highest frequency of cirrus cloud occurrences. Maximum water vapor in the lower stratosphere (100 hPa) is partly matched with the maximum cirrus cloud occurrence in the summer time. The National Oceanic and Atmospheric Administration Interpolated Outgoing Longwave Radiation data and NCEP-DOE Reanalysis 2 wind data were used also to investigate the relationship between the water vapor entering the stratosphere, deep convection, and wind. Results show that maximum water vapor at 100 hPa coincides with the northern hemisphere summer-time anticyclone. The effects from both single-layer cirrus clouds and cirrus clouds above the anvil top on the water vapor entering the stratosphere were also studied and will be presented.

  10. Giant Ferroelectric Polarization in Ultrathin Ferroelectrics via Boundary-Condition Engineering.

    PubMed

    Xie, Lin; Li, Linze; Heikes, Colin A; Zhang, Yi; Hong, Zijian; Gao, Peng; Nelson, Christopher T; Xue, Fei; Kioupakis, Emmanouil; Chen, Longqing; Schlom, Darrel G; Wang, Peng; Pan, Xiaoqing

    2017-08-01

    Tailoring and enhancing the functional properties of materials at reduced dimension is critical for continuous advancement of modern electronic devices. Here, the discovery of local surface induced giant spontaneous polarization in ultrathin BiFeO 3 ferroelectric films is reported. Using aberration-corrected scanning transmission electron microscopy, it is found that the spontaneous polarization in a 2 nm-thick ultrathin BiFeO 3 film is abnormally increased up to ≈90-100 µC cm -2 in the out-of-plane direction and a peculiar rumpled nanodomain structure with very large variation in c/a ratios, which is analogous to morphotropic phase boundaries (MPBs), is formed. By a combination of density functional theory and phase-field calculations, it is shown that it is the unique single atomic Bi 2 O 3 - x layer at the surface that leads to the enhanced polarization and appearance of the MPB-like nanodomain structure. This finding clearly demonstrates a novel route to the enhanced functional properties in the material system with reduced dimension via engineering the surface boundary conditions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Transport in ultrathin gold films decorated with magnetic Gd atoms

    NASA Astrophysics Data System (ADS)

    Alemani, Micol; Helgren, Erik; Hugel, Addison; Hellman, Frances

    2008-03-01

    We have performed four-probe transport measurements of ultrathin Au films decorated with Gd ad-atoms. The samples were prepared by quench condensation, i.e., sequential evaporation on a cryogenically cooled substrate under UHV conditions while monitoring the film thickness and resistance. Electrically continuous Au films at thickness of about 2 mono-layers of material are grown on an amorphous Ge wetting layer. The quench condensation method provides a sensitive control on the sample growth process, allowing us to tune the morphological and electrical configuration of the system. The ultrathin gold films develop from an insulating to a metallic state as a function of film thickness. The temperature dependence of the Au conductivity for different thickness is studied. It evolves from hopping transport for the insulating films, to a ln T dependence for thicker films. For gold films in the insulating regime we found a decreasing resistance by adding Gd. This is in agreement with a decreasing tunneling barrier height between metallic atoms. The Gd magnetic moments are randomly oriented for isolated atoms. This magnetic disorder leads to scattering of the charge carriers and a reduced conductivity compared to nonmagnetic materials.

  12. Meteorological Drivers of Cold Temperatures in the Western Pacific TTL

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Ueyama, Rei; Jensen, Eric J.

    2017-01-01

    During the recent October 2016 aircraft sampling mission of the Tropical Tropopause Layer (POSIDON -- Pacific Oxidants, Sulfur, Ice, Dehydration, and cONvection), Western Pacific October TTL temperatures were anomalously cold due to a combination of La Nina conditions and a very stationary convective pattern. POSIDON also had more October Tropical Cyclones than typical, and tropical cyclones have substantial negative TTL temperatures associated with them. This paper investigates how meteorology in the troposphere drives TTL temperatures, and how these temperatures, coupled with the circulation, produce TTL clouds. We will also compare October TTL cloud distributions in different years, examining the relationship of clouds to October temperature anomalies.

  13. Modeling the QBO—Improvements resulting from higher‐model vertical resolution

    PubMed Central

    Zhou, Tiehan; Shindell, D.; Ruedy, R.; Aleinov, I.; Nazarenko, L.; Tausnev, N. L.; Kelley, M.; Sun, S.; Cheng, Y.; Field, R. D.; Faluvegi, G.

    2016-01-01

    Abstract Using the NASA Goddard Institute for Space Studies (GISS) climate model, it is shown that with proper choice of the gravity wave momentum flux entering the stratosphere and relatively fine vertical layering of at least 500 m in the upper troposphere‐lower stratosphere (UTLS), a realistic stratospheric quasi‐biennial oscillation (QBO) is modeled with the proper period, amplitude, and structure down to tropopause levels. It is furthermore shown that the specified gravity wave momentum flux controls the QBO period whereas the width of the gravity wave momentum flux phase speed spectrum controls the QBO amplitude. Fine vertical layering is required for the proper downward extension to tropopause levels as this permits wave‐mean flow interactions in the UTLS region to be resolved in the model. When vertical resolution is increased from 1000 to 500 m, the modeled QBO modulation of the tropical tropopause temperatures increasingly approach that from observations, and the “tape recorder” of stratospheric water vapor also approaches the observed. The transport characteristics of our GISS models are assessed using age‐of‐air and N2O diagnostics, and it is shown that some of the deficiencies in model transport that have been noted in previous GISS models are greatly improved for all of our tested model vertical resolutions. More realistic tropical‐extratropical transport isolation, commonly referred to as the “tropical pipe,” results from the finer vertical model layering required to generate a realistic QBO. PMID:27917258

  14. Ultra-thin alumina and silicon nitride MEMS fabricated membranes for the electron multiplication

    NASA Astrophysics Data System (ADS)

    Prodanović, V.; Chan, H. W.; Graaf, H. V. D.; Sarro, P. M.

    2018-04-01

    In this paper we demonstrate the fabrication of large arrays of ultrathin freestanding membranes (tynodes) for application in a timed photon counter (TiPC), a novel photomultiplier for single electron detection. Low pressure chemical vapour deposited silicon nitride (Si x N y ) and atomic layer deposited alumina (Al2O3) with thicknesses down to only 5 nm are employed for the membrane fabrication. Detailed characterization of structural, mechanical and chemical properties of the utilized films is carried out for different process conditions and thicknesses. Furthermore, the performance of the tynodes is investigated in terms of secondary electron emission, a fundamental attribute that determines their applicability in TiPC. Studied features and presented fabrication methods may be of interest for other MEMS application of alumina and silicon nitride as well, in particular where strong ultra-thin membranes are required.

  15. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires

    NASA Astrophysics Data System (ADS)

    Gong, Shu; Schwalb, Willem; Wang, Yongwei; Chen, Yi; Tang, Yue; Si, Jye; Shirinzadeh, Bijan; Cheng, Wenlong

    2014-02-01

    Ultrathin gold nanowires are mechanically flexible yet robust, which are novel building blocks with potential applications in future wearable optoelectronic devices. Here we report an efficient, low-cost fabrication strategy to construct a highly sensitive, flexible pressure sensor by sandwiching ultrathin gold nanowire-impregnated tissue paper between two thin polydimethylsiloxane sheets. The entire device fabrication process is scalable, enabling facile large-area integration and patterning for mapping spatial pressure distribution. Our gold nanowires-based pressure sensors can be operated at a battery voltage of 1.5 V with low energy consumption (<30 μW), and are able to detect pressing forces as low as 13 Pa with fast response time (<17 ms), high sensitivity (>1.14 kPa-1) and high stability (>50,000 loading-unloading cycles). In addition, our sensor can resolve pressing, bending, torsional forces and acoustic vibrations. The superior sensing properties in conjunction with mechanical flexibility and robustness enabled real-time monitoring of blood pulses as well as detection of small vibration forces from music.

  16. Imaging ATUM ultrathin section libraries with WaferMapper: a multi-scale approach to EM reconstruction of neural circuits

    PubMed Central

    Hayworth, Kenneth J.; Morgan, Josh L.; Schalek, Richard; Berger, Daniel R.; Hildebrand, David G. C.; Lichtman, Jeff W.

    2014-01-01

    The automated tape-collecting ultramicrotome (ATUM) makes it possible to collect large numbers of ultrathin sections quickly—the equivalent of a petabyte of high resolution images each day. However, even high throughput image acquisition strategies generate images far more slowly (at present ~1 terabyte per day). We therefore developed WaferMapper, a software package that takes a multi-resolution approach to mapping and imaging select regions within a library of ultrathin sections. This automated method selects and directs imaging of corresponding regions within each section of an ultrathin section library (UTSL) that may contain many thousands of sections. Using WaferMapper, it is possible to map thousands of tissue sections at low resolution and target multiple points of interest for high resolution imaging based on anatomical landmarks. The program can also be used to expand previously imaged regions, acquire data under different imaging conditions, or re-image after additional tissue treatments. PMID:25018701

  17. One-step fabrication of large-area ultrathin MoS2 nanofilms with high catalytic activity for photovoltaic devices.

    PubMed

    Liang, Jia; Li, Jia; Zhu, Hongfei; Han, Yuxiang; Wang, Yanrong; Wang, Caixing; Jin, Zhong; Zhang, Gengmin; Liu, Jie

    2016-09-21

    Here we report a facile one-step solution-phase process to directly grow ultrathin MoS2 nanofilms on a transparent conductive glass as a novel high-performance counter electrode for dye-sensitized solar cells. After an appropriate reaction time, the entire surface of the conductive glass substrate was uniformly covered by ultrathin MoS2 nanofilms with a thickness of only several stacked layers. Electrochemical impedance spectroscopy and cyclic voltammetry reveal that the MoS2 nanofilms possess excellent catalytic activity towards tri-iodide reduction. When used in dye-sensitized solar cells, the MoS2 nanofilms show an impressive energy conversion efficiency of 8.3%, which is higher than that of a Pt-based electrode and very promising to be a desirable alternative counter electrode. Considering their ultrathin thickness, superior catalytic activity, simple preparation process and low cost, the as-prepared MoS2 nanofilms with high photovoltaic performance are expected to be widely employed in dye-sensitized solar cells.

  18. Light-absorption enhancement design of ultrathin perovskite solar cells with conformal structure

    NASA Astrophysics Data System (ADS)

    Tan, Xinyu; Sun, Lei; Deng, Can; Tu, Yiteng; Shen, Guangming; Tan, Fengxue; Guan, Li; Yan, Wensheng

    2018-06-01

    We report a structural design of ultrathin perovskite solar cells based on a conformal structure at the rear surface for potential applications in both single-junction and tandem cells. The light transmittances of the front and the rear surfaces are calculated in the wavelength range of 300–800 nm via the finite difference time domain numerical simulation method. Compared with the reference cell, significant photocurrent density enhancement of 27.5% and 29.7% are achieved when the ratios of height to width of the fluorine doped tin oxide nanoblock are 2 and 3, respectively. For the case with a hole transport material layer, the enhancements of photocurrent density enhancements are 19.2% and 29.0%, respectively. When back Au is removed, the photocurrent density also has notable enhancements of 23.3% and 45.9%, respectively. The achieved results are beneficial for the development of efficient ultrathin single-junction and tandem perovskite solar cells.

  19. Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss.

    PubMed

    Zhang, Yinan; Stokes, Nicholas; Jia, Baohua; Fan, Shanhui; Gu, Min

    2014-05-13

    The cost-effectiveness of market-dominating silicon wafer solar cells plays a key role in determining the competiveness of solar energy with other exhaustible energy sources. Reducing the silicon wafer thickness at a minimized efficiency loss represents a mainstream trend in increasing the cost-effectiveness of wafer-based solar cells. In this paper we demonstrate that, using the advanced light trapping strategy with a properly designed nanoparticle architecture, the wafer thickness can be dramatically reduced to only around 1/10 of the current thickness (180 μm) without any solar cell efficiency loss at 18.2%. Nanoparticle integrated ultra-thin solar cells with only 3% of the current wafer thickness can potentially achieve 15.3% efficiency combining the absorption enhancement with the benefit of thinner wafer induced open circuit voltage increase. This represents a 97% material saving with only 15% relative efficiency loss. These results demonstrate the feasibility and prospect of achieving high-efficiency ultra-thin silicon wafer cells with plasmonic light trapping.

  20. Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics

    PubMed Central

    Lei, Ting; Guan, Ming; Liu, Jia; Lin, Hung-Cheng; Pfattner, Raphael; McGuire, Allister F.; Huang, Tsung-Ching; Shao, Leilai; Cheng, Kwang-Ting; Tok, Jeffrey B.-H.; Bao, Zhenan

    2017-01-01

    Increasing performance demands and shorter use lifetimes of consumer electronics have resulted in the rapid growth of electronic waste. Currently, consumer electronics are typically made with nondecomposable, nonbiocompatible, and sometimes even toxic materials, leading to serious ecological challenges worldwide. Here, we report an example of totally disintegrable and biocompatible semiconducting polymers for thin-film transistors. The polymer consists of reversible imine bonds and building blocks that can be easily decomposed under mild acidic conditions. In addition, an ultrathin (800-nm) biodegradable cellulose substrate with high chemical and thermal stability is developed. Coupled with iron electrodes, we have successfully fabricated fully disintegrable and biocompatible polymer transistors. Furthermore, disintegrable and biocompatible pseudo-complementary metal–oxide–semiconductor (CMOS) flexible circuits are demonstrated. These flexible circuits are ultrathin (<1 μm) and ultralightweight (∼2 g/m2) with low operating voltage (4 V), yielding potential applications of these disintegrable semiconducting polymers in low-cost, biocompatible, and ultralightweight transient electronics. PMID:28461459

  1. Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics.

    PubMed

    Lei, Ting; Guan, Ming; Liu, Jia; Lin, Hung-Cheng; Pfattner, Raphael; Shaw, Leo; McGuire, Allister F; Huang, Tsung-Ching; Shao, Leilai; Cheng, Kwang-Ting; Tok, Jeffrey B-H; Bao, Zhenan

    2017-05-16

    Increasing performance demands and shorter use lifetimes of consumer electronics have resulted in the rapid growth of electronic waste. Currently, consumer electronics are typically made with nondecomposable, nonbiocompatible, and sometimes even toxic materials, leading to serious ecological challenges worldwide. Here, we report an example of totally disintegrable and biocompatible semiconducting polymers for thin-film transistors. The polymer consists of reversible imine bonds and building blocks that can be easily decomposed under mild acidic conditions. In addition, an ultrathin (800-nm) biodegradable cellulose substrate with high chemical and thermal stability is developed. Coupled with iron electrodes, we have successfully fabricated fully disintegrable and biocompatible polymer transistors. Furthermore, disintegrable and biocompatible pseudo-complementary metal-oxide-semiconductor (CMOS) flexible circuits are demonstrated. These flexible circuits are ultrathin (<1 μm) and ultralightweight (∼2 g/m 2 ) with low operating voltage (4 V), yielding potential applications of these disintegrable semiconducting polymers in low-cost, biocompatible, and ultralightweight transient electronics.

  2. Selective coherent perfect absorption of subradiant mode in ultrathin bi-layer metamaterials via antisymmetric excitation

    NASA Astrophysics Data System (ADS)

    Tan, Wei; Zhang, Caihong; Li, Chun; Zhou, Xiaoying; Jia, Xiaoqing; Feng, Zheng; Su, Juan; Jin, Biaobing

    2017-05-01

    We demonstrate that the subradiant mode in ultrathin bi-layer metamaterials can be exclusively excited under two-antisymmetric-beam illumination (or equivalently, at a node of the standing wave field), while the superradiant mode is fully suppressed due to their different mode symmetry. Coherent perfect absorption (CPA) with the Lorentzian lineshape can be achieved corresponding to the subradiant mode. A theoretical model is established to distinguish the different behaviors of these two modes and to elucidate the CPA condition. Terahertz ultrathin bi-layer metamaterials on flexible polyimide substrates are fabricated and tested, exhibiting excellent agreement with theoretical predictions. This work provides physical insight into how to selectively excite the antisymmetric subradiant mode via coherence incidence.

  3. Ultrathin gas permeable oxide membranes for chemical sensing: Nanoporous Ta 2O 5 test study

    DOE PAGES

    Imbault, Alexander; Wang, Yue; Kruse, Peter; ...

    2015-09-25

    Conductometric gas sensors made of gas permeable metal oxide ultrathin membranes can combine the functions of a selective filter, preconcentrator, and sensing element and thus can be particularly promising for the active sampling of diluted analytes. Here we report a case study of the electron transport and gas sensing properties of such a membrane made of nanoporous Ta 2O 5. These membranes demonstrated a noticeable chemical sensitivity toward ammonia, ethanol, and acetone at high temperatures above 400 °C. Furthermore, different from traditional thin films, such gas permeable, ultrathin gas sensing elements can be made suspended enabling advanced architectures of ultrasensitivemore » analytical systems operating at high temperatures and in harsh environments.« less

  4. Seasonal to Decadal Variations of Water Vapor in the Tropical Lower Stratosphere Observed with Balloon-Borne Cryogenic Frost Point Hygrometers

    NASA Technical Reports Server (NTRS)

    Fujiwara, M.; Voemel, H.; Hasebe, F.; Shiotani, M.; Ogino, S.-Y.; Iwasaki, S.; Nishi, N.; Shibata, T.; Shimizu, K.; Nishimoto, E.; hide

    2010-01-01

    We investigated water vapor variations in the tropical lower stratosphere on seasonal, quasi-biennial oscillation (QBO), and decadal time scales using balloon-borne cryogenic frost point hygrometer data taken between 1993 and 2009 during various campaigns including the Central Equatorial Pacific Experiment (March 1993), campaigns once or twice annually during the Soundings of Ozone and Water in the Equatorial Region (SOWER) project in the eastern Pacific (1998-2003) and in the western Pacific and Southeast Asia (2001-2009), and the Ticosonde campaigns and regular sounding at Costa Rica (2005-2009). Quasi-regular sounding data taken at Costa Rica clearly show the tape recorder signal. The observed ascent rates agree well with the ones from the Halogen Occultation Experiment (HALOE) satellite sensor. Average profiles from the recent five SOWER campaigns in the equatorial western, Pacific in northern winter and from the three Ticosonde campaigns at Costa Rica (10degN) in northern summer clearly show two effects of the QBO. One is the vertical displacement of water vapor profiles associated with the QBO meridional circulation anomalies, and the other is the concentration variations associated with the QBO tropopause temperature variations. Time series of cryogenic frost point hygrometer data averaged in a lower stratospheric layer together with HALOE and Aura Microwave Limb Sounder data show the existence of decadal variations: The mixing ratios were higher and increasing in the 1990s, lower in the early 2000s, and probably slightly higher again or recovering after 2004. Thus linear trend analysis is not appropriate to investigate the behavior of the tropical lower stratospheric water vapor.

  5. High North American Monsoon Lowermost Stratospheric Water Vapor: Signatures of Convective Injection from MLS and Other Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Schwartz, M. J.; Santee, M. L.; Livesey, N. J.; Read, W. G.

    2015-12-01

    The summer North American monsoon anticyclone (NAMA) and the Asian monsoon anticyclone (AMA) enclose most of the highest 100 hPa and 83 hPa water vapor (H2O) mixing ratios in the 11-year Aura Microwave Limb Sounder record, both in terms of mean values and in high outliers. The highest NAMA H2O outliers in the central continental United States are almost certainly the result of direct, local injection of ice into the lower stratosphere (LS) by convection that overshoots the tropopause. However, the relative importance of these direct injections in supplying the bulk of the NAMA LS humidity anomaly compared to that of transport from convection on the tropical side of the anticyclone has not been conclusively determined. Large-scale circulation models have reproduced the high NAMA LS water vapor with tropical convection followed by advection and ascent, however the handling of convection in such models is generally a source of uncertainty. NAMA H2O at 100--83 hPa is close to saturation at the low tropopause temperatures on the tropical side of the anticylone, and cold anomalies above this convection have been shown to act as cold traps, leading to an anticorrelation between NAMA LS humidity and tropical convective intensity. In this work we use MLS and other satellite-based observations to investigate the importance of direct convective injection in supplying the high H2O anomalies within the NAMA LS anticyclone.

  6. Facile Synthesis of Ultrathin Nickel-Cobalt Phosphate 2D Nanosheets with Enhanced Electrocatalytic Activity for Glucose Oxidation.

    PubMed

    Shu, Yun; Li, Bing; Chen, Jingyuan; Xu, Qin; Pang, Huan; Hu, Xiaoya

    2018-01-24

    Two-dimensional (2D) ultrathin nickel-cobalt phosphate nanosheets were synthesized using a simple one-step hydrothermal method. The morphology and structure of nanomaterials synthesized under different Ni/Co ratios were investigated by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Moreover, the influence of nanomaterials' structure on the electrochemical performance for glucose oxidation was investigated. It is found that the thinnest nickel-cobalt phosphate nanosheets synthesized with a Ni/Co ratio of 2:5 showed the best electrocatalytic activity for glucose oxidation. Also, the ultrathin nickel-cobalt phosphate nanosheet was used as an electrode material to construct a nonenzymatic electrochemical glucose sensor. The sensor showed a wide linear range (2-4470 μM) and a low detection limit (0.4 μM) with a high sensitivity of 302.99 μA·mM -1 ·cm -2 . Furthermore, the application of the as-prepared sensor in detection of glucose in human serum was successfully demonstrated. These superior performances prove that ultrathin 2D nickel-cobalt phosphate nanosheets are promising materials in the field of electrochemical sensing.

  7. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se

    NASA Astrophysics Data System (ADS)

    Wu, Jinxiong; Yuan, Hongtao; Meng, Mengmeng; Chen, Cheng; Sun, Yan; Chen, Zhuoyu; Dang, Wenhui; Tan, Congwei; Liu, Yujing; Yin, Jianbo; Zhou, Yubing; Huang, Shaoyun; Xu, H. Q.; Cui, Yi; Hwang, Harold Y.; Liu, Zhongfan; Chen, Yulin; Yan, Binghai; Peng, Hailin

    2017-07-01

    High-mobility semiconducting ultrathin films form the basis of modern electronics, and may lead to the scalable fabrication of highly performing devices. Because the ultrathin limit cannot be reached for traditional semiconductors, identifying new two-dimensional materials with both high carrier mobility and a large electronic bandgap is a pivotal goal of fundamental research. However, air-stable ultrathin semiconducting materials with superior performances remain elusive at present. Here, we report ultrathin films of non-encapsulated layered Bi2O2Se, grown by chemical vapour deposition, which demonstrate excellent air stability and high-mobility semiconducting behaviour. We observe bandgap values of ˜0.8 eV, which are strongly dependent on the film thickness due to quantum-confinement effects. An ultrahigh Hall mobility value of >20,000 cm2 V-1 s-1 is measured in as-grown Bi2O2Se nanoflakes at low temperatures. This value is comparable to what is observed in graphene grown by chemical vapour deposition and at the LaAlO3-SrTiO3 interface, making the detection of Shubnikov-de Haas quantum oscillations possible. Top-gated field-effect transistors based on Bi2O2Se crystals down to the bilayer limit exhibit high Hall mobility values (up to 450 cm2 V-1 s-1), large current on/off ratios (>106) and near-ideal subthreshold swing values (˜65 mV dec-1) at room temperature. Our results make Bi2O2Se a promising candidate for future high-speed and low-power electronic applications.

  8. Ultrathin solution-processed single crystals of thiophene-phenylene co-oligomers for organic field-effect devices

    NASA Astrophysics Data System (ADS)

    Glushkova, Anastasia V.; Poimanova, Elena Yu.; Bruevich, Vladimir V.; Luponosov, Yuriy N.; Ponomarenko, Sergei A.; Paraschuk, Dmitry Yu.

    2017-08-01

    Thiophene-phenylene co-oligomers (TPCO) single crystals are promising materials for organic light-emitting devices, e.g., light-emitting transistors (OLETs), due to their ability to combine high luminescence and efficient charge transport. However, optical confinement in platy single crystals strongly decreases light emission from their top surface degrading the device performance. To avoid optical waveguiding, single crystals thinner than 100 nm would be beneficial. Herein, we report on solution-processed ultrathin single crystals of TPCO and study their charge transport properties. As materials we used 1,4-bis(5'-hexyl-2,2'-bithiophene-5-yl)benzene (DH-TTPTT) and 1,4-bis(5'-decyl-2,2'-bithiophene-5-yl)benzene (DD-TTPTT). The ultrathin single crystals were studied by optical polarization, atomic-force, and transmission electron microscopies, and as active layers in organic field effect transistors (OFET). The OFET hole mobility was increased tenfold for the oligomer with longer alkyl substituents (DD-TTPTT) reaching 0.2 cm2/Vs. Our studies of crystal growth indicate that if the substrate is wetted, it has no significant effect on the crystal growth. We conclude that solution-processed ultrathin TPCO single crystals are a promising platform for organic optoelectronic field-effect devices.

  9. Cells Recognize and Prefer Bone-like Hydroxyapatite: Biochemical Understanding of Ultrathin Mineral Platelets in Bone.

    PubMed

    Liu, Cuilian; Zhai, Halei; Zhang, Zhisen; Li, Yaling; Xu, Xurong; Tang, Ruikang

    2016-11-09

    Hydroxyapatite (HAP) nanocrystallites in all types of bones are distinguished by their ultrathin characteristics, which are uniaxially oriented with fibrillar collagen to uniquely expose the (100) faces. We speculate that living organisms prefer the specific crystal morphology and orientation of HAP because of the interactions between cells and crystals at the mineral-cell interface. Here, bone-like platy HAP (p-HAP) and two different rod-like HAPs were synthesized to investigate the ultrathin mineral modulating effect on cell bioactivity and bone generation. Cell viability and osteogenic differentiation of mesenchymal stem cells (MSCs) were significantly promoted by the platy HAP with (100) faces compared to rod-like HAPs with (001) faces as the dominant crystal orientation, which indicated that MSCs can recognize the crystal face and prefer the (100) HAP faces. This face-specific preference is dependent on the selective adsorption of fibronectin (FN), a plasma protein that plays a central role in cell adhesion, on the HAP surface. This selective adsorption is further confirmed by molecule dynamics (MD) simulation. Our results demonstrate that it is an intelligent choice for cells to use ultrathin HAP with a large (100) face as a basic building block in the hierarchical structure of bone, which is crucial to the promotion of MSCs osteoinductions during bone formation.

  10. Topological superconductivity in an ultrathin, magnetically-doped topological insulator proximity coupled to a conventional superconductor

    NASA Astrophysics Data System (ADS)

    Kim, Youngseok; Philip, Timothy M.; Park, Moon Jip; Gilbert, Matthew J.; University of Illinois at Urbana; Champaign Team

    As a promising candidate system to realize topological superconductivity (SC), 3D time-reversal invariant topological insulators (TI) proximity-coupled to s-wave superconductors have been intensively studied. Recent experiments on proximity-coupled TI have shown that superconductivity may be induced in ultrathin TI. One proposal to observe the topological SC in proximity-coupled ultrathin TI system is to add magnetic dopants to the TI. However, detailed study on the impact of the experimental parameters on possible topological phase is sparse. In this work, we investigate ultrathin, magnetically-doped, proximity-coupled TI in order to determine the experimentally relevant parameters needed to observe topological SC. We find that, due to the spin-momentum locked nature of the surface states in TI, the induced s-wave order parameter within the surface states persists even at large magnitudes of the Zeeman energy, allowing us to explore the system in parameter space. We elucidate the phase diagram as a function of: the hybridization gap, Zeeman energy, and chemical potential of the TI system. Our findings provide a useful guide in choosing relevant parameters to facilitate the observation of topological SC in thin film TI-superconductor hybrid systems. National Science Foundation (NSF) under Grant CAREER ECCS-1351871.

  11. Universal depinning transition of domain walls in ultrathin ferromagnets

    NASA Astrophysics Data System (ADS)

    Diaz Pardo, R.; Savero Torres, W.; Kolton, A. B.; Bustingorry, S.; Jeudy, V.

    2017-05-01

    We present a quantitative and comparative study of magnetic-field-driven domain-wall depinning transition in different ferromagnetic ultrathin films over a wide range of temperature. We reveal a universal scaling function accounting for both drive and thermal effects on the depinning transition, including critical exponents. The consistent description we obtain for both the depinning and subthreshold thermally activated creep motion should shed light on the universal glassy dynamics of thermally fluctuating elastic objects pinned by disordered energy landscapes.

  12. The Effect of the Pore Entrance on Particle Motion in Slit Pores: Implications for Ultrathin Membranes

    PubMed Central

    Delavari, Armin; Baltus, Ruth

    2017-01-01

    Membrane rejection models generally neglect the effect of the pore entrance on intrapore particle transport. However, entrance effects are expected to be particularly important with ultrathin membranes, where membrane thickness is typically comparable to pore size. In this work, a 2D model was developed to simulate particle motion for spherical particles moving at small Re and infinite Pe from the reservoir outside the pore into a slit pore. Using a finite element method, particles were tracked as they accelerated across the pore entrance until they reached a steady velocity in the pore. The axial position in the pore where particle motion becomes steady is defined as the particle entrance length (PEL). PELs were found to be comparable to the fluid entrance length, larger than the pore size and larger than the thickness typical of many ultrathin membranes. Results also show that, in the absence of particle diffusion, hydrodynamic particle–membrane interactions at the pore mouth result in particle “funneling” in the pore, yielding cross-pore particle concentration profiles focused at the pore centerline. The implications of these phenomena on rejection from ultrathin membranes are examined. PMID:28796197

  13. FABRICATION AND OPTOELECTRONIC PROPERTIES OF MgxZn1-xO ULTRATHIN FILMS BY LANGMUIR-BLODGETT TECHNOLOGY

    NASA Astrophysics Data System (ADS)

    Tang, Dongyan; Feng, Qian; Jiang, Enying; He, Baozhu

    2012-08-01

    By transferring MgxZn1-xO sol and stearic acid onto a hydrophilic silicon wafer or glass plate, the Langmuir-Blodgett (LB) multilayers of MgxZn1-xO (x:0, 0.2, 0.4) were deposited. After calcinations at 350°C for 0.5 h and at 500°C for 3 h, MgxZn1-xO ultrathin films were fabricated. The optimized parameters for monolayer formation and multilayer deposition were determined by the surface pressure-surface (Π-A) area and the transfer coefficient, respectively. The expended areas of stearic acid with MgxZn1-xO sols under Π-A isotherms inferred the interaction of stearic acid with MgxZn1-xO sols during the formation of monolayer at air-water interface. X-ray diffraction (XRD) was used to determine the crystal structures of MgxZn1-xO nanoparticles and ultrathin films. The surface morphologies of MgxZn1-xO ultrathin films were observed by scanning probe microscopy (AFM). And the optoelectronic properties of MgxZn1-xO were detected and discussed based on photoluminescence (PL) spectra.

  14. Improvement of OMI Ozone Profile Retrievals in the Troposphere and Lower Troposphere by the Use of the Tropopause-Based Ozone Profile Climatology

    NASA Technical Reports Server (NTRS)

    Bak, Juseon; Liu, X.; Wei, J.; Kim, J. H.; Chance, K.; Barnet, C.

    2011-01-01

    An advance algorithm based on the optimal estimation technique has beeen developed to derive ozone profile from GOME UV radiances and have adapted it to OMI UV radiances. OMI vertical resolution : 7-11 km in the troposphere and 10-14 km in the stratosphere. Satellite ultraviolet measurements (GOME, OMI) contain little vertical information for the small scale of ozone, especially in the upper troposphere (UT) and lower stratosphere (LS) where the sharp O3 gradient across the tropopause and large ozone variability are observed. Therefore, retrievals depend greatly on the a-priori knowledge in the UTLS

  15. A molecular dynamics analysis of ion irradiation of ultrathin amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Qi, J.; Komvopoulos, K.

    2016-09-01

    Molecular dynamics (MD) simulations provide insight into nanoscale problems where continuum description breaks down, such as the modeling of ultrathin films. Amorphous carbon (a-C) films are commonly used as protective overcoats in various contemporary technologies, including microelectromechanical systems, bio-implantable devices, optical lenses, and hard-disk drives. In all of these technologies, the protective a-C film must be continuous and very thin. For example, to achieve high storage densities (e.g., on the order of 1 Tb/in.2) in magnetic recording, the thickness of the a-C film used to protect the magnetic media and the recording head against mechanical wear and corrosion must be 2-3 nm. Inert ion irradiation is an effective post-deposition method for reducing the film thickness, while preserving the mechanical and chemical characteristics. In this study, MD simulations of Ar+ ion irradiated a-C films were performed to elucidate the effects of the ion incidence angle and ion kinetic energy on the film thickness and structure. The MD results reveal that the film etching rate exhibits a strong dependence on the ion kinetic energy and ion incidence angle, with a maximum etching rate corresponding to an ion incidence angle of ˜20°. It is also shown that Ar+ ion irradiation mainly affects the structure of the upper half of the ultrathin a-C film and that carbon atom hybridization is a strong function of the ion kinetic energy and ion incidence angle. The results of this study elucidate the effects of important ion irradiation parameters on the structure and thickness of ultrathin films and provide fundamental insight into the physics of dry etching.

  16. Chemical surface deposition of ultra-thin semiconductors

    DOEpatents

    McCandless, Brian E.; Shafarman, William N.

    2003-03-25

    A chemical surface deposition process for forming an ultra-thin semiconducting film of Group IIB-VIA compounds onto a substrate. This process eliminates particulates formed by homogeneous reactions in bath, dramatically increases the utilization of Group IIB species, and results in the formation of a dense, adherent film for thin film solar cells. The process involves applying a pre-mixed liquid coating composition containing Group IIB and Group VIA ionic species onto a preheated substrate. Heat from the substrate causes a heterogeneous reaction between the Group IIB and VIA ionic species of the liquid coating composition, thus forming a solid reaction product film on the substrate surface.

  17. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity.

    PubMed

    Yin, Huajie; Zhao, Shenlong; Zhao, Kun; Muqsit, Abdul; Tang, Hongjie; Chang, Lin; Zhao, Huijun; Gao, Yan; Tang, Zhiyong

    2015-03-02

    Design and synthesis of effective electrocatalysts for hydrogen evolution reaction in alkaline environments is critical to reduce energy losses in alkaline water electrolysis. Here we report a hybrid nanomaterial comprising of one-dimensional ultrathin platinum nanowires grown on two-dimensional single-layered nickel hydroxide. Judicious surface chemistry to generate the fully exfoliated nickel hydroxide single layers is explored to be the key for controllable growth of ultrathin platinum nanowires with diameters of about 1.8 nm. Impressively, this hybrid nanomaterial exhibits superior electrocatalytic activity for hydrogen evolution reaction in alkaline solution, which outperforms currently reported catalysts, and the obviously improved catalytic stability. We believe that this work may lead towards the development of single-layered metal hydroxide-based hybrid materials for applications in catalysis and energy conversion.

  18. Effect of processing parameters on microstructure of MoS{sub 2} ultra-thin films synthesized by chemical vapor deposition method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Yang; You, Suping; Sun, Kewei

    2015-06-15

    MoS{sub 2} ultra-thin layers are synthesized using a chemical vapor deposition method based on the sulfurization of molybdenum trioxide (MoO{sub 3}). The ultra-thin layers are characterized by X-ray diffraction (XRD), photoluminescence (PL) spectroscopy and atomic force microscope (AFM). Based on our experimental results, all the processing parameters, such as the tilt angle of substrate, applied voltage, heating time and the weight of source materials have effect on the microstructures of the layers. In this paper, the effects of such processing parameters on the crystal structures and morphologies of the as-grown layers are studied. It is found that the film obtainedmore » with the tilt angle of 0.06° is more uniform. A larger applied voltage is preferred to the growth of MoS{sub 2} thin films at a certain heating time. In order to obtain the ultra-thin layers of MoS{sub 2}, the weight of 0.003 g of source materials is preferred. Under our optimal experimental conditions, the surface of the film is smooth and composed of many uniformly distributed and aggregated particles, and the ultra-thin MoS{sub 2} atomic layers (1∼10 layers) covers an area of more than 2 mm×2 mm.« less

  19. Ultrathin cellulose nanosheet membranes for superfast separation of oil-in-water nanoemulsions

    NASA Astrophysics Data System (ADS)

    Zhou, Ke; Zhang, Qiu Gen; Li, Hong Mei; Guo, Nan Nan; Zhu, Ai Mei; Liu, Qing Lin

    2014-08-01

    Oily wastewater is generated in diverse industrial processes, and its treatment has become crucial due to increasing environmental concerns. Herein, novel ultrathin nanoporous membranes of cellulose nanosheets have been fabricated for separation of oil-in-water nanoemulsions. The fabrication approach is facile and environmentally friendly, in which cellulose nanosheets are prepared by freeze-extraction of a very dilute cellulose solution. The as-prepared membranes have a cellulose nanosheet layer with a cut-off of 10-12 nm and a controllable thickness of 80-220 nm. They allow ultrafast water permeation and exhibit excellent size-selective separation properties. A 112 nm-thick membrane has a water flux of 1620 l m-2 h-1 bar-1 and a ferritin rejection of 92.5%. These membranes have been applied to remove oil from its aqueous nanoemulsions successfully, and they show an ultrafast and effective separation of oil-in-water nanoemulsions. The newly developed ultrathin cellulose membranes have a wide application in oily wastewater treatment, separation and purification of nanomaterials.Oily wastewater is generated in diverse industrial processes, and its treatment has become crucial due to increasing environmental concerns. Herein, novel ultrathin nanoporous membranes of cellulose nanosheets have been fabricated for separation of oil-in-water nanoemulsions. The fabrication approach is facile and environmentally friendly, in which cellulose nanosheets are prepared by freeze-extraction of a very dilute cellulose solution. The as-prepared membranes have a cellulose nanosheet layer with a cut-off of 10-12 nm and a controllable thickness of 80-220 nm. They allow ultrafast water permeation and exhibit excellent size-selective separation properties. A 112 nm-thick membrane has a water flux of 1620 l m-2 h-1 bar-1 and a ferritin rejection of 92.5%. These membranes have been applied to remove oil from its aqueous nanoemulsions successfully, and they show an ultrafast and effective

  20. Colored ultra-thin hybrid photovoltaics with high quantum efficiency for decorative PV applications (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Guo, L. Jay

    2015-10-01

    This talk will describe an approach to create architecturally compatible and decorative thin-film-based hybrid photovoltaics [1]. Most current solar panels are fabricated via complex processes using expensive semiconductor materials, and they are rigid and heavy with a dull, black appearance. As a result of their non-aesthetic appearance and weight, they are primarily installed on rooftops to minimize their negative impact on building appearance. Recently we introduced dual-function solar cells based on ultra-thin dopant-free amorphous silicon embedded in an optical cavity that not only efficiently extract the photogenerated carriers but also display distinctive colors with the desired angle-insensitive appearances [1,2]. The angle-insensitive behavior is the result of an interesting phase cancellation effect in the optical cavity with respect to angle of light propagation [3]. In order to produce the desired optical effect, the semiconductor layer should be ultra-thin and the traditional doped layers need to be eliminated. We adopted the approach of employing charge transport/blocking layers used in organic solar cells to meet this demand. We showed that the ultra-thin (6 to 31 nm) undoped amorphous silicon/organic hybrid solar cell can transmit desired wavelength of light and that most of the absorbed photons in the undoped a-Si layer contributed to the extracted electric charges. This is because the a-Si layer thickness is smaller than the charge diffusion length, therefore the electron-hole recombination is strongly suppressed in such ultra-thin layer. Reflective colored PVs can be made in a similar fashion. Light-energy-harvesting colored signage was demonstrated. Furthermore, a cascaded photovoltaics scheme based on tunable spectrum splitting can be employed to increase power efficiency by absorbing a broader band of light energy. Our work provides a guideline for optimizing a photoactive layer thickness in high efficiency hybrid PV design, which can be

  1. Diffractive intermediate layer enables broadband light trapping for high efficiency ultrathin c-Si tandem cells

    NASA Astrophysics Data System (ADS)

    Li, Guijun; Ho, Jacob Y. L.; Li, He; Kwok, Hoi-Sing

    2014-06-01

    Light management through the intermediate reflector in the tandem cell configuration is of great practical importance for achieving high stable efficiency and also low cost production. So far, however, the intermediate reflectors employed currently are mainly focused on the light absorption enhancement of the top cell. Here, we present a diffractive intermediate layer that allows for light trapping over a broadband wavelength for the ultrathin c-Si tandem solar cell. Compared with the standard intermediate reflector, this nanoscale architectural intermediate layer results in a 35% and 21% remarkable enhancement of the light absorption in the top (400-800 nm) and bottom (800-1100 nm) cells simultaneously, and ultrathin c-Si tandem cells with impressive conversion efficiency of 13.3% are made on the glass substrate.

  2. Stratospheric Influence on Summer Monsoon and Associated Planetary Wave Breaking and Mixing in the Subtropical Tropopause Region

    NASA Astrophysics Data System (ADS)

    Lubis, S. W.; Nakamura, N.

    2017-12-01

    Previous studies have shown that the monsoonal circulation plays an important role in planetary wave breaking (PWB). The highest frequency of breaking events occurs just downstream (east) of the monsoon region in summer. PWB induces mixing of potential vorticity (PV) and hence, alter the horizontal mixing in the atmosphere. Here, the authors hypothesize that the stratospheric easterlies in the boreal summer also play a significant role in the PWB and mixing associated with the summer monsoon. If the stratospheric winds were westerly in boreal summer, the frequency of PWB would be decreased due to more waves penetrating in the stratosphere, resulting in less horizontal PWB and thus reduced mixing in the subtropical tropopause region. The hypothesis is examined by using a set of idealized moist GFDL simulations. The monsoon circulation is produced by adding a land-sea contrast with a Gaussian-shaped mountains positioned in the midlatitudes. Other key ingredients for the monsoon, including albedo, oceanic warm pool, and Q-flux, were also ideally imposed in all simulations. Our control simulation produces a summer monsoon-like circulation similar to the observation. In particular, the thermally forced monsoonal circulation forms a prominent closed upper-level anticyclone that dominates the summertime upper-level flow. Associated with this circulation is an upward-bulging tropopause that forms a large reservoir of anomalously low PV. Consistent with previous studies, the well-defined tropospheric jet lies just poleward of the upper-level anticyclone, and acts as a dynamical barrier between the low-PV reservoir over the monsoonal region and the high-PV reservoir in the extratropics. This barrier disappears just northeast of the monsoon area in the jet exit region, allowing more quasi-planetary waves to break in this region. Repetitive wave breaking further weakens the PV gradient, leading to the formation of the surf zone and stronger mixing in this region. To quantify

  3. Green Fabrication of Ultrathin Co3O4 Nanosheets from Metal-Organic Framework for Robust High-Rate Supercapacitors.

    PubMed

    Xiao, Zhenyu; Fan, Lili; Xu, Ben; Zhang, Shanqing; Kang, Wenpei; Kang, Zixi; Lin, Huan; Liu, Xiuping; Zhang, Shiyu; Sun, Daofeng

    2017-12-06

    Two-dimensional cobalt oxide (Co 3 O 4 ) is a promising candidate for robust electrochemical capacitors with high performance. Herein, we use 2,3,5,6-tetramethyl-1,4-diisophthalate as a recyclable ligand to construct a Co-based metal-organic framework of UPC-9, and subsequently, we obtain ultrathin hierarchical Co 3 O 4 hexagonal nanosheets with a thickness of 3.5 nm through a hydrolysis and calcination process. A remarkable and excellent specific capacitance of 1121 F·g -1 at a current density of 1 A·g -1 and 873 F·g -1 at a current density of 25 A·g -1 were achieved for the as-prepared asymmetric supercapacitor, which can be attributed to the ultrathin 2D morphology and the rich macroporous and mesoporous structures of the ultrathin Co 3 O 4 nanosheets. This synthesis strategy is environmentally benign and economically viable due to the fact that the costly organic ligand molecules are recycled, reducing the materials cost as well as the environmental cost for the synthesis process.

  4. Fabrication of silicon-on-diamond substrate with an ultrathin SiO2 bonding layer

    NASA Astrophysics Data System (ADS)

    Nagata, Masahiro; Shirahama, Ryouya; Duangchan, Sethavut; Baba, Akiyoshi

    2018-06-01

    We proposed and demonstrated a sputter etching method to prepare both a flat surface (root-mean-square surface roughness of approximately 0.2–0.3 nm) and an ultrathin SiO2 bonding layer at an accuracy of approximately 5 nm in thickness to fabricate a silicon-on-diamond substrate (SOD). We also investigated a plasma activation method on a SiO2 surface using various gases. We found that O2 plasma activation is more suitable for the bonding between SiO2 and Si than N2 or Ar plasma activation. We speculate that the concentration of hydroxyl groups on the SiO2 surface was increased by O2 plasma activation. We fabricated the SOD substrate with an ultrathin (15 nm in thickness) SiO2 bonding layer using the sputter etching and O2 plasma activation methods.

  5. The Vertical Structure of Relative Humidity and Ozone in the Tropical Upper Troposphere: Intercomparisons Among In Situ Observations, A-Train Measurements and Large-Scale Models

    NASA Technical Reports Server (NTRS)

    Selkirk, Henry B.; Manyin, Michael; Douglass, Anne R.; Oman, Luke; Pawson, Steven; Ott, Lesley; Benson, Craig; Stolarski, Richard

    2010-01-01

    In situ measurements in the tropics have shown that in regions of active convection, relative humidity with respect to ice in the upper troposphere is typically close to saturation on average, and supersaturations greater than 20% are not uncommon. Balloon soundings with the cryogenic frost point hygrometer (CFH) at Costa Rica during northern summer, for example, show this tendency to be strongest between 11 and 15.5 km (345-360 K potential temperature, or approximately 250-120 hPa). this is the altitude range of deep convective detrainment. Additionally, simultaneous ozonesonde measurements show that stratospheric air (O3 greater than 150 ppbv) can be found as low as approximately 14 km (350 K/150 hPa). In contrast, results from northern winter show a much drier upper troposphere and little penetration of stratospheric air below the tropopause at 17.5 km (approximately 383 K). We show that these results are consistent with in situ measurements from the Measurement of Ozone and water vapor by Airbus In-service airCraft (MOZAIC) program which samples a wider, though still limited, range of tropical locations. To generalize to the tropics as a whole, we compare our insitu results to data from two A-Train satellite instruments, the Atmospheric Infrared Sounder (AIRS) and the Microwave Limb Sounder (MLS) on the Aqua and Aura satellites respectively. Finally, we examine the vertical structure of water vapor, relative humidity and ozone in the NASA Goddard MERRA analysis, an assimilation dataset, and a new version of the GEOS CCM, a free-running chemistry-climate model. We demonstrate that conditional probability distributions of relative humidity and ozone are a sensitive diagnostic for assessing the representation of deep convection and upper troposphere/lower stratosphere mixing processes in large-scale analyses and climate models.

  6. Nature, Origin, Potential Composition, and Climate Impact of the Asian Tropopause Aerosol Layer (ATAL)

    NASA Technical Reports Server (NTRS)

    Fairlie, T. D.; Vernier, J.-P.; Thomason, L. W.; Natarajan, M.; Bedka, K.; Wienhold, F.; Bian J.; Martinsson, B.

    2015-01-01

    Satellite observations from SAGE II and CALIPSO indicate that summertime aerosol extinction has more than doubled in the Asian Tropopause Aerosol Layer (ATAL) since the late 1990s. Here we show remote and in-situ observations, together with results from a chemical transport model (CTM), to explore the likely composition, origin, and radiative forcing of the ATAL. We show in-situ balloon measurements of aerosol backscatter, which support the high levels observed by CALIPSO since 2006. We also show in situ measurements from aircraft, which indicate a predominant carbonaceous contribution to the ATAL (Carbon/Sulfur ratios of 2- 10), which is supported by the CTM results. We show that the peak in ATAL aerosol lags by 1 month the peak in CO from MLS, associated with deep convection over Asia during the summer monsoon. This suggests that secondary formation and growth of aerosols in the upper troposphere on monthly timescales make a significant contribution to ATAL. Back trajectory calculations initialized from CALIPSO observations provide evidence that deep convection over India is a significant source for ATAL through the vertical transport of pollution to the upper troposphere.

  7. Seeds screening aqueous synthesis, multiphase interfacial separation and in situ optical characterization of invisible ultrathin silver nanowires.

    PubMed

    Zhang, Xiao-Yang; Xue, Xiao-Mei; Zhou, Huan-Li; Zhao, Ning; Shan, Feng; Su, Dan; Liu, Yi-Ran; Zhang, Tong

    2018-06-21

    We report a multi-step synthetic method to obtain ultrathin silver nanowires (Ag NWs) from an aqueous solution with a ∼17 nm diameter average, and where some of them decreased down to 9 nm. Carefully designed seed screening processes including LED irradiation at high temperature for a short time, and then continuous H2O2 etching, and relative growth mechanisms of high-yield five-twinned pentagonal seeds and ultrathin Ag NWs in aqueous environment are detailed. Then, a rapid and simple multiphase interfacial assembly method particularly suitable for the separation of ultrathin Ag NWs from various by-products was demonstrated with a clear mechanism explanation. Next, a unique optical interaction between light and individual AG NWs, as well as feature structures in the AG NWs film, was investigated by a micro-domain optical confocal microscope measurement in situ together with a theoretical explanation using modal transmission theory. That revealed that the haze problem of AG NWs films was not only arising from the interaction between light and individual or crossed Ag NWs but was also greatly dependent on a weak coupling effect of leaky modes supported by adjacent Ag NWs with large distances which had not been considered before. We then provided direct experimental evidence and concluded how to obtain haze-free films with 100% transparency in the whole visible range based on ultrathin Ag NWs. This breakthrough in diameter confinement and purification of Ag NWs is a highly expected step to overcome the well-focused light diffusion and absorption problems of Ag NWs-based devices applied in various fields such as flexible electronics, high-clarity displays, visible transparent heaters, photovoltaics and various optoelectronic technologies.

  8. Synthesis of metal free ultrathin graphitic carbon nitride sheet for photocatalytic dye degradation of Rhodamine B under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Rahman, Shakeelur; Momin, Bilal; Higgins M., W.; Annapure, Uday S.; Jha, Neetu

    2018-04-01

    In recent times, low cost and metal free photocatalyts driven under visible light have attracted a lot of interest. One such photo catalyst researched extensively is bulk graphitic carbon nitride sheets. But the low surface area and weak mobility of photo generated electrons limits its photocatalytic performance in the visible light spectrum. Here we present the facile synthesis of ultrathin graphitic carbon nitride using a cost effective melamine precursor and its application in highly efficient photocatalytic dye degradation of Rhodamine B molecules. Compared to bulk graphitic carbon nitride, the synthesized ultrathin graphitic carbon nitride shows an increase in surface area, a a decrease in optical band gap and effective photogenerated charge separation which facilitates the harvest of visible light irradiation. Due to these optimal properties of ultrathin graphitic carbon nitride, it shows excellent photocatalytic activity with photocatalytic degradation of about 95% rhodamine B molecules in 1 hour.

  9. Magneto-optical Kerr rotation and color in ultrathin lossy dielectric

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Wang, Hai; Qu, Xin; Zhou, Yun song; Li, Li na

    2017-05-01

    Ultra-thin optical coating comprising nanometer-thick silicon absorbing films on iron substrates can display strong optical interference effects. A resonance peak of ∼1.6^\\circ longitudinal Kerr rotation with the silicon thickness of ∼47 \\text{nm} was found at the wavelength of 660 nm. The optical properties of silicon thin films were well controlled by the sputtering power. Non-iridescence color exhibition and Kerr rotation enhancement can be manipulated and encoded individually.

  10. Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation.

    PubMed

    Mao, Junjie; Chen, Wenxing; He, Dongsheng; Wan, Jiawei; Pei, Jiajing; Dong, Juncai; Wang, Yu; An, Pengfei; Jin, Zhao; Xing, Wei; Tang, Haolin; Zhuang, Zhongbin; Liang, Xin; Huang, Yu; Zhou, Gang; Wang, Leyu; Wang, Dingsheng; Li, Yadong

    2017-08-01

    Developing cost-effective, active, and durable electrocatalysts is one of the most important issues for the commercialization of fuel cells. Ultrathin Pt-Mo-Ni nanowires (NWs) with a diameter of ~2.5 nm and lengths of up to several micrometers were synthesized via a H 2 -assisted solution route (HASR). This catalyst was designed on the basis of the following three points: (i) ultrathin NWs with high numbers of surface atoms can increase the atomic efficiency of Pt and thus decrease the catalyst cost; (ii) the incorporation of Ni can isolate Pt atoms on the surface and produce surface defects, leading to high catalytic activity (the unique structure and superior activity were confirmed by spherical aberration-corrected electron microscopy measurements and ethanol oxidation tests, respectively); and (iii) the incorporation of Mo can stabilize both Ni and Pt atoms, leading to high catalytic stability, which was confirmed by experiments and density functional theory calculations. Furthermore, the developed HASR strategy can be extended to synthesize a series of Pt-Mo-M (M = Fe, Co, Mn, Ru, etc.) NWs. These multimetallic NWs would open up new opportunities for practical fuel cell applications.

  11. Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation

    PubMed Central

    Mao, Junjie; Chen, Wenxing; He, Dongsheng; Wan, Jiawei; Pei, Jiajing; Dong, Juncai; Wang, Yu; An, Pengfei; Jin, Zhao; Xing, Wei; Tang, Haolin; Zhuang, Zhongbin; Liang, Xin; Huang, Yu; Zhou, Gang; Wang, Leyu; Wang, Dingsheng; Li, Yadong

    2017-01-01

    Developing cost-effective, active, and durable electrocatalysts is one of the most important issues for the commercialization of fuel cells. Ultrathin Pt-Mo-Ni nanowires (NWs) with a diameter of ~2.5 nm and lengths of up to several micrometers were synthesized via a H2-assisted solution route (HASR). This catalyst was designed on the basis of the following three points: (i) ultrathin NWs with high numbers of surface atoms can increase the atomic efficiency of Pt and thus decrease the catalyst cost; (ii) the incorporation of Ni can isolate Pt atoms on the surface and produce surface defects, leading to high catalytic activity (the unique structure and superior activity were confirmed by spherical aberration–corrected electron microscopy measurements and ethanol oxidation tests, respectively); and (iii) the incorporation of Mo can stabilize both Ni and Pt atoms, leading to high catalytic stability, which was confirmed by experiments and density functional theory calculations. Furthermore, the developed HASR strategy can be extended to synthesize a series of Pt-Mo-M (M = Fe, Co, Mn, Ru, etc.) NWs. These multimetallic NWs would open up new opportunities for practical fuel cell applications. PMID:28875160

  12. Ultrathin lightweight plate-type acoustic metamaterials with positive lumped coupling resonant

    NASA Astrophysics Data System (ADS)

    Ma, Fuyin; Huang, Meng; Wu, Jiu Hui

    2017-01-01

    The experimental realization and theoretical understanding of a two-dimensional multiple cells lumped ultrathin lightweight plate-type acoustic metamaterials structures have been presented, wherein broadband excellent sound attenuation ability at low frequencies is realized by employing a lumped element coupling resonant effect. The basic unit cell of the metamaterials consists of an ultrathin stiff nylon plate clamped by two elastic ethylene-vinyl acetate copolymer or acrylonitrile butadiene styrene frames. The strong sound attenuation (up to nearly 99%) at low frequencies is experimentally revealed by the precisely designed metamaterials, for which the physical mechanism of the sound attenuation could be explicitly understood using the finite element simulations. As to the designed samples, the lumped effect from the frame compliance leads to a coupling flexural resonance at designable low frequencies. As a result, the whole composite structure become strongly anti-resonant with the incident sound waves, followed by a higher sound attenuation, i.e., the lumped resonant effect has been effectively reversed to be positive from negative for sound attenuation, and the acoustic metamaterial design could be extended to the lumped element containing multiple cells, rather than confined to a single cell.

  13. Parameter Space of Atomic Layer Deposition of Ultrathin Oxides on Graphene

    PubMed Central

    2016-01-01

    Atomic layer deposition (ALD) of ultrathin aluminum oxide (AlOx) films was systematically studied on supported chemical vapor deposition (CVD) graphene. We show that by extending the precursor residence time, using either a multiple-pulse sequence or a soaking period, ultrathin continuous AlOx films can be achieved directly on graphene using standard H2O and trimethylaluminum (TMA) precursors even at a high deposition temperature of 200 °C, without the use of surfactants or other additional graphene surface modifications. To obtain conformal nucleation, a precursor residence time of >2s is needed, which is not prohibitively long but sufficient to account for the slow adsorption kinetics of the graphene surface. In contrast, a shorter residence time results in heterogeneous nucleation that is preferential to defect/selective sites on the graphene. These findings demonstrate that careful control of the ALD parameter space is imperative in governing the nucleation behavior of AlOx on CVD graphene. We consider our results to have model system character for rational two-dimensional (2D)/non-2D material process integration, relevant also to the interfacing and device integration of the many other emerging 2D materials. PMID:27723305

  14. Ultrathin nanofibrous films prepared from cadmium hydroxide nanostrands and anionic surfactants.

    PubMed

    Peng, Xinsheng; Karan, Santanu; Ichinose, Izumi

    2009-08-04

    We developed a simple fabrication method of ultrathin nanofibrous films from the dispersion of cadmium hydroxide nanostrands and anionic surfactants. The nanostrands were prepared in a dilute aqueous solution of cadmium chloride by using 2-aminoethanol. They were highly positively charged and gave bundlelike fibers upon mixing an aqueous solution of anionic surfactant. The nanostrand/surfactant composite fibers were filtered on an inorganic membrane filter. The resultant nanofibrous film was very uniform in the area of a few centimeters square when the thickness was not less than 60 nm. The films obtained with sodium tetradecyl sulfate (STS) had a composition close to the electroneutral complex, [Cd37(OH)68(H2O)n] x 6(STS), as confirmed by energy dispersive X-ray analysis. They were water-repellent with a contact angle of 117 degrees, and the value slightly decreased with the alkyl chain length of anionic surfactants. Ultrathin nanofibrous films were stable enough to be used for ultrafiltration at pressure difference of 90 kPa. We could effectively separate Au nanoparticles of 40 nm at an extremely high filtration rate of 14000 L/(h m2 bar).

  15. Ultra-thin distributed Bragg reflectors via stacked single-crystal silicon nanomembranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Minkyu; Seo, Jung-Hun; Lee, Jaeseong

    2015-05-04

    In this paper, we report ultra-thin distributed Bragg reflectors (DBRs) via stacked single-crystal silicon (Si) nanomembranes (NMs). Mesh hole-free single-crystal Si NMs were released from a Si-on-insulator substrate and transferred to quartz and Si substrates. Thermal oxidation was applied to the transferred Si NM to form high-quality SiO{sub 2} and thus a Si/SiO{sub 2} pair with uniform and precisely controlled thicknesses. The Si/SiO{sub 2} layers, as smooth as epitaxial grown layers, minimize scattering loss at the interface and in between the layers. As a result, a reflection of 99.8% at the wavelength range from 1350 nm to 1650 nm can be measuredmore » from a 2.5-pair DBR on a quartz substrate and 3-pair DBR on a Si substrate with thickness of 0.87 μm and 1.14 μm, respectively. The high reflection, ultra-thin DBRs developed here, which can be applied to almost any devices and materials, holds potential for application in high performance optoelectronic devices and photonics applications.« less

  16. Hierarchical ultrathin alumina membrane for the fabrication of unique nanodot arrays

    NASA Astrophysics Data System (ADS)

    Wang, Yuyang; Wang, Yi; Wang, Hailong; Wang, Xinnan; Cong, Ming; Xu, Weiqing; Xu, Shuping

    2016-01-01

    Ultrathin alumina membranes (UTAMs) as evaporation masks have been a powerful tool for the fabrication of high-density nanodot arrays and have received much attention in magnetic memory devices, photovoltaics, and nanoplasmonics. In this paper, we report the fabrication of a hierarchical ultrathin alumina membrane (HUTAM) with highly ordered submicro/nanoscale channels and its application as an evaporation mask for the realization of unique non-hexagonal nanodot arrays dependent on the geometrical features of the HUTAM. This is the first report of a UTAM with a hierarchical geometry, breaking the stereotype that only limited sets of nanopatterns can be realized using the UTAM method (with typical inter-pore distance of 100 nm). The fabrication of a HUTAM is discussed in detail. An improved, longer wet etching time than previously reported is found to effectively remove the barrier layer and widen the pores of a HUTAM. A growth sustainability issue brought about by pre-patterning is discussed. Spectral comparison was made to distinguish the UTAM nanodots and HUTAM nanodots. Our results can be an inspiration for more sophisticated applications of pre-patterned anodized aluminum oxide in photocatalysis, photovoltaics, and nanoplasmonics.

  17. Enhanced Hydrogen Transport over Palladium Ultrathin Films through Surface Nanostructure Engineering.

    PubMed

    Abate, Salvatore; Giorgianni, Gianfranco; Gentiluomo, Serena; Centi, Gabriele; Perathoner, Siglinda

    2015-11-01

    Palladium ultrathin films (around 2 μm) with different surface nanostructures are characterized by TEM, SEM, AFM, and temperature programmed reduction (TPR), and evaluated in terms of H2 permeability and H2-N2 separation. A change in the characteristics of Pd seeds by controlled oxidation-reduction treatments produces films with the same thickness, but different surface and bulk nanostructure. In particular, the films have finer and more homogeneous Pd grains, which results in lower surface roughness. Although all samples show high permeo-selectivity to H2 , the samples with finer grains exhibit enhanced permeance and lower activation energy for H2 transport. The analysis of the data suggests that grain boundaries between the Pd grains at the surface favor H2 transfer from surface to subsurface. Thus, the surface nanostructure plays a relevant role in enhancing the transport of H2 over the Pd ultrathin film, which is an important aspect to develop improved membranes that function at low temperatures and toward new integrated process architectures in H2 and syngas production with enhanced sustainability. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Probing the Band Structure of Ultrathin MoTe2 via Strain

    NASA Astrophysics Data System (ADS)

    Aslan, Burak; Datye, Isha; Kuo, Hsueh-Hui; Mleczko, Michal; Fisher, Ian; Pop, Eric; Heinz, Tony

    Molybdenum ditelluride (MoTe2) is a semiconducting layered group VI transition metal dichalcogenide with an optical band gap of 1.1 and 0.9 eV in the monolayer and bulk, respectively. The bulk crystal possesses an indirect gap whereas the monolayer has a direct one. It is still under debate whether the direct-to-indirect gap crossover occurs at the monolayer or bilayer limit at room temperature, resulting from the fact that the two gaps are very close to one another in ultrathin crystals. We take advantage of this closeness by tuning the two gaps with in-plane tensile strain. In particular, we employ photoluminescence and absorption spectroscopy to probe the near-band-edge optical transitions and study their line-shapes to distinguish the direct and indirect gaps in few-layer MoTe2. We observe that the applied strain redshifts the direct and indirect gaps at different rates and strongly affects the spectral widths of the optical transitions. Our observations help us understand what contributes to the broadening of the A exciton peak in ultrathin MoTe2 and how the direct-to-indirect gap crossover occurs with decreasing thickness.

  19. Perpendicular magnetic tunnel junctions with Mn-modified ultrathin MnGa layer

    NASA Astrophysics Data System (ADS)

    Suzuki, K. Z.; Miura, Y.; Ranjbar, R.; Bainsla, L.; Ono, A.; Sasaki, Y.; Mizukami, S.

    2018-02-01

    Perpendicular magnetic tunnel junctions (p-MTJs) with a MgO barrier and a 1-nm-thick MnGa electrode were investigated by inserting several monolayers (MLs) of Mn. The tunnel magnetoresistance (TMR) ratio systematically increased when increasing the Mn layer thickness with a maximum of 18 (38.4)% at 300 (5) K for a Mn layer thickness of 0.6-0.8 nm. This ratio is five times higher compared to that without the Mn layer. The perpendicular magnetic anisotropy (PMA) field and the PMA constant of the ultrathin MnGa layer also increased up to 62-90 kOe and 6.2-11.3 Merg/cm3, respectively, with an increase in the Mn interlayer thickness, even for the ultrathin regime of the MnGa layer. For p-MTJs showing a high TMR and PMA, electron microscopy indicated the presence of 3-4 MLs of Mn at the MnGa/MgO interface; thus, the Mn modification enhanced the TMR as well as improved the PMA. This may be a promising finding to develop a Mn-based free layer for spin-transfer-torque devices for high-recording-density magnetoresistive random access memory and a sub-THz oscillator/detector.

  20. New Insight into the Angle Insensitivity of Ultrathin Planar Optical Absorbers for Broadband Solar Energy Harvesting.

    PubMed

    Liu, Dong; Yu, Haitong; Duan, Yuanyuan; Li, Qiang; Xuan, Yimin

    2016-09-01

    Two challenging problems still remain for optical absorbers consisting of an ultrathin planar semiconductor film on top of an opaque metallic substrate. One is the angle-insensitive mechanism and the other is the system design needed for broadband solar energy harvesting. Here, first we theoretically demonstrates that the high refractive index, instead of the ultrathin feature as reported in previous studies, is the physical origin of the angle insensitivity for ultrathin planar optical absorbers. They exhibit omnidirectional resonance for TE polarization due to the high complex refractive index difference between the semiconductor and the air, while for TM polarization the angle insensitivity persists up to an incident angle related to the semiconductor refractive index. These findings were validated by fabricating and characterizing an 18 nm Ge/Ag absorber sample (representative of small band gap semiconductors for photovoltaic applications) and a 22 nm hematite/Ag sample (representative of large band gap semiconductors for photoelectrochemical applications). Then, we took advantage of angle insensitivity and designed a spectrum splitting configuration for broadband solar energy harvesting. The cascaded solar cell and unassisted solar water splitting systems have photovoltaic and photoelectrochemical cells that are also spectrum splitters, so an external spectrum splitting element is not needed.

  1. Coherent control of double deflected anomalous modes in ultrathin trapezoid-shaped slit metasurface.

    PubMed

    Zhu, Z; Liu, H; Wang, D; Li, Y X; Guan, C Y; Zhang, H; Shi, J H

    2016-11-22

    Coherent light-matter interaction in ultrathin metamaterials has been demonstrated to dynamically modulate intensity, polarization and propagation direction of light. The gradient metasurface with a transverse phase variation usually exhibits an anomalous refracted beam of light dictated by so-called generalized Snell's law. However, less attention has been paid to coherent control of the metasurface with multiple anomalous refracted beams. Here we propose an ultrathin gradient metasurface with single trapezoid-shaped slot antenna as its building block that allows one normal and two deflected transmitted beams. It is numerically demonstrated that such metasurface with multiple scattering modes can be coherently controlled to modulate output intensities by changing the relative phase difference between two counterpropagating coherent beams. Each mode can be coherently switched on/off and two deflected anomalous beams can be synchronously dictated by the phase difference. The coherent control effect in the trapezoid-shaped slit metasurface will offer a promising opportunity for multichannel signals modulation, multichannel sensing and wave front shaping.

  2. Coherent control of double deflected anomalous modes in ultrathin trapezoid-shaped slit metasurface

    PubMed Central

    Zhu, Z.; Liu, H.; Wang, D.; Li, Y. X.; Guan, C. Y.; Zhang, H.; Shi, J. H.

    2016-01-01

    Coherent light-matter interaction in ultrathin metamaterials has been demonstrated to dynamically modulate intensity, polarization and propagation direction of light. The gradient metasurface with a transverse phase variation usually exhibits an anomalous refracted beam of light dictated by so-called generalized Snell’s law. However, less attention has been paid to coherent control of the metasurface with multiple anomalous refracted beams. Here we propose an ultrathin gradient metasurface with single trapezoid-shaped slot antenna as its building block that allows one normal and two deflected transmitted beams. It is numerically demonstrated that such metasurface with multiple scattering modes can be coherently controlled to modulate output intensities by changing the relative phase difference between two counterpropagating coherent beams. Each mode can be coherently switched on/off and two deflected anomalous beams can be synchronously dictated by the phase difference. The coherent control effect in the trapezoid-shaped slit metasurface will offer a promising opportunity for multichannel signals modulation, multichannel sensing and wave front shaping. PMID:27874053

  3. Understanding Metal-Insulator transitions in ultra-thin films of LaNiO3

    NASA Astrophysics Data System (ADS)

    Ravichandran, Jayakanth; King, Philip D. C.; Schlom, Darrell G.; Shen, Kyle M.; Kim, Philip

    2014-03-01

    LaNiO3 (LNO) is a bulk paramagnetic metal and a member of the family of RENiO3 Nickelates (RE = Rare Earth Metals), which is on the verge of the metal-insulator transition. Ultra-thin films of LNO has been studied extensively in the past and due to its sensitivity to disorder, the true nature of the metal-insulator transition in these films have been hard to decipher. We grow high quality ultra-thin films of LNO using reactive molecular beam epitaxy (MBE) and use a combination of ionic liquid gating and magneto-transport measurements to understand the nature and tunability of metal-insulator transition as a function of thickness for LNO. The underlying mechanisms for the transition are discussed in the framework of standard transport models. These results are discussed in the light of other Mott insulators such as Sr2IrO4, where we have performed similar measurements around the insulating state.

  4. Wafer-scale integrated micro-supercapacitors on an ultrathin and highly flexible biomedical platform.

    PubMed

    Maeng, Jimin; Meng, Chuizhou; Irazoqui, Pedro P

    2015-02-01

    We present wafer-scale integrated micro-supercapacitors on an ultrathin and highly flexible parylene platform, as progress toward sustainably powering biomedical microsystems suitable for implantable and wearable applications. All-solid-state, low-profile (<30 μm), and high-density (up to ~500 μF/mm(2)) micro-supercapacitors are formed on an ultrathin (~20 μm) freestanding parylene film by a wafer-scale parylene packaging process in combination with a polyaniline (PANI) nanowire growth technique assisted by surface plasma treatment. These micro-supercapacitors are highly flexible and shown to be resilient toward flexural stress. Further, direct integration of micro-supercapacitors into a radio frequency (RF) rectifying circuit is achieved on a single parylene platform, yielding a complete RF energy harvesting microsystem. The system discharging rate is shown to improve by ~17 times in the presence of the integrated micro-supercapacitors. This result suggests that the integrated micro-supercapacitor technology described herein is a promising strategy for sustainably powering biomedical microsystems dedicated to implantable and wearable applications.

  5. Freestanding ultrathin single-crystalline SiC substrate by MeV H ion-slicing

    NASA Astrophysics Data System (ADS)

    Jia, Qi; Huang, Kai; You, Tiangui; Yi, Ailun; Lin, Jiajie; Zhang, Shibin; Zhou, Min; Zhang, Bin; Zhang, Bo; Yu, Wenjie; Ou, Xin; Wang, Xi

    2018-05-01

    SiC is a widely used wide-bandgap semiconductor, and the freestanding ultrathin single-crystalline SiC substrate provides the material platform for advanced devices. Here, we demonstrate the fabrication of a freestanding ultrathin single-crystalline SiC substrate with a thickness of 22 μm by ion slicing using 1.6 MeV H ion implantation. The ion-slicing process performed in the MeV energy range was compared to the conventional case using low-energy H ion implantation in the keV energy range. The blistering behavior of the implanted SiC surface layer depends on both the implantation temperature and the annealing temperature. Due to the different straggling parameter for two implant energies, the distribution of implantation-induced damage is significantly different. The impact of implantation temperature on the high-energy and low-energy slicing was opposite, and the ion-slicing SiC in the MeV range initiates at a much higher temperature.

  6. A Hydrogel of Ultrathin Pure Polyaniline Nanofibers: Oxidant-Templating Preparation and Supercapacitor Application.

    PubMed

    Zhou, Kun; He, Yuan; Xu, Qingchi; Zhang, Qin'e; Zhou, An'an; Lu, Zihao; Yang, Li-Kun; Jiang, Yuan; Ge, Dongtao; Liu, Xiang Yang; Bai, Hua

    2018-05-15

    Although challenging, fabrication of porous conducting polymeric materials with excellent electronic properties is crucial for many applications. We developed a fast in situ polymerization approach to pure polyaniline (PANI) hydrogels, with vanadium pentoxide hydrate nanowires as both the oxidant and sacrifice template. A network comprised of ultrathin PANI nanofibers was generated during the in situ polymerization, and the large aspect ratio of these PANI nanofibers allowed the formation of hydrogels at a low solid content of 1.03 wt %. Owing to the ultrathin fibril structure, PANI hydrogels functioning as a supercapacitor electrode display a high specific capacitance of 636 F g -1 , a rate capability, and good cycling stability (∼83% capacitance retention after 10,000 cycles). This method was also extended to the preparation of polypyrrole and poly(3,4-ethylenedioxythiophene) hydrogels. This template polymerization method represents a rational strategy for design of conducing polymer networks, which can be readily integrated in high-performance devices or a further platform for functional composites.

  7. Out-of-plane chiral domain wall spin-structures in ultrathin in-plane magnets

    DOE PAGES

    Chen, Gong; Kang, Sang Pyo; Ophus, Colin; ...

    2017-05-19

    Chiral spin textures in ultrathin films, such as skyrmions or chiral domain walls, are believed to offer large performance advantages in the development of novel spintronics technologies. While in-plane magnetized films have been studied extensively as media for current- and field-driven domain wall dynamics with applications in memory or logic devices, the stabilization of chiral spin textures in in-plane magnetized films has remained rare. Here we report a phase of spin structures in an in-plane magnetized ultrathin film system where out-of-plane spin orientations within domain walls are stable. Moreover, while domain walls in in-plane films are generally expected to bemore » non-chiral, we show that right-handed spin rotations are strongly favoured in this system, due to the presence of the interfacial Dzyaloshinskii-Moriya interaction. These results constitute a platform to explore unconventional spin dynamics and topological phenomena that may enable high-performance in-plane spin-orbitronics devices.« less

  8. Structural phase diagram for ultra-thin epitaxial Fe 3O 4 / MgO(0 01) films: thickness and oxygen pressure dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alraddadi, S.; Hines, W.; Yilmaz, T.

    2016-02-19

    A systematic investigation of the thickness and oxygen pressure dependence for the structural properties of ultra-thin epitaxial magnetite (Fe 3O 4) films has been carried out; for such films, the structural properties generally differ from those for the bulk when the thickness ≤10 nm. Iron oxide ultra-thin films with thicknesses varying from 3 nm to 20 nm were grown on MgO (001) substrates using molecular beam epitaxy under different oxygen pressures ranging from 1 × 10 -7 torr to 1 × 10 -5 torr. The crystallographic and electronic structures of the films were characterized using low energy electron diffraction (LEED)more » and x-ray photoemission spectroscopy (XPS), respectively. Moreover, the quality of the epitaxial Fe 3O 4 ultra-thin films was judged by magnetic measurements of the Verwey transition, along with complementary XPS spectra. We observed that under the same growth conditions the stoichiometry of ultra-thin films under 10 nm transforms from the Fe 3O 4 phase to the FeO phase. In this work, a phase diagram based on thickness and oxygen pressure has been constructed to explain the structural phase transformation. It was found that high-quality magnetite films with thicknesses ≤20 nm formed within a narrow range of oxygen pressure. An optimal and controlled growth process is a crucial requirement for the accurate study of the magnetic and electronic properties for ultra-thin Fe 3O 4 films. Furthermore, these results are significant because they may indicate a general trend in the growth of other oxide films, which has not been previously observed or considered.« less

  9. Direct synthesis of ultrathin SOI structure by extremely low-energy oxygen implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoshino, Yasushi, E-mail: yhoshino@kanagawa-u.ac.jp; Yachida, Gosuke; Inoue, Kodai

    2016-06-15

    We performed extremely low-energy {sup 16}O{sup +} implantation at 10 keV (R{sub p} ∼ 25 nm) followed by annealing aiming at directly synthesizing an ultrathin Si layer separated by a buried SiO{sub 2} layer in Si(001) substrates, and then investigated feasible condition of recrystallization and stabilization of the superficial Si and the buried oxide layer by significantly low temperature annealing. The elemental compositions were analyzed by Rutherford backscattering (RBS) and secondary ion mass spectroscopy (SIMS). The crystallinity of the superficial Si layer was quantitatively confirmed by ananlyzing RBS-channeling spectra. Cross-sectional morphologies and atomic configurations were observed by transmission electron microscopemore » (TEM). As a result, we succeeded in directly synthesizing an ultrathin single-crystalline silicon layer with ≤20 nm thick separated by a thin buried stoichiometric SiO{sub 2} layer with ≤20 nm thick formed by extremely low-energy {sup 16}O{sup +} implantation followed by surprisingly low temperature annealing at 1050{sup ∘} C.« less

  10. Electronic-Reconstruction-Enhanced Tunneling Conductance at Terrace Edges of Ultrathin Oxide Films.

    PubMed

    Wang, Lingfei; Kim, Rokyeon; Kim, Yoonkoo; Kim, Choong H; Hwang, Sangwoon; Cho, Myung Rae; Shin, Yeong Jae; Das, Saikat; Kim, Jeong Rae; Kalinin, Sergei V; Kim, Miyoung; Yang, Sang Mo; Noh, Tae Won

    2017-11-01

    Quantum mechanical tunneling of electrons across ultrathin insulating oxide barriers has been studied extensively for decades due to its great potential in electronic-device applications. In the few-nanometers-thick epitaxial oxide films, atomic-scale structural imperfections, such as the ubiquitously existed one-unit-cell-high terrace edges, can dramatically affect the tunneling probability and device performance. However, the underlying physics has not been investigated adequately. Here, taking ultrathin BaTiO 3 films as a model system, an intrinsic tunneling-conductance enhancement is reported near the terrace edges. Scanning-probe-microscopy results demonstrate the existence of highly conductive regions (tens of nanometers wide) near the terrace edges. First-principles calculations suggest that the terrace-edge geometry can trigger an electronic reconstruction, which reduces the effective tunneling barrier width locally. Furthermore, such tunneling-conductance enhancement can be discovered in other transition metal oxides and controlled by surface-termination engineering. The controllable electronic reconstruction can facilitate the implementation of oxide electronic devices and discovery of exotic low-dimensional quantum phases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Ideal square quantum wells achieved in AlGaN/GaN superlattices using ultrathin blocking-compensation pair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiaohong; Xu, Hongmei; Xu, Fuchun

    A technique for achieving square-shape quantum wells (QWs) against the intrinsic polar discontinuity and interfacial diffusion through self-compensated pair interlayers is reported. Ultrathin low-and-high % pair interlayers that have diffusion-blocking and self-compensation capacities is proposed to resist the elemental diffusion at nanointerfaces and to grow the theoretically described abrupt rectangular AlGaN/GaN superlattices by metal-organic chemical vapor deposition. Light emission efficiency in such nanostructures is effectively enhanced and the quantum-confined Stark effect could be partially suppressed. This concept could effectively improve the quality of ultrathin QWs in functional nanostructures with other semiconductors or through other growth methods.

  12. The Effect of Climate Change on Ozone Depletion through Changes in Stratospheric Water Vapour

    NASA Technical Reports Server (NTRS)

    Kirk-Davidoff, Daniel B.; Hintsa, Eric J.; Anderson, James G.; Keith, David W.

    1999-01-01

    Several studies have predicted substantial increases in Arctic ozone depletion due to the stratospheric cooling induced by increasing atmospheric CO2 concentrations. But climate change may additionally influence Arctic ozone depletion through changes in the water vapor cycle. Here we investigate this possibility by combining predictions of tropical tropopause temperatures from a general circulation model with results from a one-dimensional radiative convective model, recent progress in understanding the stratospheric water vapor budget, modelling of heterogeneous reaction rates and the results of a general circulation model on the radiative effect of increased water vapor. Whereas most of the stratosphere will cool as greenhouse-gas concentrations increase, the tropical tropopause may become warmer, resulting in an increase of the mean saturation mixing ratio of water vapor and hence an increased transport of water vapor from the troposphere to the stratosphere. Stratospheric water vapor concentration in the polar regions determines both the critical temperature below which heterogeneous reactions on cold aerosols become important (the mechanism driving enhanced ozone depletion) and the temperature of the Arctic vortex itself. Our results indicate that ozone loss in the later winter and spring Arctic vortex depends critically on water vapor variations which are forced by sea surface temperature changes in the tropics. This potentially important effect has not been taken into account in previous scenarios of Arctic ozone loss under climate change conditions.

  13. Free-standing ultrathin CoMn2O4 nanosheets anchored on reduced graphene oxide for high-performance supercapacitors.

    PubMed

    Gao, Guoxin; Lu, Shiyao; Xiang, Yang; Dong, Bitao; Yan, Wei; Ding, Shujiang

    2015-11-21

    Ultrathin CoMn2O4 nanosheets supported on reduced graphene oxide (rGO) are successfully synthesized through a simple co-precipitation method with a post-annealing treatment. With the assistance of citrate, the free-standing CoMn2O4 ultrathin nanosheets can form porous overlays on both sides of the rGO sheets. Such a novel hybrid nanostructure can effectively promote charge transport and accommodate volume variation upon prolonged charge/discharge cycling. When evaluated as a promising electrode for supercapacitors in a 6 M KOH solution electrolyte, the hybrid nanocomposites demonstrate highly enhanced capacitance and excellent cycling stability.

  14. Highly efficient ultrathin-film amorphous silicon solar cells on top of imprinted periodic nanodot arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Wensheng, E-mail: yws118@gmail.com; Gu, Min, E-mail: mgu@swin.edu.au; Tao, Zhikuo

    2015-03-02

    The addressing of the light absorption and conversion efficiency is critical to the ultrathin-film hydrogenated amorphous silicon (a-Si:H) solar cells. We systematically investigate ultrathin a-Si:H solar cells with a 100 nm absorber on top of imprinted hexagonal nanodot arrays. Experimental evidences are demonstrated for not only notable silver nanodot arrays but also lower-cost ITO and Al:ZnO nanodot arrays. The measured external quantum efficiency is explained by the simulation results. The J{sub sc} values are 12.1, 13.0, and 14.3 mA/cm{sup 2} and efficiencies are 6.6%, 7.5%, and 8.3% for ITO, Al:ZnO, and silver nanodot arrays, respectively. Simulated optical absorption distribution shows high lightmore » trapping within amorphous silicon layer.« less

  15. Theoretical requirements for broadband perfect absorption of acoustic waves by ultra-thin elastic meta-films

    PubMed Central

    Duan, Yuetao; Luo, Jie; Wang, Guanghao; Hang, Zhi Hong; Hou, Bo; Li, Jensen; Sheng, Ping; Lai, Yun

    2015-01-01

    We derive and numerically demonstrate that perfect absorption of elastic waves can be achieved in two types of ultra-thin elastic meta-films: one requires a large value of almost pure imaginary effective mass density and a free space boundary, while the other requires a small value of almost pure imaginary effective modulus and a hard wall boundary. When the pure imaginary density or modulus exhibits certain frequency dispersions, the perfect absorption effect becomes broadband, even in the low frequency regime. Through a model analysis, we find that such almost pure imaginary effective mass density with required dispersion for perfect absorption can be achieved by elastic metamaterials with large damping. Our work provides a feasible approach to realize broadband perfect absorption of elastic waves in ultra-thin films. PMID:26184117

  16. Military tropical medicine.

    PubMed

    Bailey, M S; Ellis, C J

    2009-03-01

    Tropical diseases remain a significant threat to deployed military personnel as demonstrated by recent outbreaks amongst troops in Sierra Leone, Iraq and Afghanistan. Five cases are presented from military deployments in tropical or sub-tropical areas, which illustrate important diseases and diagnostic principles for military physicians.

  17. Wavelength Shifting in InP based Ultra-thin Quantum Well Infrared Photodetectors

    NASA Technical Reports Server (NTRS)

    Sengupta, D. K.; Gunapala, S. D.; Bandara, S. V.; Pool, F.; Liu, J. K.; McKelvy, M.

    1998-01-01

    We have demonstrated red-shifting of the wavelength response of a bound-to-continuum p-type ultra-thin InGaAs/Inp quantum well infrared photodetector after growth via rapid thermal annealing. Compared to the as-grown detector, the peak spectral response of the annealed detector was shifted to longer wavelength without any major degradation in responsivity characteristics.

  18. Microscopic Perspective on Photovoltaic Reciprocity in Ultrathin Solar Cells

    NASA Astrophysics Data System (ADS)

    Aeberhard, Urs; Rau, Uwe

    2017-06-01

    The photovoltaic reciprocity theory relates the electroluminescence spectrum of a solar cell under applied bias to the external photovoltaic quantum efficiency of the device as measured at short circuit conditions. Its derivation is based on detailed balance relations between local absorption and emission rates in optically isotropic media with nondegenerate quasiequilibrium carrier distributions. In many cases, the dependence of density and spatial variation of electronic and optical device states on the point of operation is modest and the reciprocity relation holds. In nanostructure-based photovoltaic devices exploiting confined modes, however, the underlying assumptions are no longer justifiable. In the case of ultrathin absorber solar cells, the modification of the electronic structure with applied bias is significant due to the large variation of the built-in field. Straightforward use of the external quantum efficiency as measured at short circuit conditions in the photovoltaic reciprocity theory thus fails to reproduce the electroluminescence spectrum at large forward bias voltage. This failure is demonstrated here by numerical simulation of both spectral quantities at normal incidence and emission for an ultrathin GaAs p -i -n solar cell using an advanced quantum kinetic formalism based on nonequilibrium Green's functions of coupled photons and charge carriers. While coinciding with the semiclassical relations under the conditions of their validity, the theory provides a consistent microscopic relationship between absorption, emission, and charge carrier transport in photovoltaic devices at arbitrary operating conditions and for any shape of optical and electronic density of states.

  19. Microscopic Perspective on Photovoltaic Reciprocity in Ultrathin Solar Cells.

    PubMed

    Aeberhard, Urs; Rau, Uwe

    2017-06-16

    The photovoltaic reciprocity theory relates the electroluminescence spectrum of a solar cell under applied bias to the external photovoltaic quantum efficiency of the device as measured at short circuit conditions. Its derivation is based on detailed balance relations between local absorption and emission rates in optically isotropic media with nondegenerate quasiequilibrium carrier distributions. In many cases, the dependence of density and spatial variation of electronic and optical device states on the point of operation is modest and the reciprocity relation holds. In nanostructure-based photovoltaic devices exploiting confined modes, however, the underlying assumptions are no longer justifiable. In the case of ultrathin absorber solar cells, the modification of the electronic structure with applied bias is significant due to the large variation of the built-in field. Straightforward use of the external quantum efficiency as measured at short circuit conditions in the photovoltaic reciprocity theory thus fails to reproduce the electroluminescence spectrum at large forward bias voltage. This failure is demonstrated here by numerical simulation of both spectral quantities at normal incidence and emission for an ultrathin GaAs p-i-n solar cell using an advanced quantum kinetic formalism based on nonequilibrium Green's functions of coupled photons and charge carriers. While coinciding with the semiclassical relations under the conditions of their validity, the theory provides a consistent microscopic relationship between absorption, emission, and charge carrier transport in photovoltaic devices at arbitrary operating conditions and for any shape of optical and electronic density of states.

  20. A Meteorological Overview of the TC4 Mission

    NASA Technical Reports Server (NTRS)

    Pfister, L.; Selkirk, H. B.; Starr, D. O.; Rosenlof, K.; Newman, P. F.

    2010-01-01

    The TC4 mission in Central America during summer 2007 examined convective transport into the tropical Upper Troposphere/Lower Stratosphere (UTLS) and the evolution of cirrus clouds. The tropical tropopause layer (TTL) circulation is dominated by the Asian monsoon anticyclone and westward winds that stretch from the western Pacific into the Atlantic. During TC4, TTL westward flow over Central America was stronger than normal. Incidence of cold clouds over the Central American region was the third lowest out of 34 years sampled. The major factor was an incipient La Nina, specifically anomalously cold temperatures off the Pacific Coast of South America. Weakness in the low level Caribbean jet caused a shift in the coldest clouds from the Caribbean to the Pacific side of Central America. The character of tropopause temperature variability was that of upward propagating waves generated by local and nonlocal convection. These waves produced tropopause temperature variations of 3 K, with peak-to-peak variations of 8 K. At low levels in Central America, flow from the Sahara desert predominated; further south, the air came from the Amazon region. Convectively influenced air in the upper troposphere came from Central America, the northern Amazon region, the Atlantic ITCZ, and the North American monsoon. In the TTL, Asian and African convection affected the observed air masses. North of 10N in the Central American TTL, African and Asian convection may have contributed as much to the air masses as Central and South American convection. South of 8N, Asian and African convection had far less impact.