Sample records for ultrathin zro2 films

  1. Metal Adatoms and Clusters on Ultrathin Zirconia Films

    PubMed Central

    2016-01-01

    Nucleation and growth of transition metals on zirconia has been studied by scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. Since STM requires electrical conductivity, ultrathin ZrO2 films grown by oxidation of Pt3Zr(0001) and Pd3Zr(0001) were used as model systems. DFT studies were performed for single metal adatoms on supported ZrO2 films as well as the (1̅11) surface of monoclinic ZrO2. STM shows decreasing cluster size, indicative of increasing metal–oxide interaction, in the sequence Ag < Pd ≈ Au < Ni ≈ Fe. Ag and Pd nucleate mostly at steps and domain boundaries of ZrO2/Pt3Zr(0001) and form three-dimensional clusters. Deposition of low coverages of Ni and Fe at room temperature leads to a high density of few-atom clusters on the oxide terraces. Weak bonding of Ag to the oxide is demonstrated by removing Ag clusters with the STM tip. DFT calculations for single adatoms show that the metal–oxide interaction strength increases in the sequence Ag < Au < Pd < Ni on monoclinic ZrO2, and Ag ≈ Au < Pd < Ni on the supported ultrathin ZrO2 film. With the exception of Au, metal nucleation and growth on ultrathin zirconia films follow the usual rules: More reactive (more electropositive) metals result in a higher cluster density and wet the surface more strongly than more noble metals. These bind mainly to the oxygen anions of the oxide. Au is an exception because it can bind strongly to the Zr cations. Au diffusion may be impeded by changing its charge state between −1 and +1. We discuss differences between the supported ultrathin zirconia films and the surfaces of bulk ZrO2, such as the possibility of charge transfer to the substrate of the films. Due to their large in-plane lattice constant and the variety of adsorption sites, ZrO2{111} surfaces are more reactive than many other oxygen-terminated oxide surfaces. PMID:27213024

  2. (Zr,Ti)O2 interface structure in ZrO2-TiO2 nanolaminates with ultrathin periodicity

    NASA Astrophysics Data System (ADS)

    Aita, C. R.; DeLoach, J. D.; Yakovlev, V. V.

    2002-07-01

    A mixed cation interfacial structure in ZrO2-TiO2 nanolaminate films with ultrathin bilayer periodicity grown by sputter deposition at 297 K was identified by x-ray diffraction and nonresonant Raman spectroscopy. This structure consists of an amorphous phase at a ZrO2-on-TiO2 bilayer interface, followed by an extensive crystalline monoclinic (Zr,Ti)O2 solid solution predicted by Vegard's law. Monoclinic (Zr,Ti)O2 has previously been reported only once, in bulk powder of a single composition (ZrTiO4) at high pressure. Its stabilization in the nanolaminates is explained by the Gibbs-Thomson effect. This complex interfacial structure is shown to be a means of accommodating chemical mixing in the absence of a driving force for heteroepitaxy.

  3. Growth of an Ultrathin Zirconia Film on Pt3Zr Examined by High-Resolution X-ray Photoelectron Spectroscopy, Temperature-Programmed Desorption, Scanning Tunneling Microscopy, and Density Functional Theory.

    PubMed

    Li, Hao; Choi, Joong-Il Jake; Mayr-Schmölzer, Wernfried; Weilach, Christian; Rameshan, Christoph; Mittendorfer, Florian; Redinger, Josef; Schmid, Michael; Rupprechter, Günther

    2015-02-05

    Ultrathin (∼3 Å) zirconium oxide films were grown on a single-crystalline Pt 3 Zr(0001) substrate by oxidation in 1 × 10 -7 mbar of O 2 at 673 K, followed by annealing at temperatures up to 1023 K. The ZrO 2 films are intended to serve as model supports for reforming catalysts and fuel cell anodes. The atomic and electronic structure and composition of the ZrO 2 films were determined by synchrotron-based high-resolution X-ray photoelectron spectroscopy (HR-XPS) (including depth profiling), low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), and density functional theory (DFT) calculations. Oxidation mainly leads to ultrathin trilayer (O-Zr-O) films on the alloy; only a small area fraction (10-15%) is covered by ZrO 2 clusters (thickness ∼0.5-10 nm). The amount of clusters decreases with increasing annealing temperature. Temperature-programmed desorption (TPD) of CO was utilized to confirm complete coverage of the Pt 3 Zr substrate by ZrO 2 , that is, formation of a closed oxide overlayer. Experiments and DFT calculations show that the core level shifts of Zr in the trilayer ZrO 2 films are between those of metallic Zr and thick (bulklike) ZrO 2 . Therefore, the assignment of such XPS core level shifts to substoichiometric ZrO x is not necessarily correct, because these XPS signals may equally well arise from ultrathin ZrO 2 films or metal/ZrO 2 interfaces. Furthermore, our results indicate that the common approach of calculating core level shifts by DFT including final-state effects should be taken with care for thicker insulating films, clusters, and bulk insulators.

  4. Surface Modification of Solution-Processed ZrO2 Films through Double Coating for Pentacene Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Kwon, Jin-Hyuk; Bae, Jin-Hyuk; Lee, Hyeonju; Park, Jaehoon

    2018-03-01

    We report the modification of surface properties of solution-processed zirconium oxide (ZrO2) dielectric films achieved by using double-coating process. It is proven that the surface properties of the ZrO2 film are modified through the double-coating process; the surface roughness decreases and the surface energy increases. The present surface modification of the ZrO2 film contributes to an increase in grain size of the pentacene film, thereby increasing the field-effect mobility and decreasing the threshold voltage of the pentacene thin-film transistors (TFTs) having the ZrO2 gate dielectric. Herein, the molecular orientation of pentacene film is also studied based on the results of contact angle and X-ray diffraction measurements. Pentacene molecules on the double-coated ZrO2 film are found to be more tilted than those on the single-coated ZrO2 film, which is attributed to the surface modification of the ZrO2 film. However, no significant differences are observed in insulating properties between the single-and the double-coated ZrO2 dielectric films. Consequently, the characteristic improvements of the pentacene TFTs with the double-coated ZrO2 gate dielectric film can be understood through the increase in pentacene grain size and the reduction in grain boundary density.

  5. Corrosion Protection of Copper Using Al2O3, TiO2, ZnO, HfO2, and ZrO2 Atomic Layer Deposition.

    PubMed

    Daubert, James S; Hill, Grant T; Gotsch, Hannah N; Gremaud, Antoine P; Ovental, Jennifer S; Williams, Philip S; Oldham, Christopher J; Parsons, Gregory N

    2017-02-01

    Atomic layer deposition (ALD) is a viable means to add corrosion protection to copper metal. Ultrathin films of Al 2 O 3 , TiO 2 , ZnO, HfO 2 , and ZrO 2 were deposited on copper metal using ALD, and their corrosion protection properties were measured using electrochemical impedance spectroscopy (EIS) and linear sweep voltammetry (LSV). Analysis of ∼50 nm thick films of each metal oxide demonstrated low electrochemical porosity and provided enhanced corrosion protection from aqueous NaCl solution. The surface pretreatment and roughness was found to affect the extent of the corrosion protection. Films of Al 2 O 3 or HfO 2 provided the highest level of initial corrosion protection, but films of HfO 2 exhibited the best coating quality after extended exposure. This is the first reported instance of using ultrathin films of HfO 2 or ZrO 2 produced with ALD for corrosion protection, and both are promising materials for corrosion protection.

  6. Conductive atomic force microscopy study of the photoexcitation effect on resistive switching in ZrO2(Y) films with Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Novikov, A. S.; Filatov, D. O.; Antonov, D. A.; Antonov, I. N.; Shenina, M. E.; Gorshkov, O. N.

    2018-03-01

    We report on the experimental observation of the effect of optical excitation on resistive switching in ultrathin ZrO2(Y) films with single-layered arrays of Au nanoparticles. The samples were prepared by depositing nanometer-thick Au films sandwiched between two ZrO2(Y) layers by magnetron sputtering followed by annealing. Resistive switching was studied by conductive atomic force microscopy by measuring cyclic current-voltage curves of a probe-to-sample contact. The contact area was illuminated by radiation of a semiconductor laser diode with the wavelength corresponding to the plasmon resonance in an Au nanoparticle array. The enhancement of the hysteresis in cyclic current-voltage curves due to bipolar resistive switching under illumination was observed. The effect was attributed to heating of Au nanoparticles due to plasmonic optical absorption and a plasmon resonance, which enhances internal photoemission of electrons from the Fermi level in Au nanoparticles into the conduction band of ZrO2(Y). Both factors promote resistive switching in a ZrO2(Y) matrix.

  7. Interaction of Au with thin ZrO2 films: influence of ZrO2 morphology on the adsorption and thermal stability of Au nanoparticles.

    PubMed

    Pan, Yonghe; Gao, Yan; Kong, Dandan; Wang, Guodong; Hou, Jianbo; Hu, Shanwei; Pan, Haibin; Zhu, Junfa

    2012-04-10

    The model catalysts of ZrO(2)-supported Au nanoparticles have been prepared by deposition of Au atoms onto the surfaces of thin ZrO(2) films with different morphologies. The adsorption and thermal stability of Au nanoparticles on thin ZrO(2) films have been investigated using synchrotron radiation photoemission spectroscopy (SRPES) and X-ray photoelectron spectroscopy (XPS). The thin ZrO(2) films were prepared by two different methods, giving rise to different morphologies. The first method utilized wet chemical impregnation to synthesize the thin ZrO(2) film through the procedure of first spin-coating a zirconium ethoxide (Zr(OC(2)H(5))(4)) precursor onto a SiO(2)/Si(100) substrate at room temperature followed by calcination at 773 K for 12 h. Scanning electron microscopy (SEM) investigations indicate that highly porous "sponge-like nanostructures" were obtained in this case. The second method was epitaxial growth of a ZrO(2)(111) film through vacuum evaporation of Zr metal onto Pt(111) in 1 × 10(-6) Torr of oxygen at 550 K followed by annealing at 1000 K. The structural analysis with low energy electron diffraction (LEED) of this film exhibits good long-range ordering. It has been found that Au forms smaller particles on the porous ZrO(2) film as compared to those on the ordered ZrO(2)(111) film at a given coverage. Thermal annealing experiments demonstrate that Au particles are more thermally stable on the porous ZrO(2) surface than on the ZrO(2)(111) surface, although on both surfaces, Au particles experience significant sintering at elevated temperatures. In addition, by annealing the surfaces to 1100 K, Au particles desorb completely from ZrO(2)(111) but not from porous ZrO(2). The enhanced thermal stability for Au on porous ZrO(2) can be attributed to the stronger interaction of the adsorbed Au with the defects and the hindered migration or coalescence resulting from the porous structures. © 2012 American Chemical Society

  8. Characterization of ZrO2 and (ZrO2)x(Al2O3)1-X thin films on Si substrates: effect of the Al2O3 component

    NASA Astrophysics Data System (ADS)

    Vitanov, P.; Harizanova, A.; Ivanova, T.

    2014-05-01

    ZrO2 and (ZrO2)x(Al2O3)1-x films were deposited by the sol-gel technique on Si substrates. The effect of the Al2O3 additive on the film surface morphology was studied by atomic force microscopy (AFM). The mixed oxide films showed a smoother morphology and lower values of the root-mean-square (RMS) roughness compared to ZrO2. Further, FTIR spectra indicated that ZrO2 underwent crystallization. The electrical measurements of the MIS structure revealed that the presence of Al2O3 and the amorphization affects its dielectric properties. The MIS structure with (ZrO2)x(Al2O3)1-x showed a lower fixed charge (~ 6×1010 cm-2) and an interface state density in the middle of the band gap of 6×1011 eV-1 cm-2). The dielectric constant measured was 22, with the leakage current density decreasing to 2×10-8 A cm-2 at 1×106 V cm-1.

  9. Atomic layer deposition and properties of ZrO2/Fe2O3 thin films

    PubMed Central

    Seemen, Helina; Ritslaid, Peeter; Rähn, Mihkel; Tamm, Aile; Kukli, Kaupo; Kasikov, Aarne; Link, Joosep; Stern, Raivo; Dueñas, Salvador; Castán, Helena; García, Héctor

    2018-01-01

    Thin solid films consisting of ZrO2 and Fe2O3 were grown by atomic layer deposition (ALD) at 400 °C. Metastable phases of ZrO2 were stabilized by Fe2O3 doping. The number of alternating ZrO2 and Fe2O3 deposition cycles were varied in order to achieve films with different cation ratios. The influence of annealing on the composition and structure of the thin films was investigated. Additionally, the influence of composition and structure on electrical and magnetic properties was studied. Several samples exhibited a measurable saturation magnetization and most of the samples exhibited a charge polarization. Both phenomena were observed in the sample with a Zr/Fe atomic ratio of 2.0. PMID:29441257

  10. Bioactivity and cytocompatibility of zirconia (ZrO(2)) films fabricated by cathodic arc deposition.

    PubMed

    Liu, Xuanyong; Huang, Anping; Ding, Chuanxian; Chu, Paul K

    2006-07-01

    Zirconium oxide thin films were fabricated on silicon wafers using a filtered cathodic arc system in concert with oxygen plasma. The structure and phase composition of the zirconium oxide thin films were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS), and transmission electron microscopy (TEM). The bioactivity was assessed by investigating the formation of apatite on the film surface after soaking in simulated body fluids. Bone marrow mesenchymal stem cells (BMMSC) were used to further evaluate the cytocompatibility of the materials. The results indicate that the films are composed of stoichiometric ZrO(2) and the composition is quite uniform throughout the thickness. Bone-like apatite can be formed on the surface of the ZrO(2) thin film in our SBF immersion experiments, suggesting that the surface is bioactive. The outermost layer of the ZrO(2) thin film comprises nano-sized particles that can be identified by AFM images taken on the thin film surface and TEM micrographs obtained from the interface between the ZrO(2) thin film and apatite layer. The nanostructured surface is believed to be the key factor that apatite is induced to precipitate on the surface. Bone marrow mesenchymal stem cells are observed to grow and proliferate in good states on the film surface. Our results show that ZrO(2) thin films fabricated by cathodic arc deposition exhibit favorable bioactivity and cytocompatibility.

  11. Defect-related electroluminescence from metal-oxide-semiconductor devices with ZrO2 films on silicon

    NASA Astrophysics Data System (ADS)

    Lv, Chunyan; Zhu, Chen; Wang, Canxing; Li, Dongsheng; Ma, Xiangyang; Yang, Deren

    2016-11-01

    Defect-related electroluminescence (EL) from ZrO2 films annealed under different atmosphere has been realized by means of electrical pumping scheme of metal-oxide-semiconductor (MOS) devices. At the same injection current, the acquired EL from the MOS device with the vacuum-annealed ZrO2 film is much stronger than that from the counterpart with the oxygen-annealed ZrO2 film. This is because the vacuum-annealed ZrO2 film contains more oxygen vacancies and Zr3+ ions. Analysis on the current-voltage characteristic of the ZrO2-based MOS devices indicates the P-F conduction mechanism dominates the electron transportation at the EL-enabling voltages under forward bias. It is tentatively proposed that the recombination of the electrons trapped in multiple oxygen-vacancy-related states with the holes in the defect level pertaining to Zr3+ ions brings about the EL emissions.

  12. Preparation of magnetron sputtered ZrO2 films on Si for gate dielectric application

    NASA Astrophysics Data System (ADS)

    Kondaiah, P.; Mohan Rao, G.; Uthanna, S.

    2012-11-01

    Zirconium oxide (ZrO2) thin films were deposited on to p - Si and quartz substrates by sputtering of zirconium target at an oxygen partial pressure of 4x10-2 Pa and sputter pressure of 0.4 Pa by using DC reactive magnetron sputtering technique. The effect of annealing temperature on structural, optical, electrical and dielectric properties of the ZrO2 films was systematically studied. The as-deposited films were mixed phases of monoclinic and orthorhombic ZrO2. As the annealing temperature increased to 1073 K, the films were transformed in to single phase orthorhombic ZrO2. Fourier transform infrared studies conform the presence of interfacial layer between Si and ZrO2. The optical band gap and refractive index of the as-deposited films were 5.82 eV and 1.81. As the annealing temperature increased to 1073 K the optical band gap and refractive index increased to 5.92 eV and 2.10 respectively. The structural changes were influenced the capacitance-voltage and current-voltage characteristics of Al/ZrO2/p-Si capacitors. The dielectric constant was increased from 11.6 to 24.5 and the leakage current was decreased from 1.65×10-7 to 3.30×10-9 A/ cm2 for the as-deposited and annealed at 1073 K respectively.

  13. Low-temperature, solution-processed ZrO2:B thin film: a bifunctional inorganic/organic interfacial glue for flexible thin-film transistors.

    PubMed

    Park, Jee Ho; Oh, Jin Young; Han, Sun Woong; Lee, Tae Il; Baik, Hong Koo

    2015-03-04

    A solution-processed boron-doped peroxo-zirconium oxide (ZrO2:B) thin film has been found to have multifunctional characteristics, providing both hydrophobic surface modification and a chemical glue layer. Specifically, a ZrO2:B thin film deposited on a hydrophobic layer becomes superhydrophilic following ultraviolet-ozone (UVO) treatment, whereas the same treatment has no effect on the hydrophobicity of the hydrophobic layer alone. Investigation of the ZrO2:B/hydrophobic interface layer using angle-resolved X-ray photoelectron spectroscopy (AR XPS) confirmed it to be chemically bonded like glue. Using the multifunctional nature of the ZrO2:B thin film, flexible amorphous indium oxide (In2O3) thin-film transistors (TFTs) were subsequently fabricated on a polyimide substrate along with a ZrO2:B/poly-4-vinylphenol (PVP) dielectric. An aqueous In2O3 solution was successfully coated onto the ZrO2:B/PVP dielectric, and the surface and chemical properties of the PVP and ZrO2:B thin films were analyzed by contact angle measurement, atomic force microscopy (AFM), Fourier transform infrared (FT-IR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The surface-engineered PVP dielectric was found to have a lower leakage current density (Jleak) of 4.38 × 10(-8) A/cm(2) at 1 MV/cm, with no breakdown behavior observed up to a bending radius of 5 mm. In contrast, the electrical characteristics of the flexible amorphous In2O3 TFT such as on/off current ratio (Ion/off) and electron mobility remained similar up to 10 mm of bending without degradation, with the device being nonactivated at a bending radius of 5 mm. These results suggest that ZrO2:B thin films could be used for low-temperature, solution-processed surface-modified flexible devices.

  14. ZrO2 film interfaces with Si and SiO2

    NASA Astrophysics Data System (ADS)

    Lopez, C. M.; Suvorova, N. A.; Irene, E. A.; Suvorova, A. A.; Saunders, M.

    2005-08-01

    The interface formed by the thermal oxidation of sputter-deposited Zr metal onto Si(100)- and SiO2-coated Si(100) wafers was studied in situ and in real time using spectroscopic ellipsometry (SE) in the 1.5-4.5 photon energy range and mass spectrometry of recoiled ions (MSRI). SE yielded optical properties for the film and interface and MSRI yielded film and interface composition. An optical model was developed and verified using transmission electron microscopy. Interfacial reaction of the ZrO2 was observed for both substrates, with more interaction for Si substrates. Equivalent oxide thicknesses and interface trap levels were determined on capacitors with lower trap levels found on samples with a thicker SiO2 underlayer. In addition to the optical properties for the intermixed interface layer, the optical properties for Zr metal and unreacted ZrO2 are also reported.

  15. Optical enhancement of Au doped ZrO2 thin films by sol-gel dip coating method

    NASA Astrophysics Data System (ADS)

    John Berlin, I.; Joy, K.

    2015-01-01

    Homogeneous and transparent Au doped ZrO2 thin films were prepared by sol-gel dip coating method. The films have mixed phase of tetragonal, monoclinic and face centered cubic with crack free surface. Due to the increase in Au doping concentration many-body interaction occurs between free carriers and ionized impurities causing decrease in optical band gap from 5.72 to 5.40 eV. Localized surface plasmon resonance peak of the Au doped films appeared at 610 nm. Conversion of photons to surface plasmons allows the sub-wavelength manipulation of electromagnetic radiation. Hence the prepared Au doped ZrO2 thin films can be applied in nanoscale photonic devices such as lenses, switches, waveguides etc. Moreover the photoluminescence (PL) intensity of Au doped ZrO2 thin films decrease due to decrease in the radiative recombination, life time of the excitons and suppression of grain growth of ZrO2 with increasing Au dopant.

  16. Structural, electrical and optical properties of nanostructured ZrO2 thin film deposited by SILAR method

    NASA Astrophysics Data System (ADS)

    Salodkar, R. V.; Belkhedkar, M. R.; Nemade, S. D.

    2018-05-01

    Successive Ionic Layer Adsorption and Reaction (SILAR) method has been employed to deposit nanocrystalline ZrO2 thin film of thickness 91 nm onto glass substrates using ZrOCl2.8H2O and NaOH as cationic and anionic precursors respectively. The structural and surface morphological characterizations have been carried out by means of X-ray diffraction and field emission scanning electron microscopy confirms the nanocrystalline nature of ZrO2 thin film. The direct optical band gap and activation energy of the ZrO2 thin film are found to be 4.74 and 0.80eV respectively.

  17. Microstructural and mechanical properties of Al2O3/ZrO2 nanomultilayer thin films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Balakrishnan, G.; Sastikumar, D.; Kuppusami, P.; Babu, R. Venkatesh; Song, Jung Il

    2018-02-01

    Single layer aluminium oxide (Al2O3), zirconium oxide (ZrO2) and Al2O3/ZrO2 nano multilayer films were deposited on Si (100) substrates at room temperature by pulsed laser deposition. The development of Al2O3/ZrO2 nanolayered structure is an important method used to stabilize the high temperature phase (tetragonal and cubic) of ZrO2 at room temperature. In the Al2O3/ZrO2 multilayer structure, the Al2O3 layer was kept constant at 5 nm, while the ZrO2 layer thickness varied from 5 to 20 nm (5/5, 5/10, 5/15 and 5/20 nm) with a total of 40 bilayers. The X-ray diffraction studies of single layer Al2O3 indicated the γ-Al2O3 of cubic structure, while the single layer ZrO2 indicated both monoclinic and tetragonal phases. The 5/5 and 5/10 nm multilayer films showed the nanocrystalline nature of ZrO2 with tetragonal phase. The high resolution transmission electron microscopy studies indicated the formation of well-defined Al2O3 and ZrO2 layers and that they are of uniform thickness. The atomic force microscopy studies revealed the uniform and dense distribution of nanocrystallites. The nanoindentation studies indicated the hardness of 20.8 ± 1.10 and 10 ± 0.60 GPa, for single layer Al2O3 and ZrO2, respectively, and the hardness of multilayer films varied with bilayer thickness.

  18. Investigation of phase transition properties of ZrO2 thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Davinder; Singh, Avtar; Kaur, Manpreet; Rana, Vikrant Singh; Kaur, Raminder

    2018-05-01

    This paper presents the synthesis of transparent thin films of zirconium oxide (ZrO2) deposited on glass substrates by sol-gel dip coating technique. Synthesized films were characterized for different annealing time and withdrawal speed. Change in crystallographic properties of thin films was investigated by using X-ray diffraction. Surface morphology of transparent thin films was estimated by using scanning electron microscope.

  19. Suppression of superconductivity in epitaxial MgB2 ultrathin films

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Wang, Yue; Wang, Da; Zhang, Yan; Liu, Zheng-Hao; Feng, Qing-Rong; Gan, Zi-Zhao

    2013-07-01

    MgB2 ultrathin films have potential to make sensitive superconducting devices such as superconducting single-photon detectors working at relatively high temperatures. We have grown epitaxial MgB2 films in thicknesses ranging from about 40 nm to 6 nm by using the hybrid physical-chemical vapor deposition method and performed electrical transport measurements to study the thickness dependence of the superconducting critical temperature Tc. With reducing film thickness d, although a weak depression of the Tc has been observed, which could be attributed to an increase of disorder (interband impurity scattering) in the film, the Tc retains close to the bulk value of MgB2 (39 K), being about 35 K in the film of 6 nm thick. We show that this result, beneficial to the application of MgB2 ultrathin films and in accordance with recent theoretical calculations, is in contrast to previous findings in MgB2 films prepared by other methods such as co-evaporation and molecular-beam epitaxy, where a severe Tc suppression has been observed with Tc about one third of the bulk value in films of ˜5 nm thick. We discuss this apparent discrepancy in experiments and suggest that, towards the ultrathin limit, the different degrees of Tc suppression displayed in currently obtained MgB2 films by various techniques may arise from the different levels of disorder present in the film or different extents of proximity effect at the film surface or film-substrate interface.

  20. Structural and dielectric properties of thin ZrO2 films on silicon grown by atomic layer deposition from cyclopentadienyl precursor

    NASA Astrophysics Data System (ADS)

    Niinistö, J.; Putkonen, M.; Niinistö, L.; Kukli, K.; Ritala, M.; Leskelä, M.

    2004-01-01

    ZrO2 thin films with thicknesses below 20 nm were deposited by the atomic layer deposition process on Si(100) substrates at 350 °C. An organometallic precursor, Cp2Zr(CH3)2 (Cp=cyclopentadienyl, C5H5) was used as the zirconium source and water or ozone as oxygen source. The influence of oxygen source and substrate pretreatment on the dielectric properties of ZrO2 films was investigated. Structural characterization with high-resolution transmission electron microscopy was performed to films grown onto HF-etched or native oxide covered silicon. Strong inhibition of ZrO2 film growth was observed with the water process on HF-etched Si. Ozone process on HF-etched Si resulted in interfacial SiO2 formation between the dense and uniform film and the substrate while water process produced interfacial layer with intermixing of SiO2 and ZrO2. The effective permittivity of ZrO2 in Al/ZrO2/Si/Al capacitor structures was dependent on the ZrO2 layer thickness and oxygen source used. The interfacial layer formation increased the capacitance equivalent oxide thickness (CET). CET of 2.0 nm was achieved with 5.9 nm ZrO2 film deposited with the H2O process on HF-stripped Si. The ozone-processed films showed good dielectric properties such as low hysteresis and nearly ideal flatband voltage. The leakage current density was lower and breakdown field higher for the ozone-processed ZrO2 films.

  1. Structural and morphological study of ZrO2 thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Davinder; Singh, Avtar; Kaur, Manpreet; Rana, Vikrant Singh; Kaur, Raminder

    2018-05-01

    In this paper we discuss the fabrication of transparent thin films of Zirconium Oxide (ZrO2) deposited on glass substrates by sol-gel dip coating technique. Further these fabricated films were characterized for different annealing temperatures and withdrawal speed. X-ray diffraction is used to study the structural properties of deposited thin films and it reveals the change in crystallographic properties with the change in annealing temperature. Thickness of thin films is estimated by using scanning electron microscope.

  2. Flexible Mixed-Potential-Type (MPT) NO2 Sensor Based on An Ultra-Thin Ceramic Film

    PubMed Central

    You, Rui; Jing, Gaoshan; Yu, Hongyan; Cui, Tianhong

    2017-01-01

    A novel flexible mixed-potential-type (MPT) sensor was designed and fabricated for NO2 detection from 0 to 500 ppm at 200 °C. An ultra-thin Y2O3-doped ZrO2 (YSZ) ceramic film 20 µm thick was sandwiched between a heating electrode and reference/sensing electrodes. The heating electrode was fabricated by a conventional lift-off process, while the porous reference and the sensing electrodes were fabricated by a two-step patterning method using shadow masks. The sensor’s sensitivity is achieved as 58.4 mV/decade at the working temperature of 200 °C, as well as a detection limit of 26.7 ppm and small response time of less than 10 s at 200 ppm. Additionally, the flexible MPT sensor demonstrates superior mechanical stability after bending over 50 times due to the mechanical stability of the YSZ ceramic film. This simply structured, but highly reliable flexible MPT NO2 sensor may lead to wide application in the automobile industry for vehicle emission systems to reduce NO2 emissions and improve fuel efficiency. PMID:28758933

  3. Effect of annealing temperature on optical and electrical properties of ZrO2-SnO2 based nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Anitha, V. S.; Lekshmy, S. Sujatha; Berlin, I. John; Joy, K.

    2014-01-01

    Transparent nanocomposite ZrO2-SnO2 thin films were prepared by sol-gel dip-coating technique. Films were annealed at 500°C, 800°C and 1200°C respectively. X-ray diffraction(XRD) spectra showed a mixture of three phases: tetragonal ZrO2 and SnO2 and orthorhombic ZrSnO4. The grain size of all the three phases' increased with annealing temperature. An average transmittance greater than 85%(in UV-Visible region) is observed for all the films. The band gap for the films decreased from 4.79 eV to 4.62 eV with increase in annealing temperature from 500 to 1200 °C. The electrical resistivity increased with increase in annealing temperature. Such composite ZrO2-SnO2 films can be used in many applications and in optoelectronic devices.

  4. Chlorine mobility during annealing in N2 in ZrO2 and HfO2 films grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Ferrari, S.; Scarel, G.; Wiemer, C.; Fanciulli, M.

    2002-12-01

    Atomic layer deposition (ALD) growth of high-κ dielectric films (ZrO2 and HfO2) was performed using ZrCl4, HfCl4, and H2O as precursors. In this work, we use time of flight secondary ion mass spectrometry to investigate the chlorine distribution in ALD grown ZrO2 and HfO2 films, and its evolution during rapid thermal processes in nitrogen atmosphere. Chlorine outdiffusion is found to depend strongly upon annealing temperature and weakly upon the annealing time. While in ZrO2 chlorine concentration is significantly decreased already at 900 °C, in HfO2 it is extremely stable, even at temperatures as high as 1050 °C.

  5. Ultrathin ZnO interfacial passivation layer for atomic layer deposited ZrO2 dielectric on the p-In0.2Ga0.8As substrate

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Lü, Hongliang; Yang, Tong; Zhang, Yuming; Zhang, Yimen; Liu, Dong; Ma, Zhenqiang; Yu, Weijian; Guo, Lixin

    2018-06-01

    Interfacial and electrical properties were investigated on metal-oxidesemiconductor capacitors (MOSCAPs) fabricated with bilayer ZnO/ZrO2 films by atomic layer deposition (ALD) on p-In0.2Ga0.8As substrates. The ZnO passivated In0.2Ga0.8As MOSCAPs have exhibited significantly improved capacitance-voltage (C-V) characteristics with the suppressed "stretched out" effect, increased accumulation capacitance and reduced accumulation frequency dispersion as well as the lower gate leakage current. In addition, the interface trap density (Dit) estimated by the Terman method was decreased dramatically for ZnO passivated p-In0.2Ga0.8As. The inherent mechanism is attributed to the fact that an ultrathin ZnO IPL employed by ALD prior to ZrO2 dielectric deposition can effectively suppress the formation of defect-related low-k oxides and As-As dimers at the interface, thus effectively improving the interface quality by largely removing the border traps aligned near the valence band edge of the p-In0.2Ga0.8As substrate.

  6. Synthesis of ZrO 2 thin films by atomic layer deposition: growth kinetics, structural and electrical properties

    NASA Astrophysics Data System (ADS)

    Cassir, Michel; Goubin, Fabrice; Bernay, Cécile; Vernoux, Philippe; Lincot, Daniel

    2002-06-01

    Ultra thin films of ZrO 2 were synthesized on soda lime glass and SnO 2-coated glass, using ZrCl 4 and H 2O precursors by atomic layer deposition (ALD), a sequential CVD technique allowing the formation of dense and homogeneous films. The effect of temperature on the film growth kinetics shows a first temperature window for ALD processing between 280 and 350 °C and a second regime or "pseudo-window" between 380 and 400 °C, with a growth speed of about one monolayer per cycle. The structure and morphology of films of less than 1 μm were characterized by XRD and SEM. From 275 °C, the ZrO 2 film is crystallized in a tetragonal form while a mixture of tetragonal and monoclinic phases appears at 375 °C. Impedance spectroscopy measurements confirmed the electrical properties of ZrO 2 and the very low porosity of the deposited layer.

  7. Effect of annealing temperature on microstructural evolution and electrical properties of sol-gel processed ZrO2/Si films

    NASA Astrophysics Data System (ADS)

    Hwang, Soo Min; Lee, Seung Muk; Park, Kyung; Lee, Myung Soo; Joo, Jinho; Lim, Jun Hyung; Kim, Hyoungsub; Yoon, Jae Jin; Kim, Young Dong

    2011-01-01

    High-permittivity (k) ZrO2/Si(100) films were fabricated by a sol-gel technique and the microstructural evolution with the annealing temperature (Ta) was correlated with the variation of their electrical performance. With increasing Ta, the ZrO2 films crystallized into a tetragonal (t) phase which was maintained until 700 °C at nanoscale thicknesses. Although the formation of the t-ZrO2 phase obviously enhanced the k value of the ZrO2 dielectric layer, the maximum capacitance in accumulation was decreased by the growth of a low-k interfacial layer (IL) between ZrO2 and Si with increasing Ta. On the other hand, the gate leakage current was remarkably depressed with increasing Ta probably due to the combined effects of the increased IL thickness, optical band gap of ZrO2, and density of ZrO2 and decreased remnant organic components.

  8. Enhanced magnetic moment in ultrathin Fe-doped CoFe2O4 films

    NASA Astrophysics Data System (ADS)

    Moyer, J. A.; Vaz, C. A. F.; Kumah, D. P.; Arena, D. A.; Henrich, V. E.

    2012-11-01

    The effect of film thickness on the magnetic properties of ultrathin Fe-doped cobalt ferrite (Co1-xFe2+xO4) grown on MgO (001) substrates is investigated by superconducting quantum interference device magnetometry and x-ray magnetic linear dichroism, while the distribution of the Co2+ cations between the octahedral and tetrahedral lattice sites is studied with x-ray absorption spectroscopy. For films thinner than 10 nm, there is a large enhancement of the magnetic moment; conversely, the remanent magnetization and coercive fields both decrease, while the magnetic spin axes of all the cations become less aligned with the [001] crystal direction. In particular, at 300 K the coercive fields of the thinnest films vanish. The spectroscopy data show that no changes occur in the cation distribution as a function of film thickness, ruling this out as the origin of the enhanced magnetic moment. However, the magnetic measurements all support the possibility that these ultrathin Fe-doped CoFe2O4 films are transitioning into a superparamagnetic state, as has been seen in ultrathin Fe3O4. A weakening of the magnetic interactions at the antiphase boundaries, leading to magnetically independent domains within the film, could explain the enhanced magnetic moment in ultrathin Fe-doped CoFe2O4 and the onset of superparamagnetism at room temperature.

  9. Thickness-dependence of optical constants for Ta2O5 ultrathin films

    NASA Astrophysics Data System (ADS)

    Zhang, Dong-Xu; Zheng, Yu-Xiang; Cai, Qing-Yuan; Lin, Wei; Wu, Kang-Ning; Mao, Peng-Hui; Zhang, Rong-Jun; Zhao, Hai-bin; Chen, Liang-Yao

    2012-09-01

    An effective method for determining the optical constants of Ta2O5 thin films deposited on crystal silicon (c-Si) using spectroscopic ellipsometry (SE) measurement with a two-film model (ambient-oxide-interlayer-substrate) was presented. Ta2O5 thin films with thickness range of 1-400 nm have been prepared by the electron beam evaporation (EBE) method. We find that the refractive indices of Ta2O5 ultrathin films less than 40 nm drop with the decreasing thickness, while the other ones are close to those of bulk Ta2O5. This phenomenon was due to the existence of an interfacial oxide region and the surface roughness of the film, which was confirmed by the measurement of atomic force microscopy (AFM). Optical properties of ultrathin film varying with the thickness are useful for the design and manufacture of nano-scaled thin-film devices.

  10. Paramagnetic defects and charge trapping behavior of ZrO2 films deposited on germanium by plasma-enhanced CVD

    NASA Astrophysics Data System (ADS)

    Mahata, C.; Bera, M. K.; Bose, P. K.; Maiti, C. K.

    2009-02-01

    Internal photoemission and magnetic resonance studies have been performed to investigate the charge trapping behavior and chemical nature of defects in ultrathin (~14 nm) high-k ZrO2 dielectric films deposited on p-Ge (1 0 0) substrates at low temperature (<200 °C) by plasma-enhanced chemical vapor deposition (PECVD) in a microwave (700 W, 2.45 GHz) plasma at a pressure of ~65 Pa. Both the band and defect-related electron states have been characterized using electron paramagnetic resonance, internal photoemission, capacitance-voltage and current-voltage measurements under UV illumination. Capacitance-voltage and photocurrent-voltage measurements were used to determine the centroid of oxide charge within the high-k gate stack. The observed shifts in photocurrent response of the Al/ZrO2/GeO2/p-Ge metal-insulator-semiconductor (MIS) capacitors indicate the location of the centroids to be within the ZrO2 dielectric near to the gate electrode. Moreover, the measured flat band voltage and photocurrent shifts also indicate a large density of traps in the dielectric. The impact of plasma nitridation on the interfacial quality of the oxides has been investigated. Different N sources, such as NO and NH3, have been used for nitrogen engineering. Oxynitride samples show a lower defect density and trapping over the non-nitrided samples. The charge trapping and detrapping properties of MIS capacitors under stressing in constant current and voltage modes have been investigated in detail.

  11. Oxidant effect of La(NO3)3·6H2O solution on the crystalline characteristics of nanocrystalline ZrO2 films grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Oh, Nam Khen; Kim, Jin-Tae; Kang, Goru; An, Jong-Ki; Nam, Minwoo; Kim, So Yeon; Park, In-Sung; Yun, Ju-Young

    2017-02-01

    Nanocrystalline ZrO2 films were synthesized by atomic layer deposition method using CpZr[N(CH3)2]3 (Cp = C5H5) as the metal precursor and La(NO3)3·6H2O solution as the oxygen source. La element in the deposited ZrO2 films could not be detected as its content was below the resolution limit of the X-ray photoelectron spectroscopy. The alternative introduction of La(NO3)3·6H2O solution to conventionally used H2O as the oxidant effectively altered the crystalline structure, grain size, and surface roughness of the grown ZrO2 films. Specifically, the crystalline structure of the ZrO2 film changed from a mixture of tetragonal and monoclinic phases to monoclinic phase. The average grain size also increased, and the resulting film surface became rougher. The average grain sizes of the ZrO2 films prepared from La(NO3)3·6H2O solution at concentrations of 10, 20, 30, and 40% were 280, 256, 208, and 200 nm, respectively, whereas that prepared using H2O oxidant was 142 nm. However, the concentration of La(NO3)3·6H2O solution minimally influenced the crystalline characteristics of the nanocrystalline ZrO2 films i.e., the crystalline structure, grain size, and surface roughness except for crystallite size.

  12. Influence of Thickness on the Electrical Transport Properties of Exfoliated Bi2Te3 Ultrathin Films

    NASA Astrophysics Data System (ADS)

    Mo, D. L.; Wang, W. B.; Cai, Q.

    2016-08-01

    In this work, the mechanical exfoliation method has been utilized to fabricate Bi2Te3 ultrathin films. The thickness of the ultrathin films is revealed to be several tens of nanometers. Weak antilocalization effects and Shubnikov de Haas oscillations have been observed in the magneto-transport measurements on individual films with different thickness, and the two-dimensional surface conduction plays a dominant role. The Fermi level is found to be 81 meV above the Dirac point, and the carrier mobility can reach ~6030 cm2/(Vs) for the 10-nm film. When the film thickness decreases from 30 to 10 nm, the Fermi level will move 8 meV far from the bulk valence band. The coefficient α in the Hikami-Larkin-Nagaoka equation is shown to be ~0.5, manifesting that only the bottom surface of the Bi2Te3 ultrathin films takes part in transport conductions. These will pave the way for understanding thoroughly the surface transport properties of topological insulators.

  13. Electrical characteristics and step coverage of ZrO2 films deposited by atomic layer deposition for through-silicon via and metal-insulator-metal applications

    NASA Astrophysics Data System (ADS)

    Choi, Kyeong-Keun; Park, Chan-Gyung; Kim, Deok-kee

    2016-01-01

    The electrical characteristics and step coverage of ZrO2 films deposited by atomic layer deposition were investigated for through-silicon via (TSV) and metal-insulator-metal applications at temperatures below 300 °C. ZrO2 films were able to be conformally deposited on the scallops of 50-µm-diameter, 100-µm-deep TSV holes. The mean breakdown field of 30-nm-thick ZrO2 films on 30-nm-thick Ta(N) increased about 41% (from 2.7 to 3.8 MV/cm) upon H2 plasma treatment. With the plasma treatment, the breakdown field of the film increased and the temperature coefficient of capacitance decreased significantly, probably as a result of the decreased carbon concentration in the film.

  14. Evolution of zirconyl-stearate Langmuir monolayers and the synthesized ZrO2 thin films with pH

    NASA Astrophysics Data System (ADS)

    Choudhary, Raveena; Sharma, Rajni; Brar, Loveleen K.

    2018-04-01

    ZrO2 thin films have a wide range of applications ranging from photonics, antireflection coatings, and resistive oxygen gas sensors, as a gate dielectric and in high temperature fuel cells. We have used the deposition of zirconyl stearate monolayers followed by their oxidation as a method for the synthesis of zirconium oxide thin films. The zirconyl stearate films have been studied and deposited for first time to the best of our knowledge. The Langmuir monolayers are studied using pressure-Area (π-A) isotherms and oscillatory barrier method. The morphology of the films for limited number of layers was studied with FE-SEM to determine the effect of pH on the final ZrO2 film. The 200 layer deposition films show pure monoclinic phase. The films have a band gap ˜6.0eV with a strong PL emission peak is at 490 nm and a weak peak is at 423 nm. So the films formed by this deposition method are suitable for luminescent applications

  15. Doped ZrO2 for future lead free piezoelectric devices

    NASA Astrophysics Data System (ADS)

    Starschich, S.; Böttger, U.

    2018-01-01

    The ferroelectric and piezoelectric properties of doped ZrO2 prepared by chemical solution deposition (CSD) are investigated. Doping with different elements such as Mg, In, La, and Y leads to a stabilization of the constricted hysteresis. As shown in a previous work, for the constricted hysteresis of ZrO2, the piezoelectric response is significantly larger compared to ZrO2 with a normal hysteresis. The Mg doped ZrO2 shows a strong temperature and cycle stability. For the piezoelectric properties, a magnesium concentration of 7% shows the largest piezoelectric response with a piezoelectric coefficient of >10 pm/V, as well as the best cycle stability. Due to thicker films, which can be realized by the CSD technique, the shown doped ZrO2 films are a promising candidate for energy related applications such as piezoelectric energy harvesting as well as for microelectromechanical systems.

  16. Effect of ZrO2 film thickness on the photoelectric properties of mixed-cation perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Li, Yanyan; Zhao, Li; Wei, Shoubin; Xiao, Meng; Dong, Binghai; Wan, Li; Wang, Shimin

    2018-05-01

    In this work, perovskite solar cells (PSCs) were fabricated in the ambient air, with a scaffold layer composed of TiO2/ZrO2 double layer as the mesoscopic layer and carbon as the counter electrode. The effect of ZrO2 thin film thickness on the photovoltaic performances of PSCs was also studied in detail. Results showed that the photoelectric properties of as-prepared PSCs largely depend on the thin film thickness due to a series of factors, including surface roughness, charge transport resistance, and electron-hole recombination rate. The power conversion efficiency of PSCs increased from 8.37% to 11.33% by varying the thin film thickness from 75 nm to 305 nm, and the optimal power conversion efficiency was realized up to the 11.33% with a thin film thickness of 167 nm. This research demonstrates a promising route for the high-efficiency and low-cost photovoltaic technology.

  17. Naturally formed ultrathin V2O5 heteroepitaxial layer on VO2/sapphire(001) film

    NASA Astrophysics Data System (ADS)

    Littlejohn, Aaron J.; Yang, Yunbo; Lu, Zonghuan; Shin, Eunsung; Pan, KuanChang; Subramanyam, Guru; Vasilyev, Vladimir; Leedy, Kevin; Quach, Tony; Lu, Toh-Ming; Wang, Gwo-Ching

    2017-10-01

    Vanadium dioxide (VO2) and vanadium pentoxide (V2O5) thin films change their properties in response to external stimuli such as photons, temperature, electric field and magnetic field and have applications in electronics, optical devices, and sensors. Due to the multiple valence states of V and non-stoichiometry in thin films, it is challenging to grow epitaxial, single-phase V-oxide on a substrate, or a heterostructure of two epitaxial V-oxides. We report the formation of a heterostructure consisting of a few nm thick ultrathin V2O5 epitaxial layer on pulsed laser deposited tens of nm thick epitaxial VO2 thin films grown on single crystal Al2O3(001) substrates without post annealing of the VO2 film. The simultaneous observation of the ultrathin epitaxial V2O5 layer and VO2 epitaxial film is only possible by our unique reflection high energy electron diffraction pole figure analysis. The out-of-plane and in-plane epitaxial relationships are V2O5[100]||VO2[010]||Al2O3[001] and V2O5[03 2 bar ]||VO2[100]||Al2O3[1 1 bar 0], respectively. The existence of the V2O5 layer on the surface of the VO2 film is also supported by X-ray photoelectron spectroscopy and Raman spectroscopy.

  18. Ultrathin Ferroelectric Films: Growth, Characterization, Physics and Applications.

    PubMed

    Wang, Ying; Chen, Weijin; Wang, Biao; Zheng, Yue

    2014-09-11

    Ultrathin ferroelectric films are of increasing interests these years, owing to the need of device miniaturization and their wide spectrum of appealing properties. Recent advanced deposition methods and characterization techniques have largely broadened the scope of experimental researches of ultrathin ferroelectric films, pushing intensive property study and promising device applications. This review aims to cover state-of-the-art experimental works of ultrathin ferroelectric films, with a comprehensive survey of growth methods, characterization techniques, important phenomena and properties, as well as device applications. The strongest emphasis is on those aspects intimately related to the unique phenomena and physics of ultrathin ferroelectric films. Prospects and challenges of this field also have been highlighted.

  19. Ultrathin Ferroelectric Films: Growth, Characterization, Physics and Applications

    PubMed Central

    Wang, Ying; Chen, Weijin; Wang, Biao; Zheng, Yue

    2014-01-01

    Ultrathin ferroelectric films are of increasing interests these years, owing to the need of device miniaturization and their wide spectrum of appealing properties. Recent advanced deposition methods and characterization techniques have largely broadened the scope of experimental researches of ultrathin ferroelectric films, pushing intensive property study and promising device applications. This review aims to cover state-of-the-art experimental works of ultrathin ferroelectric films, with a comprehensive survey of growth methods, characterization techniques, important phenomena and properties, as well as device applications. The strongest emphasis is on those aspects intimately related to the unique phenomena and physics of ultrathin ferroelectric films. Prospects and challenges of this field also have been highlighted. PMID:28788196

  20. Ultra-thin solid oxide fuel cells: Materials and devices

    NASA Astrophysics Data System (ADS)

    Kerman, Kian

    Solid oxide fuel cells are electrochemical energy conversion devices utilizing solid electrolytes transporting O2- that typically operate in the 800 -- 1000 °C temperature range due to the large activation barrier for ionic transport. Reducing electrolyte thickness or increasing ionic conductivity can enable lower temperature operation for both stationary and portable applications. This thesis is focused on the fabrication of free standing ultrathin (<100 nm) oxide membranes of prototypical O 2- conducting electrolytes, namely Y2O3-doped ZrO2 and Gd2O3-doped CeO2. Fabrication of such membranes requires an understanding of thin plate mechanics coupled with controllable thin film deposition processes. Integration of free standing membranes into proof-of-concept fuel cell devices necessitates ideal electrode assemblies as well as creative processing schemes to experimentally test devices in a high temperature dual environment chamber. We present a simple elastic model to determine stable buckling configurations for free standing oxide membranes. This guides the experimental methodology for Y 2O3-doped ZrO2 film processing, which enables tunable internal stress in the films. Using these criteria, we fabricate robust Y2O3-doped ZrO2 membranes on Si and composite polymeric substrates by semiconductor and micro-machining processes, respectively. Fuel cell devices integrating these membranes with metallic electrodes are demonstrated to operate in the 300 -- 500 °C range, exhibiting record performance at such temperatures. A model combining physical transport of electronic carriers in an insulating film and electrochemical aspects of transport is developed to determine the limits of performance enhancement expected via electrolyte thickness reduction. Free standing oxide heterostructures, i.e. electrolyte membrane and oxide electrodes, are demonstrated. Lastly, using Y2O3-doped ZrO2 and Gd2O 3-doped CeO2, novel electrolyte fabrication schemes are explored to develop oxide

  1. Electronic structure of a laterally graded ZrO2-TiO2 film on Si(100) prepared by metal-organic chemical vapor deposition in ultrahigh vacuum

    NASA Astrophysics Data System (ADS)

    Richter, J. H.; Karlsson, P. G.; Sandell, A.

    2008-05-01

    A TiO2-ZrO2 film with laterally graded stoichiometry has been prepared by metal-organic chemical vapor deposition in ultrahigh vacuum. The film was characterized in situ using synchrotron radiation photoelectron spectroscopy (PES) and x-ray absorption spectroscopy. PES depth profiling clearly shows that Ti ions segregate toward the surface region when mixed with ZrO2. The binding energy of the ZrO2 electronic levels is constant with respect to the local vacuum level. The binding energy of the TiO2 electronic levels is aligned to the Fermi level down to a Ti /Zr ratio of about 0.5. At a Ti /Zr ratio between 0.1 and 0.5, the TiO2 related electronic levels become aligned to the local vacuum level. The addition of small amounts of TiO2 to ZrO2 results in a ZrO2 band alignment relative to the Fermi level that is less asymmetric than for pure ZrO2. The band edge positions shift by -0.6eV for a Ti /Zr ratio of 0.03. This is explained in terms of an increase in the work function when adding TiO2, an effect that becomes emphasized by Ti surface segregation.

  2. Room Temperature Ferroelectricity in Ultrathin SnTe Films

    NASA Astrophysics Data System (ADS)

    Chang, Kai; Liu, Junwei; Lin, Haicheng; Zhao, Kun; Zhong, Yong; Ji, Shuai-Hua; He, Ke; Wang, Lili; Ma, Xucun; Fu, Liang; Chen, Xi; Xue, Qi-Kun

    2015-03-01

    The ultrathin SnTe films with several unit cell thickness grown on graphitized SiC(0001) surface have been studied by the scanning tunneling microscopy and spectroscopy (STM/S). The domain structures, local lattice distortion and the electronic band bending at film edges induced by the in-plane spontaneous polarization along < 110 > have been revealed at atomic scale. The experiments at variant temperature show that the Curie temperature Tc of the one unit cell thick (two atomic layers) SnTe film is as high as 280K, much higher than that of the bulk counterpart (~100K) and the 2-4 unit cell thick films even indicate robust ferroelectricity at room temperature. This Tc enhancement is attributed to the stress-free interface, larger electronic band gap and greatly reduced Sn vacancy concentration in the ultrathin films. The lateral domain size varies from several tens to several hundreds of nanometers, and the spontaneous polarization direction could be modified by STM tip. Those properties of ultrathin SnTe films show the potential application on ferroelectric devices. The work was financially supported by Ministry of Science and Technology of China, National Science Foundation and Ministry of Education of China.

  3. Structural effects due to the incorporation of Ar atoms in the lattice of ZrO 2 thin films prepared by ion beam assisted deposition

    NASA Astrophysics Data System (ADS)

    Holgado, J. P.; Escobar Galindo, R.; van Veen, A.; Schut, H.; de Hosson, J. Th. M.; González-Elipe, A. R.

    2002-09-01

    Two sets of ZrO 2 thin films have been prepared at room temperature by ion beam induced chemical vapour deposition and subsequently annealed up to 1323 K. The two sets of samples have been prepared by using either O 2+ or mixtures of (O 2++Ar +) ions for the decomposition of a volatile metallorganic precursor of zirconium. The structure and microstructure of these two sets of samples have been determined by means of X-ray diffraction, Fourier transform infrared spectroscopy and positron beam analysis (PBA). The samples were very compact and dense and had a very low-surface roughness. After annealing in air at T⩾573 K both sets of films were transparent and showed similar refraction indexes. For the (O 2++Ar +)-ZrO 2 thin films it is shown by X-ray photoelectron spectroscopy and Rutherford back scattering that a certain amount of incorporated Ar (5-6 at.%) remains incorporated within the oxide lattice. No changes were detected in the amount of incorporated Ar even after annealing at T=773 K. For higher annealing temperatures ( T>1073 K), the amount of Ar starts to decrease, and at T=1223 K only residual amounts of Ar (<0.4%) remain within the lattice. It has been found that as far as Ar atoms remain incorporated within the ZrO 2 network, the (O 2+-Ar +)-ZrO 2 films present a cubic/tetragonal phase. When the amount of "embedded" Ar decreases, the crystalline phase reverts to monoclinic, the majority phase observed for the (O 2+)-ZrO 2 films after any annealing treatments. The microstructure of the films after different annealing treatments has been investigated by PBA. The presence of Ar ions and the initial amorphous state of the layers were detected by this technique. An increase of the open volume was observed after annealing up to 773 K in both sets of samples. For higher annealing temperatures the samples showed a progressive crystallisation resulting in a decrease of the open volume. During this sintering the samples without embedded Ar present a higher

  4. Coexistence of Topological Edge State and Superconductivity in Bismuth Ultrathin Film.

    PubMed

    Sun, Hao-Hua; Wang, Mei-Xiao; Zhu, Fengfeng; Wang, Guan-Yong; Ma, Hai-Yang; Xu, Zhu-An; Liao, Qing; Lu, Yunhao; Gao, Chun-Lei; Li, Yao-Yi; Liu, Canhua; Qian, Dong; Guan, Dandan; Jia, Jin-Feng

    2017-05-10

    Ultrathin freestanding bismuth film is theoretically predicted to be one kind of two-dimensional topological insulators. Experimentally, the topological nature of bismuth strongly depends on the situations of the Bi films. Film thickness and interaction with the substrate often change the topological properties of Bi films. Using angle-resolved photoemission spectroscopy, scanning tunneling microscopy or spectroscopy and first-principle calculation, the properties of Bi(111) ultrathin film grown on the NbSe 2 superconducting substrate have been studied. We find the band structures of the ultrathin film is quasi-freestanding, and one-dimensional edge state exists on Bi(111) film as thin as three bilayers. Superconductivity is also detected on different layers of the film and the pairing potential exhibits an exponential decay with the layer thicknesses. Thus, the topological edge state can coexist with superconductivity, which makes the system a promising platform for exploring Majorana Fermions.

  5. Real-Time Deposition Monitor for Ultrathin Conductive Films

    NASA Technical Reports Server (NTRS)

    Hines, Jacqueline

    2011-01-01

    A device has been developed that can be used for the real-time monitoring of ultrathin (2 or more) conductive films. The device responds in less than two microseconds, and can be used to monitor film depositions up to about 60 thick. Actual thickness monitoring capability will vary based on properties of the film being deposited. This is a single-use device, which, due to the very low device cost, can be disposable. Conventional quartz/crystal microbalance devices have proven inadequate to monitor the thickness of Pd films during deposition of ultrathin films for hydrogen sensor devices. When the deposited film is less than 100 , the QCM measurements are inadequate to allow monitoring of the ultrathin films being developed. Thus, an improved, high-sensitivity, real-time deposition monitor was needed to continue Pd film deposition development. The new deposition monitor utilizes a surface acoustic wave (SAW) device in a differential delay-line configuration to produce both a reference response and a response for the portion of the device on which the film is being deposited. Both responses are monitored simultaneously during deposition. The reference response remains unchanged, while the attenuation of the sensing path (where the film is being deposited) varies as the film thickness increases. This device utilizes the fact that on high-coupling piezoelectric substrates, the attenuation of an SAW undergoes a transition from low to very high, and back to low as the conductivity of a film on the device surface goes from nonconductive to highly conductive. Thus, the sensing path response starts with a low insertion loss, and as a conductive film is deposited, the film conductivity increases, causing the device insertion loss to increase dramatically (by up to 80 dB or more), and then with continued film thickness increases (and the corresponding conductivity increases), the device insertion loss goes back down to the low level at which it started. This provides a

  6. Controllable fabrication of ultrathin free-standing graphene films

    PubMed Central

    Chen, Jianyi; Guo, Yunlong; Huang, Liping; Xue, Yunzhou; Geng, Dechao; Liu, Hongtao; Wu, Bin; Yu, Gui; Hu, Wenping; Liu, Yunqi; Zhu, Daoben

    2014-01-01

    Graphene free-standing film-like or paper-like materials have attracted great attention due to their intriguing electronic, optical and mechanical properties and potential application in chemical filters, molecular storage and supercapacitors. Although significant progress has been made in fabricating graphene films or paper, there is still no effective method targeting ultrathin free-standing graphene films (UFGFs). Here, we present a modified filtration assembly method to prepare these ultrathin films. With this approach, we have fabricated a series of ultrathin free-standing graphene oxide films and UFGFs, up to 40 mm in diameter, with controllable thickness from micrometre to nanoscale (approx. 40 nm) dimensions. This method can be easily scaled up and the films display excellent optical, electrical and electrochemical properties. The ability to produce UFGFs from graphene oxide with a scalable, low-cost approach should take us a step closer to real-world applications of graphene. PMID:24615152

  7. Biosensors Based on Ultrathin Film Composite Membranes

    DTIC Science & Technology

    1994-01-25

    composite membranes should have a number C •’ of potential advantages including fast response time, simplicity of construction, and applicability to a number...The support membrane for the ultrathin film composite was an Anopore ( Alltech Associates) microporous alumina filter, these membranes are 55 Pm thick...constant 02 concentration in this solution. Finally, one of the most important potential advantage of a sensor based on an ultrathin film composite

  8. Growth of highly strained CeO 2 ultrathin films

    DOE PAGES

    Shi, Yezhou; Lee, Sang Chul; Monti, Matteo; ...

    2016-11-07

    Large biaxial strain is a promising route to tune the functionalities of oxide thin films. However, large strain is often not fully realized due to the formation of misfit dislocations at the film/substrate interface. In this work, we examine the growth of strained ceria (CeO 2) thin films on (001)-oriented single crystal yttria-stabilized zirconia (YSZ) via pulsed-laser deposition. By varying the film thickness systematically between 1 and 430 nm, we demonstrate that ultrathin ceria films are coherently strained to the YSZ substrate for thicknesses up to 2.7 nm, despite the large lattice mismatch (~5%). The coherency is confirmed by bothmore » X-ray diffraction and high-resolution transmission electron microscopy. This thickness is several times greater than the predicted equilibrium critical thickness. Partial strain relaxation is achieved by forming semirelaxed surface islands rather than by directly nucleating dislocations. In situ reflective high-energy electron diffraction during growth confirms the transition from 2-D (layer-by-layer) to 3-D (island) at a film thickness of ~1 nm, which is further supported by atomic force microscopy. We propose that dislocations likely nucleate near the surface islands and glide to the film/substrate interface, as evidenced by the presence of 60° dislocations. Finally, an improved understanding of growing oxide thin films with a large misfit lays the foundation to systematically explore the impact of strain and dislocations on properties such as ionic transport and redox chemistry.« less

  9. Skyrmion morphology in ultrathin magnetic films

    NASA Astrophysics Data System (ADS)

    Gross, I.; Akhtar, W.; Hrabec, A.; Sampaio, J.; Martínez, L. J.; Chouaieb, S.; Shields, B. J.; Maletinsky, P.; Thiaville, A.; Rohart, S.; Jacques, V.

    2018-02-01

    Nitrogen-vacancy magnetic microscopy is employed in the quenching mode as a noninvasive, high-resolution tool to investigate the morphology of isolated skyrmions in ultrathin magnetic films. The skyrmion size and shape are found to be strongly affected by local pinning effects and magnetic field history. Micromagnetic simulations including a static disorder, based on the physical model of grain-to-grain thickness variations, reproduce all experimental observations and reveal the key role of disorder and magnetic history in the stabilization of skyrmions in ultrathin magnetic films. This work opens the way to an in-depth understanding of skyrmion dynamics in real, disordered media.

  10. Dielectric Properties of PMMA and its Composites with ZrO2

    NASA Astrophysics Data System (ADS)

    Sannakki, Basavaraja; Anita

    The polymer films of PMMA with different thickness and its composites with ZrO2 at various weight percentages but of same thickness have been studied. The determination of its dielectric properties, dielectric loss, a.conductivity and dielectric modulus were carried out using capacitance measurements of the above samples as a function of frequency, over the range 50 Hz - 5 MHz at room temperature. The films of PMMA and its composites have been characterized using X-Ray Diffractometer. The dielectric permittivity of films of PMMA behaves nonlinearly as frequency increases over the range 50-300 Hz, where as above 300 Hz the values of dielectric constant remains constant. But it is observed that the dielectric constant of PMMA increases as thickness of the film increases. In case of composite films of PMMA with ZrO2 the values of dielectric permittivity decreases gradually up to frequency of around 1 KHz and at higher frequencies it remains constant for all the weight percentages of ZrO2. The complex form of dielectric modulus of PMMA is obtained from the experimentally measured data of dielectric constant and dielectric loss values. The relaxation time of the orientation of dipoles is obtained from the peak value of angular frequency through the plots of imaginary part of electrical modulus as function of frequency. The impedance of PMMA polymer increases as thickness of the films increases. The a c conductivity of PMMA film remains constant up to frequency of 1 MHz and above. It shows a nonlinear phenomenon with peak values at frequency 4 MHz. Shape and size of the nanoparticles of composite film of PMMA with ZrO2 was analyzed by Field Emission Scanning Electron Microscope (FESEM).

  11. In situ NAP-XPS spectroscopy during methane dry reforming on ZrO2/Pt(1 1 1) inverse model catalyst

    NASA Astrophysics Data System (ADS)

    Rameshan, C.; Li, H.; Anic, K.; Roiaz, M.; Pramhaas, V.; Rameshan, R.; Blume, R.; Hävecker, M.; Knudsen, J.; Knop-Gericke, A.; Rupprechter, G.

    2018-07-01

    Due to the need of sustainable energy sources, methane dry reforming is a useful reaction for conversion of the greenhouse gases CH4 and CO2 to synthesis gas (CO  +  H2). Syngas is the basis for a wide range of commodity chemicals and can be utilized for fuel production via Fischer–Tropsch synthesis. The current study focuses on spectroscopic investigations of the surface and reaction properties of a ZrO2/Pt inverse model catalyst, i.e. ZrO2 particles (islands) grown on a Pt(1 1 1) single crystal, with emphasis on in situ near ambient pressure x-ray photoelectron spectroscopy (NAP-XPS) during MDR reaction. In comparison to technological systems, model catalysts facilitate characterization of the surface (oxidation) state, surface adsorbates, and the role of the metal-support interface. Using XPS and infrared reflection absorption spectroscopy we demonstrated that under reducing conditions (UHV or CH4) the ZrO2 particles transformed to an ultrathin ZrO2 film that started to cover (wet) the Pt surface in an SMSI-like fashion, paralleled by a decrease in surface/interface oxygen. In contrast, (more oxidizing) dry reforming conditions with a 1:1 ratio of CH4 and CO2 were stabilizing the ZrO2 particles on the model catalyst surface (or were even reversing the strong metal support interaction (SMSI) effect), as revealed by in situ XPS. Carbon deposits resulting from CH4 dissociation were easily removed by CO2 or by switching to dry reforming conditions (673–873 K). Thus, at these temperatures the active Pt surface remained free of carbon deposits, also preserving the ZrO2/Pt interface.

  12. High-mobility ultrathin semiconducting films prepared by spin coating

    NASA Astrophysics Data System (ADS)

    Mitzi, David B.; Kosbar, Laura L.; Murray, Conal E.; Copel, Matthew; Afzali, Ali

    2004-03-01

    The ability to deposit and tailor reliable semiconducting films (with a particular recent emphasis on ultrathin systems) is indispensable for contemporary solid-state electronics. The search for thin-film semiconductors that provide simultaneously high carrier mobility and convenient solution-based deposition is also an important research direction, with the resulting expectations of new technologies (such as flexible or wearable computers, large-area high-resolution displays and electronic paper) and lower-cost device fabrication. Here we demonstrate a technique for spin coating ultrathin (~50Å), crystalline and continuous metal chalcogenide films, based on the low-temperature decomposition of highly soluble hydrazinium precursors. We fabricate thin-film field-effect transistors (TFTs) based on semiconducting SnS2-xSex films, which exhibit n-type transport, large current densities (>105Acm-2) and mobilities greater than 10cm2V-1s-1-an order of magnitude higher than previously reported values for spin-coated semiconductors. The spin-coating technique is expected to be applicable to a range of metal chalcogenides, particularly those based on main group metals, as well as for the fabrication of a variety of thin-film-based devices (for example, solar cells, thermoelectrics and memory devices).

  13. Fabrication of Ultra-thin Color Films with Highly Absorbing Media Using Oblique Angle Deposition.

    PubMed

    Yoo, Young Jin; Lee, Gil Ju; Jang, Kyung-In; Song, Young Min

    2017-08-29

    Ultra-thin film structures have been studied extensively for use as optical coatings, but performance and fabrication challenges remain.  We present an advanced method for fabricating ultra-thin color films with improved characteristics. The proposed process addresses several fabrication issues, including large area processing. Specifically, the protocol describes a process for fabricating ultra-thin color films using an electron beam evaporator for oblique angle deposition of germanium (Ge) and gold (Au) on silicon (Si) substrates.  Film porosity produced by the oblique angle deposition induces color changes in the ultra-thin film. The degree of color change depends on factors such as deposition angle and film thickness. Fabricated samples of the ultra-thin color films showed improved color tunability and color purity. In addition, the measured reflectance of the fabricated samples was converted into chromatic values and analyzed in terms of color. Our ultra-thin film fabricating method is expected to be used for various ultra-thin film applications such as flexible color electrodes, thin film solar cells, and optical filters. Also, the process developed here for analyzing the color of the fabricated samples is broadly useful for studying various color structures.

  14. Fabrication of Large-area Free-standing Ultrathin Polymer Films

    PubMed Central

    Stadermann, Michael; Baxamusa, Salmaan H.; Aracne-Ruddle, Chantel; Chea, Maverick; Li, Shuaili; Youngblood, Kelly; Suratwala, Tayyab

    2015-01-01

    This procedure describes a method for the fabrication of large-area and ultrathin free-standing polymer films. Typically, ultrathin films are prepared using either sacrificial layers, which may damage the film or affect its mechanical properties, or they are made on freshly cleaved mica, a substrate that is difficult to scale. Further, the size of ultrathin film is typically limited to a few square millimeters. In this method, we modify a surface with a polyelectrolyte that alters the strength of adhesion between polymer and deposition substrate. The polyelectrolyte can be shown to remain on the wafer using spectroscopy, and a treated wafer can be used to produce multiple films, indicating that at best minimal amounts of the polyelectrolyte are added to the film. The process has thus far been shown to be limited in scalability only by the size of the coating equipment, and is expected to be readily scalable to industrial processes. In this study, the protocol for making the solutions, preparing the deposition surface, and producing the films is described. PMID:26066738

  15. Synthesis of Transparent Aqueous ZrO2 Nanodispersion with a Controllable Crystalline Phase without Modification for a High-Refractive-Index Nanocomposite Film.

    PubMed

    Xia, Yi; Zhang, Cong; Wang, Jie-Xin; Wang, Dan; Zeng, Xiao-Fei; Chen, Jian-Feng

    2018-05-30

    The controllable synthesis of metal oxide nanoparticles is of fundamental and technological interest. In this article, highly transparent aqueous nanodispersion of ZrO 2 with controllable crystalline phase, high concentration, and long-term stability was facilely prepared without any modification via the reaction of inexpensive inorganic zirconium salt and sodium hydroxide in water under an acid surrounding, combined with hydrothermal treatment. The as-prepared transparent nanodispersion had an average particle size of 7 nm, a high stability of 18 months, and a high solid content of 35 wt %. ZrO 2 nanocrystals could be readily dispersed in many solvents with high polarity including ethanol, dimethyl sulfoxide, acetic acid, ethylene glycol, and N, N-dimethylformamide, forming stable transparent nanodispersions. Furthermore, highly transparent polyvinyl alcohol/ZrO 2 nanocomposite films with high refractive index were successfully prepared with a simple solution mixing route. The refractive index could be tuned from 1.528 to 1.754 (@ 589 nm) by changing the mass fraction (0-80 wt %) of ZrO 2 in transparent nanocomposite films.

  16. Interfacial structure and electrical properties of ultrathin HfO2 dielectric films on Si substrates by surface sol-gel method

    NASA Astrophysics Data System (ADS)

    Gong, You-Pin; Li, Ai-Dong; Qian, Xu; Zhao, Chao; Wu, Di

    2009-01-01

    Ultrathin HfO2 films with about ~3 nm thickness were deposited on n-type (1 0 0) silicon substrates using hafnium chloride (HfCl4) source by the surface sol-gel method and post-deposition annealing (PDA). The interfacial structure and electrical properties of ultrathin HfO2 films were investigated. The HfO2 films show amorphous structures and smooth surface morphologies with a very thin interfacial oxide layer of ~0.5 nm and small surface roughness (~0.45 nm). The 500 °C PDA treatment forms stronger Hf-O bonds, leading to passivated traps, and the interfacial layer is mainly Hf silicate (HfxSiyOz). Equivalent oxide thickness of around 0.84 nm of HfO2/Si has been obtained with a leakage current density of 0.7 A cm-2 at Vfb + 1 V after 500 °C PDA. It was found that the current conduction mechanism of HfO2/Si varied from Schottky-Richardson emission to Fowler-Nordheim tunnelling at an applied higher positive voltage due to the activated partial traps remaining in the ultrathin HfO2 films.

  17. Effect of processing parameters on microstructure of MoS{sub 2} ultra-thin films synthesized by chemical vapor deposition method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Yang; You, Suping; Sun, Kewei

    2015-06-15

    MoS{sub 2} ultra-thin layers are synthesized using a chemical vapor deposition method based on the sulfurization of molybdenum trioxide (MoO{sub 3}). The ultra-thin layers are characterized by X-ray diffraction (XRD), photoluminescence (PL) spectroscopy and atomic force microscope (AFM). Based on our experimental results, all the processing parameters, such as the tilt angle of substrate, applied voltage, heating time and the weight of source materials have effect on the microstructures of the layers. In this paper, the effects of such processing parameters on the crystal structures and morphologies of the as-grown layers are studied. It is found that the film obtainedmore » with the tilt angle of 0.06° is more uniform. A larger applied voltage is preferred to the growth of MoS{sub 2} thin films at a certain heating time. In order to obtain the ultra-thin layers of MoS{sub 2}, the weight of 0.003 g of source materials is preferred. Under our optimal experimental conditions, the surface of the film is smooth and composed of many uniformly distributed and aggregated particles, and the ultra-thin MoS{sub 2} atomic layers (1∼10 layers) covers an area of more than 2 mm×2 mm.« less

  18. Designing metal hemispheres on silicon ultrathin film solar cells for plasmonic light trapping.

    PubMed

    Gao, Tongchuan; Stevens, Erica; Lee, Jung-kun; Leu, Paul W

    2014-08-15

    We systematically investigate the design of two-dimensional silver (Ag) hemisphere arrays on crystalline silicon (c-Si) ultrathin film solar cells for plasmonic light trapping. The absorption in ultrathin films is governed by the excitation of Fabry-Perot TEMm modes. We demonstrate that metal hemispheres can enhance absorption in the films by (1) coupling light to c-Si film waveguide modes and (2) exciting localized surface plasmon resonances (LSPRs). We show that hemisphere arrays allow light to couple to fundamental TEm and TMm waveguide modes in c-Si film as well as higher-order versions of these modes. The near-field light concentration of LSPRs also may increase absorption in the c-Si film, though these resonances are associated with significant parasitic absorption in the metal. We illustrate how Ag plasmonic hemispheres may be utilized for light trapping with 22% enhancement in short-circuit current density compared with that of a bare 100 nm thick c-Si ultrathin film solar cell.

  19. Extraordinary optical transmission in nanopatterned ultrathin metal films without holes

    DOE PAGES

    Peer, Akshit; Biswas, Rana

    2016-02-01

    In this study, we experimentally and theoretically demonstrate that a continuous gold film on a periodically textured substrate exhibits extraordinary optical transmission, even though no holes were etched in the film. Our film synthesis started by nanoimprinting a periodic array of nanocups with a period of ~750 nm on a polystyrene film over a glass substrate. A thin non-conformal gold film was sputter-deposited on the polystyrene by angle-directed deposition. The gold film was continuous with spatial thickness variation, the film being thinnest at the bottom of the nanocup. Measurements revealed an extraordinary transmission peak at a wavelength just smaller thanmore » the period, with an enhancement of ~2.5 compared to the classically expected value. Scattering matrix simulations model well the transmission and reflectance measurements when an ultrathin gold layer (~5 nm), smaller than the skin depth is retained at the bottom of the nanocups. Electric field intensities are enhanced by >100 within the nanocup, and ~40 in the ultrathin gold layer causing transmission through it. We show a wavelength red-shift of ~30 nm in the extraordinary transmission peak when the nanocups are coated with a thin film of a few nanometers, which can be utilized for biosensing. The continuous corrugated metal films are far simpler structures to observe extraordinary transmission, circumventing the difficult process of etching the metal film. Such continuous metal films with ultrathin regions are simple platforms for non-linear optics, plasmonics, and biological and chemical sensing.« less

  20. High-Pressure CO2 Sorption in Polymers of Intrinsic Microporosity under Ultrathin Film Confinement.

    PubMed

    Ogieglo, Wojciech; Ghanem, Bader; Ma, Xiaohua; Wessling, Matthias; Pinnau, Ingo

    2018-04-04

    Ultrathin microporous polymer films are pertinent to the development and further spread of nanotechnology with very promising potential applications in molecular separations, sensors, catalysis, or batteries. Here, we report high-pressure CO 2 sorption in ultrathin films of several chemically different polymers of intrinsic microporosity (PIMs), including the prototypical PIM-1. Films with thicknesses down to 7 nm were studied using interference-enhanced in situ spectroscopic ellipsometry. It was found that all PIMs swell much more than non-microporous polystyrene and other high-performance glassy polymers reported previously. Furthermore, chemical modifications of the parent PIM-1 strongly affected the swelling magnitude. By investigating the behavior of relative refractive index, n rel , it was possible to study the interplay between micropores filling and matrix expansion. Remarkably, all studied PIMs showed a maximum in n rel at swelling of 2-2.5% indicating a threshold point above which the dissolution in the dense matrix started to dominate over sorption in the micropores. At pressures above 25 bar, all PIMs significantly plasticized in compressed CO 2 and for the ones with the highest affinity to the penetrant, a liquidlike mixing typical for rubbery polymers was observed. Reduction of film thickness below 100 nm revealed pronounced nanoconfinement effects and resulted in a large swelling enhancement and a quick loss of the ultrarigid character. On the basis of the partial molar volumes of the dissolved CO 2 , the effective reduction of the T g was estimated to be ∼200 °C going from 128 to 7 nm films.

  1. High-mobility ultrathin semiconducting films prepared by spin coating.

    PubMed

    Mitzi, David B; Kosbar, Laura L; Murray, Conal E; Copel, Matthew; Afzali, Ali

    2004-03-18

    The ability to deposit and tailor reliable semiconducting films (with a particular recent emphasis on ultrathin systems) is indispensable for contemporary solid-state electronics. The search for thin-film semiconductors that provide simultaneously high carrier mobility and convenient solution-based deposition is also an important research direction, with the resulting expectations of new technologies (such as flexible or wearable computers, large-area high-resolution displays and electronic paper) and lower-cost device fabrication. Here we demonstrate a technique for spin coating ultrathin (approximately 50 A), crystalline and continuous metal chalcogenide films, based on the low-temperature decomposition of highly soluble hydrazinium precursors. We fabricate thin-film field-effect transistors (TFTs) based on semiconducting SnS(2-x)Se(x) films, which exhibit n-type transport, large current densities (>10(5) A cm(-2)) and mobilities greater than 10 cm2 V(-1) s(-1)--an order of magnitude higher than previously reported values for spin-coated semiconductors. The spin-coating technique is expected to be applicable to a range of metal chalcogenides, particularly those based on main group metals, as well as for the fabrication of a variety of thin-film-based devices (for example, solar cells, thermoelectrics and memory devices).

  2. Theoretical Methods of Domain Structures in Ultrathin Ferroelectric Films: A Review

    PubMed Central

    Liu, Jianyi; Chen, Weijin; Wang, Biao; Zheng, Yue

    2014-01-01

    This review covers methods and recent developments of the theoretical study of domain structures in ultrathin ferroelectric films. The review begins with an introduction to some basic concepts and theories (e.g., polarization and its modern theory, ferroelectric phase transition, domain formation, and finite size effects, etc.) that are relevant to the study of domain structures in ultrathin ferroelectric films. Basic techniques and recent progress of a variety of important approaches for domain structure simulation, including first-principles calculation, molecular dynamics, Monte Carlo simulation, effective Hamiltonian approach and phase field modeling, as well as multiscale simulation are then elaborated. For each approach, its important features and relative merits over other approaches for modeling domain structures in ultrathin ferroelectric films are discussed. Finally, we review recent theoretical studies on some important issues of domain structures in ultrathin ferroelectric films, with an emphasis on the effects of interfacial electrostatics, boundary conditions and external loads. PMID:28788198

  3. Ultrathin Nanocrystalline Diamond Films with Silicon Vacancy Color Centers via Seeding by 2 nm Detonation Nanodiamonds.

    PubMed

    Stehlik, Stepan; Varga, Marian; Stenclova, Pavla; Ondic, Lukas; Ledinsky, Martin; Pangrac, Jiri; Vanek, Ondrej; Lipov, Jan; Kromka, Alexander; Rezek, Bohuslav

    2017-11-08

    Color centers in diamonds have shown excellent potential for applications in quantum information processing, photonics, and biology. Here we report chemical vapor deposition (CVD) growth of nanocrystalline diamond (NCD) films as thin as 5-6 nm with photoluminescence (PL) from silicon-vacancy (SiV) centers at 739 nm. Instead of conventional 4-6 nm detonation nanodiamonds (DNDs), we prepared and employed hydrogenated 2 nm DNDs (zeta potential = +36 mV) to form extremely dense (∼1.3 × 10 13 cm -2 ), thin (2 ± 1 nm), and smooth (RMS roughness < 0.8 nm) nucleation layers on an Si/SiO x substrate, which enabled the CVD growth of such ultrathin NCD films in two different and complementary microwave (MW) CVD systems: (i) focused MW plasma with an ellipsoidal cavity resonator and (ii) pulsed MW plasma with a linear antenna arrangement. Analytical ultracentrifuge, infrared and Raman spectroscopies, atomic force microscopy, and scanning electron microscopy are used for detailed characterization of the 2 nm H-DNDs and the nucleation layer as well as the ultrathin NCD films. We also demonstrate on/off switching of the SiV center PL in the NCD films thinner than 10 nm, which is achieved by changing their surface chemistry.

  4. Conduction mechanism of leakage current due to the traps in ZrO2 thin film

    NASA Astrophysics Data System (ADS)

    Seo, Yohan; Lee, Sangyouk; An, Ilsin; Song, Chulgi; Jeong, Heejun

    2009-11-01

    In this work, a metal-oxide-semiconductor capacitor with zirconium oxide (ZrO2) gate dielectric was fabricated by an atomic layer deposition (ALD) technique and the leakage current characteristics under negative bias were studied. From the result of current-voltage curves there are two possible conduction mechanisms to explain the leakage current in the ZrO2 thin film. The dominant mechanism is the space charge limited conduction in the high-electric field region (1.5-5.0 MV cm-1) while the trap-assisted tunneling due to the existence of traps is prevailed in the low-electric field region (0.8-1.5 MV cm-1). Conduction caused by the trap-assisted tunneling is found from the experimental results of a weak temperature dependence of current, and the trap barrier height is obtained. The space charge limited conduction is evidenced, for different temperatures, by Child's law dependence of current density versus voltage. Child's law dependence can be explained by considering a single discrete trapping level and we can obtain the activation energy of 0.22 eV.

  5. Transport in ultrathin gold films decorated with magnetic Gd atoms

    NASA Astrophysics Data System (ADS)

    Alemani, Micol; Helgren, Erik; Hugel, Addison; Hellman, Frances

    2008-03-01

    We have performed four-probe transport measurements of ultrathin Au films decorated with Gd ad-atoms. The samples were prepared by quench condensation, i.e., sequential evaporation on a cryogenically cooled substrate under UHV conditions while monitoring the film thickness and resistance. Electrically continuous Au films at thickness of about 2 mono-layers of material are grown on an amorphous Ge wetting layer. The quench condensation method provides a sensitive control on the sample growth process, allowing us to tune the morphological and electrical configuration of the system. The ultrathin gold films develop from an insulating to a metallic state as a function of film thickness. The temperature dependence of the Au conductivity for different thickness is studied. It evolves from hopping transport for the insulating films, to a ln T dependence for thicker films. For gold films in the insulating regime we found a decreasing resistance by adding Gd. This is in agreement with a decreasing tunneling barrier height between metallic atoms. The Gd magnetic moments are randomly oriented for isolated atoms. This magnetic disorder leads to scattering of the charge carriers and a reduced conductivity compared to nonmagnetic materials.

  6. Molecular Imaging of Ultrathin Pentacene Films: Evidence for Homoepitaxy

    NASA Astrophysics Data System (ADS)

    Wu, Yanfei; Haugstad, Greg; Frisbie, C. Daniel

    2013-03-01

    Ultrathin polycrystalline films of organic semiconductors have received intensive investigations due to the critical role they play in governing the performance of organic thin film transistors. In this work, a variety of scanning probe microscopy (SPM) techniques have been employed to investigate ultrathin polycrystalline films (1-3 nm) of the benchmark organic semiconductor pentacene. By using spatially resolved Friction Force Microscopy (FFM), Kelvin Probe Force Microscopy (KFM) and Electrostatic Force Microscopy (EFM), an interesting multi-domain structure is revealed within the second layer of the films, characterized as two distinct friction and surface potential domains correlating with each other. The existence of multiple homoepitaxial modes within the films is thus proposed and examined. By employing lattice-revolved imaging using contact mode SPM, direct molecular evidence for the unusual homoepitaxy is obtained.

  7. Increased magnetic damping in ultrathin films of Co2FeAl with perpendicular anisotropy

    NASA Astrophysics Data System (ADS)

    Takahashi, Y. K.; Miura, Y.; Choi, R.; Ohkubo, T.; Wen, Z. C.; Ishioka, K.; Mandal, R.; Medapalli, R.; Sukegawa, H.; Mitani, S.; Fullerton, E. E.; Hono, K.

    2017-06-01

    We estimated the magnetic damping constant α of Co2FeAl (CFA) Heusler alloy films of different thicknesses with an MgO capping layer by means of time-resolved magneto-optical Kerr effect and ferromagnetic resonance measurements. CFA films with thicknesses of 1.2 nm and below exhibited perpendicular magnetic anisotropy arising from the presence of the interface with MgO. While α increased gradually with decreasing CFA film thickness down to 1.2 nm, it was increased substantially when the thickness was reduced further to 1.0 nm. Based on the microstructure analyses and first-principles calculations, we attributed the origin of the large α in the ultrathin CFA film primarily to the Al deficiency in the CFA layer, which caused an increase in the density of states and thereby in the scatterings of their spins.

  8. Intermixing and thermal oxidation of ZrO2 thin films grown on a-Si, SiN, and SiO2 by metallic and oxidic mode magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Coloma Ribera, R.; van de Kruijs, R. W. E.; Sturm, J. M.; Yakshin, A. E.; Bijkerk, F.

    2017-03-01

    The initial growth of DC sputtered ZrO2 on top of a-Si, SiN, and SiO2 layers has been studied by in vacuo high-sensitivity low energy ion scattering for two gas deposition conditions with different oxygen contents (high-O and low-O conditions). This unique surface sensitive technique allowed the determination of surface composition and thicknesses required to close the ZrO2 layer on all three substrates for both conditions. The ZrO2 layer closes similarly on all substrates due to more favorable enthalpies of formation for ZrO2 and ZrSiO4, resulting in passivation of the Si from the substrate. However, this layer closes at about half of the thickness (˜1.7 nm) for low-O conditions due to less oxidative conditions and less energetic particles arriving at the sample, which leads to less intermixing via silicate formation. In contrast, for high-O conditions, there is more ZrSiO4 and/or SiOx formation, giving more intermixing (˜3.4 nm). In vacuo X-ray photoelectron spectroscopy (XPS) measurements revealed similar stoichiometric ZrO2 layers deposited by both conditions and a higher interaction of the ZrO2 layer with the underlying a-Si for high-O conditions. In addition, oxygen diffusion through low-O ZrO2 films on a-Si has been investigated by ex situ angular-resolved XPS of samples annealed in atmospheric oxygen. For temperatures below 400 °C, no additional oxidation of the underlying a-Si was observed. This, together with the amorphous nature and smoothness of these samples, makes ZrO2 a good candidate as an oxidation protective layer on top of a-Si.

  9. Characterization of ZrO2 buffer layers for sequentially evaporated Y-Ba-CuO on Si and Al2O3 substrates

    NASA Technical Reports Server (NTRS)

    Valco, George J.; Rohrer, Norman J.; Pouch, John J.; Warner, Joseph D.; Bhasin, Kul B.

    1988-01-01

    Thin film high temperature superconductors have the potential to change the microwave technology for space communications systems. For such applications it is desirable that the films be formed on substrates such as Al2O3 which have good microwave properties. The use of ZrO2 buffer layers between Y-Ba-Cu-O and the substrate has been investigated. These superconducting films have been formed by multilayer sequential electron beam evaporation of Cu, BaF2 and Y with subsequent annealing. The three layer sequence of Y/BaF2/Cu is repeated four times for a total of twelve layers. Such a multilayer film, approximately 1 micron thick, deposited directly on SrTiO3 and annealed at 900 C for 45 min produces a film with a superconducting onset of 93 K and critical temperature of 85 K. Auger electron spectroscopy in conjunction with argon ion sputtering was used to obtain the distribution of each element as a function of depth for an unannealed film, the annealed film on SrTiO3 and annealed films on ZrO2 buffer layers. The individual layers were apparent. After annealing, the bulk of the film on SrTiO3 is observed to be fairly uniform while films on the substrates with buffer layers are less uniform. The Y-Ba-Cu-O/ZrO2 interface is broad with a long Ba tail into the ZrO2, suggesting interaction between the film and the buffer layer. The underlying ZrO2/Si interface is sharper. The detailed Auger results are presented and compared with samples annealed at different temperatures and durations.

  10. Effect of Dielectric Material Films on Crystallization Characteristics of Ge2Sb2Te5 Phase-Change Memory Film

    NASA Astrophysics Data System (ADS)

    Nishiuchi, Kenichi; Yamada, Noboru; Kawahara, Katsumi; Kojima, Rie

    2007-11-01

    Reduction of the film thickness of phase-change film and the adoption of GeN- or ZrO2-based dielectric films are both effective in achieving good thermal stability in phase-change optical disks. It was experimentally confirmed that, at a heating rate of 10 °C/min, the crystallization temperature Tx of the Ge2Sb2Te5 amorphous film when sandwiched by ZnS-SiO2 films markedly increases from 162 to 197 °C, while the thickness of the Ge2Sb2Te5 film decreases from 10 to 3 nm. Tx also slightly increases when ZnS-SiO2 films are substituted for GeN-based films (from 162 to 165 °C) and ZrO2-based films (from 162 to 167 °C). At the same time, the activation energy of crystallization is 2.4 eV for both GeN- and ZrO2-based films, and is higher than 2.2 eV for ZnS-SiO2 films.

  11. Enhanced Hydrogen Transport over Palladium Ultrathin Films through Surface Nanostructure Engineering.

    PubMed

    Abate, Salvatore; Giorgianni, Gianfranco; Gentiluomo, Serena; Centi, Gabriele; Perathoner, Siglinda

    2015-11-01

    Palladium ultrathin films (around 2 μm) with different surface nanostructures are characterized by TEM, SEM, AFM, and temperature programmed reduction (TPR), and evaluated in terms of H2 permeability and H2-N2 separation. A change in the characteristics of Pd seeds by controlled oxidation-reduction treatments produces films with the same thickness, but different surface and bulk nanostructure. In particular, the films have finer and more homogeneous Pd grains, which results in lower surface roughness. Although all samples show high permeo-selectivity to H2 , the samples with finer grains exhibit enhanced permeance and lower activation energy for H2 transport. The analysis of the data suggests that grain boundaries between the Pd grains at the surface favor H2 transfer from surface to subsurface. Thus, the surface nanostructure plays a relevant role in enhancing the transport of H2 over the Pd ultrathin film, which is an important aspect to develop improved membranes that function at low temperatures and toward new integrated process architectures in H2 and syngas production with enhanced sustainability. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A molecular dynamics analysis of ion irradiation of ultrathin amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Qi, J.; Komvopoulos, K.

    2016-09-01

    Molecular dynamics (MD) simulations provide insight into nanoscale problems where continuum description breaks down, such as the modeling of ultrathin films. Amorphous carbon (a-C) films are commonly used as protective overcoats in various contemporary technologies, including microelectromechanical systems, bio-implantable devices, optical lenses, and hard-disk drives. In all of these technologies, the protective a-C film must be continuous and very thin. For example, to achieve high storage densities (e.g., on the order of 1 Tb/in.2) in magnetic recording, the thickness of the a-C film used to protect the magnetic media and the recording head against mechanical wear and corrosion must be 2-3 nm. Inert ion irradiation is an effective post-deposition method for reducing the film thickness, while preserving the mechanical and chemical characteristics. In this study, MD simulations of Ar+ ion irradiated a-C films were performed to elucidate the effects of the ion incidence angle and ion kinetic energy on the film thickness and structure. The MD results reveal that the film etching rate exhibits a strong dependence on the ion kinetic energy and ion incidence angle, with a maximum etching rate corresponding to an ion incidence angle of ˜20°. It is also shown that Ar+ ion irradiation mainly affects the structure of the upper half of the ultrathin a-C film and that carbon atom hybridization is a strong function of the ion kinetic energy and ion incidence angle. The results of this study elucidate the effects of important ion irradiation parameters on the structure and thickness of ultrathin films and provide fundamental insight into the physics of dry etching.

  13. Structural and electrical properties of atomic layer deposited Al-doped ZrO2 films and of the interface with TaN electrode

    NASA Astrophysics Data System (ADS)

    Spiga, S.; Rao, R.; Lamagna, L.; Wiemer, C.; Congedo, G.; Lamperti, A.; Molle, A.; Fanciulli, M.; Palma, F.; Irrera, F.

    2012-07-01

    Al-doped ZrO2 (Al-ZrO2) films deposited by atomic layer deposition onto silicon substrates and the interface with the TaN metal gate are investigated. In particular, structural properties of as-grown and annealed films in the 6-26 nm thickness range, as well as leakage and capacitive behavior of metal-oxide-semiconductor stacks are characterized. As-deposited Al-ZrO2 films in the mentioned thickness range are amorphous and crystallize in the ZrO2 cubic phase after thermal treatment at 900 °C. Correspondingly, the dielectric constant (k) value increases from 20 ± 1 to 27 ± 2. The Al-ZrO2 layers exhibit uniform composition through the film thickness and are thermally stable on Si, whereas chemical reactions take place at the TaN/Al-ZrO2 interface. A transient capacitance technique is adopted for monitoring charge trapping and flat band instability at short and long time scales. The role of traps nearby the TaN/Al-ZrO2 interface is discussed and compared with other metal/high-k oxide films. Further, analytical modeling of the flat band voltage shift with a power-law dependence on time allows extracting features of bulk traps close to the silicon/oxide interface, which exhibit energy levels in the 1.4-1.9 eV range above the valence band of the Al-ZrO2.

  14. Electrical properties of spin coated ultrathin titanium oxide films on GaAs

    NASA Astrophysics Data System (ADS)

    Dutta, Shankar; Pal, Ramjay; Chatterjee, Ratnamala

    2015-04-01

    In recent years, ultrathin (<50 nm) metal oxide films have been being extensively studied as high-k dielectrics for future metal oxide semiconductor (MOS) technology. This paper discusses deposition of ultrathin TiO2 films (˜10 nm) on GaAs substrates (one sulfur-passivated, another unpassivated) by spin coating technique. The sulfur passivation is done to reduce the surface states of GaAs substrate. After annealing at 400 °C in a nitrogen environment, the TiO2 films are found to be polycrystalline in nature with rutile phase. The TiO2 films exhibit consistent grain size of 10-20 nm with thickness around 10-12 nm. Dielectric constants of the films are found to be 65.4 and 47.1 corresponding to S-passivated and unpassivated substrates, respectively. Corresponding threshold voltages of the MOS structures are measured to be -0.1 V to -0.3 V for the S-passivated and unpassivated samples, respectively. The S-passivated TiO2 film showed improved (lower) leakage current density (5.3 × 10-4 A cm-2 at 3 V) compared to the unpassivated film (1.8 × 10-3 A/cm2 at 3 V). Dielectric breakdown-field of the TiO2 films on S-passivated and unpassivated GaAs samples are found to be 8.4 MV cm-1 and 7.2 MV cm-1 respectively.

  15. Ultrathin Polymer Films, Patterned Arrays, and Microwells

    NASA Astrophysics Data System (ADS)

    Yan, Mingdi

    2002-05-01

    The ability to control and tailor the surface and interface properties of materials is important in microelectronics, cell growth control, and lab-on-a-chip devices. Modification of material surfaces with ultrathin polymer films is attractive due to the availability of a variety of polymers either commercially or by synthesis. We have developed two approaches to the attachment of ultrathin polymer films on solid substrates. In the first method, a silane-functionalized perfluorophenyl azide (PFPA-silane) was synthesized and used to covalently immobilize polymer thin films on silicon wafers. Silanization of the wafer surface with the PFPA-silane introduced a monolayer of azido groups which in turn covalently attached the polymer film by way of photochemically initiated insertion reactions. The thickness of the film could be adjusted by the type and the molecular weight of the polymer. The method is versatile due to the general C-H and/or N-H insertion reactions of crosslinker; and therefore, no specific reactive functional groups on the polymers are required. Using this method, a new type of microwell array was fabricated from covalently immobilized polymer thin films on flat substrates. The arrays were characterized with AFM, XPS, and TOF-SIMS. The second method describes the attachment of polymer thin films on solid substrates via UV irradiation. The procedure consisted of spin-coating a polymer film and irradiating the film with UV light. Following solvent extraction, a thin film remained. The thickness of the film, from a few to over a hundred nanometers, was controlled by varying solution concentration and the molecular weight of the polymer.

  16. Physicochemically functional ultrathin films by interfacial polymerization

    DOEpatents

    Lonsdale, Harold K.; Babcock, Walter C.; Friensen, Dwayne T.; Smith, Kelly L.; Johnson, Bruce M.; Wamser, Carl C.

    1990-01-01

    Interfacially-polymerized ultrathin films containing physicochemically functional groups are disclosed, both with and without supports. Various applications are disclsoed, including membrane electrodes, selective membranes and sorbents, biocompatible materials, targeted drug delivery, and narrow band optical absorbers.

  17. CO Oxidation and Subsequent CO 2 Chemisorption on Alkaline Zirconates: Li 2 ZrO 3 and Na 2 ZrO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alcántar-Vázquez, Brenda; Duan, Yuhua; Pfeiffer, Heriberto

    Here, two different alkaline zirconates (Li 2ZrO 3 and Na 2ZrO 3) were studied as possible bifunctional catalytic-captor materials for CO oxidation and the subsequent CO 2 chemisorption process. Initially, CO oxidation reactions were analyzed in a catalytic reactor coupled to a gas chromatograph, using Li 2ZrO 3 and Na 2ZrO 3, under different O 2 partial flows. We found results clearly showed that Na 2ZrO 3 possesses much better catalytic properties than Li 2ZrO 3. After the CO-O 2 oxidation catalytic analysis, CO2 chemisorption process was analyzed by thermogravimetric analysis, only for the Na 2ZrO 3 ceramic. The resultsmore » confirmed that Na 2ZrO 3 is able to work as a bifunctional material (CO oxidation and subsequent CO 2 chemisorption), although the kinetic CO 2 capture process was not the best one under the physicochemical condition used in this case. For Na 2ZrO 3, the best CO conversions were found between 445 and 580 °C (100%), while Li 2ZrO 3 only showed a 35% of efficiency between 460 and 503 °C. However, in the Na 2ZrO 3 case, at temperatures higher than 580 °C its catalytic activity gradually decreases as a result of CO 2 capture process. Finally, all these experiments were compared and supported with theoretical thermodynamic data.« less

  18. CO Oxidation and Subsequent CO 2 Chemisorption on Alkaline Zirconates: Li 2 ZrO 3 and Na 2 ZrO 3

    DOE PAGES

    Alcántar-Vázquez, Brenda; Duan, Yuhua; Pfeiffer, Heriberto

    2016-08-26

    Here, two different alkaline zirconates (Li 2ZrO 3 and Na 2ZrO 3) were studied as possible bifunctional catalytic-captor materials for CO oxidation and the subsequent CO 2 chemisorption process. Initially, CO oxidation reactions were analyzed in a catalytic reactor coupled to a gas chromatograph, using Li 2ZrO 3 and Na 2ZrO 3, under different O 2 partial flows. We found results clearly showed that Na 2ZrO 3 possesses much better catalytic properties than Li 2ZrO 3. After the CO-O 2 oxidation catalytic analysis, CO2 chemisorption process was analyzed by thermogravimetric analysis, only for the Na 2ZrO 3 ceramic. The resultsmore » confirmed that Na 2ZrO 3 is able to work as a bifunctional material (CO oxidation and subsequent CO 2 chemisorption), although the kinetic CO 2 capture process was not the best one under the physicochemical condition used in this case. For Na 2ZrO 3, the best CO conversions were found between 445 and 580 °C (100%), while Li 2ZrO 3 only showed a 35% of efficiency between 460 and 503 °C. However, in the Na 2ZrO 3 case, at temperatures higher than 580 °C its catalytic activity gradually decreases as a result of CO 2 capture process. Finally, all these experiments were compared and supported with theoretical thermodynamic data.« less

  19. Study of thin film production of ceramic ZrO2 on silicon wafer using second harmonic Nd-Yag laser with pulsed laser deposition technique

    NASA Astrophysics Data System (ADS)

    Suliyanti, Maria M.; Hidayah, Affi Nur; Kurniawan, K. H.

    2012-06-01

    Study about thin film production using technique pulsed laser deposition have been done. The Pulsed Laser Deposition (PLD) method has been used for growing thin film of ZrO2 on silicon wafer substrate (111 single crystal, thickness 400μm and diameter 7.5 cm). The target made from Zirconia oxide powder mixing with PVA and press using pressure 100kgN. The laser beam was focused by a lens (f = 100mm) through a quartz window onto the sample surface and the substrate was placed in parallel line with target. The distance between the target and the substrate is about 1 cm. The early results of this synthesis using 75 mJ Nd-YAG second harmonic laser pulse (532 nm Nd-YAG) and low pressure chamber surrounding gas 5 Torr. The irradiation of laser take around 6000 shoots or 10 minutes using frequencies laser 10 Hz. The micro thickness of film can be produced on silicon wafer using this technique. The results of ZrO2 thin film on substrate about 26.92%.

  20. X ray photoelectron spectroscopy (XPS) analysis of Photosensitive ZrO2 array

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zhao, G.; Zhu, R.; Kou, Z.

    2018-03-01

    Based on organic zirconium source as the starting material, by adding chemical modifiers which are made up with photosensitive ZrO2 sol. A uniformed ZrO2 array dot was fabricated with a mean diameter of around 800 nm. By using UV-vis spectra and X-ray photoelectron spectroscopy analysis method, studies the photosensitive ZrO2 gel film of photochemical reaction process and the photosensitive mechanism, to determine the zirconium atom centered chelate structure, reaction formed by metal chelate Zr atom for the center, and to establish the molecular model of the chelate. And studied the ultraviolet light in the process of the variation of the XPS spectra, Zr3d5/2 to 184.9 eV corresponding to the binding energy of the as the combination of state peak gradually reduce; By combining with the status of Zr-O peak gradually increase; The strength of the peak is gradually decline. This suggests that in the process of ultraviolet light photo chemical reaction happened. This study is of great significance to the micro fabrication of ZrO2 array not only to the memory devices but also to the optical devices.

  1. Physicochemically functional ultrathin films by interfacial polymerization

    DOEpatents

    Lonsdale, H.K.; Babcock, W.C.; Friensen, D.T.; Smith, K.L.; Johnson, B.M.; Wamser, C.C.

    1990-08-14

    Interfacially-polymerized ultrathin films containing physicochemically functional groups are disclosed, both with and without supports. Various applications are disclosed, including membrane electrodes, selective membranes and sorbents, biocompatible materials, targeted drug delivery, and narrow band optical absorbers. 3 figs.

  2. Coupling of microphase separation and dewetting in weakly segregated diblock co-polymer ultrathin films.

    PubMed

    Yan, Derong; Huang, Haiying; He, Tianbai; Zhang, Fajun

    2011-10-04

    We have studied the coupling behavior of microphase separation and autophobic dewetting in weakly segregated poly(ε-caprolactone)-block-poly(L-lactide) (PCL-b-PLLA) diblock co-polymer ultrathin films on carbon-coated mica substrates. At temperatures higher than the melting point of the PLLA block, the co-polymer forms a lamellar structure in bulk with a long period of L ∼ 20 nm, as determined using small-angle X-ray scattering. The relaxation procedure of ultrathin films with an initial film thickness of h = 10 nm during annealing has been followed by atomic force microscopy (AFM). In the experimental temperature range (100-140 °C), the co-polymer dewets to an ultrathin film of itself at about 5 nm because of the strong attraction of both blocks with the substrate. Moreover, the dewetting velocity increases with decreasing annealing temperatures. This novel dewetting kinetics can be explained by a competition effect of the composition fluctuation driven by the microphase separation with the dominated dewetting process during the early stage of the annealing process. While dewetting dominates the relaxation procedure and leads to the rupture of the ultrathin films, the composition fluctuation induced by the microphase separation attempts to stabilize them because of the matching of h to the long period (h ∼ 1/2L). The temperature dependence of these two processes leads to this novel relaxation kinetics of co-polymer thin films. © 2011 American Chemical Society

  3. Ultrathin nanofibrous films prepared from cadmium hydroxide nanostrands and anionic surfactants.

    PubMed

    Peng, Xinsheng; Karan, Santanu; Ichinose, Izumi

    2009-08-04

    We developed a simple fabrication method of ultrathin nanofibrous films from the dispersion of cadmium hydroxide nanostrands and anionic surfactants. The nanostrands were prepared in a dilute aqueous solution of cadmium chloride by using 2-aminoethanol. They were highly positively charged and gave bundlelike fibers upon mixing an aqueous solution of anionic surfactant. The nanostrand/surfactant composite fibers were filtered on an inorganic membrane filter. The resultant nanofibrous film was very uniform in the area of a few centimeters square when the thickness was not less than 60 nm. The films obtained with sodium tetradecyl sulfate (STS) had a composition close to the electroneutral complex, [Cd37(OH)68(H2O)n] x 6(STS), as confirmed by energy dispersive X-ray analysis. They were water-repellent with a contact angle of 117 degrees, and the value slightly decreased with the alkyl chain length of anionic surfactants. Ultrathin nanofibrous films were stable enough to be used for ultrafiltration at pressure difference of 90 kPa. We could effectively separate Au nanoparticles of 40 nm at an extremely high filtration rate of 14000 L/(h m2 bar).

  4. Local epitaxial growth of ZrO2 on Ge (100) substrates by atomic layer epitaxy

    NASA Astrophysics Data System (ADS)

    Kim, Hyoungsub; Chui, Chi On; Saraswat, Krishna C.; McIntyre, Paul C.

    2003-09-01

    High-k dielectric deposition processes for gate dielectric preparation on Si surfaces usually result in the unavoidable and uncontrolled formation of a thin interfacial oxide layer. Atomic layer deposition of ˜55-Å ZrO2 film on a Ge (100) substrate using ZrCl4 and H2O at 300 °C was found to produce local epitaxial growth [(001) Ge//(001) ZrO2 and [100] Ge//[100] ZrO2] without a distinct interfacial layer, unlike the situation observed when ZrO2 is deposited using the same method on Si. Relatively large lattice mismatch (˜10%) between ZrO2 and Ge produced a high areal density of interfacial misfit dislocations. Large hysteresis (>200 mV) and high frequency dispersion were observed in capacitance-voltage measurements due to the high density of interface states. However, a low leakage current density, comparable to values obtained on Si substrates, was observed with the same capacitance density regardless of the high defect density.

  5. Controlled Growth of Ultrathin Film of Organic Semiconductors by Balancing the Competitive Processes in Dip-Coating for Organic Transistors.

    PubMed

    Wu, Kunjie; Li, Hongwei; Li, Liqiang; Zhang, Suna; Chen, Xiaosong; Xu, Zeyang; Zhang, Xi; Hu, Wenping; Chi, Lifeng; Gao, Xike; Meng, Yancheng

    2016-06-28

    Ultrathin film with thickness below 15 nm of organic semiconductors provides excellent platform for some fundamental research and practical applications in the field of organic electronics. However, it is quite challenging to develop a general principle for the growth of uniform and continuous ultrathin film over large area. Dip-coating is a useful technique to prepare diverse structures of organic semiconductors, but the assembly of organic semiconductors in dip-coating is quite complicated, and there are no reports about the core rules for the growth of ultrathin film via dip-coating until now. In this work, we develop a general strategy for the growth of ultrathin film of organic semiconductor via dip-coating, which provides a relatively facile model to analyze the growth behavior. The balance between the three direct factors (nucleation rate, assembly rate, and recession rate) is the key to determine the growth of ultrathin film. Under the direction of this rule, ultrathin films of four organic semiconductors are obtained. The field-effect transistors constructed on the ultrathin film show good field-effect property. This work provides a general principle and systematic guideline to prepare ultrathin film of organic semiconductors via dip-coating, which would be highly meaningful for organic electronics as well as for the assembly of other materials via solution processes.

  6. Resistive switching of organic–inorganic hybrid devices of conductive polymer and permeable ultra-thin SiO2 films

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shunsuke; Kitanaka, Takahisa; Miyashita, Tokuji; Mitsuishi, Masaya

    2018-06-01

    We propose a resistive switching device composed of conductive polymer (PEDOT:PSS) and SiO2 ultra-thin films. The SiO2 film was fabricated from silsesquioxane polymer nanosheets as a resistive switching layer. Devices with metal (Ag or Au)∣SiO2∣PEDOT:PSS architecture show good resistive switching performance with set–reset voltages as low as several hundred millivolts. The device properties and the working mechanism were investigated by varying the electrode material, surrounding atmosphere, and SiO2 film thickness. Results show that resistive switching is based on water and ion migration at the PEDOT:PSS∣SiO2 interface.

  7. Resistive switching of organic-inorganic hybrid devices of conductive polymer and permeable ultra-thin SiO2 films.

    PubMed

    Yamamoto, Shunsuke; Kitanaka, Takahisa; Miyashita, Tokuji; Mitsuishi, Masaya

    2018-06-29

    We propose a resistive switching device composed of conductive polymer (PEDOT:PSS) and SiO 2 ultra-thin films. The SiO 2 film was fabricated from silsesquioxane polymer nanosheets as a resistive switching layer. Devices with metal (Ag or Au)∣SiO 2 ∣PEDOT:PSS architecture show good resistive switching performance with set-reset voltages as low as several hundred millivolts. The device properties and the working mechanism were investigated by varying the electrode material, surrounding atmosphere, and SiO 2 film thickness. Results show that resistive switching is based on water and ion migration at the PEDOT:PSS∣SiO 2 interface.

  8. Transport properties of ultra-thin VO2 films on (001) TiO2 grown by reactive molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Paik, Hanjong; Moyer, Jarrett A.; Spila, Timothy; Tashman, Joshua W.; Mundy, Julia A.; Freeman, Eugene; Shukla, Nikhil; Lapano, Jason M.; Engel-Herbert, Roman; Zander, Willi; Schubert, Jürgen; Muller, David A.; Datta, Suman; Schiffer, Peter; Schlom, Darrell G.

    2015-10-01

    We report the growth of (001)-oriented VO2 films as thin as 1.5 nm with abrupt and reproducible metal-insulator transitions (MIT) without a capping layer. Limitations to the growth of thinner films with sharp MITs are discussed, including the Volmer-Weber type growth mode due to the high energy of the (001) VO2 surface. Another key limitation is interdiffusion with the (001) TiO2 substrate, which we quantify using low angle annular dark field scanning transmission electron microscopy in conjunction with electron energy loss spectroscopy. We find that controlling island coalescence on the (001) surface and minimization of cation interdiffusion by using a low growth temperature followed by a brief anneal at higher temperature are crucial for realizing ultrathin VO2 films with abrupt MIT behavior.

  9. Improved metal-insulator-transition characteristics of ultrathin VO2 epitaxial films by optimized surface preparation of rutile TiO2 substrates

    NASA Astrophysics Data System (ADS)

    Martens, Koen; Aetukuri, Nagaphani; Jeong, Jaewoo; Samant, Mahesh G.; Parkin, Stuart S. P.

    2014-02-01

    Key to the growth of epitaxial, atomically thin films is the preparation of the substrates on which they are deposited. Here, we report the growth of atomically smooth, ultrathin films of VO2 (001), only ˜2 nm thick, which exhibit pronounced metal-insulator transitions, with a change in resistivity of ˜500 times, at a temperature that is close to that of films five times thicker. These films were prepared by pulsed laser deposition on single crystalline TiO2(001) substrates that were treated by dipping in acetone, HCl and HF in successive order, followed by an anneal at 700-750 °C in flowing oxygen. This pretreatment removes surface contaminants, TiO2 defects, and provides a terraced, atomically smooth surface.

  10. Investigations of Topological Surface States in Sb (111) Ultrathin Films by STM/STS Experiments and DFT Calculations

    NASA Astrophysics Data System (ADS)

    Luo, Ziyu; Yao, Guanggeng; Xu, Wentao; Feng, Yuanping; Wang, Xue-Sen

    2014-03-01

    Bulk Sb was regarded as a semimetal with a nontrivial topological order. It is worth exploring whether the Sb ultrathin film has the potential to be an elementary topological insulator. In the presence of quantum confinement effect, we investigated the evolution of topological surface states in Sb (111) ultrathin films with different thickness by the scanning tunneling microscopy/ spectroscopy (STM/STS) experiments and density functional theory (DFT) calculations. By comparing the quasiparticle interference (QPI) patterns obtained from Fourier-transform scanning tunneling spectroscopy (FT-STS) and from DFT calculations, we successfully derive the spin properties of topological surface states on Sb (111) ultrathin films. In addition, based on the DFT calculations, the 8BL Sb (111) ultrathin film was proved to possess up to 30% spinseparated topological surface states within the bandgap. Therefore, the highquality 8BL Sb (111) ultrathin film could be regarded as an elementary topological insulator.

  11. Interface investigation of solution processed high- κ ZrO2/Si MOS structure by DLTS

    NASA Astrophysics Data System (ADS)

    Kumar, Arvind; Mondal, Sandip; Rao, Ksr Koteswara

    The interfacial region is dominating due to the continuous downscaling and integration of high- k oxides in CMOS applications. The accurate characterization of high- k oxides/semiconductor interface has the significant importance towards its usage in memory and thin film devices. The interface traps at the high - k /semiconductor interface can be quantified by deep level transient spectroscopy (DLTS) with better accuracy in contrast to capacitance-voltage (CV) and conductance technique. We report the fabrication of high- k ZrO2 films on p-Si substrate by a simple and inexpensive sol-gel spin-coating technique. Further, the ZrO2/Si interface is characterized through DLTS. The flat-band voltage (VFB) and the density of slow interface states (oxide trapped charges) extracted from CV characteristics are 0.37 V and 2x10- 11 C/cm2, respectively. The activation energy, interface state density and capture cross-section quantified by DLTS are EV + 0.42 eV, 3.4x1011 eV- 1 cm- 2 and 5.8x10- 18 cm2, respectively. The high quality ZrO2 films own high dielectric constant 15 with low leakage current density might be an appropriate insulating layer in future electronic application. The low value of interface state density and capture cross-section are the indication of high quality interface and the defect present at the interface may not affect the device performance to a great extent. The DLTS study provides a broad understanding about the traps present at the interface of spin-coated ZrO2/Si.

  12. Tg and Structural Recovery of Single Ultrathin Films

    NASA Astrophysics Data System (ADS)

    Simon, Sindee

    The behavior of materials confined at the nanoscale has been of considerable interest over the past two decades. Here, the focus is on recent results for single polystyrene ultrathin films studied with ultrafast scanning chip calorimetry. The Tg depression of a 20 nm-thick high-molecular-weight polystyrene film is found to be a function of cooling rate, decreasing with increasing cooling rate; whereas, at high enough cooling rates (e.g., 1000 K/s), Tg is the same as the bulk within the error of the measurements. Structural recovery is also performed with chip calorimetry as a function of aging time and temperature, and the evolution of the fictive temperature is followed. The advantages of the Flash DSC include sufficient sensitivity to measure enthalpy recovery for a single 20 nm-thick film, as well as extension of the measurements to aging temperatures as high as 15 K above nominal Tg and to aging times as short as 0.01 s. The aging behavior and relaxation time-temperature map for single ultrathin films are compared to those for bulk material. Comparison to behavior in other geometries will also be discussed.

  13. Atomic layer deposition of ZrO2 on W for metal-insulator-metal capacitor application

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Yun; Kim, Hyoungsub; McIntyre, Paul C.; Saraswat, Krishna C.; Byun, Jeong-Soo

    2003-04-01

    A metal-insulator-metal (MIM) capacitor using ZrO2 on tungsten (W) metal bottom electrode was demonstrated and characterized in this letter. Both ZrO2 and W metal were synthesized by an atomic layer deposition (ALD) method. High-quality 110˜115 Å ZrO2 films were grown uniformly on ALD W using ZrCl4 and H2O precursors at 300 °C, and polycrystalline ZrO2 in the ALD regime could be obtained. A 13˜14-Å-thick interfacial layer between ZrO2 and W was observed after fabrication, and it was identified as WOx through angle-resolved x-ray photoelectron spectroscopy analysis with wet chemical etching. The apparent equivalent oxide thickness was 20˜21 Å. An effective dielectric constant of 22˜25 including an interfacial WOx layer was obtained by measuring capacitance and thickness of MIM capacitors with Pt top electrodes. High capacitance per area (16˜17 fF/μm2) and low leakage current (10-7 A/cm2 at ±1 V) were achieved.

  14. A Simple Method for High-Performance, Solution-Processed, Amorphous ZrO2 Gate Insulator TFT with a High Concentration Precursor

    PubMed Central

    Cai, Wei; Zhu, Zhennan; Wei, Jinglin; Fang, Zhiqiang; Zheng, Zeke; Zhou, Shangxiong; Peng, Junbiao; Lu, Xubing

    2017-01-01

    Solution-processed high-k dielectric TFTs attract much attention since they cost relatively little and have a simple fabrication process. However, it is still a challenge to reduce the leakage of the current density of solution-processed dielectric TFTs. Here, a simple solution method is presented towards enhanced performance of ZrO2 films by intentionally increasing the concentration of precursor. The ZrO2 films not only exhibit a low leakage current density of 10−6 A/cm2 at 10 V and a breakdown field of 2.5 MV/cm, but also demonstrate a saturation mobility of 12.6 cm2·V−1·s−1 and a Ion/Ioff ratio of 106 in DC pulse sputtering IGZO-TFTs based on these films. Moreover, the underlying mechanism of influence of precursor concentration on film formation is presented. Higher concentration precursor results in a thicker film within same coating times with reduced ZrO2/IGZO interface defects and roughness. It shows the importance of thickness, roughness, and annealing temperature in solution-processed dielectric oxide TFT and provides an approach to precisely control solution-processed oxide films thickness. PMID:28825652

  15. Plasma-enhanced pulsed-laser deposition of single-crystalline M o2C ultrathin superconducting films

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Zhang, Zhi; Wang, Huichao; Chan, Cheuk Ho; Chan, Ngai Yui; Chen, Xin Xin; Dai, Ji-Yan

    2017-08-01

    Transition-metal carbides (TMCs) possess many intriguing properties and inspiring application potentials, and recently the study of a two-dimensional form of TMCs has attracted great attention. Herein, we report successful fabrication of continuous M o2C ultrathin single-crystalline films at 700 ∘C with an approach of plasma-enhanced pulsed-laser deposition. By sophisticated structural analyses, the M o2C films are characterized as single crystal with a rarely reported face-centered cubic structure. In further electrical transport measurements, superconductivity observed in the M o2C films demonstrates a typical two-dimensional feature, which is consistent with Berezinskii-Kosterlitz-Thouless transitions. Besides, large upper critical magnetic fields are discovered in this system. Our work offers an approach to grow large-area and high-quality TMCs at relatively low temperatures. This study may stimulate more related investigations on the synthesis, characterizations, and applications of two-dimensional TMCs.

  16. Growth, stability and decomposition of Mg2Si ultra-thin films on Si (100)

    NASA Astrophysics Data System (ADS)

    Sarpi, B.; Zirmi, R.; Putero, M.; Bouslama, M.; Hemeryck, A.; Vizzini, S.

    2018-01-01

    Using Auger Electron Spectroscopy (AES), Scanning Tunneling Microscopy/Spectroscopy (STM/STS) and Low Energy Electron Diffraction (LEED), we report an in-situ study of amorphous magnesium silicide (Mg2Si) ultra-thin films grown by thermally enhanced solid-phase reaction of few Mg monolayers deposited at room temperature (RT) on a Si(100) surface. Silicidation of magnesium films can be achieved in the nanometric thickness range with high chemical purity and a high thermal stability after annealing at 150 °C, before reaching a regime of magnesium desorption for temperatures higher than 350 °C. The thermally enhanced reaction of one Mg monolayer (ML) results in the appearance of Mg2Si nanometric crystallites leaving the silicon surface partially uncovered. For thicker Mg deposition nevertheless, continuous 2D silicide films are formed with a volcano shape surface topography characteristic up to 4 Mg MLs. Due to high reactivity between magnesium and oxygen species, the thermal oxidation process in which a thin Mg2Si film is fully decomposed (0.75 eV band gap) into a magnesium oxide layer (6-8 eV band gap) is also reported.

  17. Superstable Ultrathin Water Film Confined in a Hydrophilized Carbon Nanotube.

    PubMed

    Tomo, Yoko; Askounis, Alexandros; Ikuta, Tatsuya; Takata, Yasuyuki; Sefiane, Khellil; Takahashi, Koji

    2018-03-14

    Fluids confined in a nanoscale space behave differently than in the bulk due to strong interactions between fluid molecules and solid atoms. Here, we observed water confined inside "open" hydrophilized carbon nanotubes (CNT), with diameter of tens of nanometers, using transmission electron microscopy (TEM). A 1-7 nm water film adhering to most of the inner wall surface was observed and remained stable in the high vacuum (order of 10 -5 Pa) of the TEM. The superstability of this film was attributed to a combination of curvature, nanoroughness, and confinement resulting in a lower vapor pressure for water and hence inhibiting its vaporization. Occasional, suspended ultrathin water film with thickness of 3-20 nm were found and remained stable inside the CNT. This film thickness is 1 order of magnitude smaller than the critical film thickness (about 40 nm) reported by the Derjaguin-Landau-Verwey-Overbeek theory and previous experimental investigations. The stability of the suspended ultrathin water film is attributed to the additional molecular interactions due to the extended water meniscus, which balances the rest of the disjoining pressures.

  18. Ultrathin free-standing graphene oxide film based flexible touchless sensor

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Wang, Yingyi; Li, Guanghui; Qin, Sujie; Zhang, Ting

    2018-01-01

    Ultrathin free-standing graphene oxide (GO) films were fabricated by vacuum filtration method assisted with Ni(OH)2 nanosheets as the sacrifice layer. The surface of the obtained GO film is very clean as the Ni(OH)2 nanosheets can be thoroughly etched by HCl. The thickness of the GO films can be well-controlled by changing the volume of GO dispersion, and the thinnest GO film reached ~12 nm. As a novel and transparent dielectric material, the GO film has been applied as the dielectric layer for the flexible touchless capacitive sensor which can effectively distinguish the approaching of an insulator or a conductor. Project supported by the National Natural Science Foundation of China (No. 61574163) and the Foundation Research Project of Jiangsu Province (Nos. BK20160392, BK20170008).

  19. Influence of ZrO2 addition on the microstructure and discharge properties of Mg-Zr-O protective layers in alternating current plasma display panels

    NASA Astrophysics Data System (ADS)

    Guo, Bingang; Liu, Chunliang; Song, Zhongxiao; Liu, Liu; Fan, Yufeng; Xia, Xing; Fan, Duowang

    2005-08-01

    Mg-Zr-O protective layers for alternating current plasma display panels were deposited by e-beam evaporation. The effect of the ZrO2 addition on both the discharge properties [firing voltage Vf, minimum sustaining voltage Vs, and memory coefficient (MC)] and the microstructure of deposited Mg-Zr-O films were investigated. The results show that the film microstructure changes and the electron emission enhancement due to the ZrO2 addition are the main reasons for the improvements of the discharge properties of Mg-Zr-O films. A small amount of Zr solution in MgO under its solid solubility can effectively increase the outer-shell valence electron emission yield so as to decrease Vf and Vs compared with using a pure MgO protective layer. The ZrO2/(MgO +ZrO2) ratio has a great effect on the film surface conditions. Proper surface morphologies make a good contribution to obtain large MC in accordance with lower firing voltage.

  20. Ultrathin planar hematite film for solar photoelectrochemical water splitting

    DOE PAGES

    Liu, Dong; Bierman, David M.; Lenert, Andrej; ...

    2015-10-08

    Hematite holds promise for photoelectrochemical (PEC) water splitting due to its stability, low-cost, abundance and appropriate bandgap. However, it suffers from a mismatch between the hole diffusion length and light penetration length. We have theoretically designed and characterized an ultrathin planar hematite/silver nanohole array/silver substrate photoanode. Due to the supported destructive interference and surface plasmon resonance, photons are efficiently absorbed in an ultrathin hematite film. In conclusion, compared with ultrathin hematite photoanodes with nanophotonic structures, this photoanode has comparable photon absorption but with intrinsically lower recombination losses due to its planar structure and promises to exceed the state-of-the-art photocurrent ofmore » hematite photoanodes.« less

  1. Magnetic x-ray linear dichroism of ultrathin Fe-Ni alloy films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumann, F.O.; Willis, R.F.; Goodman, K.W.

    1997-04-01

    The authors have studied the magnetic structure of ultrathin Fe-Ni alloy films as a function of Fe concentration by measuring the linear dichroism of the 3p-core levels in angle-resolved photoemission spectroscopy. The alloy films, grown by molecular-beam epitaxy on Cu(001) surfaces, were fcc and approximately four monolayers thick. The intensity of the Fe dichroism varied with Fe concentration, with larger dichroisms at lower Fe concentrations. The implication of these results to an ultrathin film analogue of the bulk Invar effect in Fe-Ni alloys will be discussed. These measurements were performed at the Spectromicroscopy Facility (Beamline 7.0.1) of the Advanced Lightmore » Source.« less

  2. Camphor-Enabled Transfer and Mechanical Testing of Centimeter-Scale Ultrathin Films.

    PubMed

    Wang, Bin; Luo, Da; Li, Zhancheng; Kwon, Youngwoo; Wang, Meihui; Goo, Min; Jin, Sunghwan; Huang, Ming; Shen, Yongtao; Shi, Haofei; Ding, Feng; Ruoff, Rodney S

    2018-05-21

    Camphor is used to transfer centimeter-scale ultrathin films onto custom-designed substrates for mechanical (tensile) testing. Compared to traditional transfer methods using dissolving/peeling to remove the support-layers, camphor is sublimed away in air at low temperature, thereby avoiding additional stress on the as-transferred films. Large-area ultrathin films can be transferred onto hollow substrates without damage by this method. Tensile measurements are made on centimeter-scale 300 nm-thick graphene oxide film specimens, much thinner than the ≈2 μm minimum thickness of macroscale graphene-oxide films previously reported. Tensile tests were also done on two different types of large-area samples of adlayer free CVD-grown single-layer graphene supported by a ≈100 nm thick polycarbonate film; graphene stiffens this sample significantly, thus the intrinsic mechanical response of the graphene can be extracted. This is the first tensile measurement of centimeter-scale monolayer graphene films. The Young's modulus of polycrystalline graphene ranges from 637 to 793 GPa, while for near single-crystal graphene, it ranges from 728 to 908 GPa (folds parallel to the tensile loading direction) and from 683 to 775 GPa (folds orthogonal to the tensile loading direction), demonstrating the mechanical performance of large-area graphene in a size scale relevant to many applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films

    PubMed Central

    Wang, Xuewen; He, Xuexia; Zhu, Hongfei; Sun, Linfeng; Fu, Wei; Wang, Xingli; Hoong, Lai Chee; Wang, Hong; Zeng, Qingsheng; Zhao, Wu; Wei, Jun; Jin, Zhong; Shen, Zexiang; Liu, Jie; Zhang, Ting; Liu, Zheng

    2016-01-01

    Driven by the development of high-performance piezoelectric materials, actuators become an important tool for positioning objects with high accuracy down to nanometer scale, and have been used for a wide variety of equipment, such as atomic force microscopy and scanning tunneling microscopy. However, positioning at the subatomic scale is still a great challenge. Ultrathin piezoelectric materials may pave the way to positioning an object with extreme precision. Using ultrathin CdS thin films, we demonstrate vertical piezoelectricity in atomic scale (three to five space lattices). With an in situ scanning Kelvin force microscopy and single and dual ac resonance tracking piezoelectric force microscopy, the vertical piezoelectric coefficient (d33) up to 33 pm·V−1 was determined for the CdS ultrathin films. These findings shed light on the design of next-generation sensors and microelectromechanical devices. PMID:27419234

  4. Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films.

    PubMed

    Wang, Xuewen; He, Xuexia; Zhu, Hongfei; Sun, Linfeng; Fu, Wei; Wang, Xingli; Hoong, Lai Chee; Wang, Hong; Zeng, Qingsheng; Zhao, Wu; Wei, Jun; Jin, Zhong; Shen, Zexiang; Liu, Jie; Zhang, Ting; Liu, Zheng

    2016-07-01

    Driven by the development of high-performance piezoelectric materials, actuators become an important tool for positioning objects with high accuracy down to nanometer scale, and have been used for a wide variety of equipment, such as atomic force microscopy and scanning tunneling microscopy. However, positioning at the subatomic scale is still a great challenge. Ultrathin piezoelectric materials may pave the way to positioning an object with extreme precision. Using ultrathin CdS thin films, we demonstrate vertical piezoelectricity in atomic scale (three to five space lattices). With an in situ scanning Kelvin force microscopy and single and dual ac resonance tracking piezoelectric force microscopy, the vertical piezoelectric coefficient (d 33) up to 33 pm·V(-1) was determined for the CdS ultrathin films. These findings shed light on the design of next-generation sensors and microelectromechanical devices.

  5. Coexistence of colossal stress and texture gradients in sputter deposited nanocrystalline ultra-thin metal films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuru, Yener; Welzel, Udo; Mittemeijer, Eric J.

    2014-12-01

    This paper demonstrates experimentally that ultra-thin, nanocrystalline films can exhibit coexisting colossal stress and texture depth gradients. Their quantitative determination is possible by X-ray diffraction experiments. Whereas a uniform texture by itself is known to generally cause curvature in so-called sin{sup 2}ψ plots, it is shown that the combined action of texture and stress gradients provides a separate source of curvature in sin{sup 2}ψ plots (i.e., even in cases where a uniform texture does not induce such curvature). On this basis, the texture and stress depth profiles of a nanocrystalline, ultra-thin (50 nm) tungsten film could be determined.

  6. The Performance Improvement of N2 Plasma Treatment on ZrO2 Gate Dielectric Thin-Film Transistors with Atmospheric Pressure Plasma-Enhanced Chemical Vapor Deposition IGZO Channel.

    PubMed

    Wu, Chien-Hung; Huang, Bo-Wen; Chang, Kow-Ming; Wang, Shui-Jinn; Lin, Jian-Hong; Hsu, Jui-Mei

    2016-06-01

    The aim of this paper is to illustrate the N2 plasma treatment for high-κ ZrO2 gate dielectric stack (30 nm) with indium-gallium-zinc-oxide (IGZO) thin-film transistors (TFTs). Experimental results reveal that a suitable incorporation of nitrogen atoms could enhance the device performance by eliminating the oxygen vacancies and provide an amorphous surface with better surface roughness. With N2 plasma treated ZrO2 gate, IGZO channel is fabricated by atmospheric pressure plasma-enhanced chemical vapor deposition (AP-PECVD) technique. The best performance of the AP-PECVD IGZO TFTs are obtained with 20 W-90 sec N2 plasma treatment with field-effect mobility (μ(FET)) of 22.5 cm2/V-s, subthreshold swing (SS) of 155 mV/dec, and on/off current ratio (I(on)/I(off)) of 1.49 x 10(7).

  7. Low temperature solution processed high-κ ZrO2 gate dielectrics for nanoelectonics

    NASA Astrophysics Data System (ADS)

    Kumar, Arvind; Mondal, Sandip; Rao, K. S. R. Koteswara

    2016-05-01

    The high-κ gate dielectrics, specifically amorphous films offer salient features such as exceptional mechanical flexibility, smooth surfaces and better uniformity associated with low leakage current density. In this work, ∼35 nm thick amorphous ZrO2 films were deposited on silicon substrate at low temperature (300 °C, 1 h) from facile spin-coating method and characterized by various analytical techniques. The X-ray diffraction and X-ray photoelectron spectroscopy reveal the formation of amorphous phase ZrO2, while ellipsometry analysis together with the Atomic Force Microscope suggest the formation of dense film with surface roughness of 1.5 Å, respectively. The fabricated films were integrated in metal-oxide-semiconductor (MOS) structures to check the electrical capabilities. The oxide capacitance (Cox), flat band capacitance (CFB), flat band voltage (VFB), dielectric constant (κ) and oxide trapped charges (Qot) extracted from high frequency (1 MHz) C-V curve are 186 pF, 104 pF, 0.37 V, 15 and 2 × 10-11 C, respectively. The small flat band voltage 0.37 V, narrow hysteresis and very little frequency dispersion between 10 kHz-1 MHz suggest an excellent a-ZrO2/Si interface with very less trapped charges in the oxide. The films exhibit a low leakage current density 4.7 × 10-9 A/cm2 at 1 V. In addition, the charge transport mechanism across the MOSC is analyzed and found to have a strong bias dependence. The space charge limited conduction mechanism is dominant in the high electric field region (1.3-5 V) due to the presence of traps, while the trap-supported tunneling is prevailed in the intermediate region (0.35-1.3 V). Low temperature solution processed ZrO2 thin films obtained are of high quality and find their importance as a potential dielectric layer on Si and polymer based flexible electronics.

  8. Nonbolometric bottleneck in electron-phonon relaxation in ultrathin WSi films

    NASA Astrophysics Data System (ADS)

    Sidorova, Mariia V.; Kozorezov, A. G.; Semenov, A. V.; Korneeva, Yu. P.; Mikhailov, M. Yu.; Devizenko, A. Yu.; Korneev, A. A.; Chulkova, G. M.; Goltsman, G. N.

    2018-05-01

    We developed the model of the internal phonon bottleneck to describe the energy exchange between the acoustically soft ultrathin metal film and acoustically rigid substrate. Discriminating phonons in the film into two groups, escaping and nonescaping, we show that electrons and nonescaping phonons may form a unified subsystem, which is cooled down only due to interactions with escaping phonons, either due to direct phonon conversion or indirect sequential interaction with an electronic system. Using an amplitude-modulated absorption of the sub-THz radiation technique, we studied electron-phonon relaxation in ultrathin disordered films of tungsten silicide. We found an experimental proof of the internal phonon bottleneck. The experiment and simulation based on the proposed model agree well, resulting in τe -ph˜14 0 -19 0 ps at TC=3.4 K , supporting the results of earlier measurements by independent techniques.

  9. TOPICAL REVIEW: Ultra-thin film encapsulation processes for micro-electro-mechanical devices and systems

    NASA Astrophysics Data System (ADS)

    Stoldt, Conrad R.; Bright, Victor M.

    2006-05-01

    A range of physical properties can be achieved in micro-electro-mechanical systems (MEMS) through their encapsulation with solid-state, ultra-thin coatings. This paper reviews the application of single source chemical vapour deposition and atomic layer deposition (ALD) in the growth of submicron films on polycrystalline silicon microstructures for the improvement of microscale reliability and performance. In particular, microstructure encapsulation with silicon carbide, tungsten, alumina and alumina-zinc oxide alloy ultra-thin films is highlighted, and the mechanical, electrical, tribological and chemical impact of these overlayers is detailed. The potential use of solid-state, ultra-thin coatings in commercial microsystems is explored using radio frequency MEMS as a case study for the ALD alloy alumina-zinc oxide thin film.

  10. Selection by current compliance of negative and positive bipolar resistive switching behaviour in ZrO2-x /ZrO2 bilayer memory

    NASA Astrophysics Data System (ADS)

    Huang, Ruomeng; Yan, Xingzhao; Morgan, Katrina A.; Charlton, Martin D. B.; (Kees de Groot, C. H.

    2017-05-01

    We report here a ZrO2-x /ZrO2-based bilayer resistive switching memory with unique properties that enables the selection of the switching mode by applying different electroforming current compliances. Two opposite polarity modes, positive bipolar and negative bipolar, correspond to the switching in the ZrO2 and ZrO2-x layer, respectively. The ZrO2 layer is proved to be responsible for the negative bipolar mode which is also observed in a ZrO2 single layer device. The oxygen deficient ZrO2-x layer plays the dominant role in the positive bipolar mode, which is exclusive to the bilayer memory. A systematic investigation of the ZrO2-x composition in the bilayer memory suggests that ZrO1.8 layer demonstrates optimum switching performance with low switching voltage, narrow switching voltage distribution and good cycling endurance. An excess of oxygen vacancies, beyond this composition, leads to a deterioration of switching properties. The formation and dissolution of the oxygen vacancy filament model has been proposed to explain both polarity switching behaviours and the improved properties in the bilayer positive bipolar mode are attributed to the confined oxygen vacancy filament size within the ZrO2-x layer.

  11. Fabrication of superconducting nanowires from ultrathin MgB2 films via focused ion beam milling

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Wang, Da; Liu, Zheng-Hao; Zhang, Yan; Ma, Ping; Feng, Qing-Rong; Wang, Yue; Gan, Zi-Zhao

    2015-02-01

    High quality superconducting nanowires were fabricated from ultrathin MgB2 films by a focused ion beam milling technique. The precursor MgB2 films in 10 nm thick were grown on MgO substrates by using a hybrid physical-chemical vapor deposition method. The nanowires, in widths of about 300-600 nm and lengths of 1 or 10 μm, showed high superconducting critical temperatures (Tc's) above 34 K and narrow superconducting transition widths (ΔTc's) of 1-3 K. The superconducting critical current density Jc of the nanowires was above 5 × 107 A/cm2 at 20 K. The high Tc, narrow ΔTc, and high Jc of the nanowires offered the possibility of making MgB2-based nano-devices such as hot-electron bolometers and superconducting nanowire single-photon detectors with high operating temperatures at 15-20 K.

  12. Novel self-organization mechanism in ultrathin liquid films: theory and experiment.

    PubMed

    Trice, Justin; Favazza, Christopher; Thomas, Dennis; Garcia, Hernando; Kalyanaraman, Ramki; Sureshkumar, Radhakrishna

    2008-07-04

    When an ultrathin metal film of thickness h (<20 nm) is melted by a nanosecond pulsed laser, the film temperature is a nonmonotonic function of h and achieves its maximum at a certain thickness h*. This is a consequence of the h and time dependence of energy absorption and heat flow. Linear stability analysis and nonlinear dynamical simulations that incorporate such intrinsic interfacial thermal gradients predict a characteristic pattern length scale Lambda that decreases for h>h*, in contrast to the classical spinodal dewetting behavior where Lambda increases monotonically as h2. These predictions agree well with experimental observations for Co and Fe films on SiO2.

  13. Structure Formation of Ultrathin PEO Films at Solid Interfaces—Complex Pattern Formation by Dewetting and Crystallization

    PubMed Central

    Braun, Hans-Georg; Meyer, Evelyn

    2013-01-01

    The direct contact of ultrathin polymer films with a solid substrate may result in thin film rupture caused by dewetting. With crystallisable polymers such as polyethyleneoxide (PEO), molecular self-assembly into partial ordered lamella structures is studied as an additional source of pattern formation. Morphological features in ultrathin PEO films (thickness < 10 nm) result from an interplay between dewetting patterns and diffusion limited growth pattern of ordered lamella growing within the dewetting areas. Besides structure formation of hydrophilic PEO molecules, n-alkylterminated (hydrophobic) PEO oligomers are investigated with respect to self-organization in ultrathin films. Morphological features characteristic for pure PEO are not changed by the presence of the n-alkylgroups. PMID:23385233

  14. Process-Parameter-Dependent Optical and Structural Properties of ZrO2MgO Mixed-Composite Films Evaporated from the solid Solution

    NASA Technical Reports Server (NTRS)

    Sahoo, N. K.; Shapiro, A. P.

    1998-01-01

    The process-parameter-dependent optical and structural properties of ZrO2MgO mixed-composite material have been investigated. Optical properties were derived from spectrophotometric measurements. By use of atomic force microscopy, x-ray diffraction analysis, and energy-dispersive x-ray (EDX) analysis, the surface morphology, grain size distributions, crystallographic phases, and process-dependent material composition of films have been investigated. EDX analysis made evident the correlation between the oxygen enrichment in the films prepared at a high level of oxygen pressure and the very low refractive index. Since oxygen pressure can be dynamically varied during a deposition process, coatings constructed of suitable mixed-composite thin films can benefit from continuous modulation of the index of refraction. A step modulation approach is used to develop various multilayer-equivalent thin-film devices.

  15. Ultrathin pyrolytic carbon films on a magnetic substrate

    NASA Astrophysics Data System (ADS)

    Umair, Ahmad; Raza, Tehseen Z.; Raza, Hassan

    2016-07-01

    We report the growth of ultrathin pyrolytic carbon (PyC) films on nickel substrate by using chemical vapor deposition at 1000 °C under methane ambience. We find that the ultra-fast cooling is crucial for PyC film uniformity by controlling the segregation of carbon on nickel. We characterize the in-plane crystal size of the PyC film by using Raman spectroscopy. The Raman peaks at ˜1354 and ˜1584 cm-1 wavenumbers are used to extract the D and G bands. The corresponding peak intensities are then used in an excitation energy dependent equation to calculate the in-plane crystal size. Using Raman area mapping, the mean value of in-plane crystal size over an area of 100 μm × 100 μm is about 22.9 nm with a standard deviation of about 2.4 nm.

  16. Ionic Conductivity Increased by Two Orders of Magnitude in Micrometer-Thick Vertical Yttria-Stabilized ZrO 2 Nanocomposite Films

    DOE PAGES

    Lee, Shinbuhm; Zhang, Wenrui; Khatkhatay, Fauzia; ...

    2015-09-03

    We design and create a unique cell geometry of templated micrometer-thick epitaxial nanocomposite films which contain ~20 nm diameter yttria-stabilized ZrO 2 (YSZ) nanocolumns, strain coupled to a SrTiO 3 matrix. We also enhanced the ionic conductivity of these nanocolumnsby over 2 orders of magnitude compared to plain YSZ films. Concomitant with the higher ionic conduction is the finding that the YSZ nanocolumns in the films have much higher crystallinity and orientation, compared to plain YSZ films. Hence, “oxygen migration highways” are formed in the desired out-of-plane direction. This improved structure is shown to originate from the epitaxial coupling ofmore » the YSZ nanocolumns to the SrTiO 3 film matrix and from nucleation of the YSZ nanocolumns on an intermediate nanocomposite base layer of highly aligned Sm-doped CeO 2 nanocolumns within the SrTiO 3 matrix. Furthermore, this intermediate layer reduces the lattice mismatch between the YSZ nanocolumns and the substrate. Vertical ionic conduction values as high as 10 –2 Ω –1 cm –1 were demonstrated at 360 °C (300 °C lower than plain YSZ films), showing the strong practical potential of these nanostructured films for use in much lower operation temperature ionic devices.« less

  17. Photochemistry on ultrathin metal films: Strongly enhanced cross sections for NO2 on Ag /Si(100)

    NASA Astrophysics Data System (ADS)

    Wesenberg, Claudia; Autzen, Olaf; Hasselbrink, Eckart

    2006-12-01

    The surface photochemistry of NO2 on ultrathin Ag(111) films (5-60nm ) on Si(100) substrates has been studied. NO2, forming N2O4 on the surface, dissociates to release NO and NO2 into the gas phase with translational energies exceeding the equivalent of the sample temperature. An increase of the photodesorption cross section is observed for 266nm light when the film thickness is decreased below 30nm despite the fact that the optical absorptivity decreases. For 4.4nm film thickness this increase is about threefold. The data are consistent with a similar effect for 355nm light. The reduced film thickness has no significant influence on the average translation energy of the desorbing molecules or the branching into the different channels. The increased photodesorption cross section is interpreted to result from photon absorption in the Si substrate producing electrons with no or little momenta parallel to the surface at energies where this is not allowed in Ag. It is suggested that these electrons penetrate through the Ag film despite the gap in the surface projected band structure.

  18. Ion-beam mixed ultra-thin cobalt suicide (CoSi2) films by cobalt sputtering and rapid thermal annealing

    NASA Astrophysics Data System (ADS)

    Kal, S.; Kasko, I.; Ryssel, H.

    1995-10-01

    The influence of ion-beam mixing on ultra-thin cobalt silicide (CoSi2) formation was investigated by characterizing the ion-beam mixed and unmixed CoSi2 films. A Ge+ ion-implantation through the Co film prior to silicidation causes an interface mixing of the cobalt film with the silicon substrate and results in improved silicide-to-silicon interface roughness. Rapid thermal annealing was used to form Ge+ ion mixed and unmixed thin CoSi2 layer from 10 nm sputter deposited Co film. The silicide films were characterized by secondary neutral mass spectroscopy, x-ray diffraction, tunneling electron microscopy (TEM), Rutherford backscattering, and sheet resistance measurements. The experi-mental results indicate that the final rapid thermal annealing temperature should not exceed 800°C for thin (<50 nm) CoSi2 preparation. A comparison of the plan-view and cross-section TEM micrographs of the ion-beam mixed and unmixed CoSi2 films reveals that Ge+ ion mixing (45 keV, 1 × 1015 cm-2) produces homogeneous silicide with smooth silicide-to-silicon interface.

  19. Determining thickness and refractive index from free-standing ultra-thin polymer films with spectroscopic ellipsometry

    DOE PAGES

    Hilfiker, James N.; Stadermann, Michael; Sun, Jianing; ...

    2016-08-27

    It is a well-known challenge to determine refractive index (n) from ultra-thin films where the thickness is less than about 10 nm. In this paper, we discovered an interesting exception to this issue while characterizing spectroscopic ellipsometry (SE) data from isotropic, free-standing polymer films. Ellipsometry analysis shows that both thickness and refractive index can be independently determined for free-standing films as thin as 5 nm. Simulations further confirm an orthogonal separation between thickness and index effects on the experimental SE data. Effects of angle of incidence and wavelength on the data and sensitivity are discussed. Finally, while others have demonstratedmore » methods to determine refractive index from ultra-thin films, our analysis provides the first results to demonstrate high-sensitivity to the refractive index from ultra-thin layers.« less

  20. Understanding Metal-Insulator transitions in ultra-thin films of LaNiO3

    NASA Astrophysics Data System (ADS)

    Ravichandran, Jayakanth; King, Philip D. C.; Schlom, Darrell G.; Shen, Kyle M.; Kim, Philip

    2014-03-01

    LaNiO3 (LNO) is a bulk paramagnetic metal and a member of the family of RENiO3 Nickelates (RE = Rare Earth Metals), which is on the verge of the metal-insulator transition. Ultra-thin films of LNO has been studied extensively in the past and due to its sensitivity to disorder, the true nature of the metal-insulator transition in these films have been hard to decipher. We grow high quality ultra-thin films of LNO using reactive molecular beam epitaxy (MBE) and use a combination of ionic liquid gating and magneto-transport measurements to understand the nature and tunability of metal-insulator transition as a function of thickness for LNO. The underlying mechanisms for the transition are discussed in the framework of standard transport models. These results are discussed in the light of other Mott insulators such as Sr2IrO4, where we have performed similar measurements around the insulating state.

  1. Polarity compensation in ultra-thin films of complex oxides: The case of a perovskite nickelate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middey, S.; Rivero, P.; Meyers, D.

    2014-10-29

    In this study, we address the fundamental issue of growth of perovskite ultra-thin films under the condition of a strong polar mismatch at the heterointerface exemplified by the growth of a correlated metal LaNiO 3 on the band insulator SrTiO 3 along the pseudo cubic [111] direction. While in general the metallic LaNiO 3 film can effectively screen this polarity mismatch, we establish that in the ultra-thin limit, films are insulating in nature and require additional chemical and structural reconstruction to compensate for such mismatch. A combination of in-situ reflection high-energy electron diffraction recorded during the growth, X-ray diffraction, andmore » synchrotron based resonant X-ray spectroscopy reveal the formation of a chemical phase La 2Ni 2O 5 (Ni 2+) for a few unit-cell thick films. First-principles layer-resolved calculations of the potential energy across the nominal LaNiO 3/SrTiO 3 interface confirm that the oxygen vacancies can efficiently reduce the electric field at the interface.« less

  2. Nanoporous Ni(OH)2 thin film on 3D Ultrathin-graphite foam for asymmetric supercapacitor.

    PubMed

    Ji, Junyi; Zhang, Li Li; Ji, Hengxing; Li, Yang; Zhao, Xin; Bai, Xin; Fan, Xiaobin; Zhang, Fengbao; Ruoff, Rodney S

    2013-07-23

    Nanoporous nickel hydroxide (Ni(OH)2) thin film was grown on the surface of ultrathin-graphite foam (UGF) via a hydrothermal reaction. The resulting free-standing Ni(OH)2/UGF composite was used as the electrode in a supercapacitor without the need for addition of either binder or metal-based current collector. The highly conductive 3D UGF network facilitates electron transport and the porous Ni(OH)2 thin film structure shortens ion diffusion paths and facilitates the rapid migration of electrolyte ions. An asymmetric supercapacitor was also made and studied with Ni(OH)2/UGF as the positive electrode and activated microwave exfoliated graphite oxide ('a-MEGO') as the negative electrode. The highest power density of the fully packaged asymmetric cell (44.0 kW/kg) was much higher (2-27 times higher), while the energy density was comparable to or higher, than high-end commercially available supercapacitors. This asymmetric supercapacitor had a capacitance retention of 63.2% after 10,000 cycles.

  3. Fabrication of ultrathin film capacitors by chemical solution deposition

    DOE PAGES

    Brennecka, Geoff L.; Tuttle, Bruce A.

    2007-10-01

    We present that a facile solution-based processing route using standard spin-coating deposition techniques has been developed for the production of reliable capacitors based on lead lanthanum zirconate titanate (PLZT) with active areas of ≥1 mm 2 and dielectric layer thicknesses down to 50 nm. With careful control of the dielectric phase development through improved processing, ultrathin capacitors exhibited slim ferroelectric hysteresis loops and dielectric constants of >1000, similar to those of much thicker films. Furthermore, it has been demonstrated that chemical solution deposition is a viable route to the production of capacitor films which are as thin as 50 nmmore » but are still macroscopically addressable with specific capacitance values >160 nF/mm 2.« less

  4. Transport properties of ultra-thin VO{sub 2} films on (001) TiO{sub 2} grown by reactive molecular-beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paik, Hanjong; Tashman, Joshua W.; Moyer, Jarrett A.

    2015-10-19

    We report the growth of (001)-oriented VO{sub 2} films as thin as 1.5 nm with abrupt and reproducible metal-insulator transitions (MIT) without a capping layer. Limitations to the growth of thinner films with sharp MITs are discussed, including the Volmer-Weber type growth mode due to the high energy of the (001) VO{sub 2} surface. Another key limitation is interdiffusion with the (001) TiO{sub 2} substrate, which we quantify using low angle annular dark field scanning transmission electron microscopy in conjunction with electron energy loss spectroscopy. We find that controlling island coalescence on the (001) surface and minimization of cation interdiffusion bymore » using a low growth temperature followed by a brief anneal at higher temperature are crucial for realizing ultrathin VO{sub 2} films with abrupt MIT behavior.« less

  5. Spin fluctuation induced linear magnetoresistance in ultrathin superconducting FeSe films

    DOE PAGES

    Wang, Qingyan; Zhang, Wenhao; Chen, Weiwei; ...

    2017-07-21

    The discovery of high-temperature superconductivity in FeSe/STO has trigged great research interest to reveal a range of exotic physical phenomena in this novel material. Here we present a temperature dependent magnetotransport measurement for ultrathin FeSe/STO films with different thickness and protection layers. Remarkably, a surprising linear magnetoresistance (LMR) is observed around the superconducting transition temperatures but absent otherwise. The experimental LMR can be reproduced by magnetotransport calculations based on a model of magnetic field dependent disorder induced by spin fluctuation. Thus, the observed LMR in coexistence with superconductivity provides the first magnetotransport signature for spin fluctuation around the superconducting transitionmore » region in ultrathin FeSe/STO films.« less

  6. A cost-effective nanoporous ultrathin film electrode based on nanoporous gold/IrO2 composite for proton exchange membrane water electrolysis

    NASA Astrophysics Data System (ADS)

    Zeng, Yachao; Guo, Xiaoqian; Shao, Zhigang; Yu, Hongmei; Song, Wei; Wang, Zhiqiang; Zhang, Hongjie; Yi, Baolian

    2017-02-01

    A cost-effective nanoporous ultrathin film (NPUF) electrode based on nanoporous gold (NPG)/IrO2 composite has been constructed for proton exchange membrane (PEM) water electrolysis. The electrode was fabricated by integrating IrO2 nanoparticles into NPG through a facile dealloying and thermal decomposition method. The NPUF electrode is featured in its 3D interconnected nanoporosity and ultrathin thickness. The nanoporous ultrathin architecture is binder-free and beneficial for improving electrochemical active surface area, enhancing mass transport and facilitating releasing of oxygen produced during water electrolysis. Serving as anode, a single cell performance of 1.728 V (@ 2 A cm-2) has been achieved by NPUF electrode with a loading of IrO2 and Au at 86.43 and 100.0 μg cm-2 respectively, the electrolysis voltage is 58 mV lower than that of conventional electrode with an Ir loading an order of magnitude higher. The electrolysis voltage kept relatively constant up to 300 h (@250 mA cm-2) during the course of durability test, manifesting that NPUF electrode is promising for gas evolution.

  7. Ultraviolet-assisted direct patterning and low-temperature formation of flexible ZrO2 resistive switching arrays on PET/ITO substrates

    NASA Astrophysics Data System (ADS)

    Li, Lingwei; Chen, Yuanqing; Yin, Xiaoru; Song, Yang; Li, Na; Niu, Jinfen; Wu, Huimin; Qu, Wenwen

    2017-12-01

    We demonstrate a low-cost and facile photochemical solution method to prepare the ZrO2 resistive switching arrays as memristive units on flexible PET/ITO substrates. ZrO2 solution sensitive to UV light of 337 nm was synthesized using zirconium n-butyl alcohol as the precursor, and benzoylacetone as the complexing agent. After the dip-coated ZrO2 gel films were irradiated through a mask under the UV lamp (with wavelength of 325-365 nm) at room temperature and rinsed in ethanol, the ZrO2 gel arrays were obtained on PET/ITO substrates. Subsequently, the ZrO2 gel arrays were irradiated by deep UV light of 254 and 185 nm at 150 °C, resulting in the amorphous ZrO2 memristive micro-arrays. The ZrO2 units on flexible PET/ITO substrates exhibited excellent memristive properties. A high ratio of 104 of on-state and off-state resistance was obtained. The resistive switching behavior of the flexible device remained stable after being bent for 103 times. The device showed stable flexibility up to a minimum bending diameter of 1.25 cm.

  8. A Ga2O3 underlayer as an isomorphic template for ultrathin hematite films toward efficient photoelectrochemical water splitting.

    PubMed

    Hisatomi, Takashi; Brillet, Jérémie; Cornuz, Maurin; Le Formal, Florian; Tétreault, Nicolas; Sivula, Kevin; Grätzel, Michael

    2012-01-01

    Hematite photoanodes for photoelectrochemical (PEC) water splitting are often fabricated as extremely-thin films to minimize charge recombination because of the short diffusion lengths of photoexcited carriers. However, poor crystallinity caused by structural interaction with a substrate negates the potential of ultrathin hematite photoanodes. This study demonstrates that ultrathin Ga2O3 underlayers, which were deposited on conducting substrates prior to hematite layers by atomic layer deposition, served as an isomorphic (corundum-type) structural template for ultrathin hematite and improved the photocurrent onset of PEC water splitting by 0.2 V. The benefit from Ga2O3 underlayers was most pronounced when the thickness of the underlayer was approximately 2 nm. Thinner underlayers did not work effectively as a template presumably because of insufficient crystallinity of the underlayer, while thicker ones diminished the PEC performance of hematite because the underlayer prevented electron injection from hematite to a conductive substrate due to the large conduction band offset. The enhancement of PEC performance by a Ga2O3 underlayer was more significant for thinner hematite layers owing to greater margins for improving the crystallinity of ultrathin hematite. It was confirmed that a Ga2O3 underlayer was applicable to a rough conducting substrate loaded with Sb-doped SnO2 nanoparticles, improving the photocurrent by a factor of 1.4. Accordingly, a Ga2O3 underlayer could push forward the development of host-guest-type nanocomposites consisting of highly-rough substrates and extremely-thin hematite absorbers.

  9. Effects of growth temperature on the properties of atomic layer deposition grown ZrO2 films

    NASA Astrophysics Data System (ADS)

    Scarel, G.; Ferrari, S.; Spiga, S.; Wiemer, C.; Tallarida, G.; Fanciulli, M.

    2003-07-01

    Zirconium dioxide films are grown in 200 atomic layer deposition cycles. Zirconium tetrachloride (ZrCl4) and water (H2O) are used as precursors. A relatively high dielectric constant (κ=22), wide band gap, and conduction band offset (5.8 and 1.4 eV, respectively) indicate that zirconium dioxide is a most promising substitute for silicon dioxide as a dielectric gate in complementary metal-oxide-semiconductor devices. However, crystallization and chlorine ions in the films might affect their electrical properties. These ions are produced during atomic layer deposition in which the ZrCl4 precursor reacts with the growth surface. It is desirable to tune the composition, morphology, and structural properties in order to improve their benefit on the electrical ones. To address this issue it is necessary to properly choose the growth parameters. This work focuses on the effects of the growth temperature Tg. ZrO2 films are grown at different substrate temperatures: 160, 200, 250, and 350 °C. Relevant modification of the film structure with a change in substrate temperature during growth is expected because the density of reactive sites [mainly Si+1-(OH)-1 bonds] decreases with an increase in temperature [Y. B. Kim et al., Electrochem. Solid-State Lett. 3, 346 (2000)]. The amorphous film component, for example, that develops at Si+1-(OH)-1 sites on the starting growth surface, is expected to decrease with an increase in growth temperature. The size and consequences of film property modifications with the growth temperature are investigated in this work using x-ray diffraction and reflectivity, and atomic force microscopy. Time of flight-secondary ion mass spectrometry is used to study contaminant species in the films. From capacitance-voltage (CV) and current-voltage (IV) measurements, respectively, the dielectric constant κZrO2 and the leakage current are studied as a function of the film growth temperature.

  10. Structure and strain relaxation mechanisms of ultrathin epitaxial Pr2O3 films on Si(111)

    NASA Astrophysics Data System (ADS)

    Schroeder, T.; Lee, T.-L.; Libralesso, L.; Joumard, I.; Zegenhagen, J.; Zaumseil, P.; Wenger, C.; Lupina, G.; Lippert, G.; Dabrowski, J.; Müssig, H.-J.

    2005-04-01

    The structure of ultrathin epitaxial Pr2O3 films on Si(111) was studied by synchrotron radiation-grazing incidence x-ray diffraction. The oxide film grows as hexagonal Pr2O3 phase with its (0001) plane attached to the Si(111) substrate. The hexagonal (0001) Pr2O3 plane matches the in-plane symmetry of the hexagonal Si(111) surface unit cell by aligning the ⟨101¯0⟩Pr2O3 along the ⟨112¯⟩ Si directions. The small lattice mismatch of 0.5% results in the growth of pseudomorphic oxide films of high crystalline quality with an average domain size of about 50 nm. The critical thickness tc for pseudomorphic growth amounts to 3.0±0.5nm. The relaxation of the oxide film from pseudomorphism to bulk behavior beyond tc causes the introduction of misfit dislocations, the formation of an in-plane small angle mosaicity structure, and the occurence of a phase transition towards a (111) oriented cubic Pr2O3 film structure. The observed phase transition highlights the influence of the epitaxial interface energy on the stability of Pr2O3 phases on Si(111). A mechanism is proposed which transforms the hexagonal (0001) into the cubic (111) Pr2O3 epilayer structure by rearranging the oxygen network but leaving the Pr sublattice almost unmodified.

  11. Dissolvable Films of Silk Fibroin for Ultrathin Conformal Bio-Integrated Electronics

    DTIC Science & Technology

    2010-06-01

    the systems described in the following, ultrathin, spin- cast films of polyimide (PI) served as a support for arrays of electrodes designed for...micropatterning of optically transparent, mechanically robust, biocompatible silk fibroin films. Adv. Mater. 20, 3070–3072 (2008). 20. Murphy, A. R., John, P. S...analysis of induced colour change on periodically nanopatterned silk films. Opt. Express 17, 21271–21279 (2009). 25. Parker, S. T. et al. Biocompatible

  12. Optimization of ion-atomic beam source for deposition of GaN ultrathin films.

    PubMed

    Mach, Jindřich; Šamořil, Tomáš; Kolíbal, Miroslav; Zlámal, Jakub; Voborny, Stanislav; Bartošík, Miroslav; Šikola, Tomáš

    2014-08-01

    We describe the optimization and application of an ion-atomic beam source for ion-beam-assisted deposition of ultrathin films in ultrahigh vacuum. The device combines an effusion cell and electron-impact ion beam source to produce ultra-low energy (20-200 eV) ion beams and thermal atomic beams simultaneously. The source was equipped with a focusing system of electrostatic electrodes increasing the maximum nitrogen ion current density in the beam of a diameter of ≈15 mm by one order of magnitude (j ≈ 1000 nA/cm(2)). Hence, a successful growth of GaN ultrathin films on Si(111) 7 × 7 substrate surfaces at reasonable times and temperatures significantly lower (RT, 300 °C) than in conventional metalorganic chemical vapor deposition technologies (≈1000 °C) was achieved. The chemical composition of these films was characterized in situ by X-ray Photoelectron Spectroscopy and morphology ex situ using Scanning Electron Microscopy. It has been shown that the morphology of GaN layers strongly depends on the relative Ga-N bond concentration in the layers.

  13. Atomic layer deposited ZrO2 nanofilm on Mg-Sr alloy for enhanced corrosion resistance and biocompatibility.

    PubMed

    Yang, Qiuyue; Yuan, Wei; Liu, Xiangmei; Zheng, Yufeng; Cui, Zhenduo; Yang, Xianjin; Pan, Haobo; Wu, Shuilin

    2017-08-01

    The biodegradability and good mechanical property of magnesium alloys make them potential biomedical materials. However, their rapid corrosion rate in the human body's environment impairs these advantages and limits their clinical use. In this work, a compact zirconia (ZrO 2 ) nanofilm was fabricated on the surface of a magnesium-strontium (Mg-Sr) alloy by the atomic layer deposition (ALD) method, which can regulate the thickness of the film precisely and thus also control the corrosion rate. Corrosion tests reveal that the ZrO 2 film can effectively reduce the corrosion rate of Mg-Sr alloys that is closely related to the thickness of the film. The cell culture test shows that this kind of ZrO 2 film can also enhance the activity and adhesion of osteoblasts on the surfaces of Mg-Sr alloys. The significance of the current work is to develop a zirconia nanofilm on biomedical MgSr alloy with controllable thickness precisely through atomic layer deposition technique. By adjusting the thickness of nanofilm, the corrosion rate of Mg-Sr alloy can be modulated, thereafter, the degradation rate of Mg-based alloys can be controlled precisely according to actual clinical requirement. In addition, this zirconia nanofilm modified Mg-Sr alloys show excellent biocompatibility than the bare samples. Hence, this work provides a new surface strategy to control the degradation rate while improving the biocompatibility of substrates. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Low-temperature remote plasma enhanced atomic layer deposition of ZrO2/zircone nanolaminate film for efficient encapsulation of flexible organic light-emitting diodes

    PubMed Central

    Chen, Zheng; Wang, Haoran; Wang, Xiao; Chen, Ping; Liu, Yunfei; Zhao, Hongyu; Zhao, Yi; Duan, Yu

    2017-01-01

    Encapsulation is essential to protect the air-sensitive components of organic light-emitting diodes (OLEDs) such as active layers and cathode electrodes. In this study, hybrid zirconium inorganic/organic nanolaminates were fabricated using remote plasma enhanced atomic layer deposition (PEALD) and molecular layer deposition at a low temperature. The nanolaminate serves as a thin-film encapsulation layer for OLEDs. The reaction mechanism of PEALD process was investigated using an in-situ quartz crystal microbalance (QCM) and in-situ quadrupole mass spectrometer (QMS). The bonds present in the films were determined by Fourier transform infrared spectroscopy. The primary reaction byproducts in PEALD, such as CO, CO2, NO, H2O, as well as the related fragments during the O2 plasma process were characterized using the QMS, indicating a combustion-like reaction process. The self-limiting nature and growth mechanisms of the ZrO2 during the complex surface chemical reaction of the ligand and O2 plasma were monitored using the QCM. The remote PEALD ZrO2/zircone nanolaminate structure prolonged the transmission path of water vapor and smooth surface morphology. Consequently, the water barrier properties were significantly improved (reaching 3.078 × 10−5 g/m2/day). This study also shows that flexible OLEDs can be successfully encapsulated to achieve a significantly longer lifetime. PMID:28059160

  15. Low-temperature remote plasma enhanced atomic layer deposition of ZrO2/zircone nanolaminate film for efficient encapsulation of flexible organic light-emitting diodes.

    PubMed

    Chen, Zheng; Wang, Haoran; Wang, Xiao; Chen, Ping; Liu, Yunfei; Zhao, Hongyu; Zhao, Yi; Duan, Yu

    2017-01-06

    Encapsulation is essential to protect the air-sensitive components of organic light-emitting diodes (OLEDs) such as active layers and cathode electrodes. In this study, hybrid zirconium inorganic/organic nanolaminates were fabricated using remote plasma enhanced atomic layer deposition (PEALD) and molecular layer deposition at a low temperature. The nanolaminate serves as a thin-film encapsulation layer for OLEDs. The reaction mechanism of PEALD process was investigated using an in-situ quartz crystal microbalance (QCM) and in-situ quadrupole mass spectrometer (QMS). The bonds present in the films were determined by Fourier transform infrared spectroscopy. The primary reaction byproducts in PEALD, such as CO, CO 2 , NO, H 2 O, as well as the related fragments during the O 2 plasma process were characterized using the QMS, indicating a combustion-like reaction process. The self-limiting nature and growth mechanisms of the ZrO 2 during the complex surface chemical reaction of the ligand and O 2 plasma were monitored using the QCM. The remote PEALD ZrO 2 /zircone nanolaminate structure prolonged the transmission path of water vapor and smooth surface morphology. Consequently, the water barrier properties were significantly improved (reaching 3.078 × 10 -5  g/m 2 /day). This study also shows that flexible OLEDs can be successfully encapsulated to achieve a significantly longer lifetime.

  16. Low-temperature remote plasma enhanced atomic layer deposition of ZrO2/zircone nanolaminate film for efficient encapsulation of flexible organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Chen, Zheng; Wang, Haoran; Wang, Xiao; Chen, Ping; Liu, Yunfei; Zhao, Hongyu; Zhao, Yi; Duan, Yu

    2017-01-01

    Encapsulation is essential to protect the air-sensitive components of organic light-emitting diodes (OLEDs) such as active layers and cathode electrodes. In this study, hybrid zirconium inorganic/organic nanolaminates were fabricated using remote plasma enhanced atomic layer deposition (PEALD) and molecular layer deposition at a low temperature. The nanolaminate serves as a thin-film encapsulation layer for OLEDs. The reaction mechanism of PEALD process was investigated using an in-situ quartz crystal microbalance (QCM) and in-situ quadrupole mass spectrometer (QMS). The bonds present in the films were determined by Fourier transform infrared spectroscopy. The primary reaction byproducts in PEALD, such as CO, CO2, NO, H2O, as well as the related fragments during the O2 plasma process were characterized using the QMS, indicating a combustion-like reaction process. The self-limiting nature and growth mechanisms of the ZrO2 during the complex surface chemical reaction of the ligand and O2 plasma were monitored using the QCM. The remote PEALD ZrO2/zircone nanolaminate structure prolonged the transmission path of water vapor and smooth surface morphology. Consequently, the water barrier properties were significantly improved (reaching 3.078 × 10-5 g/m2/day). This study also shows that flexible OLEDs can be successfully encapsulated to achieve a significantly longer lifetime.

  17. Conformal surface plasmons propagating on ultrathin and flexible films

    PubMed Central

    Shen, Xiaopeng; Cui, Tie Jun; Martin-Cano, Diego; Garcia-Vidal, Francisco J.

    2013-01-01

    Surface plasmon polaritons (SPPs) are localized surface electromagnetic waves that propagate along the interface between a metal and a dielectric. Owing to their inherent subwavelength confinement, SPPs have a strong potential to become building blocks of a type of photonic circuitry built up on 2D metal surfaces; however, SPPs are difficult to control on curved surfaces conformably and flexibly to produce advanced functional devices. Here we propose the concept of conformal surface plasmons (CSPs), surface plasmon waves that can propagate on ultrathin and flexible films to long distances in a wide broadband range from microwave to mid-infrared frequencies. We present the experimental realization of these CSPs in the microwave regime on paper-like dielectric films with a thickness 600-fold smaller than the operating wavelength. The flexible paper-like films can be bent, folded, and even twisted to mold the flow of CSPs. PMID:23248311

  18. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se

    NASA Astrophysics Data System (ADS)

    Wu, Jinxiong; Yuan, Hongtao; Meng, Mengmeng; Chen, Cheng; Sun, Yan; Chen, Zhuoyu; Dang, Wenhui; Tan, Congwei; Liu, Yujing; Yin, Jianbo; Zhou, Yubing; Huang, Shaoyun; Xu, H. Q.; Cui, Yi; Hwang, Harold Y.; Liu, Zhongfan; Chen, Yulin; Yan, Binghai; Peng, Hailin

    2017-07-01

    High-mobility semiconducting ultrathin films form the basis of modern electronics, and may lead to the scalable fabrication of highly performing devices. Because the ultrathin limit cannot be reached for traditional semiconductors, identifying new two-dimensional materials with both high carrier mobility and a large electronic bandgap is a pivotal goal of fundamental research. However, air-stable ultrathin semiconducting materials with superior performances remain elusive at present. Here, we report ultrathin films of non-encapsulated layered Bi2O2Se, grown by chemical vapour deposition, which demonstrate excellent air stability and high-mobility semiconducting behaviour. We observe bandgap values of ˜0.8 eV, which are strongly dependent on the film thickness due to quantum-confinement effects. An ultrahigh Hall mobility value of >20,000 cm2 V-1 s-1 is measured in as-grown Bi2O2Se nanoflakes at low temperatures. This value is comparable to what is observed in graphene grown by chemical vapour deposition and at the LaAlO3-SrTiO3 interface, making the detection of Shubnikov-de Haas quantum oscillations possible. Top-gated field-effect transistors based on Bi2O2Se crystals down to the bilayer limit exhibit high Hall mobility values (up to 450 cm2 V-1 s-1), large current on/off ratios (>106) and near-ideal subthreshold swing values (˜65 mV dec-1) at room temperature. Our results make Bi2O2Se a promising candidate for future high-speed and low-power electronic applications.

  19. FABRICATION AND OPTOELECTRONIC PROPERTIES OF MgxZn1-xO ULTRATHIN FILMS BY LANGMUIR-BLODGETT TECHNOLOGY

    NASA Astrophysics Data System (ADS)

    Tang, Dongyan; Feng, Qian; Jiang, Enying; He, Baozhu

    2012-08-01

    By transferring MgxZn1-xO sol and stearic acid onto a hydrophilic silicon wafer or glass plate, the Langmuir-Blodgett (LB) multilayers of MgxZn1-xO (x:0, 0.2, 0.4) were deposited. After calcinations at 350°C for 0.5 h and at 500°C for 3 h, MgxZn1-xO ultrathin films were fabricated. The optimized parameters for monolayer formation and multilayer deposition were determined by the surface pressure-surface (Π-A) area and the transfer coefficient, respectively. The expended areas of stearic acid with MgxZn1-xO sols under Π-A isotherms inferred the interaction of stearic acid with MgxZn1-xO sols during the formation of monolayer at air-water interface. X-ray diffraction (XRD) was used to determine the crystal structures of MgxZn1-xO nanoparticles and ultrathin films. The surface morphologies of MgxZn1-xO ultrathin films were observed by scanning probe microscopy (AFM). And the optoelectronic properties of MgxZn1-xO were detected and discussed based on photoluminescence (PL) spectra.

  20. Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films.

    PubMed

    Krishna, H; Sachan, R; Strader, J; Favazza, C; Khenner, M; Kalyanaraman, R

    2010-04-16

    We show here that the morphological pathway of spontaneous dewetting of ultrathin Ag films on SiO2 under nanosecond laser melting is dependent on film thickness. For films with thickness h of 2 nm < or = h < or = 9.5 nm, the morphology during the intermediate stages of dewetting consisted of bicontinuous structures. For films with 11.5 nm < or = h < or = 20 nm, the intermediate stages consisted of regularly sized holes. Measurement of the characteristic length scales for different stages of dewetting as a function of film thickness showed a systematic increase, which is consistent with the spinodal dewetting instability over the entire thickness range investigated. This change in morphology with thickness is consistent with observations made previously for polymer films (Sharma and Khanna 1998 Phys. Rev. Lett. 81 3463-6; Seemann et al 2001 J. Phys.: Condens. Matter 13 4925-38). Based on the behavior of free energy curvature that incorporates intermolecular forces, we have estimated the morphological transition thickness for the intermolecular forces for Ag on SiO2. The theory predictions agree well with observations for Ag. These results show that it is possible to form a variety of complex Ag nanomorphologies in a consistent manner, which could be useful in optical applications of Ag surfaces, such as in surface enhanced Raman sensing.

  1. Ultrathin Composite Polymeric Membranes for CO2 /N2 Separation with Minimum Thickness and High CO2 Permeance.

    PubMed

    Benito, Javier; Sánchez-Laínez, Javier; Zornoza, Beatriz; Martín, Santiago; Carta, Mariolino; Malpass-Evans, Richard; Téllez, Carlos; McKeown, Neil B; Coronas, Joaquín; Gascón, Ignacio

    2017-10-23

    The use of ultrathin films as selective layers in composite membranes offers significant advantages in gas separation for increasing productivity while reducing the membrane size and energy costs. In this contribution, composite membranes have been obtained by the successive deposition of approximately 1 nm thick monolayers of a polymer of intrinsic microporosity (PIM) on top of dense membranes of the ultra-permeable poly[1-(trimethylsilyl)-1-propyne] (PTMSP). The ultrathin PIM films (30 nm in thickness) demonstrate CO 2 permeance up to seven times higher than dense PIM membranes using only 0.04 % of the mass of PIM without a significant decrease in CO 2 /N 2 selectivity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Determination of magnetic anisotropy constants in Fe ultrathin film on vicinal Si(111) by anisotropic magnetoresistance

    PubMed Central

    Ye, Jun; He, Wei; Wu, Qiong; Liu, Hao-Liang; Zhang, Xiang-Qun; Chen, Zi-Yu; Cheng, Zhao-Hua

    2013-01-01

    The epitaxial growth of ultrathin Fe film on Si(111) surface provides an excellent opportunity to investigate the contribution of magnetic anisotropy to magnetic behavior. Here, we present the anisotropic magnetoresistance (AMR) effect of Fe single crystal film on vicinal Si(111) substrate with atomically flat ultrathin p(2 × 2) iron silicide as buffer layer. Owing to the tiny misorientation from Fe(111) plane, the symmetry of magnetocrystalline anisotropy energy changes from the six-fold to a superposition of six-fold, four-fold and a weakly uniaxial contribution. Furthermore, the magnitudes of various magnetic anisotropy constants were derived from torque curves on the basis of AMR results. Our work suggests that AMR measurements can be employed to figure out precisely the contributions of various magnetic anisotropy constants. PMID:23828508

  3. Spin accumulation in disordered topological insulator ultrathin films

    NASA Astrophysics Data System (ADS)

    Siu, Zhuo Bin; Ho, Cong Son; Tan, Seng Ghee; Jalil, Mansoor B. A.

    2017-08-01

    Topological insulator (TI) ultrathin films differ from the more commonly studied semi-infinite bulk TIs in that the former possess both top and bottom surfaces where the surface states localized at different surfaces can couple to one another across the finite thickness of the film. In the presence of an in-plane magnetization, the TI thin films display two distinct phases depending on which of the inter-surface coupling or the magnetization is stronger. In this work, we consider a Bi2Se3 TI thin film system with an in-plane magnetization and numerically calculate the resulting spin accumulation on both surfaces of the film due to an in-plane electric field to linear order. We describe a numerical scheme for performing the Kubo formula calculation in which we include impurity scattering and vertex corrections. We find that the sums of the spin accumulation over the two surfaces in the in-plane direction perpendicular to the magnetization and in the out of plane direction are antisymmetric in Fermi energy around the charge neutrality point and are non-vanishing only when the symmetry between the top and bottom TI surfaces is broken. The impurity scattering, in general, diminishes the magnitude of the spin accumulation.

  4. In Situ FT-IR Spectroscopic Study of CO2 and CO Adsorption on Y2O3, ZrO2, and Yttria-Stabilized ZrO2

    PubMed Central

    2013-01-01

    In situ FT-IR spectroscopy was exploited to study the adsorption of CO2 and CO on commercially available yttria-stabilized ZrO2 (8 mol % Y, YSZ-8), Y2O3, and ZrO2. All three oxides were pretreated at high temperatures (1173 K) in air, which leads to effective dehydroxylation of pure ZrO2. Both Y2O3 and YSZ-8 show a much higher reactivity toward CO and CO2 adsorption than ZrO2 because of more facile rehydroxylation of Y-containing phases. Several different carbonate species have been observed following CO2 adsorption on Y2O3 and YSZ-8, which are much more strongly bound on the former, due to formation of higher-coordinated polydentate carbonate species upon annealing. As the crucial factor governing the formation of carbonates, the presence of reactive (basic) surface hydroxyl groups on Y-centers was identified. Therefore, chemisorption of CO2 most likely includes insertion of the CO2 molecule into a reactive surface hydroxyl group and the subsequent formation of a bicarbonate species. Formate formation following CO adsorption has been observed on all three oxides but is less pronounced on ZrO2 due to effective dehydroxylation of the surface during high-temperature treatment. The latter generally causes suppression of the surface reactivity of ZrO2 samples regarding reactions involving CO or CO2 as reaction intermediates. PMID:24009780

  5. Transparent and Flexible Capacitors with an Ultrathin Structure by Using Graphene as Bottom Electrodes

    PubMed Central

    Guo, Tao; Zhang, Guozhen; Su, Xi; Zhang, Heng; Wan, Jiaxian; Chen, Xue; Wu, Hao; Liu, Chang

    2017-01-01

    Ultrathin, transparent and flexible capacitors using graphene as the bottom electrodes were directly fabricated on polyethylene naphthalate (PEN) substrates. ZrO2 dielectric films were deposited on the treated surface of graphene by atomic layer deposition (ALD). The deposition process did not introduce any detectible defects in the graphene, as indicated by Raman measurements, guaranteeing the electrical performances of the graphene electrodes. The Aluminum-doped zinc oxide (AZO) films were prepared as the top electrodes using the ALD technique. The capacitors presented a high capacitance density (10.3 fF/μm2 at 10 kHz) and a relatively low leakage current (5.3 × 10−6 A/cm2 at 1 V). Bending tests revealed that the capacitors were able to work normally at an outward bending radius of 10 mm without any deterioration of electrical properties. The capacitors exhibited an average optical transmittance of close to 70% at visible wavelengths. Thus, it opens the door to practical applications in transparent integrated circuits. PMID:29182551

  6. Effect of nanoconfinement on the sputter yield in ultrathin polymeric films: Experiments and model

    NASA Astrophysics Data System (ADS)

    Cristaudo, Vanina; Poleunis, Claude; Delcorte, Arnaud

    2018-06-01

    This fundamental contribution on secondary ion mass spectrometry (SIMS) polymer depth-profiling by large argon clusters investigates the dependence of the sputter yield volume (Y) on the thickness (d) of ultrathin films as a function of the substrate nature, i.e. hard vs soft. For this purpose, thin films of polystyrene (PS) oligomers (∼4,000 amu) are spin-coated, respectively, onto silicon and poly (methyl methacrylate) supports and, then, bombarded by 10 keV Ar3000+ ions. The investigated thickness ranges from 15 to 230 nm. Additionally, the influence of the polymer molecular weight on Y(d) for PS thin films on Si is explored. The sputtering efficiency is found to be strongly dependent on the overlayer thickness, only in the case of the silicon substrate. A simple phenomenological model is proposed for the description of the thickness influence on the sputtering yield. Molecular dynamics (MD) simulations conducted on amorphous films of polyethylene-like oligomers of increasing thickness (from 2 to 20 nm), under comparable cluster bombardment conditions, predict a significant increase of the sputtering yield for ultrathin layers on hard substrates, induced by energy confinement in the polymer, and support our phenomenological model.

  7. Optical bandgap of single- and multi-layered amorphous germanium ultra-thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Pei; Zaslavsky, Alexander; Longo, Paolo

    2016-01-07

    Accurate optical methods are required to determine the energy bandgap of amorphous semiconductors and elucidate the role of quantum confinement in nanometer-scale, ultra-thin absorbing layers. Here, we provide a critical comparison between well-established methods that are generally employed to determine the optical bandgap of thin-film amorphous semiconductors, starting from normal-incidence reflectance and transmittance measurements. First, we demonstrate that a more accurate estimate of the optical bandgap can be achieved by using a multiple-reflection interference model. We show that this model generates more reliable results compared to the widely accepted single-pass absorption method. Second, we compare two most representative methods (Taucmore » and Cody plots) that are extensively used to determine the optical bandgap of thin-film amorphous semiconductors starting from the extracted absorption coefficient. Analysis of the experimental absorption data acquired for ultra-thin amorphous germanium (a-Ge) layers demonstrates that the Cody model is able to provide a less ambiguous energy bandgap value. Finally, we apply our proposed method to experimentally determine the optical bandgap of a-Ge/SiO{sub 2} superlattices with single and multiple a-Ge layers down to 2 nm thickness.« less

  8. Synthesis of Ultrathin ta-C Films by Twist-Filtered Cathodic Arc Carbon Plasmas

    DTIC Science & Technology

    2001-04-01

    system. Ultrathin tetrahedral amorphous carbon (ta-C) films have been deposited on 6 inch wafers. Film properties have been investigated with respect to...Diamondlike films are characterized by an outstanding combination of advantageous properties : they can be very hard, tough, super-smooth, chemically...5 nm) hard carbon films are being used as protective overcoats on hard disks and read-write heads. The tribological properties of the head-disk

  9. Stability of Polymer Ultrathin Films (<7 nm) Made by a Top-Down Approach.

    PubMed

    Bal, Jayanta Kumar; Beuvier, Thomas; Unni, Aparna Beena; Chavez Panduro, Elvia Anabela; Vignaud, Guillaume; Delorme, Nicolas; Chebil, Mohamed Souheib; Grohens, Yves; Gibaud, Alain

    2015-08-25

    In polymer physics, the dewetting of spin-coated polystyrene ultrathin films on silicon remains mysterious. By adopting a simple top-down method based on good solvent rinsing, we are able to prepare flat polystyrene films with a controlled thickness ranging from 1.3 to 7.0 nm. Their stability was scrutinized after a classical annealing procedure above the glass transition temperature. Films were found to be stable on oxide-free silicon irrespective of film thickness, while they were unstable (<2.9 nm) and metastable (>2.9 nm) on 2 nm oxide-covered silicon substrates. The Lifshitz-van der Waals intermolecular theory that predicts the domains of stability as a function of the film thickness and of the substrate nature is now fully reconciled with our experimental observations. We surmise that this reconciliation is due to the good solvent rinsing procedure that removes the residual stress and/or the density variation of the polystyrene films inhibiting thermodynamically the dewetting on oxide-free silicon.

  10. Ultrathin ZnS and ZnO Interfacial Passivation Layers for Atomic-Layer-Deposited HfO2 Films on InP Substrates.

    PubMed

    Kim, Seung Hyun; Joo, So Yeong; Jin, Hyun Soo; Kim, Woo-Byoung; Park, Tae Joo

    2016-08-17

    Ultrathin ZnS and ZnO films grown by atomic layer deposition (ALD) were employed as interfacial passivation layers (IPLs) for HfO2 films on InP substrates. The interfacial layer growth during the ALD of the HfO2 film was effectively suppressed by the IPLs, resulting in the decrease of electrical thickness, hysteresis, and interface state density. Compared with the ZnO IPL, the ZnS IPL was more effective in reducing the interface state density near the valence band edge. The leakage current density through the film was considerably lowered by the IPLs because the film crystallization was suppressed. Especially for the film with the ZnS IPL, the leakage current density in the low-voltage region was significantly lower than that observed for the film with the ZnO IPL, because the direct tunneling current was suppressed by the higher conduction band offset of ZnS with the InP substrate.

  11. Multiscale Relaxation Dynamics in Ultrathin Metallic Glass-Forming Films

    NASA Astrophysics Data System (ADS)

    Bi, Q. L.; Lü, Y. J.; Wang, W. H.

    2018-04-01

    The density layering phenomenon originating from a free surface gives rise to the layerlike dynamics and stress heterogeneity in ultrathin Cu-Zr glassy films, which facilitates the occurrence of multistep relaxations in the timescale of computer simulations. Taking advantage of this condition, we trace the relaxation decoupling and evolution with temperature simply via the intermediate scattering function. We show that the β relaxation hierarchically follows fast and slow modes in films, and there is a β -relaxation transition as the film is cooled close to the glass transition. We provide the direct observation of particle motions responsible for the β relaxation and reveal the dominant mechanism varying from the thermal activated to the cooperative jumps across the transition.

  12. Electrical transport of spin-polarized carriers in disordered ultrathin films.

    PubMed

    Hernandez, L M; Bhattacharya, A; Parendo, Kevin A; Goldman, A M

    2003-09-19

    Slow, nonexponential relaxation of electrical transport accompanied by memory effects has been induced in quench-condensed ultrathin amorphous Bi films by the application of a parallel magnetic field. This behavior, which is very similar to space-charge limited current flow, is found in extremely thin films well on the insulating side of the thickness-tuned superconductor-insulator transition. It may be the signature of a collective state that forms when the carriers are spin polarized at low temperatures and in high magnetic fields.

  13. Ultrathin Lutetium Oxide Film as an Epitaxial Hole-Blocking Layer for Crystalline Bismuth Vanadate Water Splitting Photoanodes

    DOE PAGES

    Zhang, Wenrui; Yan, Danhua; Tong, Xiao; ...

    2018-01-08

    Here a novel ultrathin lutetium oxide (Lu 2O 3) interlayer is integrated with crystalline bismuth vanadate (BiVO4) thin film photoanodes to facilitate carrier transport through atomic-scale interface control. The epitaxial Lu 2O 32O 3

  14. Chain and mirophase-separated structures of ultrathin polyurethane films

    NASA Astrophysics Data System (ADS)

    Kojio, Ken; Uchiba, Yusuke; Yamamoto, Yasunori; Motokucho, Suguru; Furukawa, Mutsuhisa

    2009-08-01

    Measurements are presented how chain and microphase-separated structures of ultrathin polyurethane (PU) films are controlled by the thickness. The film thickness is varied by a solution concentration for spin coating. The systems are PUs prepared from commercial raw materials. Fourier-transform infrared spectroscopic measurement revealed that the degree of hydrogen bonding among hard segment chains decreased and increased with decreasing film thickness for strong and weak microphase separation systems, respectively. The microphase-separated structure, which is formed from hard segment domains and a surrounding soft segment matrix, were observed by atomic force microscopy. The size of hard segment domains decreased with decreasing film thickness, and possibility of specific orientation of the hard segment chains was exhibited for both systems. These results are due to decreasing space for the formation of the microphase-separated structure.

  15. Archetypal structure of ultrathin alumina films: Grazing-incidence x-ray diffraction on Ni(111)

    NASA Astrophysics Data System (ADS)

    Prévot, G.; Le Moal, S.; Bernard, R.; Croset, B.; Lazzari, R.; Schmaus, D.

    2012-05-01

    We have studied by grazing-incidence x-ray diffraction the atomic structure of an ultrathin alumina film grown on Ni(111). We show that, since there is neither registry between the film and the substrate nor induced Ni relaxations, this system appears to be a prototypical freestanding oxide layer. We have been able to unambiguously determine the three-dimensional structure of the film, which consists of a substrate/Al16/O24/Al24/O28 stacking within a (18.23 × 10.53 Å) R0° unit cell. From the different Al coordinations (3/4/5) in the layer and from the precise determination of the Al-O interatomic distances, we conclude that the film structure presents some similarities with the η phase of bulk alumina, which also has a high surface/bulk ratio. The precise comparison between these two structures allows us to explain that the perfect 3 ratio between the two sides of the mesh of the film is governed by the stacking of the two central planes, combining oxygen close-packed atoms below Al atoms in tetrahedral or pyramidal positions. Moreover, Al atoms at the interface plane of the ultrathin film adopt a quasitrihedral configuration, which confirms that, in the alumina η phase, Al atoms with such a coordination are located near the surface of the nanocrystals. The atomic structure is also very close to the one first proposed by Kresse [G. Kresse, M. Schmid, E. Napetschnig, M. Shishkin, L. Köhler, and P. Varga, ScienceSCIEAS0036-807510.1126/science.1107783 308, 1440 (2005)] for alumina films on NiAl(110). This strongly suggests that this atomic model, within small variations, can be extended to ultrathin alumina film on numerous other metal substrates and may be quasi-intrinsic to a freestanding layer rather than governed by the interactions between the film and the substrate.

  16. MgO-Al2O3-ZrO2 Amorphous Ternary Composite: A Dense and Stable Optical Coating

    NASA Technical Reports Server (NTRS)

    Shaoo, Naba K.; Shapiro, Alan P.

    1998-01-01

    The process-parameter-dependent optical and structural properties of MgO-Al2O3-ZrO2 ternary mixed-composite material were investigated. Optical properties were derived from spectrophotometric measurements. The surface morphology, grain size distributions, crystallographic phases, and process- dependent material composition of films were investigated through the use of atomic force microscopy, x-ray diffraction analysis, and energy-dispersive x-ray analysis. Energy-dispersive x-ray analysis made evident the correlation between the optical constants and the process-dependent compositions in the films. It is possible to achieve environmentally stable amorphous films with high packing density under certain optimized process conditions.

  17. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Influence of Ytterbia Content on Residual Stress and Microstructure of Y2O3-ZrO2 Thin Films Prepared by EB-PVD*

    NASA Astrophysics Data System (ADS)

    Xiao, Qi-Ling; Shao, Sriu-Ying; He, Hong-Bo; Shao, Jian-Da; Fan, Zheng-Xiu

    2008-09-01

    Y2O3 stabilized ZrO2 (YSZ) thin films with different Y2O3 molar contents (0, 3, 7, and 12mol%) are deposited on BK7 substrates by electron-beam evaporation technique. The effects of different Y2O3 contents on residual stresses and structures of YSZ thin films are studied. Residual stresses are investigated by means of two different techniques: the curvature measurement and x-ray diffraction method. It is found that the evolution of residual stresses of YSZ thin films by the two different methods is consistent. Residual stresses of films transform from compressive stress into tensile stress and the tensile stress incre ases monotonically with the increase of Y2O3 content. At the same time, the structures of these films change from the mixture of amorphous and monoclinic phases into high temperature cubic phase. The variations of residual stress correspond to the evolution of structures induced by adding of Y2O3 content.

  18. Effect of SiO 2-ZrO 2 supports prepared by a grafting method on hydrogen production by steam reforming of liquefied natural gas over Ni/SiO 2-ZrO 2 catalysts

    NASA Astrophysics Data System (ADS)

    Seo, Jeong Gil; Youn, Min Hye; Song, In Kyu

    SiO 2-ZrO 2 supports with various zirconium contents are prepared by grafting a zirconium precursor onto the surface of commercial Carbosil silica. Ni(20 wt.%)/SiO 2-ZrO 2 catalysts are then prepared by an impregnation method, and are applied to hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of SiO 2-ZrO 2 supports on the performance of the Ni(20 wt.%)/SiO 2-ZrO 2 catalysts is investigated. SiO 2-ZrO 2 prepared by a grafting method serves as an efficient support for the nickel catalyst in the steam reforming of LNG. Zirconia enhances the resistance of silica to steam significantly and increases the interaction between nickel and the support, and furthermore, prevents the growth of nickel oxide species during the calcination process through the formation of a ZrO 2-SiO 2 composite structure. The crystalline structures and catalytic activities of the Ni(20 wt.%)/SiO 2-ZrO 2 catalysts are strongly influenced by the amount of zirconium grafted. The conversion of LNG and the yield of hydrogen show volcano-shaped curves with respect to zirconium content. Among the catalysts tested, the Ni(20 wt.%)/SiO 2-ZrO 2 (Zr/Si = 0.54) sample shows the best catalytic performance in terms of both LNG conversion and hydrogen yield. The well-developed and pure tetragonal phase of ZrO 2-SiO 2 (Zr/Si = 0.54) appears to play an important role in the adsorption of steam and subsequent spillover of steam from the support to the active nickel. The small particle size of the metallic nickel in the Ni(20 wt.%)/SiO 2-ZrO 2 (Zr/Si = 0.54) catalyst is also responsible for its high performance.

  19. Confined Transformation Derived Ultrathin Titanate Nanosheets/ Graphene Films for Excellent Na/K Ion Storage.

    PubMed

    Zeng, Cheng; Xie, Fangxi; Yang, Xianfeng; Jaroniec, Mietek; Zhang, Lei; Qiao, Shizhang

    2018-05-02

    Confined transformation of assembled two-dimensional MXene (titanium carbide) and reduced graphene oxide (rGO) nanosheets was employed to prepare the free-standing films of the integrated ultrathin sodium titanate (NTO)/potassium titanate (KTO) nanosheets sandwiched between graphene layers. The ultrathin Ti-based nanosheets reduce the diffusion distance while rGO layers enhance conductivity. Incorporation of graphene into the titanate films produced efficient binder-free anodes for ion storage. The resulting NTO/rGO electrode for sodium ion batteries exhibited an excellent rate performance and long cycling stability characterized by reversible capacity of 72 mA h g-1 at 5 A g-1 after 10000 cycles. Moreover, flexible KTO/rGO electrode for potassium ion batteries maintained a reversible capacity of 75 mA h g-1 after 700 cycles at 2 A g-1. These results demonstrate the superiority of the unique sandwich-type electrodes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Restoring the magnetism of ultrathin LaMn O3 films by surface symmetry engineering

    NASA Astrophysics Data System (ADS)

    Peng, J. J.; Song, C.; Li, F.; Gu, Y. D.; Wang, G. Y.; Pan, F.

    2016-12-01

    The frustration of magnetization and conductivity properties of ultrathin manganite is detrimental to their device performance, preventing their scaling down process. Here we demonstrate that the magnetism of ultrathin LaMn O3 films can be restored by a SrTi O3 capping layer, which engineers the surface from a symmetry breaking induced out-of-plane orbital occupancy to the recovered in-plane orbital occupancy. The stabilized in-plane orbital occupancy would strengthen the intralayer double exchange and thus recovers the robust magnetism. This method is proved to be effective for films as thin as 2 unit cells, greatly shrinking the critical thickness of 6 unit cells for ferromagnetic LaMn O3 as demonstrated previously [Wang et al., Science 349, 716 (2015), 10.1126/science.aaa5198]. The achievement made in this work opens up new perspectives to an active control of surface states and thereby tailors the surface functional properties of transition metal oxides.

  1. Operando SXRD of E-ALD deposited sulphides ultra-thin films: Crystallite strain and size

    NASA Astrophysics Data System (ADS)

    Giaccherini, Andrea; Russo, Francesca; Carlà, Francesco; Guerri, Annalisa; Picca, Rosaria Anna; Cioffi, Nicola; Cinotti, Serena; Montegrossi, Giordano; Passaponti, Maurizio; Di Benedetto, Francesco; Felici, Roberto; Innocenti, Massimo

    2018-02-01

    Electrochemical Atomic Layer Deposition (E-ALD), exploiting surface limited electrodeposition of atomic layers, can easily grow highly ordered ultra-thin films and 2D structures. Among other compounds CuxZnyS grown by means of E-ALD on Ag(111) has been found particularly suitable for the solar energy conversion due to its band gap (1.61 eV). However its growth seems to be characterized by a micrometric thread-like structure, probably overgrowing a smooth ultra-thin films. On this ground, a SXRD investigation has been performed, to address the open questions about the structure and the growth of CuxZnyS by means of E-ALD. The experiment shows a pseudo single crystal pattern as well as a powder pattern, confirming that part of the sample grows epitaxially on the Ag(111) substrate. The growth of the film was monitored by following the evolution of the Bragg peaks and Debye rings during the E-ALD steps. Breadth and profile analysis of the Bragg peaks lead to a qualitative interpretation of the growth mechanism. This study confirms that Zn lead to the growth of a strained Cu2S-like structure, while the growth of the thread-like structure is probably driven by the release of the stress from the epitaxial phase.

  2. Synthesis of Zr2WP2O12/ZrO2 Composites with Adjustable Thermal Expansion.

    PubMed

    Zhang, Zhiping; Sun, Weikang; Liu, Hongfei; Xie, Guanhua; Chen, Xiaobing; Zeng, Xianghua

    2017-01-01

    Zr 2 WP 2 O 12 /ZrO 2 composites were fabricated by solid state reaction with the goal of tailoring the thermal expansion coefficient. XRD, SEM and TMA were used to investigate the composition, microstructure, and thermal expansion behavior of Zr 2 WP 2 O 12 /ZrO 2 composites with different mass ratio. Relative densities of all the resulting Zr 2 WP 2 O 12 /ZrO 2 samples were also tested by Archimedes' methods. The obtained Zr 2 WP 2 O 12 /ZrO 2 composites were comprised of orthorhombic Zr 2 WP 2 O 12 and monoclinic ZrO 2 . As the increase of the Zr 2 WP 2 O 12 , the relative densities of Zr 2 WP 2 O 12 /ZrO 2 ceramic composites increased gradually. The coefficient of thermal expansion of the Zr 2 WP 2 O 12 /ZrO 2 composites can be tailored from 4.1 × 10 -6 K -1 to -3.3 × 10 -6 K -1 by changing the content of Zr 2 WP 2 O 12 . The 2:1 Zr 2 WP 2 O 12 /ZrO 2 specimen shows close to zero thermal expansion from 25 to 700°C with an average linear thermal expansion coefficient of -0.09 × 10 -6 K -1 . These adjustable and near zero expansion ceramic composites will have great potential application in many fields.

  3. Fabrication of ultrathin MIL-96(Al) films and study of CO2 adsorption/desorption processes using quartz crystal microbalance.

    PubMed

    Andrés, Miguel A; Benzaqui, M; Serre, C; Steunou, N; Gascón, I

    2018-06-01

    This contribution reports the fabrication and characterization of ultrathin films of nanoparticles of the water stable microporous Al tricarboxylate metal organic framework MIL-96(Al). The preparation of MOF dispersions in chloroform has been optimized to obtain dense monolayer films of good quality, without nanoparticle agglomeration, at the air-water interface that can be deposited onto solid substrates of different nature without any previous substrate functionalization. The MOF studied shows great interest for CO 2 capture because it presents Al 3+ Lewis centers and hydroxyl groups that strongly interact with CO 2 molecules. A comparative CO 2 adsorption study on drop-cast, Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS) films using a Quartz Crystal Microbalance-based setup (QCM) has revealed that the CO 2 uptake depends strongly on the film fabrication procedure and the storage conditions. Noteworthy the CO 2 adsorption capacity of LB films is increased by 30% using a simple and green treatment (immersion of the film into water during 12 h just after film preparation). Finally, the stability of LB MOF monolayers upon several CO 2 adsorption/desorption cycles has been demonstrated, showing that CO 2 can be easily desorbed from the films at 303 K by flowing an inert gas (He). These results show that MOF LB monolayers can be of great interest for the development of MOF-based devices that require the use of very small MOF quantities, especially gas sensors. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Modeling the mechanical properties of ultra-thin polymer films [Structural modeling of films of atomic scale thickness

    DOE PAGES

    Espinosa-Loza, Francisco; Stadermann, Michael; Aracne-Ruddle, Chantel; ...

    2017-11-16

    A modeling method to extract the mechanical properties of ultra-thin films (10–100 nm thick) from experimental data generated by indentation of freestanding circular films using a spherical indenter is presented. The relationship between the mechanical properties of the film and experimental parameters including load, and deflection are discussed in the context of a constitutive material model, test variables, and analytical approaches. As a result, elastic and plastic regimes are identified by comparison of finite element simulation and experimental data.

  5. Modeling the mechanical properties of ultra-thin polymer films [Structural modeling of films of atomic scale thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espinosa-Loza, Francisco; Stadermann, Michael; Aracne-Ruddle, Chantel

    A modeling method to extract the mechanical properties of ultra-thin films (10–100 nm thick) from experimental data generated by indentation of freestanding circular films using a spherical indenter is presented. The relationship between the mechanical properties of the film and experimental parameters including load, and deflection are discussed in the context of a constitutive material model, test variables, and analytical approaches. As a result, elastic and plastic regimes are identified by comparison of finite element simulation and experimental data.

  6. Transport properties of ultrathin BaFe1.84Co0.16As2 superconducting nanowires

    NASA Astrophysics Data System (ADS)

    Yuan, Pusheng; Xu, Zhongtang; Li, Chen; Quan, Baogang; Li, Junjie; Gu, Changzhi; Ma, Yanwei

    2018-07-01

    Superconducting nanowire single-photon detectors (SNSPDs) have an absolute advantage over other types of single-photon detectors, except for the low operating temperature. Therefore, much effort has been devoted to finding high-temperature superconducting materials that are suitable for preparing SNSPDs. Copper-based and MgB2 ultrathin superconducting nanowires have already been reported. However, the transport properties of iron-based ultrathin superconducting nanowires have not been studied. In this work, a 10 nm thick × 200 nm wide × 30 μm long high-quality superconducting nanowire was fabricated from ultrathin BaFe1.84Co0.16As2 films by a lift-off process. The precursor BaFe1.84Co0.16As2 film with a thickness of 10 nm and root-mean-square roughness of 1 nm was grown on CaF2 substrates by pulsed laser deposition. The nanowire shows a high superconducting critical temperature {T}{{c}}{{zero}} = 20 K with a narrow transition width of ΔT = 2.5 K and exhibits a high critical current density J c of 1.8 × 107 A cm-2 at 10 K. These results of ultrathin BaFe1.84Co0.16As2 nanowire will attract interest in electronic applications, including SNSPDs.

  7. Magnetic and structural characterization of ultra-thin Fe (222) films

    NASA Astrophysics Data System (ADS)

    Loving, Melissa G.; Brown, Emily E.; Rizzo, Nicholas D.; Ambrose, Thomas F.

    2018-05-01

    Varied thickness body centered cubic (BCC) ultrathin Fe films (10-50Å) have been sputter deposited onto Si (111) substrates. BCC Fe with the novel (222) texture was obtained by H- terminating the Si (111) starting substrate then immediately depositing the magnetic films. Structural results derived from grazing incidence x-ray diffraction and x-ray reflectivity confirm the crystallographic texture, film thickness, and interface roughness. Magnetic results indicate that Fe (222) exhibits soft magnetic switching (easy axis), high anisotropy (hard axis), which is maintained across the thickness range, and a positive magnetostriction (for the thicker film layers). The observed soft magnetic switching in this system makes it an ideal candidate for future magnetic memory development as well as other microelectronics applications that utilize magnetic materials.

  8. Effect of TiO2, ZrO2, and TiO2-ZrO2 on the performance of CuO-ZnO catalyst for CO2 hydrogenation to methanol

    NASA Astrophysics Data System (ADS)

    Xiao, Jie; Mao, Dongsen; Guo, Xiaoming; Yu, Jun

    2015-05-01

    The influence of TiO2, ZrO2, and TiO2-ZrO2 mixed oxide on the catalytic performance of CuO-ZnO catalyst in the methanol synthesis from CO2 hydrogenation was studied. The catalysts were prepared by oxalate co-precipitation method and characterized by TGA, N2 adsorption, XRD, reactive N2O adsorption, XPS, H2-TPR, H2-TPD, and CO2-TPD techniques. Characterization results reveal that all the additives improve the CuO dispersion in the catalyst body and increase the Cu surface area and adsorption capacities of CO2 and H2. The results of catalytic test reveal that the additives increase both the CO2 conversion and methanol selectivity, and TiO2-ZrO2 mixed oxide is more effective than single components of TiO2 or ZrO2. Moreover, the activity of methanol synthesis is correlated directly with CO2 adsorption capacity over the catalysts.

  9. Injection doping of ultrathin microcrystalline silicon films prepared by CC-CVD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koynov, S.; Grebner, S.; Schwarz, R.

    1997-07-01

    Recently, the authors have proposed a cyclic method, referred to as Closed Chamber CVD (CC-CVD), for the preparation of {micro}c-Si films of high crystalline fraction at increased deposition rates. In this work, they first report new process conditions of CC-CVD, which result in growth of highly crystalline films with a sharp interface on a foreign substrate. Then these conditions are further used together with a pulsed injection of B{sub 2}H{sub 6} in an appropriate moment of each cycle, so that the disturbance of the crystallization process is prevented. A series of ultrathin {micro}c-Si films, doped by this technique, is characterizedmore » by conductivity measurements, SEM, Raman Scattering, optical transmission and UV reflection. A strong reduction of the transient interface layer is achieved and conductivity as high as 2 S/cm with an activation energy of 27 meV is reached.« less

  10. Exploitation of a Self-limiting Process for Reproducible Formation of Ultrathin Ni(1-x)Pt(x) Silicide Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Z Zhang; B Yang; Y Zhu

    This letter reports on a process scheme to obtain highly reproducible Ni{sub 1-x}Pt{sub x} silicide films of 3-6 nm thickness formed on a Si(100) substrate. Such ultrathin silicide films are readily attained by sputter deposition of metal films, metal stripping in wet chemicals, and final silicidation by rapid thermal processing. This process sequence warrants an invariant amount of metal intermixed with Si in the substrate surface region independent of the initial metal thickness, thereby leading to a self-limiting formation of ultrathin silicide films. The crystallographic structure, thickness, uniformity, and morphological stability of the final silicide films depend sensitively on themore » initial Pt fraction.« less

  11. Oxidation of the Ru(0001) surface covered by weakly bound, ultrathin silicate films

    DOE PAGES

    Emmez, Emre; Anibal Boscoboinik, J.; Tenney, Samuel; ...

    2015-06-30

    Bilayer silicate films grown on metal substrates are weakly bound to the metal surfaces, which allows ambient gas molecules to intercalate the oxide/metal interface. In this work, we studied the interaction of oxygen with Ru(0001) supported ultrathin silicate and aluminosilicate films at elevated O 2 pressures (10 -5–10 mbar) and temperatures (450–923 K). The results show that the silicate films stay essentially intact under these conditions, and oxygen in the film does not exchange with oxygen in the ambient. O 2 molecules readily penetrate the film and dissociate on the underlying Ru surface underneath. Also, the silicate layer does howevermore » strongly passivate the Ru surface towards RuO 2(110) oxide formation that readily occurs on bare Ru(0001) under the same conditions. Lastly, the results indicate considerable spatial effects for oxidation reactions on metal surfaces in the confined space at the interface. Moreover, the aluminosilicate films completely suppress the Ru oxidation, providing some rationale for using crystalline aluminosilicates in anti-corrosion coatings.« less

  12. Structural phase diagram for ultra-thin epitaxial Fe 3O 4 / MgO(0 01) films: thickness and oxygen pressure dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alraddadi, S.; Hines, W.; Yilmaz, T.

    2016-02-19

    A systematic investigation of the thickness and oxygen pressure dependence for the structural properties of ultra-thin epitaxial magnetite (Fe 3O 4) films has been carried out; for such films, the structural properties generally differ from those for the bulk when the thickness ≤10 nm. Iron oxide ultra-thin films with thicknesses varying from 3 nm to 20 nm were grown on MgO (001) substrates using molecular beam epitaxy under different oxygen pressures ranging from 1 × 10 -7 torr to 1 × 10 -5 torr. The crystallographic and electronic structures of the films were characterized using low energy electron diffraction (LEED)more » and x-ray photoemission spectroscopy (XPS), respectively. Moreover, the quality of the epitaxial Fe 3O 4 ultra-thin films was judged by magnetic measurements of the Verwey transition, along with complementary XPS spectra. We observed that under the same growth conditions the stoichiometry of ultra-thin films under 10 nm transforms from the Fe 3O 4 phase to the FeO phase. In this work, a phase diagram based on thickness and oxygen pressure has been constructed to explain the structural phase transformation. It was found that high-quality magnetite films with thicknesses ≤20 nm formed within a narrow range of oxygen pressure. An optimal and controlled growth process is a crucial requirement for the accurate study of the magnetic and electronic properties for ultra-thin Fe 3O 4 films. Furthermore, these results are significant because they may indicate a general trend in the growth of other oxide films, which has not been previously observed or considered.« less

  13. Thermodynamic Assessment of the Y2o3-yb2o3-zro2 System

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Liu, Zi-Kui; Kaufman, Larry; Zhang, Fan

    2002-01-01

    Yttria-zirconia (Y2O3-ZrO2) is the most widely used of the rare earth oxide-zirconia systems. There are numerous experimental studies of the phase boundaries in this system. In this paper, we assess these data and derive parameters for the solution models in this system. There is current interest in other rare earth oxide-zirconia systems as well as systems with several rare earth oxides and zirconia, which may offer improved properties over the Y2O3-ZrO2 system. For this reason, we also assess the ytterbia-zirconia (Yb2O3-ZrO2) and Y2O3-Yb2O3-ZrO2 system.

  14. Effect of structural evolution on mechanical properties of ZrO2 coated Ti-6Al-7Nb-biomedical application

    NASA Astrophysics Data System (ADS)

    Zalnezhad, E.

    2016-05-01

    Zirconia (ZrO2) nanotube arrays were fabricated by anodizing pure zirconium (Zr) coated Ti-6Al-7Nb in fluoride/glycerol electrolyte at a constant potential of 60 V for different times. Zr was deposited atop Ti-6Al-7Nb via a physical vapor deposition magnetron sputtering (PVDMS) technique. Structural investigations of coating were performed utilizing X-ray diffraction (XRD) analysis. Field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) were used to characterize the morphology and microstructure of coatings. Unannealed ZrO2 nanotube arrays were amorphous. Monoclinic and tetragonal ZrO2 appeared when the coated substrates were heat treated at 450 °C and 650 °C, while monoclinic ZrO2 was found at 850 °C and 900 °C. Mechanical properties, including nanohardness and modulus of elasticity, were evaluated at different annealing temperatures using a nanoindentation test. The nanoindentation results show that the nanohardness and modulus of elasticity for Ti-6AL-7Nb increased by annealing ZrO2 coated substrate at 450 °C. The nanohardness and modulus of elasticity for coated substrate decreased with annealing temperatures of 650, 850, and 900 °C. At an annealing temperature of 900 °C, cracks in the ZrO2 thin film coating occurred. The highest nanohardness and elastic modulus values of 6.34 and 218 GPa were achieved at an annealing temperature of 450 °C.

  15. A repeated halving approach to fabricate ultrathin single-walled carbon nanotube films for transparent supercapacitors.

    PubMed

    Niu, Zhiqiang; Zhou, Weiya; Chen, Jun; Feng, Guoxing; Li, Hong; Hu, Yongsheng; Ma, Wenjun; Dong, Haibo; Li, Jinzhu; Xie, Sishen

    2013-02-25

    Ultrathin SWCNT transparent and conductive films on flexible and transparent substrates are prepared via repeatedly halving the directly grown SWCNT films and flexible and transparent supercapacitors with excellent performance were fabricated. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Low voltage operation of IGZO thin film transistors enabled by ultrathin Al2O3 gate dielectric

    NASA Astrophysics Data System (ADS)

    Ma, Pengfei; Du, Lulu; Wang, Yiming; Jiang, Ran; Xin, Qian; Li, Yuxiang; Song, Aimin

    2018-01-01

    An ultrathin, 5 nm, Al2O3 film grown by atomic-layer deposition was used as a gate dielectric for amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). The Al2O3 layer showed a low surface roughness of 0.15 nm, a low leakage current, and a high breakdown voltage of 6 V. In particular, a very high gate capacitance of 720 nF/cm2 was achieved, making it possible for the a-IGZO TFTs to not only operate at a low voltage of 1 V but also exhibit desirable properties including a low threshold voltage of 0.3 V, a small subthreshold swing of 100 mV/decade, and a high on/off current ratio of 1.2 × 107. Furthermore, even under an ultralow operation voltage of 0.6 V, well-behaved transistor characteristics were still observed with an on/off ratio as high as 3 × 106. The electron transport through the Al2O3 layer has also been analyzed, indicating the Fowler-Nordheim tunneling mechanism.

  17. The influence of the surface parameter changes onto the phonon states in ultrathin crystalline films

    NASA Astrophysics Data System (ADS)

    Šetrajčić, Jovan P.; Ilić, Dušan I.; Jaćimovski, Stevo K.

    2018-04-01

    In this paper, we have analytically investigated how the changes in boundary surface parameters influence the phonon dispersion law in ultrathin films of the simple cubic crystalline structure. Spectra of possible phonon states are analyzed using the method of two-time dependent Green's functions and for the diverse combination of boundary surface parameters, this problem was presented numerically and graphically. It turns out that for certain values and combinations of parameters, displacement of dispersion branches outside of bulk zone occurs, leading to the creation of localized phonon states. This fact is of great importance for the heat removal, electrical conductivity and superconducting properties of ultrathin films.

  18. Investigation of ZrO x /ZrC-ZrN/Zr thin-film structural evolution and their degradation using X-ray diffraction and Raman spectrometry

    NASA Astrophysics Data System (ADS)

    Usmani, B.; Vijay, V.; Chhibber, R.; Dixit, A.

    2016-11-01

    The thin-film structures of DC/FR magnetron-sputtered ZrO x /ZrC-ZrN/Zr tandem solar-selective coatings are investigated using X-ray diffraction and room-temperature Raman spectroscopic measurements. These studies suggest that the major contribution is coming from h-ZrN0.28, c-ZrC, h-Zr3C2 crystallographic phases in ZrN-ZrC absorber layer, in conjunction with mixed ZrO x crystallographic phases. The change in structure for thermally annealed samples has been examined and observed that cubic and hexagonal ZrO x phase converted partially into tetragonal and monoclinic ZrO x phases, whereas hexagonal and cubic ZrN phases, from absorber layer, have not been observed for these thermally treated samples in air. These studies suggest that thermal treatment may lead to the loss of ZrN phase in absorber, degrading the thermal response for the desired wavelength range in open ambient conditions in contrast to vacuum conditions.

  19. High thermal stability of La 2O 3 and CeO 2-stabilized tetragonal ZrO 2

    DOE PAGES

    Wang, Shichao; Xie, Hong; Lin, Yuyuan; ...

    2016-02-15

    Catalyst support materials of tetragonal ZrO 2, stabilized by either La 2O 3 (La 2O 3-ZrO 2) or CeO 2 (CeO 2-ZrO 2), were synthesized under hydrothermal conditions at 200 °C with NH 4OH or tetramethylammonium hydroxide as the mineralizer. From In Situ synchrotron powder X-ray diffraction and small-angle X-ray scattering measurements, the calcined La 2O 3-ZrO 2 and CeO 2-ZrO 2 supports were nonporous nanocrystallites that exhibited rectangular shapes with thermal stability up to 1000 °C in air. These supports had an average size of ~10 nm and a surface area of 59-97 m 2/g. The catalysts Pt/La 2Omore » 3-ZrO 2 and Pt/CeO 2-ZrO 2 were prepared by using atomic layer deposition with varying Pt loadings from 6.3-12.4 wt %. Mono-dispersed Pt nanoparticles of ~3 nm were obtained for these catalysts. As a result, the incorporation of La 2O 3 and CeO 2 into the t-ZrO 2 structure did not affect the nature of the active sites for the Pt/ZrO 2 catalysts for the water-gas-shift (WGS) reaction.« less

  20. In situ study of the electronic structure of atomic layer deposited oxide ultrathin films upon oxygen adsorption using ambient pressure XPS

    DOE PAGES

    Mao, Bao-Hua; Crumlin, Ethan; Tyo, Eric C.; ...

    2016-07-21

    In this work, ambient pressure X-ray photoelectron spectroscopy (APXPS) was used to investigate the effect of oxygen adsorption on the band bending and electron affinity of Al 2O 3, ZnO and TiO 2 ultrathin films (~1 nm in thickness) deposited on a Si substrate by atomic layer deposition (ALD). Upon exposure to oxygen at room temperature (RT), upward band bending was observed on all three samples, and a decrease in electron affinity was observed on Al 2O 3 and ZnO ultrathin films at RT. At 80°C, the magnitude of the upward band bending decreased, and the change in the electronmore » affinity vanished. These results indicate the existence of two surface oxygen species: a negatively charged species that is strongly adsorbed and responsible for the observed upward band bending, and a weakly adsorbed species that is polarized, lowering the electron affinity. Based on the extent of upward band bending on the three samples, the surface coverage of the strongly adsorbed species exhibits the following order: Al 2O 3 > ZnO > TiO 2. This finding is in stark contrast to the trend expected on the surface of these bulk oxides, and highlights the unique surface activity of ultrathin oxide films with important implications, for example, in oxidation reactions taking place on these films or in catalyst systems where such oxides are used as a support material.« less

  1. Precisely Controlled Ultrathin Conjugated Polymer Films for Large Area Transparent Transistors and Highly Sensitive Chemical Sensors.

    PubMed

    Khim, Dongyoon; Ryu, Gi-Seong; Park, Won-Tae; Kim, Hyunchul; Lee, Myungwon; Noh, Yong-Young

    2016-04-13

    A uniform ultrathin polymer film is deposited over a large area with molecularlevel precision by the simple wire-wound bar-coating method. The bar-coated ultrathin films not only exhibit high transparency of up to 90% in the visible wavelength range but also high charge carrier mobility with a high degree of percolation through the uniformly covered polymer nanofibrils. They are capable of realizing highly sensitive multigas sensors and represent the first successful report of ethylene detection using a sensor based on organic field-effect transistors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A Synergistic Effect of Surfactant and ZrO2 Underlayer on Photocurrent Enhancement and Cathodic Shift of Nanoporous Fe2O3 Photoanode

    PubMed Central

    Shinde, Pravin S.; Lee, Su Yong; Choi, Sun Hee; Lee, Hyun Hwi; Ryu, Jungho; Jang, Jum Suk

    2016-01-01

    Augmenting the donor density and nanostructure engineering are the crucial points to improve solar water oxidation performance of hematite (α-Fe2O3). This work addresses the sluggish water oxidation reaction associated with hematite photoanode by tweaking its internal porosity. The porous hematite photoanodes are fabricated by a novel synthetic strategy via pulse reverse electrodeposition (PRED) method that involves incorporation of a cationic CTAB surfactant in a sulfate electrolyte and spin-coated ZrO2 underlayer (UL) on FTO. CTAB is found to be beneficial in promoting the film growth rate during PRED. Incorporation of Zr4+ ions from ZrO2 UL and Sn4+ ions from FTO into the Fe2O3 lattice via solid-state diffusion reaction during pertinent annihilation of surfactant molecules at 800 °C produced internally porous hematite films with improved carrier concentration. The porous hematite demonstrated a sustained photocurrent enhancement and a significant cathodic shift of 130 mV relative to the planar hematite under standard illumination conditions (AM 1.5G) in 1 M NaOH electrolyte. The absorption, electrochemical impedance spectroscopy and Mott-Schottky analyses revealed that the ZrO2 UL and CTAB not only increased the carrier density and light harvesting but also accelerated the surface oxidation reaction kinetics, synergistically boosting the performance of internally porous hematite photoanodes. PMID:27577967

  3. A Synergistic Effect of Surfactant and ZrO2 Underlayer on Photocurrent Enhancement and Cathodic Shift of Nanoporous Fe2O3 Photoanode.

    PubMed

    Shinde, Pravin S; Lee, Su Yong; Choi, Sun Hee; Lee, Hyun Hwi; Ryu, Jungho; Jang, Jum Suk

    2016-08-31

    Augmenting the donor density and nanostructure engineering are the crucial points to improve solar water oxidation performance of hematite (α-Fe2O3). This work addresses the sluggish water oxidation reaction associated with hematite photoanode by tweaking its internal porosity. The porous hematite photoanodes are fabricated by a novel synthetic strategy via pulse reverse electrodeposition (PRED) method that involves incorporation of a cationic CTAB surfactant in a sulfate electrolyte and spin-coated ZrO2 underlayer (UL) on FTO. CTAB is found to be beneficial in promoting the film growth rate during PRED. Incorporation of Zr(4+) ions from ZrO2 UL and Sn(4+) ions from FTO into the Fe2O3 lattice via solid-state diffusion reaction during pertinent annihilation of surfactant molecules at 800 °C produced internally porous hematite films with improved carrier concentration. The porous hematite demonstrated a sustained photocurrent enhancement and a significant cathodic shift of 130 mV relative to the planar hematite under standard illumination conditions (AM 1.5G) in 1 M NaOH electrolyte. The absorption, electrochemical impedance spectroscopy and Mott-Schottky analyses revealed that the ZrO2 UL and CTAB not only increased the carrier density and light harvesting but also accelerated the surface oxidation reaction kinetics, synergistically boosting the performance of internally porous hematite photoanodes.

  4. A Synergistic Effect of Surfactant and ZrO2 Underlayer on Photocurrent Enhancement and Cathodic Shift of Nanoporous Fe2O3 Photoanode

    NASA Astrophysics Data System (ADS)

    Shinde, Pravin S.; Lee, Su Yong; Choi, Sun Hee; Lee, Hyun Hwi; Ryu, Jungho; Jang, Jum Suk

    2016-08-01

    Augmenting the donor density and nanostructure engineering are the crucial points to improve solar water oxidation performance of hematite (α-Fe2O3). This work addresses the sluggish water oxidation reaction associated with hematite photoanode by tweaking its internal porosity. The porous hematite photoanodes are fabricated by a novel synthetic strategy via pulse reverse electrodeposition (PRED) method that involves incorporation of a cationic CTAB surfactant in a sulfate electrolyte and spin-coated ZrO2 underlayer (UL) on FTO. CTAB is found to be beneficial in promoting the film growth rate during PRED. Incorporation of Zr4+ ions from ZrO2 UL and Sn4+ ions from FTO into the Fe2O3 lattice via solid-state diffusion reaction during pertinent annihilation of surfactant molecules at 800 °C produced internally porous hematite films with improved carrier concentration. The porous hematite demonstrated a sustained photocurrent enhancement and a significant cathodic shift of 130 mV relative to the planar hematite under standard illumination conditions (AM 1.5G) in 1 M NaOH electrolyte. The absorption, electrochemical impedance spectroscopy and Mott-Schottky analyses revealed that the ZrO2 UL and CTAB not only increased the carrier density and light harvesting but also accelerated the surface oxidation reaction kinetics, synergistically boosting the performance of internally porous hematite photoanodes.

  5. Ion-enhanced chemical etching of ZrO2 in a chlorine discharge

    NASA Astrophysics Data System (ADS)

    Sha, Lin; Cho, Byeong-Ok; Chang, Jane P.

    2002-09-01

    Chlorine plasma is found to chemically etch ZrO2 thin films in an electron cyclotron resonance reactor, and the etch rate scaled linearly with the square root of ion energy at high ion energies with a threshold energy between 12-20 eV. The etching rate decreased monotonically with increasing chamber pressures, which corresponds to reduced electron temperatures. Optical emission spectroscopy and quadrupole mass spectrometry were used to identify the reaction etching products. No Zr, O, or ZrCl were detected as etching products, but highly chlorinated zirconium compounds (ZrCl2, ZrCl3, and ZrCl4) and ClO were found to be the dominant etching products. ZrCl3 was the dominant etching products at low ion energies, while ZrCl4 became dominant at higher ion energies. This is consistent with greater momentum transfer and enhanced surface chlorination, as determined by x-ray photoelectron spectroscopy, at increased ion energies. Several ion-enhanced chemical reactions are proposed to contribute to the ZrO2 etching. copyright 2002 American Vacuum Society.

  6. MnO2 ultrathin films deposited by means of magnetron sputtering: Relationships between process conditions, structural properties and performance in transparent supercapacitors

    NASA Astrophysics Data System (ADS)

    Borysiewicz, Michał A.; Wzorek, Marek; Myśliwiec, Marcin; Kaczmarski, Jakub; Ekielski, Marek

    2016-12-01

    This study focuses on the relationships between the process parameters during magnetron sputter deposition of MnO2 and the resulting film properties. Three MnO2 phases were identified - γ, β and λ and the dependence of MnO2 phase presence on the oxygen content in the sputtering atmosphere was found. Selected MnO2 phases were subsequently applied as ultrathin coatings on top of nanostructured ZnO electrodes for transparent supercapacitors with LiCl-based gel electrolyte. The films containing λ-MnO2 exhibited both the highest optical transparency of 62% at 550 nm as well as the highest specific capacitance in the supercapacitor structure, equal to 73.1 μF/cm2. Initially lower, the capacitance was elevated by charge-discharge conditioning.

  7. Miscibility of amorphous ZrO2-Al2O3 binary alloy

    NASA Astrophysics Data System (ADS)

    Zhao, C.; Richard, O.; Bender, H.; Caymax, M.; De Gendt, S.; Heyns, M.; Young, E.; Roebben, G.; Van Der Biest, O.; Haukka, S.

    2002-04-01

    Miscibility is a key factor for maintaining the homogeneity of the amorphous structure in a ZrO2-Al2O3 binary alloy high-k dielectric layer. In the present work, a ZrO2/Al2O3 laminate thin layer has been prepared by atomic layer chemical vapor deposition on a Si (100) wafer. This layer, with artificially induced inhomogeneity (lamination), enables one to study the change in homogeneity of the amorphous phase in the ZrO2/Al2O3 system during annealing. High temperature grazing incidence x-ray diffraction (HT-XRD) was used to investigate the change in intensity of the constructive interference peak of the x-ray beams which are reflected from the interfaces of ZrO2/Al2O3 laminae. The HT-XRD spectra show that the intensity of the peak decreases with an increase in the anneal temperature, and at 800 °C, the peak disappears. The same samples were annealed by a rapid thermal process (RTP) at temperatures between 700 and 1000 °C for 60 s. Room temperature XRD of the RTP annealed samples shows a similar decrease in peak intensity. Transmission electronic microscope images confirm that the laminate structure is destroyed by RTP anneals and, just below the crystallization onset temperature, a homogeneous amorphous ZrAlxOy phase forms. The results demonstrate that the two artificially separated phases, ZrO2 and Al2O3 laminae, tend to mix into a homogeneous amorphous phase before crystallization. This observation indicates that the thermal stability of ZrO2-Al2O3 amorphous phase is suitable for high-k applications.

  8. Electron transport in ultra-thin films and ballistic electron emission microscopy

    NASA Astrophysics Data System (ADS)

    Claveau, Y.; Di Matteo, S.; de Andres, P. L.; Flores, F.

    2017-03-01

    We have developed a calculation scheme for the elastic electron current in ultra-thin epitaxial heterostructures. Our model uses a Keldysh’s non-equilibrium Green’s function formalism and a layer-by-layer construction of the epitaxial film. Such an approach is appropriate to describe the current in a ballistic electron emission microscope (BEEM) where the metal base layer is ultra-thin and generalizes a previous one based on a decimation technique appropriated for thick slabs. This formalism allows a full quantum mechanical description of the transmission across the epitaxial heterostructure interface, including multiple scattering via the Dyson equation, which is deemed a crucial ingredient to describe interfaces of ultra-thin layers properly in the future. We introduce a theoretical formulation needed for ultra-thin layers and we compare with results obtained for thick Au(1 1 1) metal layers. An interesting effect takes place for a width of about ten layers: a BEEM current can propagate via the center of the reciprocal space (\\overlineΓ ) along the Au(1 1 1) direction. We associate this current to a coherent interference finite-width effect that cannot be found using a decimation technique. Finally, we have tested the validity of the handy semiclassical formalism to describe the BEEM current.

  9. Composite membranes from photochemical synthesis of ultrathin polymer films

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Martin, Charles R.

    1991-07-01

    THERE has recently been a resurgence of interest in synthetic membranes and membrane-based processes1-12. This is motivated by a wide variety of technological applications, such as chemical separations1-7, bioreactors and sensors8,9, energy conversion10,11 and drug-delivery systems12. Many of these technologies require the ability to prepare extremely thin, defect-free synthetic (generally polymeric) films, which are supported on microporous supports to form composite membranes. Here we describe a method for producing composite membranes of this sort that incorporate high-quality polymer films less than 50-nm thick. The method involves interfacial photopolymerization of a thin polymer film on the surface of the microporous substrate. We have been able to use this technique to synthesize a variety of functionalized ultrathin films based on electroactive, photoactive and ion-exchange polymers. We demonstrate the method here with composite membranes that show exceptional gas-transport properties.

  10. Highly conductive ultrathin Co films by high-power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Jablonka, L.; Riekehr, L.; Zhang, Z.; Zhang, S.-L.; Kubart, T.

    2018-01-01

    Ultrathin Co films deposited on SiO2 with conductivities exceeding that of Cu are demonstrated. Ionized deposition implemented by high-power impulse magnetron sputtering (HiPIMS) is shown to result in smooth films with large grains and low resistivities, namely, 14 µΩ cm at a thickness of 40 nm, which is close to the bulk value of Co. Even at a thickness of only 6 nm, a resistivity of 35 µΩ cm is obtained. The improved film quality is attributed to a higher nucleation density in the Co-ion dominated plasma in HiPIMS. In particular, the pulsed nature of the Co flux as well as shallow ion implantation of Co into SiO2 can increase the nucleation density. Adatom diffusion is further enhanced in the ionized process, resulting in a dense microstructure. These results are in contrast to Co deposited by conventional direct current magnetron sputtering where the conductivity is reduced due to smaller grains, voids, rougher interfaces, and Ar incorporation. The resistivity of the HiPIMS films is shown to be in accordance with models by Mayadas-Shatzkes and Sondheimer which consider grain-boundary and surface-scattering.

  11. Development of a thick GdBCO and ZrO 2-doped GdBCO film with a high critical current on a PLD-CeO 2/IBAD-GZO metal substrate

    NASA Astrophysics Data System (ADS)

    Kinoshita, A.; Takahashi, K.; Kobayashi, H.; Yamada, Y.; Ibi, A.; Fukushima, H.; Konishi, M.; Miyata, S.; Shiohara, Y.; Kato, T.; Hirayama, T.

    2007-10-01

    In order to obtain a high critical current, Ic, we have fabricated a thick GdBa2Cu3O7-x (GdBCO) film by the pulsed laser deposition (PLD) method on a PLD-CeO2/ion-beam assisted deposition (IBAD)-Gd2Zr2O7 (GZO)/hastelloy metal substrate. The film of a 3.6 μm thickness exhibited the highest critical current of 522 A/cm at self-field and at 77 K. It was found that a low volume fraction of a-axis oriented grains was obtained in the thick GdBCO films, compared to YBa2Cu3O7-x (YBCO) films. The GdBCO films showed a higher critical current density (Jc), than YBCO films in all thicknesses from 0.2 to 3.6 μm. Furthermore, we have improved Ic in a magnetic field by the introduction of artificial pinning centers using a 5 mol% ZrO2-doped GdBCO target. In the measurement of angular dependence of Ic, which was much improved at 0°, the magnetic field was parallel to the c-axis. The Ic value at 3 T was 59.5 A/cm at 0° and showed a minimum of 42.3 A/cm at 82° for the film of a 2.3 μm thickness. The minimum value at 3 T in angular dependence of Ic was about five times higher than that of the YBCO film and two times higher than that of pure the GdBCO film.

  12. ZrO2-Nanoparticle-Modified Graphite Felt: Bifunctional Effects on Vanadium Flow Batteries.

    PubMed

    Zhou, Haipeng; Shen, Yi; Xi, Jingyu; Qiu, Xinping; Chen, Liquan

    2016-06-22

    To improve the electrochemical performance of graphite felt (GF) electrodes in vanadium flow batteries (VFBs), we synthesize a series of ZrO2-modified GF (ZrO2/GF) electrodes with varying ZrO2 contents via a facile immersion-precipitation approach. It is found that the uniform immobilization of ZrO2 nanoparticles on the GF not only significantly promotes the accessibility of vanadium electrolyte, but also provides more active sites for the redox reactions, thereby resulting in better electrochemical activity and reversibility toward the VO(2+)/VO2(+) and V(2+)/V(3+) redox reactions as compared with those of GF. In particular, The ZrO2/GF composite with 0.3 wt % ZrO2 displays the best electrochemical performance with voltage and energy efficiencies of 71.9% and 67.4%, respectively, which are much higher than those of 57.3% and 53.8% as obtained from the GF electrode at 200 mA cm(-2). The cycle life tests demonstrate that the ZrO2/GF electrodes exhibit outstanding stability. The ZrO2/GF-based VFB battery shows negligible activity decay after 200 cycles.

  13. Development of an ultra-thin film comprised of a graphene membrane and carbon nanotube vein support.

    PubMed

    Lin, Xiaoyang; Liu, Peng; Wei, Yang; Li, Qunqing; Wang, Jiaping; Wu, Yang; Feng, Chen; Zhang, Lina; Fan, Shoushan; Jiang, Kaili

    2013-01-01

    Graphene, exhibiting superior mechanical, thermal, optical and electronic properties, has attracted great interest. Considering it being one-atom-thick, and the reduced mechanical strength at grain boundaries, the fabrication of large-area suspended chemical vapour deposition graphene remains a challenge. Here we report the fabrication of an ultra-thin free-standing carbon nanotube/graphene hybrid film, inspired by the vein-membrane structure found in nature. Such a square-centimetre-sized hybrid film can realize the overlaying of large-area single-layer chemical vapour deposition graphene on to a porous vein-like carbon nanotube network. The vein-membrane-like hybrid film, with graphene suspended on the carbon nanotube meshes, possesses excellent mechanical performance, optical transparency and good electrical conductivity. The ultra-thin hybrid film features an electron transparency close to 90%, which makes it an ideal gate electrode in vacuum electronics and a high-performance sample support in transmission electron microscopy.

  14. Facile fabrication of network film electrodes with ultrathin Au nanowires for nonenzymatic glucose sensing and glucose/O2 fuel cell.

    PubMed

    Yang, Lu; Zhang, Yijia; Chu, Mi; Deng, Wenfang; Tan, Yueming; Ma, Ming; Su, Xiaoli; Xie, Qingji; Yao, Shuozhuo

    2014-02-15

    We report here on the facile fabrication of network film electrodes with ultrathin Au nanowires (AuNWs) and their electrochemical applications for high-performance nonenzymatic glucose sensing and glucose/O2 fuel cell under physiological conditions (pH 7.4, containing 0.15M Cl(-)). AuNWs with an average diameter of ~7 or 2 nm were prepared and can self-assemble into robust network films on common electrodes. The network film electrode fabricated with 2-nm AuNWs exhibits high sensitivity (56.0 μA cm(-2)mM(-1)), low detection limit (20 μM), short response time (within 10s), excellent selectivity, and good storage stability for nonenzymatic glucose sensing. Glucose/O2 fuel cells were constructed using network film electrodes as the anode and commercial Pt/C catalyst modified glassy carbon electrode as cathode. The glucose/O2 fuel cell using 2-nm AuNWs as anode catalyst output a maximum power density of is 126 μW cm(-2), an open-circuit cell voltage of 0.425 V, and a short-circuit current density of 1.34 mA cm(-2), respectively. Due to the higher specific electroactive surface area of 2-nm AuNWs, the network film electrode fabricated with 2-nm AuNWs exhibited higher electrocatalytic activity toward glucose oxidation than the network film electrode fabricated with 7-nm AuNWs. The network film electrode exhibits high electrocatalytic activity toward glucose oxidation under physiological conditions, which is helpful for constructing implantable electronic devices. © 2013 Elsevier B.V. All rights reserved.

  15. Effect of structure on the tribology of ultrathin graphene and graphene oxide films.

    PubMed

    Chen, Hang; Filleter, Tobin

    2015-03-27

    The friction and wear properties of graphene and graphene oxide (GO) with varying C/O ratio were investigated using friction force microscopy. When applied as solid lubricants between a sliding contact of a silicon (Si) tip and a SiO2/Si substrate, graphene and ultrathin GO films (as thin as 1-2 atomic layers) were found to reduce friction by ∼6 times and ∼2 times respectively as compared to the unlubricated contact. The differences in measured friction were attributed to different interfacial shear strengths. Ultrathin films of GO with a low C/O ratio of ∼2 were found to wear easily under small normal load. The onset of wear, and the location of wear initiation, is attributed to differences in the local shear strength of the sliding interface as a result of the non-homogeneous surface structure of GO. While the exhibited low friction of GO as compared to SiO2 makes it an economically viable coating for micro/nano-electro-mechanical systems with the potential to extend the lifetime of devices, its higher propensity for wear may limit its usefulness. To address this limitation, the wear resistance of GO samples with a higher C/O ratio (∼4) was also studied. The higher C/O ratio GO was found to exhibit much improved wear resistance which approached that of the graphene samples. This demonstrates the potential of tailoring the structure of GO to achieve graphene-like tribological properties.

  16. Diffusion of phonons through (along and across) the ultrathin crystalline films

    NASA Astrophysics Data System (ADS)

    Šetrajčić, J. P.; Jaćimovski, S. K.; Vučenović, S. M.

    2017-11-01

    Instead of usual approach, applying displacement-displacement Green's functions, the momentum-momentum Green's functions will be used to calculate the diffusion tensor. With this type of Green's function we have calculated and analyzed dispersion law in film-structures. A small number of phonon energy levels along the direction of boundary surfaces joint of the film are discrete-ones and in this case standing waves could occur. This is consequence of quantum size effects. These Green's functions enter into Kubo's formula defining diffusion properties of the system and possible heat transfer direction through observed structures. Calculation of the diffusion tensor for phonons in film-structure requires solving of the system of difference equations. Boundary conditions are included into mentioned system through the Hamiltonian of the film-structure. It has been shown that the diagonal elements of the diffusion tensor express discrete behavior of the dispersion law of elementary excitations. More important result is-that they are temperature independent and that their values are much higher comparing with bulk structures. This result favors better heat conduction of the film, but in direction which is perpendicular to boundary film surface. In the same time this significantly favors appearance 2D superconducting surfaces inside the ultra-thin crystal structure, which are parallel to the boundary surface.

  17. Ultrathin MoS2 Nanosheets with Superior Extreme Pressure Property as Boundary Lubricants.

    PubMed

    Chen, Zhe; Liu, Xiangwen; Liu, Yuhong; Gunsel, Selda; Luo, Jianbin

    2015-08-07

    In this paper, a new kind of oil-soluble ultrathin MoS2 nanosheets is prepared through a one-pot process. A superior extreme pressure property, which has not been attained with other nano-additives, is discovered when the nanosheets are used as lubricant additives. The as-synthesized MoS2 nanosheet is only a few atomic layers thick and tens of nanometers wide, and it is surface-modified with oleylamine so it can be well dispersed in oil or lubricant without adscititious dispersants or surfactants. By adding 1 wt% ultrathin MoS2 nanosheets, at the temperature of 120 °C, the highest load liquid paraffin can bear is tremendously improved from less than 50 N to more than 2000 N. Based on the tribological tests and analysis of the wear scar, a lubrication mechanism is proposed. It is believed that the good dispersion and the ultrathin shape of the nanosheets ensure that they can enter the contact area of the opposite sliding surfaces and act like a protective film to prevent direct contact and seizure between them. This work enriches the investigation of ultrathin MoS2 and has potential application in the mechanical industry.

  18. Ultrathin MoS2 Nanosheets with Superior Extreme Pressure Property as Boundary Lubricants

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Liu, Xiangwen; Liu, Yuhong; Gunsel, Selda; Luo, Jianbin

    2015-08-01

    In this paper, a new kind of oil-soluble ultrathin MoS2 nanosheets is prepared through a one-pot process. A superior extreme pressure property, which has not been attained with other nano-additives, is discovered when the nanosheets are used as lubricant additives. The as-synthesized MoS2 nanosheet is only a few atomic layers thick and tens of nanometers wide, and it is surface-modified with oleylamine so it can be well dispersed in oil or lubricant without adscititious dispersants or surfactants. By adding 1 wt% ultrathin MoS2 nanosheets, at the temperature of 120 °C, the highest load liquid paraffin can bear is tremendously improved from less than 50 N to more than 2000 N. Based on the tribological tests and analysis of the wear scar, a lubrication mechanism is proposed. It is believed that the good dispersion and the ultrathin shape of the nanosheets ensure that they can enter the contact area of the opposite sliding surfaces and act like a protective film to prevent direct contact and seizure between them. This work enriches the investigation of ultrathin MoS2 and has potential application in the mechanical industry.

  19. Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings

    NASA Astrophysics Data System (ADS)

    Li, Zhongyang; Palacios, Edgar; Butun, Serkan; Kocer, Hasan; Aydin, Koray

    2015-10-01

    Resonant absorbers based on nanostructured materials are promising for variety of applications including optical filters, thermophotovoltaics, thermal emitters, and hot-electron collection. One of the significant challenges for such micro/nanoscale featured medium or surface, however, is costly lithographic processes for structural patterning which restricted from industrial production of complex designs. Here, we demonstrate lithography-free, broadband, polarization-independent optical absorbers based on a three-layer ultrathin film composed of subwavelength chromium (Cr) and oxide film coatings. We have measured almost perfect absorption as high as 99.5% across the entire visible regime and beyond (400-800 nm). In addition to near-ideal absorption, our absorbers exhibit omnidirectional independence for incidence angle over ±60 degrees. Broadband absorbers introduced in this study perform better than nanostructured plasmonic absorber counterparts in terms of bandwidth, polarization and angle independence. Improvements of such “blackbody” samples based on uniform thin-film coatings is attributed to extremely low quality factor of asymmetric highly-lossy Fabry-Perot cavities. Such broadband absorber designs are ultrathin compared to carbon nanotube based black materials, and does not require lithographic processes. This demonstration redirects the broadband super absorber design to extreme simplicity, higher performance and cost effective manufacturing convenience for practical industrial production.

  20. Dynamics of ultrathin metal films on amorphous substrates under fast thermal processing

    NASA Astrophysics Data System (ADS)

    Favazza, Christopher; Kalyanaraman, Ramki; Sureshkumar, Radhakrishna

    2007-11-01

    A mathematical model is developed to analyze the growth/decay rate of surface perturbations of an ultrathin metal film on an amorphous substrate (SiO2). The formulation combines the approach of Mullins [W. W. Mullins, J. Appl. Phys. 30, 77 (1959)] for bulk surfaces, in which curvature-driven mass transport and surface deformation can occur by surface/volume diffusion and evaporation-condensation processes, with that of Spencer etal . [B. J. Spencer, P. W. Voorhees, and S. H. Davis, Phys. Rev. Lett. 67, 26 (1991)] to describe solid-state transport in thin films under epitaxial strain. Modifications of the Mullins model to account for thin-film boundary conditions result in qualitatively different dispersion relationships especially in the limit as kho≪1, where k is the wavenumber of the perturbation and ho is the unperturbed film height. The model is applied to study the relative rate of solid-state mass transport as compared to that of liquid phase dewetting in a thin film subjected to a fast thermal pulse. Specifically, we have recently shown that multiple cycles of nanosecond (ns) pulsed laser melting and resolidification of ultrathin metal films on amorphous substrates can lead to the formation of various types of spatially ordered nanostructures [J. Trice, D. Thomas, C. Favazza, R. Sureshkumar, and R. Kalyanaraman, Phys. Rev. B 75, 235439 (2007)]. The pattern formation has been attributed to the dewetting of the thin film by a hydrodynamic instability. In such experiments the film is in the solid state during a substantial fraction of each thermal cycle. However, results of a linear stability analysis based on the aforementioned model suggest that solid-state mass transport has a negligible effect on morphological changes of the surface. Further, a qualitative analysis of the effect of thermoelastic stress, induced by the rapid temperature changes in the film-substrate bilayer, suggests that stress relaxation does not appreciably contribute to surface

  1. Heterogeneity in ultrathin films simulated by Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Sun, Jiebing; Hannon, James B.; Kellogg, Gary L.; Pohl, Karsten

    2007-03-01

    The 3D composition profile of ultra-thin Pd films on Cu(001) has been experimentally determined using low energy electron microscopy (LEEM).^[1] Quantitative measurements of the alloy concentration profile near steps show that the Pd distribution in the 3^rd layer is heterogeneous due to step overgrowth during Pd deposition. Interestingly, the Pd distribution in the 2^nd layer is also heterogeneous, and appears to be correlated with the distribution in the 1^st layer. We describe Monte Carlo simulations that show that correlation is due to Cu-Pd attraction, and that the 2^nd layer Pd is, in fact, laterally equilibrated. By comparing measured and simulated concentration profiles, we can estimate this attraction within a simple bond counting model. [1] J. B. Hannon, J. Sun, K. Pohl, G. L. Kellogg, Phys. Rev. Lett. 96, 246103 (2006)

  2. Electronic-Reconstruction-Enhanced Tunneling Conductance at Terrace Edges of Ultrathin Oxide Films.

    PubMed

    Wang, Lingfei; Kim, Rokyeon; Kim, Yoonkoo; Kim, Choong H; Hwang, Sangwoon; Cho, Myung Rae; Shin, Yeong Jae; Das, Saikat; Kim, Jeong Rae; Kalinin, Sergei V; Kim, Miyoung; Yang, Sang Mo; Noh, Tae Won

    2017-11-01

    Quantum mechanical tunneling of electrons across ultrathin insulating oxide barriers has been studied extensively for decades due to its great potential in electronic-device applications. In the few-nanometers-thick epitaxial oxide films, atomic-scale structural imperfections, such as the ubiquitously existed one-unit-cell-high terrace edges, can dramatically affect the tunneling probability and device performance. However, the underlying physics has not been investigated adequately. Here, taking ultrathin BaTiO 3 films as a model system, an intrinsic tunneling-conductance enhancement is reported near the terrace edges. Scanning-probe-microscopy results demonstrate the existence of highly conductive regions (tens of nanometers wide) near the terrace edges. First-principles calculations suggest that the terrace-edge geometry can trigger an electronic reconstruction, which reduces the effective tunneling barrier width locally. Furthermore, such tunneling-conductance enhancement can be discovered in other transition metal oxides and controlled by surface-termination engineering. The controllable electronic reconstruction can facilitate the implementation of oxide electronic devices and discovery of exotic low-dimensional quantum phases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Fabrication of dense and porous Li2ZrO3 nanofibers with electrospinning method

    NASA Astrophysics Data System (ADS)

    Yuan, Kangkang; Jin, Xiaotong; Xu, Chonghe; Wang, Xinqiang; Zhang, Guanghui; Zhu, Luyi; Xu, Dong

    2018-06-01

    Lithium zirconate (Li2ZrO3) has been extensively studied as CO2 capture material, electrolyte material and coating material. Most of the previous studies were focused on the powder structure, while seldom taking a consideration of fiber structure. In the present work, dense and porous Li2ZrO3 nanofibers with surface area of 16 m2 g-1 were prepared by electrospinning method. IR spectral results showed that lithium carbonate was the intermediate for the formation of Li2ZrO3. The phase transformation of Li2ZrO3 underwent the pathway of amorphous precursor fibers, tetragonal zirconia and Li2CO3, tetragonal Li2ZrO3, and monoclinic Li2ZrO3. XRD and XPS results further suggested that Li2O diffusion from the fiber body to surface occurred for Li2ZrO3 nanofibers when heat-treated above 900 °C, and the tetragonal Li2ZrO3 with high surface area could be obtained at 800 °C. Bamboo structure appeared both for the dense and porous nanofibers heat-treated at 1000 °C. The high surface area and high thermal stability of tetragonal phase of Li2ZrO3 make it a promising candidate in CO2 absorption, electrolyte and coating material.

  4. Surface Acoustic Wave Monitor for Deposition and Analysis of Ultra-Thin Films

    NASA Technical Reports Server (NTRS)

    Hines, Jacqueline H. (Inventor)

    2015-01-01

    A surface acoustic wave (SAW) based thin film deposition monitor device and system for monitoring the deposition of ultra-thin films and nanomaterials and the analysis thereof is characterized by acoustic wave device embodiments that include differential delay line device designs, and which can optionally have integral reference devices fabricated on the same substrate as the sensing device, or on a separate device in thermal contact with the film monitoring/analysis device, in order to provide inherently temperature compensated measurements. These deposition monitor and analysis devices can include inherent temperature compensation, higher sensitivity to surface interactions than quartz crystal microbalance (QCM) devices, and the ability to operate at extreme temperatures.

  5. Phenol-photodegradation on ZrO2. Enhancement by semiconductors.

    PubMed

    Karunakaran, C; Dhanalakshmi, R; Gomathisankar, P

    2012-06-15

    On illumination with light of wavelength 365 nm phenol undergoes degradation on the surface of ZrO(2). The rate of degradation enhances linearly with the concentration of phenol and also the light intensity but decreases with increase of pH. The photonic efficiency of degradation is higher with illumination at 254 nm than with 365 nm. The diffuse reflectance spectral study suggests phenol-sensitized activation of ZrO(2) with 365 nm light. TiO(2), Fe(2)O(3), CuO, ZnO, ZnS, Nb(2)O(5) and CdO particles enhance the photodegradation on ZrO(2), indicating inter-particle charge-transfer. Determination of size of the particles under suspension, by light scattering technique, shows agglomeration of particles supporting the proposition of charge-transfer between particles. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Selective, ultrathin membrane skins prepared by deposition of novel polymer films on porous alumina supports

    NASA Astrophysics Data System (ADS)

    Balachandra, Anagi Manjula

    Membrane-based separations are attractive in industrial processes because of their low energy costs and simple operation. However, low permeabilities often make membrane processes uneconomical. Since flux is inversely proportional to membrane thickness, composite membranes consisting of ultrathin, selective skins on highly permeable supports are required to simultaneously achieve high throughput and high selectivity. However, the synthesis of defect-free skins with thicknesses less than 50 nm is difficult, and thus flux is often limited. Layer-by-layer deposition of oppositely charged polyelectrolytes on porous supports is an attractive method to synthesize ultrathin ion-separation membranes with high flux and high selectivity. The ion-transport selectivity of multilayer polyelectrolyte membranes (MPMs) is primarily due to Donnan exclusion; therefore increase in fixed charge density should yield high selectivity. However, control over charge density in MPMs is difficult because charges on polycations are electrostatically compensated by charges on polyanions, and the net charge in the bulk of these films is small. To overcome this problem, we introduced a templating method to create ion-exchange sites in the bulk of the membrane. This strategy involves alternating deposition of a Cu2+-poly(acrylic acid) complex and poly(allylamine hydrochloride) on a porous alumina support followed by removal of Cu2+ and deprotonation to yield free -COO- ion-exchange sites. Diffusion dialysis studies showed that the Cl-/SO42-. Selectivity of Cu2+-templated membranes is 4-fold higher than that of membranes prepared in the absence of Cu2+. Post-deposition cross-linking of these membranes by heat-induced amide bond formation further increased Cl-/SO42- selectivity to values as high as 600. Room-temperature, surface-initiated atom transfer radical polymerization (ATRP) provides another convenient method for formation of ultrathin polymer skins. This process involves attachment of

  7. Electric field effect on exchange interaction in ultrathin Co films with ionic liquids

    NASA Astrophysics Data System (ADS)

    Ishibashi, Mio; Yamada, Kihiro T.; Shiota, Yoichi; Ando, Fuyuki; Koyama, Tomohiro; Kakizakai, Haruka; Mizuno, Hayato; Miwa, Kazumoto; Ono, Shimpei; Moriyama, Takahiro; Chiba, Daichi; Ono, Teruo

    2018-06-01

    Electric-field modulations of magnetic properties have been extensively studied not only for practical applications but also for fundamental interest. In this study, we investigated the electric field effect on the exchange interaction in ultrathin Co films with ionic liquids. The exchange coupling J was characterized from the direct magnetization measurement as a function of temperature using Pt/ultrathin Co/MgO structures. The trend of the electric field effect on J is in good agreement with that of the theoretical prediction, and a large change in J by applying a gate voltage was observed by forming an electric double layer using ionic liquids.

  8. Vanadium dioxide film protected with an atomic-layer-deposited Al{sub 2}O{sub 3} thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiao; Cao, Yunzhen, E-mail: yzhcao@mail.sic.ac.cn; Yang, Chao

    2016-01-15

    A VO{sub 2} film exposed to ambient air is prone to oxidation, which will degrade its thermochromic properties. In this work, the authors deposited an ultrathin Al{sub 2}O{sub 3} film with atomic layer deposition (ALD) to protect the underlying VO{sub 2} film from degradation, and then studied the morphology and crystalline structure of the films. To assess the protectiveness of the Al{sub 2}O{sub 3} capping layer, the authors performed a heating test and a damp heating test. An ultrathin 5-nm-thick ALD Al{sub 2}O{sub 3} film was sufficient to protect the underlying VO{sub 2} film heated at 350 °C. However, in amore » humid environment at prolonged durations, a thicker ALD Al{sub 2}O{sub 3} film (15 nm) was required to protect the VO{sub 2}. The authors also deposited and studied a TiO{sub 2}/Al{sub 2}O{sub 3} bilayer, which significantly improved the protectiveness of the Al{sub 2}O{sub 3} film in a humid environment.« less

  9. Unctuous ZrO2 nanoparticles with improved functional attributes as lubricant additives

    NASA Astrophysics Data System (ADS)

    Espina Casado, Jorge; Fernández González, Alfonso; José del Reguero Huerga, Ángel; Rodríguez-Solla, Humberto; Díaz-García, Marta Elena; Badía-Laíño, Rosana

    2017-12-01

    One of the main drawbacks in the application of metal-oxide nanoparticles as lubricant additives is their poor stability in organic media, despite the good anti-wear, friction-reducing and high-load capacity properties described for these materials. In this work, we present a novel procedure to chemically cap the surface of ZrO2 nanoparticles (ZrO2NPs) with long hydrocarbon chains in order to obtain stable dispersions of ZrO2NPs in non-aqueous media without disrupting their attributes as lubricant additives. C-8, C-10 and C-16 saturated flexible chains were attached to the ZrO2NP surface and their physical and chemical characterization was performed by transmission electron microscopy, thermogravimetric analysis, attenuated total reflectance Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy and solid-state nuclear magnetic resonance. The dispersion stability of the modified ZrO2NPs in non-aqueous media was studied using static multiple light scattering. Tribological tests demonstrated that dispersions of the long-chain capped ZrO2NPs in base lubricating oils exhibited low friction coefficients and improved the anti-wear properties of the base oil when compared with the raw lubricating oil.

  10. Characterisation of well-adhered ZrO2 layers produced on structured reactors using the sonochemical sol-gel method

    NASA Astrophysics Data System (ADS)

    Jodłowski, Przemysław J.; Chlebda, Damian K.; Jędrzejczyk, Roman J.; Dziedzicka, Anna; Kuterasiński, Łukasz; Sitarz, Maciej

    2018-01-01

    The aim of this study was to obtain thin zirconium dioxide coatings on structured reactors using the sonochemical sol-gel method. The preparation method of metal oxide layers on metallic structures was based on the synergistic combination of three approaches: the application of ultrasonic irradiation during the synthesis of Zr sol-gel based on a precursor solution containing zirconium(IV) n-propoxide, the addition of stabilszing agents, and the deposition of ZrO2 on the metallic structures using the dip-coating method. As a result, dense, uniform zirconium dioxide films were obtained on the FeCrAlloy supports. The structured reactors were characterised by various physicochemical methods, such as BET, AFM, EDX, XRF, XRD, XPS and in situ Raman spectroscopy. The results of the structural analysis by Raman and XPS spectroscopy confirmed that the metallic surface was covered by a ZrO2 layer without any impurities. SEM/EDX mapping revealed that the deposited ZrO2 covered the metallic support uniformly. The mechanical and high temperature tests showed that the developed ultrasound assisted sol-gel method is an efficient way to obtain thin, well-adhered zirconium dioxide layers on the structured reactors. The prepared metallic supports covered with thin ZrO2 layers may be a good alternative to layered structured reactors in several dynamics flow processes, for example for gas exhaust abatement.

  11. Dynamics of ultrathin metal films on amorphous substrates under fast thermal processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favazza, Christopher; Kalyanaraman, Ramki; Sureshkumar, Radhakrishna

    A mathematical model is developed to analyze the growth/decay rate of surface perturbations of an ultrathin metal film on an amorphous substrate (SiO{sub 2}). The formulation combines the approach of Mullins [W. W. Mullins, J. Appl. Phys. 30, 77 (1959)] for bulk surfaces, in which curvature-driven mass transport and surface deformation can occur by surface/volume diffusion and evaporation-condensation processes, with that of Spencer et al. [B. J. Spencer, P. W. Voorhees, and S. H. Davis, Phys. Rev. Lett. 67, 26 (1991)] to describe solid-state transport in thin films under epitaxial strain. Modifications of the Mullins model to account for thin-filmmore » boundary conditions result in qualitatively different dispersion relationships especially in the limit as kh{sub o}<<1, where k is the wavenumber of the perturbation and h{sub o} is the unperturbed film height. The model is applied to study the relative rate of solid-state mass transport as compared to that of liquid phase dewetting in a thin film subjected to a fast thermal pulse. Specifically, we have recently shown that multiple cycles of nanosecond (ns) pulsed laser melting and resolidification of ultrathin metal films on amorphous substrates can lead to the formation of various types of spatially ordered nanostructures [J. Trice, D. Thomas, C. Favazza, R. Sureshkumar, and R. Kalyanaraman, Phys. Rev. B 75, 235439 (2007)]. The pattern formation has been attributed to the dewetting of the thin film by a hydrodynamic instability. In such experiments the film is in the solid state during a substantial fraction of each thermal cycle. However, results of a linear stability analysis based on the aforementioned model suggest that solid-state mass transport has a negligible effect on morphological changes of the surface. Further, a qualitative analysis of the effect of thermoelastic stress, induced by the rapid temperature changes in the film-substrate bilayer, suggests that stress relaxation does not appreciably

  12. X-Ray Spectroscopy of Ultra-Thin Oxide/Oxide Heteroepitaxial Films: A Case Study of Single-Nanometer VO2/TiO2

    PubMed Central

    Quackenbush, Nicholas F.; Paik, Hanjong; Woicik, Joseph C.; Arena, Dario A.; Schlom, Darrell G.; Piper, Louis F. J.

    2015-01-01

    Epitaxial ultra-thin oxide films can support large percent level strains well beyond their bulk counterparts, thereby enabling strain-engineering in oxides that can tailor various phenomena. At these reduced dimensions (typically < 10 nm), contributions from the substrate can dwarf the signal from the epilayer, making it difficult to distinguish the properties of the epilayer from the bulk. This is especially true for oxide on oxide systems. Here, we have employed a combination of hard X-ray photoelectron spectroscopy (HAXPES) and angular soft X-ray absorption spectroscopy (XAS) to study epitaxial VO2/TiO2 (100) films ranging from 7.5 to 1 nm. We observe a low-temperature (300 K) insulating phase with evidence of vanadium-vanadium (V-V) dimers and a high-temperature (400 K) metallic phase absent of V-V dimers irrespective of film thickness. Our results confirm that the metal insulator transition can exist at atomic dimensions and that biaxial strain can still be used to control the temperature of its transition when the interfaces are atomically sharp. More generally, our case study highlights the benefits of using non-destructive XAS and HAXPES to extract out information regarding the interfacial quality of the epilayers and spectroscopic signatures associated with exotic phenomena at these dimensions. PMID:28793516

  13. X-Ray Spectroscopy of Ultra-Thin Oxide/Oxide Heteroepitaxial Films: A Case Study of Single-Nanometer VO2/TiO2.

    PubMed

    Quackenbush, Nicholas F; Paik, Hanjong; Woicik, Joseph C; Arena, Dario A; Schlom, Darrell G; Piper, Louis F J

    2015-08-21

    Epitaxial ultra-thin oxide films can support large percent level strains well beyond their bulk counterparts, thereby enabling strain-engineering in oxides that can tailor various phenomena. At these reduced dimensions (typically < 10 nm), contributions from the substrate can dwarf the signal from the epilayer, making it difficult to distinguish the properties of the epilayer from the bulk. This is especially true for oxide on oxide systems. Here, we have employed a combination of hard X-ray photoelectron spectroscopy (HAXPES) and angular soft X-ray absorption spectroscopy (XAS) to study epitaxial VO2/TiO2 (100) films ranging from 7.5 to 1 nm. We observe a low-temperature (300 K) insulating phase with evidence of vanadium-vanadium (V-V) dimers and a high-temperature (400 K) metallic phase absent of V-V dimers irrespective of film thickness. Our results confirm that the metal insulator transition can exist at atomic dimensions and that biaxial strain can still be used to control the temperature of its transition when the interfaces are atomically sharp. More generally, our case study highlights the benefits of using non-destructive XAS and HAXPES to extract out information regarding the interfacial quality of the epilayers and spectroscopic signatures associated with exotic phenomena at these dimensions.

  14. X-ray Spectroscopy of Ultra-thin Oxide/oxide Heteroepitaxial Films: A Case Study of Single-nanometer VO2/TiO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quackenbush, Nicholas F.; Paik, Hanjong; Woicik, Joseph C.

    2015-08-21

    Epitaxial ultra-thin oxide films can support large percent level strains well beyond their bulk counterparts, thereby enabling strain-engineering in oxides that can tailor various phenomena. At these reduced dimensions (typically < 10 nm), contributions from the substrate can dwarf the signal from the epilayer, making it difficult to distinguish the properties of the epilayer from the bulk. This is especially true for oxide on oxide systems. Here, we have employed a combination of hard X-ray photoelectron spectroscopy (HAXPES) and angular soft X-ray absorption spectroscopy (XAS) to study epitaxial VO2/TiO2 (100) films ranging from 7.5 to 1 nm. We observe amore » low-temperature (300 K) insulating phase with evidence of vanadium-vanadium (V-V) dimers and a high-temperature (400 K) metallic phase absent of V-V dimers irrespective of film thickness. Results confirm that the metal insulator transition can exist at atomic dimensions and that biaxial strain can still be used to control the temperature of its transition when the interfaces are atomically sharp. Generally, our case study highlights the benefits of using non-destructive XAS and HAXPES to extract out information regarding the interfacial quality of the epilayers and spectroscopic signatures associated with exotic phenomena at these dimensions.« less

  15. Theoretical requirements for broadband perfect absorption of acoustic waves by ultra-thin elastic meta-films

    PubMed Central

    Duan, Yuetao; Luo, Jie; Wang, Guanghao; Hang, Zhi Hong; Hou, Bo; Li, Jensen; Sheng, Ping; Lai, Yun

    2015-01-01

    We derive and numerically demonstrate that perfect absorption of elastic waves can be achieved in two types of ultra-thin elastic meta-films: one requires a large value of almost pure imaginary effective mass density and a free space boundary, while the other requires a small value of almost pure imaginary effective modulus and a hard wall boundary. When the pure imaginary density or modulus exhibits certain frequency dispersions, the perfect absorption effect becomes broadband, even in the low frequency regime. Through a model analysis, we find that such almost pure imaginary effective mass density with required dispersion for perfect absorption can be achieved by elastic metamaterials with large damping. Our work provides a feasible approach to realize broadband perfect absorption of elastic waves in ultra-thin films. PMID:26184117

  16. High-yield sol-gel synthesis of well-dispersed, colorless ZrO(2) nanocrystals.

    PubMed

    Mizuno, Mikihisa; Sasaki, Yuichi; Lee, Sungkil; Katakura, Hitoshi

    2006-08-15

    A 93% high-yield synthesis of well-dispersed, colorless zirconium dioxide (ZrO(2)) nanocrystals is reported. In this synthesis, hydrolysis and condensation reactions of zirconium(IV) tert-butoxide in the presence of oleic acid (100 degrees C) formed ZrO(2) precursors. The ZrO(2) precursors were made of -Zr-O-Zr- networks surrounded by oleic acid molecules. Annealing (280 degrees C) the precursors dispersed in dioctyl ether caused crystallization of the -Zr-O-Zr- networks, thereby generating 4 nm ZrO(2) nanocrystals stabilized with oleic acid. The particles were highly crystalline and tetragonal phase. A dense ZrO(2) nanocrystal dispersion in toluene (280 mg/mL) showed a transmittance of about 90% (3 mm optical path length) in the whole visible region.

  17. Phase formation and morphological stability of ultrathin Ni-Co-Pt silicide films formed on Si(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Peng; Wu, Dongping, E-mail: dongpingwu@fudan.edu.cn; Kubart, Tomas

    Ultrathin Ni, Co, and Pt films, each no more than 4 nm in thickness, as well as their various combinations are employed to investigate the competing growth of epitaxial Co{sub 1-y}Ni{sub y}Si{sub 2} films against polycrystalline Pt{sub 1-z}Ni{sub z}Si. The phase formation critically affects the morphological stability of the resulting silicide films, with the epitaxial films being superior to the polycrystalline ones. Any combination of those metals improves the morphological stability with reference to their parent individual metal silicide films. When Ni, Co, and Pt are all included, the precise initial location of Pt does little to affect the final phasemore » formation in the silicide films and the epitaxial growth of Co{sub 1-x}Ni{sub x}Si{sub 2} films is always perturbed, in accordance to thermodynamics that shows a preferential formation of Pt{sub 1-z}Ni{sub z}Si over that of Co{sub 1-y}Ni{sub y}Si{sub 2}.« less

  18. Highly efficient ultrathin-film amorphous silicon solar cells on top of imprinted periodic nanodot arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Wensheng, E-mail: yws118@gmail.com; Gu, Min, E-mail: mgu@swin.edu.au; Tao, Zhikuo

    2015-03-02

    The addressing of the light absorption and conversion efficiency is critical to the ultrathin-film hydrogenated amorphous silicon (a-Si:H) solar cells. We systematically investigate ultrathin a-Si:H solar cells with a 100 nm absorber on top of imprinted hexagonal nanodot arrays. Experimental evidences are demonstrated for not only notable silver nanodot arrays but also lower-cost ITO and Al:ZnO nanodot arrays. The measured external quantum efficiency is explained by the simulation results. The J{sub sc} values are 12.1, 13.0, and 14.3 mA/cm{sup 2} and efficiencies are 6.6%, 7.5%, and 8.3% for ITO, Al:ZnO, and silver nanodot arrays, respectively. Simulated optical absorption distribution shows high lightmore » trapping within amorphous silicon layer.« less

  19. Dynamic XPS measurements of ultrathin polyelectrolyte films containing antibacterial Ag–Cu nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taner-Camcı, Merve; Suzer, Sefik, E-mail: suzer@fen.bilkent.edu.tr

    Ultrathin films consisting of polyelectrolyte layers prepared by layer-by-layer deposition technique and containing also Ag and Cu nanoparticles exhibit superior antibacterial activity toward Escherichia coli. These films have been investigated with XPS measurements under square wave excitation at two different frequencies, in order to further our understanding about the chemical/physical nature of the nanoparticles. Dubbed as dynamical XPS, such measurements bring out similarities and differences among the surface structures by correlating the binding energy shifts of the corresponding XPS peaks. Accordingly, it is observed that the Cu2p, Ag3d of the metal nanoparticles, and S2p of cysteine, the stabilizer and themore » capping agent, exhibit similar shifts. On the other hand, the C1s, N1s, and S2p peaks of the polyelectrolyte layers shift differently. This finding leads us the claim that the Ag and Cu atoms are in a nanoalloy structure, capped with cystein, as opposed to phase separated entities.« less

  20. Determination and analysis of non-linear index profiles in electron-beam-deposited MgOAl2O3ZrO2 ternary composite thin-film optical coatings

    NASA Astrophysics Data System (ADS)

    Sahoo, N. K.; Thakur, S.; Senthilkumar, M.; Das, N. C.

    2005-02-01

    Thickness-dependent index non-linearity in thin films has been a thought provoking as well as intriguing topic in the field of optical coatings. The characterization and analysis of such inhomogeneous index profiles pose several degrees of challenges to thin-film researchers depending upon the availability of relevant experimental and process-monitoring-related information. In the present work, a variety of novel experimental non-linear index profiles have been observed in thin films of MgOAl2O3ZrO2 ternary composites in solid solution under various electron-beam deposition parameters. Analysis and derivation of these non-linear spectral index profiles have been carried out by an inverse-synthesis approach using a real-time optical monitoring signal and post-deposition transmittance and reflection spectra. Most of the non-linear index functions are observed to fit polynomial equations of order seven or eight very well. In this paper, the application of such a non-linear index function has also been demonstrated in designing electric-field-optimized high-damage-threshold multilayer coatings such as normal- and oblique-incidence edge filters and a broadband beam splitter for p-polarized light. Such designs can also advantageously maintain the microstructural stability of the multilayer structure due to the low stress factor of the non-linear ternary composite layers.

  1. Preparation and characterization of the nanoporous ultrathin multilayer films based on molybdenum polyoxometalate (Mo 38) n

    NASA Astrophysics Data System (ADS)

    Wang, L.; Jiang, M.; Wang, E. B.; Duan, L. Y.; Hao, N.; Lan, Y.; Xu, L.; Li, Z.

    2003-11-01

    Ultrathin multilayer films of the wheel-shaped molybdenum polyoxometalate cluster (Mo 38) n and poly(allylamine hydrochloride)(PAH) have been prepared by the layer-by-layer (LbL) self-assembly method. The ((Mo 38) n/PAH) m multilayer films have been characterized by X-ray photoelectron spectra (XPS) and atomic force microscopy (AFM). UV-VIS measurements reveal regular film growth with each (Mo 38) n adsorption. The electrochemistry behavior of the film at room temperature was investigated.

  2. Temporally and Spatially Resolved Plasma Spectroscopy in Pulsed Laser Deposition of Ultra-Thin Boron Nitride Films (Postprint)

    DTIC Science & Technology

    2015-04-24

    AFRL-RX-WP-JA-2016-0196 TEMPORALLY AND SPATIALLY RESOLVED PLASMA SPECTROSCOPY IN PULSED LASER DEPOSITION OF ULTRA-THIN BORON NITRIDE...AND SPATIALLY RESOLVED PLASMA SPECTROSCOPY IN PULSED LASER DEPOSITION OF ULTRA-THIN BORON NITRIDE FILMS (POSTPRINT) 5a. CONTRACT NUMBER FA8650...distributions within a PVD plasma plume ablated from a boron nitride (BN) target by a KrF laser at different pressures of nitrogen gas were investigated

  3. Ultrathin Carbon Film Protected Silver Nanostructures for Surface-Enhanced Raman Scattering.

    PubMed

    Peng, Yinshan; Zheng, Xianliang; Tian, Hongwei; Cui, Xiaoqiang; Chen, Hong; Zheng, Weitao

    2016-06-23

    In this article, ultrathin carbon film protected silver substrate (Ag/C) was prepared via a plasma-enhanced chemical vapor deposition (PECVD) method. The morphological evolution of silver nanostructures underneath, as well as the surface-enhanced Raman scattering (SERS) activity of Ag/C hybrid can be tuned by controlling the deposition time. The stability and reproducibility of the as-prepared hybrid were also studied. © The Author(s) 2016.

  4. Electron-hole pairs generated in ZrO2 nanoparticle resist upon exposure to extreme ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro; Santillan, Julius Joseph; Itani, Toshiro

    2018-02-01

    Metal oxide nanoparticle resists have attracted much attention as the next-generation resist used for the high-volume production of semiconductor devices. However, the sensitization mechanism of the metal oxide nanoparticle resists is unknown. Understanding the sensitization mechanism is important for the efficient development of resist materials. In this study, the energy deposition in a zirconium oxide (ZrO2) nanoparticle resist was investigated. The numbers of electron-hole pairs generated in a ZrO2 core and an methacrylic acid (MAA) ligand shell upon exposure to 1 mJ cm-2 (exposure dose) extreme ultraviolet (EUV) radiations were theoretically estimated to be 0.16 at most and 0.04-0.17 cm2 mJ-1, respectively. By comparing the calculated distribution of electron-hole pairs with the line-and-space patterns of the ZrO2 nanoparticle resist fabricated by an EUV exposure tool, the number of electron-hole pairs required for the solubility change of the resist films was estimated to be 1.3-2.2 per NP. NP denotes a nanoparticle consisting of a metal oxide core with a ligand shell. In the material design of metal oxide nanoparticle resists, it is important to efficiently use the electron-hole pairs generated in the metal oxide core for the chemical change of ligand molecules.

  5. Ultrathin MoS2 Nanosheets with Superior Extreme Pressure Property as Boundary Lubricants

    PubMed Central

    Chen, Zhe; Liu, Xiangwen; Liu, Yuhong; Gunsel, Selda; Luo, Jianbin

    2015-01-01

    In this paper, a new kind of oil-soluble ultrathin MoS2 nanosheets is prepared through a one-pot process. A superior extreme pressure property, which has not been attained with other nano-additives, is discovered when the nanosheets are used as lubricant additives. The as-synthesized MoS2 nanosheet is only a few atomic layers thick and tens of nanometers wide, and it is surface-modified with oleylamine so it can be well dispersed in oil or lubricant without adscititious dispersants or surfactants. By adding 1 wt% ultrathin MoS2 nanosheets, at the temperature of 120 °C, the highest load liquid paraffin can bear is tremendously improved from less than 50 N to more than 2000 N. Based on the tribological tests and analysis of the wear scar, a lubrication mechanism is proposed. It is believed that the good dispersion and the ultrathin shape of the nanosheets ensure that they can enter the contact area of the opposite sliding surfaces and act like a protective film to prevent direct contact and seizure between them. This work enriches the investigation of ultrathin MoS2 and has potential application in the mechanical industry. PMID:26249536

  6. Modeling of UV laser-induced patterning of ultrathin Co films on bulk SiO2: verification of short- and long-range ordering mechanisms

    NASA Astrophysics Data System (ADS)

    Trice, Justin; Favazza, Christopher; Kalyanaraman, Ramki; Sureshkumar, R.

    2006-03-01

    Irradiating ultrathin Co films (1 to 10 nm) by a short-pulsed UV laser leads to pattern formation with both short- and long-range order (SRO, LRO). Single beam irradiation produces SRO, while two-beam interference irradiation produces a quasi-2D arrangement of nanoparticles with LRO and SRO. The pattern formation primarily occurs in the molten phase. An estimate of the thermal behavior of the film/substrate composite following a laser pulse is presented. The thermal behavior includes the lifetime of the liquid phase and the thermal gradient during interference heating. Based on this evidence, the SRO is attributed to spinodal dewetting of the film while surface tension gradients induced by the laser interference pattern appear to influence LRO [1]. [1] C.Favazza, J.Trice, H.Krishna, R.Sureshkumar, and R.Kalyanaraman, unpublished.

  7. Density functional analysis of fluorite-structured (Ce, Zr)O 2/CeO 2 interfaces [Density functional analysis of fluorite-structured (Ce, Zr)O 2/CeO 2 interfaces: Implications for catalysis and energy applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weck, Philippe F.; Juan, Pierre -Alexandre; Dingreville, Remi

    The structures and properties of Ce 1–xZr xO 2 (x = 0–1) solid solutions, selected Ce 1–xZr xO 2 surfaces, and Ce 1–xZr xO 2/CeO 2 interfaces were computed within the framework of density functional theory corrected for strong electron correlation (DFT+ U). The calculated Debye temperature increases steadily with Zr content in (Ce, Zr)O 2 phases, indicating a significant rise in microhardness from CeO 2 to ZrO 2, without appreciable loss in ductility as the interfacial stoichiometry changes. Surface energy calculations for the low-index CeO 2(111) and (110) surfaces show limited sensitivity to strong 4f-electron correlation. The fracture energymore » of Ce 1–xZr xO 2(111)/CeO 2(111) increases markedly with Zr content, with a significant decrease in energy for thicker Ce 1–xZr xO 2 films. These findings suggest the crucial role of Zr acting as a binder at the Ce 1–xZr xO 2/CeO 2 interfaces, due to the more covalent character of Zr–O bonds compared to Ce–O. Finally, the impact of surface relaxation upon interface cracking was assessed and found to reach a maximum for Ce 0.25Zr 0.75O 2/CeO 2 interfaces.« less

  8. Density functional analysis of fluorite-structured (Ce, Zr)O 2/CeO 2 interfaces [Density functional analysis of fluorite-structured (Ce, Zr)O 2/CeO 2 interfaces: Implications for catalysis and energy applications

    DOE PAGES

    Weck, Philippe F.; Juan, Pierre -Alexandre; Dingreville, Remi; ...

    2017-06-21

    The structures and properties of Ce 1–xZr xO 2 (x = 0–1) solid solutions, selected Ce 1–xZr xO 2 surfaces, and Ce 1–xZr xO 2/CeO 2 interfaces were computed within the framework of density functional theory corrected for strong electron correlation (DFT+ U). The calculated Debye temperature increases steadily with Zr content in (Ce, Zr)O 2 phases, indicating a significant rise in microhardness from CeO 2 to ZrO 2, without appreciable loss in ductility as the interfacial stoichiometry changes. Surface energy calculations for the low-index CeO 2(111) and (110) surfaces show limited sensitivity to strong 4f-electron correlation. The fracture energymore » of Ce 1–xZr xO 2(111)/CeO 2(111) increases markedly with Zr content, with a significant decrease in energy for thicker Ce 1–xZr xO 2 films. These findings suggest the crucial role of Zr acting as a binder at the Ce 1–xZr xO 2/CeO 2 interfaces, due to the more covalent character of Zr–O bonds compared to Ce–O. Finally, the impact of surface relaxation upon interface cracking was assessed and found to reach a maximum for Ce 0.25Zr 0.75O 2/CeO 2 interfaces.« less

  9. Simultaneous determination of the residual stress, elastic modulus, density and thickness of ultrathin film utilizing vibrating doubly clamped micro-/nanobeams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stachiv, Ivo, E-mail: stachiv@fzu.cz; Institute of Physics, Czech Academy of Sciences, Prague; Kuo, Chih-Yun

    2016-04-15

    Measurement of ultrathin film thickness and its basic properties can be highly challenging and time consuming due to necessity of using several very sophisticated devices. Here, we report an easy accessible resonant based method capable to simultaneously determinate the residual stress, elastic modulus, density and thickness of ultrathin film coated on doubly clamped micro-/nanobeam. We show that a general dependency of the resonant frequencies on the axial load is also valid for in-plane vibrations, and the one depends only on the considered vibrational mode. As a result, we found that the film elastic modulus, density and thickness can be evaluatedmore » from two measured in-plane and out-plane fundamental resonant frequencies of micro-/nanobeam with and without film under different prestress forces. Whereas, the residual stress can be determined from two out-plane (in-plane) measured consecutive resonant frequencies of beam with film under different prestress forces without necessity of knowing film and substrate properties and dimensions. Moreover, we also reveal that the common uncertainties in force (and thickness) determination have a negligible (and minor) impact on the determined film properties. The application potential of the present method is illustrated on the beam made of silicon and SiO{sub 2} with deposited 20 nm thick AlN and 40 nm thick Au thin films, respectively.« less

  10. ZrO2/MoS2 heterojunction photocatalysts for efficient photocatalytic degradation of methyl orange

    NASA Astrophysics Data System (ADS)

    Prabhakar Vattikuti, Surya Veerendra; Byon, Chan; Reddy, Chandragiri Venkata

    2016-10-01

    We report a simple solution-chemistry approach for the synthesis of ZrO2/MoS2 hybrid photocatalysts, which contain MoS2 as a cocatalyst. The material is usually obtained by a wet chemical method using ZrO(NO3)2 or (NH4)6Mo7O24·4H2O and C8H6S as precursors. The structural features of obtained materials were characterized by X-ray diffraction (XRD), highresolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), thermal analysis (TG-DTA), N2 adsorption-desorption, and photoluminescence (PL). The influence on the photocatalytic activity of the MoS2 cocatalyst concentration with ZrO2 nanoparticles was studied. The MZr-2 hybrid sample had the highest photocatalytic activity for the degradation of methyl orange (MO), which was 8.45 times higher than that of pristine ZrO2 ascribed to high specific surface area and absorbance efficiency. Recycling experiments revealed that the reusability of the MZr-2 hybrid was due to the low photocorrosive effect and good catalytic stability. PL spectra confirmed the electronic interaction between ZrO2 and MoS2. The photoinduced electrons could be easily transferred from CB of ZrO2 to the MoS2 cocatalyst, which facilitate effective charge separation and enhanced the photocatalytic degradation in the UV region. A photocatalytic mechanism is proposed. It is believed that the ZrO2/MoS2 hybrid structure has promise as a photocatalyst with low cost and high efficiency for photoreactions.

  11. Improved Tribological Performance of Amorphous Carbon (a-C) Coating by ZrO2 Nanoparticles

    PubMed Central

    Tang, Jinzhu; Ding, Qi; Zhang, Songwei; Wu, Guizhi; Hu, Litian

    2016-01-01

    Nanomaterials, such as Graphene, h-BN nanoparticles and MoS2 nanotubes, have shown their ability in improving the tribological performance of amorphous carbon (a-C) coatings. In the current study, the effectiveness of ZrO2 nanoparticles (ZrO2-NPs) in lubricating the self-mated nonhydrogenated a-C contacts was investigated in boundary lubrication regime. The results showed that 13% less friction and 50% less wear compared to the base oil were achieved by employing ZrO2-NPs in the base oil in self-mated a-C contacts. Via analyzing the ZrO2-NPs and the worn a-C surface after tests, it was found that the improved lubrication by ZrO2-NPs was based on “polishing effects”, which is a new phenomenon observed between a-C and nanoparticles. Under the “polishing effect”, micro-plateaus with extremely smooth surface and uniform height were produced on the analyzed a-C surface. The resulting topography of the a-C coating is suitable for ZrO2-NPs to act as nano-bearings between rubbing surfaces. Especially, the ZrO2-NPs exhibited excellent mechanical and chemical stability, even under the severe service condition, suggesting that the combination of nonhydrogenated a-C coating with ZrO2-NPs is an effective, long lasting and environment-friendly lubrication solution. PMID:28773916

  12. Ultra-thin passivating film induced by vinylene carbonate on highly oriented pyrolytic graphite negative electrode in lithium-ion cell

    NASA Astrophysics Data System (ADS)

    Matsuoka, O.; Hiwara, A.; Omi, T.; Toriida, M.; Hayashi, T.; Tanaka, C.; Saito, Y.; Ishida, T.; Tan, H.; Ono, S. S.; Yamamoto, S.

    We investigated the influence of vinylene carbonate, as an additive molecule, on the decomposition phenomena of electrolyte solution [ethylene carbonate (EC)—ethyl methyl carbonate (EMC) (1:2 by volume) containing 1 M LiPF 6] on a highly oriented pyrolytic graphite (HOPG) negative electrode by using cyclic voltammetry (CV) and atomic force microscopy (AFM). Vinylene carbonate deactivated reactive sites (e.g. radicals and oxides at the defects and the edge of carbon layer) on the cleaved surface of the HOPG negative electrode, and prevented further decomposition of the other solvents there. Further, vinylene carbonate induced an ultra-thin film (less than 1.0 nm in thickness) on the terrace of the basal plane of the HOPG negative electrode, and this film suppressed the decomposition of electrolyte solution on the terraces of the basal plane. We consider that this ultra-thin passivating film is composed of a reduction product of vinylene carbonate (VC), and might have a polymer structure. These induced effects might explain how VC improves the life performance of lithium-ion cells.

  13. Fabrication and magnetic properties of Fe and Co co-doped ZrO2

    NASA Astrophysics Data System (ADS)

    Okabayashi, J.; Kono, S.; Yamada, Y.; Nomura, K.

    2011-12-01

    We investigate the effects of Fe and Co co-doping on the magnetic and electronic properties of ZrO2 ceramics prepared by a sol-gel method, and study their dependence on the annealing temperature. Dilute Fe and Co co-doping into ZrO2 exhibits ferromagnetic behavior at room temperature for annealing temperatures above 900 °C, accompanying the phase transition from tetragonal to monoclinic structure in ZrO2. The electronic structures are studied by x-ray absorption spectroscopy and Mössbauer spectroscopy, which suggest that the Fe3+ and Co2+/Co3+ mixing states are dominant in Fe and Co co-doped ZrO2.

  14. Bottom Extreme-Ultraviolet-Sensitive Coating for Evaluation of the Absorption Coefficient of Ultrathin Film

    NASA Astrophysics Data System (ADS)

    Hijikata, Hayato; Kozawa, Takahiro; Tagawa, Seiichi; Takei, Satoshi

    2009-06-01

    A bottom extreme-ultraviolet-sensitive coating (BESC) for evaluation of the absorption coefficients of ultrathin films such as extreme ultraviolet (EUV) resists was developed. This coating consists of a polymer, crosslinker, acid generator, and acid-responsive chromic dye and is formed by a conventional spin-coating method. By heating the film after spin-coating, a crosslinking reaction is induced and the coating becomes insoluble. A typical resist solution can be spin-coated on a substrate covered with the coating film. The evaluation of the linear absorption coefficients of polymer films was demonstrated by measuring the EUV absorption of BESC substrates on which various polymers were spin-coated.

  15. Mixed-Penetrant Sorption in Ultrathin Films of Polymer of Intrinsic Microporosity PIM-1.

    PubMed

    Ogieglo, Wojciech; Furchner, Andreas; Ghanem, Bader; Ma, Xiaohua; Pinnau, Ingo; Wessling, Matthias

    2017-11-02

    Mixed-penetrant sorption into ultrathin films of a superglassy polymer of intrinsic microporosity (PIM-1) was studied for the first time by using interference-enhanced in situ spectroscopic ellipsometry. PIM-1 swelling and the concurrent changes in its refractive index were determined in ultrathin (12-14 nm) films exposed to pure and mixed penetrants. The penetrants included water, n-hexane, and ethanol and were chosen on the basis of their significantly different penetrant-penetrant and penetrant-polymer affinities. This allowed studying microporous polymer responses at diverse ternary compositions and revealed effects such as competition for the sorption sites (for water/n-hexane or ethanol/n-hexane) or enhancement in sorption of typically weakly sorbing water in the presence of more highly sorbing ethanol. The results reveal details of the mutual sorption effects which often complicate comprehension of glassy polymers' behavior in applications such as high-performance membranes, adsorbents, or catalysts. Mixed-penetrant effects are typically very challenging to study directly, and their understanding is necessary owing to a broadly recognized inadequacy of simple extrapolations from measurements in a pure component environment.

  16. Electrical properties of epitaxial yttrium iron garnet ultrathin films at high temperatures

    NASA Astrophysics Data System (ADS)

    Thiery, N.; Naletov, V. V.; Vila, L.; Marty, A.; Brenac, A.; Jacquot, J.-F.; de Loubens, G.; Viret, M.; Anane, A.; Cros, V.; Ben Youssef, J.; Beaulieu, N.; Demidov, V. E.; Divinskiy, B.; Demokritov, S. O.; Klein, O.

    2018-02-01

    We report a study on the electrical properties of 19-nm-thick yttrium iron garnet (YIG) films grown by liquid phase epitaxy on gadolinium gallium garnet single crystal. The electrical conductivity and Hall coefficient are measured in the high-temperature range [300,400] K using a Van der Pauw four-point probe technique. We find that the electrical resistivity decreases exponentially with increasing temperature following an activated behavior corresponding to a band gap of Eg≈2 eV. It drops to values about 5 ×103Ω cm at T =400 K, thus indicating that epitaxial YIG ultrathin films behave as large gap semiconductors. We also infer the Hall mobility, which is found to be positive (p type) at 5 cm2V-1sec-1 and almost independent of temperature. We discuss the consequence for nonlocal spin transport experiments performed on YIG at room temperature and demonstrate the existence of electrical offset voltages to be disentangled from pure spin effects.

  17. Thermoluminescence (TL) of europium-doped ZrO2 obtained by sol-gel method

    NASA Astrophysics Data System (ADS)

    Rivera, T.; Furetta, C.; Azorín, J.; Barrera, M.; Soto, A. M.

    This article reports the preparation and characterization of europium-doped zirconium oxide (ZrO2:Eu3+) formed by homogeneous precipitation from propoxyde of zirconium [Zr(OC3H7)4]. The alkoxide sol gel process is an efficient method to prepare the zirconium oxide matrix by the hydrolysis of alkoxide precursors followed by condensation to yield a polymeric oxo-bridged ZrO2 network. All compounds were characterized by thermal analysis and the X-ray diffractometry method. The thermoluminescence (TL) emission properties of ZrO2:Eu3+ under beta radiation effects are studied. The europium-doped sintered zirconia powder presents a TL glow curve with two peaks (Tmax) centered at around 204 and around 292 °C, respectively. TL response of ZrO2:Eu3+ as a function of beta-absorbed dose was linear from 2 Gy up to 90 Gy. The europium ion (Eu3+)-doped ZrO2 was found to be more sensitive to beta radiation than undoped ZrO2 obtained by the same method and presented a little fading of the TL signal compared with undoped zirconium oxide.

  18. The affects of doping Eu 3+ on structures and morphology of ZrO 2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Yu, Lixin; Liu, Hai; Nogami, Masayuki

    2010-07-01

    The ZrO 2 and ZrO 2:Eu 3+ nanocrystals (NCs) were prepared by a hydrothermal method. The samples were sintered at different temperatures (500, 800 and 1100 °C). The results indicate that the Eu 3+ ions affect not only the structures of hosts (ZrO 2), but also the morphology of hosts. The shape of ZrO 2:Eu 3+ NCs heated at 1100 °C is the one-dimensional nanorod, while is the zero-dimensional nanoparticle for pure ZrO 2 samples sintered at the same temperature. The excitation and emission spectra of ZrO 2:Eu 3+ NCs were studied. In excitation spectra, the charge transfer band of Eu 3+ in ZrO 2 NCs heated at 1100 °C evidently blue-shifts in comparison with the NCs calcined at 500 and 800 °C. The relative intensity of 5D-7F transitions of Eu 3+ ions and color chromaticity for nanorods are increased in comparison with the nanoparticles.

  19. Flexible, Low-Power Thin-Film Transistors Made of Vapor-Phase Synthesized High-k, Ultrathin Polymer Gate Dielectrics.

    PubMed

    Choi, Junhwan; Joo, Munkyu; Seong, Hyejeong; Pak, Kwanyong; Park, Hongkeun; Park, Chan Woo; Im, Sung Gap

    2017-06-21

    A series of high-k, ultrathin copolymer gate dielectrics were synthesized from 2-cyanoethyl acrylate (CEA) and di(ethylene glycol) divinyl ether (DEGDVE) monomers by a free radical polymerization via a one-step, vapor-phase, initiated chemical vapor deposition (iCVD) method. The chemical composition of the copolymers was systematically optimized by tuning the input ratio of the vaporized CEA and DEGDVE monomers to achieve a high dielectric constant (k) as well as excellent dielectric strength. Interestingly, DEGDVE was nonhomopolymerizable but it was able to form a copolymer with other kinds of monomers. Utilizing this interesting property of the DEGDVE cross-linker, the dielectric constant of the copolymer film could be maximized with minimum incorporation of the cross-linker moiety. To our knowledge, this is the first report on the synthesis of a cyanide-containing polymer in the vapor phase, where a high-purity polymer film with a maximized dielectric constant was achieved. The dielectric film with the optimized composition showed a dielectric constant greater than 6 and extremely low leakage current densities (<3 × 10 -8 A/cm 2 in the range of ±2 MV/cm), with a thickness of only 20 nm, which is an outstanding thickness for down-scalable cyanide polymer dielectrics. With this high-k dielectric layer, organic thin-film transistors (OTFTs) and oxide TFTs were fabricated, which showed hysteresis-free transfer characteristics with an operating voltage of less than 3 V. Furthermore, the flexible OTFTs retained their low gate leakage current and ideal TFT characteristics even under 2% applied tensile strain, which makes them some of the most flexible OTFTs reported to date. We believe that these ultrathin, high-k organic dielectric films with excellent mechanical flexibility will play a crucial role in future soft electronics.

  20. Trends in the thermodynamic stability of ultrathin supported oxide films

    DOE PAGES

    Plessow, Philipp N.; Bajdich, Michal; Greene, Joshua; ...

    2016-05-05

    The formation of thin oxide films on metal supports is an important phenomenon, especially in the context of strong metal support interaction (SMSI). Computational predictions of the stability of these films are hampered by their structural complexity and a varying lattice mismatch with different supports. In this study, we report a large combination of supports and ultrathin oxide films studied with density functional theory (DFT). Trends in stability are investigated through a descriptor-based analysis. Since the studied films are bound to the support exclusively through metal–metal interaction, the adsorption energy of the oxide-constituting metal atom can be expected to bemore » a reasonable descriptor for the stability of the overlayers. If the same supercell is used for all supports, the overlayers experience different amounts of stress. Using supercells with small lattice mismatch for each system leads to significantly improved scaling relations for the stability of the overlayers. Finally, this approach works well for the studied systems and therefore allows the descriptor-based exploration of the thermodynamic stability of supported thin oxide layers.« less

  1. New possibilities for tuning ultrathin cobalt film magnetic properties by a noble metal overlayer.

    PubMed

    Kisielewski, M; Maziewski, A; Tekielak, M; Wawro, A; Baczewski, L T

    2002-08-19

    Complementary multiscale magneto-optical studies based on the polar Kerr effect are carried out on an ultrathin cobalt wedge covered with a silver wedge and subsequently with the Au thick layer. A few monolayers of Ag are found to have a substantial effect on magnetic anisotropy, the coercivity field, and Kerr rotation. The silver overlayer thickness-driven magnetic reorientation from easy axis to easy plane generates a new type of 90 degrees magnetic wall for cobalt thicknesses between 1.3 and 1.8 nm. The tuning of the wall width in a wide range is possible. Tailoring of the overlayer structure can be used for ultrathin film magnetic patterning.

  2. Nanoscale interfacial heat transport of ultrathin epitaxial hetero films: Few monolayer Pb(111) on Si(111)

    NASA Astrophysics Data System (ADS)

    Witte, T.; Frigge, T.; Hafke, B.; Krenzer, B.; Horn-von Hoegen, M.

    2017-06-01

    We studied the phononic heat transport from ultrathin epitaxial Pb(111) films across the heterointerface into a Si(111) substrate by means of ultrafast electron diffraction. The thickness of the Pb films was varied from 15 to 4 monolayers. It was found that the thermal boundary conductance σTBC of the heterointerface is independent of the film thickness. We have no evidence for finite size effects: the continuum description of heat transport is still valid, even for the thinnest films of only 4 monolayer thickness.

  3. Bias current dependence of resistivity in Co0.4Fe0.4B0.2 ultrathin film prepared by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Mandal, Snehal; Mazumdar, Dipak; Das, I.

    2018-04-01

    Ultrathin film of Co0.4Fe0.4B0.2 was prepared on p-type Si (100) substrate by RF magnetron sputtering. X-Ray Reflectivity and Atomic Force Microscopy measurements were performed to estimate the thickness and surface roughness of the film. Electrical transport measurements were performed by four-probe method in a current-in-plane (CIP) geometry. Presence of non-linearity in the current-voltage (I-V) characteristics was observed at higher current range. The electrical resistivity was found to change by several orders of magnitude (105) by changing the bias current from nano-ampere (nA) to milli-ampere (mA) range. This bias current dependence of the resistivity has been explained by different transport mechanisms.

  4. An easily accessible carbon material derived from carbonization of polyacrylonitrile ultrathin films: ambipolar transport properties and application in a CMOS-like inverter.

    PubMed

    Jiao, Fei; Zhang, Fengjiao; Zang, Yaping; Zou, Ye; Di, Chong'an; Xu, Wei; Zhu, Daoben

    2014-03-04

    Ultrathin carbon films were prepared by carbonization of a solution processed polyacrylonitrile (PAN) film in a moderate temperature range (500-700 °C). The films displayed balanced hole (0.50 cm(2) V(-1) s(-1)) and electron mobilities (0.20 cm(2) V(-1) s(-1)) under ambient conditions. Spectral characterization revealed that the electrical transport is due to the formation of sp(2) hybridized carbon during the carbonization process. A CMOS-like inverter demonstrated the potential application of this material in the area of carbon electronics, considering its processability and low-cost.

  5. How Do Organic Vapors Swell Ultrathin Films of Polymer of Intrinsic Microporosity PIM-1?

    PubMed

    Ogieglo, Wojciech; Rahimi, Khosorov; Rauer, Sebastian Bernhard; Ghanem, Bader; Ma, Xiaohua; Pinnau, Ingo; Wessling, Matthias

    2017-07-27

    Dynamic sorption of ethanol and toluene vapor into ultrathin supported films of polymer of intrinsic microporosity PIM-1 down to a thickness of 6 nm are studied with a combination of in situ spectroscopic ellipsometry and in situ X-ray reflectivity. Both ethanol and toluene significantly swell the PIM-1 matrix and, at the same time, induce persistent structural relaxations of the frozen-in glassy PIM-1 morphology. For ethanol below 20 nm, three effects were identified. First, the swelling magnitude at high vapor pressures is reduced by about 30% as compared to that of thicker films. Second, at low penetrant activities (below 0.3p/p 0 ), films below 20 nm are able to absorb slightly more penetrant as compared with thicker films despite a similar swelling magnitude. Third, for the ultrathin films, the onset of the dynamic penetrant-induced glass transition P g has been found to shift to higher values, indicating higher resistance to plasticization. All of these effects are consistent with a view where immobilization of the superglassy PIM-1 at the substrate surface leads to an arrested, even more rigid, and plasticization-resistant, yet still very open, microporous structure. PIM-1 in contact with the larger and more condensable toluene shows very complex, heterogeneous swelling dynamics, and two distinct penetrant-induced relaxation phenomena, probably associated with the film outer surface and the bulk, are detected. Following the direction of the penetrant's diffusion, the surface seems to plasticize earlier than the bulk, and the two relaxations remain well separated down to 6 nm film thickness, where they remarkably merge to form just a single relaxation.

  6. SERS Taper-Fiber Nanoprobe Modified by Gold Nanoparticles Wrapped with Ultrathin Alumina Film by Atomic Layer Deposition

    PubMed Central

    Xu, Wenjie; Chen, Zhenyi; Chen, Na; Zhang, Heng; Liu, Shupeng; Hu, Xinmao; Wen, Jianxiang; Wang, Tingyun

    2017-01-01

    A taper-fiber SERS nanoprobe modified by gold nanoparticles (Au-NPs) with ultrathin alumina layers was fabricated and its ability to perform remote Raman detection was demonstrated. The taper-fiber nanoprobe (TFNP) with a nanoscale tip size under 80 nm was made by heated pulling combined with the chemical etching method. The Au-NPs were deposited on the TFNP surface with the electrostatic self-assembly technology, and then the TFNP was wrapped with ultrathin alumina layers by the atomic layer deposition (ALD) technique. The results told us that with the increasing thickness of the alumina film, the Raman signals decreased. With approximately 1 nm alumina film, the remote detection limit for R6G aqueous solution reached 10−6 mol/L. PMID:28245618

  7. Intense visible light emission from stress-activated ZrO2:Ti

    NASA Astrophysics Data System (ADS)

    Akiyama, Morito; Xu, Chao-Nan; Nonaka, Kazuhiro

    2002-07-01

    We have investigated the luminescence phenomena from stress-activated ZrO2:Ti. The luminescence is clearly visible to the naked eye in the atmosphere. The luminescence center has been identified as the Ti4+ ion from spectra of the mechanoluminescence and also from photoluminescence studies of ZrO2:Ti. The mechanoluminescence intensity decreases on repetitive application of stress but recovers completely on irradiation with ultraviolet light. ZrO2 is an n-type semiconductor and has electron traps. It is suggested that the mechanoluminescence mechanism arises from the movement of dislocations and recombination between electrons and holes released from these traps which are associated with the Ti4+ centers.

  8. Surface structure of coherently strained ceria ultrathin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Yezhou; Stone, Kevin H.; Guan, Zixuan

    2016-11-14

    Cerium oxide, or ceria, is an important material for solid oxide fuel cells and water splitting devices. Although the ceria surface is active in catalytic and electrochemical reactions, how its catalytic properties are affected by the surface structure under operating conditions is far from understood. We investigate the structure of the coherently strained CeO 2 ultrathin films on yttria-stabilized zirconia (001) single crystals by specular synchrotron x-ray diffraction (XRD) under oxidizing conditions as a first step to study the surface structure in situ. An excellent agreement between the experiment data and the model is achieved by using a “stacks andmore » islands” model that has a two-component roughness. One component is due to the tiny clusters of nanometer scale in lateral dimensions on each terrace, while the other component is due to slightly different CeO 2 thickness that span over hundreds of nanometers on neighboring terraces. We attribute the nonuniform thickness to step depairing during the thin film deposition that is supported by the surface morphology results on the microscopic level. Importantly, our model also shows that the polarity of the ceria surface is removed by a half monolayer surface coverage of oxygen. In conclusion, the successful resolution of the ceria surface structure using in situ specular synchrotron XRD paves the way to study the structural evolution of ceria as a fuel cell electrode under catalytically relevant temperatures and gas pressures.« less

  9. Ultrathin Au film on polymer surface for surface plasmon polariton waveguide application

    NASA Astrophysics Data System (ADS)

    Liu, Tong; Ji, Lanting; He, Guobing; Sun, Xiaoqiang; Wang, Fei; Zhang, Daming

    2017-11-01

    Formation of laterally continuous ultrathin gold films on polymer substrates is a technological challenge. In this work, the vacuum thermal evaporation method is adopted to form continuous Au films in the thickness range of 7-17 nm on polymers of Poly(methyl-methacrylate-glycidly-methacrylate) and SU-8 film surface without using the adhesion or metallic seeding layers. Absorption spectrum, scanning electron microscope and atomic force microscope images are used to characterize the Au film thickness, roughness and optical loss. The result shows that molecular-scale structure, surface energy and electronegativity have impacts on the Au film morphology on polymers. Wet chemical etching is used to fabricate 7-nm thick Au stripes embedded in polymer claddings. These long-range surface plasmon polariton waveguides demonstrate the favorable morphological configurations and cross-sectional states. Through the end-fire excitation method, propagation losses of 6-μm wide Au stripes are compared to theoretical values and analyzed from practical film status. The smooth, patternable gold films on polymer provide potential applications to plasmonic waveguides, biosensing, metamaterials and optical antennas.

  10. Negative differential resistance in electron tunneling in ultrathin films near the two-dimensional limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batabyal, R.; Abdul Wasey, A. H. M.; Mahato, J. C.

    We report on our observation of negative differential resistance (NDR) in electron tunneling conductance in atomic-scale ultrathin Ag films on Si(111) substrates. NDR was observed by scanning tunneling spectroscopy measurements. The tunneling conductance depends on the electronic local density of states (LDOS) of the sample. We show that the sample bias voltage, at which negative differential resistance and peak negative conductance occur, depends on the film thickness. This can be understood from the variation in the LDOS of the Ag films as a function of film thickness down to the two-dimensional limit of one atomic layer. First principles density functionalmore » theory calculations have been used to explain the results.« less

  11. Facile biological synthetic strategy to morphologically aligned CeO2/ZrO2 core nanoparticles using Justicia adhatoda extract and ionic liquid: Enhancement of its bio-medical properties.

    PubMed

    Pandiyan, Nithya; Murugesan, Balaji; Sonamuthu, Jegatheeswaran; Samayanan, Selvam; Mahalingam, Sundrarajan

    2018-01-01

    In this study, a typical green synthesis route has approached for CeO 2 /ZrO 2 core metal oxide nanoparticles using ionic liquid mediated Justicia adhatoda extract. This synthesis method is carried out at simple room temperature condition to obtain the core metal oxide nanoparticles. XRD, SEM and TEM studies employed to study the crystalline and surface morphological properties under nucleation, growth, and aggregation processes. CeO 2 /ZrO 2 core metal oxides display agglomerated nano stick-like structure with 20-45nm size. GC-MS spectroscopy confirms the presence of vasicinone and N,N-Dimethylglycine present in the plant extract, which are capable of converting the corresponding metal ion precursor to CeO 2 /ZrO 2 core metal oxide nanoparticles. In FTIR, the corresponding stretching for Ce-O and Zr-O bands indicated at 498 and 416cm -1 and Raman spectroscopy also supports typical stretching frequencies at 463 and 160cm -1 . Band gap energy of the CeO 2 /ZrO 2 core metal oxide is 3.37eV calculated from UV- DRS spectroscopy. The anti-bacterial studies performed against a set of bacterial strains the result showed that core metal oxide nanoparticles more susceptible to gram-positive (G+) bacteria than gram-negative (G-) bacteria. A unique feature of the antioxidant behaviors core metal oxides reduces the concentration of DPPH radical up to 89%. The CeO 2 /ZrO 2 core metal oxide nanoparticles control the S. marcescent bio-film formation and restrict the quorum sensing. The toxicology behavior of CeO 2 /ZrO 2 core metal oxide NPs is found due to the high oxygen site vacancies, ROS formation, smallest particle size and higher surface area. This type of green synthesis route may efficient and the core metal oxide nanoparticles will possess a good bio-medical agent in future. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effects of copolymer composition, film thickness, and solvent vapor annealing time on dewetting of ultrathin block copolymer films.

    PubMed

    Huang, Changchun; Wen, Gangyao; Li, Jingdan; Wu, Tao; Wang, Lina; Xue, Feifei; Li, Hongfei; Shi, Tongfei

    2016-09-15

    Effects of copolymer composition, film thickness, and solvent vapor annealing time on dewetting of spin-coated polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) films (<20nm thick) were mainly investigated by atomic force microscopy. Surface chemical analysis of the ultrathin films annealed for different times were performed using X-ray photoelectron spectroscopy and contact angle measurement. With the annealing of acetone vapor, dewetting of the films with different thicknesses occur via the spinodal dewetting and the nucleation and growth mechanisms, respectively. The PS-b-PMMA films rupture into droplets which first coalesce into large ones to reduce the surface free energy. Then the large droplets rupture into small ones to increase the contact area between PMMA blocks and acetone molecules resulting from ultimate migration of PMMA blocks to droplet surface, which is a novel dewetting process observed in spin-coated films for the first time. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Single crystalline silicene consist of various superstructures using a flexible ultrathin Ag(111) template on Si(111)

    NASA Astrophysics Data System (ADS)

    Hsu, Hung-Chang; Lu, Yi-Hung; Su, Tai-Lung; Lin, Wen-Chin; Fu, Tsu-Yi

    2018-07-01

    Using scanning tunneling microscopy, we studied the formation of silicene on an ultrathin Ag(111) film with a thickness of 6–12 monolayers, which was prepared on a Si(111) substrate. A low-energy electron diffraction pattern with an oval spot indicated that the ultrathin Ag(111) film is more disordered than the single-crystal Ag(111). After Si epitaxy growth, we still measured the classical 4 × 4, √13 × √13, and 2√3 × 2√3 silicene superstructures, which are the same as the silicene superstructure on single-crystal Ag(111). Growing silicene on a single-crystal Ag(111) bulk usually results in the formation of a defect boundary due to the inconsistent orientation of various superstructures. By comparing the angles and boundary conditions between various silicene superstructures on the ultrathin film and single-crystal Ag(111), we discovered that a consistent orientation of various superstructures without obvious boundary defects formed on the ultrathin Ag(111) film. The results indicated single crystalline silicene formation, which was attributed to the domain rotation and lateral shift of the disordered ultrathin Ag(111) film.

  14. Dynamics of metal-induced crystallization of ultrathin Ge films by rapid thermal annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Yuanxun; Huang, Shujuan; Shrestha, Santosh

    2015-12-07

    Though Ge crystallization has been widely studied, few works investigate metal-induced crystallization of ultrathin Ge films. For 2 nm Ge films in oxide matrix, crystallization becomes challenging due to easy oxidation and low mobility of Ge atoms. Introducing metal atoms may alleviate these problems, but the functions and the behaviours of metal atoms need to be clarified. This paper investigates the crystallization dynamics of a multilayer structure 1.9 nm Ge/0.5 nm Al/1.5 nm Al{sub 2}O{sub 3} under rapid thermal annealing (RTA). The functions of metal atoms, like effective anti-oxidation, downshifting Raman peaks, and incapability to decrease crystallization temperature, are found and explained. The metalmore » behaviours, such as inter-diffusion and defect generation, are supported with direct evidences, Al-Ge nanobicrystals, and Al cluster in Ge atoms. With these understandings, a two-step RTA process achieves high-quality 2 nm nanocrystal Ge films with Raman peak at 298 cm{sup −1} of FWHM 10.3 cm{sup −1} and atomic smooth interfaces.« less

  15. Porous TiO2-ZrO2 thin film formed by electrochemical technique to improve the biocompatibility of titanium alloy in physiological environment

    NASA Astrophysics Data System (ADS)

    Benea, L.; Dănăilă, E.; Ponthiaux, P.

    2017-02-01

    Porous Ti and Ti alloys have received increasing research interest for bone tissue engineering, especially for dental and orthopaedic implants because they provide cell ingrowths and vascularization, improving of adhesion and osseointegration. The tribocorrosion process is encountered in orthopaedic and dentistry applications, since it is known that the implants are often exposed to simultaneous chemical/electrochemical and mechanical stresses. The purpose of this study was to carry out a systematic investigation of the tribo-electrochemical performance of porous TiO2-ZrO2 thin film formed by anodization of Ti-10Zr alloy surface in an artificial saliva solution and to compare the resulted performance with that of the untreated Ti-10Zr alloy surface in order to be applied for biomedical use. The in situ electrochemical technique used for investigation of tribo-electrochemical degradation was the open circuit potential (OCP) measurement performed before, during and after sliding tests. The results presented herein show that controlled anodic oxidation method can significantly improve the tribocorrosion and friction performances of Ti-10Zr alloy surface intended for biomedical applications.

  16. Structure, magnetic ordering, and spin filtering efficiency of NiFe{sub 2}O{sub 4}(111) ultrathin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzen, S.; Moussy, J.-B., E-mail: jean-baptiste.moussy@cea.fr; Wei, P.

    2014-05-05

    NiFe{sub 2}O{sub 4}(111) ultrathin films (3–5 nm) have been grown by oxygen-assisted molecular beam epitaxy and integrated as effective spin-filter barriers. Structural and magnetic characterizations have been performed in order to investigate the presence of defects that could limit the spin filtering efficiency. These analyses have revealed the full strain relaxation of the layers with a cationic order in agreement with the inverse spinel structure but also the presence of antiphase boundaries. A spin-polarization up to +25% has been directly measured by the Meservey-Tedrow technique in Pt(111)/NiFe{sub 2}O{sub 4}(111)/γ-Al{sub 2}O{sub 3}(111)/Al tunnel junctions. The unexpected positive sign and relatively small valuemore » of the spin-polarization are discussed, in comparison with predictions and previous indirect tunnelling magnetoresistance measurements.« less

  17. Influence of miscut Y2O3-stabilized ZrO2 substrates on the azimuthal domain structure and ferroelectric properties of epitaxial La-substituted Bi4Ti3O12 films

    NASA Astrophysics Data System (ADS)

    Lee, Sung Kyun; Hesse, Dietrich; Gösele, Ulrich; Lee, Ho Nyung

    2006-09-01

    We have investigated the influence of both miscut angle and miscut direction of Y2O3-stabilized ZrO2 (YSZ) (100) single crystal substrates on the azimuthal domain structure of SrRuO3 electrode layers as well as of La-substituted Bi4Ti3O12 (BLT) ferroelectric thin films, both grown on these substrates by pulsed laser deposition. X-ray diffraction ϕ scan and pole figure characterizations revealed that the YSZ[011] miscut direction is more effective to uniformly reduce the number of azimuthal domain variants in the films than the YSZ[001] miscut direction. The BLT films on YSZ(100) substrates with miscut angle of 5° and [011] miscut direction involve only half the number of azimuthal domains, compared to the BLT films on exactly cut YSZ(100) substrates. Atomic force microscopy and plan-view transmission electron microscopy also confirmed that almost all BLT grains on these miscut YSZ(100) substrates are arranged along only two (out of four) specific azimuthal directions. The BLT films on YSZ(100) substrates with 5° miscut towards YSZ[011] showed an about 1.3 times higher remanent polarization (Pr=12.5μC /cm2) than the BLT films on exactly cut YSZ(100) substrates (Pr=9.5μC/cm2), due most probably to a lower areal density of azimuthal domain boundaries. It thus appears that reducing the structural domains can be an effective way to further enhance the ferroelectric properties of multiply twinned, epitaxial ferroelectric films.

  18. Substitutional Cd and Cd-Oxygen Vacancy Complexes in ZrO2 and Ce-doped ZrO_2

    NASA Astrophysics Data System (ADS)

    Zacate, Matthew O.; Karapetrova, E.; Platzer, R.; Gardner, J. A.; Evenson, W. E.; Sommers, J. A.

    1996-03-01

    We are using Perturbed Angular Correlation Spectroscopy (PAC) to study oxygen vacancy (V_O) dynamics in tetragonal ZrO2 and Ce-doped ZrO_2. PAC requires a radioactive probe atom, Cd in this study, which sits substitutionally for a Zr ion. Cd is doubly-negatively charged relative to the lattice and attracts doubly-positively charged V_Os. Pure tetragonal zirconia exists only above 950 ^circC and in this temperature range, the V_Os are very mobile. Above 950 ^circC we observe V_Os rapidly hopping about the Cd allowing us to determine the VO concentration and the trapping energy. We have been Ce-doping to stabilize the tetragonal phase to lower temperature to determine the electric field gradient the Cd experiences due to a stationary V_O. As a consequence of the Ce-doping, we observe a local lattice distortion about the Cd which increases with Ce-doping.

  19. 'One-component' ultrathin multilayer films based on poly(vinyl alcohol) as stabilizing coating for phenytoin-loaded liposomes.

    PubMed

    Zasada, Katarzyna; Łukasiewicz-Atanasov, Magdalena; Kłysik, Katarzyna; Lewandowska-Łańcucka, Joanna; Gzyl-Malcher, Barbara; Puciul-Malinowska, Agnieszka; Karewicz, Anna; Nowakowska, Maria

    2015-11-01

    Ultrathin "one-component" multilayer polymeric films for potential biomedical applications were designed based on polyvinyl alcohol,-a non-toxic, fully degradable synthetic polymer. Good uniformity of the obtained film and adequate adsorption properties of the polymeric layers were achieved by functional modification of the polymer, which involved synthesis of cationic and anionic derivatives. Synthesized polymers were characterized by FTIR, NMR spectroscopy, dynamic light scattering measurements and elemental analysis. The layer by layer assembly technique was used to build up a multilayer film and this process was followed using UV-Vis spectroscopy and ellipsometry. The morphology and thickness of the obtained multilayered film material was evaluated by atomic force microscopy (AFM). Preliminary studies on the application of the obtained multilayer film for coating of liposomal nanocarriers containing phenytoin, an antiarrhythmic drug, were performed. The coating effectively stabilizes liposomes and the effect increases with an increasing number of deposited layers until the polymeric film reaches the optimal thickness. The obtained release profiles suggest that bilayer-coated liposomes release phenytoin less rapidly than uncoated ones. The cytotoxicity studies performed for all obtained nanocarriers confirmed that none of them has negative effect on cell viability. All of the performed experiments suggest that liposomes coated with ultrathin film obtained from PVA derivatives can be attractive drug nanocarriers. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Ultrasound-assisted sol-gel synthesis of ZrO2.

    PubMed

    Guel, Marlene Lariza Andrade; Jiménez, Lourdes Díaz; Hernández, Dora Alicia Cortés

    2017-03-01

    Synthesis of tetragonal ZrO 2 by both conventional sol-gel and ultrasound-assisted sol-gel methods and using a non-ionic surfactant Tween-20, was performed. A porous microstructure composed of nanometric particles was observed. Tetragonal ZrO 2 was obtained using a low heat treatment temperature of powders, 500°C by both methods. A higher crystallinity and a shorter reaction time were observed when ultrasound was used in the sol-gel method due to the cavitation phenomenon. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Improved conversion efficiency of dye sensitized solar cell using Zn doped TiO2-ZrO2 nanocomposite

    NASA Astrophysics Data System (ADS)

    Tomar, Laxmi J.; Bhatt, Piyush J.; Desai, Rahul K.; Chakrabarty, B. S.; Panchal, C. J.

    2016-05-01

    TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites were prepared by hydrothermal method for dye sensitized solar cell (DSSC) application. The structural and optical properties were investigated by X -ray diffraction (XRD) and UV-Visible spectroscopy respectively. XRD results revealed the formation of material in nano size. The average crystallite size is 22.32 nm, 17.41 nm and 6.31 nm for TiO2, TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites respectively. The optical bandgap varies from 2.04 eV to 3.75 eV. Dye sensitized solar cells were fabricated using the prepared material. Pomegranate juice was used as a sensitizer and graphite coated conducting glass plate was used as counter electrode. The I - V characteristics were recorded to measure photo response of DSSC. Photovoltaic parameter like open circuit voltage, power conversion efficiency, and fill factor were evaluated for fabricated solar cell. The power conversion efficiency of DSSC fabricated with TiO2, TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites were found 0.71%, 1.97% and 4.58% respectively.

  2. A dual-stimuli-responsive fluorescent switch ultrathin film

    NASA Astrophysics Data System (ADS)

    Li, Zhixiong; Liang, Ruizheng; Liu, Wendi; Yan, Dongpeng; Wei, Min

    2015-10-01

    Stimuli-responsive fluorescent switches have shown broad applications in optical devices, biological materials and intelligent responses. Herein, we describe the design and fabrication of a dual-stimuli-responsive fluorescent switch ultrathin film (UTF) via a three-step layer-by-layer (LBL) technique: (i) encapsulation of spiropyran (SP) within an amphiphilic block copolymer (PTBEM) to give the (SP@PTBEM) micelle; (ii) the mixture of riboflavin (Rf) and poly(styrene 4-sulfonate) (PSS) to enhance the adhesion ability of small molecules; (iii) assembly of negatively charged SP@PTBEM and Rf-PSS with cationic layered double hydroxide (LDH) nanoplatelets to obtain the (Rf-PSS/LDH/SP@PTBEM)n UTFs (n: bilayer number). The assembly process of the UTFs and their luminescence properties, as monitored by fluorescence spectroscopy and scanning electron microscopy (SEM), present a uniform and ordered layered structure with stepwise growth. The resulting Rf-PSS/LDH/SP@PTBEM UTF serves as a three-state switchable multicolor (green, yellow, and red) luminescent system based on stimulation from UV/Vis light and pH, with an acceptable reversibility. Therefore, this work provides a facile way to fabricate stimuli-responsive solid-state film switches with tunable-color luminescence, which have potential applications in the areas of displays, sensors, and rewritable optical memory and fluorescent logic devices.Stimuli-responsive fluorescent switches have shown broad applications in optical devices, biological materials and intelligent responses. Herein, we describe the design and fabrication of a dual-stimuli-responsive fluorescent switch ultrathin film (UTF) via a three-step layer-by-layer (LBL) technique: (i) encapsulation of spiropyran (SP) within an amphiphilic block copolymer (PTBEM) to give the (SP@PTBEM) micelle; (ii) the mixture of riboflavin (Rf) and poly(styrene 4-sulfonate) (PSS) to enhance the adhesion ability of small molecules; (iii) assembly of negatively charged SP

  3. Formation of silicon nanodots via ion beam sputtering of ultrathin gold thin film coatings on Si

    PubMed Central

    2011-01-01

    Ion beam sputtering of ultrathin film Au coatings used as a physical catalyst for self-organization of Si nanostructures has been achieved by tuning the incident particle energy. This approach holds promise as a scalable nanomanufacturing parallel processing alternative to candidate nanolithography techniques. Structures of 11- to 14-nm Si nanodots are formed with normal incidence low-energy Ar ions of 200 eV and fluences above 2 × 1017 cm-2. In situ surface characterization during ion irradiation elucidates early stage ion mixing migration mechanism for nanodot self-organization. In particular, the evolution from gold film islands to the formation of ion-induced metastable gold silicide followed by pure Si nanodots formed with no need for impurity seeding. PMID:21711934

  4. Study of anisotropy, magnetization reversal and damping in ultrathin Co films on MgO (0 0 1) substrate

    NASA Astrophysics Data System (ADS)

    Mallik, Srijani; Bedanta, Subhankar

    2018-01-01

    Ultrathin Co films of 3 nm thickness have been prepared on MgO (0 0 1) substrate in presence or absence of substrate pre-annealing. Uniaxial anisotropy is induced in the samples due to the deposition under oblique angle of incidence. Along with the oblique deposition induced anisotropy, another uniaxial anisotropy contribution has been observed due to pre-annealing. However, no cubic anisotropy has been observed here as compared to the thicker films. Angle dependent ferromagnetic resonance (FMR) measurement confirms the presence of two anisotropies in the pre-annealed sample with ∼18° misalignment with each other. The two anisotropy constants were calculated from both superconducting quantum interference device (SQUID) magnetometry and FMR spectroscopy. The magnetization reversal is governed by nucleation dominated aftereffect followed by domain wall motion for the pre-annealed sample. Branched domains are observed for the sample prepared without pre-annealing which indicates grain disorientation of Co. However, in the thicker (25 nm) Co films ripple domains were observed in contrary to ultrathin (3 nm) films.

  5. Optical and structural characterization of Ge clusters embedded in ZrO2

    NASA Astrophysics Data System (ADS)

    Agocs, E.; Zolnai, Z.; Rossall, A. K.; van den Berg, J. A.; Fodor, B.; Lehninger, D.; Khomenkova, L.; Ponomaryov, S.; Gudymenko, O.; Yukhymchuk, V.; Kalas, B.; Heitmann, J.; Petrik, P.

    2017-11-01

    The change of optical and structural properties of Ge nanoclusters in ZrO2 matrix have been investigated by spectroscopic ellipsometry versus annealing temperatures. Radio-frequency top-down magnetron sputtering approach was used to produce the samples of different types, i.e. single-layers of pure Ge, pure ZrO2 and Ge-rich-ZrO2 as well as multi-layers stacked of 40 periods of 5-nm-Ge-rich-ZrO2 layers alternated by 5-nm-ZrO2 ones. Germanium nanoclusters in ZrO2 host were formed by rapid-thermal annealing at 600-800 °C during 30 s in nitrogen atmosphere. Reference optical properties for pure ZrO2 and pure Ge have been extracted using single-layer samples. As-deposited multi-layer structures can be perfectly modeled using the effective medium theory. However, annealed multi-layers demonstrated a significant diffusion of elements that was confirmed by medium energy ion scattering measurements. This fact prevents fitting of such annealed structure either by homogeneous or by periodic multi-layer models.

  6. First-principles studies of hydrogen interaction with ultrathin Mg and Mg-based alloy films

    NASA Astrophysics Data System (ADS)

    Yoon, Mina; Weitering, Hanno H.; Zhang, Zhenyu

    2011-01-01

    The search for technologically and economically viable storage solutions for hydrogen fuel would benefit greatly from research strategies that involve systematic property tuning of potential storage materials via atomic-level modification. Here, we use first-principles density-functional theory to investigate theoretically the structural and electronic properties of ultrathin Mg films and Mg-based alloy films and their interaction with atomic hydrogen. Additional delocalized charges are distributed over the Mg films upon alloying them with 11.1% of Al or Na atoms. These extra charges contribute to enhance the hydrogen binding strength to the films. We calculated the chemical potential of hydrogen in Mg films for different dopant species and film thickness, and we included the vibrational degrees of freedom. By comparing the chemical potential with that of free hydrogen gas at finite temperature (T) and pressure (P), we construct a hydrogenation phase diagram and identify the conditions for hydrogen absorption or desorption. The formation enthalpies of metal hydrides are greatly increased in thin films, and in stark contrast to its bulk phase, the hydride state can only be stabilized at high P and T (where the chemical potential of free H2 is very high). Metal doping increases the thermodynamic stabilities of the hydride films and thus significantly helps to reduce the required pressure condition for hydrogen absorption from H2 gas. In particular, with Na alloying, hydrogen can be absorbed and/or desorbed at experimentally accessible T and P conditions.

  7. A room temperature method for the formation of ultrathin silicon oxide films

    NASA Astrophysics Data System (ADS)

    Muisener, Richard John

    Growing interest surrounds the use of thin films to impart unique surface properties without adversely affecting those of the bulk. One such example is the formation of a stable high-energy silicon oxide surface on polymers. Thin silicon oxide films have been used to tailor the surface properties of many materials. Conventional methods for SiOx film fabrication such as chemical vapor deposition require either high temperature or expensive vacuum chambers. This research focuses on the intrinsically inexpensive process of UV-ozone to form ultrathin SiOx films from polysiloxane precursors at room temperature and atmospheric pressure. Chemical evidence suggests a complete conversion from organic polymer to inorganic ceramic. Through XPS, the UV-ozone treatment oxidizes over 95% of the silicone's organic side groups with a resulting stoichiometry Of Si 1O2.2C0.08. The silicon oxidation state changes from 2+ in poly(dimethylsiloxane) to 93% 4+ corresponding to SiO2. IR studies show a total loss of methyl bands and the growth of a new Si-O band centered at 1225 cm-1. Gas phase reaction products suggest a radical driven process. The physical properties also suggest a complete conversion to SiO x. Excellent control of film thickness, as low as 2 nm, has been demonstrated by variable angle spectroscopic ellipsometry. The ellipsometrically determined thickness loss of 55% during treatment corresponds to an SiOx film density of 1.9 g/cm3. The continuity of the film is demonstrated by electrical properties and a very low water contact angle consistent with SiOx. The later property ensures that the SiOx films are anti-fogging in nature. Unique hydrophilic-hydrophobic structures were formed through photo-patterning. The reaction has been successfully modeled as self-limiting based on the diffusion of ozone. The chief reactant, atomic oxygen, is generated by the photochemical dissociation of ozone and quickly generates radical species within the polymer film. The reaction proceeds

  8. Impact of Film Thickness of Ultrathin Dip-Coated Compact TiO2 Layers on the Performance of Mesoscopic Perovskite Solar Cells.

    PubMed

    Masood, Muhammad Talha; Weinberger, Christian; Sarfraz, Jawad; Rosqvist, Emil; Sandén, Simon; Sandberg, Oskar J; Vivo, Paola; Hashmi, Ghufran; Lund, Peter D; Österbacka, Ronald; Smått, Jan-Henrik

    2017-05-31

    Uniform and pinhole-free electron-selective TiO 2 layers are of utmost importance for efficient perovskite solar cells. Here we used a scalable and low-cost dip-coating method to prepare uniform and ultrathin (5-50 nm) compact TiO 2 films on fluorine-doped tin oxide (FTO) glass substrates. The thickness of the film was tuned by changing the TiCl 4 precursor concentration. The formed TiO 2 follows the texture of the underlying FTO substrates, but at higher TiCl 4 concentrations, the surface roughness is substantially decreased. This change occurs at a film thickness close to 20-30 nm. A similar TiCl 4 concentration is needed to produce crystalline TiO 2 films. Furthermore, below this film thickness, the underlying FTO might be exposed resulting in pinholes in the compact TiO 2 layer. When integrated into mesoscopic perovskite solar cells there appears to be a similar critical compact TiO 2 layer thickness above which the devices perform more optimally. The power conversion efficiency was improved by more than 50% (from 5.5% to ∼8.6%) when inserting a compact TiO 2 layer. Devices without or with very thin compact TiO 2 layers display J-V curves with an "s-shaped" feature in the negative voltage range, which could be attributed to immobilized negative ions at the electron-extracting interface. A strong correlation between the magnitude of the s-shaped feature and the exposed FTO seen in the X-ray photoelectron spectroscopy measurements indicates that the s-shape is related to pinholes in the compact TiO 2 layer when it is too thin.

  9. Aerosol-assisted chemical vapor deposition of ultra-thin CuOx films as hole transport material for planar perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Zhixin; Chen, Shuqun; Li, Pingping; Li, Hongyi; Wu, Junshu; Hu, Peng; Wang, Jinshu

    This paper reports on the fabrication of CuOx films to be used as hole transporting layer (HTL) in CH3NH3PbI3 perovskite solar cells (PSCs). Ultra-thin CuOx coatings were grown onto FTO substrates for the first time via aerosol-assisted chemical vapor deposition (AACVD) of copper acetylacetonate in methanol. After incorporating into the PSCs prepared at ambient air, a highest power conversion efficiency (PCE) of 8.26% with HTL and of 3.34% without HTL were achieved. Our work represents an important step in the development of low-cost CVD technique for fabricating ultra-thin metal oxide functional layers in thin film photovoltaics.

  10. Magneto-optical properties of CoFeB ultrathin films: Effect of Ta buffer and capping layer

    NASA Astrophysics Data System (ADS)

    Husain, Sajid; Gupta, Nanhe Kumar; Barwal, Vineet; Chaudhary, Sujeet

    2018-05-01

    The effect of adding Ta as a capping and buffer layer on ultrathin CFB(Co60Fe20B20) thin films has been investigated by magneto-optical Kerr effect. A large difference in the coercivity and saturation field is observed between the single layer CFB(2nm) and Ta(5nm)/CFB(2nm)/Ta(2nm) trilayer structure. In particular, the in-plane anisotropy energy is found to be 90kJ/m3 on CFB(2nm) and 2.22kJ/m3 for Ta(5nm)/CFB(2nm)/Ta(2nm) thin films. Anisotropy energy further reduced to 0.93kJ/m3 on increasing the CFB thinness in trilayer structure i.e., Ta(5nm)/CFB(4nm)/Ta(2nm). Using VSM measurement, the saturation magnetization is found to be 1230±50 kA/m. Low coercivity and anisotropy energy in capped and buffer layer thin films envisage the potential of employing CFB for low field switching applications of the spintronic devices.

  11. The Preparation and Microstructure of Nanocrystal 3C-SiC/ZrO2 Bilayer Films

    PubMed Central

    Ye, Chao; Ran, Guang; Zhou, Wei; Qu, Yazhou; Yan, Xin; Cheng, Qijin; Li, Ning

    2017-01-01

    The nanocrystal 3C-SiC/ZrO2 bilayer films that could be used as the protective coatings of zirconium alloy fuel cladding were prepared on a single-crystal Si substrate. The corresponding nanocrystal 3C-SiC film and nanocrystal ZrO2 film were also dividedly synthesized. The microstructure of nanocrystal films was analyzed by grazing incidence X-ray diffraction (GIXRD) and cross-sectional transmission electron microscopy (TEM). The 3C-SiC film with less than 30 nm crystal size was synthesized by Plasma Enhanced Chemical Vapor Deposition (PECVD) and annealing. The corresponding formation mechanism of some impurities in SiC film was analyzed and discussed. An amorphous Zr layer about 600 nm in width was first deposited by magnetron sputtering and then oxidized to form a nanocrystal ZrO2 layer during the annealing process. The interface characteristics of 3C-SiC/ZrO2 bilayer films prepared by two different processes were obviously different. SiZr and SiO2 compounds were formed at the interface of 3C-SiC/ZrO2 bilayer films. A corrosion test of 3C-SiC/ZrO2 bilayer films was conducted to qualitatively analyze the surface corrosion resistance and the binding force of the interface. PMID:29168782

  12. Cap-Induced Magnetic Anisotropy in Ultra-thin Fe/MgO(001) Films

    NASA Astrophysics Data System (ADS)

    Brown-Heft, Tobias; Pendharkar, Mihir; Lee, Elizabeth; Palmstrom, Chris

    Magnetic anisotropy plays an important role in the design of spintronic devices. Perpendicular magnetic anisotropy (PMA) is preferred for magnetic tunnel junctions because the resulting energy barrier between magnetization states can be very high and this allows enhanced device scalability suitable for magnetic random access memory applications. Interface induced anisotropy is often used to control magnetic easy axes. For example, the Fe/MgO(001) system has been predicted to exhibit PMA in the ultrathin Fe limit. We have used in-situ magneto optic Kerr effect and ex-situ SQUID to study the changes in anisotropy constants between bare Fe/MgO(001) films and those capped with MgO, Pt, and Ta. In some cases in-plane anisotropy terms reverse sign after capping. We also observe transitions from superparamagnetic to ferromagnetic behavior induced by capping layers. Perpendicular anisotropy is observed for Pt/Fe/MgO(001) films after annealing to 300°C. These effects are characterized and incorporated into a magnetic simulation that accurately reproduces the behavior of the films. This work was supported in part by the Semiconductor Research Corporation programs (1) MSR-Intel, and (2) C-SPIN.

  13. Dynamic response of ultrathin highly dense ZIF-8 nanofilms.

    PubMed

    Cookney, Joanna; Ogieglo, Wojciech; Hrabanek, Pavel; Vankelecom, Ivo; Fila, Vlastimil; Benes, Nieck E

    2014-10-11

    Ultrathin ZIF-8 nanofilms are prepared by facile step-by-step dip coating. A critical withdrawal speed allows for films with a very uniform minimum thickness. The high refractive index of the films denotes the absence of mesopores. The dynamic response of the films to CO2 exposure resembles behaviour observed for non-equilibrium organic polymers.

  14. Anatase TiO2 ultrathin nanobelts derived from room-temperature-synthesized titanates for fast and safe lithium storage

    PubMed Central

    Wen, Wei; Wu, Jin-ming; Jiang, Yin-zhu; Yu, Sheng-lan; Bai, Jun-qiang; Cao, Min-hua; Cui, Jie

    2015-01-01

    Lithium-ion batteries (LIBs) are promising energy storage devices for portable electronics, electric vehicles, and power-grid applications. It is highly desirable yet challenging to develop a simple and scalable method for constructions of sustainable materials for fast and safe LIBs. Herein, we exploit a novel and scalable route to synthesize ultrathin nanobelts of anatase TiO2, which is resource abundant and is eligible for safe anodes in LIBs. The achieved ultrathin nanobelts demonstrate outstanding performances for lithium storage because of the unique nanoarchitecture and appropriate composition. Unlike conventional alkali-hydrothermal approaches to hydrogen titanates, the present room temperature alkaline-free wet chemistry strategy guarantees the ultrathin thickness for the resultant titanate nanobelts. The anatase TiO2 ultrathin nanobelts were achieved simply by a subsequent calcination in air. The synthesis route is convenient for metal decoration and also for fabricating thin films of one/three dimensional arrays on various substrates at low temperatures, in absence of any seed layers. PMID:26133276

  15. Influence of in situ and ex situ ZrO2 addition on the properties of MgB2

    NASA Astrophysics Data System (ADS)

    Chen, S. K.; Glowacki, B. A.; MacManus-Driscoll, J. L.; Vickers, M. E.; Majoros, M.

    2004-02-01

    The effect of ZrO2 addition on the properties of MgB2 has been studied using in situ and ex situ processes. The in situ process was performed by introducing ZrO2 from the milling tools into MgB2 throughout the planetary ball milling, whereas the ex situ process was accomplished by mixing ZrO2 from the milling tools with MgB2 by hand grinding in a mortar. A detectable amount of ZrO2 was present in MgB2 after 4 h of milling during the in situ process and its content increased with milling time as expected. The 400 h milled powder was partially amorphized and showed the formation of a minority ZrB2 phase. For milling up to 100 h, diamagnetism of MgB2 was significantly reduced while Tc remained unchanged. Superconductivity was totally destroyed after 148 h of milling. The loss of superconductivity is attributed to the effect of disordering induced by mechanical milling. As a result of in situ ZrO2 addition, the initial Tc and crystal structure of MgB2 could not be restored upon annealing. With increasing milling time, the expansion of lattice parameters in both the a-axis and c-axis may be due to possible substitution of Mg or B by Zr. The result from the magnetic measurement shows that Jc of MgB2 is deteriorated by in situ ZrO2 addition. On the other hand, ex situ ZrO2 addition with annealing did not degrade the Tc of MgB2.

  16. Influence of interface layer on optical properties of sub-20 nm-thick TiO2 films

    NASA Astrophysics Data System (ADS)

    Shi, Yue-Jie; Zhang, Rong-Jun; Li, Da-Hai; Zhan, Yi-Qiang; Lu, Hong-Liang; Jiang, An-Quan; Chen, Xin; Liu, Juan; Zheng, Yu-Xiang; Wang, Song-You; Chen, Liang-Yao

    2018-02-01

    The sub-20 nm ultrathin titanium dioxide (TiO2) films with tunable thickness were deposited on Si substrates by atomic layer deposition (ALD). The structural and optical properties were acquired by transmission electron microscopy, atomic force microscopy and spectroscopic ellipsometry. Afterwards, a constructive and effective method of analyzing interfaces by applying two different optical models consisting of air/TiO2/Ti x Si y O2/Si and air/effective TiO2 layer/Si, respectively, was proposed to investigate the influence of interface layer (IL) on the analysis of optical constants and the determination of band gap of TiO2 ultrathin films. It was found that two factors including optical constants and changing components of the nonstoichiometric IL could contribute to the extent of the influence. Furthermore, the investigated TiO2 ultrathin films of 600 ALD cycles were selected and then annealed at the temperature range of 400-900 °C by rapid thermal annealing. Thicker IL and phase transition cause the variation of optical properties of TiO2 films after annealing and a shorter electron relaxation time reveals the strengthened electron-electron and electron-phonon interactions in the TiO2 ultrathin films at high temperature. The as-obtained results in this paper will play a role in other studies of high dielectric constants materials grown on Si substrates and in the applications of next generation metal-oxide-semiconductor devices.

  17. Fabrication and Properties of Plasma-Sprayed Al2O3/ZrO2 Composite Coatings

    NASA Astrophysics Data System (ADS)

    Dejang, N.; Limpichaipanit, A.; Watcharapasorn, A.; Wirojanupatump, S.; Niranatlumpong, P.; Jiansirisomboon, S.

    2011-12-01

    Al2O3 /xZrO2 (where x = 0, 3, 13, and 20 wt.%) composite coatings were deposited onto mild steel substrates by atmospheric plasma spraying of mixed α-Al2O3 and nano-sized monoclinic-ZrO2 powders. Microstructural investigation showed that the coatings comprised well-separated Al2O3 and ZrO2 lamellae, pores, and partially molten particles. The coating comprised mainly of metastable γ-Al2O3 and tetragonal-ZrO2 with trace of original α-Al2O3 and monoclinic-ZrO2 phases. The effect of ZrO2 addition on the properties of coatings were investigated in terms of microhardness, fracture toughness, and wear behavior. It was found that ZrO2 improved the fracture toughness, reduced friction coefficient, and wear rate of the coatings.

  18. Creep Resistance of ZrO2 Ceramic Improved by the Addition of a Small Amount of Er2O3

    NASA Technical Reports Server (NTRS)

    Martinez-Fernandez, Julian; Sayir, Ali; Farmer, Serene C.

    2003-01-01

    Zirconia (ZrO2) has great technological importance in structural, electrical, and chemical applications. It is the crucial component for state-of-the art thermal barrier coatings and an enabling component as a solid electrolyte for solid-oxide fuel cell systems. Pure ZrO2 is of limited use for industrial applications because of the phase transformations that occur. Upon the addition of stabilizers, cubic (c-ZrO2) and tetragonal (t-ZrO2) forms can be preserved. It is the stabilized and partially stabilized forms of zirconia that function as thermal barrier coatings, solid electrolytes, and oxygen sensors and that have numerous applications in the electrochemical industry. The cubic form of ZrO2 is typically stabilized through Y2O3 additions. However, Y2O3-stabilized zirconia is susceptible to deformation at high temperatures (greater than 900 C) because of the large number of slip systems and the high oxygen diffusion rates, which result in high creep rates at high temperatures. Successful use of ZrO2 at high temperatures requires that new dopant additives be found that will retain or enhance the desirable properties of cubic ZrO2 and yet produce a material with lower creep rates. At the NASA Glenn Research Center, erbium oxide (Er2O3) was identified as a promising dopant for improving the creep resistance of. ZrO2. The selection of Er2O3 was based on the strong interactions of point defects and dislocations. Single crystals of 5 mol% Er2O3- doped ZrO2 rods (4 mm in diameter) and monofilaments (200 to 300 mm in diameter and 30 cm long) were grown using the laser-heated float zone technique, and their creep behavior was measured as a function of temperature. The addition of 5 mol% Er2O3 to single-crystal ZrO2 improved its creep resistance at high temperatures by 2 to 3 orders of magnitude over state-of-the-art Y2O3-doped crystals. Detailed microstructural characterization of ZrO2-Er2O3 single crystals has identified new mechanisms for improving the creep resistance

  19. Probing the thermal decomposition behaviors of ultrathin HfO2 films by an in situ high temperature scanning tunneling microscope.

    PubMed

    Xue, Kun; Wang, Lei; An, Jin; Xu, Jianbin

    2011-05-13

    The thermal decomposition of ultrathin HfO(2) films (∼0.6-1.2 nm) on Si by ultrahigh vacuum annealing (25-800 °C) is investigated in situ in real time by scanning tunneling microscopy. Two distinct thickness-dependent decomposition behaviors are observed. When the HfO(2) thickness is ∼ 0.6 nm, no discernible morphological changes are found below ∼ 700 °C. Then an abrupt reaction occurs at 750 °C with crystalline hafnium silicide nanostructures formed instantaneously. However, when the thickness is about 1.2 nm, the decomposition proceeds gradually with the creation and growth of two-dimensional voids at 800 °C. The observed thickness-dependent behavior is closely related to the SiO desorption, which is believed to be the rate-limiting step of the decomposition process.

  20. One-pot synthesis and optical properties of Eu3+-doped nanocrystalline TiO2 and ZrO2

    NASA Astrophysics Data System (ADS)

    Julián, Beatriz; Corberán, Rosa; Cordoncillo, Eloisa; Escribano, Purificación; Viana, Bruno; Sanchez, Clément

    2005-11-01

    A simple and versatile one-pot sol-gel synthesis of Eu3+-doped nanocrystalline TiO2 and ZrO2 nanomaterials is reported in this paper. It consists of the controlled crystallization of Eu3+-doped TiO2 or ZrO2 nanoparticles from an initial solution containing the metal alkoxide, the lanthanide precursor, a complexing agent and a non-complexing acid. The main interest is that it could be extended to different lanthanide ions and inorganic metal oxides to prepare other multifunctional nanomaterials. The characterization by XRD, HRTEM and SAED techniques showed that the TiO2 and ZrO2 crystallization takes place at very low temperatures (60 °C) and that the crystallite size can be tailored by modifying the synthetic conditions. The optical properties of the resulting materials were studied by emission spectra and decay measurements. Both Eu3+:TiO2 and Eu3+:ZrO2 samples exhibited long lifetime values after removing organic components (τ = 0.7 and 1.3 ms, respectively), but the Eu3+:ZrO2 system is specially promising for photonic applications since its τ value is longer than some reported for other inorganic or hybrid matrices in which Eu3+ ions are complexed. This behaviour has been explained through an effective dispersion of the lanthanide ions within the ZrO2 nanocrystals.

  1. Calculation of Phase Equilibria in the Y2O3-Yb2O3-ZrO2 System

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Liu, Zi-Kui; Kaufman, Larry; Zhang, Fan

    2001-01-01

    Rare earth oxide stabilized zirconias find a wide range of applications. An understanding of phase equilibria is essential to all applications. In this study, the available phase boundary data and thermodynamic data is collected and assessed. Calphad-type databases are developed to completely describe the Y2O3-ZrO2, Yb2O3-ZrO2, and Y2O3-Yb2O3 systems. The oxide units are treated as components and regular and subregular solution models are used. The resultant calculated phase diagrams show good agreement with the experimental data. Then the binaries are combined to form the database for the Y2O3-Yb2O3-ZrO2 psuedo-ternary.

  2. "Un-annealed and Annealed Pd Ultra-Thin Film on SiC Characterized by Scanning Probe Microscopy and X-ray Photoelectron Spectroscopy"

    NASA Technical Reports Server (NTRS)

    Lu, W. J.; Shi, D. T.; Elshot, K.; Bryant, E.; Lafate, K.; Chen, H.; Burger, A.; Collins, W. E.

    1998-01-01

    Pd/SiC has been used as a hydrogen and a hydrocarbon gas sensor operated at high temperature. UHV (Ultra High Vacuum)-Scanning Tunneling Microscopy (STM), Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS) techniques were applied to study the relationship between the morphology and chemical compositions for Pd ultra-thin films on SiC (less than 30 angstroms) at different annealing temperatures. Pd ultra-thin film on 6H-SiC was prepared by the RF sputtering method. The morphology from UHV-STM and AFM shows that the Pd thin film was well deposited on SiC substrate, and the Pd was partially aggregated to round shaped participates at an annealing temperature of 300 C. At 400 C, the amount of surface participates decreases, and some strap shape participates appear. From XPS, Pd2Si was formed on the surface after annealing at 300 C, and all Pd reacted with SiC to form Pd2Si after annealing at 400 C. The intensity of the XPS Pd peak decreases enormously at 400 C. The Pd film diffused into SiC, and the Schottky barrier height has almost no changes. The work shows the Pd sicilides/SiC have the same electronic properties with Pd/SiC, and explains why the Pd/SiC sensor still responds to hydrogen at high operating temperatures.

  3. Afterglow based detection and dosimetry of beta particle irradiated ZrO2.

    PubMed

    Salas-Juárez, Ch J; Cruz-Vázquez, C; Avilés-Monreal, R; Bernal, R

    2018-08-01

    In this work, we report on the afterglow (AG) response characterization of commercially available ZrO 2 . Pellet shaped samples previously annealed in air at 1000°C during 24h were exposed to beta particle irradiation in the dose range from 0.5 up to 128Gy and their AG decay curves recorded during 600s after irradiation exposure. The characteristic glow curves of beta particle irradiated ZrO 2 show two maxima located around 80°C and 150°C. The first one rapidly vanishes at room temperature, giving rise to AG. The integrated AG signal increases as dose increases from 0.5 to 128Gy, with a linear dependence from 0.5 up to ca. 32Gy. Excellent reproducibility of the AG response was observed in 10 irradiation - AG readout cycles, showing that the studied ZrO 2 samples are reusable. The results here presented show that ZrO 2 is a promising material for use as a radiation dosimeter based on the AG phenomenon. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Structure of periodic crystals and quasicrystals in ultrathin films of Ba-Ti-O

    DOE PAGES

    Cockayne, Eric; Mihalkovič, Marek; Henley, Christopher L.

    2016-01-07

    Here, we model the remarkable thin-film Ba-Ti-O structures formed by heat treatment of an initial perovskite BaTiO 3 thin film on a Pt(111) surface. All structures contain a rumpled Ti-O network with all Ti threefold coordinated with O, and with Ba occupying the larger. mainly Ti 7O 7, pores. The quasicrystal structue is a simple decoration of three types of tiles: square, triangle and 30° rhombus, with edge lengths 6.85 Å, joined edge-to-edge in a quasicrystalline pattern; observed periodic crystals in ultrathin film Ba-Ti-O are built from these and other tiles. Simulated STM images reproduce the patterns seen experimentally, andmore » identify the bright protrusions as Ba atoms. The models are consistent with all experimental observations.« less

  5. An ultrathin wide-band planar metamaterial absorber based on a fractal frequency selective surface and resistive film

    NASA Astrophysics Data System (ADS)

    Fan, Yue-Nong; Cheng, Yong-Zhi; Nie, Yan; Wang, Xian; Gong, Rong-Zhou

    2013-06-01

    We propose an ultrathin wide-band metamaterial absorber (MA) based on a Minkowski (MIK) fractal frequency selective surface and resistive film. This absorber consists of a periodic arrangement of dielectric substrates sandwiched with an MIK fractal loop structure electric resonator and a resistive film. The finite element method is used to simulate and analyze the absorption of the MA. Compared with the MA-backed copper film, the designed MA-backed resistive film exhibits an absorption of 90% at a frequency region of 2 GHz-20 GHz. The power loss density distribution of the MA is further illustrated to explain the mechanism of the proposed MA. Simulated absorptions at different incidence cases indicate that this absorber is polarization-insensitive and wide-angled. Finally, further simulated results indicate that the surface resistance of the resistive film and the dielectric constant of the substrate can affect the absorbing property of the MA. This absorber may be used in many military fields.

  6. Raman Spectrum of Er-Y-codoped ZrO2 and Fluorescence Properties of Er3+

    NASA Astrophysics Data System (ADS)

    He, Jun; Luo, Meng-fei; Jin, Ling-yun; He, Mai; Fang, Ping; Xie, Yun-long

    2007-02-01

    Er-Y-codoped ZrO2 mixed oxides with monoclinic, tetragonal and cubic structures were prepared by a sol-gel method. The crystal structure of ZrO2 matrix and the effect of the ZrO2 phases on the fluorescence properties of Er3+ were studied using Raman spectroscopy. The results indicated that the fluorescence properties of Er3+ depend on its local ZrO2 crystal structures. As ZrO2 matrix transferred from monoclinic to tetragonal and cubic phase, the Raman and fluorescence bands of Er3+ decreased in intensities and tended to form a single peak. With 632.8 nm excitation, the bands between 640 and 680 nm were attributed to the fluorescence of Er3+ in the ZrO2 environment. However, only the fluorescence was observed and no Raman spectra were seen under 514.5 nm excitation, while only Raman spectra were observed under 325 nm excitation. UV Raman spectroscopy was found to be more sensitive in the surface region while the information provided by XRD mainly came from the bulk. The phase with lower symmetry forms more easily on the surface than in the bulk.

  7. Surface Passivation of ZrO2 Artificial Dentures by Magnetized Coaxial Plasma deposition

    NASA Astrophysics Data System (ADS)

    Arai, Soya; Kurumi, Satoshi; Matsuda, Ken-Ichi; Suzuki, Kaoru; Hara, Katsuya; Kato, Tatsuya; Asai, Tomohiko; Hirose, Hideharu; Masutani, Shigeyuki; Nihon University Team

    2015-09-01

    Recent growth and fabrication technologies for functional materials have been greatly contributed to drastic development of oral surgery field. Zirconia based ceramics is expected to utilize artificial dentures because these ceramics have good biocompatibility, high hardness and aesthetic attractively. However, to apply these ceramics to artificial dentures, this denture is removed from a dental plate because of weakly bond. For improving this problem, synthesis an Al passivation-layer on the ceramics for bonding with these dental items is suitable. In order to deposit the passivation layer, we focused on a magnetized coaxial plasma deposition (MCPD). The greatest characteristic of MCPD is that high-melting point metal can be deposited on various substrates. Additionally, adhesion force between substrate and films deposited by the MCPD is superior to it of general deposition methods. In this study, we have reported on the growth techniques of Al films on ZrO2 for contributing to oral surgery by the MCPD. Surface of deposited films shows there were some droplets and thickness of it is about 200 nm. Thickness is increased to 500 nm with increasing applied voltage.

  8. Fabrication of SiO2@ZrO2@Y2O3:Eu3+ core-multi-shell structured phosphor.

    PubMed

    Gao, Xuan; He, Diping; Jiao, Huan; Chen, Juan; Meng, Xin

    2011-08-01

    ZrO2 interface was designed to block the reaction between SiO2 and Y2O3 in SiO2@Y2O3:Eu coreshell structure phosphor. SiO2@ZrO2@Y2O3:Eu core-multi-shell phosphors were successfully synthesized by combing an LBL method with a Sol-gel process. Based on electron microscopy, X-ray diffraction, and spectroscopy experiments, compelling evidence for the formation of the Y2O3:Eu outer shell on ZrO2 were presented. The presence of ZrO2 layer on SiO2 core can block the reaction of SiO2 core and Y2O3 shell effectively. By this kind of structure, the reaction temperature of the SiO2 core and Y2O3 shell in the SiO2@Y2O3:Eu core-shell structure phosphor can be increased about 200-300 degrees C and the luminescent intensity of this structure phosphor can be improved obviously. Under the excitation of ultraviolet (254 nm), the Eu3+ ion mainly shows its characteristic red (611 nm, 5D0-7F2) emissions in the core-multi-shell particles from Y2O3:Eu3+ shells. The emission intensity of Eu3+ ions can be tuned by the annealing temperatures, the number of coating times, and the thickness of ZrO2 interface, respectively.

  9. Popcorn balls-like ZnFe2O4-ZrO2 microsphere for photocatalytic degradation of 2,4-dinitrophenol

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Liu, Yutang; Xia, Xinnian; Wang, Longlu

    2017-06-01

    In this paper, novel popcorn balls-like ZnFe2O4-ZrO2 composite microspheres were successfully fabricated by a simple hydrothermal method. The morphology, structure and optical property of the microspheres were characterized. The microspheres were used as the photocatalysts to degrade 2,4-dinitrophenol, and exhibited superior photocatalytic performance. Under simulated solar visible light irradiation, the degradation rate of ZnFe2O4-ZrO2 photocatalyst (mass ratio of ZnFe2O4/ZrO2 = 2:1) was almost 7.4 and 2.4 times higher than those of pure ZnFe2O4 and ZrO2. The enhancement could attribute to stronger light absorption, lower carrier recombination and multi-porous structure of the microspheres. Moreover, the popcorn balls-like photocatalysts can be easily separated, because of the magnetism of the samples. After five times runs, the photocatalyst still showed 90% of its photocatalytic degradation efficiency. This work demonstrated a good prospect for removing organic pollutants in water.

  10. Image potential states at transition metal oxide surfaces: A time-resolved two-photon photoemission study on ultrathin NiO films

    NASA Astrophysics Data System (ADS)

    Gillmeister, K.; Kiel, M.; Widdra, W.

    2018-02-01

    For well-ordered ultrathin films of NiO(001) on Ag(001), a series of unoccupied states below the vacuum level has been found. The states show a nearly free electron dispersion and binding energies which are typical for image potential states. By time-resolved two-photon photoemission (2PPE), the lifetimes of the first three states and their dependence on oxide film thickness are determined. For NiO film thicknesses between 2 and 4 monolayers (ML), the lifetime of the first state is in the range of 28-42 fs and shows an oscillatory behavior with increasing thickness. The values for the second state decrease monotonically from 88 fs for 2 ML to 33 fs for 4 ML. These differences are discussed in terms of coupling of the unoccupied states to the layer-dependent electronic structure of the growing NiO film.

  11. Tensile Strength and Microstructure of Al2O3-ZrO2 Hypo-Eutectic Fibers Studied

    NASA Technical Reports Server (NTRS)

    Farmer, Serene C.; Sayir, Ali

    2001-01-01

    Oxide eutectics offer high-temperature strength retention and creep resistance in oxidizing environments. Al2O3-ZrO2 eutectic strengths have been studied since the 1970's. Directionally solidified oxide eutectics exhibit improved resistance to slow crack growth and excellent strength retention at high temperatures up to 1400 C. Materials studied typically contain Y2O3 to metastably retain the high-temperature cubic and tetragonal polymorphs at room temperature. Al2O3-ZrO2 is of fundamental interest for creep studies because it combines a creep-resistant material, Al2O3, with a very low creep resistance material, ZrO2. Results on mechanical properties and microstructures of these materials will be used to define compositions for creep testing in future work. Substantial variations from the eutectic alumina to zirconia ratio can be tolerated without a loss in room-temperature strength. The effect of increasing Y2O3 addition on the room-temperature tensile strength of an Al2O3-ZrO2 material containing excess Al2O3 was examined at the NASA Glenn Research Center, where the materials were grown using Glenn's world-class laser growth facilities.

  12. Local variation of fragility and glass transition temperature of ultra-thin supported polymer films.

    PubMed

    Hanakata, Paul Z; Douglas, Jack F; Starr, Francis W

    2012-12-28

    Despite extensive efforts, a definitive picture of the glass transition of ultra-thin polymer films has yet to emerge. The effect of film thickness h on the glass transition temperature T(g) has been widely examined, but this characterization does not account for the fragility of glass-formation, which quantifies how rapidly relaxation times vary with temperature T. Accordingly, we simulate supported polymer films of a bead-spring model and determine both T(g) and fragility, both as a function of h and film depth. We contrast changes in the relaxation dynamics with density ρ and demonstrate the limitations of the commonly invoked free-volume layer model. As opposed to bulk polymer materials, we find that the fragility and T(g) do not generally vary proportionately. Consequently, the determination of the fragility profile--both locally and for the film as a whole--is essential for the characterization of changes in film dynamics with confinement.

  13. Method for laser welding ultra-thin metal foils

    DOEpatents

    Pernicka, J.C.; Benson, D.K.; Tracy, C.E.

    1996-03-26

    A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld. 5 figs.

  14. Method for laser welding ultra-thin metal foils

    DOEpatents

    Pernicka, John C.; Benson, David K.; Tracy, C. Edwin

    1996-01-01

    A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld.

  15. Gigantic Dzyaloshinskii-Moriya interaction in the MnBi ultrathin films

    NASA Astrophysics Data System (ADS)

    Yu, Jie-Xiang; Zang, Jiadong; Zang's Team

    The magnetic skyrmion, a swirling-like spin texture with nontrivial topology, is driven by strong Dzyaloshinskii-Moriya (DM) interaction originated from the spin-orbit coupling in inversion symmetry breaking systems. Here, based on first-principles calculations, we predict a new material, MnBi ultrathin film, with gigantic DM interactions. The ratio of the DM interaction to the Heisenberg exchange is about 0.3, exceeding any values reported so far. Its high Curie temperature, high coercivity, and large perpendicular magnetoanisotropy make MnBi a good candidate for future spintronics studies. Topologically nontrivial spin textures are emergent in this system. We expect further experimental efforts will be devoted into this systems.

  16. Ultrathin NiGe films prepared via catalytic solid-vapor reaction of Ni with GeH(4).

    PubMed

    Peter, Antony P; Opsomer, Karl; Adelmann, Christoph; Schaekers, Marc; Meersschaut, Johan; Richard, Olivier; Vaesen, Inge; Moussa, Alain; Franquet, Alexis; Zsolt, Tokei; Van Elshocht, Sven

    2013-10-09

    A low-temperature (225-300 °C) solid-vapor reaction process is reported for the synthesis of ultrathin NiGe films (∼6-23 nm) on 300 mm Si wafers covered with thermal oxide. The films were prepared via catalytic chemical vapor reaction of germane (GeH4) gas with physical vapor deposited (PVD) Ni films of different thickness (2-10 nm). The process optimization by investigating GeH4 partial pressure, reaction temperature, and time shows that low resistive, stoichiometric, and phase pure NiGe films can be formed within a broad window. NiGe films crystallized in an orthorhombic structure and were found to exhibit a smooth morphology with homogeneous composition as evidenced by glancing angle X-ray diffraction (GIXRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and Rutherford back-scattering (RBS) analysis. Transmission electron microscopy (TEM) analysis shows that the NiGe layers exhibit a good adhesion without voids and a sharp interface on the thermal oxide. The NiGe films were found to be morphologically and structurally stable up to 500 °C and exhibit a resistivity value of 29 μΩ cm for 10 nm NiGe films.

  17. Magnetic properties influenced by interfaces in ultrathin Co/Ge(1 0 0) and Co/Ge(1 1 1) films

    NASA Astrophysics Data System (ADS)

    Tsay, J. S.; Yao, Y. D.; Cheng, W. C.; Tseng, T. K.; Wang, K. C.; Yang, C. S.

    2003-10-01

    Magnetic properties influenced by interfaces in ultrathin Co/Ge(1 0 0) and Co/Ge(1 1 1) films with thickness below 28 monolayers (ML) have been studied using the surface magneto-optic Kerr effect (SMOKE) technique. In both systems, the nonferromagnetic layer, as an interface between Co and Ge, plays an important role during annealing. In general, ultrathin Co films with fixed total thickness but fabricated at different temperatures on the same substrate, their Kerr hysteresis loops disappear roughly at the same temperature. This suggests that the thickness of the interfacial layer could inversely prevent the diffusion between Co and Ge substrate. From the annealing studies for both systems with total film thickness of 28 monolayers, we have found that Kerr signal disappears at 375 K for Co/Ge(1 1 1) and 425 K for Co/Ge(1 0 0) films. This suggests that Co/Ge(1 1 1) films possess a lower thermal stability than that of the Co/Ge(1 0 0) films. Our experimental data could be explained by different interfacial condition between Ge(1 0 0) and Ge(1 1 1), the different onset of interdiffusion, and the surface structure condition of Ge(1 0 0) and Ge(1 1 1).

  18. Combined three-axis surface magneto-optical Kerr effects in the study of surface and ultrathin-film magnetism

    NASA Astrophysics Data System (ADS)

    Yang, Z. J.; Scheinfein, M. R.

    1993-12-01

    Surface and ultrathin-film magnetocrystalline anisotropy in epitaxial fcc Fe thin films grown on room-temperature Cu(100) single crystals has been investigated, in situ, by the combined surface magneto-optical Kerr effects (SMOKE). In polar, longitudinal, and transverse Kerr effects, the direction of the applied magnetic field must be distinguished from the direction of magnetization during the switching process. For arbitrary orientations of the magnetization and field axis relative to the optical scattering plane, any of the three Kerr effects may contribute to the detected signal. A general expression for the normalized light intensity sensed by a photodiode detector, involving all three combined Kerr effects, is obtained both in the ultrathin-film limit and for bulk, at general oblique incidence angles and with different orientations of the polarizer, modulator, and analyzer. This expression is used to interpret the results of fcc Fe/Cu(100) SMOKE measurements. For films grown at room temperature, polar and longitudinal Kerr-effect magnetization loops show that the easy axis of magnetization rotates from the (canted) out-of-plane direction to the in-plane direction at a thickness of about 4.7 monolayers. Transverse Kerr-effect measurements indicate that the in-plane easy axes are biaxial.

  19. Transparent 'solution' of ultrathin magnesium hydroxide nanocrystals for flexible and transparent nanocomposite films.

    PubMed

    Wang, Jie-Xin; Sun, Qian; Chen, Bo; Wu, Xi; Zeng, Xiao-Fei; Zhang, Cong; Zou, Hai-Kui; Chen, Jian-Feng

    2015-05-15

    Transparent solutions of nanocrystals exhibit many unique properties, and are thus attractive materials for numerous applications. However, the synthesis of transparent nanocrystal solutions of magnesium hydroxide (MH) with wide applications is yet to be realized. Here, we report a facile two-step process, which includes a direct reactive precipitation in alcohol phase instead of aqueous phase combined with a successive surface modification, to prepare transparent alcohol solutions containing lamellar MH nanocrystals with an average size of 52 nm and an ultrathin thickness of 1-2 nm, which is the thinnest MH nanoplatelet reported in the literatures. Further, highly flexible and transparent nanocomposite films are fabricated with a solution mixing method by adding the transparent MH nanocrystal solutions into PVB solution. Considering the simplicity of the fabrication process, high transparency and good flexibility, this MH/polymer nanocomposite film is promising for flame-resistant applications in plastic electronics and optical devices with high transparency, such as flexible displays, optical filters, and flexible solar cells.

  20. Brillouin light scattering studies of the mechanical properties of ultrathin low-k dielectric films

    NASA Astrophysics Data System (ADS)

    Link, A.; Sooryakumar, R.; Bandhu, R. S.; Antonelli, G. A.

    2006-07-01

    In an effort to reduce RC time delays that accompany decreasing feature sizes, low-k dielectric films are rapidly emerging as potential replacements for silicon dioxide (SiO2) at the interconnect level in integrated circuits. The main challenge in low-k materials is their substantially weaker mechanical properties that accompany the increasing pore volume content needed to reduce k. We show that Brillouin light scattering is an excellent nondestructive technique to monitor and characterize the mechanical properties of these porous films at thicknesses well below 200nm that are pertinent to present applications. Observation of longitudinal and transverse standing wave acoustic resonances and the dispersion that accompany their transformation into traveling waves with finite in-plane wave vectors provides for a direct measure of the principal elastic constants that completely characterize the mechanical properties of these ultrathin films. The mode amplitudes of the standing waves, their variation within the film, and the calculated Brillouin intensities account for most aspects of the spectra. We further show that the values obtained by this method agree well with other experimental techniques such as nanoindentation and picosecond laser ultrasonics.

  1. High spin-polarization in ultrathin Co2MnSi/CoPd multilayers

    NASA Astrophysics Data System (ADS)

    Galanakis, I.

    2015-03-01

    Half-metallic Co2MnSi finds a broad spectrum of applications in spintronic devices either in the form of thin films or as spacer in multilayers. Using state-of-the-art ab-initio electronic structure calculations we exploit the electronic and magnetic properties of ultrathin Co2MnSi/CoPd multilayers. We show that these heterostructures combine high values of spin-polarization at the Co2MnSi spacer with the perpendicular magnetic anisotropy of binary compounds such as CoPd. Thus they could find application in spintronic/magnetoelectronic devices.

  2. Identification of O-rich structures on platinum(111)-supported ultrathin iron oxide films

    DOE PAGES

    Merte, Lindsay R.; Bai, Yunhai; Zeuthen, Helene; ...

    2016-01-06

    Using high-resolution scanning tunneling microscopy (STM) we have studied the oxidation of ultrathin FeO films grown on Pt(111). At the initial stage of the FeO film oxidation by atomic oxygen exposure, we identified three distinct types of line defects, all of which form boundaries between FeO domains of opposite orientation. Two types of line defects appearing bright ( type-i) and dark ( type-ii) in the STM images at typical scanning parameters are “metallic”, whereas the third line defect exhibits nonmetallic behavior ( type-iii). Atomic-scale structure models of these line defects are proposed, with type-i defects exhibiting 4-fold coordinated Fe atoms,more » type-ii exhibiting 2-fold coordinated O atoms, and type-iii exhibiting tetrahedrally-coordinated Fe atoms. In addition, FeO 2 trilayer islands are formed upon oxidation, which appear at FCC-type domains of the moiré structure. At high scanning bias, distinct protrusions on the trilayer islands are observed over surface O ions, which are assigned to H adatoms. The experimental data are supported by density functional theory (DFT) calculations, in which bare and hydroxylated FeO 2 trilayer islands are compared. Finally, we compare the formation of O-rich features on continuous FeO films using atomic oxygen with the oxidation of Pt(111)-supported FeO islands accomplished by O 2 exposure.« less

  3. Dielectric Properties of BST/(Y 2O 3) x(ZrO 2) 1-x/BST Trilayer Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, Santosh K.; Misra, D.

    2011-01-31

    Thin films of Ba1-xSrxTiO3 (BST) are being actively investigated for applications in dynamic random access memories (DRAM) because of their properties such as high dielectric constant, low leakage current, and high dielectric breakdown strength. Various approaches have been used to improve the dielectric properties of BST thin films such as doping, graded compositions, and multilayer structures. We have found that inserting a ZrO2 layer in between two BST layers results in a significant reduction in dielectric constant as well as dielectric loss. In this work the effect of Y2O3 doped ZrO2 on the dielectric properties of BST/ZrO2/BST trilayer structure ismore » studied. The structure Ba0.8Sr0.2TiO3/(Y2O3)x(ZrO2)1-x/Ba0.8Sr0.2TiO3 is deposited by a sol-gel process on platinized Si substrate. The composition (x) of the middle layer is varied while keeping the total thickness of the trilayer film constant. The dielectric constant of the multilayer film decreases with the increase of Y2O3 amount in the film whereas there is a slight variation in dielectric loss. In Y2O3 doped multilayer thin films, the dielectric loss is lower in comparison to other films and also there is good frequency stability in the loss in the measured frequency range and hence very suitable for microwave device applications.« less

  4. Ultrathin 2D Photocatalysts: Electronic-Structure Tailoring, Hybridization, and Applications.

    PubMed

    Di, Jun; Xiong, Jun; Li, Huaming; Liu, Zheng

    2018-01-01

    As a sustainable technology, semiconductor photocatalysis has attracted considerable interest in the past several decades owing to the potential to relieve or resolve energy and environmental-pollution issues. By virtue of their unique structural and electronic properties, emerging ultrathin 2D materials with appropriate band structure show enormous potential to achieve efficient photocatalytic performance. Here, the state-of-the-art progress on ultrathin 2D photocatalysts is reviewed and a critical appraisal of the classification, controllable synthesis, and formation mechanism of ultrathin 2D photocatalysts is presented. Then, different strategies to tailor the electronic structure of ultrathin 2D photocatalysts are summarized, including component tuning, thickness tuning, doping, and defect engineering. Hybridization with the introduction of a foreign component and maintaining the ultrathin 2D structure is presented to further boost the photocatalytic performance, such as quantum dots/2D materials, single atoms/2D materials, molecular/2D materials, and 2D-2D stacking materials. More importantly, the advancement of versatile photocatalytic applications of ultrathin 2D photocatalysts in the fields of water oxidation, hydrogen evolution, CO 2 reduction, nitrogen fixation, organic syntheses, and removal pollutants is discussed. Finally, the future opportunities and challenges regarding ultrathin 2D photocatalysts to bring about new opportunities for future research in the field of photocatalysis are also presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Temperature Controlled Electrostatic Disorder and Polymorphism in Ultrathin Films of α-Sexithiophene

    NASA Astrophysics Data System (ADS)

    Hoffman, Benjamin; Jafari, Sara; McAfee, Terry; Apperson, Aubrey; O'Connor, Brendan; Dougherty, Daniel

    Competing phases in well-ordered alpha-sexithiophene (α-6T) are shown to contribute to electrostatic disorder observed by differences in surface potential between mono- and bi-layer crystallites. Ultrathin films are of key importance to devices in which charge transport occurs in the first several monolayers nearest to a dielectric interface (e.g. thin film transistors) and complex structures in this regime impact the general electrostatic landscape. This study is comprised of 1.5 ML sample crystals grown via organic molecular beam deposition onto a temperature controlled hexamethyldisilazane (HMDS) passivated SiO2 substrate to produce well-ordered layer-by-layer type growth. Sample topography and surface potential were characterized simultaneously using Kelvin Probe Force Microscopy to then isolate contact potential differences by first and second layer α-6T regions. Films grown on 70° C, 120° C substrates are observed to have a bilayer with lower, higher potential than the monolayer, respectively. Resulting interlayer potential differences are a clear source of electrostatic disorder and are explained as subtle shifts in tilt-angles between layers relative to the substrate. These empirical results continue our understanding of how co-existing orientations contribute to the complex electrostatics influencing charge transport. NSF CAREER award DMR-1056861.

  6. Ultrathin gas permeable oxide membranes for chemical sensing: Nanoporous Ta 2O 5 test study

    DOE PAGES

    Imbault, Alexander; Wang, Yue; Kruse, Peter; ...

    2015-09-25

    Conductometric gas sensors made of gas permeable metal oxide ultrathin membranes can combine the functions of a selective filter, preconcentrator, and sensing element and thus can be particularly promising for the active sampling of diluted analytes. Here we report a case study of the electron transport and gas sensing properties of such a membrane made of nanoporous Ta 2O 5. These membranes demonstrated a noticeable chemical sensitivity toward ammonia, ethanol, and acetone at high temperatures above 400 °C. Furthermore, different from traditional thin films, such gas permeable, ultrathin gas sensing elements can be made suspended enabling advanced architectures of ultrasensitivemore » analytical systems operating at high temperatures and in harsh environments.« less

  7. Structure and morphology of magnetron sputter deposited ultrathin ZnO films on confined polymeric template

    NASA Astrophysics Data System (ADS)

    Singh, Ajaib; Schipmann, Susanne; Mathur, Aakash; Pal, Dipayan; Sengupta, Amartya; Klemradt, Uwe; Chattopadhyay, Sudeshna

    2017-08-01

    The structure and morphology of ultra-thin zinc oxide (ZnO) films with different film thicknesses on confined polymer template were studied through X-ray reflectivity (XRR) and grazing incidence small angle X-ray scattering (GISAXS). Using magnetron sputter deposition technique ZnO thin films with different film thicknesses (<10 nm) were grown on confined polystyrene with ∼2Rg film thickness, where Rg ∼ 20 nm (Rg is the unperturbed radius of gyration of polystyrene, defined by Rg = 0.272 √M0, and M0 is the molecular weight of polystyrene). The detailed internal structure, along the surface/interfaces and the growth direction of the system were explored in this study, which provides insight into the growth procedure of ZnO on confined polymer and reveals that a thin layer of ZnO, with very low surface and interface roughness, can be grown by DC magnetron sputtering technique, with approximately full coverage (with bulk like electron density) even in nm order of thickness, in 2-7 nm range on confined polymer template, without disturbing the structure of the underneath template. The resulting ZnO-polystyrene hybrid systems show strong ZnO near band edge (NBE) and deep-level (DLE) emissions in their room temperature photoluminescence spectra, where the contribution of DLE gets relatively stronger with decreasing ZnO film thickness, indicating a significant enhancement of surface defects because of the greater surface to volume ratio in thinner films.

  8. Stabilization of ultrathin (hydroxy)oxide films on transition metal substrates for electrochemical energy conversion

    NASA Astrophysics Data System (ADS)

    Zeng, Zhenhua; Chang, Kee-Chul; Kubal, Joseph; Markovic, Nenad M.; Greeley, Jeffrey

    2017-06-01

    Design of cost-effective electrocatalysts with enhanced stability and activity is of paramount importance for the next generation of energy conversion systems, including fuel cells and electrolysers. However, electrocatalytic materials generally improve one of these properties at the expense of the other. Here, using density functional theory calculations and electrochemical surface science measurements, we explore atomic-level features of ultrathin (hydroxy)oxide films on transition metal substrates and demonstrate that these films exhibit both excellent stability and activity for electrocatalytic applications. The films adopt structures with stabilities that significantly exceed bulk Pourbaix limits, including stoichiometries not found in bulk and properties that are tunable by controlling voltage, film composition, and substrate identity. Using nickel (hydroxy)oxide/Pt(111) as an example, we further show how the films enhance activity for hydrogen evolution through a bifunctional effect. The results suggest design principles for this class of electrocatalysts with simultaneously enhanced stability and activity for energy conversion.

  9. Stabilization of ultrathin (hydroxy)oxide films on transition metal substrates for electrochemical energy conversion

    DOE PAGES

    Zeng, Zhenhua; Chang, Kee-Chul; Kubal, Joseph; ...

    2017-05-08

    Design of cost-effective electrocatalysts with enhanced stability and activity is of paramount importance for the next generation of energy conversion systems, including fuel cells and electrolyzers. However, electrocatalytic materials generally improve one of these properties at the expense of the other. Here, using Density Functional Theory calculations and electrochemical surface science measurements, we explore atomic-level features of ultrathin (hydroxy)oxide films on transition metal substrates and demonstrate that these films exhibit both excellent stability and activity for electrocatalytic applications. The films adopt structures with stabilities that significantly exceed bulk Pourbaix limits, including stoichiometries not found in bulk and properties that aremore » tunable by controlling voltage, film composition, and substrate identity. Using nickel (hydroxy)oxide/Pt(111) as an example, we further show how the films enhance activity for hydrogen evolution through a bifunctional effect. Finally, the results suggest design principles for a new class of electrocatalysts with simultaneously enhanced stability and activity for energy conversion.« less

  10. A dual-stimuli-responsive fluorescent switch ultrathin film.

    PubMed

    Li, Zhixiong; Liang, Ruizheng; Liu, Wendi; Yan, Dongpeng; Wei, Min

    2015-10-28

    Stimuli-responsive fluorescent switches have shown broad applications in optical devices, biological materials and intelligent responses. Herein, we describe the design and fabrication of a dual-stimuli-responsive fluorescent switch ultrathin film (UTF) via a three-step layer-by-layer (LBL) technique: (i) encapsulation of spiropyran (SP) within an amphiphilic block copolymer (PTBEM) to give the (SP@PTBEM) micelle; (ii) the mixture of riboflavin (Rf) and poly(styrene 4-sulfonate) (PSS) to enhance the adhesion ability of small molecules; (iii) assembly of negatively charged SP@PTBEM and Rf-PSS with cationic layered double hydroxide (LDH) nanoplatelets to obtain the (Rf-PSS/LDH/SP@PTBEM)n UTFs (n: bilayer number). The assembly process of the UTFs and their luminescence properties, as monitored by fluorescence spectroscopy and scanning electron microscopy (SEM), present a uniform and ordered layered structure with stepwise growth. The resulting Rf-PSS/LDH/SP@PTBEM UTF serves as a three-state switchable multicolor (green, yellow, and red) luminescent system based on stimulation from UV/Vis light and pH, with an acceptable reversibility. Therefore, this work provides a facile way to fabricate stimuli-responsive solid-state film switches with tunable-color luminescence, which have potential applications in the areas of displays, sensors, and rewritable optical memory and fluorescent logic devices.

  11. Thermodynamic Modeling of the YO(l.5)-ZrO2 System

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Liu, Zi-Kui; Kaufman, Larry; Zhang, Fan

    2003-01-01

    The YO1.5-ZrO2 system consists of five solid solutions, one liquid solution, and one intermediate compound. A thermodynamic description of this system is developed, which allows calculation of the phase diagram and thermodynamic properties. Two different solution models are used-a neutral species model with YO1.5 and ZrO2 as the components and a charged species model with Y(+3), Zr(+4), O(-2), and vacancies as components. For each model, regular and sub-regular solution parameters are derived fiom selected equilibrium phase and thermodynamic data.

  12. Ultrathin MoS2 and WS2 layers on silver nano-tips as electron emitters

    NASA Astrophysics Data System (ADS)

    Loh, Tamie A. J.; Tanemura, Masaki; Chua, Daniel H. C.

    2016-09-01

    2-dimensional (2D) inorganic analogues of graphene such as MoS2 and WS2 present interesting opportunities for field emission technology due to their high aspect ratio and good electrical conductivity. However, research on 2D MoS2 and WS2 as potential field emitters remains largely undeveloped compared to graphene. Herein, we present an approach to directly fabricate ultrathin MoS2 and WS2 onto Ag nano-tips using pulsed laser deposition at low temperatures of 450-500 °C. In addition to providing a layer of chemical and mechanical protection for the Ag nano-tips, the growth of ultrathin MoS2 and WS2 layers on Ag led to enhanced emission properties over that of pristine nano-tips due to a reduction of the effective barrier height arising from charge injection from Ag to the overlying MoS2 or WS2. For WS2 on Ag nano-tips, the phasic mixture was also an important factor influencing the field emission performance. The presence of 1T-WS2 at the metal-WS2 interface in a hybrid film of 2H/1T-WS2 leads to improvement in the field emission capabilities as compared to pure 2H-WS2 on Ag nano-tips.

  13. Manipulation of Spin-Torque Generation Using Ultrathin Au

    NASA Astrophysics Data System (ADS)

    An, Hongyu; Haku, Satoshi; Kanno, Yusuke; Nakayama, Hiroyasu; Maki, Hideyuki; Shi, Ji; Ando, Kazuya

    2018-06-01

    The generation and the manipulation of current-induced spin-orbit torques are of essential interest in spintronics. However, in spite of the vital progress in spin orbitronics, electric control of the spin-torque generation still remains elusive and challenging. We report on electric control of the spin-torque generation using ionic-liquid gating of ultrathin Au. We show that by simply depositing a SiO2 capping layer on an ultrathin-Au /Ni81Fe19 bilayer, the spin-torque generation efficiency is drastically enhanced by a maximum of 7 times. This enhancement is verified to be originated from the rough ultrathin-Au /Ni81Fe19 interface induced by the SiO2 deposition, which results in the enhancement of the interface spin-orbit scattering. We further show that the spin-torque generation efficiency from the ultrathin Au film can be reversibly manipulated by a factor of 2 using the ionic gating with an external electric field within a small range of 1 V. These results pave a way towards the efficient control of the spin-torque generation in spintronic applications.

  14. Using Ultrathin Parylene Films as an Organic Gate Insulator in Nanowire Field-Effect Transistors.

    PubMed

    Gluschke, J G; Seidl, J; Lyttleton, R W; Carrad, D J; Cochrane, J W; Lehmann, S; Samuelson, L; Micolich, A P

    2018-06-27

    We report the development of nanowire field-effect transistors featuring an ultrathin parylene film as a polymer gate insulator. The room temperature, gas-phase deposition of parylene is an attractive alternative to oxide insulators prepared at high temperatures using atomic layer deposition. We discuss our custom-built parylene deposition system, which is designed for reliable and controlled deposition of <100 nm thick parylene films on III-V nanowires standing vertically on a growth substrate or horizontally on a device substrate. The former case gives conformally coated nanowires, which we used to produce functional Ω-gate and gate-all-around structures. These give subthreshold swings as low as 140 mV/dec and on/off ratios exceeding 10 3 at room temperature. For the gate-all-around structure, we developed a novel fabrication strategy that overcomes some of the limitations with previous lateral wrap-gate nanowire transistors. Finally, we show that parylene can be deposited over chemically treated nanowire surfaces, a feature generally not possible with oxides produced by atomic layer deposition due to the surface "self-cleaning" effect. Our results highlight the potential for parylene as an alternative ultrathin insulator in nanoscale electronic devices more broadly, with potential applications extending into nanobioelectronics due to parylene's well-established biocompatible properties.

  15. Fabrication and stability investigation of ultra-thin transparent and flexible Cu-Ag-Au tri-layer film on PET

    NASA Astrophysics Data System (ADS)

    Prakasarao, Ch Surya; D'souza, Slavia Deeksha; Hazarika, Pratim; Karthiselva N., S.; Ramesh Babu, R.; Kovendhan, M.; Kumar, R. Arockia; Joseph, D. Paul

    2018-04-01

    The need for transparent conducting electrodes with high transmittance, low sheet resistance and flexibility to replace Indium Tin Oxide is ever growing. We have deposited and studied the performance of ultra-thin Cu-Ag-Au tri-layer films over a flexible poly-ethylene terephthalate substrate. Scotch tape test showed good adhesion of the metallic film. Transmittance of the tri-layer was around 40 % in visible region. Optical profiler measurements were done to study the surface features. The XRD pattern revealed that film was amorphous. Sheet resistance measured by four probe technique was around 7.7 Ohm/Δ and was stable up to 423 K. The transport parameters by Hall effect showed high conductivity and carrier concentration with a mobility of 5.58 cm2/Vs. Tests performed in an indigenously designed bending unit indicated the films to be stable both mechanically and electrically even after 50,000 bending cycles.

  16. Ultrathin free-standing close-packed gold nanoparticle films: Conductivity and Raman scattering enhancement

    NASA Astrophysics Data System (ADS)

    Yu, Qing; Huang, Hongwen; Peng, Xinsheng; Ye, Zhizhen

    2011-09-01

    A simple filtration technique was developed to prepare large scale free-standing close-packed gold nanoparticle ultrathin films using metal hydroxide nanostrands as both barrier layer and sacrificial layer. As thin as 70 nm, centimeter scale robust free-standing gold nanoparticle thin film was obtained. The thickness of the films could be easily tuned by the filtration volumes. The electronic conductivities of these films varied with the size of the gold nanoparticles, post-treatment temperature, and thickness, respectively. The conductivity of the film prepared from 20 nm gold nanoparticles is higher than that of the film prepared from 40 nm gold nanoparticle by filtering the same filtration volume of their solution, respectively. Their conductivities are comparable to that of the 220 nm thick ITO film. Furthermore, these films demonstrated an average surface Raman scattering enhancement up to 6.59 × 105 for Rhodamine 6 G molecules on the film prepared from 40 nm gold nanoparticles. Due to a lot of nano interspaces generated from the close-packed structures, two abnormal enhancements and relative stronger intensities of the asymmetrical vibrations at 1534 and 1594 cm-1 of R6G were observed, respectively. These robust free-standing gold nanoparticle films could be easily transferred onto various solid substrates and hold the potential application for electrodes and surface enhanced Raman detectors. This method is applicable for preparation of other nanoparticle free-standing thin films.A simple filtration technique was developed to prepare large scale free-standing close-packed gold nanoparticle ultrathin films using metal hydroxide nanostrands as both barrier layer and sacrificial layer. As thin as 70 nm, centimeter scale robust free-standing gold nanoparticle thin film was obtained. The thickness of the films could be easily tuned by the filtration volumes. The electronic conductivities of these films varied with the size of the gold nanoparticles, post

  17. Ag nanoparticle effects on the thermoluminescent properties of monoclinic ZrO2 exposed to ultraviolet and gamma radiation

    NASA Astrophysics Data System (ADS)

    Villa-Sanchéz, G.; Mendoza-Anaya, D.; Gutiérrez-Wing, C.; Pérez-Hernández, R.; González-Martínez, P. R.; Ángeles-Chavez, C.

    2007-07-01

    The goal of this work was to analyse ZrO2 in the pure state and when doped with Ag nanoparticles, by electron microscopy, x-ray diffraction and thermoluminescence methods. According to the results obtained, Ag nanoparticles did not modify the morphology or the crystalline structure of the ZrO2. The thermoluminescent (TL) response of pure ZrO2 showed two peaks, one at 334 K and the other at 417 K, when it was exposed to ultraviolet (UV) radiation, and at 342 and 397 K when gamma radiation was used. For ZrO2 impregnated with Ag nanoparticles a diminished TL intensity due to nanoparticle shielding was observed, but the glow curve shape was similar. However, when Ag nanoparticles were added during the ZrO2 synthesis, a shift of the TL peaks towards higher temperature values with reference to pure ZrO2 was observed. A linear dependence of the integrated TL signal as a function of the irradiation dose was observed in all analysed samples. It was possible to determine some kinetic parameters, such as activation energy, kinetic order and frequency factor, using the sequential quadratic programming glow curve deconvolution; it was found that these values are highly dependent on the type of radiation used. Ag nanoparticles present in ZrO2 also modified the kinetic parameters, mainly when they were added during the synthesis of ZrO2. Our results reinforce the possibilities of using pure and doped ZrO2 as an appropriate dosimetric material in radiation physics.

  18. Structural and dielectric properties of CTAB modified ZrO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Sidhu, Gaganpreet Kaur; Tripathi, S. K.; Kumar, Rajesh

    2016-05-01

    Zirconia (ZrO2) has been considered as one of the most investigated materials among various metal oxides due its outstanding dielectric properties and ionic conduction properties, which is mainly due to its high oxygen ion conduction. ZrO2 nanoparticles were synthesized using surfactant (CTAB) to study the variation of its dielectric behavior at room temperature. Surfactants form a unique class of chemical compounds, because of their remarkable ability to influence the properties of surfaces and interfaces of nanostructures. The dielectric properties of prepared nanoparticles were studied using LCR meter.

  19. Enhanced Self-Organized Dewetting of Ultrathin Polymer Blend Film for Large-Area Fabrication of SERS Substrate.

    PubMed

    Zhang, Huanhuan; Xu, Lin; Xu, Yabo; Huang, Gang; Zhao, Xueyu; Lai, Yuqing; Shi, Tongfei

    2016-12-06

    We study the enhanced dewetting of ultrathin Polystyrene (PS)/Poly (methyl methacrylate) (PMMA) blend films in a mixed solution, and reveal the dewetting can act as a simple and effective method to fabricate large-area surface-enhanced Raman scattering (SERS) substrate. A bilayer structure consisting of under PMMA layer and upper PS layer forms due to vertical phase separation of immiscible PS/PMMA during the spin-coating process. The thicker layer of the bilayer structure dominates the dewetting structures of PS/PMMA blend films. The diameter and diameter distribution of droplets, and the average separation spacing between the droplets can be precisely controlled via the change of blend ratio and film thickness. The dewetting structure of 8 nm PS/PMMA (1:1 wt%) blend film is proved to successfully fabricate large-area (3.5 cm × 3.5 cm) universal SERS substrate via deposited a silver layer on the dewetting structure. The SERS substrate shows good SERS-signal reproducibility (RSD < 7.2%) and high enhancement factor (2.5 × 10 7 ). The enhanced dewetting of polymer blend films broadens the application of dewetting of polymer films, especially in the nanotechnology, and may open a new approach for the fabrication of large-area SERS substrate to promote the application of SERS substrate in the rapid sensitive detection of trace molecules.

  20. Enhanced Self-Organized Dewetting of Ultrathin Polymer Blend Film for Large-Area Fabrication of SERS Substrate

    PubMed Central

    Zhang, Huanhuan; Xu, Lin; Xu, Yabo; Huang, Gang; Zhao, Xueyu; Lai, Yuqing; Shi, Tongfei

    2016-01-01

    We study the enhanced dewetting of ultrathin Polystyrene (PS)/Poly (methyl methacrylate) (PMMA) blend films in a mixed solution, and reveal the dewetting can act as a simple and effective method to fabricate large-area surface-enhanced Raman scattering (SERS) substrate. A bilayer structure consisting of under PMMA layer and upper PS layer forms due to vertical phase separation of immiscible PS/PMMA during the spin-coating process. The thicker layer of the bilayer structure dominates the dewetting structures of PS/PMMA blend films. The diameter and diameter distribution of droplets, and the average separation spacing between the droplets can be precisely controlled via the change of blend ratio and film thickness. The dewetting structure of 8 nm PS/PMMA (1:1 wt%) blend film is proved to successfully fabricate large-area (3.5 cm × 3.5 cm) universal SERS substrate via deposited a silver layer on the dewetting structure. The SERS substrate shows good SERS-signal reproducibility (RSD < 7.2%) and high enhancement factor (2.5 × 107). The enhanced dewetting of polymer blend films broadens the application of dewetting of polymer films, especially in the nanotechnology, and may open a new approach for the fabrication of large-area SERS substrate to promote the application of SERS substrate in the rapid sensitive detection of trace molecules. PMID:27922062

  1. Electrical characteristics of SiO2/ZrO2 hybrid tunnel barrier for charge trap flash memory

    NASA Astrophysics Data System (ADS)

    Choi, Jaeho; Bae, Juhyun; Ahn, Jaeyoung; Hwang, Kihyun; Chung, Ilsub

    2017-08-01

    In this paper, we investigate the electrical characteristics of SiO2/ZrO2 hybrid tunnel oxide in metal-Al2O3-SiO2-Si3N4-SiO2-silicon (MAONOS) structure in an effort to improve program and erase speed as well as retention characteristics. Inserting ZrO2 into the conventional MAONOS structure increased the programmed V th variation to 6.8 V, and increased the erased V th variation to -3.7 V at 17 MV/cm. The results can be understood in terms of reducing the Fowler-Nordheim (F/N) tunneling barrier due to high-k ZrO2 in the tunneling oxide. In addition, Zr diffusion in SiO2 caused the formation of Zr x Si1- x O2 at the interface region, which reduced the energy band gap of SiO2. The retention property of the hybrid tunnel oxide varied depending on the thickness of SiO2. For thin SiO2 less than 30 Å, the retention properties of the tunneling oxides were poor compared with those of the SiO2 only tunneling oxides. However, the hybrid tunneling oxides with SiO2 thickness thicker than 40 Å yielded improved retention behavior compared with those of the SiO2-only tunneling oxides. The detailed analysis in charge density of ZrO2 was carried out by ISPP test. The obtained charge density was quite small compared to that of the total charge density, which indicates that the inserted ZrO2 layer serves as a tunneling material rather than charge storage dielectric.

  2. Improved WO3 photocatalytic efficiency using ZrO2 and Ru for the degradation of carbofuran and ampicillin.

    PubMed

    Gar Alalm, Mohamed; Ookawara, Shinichi; Fukushi, Daisuke; Sato, Akira; Tawfik, Ahmed

    2016-01-25

    The photocatalytic degradation of carbofuran (pesticide) and ampicillin (pharmaceutical) using synthesized WO3/ZrO2 nanoparticles under simulated solar light was investigated. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectra analyses were used to characterize the prepared catalysts. The optimum ratio of WO3 to ZrO2 was determined to be 1:1 for the degradation of both contaminants. The degradation of carbofuran and ampicillin by WO3/ZrO2 after 240 min of irradiation was 100% and 96%, respectively. Ruthenium (Ru) was employed as an additive to WO3/ZrO2 to enhance the photocatalytic degradation rate. Ru/WO3/ZrO2 exhibited faster degradation rates than WO3/ZrO2. Furthermore, 100% and 97% degradation of carbofuran and ampicillin, respectively, was achieved using Ru/WO3/ZrO2 after 180 min of irradiation. The durability of the catalyst was investigated by reusing the same suspended catalyst, which achieved 92% of its initial efficiency. The photocatalytic degradation of ampicillin and carbofuran followed pseudo-first order kinetics according to the Langmuir-Hinshelwood model. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Acoustic Phonons and Mechanical Properties of Ultra-Thin Porous Low-k Films: A Surface Brillouin Scattering Study

    NASA Astrophysics Data System (ADS)

    Zizka, J.; King, S.; Every, A.; Sooryakumar, R.

    2018-04-01

    To reduce the RC (resistance-capacitance) time delay of interconnects, a key development of the past 20 years has been the introduction of porous low-k dielectrics to replace the traditional use of SiO2. Moreover, in keeping pace with concomitant reduction in technology nodes, these low-k materials have reached thicknesses below 100 nm wherein the porosity becomes a significant fraction of the film volume. The large degree of porosity not only reduces mechanical strength of the dielectric layer but also renders a need for non-destructive approaches to measure the mechanical properties of such ultra-thin films within device configurations. In this study, surface Brillouin scattering (SBS) is utilized to determine the elastic constants, Poisson's ratio, and Young's modulus of these porous low-k SiOC:H films (˜ 25-250 nm thick) grown on Si substrates by probing surface acoustic phonons and their dispersions.

  4. Acoustic Phonons and Mechanical Properties of Ultra-Thin Porous Low- k Films: A Surface Brillouin Scattering Study

    NASA Astrophysics Data System (ADS)

    Zizka, J.; King, S.; Every, A.; Sooryakumar, R.

    2018-07-01

    To reduce the RC (resistance-capacitance) time delay of interconnects, a key development of the past 20 years has been the introduction of porous low- k dielectrics to replace the traditional use of SiO2. Moreover, in keeping pace with concomitant reduction in technology nodes, these low- k materials have reached thicknesses below 100 nm wherein the porosity becomes a significant fraction of the film volume. The large degree of porosity not only reduces mechanical strength of the dielectric layer but also renders a need for non-destructive approaches to measure the mechanical properties of such ultra-thin films within device configurations. In this study, surface Brillouin scattering (SBS) is utilized to determine the elastic constants, Poisson's ratio, and Young's modulus of these porous low- k SiOC:H films (˜ 25-250 nm thick) grown on Si substrates by probing surface acoustic phonons and their dispersions.

  5. Amorphization of nanocrystalline monoclinic ZrO2 by swift heavy ion irradiation.

    PubMed

    Lu, Fengyuan; Wang, Jianwei; Lang, Maik; Toulemonde, Marcel; Namavar, Fereydoon; Trautmann, Christina; Zhang, Jiaming; Ewing, Rodney C; Lian, Jie

    2012-09-21

    Bulk ZrO(2) polymorphs generally have an extremely high amorphization tolerance upon low energy ion and swift heavy ion irradiation in which ballistic interaction and ionization radiation dominate the ion-solid interaction, respectively. However, under very high-energy irradiation by 1.33 GeV U-238, nanocrystalline (40-50 nm) monoclinic ZrO(2) can be amorphized. A computational simulation based on a thermal spike model reveals that the strong ionizing radiation from swift heavy ions with a very high electronic energy loss of 52.2 keV nm(-1) can induce transient zones with temperatures well above the ZrO(2) melting point. The extreme electronic energy loss, coupled with the high energy state of the nanostructured materials and a high thermal confinement due to the less effective heat transport within the transient hot zone, may eventually be responsible for the ionizing radiation-induced amorphization without transforming to the tetragonal polymorph. The amorphization of nanocrystalline zirconia was also confirmed by 1.69 GeV Au ion irradiation with the electronic energy loss of 40 keV nm(-1). These results suggest that highly radiation tolerant materials in bulk forms, such as ZrO(2), may be radiation sensitive with the reduced length scale down to the nano-metered regime upon irradiation above a threshold value of electronic energy loss.

  6. Time-resolved atomic force microscopy imaging studies of asymmetric PS-b-PMMA ultrathin films: Dislocation and disclination transformations, defect mobility, and evolution of nanoscale morphology

    NASA Astrophysics Data System (ADS)

    Hahm, J.; Sibener, S. J.

    2001-03-01

    Time-sequenced atomic force microscopy (AFM) studies of ultrathin films of cylinder-forming polystyrene-block-polymethylmethacrylate (PS-b-PMMA) copolymer are presented which delineate thin film mobility kinetics and the morphological changes which occur in microphase-separated films as a function of annealing temperature. Of particular interest are defect mobilities in the single layer (L thick) region, as well as the interfacial morphological changes which occur between L thick and adjacent 3L/2 thick layers, i.e., structural changes which occur during multilayer evolution. These measurements have revealed the dominant pathways by which disclinations and dislocations transform, annihilate, and topologically evolve during thermal annealing of such films. Mathematical combining equations are given to better explain such defect transformations and show the topological outcomes which result from defect-defect encounters. We also report a collective, Arrhenius-type flow of defects in localized L thick regions of the film; these are characterized by an activation energy of 377 kJ/mol. These measurements represent the first direct investigation of time-lapse interfacial morphological changes including associated defect evolution pathways for polymeric ultrathin films. Such observations will facilitate a more thorough and predictive understanding of diblock copolymer thin film dynamics, which in turn will further enable the utilization of these nanoscale phase-separated materials in a range of physical and chemical applications.

  7. Ultrathin dendrimer-graphene oxide composite film for stable cycling lithium-sulfur batteries.

    PubMed

    Liu, Wen; Jiang, Jianbing; Yang, Ke R; Mi, Yingying; Kumaravadivel, Piranavan; Zhong, Yiren; Fan, Qi; Weng, Zhe; Wu, Zishan; Cha, Judy J; Zhou, Henghui; Batista, Victor S; Brudvig, Gary W; Wang, Hailiang

    2017-04-04

    Lithium-sulfur batteries (Li-S batteries) have attracted intense interest because of their high specific capacity and low cost, although they are still hindered by severe capacity loss upon cycling caused by the soluble lithium polysulfide intermediates. Although many structure innovations at the material and device levels have been explored for the ultimate goal of realizing long cycle life of Li-S batteries, it remains a major challenge to achieve stable cycling while avoiding energy and power density compromises caused by the introduction of significant dead weight/volume and increased electrochemical resistance. Here we introduce an ultrathin composite film consisting of naphthalimide-functionalized poly(amidoamine) dendrimers and graphene oxide nanosheets as a cycling stabilizer. Combining the dendrimer structure that can confine polysulfide intermediates chemically and physically together with the graphene oxide that renders the film robust and thin (<1% of the thickness of the active sulfur layer), the composite film is designed to enable stable cycling of sulfur cathodes without compromising the energy and power densities. Our sulfur electrodes coated with the composite film exhibit very good cycling stability, together with high sulfur content, large areal capacity, and improved power rate.

  8. Nucleation of C60 on ultrathin SiO2

    NASA Astrophysics Data System (ADS)

    Conrad, Brad; Groce, Michelle; Cullen, William; Pimpinelli, Alberto; Williams, Ellen; Einstein, Ted

    2012-02-01

    We utilize scanning tunneling microscopy to characterize the nucleation, growth, and morphology of C60 on ultrathin SiO2 grown at room temperature. C60 thin films are deposited in situ by physical vapor deposition with thicknesses varying from <0.05 to ˜1 ML. Island size and capture zone distributions are examined for a varied flux rate and substrate deposition temperature. The C60 critical nucleus size is observed to change between monomers and dimers non-monotonically from 300 K to 500 K. Results will be discussed in terms of recent capture zone studies and analysis methods. Relation to device fabrication will be discussed. doi:10.1016/j.susc.2011.08.020

  9. Broadband photocarrier dynamics and nonlinear absorption of PLD-grown WTe2 semimetal films

    NASA Astrophysics Data System (ADS)

    Gao, Wenbin; Huang, Lei; Xu, Jinlong; Chen, Yequan; Zhu, Chunhui; Nie, Zhonghui; Li, Yao; Wang, Xuefeng; Xie, Zhenda; Zhu, Shining; Xu, Jun; Wan, Xiangang; Zhang, Chao; Xu, Yongbing; Shi, Yi; Wang, Fengqiu

    2018-04-01

    WTe2 is a unique material in the family of transition metal dichalcogenides and it has been proposed as a candidate for type-II Weyl semimetals. However, thus far, studies on the optical properties of this emerging material have been significantly hindered by the lack of large-area, high-quality WTe2 materials. Here, we grow a centimeter-scale, highly crystalline WTe2 ultrathin film (˜35 nm) by a pulsed laser deposition technique. Broadband pump-probe spectroscopy (1.2-2.5 μm) reveals a peculiar ultrafast optical response where an initial photo-bleaching signal (lasting ˜3 ps) is followed by a long-lived photoinduced absorption signature. Nonlinear absorption characterization using femtosecond pulses confirms the saturable absorption response of the WTe2 ultrathin films, and we further demonstrated a mode-locked Thulium fiber laser using a WTe2 absorber. Our work provides important insights into linear and nonlinear optical responses of WTe2 thin films.

  10. In situ monitoring of thermal crystallization of ultrathin tris(8-hydroxyquinoline) aluminum films using surface-enhanced Raman scattering.

    PubMed

    Muraki, Naoki

    2014-01-01

    Thermal crystallization of 3, 10, and 60 nm-thick tris(8-hydroxyquinoline)aluminum (Alq3) films is studied using surface-enhanced Raman scattering with a constant heating rate. An abrupt higher frequency shift of the quinoline-stretching mode is found to be an indication of a phase transition of Alq3 molecules from amorphous to crystalline. While the 60 nm-thick film shows the same crystallization temperature as a bulk sample, the thinner films were found to have a lower crystallization temperature and slower rate of crystallization. Non-isothermal kinetics analysis is performed to quantify kinetic properties such as the Avrami exponent constants and crystallization rates of ultrathin Alq3 films.

  11. Ultrathin free-standing close-packed gold nanoparticle films: conductivity and Raman scattering enhancement.

    PubMed

    Yu, Qing; Huang, Hongwen; Peng, Xinsheng; Ye, Zhizhen

    2011-09-01

    A simple filtration technique was developed to prepare large scale free-standing close-packed gold nanoparticle ultrathin films using metal hydroxide nanostrands as both barrier layer and sacrificial layer. As thin as 70 nm, centimeter scale robust free-standing gold nanoparticle thin film was obtained. The thickness of the films could be easily tuned by the filtration volumes. The electronic conductivities of these films varied with the size of the gold nanoparticles, post-treatment temperature, and thickness, respectively. The conductivity of the film prepared from 20 nm gold nanoparticles is higher than that of the film prepared from 40 nm gold nanoparticle by filtering the same filtration volume of their solution, respectively. Their conductivities are comparable to that of the 220 nm thick ITO film. Furthermore, these films demonstrated an average surface Raman scattering enhancement up to 6.59 × 10(5) for Rhodamine 6 G molecules on the film prepared from 40 nm gold nanoparticles. Due to a lot of nano interspaces generated from the close-packed structures, two abnormal enhancements and relative stronger intensities of the asymmetrical vibrations at 1534 and 1594 cm(-1) of R6G were observed, respectively. These robust free-standing gold nanoparticle films could be easily transferred onto various solid substrates and hold the potential application for electrodes and surface enhanced Raman detectors. This method is applicable for preparation of other nanoparticle free-standing thin films.

  12. Thermal conductivity of ZrO2-4mol%Y2O3 thin coatings by pulsed thermal imaging method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Byung-Koog; Sun, Jiangang; Kim, Seongwon

    Thin ZrO2-4mol% Y2O3 coatings were deposited onto ZrO2 substrates by electron beam-physical vapor deposition. The coated samples revealed a feather-like columnar microstructure. The main phase of the ZrO2-4mol% Y2O3 coatings was the tetragonal phase. To evaluate the influence of the coating’s thickness on the thermal conductivity of thin ZrO2-4mol% Y2O3 coatings, the pulsed thermal imaging method was employed to obtain the thermal conductivity of the coating layer in the two-layer (coating and substrate) samples with thickness between 56 and 337 micrometers. The thermal conductivity of the coating layer was successfully evaluated and compared well with those obtained by the lasermore » flash method for similar coatings. The thermal conductivity of coatings shows an increasing tendency with an increase in the coating’s thickness.« less

  13. Multi-Layer Coating of Ultrathin Polymer Films on Nanoparticles of Alumina by a Plasma Treatment

    DTIC Science & Technology

    2001-01-01

    Proc. Vol. 635 © 2001 Materials Research Society Multi-Layer Coating of Ultrathin Polymer Films on Nanoparticles of Alumina by a Plasma Treatment Donglu...interconnected organic and inorganic networks results in coatings with a very low permeability for gases and liquids. Hybrid materials are very suitable for... materials consist of a clear alcoholic solution that can easily be processed by classical application techniques such as dipping, spraying, or spin coating

  14. CH3Br adsorption on MgO/Mo ultrathin films: A DFT study

    NASA Astrophysics Data System (ADS)

    Cipriano, Luis A.; Tosoni, Sergio; Pacchioni, Gianfranco

    2018-06-01

    The adsorption of methyl bromide on MgO ultrathin films supported on Mo(100) was studied by means of density functional theory calculations, in comparison to the MgO(100) and Mo(100) surfaces. The adsorption energy and geometry were shown to depend on the thickness of the supported oxide film. MgO films as thick as 2ML (or more) display adsorptive properties similar to MgO(100), i.e. the adsorption of CH3Br is mostly due to dispersion and the molecule lies in a tilted geometry almost parallel to the surface. The CH3Br HOMO-LUMO gap is almost unaltered with respect to the gas phase. On metallic Mo(100) surfaces the bonding is completely different with the CH3Br molecule strongly bound and the C-Br bond axis almost vertical with respect to the metal surface. The MgO monolayer supported on Mo exhibits somehow intermediate properties: the tilt angle is larger and the bonding is stronger than on MgO(100), due to the effect of the supporting metal. In this case, a small reduction of the HOMO-LUMO gap of the adsorbed molecule is reported. The results help to rationalize the observed behavior in photodissociation of CH3Br supported on different substrates.

  15. High resolution electron energy loss spectroscopy of spin waves in ultra-thin film - The return of the adiabatic approximation?

    NASA Astrophysics Data System (ADS)

    Ibach, Harald

    2014-12-01

    The paper reports on recent considerable improvements in electron energy loss spectroscopy (EELS) of spin waves in ultra-thin films. Spin wave spectra with 4 meV resolution are shown. The high energy resolution enables the observation of standing modes in ultra-thin films in the wave vector range of 0.15 Å- 1 < q|| < 0.3 Å- 1. In this range, Landau damping is comparatively small and standing spin wave modes are well-defined Lorentzians for which the adiabatic approximation is well suited, an approximation which was rightly dismissed by Mills and collaborators for spin waves near the Brillouin zone boundary. With the help of published exchange coupling constants, the Heisenberg model, and a simple model for the spectral response function, experimental spectra for Co-films on Cu(100) as well as for Co films capped with further copper layers are successfully simulated. It is shown that, depending on the wave vector and film thickness, the most prominent contribution to the spin wave spectrum may come from the first standing mode, not from the so-called surface mode. In general, the peak position of a low-resolution spin wave spectrum does not correspond to a single mode. A discussion of spin waves based on the "dispersion" of the peak positions in low resolution spectra is therefore subject to errors.

  16. Numerical experiments on evaporation and explosive boiling of ultra-thin liquid argon film on aluminum nanostructure substrate

    NASA Astrophysics Data System (ADS)

    Wang, Weidong; Zhang, Haiyan; Tian, Conghui; Meng, Xiaojie

    2015-04-01

    Evaporation and explosive boiling of ultra-thin liquid film are of great significant fundamental importance for both science and engineering applications. The evaporation and explosive boiling of ultra-thin liquid film absorbed on an aluminum nanostructure solid wall are investigated by means of molecular dynamics simulations. The simulated system consists of three regions: liquid argon, vapor argon, and an aluminum substrate decorated with nanostructures of different heights. Those simulations begin with an initial configuration for the complex liquid-vapor-solid system, followed by an equilibrating system at 90 K, and conclude with two different jump temperatures, including 150 and 310 K which are far beyond the critical temperature. The space and time dependences of temperature, pressure, density number, and net evaporation rate are monitored to investigate the phase transition process on a flat surface with and without nanostructures. The simulation results reveal that the nanostructures are of great help to raise the heat transfer efficiency and that evaporation rate increases with the nanostructures' height in a certain range.

  17. Numerical experiments on evaporation and explosive boiling of ultra-thin liquid argon film on aluminum nanostructure substrate.

    PubMed

    Wang, Weidong; Zhang, Haiyan; Tian, Conghui; Meng, Xiaojie

    2015-01-01

    Evaporation and explosive boiling of ultra-thin liquid film are of great significant fundamental importance for both science and engineering applications. The evaporation and explosive boiling of ultra-thin liquid film absorbed on an aluminum nanostructure solid wall are investigated by means of molecular dynamics simulations. The simulated system consists of three regions: liquid argon, vapor argon, and an aluminum substrate decorated with nanostructures of different heights. Those simulations begin with an initial configuration for the complex liquid-vapor-solid system, followed by an equilibrating system at 90 K, and conclude with two different jump temperatures, including 150 and 310 K which are far beyond the critical temperature. The space and time dependences of temperature, pressure, density number, and net evaporation rate are monitored to investigate the phase transition process on a flat surface with and without nanostructures. The simulation results reveal that the nanostructures are of great help to raise the heat transfer efficiency and that evaporation rate increases with the nanostructures' height in a certain range.

  18. Preparation, chromatographic evaluation and application of adenosine 5'-monophosphate modified ZrO2/SiO2 stationary phase in hydrophilic interaction chromatography.

    PubMed

    Wang, Qing; Luo, Zhi-Yuan; Ye, Mao; Wang, Yu-Zhuo; Xu, Li; Shi, Zhi-Guo; Xu, Lanying

    2015-02-27

    The zirconia-coated silica (ZrO2/SiO2) material was obtained by coupling layer-by-layer (LbL) self-assembly method and sol-gel technology, to take dual advantages of the suitable porous structure of SiO2 and basic resistance of ZrO2. Adenosine 5'-monophosphate (5'-AMP) was then self-assembled onto ZrO2/SiO2 via Lewis acid-base interaction, generating 5'-AMP-ZrO2/SiO2. The chromatographic properties of 5'-AMP-ZrO2/SiO2 were systemically studied by evaluating the effect of acetonitrile content, pH and buffer concentration in the mobile phase. The results demonstrated that the 5'-AMP-ZrO2/SiO2 possessed hydrophilic interaction chromatographic (HILIC) property comprising hydrophilic, hydrogen-bonding, electrostatic and ion-exchange interactions. For basic analytes, the column efficiency of ZrO2/SiO2 and 5'-AMP-ZrO2/SiO2 was superior to the bare ZrO2, and different selectivity was obtained after the introduction of 5'-AMP. For acidic analytes, good resolution was obtained on 5'-AMP-ZrO2/SiO2 while the analysis failed on the bare ZrO2 column owing to strong adsorption. Hence, the proposed 5'-AMP-ZrO2/SiO2 had great potential in analyzing acidic compounds in HILIC mode. It was an extended application of ZrO2 based SP. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Mesoporous polyaniline film on ultra-thin graphene sheets for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Yan, Jun; Fan, Zhuangjun; Wei, Tong; Zhang, Milin; Jing, Xiaoyan

    2014-02-01

    A facile approach has been developed to fabricate mesoporous PANI film on ultra-thin graphene nanosheet (G-mPANI) hybrid by in situ polymerization using graphene-mesoporous silica composite as template. Due to its mesoporous structure, over-all conductive network, G-mPANI electrode displays a specific capacitance of 749 F g-1 at 0.5 A g-1 with excellent rate capability (remains 73% even at 5.0 A g-1), much higher than that of pristine PANI electrode (315 F g-1 at 0.5 A g-1, 39% retention at 5.0 A g-1) in 1 mol L-1 H2SO4 aqueous solution. More interestingly, the G-mPANI hybrid can maintain 88% of its initial capacitance compared to 45% for pristine PANI after 1000 cycles, suggesting a superior electrochemical cyclic stability.

  20. Ultrathin Shape Change Smart Materials.

    PubMed

    Xu, Weinan; Kwok, Kam Sang; Gracias, David H

    2018-02-20

    With the discovery of graphene, significant research has focused on the synthesis, characterization, and applications of ultrathin materials. Graphene has also brought into focus other ultrathin materials composed of organics, polymers, inorganics, and their hybrids. Together, these ultrathin materials have unique properties of broad significance. For example, ultrathin materials have a large surface area and high flexibility which can enhance conformal contact in wearables and sensors leading to improved sensitivity. When porous, the short transverse diffusion length in these materials allows rapid mass transport. Alternatively, when impermeable, these materials behave as an ultrathin barrier. Such controlled permeability is critical in the design of encapsulation and drug delivery systems. Finally, ultrathin materials often feature defect-free and single-crystal-like two-dimensional atomic structures resulting in superior mechanical, optical, and electrical properties. A unique property of ultrathin materials is their low bending rigidity, which suggests that they could easily be bent, curved, or folded into 3D shapes. In this Account, we review the emerging field of 2D to 3D shape transformations of ultrathin materials. We broadly define ultrathin to include materials with a thickness below 100 nm and composed of a range of organic, inorganic, and hybrid compositions. This topic is important for both fundamental and applied reasons. Fundamentally, bending and curving of ultrathin films can cause atomistic and molecular strain which can alter their physical and chemical properties and lead to new 3D forms of matter which behave very differently from their planar precursors. Shape change can also lead to new 3D architectures with significantly smaller form factors. For example, 3D ultrathin materials would occupy a smaller space in on-chip devices or could permeate through tortuous media which is important for miniaturized robots and smart dust applications. Our

  1. Enhanced electrical properties of SrBi4Ti4O15 ceramic with addition of ZrO2

    NASA Astrophysics Data System (ADS)

    Mamatha, B.; Rani, G. Neeraja; Shankar, J.

    2018-04-01

    Polycrystalline SrBi4Ti3.95Zr0.05O15 (SBZT) ceramic was prepared by solid-state double sintering method. It was characterized by X-Ray Diffraction (XRD) and Scanning Electron Micrograph (SEM). With the increased addition of ZrO2, the electrical properties as dielectric, ferroelectric and piezoelectric were studied. From XRD, single-phase formation with orthorhombic structure was identified by the increase of ZrO2. The remnant polarization (Pr) and dielectric constant was found to be increased with the increase of ZrO2. With the increase of ZrO2, Curie temperature (Tc) was found to be decreased. The planar electromechanical coupling coefficient (Kp = 0.57) and Piezoelectric coefficient (d33 = 18 pC/N) was found to be increased with the increase of ZrO2.

  2. Single-walled carbon nanotube-facilitated dispersion of particulate TiO2 on ZrO2 ceramic membrane filters.

    PubMed

    Yao, Yuan; Li, Gonghu; Gray, Kimberly A; Lueptow, Richard M

    2008-07-15

    We report that SWCNTs substantially improve the uniformity and coverage of TiO2 coatings on porous ZrO2 ceramic membrane filters. The ZrO2 filters were dip coated with 100 nm anatase TiO2, TiO2/SWCNT composites, a TiO2+SWCNT mixture, and a TiO2/MWCNT composite at pH 3, 5, and 8. Whereas the TiO2+SWCNT mixture and the TiO2/MWCNT composite promote better coverage and less clumping than TiO2 alone, the TiO2/SWCNT composite forms a complete uniform coating without cracking at pH 5 ( approximately 100% coverage). A combination of chemical and electrostatic effects between TiO2 and SWCNTs forming the composite as well as between the composite and the ZrO2 surface explains these observations.

  3. The effect of B 2O 3 addition on the crystallization of amorphous TiO 2-ZrO 2 mixed oxide

    NASA Astrophysics Data System (ADS)

    Mao, Dongsen; Lu, Guanzhong

    2007-02-01

    The effect of B 2O 3 addition on the crystallization of amorphous TiO 2-ZrO 2 mixed oxide was investigated by X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG/DTA). TiO 2-ZrO 2 mixed oxide was prepared by co-precipitation method with aqueous ammonia as the precipitation reagent. Boric acid was used as a source of boria, and boria contents varied from 2 to 20 wt%. The results indicate that the addition of small amount of boria (<8 wt%) hinders the crystallization of amorphous TiO 2-ZrO 2 into a crystalline ZrTiO 4 compound, while a larger amount of boria (⩾8 wt%) promotes the crystallization process. FT-IR spectroscopy and 11B MAS NMR results show that tetrahedral borate species predominate at low boria loading, and trigonal borate species increase with increasing boria loading. Thus it is concluded that highly dispersed tetrahedral BO 4 units delay, while a build-up of trigonal BO 3 promote, the crystallization of amorphous TiO 2-ZrO 2 to form ZrTiO 4 crystals.

  4. Interface effects in ultra-thin films: Magnetic and chemical properties

    NASA Astrophysics Data System (ADS)

    Park, Sungkyun

    When the thickness of a magnetic layer is comparable to (or smaller than) the electron mean free path, the interface between magnetic and non-magnetic layers becomes very important factor to determine magnetic properties of the ultra-thin films. The quality of interface can enhance (or reduce) the desired properties. Several interesting physical phenomena were studied using these interface effects. The magnetic anisotropy of ultra-thin Co films is studied as function of non-magnetic underlayer thickness and non- magnetic overlayer materials using ex situ Brillouin light scattering (BLS). I observed that perpendicular magnetic anisotropy (PMA) increases with underlayer thickness and saturates after 5 ML. This saturation can be understood as a relaxation of the in-plane lattice parameter of Au(111) on top of Cu(111) to its bulk value. For the overlayer study, Cu, Al, and Au are used. An Au overlayer gives the largest PMA due to the largest in-plane lattice mismatch between Co and Au. An unusual effect was found by adding an additional layer on top of the Au overlayer. An additional Al capping layer on top of the Au overlayer reduces the PMA significantly. The possible explanation is that the misfit strain at the interface between the Al and the Au can be propagated through the Au layer to affect the magnetic properties of Co even though the in- plane lattice mismatch is less than 1%. Another interesting problem in interface interdiffusion and thermal stability in magnetic tunnel junction (MTJ) structures is studied using X-ray photoelectron spectroscopy (XPS). Since XPS is a very chemically sensitive technique, it allows us to monitor interface interdiffusion of the MTJ structures as-deposited and during post-deposition processing. For the plasma- oxidized samples, Fe only participates in the oxidation reduction process. In contrast to plasma-oxidized samples, there were no noticeable chemical shifts as- deposited and during post-deposition processing in air

  5. Enhancing low-temperature activity and durability of Pd-based diesel oxidation catalysts using ZrO 2 supports

    DOE PAGES

    Kim, Mi -Young; Kyriakidou, Eleni A.; Choi, Jae -Soon; ...

    2016-01-18

    In this study, we investigated the impact of ZrO 2 on the performance of palladium-based oxidation catalysts with respect to low-temperature activity, hydrothermal stability, and sulfur tolerance. Pd supported on ZrO 2 and SiO 2 were synthesized for a comparative study. Additionally, in an attempt to maximize the ZrO 2 surface area and improve sulfur tolerance, a Pd support with ZrO 2-dispersed onto SiO 2 was studied. The physicochemical properties of the catalysts were examined using ICP, N 2 sorption, XRD, SEM, TEM, and NH 3-, CO 2-, and NO x-TPD. The activity of the Pd catalysts were measured frommore » 60 to 600 °C in a flow of 4000 ppm CO, 500 ppm NO, 1000 ppm C 3H 6, 4% O 2, 5% H 2O, and Ar balance. The Pd catalysts were evaluated in fresh, sulfated, and hydrothermally aged states. Overall, the ZrO 2-containing catalysts showed considerably higher CO and C 3H 6 oxidation activity than Pd/SiO 2 under the reaction conditions studied.« less

  6. Transport properties of ultrathin YBa2Cu3O7 -δ nanowires: A route to single-photon detection

    NASA Astrophysics Data System (ADS)

    Arpaia, Riccardo; Golubev, Dmitri; Baghdadi, Reza; Ciancio, Regina; Dražić, Goran; Orgiani, Pasquale; Montemurro, Domenico; Bauch, Thilo; Lombardi, Floriana

    2017-08-01

    We report on the growth and characterization of ultrathin YBa2Cu3O7 -δ (YBCO) films on MgO (110) substrates, which exhibit superconducting properties at thicknesses down to 3 nm. YBCO nanowires, with thicknesses down to 10 nm and widths down to 65 nm, have also been successfully fabricated. The nanowires protected by a Au capping layer show superconducting properties close to the as-grown films and critical current densities, which are limited by only vortex dynamics. The 10-nm-thick YBCO nanowires without the Au capping present hysteretic current-voltage characteristics, characterized by a voltage switch which drives the nanowires directly from the superconducting to the normal state. We associate such bistability to the presence of localized normal domains within the superconductor. The presence of the voltage switch in ultrathin YBCO nanostructures, characterized by high sheet resistance values and high critical current values, makes our nanowires very attractive devices to engineer single-photon detectors.

  7. Sintering, thermal stability and mechanical properties of ZrO2-WC composites obtained by pulsed electric current sintering

    NASA Astrophysics Data System (ADS)

    Huang, Shuigen; Vanmeensel, Kim; van der Biest, Omer; Vleugels, Jozef

    2011-03-01

    ZrO2-WC composites exhibit comparable mechanical properties as traditional WC-Co materials, which provides an opportunity to partially replace WC-Co for some applications. In this study, 2 mol.% Y2O3 stabilized ZrO2 composites with 40 vol.% WC were consolidated in the 1150°C-1850°C range under a pressure of 60 MPa by pulsed electric current sintering (PECS). The densification behavior, microstructure and phase constitution of the composites were investigated to clarify the role of the sintering temperature on the grain growth, mechanical properties and thermal stability of ZrO2 and WC components. Analysis results indicated that the composites sintered at 1350°C and 1450°C exhibited the highest tetragonal ZrO2 phase transformability, maximum toughness, and hardness and an optimal flexural strength. Chemical reaction of ZrO2 and C, originating from the graphite die, was detected in the composite PECS for 20 min at 1850°C in vacuum.

  8. Solution-processed ultrathin chemically derived graphene films as soft top contacts for solid-state molecular electronic junctions.

    PubMed

    Li, Tao; Hauptmann, Jonas Rahlf; Wei, Zhongming; Petersen, Søren; Bovet, Nicolas; Vosch, Tom; Nygård, Jesper; Hu, Wenping; Liu, Yunqi; Bjørnholm, Thomas; Nørgaard, Kasper; Laursen, Bo W

    2012-03-08

    A novel method using solution-processed ultrathin chemically derived graphene films as soft top contacts for the non-destructive fabrication of molecular junctions is demonstrated. We believe this protocol will greatly enrich the solid-state test beds for molecular electronics due to its low-cost, easy-processing and flexible nature. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Improving Corrosion Resistance of 316L Austenitic Stainless Steel Using ZrO2 Sol-Gel Coating in Nitric Acid Solution

    NASA Astrophysics Data System (ADS)

    Kazazi, Mahdi; Haghighi, Milad; Yarali, Davood; Zaynolabedini, Masoomeh H.

    2018-03-01

    In this study, thin-film coating of zirconium oxide (ZrO2) was prepared by sol-gel method and subsequent heat treatment process. The sol was prepared by controlled hydrolysis of zirconium tetrapropoxide using acetic acid and ethanol/acetylacetone mixture as catalyst and chelating agent, respectively, and finally deposited onto the 316L austenitic stainless steel (316L SS) using dip coating method in order to improve its corrosion resistance in nitric acid medium. The composition, structure, and morphology of the coated surface were investigated by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The obtained results from XRD and FTIR state the formation of tetragonal and monoclinic ZrO2 phase. Also, the obtained results from surface morphology investigation by SEM and AFM indicate the formation of smooth, homogeneous and uniform coatings on the steel substrate. Then, the corrosion behavior of stainless steel was investigated in a 1 and 10 M nitric acid solutions using electrochemical impedance spectroscopy and linear polarization test. The obtained results from these tests for ZrO2-coated specimens indicated a considerable improvement in the corrosion resistance of 316L stainless steel by an increase in corrosion potential and transpassive potential, and a decrease in passive current density and corrosion current density. The decrease in passive current density in both the concentration of solutions was two orders of magnitude from bare to coated specimens.

  10. Synthesis, integration, and characterization of metal oxide films as alternative gate dielectric materials

    NASA Astrophysics Data System (ADS)

    Lin, You-Sheng

    ZrO2 and HfO2 were investigated in this study to replace SiO2 as the potential gate dielectric materials in metal-oxide-semiconductor field effect transistors. ZrO2 and HfO2 films were deposited on p-type Si (100) wafers by an atomic layer chemical vapor deposition (ALCVD) process using zirconium (IV) t-butoxide and hafnium (IV) t-butoxide as the metal precursors, respectively. Oxygen was used alternatively with these metal alkoxide precursors into the reactor with purging and evacuation in between. The as-deposited ZrO2 and HfO2 films were stoichiometric and uniform based on X-ray photoemission spectroscopy and ellipsometry measurements. X-ray diffraction analysis indicated that the deposited films were amorphous, however, the high-resolution transmission electron microscopy showed an interfacial layer formation on the silicon substrate. Time-of-flight secondary ion mass spectrometry and medium energy ion scattering analysis showed significant intermixing between metal oxides and Si, indicating the formation of metal silicates, which were confirmed by their chemical etching resistance in HF solutions. The thermal stability of ZrO2 and HfO2 thin films on silicon was examined by monitoring their decomposition temperatures in ultra-high vacuum, using in-situ synchrotron radiation ultra-violet photoemission spectroscopy. The as-deposited ZrO2 and HfO2 thin films were thermally stable up to 880°C and 950°C in vacuum, respectively. The highest achieveable dielectric constants of as-deposited ZrO 2 and HfO2 were 21 and 24, respectively, which were slightly lower than the reported dielectric constants of bulk ZrO2 and HfO 2. These slight reductions in dielectric constants were attributed to the formation of the interfacial metal silicate layers. Very small hysteresis and interface state density were observed for both metal oxide films. Their leakage currents were a few orders of magnitude lower than that of SiO 2 at the same equivalent oxide thickness. NMOSFETs were

  11. Chitosan /Zeolite Y/Nano ZrO2 nanocomposite as an adsorbent for the removal of nitrate from the aqueous solution.

    PubMed

    Teimouri, Abbas; Nasab, Shima Ghanavati; Vahdatpoor, Niaz; Habibollahi, Saeed; Salavati, Hossein; Chermahini, Alireza Najafi

    2016-12-01

    In the present study, a series of chitosan/Zeolite Y/Nano Zirconium oxide (CTS/ZY/Nano ZrO 2 ) nanocomposites were made by controlling the molar ratio of chitosan (CTS) to Zeolite Y/Nano Zirconium oxide in order to remove nitrate (NO 3 - ) ions in the aqueous solution. The nanocomposite adsorbents were characterized by XRD, FTIR, BET, SEM and TEM. The influence of different molar ratios of CTS to ZY/Nano ZrO 2 , the initial pH value of the nitrate solution, contact time, temperature, the initial concentration of nitrate and adsorbent dose was studied. The adsorption isotherms and kinetics were also analyzed. It was attempted to describe the sorption processes by the Langmuir equation and the theoretical adsorption capacity (Q 0 ) was found to be 23.58mg nitrate per g of the adsorbent. The optimal conditions for nitrate removal were found to be: molar ratio of CTS/ZY/Nano ZrO 2 : 5:1; pH: 3; 0.02g of adsorbent and temperature: 35°C, for 60min. The adsorption capacities of CTS, ZY, Nano ZrO 2 , CTS/Nano ZrO 2 , CTS/ZY and CTS/ZY/Nano ZrO 2 nanocomposites for nitrate removal were compared, showing that the adsorption ability of CTS/ZY/Nano ZrO 2 nanocomposite was higher than the average values of those of CTS (1.95mg/g for nitrate removal), ZY, Nano ZrO 2 , CTS/Nano ZrO 2, and CTS/ZY. Copyright © 2016. Published by Elsevier B.V.

  12. Verwey transition in a magnetite ultrathin film by resonant x-ray scattering

    NASA Astrophysics Data System (ADS)

    Grenier, S.; Bailly, A.; Ramos, A. Y.; De Santis, M.; Joly, Y.; Lorenzo, J. E.; Garaudée, S.; Frericks, M.; Arnaud, S.; Blanc, N.; Boudet, N.

    2018-03-01

    We report a detailed study of the Verwey transition in a magnetite ultrathin film (UTF) grown on Ag(001) using resonant x-ray scattering (RXS). RXS was measured at the Fe K-edge on the crystal truncation rod of the substrate, increasing the sensitivity to the film thanks to the cross-interference, thereby obtaining an x-ray phase-shift reference and a polarization analyzer. The spectra were interpreted with ad hoc calculations based on density functional theory within a surface-scattering formalism. We observed that the UTF has a relatively sharp transition temperature TV=120 K and is remarkably close to the bulk temperature for such thickness. We determined the specific Fe stacking at the interface with the substrate below TV, and detected a spectroscopic signal evolving with temperature from TV up to at least TV+80 K, hinting that the RT crystallographic structure does not set at TV in the UTF.

  13. Rutherford forward scattering and elastic recoil detection (RFSERD) as a method for characterizing ultra-thin films

    DOE PAGES

    Lohn, Andrew J.; Doyle, Barney L.; Stein, Gregory J.; ...

    2014-04-03

    We present a novel ion beam analysis technique combining Rutherford forward scattering and elastic recoil detection (RFSERD) and demonstrate its ability to increase efficiency in determining stoichiometry in ultrathin (5-50 nm) films as compared to Rutherford backscattering. In the conventional forward geometries, scattering from the substrate overwhelms the signal from light atoms but in RFSERD, scattered ions from the substrate are ranged out while forward scattered ions and recoiled atoms from the thin film are simultaneously detected in a single detector. Lastly, the technique is applied to tantalum oxide memristors but can be extended to a wide range of materialsmore » systems.« less

  14. Connecting quantum dots and bionanoparticles in hybrid nanoscale ultra-thin films

    NASA Astrophysics Data System (ADS)

    Tangirala, Ravisubhash; Hu, Yunxia; Zhang, Qingling; He, Jinbo; Russell, Thomas; Emrick, Todd

    2008-03-01

    Aldehyde-functionalized CdSe quantum dots and nanorods, and horse spleen ferritin bionanoparticles, were co-assembled at an oil-water interface. Reaction of the aldehydes with the surface-available amines on the ferritin particles enabled cross-linking at the interface, converting the assembled nanoparticles into robust ultra-thin films. The cross-linked capsules and sheets thus made by aldehyde-amine conjugation could be disrupted by addition of acid. Reductive amination chemistry could be performed to convert these degradable capsules and sheets into structures with irreversible cross-linking. Fluorescence confocal microscopy, scanning force microscopy and pendant drop tensiometry were used to characterize these hybrid nanoparticle-based materials, and transmission electron microscopy (TEM) confirmed the presence of both the synthetic and naturally derived nanoparticles.

  15. Structure of a zinc oxide ultra-thin film on Rh(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuhara, J.; Kato, D.; Matsui, T.

    The structural parameters of ultra-thin zinc oxide films on Rh(100) are investigated using low-energy electron diffraction intensity (LEED I–V) curves, scanning tunneling microscopy (STM), and first-principles density functional theory (DFT) calculations. From the analysis of LEED I–V curves and DFT calculations, two optimized models A and B are determined. Their structures are basically similar to the planer h-BN ZnO(0001) structure, although some oxygen atoms protrude from the surface, associated with an in-plane shift of Zn atoms. From a comparison of experimental STM images and simulated STM images, majority and minority structures observed in the STM images represent the two optimizedmore » models A and B, respectively.« less

  16. Morphology evaluation of ZrO2 dip coating on mild steel and its corrosion performance in NaOH solution

    NASA Astrophysics Data System (ADS)

    Anwar, M. A.; Kurniawan, T.; Asmara, Y. P.; Harun, W. S. W.; Oumar, A. N.; Nandyanto, A. B. D.

    2017-10-01

    In this work, the morphology of ZrO2 thin film from dip coating process on mild steel has been investigated. Mild steel was dip-coated on solution made of zirconium butoxide as a precursor, ethanol as solvent, acetylacetone as chelating agent and water for hydrolysis. Number of dipping was adjusted at 3, 5 and 7 times. The dipped sample then annealed at 350°C for two hours by adjusting the heating rate at 1°C/min respectively. The optical microscope showed that micro-cracks were observed on the surface of the coating with its concentration reduced as dipping sequence increased. The XRD result showed that annealing process can produce polycrystalline tetragonal-ZrO2. Meanwhile, SEM image showed that the thicknesses of the ZrO2 coatings were in between 400-600 nm. The corrosion resistance of uncoated and coated substrates was studied by polarization test through potentio-dynamic polarization curve at 1mV/s immersed in with 3.5% NaCl. The coating efficiency was improved as the number of layer dip coated increased, which showed improvement in corrosion protection.

  17. Superstructures and Electronic Properties of Manganese-Phthalocyanine Molecules on Au(110) from Submonolayer Coverage to Ultrathin Molecular Films.

    PubMed

    Topyła, M; Néel, N; Kröger, J

    2016-07-12

    The adsorption of manganese-phthalocyanine molecules on Au(110) was investigated using a low-temperature scanning tunneling microscope. A rich variety of commensurate superstructures was observed upon increasing the molecule coverage from submonolayers to ultrathin films. All structures were associated with reconstructions of the Au(110) substrate. Molecules adsorbed in the second molecular layer exhibited negative differential conductance occurring symmetrically around zero bias voltage. A double-barrier tunneling model rationalized this observation in terms of a peaked molecular resonance at the Fermi energy together with a voltage drop across the molecular film.

  18. Ultrathin IBAD MgO films for epitaxial growth on amorphous substrates and sub-50 nm membranes

    DOE PAGES

    Wang, Siming; Antonakos, C.; Bordel, C.; ...

    2016-11-07

    Here, a fabrication process has been developed for high energy ion beam assisted deposition (IBAD) biaxial texturing of ultrathin (~1 nm) MgO films, using a high ion-to-atom ratio and post-deposition annealing instead of a homoepitaxial MgO layer. These films serve as the seed layer for epitaxial growth of materials on amorphous substrates such as electron/X-ray transparent membranes or nanocalorimetry devices. Stress measurements and atomic force microscopy of the MgO films reveal decreased stress and surface roughness, while X-ray diffraction of epitaxial overlayers demonstrates the improved crystal quality of films grown epitaxially on IBAD MgO. The process simplifies the synthesis ofmore » IBAD MgO, fundamentally solves the “wrinkle” issue induced by the homoepitaxial layer on sub-50 nm membranes, and enables studies of epitaxial materials in electron/X-ray transmission and nanocalorimetry.« less

  19. Kelvin–Helmholtz instability in an ultrathin air film causes drop splashing on smooth surfaces

    PubMed Central

    Liu, Yuan; Tan, Peng; Xu, Lei

    2015-01-01

    When a fast-moving drop impacts onto a smooth substrate, splashing will be produced at the edge of the expanding liquid sheet. This ubiquitous phenomenon lacks a fundamental understanding. Combining experiment with model, we illustrate that the ultrathin air film trapped under the expanding liquid front triggers splashing. Because this film is thinner than the mean free path of air molecules, the interior airflow transfers momentum with an unusually high velocity comparable to the speed of sound and generates a stress 10 times stronger than the airflow in common situations. Such a large stress initiates Kelvin–Helmholtz instabilities at small length scales and effectively produces splashing. Our model agrees quantitatively with experimental verifications and brings a fundamental understanding to the ubiquitous phenomenon of drop splashing on smooth surfaces. PMID:25713350

  20. ZrO2:Sm3+ nanophosphor: synthesis, Rietveld refinement, optical and thermoluminescent properties

    NASA Astrophysics Data System (ADS)

    Ponkumar, S.; Janaki, K.; Prakashbabu, D.; Ramalingam, H. B.; Munirathnam, K.; Sreekanth, T. V. M.; Dhoble, S. J.

    2018-02-01

    We have synthesized undoped and Sm3+ ions doped ZrO2 nanophosphors by solution combustion method. These nanophosphors crystallized in cubic structure. Rietveld refinement of the samples was performed to estimate lattice parameters. Spherical particles with the sizes of 10-25 nm were observed by transmission electron microscopy. Photoluminescence and thermoluminescence (TL) properties of samples were investigated. Under 400 nm excitation, the nanophosphors have intense red emission at 600 nm. The color coordinates (0.67, 0.33) were located in the red region of CIE diagram. TL properties of nanophosphors were studied by exposing the samples to γ-rays. 5 mol% Sm3+ doped ZrO2 nanophosphor has shown maximum TL intensity after γ-irradiation. To test suitability of the nanophosphors for practical application in dosimetry, the 5 mol% Sm3+ doped ZrO2 sample was irradiated by 14 MeV electron beam in various electron fluence ranging from 100 to 900 Gy and their TL response was recorded.

  1. Temperature-dependent local structural properties of redox Pt nanoparticles on TiO 2 and ZrO 2 supports

    DOE PAGES

    Jeong, Eun -Suk; Park, Chang -In; Jin, Zhenlan; ...

    2015-01-21

    This paper examined the local structural properties of Pt nanoparticles on SiO 2, TiO 2–SiO 2, and ZrO 2–SiO 2 supports to better understand the impact of oxide-support type on the performance of Pt-based catalysts. In situ X-ray absorption fine structure (XAFS) measurements were taken for the Pt L3-edge in a temperature range from 300 to 700 K in He, H 2, and O 2 gas environments. The XAFS measurements demonstrated that Pt atoms were highly dispersed on TiO 2–SiO 2 and ZrO 2–SiO 2 forming pancake-shaped nanoparticles, whereas Pt atoms formed larger particles of hemispherical shapes on SiO 2more » supports. Contrary to the SiO 2 case, the coordination numbers for Pt, Ti, and Zr around Pt atoms on the TiO 2–SiO 2 and ZrO 2–SiO 2 supports were nearly constant from 300 to 700 K under the different gas environments. These results are consistent with the improvements in thermal stability of Pt nanoparticles achieved by incorporating TiO 2 or ZrO 2 on the surface of SiO 2 supports. XAFS analysis further indicated that the enhanced dispersion and stability of Pt were a consequence of the strong metal support interaction via Pt–Ti and Pt–Zr bonds.« less

  2. Chiral magnetic conductivity and surface states of Weyl semimetals in topological insulator ultra-thin film multilayer.

    PubMed

    Owerre, S A

    2016-06-15

    We investigate an ultra-thin film of topological insulator (TI) multilayer as a model for a three-dimensional (3D) Weyl semimetal. We introduce tunneling parameters t S, [Formula: see text], and t D, where the former two parameters couple layers of the same thin film at small and large momenta, and the latter parameter couples neighbouring thin film layers along the z-direction. The Chern number is computed in each topological phase of the system and we find that for [Formula: see text], the tunneling parameter [Formula: see text] changes from positive to negative as the system transits from Weyl semi-metallic phase to insulating phases. We further study the chiral magnetic effect (CME) of the system in the presence of a time dependent magnetic field. We compute the low-temperature dependence of the chiral magnetic conductivity and show that it captures three distinct phases of the system separated by plateaus. Furthermore, we propose and study a 3D lattice model of Porphyrin thin film, an organic material known to support topological Frenkel exciton edge states. We show that this model exhibits a 3D Weyl semi-metallic phase and also supports a 2D Weyl semi-metallic phase. We further show that this model recovers that of 3D Weyl semimetal in topological insulator thin film multilayer. Thus, paving the way for simulating a 3D Weyl semimetal in topological insulator thin film multilayer. We obtain the surface states (Fermi arcs) in the 3D model and the chiral edge states in the 2D model and analyze their topological properties.

  3. Molecular dynamics simulations of disjoining pressure effects in ultra-thin water films on a metal surface

    NASA Astrophysics Data System (ADS)

    Hu, Han; Sun, Ying

    2013-11-01

    Disjoining pressure, the excess pressure in an ultra-thin liquid film as a result of van der Waals interactions, is important in lubrication, wetting, flow boiling, and thin film evaporation. The classic theory of disjoining pressure is developed for simple monoatomic liquids. However, real world applications often utilize water, a polar liquid, for which fundamental understanding of disjoining pressure is lacking. In the present study, molecular dynamics (MD) simulations are used to gain insights into the effect of disjoining pressure in a water thin film. Our MD models were firstly validated against Derjaguin's experiments on gold-gold interactions across a water film and then verified against disjoining pressure in an argon thin film using the Lennard-Jones potential. Next, a water thin film adsorbed on a gold surface was simulated to examine the change of vapor pressure with film thickness. The results agree well with the classic theory of disjoining pressure, which implies that the polar nature of water molecules does not play an important role. Finally, the effects of disjoining pressure on thin film evaporation in nanoporous membrane and on bubble nucleation are discussed.

  4. Anomalously deep polarization in SrTiO3 (001) interfaced with an epitaxial ultrathin manganite film

    DOE PAGES

    Wang, Zhen; Tao, Jing; Yu, Liping; ...

    2016-10-17

    Using atomically-resolved imaging and spectroscopy, we reveal a remarkably deep polarization in non-ferroelectric SrTiO 3 near its interface with an ultrathin nonmetallic film of La 2/3Sr 1/3MnO 3. Electron holography shows an electric field near the interface in SrTiO 3, yielding a surprising spontaneous polarization density of ~ 21 μC/cm 2. Combining the experimental results with first principles calculations, we propose that the observed deep polarization is induced by the electric field originating from oxygen vacancies that extend beyond a dozen unit-cells from the interface, thus providing important evidence of the role of defects in the emergent interface properties ofmore » transition metal oxides.« less

  5. Symmetry of Epitaxial BiFeO3 Films in the Ultrathin Regime

    NASA Astrophysics Data System (ADS)

    Yang, Yongsoo; Schlep&üTz, Christian; Adamo, Carolina; Schlom, Darrell; Clarke, Roy

    2013-03-01

    BiFeO3 (BFO) films grown on SrTiO3 (STO) with a SrRuO3 buffer layer exhibit a monoclinic structure at thicknesses greater than 40 nm, but higher structural symmetry can be observed for thinner films [Phys. Rev. B 81, 144115 (2010)]. We report a structural phase transition from monoclinic to tetragonal in ultra-thin BFO films grown directly on (100)-oriented STO. X-ray diffraction measurements of 3-dimensional reciprocal space maps reveal half-integer order peaks due to oxygen octahedral tilting. When the film thickness is decreased below 20 unit cells, the integer-order Bragg peak splitting associated with the presence of multiple domains of the monoclinic phase disappears. Instead, a single peak that is commensurate with the STO substrate lattice appears. The diffraction pattern has four-fold symmetry, ruling out the presence of a single monoclinic domain in favor of a tetragonal film structure. The evolution of the oxygen octahedra tilt pattern inferred from the intensities of half-order peaks suggests that this transition originates from the corner-connectivity of oxygen atoms at the interface between BFO and STO, and also strongly supports this monoclinic to tetragonal transition. Supported in part by the U.S. Department of Energy (DE-FG02-06ER46273). Measurements performed at Sectors 13-BMC, 33-IDD, 33-BMC of the Advanced Photon Source, Argonne National Laboratory, USA (DOE contract No. DE-AC02-06CH11357).

  6. Large Energy Storage Density and High Thermal Stability in a Highly Textured (111)-Oriented Pb0.8Ba0.2ZrO3 Relaxor Thin Film with the Coexistence of Antiferroelectric and Ferroelectric Phases.

    PubMed

    Peng, Biaolin; Zhang, Qi; Li, Xing; Sun, Tieyu; Fan, Huiqing; Ke, Shanming; Ye, Mao; Wang, Yu; Lu, Wei; Niu, Hanben; Zeng, Xierong; Huang, Haitao

    2015-06-24

    A highly textured (111)-oriented Pb0.8Ba0.2ZrO3 (PBZ) relaxor thin film with the coexistence of antiferroelectric (AFE) and ferroelectric (FE) phases was prepared on a Pt/TiOx/SiO2/Si(100) substrate by using a sol-gel method. A large recoverable energy storage density of 40.18 J/cm(3) along with an efficiency of 64.1% was achieved at room temperature. Over a wide temperature range of 250 K (from room temperature to 523 K), the variation of the energy density is within 5%, indicating a high thermal stability. The high energy storage performance was endowed by a large dielectric breakdown strength, great relaxor dispersion, highly textured orientation, and the coexistence of FE and AFE phases. The PBZ thin film is believed to be an attractive material for applications in energy storage systems over a wide temperature range.

  7. Rapid amperometric detection of trace metals by inhibition of an ultrathin polypyrrole-based glucose biosensor.

    PubMed

    Ayenimo, Joseph G; Adeloju, Samuel B

    2016-02-01

    A sensitive and reliable inhibitive amperometric glucose biosensor is described for rapid trace metal determination. The biosensor utilises a conductive ultrathin (55 nm thick) polypyrrole (PPy) film for entrapment of glucose oxidase (GOx) to permit rapid inhibition of GOx activity in the ultrathin film upon exposure to trace metals, resulting in reduced glucose amperometric response. The biosensor demonstrates a relatively fast response time of 20s and does not require incubation. Furthermore, a complete recovery of GOx activity in the ultrathin PPy-GOx biosensor is quickly achieved by washing in 2mM EDTA for only 10s. The minimum detectable concentrations achieved with the biosensor for Hg(2+), Cu(2+), Pb(2+) and Cd(2+) by inhibitive amperometric detection are 0.48, 1.5, 1.6 and 4.0 µM, respectively. Also, suitable linear concentration ranges were achieved from 0.48-3.3 µM for Hg(2+), 1.5-10 µM for Cu(2+), 1.6-7.7 µM for Pb(2+) and 4-26 µM for Cd(2+). The use of Dixon and Cornish-Bowden plots revealed that the suppressive effects observed with Hg(2+) and Cu(2+) were via non-competitive inhibition, while those of Pb(2+) and Cd(2+) were due to mixed and competitive inhibition. The stronger inhibition exhibited by the trace metals on GOx activity in the ultrathin PPy-GOx film was also confirmed by the low inhibition constant obtained from this analysis. The biosensor was successfully applied to the determination of trace metals in tap water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Three-configurational surface magneto-optical Kerr effect measurement system for an ultrahigh vacuum in situ study of ultrathin magnetic films

    NASA Astrophysics Data System (ADS)

    Lee, J.-W.; Jeong, J.-R.; Kim, D.-H.; Ahn, J. S.; Kim, J.; Shin, S.-C.

    2000-10-01

    We have constructed a three-configurational surface magneto-optical Kerr effect system, which provides the simultaneous measurements of the "polar," "longitudinal," and "transverse" Kerr hysteresis loops at the position where deposition is carried out in an ultrahigh vacuum growth chamber. The present system enables in situ three-dimensional vectorial studies of ultrathin film magnetism with a submonolayer sensitivity. We present three-configurational hysteresis loops measured during the growth of Co films on Pd(111), glass, and Pd/glass substrates.

  9. Nanocomposites of polyimide and mixed oxide nanoparticles for high performance nanohybrid gate dielectrics in flexible thin film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Ju Hyun; Hwang, Byeong-Ung; Kim, Do-Il; Kim, Jin Soo; Seol, Young Gug; Kim, Tae Woong; Lee, Nae-Eung

    2017-05-01

    Organic gate dielectrics in thin film transistors (TFTs) for flexible display have advantages of high flexibility yet have the disadvantage of low dielectric constant (low- k). To supplement low- k characteristics of organic gate dielectrics, an organic/inorganic nanocomposite insulator loaded with high- k inorganic oxide nanoparticles (NPs) has been investigated but high loading of high- k NPs in polymer matrix is essential. Herein, compositing of over-coated polyimide (PI) on self-assembled (SA) layer of mixed HfO2 and ZrO2 NPs as inorganic fillers was used to make dielectric constant higher and leakage characteristics lower. A flexible TFT with lower the threshold voltage and high current on/off ratio could be fabricated by using the hybrid gate dielectric structure of the nanocomposite with SA layer of mixed NPs on ultrathin atomic-layer deposited Al2O3. [Figure not available: see fulltext.

  10. Enhanced performance of flexible dye-sensitized solar cells using flexible Ag@ZrO2/C nanofiber film as low-cost counter electrode

    NASA Astrophysics Data System (ADS)

    Yin, Xin; Xie, Xueyao; Song, Lixin; Zhai, Jifeng; Du, Pingfan; Xiong, Jie

    2018-05-01

    Highly flexible ZrO2/C nanofibers (NFs) coated with Ag nanoparticles (NPs) have been fabricated by a combination of electrospinning, carbonization and hydrothermal treatment. The obtained Ag@ZrO2/C NFs serve as low-cost counter electrodes (CEs) for flexible dye-sensitized solar cells (FDSSCs). A considerable power conversion efficiency of 4.77% is achieved, which is 27.9% higher than the η of ZrO2/C NFs CEs (3.73%) and reaches about 90% of that of Pt CE (5.26%). It can be ascribed to the fact that the introduction of Ag NPs provides a large number of accessible reaction sites for electrolyte ions to rapidly participate in the I3-/I- reaction. Moreover, the Ag NPs can produce synergistic effect with ZrO2/C NFs to further enhance transport capacity and electro-catalytic activity of the Ag@ZrO2/C film. Therefore, the considerable performance together with characteristics of simple preparation, low cost and flexibility suggests the Ag@ZrO2/C film can be promising candidate for the future generation of FDSSC.

  11. FAST TRACK COMMUNICATION: Deposition temperature effect on electrical properties and interface of high-k ZrO2 capacitor

    NASA Astrophysics Data System (ADS)

    Kim, Joo-Hyung; Ignatova, Velislava A.; Heitmann, Johannes; Oberbeck, Lars

    2008-09-01

    The electrical characteristics, i.e. leakage current and capacitance, of ZrO2 based metal-insulator-metal structures, grown at 225, 250 and 275 °C by atomic layer deposition, were studied. The lowest leakage current was obtained at 250 °C deposition temperature, while the highest dielectric constant (k ~ 43) was measured for the samples grown at 275 °C, most probably due to the formation of tetragonal/cubic phases in the ZrO2 layer. We have shown that the main leakage current of these ZrO2 capacitors is governed by the Poole-Frenkel conduction mechanism. It was observed by x-ray photoelectron spectroscopy depth profiling that at 275 °C deposition temperature the oxygen content at and beyond the ZrO2/TiN interface is higher than at lower deposition temperatures, most probably due to oxygen inter-diffusion towards the electrode layer, forming a mixed TiN-TiOxNy interface layer. At and above 275 °C the ZrO2 layer changes its structure and becomes crystalline as proven by XRD analysis.

  12. Efficient removal of arsenite through photocatalytic oxidation and adsorption by ZrO2-Fe3O4 magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Sun, Tianyi; Zhao, Zhiwei; Liang, Zhijie; Liu, Jie; Shi, Wenxin; Cui, Fuyi

    2017-09-01

    Bifunctional ZrO2-Fe3O4 magnetic nanoparticles were synthesized and characterized, to remove As(III) through photocatalyic oxidation and adsorption. With a saturation magnetization of 27.39 emu/g, ZrO2-Fe3O4 nanoparticles with size of 10-30 nm could be easily separated from solutions with a simple magnetic process. Under UV light, As(III) could be completely oxidized to less toxic As(V) by ZrO2-Fe3O4 nanoparticles within 40 min in the photocatalytic reaction. Simultaneously, As(V) could be adsorbed onto the surface of nanoparticles with high efficiency. The adsorption of As(V) was well fitted by the pseudo-second-order model and the Freundlich isotherm model, respectively, and the maximum adsorption capacities of the nanoparticles was 133.48 mg/g at pH 7.0. As(III) could be effectively removed by ZrO2-Fe3O4 nanoparticles at initial pH range from 4 to 8. Among all the common coexisting ions investigated, except for chloride and sulfate, carbonate, silicate and phosphate decreased the As(III) removal by competing with arsenic species for adsorption sites. The synthesized magnetic ZrO2-Fe3O4 combined the photocatalytic oxidation property of ZrO2 and the high adsorption capacity of both ZrO2 and Fe3O4, which make it have significant potential applications in the As(III)-contaminated water treatment.

  13. Structural, electronic, elastic and thermodynamic properties of Li2ZrO3: A comprehensive study using DFT formalism

    NASA Astrophysics Data System (ADS)

    Chattaraj, D.

    2017-12-01

    Lithium zirconate is considered to be potential tritium breeder material for fusion reactors. Here I report a comprehensive study on structural, electronic, elastic, and thermodynamic properties of Li2ZrO3 using plane wave based density functional theory. While the electron-ion interaction term has been described by projected-augmented wave method, the exchange-correlation energy was taken care of through generalized gradient approximation scheme. The optimized lattice and internal parameters of Li2ZrO3 unit cell agree well within ±1-2% from the experimental values. From the electronic structure analysis it is seen that the Fermi energy has significant contribution from the 2s, 2p and 4d orbitals of Li, O and Zr atoms, respectively. Elastic property calculation of Li2ZrO3 showed mechanical stability and anisotropy at ambient pressure. The formation energy (ΔfH) of Li2ZrO3 at 0 K, after zero point energy correction, has been estimated to be -1550 kJ/mol. The temperature dependent thermodynamic functions of Li2ZrO3 have also been calculated from the Debye-Grüneisen quasi-harmonic approximation and reported here.

  14. Patterned FePt nanostructures using ultrathin self-organized templates

    NASA Astrophysics Data System (ADS)

    Deng, Chen Hua; Zhang, Min; Wang, Fang; Xu, Xiao Hong

    2018-02-01

    Patterned magnetic thin films are both scientifically interesting and technologically useful. Ultrathin self-organized anodic aluminum oxide (AAO) template can be used to fabricate large area nanodot and antidot arrays. The magnetic properties of these nanostructures may be tuned by the morphology of the AAO template, which in turn can be controlled by synthetic parameters. In this work, ultrathin AAO templates were used as etching masks for the fabrication of both FePt nanodot and antidot arrays with high areal density. The perpendicular magnetic anisotropy of L10 FePt thin films are preserved in the nanostructures.

  15. Improved electrical properties of atomic layer deposited tin disulfide at low temperatures using ZrO2 layer

    NASA Astrophysics Data System (ADS)

    Lee, Juhyun; Lee, Jeongsu; Ham, Giyul; Shin, Seokyoon; Park, Joohyun; Choi, Hyeongsu; Lee, Seungjin; Kim, Juyoung; Sul, Onejae; Lee, Seungbeck; Jeon, Hyeongtag

    2017-02-01

    We report the effect of zirconium oxide (ZrO2) layers on the electrical characteristics of multilayered tin disulfide (SnS2) formed by atomic layer deposition (ALD) at low temperatures. SnS2 is a two-dimensional (2D) layered material which exhibits a promising electrical characteristics as a channel material for field-effect transistors (FETs) because of its high mobility, good on/off ratio and low temperature processability. In order to apply these 2D materials to large-scale and flexible electronics, it is essential to develop processes that are compatible with current electronic device manufacturing technology which should be conducted at low temperatures. Here, we deposited a crystalline SnS2 at 150 °C using ALD, and we then annealed at 300 °C. X-ray diffraction (XRD) and Raman spectroscopy measurements before and after the annealing showed that SnS2 had a hexagonal (001) peak at 14.9° and A1g mode at 313 cm-1. The annealed SnS2 exhibited clearly a layered structure confirmed by the high resolution transmission electron microscope (HRTEM) images. Back-gate FETs with SnS2 channel sandwiched by top and bottom ZrO2 on p++Si/SiO2 substrate were suggested to improve electrical characteristics. We used a bottom ZrO2 layer to increase adhesion between the channel and the substrate and a top ZrO2 layer to improve contact property, passivate surface, and protect from process-induced damages to the channel. ZTZ (ZrO2/SnS2/ZrO2) FETs showed improved electrical characteristics with an on/off ratio of from 0.39×103 to 6.39×103 and a mobility of from 0.0076 cm2/Vs to 0.06 cm2/Vs.

  16. Irradiation behavior of LiAlO 2 and Li 2ZrO 3 ceramics in the ALICE 3 experiment

    NASA Astrophysics Data System (ADS)

    Rasneur, B.; Thevenot, G.; Bouilloux, Y.

    1992-09-01

    Within the framework of the investigation of ceramic breeders for the DEMO relevant solid blankets developed in Europe, the ALICE 3 experiment was foreseen to study the irradiation behavior of the ceramics. The irradiation was performed in the core of the OSIRIS reactor for 46 FPD (full power days) at 400°C and 600°C. The three ceramics in the configuration contemplated in the BIT and BOT concepts were tested, i.e. LiAlO 2 and Li 2ZrO 3 pellets, Li 4SiO 4 and Li 2ZrO 3 pebbles, respectively. In this paper are reported the results of the post-irradiation examination carried out at CEA on CEA Li 2ZrO 3 and LiAlO 2 specimens: dimensions, X-ray diffraction, ultimate bending strength, diametral compressive strength and residual tritium.

  17. High-speed growth of TiO2 nanotube arrays with gradient pore diameter and ultrathin tube wall under high-field anodization

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaoliang; Zheng, Maojun; Ma, Li; Shen, Wenzhong

    2010-10-01

    Highly ordered TiO2 nanotubular arrays have been prepared by two-step anodization under high field. The high anodizing current densities lead to a high-speed film growth (0.40-1.00 µm min - 1), which is nearly 16 times faster than traditional fabrication of TiO2 at low field. It was found that an annealing process of Ti foil is an effective approach to get a monodisperse and double-pass TiO2 nanotubular layer with a gradient pore diameter and ultrathin tube wall (nearly 10 nm). A higher anodic voltage and longer anodization time are beneficial to the formation of ultrathin tube walls. This approach is simple and cost-effective in fabricating high-quality ordered TiO2 nanotubular arrays for practical applications.

  18. High-speed growth of TiO2 nanotube arrays with gradient pore diameter and ultrathin tube wall under high-field anodization.

    PubMed

    Yuan, Xiaoliang; Zheng, Maojun; Ma, Li; Shen, Wenzhong

    2010-10-08

    Highly ordered TiO(2) nanotubular arrays have been prepared by two-step anodization under high field. The high anodizing current densities lead to a high-speed film growth (0.40-1.00 microm min(-1)), which is nearly 16 times faster than traditional fabrication of TiO(2) at low field. It was found that an annealing process of Ti foil is an effective approach to get a monodisperse and double-pass TiO(2) nanotubular layer with a gradient pore diameter and ultrathin tube wall (nearly 10 nm). A higher anodic voltage and longer anodization time are beneficial to the formation of ultrathin tube walls. This approach is simple and cost-effective in fabricating high-quality ordered TiO(2) nanotubular arrays for practical applications.

  19. Effect of Er3+ concentration on the luminescence properties of Al2O3-ZrO2 powder

    NASA Astrophysics Data System (ADS)

    Clabel H., J. L.; Rivera, V. A. G.; Nogueira, I. C.; Leite, E. R.; Siu Li, M.; Marega, E.

    2016-12-01

    This manuscript reports on the effects of the luminescence properties of Er3+ on Al2O3-ZrO2 powder synthesized by the conventional solid-state method. The best conditions found for the calcinations were 1500 °C and 4 h. The structural dependence of the luminescence on Er3+:Al2O3-ZrO2 is associated with phase transformations of the Al2O3-ZrO2 host and presence of the OH group. Green and red emissions at room temperature from the 2H11/2, 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 levels of Er3+ ions were observed under 482 nm pumping. The green-to-red emission intensity ratios and CIE chromaticity coordinates were determined from emission spectra for the evaluation of light emitted as a function of the Er3+ concentration. The Er3+ luminescence quenching due to group OH and variation in the Er3+ concentration plays an important role in the definition of the luminescent response.

  20. Studies of local structural distortions in strained ultrathin BaTiO3 films using scanning transmission electron microscopy.

    PubMed

    Park, Daesung; Herpers, Anja; Menke, Tobias; Heidelmann, Markus; Houben, Lothar; Dittmann, Regina; Mayer, Joachim

    2014-06-01

    Ultrathin ferroelectric heterostructures (SrTiO3/BaTiO3/BaRuO3/SrRuO3) were studied by scanning transmission electron microscopy (STEM) in terms of structural distortions and atomic displacements. The TiO2-termination at the top interface of the BaTiO3 layer was changed into a BaO-termination by adding an additional BaRuO3 layer. High-angle annular dark-field (HAADF) imaging by aberration-corrected STEM revealed that an artificially introduced BaO-termination can be achieved by this interface engineering. By using fast sequential imaging and frame-by-frame drift correction, the effect of the specimen drift was significantly reduced and the signal-to-noise ratio of the HAADF images was improved. Thus, a quantitative analysis of the HAADF images was feasible, and an in-plane and out-of-plane lattice spacing of the BaTiO3 layer of 3.90 and 4.22 Å were determined. A 25 pm shift of the Ti columns from the center of the unit cell of BaTiO3 along the c-axis was observed. By spatially resolved electron energy-loss spectroscopy studies, a reduction of the crystal field splitting (CFS, ΔL3=1.93 eV) and an asymmetric broadening of the eg peak were observed in the BaTiO3 film. These results verify the presence of a ferroelectric polarization in the ultrathin BaTiO3 film.

  1. Chemical vapor deposited monolayer MoS2 top-gate MOSFET with atomic-layer-deposited ZrO2 as gate dielectric

    NASA Astrophysics Data System (ADS)

    Hu, Yaoqiao; Jiang, Huaxing; Lau, Kei May; Li, Qiang

    2018-04-01

    For the first time, ZrO2 dielectric deposition on pristine monolayer MoS2 by atomic layer deposition (ALD) is demonstrated and ZrO2/MoS2 top-gate MOSFETs have been fabricated. ALD ZrO2 overcoat, like other high-k oxides such as HfO2 and Al2O3, was shown to enhance the MoS2 channel mobility. As a result, an on/off current ratio of over 107, a subthreshold slope of 276 mV dec-1, and a field-effect electron mobility of 12.1 cm2 V-1 s-1 have been achieved. The maximum drain current of the MOSFET with a top-gate length of 4 μm and a source/drain spacing of 9 μm is measured to be 1.4 μA μm-1 at V DS = 5 V. The gate leakage current is below 10-2 A cm-2 under a gate bias of 10 V. A high dielectric breakdown field of 4.9 MV cm-1 is obtained. Gate hysteresis and frequency-dependent capacitance-voltage measurements were also performed to characterize the ZrO2/MoS2 interface quality, which yielded an interface state density of ˜3 × 1012 cm-2 eV-1.

  2. New ultrathin film heterostructure for low-e application by sputtering technique: a theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Ruíz-Robles, M. A.; Abundiz-Cisneros, N.; Bender-Pérez, C. E.; Gutiérrez-Lazos, C. D.; Fundora-Cruz, A.; Solís-Pomar, F.; Pérez-Tijerina, E.

    2018-03-01

    The design and optical characterization by UV–vis transmittance of ultrathin low-emissivity (low-e) windows by reactive sputtering are reported. Two heterostructures on a glass substrate were considered for the low-e windows. The first heterostructure is Si3N4/TiO2/ZnO/Ag/SnO2/Si3N4 and the second is Si3N4/Ag/Si3N4. The transmittance and reflectance of these heterostructures were simulated to determine the required thickness of each layer. The first heterostructure exhibited maximum transmittance of 85% at 550 nm, slightly higher than the one determined by simulation and less than 50% transmittance in the near-infrared region (900 nm). The second heterostructure exhibited transmittance greater than 86% at 550 nm and <50% transmittance in the near-infrared region. In addition, we found that the bandwidth and maximum position of the transmittance depend on the Si3N4 layer thickness. Specifically, the thickness of the first Si3N4 layer allows the modulation of the transmittance bandwidth and the thickness of the second Si3N4 layer allows the modulation of the maximum position. The low-e windows were protected by the deposition of an ultrathin film of NiCr alloy (Ni 80%, Cr 20%) that preserved the optical characteristics and decreased the maximum of the transmittance only by 3%.

  3. Effects of different wetting layers on the growth of smooth ultra-thin silver thin films

    NASA Astrophysics Data System (ADS)

    Ni, Chuan; Shah, Piyush; Sarangan, Andrew M.

    2014-09-01

    Ultrathin silver films (thickness below 10 nm) are of great interest as optical coatings on windows and plasmonic devices. However, producing these films has been a continuing challenge because of their tendency to form clusters or islands rather than smooth contiguous thin films. In this work we have studied the effect of Cu, Ge and ZnS as wetting layers (1.0 nm) to achieve ultrasmooth thin silver films. The silver films (5 nm) were grown by RF sputter deposition on silicon and glass substrates using a few monolayers of the different wetting materials. SEM imaging was used to characterize the surface properties such as island formation and roughness. Also the optical properties were measured to identify the optical impact of the different wetting layers. Finally, a multi-layer silver based structure is designed and fabricated, and its performance is evaluated. The comparison between the samples with different wetting layers show that the designs with wetting layers which have similar optical properties to silver produce the best overall performance. In the absence of a wetting layer, the measured optical spectra show a significant departure from the model predictions, which we attribute primarily to the formation of clusters.

  4. The photoelectronic behaviors of MoO3-loaded ZrO2/carbon cluster nanocomposite materials

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Ishiko, A.; Karuppuchamy, S.; Hassan, M. A.; Yoshihara, M.

    2012-03-01

    A novel nano-sized ZrO2/carbon cluster composite materials (Ic's) were successfully obtained by the calcination of ZrCl4/starch complexes I's under an argon atmosphere. Pt- and/or MoO3-loaded ZrO2/carbon clusters composite materials were also prepared by doping Pt and/or MoO3 particles on the surface of Ic's. The surface characterization of the composite materials was carried out using transmission electron microscopy (TEM). The TEM observation of the materials showed the presence of particles with the diameters of a few nanometers, possibly Pt particles, and of 50-100 nm, possibly MoO3 particles, in the matrix. Pt- and/or MoO3-loaded ZrO2/carbon cluster composite materials show the efficient photocatalytic activity under visible light irradiation.

  5. Potential of SiO2/ZrO2 matrix doped with CoFe2O4 magnetic nanoparticles in achieving integrated magneto-optical isolators

    NASA Astrophysics Data System (ADS)

    Zamani, Mehdi; Hocini, Abdesselam

    2017-05-01

    We have investigated the potential of the SiO2/ZrO2 matrix doped with CoFe2O4 magnetic nanoparticles in order to overcome the problem of integration of the magneto-optical isolators (MOIs). In this way, we have performed a theoretical study for the case of designing perfect and adjustable MOIs based on magnetophotonic crystals (MPCs) containing SiO2/ZrO2 matrix doped with CoFe2O4 magnetic nanoparticles as a magnetic medium. Despite the existence the attenuation coefficient for SiO2/ZrO2 matrix at wavelength 1550 nm that leads to a non-perfect transmittance, we could introduce an MPC structure having no reflectance; therefore, an ideal MOI for eliminating unwanted back-reflection could be achieved.

  6. Fluctuation conductance and the Berezinskii-Kosterlitz-Thouless transition in two dimensional epitaxial NbTiN ultra-thin films

    NASA Astrophysics Data System (ADS)

    K, Makise; H, Terai; T, Yamashita; S, Miki; Z, Wang; Uzawa Y, Y.; S, Ezaki; T, Odou; B, Shinozaki

    2012-12-01

    We study on the electric transport properties of epitaxial NbTiN ultrathin films in a range from 2 to 8nm. The films with 4 nm thick shows superconductivity of which mean-field superconducting transition temperature is TC0 = 9.43 K The excess conductance due to superconducting fluctuations was measured at temperatures above TC0. The paraconductivity shows a two-dimensional like behaviour at close to TC0. Experimental results are in good agreement with the sum of Aslamazov - Larkin and Maki - Thompson term for superconducting fluctuation theory. Decreasing temperature below TC0, the current-voltage characteristic shows a crossover from linear to nonlinear behaviour. The exponent α of current-voltage relation, V ~ Iα showed universal jump at TCBKT = 9.33 K As results, we find that there is a consistency between the parametrization of the2D characteristics of fluctuation paraconductivity above TC0 and Berezinskii-Kosterlitz-Thouless type behaviour below TC0.

  7. Probing nanoscale ion dynamics in ultrathin films of polymerized ionic liquids by broadband dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Sangoro, Joshua; Heres, Maximilian; Cosby, Tyler

    Continuous progress in energy storage and conversion technologies necessitates novel experimental approaches that can provide fundamental insights regarding the impact of reduced dimensions on the functional properties of materials. In this talk, a nondestructive experimental approach to probe nanoscale ion dynamics in ultrathin films of polymerized ionic liquids over a broad frequency range spanning over six orders of magnitude by broadband dielectric spectroscopy will be presented. The approach involves using an electrode configuration with lithographically patterned silica nanostructures, which allow for an air gap between the confined ion conductor and one of the electrodes. It is observed that the characteristic ion dynamics rates significantly slow down with decreasing film thicknesses above the calorimetric glass transition of the bulk polymer. However, the mean rates remain bulk-like at lower temperatures. These results highlight the increasing influence of the polymer/substrate interactions with decreasing film thickness on ion dynamics. The authors gratefully acknowledge the National Science Foundation for financial support through the Polymers Program award DMR-1508394.

  8. Low-temperature CO oxidation over Cu/Pt co-doped ZrO2 nanoparticles synthesized by solution combustion.

    PubMed

    Singhania, Amit; Gupta, Shipra Mital

    2017-01-01

    Zirconia (ZrO 2 ) nanoparticles co-doped with Cu and Pt were applied as catalysts for carbon monoxide (CO) oxidation. These materials were prepared through solution combustion in order to obtain highly active and stable catalytic nanomaterials. This method allows Pt 2+ and Cu 2+ ions to dissolve into the ZrO 2 lattice and thus creates oxygen vacancies due to lattice distortion and charge imbalance. High-resolution transmission electron microscopy (HRTEM) results showed Cu/Pt co-doped ZrO 2 nanoparticles with a size of ca. 10 nm. X-ray diffraction (XRD) and Raman spectra confirmed cubic structure and larger oxygen vacancies. The nanoparticles showed excellent activity for CO oxidation. The temperature T 50 (the temperature at which 50% of CO are converted) was lowered by 175 °C in comparison to bare ZrO 2 . Further, they exhibited very high stability for CO reaction (time-on-stream ≈ 70 h). This is due to combined effect of smaller particle size, large oxygen vacancies, high specific surface area and better thermal stability of the Cu/Pt co-doped ZrO 2 nanoparticles. The apparent activation energy for CO oxidation is found to be 45.6 kJ·mol -1 . The CO conversion decreases with increase in gas hourly space velocity (GHSV) and initial CO concentration.

  9. Scaling of structure and electrical properties in ultrathin epitaxial ferroelectric heterostructures

    NASA Astrophysics Data System (ADS)

    Nagarajan, V.; Junquera, J.; He, J. Q.; Jia, C. L.; Waser, R.; Lee, K.; Kim, Y. K.; Baik, S.; Zhao, T.; Ramesh, R.; Ghosez, Ph.; Rabe, K. M.

    2006-09-01

    Scaling of the structural order parameter, polarization, and electrical properties was investigated in model ultrathin epitaxial SrRuO3/PbZr0.2Ti0.8O3/SrRuO3/SrTiO3 heterostructures. High-resolution transmission electron microscopy images revealed the interfaces to be sharp and fully coherent. Synchrotron x-ray studies show that a high tetragonality (c /a˜1.058) is maintained down to 50Å thick films, suggesting indirectly that ferroelectricity is fully preserved at such small thicknesses. However, measurement of the switchable polarization (ΔP) using a pulsed probe setup and the out-of-plane piezoelectric response (d33) revealed a systematic drop from ˜140μC/cm2 and 60pm/V for a 150Å thick film to 11μC/cm2 and 7pm/V for a 50Å thick film. This apparent contradiction between the structural measurements and the measured switchable polarization is explained by an increasing presence of a strong depolarization field, which creates a pinned 180° polydomain state for the thinnest films. Existence of a polydomain state is demonstrated by piezoresponse force microscopy images of the ultrathin films. These results suggest that the limit for a ferroelectric memory device may be much larger than the fundamental limit for ferroelectricity.

  10. Oxygen-enabled control of Dzyaloshinskii-Moriya Interaction in ultra-thin magnetic films.

    PubMed

    Belabbes, Abderrezak; Bihlmayer, Gustav; Blügel, Stefan; Manchon, Aurélien

    2016-04-22

    The search for chiral magnetic textures in systems lacking spatial inversion symmetry has attracted a massive amount of interest in the recent years with the real space observation of novel exotic magnetic phases such as skyrmions lattices, but also domain walls and spin spirals with a defined chirality. The electrical control of these textures offers thrilling perspectives in terms of fast and robust ultrahigh density data manipulation. A powerful ingredient commonly used to stabilize chiral magnetic states is the so-called Dzyaloshinskii-Moriya interaction (DMI) arising from spin-orbit coupling in inversion asymmetric magnets. Such a large antisymmetric exchange has been obtained at interfaces between heavy metals and transition metal ferromagnets, resulting in spin spirals and nanoskyrmion lattices. Here, using relativistic first-principles calculations, we demonstrate that the magnitude and sign of DMI can be entirely controlled by tuning the oxygen coverage of the magnetic film, therefore enabling the smart design of chiral magnetism in ultra-thin films. We anticipate that these results extend to other electronegative ions and suggest the possibility of electrical tuning of exotic magnetic phases.

  11. Oxygen-enabled control of Dzyaloshinskii-Moriya Interaction in ultra-thin magnetic films

    PubMed Central

    Belabbes, Abderrezak; Bihlmayer, Gustav; Blügel, Stefan; Manchon, Aurélien

    2016-01-01

    The search for chiral magnetic textures in systems lacking spatial inversion symmetry has attracted a massive amount of interest in the recent years with the real space observation of novel exotic magnetic phases such as skyrmions lattices, but also domain walls and spin spirals with a defined chirality. The electrical control of these textures offers thrilling perspectives in terms of fast and robust ultrahigh density data manipulation. A powerful ingredient commonly used to stabilize chiral magnetic states is the so-called Dzyaloshinskii-Moriya interaction (DMI) arising from spin-orbit coupling in inversion asymmetric magnets. Such a large antisymmetric exchange has been obtained at interfaces between heavy metals and transition metal ferromagnets, resulting in spin spirals and nanoskyrmion lattices. Here, using relativistic first-principles calculations, we demonstrate that the magnitude and sign of DMI can be entirely controlled by tuning the oxygen coverage of the magnetic film, therefore enabling the smart design of chiral magnetism in ultra-thin films. We anticipate that these results extend to other electronegative ions and suggest the possibility of electrical tuning of exotic magnetic phases. PMID:27103448

  12. A novel interferometric method for the study of the viscoelastic properties of ultra-thin polymer films determined from nanobubble inflation

    NASA Astrophysics Data System (ADS)

    Chapuis, P.; Montgomery, P. C.; Anstotz, F.; Leong-Hoï, A.; Gauthier, C.; Baschnagel, J.; Reiter, G.; McKenna, G. B.; Rubin, A.

    2017-09-01

    Glass formation and glassy behavior remain as the important areas of investigation in soft matter physics with many aspects which are still not completely understood, especially at the nanometer size-scale. In the present work, we show an extension of the "nanobubble inflation" method developed by O'Connell and McKenna [Rev. Sci. Instrum. 78, 013901 (2007)] which uses an interferometric method to measure the topography of a large array of 5 μ m sized nanometer thick films subjected to constant inflation pressures during which the bubbles grow or creep with time. The interferometric method offers the possibility of making measurements on multiple bubbles at once as well as having the advantage over the AFM methods of O'Connell and McKenna of being a true non-contact method. Here we demonstrate the method using ultra-thin films of both poly(vinyl acetate) (PVAc) and polystyrene (PS) and discuss the capabilities of the method relative to the AFM method, its advantages and disadvantages. Furthermore we show that the results from experiments on PVAc are consistent with the prior work on PVAc, while high stress results with PS show signs of a new non-linear response regime that may be related to the plasticity of the ultra-thin film.

  13. Hydrodeoxygenation of p -Cresol over Pt/Al 2 O 3 Catalyst Promoted by ZrO 2 , CeO 2 , and CeO 2 –ZrO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Weiyan; Wu, Kui; Liu, Pengli

    2016-07-20

    ZrO 2-Al 2O 3 and CeO 2-Al 2O 3 were prepared by a co-precipitation method and selected as supports for Pt catalysts. The effects of CeO 2 and ZrO 2 on the surface area and Brønsted acidity of Pt/Al 2O 3 were studied. In the hydrodeoxygenation (HDO) of p-cresol, the addition of ZrO 2 promoted the direct deoxygenation activity on Pt/ZrOO 2-Al 2O 3 via Caromatic-O bond scission without benzene ring saturation. Pt/CeOO 2-Al 2O 3 exhibited higher deoxygenation extent than Pt/Al 2O 3 due to the fact that Brønsted acid sites on the catalyst surface favored the adsorption ofmore » p-cresol. With the advantages of CeO 2 and ZrO 2 taken into consideration, CeO 2-ZrOO 2-Al 2O 3 was prepared, leading to the highest HDO activity of Pt/CeO 2-ZrOO 2-Al 2O 3. The deoxygenation extent for Pt/CeO 2-ZrOO 2-Al 2O 3 was 48.4% and 14.5% higher than that for Pt/ZrO2O 2-Al 2O 3 and Pt/CeOO 2-Al 2O 3, respectively.« less

  14. The Effect of Microstructure on Mechanical Properties of Directionally Solidified Al2O3/ZrO2(Y2O3) Eutectic

    NASA Technical Reports Server (NTRS)

    Sayir, Ali; Farmer, Serene C.

    1999-01-01

    The eutectic architecture of a continuous reinforcing phase within a higher volume fraction phase or matrix can be described as a naturally occurring in-situ composite. Here we report the results of experiments aimed at identifying the sources of high temperature creep resistance and high levels of strength in a two phase Al2O3/ZrO2(Y2O3) system. The mechanical properties of two phase Al2O3/ZrO2(Y2O3) eutectic are superior to those of either constituent alone due to strong constraining effects provided by the coherent interfaces and microstructure. The AlO3/ZrO2(Y2O3) eutectic maintains a low energy interface resulting from directional solidification and can produce strong and stable reinforcing phase/matrix bonding. The phases comprising a eutectic are thermodynamically compatible at higher homologous temperatures than man-made composites and as such offer the potential for superior high temperature properties.

  15. Formation and investigation of ultrathin layers of Co2FeSi ferromagnetic alloy synthesized on silicon covered with a CaF2 barrier layer

    NASA Astrophysics Data System (ADS)

    Grebenyuk, G. S.; Gomoyunova, M. V.; Pronin, I. I.; Vyalikh, D. V.; Molodtsov, S. L.

    2016-03-01

    Ultrathin (∼2 nm) films of Co2FeSi ferromagnetic alloy were formed on silicon by solid-phase epitaxy and studied in situ. Experiments were carried out in an ultrahigh vacuum (UHV) using substrates of Si(1 1 1) single crystals covered with a 5 nm thick CaF2 barrier layer. The elemental and phase composition as well as the magnetic properties of the synthesized films were analyzed by photoelectron spectroscopy using synchrotron radiation and by magnetic linear dichroism in photoemission of Fe 3p and Co 3p electrons. The study shows that the synthesis of the Co2FeSi ferromagnetic alloy occurs in the temperature range of 200-400 °C. At higher temperatures, the films become island-like and lose their ferromagnetic properties, as the CaF2 barrier layer is unable to prevent a mass transfer between the film and the Si substrate, which violates the stoichiometry of the alloy.

  16. Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing.

    PubMed

    Shih, Huan-Yu; Lee, Wei-Hao; Kao, Wei-Chung; Chuang, Yung-Chuan; Lin, Ray-Ming; Lin, Hsin-Chih; Shiojiri, Makoto; Chen, Miin-Jang

    2017-01-03

    Low-temperature epitaxial growth of AlN ultrathin films was realized by atomic layer deposition (ALD) together with the layer-by-layer, in-situ atomic layer annealing (ALA), instead of a high growth temperature which is needed in conventional epitaxial growth techniques. By applying the ALA with the Ar plasma treatment in each ALD cycle, the AlN thin film was converted dramatically from the amorphous phase to a single-crystalline epitaxial layer, at a low deposition temperature of 300 °C. The energy transferred from plasma not only provides the crystallization energy but also enhances the migration of adatoms and the removal of ligands, which significantly improve the crystallinity of the epitaxial layer. The X-ray diffraction reveals that the full width at half-maximum of the AlN (0002) rocking curve is only 144 arcsec in the AlN ultrathin epilayer with a thickness of only a few tens of nm. The high-resolution transmission electron microscopy also indicates the high-quality single-crystal hexagonal phase of the AlN epitaxial layer on the sapphire substrate. The result opens a window for further extension of the ALD applications from amorphous thin films to the high-quality low-temperature atomic layer epitaxy, which can be exploited in a variety of fields and applications in the near future.

  17. Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing

    PubMed Central

    Shih, Huan-Yu; Lee, Wei-Hao; Kao, Wei-Chung; Chuang, Yung-Chuan; Lin, Ray-Ming; Lin, Hsin-Chih; Shiojiri, Makoto; Chen, Miin-Jang

    2017-01-01

    Low-temperature epitaxial growth of AlN ultrathin films was realized by atomic layer deposition (ALD) together with the layer-by-layer, in-situ atomic layer annealing (ALA), instead of a high growth temperature which is needed in conventional epitaxial growth techniques. By applying the ALA with the Ar plasma treatment in each ALD cycle, the AlN thin film was converted dramatically from the amorphous phase to a single-crystalline epitaxial layer, at a low deposition temperature of 300 °C. The energy transferred from plasma not only provides the crystallization energy but also enhances the migration of adatoms and the removal of ligands, which significantly improve the crystallinity of the epitaxial layer. The X-ray diffraction reveals that the full width at half-maximum of the AlN (0002) rocking curve is only 144 arcsec in the AlN ultrathin epilayer with a thickness of only a few tens of nm. The high-resolution transmission electron microscopy also indicates the high-quality single-crystal hexagonal phase of the AlN epitaxial layer on the sapphire substrate. The result opens a window for further extension of the ALD applications from amorphous thin films to the high-quality low-temperature atomic layer epitaxy, which can be exploited in a variety of fields and applications in the near future. PMID:28045075

  18. Fabrication of solution-processed InSnZnO/ZrO2 thin film transistors.

    PubMed

    Hwang, Soo Min; Lee, Seung Muk; Choi, Jun Hyuk; Lim, Jun Hyung; Joo, Jinho

    2013-11-01

    We fabricated InSnZnO (ITZO) thin-film transistors (TFTs) with a high-permittivity (K) ZrO2 gate insulator using a solution process and explored the microstructure and electrical properties. ZrO2 and ITZO (In:Sn:Zn = 2:1:1) precursor solutions were deposited using consecutive spin-coating and drying steps on highly doped p-type Si substrate, followed by annealing at 700 degrees C in ambient air. The ITZO/ZrO2 TFT device showed n-channel depletion mode characteristics, and it possessed a high saturation mobility of approximately 9.8 cm2/V x s, a small subthreshold voltage swing of approximately 2.3 V/decade, and a negative V(TH) of approximately 1.5 V, but a relatively low on/off current ratio of approximately 10(-3). These results were thought to be due to the use of the high-kappa crystallized ZrO2 dielectric (kappa approximately 21.8) as the gate insulator, which could permit low-voltage operation of the solution-processed ITZO TFT devices for applications to high-throughput, low-cost, flexible and transparent electronics.

  19. Hafnium oxide films for application as gate dielectrics

    NASA Astrophysics Data System (ADS)

    Hsu, Shuo-Lin

    The deposition and characterization of HfO2 films for potential application as a high-kappa gate dielectric in MOS devices has been investigated. DC magnetron reactive sputtering was utilized to prepare the HfO2 films. Structural, chemical, and electrical analyses were performed to characterize the various physical, chemical and electrical properties of the sputtered HfO2 films. The sputtered HfO2 films were annealed to simulate the dopant activation process used in semiconductor processing, and to study the thermal stability of the high-kappa, films. The changes in the film properties due to the annealing are also discussed in this work. Glancing angle XRD was used to analyse the atomic scale structure of the films. The as deposited films exhibit an amorphous, regardless of the film thickness. During post-deposition annealing, the thicker films crystallized at lower temperature (< 600°C), and ultra-thin (5.8 nm) film crystallized at higher temperature (600--720°C). The crystalline phase which formed depended on the thickness of the films. The low temperature phase (monoclinic) formed in the 10--20 nm annealed films, and high temperature phase (tetragonal) formed in the ultra-thin annealed HfO2 film. TEM cross-section studies of as deposited samples show that an interfacial layer (< 1nm) exists between HfO2/Si for all film thicknesses. The interfacial layer grows thicker during heat treatment, and grows more rapidly when grain boundaries are present. XPS surface analysis shows the as deposited films are fully oxidized with an excess of oxygen. Interfacial chemistry analysis indicated that the interfacial layer is a silicon-rich silicate layer, which tends to transform to silica-like layer during heat treatment. I-V measurements show the leakage current density of the Al/as deposited-HfO 2/Si MOS diode is of the order of 10-3 A/cm 2, two orders of magnitude lower than that of a ZrO2 film with similar physical thickness. Carrier transport is dominated by Schottky

  20. Ultrathin planar graphene supercapacitors.

    PubMed

    Yoo, Jung Joon; Balakrishnan, Kaushik; Huang, Jingsong; Meunier, Vincent; Sumpter, Bobby G; Srivastava, Anchal; Conway, Michelle; Reddy, Arava Leela Mohana; Yu, Jin; Vajtai, Robert; Ajayan, Pulickel M

    2011-04-13

    With the advent of atomically thin and flat layers of conducting materials such as graphene, new designs for thin film energy storage devices with good performance have become possible. Here, we report an "in-plane" fabrication approach for ultrathin supercapacitors based on electrodes comprised of pristine graphene and multilayer reduced graphene oxide. The in-plane design is straightforward to implement and exploits efficiently the surface of each graphene layer for energy storage. The open architecture and the effect of graphene edges enable even the thinnest of devices, made from as grown 1-2 graphene layers, to reach specific capacities up to 80 μFcm(-2), while much higher (394 μFcm(-2)) specific capacities are observed multilayer reduced graphene oxide electrodes. The performances of devices with pristine as well as thicker graphene-based structures are examined using a combination of experiments and model calculations. The demonstrated all solid-state supercapacitors provide a prototype for a broad range of thin-film based energy storage devices.

  1. Impact of nano and bulk ZrO2, TiO2 particles on soil nutrient contents and PGPR.

    PubMed

    Karunakaran, Gopalu; Suriyaprabha, Rangaraj; Manivasakan, Palanisamy; Yuvakkumar, Rathinam; Rajendran, Venkatachalam; Kannan, Narayanasamy

    2013-01-01

    Currently, nanometal oxides are used extensively in different industries such as medicine, cosmetics and food. The increased consumption of nanoparticles (NPs) leads the necessity to understand the fate of the nanoparticles in the environment. The present study focused on the ecotoxicological behaviour of bulk and nano ZrO2 (Zirconia) and TiO2 (Titania) particles on PGPR (plant growth promoting rhizobacteria), soil and its nutrient contents. The microbial susceptibility study showed that nano TiO2 had 13 +/- 0.9 mm (B. megaterium), 15 +/- 0.2 mm (P. fluorescens), 16 +/- 0.2 mm (A. vinelandii) and 12 +/- 0.3 mm (B. brevis) zones of inhibition. However, nano and bulk ZrO2 particles were non-toxic to PGPR. In addition, it was found that toxicity varied depends on the medium of reaction. The soil study showed that nano TiO2 was found to be highly toxic, whereas bulk TiO2 was less toxic towards soil bacterial populations at 1000 mg L(-1). In contrast, nano and bulk ZrO2 were found to be inert at 1000 mg L(-1). The observed zeta potential and hydrophobicity of TiO2 particles causes more toxic than ZrO2 in parallel with particle size. However, nano TiO2 decreases the microbial population as well as nutrient level of the soil but not zirconia. Our finding shows that the mechanism of toxicity depends on size, hydrophobic potential and zeta potential of the metal oxide particles. Thus, it is necessary to take safety measures during the disposal and use of such toxic nanoparticles in the soil to prevent their hazardous effects.

  2. Chemical vapor deposition of anisotropic ultrathin gold films on optical fibers: real-time sensing by tilted fiber Bragg gratings and use of a dielectric pre-coating

    NASA Astrophysics Data System (ADS)

    Mandia, David J.; Zhou, Wenjun; Ward, Matthew J.; Joress, Howie; Giorgi, Javier B.; Gordon, Peter; Albert, Jacques; Barry, Seán. T.

    2014-09-01

    Tilted fiber Bragg gratings (TFBGs) are refractometry-based sensor platforms that have been employed herein as devices for the real-time monitoring of chemical vapour deposition (CVD) in the near-infrared range (NIR). The coreguided light launched within the TFBG core is back-reflected off a gold mirror sputtered onto the fiber-end and is scattered out into the cladding where it can interact with a nucleating thin film. Evanescent fields of the growing gold nanostructures behave differently depending on the polarization state of the core-guided light interrogating the growing film, therefore the resulting spectral profile is typically decomposed into two separate peak families for the orthogonal S- and P-polarizations. Wavelength shifts and attenuation profiles generated from gold films in the thickness regime of 5-100 nm are typically degenerate for deposition directly onto the TFBG. However, a polarization-dependence can be imposed by adding a thin dielectric pre-coating onto the TFBG prior to using the device for CVD monitoring of the ultrathin gold films. It is found that addition of the pre-coating enhances the sensitivity of the P-polarized peak family to the deposition of ultrathin gold films and renders the films optically anisotropic. It is shown herein that addition of the metal oxide coating can increase the peak-to-peak wavelength separation between orthogonal polarization modes as well as allow for easy resonance tracking during deposition. This is also the first reporting of anisotropic gold films generated from this particular gold precursor and CVD process. Using an ensemble of x-ray techniques, the local fine structure of the gold films deposited directly on the TFBG is compared to gold films of similar thicknesses deposited on the Al2O3 pre-coated TFBG and witness slides.

  3. Growth of beta-MnO2 Films on TiO2(110) by Oxygen-Plasma-Assisted Molecular Beam Epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chambers, Scott A.; Liang, Yong

    Discusses the essential need to understand the heterogeneous chemistry of mineral surfaces at a molecular level for accurate modeling of surface complexion processes in natural environments. Describes the first MBE growth and characterization of ultrathin films of B-MnO2 on TiO2 (110).

  4. Ferroelectricity in Pb 1+δZrO 3 Thin Films

    DOE PAGES

    Gao, Ran; Reyes-Lillo, Sebastian E.; Xu, Ruijuan; ...

    2017-07-16

    Antiferroelectric PbZrO 3 is being considered for a wide range of applications where the competition between centrosymmetric and noncentrosymmetric phases is important to the response. Here, we focus on the epitaxial growth of PbZrO 3 thin films and understanding the chemistry structure coupling in Pb 1+δ ZrO 3 (δ = 0, 0.1, 0.2). High-quality, single-phase Pb 1+δZrO 3 films are synthesized via pulsed-laser deposition. Though no significant lattice parameter change is observed in X-ray studies, electrical characterization reveals that while the PbZrO 3 and Pb 1.1ZrO 3 heterostructures remain intrinsically antiferroelectric, the Pb 1.2ZrO 3 heterostructures exhibit a hysteresis loopmore » indicative of ferroelectric response. Furthermore X-ray scattering studies reveal strong quarter-order diffraction peaks in PbZrO 3 and Pb 1.1ZrO 3 heterostructures indicative of antiferroelectricity, while no such peaks are observed for Pb 1.2ZrO 3 heterostructures. Density functional theory calculations suggest the large cation nonstoichiometry is accommodated by incorporation of antisite Pb-Zr defects, which drive the Pb 1.2ZrO 3 heterostructures to a ferroelectric phase with R3c symmetry. In the end, stabilization of metastable phases in materials via chemical nonstoichiometry and defect engineering enables a novel route to manipulate the energy of the ground state of materials and the corresponding material properties.« less

  5. Nanowire decorated, ultra-thin, single crystalline silicon for photovoltaic devices.

    PubMed

    Aurang, Pantea; Turan, Rasit; Unalan, Husnu Emrah

    2017-10-06

    Reducing silicon (Si) wafer thickness in the photovoltaic industry has always been demanded for lowering the overall cost. Further benefits such as short collection lengths and improved open circuit voltages can also be achieved by Si thickness reduction. However, the problem with thin films is poor light absorption. One way to decrease optical losses in photovoltaic devices is to minimize the front side reflection. This approach can be applied to front contacted ultra-thin crystalline Si solar cells to increase the light absorption. In this work, homojunction solar cells were fabricated using ultra-thin and flexible single crystal Si wafers. A metal assisted chemical etching method was used for the nanowire (NW) texturization of ultra-thin Si wafers to compensate weak light absorption. A relative improvement of 56% in the reflectivity was observed for ultra-thin Si wafers with the thickness of 20 ± 0.2 μm upon NW texturization. NW length and top contact optimization resulted in a relative enhancement of 23% ± 5% in photovoltaic conversion efficiency.

  6. ZrO2/bamboo leaves ash (BLA) Catalyst in Biodiesel Conversion of Rice Bran Oil

    NASA Astrophysics Data System (ADS)

    Fatimah, Is; Taushiyah, Ana; Badriatun Najah, Fitri; Azmi, Ulil

    2018-04-01

    Preparation, characterization and catalytic activity of ZrO2/bamboo leaves ash (BLA) catalyst for conversion of rice bran oil to biodiesel have been investigated. The catalyst was prepared by impregnation method of ZrOCl2 as ZrO2 precursor with BLA at a theoretical content of 20% wt. followed by calcination. The physicochemical properties of the catalyst material were characterized by x-ray diffraction (XRD), FTIR and surface acidity measurement. Activity test of materials in biodiesel conversion of rice bran oil was used by reflux method and microwave (MW) assisted method. Reaction variables studied in the investigation were the effect of catalyst weight and time of MW irradiation compared with the use reflux method. The results showed that ZrO2/BLA catalyst exhibited competitively effective and efficient processes for the production of biodiesel. The reflux method demonstrated an higher conversion (%) compared to MW method, however MW method showed the better reusable properties.

  7. Ethanol dehydrogenation on copper catalysts with ytterbium stabilized tetragonal ZrO2 support

    NASA Astrophysics Data System (ADS)

    Chuklina, S. G.; Pylinina, A. I.; Podzorova, L. I.; Mikhailina, N. A.; Mikhalenko, I. I.

    2016-12-01

    The physicochemical and catalytic properties of Cu-containing crystalline zirconia, obtained via sol-gel synthesis in the presence of Yb3+ ions and polyvinylpyrrolidone, are studied. DTG/DSC, TEM, XRD and BET methods are used to analyze the crystallization, texture, phase uniformity, surface and porosity of ZrO2 nanopowders. It is shown that increasing the copper content (1, 3, and 5 wt % from ZrO2) raises the dehydrogenation activity in the temperature range of 100-400°C and lowers the activation energy of acetaldehyde formation. It is found that the activity of all Cu/ t-ZrO2 catalysts grows under the effects of the reaction medium, due to the migration and redispersion of copper.

  8. Improved photocatalytic degradation rates of phenol achieved using novel porous ZrO2-doped TiO2 nanoparticulate powders.

    PubMed

    McManamon, Colm; Holmes, Justin D; Morris, Michael A

    2011-10-15

    This paper studies the photocatalytic degradation of phenol using zirconia-doped TiO(2) nanoparticles. ZrO(2) was chosen due to its promising results during preliminary studies. Particles smaller than 10nm were synthesised and doped with quantities of ZrO(2) ranging from 0.5 to 4% (molar metal content). Particles were calcined at different temperatures to alter the TiO(2) structure, from anatase to rutile, in order to provide an ideal ratio of the two phases. Powder X-ray diffraction (PXRD) analysis was used to examine the transformation between anatase and rutile. Degradation of phenol was carried out using a 40 W UV bulb at 365 nm and results were measured by UV-vis spectrometry. TEM images were obtained and show the particles exhibit a highly ordered structure. TiO(2) doped with 1% ZrO(2) (molar metal content) calcined at 700 °C proved to be the most efficient catalyst. This is due to an ideal anatase:rutlie ratio of 80:20, a large surface area and the existence of stable electron-hole pairs. ZrO(2) doping above the optimum loading acted as an electron-hole recombination centre for electron-hole pairs and reduced photocatalytic degradation. Synthesised photocatalysts compared favourably to the commercially available photocatalyst P25. The materials also demonstrated the ability to be recycled with similar results to those achieved on fresh material after 5 uses. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. On the persistence of polar domains in ultrathin ferroelectric capacitors.

    PubMed

    Zubko, Pavlo; Lu, Haidong; Bark, Chung-Wung; Martí, Xavi; Santiso, José; Eom, Chang-Beom; Catalan, Gustau; Gruverman, Alexei

    2017-07-19

    The instability of ferroelectric ordering in ultra-thin films is one of the most important fundamental issues pertaining realization of a number of electronic devices with enhanced functionality, such as ferroelectric and multiferroic tunnel junctions or ferroelectric field effect transistors. In this paper, we investigate the polarization state of archetypal ultrathin (several nanometres) ferroelectric heterostructures: epitaxial single-crystalline BaTiO 3 films sandwiched between the most habitual perovskite electrodes, SrRuO 3 , on top of the most used perovskite substrate, SrTiO 3 . We use a combination of piezoresponse force microscopy, dielectric measurements and structural characterization to provide conclusive evidence for the ferroelectric nature of the relaxed polarization state in ultrathin BaTiO 3 capacitors. We show that even the high screening efficiency of SrRuO 3 electrodes is still insufficient to stabilize polarization in SrRuO 3 /BaTiO 3 /SrRuO 3 heterostructures at room temperature. We identify the key role of domain wall motion in determining the macroscopic electrical properties of ultrathin capacitors and discuss their dielectric response in the light of the recent interest in negative capacitance behaviour.

  10. Evaluating nanoscale ultra-thin metal films by means of lateral photovoltaic effect in metal-semiconductor structure.

    PubMed

    Zheng, Diyuan; Yu, Chongqi; Zhang, Qian; Wang, Hui

    2017-12-15

    Nanoscale metal-semiconductor (MS) structure materials occupy an important position in semiconductor and microelectronic field due to their abundant physical phenomena and effects. The thickness of metal films is a critical factor in determining characteristics of MS devices. How to detect or evaluate the metal thickness is always a key issue for realizing high performance MS devices. In this work, we propose a direct surface detection by use of the lateral photovoltaic effect (LPE) in MS structure, which can not only measure nanoscale thickness, but also detect the fluctuation of metal films. This method is based on the fact that the output of lateral photovoltaic voltage (LPV) is closely linked with the metal thickness at the laser spot. We believe this laser-based contact-free detection is a useful supplement to the traditional methods, such as AFM, SEM, TEM or step profiler. This is because these traditional methods are always incapable of directly detecting ultra-thin metal films in MS structure materials.

  11. Evaluating nanoscale ultra-thin metal films by means of lateral photovoltaic effect in metal-semiconductor structure

    NASA Astrophysics Data System (ADS)

    Zheng, Diyuan; Yu, Chongqi; Zhang, Qian; Wang, Hui

    2017-12-01

    Nanoscale metal-semiconductor (MS) structure materials occupy an important position in semiconductor and microelectronic field due to their abundant physical phenomena and effects. The thickness of metal films is a critical factor in determining characteristics of MS devices. How to detect or evaluate the metal thickness is always a key issue for realizing high performance MS devices. In this work, we propose a direct surface detection by use of the lateral photovoltaic effect (LPE) in MS structure, which can not only measure nanoscale thickness, but also detect the fluctuation of metal films. This method is based on the fact that the output of lateral photovoltaic voltage (LPV) is closely linked with the metal thickness at the laser spot. We believe this laser-based contact-free detection is a useful supplement to the traditional methods, such as AFM, SEM, TEM or step profiler. This is because these traditional methods are always incapable of directly detecting ultra-thin metal films in MS structure materials.

  12. Effect of ZrO2 on the sintering behavior, strength and high-frequency dielectric properties of electrical ceramic porcelain insulator

    NASA Astrophysics Data System (ADS)

    Singh Mehta, Niraj; Sahu, Praveen Kumar; Ershad, Md; Saxena, Vipul; Pyare, Ram; Ranjan Majhi, Manas

    2018-01-01

    In the present study, the effect of ZrO2 on the sintering, strength and dielectric behavior of electrical ceramic porcelain insulator with substituting alumina content by zirconia (in weight percentage from 0% to 30%) is investigated. The different composition of samples containing different zirconia (ZrO2) contents of 0, 10, 20, and 30 wt% are prepared using the uniaxial pressure technique applying 160 MPa pressure. Further, the prepared samples are also analyzed for sintering temperatures (1350 °C), and effects are observed on mechanical and electric properties of porcelain insulator. Different characterizations such as Dilatometer, x-ray diffraction, scanning electron microscopy and differential thermal analysis/thermo gravimetric analysis were used to evaluate the thermal, phase detection, micro structural and weight loss changes by increasing concentration of ZrO2 on base porcelain composition. At 1350 °C, for the composition having 20 wt% ZrO2 with 10 wt% alumina, the maximum density was observed 2.81 g cm-3 with a porosity of 2.23%. The highest tensile strength of 41 ± 3 MPa is observed for the same sample composition. The minimum value of thermal expansion coefficient is found to be in the range of 10-6 for the sample with 30 wt% ZrO2 content sintered at 1350 °C compared to other prepared samples. Similarly, the highest dielectric value (5.1-4.4) having dielectric loss (0.08-0.12) is achieved for the sample with 30 wt% ZrO2 content sintered at 1350 °C in the frequency range of 4-20 GHz at room temperature. According to the mechanical properties, the composition having 20 wt% ZrO2 on base ceramic porcelain composition has enormous potential to serve as a high strength refractory material. For dielectric properties, the composition having 30 wt% ZrO2 is more suitable for the electrical application.

  13. Tunable plasmonic nanocavity with Ge2Sb2Te5 film for directional launching of surface plasmons

    NASA Astrophysics Data System (ADS)

    Jeong, Hee-Dong; Hwang, Chi-Young; Kim, Hyuntai; Choi, Muhan; Lee, Seung-Yeol

    2018-04-01

    A tunable plasmonic nanocavity which consists of a metallic groove with submerged ultra-thin Ge2Sb2Te5 film is proposed for controlling the on/off characteristics of directional surface plasmon polaritions (SPPs) launching. Different mechanisms of launching SPPs using two orthogonal incident polarizations are investigated to reveal the SPP generation characteristics from the proposed nanocavity. By choosing the appropriate position of Ge2Sb2Te5 film, we report that the directional launching characteristics of SPPs can be controlled by changing the phase state of extremely small volume of Ge2Sb2Te5 film, which shows up to 37 dB of extinction ratio changing characteristics.

  14. Microstructural Evolution of Al2O3-ZrO2 (Y2O3) Composites and its Correlation with Toughness

    NASA Astrophysics Data System (ADS)

    Kim, Hee Seung; Seo, Mi Young; Kim, Ik Jin

    2008-02-01

    The microstructure of zirconia (ZrO2) toughened alumina (Al2O3) ceramics was carefully controlled so as to obtain dense and fine-grained ceramics, thereby improving the properties and reliability of the ceramics for capillary applications in semiconductor bonding technology. Al2O3-ZrO2(Y2O3) composite was produced via Ceramic Injection Molding (CIM) technology, followed by Sinter-HIP process. Room temperature strength, hardness, Young's modulus, thermal expansion coefficient and toughness were determined, as well as surface strengthening induced by the fine grained homogenous microstructure and the thermal treatment. The changes in alumina/zirconia grain size, sintering condition and HIP treatment were found to be correlated.

  15. On-surface synthesis: a promising strategy toward the encapsulation of air unstable ultra-thin 2D materials.

    PubMed

    Li, Qiang; Zhao, Yinghe; Guo, Jiyuan; Zhou, Qionghua; Chen, Qian; Wang, Jinlan

    2018-02-22

    2D black phosphorus (BP) and transition metal chalcogenides (TMCs) have beneficial electronic, optical, and physical properties at the few-layer limit. However, irreversible degradation of exfoliated or chemical vapor deposition-grown ultrathin BP and TMCs like GaSe via oxidation under ambient conditions limits their applications. Herein, the on-surface growth of an oxidation-resistant 2D thin film of a metal coordination polymer is demonstrated by multiscale simulations. We show that the preparation of such heterostructures can be conducted in solution, in which pristine BP and GaSe present better stability than in an air environment. Our calculations reveal that the interaction between the polymer layer and 2D materials is dominated by van der Waals forces; thus, the electronic properties of pristine BP and GaSe are well preserved. Meanwhile, the isolation from oxygen and water can be achieved by monolayer polymers, due to the nature of their close-packed layers. Our facile strategy for enhancing the environmental stability of ultrathin materials is expected to accelerate efforts to implement 2D materials in electronic and optoelectronic applications.

  16. Hierarchical Na-doped cubic ZrO2 synthesis by a simple hydrothermal route and its application in biodiesel production

    NASA Astrophysics Data System (ADS)

    Lara-García, Hugo A.; Romero-Ibarra, Issis C.; Pfeiffer, Heriberto

    2014-10-01

    Hierarchical growth of cubic ZrO2 phase was successfully synthesized via a simple hydrothermal process in the presence of different surfactants (cationic, non-ionic and anionic) and sodium hydroxide. The structural and microstructural characterizations of different ZrO2 powders were performed using various techniques, such as X-ray diffraction, transmission electron microscopy, N2 adsorption-desorption, scanning electron microscopy and infrared. Results indicated that sodium addition stabilized the cubic ZrO2 phase by a Na-doping process, independently of the surfactant used. In contrast, microstructural characteristics varied as a function of the surfactant and sodium presence. In addition, water vapor (H2O) and carbon dioxide (CO2) sorption properties were evaluated on ZrO2 samples. Results evidenced that sample surface reactivity changed as a function of the sodium content. Finally, this surface reactivity was evaluated on the biodiesel transesterification reaction using the different synthesized samples, obtaining yields of 93%.

  17. A study of Pd/SO4/ZrO2/Al2O3 catalysts in n-hexane isomerization

    NASA Astrophysics Data System (ADS)

    Dzhikiya, O. V.; Smolikov, M. D.; Kazantsev, K. V.; Yablokova, S. S.; Kireeva, T. V.; Paukshtis, E. A.; Gulyaeva, T. I.; Belyi, A. S.

    2017-08-01

    The effect of palladium concentration in a range from 0.02 to 1.6 wt.% on characteristics of n-hexane isomerization was studied. The (O2-Hchem) titration and O2 chemisorption study revealed that palladium in Pd/SO4/ZrO2/Al2O3 systems adsorbs hydrogen in a ratio H/Pds = 1.13-1.65 at./at. Investigation of the charge state of the metal by IR spectroscopy of adsorbed CO showed the presence of both the metallic (Pd0) and charged palladium species. Pd/SO4/ZrO2/Al2O3 catalysts with charged palladium atoms exhibit high activity and selectivity in n-hexane isomerization.

  18. About properties of ZrO2 thermal protective coatings obtained from spherical powder mixtures

    NASA Astrophysics Data System (ADS)

    Berdnik, O. B.; Tsareva, I. N.; Tarasenko, Yu P.

    2017-05-01

    It is developed the technology of high-energy plasma spraying of the zirconium dioxide (ZrO2) thermal protective coating on the basis of ZrO2 tetragonal and cubic phases with the spheroidal grain shape and the columnar substructure, with the total porosity P = 4 %, the hardness HV = 12 GPa, the roughness parameter R a ˜ 6 μm, the thickness 0.3-3 mm. As a sublayer it is used the heat-resistant coating of “Ni-Co-Cr-Al-Y” system with an intermetallic phase composition and the layered microstructure of the grains.

  19. Promotional effect of Al2O3 on WO3/CeO2-ZrO2 monolithic catalyst for selective catalytic reduction of nitrogen oxides with ammonia after hydrothermal aging treatment

    NASA Astrophysics Data System (ADS)

    Xu, Haidi; Liu, Shuang; Wang, Yun; Lin, Qingjin; Lin, Chenlu; Lan, Li; Wang, Qin; Chen, Yaoqiang

    2018-01-01

    Hydrothermal stability of catalysts for selective catalytic reduction of NOx with NH3 (NH3-SCR) has always been recognized as a challenge in development of candidate catalysts for applications in diesel engine emissions. In this study, Al2O3 was introduced into CeO2-ZrO2 to improve the NH3-SCR activity of WO3/CeO2-ZrO2 after hydrothermal aging (HA) treatment at 800 °C for 12 h. The activity results indicated that the NH3-SCR activity of WO3/CeO2-ZrO2-HA was obviously improved in the whole reaction temperature range after doping Al2O3 into CeO2-ZrO2, for example, the average and maximum NOx conversion were separately increased by ca. 20% and 25% after HA treatment. XRD, Raman, TEM and EDX results revealed that the introduction of Al2O3 inhibited the sintering and agglomeration of CeO2-ZrO2 and WO3 and the formation of Ce2(WO4)3 after HA treatment. Accordingly, WO3/CeO2-ZrO2-Al2O3-HA showed remarkably improved structural stability and reducibility, increased surface acidity, and facilitated the reactivity between adsorbed NH3 and nitrate species, which together contributed to its better catalytic performance after hydrothermal aging treatment.

  20. Quantum-Fluctuation Effects in the Transport Properties of Ultrathin Films of Disordered Superconductors above the Paramagnetic Limit

    NASA Astrophysics Data System (ADS)

    Khodas, M.; Levchenko, A.; Catelani, G.

    2012-06-01

    We study the transport in ultrathin disordered film near the quantum critical point induced by the Zeeman field. We calculate corrections to the normal state conductivity due to quantum pairing fluctuations. The fluctuation-induced transport is mediated by virtual rather than real quasiparticle excitations. We find that at zero temperature, where the corrections come from purely quantum fluctuations, the Aslamazov-Larkin paraconductivity term, the Maki-Thompson interference contribution, and the density of states effects are all of the same order. The total correction leads to the negative magnetoresistance. This result is in qualitative agreement with the recent transport observations in the parallel magnetic field of the homogeneously disordered amorphous films and superconducting two-dimensional electron gas realized at the oxide interfaces.

  1. A New NIST Database for the Simulation of Electron Spectra for Surface Analysis (SESSA): Application to Angle-Resolved X-ray Photoelectron Spectroscopy of HfO2, ZrO2, HfSiO4, and ZrSiO4 Films on Silicon

    NASA Astrophysics Data System (ADS)

    Powell, C. J.; Smekal, W.; Werner, W. S. M.

    2005-09-01

    We describe a new NIST database for the Simulation of Electron Spectra for Surface Analysis (SESSA). This database provides data for the many parameters needed in quantitative Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). In addition, AES and XPS spectra can be simulated for layered samples. The simulated spectra, for layer compositions and thicknesses specified by the user, can be compared with measured spectra. The layer compositions and thicknesses can then be adjusted to find maximum consistency between simulated and measured spectra. In this way, AES and XPS can provide more detailed characterization of multilayer thin-film materials. We report on the use of SESSA for determining the thicknesses of HfO2, ZrO2, HfSiO4, and ZrSiO4 films on Si by angle-resolved XPS. Practical effective attenuation lengths (EALs) have been computed from SESSA as a function of film thickness and photoelectron emission angle (i.e., to simulate the effects of tilting the sample). These EALs have been compared with similar values obtained from the NIST Electron Effective-Attenuation-Length Database (SRD 82). Generally good agreement was found between corresponding EAL values, but there were differences for film thicknesses less than the inelastic mean free path of the photoelectrons in the overlayer film. These differences are due to a simplifying approximation in the algorithm used to compute EALs in SRD 82. SESSA, with realistic cross sections for elastic and inelastic scattering in the film and substrate materials, is believed to provide more accurate EALs than SRD 82 for thin-film thickness measurements, particularly in applications where the film and substrate have different electron-scattering properties.

  2. The Effect of ZrO2 Nanoparticles on the Microstructure and Properties of Sintered WC–Bronze-Based Diamond Composites

    PubMed Central

    Sun, Youhong; Wu, Haidong; Li, Meng; Meng, Qingnan; Gao, Ke; Lü, Xiaoshu; Liu, Baochang

    2016-01-01

    Metal matrix-impregnated diamond composites are widely used in diamond tool manufacturing. In order to satisfy the increasing engineering requirements, researchers have paid more and more attention to enhancing conventional metal matrices by applying novel methods. In this work, ZrO2 nanoparticles were introduced into the WC–bronze matrix with and without diamond grits via hot pressing to improve the performance of conventional diamond composites. The effects of ZrO2 nanoparticles on the microstructure, density, hardness, bending strength, and wear resistance of diamond composites were investigated. The results indicated that the hardness and relative density increased, while the bending strength decreased when the content of ZrO2 nanoparticles increased. The grinding ratio of diamond composites increased significantly by 60% as a result of nano-ZrO2 addition. The enhancement mechanism was discussed. Diamond composites showed the best overall properties with the addition of 1 wt % ZrO2 nanoparticles, thus paving the way for further applications. PMID:28773469

  3. ZrO2-modified mesoporous nanocrystalline TiO2-xNx as efficient visible light photocatalysts.

    PubMed

    Wang, Xinchen; Yu, Jimmy C; Chen, Yilin; Wu, Ling; Fu, Xianzhi

    2006-04-01

    Mesoporous nanocrystalline TiO2-xNx and TiO2-xNx/ZrO2 visible-light photocatalysts have been prepared by a sol-gel method. The photocatalysts were characterized by XRD, N2 adsorption-desorption, TEM, XPS, UV/Vis, and IR spectroscopy. The photocatalytic activity of the samples was evaluated by the decomposition of ethylene in air under visible light (lambda > 450 nm) illumination. Results revealed that nitrogen was doped into the lattice of TiO2 by the thermal treatment of NH3-adsorbed TiO2 hydrous gels, converting the TiO2 into a visible-light responsive catalyst. The introduction of ZrO2 into TiO2-xNx considerably inhibits the undesirable crystal growth during calcination. Consequently, the ZrO2-modified TiO2-xNx displays higher porosity, higher specific surface area, and an improved thermal stability over the corresponding unmodified TiO2-xNx samples.

  4. A composite material with CeO2-ZrO2 nanocrystallines embedded in SiO2 matrices and its enhanced thermal stability and oxygen storage capacity

    NASA Astrophysics Data System (ADS)

    Yang, Runnong; Liu, Yumei; Yu, Lin; Zhao, Xiangyun; Yang, Xiaobo; Sun, Ming; Luo, Junyin; Fan, Qun; Xiao, Jianming; Zhao, Yuzhong

    2018-06-01

    A simple hydrothermal procedure is introduced, which leads to the successful synthesis of a new composite material with fine CeO2-ZrO2 nanocrystallites embedded in amorphous and porous SiO2 matrices. The composite material possesses an extraordinary high thermal stability. After being calcined at 1000 °C, it retains CeO2-ZrO2 nanocrystallites of the size around 5 nm, a BET-specific surface area of 165 m2/g, and an oxygen storage capacity of 468 μmol/g. No phase segregation for CeO2-ZrO2 nanocrystallites is detected and the SiO2 matrices remain not crystallized. The composite material shows a great potential as a support of three-way catalyst, as evidenced in catalytic tests with supported Pt.

  5. Reaction pathways in remote plasma nitridation of ultrathin SiO2 films

    NASA Astrophysics Data System (ADS)

    Niimi, Hiro; Khandelwal, Amit; Lamb, H. Henry; Lucovsky, Gerald

    2002-01-01

    Low-temperature nitridation of 3 nm SiO2 films using He/N2 and N2 remote radio frequency (rf) plasmas was investigated. On-line Auger electron spectroscopy and angle-resolved x-ray photoelectron spectroscopy (ARXPS) were employed to determine the concentration, spatial distribution, and local chemical bonding of nitrogen in the resultant films. Experiments were performed using a substrate temperature of 300 °C and 30 W rf power. Nitridation using an upstream He/N2 remote plasma at 0.1 Torr incorporates nitrogen at the top surface of the SiO2 film. In contrast, a lower concentration of nitrogen distributed throughout the film is obtained when the process pressure is increased to 0.3 Torr. ARXPS indicates a N-Si3 local bonding configuration, irrespective of the spatial distribution of N atoms. Slightly more nitrogen is incorporated using a downstream He/N2 plasma at each process pressure. By comparison, nitridation of SiO2 films using a N2 remote plasma at 0.1 Torr is very slow. Optical emission spectroscopy indicates that He dilution enhances the generation of N2+(B 2Σu+) species by altering the plasma electron energy distribution and by providing an additional kinetic pathway (Penning ionization). Changing the He/N2 remote plasma configuration from upstream to downstream (at 0.1 and 0.3 Torr) also enhances N2+(B 2Σu+) generation. For upstream He/N2 remote plasmas, the intensity of N2 first positive emission from N2(B 3Πg) states increases with pressure, whereas the N2+ first negative emission from N2+(B 2Σu+) states decreases. We infer from these observations that N2+ species are primarily responsible for top surface nitridation at 0.1 Torr, and that neutral species [N2(A 3Σu+) metastables and N atoms] are associated with sub-surface nitrogen incorporation.

  6. Measurement of conformability and adhesion energy of polymeric ultrathin film to skin model

    NASA Astrophysics Data System (ADS)

    Sugano, Junki; Fujie, Toshinori; Iwata, Hiroyasu; Iwase, Eiji

    2018-06-01

    We measured the conformability and adhesion energy of a polymeric ultrathin film “nanosheet” with hundreds of nanometer thickness to a skin model with epidermal depressions. To compare the confirmability of the nanosheets with different thicknesses and/or under different attaching conditions, we proposed a measurement method using skin models with the same surface profile and defined the surface strain εS as the quantified value of the conformability. Then, we measured the adhesion energy of the nanosheet at each conformability through a vertical tensile test. Experimental results indicate that the adhesion energy does not depend on the liquid used in wetting the nanosheet before attaching to the skin model and increases monotonously as the surface strain εS increases.

  7. Tunneling interferometry and measurement of the thickness of ultrathin metallic Pb(111) films

    NASA Astrophysics Data System (ADS)

    Ustavshchikov, S. S.; Putilov, A. V.; Aladyshkin, A. Yu.

    2017-10-01

    Spectra of the differential tunneling conductivity for ultrathin lead films grown on Si(111) 7 × 7 single crystals with a thickness of 9 to 50 ML have been studied by low-temperature scanning tunneling microscopy and spectroscopy. The presence of local maxima of the tunneling conductivity is characteristic of such systems. The energies of maxima of the differential conductivity are determined by the spectrum of quantum-confined states of electrons in a metallic layer and, consequently, the local thickness of the layer. It has been shown that features of the microstructure of substrates, such as steps of monatomic height, structural defects, and inclusions of other materials covered with a lead layer, can be visualized by bias-modulation scanning tunneling spectroscopy.

  8. Hydroxyaptite nanorods patterned ZrO2 bilayer coating on zirconium for the application of percutaneous implants.

    PubMed

    Zhang, Lan; Han, Yong; Tan, Guoxin

    2015-03-01

    Percutaneous implant requires a tight bond between the underlying dermis of skin and implant surface to prevent epithelial down-growth and infection, while fibroblasts play a key role in the skin-implant integration. In this work, nanorod-shaped hydroxyaptite (HA) with a mean diameter of 70 nm and length of 400 nm was hydrothermally grown on micro-arc oxidized (MAOed) Ca- and P-doped ZrO2 to form a bilayer coating. The hydrothermal formation mechanism of HA nanorods was explored, and the adsorption of total protein on the coating from α-MEM medium containing 10% fetal bovine serum was examined. Employing L-929 cells, the behaviors of fibroblasts on the bilayer coating, including adhesion and proliferation were evaluated together the polished Zr and as-MAOed ZrO2. The obtained results show that the HA nanorods nucleated on ZrO2 and grew at the expense of the doped Ca and P ions during the hydrothermal treatment (HT). The HA nanorods patterned coating enhanced protein absorption, and significantly improved the adhesion and proliferation of fibroblasts compared to the as-MAOed ZrO2 and polished Zr. It suggests that the HA nanorods/ZrO2 coated zirconium has a potential application for percutaneous implants to enhance the attachment of skin. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Critical size of crystalline ZrO(2) nanoparticles synthesized in near- and supercritical water and supercritical isopropyl alcohol.

    PubMed

    Becker, Jacob; Hald, Peter; Bremholm, Martin; Pedersen, Jan S; Chevallier, Jacques; Iversen, Steen B; Iversen, Bo B

    2008-05-01

    Nanocrystalline ZrO(2) samples with narrow size distributions and mean particle sizes below 10 nm have been synthesized in a continuous flow reactor in near and supercritical water as well as supercritical isopropyl alcohol using a wide range of temperatures, pressures, concentrations and precursors. The samples were comprehensively characterized by powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS), and the influence of the synthesis parameters on the particle size, particle size distribution, shape, aggregation and crystallinity was studied. On the basis of the choice of synthesis parameters either monoclinic or tetragonal zirconia phases can be obtained. The results suggest a critical particle size of 5-6 nm for nanocrystalline monoclinic ZrO(2) under the present conditions, which is smaller than estimates reported in the literature. Thus, very small monoclinic ZrO(2) particles can be obtained using a continuous flow reactor. This is an important result with respect to improvement of the catalytic properties of nanocrystalline ZrO(2).

  10. Theoretical study of the promotional effect of ZrO2 on In2O3 catalyzed methanol synthesis from CO2 hydrogenation

    NASA Astrophysics Data System (ADS)

    Zhang, Minhua; Dou, Maobin; Yu, Yingzhe

    2018-03-01

    Methanol synthesis from CO2 hydrogenation on the ZrO2 doped In2O3(110) surface (Zr-In2O3(110)) with oxygen vacancy has been studied using the density functional theory calculations. The calculated results show that the doped ZrO2 species prohibits the excessive formation of oxygen vacancies and dissociation of H2 on In2O3 surface slightly, but enhances the adsorption of CO2 on both perfect and defective Zr-In2O3(110) surface. Methanol is formed via the HCOO route. The hydrogenation of CO2 to HCOO is both energetically and kinetically facile. The HCOO hydrogenates to polydentate H2CO (p-H2CO) species with an activation barrier of 0.75 eV. H3CO is produced from the hydrogenation of monodentate H2CO (mono-H2CO), transformation from p-H2CO with 0.82 eV reaction energy, with no barrier whether there is hydroxyl group between the mono-H2CO and the neighboring hydride or not. Methanol is the product of H3CO protonation with 0.75 eV barrier. The dissociation and protonation of CO2 are both energetically and kinetically prohibited on Zr-In2O3(110) surface. The doped ZrO2 species can further enhance the adsorption of all the intermediates involved in CO2 hydrogenation to methanol, activate the adsorbed CO2 and H2CO, and stabilize the HCOO, H2CO and H3CO, especially prohibit the dissociation of H2CO or the reaction of H2CO with neighboring hydride to form HCOO and gas phase H2. All these effects make the ZrO2 supported In2O3 catalyst exhibit higher activity and selectivity on methanol synthesis from CO2 hydrogenation.

  11. Stress analysis of ZrO2/SiO2 multilayers deposited on different substrates with different thickness periods

    NASA Astrophysics Data System (ADS)

    Shao, Shuying; Shao, Jianda; He, Hongbo; Fan, Zhengxiu

    2005-08-01

    The effects of repeating thickness periods on stress are studied in ZrO2/SiO2 multilayers deposited by electron-beam evaporation on BK7 glass and fused-silica substrates. The results show that the residual stress is compressive and decreases with an increase of the periods of repeating thickness in the ZrO2/SiO2 multilayers. At the same time, the residual stress in multilayers deposited on BK7 glass is less than that of samples deposited on fused silica. The variation of the microstructure examined by x-ray diffraction shows that microscopic deformation does not correspond to macroscopic stress, which may be due to variation of the interface stress.

  12. Defect-Rich Dopant-Free ZrO2 Nanostructures with Superior Dilute Ferromagnetic Semiconductor Properties.

    PubMed

    Rahman, Md Anisur; Rout, S; Thomas, Joseph P; McGillivray, Donald; Leung, Kam Tong

    2016-09-14

    Control of the spin degree of freedom of an electron has brought about a new era in spin-based applications, particularly spin-based electronics, with the potential to outperform the traditional charge-based semiconductor technology for data storage and information processing. However, the realization of functional spin-based devices for information processing remains elusive due to several fundamental challenges such as the low Curie temperature of group III-V and II-VI semiconductors (<200 K), and the low spin-injection efficiencies of existing III-V, II-VI, and transparent conductive oxide semiconductors in a multilayer device structure, which are caused by precipitation and migration of dopants from the host layer to the adjacent layers. Here, we use catalyst-assisted pulsed laser deposition to grow, for the first time, oxygen vacancy defect-rich, dopant-free ZrO2 nanostructures with high TC (700 K) and high magnetization (5.9 emu/g). The observed magnetization is significantly greater than both doped and defect-rich transparent conductive oxide nanomaterials reported to date. We also provide the first experimental evidence that it is the amounts and types of oxygen vacancy defects in, and not the phase of ZrO2 that control the ferromagnetic order in undoped ZrO2 nanostructures. To explain the origin of ferromagnetism in these ZrO2 nanostructures, we hypothesize a new defect-induced bound polaron model, which is generally applicable to other defect-rich, dopant-free transparent conductive oxide nanostructures. These results provide new insights into magnetic ordering in undoped dilute ferromagnetic semiconductor oxides and contribute to the design of exotic magnetic and novel multifunctional materials.

  13. Water Vapor Uptake of Ultrathin Films of Biologically Derived Nanocrystals: Quantitative Assessment with Quartz Crystal Microbalance and Spectroscopic Ellipsometry.

    PubMed

    Niinivaara, Elina; Faustini, Marco; Tammelin, Tekla; Kontturi, Eero

    2015-11-10

    Despite the relevance of water interactions, explicit analysis of vapor adsorption on biologically derived surfaces is often difficult. Here, a system was introduced to study the vapor uptake on a native polysaccharide surface; namely, cellulose nanocrystal (CNC) ultrathin films were examined with a quartz crystal microbalance with dissipation monitoring (QCM-D) and spectroscopic ellipsometry (SE). A significant mass uptake of water vapor by the CNC films was detected using the QCM-D upon increasing relative humidity. In addition, thickness changes proportional to changes in relative humidity were detected using SE. Quantitative analysis of the results attained indicated that in preference to being soaked by water at the point of hydration each individual CNC in the film became enveloped by a 1 nm thick layer of adsorbed water vapor, resulting in the detected thickness response.

  14. Comparing the Thermodynamic Behaviour of Al(1)+ZrO2(s) to Al(1)+Al2O3(s)

    NASA Technical Reports Server (NTRS)

    Copland, Evan

    2004-01-01

    In an effort to better determine the thermodynamic properties of Al(g) and Al2O(g). the vapor in equilibrium with Al(l)+ZrO2(s) was compared to the vapor in equilibrium with Al(l)+Al2O3(s) over temperature range 1197-to-1509K. The comparison was made directly by Knudsen effusion-cell mass spectrometry with an instrument configured for a multiple effusion-cell vapor source (multi-cell KEMS). Second law enthalpies of vaporization of Al(g) and Al2O(g) together with activity measurements show that Al(l)+ZrO2(s) is thermodynamically equivalent to Al(l)+Al2O3(s), indicating Al(l) remained pure and Al2O3(s) was present in the ZrO2-cell. Subsequent observation of the Al(l)/ZrO2 and vapor/ZrO2 interfaces revealed a thin Al2O3-layer had formed, separating the ZrO2-cell from Al(l) and Al(g)+Al2O(g), effectively transforming it into an Al2O3 effusion-cell. This behavior agrees with recent observations made for Beta-NiAl(Pt) alloys measured in ZrO2 effusion-cell.

  15. Stepwise crystallization and the layered distribution in crystallization kinetics of ultra-thin poly(ethylene terephthalate) film

    NASA Astrophysics Data System (ADS)

    Zuo, Biao; Xu, Jianquan; Sun, Shuzheng; Liu, Yue; Yang, Juping; Zhang, Li; Wang, Xinping

    2016-06-01

    Crystallization is an important property of polymeric materials. In conventional viewpoint, the transformation of disordered chains into crystals is usually a spatially homogeneous process (i.e., it occurs simultaneously throughout the sample), that is, the crystallization rate at each local position within the sample is almost the same. Here, we show that crystallization of ultra-thin poly(ethylene terephthalate) (PET) films can occur in the heterogeneous way, exhibiting a stepwise crystallization process. We found that the layered distribution of glass transition dynamics of thin film modifies the corresponding crystallization behavior, giving rise to the layered distribution of the crystallization kinetics of PET films, with an 11-nm-thick surface layer having faster crystallization rate and the underlying layer showing bulk-like behavior. The layered distribution in crystallization kinetics results in a particular stepwise crystallization behavior during heating the sample, with the two cold-crystallization temperatures separated by up to 20 K. Meanwhile, interfacial interaction is crucial for the occurrence of the heterogeneous crystallization, as the thin film crystallizes simultaneously if the interfacial interaction is relatively strong. We anticipate that this mechanism of stepwise crystallization of thin polymeric films will allow new insight into the chain organization in confined environments and permit independent manipulation of localized properties of nanomaterials.

  16. Stepwise crystallization and the layered distribution in crystallization kinetics of ultra-thin poly(ethylene terephthalate) film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuo, Biao, E-mail: chemizuo@zstu.edu.cn, E-mail: wxinping@yahoo.com; Xu, Jianquan; Sun, Shuzheng

    2016-06-21

    Crystallization is an important property of polymeric materials. In conventional viewpoint, the transformation of disordered chains into crystals is usually a spatially homogeneous process (i.e., it occurs simultaneously throughout the sample), that is, the crystallization rate at each local position within the sample is almost the same. Here, we show that crystallization of ultra-thin poly(ethylene terephthalate) (PET) films can occur in the heterogeneous way, exhibiting a stepwise crystallization process. We found that the layered distribution of glass transition dynamics of thin film modifies the corresponding crystallization behavior, giving rise to the layered distribution of the crystallization kinetics of PET films,more » with an 11-nm-thick surface layer having faster crystallization rate and the underlying layer showing bulk-like behavior. The layered distribution in crystallization kinetics results in a particular stepwise crystallization behavior during heating the sample, with the two cold-crystallization temperatures separated by up to 20 K. Meanwhile, interfacial interaction is crucial for the occurrence of the heterogeneous crystallization, as the thin film crystallizes simultaneously if the interfacial interaction is relatively strong. We anticipate that this mechanism of stepwise crystallization of thin polymeric films will allow new insight into the chain organization in confined environments and permit independent manipulation of localized properties of nanomaterials.« less

  17. Influence of C or In buffer layer on photoluminescence behaviour of ultrathin ZnO film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saravanan, K., E-mail: saravanan@igcar.gov.in; Jayalakshmi, G.; Krishnan, R.

    We study the effect of the indium or carbon buffer layer on the photoluminescence (PL) property of ZnO ultrathin films deposited on a Si(100) substrate. The surface morphology of the films obtained using scanning tunnelling microscopy shows spherical shaped ZnO nanoparticles of size ∼8 nm in ZnO/C/Si and ∼22 nm in ZnO/Si samples, while the ZnO/In/Si sample shows elliptical shaped ZnO particles. Further, the ZnO/C/Si sample shows densely packed ZnO nanoparticles in comparison with other samples. Strong band edge emission has been observed in the presence of In or C buffer layer, whereas the ZnO/Si sample exhibits poor PL emission. The influencemore » of C and In buffer layers on the PL behaviour of ZnO films is studied in detail using temperature dependent PL measurements in the range of 4 K–300 K. The ZnO/C/Si sample exhibits a multi-fold enhancement in the PL emission intensity with well-resolved free and bound exciton emission lines. Our experimental results imply that the ZnO films deposited on the C buffer layer showed higher particle density and better exciton emission desired for optoelectronic applications.« less

  18. Effect of the ZrCl4 concentration in the (NaCl-KCl)eqiv-UO2Cl2-ZrCl4 melt and the electrolysis current density on the quantitative composition of UO2-ZrO2 cathode deposits. Calculation and experiment

    NASA Astrophysics Data System (ADS)

    Krotov, V. E.; Filatov, E. C.

    2014-08-01

    A method is proposed for calculating the ZrO2 content in the (NaCl-KCl)eqiv-UO2Cl2-ZrCl4 melt. Based on the known composition of a UO2-ZrO2 cathode deposit, the content is calculated at current densities of 0.08-0.63 A/cm2 and ZrCl4 concentrations of 0-12.3 wt %. The calculated and experimental ZrO2 contents in UO2-ZrO2 cathode deposits are in qualitative and adequate quantitative agreement.

  19. Giant Ferroelectric Polarization in Ultrathin Ferroelectrics via Boundary-Condition Engineering.

    PubMed

    Xie, Lin; Li, Linze; Heikes, Colin A; Zhang, Yi; Hong, Zijian; Gao, Peng; Nelson, Christopher T; Xue, Fei; Kioupakis, Emmanouil; Chen, Longqing; Schlom, Darrel G; Wang, Peng; Pan, Xiaoqing

    2017-08-01

    Tailoring and enhancing the functional properties of materials at reduced dimension is critical for continuous advancement of modern electronic devices. Here, the discovery of local surface induced giant spontaneous polarization in ultrathin BiFeO 3 ferroelectric films is reported. Using aberration-corrected scanning transmission electron microscopy, it is found that the spontaneous polarization in a 2 nm-thick ultrathin BiFeO 3 film is abnormally increased up to ≈90-100 µC cm -2 in the out-of-plane direction and a peculiar rumpled nanodomain structure with very large variation in c/a ratios, which is analogous to morphotropic phase boundaries (MPBs), is formed. By a combination of density functional theory and phase-field calculations, it is shown that it is the unique single atomic Bi 2 O 3 - x layer at the surface that leads to the enhanced polarization and appearance of the MPB-like nanodomain structure. This finding clearly demonstrates a novel route to the enhanced functional properties in the material system with reduced dimension via engineering the surface boundary conditions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Chitosan-based ultrathin films as antifouling, anticoagulant and antibacterial protective coatings.

    PubMed

    Bulwan, Maria; Wójcik, Kinga; Zapotoczny, Szczepan; Nowakowska, Maria

    2012-01-01

    Ultrathin antifouling and antibacterial protective nanocoatings were prepared from ionic derivatives of chitosan using layer-by-layer deposition methodology. The surfaces of silicon, and glass protected by these nanocoatings were resistant to non-specific adsorption of proteins disregarding their net charges at physiological conditions (positively charged TGF-β1 growth factor and negatively charged bovine serum albumin) as well as human plasma components. The coatings also preserved surfaces from the formation of bacterial (Staphylococcus aureus) biofilm as shown using microscopic studies (SEM, AFM) and the MTT viability test. Moreover, the chitosan-based films adsorbed onto glass surface demonstrated the anticoagulant activity towards the human blood. The antifouling and antibacterial actions of the coatings were correlated with their physicochemical properties. The studied biologically relevant properties were also found to be dependent on the thickness of those nanocoatings. These materials are promising for biomedical applications, e.g., as protective coatings for medical devices, anticoagulant coatings and protective layers in membranes.

  1. Parameter Space of Atomic Layer Deposition of Ultrathin Oxides on Graphene

    PubMed Central

    2016-01-01

    Atomic layer deposition (ALD) of ultrathin aluminum oxide (AlOx) films was systematically studied on supported chemical vapor deposition (CVD) graphene. We show that by extending the precursor residence time, using either a multiple-pulse sequence or a soaking period, ultrathin continuous AlOx films can be achieved directly on graphene using standard H2O and trimethylaluminum (TMA) precursors even at a high deposition temperature of 200 °C, without the use of surfactants or other additional graphene surface modifications. To obtain conformal nucleation, a precursor residence time of >2s is needed, which is not prohibitively long but sufficient to account for the slow adsorption kinetics of the graphene surface. In contrast, a shorter residence time results in heterogeneous nucleation that is preferential to defect/selective sites on the graphene. These findings demonstrate that careful control of the ALD parameter space is imperative in governing the nucleation behavior of AlOx on CVD graphene. We consider our results to have model system character for rational two-dimensional (2D)/non-2D material process integration, relevant also to the interfacing and device integration of the many other emerging 2D materials. PMID:27723305

  2. Ferroelectric ultrathin perovskite films

    DOEpatents

    Rappe, Andrew M; Kolpak, Alexie Michelle

    2013-12-10

    Disclosed herein are perovskite ferroelectric thin-film. Also disclosed are methods of controlling the properties of ferroelectric thin films. These films can be used in a variety materials and devices, such as catalysts and storage media, respectively.

  3. Study of Pt-Rh/CeO2-ZrO2-MxOy (M = Y, La)/Al2O3 three-way catalysts

    NASA Astrophysics Data System (ADS)

    Jiaxiu, Guo; Zhonghua, Shi; Dongdong, Wu; Huaqiang, Yin; Maochu, Gong; Yaoqiang, Chen

    2013-05-01

    CeO2-ZrO2-MxOy (M = Y; La) mixed oxides, prepared by co-precipitation method and characterized by Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), Raman spectra (RM) and oxygen pulse reaction, were comparatively investigated to elucidate the combinational effects of Y and/or La oxide promoters on the catalytic activity and anti-aging performance of monolithic cordierite honeycomb catalysts with low Pt and Rh content. The catalytic activities, water-gas shift (WGS) and steam reforming reaction (SR) were studied under a simulated gas mixture. The catalysts were also characterized by H2-temperature-programmed reduction (H2-TPR) and O2-temperature-programmed desorption (O2-TPD). The results showed that the prepared CeO2-ZrO2-MxOy oxides have a face-centered cubic fluorite structure and are nanosize. La3+ ions can significantly improve thermal stability and efficiently retard CeO2-ZrO2 crystal sintering and growth. Doped CeO2-ZrO2 with Y3+ and La3+ has 105 and 60 m2/g surface area and 460 and 390 μmol/g OSC before and after aging. The T50 of fresh Pt-Rh/CZYL/LA is 170 °C for CO, 222 °C for C3H8 and 189 °C for NO, and shift to 205, 262 and 228 °C after hydrothermal aging, which are better than those of Pt-Rh/CZY/LA or Pt-Rh/CZL/LA. WGS and SR are relate to the OSC of oxygen storage materials and absorbed oxygen species on the catalyst surface and affect the three-way catalytic activities of catalysts. The reductive property of noble metals and the dissociatively adsorbed O2 on the surface of catalysts are closely related to the catalytic activities.

  4. Development of hot-electron THz bolometric mixers using MgB2 thin films

    NASA Astrophysics Data System (ADS)

    Cunnane, Daniel; Kawamura, Jonathan; Karasik, Boris S.; Wolak, Matthaeus A.; Xi, X. X.

    2014-07-01

    Terahertz high-resolution spectroscopy of interstellar molecular clouds greatly relies on hot-electron superconducting bolometric (HEB) mixers. Current state-of-the-art receivers use mixer devices made from ultrathin (~ 3-5 nm) films of NbN with critical temperature ~ 9-11 K. Such mixers have been deployed on a number of groundbased, suborbital, and orbital platforms including the HIFI instrument on the Hershel Space Observatory. Despite its good sensitivity and well-established fabrication process, the NbN HEB mixer suffers from the narrow intermediate frequency (IF) bandwidth ~ 2-3 GHz and is limited to operation at liquid Helium temperature. As the heterodyne receivers are now trending towards "high THz" frequencies, the need in a larger IF bandwidth becomes more pressing since the same velocity resolution for a Doppler shifted line at 5 THz requires a 5-times greater IF bandwidth than at 1 THz. Our work is focusing on the realization of practical HEB mixers using ultrathin (10-20 nm) MgB2 films. They are prepared using a Hybrid Physical-Chemical Vapor Deposition (HPCVD) process yielding ultrathin films with critical temperature ~ 37-39 K. The expectation is that the combination of small thickness, high acoustic phonon transparency at the interface with the substrate, and very short electron-phonon relaxation time may lead to IF bandwidth ~ 10 GHz or even higher. SiC continues to be the most favorable substrate for MgB2 growth and as a result, a study has been conducted on the transparency of SiC at THz frequencies. FTIR measurements show that semi-insulating SiC substrates are at least as transparent as Si up to 2.5 THz. Currently films are passivated using a thin (10 nm) SiO2 layer which is deposited ex-situ via RF magnetron sputtering. Micron-sized spiral antenna-coupled HEB mixers have been fabricated using MgB2 films as thin as 10 nm. Fabrication was done using contact UV lithography and Ar Ion milling, with E-beam evaporated Au films deposited for the

  5. High temperature investigation of the solid/liquid transition in the PuO2-UO2-ZrO2 system

    NASA Astrophysics Data System (ADS)

    Quaini, A.; Guéneau, C.; Gossé, S.; Sundman, B.; Manara, D.; Smith, A. L.; Bottomley, D.; Lajarge, P.; Ernstberger, M.; Hodaj, F.

    2015-12-01

    The solid/liquid transitions in the quaternary U-Pu-Zr-O system are of great interest for the analysis of core meltdown accidents in Pressurised Water Reactors (PWR) fuelled with uranium-dioxide and MOX. During a severe accident the Zr-based cladding can become completely oxidised due to the interaction with the oxide fuel and the water coolant. In this framework, the present analysis is focused on the pseudo-ternary system UO2-PuO2-ZrO2. The melting/solidification behaviour of five pseudo-ternary and one pseudo-binary ((PuO2)0.50(ZrO2)0.50) compositions have been investigated experimentally by a laser heating method under pre-set atmospheres. The effects of an oxidising or reducing atmosphere on the observed melting/freezing temperatures, as well as the amount of UO2 in the sample, have been clearly identified for the different compositions. The oxygen-to-metal ratio is a key parameter affecting the melting/freezing temperature because of incongruent vaporisation effects. In parallel, a detailed thermodynamic model for the UO2-PuO2-ZrO2 system has been developed using the CALPHAD method, and thermodynamic calculations have been performed to interpret the present laser heating results, as well as the high temperature behaviour of the cubic (Pu,U,Zr)O2±x-c mixed oxide phase. A good agreement was obtained between the calculated and experimental data points. This work enables an improved understanding of the major factors relevant to severe accident in nuclear reactors.

  6. Exceptional arsenic (III,V) removal performance of highly porous, nanostructured ZrO2 spheres for fixed bed reactors and the full-scale system modeling.

    PubMed

    Cui, Hang; Su, Yu; Li, Qi; Gao, Shian; Shang, Jian Ku

    2013-10-15

    Highly porous, nanostructured zirconium oxide spheres were fabricated from ZrO2 nanoparticles with the assistance of agar powder to form spheres with size at millimeter level followed with a heat treatment at 450 °C to remove agar network, which provided a simple, low-cost, and safe process for the synthesis of ZrO2 spheres. These ZrO2 spheres had a dual-pore structure, in which interconnected macropores were beneficial for liquid transport and the mesopores could largely increase their surface area (about 98 m(2)/g) for effective contact with arsenic species in water. These ZrO2 spheres demonstrated an even better arsenic removal performance on both As(III) and As(V) than ZrO2 nanoparticles, and could be readily applied to commonly used fixed-bed adsorption reactors in the industry. A short bed adsorbent test was conducted to validate the calculated external mass transport coefficient and the pore diffusion coefficient. The performance of full-scale fixed bed systems with these ZrO2 spheres as the adsorber was estimated by the validated pore surface diffusion modeling. With the empty bed contact time (EBCT) at 10 min and the initial arsenic concentration at 30 ppb, the number of bed volumes that could be treated by these dry ZrO2 spheres reached ~255,000 BVs and ~271,000 BVs for As(III) and As(V), respectively, until the maximum contaminant level of 10 ppb was reached. These ZrO2 spheres are non-toxic, highly stable, and resistant to acid and alkali, have a high arsenic adsorption capacity, and could be easily adapted for various arsenic removal apparatus. Thus, these ZrO2 spheres may have a promising potential for their application in water treatment practice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Impact of the oxygen defects and the hydrogen concentration on the surface of tetragonal and monoclinic ZrO2 on the reduction rates of stearic acid on Ni/ZrO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foraita, Sebastian D.; Fulton, John L.; Chase, Zizwe A.

    2015-02-02

    The effect of the physicochemical properties of ZrO2 phases on the activity of Ni/ZrO2 catalysts for hydrodeoxygenation of stearic acid are described. A synergistic interaction between Ni and ZrO2 support was found. The effect is greatest for the monoclinic phase of ZrO2.

  8. Preparation of c-axis perpendicularly oriented ultra-thin L10-FePt films on MgO and VN underlayers

    NASA Astrophysics Data System (ADS)

    Futamoto, Masaaki; Shimizu, Tomoki; Ohtake, Mitsuru

    2018-05-01

    Ultra-thin L10-FePt films of 2 nm average thickness are prepared on (001) oriented MgO and VN underlayers epitaxially grown on base substrate of SrTiO3(001) single crystal. Detailed cross-sectional structures are observed by high-resolution transmission electron microscopy. Continuous L10-FePt(001) thin films with very flat surface are prepared on VN(001) underlayer whereas the films prepared on MgO(001) underlayer consist of isolated L10-FePt(001) crystal islands. Presence of misfit dislocation and lattice bending in L10-FePt material is reducing the effective lattice mismatch with respect to the underlayer to be less than 0.5 %. Formation of very flat and continuous FePt layer on VN underlayer is due to the large surface energy of VN material where de-wetting of FePt material at high temperature annealing process is suppressed under a force balance between the surface and interface energies of FePt and VN materials. An employment of underlayer or substrate material with the lattice constant and the surface energy larger than those of L10-FePt is important for the preparation of very thin FePt epitaxial thin continuous film with the c-axis controlled to be perpendicular to the substrate surface.

  9. Labeling of HeLa cells using ZrO2:Yb3+-Er3+ nanoparticles with upconversion emission

    NASA Astrophysics Data System (ADS)

    Ceja-Fdez, Andrea; López-Luke, Tzarara; Oliva, Jorge; Vivero-Escoto, Juan; Gonzalez-Yebra, Ana Lilia; Rojas, Ruben A. Rodriguez; Martínez-Pérez, Andrea; de la Rosa, Elder

    2015-04-01

    This work reports the synthesis, structural characterization, and optical properties of ZrO2:Yb3+-Er3+ (2-1 mol%) nanocrystals. The nanoparticles were coated with 3-aminopropyl triethoxysilane (APTES) and further modified with biomolecules, such as Biotin-Anti-rabbit (mouse IgG) and rabbit antibody-AntiKi-67, through a conjugation method. The conjugation was successfully confirmed by Fourier transform infrared, zeta potential, and dynamic light scattering. The internalization of the conjugated nanoparticles in human cervical cancer (HeLa) cells was followed by two-photon confocal microscopy. The ZrO2:Yb3+-Er3+ nanocrystals exhibited strong red emission under 970-nm excitation. Moreover, the luminescence change due to the addition of APTES molecules and biomolecules on the nanocrystals was also studied. These results demonstrate that ZrO2:Yb3+-Er3+ nanocrystals can be successfully functionalized with biomolecules to develop platforms for biolabeling and bioimaging.

  10. SPS-RS technique for solid-phase “in situ” synthesis of biocompatible ZrO2 porous ceramics

    NASA Astrophysics Data System (ADS)

    Shichalin, O. O.; Medkov, M. A.; Grishchenko, D. N.; Mayorov, V. Yu; Fedorets, A. N.; Belov, A. A.; Golub, A. V.; Gridasova, E. A.; Papynov, E. K.

    2018-02-01

    The prospective method of spark plasma sintering-reaction synthesis (SPS-RS) for fabrication of ceramics based on ZrO2 and biocompatible with living tissue is presented. Nanostructured ceramics has high mechanical strength (more than 400 MPa) and controlled porosity depending on specified sintering conditions. Biocompatible phases Ca10(PO4)6(OH)2 are formed “in situ” during SPS sintering of ZrO2 powder due to chemical interaction of phosphate precursors preliminary introduced into the mixture. The effective method to improve (to develop) porous structure of bioceramics obtained by SPS or SPS-RS techniques using poreforming agent (carbon black) is proposed. Suggested original SPS-RS “in situ” technique provides fabrication of new ZrO2 ceramics containing biocompatible phosphate components and possessing unique structural and mechanical characteristics. Such ceramics is indispensable for bone-ceramic implants that are able to activate processes of osteogenesis during bone tissue recovery.

  11. A New NIST Database for the Simulation of Electron Spectra for Surface Analysis (SESSA): Application to Angle-Resolved X-ray Photoelectron Spectroscopy of HfO2, ZrO2, HfSiO4, and ZrSiO4 Films on Silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, C.J.; Smekal, W.; Werner, W.S.M.

    2005-09-09

    We describe a new NIST database for the Simulation of Electron Spectra for Surface Analysis (SESSA). This database provides data for the many parameters needed in quantitative Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). In addition, AES and XPS spectra can be simulated for layered samples. The simulated spectra, for layer compositions and thicknesses specified by the user, can be compared with measured spectra. The layer compositions and thicknesses can then be adjusted to find maximum consistency between simulated and measured spectra. In this way, AES and XPS can provide more detailed characterization of multilayer thin-film materials. Wemore » report on the use of SESSA for determining the thicknesses of HfO2, ZrO2, HfSiO4, and ZrSiO4 films on Si by angle-resolved XPS. Practical effective attenuation lengths (EALs) have been computed from SESSA as a function of film thickness and photoelectron emission angle (i.e., to simulate the effects of tilting the sample). These EALs have been compared with similar values obtained from the NIST Electron Effective-Attenuation-Length Database (SRD 82). Generally good agreement was found between corresponding EAL values, but there were differences for film thicknesses less than the inelastic mean free path of the photoelectrons in the overlayer film. These differences are due to a simplifying approximation in the algorithm used to compute EALs in SRD 82. SESSA, with realistic cross sections for elastic and inelastic scattering in the film and substrate materials, is believed to provide more accurate EALs than SRD 82 for thin-film thickness measurements, particularly in applications where the film and substrate have different electron-scattering properties.« less

  12. Influence of deposition temperature on mechanical properties of plasma-sprayed hydroxyapatite coating on titanium alloy with ZrO2 intermediate layer

    NASA Astrophysics Data System (ADS)

    Chou, Bang-Yen; Chang, Edward

    2003-06-01

    Hydroxyapatite coatings were plasma sprayed on the Ti6A14V substrate with and without an intermediate ZrO2 layer; meanwhile the temperatures of substrates were varied at 90, 140, and 200 °C. The coatings were subjected to the standard adhesion test per ASTM C633-79. The purpose of the investigation was to study the effects of those processing variables on the bonding strength and failure behavior of the system. It is found that the bonding strengths of HA/ZrO2 and HA coatings generally decrease with increasing substrate temperature, except for the HA/ZrO2 coating deposited at 200 °C. The rationale of the results is attributed to the residual stress reported in the literature. Introducing ZrO2 bond coat is found to significantly promote the bonding strength of HA coating. The possible strengthening mechanism is the rougher surface of ZrO2 bond coat and the higher toughness of ZrO2, which provide the mechanical strengthening effects. The slightly denser HA in 200 °C deposited HA coating cannot explain the high bonding strength of the HA/ZrO2 coating, nor the mechanical strengthening effect of ZrO2 intermediate layer should apply. It is believed that a stronger diffusion bonding is formed at the interface of HA and ZrO2, which increases the bonding between them chemically. The bonding strengths of HA/ZrO2 and HA coatings are correlated with the area fraction of adhesive failure of the coatings. The correlation explains the findings in this study.

  13. Microstructural Evolution of Nanocrystalline ZrO2 in a Fe Matrix During High-Temperature Exposure

    NASA Astrophysics Data System (ADS)

    Raghavendra, K. G.; Dasgupta, Arup; Athreya, C. N.; Jayasankar, K.; Saroja, S.; Subramanya Sarma, V.

    2018-06-01

    The current study examines the evolution of nanocrystallites of ZrO2 with time and temperature in a Fe-ZrO2 composite. The crystallite sizes were determined through X-ray peak broadening analysis by the Williamson-Hall method together with dark field transmission electron microscopy. The ZrO2 crystallites were found to be stable and retained their sizes at 973 K and 1073 K for hold durations up to 600 minutes. On the other hand, the crystallites were seen to grow at 1173 K and reached up to 200 nm for a hold time of 600 minutes. The Ostwald ripening model was adopted to understand crystallite growth while a dislocation-driven pipe diffusion was adopted for understanding the kinetics of grain growth. The activation energy of grain growth was calculated as 379 kJ mol-1. The modeled and experimentally calculated size evolutions with time and temperature were shown to be in good agreement with each other. A detailed discussion on the kinetics and activation energy of grain growth of ZrO2 crystallites in a Fe matrix is presented in this manuscript.

  14. Polarity-driven oxygen vacancy formation in ultrathin LaNiO 3 films on SrTiO 3

    DOE PAGES

    Tung, I-Cheng; Luo, Guangfu; Lee, June Hyuk; ...

    2017-10-18

    Oxide heterostructures offer a pathway to control emergent phases in complex oxides, but their creation often leads to boundaries that have a polar discontinuity. In order to fabricate atomic-scale arrangements of dissimilar materials, we need a clear understanding of the pathways by which materials resolve polarity issues. By examining the real-time lattice structure in-situ during growth for the case of polar LaNiO 3 synthesized on non-polar SrTiO 3 (001), we demonstrate how films in ultra-thin limit form as LaNiO 2.5 and then evolve into LaNiO 3 as the thickness increases. Theory explains how the polar energetics drives the formation ofmore » oxygen vacancies and the stability of these phases with thickness and structure.« less

  15. Tunable magnetic properties by interfacial manipulation of L1(0)-FePt perpendicular ultrathin film with island-like structures.

    PubMed

    Feng, C; Wang, S G; Yang, M Y; Zhang, E; Zhan, Q; Jiang, Y; Li, B H; Yu, G H

    2012-02-01

    Based on interfacial manipulation of the MgO single crystal substrate and non-magnetic AIN compound, a L1(0)-FePt perpendicular ultrathin film with the structure of MgO/FePt-AIN/Ta was designed, prepared, and investigated. The film is comprised of L1(0)-FePt "magnetic islands," which exhibits a perpendicular magnetic anisotropy (PMA), tunable coercivity (Hc), and interparticle exchange coupling (IEC). The MgO substrate promotes PMA of the film because of interfacial control of the FePt lattice orientation. The AIN compound is doped to increase the difference of surface energy between FePt layer and MgO substrate and to suppress the growth of FePt grains, which takes control of island growth mode of FePt atoms. The AIN compound also acts as isolator of L1(0)-FePt islands to pin the sites of FePt domains, resulting in the tunability of Hc and IEC of the films.

  16. Bioactivity and cell proliferation in radiopaque gel-derived CaO-P2O5-SiO2-ZrO2 glass and glass-ceramic powders.

    PubMed

    Montazerian, Maziar; Yekta, Bijan Eftekhari; Marghussian, Vahak Kaspari; Bellani, Caroline Faria; Siqueira, Renato Luiz; Zanotto, Edgar Dutra

    2015-10-01

    In this study, 10 mol% ZrO2 was added to a 27CaO-5P2O5-68SiO2 (mol%) base composition synthesized via a simple sol-gel method. This composition is similar to that of a frequently investigated bioactive gel-glass. The effects of ZrO2 on the in vitro bioactivity and MG-63 cell proliferation of the glass and its derivative polycrystalline (glass-ceramic) powder were investigated. The samples were characterized using thermo-gravimetric and differential thermal analysis (TG/DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) coupled to energy dispersive X-ray spectroscopy (EDS). Release of Si, Ca, P and Zr into simulated body fluid (SBF) was determined by inductively coupled plasma (ICP). Upon heat treatment at 1000 °C, the glass powder crystallized into an apatite-wollastonite-zirconia glass-ceramic powder. Hydroxycarbonate apatite (HCA) formation on the surface of the glass and glass-ceramic particles containing ZrO2 was confirmed by FTIR and SEM. Addition of ZrO2 to the base glass composition decreased the rate of HCA formation in vitro from one day to three days, and hence, ZrO2 could be employed to control the rate of apatite formation. However, the rate of HCA formation on the glass-ceramic powder containing ZrO2 crystal was equal to that in the base glassy powder. Tests with a cultured human osteoblast-like MG-63 cells revealed that the glass and glass-ceramic materials stimulated cell proliferation, indicating that they are biocompatible and are not cytotoxic in vitro. Moreover, zirconia clearly increased osteoblast proliferation over that of the Zr-free samples. This increase is likely associated with the lower solubility of these samples and, consequently, a smaller variation in the media pH. Despite the low solubility of these materials, bioactivity was maintained, indicating that these glassy and polycrystalline powders are potential candidates for bone graft substitutes and bone cements with

  17. Flexible Mixed-Potential-Type (MPT) NO₂ Sensor Based on An Ultra-Thin Ceramic Film.

    PubMed

    You, Rui; Jing, Gaoshan; Yu, Hongyan; Cui, Tianhong

    2017-07-29

    A novel flexible mixed-potential-type (MPT) sensor was designed and fabricated for NO₂ detection from 0 to 500 ppm at 200 °C. An ultra-thin Y₂O₃-doped ZrO₂ (YSZ) ceramic film 20 µm thick was sandwiched between a heating electrode and reference/sensing electrodes. The heating electrode was fabricated by a conventional lift-off process, while the porous reference and the sensing electrodes were fabricated by a two-step patterning method using shadow masks. The sensor's sensitivity is achieved as 58.4 mV/decade at the working temperature of 200 °C, as well as a detection limit of 26.7 ppm and small response time of less than 10 s at 200 ppm. Additionally, the flexible MPT sensor demonstrates superior mechanical stability after bending over 50 times due to the mechanical stability of the YSZ ceramic film. This simply structured, but highly reliable flexible MPT NO₂ sensor may lead to wide application in the automobile industry for vehicle emission systems to reduce NO₂ emissions and improve fuel efficiency.

  18. Chemical surface deposition of ultra-thin semiconductors

    DOEpatents

    McCandless, Brian E.; Shafarman, William N.

    2003-03-25

    A chemical surface deposition process for forming an ultra-thin semiconducting film of Group IIB-VIA compounds onto a substrate. This process eliminates particulates formed by homogeneous reactions in bath, dramatically increases the utilization of Group IIB species, and results in the formation of a dense, adherent film for thin film solar cells. The process involves applying a pre-mixed liquid coating composition containing Group IIB and Group VIA ionic species onto a preheated substrate. Heat from the substrate causes a heterogeneous reaction between the Group IIB and VIA ionic species of the liquid coating composition, thus forming a solid reaction product film on the substrate surface.

  19. Effect of thermal cycling on ZrO2-Y2O3 thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Mcdonald, G.; Hendricks, R. C.

    1980-01-01

    The paper studies the comparative life of plasma-sprayed ZrO2-Y2O3 thermal barrier coatings on NiCrAlY bond coats on Rene 41 in short (4 min) and long (57 min) thermal cycles at 1040 C in a 0.3-Mach flame. Attention is given to determining the effect of short- and long-duration cycles on ZrO2-Y2O3 coatings, the cause of any cycle frequency effects, and methods to improve tolerance to thermal stress. Short cycles greatly reduced the life of the ceramic coating in terms of time at temperatures as compared to longer cycles, the failed coating indicating compressive failure. The experiments and stress calculations show that repeatedly subjecting a ceramic coating to high rates of initial heating has a more destructive influence on the coating than sustained operation at temperature. The effect of such thermal compressive stresses might be minimized through coating deposition and thickness control and by turbine cycle measurement to keep starting heating rates below critical values.

  20. Magnetotransport Properties in High-Quality Ultrathin Two-Dimensional Superconducting Mo2C Crystals.

    PubMed

    Wang, Libin; Xu, Chuan; Liu, Zhibo; Chen, Long; Ma, Xiuliang; Cheng, Hui-Ming; Ren, Wencai; Kang, Ning

    2016-04-26

    Ultrathin transition metal carbides are a class of developing two-dimensional (2D) materials with superconductivity and show great potentials for electrical energy storage and other applications. Here, we report low-temperature magnetotransport measurements on high-quality ultrathin 2D superconducting α-Mo2C crystals synthesized by a chemical vapor deposition method. The magnetoresistance curves exhibit reproducible oscillations at low magnetic fields for temperature far below the superconducting transition temperature of the crystals. We interpret the oscillatory magnetoresistance as a consequence of screening currents circling around the boundary of triangle-shaped terraces found on the surface of ultrathin Mo2C crystals. As the sample thickness decreases, the Mo2C crystals exhibit negative magnetoresistance deep in the superconducting transition regime, which reveals strong phase fluctuations of the superconducting order parameters associated with the superconductor-insulator transition. Our results demonstrate that the ultrathin superconducting Mo2C crystals provide an interesting system for studying rich transport phenomena in a 2D crystalline superconductor with enhanced quantum fluctuations.

  1. Electrochemical corrosion, wear and cell behavior of ZrO2/TiO2 alloyed layer on Ti-6Al-4V.

    PubMed

    Li, Jianfang; He, Xiaojing; Zhang, Guannan; Hang, Ruiqiang; Huang, Xiaobo; Tang, Bin; Zhang, Xiangyu

    2018-06-01

    Ti-6Al-4V (TC4) has received increasing attention as biomaterial but also raised concerns about the long-term safety of releasing of metal ions and poor wear resistance. In this work, an ZrO 2 /TiO 2 alloyed layer was prepared on TC4 by plasma surface alloying with Zr and subsequently annealed in the air for improved corrosion and wear resistant. To assess the corrosion performance of the alloyed layer, the specimens were measured by open circuit potential, electrochemical impedance spectroscopy and potentiodynamic polarization in simulated body fluid solution. The result shows that the ZrO 2 /TiO 2 alloyed layer exhibits strikingly high polarization resistance, wide passive region and very low current density, indicating the excellent corrosion resistance. The layer also displays significant improvement of wear resistance. Furthermore, the alloyed layer restricts cell adhesion and spreading. We infer that the ZrO 2 /TiO 2 alloyed layer might be potentially useful implanted devices such as biosensors, bioelectronics or drug delivery devices. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Assessment of solid/liquid equilibria in the (U, Zr)O2+y system

    NASA Astrophysics Data System (ADS)

    Mastromarino, S.; Seibert, A.; Hashem, E.; Ciccioli, A.; Prieur, D.; Scheinost, A.; Stohr, S.; Lajarge, P.; Boshoven, J.; Robba, D.; Ernstberger, M.; Bottomley, D.; Manara, D.

    2017-10-01

    Solid/liquid equilibria in the system UO2sbnd ZrO2 are revisited in this work by laser heating coupled with fast optical thermometry. Phase transition points newly measured under inert gas are in fair agreement with the early measurements performed by Wisnyi et al., in 1957, the only study available in the literature on the whole pseudo-binary system. In addition, a minimum melting point is identified here for compositions near (U0.6Zr0.4)O2+y, around 2800 K. The solidus line is rather flat on a broad range of compositions around the minimum. It increases for compositions closer to the pure end members, up to the melting point of pure UO2 (3130 K) on one side and pure ZrO2 (2970 K) on the other. Solid state phase transitions (cubic-tetragonal-monoclinic) have also been observed in the ZrO2-rich compositions X-ray diffraction. Investigations under 0.3 MPa air (0.063 MPa O2) revealed a significant decrease in the melting points down to 2500 K-2600 K for increasing uranium content (x(UO2)> 0.2). This was found to be related to further oxidation of uranium dioxide, confirmed by X-ray absorption spectroscopy. For example, a typical oxidised corium composition U0.6Zr0.4O2.13 was observed to solidify at a temperature as low as 2493 K. The current results are important for assessing the thermal stability of the system fuel - cladding in an oxide based nuclear reactor, and for simulating the system behaviour during a hypothetical severe accident.

  3. Switching characteristics for ferroelectric random access memory based on RC model in poly(vinylidene fluoride-trifluoroethylene) ultrathin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, ChangLi; Complex and Intelligent System Research Center, East China University of Science and Technology, Shanghai 200237; Wang, XueJun

    2016-05-15

    The switching characteristic of the poly(vinylidene fluoride-trifluoroethlene) (P(VDF-TrFE)) films have been studied at different ranges of applied electric field. It is suggest that the increase of the switching speed upon nucleation protocol and the deceleration of switching could be related to the presence of a non-ferroelectric layer. Remarkably, a capacitor and resistor (RC) links model plays significant roles in the polarization switching dynamics of the thin films. For P(VDF-TrFE) ultrathin films with electroactive interlayer, it is found that the switching dynamic characteristics are strongly affected by the contributions of resistor and non-ferroelectric (non-FE) interface factors. A corresponding experiment is designedmore » using poly(3,4-ethylene dioxythiophene):poly(styrene sulfonic) (PEDOT-PSSH) as interlayer with different proton concentrations, and the testing results show that the robust switching is determined by the proton concentration in interlayer and lower leakage current in circuit to reliable applications of such polymer films. These findings provide a new feasible method to enhance the polarization switching for the ferroelectric random access memory.« less

  4. Improved Stability and Performance of Visible Photoelectrochemical Water Splitting on Solution-Processed Organic Semiconductor Thin Films by Ultrathin Metal Oxide Passivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lei; Yan, Danhua; Shaffer, David W.

    Solution-processable organic semiconductors have potentials as visible photoelectrochemical (PEC) water splitting photoelectrodes due to their tunable small band gap and electronic energy levels, but they are typically limited by poor stability and photocatalytic activity. In this study, we demonstrate the direct visible PEC water oxidation on solution-processed organic semiconductor thin films with improved stability and performance by ultrathin metal oxide passivation layers. N-type fullerene-derivative thin films passivated by sub-2 nm ZnO via atomic layer deposition enabled the visible PEC water oxidation at wavelengths longer than 600 nm in harsh alkaline electrolyte environments with up to 30 μA/cm 2 photocurrents atmore » the thermodynamic water-oxidation equilibrium potential and the photoanode half-lifetime extended to ~1000 s. The systematic investigation reveals the enhanced water oxidation catalytic activity afforded by ZnO passivation and the charge tunneling governing the hole transfer through passivation layers. Further enhanced PEC performances were realized by improving the bottom ohmic contact to the organic semiconductor, achieving ~60 μA/cm 2 water oxidation photocurrent at the equilibrium potential, the highest values reported for organic semiconductor thin films to our knowledge. The improved stability and performance of passivated organic photoelectrodes and discovered design rationales provide useful guidelines for realizing the stable visible solar PEC water splitting based on organic semiconductor thin films.« less

  5. Improved Stability and Performance of Visible Photoelectrochemical Water Splitting on Solution-Processed Organic Semiconductor Thin Films by Ultrathin Metal Oxide Passivation

    DOE PAGES

    Wang, Lei; Yan, Danhua; Shaffer, David W.; ...

    2017-12-27

    Solution-processable organic semiconductors have potentials as visible photoelectrochemical (PEC) water splitting photoelectrodes due to their tunable small band gap and electronic energy levels, but they are typically limited by poor stability and photocatalytic activity. In this study, we demonstrate the direct visible PEC water oxidation on solution-processed organic semiconductor thin films with improved stability and performance by ultrathin metal oxide passivation layers. N-type fullerene-derivative thin films passivated by sub-2 nm ZnO via atomic layer deposition enabled the visible PEC water oxidation at wavelengths longer than 600 nm in harsh alkaline electrolyte environments with up to 30 μA/cm 2 photocurrents atmore » the thermodynamic water-oxidation equilibrium potential and the photoanode half-lifetime extended to ~1000 s. The systematic investigation reveals the enhanced water oxidation catalytic activity afforded by ZnO passivation and the charge tunneling governing the hole transfer through passivation layers. Further enhanced PEC performances were realized by improving the bottom ohmic contact to the organic semiconductor, achieving ~60 μA/cm 2 water oxidation photocurrent at the equilibrium potential, the highest values reported for organic semiconductor thin films to our knowledge. The improved stability and performance of passivated organic photoelectrodes and discovered design rationales provide useful guidelines for realizing the stable visible solar PEC water splitting based on organic semiconductor thin films.« less

  6. A comparative study of fibrinogen adsorption onto metal oxide thin films

    NASA Astrophysics Data System (ADS)

    Silva-Bermudez, P.; Muhl, S.; Rodil, S. E.

    2013-10-01

    One of the first events occurring upon foreign material-biological medium contact is the adsorption of proteins, which evolution greatly determines the cells response to the material. Protein-surface interactions are a complex phenomenon driven by the physicochemical properties of the surface, protein(s) and liquid medium involve in the interaction. In this article the adsorption of fibrinogen (Fbg) onto Ta2O5, Nb2O5, TiO2 and ZrO2 thin films is reported. The adsorption kinetics and characteristics of the adsorbed fibrinogen layer were studied in situ using dynamic and spectroscopic ellipsometry. The films wettability, surface energy (γLW/AB) and roughness were characterized aiming to elucidate their correlations with Fbg adsorption. The adsorption rate changed accordingly to the film; the fastest adsorption rate and highest Fbg surface mass concentration (Γ) was observed on ZrO2. The hydrophobic/hydrophilic character of the oxide highly influenced Fbg adsorption. On Ta2O5, Nb2O5 and TiO2, which were either hydrophilic or in the breaking-point between hydrophilicity and hydrophobicity, Γ was correlated to the polar component of γLW/AB and roughness of the surface. On ZrO2, clearly hydrophobic, Γ increased significantly off the correlation observed for the other films. The results indicated different adsorption dynamics and orientations of the Fbg molecules dependent on the surface hydrophobic/hydrophilic character.

  7. Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings

    NASA Astrophysics Data System (ADS)

    Kats, Mikhail A.; Byrnes, Steven J.; Blanchard, Romain; Kolle, Mathias; Genevet, Patrice; Aizenberg, Joanna; Capasso, Federico

    2013-09-01

    Recently a new class of optical interference coatings was introduced which comprises ultra-thin, highly absorbing dielectric layers on metal substrates. We show that these lossy coatings can be augmented by an additional transparent subwavelength layer. We fabricated a sample comprising a gold substrate, an ultra-thin film of germanium with a thickness gradient, and several alumina films. The experimental reflectivity spectra showed that the additional alumina layer increases the color range that can be obtained, in agreement with calculations. More generally, this transparent layer can be used to enhance optical absorption, protect against erosion, or as a transparent electrode for optoelectronic devices.

  8. Thermophysical properties of liquid UO2, ZrO2 and corium by molecular dynamics and predictive models

    NASA Astrophysics Data System (ADS)

    Kim, Woong Kee; Shim, Ji Hoon; Kaviany, Massoud

    2017-08-01

    Predicting the fate of accident-melted nuclear fuel-cladding requires the understanding of the thermophysical properties which are lacking or have large scatter due to high-temperature experimental challenges. Using equilibrium classical molecular dynamics (MD), we predict the properties of melted UO2 and ZrO2 and compare them with the available experimental data and the predictive models. The existing interatomic potential models have been developed mainly for the polymorphic solid phases of these oxides, so they cannot be used to predict all the properties accurately. We compare and decipher the distinctions of those MD predictions using the specific property-related autocorrelation decays. The predicted properties are density, specific heat, heat of fusion, compressibility, viscosity, surface tension, and the molecular and electronic thermal conductivities. After the comparisons, we provide readily usable temperature-dependent correlations (including UO2-ZrO2 compounds, i.e. corium melt).

  9. Room Temperature Magnetic Behavior In Nanocrystalline Ni-Doped Zro2 By Microwave-Assisted Polyol Synthesis

    NASA Astrophysics Data System (ADS)

    Parimita Rath, Pragyan; Parhi, Pankaj Kumar; Ranjan Panda, Sirish; Priyadarshini, Barsharani; Ranjan Sahoo, Tapas

    2017-08-01

    This article, deals with a microwave-assisted polyol method to demonstrate a low temperature route < 250°C, to prepare a high temperature cubic zirconia phase. Powder XRD pattern shows broad diffraction peaks suggesting nanometric size of the particles. Magnetic behavior of 1-5 at% Ni doped samples show a threshold for substitutional induced room temperature ferromagnetism up to 3 at% of Ni. TGA data reveals that Ni-doped ZrO2 polyol precursors decompose exothermically below 300°C. IR data confirms the reduction of Zr(OH)4 precipitates to ZrO2, in agreement with the conclusions drawn from the TGA analysis.

  10. Effect of UV lamp irradiation during oxidation of Zr/Pt/Si structure on electrical properties of Pt/ZrO 2/Pt/Si structure

    NASA Astrophysics Data System (ADS)

    Bae, Joon Woo; Lim, Jae-Won; Mimura, Kouji; Uchikoshi, Masahito; Miyazaki, Takamichi; Isshiki, Minoru

    2010-03-01

    Metal-insulator-metal (MIM) capacitors were fabricated using ZrO 2 films and the effects of structural and native defects of the ZrO 2 films on the electrical and dielectric properties were investigated. For preparing ZrO 2 films, Zr films were deposited on Pt/Si substrates by ion beam deposition (IBD) system with/without substrate bias voltages and oxidized at 200 °C for 60 min under 0.1 MPa O 2 atmosphere with/without UV light irradiation ( λ = 193 nm, Deep UV lamp). The ZrO 2(˜12 nm) films on Pt(˜100 nm)/Si were characterized by X-ray diffraction pattern (XRD), field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HRTEM), capacitance-voltage ( C- V) and current-voltage ( I- V) measurements were carried out on MIM structures. ZrO 2 films, fabricated by oxidizing the Zr film deposited with substrate bias voltage under UV light irradiation, show the highest capacitance (784 pF) and the lowest leakage current density. The active oxygen species formed by UV irradiation are considered to play an important role in the reduction of the leakage current density, because they can reduce the density of oxygen vacancies.

  11. Anionic poly(p-phenylenevinylene)/layered double hydroxide ordered ultrathin films with multiple quantum well structure: a combined experimental and theoretical study.

    PubMed

    Yan, Dongpeng; Lu, Jun; Ma, Jing; Wei, Min; Wang, Xinrui; Evans, David G; Duan, Xue

    2010-05-18

    The sulfonated phenylenevinylene polyanion derivate (APPV) and exfoliated Mg-Al-layered double hydroxide (LDH) monolayers were alternatively assembled into ordered ultrathin films (UTFs) employing a layer-by-layer method, which shows uniform yellow luminescence. UV-vis absorption and fluorescence spectroscopy present a stepwise and regular growth of the UTFs upon increasing deposited cycles. X-ray diffraction, atomic force microscopy, and scanning electron microscopy demonstrate that the UTFs are orderly periodical layered structure with a thickness of 3.3-3.5 nm per bilayer. The APPV/LDH UTFs exhibit well-defined polarized photoemission characteristic with the maximum luminescence anisotropy of approximately 0.3. Moreover, the UTF exhibit longer fluorescence lifetime (3-3.85-fold) and higher photostability than the drop-casting APPV film under UV irradiation, suggesting that the existence of a LDH monolayer enhances the optical performance of the APPV polyanion. A combination study of electrochemistry and periodic density functional theory was used to investigate the electronic structure of the APPV/LDH system, illustrating that the APPV/LDH UTF is a kind of organic-inorganic hybrid multiple quantum well (MQW) structure with a low band energy of 1.7-1.8 eV, where the valence electrons of APPV can be confined into the energy wells formed by the LDH monolayers effectively. Therefore, this work not only gives a feasible method for fabricating a luminescence ultrathin film but also provides a detailed understanding of the geometric and electronic structures of photoactive polyanions confined between the LDH monolayers.

  12. The glass-like thermal conductivity in ZrO2-Dy3TaO7 ceramic for promising thermal barrier coating application

    NASA Astrophysics Data System (ADS)

    Wu, Peng; Hu, Ming Yu; Chong, Xiao Yu; Feng, Jing

    2018-03-01

    Using the solid-state reaction method, the (ZrO2)x-(Dy3TaO7)1-x (x = 0, 0.02, 0.04, 0.06, 0.08, and 0.1) ceramics are synthesized in this work. The identification of the crystal structures indicates that the (ZrO2)x-(Dy3TaO7)1-x ceramics belong to the orthorhombic system, and the space group is C2221 in spite of the value of x increasing to 0.1. The thermal conductivities of the (ZrO2)x-(Dy3TaO7)1-x ceramics range from 1.3 W/(m K) to 1.8 W/(m K), and this value is much lower than that of 7-8 YSZ (yttria-stabilized zirconia). Besides, the (ZrO2)x-(Dy3TaO7)1-x ceramics possess the glass-like thermal conductivity caused by intrinsic oxygen vacancies existing in the lattice of Dy3TaO7. Moreover, the results of thermal expansion rates demonstrate that the (ZrO2)x-(Dy3TaO7)1-x ceramics possess excellent high temperature phase stability, and the thermal expansion coefficients [(9.7-11) × 10-6 K-1] are comparable to that of 7-8 YSZ.

  13. Defects versus grain size effects on the ferromagnetism of ZrO2 nanocrystals clarified by positron annihilation

    NASA Astrophysics Data System (ADS)

    Wang, D. D.; Qi, N.; Jiang, M.; Chen, Z. Q.

    2013-01-01

    Undoped ZrO2 nanocrystals were annealed in open air from 100 °C to 1300 °C. X-ray diffraction and transmission electron microscope were used to study the structure change and grain growth. Both the methods reveal that the ZrO2 grain size has very slight increase after annealing up to 900 °C. Positron annihilation measurements reveal a high concentration of vacancy defects which most probably exist in the grain boundary region. Thermal annealing above 500 °C causes recovery of these defects, and after annealing at 1200 °C, most of them are removed. Room temperature ferromagnetism is observed for the sample annealed at 100 °C and 500 °C. The magnetization becomes very weak after the nanocrystals are annealed at 700 °C, and it almost disappears at 1000 °C. It is clear that the intrinsic ferromagnetism in our ZrO2 nanocrystals is mostly related with the interfacial defects instead of grain size effects.

  14. Growth and characterization of few unit-cell NbN superconducting films on 3C-SiC/Si substrate

    NASA Astrophysics Data System (ADS)

    Chang, H. W.; Wang, C. L.; Huang, Y. R.; Chen, T. J.; Wang, M. J.

    2017-11-01

    Superconducting δ-NbN ultrathin film has become a key element in extremely sensitive detector applications in recent decades because of its excellent electronic properties. We have realized the epitaxial growth of ultrathin δ-NbN films on (100)-oriented 3C-SiC/Si substrates by dc reactive magnetron sputtering at 760 °C with a deposition rate of 0.054 nm s-1. High-resolution transmission electron microscope images confirm the excellent epitaxy of these films. Even with a thickness of 1.3 nm (˜3 unit cells), the δ-NbN film shows a superconducting transition above 8 K. Furthermore, our ultrathin δ-NbN films demonstrate a long Ginzburg-Landau superconducting coherent length ({ξ }{{G}{{L}}}(0)> 5 {{nm}}) with a critical current density of about 2.2 MA cm-2, and good stability in an ambient environment.

  15. First principles calculations of interactions of ZrCl4 precursors with the bare and hydroxylated ZrO2 surfaces

    NASA Astrophysics Data System (ADS)

    Iskandarova, I. M.; Knizhnik, A. A.; Bagatur'yants, A. A.; Potapkin, B. V.; Korkin, A. A.

    2004-05-01

    First-principles calculations have been performed to determine the structures and relative energies of different zirconium chloride groups chemisorbed on the tetragonal ZrO2(001) surface and to study the effects of the surface coverage with metal chloride groups and the degree of hydroxylation on the adsorption energies of metal precursors. It is shown that the molecular and dissociative adsorption energies of the ZrCl4 precursor on the bare t-ZrO2(001) surface are too small to hold ZrCl4 molecules on the surface during an atomic layer deposition (ALD) cycle at temperatures higher than 300°C. On the contrary, it has been found that molecular adsorption on the fully hydroxylated zirconia surface leads to the formation of a stable adsorbed complex. This strong adsorption of ZrCl4 molecules can lead to a decrease in the film growth rate of the ALD process at lower temperatures (<200°C). The energies of interaction between adsorbed ZrCl4 groups at a 50% surface coverage has been found to be relatively small, which explains the maximum film growth rate observed in the ZrCl4:H2O ALD process. Moreover, we found that the adsorbed ZrCl4 precursors after hydrolysis give rise to very stable hydroxyl groups, which can be responsible for film growth at high temperatures (up to 900°C).

  16. Out-of-plane chiral domain wall spin-structures in ultrathin in-plane magnets

    DOE PAGES

    Chen, Gong; Kang, Sang Pyo; Ophus, Colin; ...

    2017-05-19

    Chiral spin textures in ultrathin films, such as skyrmions or chiral domain walls, are believed to offer large performance advantages in the development of novel spintronics technologies. While in-plane magnetized films have been studied extensively as media for current- and field-driven domain wall dynamics with applications in memory or logic devices, the stabilization of chiral spin textures in in-plane magnetized films has remained rare. Here we report a phase of spin structures in an in-plane magnetized ultrathin film system where out-of-plane spin orientations within domain walls are stable. Moreover, while domain walls in in-plane films are generally expected to bemore » non-chiral, we show that right-handed spin rotations are strongly favoured in this system, due to the presence of the interfacial Dzyaloshinskii-Moriya interaction. These results constitute a platform to explore unconventional spin dynamics and topological phenomena that may enable high-performance in-plane spin-orbitronics devices.« less

  17. Develop Roll-to-Roll Manufacturing Process of ZrO 2 Nanocrystals/Acrylic Nanocomposites for High Refractive Index Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Pooran C.; Compton, Brett G.; Li, Jianlin

    2015-04-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) was to develop and evaluate ZrO 2/acrylic nanocomposite coatings for integrated optoelectronic applications. The formulations engineered to be compatible with roll-to-roll process were evaluated in terms of optical and dielectric properties. The uniform distribution of the ZrO 2 nanocrystals in the polymer matrix resulted in highly tunable refractive index and dielectric response suitable for advanced photonic and electronic device applications.

  18. Strain-induced oxygen vacancies in ultrathin epitaxial CaMnO3 films

    NASA Astrophysics Data System (ADS)

    Chandrasena, Ravini; Yang, Weibing; Lei, Qingyu; Delgado-Jaime, Mario; de Groot, Frank; Arenholz, Elke; Kobayashi, Keisuke; Aschauer, Ulrich; Spaldin, Nicola; Xi, Xiaoxing; Gray, Alexander

    Dynamic control of strain-induced ionic defects in transition-metal oxides is considered to be an exciting new avenue towards creating materials with novel electronic, magnetic and structural properties. Here we use atomic layer-by-layer laser molecular beam epitaxy to synthesize high-quality ultrathin single-crystalline CaMnO3 films with systematically varying coherent tensile strain. We then utilize a combination of high-resolution soft x-ray absorption spectroscopy and bulk-sensitive hard x-ray photoemission spectroscopy in conjunction with first-principles theory and core-hole multiplet calculations to establish a direct link between the coherent in-plane strain and the oxygen-vacancy content. We show that the oxygen vacancies are highly mobile, which necessitates an in-situ-grown capping layer in order to preserve the original strain-induced oxygen-vacancy content. Our findings open the door for designing and controlling new ionically active properties in strongly-correlated transition-metal oxides.

  19. Seeds screening aqueous synthesis, multiphase interfacial separation and in situ optical characterization of invisible ultrathin silver nanowires.

    PubMed

    Zhang, Xiao-Yang; Xue, Xiao-Mei; Zhou, Huan-Li; Zhao, Ning; Shan, Feng; Su, Dan; Liu, Yi-Ran; Zhang, Tong

    2018-06-21

    We report a multi-step synthetic method to obtain ultrathin silver nanowires (Ag NWs) from an aqueous solution with a ∼17 nm diameter average, and where some of them decreased down to 9 nm. Carefully designed seed screening processes including LED irradiation at high temperature for a short time, and then continuous H2O2 etching, and relative growth mechanisms of high-yield five-twinned pentagonal seeds and ultrathin Ag NWs in aqueous environment are detailed. Then, a rapid and simple multiphase interfacial assembly method particularly suitable for the separation of ultrathin Ag NWs from various by-products was demonstrated with a clear mechanism explanation. Next, a unique optical interaction between light and individual AG NWs, as well as feature structures in the AG NWs film, was investigated by a micro-domain optical confocal microscope measurement in situ together with a theoretical explanation using modal transmission theory. That revealed that the haze problem of AG NWs films was not only arising from the interaction between light and individual or crossed Ag NWs but was also greatly dependent on a weak coupling effect of leaky modes supported by adjacent Ag NWs with large distances which had not been considered before. We then provided direct experimental evidence and concluded how to obtain haze-free films with 100% transparency in the whole visible range based on ultrathin Ag NWs. This breakthrough in diameter confinement and purification of Ag NWs is a highly expected step to overcome the well-focused light diffusion and absorption problems of Ag NWs-based devices applied in various fields such as flexible electronics, high-clarity displays, visible transparent heaters, photovoltaics and various optoelectronic technologies.

  20. High-Performance Ultrathin Active Chiral Metamaterials.

    PubMed

    Wu, Zilong; Chen, Xiaodong; Wang, Mingsong; Dong, Jianwen; Zheng, Yuebing

    2018-05-22

    Ultrathin active chiral metamaterials with dynamically tunable and responsive optical chirality enable new optical sensors, modulators, and switches. Herein, we develop ultrathin active chiral metamaterials of highly tunable chiroptical responses by inducing tunable near-field coupling in the metamaterials and exploit the metamaterials as ultrasensitive sensors to detect trace amounts of solvent impurities. To demonstrate the active chiral metamaterials mediated by tunable near-field coupling, we design moiré chiral metamaterials (MCMs) as model metamaterials, which consist of two layers of identical Au nanohole arrays stacked upon one another in moiré patterns with a dielectric spacer layer between the Au layers. Our simulations, analytical fittings, and experiments reveal that spacer-dependent near-field coupling exists in the MCMs, which significantly enhances the spectral shift and line shape change of the circular dichroism (CD) spectra of the MCMs. Furthermore, we use a silk fibroin thin film as the spacer layer in the MCM. With the solvent-controllable swelling of the silk fibroin thin films, we demonstrate actively tunable near-field coupling and chiroptical responses of the silk-MCMs. Impressively, we have achieved the spectral shift over a wavelength range that is more than one full width at half-maximum and the sign inversion of the CD spectra in a single ultrathin (1/5 of wavelength in thickness) MCM. Finally, we apply the silk-MCMs as ultrasensitive sensors to detect trace amounts of solvent impurities down to 200 ppm, corresponding to an ultrahigh sensitivity of >10 5 nm/refractive index unit (RIU) and a figure of merit of 10 5 /RIU.

  1. Unexpected behavior of ultra-thin films of blends of polystyrene/poly(vinyl methyl ether) studied by specific heat spectroscopy

    NASA Astrophysics Data System (ADS)

    Madkour, Sherif; Szymoniak, Paulina; Schick, Christoph; Schönhals, Andreas

    2017-05-01

    Specific heat spectroscopy (SHS) employing AC nanochip calorimetry was used to investigate the glassy dynamics of ultra-thin films (thicknesses: 10 nm-340 nm) of a polymer blend, which is miscible in the bulk. In detail, a Poly(vinyl methyl ether) (PVME)/Polystyrene (PS) blend with the composition of 25/75 wt. % was studied. The film thickness was controlled by ellipsometry while the film topography was checked by atomic force microscopy. The results are discussed in the framework of the balance between an adsorbed and a free surface layer on the glassy dynamics. By a self-assembling process, a layer with a reduced mobility is irreversibly adsorbed at the polymer/substrate interface. This layer is discussed employing two different scenarios. In the first approach, it is assumed that a PS-rich layer is adsorbed at the substrate. Whereas in the second approach, a PVME-rich layer is suggested to be formed at the SiO2 substrate. Further, due to the lower surface tension of PVME, with respect to air, a nanometer thick PVME-rich surface layer, with higher molecular mobility, is formed at the polymer/air interface. By measuring the glassy dynamics of the thin films of PVME/PS in dependence on the film thickness, it was shown that down to 30 nm thicknesses, the dynamic Tg of the whole film was strongly influenced by the adsorbed layer yielding a systematic increase in the dynamic Tg with decreasing the film thickness. However, at a thickness of ca. 30 nm, the influence of the mobile surface layer becomes more pronounced. This results in a systematic decrease in Tg with the further decrease of the film thickness, below 30 nm. These results were discussed with respect to thin films of PVME/PS blend with a composition of 50/50 wt. % as well as literature results.

  2. Theoretical study of methanol synthesis from CO2 and CO hydrogenation on the surface of ZrO2 supported In2O3 catalyst

    NASA Astrophysics Data System (ADS)

    Dou, Maobin; Zhang, Minhua; Chen, Yifei; Yu, Yingzhe

    2018-06-01

    The interactions between ZrO2 support and In2O3 catalyst play pivotal role in the catalytic conversion of CO2 to methanol. Herein, a density functional theory study has been conducted to research the mechanism of methanol synthesis from CO2 and CO hydrogenation on the defective ZrO2 supported In2O3(110) surface (D surface). The calculations reveal that methanol is produced mainly via the HCOO reaction pathway from CO2 hydrogenation on D surface, and the hydrogenation of HCOO to form H2COO species with an activation barrier of 1.21 eV plays the rate determining step for the HCOO reaction pathway. The direct dissociation of CO2 to CO on D surface is kinetically and energetically prohibited. Methanol synthesis from CO hydrogenation on D surface is much facile comparing with the elementary steps involved in CO2 hydrogenation. The rate determining step of CO hydrogenation to methanol is the formation of H3CO species on the vacancy site with a barrier of 0.51 eV. ZrO2 support has significant effect on the suppressing of the dissociation of CO2 and stabilization of H2COO species on the surface of In2O3 catalyst.

  3. [Preliminary study on DNA damage of ZrO(2)/LaPO(4) diphase ceramics on human peripheral blood lymphocytes in vitro].

    PubMed

    Zhu, Hui-fang; Chen, Li-ping; Zhang, Xiu-li; Zhang, Bao-wei

    2009-06-01

    To detect the genotoxicity of dental machinable ZrO(2)/LaPO(4) diphase ceramics on human peripheral blood lymphocytes in vitro. The evaluation of DNA damage on human lymphocytes was performed by comet assay for three groups of ZrO(2)/LaPO(4) diphase ceramics with 30wt% of LaPO(4) (with 3wt% and 5wt% of Y(2)O(3)) and 40wt% of LaPO(4) (with 5wt% of Y(2)O(3)). The results were analyzed with SPSS16.0 software package for one-factor ANOVA and LSD. Three experimental groups with different concentration of LaPO(4) of ZrO(2)/LaPO(4) diphase ceramics, the negative control of IPS Empress II ceramics and the blank behaved little migration of the DNA strands respectively after six-day test, and there was no significant difference in all the groups except the positive control (P>0.05). The study indicates little effect of DNA damage of ZrO(2)/LaPO(4) diphase ceramics.

  4. Thermodynamic Database for the NdO(1.5)-YO(1.5)-YbO(1.5)-ScO(1.5)-ZrO2 System

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Copland, Evan H.; Kaufman, Larry

    2001-01-01

    A database for YO(1.5)-NdO(1.5)-YbO(1.5)-ScO(1.5)-ZrO2 for ThermoCalc (ThermoCalc AB, Stockholm, Sweden) has been developed. The basis of this work is the YO(1.5)-ZrO2 assessment by Y. Du, Z. Jin, and P. Huang, 'Thermodynamic Assessment of the ZrO2-YO(1.5) System'. Experimentally only the YO(1.5)-ZrO2 system has been well-studied. All other systems are only approximately known. The major simplification in this work is the treatment of each single cation unit as a component. The pure liquid oxides are taken as reference states and two term lattice stability descriptions are used for each of the components. The limited experimental phase diagrams are reproduced.

  5. The effects of ultra-thin cerium fluoride film as the anode buffer layer on the electrical characteristics of organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Lu, Hsin-Wei; Tsai, Cheng-Che; Hong, Cheng-Shong; Kao, Po-Ching; Juang, Yung-Der; Chu, Sheng-Yuan

    2016-11-01

    In this study, the efficiency of organic light-emitting diodes (OLEDs) was enhanced by depositing a CeF3film as an ultra-thin buffer layer between the indium tin oxide (ITO) electrode and α-naphthylphenylbiphenyldiamine (NPB) hole transport layer, with the structure configuration ITO/CeF3 (0.5, 1, and 1.5 nm)/α-naphthylphenylbiphenyl diamine (NPB) (40 nm)/tris(8-hydroxyquinoline) aluminum (Alq3) (60 nm)/lithium fluoride (LiF) (1 nm)/Al (150 nm). The enhancement mechanism was systematically investigated via several approaches. The X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy results revealed the formation of the UV-ozone treated CeF3 film. The work function increased from 4.8 eV (standard ITO electrode) to 5.22 eV (0.5-nm-thick UV-ozone treated CeF3 film deposited on the ITO electrode). The surface roughness of the UV-ozone treated CeF3 film was smoother than that of the standard ITO electrode. Further, the UV-ozone treated CeF3 film increased both the surface energy and polarity, as determined from contact angle measurements. In addition, admittance spectroscopy measurements showed an increased capacitance and conductance of the OLEDs. Accordingly, the turn-on voltage decreased from 4.2 V to 3.6 V at 1 mA/cm2, the luminance increased from 7588 cd/m2 to 24760 cd/m2, and the current efficiency increased from 3.2 cd/A to 3.8 cd/A when the 0.5-nm-thick UV-ozone treated CeF3 film was inserted into the OLEDs.

  6. Bayesian inference of metal oxide ultrathin film structure based on crystal truncation rod measurements

    PubMed Central

    Anada, Masato; Nakanishi-Ohno, Yoshinori; Okada, Masato; Kimura, Tsuyoshi; Wakabayashi, Yusuke

    2017-01-01

    Monte Carlo (MC)-based refinement software to analyze the atomic arrangements of perovskite oxide ultrathin films from the crystal truncation rod intensity is developed on the basis of Bayesian inference. The advantages of the MC approach are (i) it is applicable to multi-domain structures, (ii) it provides the posterior probability of structures through Bayes’ theorem, which allows one to evaluate the uncertainty of estimated structural parameters, and (iii) one can involve any information provided by other experiments and theories. The simulated annealing procedure efficiently searches for the optimum model owing to its stochastic updates, regardless of the initial values, without being trapped by local optima. The performance of the software is examined with a five-unit-cell-thick LaAlO3 film fabricated on top of SrTiO3. The software successfully found the global optima from an initial model prepared by a small grid search calculation. The standard deviations of the atomic positions derived from a dataset taken at a second-generation synchrotron are ±0.02 Å for metal sites and ±0.03 Å for oxygen sites. PMID:29217989

  7. Surface Crystallization of a MgO/Y2O3/SiO2/Al2O3/ZrO2 Glass: Growth of an Oriented β-Y2Si2O7 Layer and Epitaxial ZrO2

    PubMed Central

    Wisniewski, Wolfgang; Seidel, Sabrina; Patzig, Christian; Rüssel, Christian

    2017-01-01

    The crystallization behavior of a glass with the composition 54.7 SiO2·10.9 Al2O3·15.0 MgO·3.4 ZrO2·16.0 Y2O3 is studied using X-ray diffraction (XRD), scanning electron microscopy (SEM) including electron backscatter diffraction (EBSD) and (scanning) transmission electron microscopy [(S)TEM] including energy-dispersive X-ray spectrometry (EDXS). This glass shows the sole surface crystallization of four different yttrium silicates of the composition Y2Si2O7 (YS). The almost simultaneous but independent nucleation of α-, β-, δ-, and ε-YS at the surface is followed by growth into the bulk, where ε-YS quickly dominates a first crystallized layer. An accumulation of Mg at the growth front probably triggers a secondary nucleation of β-YS, which forms a thin compact layer before fragmenting into a highly oriented layer of fine grained crystals occupying the remaining bulk. The residual glass between the YS growth structures allows the crystallization of indialite, yttrium stabilized ZrO2 (Y-ZrO2) and very probably μ-cordierite during cooling. Hence, this glass basically shows the inverted order of crystallization observed in other magnesium yttrium alumosilicate glasses containing less Y2O3. An epitaxial relationship between Y-ZrO2 and ε-YS is proven and multiple twinning relationships occur in the YS phases. PMID:28281661

  8. Effects of SnO2, WO3, and ZrO2 addition on the magnetic and mechanical properties of NiCuZn ferrites

    NASA Astrophysics Data System (ADS)

    Wang, Sea-Fue; Yang, Hsiao-Ching; Hsu, Yung-Fu; Hsieh, Chung-Kai

    2015-01-01

    In this study, the effects of SnO2, WO3 and ZrO2 addition at levels up to 5 wt% on the magnetic and mechanical properties of Ni0.5Cu0.3Zn0.2Fe2O4 ceramics were investigated. Only Ni0.5Cu0.3Zn0.2Fe2O4 ceramic with a SnO2 addition of ≥3.5 wt% required a densification temperature of 1150 °C, while the others reached maximum densification at 1075 °C. All samples revealed a pure spinel phase and a uniform microstructure, except for the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic with the WO3 addition, which showed an exaggerated grain growth accompanied with a small amount of needle-shaped Cu0.85Zn0.15WO4 second phase. The fracture mode in the pure Ni0.5Cu0.3Zn0.2Fe2O4 ceramic revealed a transgranular phase, as the CuO second phase increased the grain boundary strength; the Ni0.5Cu0.3Zn0.2Fe2O4 ceramics sintered with 5 wt% additives showed an intergranular phase. The Vickers hardness and the bending strength of the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic were 733.6 and 62.0 MPa, respectively. The Vickers hardness of the ferrite with added SnO2 or ZrO2 showed only a slight improvement, while an apparent change (832.7) was observed with the addition of 5.0 wt% WO3. The bending strength of the ferrite was optimized at 75.7 MPa with 2.0 wt% SnO2 and at 90.5 MPa with 3.5 wt% ZrO2, while that of the ferrite sintered with WO3 added dropped gradually from 62.0 to 47.7 MPa as the amount of WO3 was increased from 0 to 5.0 wt% due to the non-uniform microstructure. The pure Ni0.5Cu0.3Zn0.2Fe2O4 ceramic sintered at 1075 °C had an initial permeability of 356.9 and a quality factor of 71.2. The addition of ZrO2 led to a significant increase in the initial permeability (588.4 at 5.0 wt% ZrO2), but a slight decline in the quality factor (56.6 at 5.0 wt% ZrO2).

  9. Desulfurization from thiophene by SO(4)(2-)/ZrO(2) catalytic oxidation at room temperature and atmospheric pressure.

    PubMed

    Wang, Bo; Zhu, Jianpeng; Ma, Hongzhu

    2009-05-15

    Thiophene, due to its poison, together with its combustion products which causes air pollution and highly toxic characteristic itself, attracted more and more attention to remove from gasoline and some high concentration systems. As the purpose of achieving the novel method of de-thiophene assisted by SO(4)(2-)/ZrO(2) (SZ), three reactions about thiophene in different atmosphere at room temperature and atmospheric pressure were investigated. SO(4)(2-)/ZrO(2) catalyst were synthesized and characterized by X-ray photoelectron spectroscopy (XPS), Fourier transformation infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and scanning electron microscope (SEM). The products were detected by gas chromatography-mass spectrometry (GC-MS). XP spectra show that ozone-catalyst system (SZO) have two forms of sulfur element (S(6+) and S(2-)) on the catalyst surface, which distinguished from that of air-catalyst system (SZA) and blank-catalyst system (SZB) (S(6+)). And the results of GC-MS exhibited that some new compounds has been produced under this extremely mild condition. Especially, many kinds of sulfur compounds containing oxygen, that is easier to be extracted by oxidative desulfurization (ODS), have been detected in the SZA-1.5h and SZB-3h system. In addition, some long chain hydrocarbons have also been detected. While in SZO-0.5h system, only long chain hydrocarbons were found. The results show that total efficiency of desulfurization from thiophene with ozone near to 100% can be obtained with the SO(4)(2-)/ZrO(2) catalytic oxidation reaction.

  10. Influence of growth temperature on properties of zirconium dioxide films grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Kukli, Kaupo; Ritala, Mikko; Aarik, Jaan; Uustare, Teet; Leskela, Markku

    2002-08-01

    ZrO2 films were grown by atomic layer deposition from ZrCl4 and H2O or a mixture of H2O and H2O2 on Si(100) substrates in the temperature range of 180-600 degC. The films were evaluated in the as-deposited state, in order to follow the effect of deposition temperature on the film quality. The rate of crystal growth increased and the content of residual impurities decreased with increasing temperature. The zirconium-to-oxygen atomic ratio, determined by ion-beam analysis, corresponded to the stoichiometric dioxide regardless of the growth temperature. The effective permittivity of ZrO2 in Al/ZrO2/Si capacitor structures increased from 13-15 in the films grown at 180 degC to 19 in the films grown at 300-600 degC, measured at 100 kHz. The permittivity was relatively high in the crystallized films, compared to the amorphous ones, but rather insensitive to the crystal structure. The permittivity was higher in the films grown using water. The leakage current density tended to be lower and the breakdown field higher in the films grown using hydrogen peroxide.

  11. [Pollution prevention and control of aqueous extract of astragali radix processed with ZrO2 inorganic ceramic membrane micro-filtration].

    PubMed

    Pan, Lin-Men; Huang, Min-Yan; Guo, Li-Wei

    2012-11-01

    To study the measures for preventing and controlling the pollution of aqueous extract of Astragali Radix proceeded with inorganic ceramic membrane micro-filtration, in order to find effective measures for preventing and controlling the membrane pollution. The resistance distribution, polymer removal and changes in physical and chemical parameters of the zirconium oxide film of different pore diameters were determined to analyze the state or location of pollutants as well as the regularity of formation. Meanwhile, recoil and ultrasonic physical measures were adopted to strengthen the membrane process, in order to explore the methods for preventing and controlling the membrane pollution. When 0.2 microm of ZrO2 micro-filtrated aqueous extract of Astragali Radix, the rate of pollution was as high as 44.9%. The hole blocking resistance and the concentration polarization resistance were the main filtration resistances, while the surface deposit resistance decreased with the increase in the membrane's hold diameter; after micro-filtration, the liquid turbidity significantly reduced, with slight changes in both pH and viscosity. The 0.2 microm ZrO2 micro-filtration membrane performed better than the 0.05 microm pore size membrane in terms of conductivity. The 0. 2 microm and 0.05 microm pore diameter membranes showed better performance in the removal of pectin. The ultrasonic measure to strengthen membranes is more suitable to this system, with a flux rate up by 41.7%. The membrane optimization process adopts appropriate measures for preventing and controlling the membrane pollution, in order to reduce the membrane pollution, recover membrane performance and increase filtration efficiency.

  12. ZrO2 Layer Thickness Dependent Electrical and Dielectric Properties of BST/ZrO2/BST Multilayer Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, S. K.; Misra, D.; Agrawal, D. C.

    2011-01-01

    Recently, high K materials play an important role in microelectronic devices such as capacitors, memory devices, and microwave devices. Now a days ferroelectric barium strontium titanate [Ba{sub x}Sr{sub 1-x}TiO{sub 3}, (BST)] thin film is being actively investigated for applications in dynamic random access memories (DRAM), field effect transistor (FET), and tunable devices because of its properties such as high dielectric constant, low leakage current, low dielectric loss, and high dielectric breakdown strength. Several approaches have been used to optimize the dielectric and electrical properties of BST thin films such as doping, graded compositions, and multilayer structures. We have found thatmore » inserting a ZrO{sub 2} layer in between two BST layers results in a significant reduction in dielectric constant, loss tangent, and leakage current in the multilayer thin films. Also it is shown that the properties of multilayer structure are found to depend strongly on the sublayer thicknesses. In this work the effect of ZrO{sub 2} layer thickness on the dielectric, ferroelectric as well as electrical properties of BST/ZrO{sub 2}/BST multilayer structure is studied. The multilayer Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3}/ZrO{sub 2}/Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3} film is deposited by a sol-gel process on the platinized Si substrate. The thickness of the middle ZrO{sub 2} layer is varied while keeping the top and bottom BST layer thickness as fixed. It is observed that the dielectric constant, dielectric loss tangent, and leakage current of the multilayer films reduce with the increase of ZrO{sub 2} layer thickness and hence suitable for memory device applications. The ferroelectric properties of the multilayer film also decrease with the ZrO{sub 2} layer thickness.« less

  13. Optimizing ultrathin Ag films for high performance oxide-metal-oxide flexible transparent electrodes through surface energy modulation and template-stripping procedures

    PubMed Central

    Yang, Xi; Gao, Pingqi; Yang, Zhenhai; Zhu, Juye; Huang, Feng; Ye, Jichun

    2017-01-01

    Among new flexible transparent conductive electrode (TCE) candidates, ultrathin Ag film (UTAF) is attractive for its extremely low resistance and relatively high transparency. However, the performances of UTAF based TCEs critically depend on the threshold thickness for growth of continuous Ag films and the film morphologies. Here, we demonstrate that these two parameters could be strongly altered through the modulation of substrate surface energy. By minimizing the surface energy difference between the Ag film and substrate, a 9 nm UTAF with a sheet resistance down to 6.9 Ω sq−1 can be obtained using an electron-beam evaporation process. The resultant UTAF is completely continuous and exhibits smoother morphologies and smaller optical absorbances in comparison to the counterpart of granular-type Ag film at the same thickness without surface modulation. Template-stripping procedure is further developed to transfer the UTAFs to flexible polymer matrixes and construct Al2O3/Ag/MoOx (AAM) electrodes with excellent surface morphology as well as optical and electronic characteristics, including a root-mean-square roughness below 0.21 nm, a transparency up to 93.85% at 550 nm and a sheet resistance as low as 7.39 Ω sq−1. These AAM based electrodes also show superiority in mechanical robustness, thermal oxidation stability and shape memory property. PMID:28291229

  14. Optimizing ultrathin Ag films for high performance oxide-metal-oxide flexible transparent electrodes through surface energy modulation and template-stripping procedures

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Gao, Pingqi; Yang, Zhenhai; Zhu, Juye; Huang, Feng; Ye, Jichun

    2017-03-01

    Among new flexible transparent conductive electrode (TCE) candidates, ultrathin Ag film (UTAF) is attractive for its extremely low resistance and relatively high transparency. However, the performances of UTAF based TCEs critically depend on the threshold thickness for growth of continuous Ag films and the film morphologies. Here, we demonstrate that these two parameters could be strongly altered through the modulation of substrate surface energy. By minimizing the surface energy difference between the Ag film and substrate, a 9 nm UTAF with a sheet resistance down to 6.9 Ω sq-1 can be obtained using an electron-beam evaporation process. The resultant UTAF is completely continuous and exhibits smoother morphologies and smaller optical absorbances in comparison to the counterpart of granular-type Ag film at the same thickness without surface modulation. Template-stripping procedure is further developed to transfer the UTAFs to flexible polymer matrixes and construct Al2O3/Ag/MoOx (AAM) electrodes with excellent surface morphology as well as optical and electronic characteristics, including a root-mean-square roughness below 0.21 nm, a transparency up to 93.85% at 550 nm and a sheet resistance as low as 7.39 Ω sq-1. These AAM based electrodes also show superiority in mechanical robustness, thermal oxidation stability and shape memory property.

  15. Ceramic composite separators coated with moisturized ZrO(2) nanoparticles for improving the electrochemical performance and thermal stability of lithium ion batteries.

    PubMed

    Kim, Ki Jae; Kwon, Hyuk Kwon; Park, Min-Sik; Yim, Taeeun; Yu, Ji-Sang; Kim, Young-Jun

    2014-05-28

    We introduce a ceramic composite separator prepared by coating moisturized ZrO2 nanoparticles with a poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-12wt%HFP) copolymer on a polyethylene separator. The effect of moisturized ZrO2 nanoparticles on the morphology and the microstructure of the polymeric coating layer is investigated. A large number of micropores formed around the embedded ZrO2 nanoparticles in the coating layer as a result of the phase inversion caused by the adsorbed moisture. The formation of micropores highly affects the ionic conductivity and electrolyte uptake of the ceramic composite separator and, by extension, the rate discharge properties of lithium ion batteries. In particular, thermal stability of the ceramic composite separators coated with the highly moisturized ZrO2 nanoparticles (a moisture content of 16 000 ppm) is dramatically improved without any degradation in electrochemical performance compared to the performance of pristine polyethylene separators.

  16. Modeling of methanol decomposition on Pt/CeO2/ZrO2 catalyst in a packed bed microreactor

    NASA Astrophysics Data System (ADS)

    Pohar, Andrej; Belavič, Darko; Dolanc, Gregor; Hočevar, Stanko

    2014-06-01

    Methanol decomposition on Pt/CeO2/ZrO2 catalyst is studied inside a packed bed microreactor in the temperature range of 300-380 °C. The microreactor is fabricated using low-temperature co-fired ceramic (LTCC) technology, which is well suited for the production of relatively complex three-dimensional structures. It is packed with 2 wt% Pt-CeO2 catalyst, which is deposited onto ZrO2 spherical particles. A 1D mathematical model, which incorporates diffusion, convection and mass transfer through the boundary layer to the catalyst particles, as well as a 3D computational fluid dynamics model, are developed to describe the methanol decomposition process inside the packed bed. The microreactor exhibits reliable operation and no catalyst deactivation was observed during three months of experimentation. A comparison between the 1D mathematical model and the 3D model, considering the full 3D geometry of the microreactor is made and the differences between the models are identified and evaluated.

  17. Adhesion, proliferation and differentiation of osteoblasts on zirconia films prepared by cathodic arc deposition.

    PubMed

    Zhang, Shailin; Sun, Junying; Xu, Ying; Qian, Shi; Wang, Bing; Liu, Fei; Liu, Xuanyong

    2013-01-01

    Zirconia films were prepared on titanium by cathodic arc deposition technique. The surface topography and element composition of the films were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. Osteoblast-like MG63 cells were cultured on the surface of the zirconia films in vitro, and cell behaviour was investigated, with titanium as control. The results obtained from scanning electron microscopy and immunofluorescence studies showed that the MG63 cells on ZrO2 films spread better than those on Ti. The CCK8 assay indicated that the zirconia films promoted the proliferation of MG63 cells. The results of alkaline phosphatase (ALP) activity test and the expression of osteogenic marker genes, such as ALP, collagen I and osteocalcin, demonstrated that the differentiation of MG63 cells might be enhanced by zirconia films. In addition, the zirconia films possibly regulated osteoclastogenic gene expression by stimulating the expression of osteoprotegerin and reducing the expression of receptor activator of nuclear factor-kappaB ligand. The present work suggests that the ZrO2 film is worth further consideration for orthopedic implant applications.

  18. EDMOS in ultrathin FDSOI: Impact of the drift region properties

    NASA Astrophysics Data System (ADS)

    Litty, Antoine; Ortolland, Sylvie; Golanski, Dominique; Dutto, Christian; Cristoloveanu, Sorin

    2016-11-01

    The development of high-voltage MOSFET (HVMOS) is necessary for including power management or radiofrequency functionalities in CMOS technology. In this paper, we investigate the fabrication and optimization of an Extended Drain MOSFET (EDMOS) directly integrated in the ultra-thin SOI film (7 nm) of the 28 nm FDSOI CMOS technology node. Thanks to TCAD simulations, we analyse in detail the device behaviour as a function of the doping level and length of the drift region. The influence of the back-plane doping type and of the back-biasing schemes is discussed. DC measurements of fabricated EDMOS samples reveal promising performances in particular in terms of specific on-resistance versus breakdown voltage trade-off. The experimental results indicate that, even in an ultrathin film, the engineering of the drift region could be a lever to obtain integrated HVMOS (3.3-5 V).

  19. Demonstration of motion control of ZrO2 microparticles in uniform/non-uniform electric field

    NASA Astrophysics Data System (ADS)

    Onishi, Genki; Trung, Ngo Nguyen Chi; Matsutani, Naoto; Nakayama, Tadachika; Suzuki, Tsuneo; Suematsu, Hisayuki; Niihara, Koichi

    2018-02-01

    This study aims to elucidate the mechanism that drives dielectric microparticles under an electric field. The driving of microstructures is affected by various electrical phenomena occurring at the same time such as surface potential, polarization, and electrostatic force. It makes the clarification of the driving mechanism challenging. A simple experimental system was used to observe the behavior of spherical ZrO2 microparticles in a nonaqueous solution under an electric field. The results suggest that the mechanism that drives the ZrO2 microparticles under an electric field involved the combination of an electric image force, a gradient force, and the contact charging phenomenon. A method is proposed to control the motion of micro- and nanostructures in further study and applications.

  20. Effective passivation of silicon surfaces by ultrathin atomic-layer deposited niobium oxide

    NASA Astrophysics Data System (ADS)

    Macco, B.; Bivour, M.; Deijkers, J. H.; Basuvalingam, S. B.; Black, L. E.; Melskens, J.; van de Loo, B. W. H.; Berghuis, W. J. H.; Hermle, M.; Kessels, W. M. M. Erwin

    2018-06-01

    This letter reports on effective surface passivation of n-type crystalline silicon by ultrathin niobium oxide (Nb2O5) films prepared by atomic layer deposition (ALD) and subjected to a forming gas anneal at 300 °C. A champion recombination parameter J0 of 20 fA/cm2 and a surface recombination velocity Seff of 4.8 cm/s have been achieved for ultrathin films of 1 nm. The surface pretreatment was found to have a strong impact on the passivation. Good passivation can be achieved on both HF-treated c-Si surfaces and c-Si surfaces with a wet-chemically grown interfacial silicon oxide layer. On HF-treated surfaces, a minimum film thickness of 3 nm is required to achieve a high level of surface passivation, whereas the use of a wet chemically-grown interfacial oxide enables excellent passivation even for Nb2O5 films of only 1 nm. This discrepancy in passivation between both surface types is attributed to differences in the formation and stoichiometry of interfacial silicon oxide, resulting in different levels of chemical passivation. On both surface types, the high level of passivation of ALD Nb2O5 is aided by field-effect passivation originating from a high fixed negative charge density of 1-2 × 1012 cm-3. Furthermore, it is demonstrated that the passivation level provided by 1 nm of Nb2O5 can be further enhanced through light-soaking. Finally, initial explorations show that a low contact resistivity can be obtained using Nb2O5-based contacts. Together, these properties make ALD Nb2O5 a highly interesting building block for high-efficiency c-Si solar cells.