Sample records for ultraviolet absorption spectrometer

  1. A Fourier transform spectrometer for visible and near ultra-violet measurements of atmospheric absorption

    NASA Technical Reports Server (NTRS)

    Parsons, C. L.; Gerlach, J. C.; Whitehurst, M.

    1982-01-01

    The development of a prototype, ground-based, Sun-pointed Michelson interferometric spectrometer is described. Its intended use is to measure the atmospheric amount of various gases which absorb in the near-infrared, visible, and near-ultraviolet portions of the electromagnetic spectrum. Preliminary spectra which contain the alpha, 0.8 micrometer, and rho sigma tau water vapor absorption bands in the near-infrared are presented to indicate the present capability of the system. Ultimately, the spectrometer can be used to explore the feasible applications of Fourier transform spectroscopy in the ultraviolet where grating spectrometers were used exclusively.

  2. JPL Fourier transform ultraviolet spectrometer

    NASA Technical Reports Server (NTRS)

    Cageao, R. P.; Friedl, R. R.; Sander, Stanley P.; Yung, Y. L.

    1994-01-01

    The Fourier Transform Ultraviolet Spectrometer (FTUVS) is a new high resolution interferometric spectrometer for multiple-species detection in the UV, visible and near-IR. As an OH sensor, measurements can be carried out by remote sensing (limb emission and column absorption), or in-situ sensing (long-path absorption or laser-induced fluorescence). As a high resolution detector in a high repetition rate (greater than 10 kHz) LIF system, OH fluorescence can be discriminated against non-resonant background emission and laser scatter, permitting (0, 0) excitation.

  3. Galileo Ultraviolet Spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Hord, C. W.; Mcclintock, W. E.; Stewart, A. I. F.; Barth, C. A.; Esposito, L. W.; Thomas, G. E.; Sandel, B. R.; Hunten, D. M.; Broadfoot, A. L.; Shemansky, D. E.

    1992-01-01

    The Galileo ultraviolet spectrometer experiment uses data obtained by the Ultraviolet Spectrometer (UVS) mounted on the pointed orbiter scan platform and from the Extreme Ultraviolet Spectrometer (EUVS) mounted on the spinning part of the orbiter with the field of view perpendicular to the spin axis. The UVS is a Ebert-Fastie design that covers the range 113-432 nm with a wavelength resolution of 0.7 nm below 190 and 1.3 nm at longer wavelengths. The UVS spatial resolution is 0.4 deg x 0.1 deg for illuminated disk observations and 1 deg x 0.1 deg for limb geometries. The EUVS is a Voyager design objective grating spectrometer, modified to cover the wavelength range from 54 to 128 nm with wavelength resolution 3.5 nm for extended sources and 1.5 nm for point sources and spatial resolution of 0.87 deg x 0.17 deg. The EUVS instrument will follow up on the many Voyager UVS discoveries, particularly the sulfur and oxygen ion emissions in the Io torus and molecular and atomic hydrogen auroral and airglow emissions from Jupiter. The UVS will obtain spectra of emission, absorption, and scattering features in the unexplored, by spacecraft, 170-432 nm wavelength region. The UVS and EUVS instruments will provide a powerful instrument complement to investigate volatile escape and surface composition of the Galilean satellites, the Io plasma torus, micro- and macro-properties of the Jupiter clouds, and the composition structure and evolution of the Jupiter upper atmosphere.

  4. Balloon Borne Ultraviolet Spectrometer.

    DTIC Science & Technology

    1978-12-28

    n.c.aaary ond lden lfy by block numb.r) ultraviolet ground support equipment (GSE) spectrometers flight electronics instrumentation balloons \\ solar ...Assembly 4 Fig. 3 Solar Balloon Experiment Ass ’y 7 Fig. 4 Mechanical Interface , UV Spectrometer 8 Fig . 5 Spectrometer Body Assemb ly 10 Fig. 6...Diagram, GSE )bnitor 48 Selector and Battery Charger Fig. 25 Schematic Diagram, GSE Serial to 49 Parallel Data Converter Fig. 26 Schematic Diagram

  5. A survey of ultraviolet interstellar absorption lines

    NASA Technical Reports Server (NTRS)

    Bohlin, R. C.; Jenkins, E. B.; Spitzer, L., Jr.; York, D. G.; Hill, J. K.; Savage, B. D.; Snow, T. P., Jr.

    1983-01-01

    A telescope-spectrometer on the Copernicus spacecraft made possible the measurement of many ultraviolet absorption lines produced by the interstellar gas. The present survey provides data on ultraviolet absorption lines in the spectra of 88 early-type stars. The stars observed are divided into four classes, including reddened stars, unreddened bright stars, moderately reddened bright stars, and unreddened and moderately reddened faint stars. Data are presented for equivalent width, W, radial velocity V, and rms line width, D, taking into account some 10 to 20 lines of N I, O I, Si II, P II, S II, Cl I, Cl II, Mn II, Fe II, Ni II, Cu II, and H2. The data are based on multiple scans for each line. Attention is given to details of observations, the data reduction procedure, and the computation of equivalent width, mean velocity, and velocity dispersion.

  6. Ultraviolet absorption experiment MA-059

    NASA Technical Reports Server (NTRS)

    Donahue, T. M.; Hudson, R. D.; Anderson, J.; Kaufman, F.; Mcelroy, M. B.

    1976-01-01

    The ultraviolet absorption experiment performed during the Apollo Soyuz mission involved sending a beam of atomic oxygen and atomic nitrogen resonance radiation, strong unabsorbable oxygen and nitrogen radiation, and visual radiation, all filling the same 3 deg-wide field of view from the Apollo to the Soyuz. The radiation struck a retroreflector array on the Soyuz and was returned to a spectrometer onboard the Apollo. The density of atomic oxygen and atomic nitrogen between the two spacecraft was measured by observing the amount of resonance radiation absorbed when the line joining Apollo and Soyuz was perpendicular to their velocity with respect to the ambient atmosphere. Information concerning oxygen densities was also obtained by observation of resonantly fluorescent light. The absorption experiments for atomic oxygen and atomic nitrogen were successfully performed at a range of 500 meters, and abundant resonance fluorescence data were obtained.

  7. Ultraviolet spectrometer experiment for the Voyager mission

    NASA Technical Reports Server (NTRS)

    Broadfoot, A. L.; Sandel, B. R.; Shemansky, D. E.; Atreya, S. K.; Donahue, T. M.; Moos, H. W.; Bertaux, J. L.; Blamont, J. E.; Ajello, J. M.; Strobel, D. F.

    1977-01-01

    An objective grating spectrometer covering the wavelength range of 500 to 1700 A with a 10-A resolution is employed for the Voyager ultraviolet spectrometer experiment. In determining the composition and structure of the atmospheres of Saturn, Jupiter and several satellites, the ultraviolet spectrometer will rely on airglow mode observations to measure radiation from the atmospheres due to resonant scattering of solar flux, and the occultation mode for assessments of the atmospheric extinction of solar or stellar radiation as the spacecraft enters shadow zones. Since it is capable of prolonged stellar observations in the 500 to 1000 A wavelength range, the spectrometer is expected to make important contributions to exploratory studies of UV sources.

  8. Ultraviolet absorption hygrometer

    DOEpatents

    Gersh, M.E.; Bien, F.; Bernstein, L.S.

    1986-12-09

    An ultraviolet absorption hygrometer is provided including a source of pulsed ultraviolet radiation for providing radiation in a first wavelength region where water absorbs significantly and in a second proximate wavelength region where water absorbs weakly. Ultraviolet radiation in the first and second regions which has been transmitted through a sample path of atmosphere is detected. The intensity of the radiation transmitted in each of the first and second regions is compared and from this comparison the amount of water in the sample path is determined. 5 figs.

  9. Three new extreme ultraviolet spectrometers on NSTX-U for impurity monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weller, M. E., E-mail: weller4@llnl.gov; Beiersdorfer, P.; Soukhanovskii, V. A.

    2016-11-15

    Three extreme ultraviolet (EUV) spectrometers have been mounted on the National Spherical Torus Experiment–Upgrade (NSTX-U). All three are flat-field grazing-incidence spectrometers and are dubbed X-ray and Extreme Ultraviolet Spectrometer (XEUS, 8–70 Å), Long-Wavelength Extreme Ultraviolet Spectrometer (LoWEUS, 190–440 Å), and Metal Monitor and Lithium Spectrometer Assembly (MonaLisa, 50–220 Å). XEUS and LoWEUS were previously implemented on NSTX to monitor impurities from low- to high-Z sources and to study impurity transport while MonaLisa is new and provides the system increased spectral coverage. The spectrometers will also be a critical diagnostic on the planned laser blow-off system for NSTX-U, which will bemore » used for impurity edge and core ion transport studies, edge-transport code development, and benchmarking atomic physics codes.« less

  10. Ultraviolet-Absorption Spectroscopic Biofilm Monitor

    NASA Technical Reports Server (NTRS)

    Micheels, Ronald H.

    2004-01-01

    An ultraviolet-absorption spectrometer system has been developed as a prototype instrument to be used in continuous, real-time monitoring to detect the growth of biofilms. Such monitoring is desirable because biofilms are often harmful. For example, biofilms in potable-water and hydroponic systems act as both sources of pathogenic bacteria that resist biocides and as a mechanism for deterioration (including corrosion) of pipes. Biofilms formed from several types of hazardous bacteria can thrive in both plant-growth solutions and low-nutrient media like distilled water. Biofilms can also form in condensate tanks in air-conditioning systems and in industrial heat exchangers. At present, bacteria in potable-water and plant-growth systems aboard the space shuttle (and previously on the Mir space station) are monitored by culture-plate counting, which entails an incubation period of 24 to 48 hours for each sample. At present, there are no commercially available instruments for continuous monitoring of biofilms in terrestrial or spaceborne settings.

  11. Absorption spectra of localized surface plasmon resonance observed in an inline/picoliter spectrometer cell fabricated by a near ultraviolet femtosecond laser

    NASA Astrophysics Data System (ADS)

    Shiraishi, Masahiko; Nishiyama, Michiko; Watanabe, Kazuhiro; Kubodera, Shoichi

    2018-03-01

    Absorption spectra based on localized surface plasmon resonance (LSPR) were obtained with an inline/picoliter spectrometer cell. The spectrometer cell was fabricated into an optical glass fiber by focusing a near UV (NUV) femtosecond laser pulses at a wavelength of 400 nm with an energy of 30 μJ. The laser beam was focused from two directions opposite to each other to fabricate a through-hole spectrometer cell. A diameter of the cell was approximately 3 μm, and the length was approximately 62.5 μm, which was nearly equal to the core diameter of the optical fiber. Liquid solution of gold nanoparticles (GNPs) with a diameter of 5-10 nm was injected into the spectrometer cell with its volume of 0.4 pL. The absorption peak centered at 518 nm was observed. An increase of absorption associated with the increase of the number of nanoparticles was in agreement with the numerical calculation based on the Lambert-Beer law.

  12. Near unity ultraviolet absorption in graphene without patterning

    NASA Astrophysics Data System (ADS)

    Zhu, Jinfeng; Yan, Shuang; Feng, Naixing; Ye, Longfang; Ou, Jun-Yu; Liu, Qing Huo

    2018-04-01

    Enhancing the light-matter interaction of graphene is an important issue for related photonic devices and applications. In view of its potential ultraviolet applications, we aim to achieve extremely high ultraviolet absorption in graphene without any nanostructure or microstructure patterning. By manipulating the polarization and angle of incident light, the ultraviolet power can be sufficiently coupled to the optical dissipation of graphene based on single-channel coherent perfect absorption in an optimized multilayered thin film structure. The ultraviolet absorbance ratios of single and four atomic graphene layers are enhanced up to 71.4% and 92.2%, respectively. Our research provides a simple and efficient scheme to trap ultraviolet light for developing promising photonic and optoelectronic devices based on graphene and potentially other 2D materials.

  13. High-resolution ultraviolet observations of interstellar lines toward Zeta Persei observed with the balloon-borne ultraviolet stellar spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snow, T.P.; Lamers, H.J.G.L.M.; Joseph, C.L.

    1987-10-01

    The balloon-borne ultraviolet stellar spectrometer payload has been used to obtain high-resolution data on interstellar absorption lines toward Zeta Per. The only lines clearly present in the 2150-2450 region were several Fe II features, which show double structure. The two velocity components were sufficiently well separated that it was possible to construct separate curves of growth to derive the Fe II column densities for the individual components. These column densities and the component velocity separation were then used to compute a realistic two-component curve of growth for the line of sight to Zeta Per, which was then used to reanalyzemore » existing ultraviolet data from Copernicus. The results were generally similar to an earlier two-component analysis of the Copernicus data, with the important exception that the silicon depletion increased from near zero to about 1 dex. This makes the Zeta Per depletion pattern quite similar to those derived for other reddened lines of sight, supporting the viewpoint that the general diffuse interstellar medium has a nearly constant pattern of depletions. 31 references.« less

  14. Apollo 17 ultraviolet spectrometer experiment (S-169)

    NASA Technical Reports Server (NTRS)

    Fastie, W. G.

    1974-01-01

    The scientific objectives of the ultraviolet spectrometer experiment are discussed, along with design and operational details, instrument preparation and performance, and scientific results. Information gained from the experiment is given concerning the lunar atmosphere and albedo, zodiacal light, astronomical observations, spacecraft environment, and the distribution of atomic hydrogen in the solar system and in the earth's atmosphere.

  15. A novel multiplex absorption spectrometer for time-resolved studies

    NASA Astrophysics Data System (ADS)

    Lewis, Thomas; Heard, Dwayne E.; Blitz, Mark A.

    2018-02-01

    A Time-Resolved Ultraviolet/Visible (UV/Vis) Absorption Spectrometer (TRUVAS) has been developed that can simultaneously monitor absorption at all wavelengths between 200 and 800 nm with millisecond time resolution. A pulsed photolysis laser (KrF 248 nm) is used to initiate chemical reactions that create the target species. The absorption signals from these species evolve as the composition of the gas in the photolysis region changes over time. The instrument can operate at pressures over the range ˜10-800 Torr and can measure time-resolved absorbances <10-4 in the UV (300 nm) and even lower in the visible (580 nm) 2.3 × 10-5, with the peak of sensitivity at ˜500 nm. The novelty of this setup lies in the arrangement of the multipass optics. Although appearing similar to other multipass optical systems (in particular the Herriott cell), there are fundamental differences, most notably the ability to adjust each mirror to maximise the overlap between the probe beam and the photolysis laser. Another feature which aids the sensitivity and versatility of the system is the use of 2 high-throughput spectrographs coupled with sensitive line-array CCDs, which can measure absorbance from ˜200 to 800 nm simultaneously. The capability of the instrument is demonstrated via measurements of the absorption spectrum of the peroxy radical, HOCH2CH2O2, and its self-reaction kinetics.

  16. Concept Study Report: Extreme-Ultraviolet Imaging Spectrometer Solar-B

    NASA Technical Reports Server (NTRS)

    Doschek, George, A.; Brown, Charles M.; Davila, Joseph M.; Dere, Kenneth P.; Korendyke, Clarence M.; Mariska, John T.; Seely, John F.

    1999-01-01

    We propose a next generation Extreme-ultraviolet Imaging Spectrometer (EIS) that for the first time combines high spectral, spatial, and temporal resolution in a single solar spectroscopic instrument. The instrument consists of a multilayer-coated off-axis telescope mirror and a multilayer-coated grating spectrometer. The telescope mirror forms solar images on the spectrometer entrance slit assembly. The spectrometer forms stigmatic spectra of the solar region located at the slit. This region is selected by the articulated telescope mirror. Monochromatic images are obtained either by rastering the solar region across a narrow entrance slit, or by using a very wide slit (called a slot) in place of the slit. Monochromatic images of the region centered on the slot are obtained in a single exposure. Half of each optic is coated to maximize reflectance at 195 Angstroms; the other half to maximize reflectance at 270 Angstroms. The two Extreme Ultraviolet (EUV) wavelength bands have been selected to maximize spectral and dynamical and plasma diagnostic capabilities. Spectral lines are observed that are formed over a temperature range from about 0.1 MK to about 20 MK. The main EIS instrument characteristics are: wavelength bands - 180 to 204 Angstroms; 250 to 290 Angstroms; spectral resolution - 0.0223 Angstroms/pixel (34.3km/s at 195 Angstroms and 23.6 km/s at 284 Angstroms); slit dimensions - 4 slits, two currently specified dimensions are 1" x 1024" and 50" x 1024" (the slot); largest spatial field of view in a single exposure - 50" x 1024"; highest time resolution for active region velocity studies - 4.4 s.

  17. UVMAS: Venus ultraviolet-visual mapping spectrometer

    NASA Astrophysics Data System (ADS)

    Bellucci, G.; Zasova, L.; Altieri, F.; Nuccilli, F.; Ignatiev, N.; Moroz, V.; Khatuntsev, I.; Korablev, O.; Rodin, A.

    This paper summarizes the capabilities and technical solutions of an Ultraviolet Visual Mapping Spectrometer designed for remote sensing of Venus from a planetary orbiter. The UVMAS consists of a multichannel camera with a spectral range 0.19 << 0.49 μm which acquires data in several spectral channels (up to 400) with a spectral resolution of 0.58 nm. The instantaneous field of view of the instrument is 0.244 × 0.244 mrad. These characteristics allow: a) to study the upper clouds dynamics and chemistry; b) giving constraints on the unknown absorber; c) observation of the night side airglow.

  18. Accurately Calculating the Solar Orientation of the TIANGONG-2 Ultraviolet Forward Spectrometer

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Li, S.

    2018-04-01

    The Ultraviolet Forward Spectrometer is a new type of spectrometer for monitoring the vertical distribution of atmospheric trace gases in the global middle atmosphere. It is on the TianGong-2 space laboratory, which was launched on 15 September 2016. The spectrometer uses a solar calibration mode to modify its irradiance. Accurately calculating the solar orientation is a prerequisite of spectral calibration for the Ultraviolet Forward Spectrometer. In this paper, a method of calculating the solar orientation is proposed according to the imaging geometric characteristics of the spectrometer. Firstly, the solar orientation in the horizontal rectangular coordinate system is calculated based on the solar declination angle algorithm proposed by Bourges and the solar hour angle algorithm proposed by Lamm. Then, the solar orientation in the sensor coordinate system is achieved through several coordinate system transforms. Finally, we calculate the solar orientation in the sensor coordinate system and evaluate its calculation accuracy using actual orbital data of TianGong-2. The results show that the accuracy is close to the simulation method with STK (Satellite Tool Kit), and the error is not more than 2 %. The algorithm we present does not need a lot of astronomical knowledge, but only needs some observation parameters provided by TianGong-2.

  19. Ultraviolet absorption spectrum of HOCl

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.

    1993-01-01

    The room temperature UV absorption spectrum of HOCl was measured over the wavelength range 200 to 380 nm with a diode array spectrometer. The absorption spectrum was identified from UV absorption spectra recorded following UV photolysis of equilibrium mixtures of Cl2O/H2O/HOCl. The HOCl spectrum is continuous with a maximum at 242 nm and a secondary peak at 304 nm. The measured absorption cross section at 242 nm was (2.1 +/- 0.3) x 10 exp -19/sq cm (2 sigma error limits). These results are in excellent agreement with the work of Knauth et al. (1979) but in poor agreement with the more recent measurements of Mishalanie et al. (1986) and Permien et al. (1988). An HOCl nu2 infrared band intensity of 230 +/- 35/sq cm atm was determined based on this UV absorption cross section. The present results are compared with these previous measurements and the discrepancies are discussed.

  20. Low-cost 3D printed 1  nm resolution smartphone sensor-based spectrometer: instrument design and application in ultraviolet spectroscopy.

    PubMed

    Wilkes, Thomas C; McGonigle, Andrew J S; Willmott, Jon R; Pering, Tom D; Cook, Joseph M

    2017-11-01

    We report on the development of a low-cost spectrometer, based on off-the-shelf optical components, a 3D printed housing, and a modified Raspberry Pi camera module. With a bandwidth and spectral resolution of ≈60  nm and 1 nm, respectively, this device was designed for ultraviolet (UV) remote sensing of atmospheric sulphur dioxide (SO 2 ), ≈310  nm. To the best of our knowledge, this is the first report of both a UV spectrometer and a nanometer resolution spectrometer based on smartphone sensor technology. The device performance was assessed and validated by measuring column amounts of SO 2 within quartz cells with a differential optical absorption spectroscopy processing routine. This system could easily be reconfigured to cover other UV-visible-near-infrared spectral regions, as well as alternate spectral ranges and/or linewidths. Hence, our intention is also to highlight how this framework could be applied to build bespoke, low-cost, spectrometers for a range of scientific applications.

  1. Interface definition for the Far Ultraviolet Spectrometer Experiment S169

    NASA Technical Reports Server (NTRS)

    Fastie, W. G.

    1971-01-01

    A final contract for development, fabrication, test and flight of the ultraviolet spectrometer experiment on an Apollo space mission is reported. Two interface control documents were completed and signed off and three more were essentially completed. Supporting preliminary concepts formulation, design study and component investigation, specification and subcontract negotiation were accomplished.

  2. Contamination control program plan for the ultraviolet spectrometer experiment, revision E

    NASA Technical Reports Server (NTRS)

    Gilmore, D. B.

    1972-01-01

    The contamination control program plan delineates the cleanliness requirements to be attained and maintained, and the methods to be utilized, in the fabrication, handling, test, calibration, shipment, pre-installation checkout and installation for the ultraviolet spectrometer experiment prototype, qualification and flight equipment.

  3. Toroidal Optical Microresonators as Single-Particle Absorption Spectrometers

    NASA Astrophysics Data System (ADS)

    Heylman, Kevin D.

    Single-particle and single-molecule measurements are invaluable tools for characterizing structural and energetic properties of molecules and nanomaterials. Photothermal microscopy in particular is an ultrasensitive technique capable of single-molecule resolution. In this thesis I introduce a new form of photothermal spectroscopy involving toroidal optical microresonators as detectors and a pair of non-interacting lasers as pump and probe for performing single-target absorption spectroscopy. The first three chapters will discuss the motivation, design principles, underlying theory, and fabrication process for the microresonator absorption spectrometer. With an early version of the spectrometer, I demonstrate photothermal mapping and all-optical tuning with toroids of different geometries in Chapter 4. In Chapter 5, I discuss photothermal mapping and measurement of the absolute absorption cross-sections of individual carbon nanotubes. For the next generation of measurements I incorporate all of the advances described in Chapter 2, including a double-modulation technique to improve detection limits and a tunable pump laser for spectral measurements on single gold nanoparticles. In Chapter 6 I observe sharp Fano resonances in the spectra of gold nanoparticles and describe them with a theoretical model. I continued to study this photonic-plasmonic hybrid system in Chapter 7 and explore the thermal tuning of the Fano resonance phase while quantifying the Fisher information. The new method of photothermal single-particle absorption spectroscopy that I will discuss in this thesis has reached record detection limits for microresonator sensing and is within striking distance of becoming the first single-molecule room-temperature absorption spectrometer.

  4. EUNIS; Extreme-Ultraviolet Normal-Incidence Spectrometer

    NASA Technical Reports Server (NTRS)

    Thomas, Roger J.; Davila, Joseph M.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    GSFC is in the process of assembling an Extreme-Ultraviolet Normal Incidence Spectrometer called EUNIS, to be flown as a sounding rocket payload. The instrument builds on the many technical innovations pioneered by our highly successful SERTS experiment, which has now flown a total of ten times, most recently last summer. The new design will have somewhat improved spatial and spectral resolutions, as well as two orders of magnitude greater sensitivity, permitting high signal/noise EUV spectroscopy with a temporal resolution near 1 second for the first time ever. In order to achieve such high time cadence, a novel detector system is being developed, based on Active-Pixel-Sensor electronics, a key component of our design.

  5. The Apollo 17 far ultraviolet spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Fastie, W. G.

    1972-01-01

    The Apollo 17 command service module in lunar orbit will carry a far ultraviolet scanning spectrometer whose prime mission will be to measure the composition of the lunar atmosphere. Additional observations will include the spectral lunar albedo, the temporary atmosphere injected by the engines of the lunar exploration module, the solar system atmosphere, the galactic atmosphere and the spectra of astronomical sources, including the earth. A detailed description of the experimental equipment which observes the spectral range 1180 to 1680 A, the observing program and broad speculation about the possible results of the experiment, are presented.

  6. Assessment of Transition Element Speciation in Glasses Using a Portable Transmission Ultraviolet-Visible-Near-Infrared (UV-Vis-NIR) Spectrometer.

    PubMed

    Hunault, Myrtille; Lelong, Gérald; Gauthier, Michel; Gélébart, Frédéric; Ismael, Saindou; Galoisy, Laurence; Bauchau, Fanny; Loisel, Claudine; Calas, Georges

    2016-05-01

    A new low-cost experimental setup based on two compact dispersive optical spectrometers has been developed to measure optical absorption transmission spectra over the 350-2500 nm energy range. We demonstrate how near-infrared (NIR) data are essential to identify the coloring species in addition to ultraviolet visible data. After calibration with reference glasses, the use of an original sample stage that maintains the window panel in the vertical position enables the comparison of ancient and modern glasses embedded in a panel from the Sainte-Chapelle of Paris, without any sampling. The spectral resolution enables to observe fine resonances arising in the absorption bands of Cr(3+), and the complementary information obtained in the NIR enables to determine the contribution of Fe(2+), a key indicator of glassmaking conditions. © The Author(s) 2016.

  7. Differential optical absorption spectrometer for measurement of tropospheric pollutants

    NASA Astrophysics Data System (ADS)

    Evangelisti, F.; Baroncelli, A.; Bonasoni, P.; Giovanelli, G.; Ravegnani, F.

    1995-05-01

    Our institute has recently developed a differential optical absorption spectrometry system called the gas analyzer spectrometer correlating optical absorption differences (GASCOAD), which features as a detector a linear image sensor that uses an artificial light source for long-path tropospheric-pollution monitoring. The GASCOAD, its method of eliminating interference from background sky light, and subsequent spectral analysis are reported and discussed. The spectrometer was used from 7 to 22 February 1993 in Milan, a heavily polluted metropolitan area, to measure the concentrations of SO2, NO2, O3, and HNO2 averaged over a 1.7-km horizontal light path. The findings are reported and briefly discussed.

  8. Development and testing of the ultraviolet spectrometer for the Mariner Mars 1971 spacecraft

    NASA Technical Reports Server (NTRS)

    Farrar, J. W.

    1972-01-01

    The Mariner Mars 1971 ultraviolet spectrometer is an Ebert-Fastie type of the same basic design as the Mariner Mars 1969 instrument. Light enters the instrument and is split into component wavelengths by a scanning reflection diffraction grating. Two monochrometer exit slits allow the use of two independent photomultiplier tube sensors. Channel 1 has a spectral range of 1100 to 1692 A with a fixed gain, while Channel 2 has a spectral range of 1450 to 3528 A with an automatic step gain control, providing a dynamic range over the expected atmosphere and surface brightness of Mars. The scientific objectives, basic operation, design, testing, and calibration for the Mariner Mars 1971 ultraviolet spectrometer are described. The design discussion includes those modifications that were necessary to extend the lifetime of the instrument in order to accomplish the Mariner Mars 1971 mission objectives.

  9. Uric acid detection using uv-vis spectrometer

    NASA Astrophysics Data System (ADS)

    Norazmi, N.; Rasad, Z. R. Abdul; Mohamad, M.; Manap, H.

    2017-10-01

    The aim of this research is to detect uric acid (UA) concentration using Ultraviolet-Visible (UV-Vis) spectrometer in the Ultraviolet (UV) region. Absorption technique was proposed to detect different uric acid concentrations and its UV absorption wavelength. Current practices commonly take a lot of times or require complicated structures for the detection process. By this proposed spectroscopic technique, every concentration can be detected and interpreted into an absorbance value at a constant wavelength peak in the UV region. This is due to the chemical characteristics belong to the uric acid since it has a particular absorption cross-section, σ which can be calculated using Beer’s Lambert law formula. The detection performance was displayed using Spectrasuite sofware. It showed fast time response about 3 seconds. The experiment proved that the concentrations of uric acid were successfully detected using UV-Vis spectrometer at a constant absorption UV wavelength, 294.46 nm in a low time response. Even by an artificial sample of uric acid, it successfully displayed a close value as the ones reported with the use of the medical sample. It is applicable in the medical field and can be implemented in the future for earlier detection of abnormal concentration of uric acid.

  10. Wide-Field Ultraviolet Spectrometer for Planetary Exospheres and Thermospheres

    NASA Astrophysics Data System (ADS)

    Fillingim, M. O.; Wishnow, E. H.; Miller, T.; Edelstein, J.; Lillis, R. J.; Korpela, E.; England, S.; Shourt, W. V.; Siegmund, O.; McPhate, J.; Courtade, S.; Curtis, D. W.; Deighan, J.; Chaffin, M.; Harmoul, A.; Almatroushi, H. R.

    2016-12-01

    Understanding the composition, structure, and variability of a planet's upper atmosphere - the exosphere and thermosphere - is essential for understanding how the upper atmosphere is coupled to the lower atmosphere, magnetosphere and near-space environment, and the Sun. Ultraviolet spectroscopy can directly observe emissions from constituents in the exosphere and thermosphere. From such observations, the structure, composition, and variability can be determined.We will present the preliminary design for a wide field ultraviolet imaging spectrometer for remote sensing of planetary atmospheres. The imaging spectrometer achieves an extremely large instantaneous 110 degree field of view with no moving scanning mirror. The imaging resolution is very appropriate for extended atmospheric emission studies, with a resolution of better than 0.3 degrees at the center to 0.4 degrees at the edges of the field. The spectral range covers 120 - 170 nm, encompassing emissions from H, O, C, N, CO, and N2, with an average spectral resolution of 1.5 nm. The instrument is composed of a 2-element wide-field telescope, a 3-element Offner spectrometer, and a sealed MCP detector system contained within a compact volume of about 40 x 25 x 20 cm. We will present the optical and mechanical design as well as the predicted optical performance.The wide instantaneous FOV simplifies instrument and spacecraft operations by removing the need for multiple scans (either from a scan mirror or spacecraft slews) to cover the regions of interest. This instrumentation can allow for two-dimensional spectral information to be built up with simple spacecraft operation or just using spacecraft motion. Applications to the terrestrial geocorona and thermosphere will be addressed as well as applications to the upper atmospheres of other planetary objects.

  11. Calibration of a microchannel plate based extreme ultraviolet grazing incident spectrometer at the Advanced Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakeman, M. S.; Lawrence Berkeley National Laboratory, Berkeley, California 94720; Tilborg, J. van

    We present the design and calibration of a microchannel plate based extreme ultraviolet spectrometer. Calibration was performed at the Advance Light Source (ALS) at the Lawrence Berkeley National Laboratory (LBNL). This spectrometer will be used to record the single shot spectrum of radiation emitted by the tapered hybrid undulator (THUNDER) undulator installed at the LOASIS GeV-class laser-plasma-accelerator. The spectrometer uses an aberration-corrected concave grating with 1200 lines/mm covering 11-62 nm and a microchannel plate detector with a CsI coated photocathode for increased quantum efficiency in the extreme ultraviolet. A touch screen interface controls the grating angle, aperture size, and placementmore » of the detector in vacuum, allowing for high-resolution measurements over the entire spectral range.« less

  12. Temperature measurement using ultraviolet laser absorption of carbon dioxide behind shock waves.

    PubMed

    Oehlschlaeger, Matthew A; Davidson, David F; Jeffries, Jay B

    2005-11-01

    A diagnostic for microsecond time-resolved temperature measurements behind shock waves, using ultraviolet laser absorption of vibrationally hot carbon dioxide, is demonstrated. Continuous-wave laser radiation at 244 and 266 nm was employed to probe the spectrally smooth CO2 ultraviolet absorption, and an absorbance ratio technique was used to determine temperature. Measurements behind shock waves in both nonreacting and reacting (ignition) systems were made, and comparisons with isentropic and constant-volume calculations are reported.

  13. SOLAR-B Mission Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS) Instrument Components

    NASA Technical Reports Server (NTRS)

    Doschek, George A.

    2001-01-01

    This Monthly Progress Report covers the reporting period through June 2001, Phase C/D, Detailed Design and Development Through Launch Plus Thirty Days, for selected components and subsystems of the Extreme ultraviolet Imaging Spectrometer (EIS) instrument, hereafter referred to as EIS Instrument Components. This document contains the program status through the reporting period and forecasts the status for the upcoming reporting period.

  14. Solar-B Mission Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS) Instrument Components

    NASA Technical Reports Server (NTRS)

    Doschek, George A.

    2002-01-01

    This Monthly Progress Report covers the reporting period August 2002 of the Detailed Design and Development through Launch plus Thirty Days, Phase C/D, for selected components and subsystems of the Extreme ultraviolet Imaging Spectrometer (EIS) instrument, hereafter referred to as EIS Instrument Components. This document contains the program status through the reporting period and forecasts the status for the upcoming reporting period.

  15. SOLAR-B Mission Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS) Instrument Components

    NASA Technical Reports Server (NTRS)

    Doschek, George A.

    2001-01-01

    This Monthly Progress Report covers the reporting period July 2001 of the Detailed Design and Development through Launch plus Thirty Days, Phase C/D, for selected components and subsystems of the Extreme Ultraviolet Imaging Spectrometer (EIS) instrument, hereafter referred to as EIS Instrument Components. This document contains the program status through the reporting period and forecasts the status for the upcoming reporting period.

  16. Ion chromatography with the indirect ultraviolet detection of alkali metal ions and ammonium using imidazolium ionic liquid as ultraviolet absorption reagent and eluent.

    PubMed

    Liu, Yong-Qiang; Yu, Hong

    2016-08-01

    Indirect ultraviolet detection was conducted in ultraviolet-absorption-agent-added mobile phase to complete the detection of the absence of ultraviolet absorption functional group in analytes. Compared with precolumn derivatization or postcolumn derivatization, this method can be widely used, has the advantages of simple operation and good linear relationship. Chromatographic separation of Li(+) , Na(+) , K(+) , and NH4 (+) was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid/organic solvent as the mobile phase, in which imidazolium ionic liquids acted as ultraviolet absorption reagent and eluting agent. The retention behaviors of four kinds of cations are discussed, and the mechanism of separation and detection are described. The main factors influencing the separation and detection were the background ultraviolet absorption reagent and the concentration of hydrogen ion in the ion chromatography-indirect ultraviolet detection. The successful separation and detection of Li(+) , Na(+) , K(+) , and NH4 (+) within 13 min was achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.02, 0.11, 0.30, and 0.06 mg/L, respectively. A new separation and analysis method of alkali metal ions and ammonium by ion chromatography with indirect ultraviolet detection method was developed, and the application range of ionic liquid was expanded. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Test of prototype ITER vacuum ultraviolet spectrometer and its application to impurity study in KSTAR plasmas.

    PubMed

    Seon, C R; Hong, J H; Jang, J; Lee, S H; Choe, W; Lee, H H; Cheon, M S; Pak, S; Lee, H G; Biel, W; Barnsley, R

    2014-11-01

    To optimize the design of ITER vacuum ultraviolet (VUV) spectrometer, a prototype VUV spectrometer was developed. The sensitivity calibration curve of the spectrometer was calculated from the mirror reflectivity, the grating efficiency, and the detector efficiency. The calibration curve was consistent with the calibration points derived in the experiment using the calibrated hollow cathode lamp. For the application of the prototype ITER VUV spectrometer, the prototype spectrometer was installed at KSTAR, and various impurity emission lines could be measured. By analyzing about 100 shots, strong positive correlation between the O VI and the C IV emission intensities could be found.

  18. High-resolution crystal spectrometer for the 10-60 A extreme ultraviolet region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiersdorfer, P.; Brown, G.V.; Goddard, R.

    2004-10-01

    A vacuum crystal spectrometer with nominal resolving power approaching 1000 is described for measuring emission lines with wavelength in the extreme ultraviolet region up to 60 A. The instrument utilizes a flat octadecyl hydrogen maleate crystal and a thin-window 1D position-sensitive gas proportional detector. This detector employs a 1-{mu}m-thick 100x8 mm{sup 2} aluminized polyimide window and operates at one atmosphere pressure. The spectrometer has been implemented on the Livermore electron beam ion traps. The performance of the instrument is illustrated in measurements of the newly discovered magnetic field-sensitive line in Ar{sup 8+}.

  19. Complex refractive index of Martian dust - Mariner 9 ultraviolet observations

    NASA Technical Reports Server (NTRS)

    Pang, K.; Ajello, J. M.; Hord, C. W.; Egan, W. G.

    1976-01-01

    Mariner 9 ultraviolet spectrometer observations of the 1971 dust clouds obscuring the surface of Mars have been analyzed by matching the observed dust phase function with Mie scattering calculations for size distributions of homogeneous and isotropic material. Preliminary results indicate an effective particle radius of not less than 0.2. The real component of the index of refraction is not less than 1.8 at both 268 and 305 nm; corresponding values for the imagery component are 0.02 and 0.01. These values are consistent with those found by Mead (1970) for the visible and near-visible wavelengths. The refractive index and the absorption coefficient increase rapidly with decreasing wavelength in going from the visible to the ultraviolet, indicating the presence of an ultraviolet absorption band which may shield organisms from ultraviolet irradiation.

  20. Normal-incidence EXtreme-Ultraviolet imaging Spectrometer - NEXUS

    NASA Astrophysics Data System (ADS)

    Dere, K. P.

    2003-05-01

    NEXUS is the result of a breakthrough optical design that incorporates new technologies to achieve high optical throughput at high spatial (1 arcsec) and spectral (1-2 km s-1) resolution over a wide field of view in an optimal extreme-ultraviolet spectral band. This achievement was made possible primarily by two technical developments. First, a coating of boron-carbide deposited onto a layer of iridium provided a greatly enhanced reflectivity at EUV wavelengths that would enable NEXUS to observe the Sun over a wide temperature range at high cadence. The reflectivity of these coatings have been measured and demonstrated in the laboratory. The second key development was the use of a variable-line-spaced toroidal grating spectrometer. The spectrometer design allowed the Sun to be imaged at high spatial and spectral resolution along a 1 solar radius-long slit and over a wavelength range from 450 to 800 Å, nearly an entire spectral order. Because the spectrograph provided a magnification of about a factor of 6, only 2 optical elements are required to achieved the desired imaging performance. Throughput was enhanced by the use of only 2 reflections. The could all be accomodated within a total instrument length of 1.5m. We would like to acknowledge support from ONR

  1. Solar maximum mission/ultraviolet spectrometer and polarimeter studies

    NASA Technical Reports Server (NTRS)

    Henze, William, Jr.

    1993-01-01

    This final report for NASA Contract No. NAS8-35921 describes various studies performed for the Ultraviolet Spectrometer and Polarimeter (UVSP) experiment, one of several instruments on the Solar Maximum Mission (SMM) satellite which was launched on 14 February 1980. The UVSP consisted primarily of a Gregorian telescope and an Ebert-Fastie spectrometer with a polarimeter that could be inserted into the light path. The spacecraft and most of the instruments, including the UVSP, operated successfully until 23 November 1980, when part of the SMM attitude control system (fine pointing control) failed. The UVSP was then unable to observe the Sun until 18 April 1984, when the SMM was visited by the space shuttle and the attitude control module was replaced by astronauts. The SMM mission ended when the spacecraft reentered the atmosphere of the Earth and was thereby destroyed on 2 December 1989. The topics covered in this report include the following: (1) ultraviolet stellar polarimetry (probably the first such attempted measurement); no polarization as detected and the upper limits, based on the sensitivity as determined by the observed count rate, are rather high; (2) an investigation into the possible position of the UVSP wavelength drive after it became stuck on 26 April 1985; (3) fast timing tests for sit-and-state observations involving one or two detectors; (4) development of computer subroutines to allow the calculation of the component of the SMM spacecraft orbital velocity along the line of sight to the Sun at any desired time during the 1984/1985 period when the UVSP wavelength drive was operating properly; (5) listing of published research papers; (6) description of the UVSP catalog of observations; and (7) description of UVSP calibration report and data users guide.

  2. Ultraviolet spectrometer and polarimeter (UVSP) software development and hardware tests for the solar maximum mission

    NASA Technical Reports Server (NTRS)

    Bruner, M. E.; Haisch, B. M.

    1986-01-01

    The Ultraviolet Spectrometer/Polarimeter Instrument (UVSP) for the Solar Maximum Mission (SMM) was based on the re-use of the engineering model of the high resolution ultraviolet spectrometer developed for the OSO-8 mission. Lockheed assumed four distinct responsibilities in the UVSP program: technical evaluation of the OSO-8 engineering model; technical consulting on the electronic, optical, and mechanical modifications to the OSO-8 engineering model hardware; design and development of the UVSP software system; and scientific participation in the operations and analysis phase of the mission. Lockheed also provided technical consulting and assistance with instrument hardware performance anomalies encountered during the post launch operation of the SMM observatory. An index to the quarterly reports delivered under the contract are contained, and serves as a useful capsule history of the program activity.

  3. Note: A flexible light emitting diode-based broadband transient-absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Gottlieb, Sean M.; Corley, Scott C.; Madsen, Dorte; Larsen, Delmar S.

    2012-05-01

    This Note presents a simple and flexible ns-to-ms transient absorption spectrometer based on pulsed light emitting diode (LED) technology that can be incorporated into existing ultrafast transient absorption spectrometers or operate as a stand-alone instrument with fixed-wavelength laser sources. The LED probe pulses from this instrument exhibit excellent stability (˜0.5%) and are capable of producing high signal-to-noise long-time (>100 ns) transient absorption signals either in a broadband multiplexed (spanning 250 nm) or in tunable narrowband (20 ns) operation. The utility of the instrument is demonstrated by measuring the photoinduced ns-to-ms photodynamics of the red/green absorbing fourth GMP phosphodiesterase/adenylyl cyclase/FhlA domain of the NpR6012 locus of the nitrogen-fixing cyanobacterium Nostoc punctiforme.

  4. Multidimensional spectrometer

    DOEpatents

    Zanni, Martin Thomas; Damrauer, Niels H.

    2010-07-20

    A multidimensional spectrometer for the infrared, visible, and ultraviolet regions of the electromagnetic spectrum, and a method for making multidimensional spectroscopic measurements in the infrared, visible, and ultraviolet regions of the electromagnetic spectrum. The multidimensional spectrometer facilitates measurements of inter- and intra-molecular interactions.

  5. Ultraviolet absorption cross-sections of hot carbon dioxide

    NASA Astrophysics Data System (ADS)

    Oehlschlaeger, Matthew A.; Davidson, David F.; Jeffries, Jay B.; Hanson, Ronald K.

    2004-12-01

    The temperature-dependent ultraviolet absorption cross-section for CO 2 has been measured in shock-heated gases between 1500 and 4500 K at 216.5, 244, 266, and 306 nm. Continuous-wave lasers provide the spectral brightness to enable precise time-resolved measurements with the microsecond time-response needed to monitor thermal decomposition of CO 2 at temperatures above 3000 K. The photophysics of the highly temperature dependent cross-section is discussed. The new data allows the extension of CO 2 absorption-based temperature sensing methods to higher temperatures, such as those found in behind detonation waves.

  6. Fluorescence of molecular hydrogen excited by solar extreme-ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.; Fastie, W. G.

    1973-01-01

    During trans-earth coast, the Apollo 17 ultraviolet spectrometer was scheduled to make observations of the far ultraviolet background in selected regions of the sky. In the course of one of these observations, the spacecraft fuel cells were routinely purged of excess hydrogen and water vapor. The ultraviolet fluorescence spectrum of the purged molecular hydrogen excited by solar extreme ultraviolet radiation is interpreted by absorption of solar L-beta and L-gamma radiation in the nearly resonant (6, 0) and (11, 0) Lyman bands. The results are deemed significant for ultraviolet spectroscopic investigations of the atmospheres of the moon and planets since Lyman-band fluorescence provides an unambiguous means of identification of molecular hydrogen in upper atmospheres.

  7. Absolute Two-Photon Absorption Coefficients in UltraViolet Window Materials

    DTIC Science & Technology

    1977-12-01

    fvtt* tld » II ntctHB,-y md Idtnlll’ by block number; The absolute two-photon absorption coefficiehts of u. v. transmitting materials have been...measured using well-calibrated single picosecond pulses, at the third and fourth harmonic of a mode locked Nd:YAG laser systems. Twc photon...30, 1977. Work in the area of laser induced breakdown and multiphoton absorption in ultraviolet and infrared laser window materials was carried

  8. Scanning imaging absorption spectrometer for atmospheric chartography

    NASA Technical Reports Server (NTRS)

    Burrows, John P.; Chance, Kelly V.

    1991-01-01

    The SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY is an instrument which measures backscattered, reflected, and transmitted light from the earth's atmosphere and surface. SCIAMACHY has eight spectral channels which observe simultaneously the spectral region between 240 and 1700 nm and selected windows between 1940 and 2400 nm. Each spectral channel contains a grating and linear diode array detector. SCIAMACHY observes the atmosphere in nadir, limb, and solar and lunar occultation viewing geometries.

  9. The Copernicus ultraviolet spectral atlas of Sirius

    NASA Technical Reports Server (NTRS)

    Rogerson, John B., Jr.

    1987-01-01

    A near-ultraviolet spectral atlas for the A1 V star Alpha CMa (Sirius) has been prepared from data taken by the Princeton spectrometer aboard the Copernicus satellite. The spectral region from 1649 to 3170 A has been scanned with a resolution of 0.1 A. The atlas is presented in graphs, and line identifications for the absorption features have been tabulated.

  10. GADICON spectrometer for ionosphere far-ultraviolet observation: prototype design, manufacturing, and testing.

    PubMed

    Yu, Lei

    2016-08-20

    The design, manufacturing, and testing of an imaging spectrometer prototype that will address new scientific requirements by the observation of the lower atmosphere's impact on the ionosphere are presented. The two sided lateral limb observation covering 130-180 nm far-ultraviolet (FUV) region allows the instrument to perform particle measurements in the daytime and nighttime. In this paper, we focus upon the working design principle, observation, and calibration.

  11. Bottom Extreme-Ultraviolet-Sensitive Coating for Evaluation of the Absorption Coefficient of Ultrathin Film

    NASA Astrophysics Data System (ADS)

    Hijikata, Hayato; Kozawa, Takahiro; Tagawa, Seiichi; Takei, Satoshi

    2009-06-01

    A bottom extreme-ultraviolet-sensitive coating (BESC) for evaluation of the absorption coefficients of ultrathin films such as extreme ultraviolet (EUV) resists was developed. This coating consists of a polymer, crosslinker, acid generator, and acid-responsive chromic dye and is formed by a conventional spin-coating method. By heating the film after spin-coating, a crosslinking reaction is induced and the coating becomes insoluble. A typical resist solution can be spin-coated on a substrate covered with the coating film. The evaluation of the linear absorption coefficients of polymer films was demonstrated by measuring the EUV absorption of BESC substrates on which various polymers were spin-coated.

  12. The Copernicus ultraviolet spectral atlas of Vega

    NASA Technical Reports Server (NTRS)

    Rogerson, John B., Jr.

    1989-01-01

    A near-ultraviolet spectral atlas for the A0 V star Alpha Lyr (Vega) has been prepared from data taken by the Princeton spectrometer aboard the Copernicus satellite. The spectral region from 2000 to 3187 A has been scanned with a resolution of 0.1 A. The atlas is presented in graphs with a normalized continuum, and an identification table for the absorption features has been prepared.

  13. Absolute sensitivity calibration of an extreme ultraviolet spectrometer for tokamak measurements

    NASA Astrophysics Data System (ADS)

    Guirlet, R.; Schwob, J. L.; Meyer, O.; Vartanian, S.

    2017-01-01

    An extreme ultraviolet spectrometer installed on the Tore Supra tokamak has been calibrated in absolute units of brightness in the range 10-340 Å. This has been performed by means of a combination of techniques. The range 10-113 Å was absolutely calibrated by using an ultrasoft-X ray source emitting six spectral lines in this range. The calibration transfer to the range 113-182 Å was performed using the spectral line intensity branching ratio method. The range 182-340 Å was calibrated thanks to radiative-collisional modelling of spectral line intensity ratios. The maximum sensitivity of the spectrometer was found to lie around 100 Å. Around this wavelength, the sensitivity is fairly flat in a 80 Å wide interval. The spatial variations of sensitivity along the detector assembly were also measured. The observed trend is related to the quantum efficiency decrease as the angle of the incoming photon trajectories becomes more grazing.

  14. Research in extreme ultraviolet and far ultraviolet astronomy

    NASA Technical Reports Server (NTRS)

    Bowyer, C. S.

    1985-01-01

    The Far Ultraviolet imager (FUVI) was flown on the Aries class sounding rocket 24.015, producing outstanding results. The diffuse extreme ultraviolet (EUV) background spectrometer which is under construction is described. It will be launched on the Black Brant sounding rocket flight number 27.086. Ongoing design studies of a high resolution spectrometer are discussed. This instrument incorporates a one meter normal incidence mirror and will be suitable for an advanced Spartan mission.

  15. A survey of local interstellar hydrogen from OAO-2 observations of Lyman alpha absorption

    NASA Technical Reports Server (NTRS)

    Savage, B. D.; Jenkins, E. B.

    1972-01-01

    The Wisconsin far ultraviolet spectrometer aboard OAO-2 observed the wavelength region near 1216 A for 69 stars of spectral type B2 or earlier. From the strength of the observed interstellar L sub alpha absorption, atomic hydrogen column densities were derived over distances averaging 300 pc away from the sun. The OAO data were compared to synthetic ultraviolet spectra, originally derived from earlier higher resolution rocket observations, which were computer processed to simulate the effects of absorption by different amounts of hydrogen followed by the instrumental blending.

  16. An extreme ultraviolet spectrometer experiment for the Shuttle Get Away Special Program

    NASA Technical Reports Server (NTRS)

    Conway, R. R.; Mccoy, R. P.; Meier, R. R.; Mount, G. H.; Prinz, D. K.; Young, J. M.; Carruthers, G. R.

    1984-01-01

    An extreme ultraviolet (EUV) spectrometer experiment operated successfully during the STS-7 mission in an experiment to measure the global and diurnal variation of the EUV airglow. The spectrometer is an F 3.5 Wadsworth mount with mechanical collimator, a 75 x 75 mm grating, and a bare microchannel plate detector providing a spectral resolution of 7 X FWHM. Read-out of the signal is through discrete channels or resistive anode techniques. The experiment includes a microcomputer, 20 Mbit tape recorder, and a 28V, 40 Ahr silver-zinc battery. It is the first GAS payload to use an opening door. The spectrometer's 0.1 x 4.2 deg field of view is pointed vertically out of the shuttle bay. During the STS-7 flight data were acquired continuously for a period of 5 hours and 37 minutes, providing spectra of the 570 A to 850 A wavelength region of the airglow. Five diurnal cycles of the 584 A emission of neutral helium and the 834 A emission of ionized atomic oxygen were recorded. The experiment also recorded ion events and pressure pulses associated with thruster firings. The experiment is to fly again on Mission 41-F.

  17. Ultraviolet Raman Wide-Field Hyperspectral Imaging Spectrometer for Standoff Trace Explosive Detection.

    PubMed

    Hufziger, Kyle T; Bykov, Sergei V; Asher, Sanford A

    2017-02-01

    We constructed the first deep ultraviolet (UV) Raman standoff wide-field imaging spectrometer. Our novel deep UV imaging spectrometer utilizes a photonic crystal to select Raman spectral regions for detection. The photonic crystal is composed of highly charged, monodisperse 35.5 ± 2.9 nm silica nanoparticles that self-assemble in solution to produce a face centered cubic crystalline colloidal array that Bragg diffracts a narrow ∼1.0 nm full width at half-maximum (FWHM) UV spectral region. We utilize this photonic crystal to select and image two different spectral regions containing resonance Raman bands of pentaerythritol tetranitrate (PETN) and NH 4 NO 3 (AN). These two deep UV Raman spectral regions diffracted were selected by angle tuning the photonic crystal. We utilized this imaging spectrometer to measure 229 nm excited UV Raman images containing ∼10-1000 µg/cm 2 samples of solid PETN and AN on aluminum surfaces at 2.3 m standoff distances. We estimate detection limits of ∼1 µg/cm 2 for PETN and AN films under these experimental conditions.

  18. Five-Channel Infrared Laser Absorption Spectrometer for Combustion Product Monitoring Aboard Manned Spacecraft

    NASA Technical Reports Server (NTRS)

    Briggs, Ryan M.; Frez, Clifford; Borgentun, Carl E.; Bagheri, Mahmood; Forouhar, Siamak; May, Randy D.

    2014-01-01

    Continuous combustion product monitoring aboard manned spacecraft can prevent chronic exposure to hazardous compounds and also provides early detection of combustion events. As future missions extend beyond low-Earth orbit, analysis of returned environmental samples becomes impractical and safety monitoring should be performed in situ. Here, we describe initial designs of a five-channel tunable laser absorption spectrometer to continuously monitor combustion products with the goal of minimal maintenance and calibration over long-duration missions. The instrument incorporates dedicated laser channels to simultaneously target strong mid-infrared absorption lines of CO, HCl, HCN, HF, and CO2. The availability of low-power-consumption semiconductor lasers operating in the 2 to 5 micron wavelength range affords the flexibility to select absorption lines for each gas with maximum interaction strength and minimal interference from other gases, which enables the design of a compact and mechanically robust spectrometer with low-level sensitivity. In this paper, we focus primarily on absorption line selection based on the availability of low-power single-mode semiconductor laser sources designed specifically for the target wavelength range.

  19. Ultra-violet and visible absorption characterization of explosives by differential reflectometry.

    PubMed

    Dubroca, Thierry; Moyant, Kyle; Hummel, Rolf E

    2013-03-15

    This study presents some optical properties of TNT (2,4,6-trinitrotoluene), RDX, HMX and tetryl, specifically their absorption spectra as a function of concentration in various solvents in the ultraviolet and visible portion of the electromagnetic spectrum. We utilize a standoff explosives detection method, called differential reflectometry (DR). TNT was diluted in six different solvents (acetone, acetonitrile, ethanol, ethyl acetate, methanol, and toluene), which allowed for a direct comparison of absorption features over a wide range of concentrations. A line-shape analysis was adopted with great accuracy (R(2)>0.99) to model the absorption features of TNT in differential reflectivity spectra. We observed a blue shift in the pertinent absorption band with decreasing TNT concentration for all solvents. Moreover, using this technique, it was found that for all utilized solvents the concentration of TNT as well as of RDX, HMX, and tetryl, measured as a function of the transition wavelength of the ultra-violet absorption edge in differential reflectivity spectra shows three distinct regions. A model is presented to explain this behavior which is based on intermolecular hydrogen bonding of explosives molecules with themselves (or lack thereof) at different concentrations. Other intermolecular forces such as dipole-dipole interactions, London dispersion forces and π-stacking contribute to slight variations in the resulting spectra, which were determined to be rather insignificant in comparison to hydrogen bonding. The results are aimed towards a better understanding of the DR spectra of explosives energetic materials. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Tunable absorption resonances in the ultraviolet for InP nanowire arrays.

    PubMed

    Aghaeipour, Mahtab; Anttu, Nicklas; Nylund, Gustav; Samuelson, Lars; Lehmann, Sebastian; Pistol, Mats-Erik

    2014-11-17

    The ability to tune the photon absorptance spectrum is an attracting way of tailoring the response of devices like photodetectors and solar cells. Here, we measure the reflectance spectra of InP substrates patterned with arrays of vertically standing InP nanowires. Using the reflectance spectra, we calculate and analyze the corresponding absorptance spectra of the nanowires. We show that we can tune absorption resonances for the nanowire arrays into the ultraviolet by decreasing the diameter of the nanowires. When we compare our measurements with electromagnetic modeling, we generally find good agreement. Interestingly, the remaining differences between modeled and measured spectra are attributed to a crystal-phase dependence in the refractive index of InP. Specifically, we find indication of significant differences in the refractive index between the modeled zinc-blende InP nanowires and the measured wurtzite InP nanowires in the ultraviolet. We believe that such crystal-phase dependent differences in the refractive index affect the possibility to excite optical resonances in the large wavelength range of 345 < λ < 390 nm. To support this claim, we investigated how resonances in nanostructures can be shifted in wavelength by geometrical tuning. We find that dispersion in the refractive index can dominate over geometrical tuning and stop the possibility for such shifting. Our results open the door for using crystal-phase engineering to optimize the absorption in InP nanowire-based solar cells and photodetectors.

  1. Autonomous portable solar ultraviolet spectroradiometer (APSUS) - a new CCD spectrometer system for localized, real-time solar ultraviolet (280-400 nm) radiation measurement.

    PubMed

    Hooke, Rebecca; Pearson, Andy; O'Hagan, John

    2014-01-01

    Terrestrial solar ultraviolet (UV) radiation has significant implications for human health and increasing levels are a key concern regarding the impact of climate change. Monitoring solar UV radiation at the earth's surface is therefore of increasing importance. A new prototype portable CCD (charge-coupled device) spectrometer-based system has been developed that monitors UV radiation (280-400 nm) levels at the earth's surface. It has the ability to deliver this information to the public in real time. Since the instrument can operate autonomously, it is called the Autonomous Portable Solar Ultraviolet Spectroradiometer (APSUS). This instrument incorporates an Ocean Optics QE65000 spectrometer which is contained within a robust environmental housing. The APSUS system can gather reliable solar UV spectral data from approximately April to October inclusive (depending on ambient temperature) in the UK. In this study the new APSUS unit and APSUS system are presented. Example solar UV spectra and diurnal UV Index values as measured by the APSUS system in London and Weymouth in the UK in summer 2012 are shown. © 2014 Crown copyright. Photochemistry and Photobiology © 2014 The American Society of Photobiology. This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland and Public Health England.

  2. Combined "dual" absorption and fluorescence smartphone spectrometers.

    PubMed

    Arafat Hossain, Md; Canning, John; Ast, Sandra; Cook, Kevin; Rutledge, Peter J; Jamalipour, Abbas

    2015-04-15

    A combined "dual" absorption and fluorescence smartphone spectrometer is demonstrated. The optical sources used in the system are the white flash LED of the smartphone and an orthogonally positioned and interchangeable UV (λex=370  nm) and blue (λex=450  nm) LED. The dispersive element is a low-cost, nano-imprinted diffraction grating coated with Au. Detection over a 300 nm span with 0.42 nm/pixel resolution was carried out with the camera CMOS chip. By integrating the blue and UV excitation sources into the white LED circuitry, the entire system is self-contained within a 3D printed case and powered from the smartphone battery; the design can be scaled to add further excitation sources. Using a customized app, acquisition of absorption and fluorescence spectra are demonstrated using a blue-absorbing and green-emitting pH-sensitive amino-naphthalimide-based fluorescent probe and a UV-absorbing and blue-emitting Zn2+-sensitive fluoro-ionophore.

  3. Efficiency of the High Efficiency Total Absorption Spectrometer (HECTOR)

    NASA Astrophysics Data System (ADS)

    Sprowal, Zaire; Simon, Anna; Reingold, Craig; Spyrou, Artemis; Naqvi, Farheen; Dombos, Alexander; Palmisano, Alicia; Anderson, Tyler; Anderson, Samuel; Moylan, Shane; Seymour, Christopher; Skulski, Michael; Smith, Mallory K.; Strauss, Sabrina; Kolk, Byant Vande

    2016-09-01

    The p-process is a nucleosynthesis process that occurs in explosive environments such as type II and Ia supernovae and is responsible for production of heavy proton rich nuclei. Gamma rays emitted during these explosions induce several photo-disintegration reactions: (γ,n), (γ,p), and (γ , α). To study these interactions, the inverse of these reactions are measured experimentally. The High Efficiency TOtal absorption spectrometeR (HECTOR) at the University of Notre Dame was built for measuring these reactions. Standard gamma sources 60Co and 137Cs and known resonances in 27Al(p, γ)28Si reaction were used to experimentally determine HECTOR's summing efficiency. Here, the preliminary analysis will be presented and the results will be compared to the Geant4 simulation of the array. This work was supported by the National Science Foundation under the Grant Number PHYS-1614442.

  4. Computer program design specifications for the Balloon-borne Ultraviolet Stellar Spectrometer (BUSS) science data decommutation program (BAPS48)

    NASA Technical Reports Server (NTRS)

    Rodriguez, R. M.

    1975-01-01

    The Balloon-Borne Ultraviolet Stellar Spectrometer (BUSS) Science Data Docummutation Program (BAPS48) is a pulse code modulation docummutation program that will format the BUSS science data contained on a one inch PCM tracking tape into a seven track serial bit stream formatted digital tape.

  5. Wavelength calibration of imaging spectrometer using atmospheric absorption features

    NASA Astrophysics Data System (ADS)

    Zhou, Jiankang; Chen, Yuheng; Chen, Xinhua; Ji, Yiqun; Shen, Weimin

    2012-11-01

    Imaging spectrometer is a promising remote sensing instrument widely used in many filed, such as hazard forecasting, environmental monitoring and so on. The reliability of the spectral data is the determination to the scientific communities. The wavelength position at the focal plane of the imaging spectrometer will change as the pressure and temperature vary, or the mechanical vibration. It is difficult for the onboard calibration instrument itself to keep the spectrum reference accuracy and it also occupies weight and the volume of the remote sensing platform. Because the spectral images suffer from the atmospheric effects, the carbon oxide, water vapor, oxygen and solar Fraunhofer line, the onboard wavelength calibration can be processed by the spectral images themselves. In this paper, wavelength calibration is based on the modeled and measured atmospheric absorption spectra. The modeled spectra constructed by the atmospheric radiative transfer code. The spectral angle is used to determine the best spectral similarity between the modeled spectra and measured spectra and estimates the wavelength position. The smile shape can be obtained when the matching process across all columns of the data. The present method is successful applied on the Hyperion data. The value of the wavelength shift is obtained by shape matching of oxygen absorption feature and the characteristics are comparable to that of the prelaunch measurements.

  6. Calibration of the Voyager Ultraviolet Spectrometers and the Composition of the Heliosphere Neutrals: Reassessment

    NASA Astrophysics Data System (ADS)

    Ben-Jaffel, Lotfi; Holberg, J. B.

    2016-06-01

    The data harvest from the Voyagers’ (V 1 and V 2) Ultraviolet Spectrometers (UVS) covers encounters with the outer planets, measurements of the heliosphere sky-background, and stellar spectrophotometry. Because their period of operation overlaps with many ultraviolet missions, the calibration of V1 and V2 UVS with other spectrometers is invaluable. Here we revisit the UVS calibration to assess the intriguing sensitivity enhancements of 243% (V1) and 156% (V2) proposed recently. Using the Lyα airglow from Saturn, observed in situ by both Voyagers, and remotely by International Ultraviolet Explorer (IUE), we match the Voyager values to IUE, taking into account the shape of the Saturn Lyα line observed with the Goddard High Resolution Spectrograph on board the Hubble Space Telescope. For all known ranges of the interplanetary hydrogen density, we show that the V1 and V2 UVS sensitivities cannot be enhanced by the amounts thus far proposed. The same diagnostic holds for distinct channels covering the diffuse He I 58.4 nm emission. Our prescription is to keep the original calibration of the Voyager UVS with a maximum uncertainty of 30%, making both instruments some of the most stable EUV/FUV spectrographs in the history of space exploration. In that frame, we reassess the excess Lyα emission detected by Voyager UVS deep in the heliosphere, to show its consistency with a heliospheric but not galactic origin. Our finding confirms results obtained nearly two decades ago—namely, the UVS discovery of the distortion of the heliosphere and the corresponding obliquity of the local interstellar magnetic field (˜ 40^\\circ from upwind) in the solar system neighborhood—without requiring any revision of the Voyager UVS calibration.

  7. Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Langford, A. O.; Fuchs, H.; Brown, S. S.

    2008-08-01

    We describe an instrument for simultaneous measurements of glyoxal (CHOCHO) and nitrogen dioxide (NO2) using cavity enhanced absorption spectroscopy with a broadband light source. The output of a Xenon arc lamp is coupled into a 1 m optical cavity, and the spectrum of light exiting the cavity is recorded by a grating spectrometer with a charge-coupled device (CCD) array detector. The mirror reflectivity and effective path lengths are determined from the known Rayleigh scattering of He and dry zero air (N2+O2). Least-squares fitting, using published reference spectra, allow the simultaneous retrieval of CHOCHO, NO2, O4, and H2O in the 441 to 469 nm spectral range. For a 1-min sampling time, the minimum detectable absorption is 4×10-10 cm-1, and the precision (±1σ) on signal for measurements of CHOCHO and NO2 is 29 pptv and 20 pptv, respectively. We directly compare the incoherent broadband cavity enhanced absorption spectrometer to 404 and 532 nm cavity ringdown instruments for CHOCHO and NO2 detection, and find linear agreement over a wide range of concentrations. The instrument has been tested in the laboratory with both synthetic and real air samples, and the demonstrated sensitivity and specificity suggest a strong potential for field measurements of both CHOCHO and NO2.

  8. Capillary absorption spectrometer and process for isotopic analysis of small samples

    DOEpatents

    Alexander, M. Lizabeth; Kelly, James F.; Sams, Robert L.; Moran, James J.; Newburn, Matthew K.; Blake, Thomas A.

    2016-03-29

    A capillary absorption spectrometer and process are described that provide highly sensitive and accurate stable absorption measurements of analytes in a sample gas that may include isotopologues of carbon and oxygen obtained from gas and biological samples. It further provides isotopic images of microbial communities that allow tracking of nutrients at the single cell level. It further targets naturally occurring variations in carbon and oxygen isotopes that avoids need for expensive isotopically labeled mixtures which allows study of samples taken from the field without modification. The method also permits sampling in vivo permitting real-time ambient studies of microbial communities.

  9. Capillary absorption spectrometer and process for isotopic analysis of small samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, M. Lizabeth; Kelly, James F.; Sams, Robert L.

    A capillary absorption spectrometer and process are described that provide highly sensitive and accurate stable absorption measurements of analytes in a sample gas that may include isotopologues of carbon and oxygen obtained from gas and biological samples. It further provides isotopic images of microbial communities that allow tracking of nutrients at the single cell level. It further targets naturally occurring variations in carbon and oxygen isotopes that avoids need for expensive isotopically labeled mixtures which allows study of samples taken from the field without modification. The process also permits sampling in vivo permitting real-time ambient studies of microbial communities.

  10. High-resolution, vacuum-ultraviolet absorption spectrum of boron trifluoride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Patrick P.; Thompson, Alan K.; Vest, Robert E.

    2014-11-21

    In the course of investigations of thermal neutron detection based on mixtures of {sup 10}BF{sub 3} with other gases, knowledge was required of the photoabsorption cross sections of {sup 10}BF{sub 3} for wavelengths between 135 and 205 nm. Large discrepancies in the values reported in existing literature led to the absolute measurements reported in this communication. The measurements were made at the SURF III Synchrotron Ultraviolet Radiation Facility at the National Institute of Standards and Technology. The measured absorption cross sections vary from 10{sup −20} cm{sup 2} at 135 nm to less than 10{sup −21} cm{sup 2} in the regionmore » from 165 to 205 nm. Three previously unreported absorption features with resolvable structure were found in the regions 135–145 nm, 150–165 nm, and 190–205 nm. Quantum mechanical calculations, using the TD-B3LYP/aug-cc-pVDZ variant of time-dependent density functional theory implemented in Gaussian 09, suggest that the observed absorption features arise from symmetry-changing adiabatic transitions.« less

  11. The differential absorption hard x-ray spectrometer at the Z facility

    DOE PAGES

    Bell, Kate S.; Coverdale, Christine A.; Ampleford, David J.; ...

    2017-08-03

    The Differential Absorption Hard X-ray (DAHX) spectrometer is a diagnostic developed to measure time-resolved radiation between 60 keV and 2 MeV at the Z Facility. It consists of an array of 7 Si PIN diodes in a tungsten housing that provides collimation and coarse spectral resolution through differential filters. DAHX is a revitalization of the Hard X-Ray Spectrometer (HXRS) that was fielded on Z prior to refurbishment in 2006. DAHX has been tailored to the present radiation environment in Z to provide information on the power, spectral shape, and time profile of the hard emission by plasma radiation sources drivenmore » by the Z Machine.« less

  12. Trace gas absorption spectroscopy using laser difference-frequency spectrometer for environmental application

    NASA Technical Reports Server (NTRS)

    Chen, W.; Cazier, F.; Boucher, D.; Tittel, F. K.; Davies, P. B.

    2001-01-01

    A widely tunable infrared spectrometer based on difference frequency generation (DFG) has been developed for organic trace gas detection by laser absorption spectroscopy. On-line measurements of concentration of various hydrocarbons, such as acetylene, benzene, and ethylene, were investigated using high-resolution DFG trace gas spectroscopy for highly sensitive detection.

  13. Three-photon absorption and nonlinear refraction of BaMgF4 in the ultraviolet region.

    PubMed

    Ma, Yanzhi; Chen, Junjie; Zheng, Yuanlin; Chen, Xianfeng

    2012-08-01

    The nonlinear refraction and nonlinear absorption phenomena are investigated in BaMgF(4) single crystal using the Z-scan technique in the ultraviolet region with a pulsed laser at 400 nm with 1 ps pulse duration. The remarkable nonlinear absorption behavior is identified to be three-photon absorption under the experimental conditions. In addition, both nonlinear refraction and nonlinear absorption have relatively large values and possess small anisotropy along three different crystallographic axes. The large values of nonlinear refractive index are demonstrated through the self-phase modulation effect.

  14. High Accuracy Ultraviolet Index of Refraction Measurements Using a Fourier Transform Spectrometer

    PubMed Central

    Gupta, Rajeev; Kaplan, Simon G.

    2003-01-01

    We have constructed a new facility at the National Institute of Standards and Technology (NIST) to measure the index of refraction of transmissive materials in the wavelength range from the visible to the vacuum ultraviolet. An etalon of the material is illuminated with synchrotron radiation, and the interference fringes in the transmittance spectrum are measured using a Fourier transform spectrometer. The refractive index of calcium fluoride, CaF2, has been measured from 600 nm to 175 nm and the resulting values agree with a traditional goniometric measurement to within 1 × 10−5. The uncertainty in the index values is currently limited by the uncertainty in the thickness measurement of the etalon. PMID:27413620

  15. Portable 4.6 Micrometers Laser Absorption Spectrometer for Carbon Monoxide Monitoring and Fire Detection

    NASA Technical Reports Server (NTRS)

    Briggs, Ryan M.; Frez, Clifford; Forouhar, Siamak; May, Randy D.; Ruff, Gary A.

    2013-01-01

    The air quality aboard manned spacecraft must be continuously monitored to ensure crew safety and identify equipment malfunctions. In particular, accurate real-time monitoring of carbon monoxide (CO) levels helps to prevent chronic exposure and can also provide early detection of combustion-related hazards. For long-duration missions, environmental monitoring grows in importance, but the mass and volume of monitoring instruments must be minimized. Furthermore, environmental analysis beyond low-Earth orbit must be performed in-situ, as sample return becomes impractical. Due to their small size, low power draw, and performance reliability, semiconductor-laser-based absorption spectrometers are viable candidates for this purpose. To reduce instrument form factor and complexity, the emission wavelength of the laser source should coincide with strong fundamental absorption lines of the target gases, which occur in the 3 to 5 micrometers wavelength range for most combustion products of interest, thereby reducing the absorption path length required for low-level concentration measurements. To address the needs of current and future NASA missions, we have developed a prototype absorption spectrometer using a semiconductor quantum cascade laser source operating near 4.6 micrometers that can be used to detect low concentrations of CO with a compact single-pass absorption cell. In this study, we present the design of the prototype instrument and report on measurements of CO emissions from the combustion of a variety of aerospace plastics.

  16. Airborne Carbon Dioxide Laser Absorption Spectrometer for IPDA Measurements of Tropospheric CO2: Recent Results

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.; Menzies, Robert T.

    2008-01-01

    The National Research Council's decadal survey on Earth Science and Applications from Space[1] recommended the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission for launch in 2013-2016 as a logical follow-on to the Orbiting Carbon Observatory (OCO) which is scheduled for launch in late 2008 [2]. The use of a laser absorption measurement technique provides the required ability to make day and night measurements of CO2 over all latitudes and seasons. As a demonstrator for an approach to meeting the instrument needs for the ASCENDS mission we have developed the airborne Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) which uses the Integrated Path Differential Absorption (IPDA) Spectrometer [3] technique operating in the 2 micron wavelength region.. During 2006 a short engineering checkout flight of the CO2LAS was conducted and the results presented previously [4]. Several short flight campaigns were conducted during 2007 and we report results from these campaigns.

  17. Exploring Mercury's Surface in UltraViolet from Orbit

    NASA Astrophysics Data System (ADS)

    Izenberg, N.

    2017-12-01

    The MESSENGER Mission's Ultraviolet and Visible Spectrometer (UVVS) component of its Mercury Atmosphere and Surface Composition Spectrometer (MASCS) instrument obtained approximately 4600 point observations of Mercury's surface in middle ultraviolet (MUV; 210 nm - 300 nm) and far ultraviolet (FUV; 119.1 - 122.5 nm and 129.2 - 131.5 nm) wavelengths over the course of its orbital mission, mostly in Mercury's southern hemisphere. Given the very low (<1 to 2 wt %) average abundance of iron in the silicates of Mercury observed by multiple MESSENGER instruments, the near- to middle-ultraviolet wavelengths encompassing the oxygen metal charge transfer band (<400 nm), which is more sensitive to the presence of iron than the classic 1 micron absorption band, provides potentially useful additional compositional insight into the top layer of Mercury's regolith. The presence of nano- and microphase carbon also has potentially significant expression in the ultraviolet, and the interplay and variation between carbon and iron in mercury surface materials is an active area of investigation. Analysis of middle-UV surface reflectance and parameters appear to support the presence of varying amounts of carbon in different spectral or geologic units on Mercury. Far-UV reflectance data is currently under-utilized, but analysis of lunar surface by the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) indicate that the data are sensitive to both composition and space weathering. The far-UV reflectance from MASCS may provide similar information for the Mercury surface, complementing results from longer wavelengths. MESSENGER data products for surface reflectance include middle-UV reflectance spectra, ultraviolet far-UV reflectance values, combined middle-UV through near-infrared spectra (210 nm - 1450 nm), a global `spectral cube' of near-UV to near-IR, and an upcoming UV spectral cube.

  18. Ultraviolet absorption of common spacecraft contaminants. [to control effects of contaminants on optical systems

    NASA Technical Reports Server (NTRS)

    Colony, J. A.

    1979-01-01

    Organic contamination of ultraviolet optical systems is discussed. Degradation of signal by reflection, scattering, interference, and absorption is shown. The first three processes depend on the physical state of the contaminant while absorption depends on its chemical structure. The latter phenomenon is isolated from the others by dissolving contaminants in cyclohexane and determining absorption spectra from 2100A to 3600A. A variety of materials representing the types of contaminants responsible for most spaceflight hardware problems is scanned and the spectra is presented. The effect of thickness is demonstrated for the most common contaminant, di(2 ethyl hexyl)phthalate, by scanning successive dilutions.

  19. Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Meyer, Scott Andrew

    1995-01-01

    The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3 x 10(exp 17) and 9 x 10(exp 17)/cu cm. The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.

  20. Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Meyer, Scott Andrew

    1995-01-01

    The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3x10(exp 17) and 9x10(exp 17) cm(exp -3). The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.

  1. Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Meyer, Scott Andrew

    1995-01-01

    The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3 x 10(exp 17) and 9 x 10(exp 17) cm(exp -3). The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.

  2. Emirates Mars Ultraviolet Spectrometer (EMUS) Overview from the Emirates Mars Mission

    NASA Astrophysics Data System (ADS)

    Lootah, F. H.; Almatroushi, H. R.; AlMheiri, S.; Holsclaw, G.; Deighan, J.; Chaffin, M.; Reed, H.; Lillis, R. J.; Fillingim, M. O.; England, S.

    2017-12-01

    The Emirates Mars Ultraviolet Spectrometer (EMUS) instrument is one of three science instruments on board the "Hope Probe" of the Emirates Mars Mission (EMM). EMM is a United Arab Emirates' (UAE) mission to Mars, launching in 2020, to explore the global dynamics of the Martian atmosphere, while sampling on both diurnal and seasonal timescales. The EMUS instrument is a far-ultraviolet imaging spectrograph that measures emissions in the spectral range 100-170 nm. Using a combination of its one-dimensional imaging and spacecraft motion, it will build up two-dimensional far-ultraviolet images of the Martian disk and near-space environment at several important wavelengths: the Lyman beta atomic hydrogen emission (102.6 nm), the Lyman alpha atomic hydrogen emission (121.6 nm), two atomic oxygen emissions (130.4 nm and 135.6 nm), and the carbon monoxide fourth positive group band emission (140 nm-170 nm). Radiances at these wavelengths will be used to derive the column abundance of atomic oxygen, and carbon monoxide in the Martian thermosphere, and the density of atomic oxygen and atomic hydrogen in the Martian exosphere both with spatial and sub-seasonal variability. The EMUS instrument consists of a single telescope mirror feeding a Rowland circle imaging spectrograph with selectable spectral resolution (1.3 nm, 1.8 nm, or 5 nm), and a photon-counting and locating detector (provided by the Space Sciences Laboratory at the University of California, Berkeley). The EMUS spatial resolution of less than 300 km on the disk is sufficient to characterize spatial variability in the Martian thermosphere (100-200 km altitude) and exosphere (>200 km altitude). The instrument is jointly developed by the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder and Mohammed Bin Rashid Space Centre (MBRSC) in Dubai, UAE.

  3. Emirates Mars Ultraviolet Spectrometer (EMUS) Overview from the Emirates Mars Mission

    NASA Astrophysics Data System (ADS)

    Almatroushi, Hessa; Lootah, Fatma; Holsclaw, Greg; Deighan, Justin; Chaffin, Michael; Lillis, Robert; Fillingim, Matthew; England, Scott; AlMheiri, Suhail; Reed, Heather

    2017-04-01

    The Emirates Mars Ultraviolet Spectrometer (EMUS) instrument is one of three science instruments to be carried on board the Emirate Mars Mission (EMM), the "Hope Probe". EMM is a United Arab Emirates' (UAE) mission to Mars launching in 2020 to explore the dynamics in the Martian atmosphere globally, while sampling on both diurnal and seasonal timescales. The EMUS instrument is a far-ultraviolet imaging spectrograph that measures emissions in the spectral range 100-170 nm. Using spacecraft motion, it will build up two-dimensional far-ultraviolet images of the Martian disk and near-space environment at several important wavelengths: Lyman beta atomic hydrogen emission (102.6 nm), Lyman alpha atomic hydrogen emission (121.6 nm), atomic oxygen emission (130.4 nm and 135.6 nm), and carbon monoxide fourth positive group band emission (140 nm-170 nm). Radiances at these wavelengths will be used to derive the column abundance of atomic oxygen, and carbon monoxide in the Martian thermosphere, and the density of atomic oxygen and atomic hydrogen in the Martian exosphere both with spatial and sub-seasonal variability. EMUS consists of a single telescope mirror feeding a Rowland circle imaging spectrograph capable of selectable spectral resolution (1.3 nm, 1.8 nm, or 5 nm) with a photon-counting and locating detector (provided by the Space Sciences Laboratory at the University of California, Berkeley). The EMUS spatial resolution of less than 300km on the disk is sufficient to characterize spatial variability in the Martian thermosphere (100-200 km altitude) and exosphere (>200 km altitude). The instrument is jointly developed by the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder and Mohammed Bin Rashid Space Centre (MBRSC) in Dubai, UAE

  4. Expected scientific performance of the three spectrometers on the extreme ultraviolet explorer

    NASA Technical Reports Server (NTRS)

    Vallerga, J. V.; Jelinsky, P.; Vedder, P. W.; Malina, R. F.

    1990-01-01

    The expected in-orbit performance of the three spectrometers included on the Extreme Ultraviolet Explorer astronomical satellite is presented. Recent calibrations of the gratings, mirrors and detectors using monochromatic and continuum EUV light sources allow the calculation of the spectral resolution and throughput of the instrument. An effective area range of 0.2 to 2.8 sq cm is achieved over the wavelength range 70-600 A with a peak spectral resolution (FWHM) of 360 assuming a spacecraft pointing knowledge of 10 arc seconds (FWHM). For a 40,000 sec observation, the average 3 sigma sensitivity to a monochromatic line source is 0.003 photons/sq cm s. Simulated observations of known classes of EUV sources, such as hot white dwarfs, and cataclysmic variables are also presented.

  5. The laser absorption spectrometer - A new remote sensing instrument for atmospheric pollution monitoring

    NASA Technical Reports Server (NTRS)

    Shumate, M. S.

    1974-01-01

    An instrument capable of remotely monitoring trace atmospheric constituents is described. The instrument, called a laser absorption spectrometer, can be operated from an aircraft or spacecraft to measure the concentration of selected gases in three dimensions. This device will be particularly useful for rapid determination of pollutant levels in urban areas.

  6. Multiple detector focal plane array ultraviolet spectrometer for the AMPS laboratory

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.

    1975-01-01

    The possibility of meeting the requirements of the amps spectroscopic instrumentation by using a multi-element focal plane detector array in a conventional spectrograph mount was examined. The requirements of the detector array were determined from the optical design of the spectrometer which in turn depends on the desired level of resolution and sensitivity required. The choice of available detectors and their associated electronics and controls was surveyed, bearing in mind that the data collection rate from this system is so great that on-board processing and reduction of data are absolutely essential. Finally, parallel developments in instrumentation for imaging in astronomy were examined, both in the ultraviolet (for the Large Space Telescope as well as other rocket and satellite programs) and in the visible, to determine what progress in that area can have direct bearing on atmospheric spectroscopy.

  7. Probing the Southern Fermi Bubble in Ultraviolet Absorption Using Distant AGNs

    NASA Astrophysics Data System (ADS)

    Karim, Md Tanveer; Fox, Andrew J.; Jenkins, Edward B.; Bordoloi, Rongmon; Wakker, Bart P.; Savage, Blair D.; Lockman, Felix J.; Crawford, Steven M.; Jorgenson, Regina A.; Bland-Hawthorn, Joss

    2018-06-01

    The Fermi Bubbles are two giant gamma-ray emitting lobes extending 55° above and below the Galactic center. While the Northern Bubble has been extensively studied in ultraviolet (UV) absorption, little is known about the gas kinematics of the southern Bubble. We use UV absorption-line spectra from the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope to probe the southern Fermi Bubble using a sample of 17 background AGNs projected behind or near the Bubble. We measure the incidence of high-velocity clouds (HVC), finding that 4 out of 6 sightlines passing through the Bubble show HVC absorption, versus 6 out of 11 passing outside. We find strong evidence that the maximum absolute LSR velocity of the HVC components decreases as a function of galactic latitude within the Bubble, for both blueshifted and redshifted components, as expected for a decelerating outflow. We explore whether the column density ratios Si IV/Si III, Si IV/Si II, and Si III/Si II correlate with the absolute galactic latitude within the Bubble. These results demonstrate the use of UV absorption-line spectroscopy to characterize the kinematics and ionization conditions of embedded clouds in the Galactic center outflow.

  8. Investigating the 3.3 micron infrared fluorescence from naphthalene following ultraviolet excitation

    NASA Technical Reports Server (NTRS)

    Williams, Richard M.; Leone, Stephen R.

    1994-01-01

    Polycyclic aromatic hydrocarbon (PAH) type molecules are proposed as the carriers of the unidentified infrared (UIR) bands. Detailed studies of the 3.3 micrometer infrared emission features from naphthalene, the simplest PAH, following ultraviolet laser excitation are used in the interpretation of the 3.29 micrometer (3040 cm(sup -1)) UIR band. A time-resolved Fourier transform spectrometer is used to record the infrared emission spectrum of gas-phase naphthalene subsequent to ultraviolet excitation facilitated by an excimer laser operated at either 193 nm or 248 nm. The emission spectra differ significantly from the absorption spectrum in the same spectral region. Following 193 nm excitation the maximum in the emission profile is red-shifted 45 cm(sup -1) relative to the absorption maximum; a 25 cm(sup -1) red-shift is observed after 248 nm excitation. The red-shifting of the emission spectrum is reduced as collisional and radiative relaxation removes energy from the highly vibrationally excited molecules. Coupling between the various vibrational modes is thought to account for the differences between absorption and emission spectra. Strong visible emission is also observed following ultraviolet excitation. Visible emission may play an important role in the rate of radiative relaxation, which according to the interstellar PAH hypothesis occurs only by the slow emission of infrared photons. Studying the visible emission properties of PAH type molecules may be useful in the interpretation of the DIB's observed in absorption.

  9. Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Langford, A. O.; Fuchs, H.; Brown, S. S.

    2008-12-01

    We describe an instrument for simultaneous measurements of glyoxal (CHOCHO) and nitrogen dioxide (NO2) using cavity enhanced absorption spectroscopy with a broadband light source. The output of a Xenon arc lamp is coupled into a 1 m optical cavity, and the spectrum of light exiting the cavity is recorded by a grating spectrometer with a charge-coupled device (CCD) array detector. The mirror reflectivity and effective path lengths are determined from the known Rayleigh scattering of He and dry zero air (N2+O2). Least-squares fitting, using published reference spectra, allow the simultaneous retrieval of CHOCHO, NO2, O4, and H2O in the 441 to 469 nm spectral range. For a 1-min sampling time, the precision (±1σ) on signal for measurements of CHOCHO and NO2 is 29 pptv and 20 pptv, respectively. We directly compare measurements made with the incoherent broadband cavity enhanced absorption spectrometer with those from cavity ringdown instruments detecting CHOCHO and NO2 at 404 and 532 nm, respectively, and find linear agreement over a wide range of concentrations. The instrument has been tested in the laboratory with both synthetic and real air samples, and the demonstrated sensitivity and specificity suggest a strong potential for field measurements of both CHOCHO and NO2.

  10. Two-photon absorption dispersion spectrometer for 1.53 μm eye-safe Doppler LIDAR.

    PubMed

    Vance, J D

    2012-07-01

    Based upon resonant two-photon absorption within a rubidium cell and 780 nm pump light, a birefringent medium for 1.530 μm is induced that changes rapidly with frequency. The birefringence is exploited to build a spectrometer that is capable of measuring the Doppler shift of scattered photons.

  11. Computed tomography imaging spectrometer (CTIS) with 2D reflective grating for ultraviolet to long-wave infrared detection especially useful for surveying transient events

    NASA Technical Reports Server (NTRS)

    Muller, Richard E. (Inventor); Mouroulis, Pantazis Z. (Inventor); Maker, Paul D. (Inventor); Wilson, Daniel W. (Inventor)

    2003-01-01

    The optical system of this invention is an unique type of imaging spectrometer, i.e. an instrument that can determine the spectra of all points in a two-dimensional scene. The general type of imaging spectrometer under which this invention falls has been termed a computed-tomography imaging spectrometer (CTIS). CTIS's have the ability to perform spectral imaging of scenes containing rapidly moving objects or evolving features, hereafter referred to as transient scenes. This invention, a reflective CTIS with an unique two-dimensional reflective grating, can operate in any wavelength band from the ultraviolet through long-wave infrared. Although this spectrometer is especially useful for rapidly occurring events it is also useful for investigation of some slow moving phenomena as in the life sciences.

  12. [Near ultraviolet absorption spectral properties of chromophoric dissolved organic matter in the north area of Yellow Sea].

    PubMed

    Wang, Lin; Zhao, Dong-Zhi; Yang, Jian-Hong; Chen, Yan-Long

    2010-12-01

    Chromophoric dissolved organic matter (CDOM) near ultraviolet absorption spectra contains CDOM molecular structure, composition and other important physical and chemical information. Based on the measured data of CDOM absorption coefficient in March 2009 in the north area of Yellow Sea, the present paper analyzed near ultraviolet absorption spectral properties of CDOM. The results showed that due to the impact of near-shore terrigenous input, the composition of CDOM is quite different in the north area of Yellow Sea, and this area is a typical case II water; fitted slope with specific range of spectral band and absorption coefficient at specific band can indicate the relative size of CDOM molecular weight, correlation between spectral slope of the Sg,275-300), Sg,300-350, Sg,350-400 and Sg,250-275 and the relative size of CDOM molecular weight indicative parameter M increases in turn and the highest is up to 0.95. Correlation between a(g)(lambda) and M value increases gradually with the increase in wavelength, and the highest is up to 0.92 at 400 nm; being correlated or not between spectral slope and absorption coefficient is decided by the fitting-band wavelength range for the spectra slope and the wavelength for absorption coefficient. Correlation between Sg,275-300 and a(g)(400) is the largest, up to 0.87.

  13. A new endstation at the Swiss Light Source for ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy measurements of liquid solutions.

    PubMed

    Brown, Matthew A; Redondo, Amaia Beloqui; Jordan, Inga; Duyckaerts, Nicolas; Lee, Ming-Tao; Ammann, Markus; Nolting, Frithjof; Kleibert, Armin; Huthwelker, Thomas; Müächler, Jean-Pierre; Birrer, Mario; Honegger, Juri; Wetter, Reto; Wörner, Hans Jakob; van Bokhoven, Jeroen A

    2013-07-01

    A new liquid microjet endstation designed for ultraviolet (UPS) and X-ray (XPS) photoelectron, and partial electron yield X-ray absorption (XAS) spectroscopies at the Swiss Light Source is presented. The new endstation, which is based on a Scienta HiPP-2 R4000 electron spectrometer, is the first liquid microjet endstation capable of operating in vacuum and in ambient pressures up to the equilibrium vapor pressure of liquid water at room temperature. In addition, the Scienta HiPP-2 R4000 energy analyzer of this new endstation allows for XPS measurements up to 7000 eV electron kinetic energy that will enable electronic structure measurements of bulk solutions and buried interfaces from liquid microjet samples. The endstation is designed to operate at the soft X-ray SIM beamline and at the tender X-ray Phoenix beamline. The endstation can also be operated using a Scienta 5 K ultraviolet helium lamp for dedicated UPS measurements at the vapor-liquid interface using either He I or He II α lines. The design concept, first results from UPS, soft X-ray XPS, and partial electron yield XAS measurements, and an outlook to the potential of this endstation are presented.

  14. Ultraviolet absorption by highly ionized halo gas near the Galactic center

    NASA Technical Reports Server (NTRS)

    Savage, B. D.; Massa, D.

    1985-01-01

    Initial results are presented for a program to survey highly ionized gas in the Milky Way disk and halo. High-resolution IUE (International Ultraviolet Explorer) far-UV spectra were obtained for 12 stars at galactocentric distances less than 6 kpc. The stars are 0.7-2.2 kpc away from the plane. Most of the spectra contain exceedingly strong and broad interstellar absorption lines of weakly and highly ionized atoms. In addition to the normally strong lines of Si IV and C IV, strong interstellar NV lines have been detected in the spectra of eight stars. The detection of NV absorption (amounting to more than 10 times the predicted NV) provides an important new constraint on models for the origin of Galactic halo gas. A Galactic fountain operating in the presence of known UV and EUV radiation might explain the observations.

  15. Dynamic absorption coefficients of chemically amplified resists and nonchemically amplified resists at extreme ultraviolet

    NASA Astrophysics Data System (ADS)

    Fallica, Roberto; Stowers, Jason K.; Grenville, Andrew; Frommhold, Andreas; Robinson, Alex P. G.; Ekinci, Yasin

    2016-07-01

    The dynamic absorption coefficients of several chemically amplified resists (CAR) and non-CAR extreme ultraviolet (EUV) photoresists are measured experimentally using a specifically developed setup in transmission mode at the x-ray interference lithography beamline of the Swiss Light Source. The absorption coefficient α and the Dill parameters ABC were measured with unprecedented accuracy. In general, the α of resists match very closely with the theoretical value calculated from elemental densities and absorption coefficients, whereas exceptions are observed. In addition, through the direct measurements of the absorption coefficients and dose-to-clear values, we introduce a new figure of merit called chemical sensitivity to account for all the postabsorption chemical reaction ongoing in the resist, which also predicts a quantitative clearing volume and clearing radius, due to the photon absorption in the resist. These parameters may help provide deeper insight into the underlying mechanisms of the EUV concepts of clearing volume and clearing radius, which are then defined and quantitatively calculated.

  16. A Fourier transform spectrometer without a beam splitter for the vacuum ultraviolet range: From the optical design to the first UV spectrum.

    PubMed

    de Oliveira, N; Joyeux, D; Phalippou, D; Rodier, J C; Polack, F; Vervloet, M; Nahon, L

    2009-04-01

    We describe a Fourier transform (FT) spectrometer designed to operate down to 60 nm (20 eV) on a synchrotron radiation beamline for high resolution absorption spectrometry. As far as we know, such an instrument is not available below 140 nm mainly because manufacturing accurate and efficient beam splitters remains a major problem at these wavelengths, especially if a wide bandwidth operation is desired. In order to overcome this difficulty, we developed an interferometer based on wave front division instead of amplitude division. It relies on a modified Fresnel bimirror configuration that requires only flat mirrors. The instrument provides path difference scanning through the translation of one reflector. During the scanning, the moving reflector is controlled by an optical system that keeps its direction constant within a tolerable value and provides an accurate interferometric measurement of the path difference variation. Therefore, a regular interferogram sampling is obtained, producing a nominal spectral impulse response and an accurate spectral calibration. The first results presented in this paper show a measured spectral resolution of delta(sigma)=0.33 cm-1 (interval between spectral samples). This was obtained with a sampling interval of 29 nm (path difference) and 512 K samples from a one-sided interferogram using a cosine FT. Such a sampling interval should allow the recording of large bandwidth spectra down to lambda=58 nm with an ultimate resolving power of 500,000 at this wavelength. In order to check the instrument performances, we first recorded an interferogram from a He-Ne stabilized laser. This provided the actual spectral impulse function, which was found to be fully satisfactory. The determination of the impulse response distortion and of the noise on the vacuum ultraviolet (VUV) spectral range provided accurate information in the sampling error profile over a typical scan. Finally, the instrument has been moved to the SU5 undulator

  17. Ultraviolet absorption by highly ionized atoms in the Orion Nebula

    NASA Technical Reports Server (NTRS)

    Franco, J.; Savage, B. D.

    1982-01-01

    The International Ultraviolet Explorer was used to obtain high-resolution, far-UV spectra of theta 1 A, theta 1 C, theta 1 D, and theta 2 A Orionis. The interstellar absorption lines in these spectra are discussed with an emphasis on the high-ionization lines of C IV and Si IV. Theta 2 A Ori has interstellar C IV and Si IV absorption of moderate strength at the velocity found for normal H II region ions. Theta 1 C Ori has very strong interstellar C IV and Si IV absorption at velocities blueshifted by about 25 km/s from that found for the normal H II region ions. The possible origin of the high-ionization lines by three processes is considered: X-ray ionization, collisional ionization, and UV photoionization. It is concluded that the C IV and Si IV ions toward theta 2 A and theta 1 C Ori are likely produced by UV photoionization of surrounding nebular gas. In the case of theta 1 C Ori, the velocity shift of the high-ionization lines may be produced through the acceleration of high-density globules in the core of the nebula by the stellar wind of theta 1 C Ori.

  18. The absorption characteristics of the human cornea in ultraviolet-a crosslinking.

    PubMed

    Koppen, Carina; Gobin, Laure; Tassignon, Marie-José

    2010-03-01

    With respect to the safety of ultraviolet-A (UVA) crosslinking for the corneal endothelium, an absorption coefficient is used that has been calculated in riboflavin soaked porcine corneas. We aim to validate this value for clinical use by measuring the absorption coefficient for UVA 365 nm in postmortem human corneas after instilling riboflavin on the corneal surface. Corneal thickness was measured in nine pairs of human donor eyes of which one eye was subjected to manual removal of the epithelium, whereas the epithelium of the fellow eye was left intact. Both eyes were instilled with riboflavin 0.1% in dextran 20% on the intact globe. After 20 min, the corneas were rinsed, and a corneoscleral button was trephined. The transmission of the cornea for UVA 365 nm was measured by transillumination, which allows calculation of the absorption coefficient. Measurement of average corneal thickness was 658.5 +/- 51.5 microm when the epithelium was removed, and 758.3 +/- 98.8 microm without epithelial removal. The average transmittance for UVA 365 nm was 12.89 +/- 4.10% with epithelial debridement and 28.52 +/- 4.39% without (P<0.05). The resultant average absorption coefficient is 32 +/- 5 cm when the epithelium is removed and 17 +/- 2 cm when it is left intact (P<0.05). Our results show an absorption coefficient for human corneas that is much lower than the values reported in the literature. This finding may be relevant when considering endothelial safety of the clinical crosslinking treatment.

  19. Berkeley extreme-ultraviolet airglow rocket spectrometer: BEARS.

    PubMed

    Cotton, D M; Chakrabarti, S

    1992-09-20

    We describe the Berkeley extreme-UV airglow rocket spectrometer, which is a payload designed to test several thermospheric remote-sensing concepts by measuring the terrestrial O I far-UV and extreme-UV dayglow and the solar extreme-UV spectrum simultaneously. The instrument consisted of two near-normal Rowland mount spectrometers and a Lyman-alpha photometer. The dayglow spectrometer covered two spectral regions from 980 to 1040 A and from 1300 to 1360 A with 1.5-A resolution. The solar spectrometer had a bandpass of 250-1150 A with an ~ 10-A resolution. All three spectra were accumulated by using a icrochannel-plate-intensified, two-dimensional imaging detector with three separate wedge-and strip anode readouts. The hydrogen Lyman-alpha photometer was included to monitor the solar Lyman-alpha irradiance and geocoronal Lyman-alpha emissions. The instrument was designed, fabricated, and calibrated at the University of California, Berkeley and was successfully launched on 30 September 1988 aboard the first test flight of a four-stage sounding rocket, Black Brant XII.

  20. Exciplex formation and electroluminescent absorption in ultraviolet organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Zhang, Hao; Zhang, Xiao-Wen; Xu, Tao; Wei, Bin

    2015-02-01

    We investigated the formation of exciplex and electroluminescent absorption in ultraviolet organic light-emitting diodes (UV OLEDs) using different heterojunction structures. It is found that an energy barrier of over 0.3 eV between the emissive layer (EML) and adjacent transport layer facilitates exciplex formation. The electron blocking layer effectively confines electrons in the EML, which contributes to pure UV emission and enhances efficiency. The change in EML thickness generates tunable UV emission from 376 nm to 406 nm. In addition, the UV emission excites low-energy organic function layers and produces photoluminescent emission. In UV OLED, avoiding the exciplex formation and averting light absorption can effectively improve the purity and efficiency. A maximum external quantum efficiency of 1.2% with a UV emission peak of 376 nm is realized. Project supported by the National Natural Science Foundation of China (Grant Nos. 61136003 and 61275041) and the Guangxi Provincial Natural Science Foundation, China (Grant No. 2012GXNSFBA053168).

  1. Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) Aircraft Measurements of CO2

    NASA Technical Reports Server (NTRS)

    Christensen, Lance E.; Spiers, Gary D.; Menzies, Robert T.; Jacob, Joseph C.; Hyon, Jason

    2011-01-01

    The Jet Propulsion Laboratory Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) utilizes Integrated Path Differential Absorption (IPDA) at 2.05 microns to obtain CO2 column mixing ratios weighted heavily in the boundary layer. CO2LAS employs a coherent detection receiver and continuous-wave Th:Ho:YLF laser transmitters with output powers around 100 milliwatts. An offset frequency-locking scheme coupled to an absolute frequency reference enables the frequencies of the online and offline lasers to be held to within 200 kHz of desired values. We describe results from 2009 field campaigns when CO2LAS flew on the Twin Otter. We also describe spectroscopic studies aimed at uncovering potential biases in lidar CO2 retrievals at 2.05 microns.

  2. EUNIS: An Extreme-Ultraviolet Normal-Incidence Spectrometer

    NASA Technical Reports Server (NTRS)

    Thomas, Roger J.; Davila, Joseph M.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    GSFC is in the process of assembling an Extreme-Ultraviolet Normal-Incidence Spectrometer called EUNIS, to be flown as a sounding rocket payload. This instrument builds on the many technical innovations pioneered by our highly successful SERTS experiment over its past ten flights. The new design will have somewhat improved spatial and spectral resolutions, as well as 100 times greater sensitivity, permitting EUV spectroscopy with a temporal resolution near 1-second for the first time ever. To achieve such high time cadence, a novel Active-Pixel-Sensor detector is being developed as a key component of our design. The high sensitivity of EUNIS will allow entirely new studies of transient coronal phenomena, such as the rapid loop dynamics seen by TRACE, and searches for non-thermal motions indicative of magnetic reconnection or wave heating. The increased sensitivity will also permit useful EUV spectra at heights of 2-3-R$ \\odot$ above the limb, where the transition between the static corona and the solar wind might occur. In addition, the new design features two independent optical systems, more than doubling the spectral bandwidth covered on each flight. Its 300-370\\AA\\ bandpass includes He-II 304\\AA\\ and strong lines from Fe-XI-XVI, extending the current SERTS range of 300-355\\AA\\ to further improve our ongoing series of calibration under-flights for SOHO/CDS and EIT. The second bandpass of 170-230\\AA\\ has a sequence of very strong Fe-IX-XIV lines, and will allow under-flight support for two more channels on SOHO/EIT, two channels on TRACE, one on Solar-B/EIS, and all four channels on the STEREO/EUVI instrument. First flight of the new EUNIS payload is scheduled for 2002 October.

  3. Ultraviolet Studies of Jupiter's Hydrocarbons and Aerosols from Galileo

    NASA Technical Reports Server (NTRS)

    Gladstone, G. Randall

    2001-01-01

    This is the final report for this project. The purpose of this project was to support PI Wayne Pryor's effort to reduce and analyze Galileo UVS (Ultraviolet Spectrometer) data under the JSDAP program. The spectral observations made by the Galileo UVS were to be analyzed to determine mixing ratios for important hydrocarbon species (and aerosols) in Jupiter's stratosphere as a function of location on Jupiter. Much of this work is still ongoing. To date, we have concentrated on analyzing the variability of the auroral emissions rather than the absorption signatures of hydrocarbons, although we have done some work in this area with related HST-STIS data.

  4. Measurement of Glyoxal Using an Incoherent Broadband Cavity Enhanced Absorption Spectrometer

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Langford, A. O.; Fuchs, H.; Brown, S. S.

    2008-12-01

    Glyoxal (CHOCHO) is the simplest alpha-dicarbonyl and one of the most prevalent dicarbonyls in the atmosphere. It is formed from the photooxidation of anthropogenic hydrocarbons (e.g. aromatics and acetylene), and is a minor oxidation product of isoprene and other biogenic species. Photolysis of glyoxal is a significant source of HOx (OH + HO2), and there is growing evidence that heterogeneous reactions of glyoxal play an important role in the formation of secondary organic aerosol. We present a novel technique for measurement of glyoxal using cavity enhanced absorption spectroscopy with a broadband light source (IBBCEAS). The output of a Xenon arc lamp is coupled into a 1 m optical cavity, and the spectrum of light exiting the cavity is recorded by a grating spectrometer with a charge- coupled device (CCD) array detector. The mirror reflectivity and effective path lengths are determined from the known Rayleigh scattering of He and dry zero air (N2 + O2). We use least-squares fitting with published reference spectra to simultaneous retrieve glyoxal, nitrogen dioxide (NO2), oxygen dimer (O4) and water (H2O) in the 441 to 469 nm spectral range. For a 1-min sampling time, the precision (±1σ) on signal for measurements of CHOCHO and NO2 is 29 pptv and 20 pptv respectively. We directly compare the incoherent broadband cavity enhanced absorption spectrometer to 404 and 532 nm cavity ringdown instruments for CHOCHO and NO2 detection, and find linear agreement over a wide range of concentrations. We present laboratory measurements of synthetic and real air samples containing CHOCHO and NO2, and discuss the potential for field measurements.

  5. Characterization of photoluminescence spectra from poly allyl diglycol carbonate (CR-39) upon excitation with the ultraviolet radiation of various wavelengths

    NASA Astrophysics Data System (ADS)

    El Ghazaly, M.; Al-Thomali, Talal A.

    2013-04-01

    The induced photoluminescence (PL) from the π-conjugated polymer poly allyl diglycol carbonate (PADC) (CR-39) upon excitation with the ultraviolet radiation of different wavelengths was investigated. The absorption and attenuation coefficients of PADC (CR-39) were recorded using a UV-visible spectrometer. It was found that the absorption and attenuation coefficients of the PADC (CR-39) exhibit a strong dependence on the wavelength of ultraviolet radiation. The PL spectra were measured with a Flormax-4 spectrofluorometer (Horiba). PADC (CR-39) samples were excited by ultraviolet radiation with wavelengths in the range from 260 to 420 nm and the corresponding PL emission bands were recorded. The obtained results show a strong correlation between the PL and the excitation wavelength of ultraviolet radiation. The position of the fluorescence emission band peak was red shifted starting from 300 nm, which was increased with the increase in the excitation wavelength. The PL yield and its band peak height were increased with the increase in the excitation wavelength till 290 nm, thereafter they decreased exponentially with the increase in the ultraviolet radiation wavelength. These new findings should be considered carefully during the use of the PADC (CR-39) in the scientific applications and in using PADC (CR-39) in eyeglasses.

  6. A Near-Infrared Spectrometer to Measure Zodiacal Light Absorption Spectrum

    NASA Technical Reports Server (NTRS)

    Kutyrev, A. S.; Arendt, R.; Dwek, E.; Kimble, R.; Moseley, S. H.; Rapchun, D.; Silverberg, R. F.

    2010-01-01

    We have developed a high throughput infrared spectrometer for zodiacal light fraunhofer lines measurements. The instrument is based on a cryogenic dual silicon Fabry-Perot etalon which is designed to achieve high signal to noise Fraunhofer line profile measurements. Very large aperture silicon Fabry-Perot etalons and fast camera optics make these measurements possible. The results of the absorption line profile measurements will provide a model free measure of the zodiacal Light intensity in the near infrared. The knowledge of the zodiacal light brightness is crucial for accurate subtraction of zodiacal light foreground for accurate measure of the extragalactic background light after the subtraction of zodiacal light foreground. We present the final design of the instrument and the first results of its performance.

  7. MASERATI: a RocketBorne tunable diode laser absorption spectrometer.

    PubMed

    Lübken, F J; Dingler, F; von Lucke, H; Anders, J; Riedel, W J; Wolf, H

    1999-09-01

    The MASERATI (middle-atmosphere spectrometric experiment on rockets for analysis of trace-gas influences) instrument is, to our knowledge, the first rocket-borne tunable diode laser absorption spectrometer that was developed for in situ measurements of trace gases in the middle atmosphere. Infrared absorption spectroscopy with lead salt diode lasers is applied to measure water vapor and carbon dioxide in the altitude range from 50 to 90 km and 120 km, respectively. The laser beams are directed into an open multiple-pass absorption setup (total path length 31.7 m) that is mounted on top of a sounding rocket and that is directly exposed to ambient air. The two species are sampled alternately with a sampling time of 7.37 ms, each corresponding to an altitude resolution of approximately 15 m. Frequency-modulation and lock-in techniques are used to achieve high sensitivity. Tests in the laboratory have shown that the instrument is capable of detecting a very small relative absorbance of 10(-4)-10(-5) when integrating spectra for 1 s. The instrument is designed and qualified to resist the mechanical stress occurring during the start of a sounding rocket and to be operational during the cruising phase of the flight when accelerations are very small. Two almost identical versions of the MASERATI instrument were built and were launched on sounding rockets from the Andøya Rocket Range (69 degrees N) in northern Norway on 12 October 1997 and on 31 January 1998. The good technical performance of the instruments during these flights has demonstrated that MASERATI is indeed a new suitable tool to perform rocket-borne in situ measurements in the upper atmosphere.

  8. [Determination of sulfur in plant using a high-resolution continuum source atomic absorption spectrometer].

    PubMed

    Wang, Yu; Li, Jia-xi

    2009-05-01

    A method for the analysis of sulfur (S) in plant by molecular absorption of carbon monosulfide (CS) using a high-resolution continuum source atomic absorption spectrometer (CS AAS) with a fuel-rich air/acetylene flame has been devised. The strong CS absorption band was found around 258 nm. The half-widths of some absorption bands were of the order of picometers, the same as the common atomic absorption lines. The experimental procedure in this study provided optimized instrumental conditions (the ratio of acetylene to air, the burner height) and parameters, and researched the spectral interferences and chemical interferences. The influence of the organic solvents on the CS absorption signals and the different digestion procedures for the determination of sulfur were also investigated. The limit of detection achieved for sulfur was 14 mg x L(-1), using the CS wavelength of 257. 961 nm and a measurement time of 3 s. The accuracy and precision were verified by analysis of two plant standard reference materials. The major applications of this method have been used for the determination of sulfur in plant materials, such as leaves. Compared to the others, this method for the analysis of sulfur is rapid, easy and simple for sulfur determination in plant.

  9. Aqueous humour and ultraviolet radiation.

    PubMed

    Ringvold, A

    1980-01-01

    Studies on the ultraviolet ray absorption in the aqueous humour of rabbit, cat, monkey, guinea pig, and rat showed marked species differences. In the rabbit aqueous the ascorbic acid, the proteins, and some amino acids (tyrosine, phenylalanine, cystine, and tryptophane) are together responsible for the total absorption, and a very great part of it refers to the ascorbic acid content. Accordingly, species with significant amounts of ascorbic acid in the aqueous (monkey, rabbit, guinea pig) have a greater absorption capacity towards ultraviolet radiation than species (cat, rat) lacking this substance. This effect of the ascorbic acid may contribute in protecting the lens against the most biotoxic ultraviolet rays. It seems that the ascorbic acid concentration is highest in the aqueous of typical day animals and lowest in species being active in the dark, indicating a correlation between the aqueous' ascorbic acid level and the quantity of incident light on the eye. The possible significance of changed aqueous ultraviolet ray absorption in the pathogenesis of human cataract development is discussed.

  10. Fully reflective deep ultraviolet to near infrared spectrometer and entrance optics for resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Schulz, B.; Bäckström, J.; Budelmann, D.; Maeser, R.; Rübhausen, M.; Klein, M. V.; Schoeffel, E.; Mihill, A.; Yoon, S.

    2005-07-01

    We present the design and performance of a new triple-grating deep ultraviolet to near-infrared spectrometer. The system is fully achromatic due to the use of reflective optics. The minimization of image aberrations by using on- and off- axis parabolic mirrors as well as elliptical mirrors yields a strong stray light rejection with high resolution over a wavelength range between 165 and 1000nm. The Raman signal is collected with a reflective entrance objective with a numerical aperture of 0.5, featuring a Cassegrain-type design. Resonance Raman studies on semiconductors and on correlated compounds, such as LaMnO3, highlight the performance of this instrument, and show diverse resonance effects between 1.96 and 5.4eV.

  11. Performance Assessment of a Plate Beam Splitter for Deep-Ultraviolet Raman Measurements with a Spatial Heterodyne Raman Spectrometer.

    PubMed

    Lamsal, Nirmal; Angel, S Michael

    2017-06-01

    In earlier works, we demonstrated a high-resolution spatial heterodyne Raman spectrometer (SHRS) for deep-ultraviolet (UV) Raman measurements, and showed its ability to measure UV light-sensitive compounds using a large laser spot size. We recently modified the SHRS by replacing the cube beam splitter (BS) with a custom plate beam splitter with higher light transmission, an optimized reflectance/transmission ratio, higher surface flatness, and better refractive index homogeneity than the cube beam splitter. Ultraviolet Raman measurements were performed using a SHRS modified to use the plate beam splitter and a matching compensator plate and compared to the previously described cube beam splitter setup. Raman spectra obtained using the modified SHRS exhibit much higher signals and signal-to-noise (S/N) ratio and show fewer spectral artifacts. In this paper, we discuss the plate beam splitter SHRS design features, the advantages over previous designs, and discuss some general SHRS issues such as spectral bandwidth, S/N ratio characteristics, and optical efficiency.

  12. An off Axis Cavity Enhanced Absorption Spectrometer and a Rapid Scan Spectrometer with a Room-Temperature External Cavity Quantum Cascade Laser

    NASA Astrophysics Data System (ADS)

    Liu, Xunchen; Kang, Cheolhwa; Xu, Yunjie

    2009-06-01

    Quantum cascade laser (QCL) is a new type of mid-infrared tunable diode lasers with superior output power and mode quality. Recent developments, such as room temperature operation, wide frequency tunability, and narrow line width, make QCLs an ideal light source for high resolution spectroscopy. Two slit jet infrared spectrometers, namely an off-axis cavity enhanced absorption (CEA) spectrometer and a rapid scan spectrometer with an astigmatic multi-pass cell assembly, have been coupled with a newly purchased room temperature tunable mod-hop-free QCL with a frequency coverage from 1592 cm^{-1} to 1698 cm^{-1} and a scan rate of 0.1 cm^{-1}/ms. Our aim is to utilize these two sensitive spectrometers, that are equipped with a molecular jet expansion, to investigate the chiral molecules-(water)_n clusters. To demonstrate the resolution and sensitivity achieved, the rovibrational transitions of the static N_2O gas and the bending rovibrational transitions of the Ar-water complex, a test system, at 1634 cm^{-1} have been measured. D. Hofstetter and J. Faist in High performance quantum cascade lasers and their applications, Vol.89 Springer-Verlag Berlin & Heidelberg, 2003, pp. 61-98. Y. Xu, X. Liu, Z. Su, R. M. Kulkarni, W. S. Tam, C. Kang, I. Leonov and L. D'Agostino, Proc. Spie, 2009, 722208 (1-11). M. J. Weida and D. J. Nesbitt, J. Chem. Phys. 1997, 106, 3078-3089.

  13. Convenient determination of luminescence quantum yield using a combined electronic absorption and emission spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prakash, John; Mishra, Ashok Kumar

    2016-01-15

    It is possible to measure luminescence quantum yield in a facile way, by designing an optical spectrometer capable of obtaining electronic absorption as well as luminescence spectra, with a setup that uses the same light source and detector for both the spectral measurements. Employment of a single light source and single detector enables use of the same correction factor profile for spectral corrections. A suitable instrumental scaling factor is used for adjusting spectral losses.

  14. Airborne Laser Infrared Absorption Spectrometer (ALIAS-II) for in situ Atmospheric Measurements of N(sub 2)0, CH(sub 4), CO, HCl, and NO(sub 2) from Balloon or RPA Platforms

    NASA Technical Reports Server (NTRS)

    Scott, D.; Herman, R.; Webster, C.; May, R.; Flesch, G.; Moyer, E.

    1998-01-01

    The Airborne Laser Infrared Absorption Spectrometer II (ALIAS-II) is a lightweight, high-resolution (0.0003 cm-1), scanning, mid-infrared absorption spectrometer based on cooled (80 K) lead-salt tunable diode laser sources.

  15. Measuring spatially varying, multispectral, ultraviolet bidirectional reflectance distribution function with an imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Li, Hongsong; Lyu, Hang; Liao, Ningfang; Wu, Wenmin

    2016-12-01

    The bidirectional reflectance distribution function (BRDF) data in the ultraviolet (UV) band are valuable for many applications including cultural heritage, material analysis, surface characterization, and trace detection. We present a BRDF measurement instrument working in the near- and middle-UV spectral range. The instrument includes a collimated UV light source, a rotation stage, a UV imaging spectrometer, and a control computer. The data captured by the proposed instrument describe spatial, spectral, and angular variations of the light scattering from a sample surface. Such a multidimensional dataset of an example sample is captured by the proposed instrument and analyzed by a k-mean clustering algorithm to separate surface regions with same material but different surface roughnesses. The clustering results show that the angular dimension of the dataset can be exploited for surface roughness characterization. The two clustered BRDFs are fitted to a theoretical BRDF model. The fitting results show good agreement between the measurement data and the theoretical model.

  16. Solar minimum Lyman alpha sky background observations from Pioneer Venus orbiter ultraviolet spectrometer - Solar wind latitude variation

    NASA Technical Reports Server (NTRS)

    Ajello, J. M.

    1990-01-01

    Measurements of interplanetary H I Lyman alpha over a large portion of the celestial sphere were made at the recent solar minimum by the Pioneer Venus orbiter ultraviolet spectrometer. These measurements were performed during a series of spacecraft maneuvers conducted to observe Halley's comet in early 1986. Analysis of these data using a model of the passage of interstellar wind hydrogen through the solar system shows that the rate of charge exchange with solar wind protons is 30 percent less over the solar poles than in the ecliptic. This result is in agreement with a similar experiment performed with Mariner 10 at the previous solar minimum.

  17. Up-down asymmetry measurement of tungsten distribution in large helical device using two extreme ultraviolet (EUV) spectrometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y., E-mail: liu.yang@nifs.ac.jp; Zhang, H. M.; Morita, S.

    Two space-resolved extreme ultraviolet spectrometers working in wavelength ranges of 10-130 Å and 30-500 Å have been utilized to observe the full vertical profile of tungsten line emissions by simultaneously measuring upper- and lower-half plasmas of LHD, respectively. The radial profile of local emissivity is reconstructed from the measured vertical profile in the overlapped wavelength range of 30-130 Å and the up-down asymmetry is examined against the local emissivity profiles of WXXVIII in the unresolved transition array spectrum. The result shows a nearly symmetric profile, suggesting a good availability in the present diagnostic method for the impurity asymmetry study.

  18. Ultraviolet spectrometer and polarimeter (UVSP) catalog of observations. Volume 2: Experiments 30720-63057, April 1985 - February 1988

    NASA Technical Reports Server (NTRS)

    Henze, William, Jr.

    1993-01-01

    A catalog of observations (experiments) obtained by the Ultraviolet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission (SMM) from Feb. 1980 to Nov. 1989 is presented. The information for each entry includes the time of each observation, the observed position of the Sun, the spacecraft roll angle, the slit used, and instrument parameters such as raster size, pixel spacing, wavelength, polarimeter usage, gate time, etc. The document is split into three volumes: Volume 1 contains experiments 1-30719 (February 1980-April 1985); Volume 2 contains experiments 30720-63057 (April 1985-February 1988); and Volume 3 contains experiments 63058-99771 (February 1988-November 1989).

  19. Ultraviolet spectrometer and polarimeter (UVSP) catalog of observations. Volume 1: Experiments 1-30719, February 1980 - April 1985

    NASA Technical Reports Server (NTRS)

    Henze, William, Jr.

    1993-01-01

    A catalog of observations (experiments) obtained by the Ultraviolet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission (SMM) from Feb. 1980 to Nov. 1989 is presented. The information for each entry includes the time of each observation, the observed position of the Sun, the spacecraft roll angle, the slit used, and instrument parameters such as raster size, pixel spacing, wavelength, polarimeter usage, gate time, etc. The document is split into three volumes: Volume 1 contains experiments 1-30719 (February 1980-April 1985); Volume 2 contains experiments 30720-63057 (April 1985-February 1988); and Volume 3 contains experiments 63058-99771 (February l988-November 1989).

  20. Laboratory measurement of the absorption coefficient of riboflavin for ultraviolet light (365 nm).

    PubMed

    Iseli, Hans Peter; Popp, Max; Seiler, Theo; Spoerl, Eberhard; Mrochen, Michael

    2011-03-01

    Corneal cross-linking (CXL) is an increasingly used treatment technique for stabilizing the cornea in keratoconus. Cross-linking (polymerization) between collagen fibrils is induced by riboflavin (vitamin B2) and ultraviolet light (365 nm). Although reported to reach a constant value at higher riboflavin concentrations, the Lambert-Beer law predicts a linear increase in the absorption coefficient. This work was carried out to determine absorption behavior at different riboflavin concentrations and to further investigate the purported plateau absorption coefficient value of riboflavin and to identify possible bleaching effects. The Lambert-Beer law was used to calculate the absorption coefficient at various riboflavin concentrations. The following investigated concentrations of riboflavin solutions were prepared using a mixture of 0.5% riboflavin and 20% Dextran T500 dissolved in 0.9% sodium chloride solution: 0%, 0.02%, 0.03%, 0.04%, 0.05%, 0.06%, 0.08%, 0.1%, 0.2%, 0.3%, 0.4%, and 0.5%, and were investigated with and without aperture plate implementation. An additional test series measured the transmitted power at selected riboflavin concentrations over time. In diluted solutions, a linear correlation exists between the absorption coefficient and riboflavin concentration. The absorption coefficient reaches a plateau, but this occurs at a higher riboflavin concentration (0.1%) than previously reported (just above 0.04%). Transmitted light power increases over time, indicating a bleaching effect of riboflavin. The riboflavin concentration can be effectively varied as a treatment parameter in a considerably broader range than previously thought. Copyright 2011, SLACK Incorporated.

  1. Contrastive Study on the Structure and the Ultraviolet Absorption Property of Multiple-Doped and Element-Doped ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Xu, Yunyun; Zhang, Tao; Lin, Zhenrong; Tian, Yanfeng; Zhou, Shandan

    Sb2O3- and CeO2-doped ZnO thin films were prepared by RF magnetron sputtering technique. The influence of Sb2O3 and CeO2 on the structure and ultraviolet (UV) absorption properties was studied by X-ray diffraction and UV-Vis spectrophotometry. Results show that multiple doping of films had a prominent effect on the development of crystal grains and the UV absorption property. Ce and Sb exist in many forms in the ZnO film. The multiple-doped films also show enhanced UVA absorption, and the UV absorption peak widens and the absorption intensity increases. Sb plays a dominant role on the structure and UV absorption of ZnO thin films, which are enhanced by Ce.

  2. Antarctic Ultraviolet Radiation Climatology from Total Ozone Mapping Spectrometer Data

    NASA Technical Reports Server (NTRS)

    Lubin, Dan

    2004-01-01

    This project has successfully produced a climatology of local noon spectral surface irradiance covering the Antarctic continent and the Southern Ocean, the spectral interval 290-700 nm (UV-A, UV-B, and photosynthetically active radiation, PAR), and the entire sunlit part of the year for November 1979-December 1999. Total Ozone Mapping Spectrometer (TOMS) data were used to specify column ozone abundance and UV-A (360- or 380-nm) reflectivity, and passive microwave (MW) sea ice concentrations were used to specify the surface albedo over the Southern Ocean. For this latter task, sea ice concentration retrievals from the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) and its successor, the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager (SSM/I) were identified with ultraviolet/visible-wavelength albedos based on an empirical TOMS/MW parameterization developed for this purpose (Lubin and Morrow, 2001). The satellite retrievals of surface albedo and UV-A reflectivity were used in a delta-Eddington radiative transfer model to estimate cloud effective optical depth. These optical depth estimates were then used along with the total ozone and surface albedo to calculate the downwelling spectral UV and PAR irradiance at the surface. These spectral irradiance maps were produced for every usable day of TOMS data between 1979-1999 (every other day early in the TOMS program, daily later on).

  3. Ultraviolet Broad Absorption Features and the Spectral Energy Distribution of the QSO PG 1351+64. 3.1

    NASA Technical Reports Server (NTRS)

    Zheng, W.; Kriss, G. A.; Wang, J. X.; Brotherton, M.; Oegerle, W. R.; Blair, W. P.; Davidsen, A. F.; Green, R. F.; Hutchings, J. B.; Kaiser, M. E.; hide

    2001-01-01

    We present a moderate-resolution (approximately 20 km s(exp -1) spectrum of the mini broad absorption line QSO PG 1351+64 between 915-1180 A, obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). Additional low-resolution spectra at longer wavelengths were also obtained with the Hubble Space Telescope (HST) and ground-based telescopes. Broad absorption is present on the blue wings of C III (lambda)977, Ly(beta), O VI (lambda)(lambda)1032,1038, Ly(alpha), N V (lambda)(lambda)1238,1242, Si IV (lambda)(lambda)1393,1402, and C IV (lambda)(lambda)1548,1450. The absorption profile can be fitted with five components at velocities of approximately -780, -1049, -1629, -1833, and -3054 km s(exp -1) with respect to the emission-line redshift of z = 0.088. All the absorption components cover a large fraction of the continuum source as well as the broad-line region. The O VI emission feature is very weak, and the O VI/Ly(alpha) flux ratio is 0.08, one of the lowest among low-redshift active galaxies and QSOs. The UV (ultraviolet) continuum shows a significant change in slope near 1050 A in the restframe. The steeper continuum shortward of the Lyman limit extrapolates well to the observed weak X-ray flux level. The absorbers' properties are similar to those of high-redshift broad absorption-line QSOs. The derived total column density of the UV absorbers is on the order of 10(exp 21) cm(exp -2), unlikely to produce significant opacity above 1 keV in the X-ray. Unless there is a separate, high-ionization X-ray absorber, the QSO's weak X-ray flux may be intrinsic. The ionization level of the absorbing components is comparable to that anticipated in the broad-line region, therefore the absorbers may be related to broad-line clouds along the line of sight.

  4. Ultraviolet Broad Absorption Features and the Spectral Energy Distribution of the QSO PG 1351+641. 2.5

    NASA Technical Reports Server (NTRS)

    Zheng, W.; Kriss, G. A.; Wang, J. X.; Brotherton, M.; Oegerle, W. R.; Blair, W. P.; Davidsen, A. F.; Green, R. F.; Hutchings, J. B.; Kaiser, M. E.; hide

    2001-01-01

    We present a moderate-resolution (approximately 20 km/s) spectrum of the broad-absorption line QSO PG 1351+64 between 915-1180 angstroms, obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). Additional low-resolution spectra at longer wavelengths were also obtained with the Hubble Space Telescope (HST) and ground-based telescopes. Broad absorption is present on the blue wings of C III lambda977, Ly-beta, O VI lambda-lambda-1032,1038, Ly-alpha, N V lambda-lambda-1238,1242, Si IV lambda-lambda-1393,1402, and C IV lambda-lambda-1548,1450. The absorption profile can be fitted with five components at velocities of approximately -780, -1049, -1629, -1833, and -3054 km/s with respect to the emission-line redshift of z = 0.088. All the absorption components cover a large fraction of the continuum source as well as the broad-line region. The O VI emission feature is very weak, and the O VI/Ly-alpha flux ratio is 0.08, one of the lowest among low-redshift active galaxies and QSOs. The ultraviolet continuum shows a significant change in slope near 1050 angstroms in the restframe. The steeper continuum shortward of the Lyman limit extrapolates well to the observed weak X-ray flux level. The absorbers' properties are similar to those of high-redshift broad absorption-line QSOs. The derived total column density of the UV absorbers is on the order of 10(exp 21)/s, unlikely to produce significant opacity above 1 keV in the X-ray. Unless there is a separate, high-ionization X-ray absorber, the QSO's weak X-ray flux may be intrinsic. The ionization level of the absorbing components is comparable to that anticipated in the broad-line region, therefore the absorbers may be related to broad-line clouds along the line of sight.

  5. Ultraviolet and infrared spectroscopy for effluent analysis in a molten salt electrochemical cell

    NASA Astrophysics Data System (ADS)

    Moore, J. F.; Pellin, M. J.; Calaway, W. F.; Hryn, J. N.

    2003-08-01

    An apparatus that combines gas phase spectroscopy over two wavelength ranges for analysis of effluent from a molten salt electrochemical cell is described. The cell is placed in a quartz tube that is sealed at the top with a cap containing feedthrus for power, thermometry, and gas flow. A resistance furnace brings the cell assembly to the desired temperature while the cap remains cooled by water. Inert gas continually purges the cell headspace carrying effluent from the electrolysis sequentially through two gas cells, one in a Fourier transform infrared (FTIR) spectrometer and one in a fiber-optic coupled ultraviolet visible spectrometer. Strong vibrational absorptions in the IR can easily identify common effluent components such as HCl, CO, CO2, and H2O. Electronic bands can identify IR-inactive molecules of importance including Cl2 and O2. Since the absorptivity of all of these species is known, determinations of the gas concentration can be made without using standards. Spectra from the electrolysis of molten MgCl2 are shown and discussed, as well as the limit of detection and inherent time resolution of the apparatus as implemented.

  6. A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor

    NASA Astrophysics Data System (ADS)

    Min, K.-E.; Washenfelder, R. A.; Dubé, W. P.; Langford, A. O.; Edwards, P. M.; Zarzana, K. J.; Stutz, J.; Lu, K.; Rohrer, F.; Zhang, Y.; Brown, S. S.

    2016-02-01

    We describe a two-channel broadband cavity enhanced absorption spectrometer (BBCEAS) for aircraft measurements of glyoxal (CHOCHO), methylglyoxal (CH3COCHO), nitrous acid (HONO), nitrogen dioxide (NO2), and water (H2O). The instrument spans 361-389 and 438-468 nm, using two light-emitting diodes (LEDs) and a single grating spectrometer with a charge-coupled device (CCD) detector. Robust performance is achieved using a custom optical mounting system, high-power LEDs with electronic on/off modulation, high-reflectivity cavity mirrors, and materials that minimize analyte surface losses. We have successfully deployed this instrument during two aircraft and two ground-based field campaigns to date. The demonstrated precision (2σ) for retrievals of CHOCHO, HONO and NO2 are 34, 350, and 80 parts per trillion (pptv) in 5 s. The accuracy is 5.8, 9.0, and 5.0 %, limited mainly by the available absorption cross sections.

  7. A broadband cavity enhanced absorption spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water vapor

    NASA Astrophysics Data System (ADS)

    Min, K.-E.; Washenfelder, R. A.; Dubé, W. P.; Langford, A. O.; Edwards, P. M.; Zarzana, K. J.; Stutz, J.; Lu, K.; Rohrer, F.; Zhang, Y.; Brown, S. S.

    2015-10-01

    We describe a two-channel broadband cavity enhanced absorption spectrometer (BBCEAS) for aircraft measurements of glyoxal (CHOCHO), methylglyoxal (CH3COCHO), nitrous acid (HONO), nitrogen dioxide (NO2), and water (H2O). The instrument spans 361-389 and 438-468 nm, using two light emitting diodes (LEDs) and a grating spectrometer with a charge-coupled device (CCD) detector. Robust performance is achieved using a custom optical mounting system, high power LEDs with electronic on/off modulation, state-of-the-art cavity mirrors, and materials that minimize analyte surface losses. We have successfully deployed this instrument during two aircraft and two ground-based field campaigns to date. The demonstrated precision (2σ) for retrievals of CHOCHO, HONO and NO2 are 34, 350 and 80 pptv in 5 s. The accuracy is 5.8, 9.0 and 5.0 % limited mainly by the available absorption cross sections.

  8. An Optics Free Spectrometer for the Extreme Ultraviolet

    NASA Technical Reports Server (NTRS)

    Judge, D. L.; Daybell, M. D.; Hoffman, J. R.; Gruntman, M. A.; Ogawa, H. S.; Samson, J. A. R.

    1994-01-01

    The optics-free spectrometer is a photon spectrometer. It provides the photon spectrum of a broadband source by converting photons of energy E into electrons of energy E', according to the Einstein relation, E' = E - Ei. E, is the ionization threshold of the gas target of interest (any of the rare gases are suitable) and E is the incoming photon energy. As is evident from the above equation, only a single order spectrum is produced throughout the energy range between the first and second ionization potentials of the rare gas used. Photons with energy above the second ionization potential produce two groups of electrons, but they are readily distinguished from each other. This feature makes this device extremely useful for determining the true spectrum of a continuum source or a many line source. The principle of operation and the laboratory results obtained with a representative configuration of the optics-free spectrometer are presented.

  9. Medium-resolution far-ultraviolet spectroscopy of PKS 2155-304

    NASA Technical Reports Server (NTRS)

    Appenzeller, I.; Mandel, H.; Krautter, J.; Bowyer, S.; Hurwitz, M.; Grewing, M.; Kramer, G.; Kappelmann, N.

    1995-01-01

    Using the Berkeley spectrometer of the Orbiting Retrievable Far and Extreme Ultraviolet Spectrometer (ORFEUS) we observed the 87-117 nm UV spectrum of the BL Lac object PKS 2155-304 with about 0.5 A resolution. In addition to the expected interstellar lines we detected higher quantum number counterparts of the intergalactic Lyman alpha lines discovered earlier with IUE and the Hubble Space Telescope (HST) in the direction of PKS 2155-304. The Lyman discontinuities indicate for three of the redshifted clouds a combined H I column density of 2-5 x 10(exp 16)/sq cm, while the column density for another cloud appears to be well below 5 x 10(exp 15)/sq cm. No siginificant O VI absorption in the galactic halo toward PKS 2155-304 could be detected from our data. Assuming that saturation effects are negligible for these weak features, we obtain for the O VI column density toward PKS 2155-304 a 3 sigma upper limit of 2.7 x 10(exp 14)/sq cm.

  10. Light-induced absorption and its relaxation under illumination of continuous wave ultraviolet light in Mn-doped near-stoichiometric LiNbO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Youwen; Kitamura, Kenji; Takekawa, Shunji

    2005-04-01

    The steady-state light-induced absorption and the temporal relaxation behavior under illumination of cw ultraviolet light in Mn-doped near-stoichiometric LiNbO{sub 3} with different crystal compositions are investigated. The ultraviolet-light-induced absorption has been assigned to small polarons Nb{sub Li}{sup 4+} by measuring the absorption spectra at room temperature. The dependences of relaxation behaviors (time constant and stretching factor) of light-induced absorption on various illumination conditions (intensity, polarization) and temperature are presented, which are very different from those observed in Fe-doped LiNbO{sub 3} illuminated with highly intense light pulse, though the temporal relaxation follows the same stretched-exponential decay behavior in both cases. Themore » results are explained reasonably by using the model of distance-dependent electron transition probabilities between localized deep traps and small polarons without any additional assumptions, and discussed to tailor doped near-stoichiometric LiNbO{sub 3} crystals for two-color holographic recording with cw laser light.« less

  11. Analytical characteristics of a continuum-source tungsten coil atomic absorption spectrometer.

    PubMed

    Rust, Jennifer A; Nóbrega, Joaquim A; Calloway, Clifton P; Jones, Bradley T

    2005-08-01

    A continuum-source tungsten coil electrothermal atomic absorption spectrometer has been assembled, evaluated, and employed in four different applications. The instrument consists of a xenon arc lamp light source, a tungsten coil atomizer, a Czerny-Turner high resolution monochromator, and a linear photodiode array detector. This instrument provides simultaneous multi-element analyses across a 4 nm spectral window with a resolution of 0.024 nm. Such a device might be useful in many different types of analyses. To demonstrate this broad appeal, four very different applications have been evaluated. First of all, the temperature of the gas phase was measured during the atomization cycle of the tungsten coil, using tin as a thermometric element. Secondly, a summation approach for two absorption lines for aluminum falling within the same spectral window (305.5-309.5 nm) was evaluated. This approach improves the sensitivity without requiring any additional preconcentration steps. The third application describes a background subtraction technique, as it is applied to the analysis of an oil emulsion sample. Finally, interference effects caused by Na on the atomization of Pb were studied. The simultaneous measurements of Pb and Na suggests that negative interference arises at least partially from competition between Pb and Na atoms for H2 in the gas phase.

  12. Miniaturized differential optical absorption spectroscopy (DOAS) system for the analysis of NO2

    NASA Astrophysics Data System (ADS)

    Morales, J. Alberto; Walsh, James E.; Treacy, Jack E.; Garland, Wendy E.

    2003-03-01

    Current trends in optical design engineering are leading to the development of new systems which can analyze atmospheric pollutants in a fast and easy way, allowing remote-sensing and miniaturization at a low cost. A small portable fiber-optic based system is presented for the spectroscopic analysis of a common gas pollutant, NO2. The novel optical set-up described consists of a small telescope that collects ultraviolet-visible light from a xenon lamp located 600 m away. The light is coupled into a portable diode array spectrometer through a fiber-optic cable and the system is controlled by a lap-top computer where the spectra are recorded. Using the spectrum of the lamp as a reference, the absorption spectrum of the open path between the lamp and the telescope is calculated. Known absorption features in the NO2 spectrum are used to calculate the concentration of the pollutant using the principles of Differential Optical Absorption Spectroscopy (DOAS). Calibration is carried by using sample gas bags of known concentration of the pollutant. The results obtained demonstrate that it is possible to detect and determine NO2 concentrations directly from the atmosphere at typical environment levels by using an inexpensive field based fiber-optic spectrometer system.

  13. The far ultraviolet /1200-1900 A/ spectrum of Jupiter obtained with a rocket-borne multichannel spectrometer

    NASA Technical Reports Server (NTRS)

    Giles, J. W.; Moos, H. W.; Mckinney, W. R.

    1976-01-01

    Far-ultraviolet spectra of Jupiter with a significant improvement in sensitivity and spectral resolution have been obtained from a sounding rocket by using a 10-channel spectrometer behind a pointing telescope. The major results obtained from these spectra are: (1) measurement of the Jovian H I 1216-A brightness (a comparison with other measurements indicates that the Ly-alpha emission is likely to be variable); (2) measurement of the wavelength-dependent albedo for Rayleigh-scattered solar radiation from about 1550 to 1875 A with approximately 25-A resolution, making it possible to set revised upper limits on the abundances of some of the minor constituents in the upper Jovian atmosphere; and (3) a demonstration that weak emissions between approximately 1250 and 1500 A and near 1600 A are probably the Lyman bands of H2 excited by low-energy electrons.

  14. High-resolution absorption cross sections of carbon monoxide bands at 295 K between 91.7 and 100.4 nanometers

    NASA Technical Reports Server (NTRS)

    Stark, G.; Yoshino, K.; Smith, Peter L.; Ito, K.; Parkinson, W. H.

    1991-01-01

    Theoretical descriptions of the abundance and excitation of carbon monoxide in interstellar clouds require accurate data on the vacuum-ultraviolet absorption spectrum of the molecule. The 6.65 m spectrometer at the Photon Factory synchrotron light source was used to measure photoabsorption cross sections of CO features between 91.2 and 100.4 nm. These data were recorded at a resolving power of 170,000, more than 20 times greater than that used in previous work.

  15. Attosecond transient absorption of argon atoms in the vacuum ultraviolet region: line energy shifts versus coherent population transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.

    Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicatemore » the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. Finally, an intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.« less

  16. Attosecond transient absorption of argon atoms in the vacuum ultraviolet region: line energy shifts versus coherent population transfer

    NASA Astrophysics Data System (ADS)

    Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.; Leone, Stephen R.

    2016-01-01

    Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicate the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. An intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.

  17. Attosecond transient absorption of argon atoms in the vacuum ultraviolet region: line energy shifts versus coherent population transfer

    DOE PAGES

    Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.; ...

    2016-01-18

    Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicatemore » the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. Finally, an intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.« less

  18. Assessment of the performance of a compact concentric spectrometer system for Atmospheric Differential Optical Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Whyte, C.; Leigh, R. J.; Lobb, D.; Williams, T.; Remedios, J. J.; Cutter, M.; Monks, P. S.

    2009-12-01

    A breadboard demonstrator of a novel UV/VIS grating spectrometer has been developed based upon a concentric arrangement of a spherical meniscus lens, concave spherical mirror and curved diffraction grating suitable for a range of atmospheric remote sensing applications from the ground or space. The spectrometer is compact and provides high optical efficiency and performance benefits over traditional instruments. The concentric design is capable of handling high relative apertures, owing to spherical aberration and comma being near zero at all surfaces. The design also provides correction for transverse chromatic aberration and distortion, in addition to correcting for the distortion called "smile", the curvature of the slit image formed at each wavelength. These properties render this design capable of superior spectral and spatial performance with size and weight budgets significantly lower than standard configurations. This form of spectrometer design offers the potential for exceptionally compact instrument for differential optical absorption spectroscopy (DOAS) applications from LEO, GEO, HAP or ground-based platforms. The breadboard demonstrator has been shown to offer high throughput and a stable Gaussian line shape with a spectral range from 300 to 450 nm at 0.5 nm resolution, suitable for a number of typical DOAS applications.

  19. The Surprising Absence of Absorption in the Far-ultraviolet Spectrum of Mrk 231

    NASA Technical Reports Server (NTRS)

    Veilleux, S.; Trippe, M.; Hamann, F.; Rupke, D. S. N.; Tripp, T. M.; Netzer, H.; Lutz, D.; Sembach, K. R.; Krug, H.; Teng, Stacy H.; hide

    2013-01-01

    Mrk 231, the nearest (z = 0.0422) quasar, hosts both a galactic-scale wind and a nuclear-scale iron low-ionization broad absorption line (FeLoBAL) outflow. We recently obtained a far-ultraviolet (FUV) spectrum of this object covering approx. 1150-1470A with the Cosmic Origins Spectrograph on board the Hubble Space Telescope. This spectrum is highly peculiar, highlighted by the presence of faint (< or approx.2% of predictions based on H(alpha)), broad (> or approx.10,000 km/s at the base), and highly blueshifted (centroid at approx. 3500 km/s) Ly(aplpha) emission. The FUV continuum emission is slightly declining at shorter wavelengths (consistent with F(sub lambda) Alpha Lambda(sup 1.7)) and does not show the presence of any obvious photospheric or wind stellar features. Surprisingly, the FUV spectrum also does not show any unambiguous broad absorption features. It thus appears to be dominated by the AGN, rather than hot stars, and virtually unfiltered by the dusty FeLoBAL screen. The observed Ly(alpha) emission is best explained if it is produced in the outflowing BAL cloud system, while the Balmer lines arise primarily from the standard broad emission line region seen through the dusty (Av approx. 7 mag) broad absorption line region. Two possible geometric models are discussed in the context of these new results.

  20. Solar Imaging UV/EUV Spectrometers Using TVLS Gratings

    NASA Technical Reports Server (NTRS)

    Thomas, Roger J.

    2003-01-01

    It is a particular challenge to develop a stigmatic spectrograph for UV, EUV wavelengths since the very low normal-incidence reflectance of standard materials most often requires that the design be restricted to a single optical element which must simultaneously provide both reimaging and spectral dispersion. This problem has been solved in the past by the use of toroidal gratings with uniform line-spaced rulings (TULS). A number of solar extreme ultraviolet (EUV) spectrometers have been based on such designs, including SOHO/CDS, Solar-B/EIS, and the sounding rockets Solar Extreme ultraviolet Research Telescope and Spectrograph (SERTS) and Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS). More recently, Kita, Harada, and collaborators have developed the theory of spherical gratings with varied line-space rulings (SVLS) operated at unity magnification, which have been flown on several astronomical satellite missions. We now combine these ideas into a spectrometer concept that puts varied-line space rulings onto toroidal gratings. Such TVLS designs are found to provide excellent imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. Optical characteristics of three new solar spectrometers based on this concept are described: SUMI and RAISE, two sounding rocket payloads, and NEXUS, currently being proposed as a Small-Explorer (SMEX) mission.

  1. Compact advanced extreme-ultraviolet imaging spectrometer for spatiotemporally varying tungsten spectra from fusion plasmas.

    PubMed

    Song, Inwoo; Seon, C R; Hong, Joohwan; An, Y H; Barnsley, R; Guirlet, R; Choe, Wonho

    2017-09-01

    A compact advanced extreme-ultraviolet (EUV) spectrometer operating in the EUV wavelength range of a few nanometers to measure spatially resolved line emissions from tungsten (W) was developed for studying W transport in fusion plasmas. This system consists of two perpendicularly crossed slits-an entrance aperture and a space-resolved slit-inside a chamber operating as a pinhole, which enables the system to obtain a spatial distribution of line emissions. Moreover, a so-called v-shaped slit was devised to manage the aperture size for measuring the spatial resolution of the system caused by the finite width of the pinhole. A back-illuminated charge-coupled device was used as a detector with 2048 × 512 active pixels, each with dimensions of 13.5 × 13.5 μm 2 . After the alignment and installation on Korea superconducting tokamak advanced research, the preliminary results were obtained during the 2016 campaign. Several well-known carbon atomic lines in the 2-7 nm range originating from intrinsic carbon impurities were observed and used for wavelength calibration. Further, the time behavior of their spatial distributions is presented.

  2. Real-Time Analysis of Isoprene in Breath by Using Ultraviolet-Absorption Spectroscopy with a Hollow Optical Fiber Gas Cell

    PubMed Central

    Iwata, Takuro; Katagiri, Takashi; Matsuura, Yuji

    2016-01-01

    A breath analysis system based on ultraviolet-absorption spectroscopy was developed by using a hollow optical fiber as a gas cell for real-time monitoring of isoprene in breath. The hollow optical fiber functions as an ultra-small-volume gas cell with a long path. The measurement sensitivity of the system was evaluated by using nitric-oxide gas as a gas sample. The evaluation result showed that the developed system, using a laser-driven, high-intensity light source and a 3-m-long, aluminum-coated hollow optical fiber, could successfully measure nitric-oxide gas with a 50 ppb concentration. An absorption spectrum of a breath sample in the wavelength region of around 200–300 nm was measured, and the measured spectrum revealed the main absorbing components in breath as water vapor, isoprene, and ozone converted from oxygen by radiation of ultraviolet light. The concentration of isoprene in breath was estimated by multiple linear regression. The regression analysis results showed that the proposed analysis system enables real-time monitoring of isoprene during the exhaling of breath. Accordingly, it is suitable for measuring the circadian variation of isoprene. PMID:27929387

  3. Real-Time Analysis of Isoprene in Breath by Using Ultraviolet-Absorption Spectroscopy with a Hollow Optical Fiber Gas Cell.

    PubMed

    Iwata, Takuro; Katagiri, Takashi; Matsuura, Yuji

    2016-12-05

    A breath analysis system based on ultraviolet-absorption spectroscopy was developed by using a hollow optical fiber as a gas cell for real-time monitoring of isoprene in breath. The hollow optical fiber functions as an ultra-small-volume gas cell with a long path. The measurement sensitivity of the system was evaluated by using nitric-oxide gas as a gas sample. The evaluation result showed that the developed system, using a laser-driven, high-intensity light source and a 3-m-long, aluminum-coated hollow optical fiber, could successfully measure nitric-oxide gas with a 50 ppb concentration. An absorption spectrum of a breath sample in the wavelength region of around 200-300 nm was measured, and the measured spectrum revealed the main absorbing components in breath as water vapor, isoprene, and ozone converted from oxygen by radiation of ultraviolet light. The concentration of isoprene in breath was estimated by multiple linear regression. The regression analysis results showed that the proposed analysis system enables real-time monitoring of isoprene during the exhaling of breath. Accordingly, it is suitable for measuring the circadian variation of isoprene.

  4. How to Design a Spectrometer.

    PubMed

    Scheeline, Alexander

    2017-10-01

    Designing a spectrometer requires knowledge of the problem to be solved, the molecules whose properties will contribute to a solution of that problem and skill in many subfields of science and engineering. A seemingly simple problem, design of an ultraviolet, visible, and near-infrared spectrometer, is used to show the reasoning behind the trade-offs in instrument design. Rather than reporting a fully optimized instrument, the Yin and Yang of design choices, leading to decisions about financial cost, materials choice, resolution, throughput, aperture, and layout are described. To limit scope, aspects such as grating blaze, electronics design, and light sources are not presented. The review illustrates the mixture of mathematical rigor, rule of thumb, esthetics, and availability of components that contribute to the art of spectrometer design.

  5. Berkeley extreme-ultraviolet airglow rocket spectrometer - BEARS

    NASA Technical Reports Server (NTRS)

    Cotton, D. M.; Chakrabarti, S.

    1992-01-01

    The Berkeley EUV airglow rocket spectrometer (BEARS) instrument is described. The instrument was designed in particular to measure the dominant lines of atomic oxygen in the FUV and EUV dayglow at 1356, 1304, 1027, and 989 A, which is the ultimate source of airglow emissions. The optical and mechanical design of the instrument, the detector, electronics, calibration, flight operations, and results are examined.

  6. Photon-counting array detectors for space and ground-based studies at ultraviolet and vacuum ultraviolet /VUV/ wavelengths

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Bybee, R. L.

    1981-01-01

    The Multi-Anode Microchannel Arrays (MAMAs) are a family of photoelectric photon-counting array detectors, with formats as large as (256 x 1024)-pixels that can be operated in a windowless configuration at vacuum ultraviolet (VUV) and soft X-ray wavelengths or in a sealed configuration at ultraviolet and visible wavelengths. This paper describes the construction and modes of operation of (1 x 1024)-pixel and (24 x 1024)-pixel MAMA detector systems that are being built and qualified for use in sounding-rocket spectrometers for solar and stellar observations at wavelengths below 1300 A. The performance characteristics of the MAMA detectors at ultraviolet and VUV wavelengths are also described.

  7. Fusion of Ultraviolet-Visible and Infrared Transient Absorption Spectroscopy Data to Model Ultrafast Photoisomerization.

    PubMed

    Debus, Bruno; Orio, Maylis; Rehault, Julien; Burdzinski, Gotard; Ruckebusch, Cyril; Sliwa, Michel

    2017-08-03

    Ultrafast photoisomerization reactions generally start at a higher excited state with excess of internal vibrational energy and occur via conical intersections. This leads to ultrafast dynamics which are difficult to investigate with a single transient absorption spectroscopy technique, be it in the ultraviolet-visible (UV-vis) or infrared (IR) domain. On one hand, the information available in the UV-vis domain is limited as only slight spectral changes are observed for different isomers. On the other hand, the interpretation of vibrational spectra is strongly hindered by intramolecular relaxation and vibrational cooling. These limitations can be circumvented by fusing UV-vis and IR transient absorption spectroscopy data in a multiset multivariate curve resolution analysis. We apply this approach to describe the spectrodynamics of the ultrafast cis-trans photoisomerization around the C-N double bond observed for aromatic Schiff bases. Twisted intermediate states could be elucidated, and isomerization was shown to occur through a continuous complete rotation. More broadly, data fusion can be used to rationalize a vast range of ultrafast photoisomerization processes of interest in photochemistry.

  8. Assessment of the performance of a compact concentric spectrometer system for Atmospheric Differential Optical Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Whyte, C.; Leigh, R. J.; Lobb, D.; Williams, T.; Remedios, J. J.; Cutter, M.; Monks, P. S.

    2009-08-01

    A breadboard demonstrator of a novel UV/VIS grating spectrometer for atmospheric research has been developed based upon a concentric arrangement of a spherical meniscus lens, concave spherical mirror and curved diffraction grating suitable for a range of remote sensing applications from the ground or space. The spectrometer is compact and provides high optical efficiency and performance benefits over traditional instruments. The concentric design is capable of handling high relative apertures, owing to spherical aberration and coma being near zero at all surfaces. The design also provides correction for transverse chromatic aberration and distortion, in addition to correcting for the distortion called "smile", the curvature of the slit image formed at each wavelength. These properties render this design capable of superior spectral and spatial performance with size and weight budgets significantly lower than standard configurations. This form of spectrometer design offers the potential for an exceptionally compact instrument for differential optical absorption spectroscopy (DOAS) applications particularly from space (LEO, GEO orbits) and from HAPs or ground-based platforms. The breadboard demonstrator has been shown to offer high throughput and a stable Gaussian line shape with a spectral range from 300 to 450 nm at better than 0.5 nm resolution, suitable for a number of typical DOAS applications.

  9. On the evaluation of air mass factors for atmospheric near-ultraviolet and visible absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Perliski, Lori M.; Solomon, Susan

    1993-01-01

    The interpretation of UV-visible twilight absorption measurements of atmospheric chemical constituents is dependent on how well the optical path, or air mass factor, of light collected by the spectrometer is understood. A simple single scattering model and a Monte Carlo radiative transfer scheme have been developed to study the effects of multiple scattering, aerosol scattering, surface albedo and refraction on air mass factors for scattered light observations. At fairly short visible wavelengths (less than about 450 nm), stratospheric air mass factors are found to be relatively insensitive to multiple scattering, surface albedo and refraction, as well as aerosol scattering by background aerosols. Longer wavelengths display greater sensitivity to refraction and aerosol scattering. Tropospheric air mass factors are found to be highly dependent on aerosol scattering, surface albedo and, at long visible wavelengths (about 650 nm), refraction. Absorption measurements of NO2 and O4 are shown to support these conclusions.

  10. The airborne Laser Absorption Spectrometer - A new instrument of remote measurement of atmospheric trace gases

    NASA Technical Reports Server (NTRS)

    Shumate, M. S.; Menzies, R. T.

    1978-01-01

    The Laser Absorption Spectrometer is a portable instrument developed by JPL for remote measurement of trace gases from an aircraft platform. It contains two carbon dioxide lasers, two optical heterodyne receivers, appropriate optics to aim the lasers at the ground and detect the backscattered energy, and signal processing and recording electronics. Operating in the differential-absorption mode, it is possible to monitor one atmospheric gas at a time and record the data in real time. The system can presently measure ozone, ethylene, water vapor, and chlorofluoromethanes with high sensitivity. Airborne measurements were made in early 1977 from the NASA/JPL twin-engine Beechcraft and in May 1977 from the NASA Convair 990 during the ASSESS-II Shuttle Simulation Study. These flights resulted in measurements of ozone concentrations in the lower troposphere which were compared with ground-based values provided by the Air Pollution Control District. This paper describes the details of the instrument and results of the airborne measurements.

  11. A search for far-ultraviolet emissions from the lunar atmosphere.

    PubMed

    Fastie, W G; Feldman, P D; Henry, R C; Moos, H W; Barth, C A; Thomas, G E; Donahue, T M

    1973-11-16

    An ultraviolet spectrometer aboard the Apollo 17 orbiting spacecraft attempted to measure ultraviolet emissions from the lunar atmosphere. The only emissions observed were from a transient atmosphere introduced by the lunar landing engine. The absence of atomic hydrogen implies that solar wind protons are converted to hydrogen molecules at the lunar surface.

  12. Characterizing a Quantum Cascade Tunable Infrared Laser Differential Absorption Spectrometer (QC-TILDAS) for Measurements of Atmospheric Ammonia

    NASA Astrophysics Data System (ADS)

    Ellis, R.; Murphy, J. G.; van Haarlem, R.; Pattey, E.; O'Brien, J.

    2009-05-01

    A compact, fast response Quantum Cascade Tunable Infrared Laser Differential Absorption Spectrometer (QC- TILDAS) for measurements of ammonia has been evaluated under both laboratory and field conditions. Absorption of radiation from a pulsed, thermoelectrically cooled QC laser occurs at reduced pressure in a 76 m path length, 0.5 L volume multiple pass absorption cell. Detection is achieved using a thermoelectrically cooled HgCdTe infrared detector. A novel sampling technique was used, consisting of a short, heated, quartz inlet with a hydrophobic coating to minimize the adsorption of ammonia to surfaces. The inlet contains a critical orifice that reduces the pressure, a virtual impactor for separation of particles and additional ports for delivering ammonia free background air and calibration gas standards. This instrument has been found to have a detection limit of 0.3 ppb with a time resolution of 1 s. The sampling technique has been compared to the results of a conventional lead salt Tunable Diode Laser (TDL) absorption spectrometer during a laboratory intercomparison. Various lengths and types of sample inlet tubing material, heated and unheated, under dry and ambient humidity conditions with ammonia concentrations ranging from 10-1000 ppb were investigated. Preliminary analysis suggests the time response improves with the use of short, PFA tubing sampling lines. No significant improvement was observed when using a heated sampling line and humidity was seen to play an important role on the bi-exponential decay of ammonia. A field intercomparison of the QC-TILDAS with a modified Thermo 42C chemiluminescence based analyzer was also performed at Environment Canada's Centre for Atmospheric Research Experiments (CARE) in the rural town of Egbert, ON between May-July 2008. Background tests and calibrations using two different permeation tube sources and an ammonia gas cylinder were regularly carried out throughout the study. Results indicate a very good correlation

  13. Potential of far-ultraviolet absorption spectroscopy as a highly sensitive qualitative and quantitative analysis method for polymer films, part I: classification of commercial food wrap films.

    PubMed

    Sato, Harumi; Higashi, Noboru; Ikehata, Akifumi; Koide, Noriko; Ozaki, Yukihiro

    2007-07-01

    The aim of the present study is to propose a totally new technique for the utilization of far-ultraviolet (UV) spectroscopy in polymer thin film analysis. Far-UV spectra in the 120-300 nm region have been measured in situ for six kinds of commercial polymer wrap films by use of a novel type of far-UV spectrometer that does not need vacuum evaporation. These films can be straightforwardly classified into three groups, polyethylene (PE) films, polyvinyl chloride (PVC) films, and polyvinylidene chloride (PVDC) films, by using the raw spectra. The differences in the wavelength of the absorption band due to the sigma-sigma* transition of the C-C bond have been used for the classification of the six kinds of films. Using this method, it was easy to distinguish the three kinds of PE films and to separate the two kinds of PVDC films. Compared with other spectroscopic methods, the advantages of this technique include nondestructive analysis, easy spectral measurement, high sensitivity, and simple spectral analysis. The present study has demonstrated that far-UV spectroscopy is a very promising technique for polymer film analysis.

  14. New scientific results with SpIOMM: a testbed for CFHT's imaging Fourier transform spectrometer SITELLE

    NASA Astrophysics Data System (ADS)

    Drissen, L.; Alarie, A.; Martin, T.; Lagrois, D.; Rousseau-Nepton, L.; Bilodeau, A.; Robert, C.; Joncas, G.; Iglesias-Páramo, J.

    2012-09-01

    We present new data obtained with SpIOMM, the imaging Fourier transform spectrometer attached to the 1.6-m telescope of the Observatoire du Mont-Megantic in Québec. Recent technical and data reduction improvements have significantly increased SpIOMM's capabilities to observe fainter objects or weaker nebular lines, as well as continuum sources and absorption lines, and to increase its modulation efficiency in the near ultraviolet. To illustrate these improvements, we present data on the supernova remnant Cas A, planetary nebulae M27 and M97, the Wolf-Rayet ring nebula M1-67, spiral galaxies M63 and NGC 3344, as well as the interacting pair of galaxies Arp 84.

  15. Composition and thermal profiles of the Jovian upper atmosphere determined by the Voyager ultraviolet stellar occultation experiment

    NASA Technical Reports Server (NTRS)

    Festou, M. C.; Atreya, S. K.; Donahue, T. M.; Sandel, B. R.; Shemansky, D. E.; Broadfoot, A. L.

    1981-01-01

    During the occultation of the star Regulus (B7 type) by Jupiter as seen from the Voyager 2 spacecraft on July 9, 1979, two absorbing regions were detected. Between 911 and 1200 A, H2 was absorbing over a 600 km altitude range. Above 1300 A, the rapid increase of the absorption by the hydrocarbons was observed over an altitude interval of approximately 100 km with a height resolution of 3 km. The analysis of these absorption features has provided the height profiles of molecular hydrogen, methane, ethane, and acetylene, as well as the thermal profile in the upper atmosphere of Jupiter. Combining the Voyager ultraviolet spectrometer results with other data, such as those obtained by the Voyager infrared and radioscience instruments, has yielded a comprehensive model of the composition and structure of the atmosphere of Jupiter.

  16. Ultraviolet spectrometer observations of Uranus

    NASA Technical Reports Server (NTRS)

    Broadfoot, A. L.; Herbert, F.; Holberg, J. B.; Hunten, D. M.; Kumar, S.; Sandel, B. R.; Shemansky, D. E.; Dessler, A. J.; Linick, S.; Springer, R.

    1986-01-01

    The Voyager 2 UV spectrometer was used to scan the Uranus atmosphere at wavelengths from 500-1700 A with a field of view of 0.1 x 0.86 deg. The temperature and composition of the upper atmosphere were determined through occultations of light from gamma Pegasi, nu Geminorum and the sun. The data indicated a substantial gas density (100 million H atoms/cu cm) at about 28,000 km from the Uranus center, suggesting that gas drag plays a significant role in ring evolution. The distributions of CH4 and C2H2 in the lower atmosphere were also estimated. An electroglow emission was detected on the sunlit side, and attributed to emissions from atomic and molecular hydrogen excited by low energy electrons. An auroral glow was also observed, and exhibited evidence of an energy input equal to that of the electroglow. Finally, estimates of the C2H2 mixing ratio and the vertical column abundance of H2 are calculated.

  17. Automated atomic absorption spectrometric determination of total arsenic in water and streambed materials

    USGS Publications Warehouse

    Fishman, M.

    1977-01-01

    An automated method to determine both inorganic and organic forms of arsenic In water, water-suspended mixtures, and streambed materials Is described. Organic arsenic-containing compounds are decomposed by either ultraviolet radiation or by suHurlc acid-potassium persulfate digestion. The arsenic liberated, with Inorganic arsenic originally present, is reduced to arsine with sodium borohydrlde. The arable Is stripped from the solution with the aid of nitrogen and Is then decomposed In a tube furnace heated to 800 ??C which Is placed in the optical path of an atomic absorption spectrometer. Thirty samples per hour can be analyzed to levels of 1 ??g arsenic per liter.

  18. The absorption budget of fresh biomass burning aerosol from realistic laboratory fires

    NASA Astrophysics Data System (ADS)

    Wagner, N. L.; Adler, G. A.; Franchin, A.; Lamb, K.; Manfred, K.; Middlebrook, A. M.; Selimovic, V.; Schwarz, J. P.; Washenfelder, R. A.; Womack, C.; Yokelson, R. J.

    2017-12-01

    Wildfires are expected to increase globally due to climate change. The smoke from these wildfires has a highly uncertain radiative effect, largely due to the lack of detailed understanding of its optical properties. As part of the NOAA FIREX project, we have measured the optical properties of smoke primarily from laboratory burning of North American fuels at the Missoula Fire Sciences Laboratory. Here, we present a budget of the aerosol absorption from a portion of the laboratory fires. The total aerosol absorption was measured with photoacoustic spectrometers (PAS) at four wavelengths (405 nm, 532 nm, 660 nm, 870 nm) spanning the visible spectral region. The aerosol absorption is attributed to black carbon which absorbs broadly across the visible and ultraviolet (UV) spectral region and brown carbon (BrC) which absorbs in the blue and UV spectral regions. Then aerosol absorption measurements are compared with measurements of refractory black carbon (rBC) concentration by laser induced incandescence (SP2) and measurements of BrC concentration from a particle-into-liquid sampler coupled to a liquid absorption cell (BrC-PILS). Periodically, a thermodenuder was inserted upstream of all of the instruments to constrain the relationship between aerosol volatility and absorption. We synthesize these measurements to constrain the various contributors to total absorption including effects of lensing on rBC absorption, and of BrC that is not volatilized in the thermodenuder.

  19. [Optimum design of imaging spectrometer based on toroidal uniform-line-spaced (TULS) spectrometer].

    PubMed

    Xue, Qing-Sheng; Wang, Shu-Rong

    2013-05-01

    Based on the geometrical aberration theory, a optimum-design method for designing an imaging spectrometer based on toroidal uniform grating spectrometer is proposed. To obtain the best optical parameters, twice optimization is carried out using genetic algorithm(GA) and optical design software ZEMAX A far-ultraviolet(FUV) imaging spectrometer is designed using this method. The working waveband is 110-180 nm, the slit size is 50 microm x 5 mm, and the numerical aperture is 0.1. Using ZEMAX software, the design result is analyzed and evaluated. The results indicate that the MTF for different wavelengths is higher than 0.7 at Nyquist frequency 10 lp x mm(-1), and the RMS spot radius is less than 14 microm. The good imaging quality is achieved over the whole working waveband, the design requirements of spatial resolution 0.5 mrad and spectral resolution 0.6 nm are satisfied. It is certificated that the optimum-design method proposed in this paper is feasible. This method can be applied in other waveband, and is an instruction method for designing grating-dispersion imaging spectrometers.

  20. Retrieval and molecule sensitivity studies for the global ozone monitoring experiment and the scanning imaging absorption spectrometer for atmospheric chartography

    NASA Technical Reports Server (NTRS)

    Chance, Kelly V.; Burrows, John P.; Schneider, Wolfgang

    1991-01-01

    The Global Ozone Monitoring Experiment (GOME) and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) are diode based spectrometers that will make atmospheric constituent and aerosol measurements from European satellite platforms beginning in the mid 1990's. GOME measures the atmosphere in the UV and visible in nadir scanning, while SCIAMACHY performs a combination of nadir, limb, and occultation measurements in the UV, visible, and infrared. A summary is presented of the sensitivity studies that were performed for SCIAMACHY measurements. As the GOME measurement capability is a subset of the SCIAMACHY measurement capability, the nadir, UV, and visible portion of the studies is shown to apply to GOME as well.

  1. Corongraphic Observations and Analyses of The Ultraviolet Solar Corona

    NASA Technical Reports Server (NTRS)

    Kohl, John L.

    2000-01-01

    The activities supported under NASA Grant NAG5-613 included the following: 1) reduction and scientific analysis of data from three sounding rocket flights of the Rocket Ultraviolet Coronagraph Spectrometer, 2) development of ultraviolet spectroscopic diagnostic techniques to provide a detailed empirical description of the extended solar corona, 3) extensive upgrade of the rocket instrument to become the Ultraviolet Coronal Spectrometer (UVCS) for Spartan 201,4) instrument scientific calibration and characterization, 5) observation planning and mission support for a series of five Spartan 201 missions (fully successful except for STS 87 where the Spartan spacecraft was not successfully deployed and the instruments were not activated), and 6) reduction and scientific analysis of the UVCS/Spartan 201 observational data. The Ultraviolet Coronal Spectrometer for Spartan 201 was one unit of a joint payload and the other unit was a White Light Coronagraph (WLC) provided by the High Altitude Observatory and the Goddard Space Flight Center. The two instruments were used in concert to determine plasma parameters describing structures in the extended solar corona. They provided data that could be used individually or jointly in scientific analyses. The WLC provided electron column densities in high spatial resolution and high time resolution. UVCS/Spartan provided hydrogen velocity distributions, and line of sight hydrogen velocities. The hydrogen intensities from UVCS together with the electron densities from WLC were used to determine hydrogen outflow velocities. The UVCS also provided O VI intensities which were used to develop diagnostics for velocity distributions and outflow velocities of minor ions.

  2. Point-Defect Nature of the Ultraviolet Absorption Band in AlN

    NASA Astrophysics Data System (ADS)

    Alden, D.; Harris, J. S.; Bryan, Z.; Baker, J. N.; Reddy, P.; Mita, S.; Callsen, G.; Hoffmann, A.; Irving, D. L.; Collazo, R.; Sitar, Z.

    2018-05-01

    We present an approach where point defects and defect complexes are identified using power-dependent photoluminescence excitation spectroscopy, impurity data from SIMS, and density-functional-theory (DFT)-based calculations accounting for the total charge balance in the crystal. Employing the capabilities of such an experimental computational approach, in this work, the ultraviolet-C absorption band at 4.7 eV, as well as the 2.7- and 3.9-eV luminescence bands in AlN single crystals grown via physical vapor transport (PVT) are studied in detail. Photoluminescence excitation spectroscopy measurements demonstrate the relationship between the defect luminescent bands centered at 3.9 and 2.7 eV to the commonly observed absorption band centered at 4.7 eV. Accordingly, the thermodynamic transition energy for the absorption band at 4.7 eV and the luminescence band at 3.9 eV is estimated at 4.2 eV, in agreement with the thermodynamic transition energy for the CN- point defect. Finally, the 2.7-eV PL band is the result of a donor-acceptor pair transition between the VN and CN point defects since nitrogen vacancies are predicted to be present in the crystal in concentrations similar to carbon-employing charge-balance-constrained DFT calculations. Power-dependent photoluminescence measurements reveal the presence of the deep donor state with a thermodynamic transition energy of 5.0 eV, which we hypothesize to be nitrogen vacancies in agreement with predictions based on theory. The charge state, concentration, and type of impurities in the crystal are calculated considering a fixed amount of impurities and using a DFT-based defect solver, which considers their respective formation energies and the total charge balance in the crystal. The presented results show that nitrogen vacancies are the most likely candidate for the deep donor state involved in the donor-acceptor pair transition with peak emission at 2.7 eV for the conditions relevant to PVT growth.

  3. Measurement of the vacuum-ultraviolet absorption spectrum of low-k dielectrics using X-ray reflectivity

    NASA Astrophysics Data System (ADS)

    Choudhury, F. A.; Nguyen, H. M.; King, S. W.; Lee, C. H.; Lin, Y. H.; Fung, H. S.; Chen, C. C.; Li, W.; Benjamin, D.; Blatz, J. M.; Nishi, Y.; Shohet, J. L.

    2018-02-01

    During plasma processing, low-k dielectrics are exposed to high levels of vacuum ultraviolet (VUV) radiation that can cause severe damage to dielectric materials. The degree and nature of VUV-induced damage depend on the VUV photon energies and fluence. In this work, we examine the VUV-absorption spectrum of low-k organosilicate glass using specular X-ray reflectivity (XRR). Low-k SiCOH films were exposed to synchrotron VUV radiation with energies ranging from 7 to 21 eV, and the density vs. depth profile of the VUV-irradiated films was extracted from fitting the XRR experimental data. The results show that the depth of the VUV-induced damage layer is a function of the photon energy. Between 7 and 11 eV, the depth of the damaged layer decreases sharply from 110 nm to 60 nm and then gradually increases to 85 nm at 21 eV. The maximum VUV absorption in low-k films occurs between 11 and 15 eV. The depth of the damaged layer was found to increase with film porosity.

  4. Development of two-channel prototype ITER vacuum ultraviolet spectrometer with back-illuminated charge-coupled device and microchannel plate detectors.

    PubMed

    Seon, C R; Choi, S H; Cheon, M S; Pak, S; Lee, H G; Biel, W; Barnsley, R

    2010-10-01

    A vacuum ultraviolet (VUV) spectrometer of a five-channel spectral system is designed for ITER main plasma impurity measurement. To develop and verify the system design, a two-channel prototype system is fabricated with No. 3 (14.4-31.8 nm) and No. 4 (29.0-60.0 nm) among the five channels. The optical system consists of a collimating mirror to collect the light from source to slit, two holographic diffraction gratings with toroidal geometry, and two different electronic detectors. For the test of the prototype system, a hollow cathode lamp is used as a light source. To find the appropriate detector for ITER VUV system, two kinds of detectors of the back-illuminated charge-coupled device and the microchannel plate electron multiplier are tested, and their performance has been investigated.

  5. ATLAS: Airborne Tunable Laser Absorption Spectrometer for stratospheric trace gas measurements

    NASA Technical Reports Server (NTRS)

    Loewenstein, Max; Podolske, James R.; Strahan, Susan E.

    1990-01-01

    The ATLAS instrument is an advanced technology diode laser based absorption spectrometer designed specifically for stratospheric tracer studies. This technique was used in the acquisition of N2O tracer data sets on the Airborne Antarctic Ozone Experiment and the Airborne Arctic Stratospheric Expedition. These data sets have proved valuable for comparison with atmospheric models, as well as in assisting in the interpretation of the entire ensemble of chemical and meteorological data acquired on these two field studies. The N2O dynamical tracer data set analysis revealed several ramifications concerning the polar atmosphere: the N2O/NO(y) correlation, which is used as a tool to study denitrification in the polar vertex; the N2O Southern Hemisphere morphology, showing subsidence in the winter polar vortex; and the value of the N2O measurements in the interpretation of ClO, O3, and NO(y) measurements and of the derived dynamical tracer, potential vorticity. Field studies also led to improved characterization of the instrument and to improved accuracy.

  6. Ultra-fast switching of light by absorption saturation in vacuum ultra-violet region.

    PubMed

    Yoneda, Hitoki; Inubushi, Yuichi; Tanaka, Toshihiro; Yamaguchi, Yuta; Sato, Fumiya; Morimoto, Shunsuke; Kumagai, Taisuke; Nagasono, Mitsuru; Higashiya, Atsushi; Yabashi, Makina; Ishikawa, Tetsuya; Ohashi, Haruhiko; Kimura, Hiroaki; Kitamura, Hikaru; Kodama, Ryosuke

    2009-12-21

    Advances in free electron lasers producing high energy photons [Nat. Photonics 2(9), 555-559 (2008)] are expected to open up a new science of nonlinear optics of high energy photons. Specifically, lasers of photon energy higher than the plasma frequency of a metal can show new interaction features because they can penetrate deeply into metals without strong reflection. Here we show the observation of ultra-fast switching of vacuum ultra-violet (VUV) light caused by saturable absorption of a solid metal target. A strong gating is observed at energy fluences above 6J/cm2 at wavelength of 51 nm with tin metal thin layers. The ratio of the transmission at high intensity to low intensity is typically greater than 100:1. This means we can design new nonlinear photonic devices such as auto-correlator and pulse slicer for the VUV region.

  7. Broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Attwood, A. R.; Flores, J. M.; Zarzana, K. J.; Rudich, Y.; Brown, S. S.

    2016-01-01

    Formaldehyde (CH2O) is the most abundant aldehyde in the atmosphere, and it strongly affects photochemistry through its photolysis. We describe simultaneous measurements of CH2O and nitrogen dioxide (NO2) using broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region. The light source consists of a continuous-wave diode laser focused into a Xenon bulb to produce a plasma that emits high-intensity, broadband light. The plasma discharge is optically filtered and coupled into a 1 m optical cavity. The reflectivity of the cavity mirrors is 0.99930 ± 0.00003 (1- reflectivity = 700 ppm loss) at 338 nm, as determined from the known Rayleigh scattering of He and zero air. This mirror reflectivity corresponds to an effective path length of 1.43 km within the 1 m cell. We measure the cavity output over the 315-350 nm spectral region using a grating monochromator and charge-coupled device array detector. We use published reference spectra with spectral fitting software to simultaneously retrieve CH2O and NO2 concentrations. Independent measurements of NO2 standard additions by broadband cavity-enhanced absorption spectroscopy and cavity ring-down spectroscopy agree within 2 % (slope for linear fit = 1.02 ± 0.03 with r2 = 0.998). Standard additions of CH2O measured by broadband cavity-enhanced absorption spectroscopy and calculated based on flow dilution are also well correlated, with r2 = 0.9998. During constant mixed additions of NO2 and CH2O, the 30 s measurement precisions (1σ) of the current configuration were 140 and 210 pptv, respectively. The current 1 min detection limit for extinction measurements at 315-350 nm provides sufficient sensitivity for measurement of trace gases in laboratory experiments and ground-based field experiments. Additionally, the instrument provides highly accurate, spectroscopically based trace gas detection that may complement higher precision techniques based on non

  8. A fibre-coupled UHV-compatible variable angle reflection-absorption UV/visible spectrometer

    NASA Astrophysics Data System (ADS)

    Stubbing, J. W.; Salter, T. L.; Brown, W. A.; Taj, S.; McCoustra, M. R. S.

    2018-05-01

    We present a novel UV/visible reflection-absorption spectrometer for determining the refractive index, n, and thicknesses, d, of ice films. Knowledge of the refractive index of these films is of particular relevance to the astrochemical community, where they can be used to model radiative transfer and spectra of various regions of space. In order to make these models more accurate, values of n need to be recorded under astronomically relevant conditions, that is, under ultra-high vacuum (UHV) and cryogenic cooling. Several design considerations were taken into account to allow UHV compatibility combined with ease of use. The key design feature is a stainless steel rhombus coupled to an external linear drive (z-shift) allowing a variable reflection geometry to be achieved, which is necessary for our analysis. Test data for amorphous benzene ice are presented as a proof of concept, the film thickness, d, was found to vary linearly with surface exposure, and a value for n of 1.43 ± 0.07 was determined.

  9. A Compact Tunable Diode Laser Absorption Spectrometer to Monitor CO2 at 2.7 μm Wavelength in Hypersonic Flows

    PubMed Central

    Vallon, Raphäel; Soutadé, Jacques; Vérant, Jean-Luc; Meyers, Jason; Paris, Sébastien; Mohamed, Ajmal

    2010-01-01

    Since the beginning of the Mars planet exploration, the characterization of carbon dioxide hypersonic flows to simulate a spaceship’s Mars atmosphere entry conditions has been an important issue. We have developed a Tunable Diode Laser Absorption Spectrometer with a new room-temperature operating antimony-based distributed feedback laser (DFB) diode laser to characterize the velocity, the temperature and the density of such flows. This instrument has been tested during two measurement campaigns in a free piston tunnel cold hypersonic facility and in a high enthalpy arc jet wind tunnel. These tests also demonstrate the feasibility of mid-infrared fiber optics coupling of the spectrometer to a wind tunnel for integrated or local flow characterization with an optical probe placed in the flow. PMID:22219703

  10. A compact tunable diode laser absorption spectrometer to monitor CO2 at 2.7 μm wavelength in hypersonic flows.

    PubMed

    Vallon, Raphäel; Soutadé, Jacques; Vérant, Jean-Luc; Meyers, Jason; Paris, Sébastien; Mohamed, Ajmal

    2010-01-01

    Since the beginning of the Mars planet exploration, the characterization of carbon dioxide hypersonic flows to simulate a spaceship's Mars atmosphere entry conditions has been an important issue. We have developed a Tunable Diode Laser Absorption Spectrometer with a new room-temperature operating antimony-based distributed feedback laser (DFB) diode laser to characterize the velocity, the temperature and the density of such flows. This instrument has been tested during two measurement campaigns in a free piston tunnel cold hypersonic facility and in a high enthalpy arc jet wind tunnel. These tests also demonstrate the feasibility of mid-infrared fiber optics coupling of the spectrometer to a wind tunnel for integrated or local flow characterization with an optical probe placed in the flow.

  11. X-ray and extreme ultraviolet spectroscopy on DIII-D

    NASA Astrophysics Data System (ADS)

    Victor, B. S.; Allen, S. L.; Beiersdorfer, P.; Magee, E. W.

    2017-06-01

    Two spectrometers were installed to measure tungsten emission in the core of DIII-D plasmas during a metal rings experimental campaign. The spectral range of the high-resolution (1340 spectral channels), variable-ruled grating X-ray and Extreme Ultraviolet Spectrometer (XEUS) extends from 10-71 dot A. The spectral range of the second spectrometer, the Long-Wavelength Extreme Ultraviolet Spectrometer (LoWEUS), measures between 31-174 dot A. Three groups of tungsten lines were identified with XEUS: W38+-W45+ from 47-63 dot A, W27+-W35+ from 45-55 dot A, and W28+-W33+ from 16-30 dot A. Emission lines from tungsten charge states W28+, W43+, W44+, and W45+ are identified and the line amplitude is presented versus time. Peak emission of W43+-W45+ occurs between core Te=2.5-3 keV, and peak emission of W28+ occurs at core Te<=1.3 keV. One group of tungsten lines, W40+-W45+, between 120-140 dot A, was identified with LoWEUS. W43+-W45+ lines measured with LoWEUS track the sawtooth cycle. Sensitivity to the sawtooth cycle and the correlation of the peak emission with core electron temperature show that these spectrometers track the on-axis tungsten emission of DIII-D plasmas.

  12. Wolter-Schwarzschild optics for the extreme-ultraviolet - The Berkeley stellar spectrometer and the EUV Explorer

    NASA Technical Reports Server (NTRS)

    Malina, R. F.; Bowyer, S.; Finley, D.; Cash, W.

    1979-01-01

    The design, fabrication and performance of two Wolter-Schwarzschild grazing incidence optics are described. Both telescopes have been figured by single point diamond turning and have achieved better than 15-arcsec on-axis imaging. The telescope for the stellar spectrometer is an f/10 Type II system with an effective area of 225 sq cm at 250 A and 300 cm2 at 500 A. The primary has a maximum diameter of 38 cm and was fabricated in three elements. The copper-plated aluminum substrate was diamond turned; following nickel plating, the surface was polished and coated with evaporated gold. The performance during a sounding rocket flight is discussed. The prototype telescope for the Extreme Ultraviolet Explorer is an f/1.24 Type I system with an effective field of view of 5.0-deg diameter. The telescope has a maximum diameter of 40 cm and was fabricated as a single element. The aluminum substrate is to be diamond turned; the nickel plated surface will be polished and electroplated with gold. The design choice and defocusing optimization aimed at maximizing the field of view and number of image pixels is examined.

  13. Methods for Retrievals of CO2 Mixing Ratios from JPL Laser Absorption Spectrometer Flights During a Summer 2011 Campaign

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.; Spiers, Gary D.; Jacob, Joseph C.

    2013-01-01

    The JPL airborne Laser Absorption Spectrometer instrument has been flown several times in the 2007-2011 time frame for the purpose of measuring CO2 mixing ratios in the lower atmosphere. This instrument employs CW laser transmitters and coherent detection receivers in the 2.05- micro m spectral region. The Integrated Path Differential Absorption (IPDA) method is used to retrieve weighted CO2 column mixing ratios. We present key features of the evolving LAS signal processing and data analysis algorithms and the calibration/validation methodology. Results from 2011 flights in various U.S. locations include observed mid-day CO2 drawdown in the Midwest and high spatial resolution plume detection during a leg downwind of the Four Corners power plant in New Mexico.

  14. Prospects for the design of an ultraviolet imaging Fourier transform spectrometer

    NASA Astrophysics Data System (ADS)

    Lemaire, Philippe

    2017-11-01

    Recent results from solar observations in the far and extremeultraviolet (FUV/EUV) obtained from SOHO (SOlar and Heliospheric Observatory) and TRACE (Transition Region Camera) show the extreme variability of the solar atmosphere. Within the limited resolution of the instruments (1-2 arcseconds) horizontal and vertical velocities up-to 100 to 400 km s-1 have been measured. With an horizontal velocity of 100 km s-1 an one arsecond structure crosses the one arcsecond slit width of a classical slit spectrometer in less than 10 seconds. In the future, with higher angular resolution (e.g. 0.1 arcsecond), the capability to study small structures will be greatly reduced by a classical slit spectrometer. To be able to characterize the small scale solar atmospheric structures formed in the 104 K to 106 K temperature range (which emit in the 30 to 180 nm wavelength range) a spectrometer without slit (or with wide slit) is required. At the same time to obtain an accurate measurement of the doppler velocity an high spectral resolution is needed. The two requirements, high spectral resolution and large slit, are difficult to be simultaneously fulfilled with a classical slit spectrometer within the limited volume of a space instrumentation. Also, we propose to use an Imaging Fourier Transform Spectrometer (IFTS) to provide simultaneously a bidimensionnal field and an accurate determination of line profiles and positions. The development of Fourier Transform Spectrometers (FTS), although popular in the infrared, has been very limited in the UV/FUV by the lack of very high quality beam splitter. Since 10 years, the use of diffraction gratings as beam splitters has been suggested and few intruments have been built ([Chak 94]; [Clea 92]; [File 00]). These instruments illustrate some applications in the new wavelength domain opened by using a beam splitter grating, but do not yet provide the full capabilities of an FTS. In this paper we present several optical schemes which can

  15. Synergic use of TOMS and Aeronet Observations for Characterization of Aerosol Absorption

    NASA Technical Reports Server (NTRS)

    Torres, O.; Bhartia, P. K.; Dubovik, O.; Holben, B.; Siniuk, A.

    2003-01-01

    The role of aerosol absorption on the radiative transfer balance of the earth-atmosphere system is one of the largest sources of uncertainty in the analysis of global climate change. Global measurements of aerosol single scattering albedo are, therefore, necessary to properly assess the radiative forcing effect of aerosols. Remote sensing of aerosol absorption is currently carried out using both ground (Aerosol Robotic Network) and space (Total Ozone Mapping Spectrometer) based observations. The satellite technique uses measurements of backscattered near ultraviolet radiation. Carbonaceous aerosols, resulting from the combustion of biomass, are one of the most predominant absorbing aerosol types in the atmosphere. In this presentation, TOMS and AERONET retrievals of single scattering albedo of carbonaceous aerosols, are compared for different environmental conditions: agriculture related biomass burning in South America and Africa and peat fires in Eastern Europe. The AERONET and TOMS derived aerosol absorption information are in good quantitative agreement. The most absorbing smoke is detected over the African Savanna. Aerosol absorption over the Brazilian rain forest is less absorbing. Absorption by aerosol particles resulting from peat fires in Eastern Europe is weaker than the absorption measured in Africa and South America. This analysis shows that the near UV satellite method of aerosol absorption characterization has the sensitivity to distinguish different levels of aerosol absorption. The analysis of the combined AERONET-TOMS observations shows a high degree of synergy between satellite and ground based observations.

  16. Far-ultraviolet spectral changes of titanium dioxide with gold nanoparticles by ultraviolet and visible light

    NASA Astrophysics Data System (ADS)

    Tanabe, Ichiro; Kurawaki, Yuji

    2018-05-01

    Attenuated total reflectance spectra including the far-ultraviolet (FUV, ≤ 200 nm) region of titanium dioxide (TiO2) with and without gold (Au) nanoparticles were measured. A newly developed external light-irradiation system enabled to observe spectral changes of TiO2 with Au nanoparticles upon light irradiations. Absorption in the FUV region decreased and increased by the irradiation with ultraviolet and visible light, respectively. These spectral changes may reflect photo-induced electron transfer from TiO2 to Au nanoparticles under ultraviolet light and from Au nanoparticles to TiO2 under visible light, respectively.

  17. ACTIVE REGION MOSS: DOPPLER SHIFTS FROM HINODE/EXTREME-ULTRAVIOLET IMAGING SPECTROMETER OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, Durgesh; Mason, Helen E.; Klimchuk, James A.

    2012-07-01

    Studying the Doppler shifts and the temperature dependence of Doppler shifts in moss regions can help us understand the heating processes in the core of the active regions. In this paper, we have used an active region observation recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) on board Hinode on 2007 December 12 to measure the Doppler shifts in the moss regions. We have distinguished the moss regions from the rest of the active region by defining a low-density cutoff as derived by Tripathi et al. in 2010. We have carried out a very careful analysis of the EIS wavelength calibrationmore » based on the method described by Young et al. in 2012. For spectral lines having maximum sensitivity between log T = 5.85 and log T = 6.25 K, we find that the velocity distribution peaks at around 0 km s{sup -1} with an estimated error of 4-5 km s{sup -1}. The width of the distribution decreases with temperature. The mean of the distribution shows a blueshift which increases with increasing temperature and the distribution also shows asymmetries toward blueshift. Comparing these results with observables predicted from different coronal heating models, we find that these results are consistent with both steady and impulsive heating scenarios. However, the fact that there are a significant number of pixels showing velocity amplitudes that exceed the uncertainty of 5 km s{sup -1} is suggestive of impulsive heating. Clearly, further observational constraints are needed to distinguish between these two heating scenarios.« less

  18. High-resolution Fourier-transform extreme ultraviolet photoabsorption spectroscopy of 14N15N

    NASA Astrophysics Data System (ADS)

    Heays, A. N.; Dickenson, G. D.; Salumbides, E. J.; de Oliveira, N.; Joyeux, D.; Nahon, L.; Lewis, B. R.; Ubachs, W.

    2011-12-01

    The first comprehensive high-resolution photoabsorption spectrum of 14N15N has been recorded using the Fourier-transform spectrometer attached to the Desirs beamline at the Soleil synchrotron. Observations are made in the extreme ultraviolet and span 100 000-109 000 cm-1 (100-91.7 nm). The observed absorption lines have been assigned to 25 bands and reduced to a set of transition energies, f values, and linewidths. This analysis has verified the predictions of a theoretical model of N2 that simulates its photoabsorption and photodissociation cross section by solution of an isotopomer independent formulation of the coupled-channel Schrödinger equation. The mass dependence of predissociation linewidths and oscillator strengths is clearly evident and many local perturbations of transition energies, strengths, and widths within individual rotational series have been observed.

  19. The ultraviolet interstellar extinction curve in the Pleiades

    NASA Technical Reports Server (NTRS)

    Witt, A. N.; Bohlin, R. C.; Stecher, T. P.

    1981-01-01

    The wavelength dependence of ultraviolet extinction in the Pleiades dust clouds has been determined from IUE observations of HD 23512, the brightest heavily reddened member of the Pleiades cluster. There is evidence for an anomalously weak absorption bump at 2200 A, followed by an extinction rise in the far ultraviolet with an essentially normal slope. A relatively weak absorption band at 2200 A and a weak diffuse absorption band at 4430 A seem to be common characteristics of dust present in dense clouds. Evidence is presented which suggests that the extinction characteristics found for HD 23512 are typical for a class of extinction curves observed in several cases in the Galaxy and in the LMC.

  20. Low-resolution ultraviolet spectroscopy of several hot stars observed from Apollo 17

    NASA Technical Reports Server (NTRS)

    Henry, R. C.; Weinstein, A.; Feldman, P. D.; Fastie, W. G.; Moos, H. W.

    1975-01-01

    Low-resolution ultraviolet spectra were obtained for six early-type stars in 1972 December, using an Ebert spectrometer mounted in the service module of the Apollo 17 spacecraft. The spectrometer scanned from 1180 A to 1680 A, with a speed that varied with wavelength according to a program chosen for lunar studies. Spectral resolution was 11 A. The ultraviolet absolute calibration of the instrument was determined by comparison with National Bureau of Standards calibrated photodiodes, and is believed known to plus or minus 10 percent. The absolute intensities are in good general agreement with the observations of other stars and with the predictions of stellar model-atmosphere calculations.

  1. Design of a simple cryogenic system for ultraviolet-visible absorption spectroscopy with a back-reflectance fiber optic probe.

    PubMed

    Vinyard, Andrew; Hansen, Kaj A; Byrd, Ross; Stuart, Douglas A; Hansen, John E

    2014-01-01

    We report a convenient and inexpensive technique for the rapid acquisition of absorption spectra from small samples at cryogenic temperatures using a home built cryostat with novel collection optics. A cylindrical copper block was constructed with a coaxial bore to hold a 4.00 mm diameter electron paramagnetic resonance (EPR) tube and mounted on a copper feed in thermal contact with liquid nitrogen. A 6.35 mm diameter hole was bored into the side of the cylinder so a fiber optic cable bundle could be positioned orthogonally to the EPR tube. The light passing through the sample is reflected off of the opposing surfaces of the EPR tube and surrounding copper, back through the sample. The emergent light is then collected using the fiber optic bundle and analyzed using a dispersive spectrometer. Absorption spectra for KMnO4 were measured between 400 and 700 nm. Absorption intensity at 506, 525, 545, and 567 nm was found to be proportional to concentration, displaying Beer's law-like behavior. The EPR tube had an internal diameter of 3.2 mm; the double pass of the probe beam through the sample affords a central path length of about 6.4 mm. Comparing these measurements with those recorded on a conventional tabletop spectrometer using a cuvette with a 10.00 mm path length, we consistently found a ratio between intensities of 0.58 rather than the anticipated 0.64. These 6% smaller values we attribute to the curvature of the EPR tube and transmission/reflection losses. This system is particularly well-suited to studying the kinetics and dynamics of chemical reactions at cryogenic temperatures. The rapid response (100 ms) and multiplex advantage provided the opportunity of recording simultaneous time courses at several wavelengths following initiation of a chemical reaction with a pulsed laser source.

  2. X-ray and extreme ultraviolet spectroscopy on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Victor, Brian S.; Allen, Steve L.; Beiersdorfer, P.

    Two spectrometers were installed to measure tungsten emission in the core of DIII-D plasmas during a metal rings experimental campaign. The spectral range of the high-resolution (1340 spectral channels), variable-ruled grating X-ray and Extreme Ultraviolet Spectrometer (XEUS) extends from10–71more » $$\\dot{A}$$ . The spectral range of the second spectrometer, the Long-Wavelength Extreme Ultraviolet Spectrometer (LoWEUS), measures between 31–174$$\\dot{A}$$ . Three groups of tungsten lines were identified with XEUS: W 38+-W 45+ from 47–63$$\\dot{A}$$ , W 27+-W 35+ from 45–55$$\\dot{A}$$ , and W 28+-W 33+ from 16–30$$\\dot{A}$$ . Emission lines from tungsten charge states W 28+, W 43+, W 44+, and W 45+ are identified and the line amplitude is presented versus time. Peak emission of W 43+-W 45+ occurs between core Te=2.5-3 keV, and peak emission of W28+ occurs at core Te 1:3 keV. One group of tungsten lines, W 40+-W 45+, between 120–140$$\\dot{A}$$ , was identified with LoWEUS. W 43+- W 45+ lines measured with LoWEUS track the sawtooth cycle. Furthermore, sensitivity to the sawtooth cycle and the correlation of the peak emission with core electron temperature show that these spectrometers track the on-axis tungsten emission of DIII-D plasmas.« less

  3. X-ray and extreme ultraviolet spectroscopy on DIII-D

    DOE PAGES

    Victor, Brian S.; Allen, Steve L.; Beiersdorfer, P.; ...

    2017-06-14

    Two spectrometers were installed to measure tungsten emission in the core of DIII-D plasmas during a metal rings experimental campaign. The spectral range of the high-resolution (1340 spectral channels), variable-ruled grating X-ray and Extreme Ultraviolet Spectrometer (XEUS) extends from10–71more » $$\\dot{A}$$ . The spectral range of the second spectrometer, the Long-Wavelength Extreme Ultraviolet Spectrometer (LoWEUS), measures between 31–174$$\\dot{A}$$ . Three groups of tungsten lines were identified with XEUS: W 38+-W 45+ from 47–63$$\\dot{A}$$ , W 27+-W 35+ from 45–55$$\\dot{A}$$ , and W 28+-W 33+ from 16–30$$\\dot{A}$$ . Emission lines from tungsten charge states W 28+, W 43+, W 44+, and W 45+ are identified and the line amplitude is presented versus time. Peak emission of W 43+-W 45+ occurs between core Te=2.5-3 keV, and peak emission of W28+ occurs at core Te 1:3 keV. One group of tungsten lines, W 40+-W 45+, between 120–140$$\\dot{A}$$ , was identified with LoWEUS. W 43+- W 45+ lines measured with LoWEUS track the sawtooth cycle. Furthermore, sensitivity to the sawtooth cycle and the correlation of the peak emission with core electron temperature show that these spectrometers track the on-axis tungsten emission of DIII-D plasmas.« less

  4. The nonlinear light output of NaI(Tl) detectors in the Modular Total Absorption Spectrometer

    DOE PAGES

    Rasco, B. C.; Fijałkowska, A.; Karny, M.; ...

    2015-04-08

    New detector array, the Modular Total Absorption Spectrometer (MTAS),was commissioned at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Lab(ORNL).Total absorption gamma spectra measured with MTAS are expected to improve beta-feeding patterns and beta strength functions in fission products.MTAS is constructed out of hexagonal NaI(Tl) detectors with a unique central module surrounded by 18 identical crystals assembled in three rings. The total NaI(Tl) mass of MTAS is over1000 kg.The response of the central and other 18 MTAS modules to -radiation was simulated using the GEANT4 tool kit modified to analyze the nonlinear light output of NaI(Tl).A detailedmore » description oftheGEANT4modifications madeisdiscussed.SimulatedenergyresolutionofMTAS modules is found to agree well with the measurements for single transitions of 662keV (137Cs) with 8.2% full width half maximum (FWHM),835keV (54Mn) with FWHM of 7.5% FWHM, and 1115keV (65Zn) with FWHM of 6.5%.Simulations of single and multiple -rays from 60Co are also discussed.« less

  5. INSCAN PRO: a fast ultraviolet spectrometer design approach

    NASA Astrophysics Data System (ADS)

    Myer, Brian Walker; Dias, João. Mendanha

    2013-11-01

    Spectroscopy diagnostic techniques have applications in such diverse areas as mechanical and aerospace engineering, physical chemistry, optics, food and pharmaceutical industries. However, the technological state-of-the-art spectrometers do not allow very fast processes to be evaluated or controlled. This ability is crucial in the optimization of industrial processes (welding, burning flames, spark ignition, pulsed radiolysis…) where more theoretical-experimental analysis should be performed. The INSCAN project aims to overcome this technological limitation, to satisfy needs in academia and industrial markets, by developing a compact spectrometer with focal lengths less than 200 mm, taking into account three important aspects: acquisition rate of approximately 10 kHz spectra, spectral resolution on the order of 0.1 nm and operating in the spectral range 200 nm to 700 nm. Initial work is described on the optical design of the device and several possible approaches to achieve the specifications are considered. To guide the first order design, we relate the optical linewidth, spectral bandwidth and imaging properties to component characteristics. The symmetrical Czerny-Turner optical mount was chosen for its flexibility and elaborated using ZEMAX. Predictions made based on the simulated system are compared with calibration and characterization measurements on an experimental test bench used to refine the model assumptions.

  6. Far-ultraviolet spectral changes of titanium dioxide with gold nanoparticles by ultraviolet and visible light.

    PubMed

    Tanabe, Ichiro; Kurawaki, Yuji

    2018-05-15

    Attenuated total reflectance spectra including the far-ultraviolet (FUV, ≤200nm) region of titanium dioxide (TiO 2 ) with and without gold (Au) nanoparticles were measured. A newly developed external light-irradiation system enabled to observe spectral changes of TiO 2 with Au nanoparticles upon light irradiations. Absorption in the FUV region decreased and increased by the irradiation with ultraviolet and visible light, respectively. These spectral changes may reflect photo-induced electron transfer from TiO 2 to Au nanoparticles under ultraviolet light and from Au nanoparticles to TiO 2 under visible light, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Measurements of the intrinsic quantum efficiency and absorption length of tetraphenyl butadiene thin films in the vacuum ultraviolet regime

    NASA Astrophysics Data System (ADS)

    Benson, Christopher; Gann, Gabriel Orebi; Gehman, Victor

    2018-04-01

    A key enabling technology for many liquid noble gas (LNG) detectors is the use of the common wavelength shifting medium tetraphenyl butadiene (TPB). TPB thin films are used to shift ultraviolet scintillation light into the visible spectrum for detection and event reconstruction. Understanding the wavelength shifting efficiency and optical properties of these films are critical aspects in detector performance and modeling and hence in the ultimate physics sensitivity of such experiments. This article presents the first measurements of the room-temperature microphysical quantum efficiency for vacuum-deposited TPB thin films - a result that is independent of the optics of the TPB or substrate. Also presented are measurements of the absorption length in the vacuum ultraviolet regime, the secondary re-emission efficiency, and more precise results for the "black-box" efficiency across a broader spectrum of wavelengths than previous results. The low-wavelength sensitivity, in particular, would allow construction of LNG scintillator detectors with lighter elements (Ne, He) to target light mass WIMPs.

  8. Spectrometer system for diffuse extreme ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Labov, Simon E.

    1989-01-01

    A unique grazing incidence spectrometer system has been designed to study diffuse line emission between 80 and 650 A with 10-30 A resolution. The minimum detectable emission line strength during a 5-min observation ranges from 100-2000 ph/sq cm sec str. The instrument uses mechanically ruled reflection gratings placed in front of a linear array of mirrors. These mirrors focus the spectral image on microchannel plate detectors located behind thin filters. The field of view is 40 min of arc by 15 deg, and there is no spatial imaging. This instrument has been fabricated, calibrated, and successfully flown on a sounding rocket to observe the astronomical background radiation.

  9. Detection of Ozone and Nitric Oxide in Decomposition Products of Air-Insulated Switchgear Using Ultraviolet Differential Optical Absorption Spectroscopy (UV-DOAS).

    PubMed

    Li, Yalong; Zhang, Xiaoxing; Li, Xin; Cui, Zhaolun; Xiao, Hai

    2018-01-01

    Air-insulated switchgear cabinets play a role in the protection and control of the modern power grid, and partial discharge (PD) switchgear is a long-term process in the non-normal operation of one of the situations; thus, condition monitoring of the switchgear is important. The air-insulated switchgear during PD enables the decomposition of air components, namely, O 3 and NO. A set of experimental platforms was designed on the basis of the principle of ultraviolet differential optical absorption spectroscopy (UV-DOAS) to detect O 3 and NO concentrations in air-insulated switchgear. Differential absorption algorithm and wavelet transform were used to extract effective absorption spectra; a linear relationship between O 3 and NO concentrations and absorption spectrum data were established. O 3 detection linearity was up to 0.9992 and the detection limit was at 3.76 ppm. NO detection linearity was up to 0.9990 and the detection limit was at 0.64 ppm. Results indicate that detection platform is suitable for detecting trace O 3 and NO gases produced by PD of the air-insulated switchgear.

  10. The Extreme Ultraviolet spectrometer on bard the Hisaki satellite

    NASA Astrophysics Data System (ADS)

    Yoshioka, K.; Murakami, G.; Yamazaki, A.; Tsuchiya, F.; Kagitani, M.; Kimura, T.; Yoshikawa, I.

    2017-12-01

    The extreme ultraviolet spectroscope EXCEED (EXtrem ultraviolet spetrosCope for ExosphEric Dynamics) on board the Hisaki satellite was launched in September 2013 from the Uchinoura space center, Japan. It is orbiting around the Earth with an orbital altitude of around 950-1150 km. This satellite is dedicated to and optimized for observing the atmosphere and magnetosphere of terrestrial planets such as Mercury, Venus, Mars, as well as Jupiter. The instrument consists of an off axis parabolic entrance mirror, switchable slits with multiple filters and shapes, a toroidal grating, and a photon counting detector, together with a field of view guiding camera. The design goal is to achieve a large effective area but with high spatial and spectral resolution. Based on the after-launch calibration, the spectral resolution of EXCEED is found to be 0.3-0.5 nm FWHM (Full Width at Half Maximum) over the entire spectral band, and the spatial resolution is around 17". The evaluated effective area is larger than 1cm2. In this presentation, the basic concept of the instrument design and the observation technique are introduced. The current status of the spacecraft and its future observation plan are also shown.

  11. Airborne imaging spectrometer data of the Ruby Mountains, Montana: Mineral discrimination using relative absorption band-depth images

    USGS Publications Warehouse

    Crowley, J.K.; Brickey, D.W.; Rowan, L.C.

    1989-01-01

    Airborne imaging spectrometer data collected in the near-infrared (1.2-2.4 ??m) wavelength range were used to study the spectral expression of metamorphic minerals and rocks in the Ruby Mountains of southwestern Montana. The data were analyzed by using a new data enhancement procedure-the construction of relative absorption band-depth (RBD) images. RBD images, like bandratio images, are designed to detect diagnostic mineral absorption features, while minimizing reflectance variations related to topographic slope and albedo differences. To produce an RBD image, several data channels near an absorption band shoulder are summed and then divided by the sum of several channels located near the band minimum. RBD images are both highly specific and sensitive to the presence of particular mineral absorption features. Further, the technique does not distort or subdue spectral features as sometimes occurs when using other data normalization methods. By using RBD images, a number of rock and soil units were distinguished in the Ruby Mountains including weathered quartz - feldspar pegmatites, marbles of several compositions, and soils developed over poorly exposed mica schists. The RBD technique is especially well suited for detecting weak near-infrared spectral features produced by soils, which may permit improved mapping of subtle lithologic and structural details in semiarid terrains. The observation of soils rich in talc, an important industrial commodity in the study area, also indicates that RBD images may be useful for mineral exploration. ?? 1989.

  12. Final stress analysis report ultraviolet spectrometer S169

    NASA Technical Reports Server (NTRS)

    Cooper, S.

    1971-01-01

    The stress analysis report verifies the structural integrity of the Apollo S-169 UV-spectrometer experiment. The methods by which the various members were analyzed are described. A detailed summary of results for the individual structural elements appears in the form of a table of minimum margins of safety. No negative margins of safety were experienced. It is concluded that the component structure is more than adequate to withstand the environmental load conditions given in the design criteria.

  13. Direct determination of total sulfur in wine using a continuum-source atomic-absorption spectrometer and an air-acetylene flame.

    PubMed

    Huang, Mao Dong; Becker-Ross, Helmut; Florek, Stefan; Heitmann, Uwe; Okruss, Michael

    2005-08-01

    Determination of sulfur in wine is an important analytical task, particularly with regard to food safety legislation, wine trade, and oenology. Hitherto existing methods for sulfur determination all have specific drawbacks, for example high cost and time consumption, poor precision or selectivity, or matrix effects. In this paper a new method, with low running costs, is introduced for direct, reliable, rapid, and accurate determination of the total sulfur content of wine samples. The method is based on measurement of the molecular absorption of carbon monosulfide (CS) in an ordinary air-acetylene flame by using a high-resolution continuum-source atomic-absorption spectrometer including a novel high-intensity short-arc xenon lamp. First results for total sulfur concentrations in different wine samples were compared with data from comparative ICP-MS measurements. Very good agreement within a few percent was obtained.

  14. Ultraviolet Spectrum And Chemical Reactivity Of CIO Dimer

    NASA Technical Reports Server (NTRS)

    Demore, William B.; Tschuikow-Roux, E.

    1992-01-01

    Report describes experimental study of ultraviolet spectrum and chemical reactivity of dimer of chlorine monoxide (CIO). Objectives are to measure absorption cross sections of dimer at near-ultraviolet wavelengths; determine whether asymmetrical isomer (CIOCIO) exists at temperatures relevant to Antarctic stratosphere; and test for certain chemical reactions of dimer. Important in photochemistry of Antarctic stratosphere.

  15. Modified tandem gratings anastigmatic imaging spectrometer with oblique incidence for spectral broadband

    NASA Astrophysics Data System (ADS)

    Cui, Chengguang; Wang, Shurong; Huang, Yu; Xue, Qingsheng; Li, Bo; Yu, Lei

    2015-09-01

    A modified spectrometer with tandem gratings that exhibits high spectral resolution and imaging quality for solar observation, monitoring, and understanding of coastal ocean processes is presented in this study. Spectral broadband anastigmatic imaging condition, spectral resolution, and initial optical structure are obtained based on geometric aberration theory. Compared with conventional tandem gratings spectrometers, this modified design permits flexibility in selecting gratings. A detailed discussion of the optical design and optical performance of an ultraviolet spectrometer with tandem gratings is also included to explain the advantage of oblique incidence for spectral broadband.

  16. A search for ultraviolet circumstellar gas absorption features in alpha Piscis Austrinus (Fomalhaut), a possible Beta Pictoris-like system

    NASA Technical Reports Server (NTRS)

    Cheng, K.-P.; Bruhweiler, Fred C.; Kondo, Yoji

    1994-01-01

    Archival high-dispersion International Ultraviolet Explorer (IUE) spectra have been used to search for circumstellar gas absorption features in alpha PsA (A3 V), a nearby (6.7 pc) proto-planetary system candidate. Recent sub-millimeter mapping observations around the region of alpha PsA indicate a spatially resolved dust disk like the one seen around Beta Pic. To determine how closely this putative disk resembles that of Beta Pic, we have searched for signatures of circumstellar gaseous absorption in all the available IUE high-dispersion data of alpha PsA. Examination of co-added IUE spectra shows weak circumstellar absorptions from excited levels in the resonance multiplet of Fe II near 2600 A. We also conclude that the sharp C I feature near 1657 A, previously identified as interstellar absorption toward alpha PsA, likely has a circumstellar origin. However, because the weakness of these absorption features, we will consider the presence of circumstellar gas as tentative and should be verified by using the Goddard High-Resolution Spectrograph aboard the Hubble Space Telescope. No corresponding circumstellar absorption is detected in higher ionization Fe III and Al III. Since the collisionally ionized nonphotospheric Al III resonance absorption seen in Beta Pic is likely formed close to the stellar surface, its absence in the UV spectra of alpha PsA could imply that, in contrast with Beta Pic, there is no active gaseous disk infall onto the central star. In the alpha PsA gaseous disk, if we assume a solar abundance for iron and all the iron is in the form of Fe II, plus a disk temperature of 5000 K, the Fe II UV1 absorption at 2611.8743 A infers a total hydrogen column density along the line of sight through the circumstellar disk of N(H) approximately equals 3.8 x 10(exp 17)/cm.

  17. Observations of the Ultraviolet Spectra of Carbon White Dwarfs

    NASA Technical Reports Server (NTRS)

    Wagner, G. A.

    1982-01-01

    Strong ultraviolet carbon lines were detected in additional white DC (continuous visual spectra) dwarfs using the IUE. These lines are not seen in the ultraviolet spectrum of the cool DC star Stein 2051 B. The bright DA white dwarf LB 3303 has a strong unidentified absorption near lambda 1400.

  18. Infrared absorption of methanethiol clusters (CH3SH)n, n = 2-5, recorded with a time-of-flight mass spectrometer using IR depletion and VUV ionization

    NASA Astrophysics Data System (ADS)

    Fu, Lung; Han, Hui-Ling; Lee, Yuan-Pern

    2012-12-01

    We investigated IR spectra in the CH- and SH-stretching regions of size-selected methanethiol clusters, (CH3SH)n with n = 2-5, in a pulsed supersonic jet using infrared (IR)-vacuum ultraviolet (VUV) ionization. VUV emission at 132.50 nm served as the source of ionization in a time-of-flight mass spectrometer. Clusters were dissociated with light from a tunable IR laser before ionization. The variations in intensity of methanethiol cluster ions (CH3SH)n+ were monitored as the IR laser light was tuned across the range 2470-3100 cm-1. In the SH-stretching region, the spectrum of (CH3SH)2 shows a weak band near 2601 cm-1, red-shifted only 7 cm-1 from that of the monomer. In contrast, all spectra of (CH3SH)n, n = 3-5, show a broad band near 2567 cm-1 with much greater intensity. In the CH-stretching region, absorption bands of (CH3SH)2 are located near 2865, 2890, 2944, and 3010 cm-1, red-shifted by 3-5 cm-1 from those of CH3SH. These red shifts increase slightly for larger clusters and bands near 2856, 2884, 2938, and 3005 cm-1 were observed for (CH3SH)5. These spectral results indicate that the S-H...S hydrogen bond plays an important role in clusters with n = 3-5, but not in (CH3SH)2, in agreement with theoretical predictions. The absence of a band near 2608 cm-1 that corresponds to absorption of the non-hydrogen-bonded SH moiety and the large width of observed feature near 2567 cm-1 indicate that the dominant stable structures of (CH3SH)n, n = 3-5, have a cyclic hydrogen-bonded framework.

  19. Rocket flight performance of a preprototype Apollo 17 UV spectrometer S-169

    NASA Technical Reports Server (NTRS)

    Fastie, W. G.

    1971-01-01

    The design, construction, testing, calibration, flight performance and flight data of an Ebert ultraviolet spectrometer are described which is an accurate representation of the conceptual design of the Apollo 17 UV spectrometer. The instrument was flown in an Aerobee 350 rocket from Wallops Island, Va., at 7:10 p.m. EDT on June 10, 1971 to an altitude of 328 km with a solar elevation angle of about 11 deg.

  20. Evaluation of gratings for the Extreme Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Mrowka, Stan; Martin, Chris; Bowyer, Stuart; Malina, Roger F.

    1986-01-01

    Extensive grating calibration facilities have been developed at the Space Sciences Laboratory at Berkley, which are now being used for the evaluation of the gratings for the spectrometer on the Extreme Ultraviolet Explorer. Measurements of efficiency scattering and imaging quality can be made at wavelengths from 44A to 2500A.

  1. The 2014 ASCENDS Field Campaign - a Carbon Dioxide Laser Absorption Spectrometer Perspective

    NASA Astrophysics Data System (ADS)

    Spiers, G. D.; Menzies, R. T.; Jacob, J. C.; Geier, S.; Fregoso, S. F.

    2014-12-01

    NASA's ASCENDS mission has been flying several candidate lidar instruments on board the NASA DC-8 aircraft to obtain column integrated measurements of Carbon Dioxide. Each instrument uses a different approach to making the measurement and combined they have allowed for the informed development of the ASCENDS mission measurement requirements(1). The JPL developed Carbon Dioxide Laser Absorption Spectrometer, CO2LAS is one of these instruments. The CO2LAS measures the weighted, column averaged carbon dioxide between the aircraft and the ground using a continuous-wave heterodyne technique. The instrument operates at a 2.05 micron wavelength optimized for enhancing sensitivity to boundary layer carbon dioxide. Since the 2013 field campaign the instrument has undergone significant upgrades that improve the data collection efficiency and instrument stability and has recently been re-integrated onto the NASA DC-8 for the August 2014 ASCENDS field campaign. This presentation will summarize the instrument and algorithm improvements and review the 2014 field campaign flights and preliminary results. (1) Abshire, J.B. et al., "An overview of NASA's ASCENDS Mission lidar measurement requirements", submitted to 2014 Fall AGU Conference.

  2. Dynamic interferometer alignment and its utility in UV Fourier transform spectrometer systems

    NASA Technical Reports Server (NTRS)

    Dorval, Rick K.; Engel, James R.; Wyntjes, Geert J.

    1993-01-01

    Dynamic alignment has been demonstrated as a practical approach to alignment maintenance for systems in the infrared region of the spectrum. On the basis of work done by OPTRA, this technique was introduced in commercial Fourier transform spectrometer systems in 1982 and in various forms is now available from a number of manufacturers. This paper reports on work by OPTRA to extend the basic technique to systems operating in the ultraviolet. In addition, this paper reports the preliminary results of the development of an alignment system using a laser diode in place of a gas laser normally found in dynamic alignment systems. A unique optical system and spatial heterodyne technique allows for achievement of a metrology system with characteristics that fully satisfy the requirements of an ultraviolet spectrometer system.

  3. The Extreme Ultraviolet Explorer mission - Overview and initial results

    NASA Technical Reports Server (NTRS)

    Haisch, B.; Bowyer, S.; Malina, R. F.

    1993-01-01

    The history of extreme ultraviolet (EUV) astronomy is briefly reviewed, and an overview of the Extreme Ultraviolet Explorer mission, launched into a near-earth (550 km) orbit on June 7, 1992, is presented. First, the principal objective of the mission are summarized. The instrumentation and operation of the mission are then described, with particular attention given to the sky survey instruments, the deep survey instrument, and the spectrometers. The discussion also covers the current view of the interstellar medium, early results from the mission, and future prospects for EUV astronomy.

  4. Interstellar extinction in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Savage, B. D.

    1972-01-01

    Interstellar extinction curves over the region 3600-1100 A for 17 stars are presented. The observations were made by the two Wisconsin spectrometers onboard the OAO-2 with spectral resolutions of 10 A and 20 A. The extinction curves generally show a pronounced maximum at 2175 plus or minus 25 A, a broad minimum in the region 1800-1350 A, and finally a rapid rise to the far ultraviolet. Large extinction variations from star to star are found, especially in the far ultraviolet; however, with only two possible exceptions in this sample, the wavelength at the maximum of the extinction bump is essentially constant. These data are combined with visual and infrared observations to display the extinction behavior over a range in wavelength of about a factor of 20.

  5. Real-time radiative divertor feedback control development for the NSTX-U tokamak using a vacuum ultraviolet spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soukhanovskii, V. A., E-mail: vlad@llnl.gov; Kaita, R.; Stratton, B.

    2016-11-15

    A radiative divertor technique is planned for the NSTX-U tokamak to prevent excessive erosion and thermal damage of divertor plasma-facing components in H-mode plasma discharges with auxiliary heating up to 12 MW. In the radiative (partially detached) divertor, extrinsically seeded deuterium or impurity gases are used to increase plasma volumetric power and momentum losses. A real-time feedback control of the gas seeding rate is planned for discharges of up to 5 s duration. The outer divertor leg plasma electron temperature T{sub e} estimated spectroscopically in real time will be used as a control parameter. A vacuum ultraviolet spectrometer McPherson Modelmore » 251 with a fast charged-coupled device detector is developed for temperature monitoring between 5 and 30 eV, based on the Δn = 0, 1 line intensity ratios of carbon, nitrogen, or neon ion lines in the spectral range 300–1600 Å. A collisional-radiative model-based line intensity ratio will be used for relative calibration. A real-time T{sub e}-dependent signal within a characteristic divertor detachment equilibration time of ∼10–15 ms is expected.« less

  6. Real-time radiative divertor feedback control development for the NSTX-U tokamak using a vacuum ultraviolet spectrometer

    DOE PAGES

    Soukhanovskii, V. A.; Kaita, R.; Stratton, B.

    2016-08-04

    Here, a radiative divertor technique is planned for the NSTX-U tokamak to prevent excessive erosion and thermal damage of divertor plasma-facing components in H-mode plasma discharges with auxiliary heating up to 12 MW. In the radiative (partially detached) divertor, extrinsically seeded deuterium or impurity gases are used to increase plasma volumetric power and momentum losses. A real-time feedback control of the gas seeding rate is planned for discharges of up to 5 s duration. The outer divertor leg plasma electron temperature T e estimated spectroscopically in real time will be used as a control parameter. A vacuum ultraviolet spectrometer McPhersonmore » Model 251 with a fast charged-coupled device detector is developed for temperature monitoring between 5 and 30 eV, based on the Δn = 0, 1 line intensity ratios of carbon, nitrogen, or neon ion lines in the spectral range 300–1600 Å. A collisional-radiative model-based line intensity ratio will be used for relative calibration. A real-time T e-dependent signal within a characteristic divertor detachment equilibration time of ~10–15 ms is expected.« less

  7. The Lockheed OSO-8 program. Task 2: Analysis of data from the high resolution ultraviolet spectrometer experiment. [carbon 4 and silicon 4 line and emission spectra from solar flares

    NASA Technical Reports Server (NTRS)

    Bruner, E. C., Jr.

    1980-01-01

    The complete set of C 4 time sequences generated by the University of Colorado high resolution ultraviolet spectrometer experiment on OSO-8 were examined in a comprehensive and systematic fashion. As a result a new limit is placed on the acoustic flux passing through the transition zone of the Sun's atmosphere. It is found to be three orders of magnitude too small to heat the corona, and is consistent with zero. In collaborative efforts, the properties of transient C 4 brightenings were examined in considerable detail.

  8. Ultra-violet absorption induced modifications in bulk and nanoscale electrical transport properties of Al-doped ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Mohit; Basu, Tanmoy; Som, Tapobrata, E-mail: tsom@iopb.res.in

    Using conductive atomic force microscopy and Kelvin probe force microscopy, we study local electrical transport properties in aluminum-doped zinc oxide (ZnO:Al or AZO) thin films. Current mapping shows a spatial variation in conductivity which corroborates well with the local mapping of donor concentration (∼10{sup 20 }cm{sup −3}). In addition, a strong enhancement in the local current at grains is observed after exposing the film to ultra-violet (UV) light which is attributed to persistent photocurrent. Further, it is shown that UV absorption gives a smooth conduction in AZO film which in turn gives rise to an improvement in the bulk photoresponsivity ofmore » an n-AZO/p-Si heterojunction diode. This finding is in contrast to the belief that UV absorption in an AZO layer leads to an optical loss for the underneath absorbing layer of a heterojunction solar cell.« less

  9. A High Resolution Fourier-Transform Spectrometer for the Measurement of Atmospheric Column Abundances

    NASA Technical Reports Server (NTRS)

    Cageao, R.; Sander, S.; Blavier, J.; Jiang, Y.; Nemtchinov, V.

    2000-01-01

    A compact, high resolution Fourier-transform spectrometer for atmospheric near ultraviolet spectroscopy has been installed at the Jet Propulsion Laboratory's Table Mountain Facility (34.4N, 117.7 W, elevation 2290m).

  10. Development of near infrared spectrometer for gem materials study

    NASA Astrophysics Data System (ADS)

    Jindata, W.; Meesiri, W.; Wongkokua, W.

    2015-07-01

    Most of gem materials can be characterized by infrared absorption spectroscopy. Normally, mid infrared absorption technique has been applied for investigating fundamental vibrational modes. However, for some gem materials, such as tourmaline, NIR is a better choice due to differentiation. Most commercial NIR spectrometers employ complicated dispersive grating or Fourier transform techniques. In this work, we developed a filter type NIR spectrometer with the availability of high efficiency and low-cost narrow bandpass NIR interference filters to be taught in a physics laboratory. The instrument was designed for transmission-mode configuration. A 50W halogen lamp was used as NIR source. There were fourteen NIR filters mounted on a rotatory wheel for wavelength selection ranging from 1000-1650 nm with steps of 50 nm. A 1.0 mm diameter of InGaAs photodiode was used as the detector for the spectrometer. Hence, transparent gem materials can be used as samples for experiment. Student can learn vibrational absorption spectroscopy as well as Beer-Lambert law from the development of this instrument.

  11. Ground Based Ultraviolet Remote Sensing of Volcanic Gas Plumes

    PubMed Central

    Kantzas, Euripides P.; McGonigle, Andrew J. S.

    2008-01-01

    Ultraviolet spectroscopy has been implemented for over thirty years to monitor volcanic SO2 emissions. These data have provided valuable information concerning underground magmatic conditions, which have been of utility in eruption forecasting efforts. During the last decade the traditionally used correlation spectrometers have been upgraded with miniature USB coupled UV spectrometers, opening a series of exciting new empirical possibilities for understanding volcanoes and their impacts upon the atmosphere. Here we review these technological developments, in addition to the scientific insights they have precipitated, covering the strengths and current limitations of this approach. PMID:27879780

  12. Role of HfO 2/SiO 2 thin-film interfaces in near-ultraviolet absorption and pulsed laser damage

    DOE PAGES

    Papernov, Semyon; Kozlov, Alexei A.; Oliver, James B.; ...

    2016-07-15

    Here, the role of thin-film interfaces in the near-ultraviolet (near-UV) absorption and pulsed laser-induced damage was studied for ion-beam-sputtered and electron-beam-evaporated coatings comprised from HfO 2 and SiO 2 thin-film pairs. To separate contributions from the bulk of the film and from interfacial areas, absorption and damage threshold measurements were performed for a one-wave (355-nm wavelength) thick, HfO 2 single-layer film and for a film containing seven narrow HfO 2 layers separated by SiO 2 layers. The seven-layer film was designed to have a total optical thickness of HfO 2 layers, equal to one wave at 355 nm and anmore » E-field peak and average intensity similar to a single-layer HfO 2 film. Absorption in both types of films was measured using laser calorimetry and photothermal heterodyne imaging. The results showed a small contribution to total absorption from thin-film interfaces as compared to HfO 2 film material. The relevance of obtained absorption data to coating near-UV, nanosecond-pulse laser damage was verified by measuring the damage threshold and characterizing damage morphology. The results of this study revealed a higher damage resistance in the seven-layer coating as compared to the single-layer HfO 2 film in both sputtered and evaporated coatings. The results are explained through the similarity of interfacial film structure with structure formed during the codeposition of HfO 2 and SiO 2 materials.« less

  13. A new approach for the determination of sulphur in food samples by high-resolution continuum source flame atomic absorption spectrometer.

    PubMed

    Ozbek, N; Baysal, A

    2015-02-01

    The new approach for the determination of sulphur in foods was developed, and the sulphur concentrations of various fresh and dried food samples determined using a high-resolution continuum source flame atomic absorption spectrometer with an air/acetylene flame. The proposed method was optimised and the validated using standard reference materials, and certified values were found to be within the 95% confidence interval. The sulphur content of foods ranged from less than the LOD to 1.5mgg(-1). The method is accurate, fast, simple and sensitive. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Multilayer thin film design for far ultraviolet polarizers using an induced transmission and absorption technique

    NASA Technical Reports Server (NTRS)

    Kim, Jongmin; Zukic, Muamer; Torr, Douglas G.

    1993-01-01

    An explanation of induced transmission for spectral regions excluding the far ultraviolet (FUV) is given to better understand how induced transmission and absorption can be used to design effective polarizers in the FUV spectral region. We achieve high s-polarization reflectance and a high degree of polarization (P equals (Rs-Rp)/(Rs+Rp)) by means of a MgF2/Al/MgF2 three layer structure on an opaque thick film of Al as the substrate. For example, our polarizer designed for the Lyman-alpha line (lambda equals 121.6 nm) has 87.95 percent reflectance for the s-polarization case and 0.43 percent for the p-polarization case, with a degree of polarization of 99.03 percent. If a double reflection polarizer is made with this design, it will have a degree of polarization of 99.99 percent and s-polarization throughput of 77.35 percent.

  15. Recent advances and applications of gas chromatography vacuum ultraviolet spectroscopy.

    PubMed

    Santos, Inês C; Schug, Kevin A

    2017-01-01

    The vacuum ultraviolet spectrophotometer was developed recently as an alternative to existing gas chromatography detectors. This detector measures the absorption of gas-phase chemical species in the range of 120-240 nm, where all chemical compounds present unique absorption spectra. Therefore, qualitative analysis can be performed and quantification follows standard Beer-Lambert law principles. Different fields of application, such as petrochemical, food, and environmental analysis have been explored. Commonly demonstrated is the capability for facile deconvolution of co-eluting analytes. The concept of additive absorption for co-eluting analytes has also been advanced for classification and speciation of complex mixtures using a data treatment procedure termed time interval deconvolution. Furthermore, pseudo-absolute quantitation can be performed for system diagnosis, as well as potentially calibrationless quantitation. In this manuscript an overview of these features, the vacuum ultraviolet spectrophotometer instrumentation, and performance capabilities are given. A discussion of the applications of the vacuum ultraviolet detector is provided by describing and discussing the papers published thus far since 2014. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Limiting Short-term Noise versus Optical Density in a Direct Absorption Spectrometer for Trace Gas Detection

    NASA Astrophysics Data System (ADS)

    Jervis, D.

    2016-12-01

    Field-deployable trace gas monitors are important for understanding a multitude of atmospheric processes: from forest photosynthesis and respiration [1], to fugitive methane emissions [2] and satellite measurement validation [3]. Consequently, a detailed knowledge of the performance limitations of these instruments is essential in order to establish reliable datasets. We present the short-term ( >1 Hz) performance of a long-pass direct absorption spectrometer as a function of the optical density of the absorption transition being probed. In particular, we identify fluctuations in the laser intensity as limiting the optical density uncertainty to 4x10-6/√Hz for weak transitions, and noise in the laser drive current as limiting the fractional noise in the optical density to 4x10-5/√Hz for deep transitions. We provide numerical and analytical predictions for both effects, as well as using the understanding of this phenomena to estimate how noise on neighboring strong and weak transitions couple to each other. All measurements were performed using the Aerodyne Research TILDAS Monitor, but are general to any instrument that uses direct absorption spectroscopy as a detection method. Wehr, R., et al. "Seasonality of temperate forest photosynthesis and daytime respiration." Nature 534.7609 (2016): 680-683. Conley, S., et al. "Methane emissions from the 2015 Aliso Canyon blowout in Los Angeles, CA." Science 351.6279 (2016): 1317-1320. Emmons, L. K., et al. "Validation of Measurements of Pollution in the Troposphere (MOPITT) CO retrievals with aircraft in situ profiles." Journal of Geophysical Research: Atmospheres 109.D3 (2004).

  17. Results from the calibration of the Extreme Ultraviolet Explorer instruments

    NASA Technical Reports Server (NTRS)

    Welsh, Barry Y.; Jelinsky, Pat; Vedder, Peter W.; Vallerga, John V.; Finley, David S.; Malina, Roger F.

    1991-01-01

    The paper describes the main features and selected results of the calibration of the scientific instruments to be flown on the Extreme Ultraviolet Explorer in 1991. The instrument payload includes three grazing incidence scanning telescopes and an EUV spectrometer/deep survey instrument covering the spectral region 70-800 A. The measured imaging characteristics, the effective areas, and the details of spectral responses of the instruments are presented. Diagrams of the cross-sectional views of the scanning telescope and the deep-survey/spectrometer telescope are included.

  18. Elucidating ultrafast electron dynamics at surfaces using extreme ultraviolet (XUV) reflection-absorption spectroscopy.

    PubMed

    Biswas, Somnath; Husek, Jakub; Baker, L Robert

    2018-04-24

    Here we review the recent development of extreme ultraviolet reflection-absorption (XUV-RA) spectroscopy. This method combines the benefits of X-ray absorption spectroscopy, such as element, oxidation, and spin state specificity, with surface sensitivity and ultrafast time resolution, having a probe depth of only a few nm and an instrument response less than 100 fs. Using this technique we investigated the ultrafast electron dynamics at a hematite (α-Fe2O3) surface. Surface electron trapping and small polaron formation both occur in 660 fs following photoexcitation. These kinetics are independent of surface morphology indicating that electron trapping is not mediated by defects. Instead, small polaron formation is proposed as the likely driving force for surface electron trapping. We also show that in Fe2O3, Co3O4, and NiO, band gap excitation promotes electron transfer from O 2p valence band states to metal 3d conduction band states. In addition to detecting the photoexcited electron at the metal M2,3-edge, the valence band hole is directly observed as transient signal at the O L1-edge. The size of the resulting charge transfer exciton is on the order of a single metal-oxygen bond length. Spectral shifts at the O L1-edge correlate with metal-oxygen bond covalency, confirming the relationship between valence band hybridization and the overpotential for water oxidation. These examples demonstrate the unique ability to measure ultrafast electron dynamics with element and chemical state resolution using XUV-RA spectroscopy. Accordingly, this method is poised to play an important role to reveal chemical details of previously unseen surface electron dynamics.

  19. Combined effects of lanthanum(III) and elevated ultraviolet-B radiation on root growth and ion absorption in soybean seedlings.

    PubMed

    Huang, Guang Rong; Wang, Li Hong; Zhou, Qing

    2014-03-01

    Rare earth element accumulation in the soil and elevated ultraviolet (UV)-B radiation (280-315 nm) are important environmental issues worldwide. To date, there have been no reports concerning the combined effects of lanthanum (La)(III) and elevated UV-B radiation on plant roots in regions where the two issues occur simultaneously. Here, the combined effects of La(III) and elevated UV-B radiation on the growth, biomass, ion absorption, activities, and membrane permeability of roots in soybean (Glycine max L.) seedlings were investigated. A 0.08 mmol L(-1) La(III) treatment improved the root growth and biomass of soybean seedlings, while ion absorption, activities, and membrane permeability were obviously unchanged; a combined treatment with 0.08 mmol L(-1) La(III) and elevated UV-B radiation (2.63/6.17 kJ m(-2) day(-1)) exerted deleterious effects on the investigated indices. The deleterious effects were aggravated in the other combined treatments and were stronger than those of treatments with La(III) or elevated UV-B radiation alone. The combined treatment with 0.24/1.20 mmol L(-1) La(III) and elevated UV-B radiation exerted synergistically deleterious effects on the growth, biomass, ion absorption, activities, and membrane permeability of roots in soybean seedlings. In addition, the deleterious effects of the combined treatment on the root growth were due to the inhibition of ion absorption induced by the changes in the root activity and membrane permeability.

  20. The Copernicus ultraviolet spectral atlas Tau Scorpii

    NASA Technical Reports Server (NTRS)

    Rogerson, J. B., Jr.; Upson, W. L., II

    1977-01-01

    An ultraviolet spectral atlas was presented for the B0 V star, Tau Scorpii. It was scanned from 949 to 1560 A by the Princeton spectrometer aboard the Copernicus satellite. From 949 to 1420 A the observations have a nominal resolution of 0.05 A. At the longer wavelengths, the resolution was 0.1 A. The atlas was presented in both tables and graphs.

  1. Ultraviolet photometry from the Orbiting Astronomical Observatory. XXXII - An atlas of ultraviolet stellar spectra

    NASA Technical Reports Server (NTRS)

    Code, A. D.; Meade, M. R.

    1979-01-01

    Ultraviolet stellar fluxes are presented in graphs and tables for 164 bright stars in the spectral region from 1200 to 3600 A. The spectra represent a subset of OAO 2 spectrometer data on file at the National Space Science Data Center. The monochromatic flux is given in units of erg per (sq cm-s-A) with a spectral resolution of about 22 A in the region from 3600 to 1850 A and of approximately 12 A in the region from 1850 to 1160 A.

  2. Magnetic fluorescent lamp having reduced ultraviolet self-absorption

    DOEpatents

    Berman, Samuel M.; Richardson, Robert W.

    1985-01-01

    The radiant emission of a mercury-argon discharge in a fluorescent lamp assembly (10) is enhanced by providing means (30) for establishing a magnetic field with lines of force along the path of electron flow through the bulb (12) of the lamp assembly, to provide Zeeman splitting of the ultraviolet spectral line. Optimum results are obtained when the magnetic field strength causes a Zeeman splitting of approximately 1.7 times the thermal line width.

  3. Measurement of temperature profiles in flames by emission-absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Simmons, F. S.; Arnold, C. B.; Lindquist, G. H.

    1972-01-01

    An investigation was conducted to explore the use of infrared and ultraviolet emission-absorption spectroscopy for determination of temperature profiles in flames. Spectral radiances and absorptances were measured in the 2.7-micron H2O band and the 3064-A OH band in H2/O2 flames for several temperature profiles which were directly measured by a sodium line-reversal technique. The temperature profiles, determined by inversion of the infrared and ultraviolet spectra, showed an average disagreement with line-reversal measurements of 50 K for the infrared and 200 K for the ultraviolet at a temperature of 2600 K. The reasons for these discrepancies are discussed in some detail.

  4. Proton radiation damage assessment of a CCD for use in a Ultraviolet and Visible Spectrometer

    NASA Astrophysics Data System (ADS)

    Gow, J. P. D.; Mason, J.; Leese, M.; Hathi, B.; Patel, M.

    2017-01-01

    This paper describes the radiation environment and radiation damage analysis performed for the Nadir and Occultation for MArs Discovery (NOMAD) Ultraviolet and Visible Spectrometer (UVIS) channel launched onboard the ExoMars Trace Gas Orbiter (TGO) in 2016. The aim of the instrument is to map the temporal and spatial variation of trace gases such as ozone and dust/cloud aerosols in the atmosphere of Mars. The instrument consists of a set of two miniature telescope viewing optics which allow for selective input onto the optical bench, where an e2v technologies CCD30-11 will be used as the detector. A Geometry Description Markup Language model of the spacecraft and instrument box was created and through the use of ESA's SPace ENVironment Information System (SPENVIS) an estimate of the 10 MeV equivalent proton fluence was made at a number of radiation sensitive regions within NOMAD, including that of the CCD30-11 which is the focus of this paper. The end of life 10 MeV equivalent proton fluence at the charge coupled device was estimated to be 4.7 × 109 protons.cm-2 three devices were irradiated at different levels up a 10 MeV equivalent fluence of 9.4 × 109 protons.cm-2. The dark current, charge transfer inefficiency, charge storage, and cosmetic quality of the devices was investigated pre- and post-irradiation, determining that the devices will continue to provide excellent science throughout the mission.

  5. Martian atmospheric O3 retrieval development for the NOMAD-UVIS spectrometer

    NASA Astrophysics Data System (ADS)

    Hewson, W.; Mason, J. P.; Leese, M.; Hathi, B.; Holmes, J.; Lewis, S. R.; Iriwin, P. G. J.; Patel, M. R.

    2017-09-01

    The composition of atmospheric trace gases and aerosols is a highly variable and poorly constrained component of the martian atmosphere, and by affecting martian climate and UV surface dose, represents a key parameter in the assessment of suitability for martian habitability. The ExoMars Trace Gas Orbiter (TGO) carries the Open University (OU) designed Ultraviolet and VIsible Spectrometer (UVIS) instrument as part of the Belgian-led Nadir and Occultation for MArs Discovery (NOMAD) spectrometer suite. NOMAD will begin transmitting science observations of martian surface and atmosphere back-scattered UltraViolet (UV) and visible radiation in Spring 2018, which will be processed to derive spatially and temporally averaged atmospheric trace gas and aerosol concentrations, intended to provide a better understanding of martian atmospheric photo-chemistry and dynamics, and will also improve models of martian atmospheric chemistry, climate and habitability. Work presented here illustrates initial development and testing of the OU's new retrieval algorithm for determining O3 and aerosol concentrations from the UVIS instrument.

  6. Computer-Graphics Emulation of Chemical Instrumentation: Absorption Spectrophotometers.

    ERIC Educational Resources Information Center

    Gilbert, D. D.; And Others

    1982-01-01

    Describes interactive, computer-graphics program emulating behavior of high resolution, ultraviolet-visible analog recording spectrophotometer. Graphics terminal behaves as recording absorption spectrophotometer. Objective of the emulation is study of optimization of the instrument to yield accurate absorption spectra, including…

  7. VUV Fourier-Transform absorption study of the npπ1 Πu-, v, N ←X1 Σg+, v″ = 0,N″ transitions in D2

    NASA Astrophysics Data System (ADS)

    Glass-Maujean, M.; Jungen, Ch.; Dickenson, G. D.; Ubachs, W.; de Oliveira, N.; Joyeux, D.; Nahon, L.

    2015-09-01

    The DESIRS beamline of the SOLEIL synchrotron facility, equipped with a vacuum ultraviolet Fourier-Transform spectrometer has been used to measure Q (N″) (N -N″ = 0) absorption transitions of the D2 molecule. Some 212 Q-lines were assigned and their transition frequencies determined up to excitation energies of 137 000 cm-1 above the ground state, thereby extending the earlier work by various authors, and considerably improving the spectral accuracy (<0.1 cm-1). The assignments have been aided by first principles multichannel quantum defect theory (MQDT) calculations which also provide predictions of the autoionization widths of the upper levels.

  8. The role of film interfaces in near-ultraviolet absorption and pulsed-laser damage in ion-beam-sputtered coatings based on HfO 2/SiO 2 thin-film pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ristau, Detlev; Papernov, S.; Kozlov, A. A.

    2015-11-23

    The role of thin-film interfaces in the near-ultraviolet absorption and pulsed-laser–induced damage was studied for ion-beam–sputtered and electron-beam–evaporated coatings comprised from HfO 2 and SiO 2 thin-film pairs. To separate contributions from the bulk of the film and from interfacial areas, absorption and damage-threshold measurements were performed for a one-wave (355-nm wavelength) thick, HfO 2 single-layer film and for a film containing seven narrow HfO 2 layers separated by SiO 2 layers. The seven-layer film was designed to have a total optical thickness of HfO 2 layers, equal to one wave at 355 nm and an E-field peak and averagemore » intensity similar to a single-layer HfO 2 film. Absorption in both types of films was measured using laser calorimetry and photothermal heterodyne imaging. The results showed a small contribution to total absorption from thin-film interfaces, as compared to HfO 2 film material. The relevance of obtained absorption data to coating near-ultraviolet, nanosecond-pulse laser damage was verified by measuring the damage threshold and characterizing damage morphology. The results of this study revealed a higher damage resistance in the seven-layer coating as compared to the single-layer HfO 2 film in both sputtered and evaporated coatings. Here, the results are explained through the similarity of interfacial film structure with structure formed during the co-deposition of HfO 2 and SiO 2 materials.« less

  9. A photoacoustic spectrometer for trace gas detection

    NASA Astrophysics Data System (ADS)

    Telles, E. M.; Bezerra, E.; Scalabrin, A.

    2005-06-01

    A high-resolution external laser photoacoustic spectrometer has been developed for trace gas detection with absorption transitions in coincidence with CO2 laser emission lines (9,2-10,9 μm: 920-1086 cm-1). The CO2 laser operates in 90 CW lines with power of up to 15 W. A PC-controlled step motor can tune the laser lines. The resonance frequency of first longitudinal mode of the photoacoustic cell is at 1600 Hz. The cell Q-factor and cell constant are measured close to 50 and 28 mVcmW-1, respectively. The spectrometer has been tested in preliminary studies to analyze the absorption transitions of ozone (O_3). The ethylene (C_2H_4) from papaya fruit is also investigated using N2 as carrier gas at a constant flow rate.

  10. Measurement of the spectral absorption of liquid water in melting snow with an imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Dozier, Jeff

    1995-01-01

    Melting of the snowpack is a critical parameter that drives aspects of the hydrology in regions of the earth where snow accumulates seasonally. New techniques for measurement of snow melt over regional scales offer the potential to improve monitoring and modeling of snow-driven hydrological processes. We present the results of measuring the spectral absorption of liquid water in a melting snowpack with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS data were acquired over Mammoth Mountain, in east central California on 21 May 1994 at 18:35 UTC. The air temperature at 2926 m on Mammoth Mountain at site A was measured at 15-minute intervals during the day preceding the AVIRIS data acquisition. At this elevation, the air temperature did not drop below freezing the night of May 20 and had risen to 6 degrees Celsius by the time of the overflight on May 21. These temperature conditions support the presence of melting snow at the surface as the AVIRIS data were acquired.

  11. Far Ultraviolet Spectroscopy of the Intergalactic and Interstellar Absorption Toward 3C 273

    NASA Technical Reports Server (NTRS)

    Sembach, Kenneth R.; Howk, J. Christopher; Savage, Blair D.; Shull, J. Michael; Oegerle, William R.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We present Far Ultraviolet Spectroscopic Explorer observations of the molecular, neutral atomic, weakly ionized, and highly ionized components of the interstellar and intergalactic material toward the quasar 3C273. We identify Ly-beta absorption in eight of the known intergalactic Ly-alpha absorbers along the sight line with the rest-frame equivalent widths W(sub r)(Ly-alpha) > 50 micro-angstroms. Refined estimates of the H(I) column densities and Doppler parameters (b) of the clouds are presented. We find a range of b = 16-46 km/s. We detect multiple H(I) lines (Ly-beta - Ly-theta) in the 1590 km/s Virgo absorber and estimate logN(H(I)) = 15.85 +/- 0.10, ten times more H(I) than all of the other absorbers along the sight line combined. The Doppler width of this absorber, b = 16 km/s, implies T < 15,000 K. We detect O(VI) absorption at 1015 km/s at the 2-3(sigma) level that may be associated with hot, X-ray emitting gas in the Virgo Cluster. We detect weak C(III) and O(VI) absorption in the IGM at z=0.12007; this absorber is predominantly ionized and has N(H+)/N(H(I)) > 4000/Z, where Z is the metallicity. Strong Galactic interstellar O(VI) is present between -100 and +100 km/s with an additional high-velocity wing containing about 13% of the total O(VI) between +100 and +240 km/s. The Galactic O(VI), N(V), and C(IV) lines have similar shapes, with roughly constant ratios across the -100 to +100 km/s velocity range. The high velocity O(VI) wing is not detected in other species. Much of the interstellar high ion absorption probably occurs within a highly fragmented medium within the Loop IV remnant or in the outer cavity walls of the remnant. Multiple hot gas production mechanisms are required. The broad O(VI) absorption wing likely traces the expulsion of hot gas out of the Galactic disk into the halo. A flux limit of 5.4 x 10(epx -16) erg/sq cm/s on the amount of diffuse O(VI) emission present = 3.5' off the 3C273 sight line combined with the observed O(VI) column

  12. Spectrometer Baseline Control Via Spatial Filtering

    NASA Technical Reports Server (NTRS)

    Burleigh, M. R.; Richey, C. R.; Rinehart, S. A.; Quijada, M. A.; Wollack, E. J.

    2016-01-01

    An absorptive half-moon aperture mask is experimentally explored as a broad-bandwidth means of eliminating spurious spectral features arising from reprocessed radiation in an infrared Fourier transform spectrometer. In the presence of the spatial filter, an order of magnitude improvement in the fidelity of the spectrometer baseline is observed. The method is readily accommodated within the context of commonly employed instrument configurations and leads to a factor of two reduction in optical throughput. A detailed discussion of the underlying mechanism and limitations of the method are provided.

  13. Rocket-UV Spectrometer

    NASA Technical Reports Server (NTRS)

    Burgess, Julian; Westberg, Karl

    1961-01-01

    This is a report of the second three months (March-May 1961) of a program to design and fabricate an ultraviolet spectrometer and fine guidance control for use in an Aerobee-Hi rocket. The work is being done under Subcontract No. 1 under Contract NASr-3 between Princeton University and the National Aeronautical and Space Administration. The design goals for this instrument are described in the report for the first three month period (Perkin-Elmer Engineering Report No. 5906). The accomplishments of the second three month period include the solution of certain design problems, the establishment of an effective liaison system with personnel at Goddard Space Flight Center, and the completion of certain design and fabrication tasks.

  14. Development of vacuum ultraviolet absorption spectroscopy system for wide measurement range of number density using a dual-tube inductively coupled plasma light source

    NASA Astrophysics Data System (ADS)

    Kuwahara, Akira; Matsui, Makoto; Yamagiwa, Yoshiki

    2012-12-01

    A vacuum ultraviolet absorption spectroscopy system for a wide measurement range of atomic number densities is developed. Dual-tube inductively coupled plasma was used as a light source. The probe beam profile was optimized for the target number density range by changing the mass flow rate of the inner and outer tubes. This system was verified using cold xenon gas. As a result, the measurement number density range was extended from the conventional two orders to five orders of magnitude.

  15. Multilaser Herriott Cell for Planetary Tunable Laser Spectrometers

    NASA Technical Reports Server (NTRS)

    Tarsitano, Christopher G.; Webster, Christopher R.

    2007-01-01

    Geometric optics and matrix methods are used to mathematically model multilaser Herriott cells for tunable laser absorption spectrometers for planetary missions. The Herriott cells presented accommodate several laser sources that follow independent optical paths but probe a single gas cell. Strategically placed output holes located in the far mirrors of the Herriott cells reduce the size of the spectrometers. A four-channel Herriott cell configuration is presented for the specific application as the sample cell of the tunable laser spectrometer instrument selected for the sample analysis at Mars analytical suite on the 2009 Mars Science Laboratory mission.

  16. ASASSN-15LH: A SUPERLUMINOUS ULTRAVIOLET REBRIGHTENING OBSERVED BY SWIFT AND HUBBLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Peter J.; Yang, Yi; Wang, Lifan

    2016-09-01

    We present and discuss ultraviolet and optical photometry from the Ultraviolet/Optical Telescope, X-ray limits from the X-Ray Telescope on Swift, and imaging polarimetry and ultraviolet/optical spectroscopy with the Hubble Space Telescope , all from observations of ASASSN-15lh. It has been classified as a hydrogen-poor superluminous supernova (SLSN I), making it more luminous than any other supernova observed. ASASSN-15lh is not detected in the X-rays in individual or co-added observations. From the polarimetry we determine that the explosion was only mildly asymmetric. We find the flux of ASASSN-15lh to increase strongly into the ultraviolet, with an ultraviolet luminosity 100 times greatermore » than the hydrogen-rich, ultraviolet-bright SLSN II SN 2008es. We find that objects as bright as ASASSN-15lh are easily detectable beyond redshifts of ∼4 with the single-visit depths planned for the Large Synoptic Survey Telescope. Deep near-infrared surveys could detect such objects past a redshift of ∼20, enabling a probe of the earliest star formation. A late rebrightening—most prominent at shorter wavelengths—is seen about two months after the peak brightness, which is itself as bright as an SLSN. The ultraviolet spectra during the rebrightening are dominated by the continuum without the broad absorption or emission lines seen in SLSNe or tidal disruption events (TDEs) and the early optical spectra of ASASSN-15lh. Our spectra show no strong hydrogen emission, showing only Ly α absorption near the redshift previously found by optical absorption lines of the presumed host. The properties of ASASSN-15lh are extreme when compared to either SLSNe or TDEs.« less

  17. Physical Conditions in the Ultraviolet Absorbers of IRAS F22456-5125

    NASA Astrophysics Data System (ADS)

    Dunn, Jay P.; Crenshaw, D. Michael; Kraemer, S. B.; Trippe, M. L.

    2010-04-01

    We present the ultraviolet (UV) and X-ray spectra observed with the Far Ultraviolet Spectroscopic Explorer (FUSE) and the XMM-Newton satellite, respectively, of the low-z Seyfert 1 galaxy IRAS F22456 - 5125. This object shows absorption from five distinct, narrow kinematic components that span a significant range in velocity (~0 to -700 km s-1) and ionization (Lyman series, C III, N III, and O VI). We also show that three of the five kinematic components in these lines appear to be saturated in Lyβ λ1026 and that all five components show evidence of saturation in the O VI doublet lines λλ1032, 1038. Further, all five components show evidence for partial covering due to the absorption seen in the O VI doublet. This object is peculiar because it shows no evidence for corresponding X-ray absorption to the UV absorption in the X-ray spectrum, which violates the 1:1 correlation known for low-z active galactic nuclei (AGNs). We perform photoionization modeling of the UV absorption lines and predict that the O VII column density should be small, which would produce little to no absorption in agreement with the X-ray observation. We also examine the UV variability of the continuum flux for this object (an increase of a factor of 6). As the absorption components lack variability, we find a lower limit of ~20 kpc for the distance for the absorbers from the central AGN. Based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer. FUSE is operated for NASA by the Johns Hopkins University under NASA contract NAS5-32985.

  18. The complex refractive index of atmospheric and model humic-like substances (HULIS) retrieved by a cavity ring down aerosol spectrometer (CRD-AS).

    PubMed

    Dinar, E; Riziq, A Abo; Spindler, C; Erlick, C; Kiss, G; Rudich, Y

    2008-01-01

    Atmospheric aerosols absorb and reflect solar radiation causing surface cooling and heating of the atmosphere. The interaction between aerosols and radiation depends on their complex index of refraction, which is related to the particles' chemical composition. The contribution of light absorbing organic compounds, such as HUmic-LIke Substances (HULIS) to aerosol scattering and absorption is among the largest uncertainties in assessing the direct effect of aerosols on climate. Using a Cavity Ring Down Aerosol Spectrometer (CRD-AS), the complex index of refraction of aerosols containing HULIS extracted from pollution, smoke, and rural continental aerosols, and molecular weight-fractionated fulvic acid was measured at 390 nm and 532 nm. The imaginary part of the refractive index (absorption) substantially increases towards the UV range with increasing molecular weight and aromaticity. At both wavelengths, HULIS extracted from pollution and smoke particles absorb more than HULIS from the rural aerosol. Sensitivity calculations for a pollution-type aerosol containing ammonium sulfate, organic carbon (HULIS), and soot suggests that accounting for absorption by HULIS leads in most cases to a significant decrease in the single scattering albedo and to a significant increase in aerosol radiative forcing efficiency, towards more atmospheric absorption and heating. This indicates that HULIS in biomass smoke and pollution aerosols, in addition to black carbon, can contribute significantly to light absorption in the ultraviolet and visible spectral regions.

  19. Pluto's Far Ultraviolet Spectrum and Airglow Emissions

    NASA Astrophysics Data System (ADS)

    Steffl, A.; Schindhelm, E.; Kammer, J.; Gladstone, R.; Greathouse, T. K.; Parker, J. W.; Strobel, D. F.; Summers, M. E.; Versteeg, M. H.; Ennico Smith, K.; Hinson, D. P.; Linscott, I.; Olkin, C.; Parker, A. H.; Retherford, K. D.; Singer, K. N.; Tsang, C.; Tyler, G. L.; Weaver, H. A., Jr.; Woods, W. W.; Young, L. A.; Stern, A.

    2015-12-01

    The Alice far ultraviolet spectrograph on the New Horizons spacecraft is the second in a family of six instruments in flight on, or under development for, NASA and ESA missions. Here, we present initial results from the Alice observations of Pluto during the historic flyby. Pluto's far ultraviolet spectrum is dominated by sunlight reflected from the surface with absorption by atmospehric constituents. We tentatively identify C2H2 and C2H4 in Pluto's atmosphere. We also present evidence for weak airglow emissions.

  20. Interstellar absorption of the extreme ultraviolet flux from two hot white dwarfs

    NASA Technical Reports Server (NTRS)

    Cash, W.; Bowyer, S.; Lampton, M.

    1979-01-01

    Photometric upper limits on the 300 A flux from the hot white dwarfs Feige 24 and G191-B2B are presented. The limits, which were obtained with a rocket-borne extreme ultraviolet imaging telescope, are interpreted as lower limits on the density of the intervening interstellar matter. The limits are used to investigate the state of interstellar gas within 100 pc. A local clumpiness factor, which is of value in planning future extreme ultraviolet observations, is derived.

  1. Mid infrared MEMS FTIR spectrometer

    NASA Astrophysics Data System (ADS)

    Erfan, Mazen; Sabry, Yasser M.; Mortada, Bassem; Sharaf, Khaled; Khalil, Diaa

    2016-03-01

    In this work we report, for the first time to the best of our knowledge, a bulk-micromachined wideband MEMS-based spectrometer covering both the NIR and the MIR ranges and working from 1200 nm to 4800 nm. The core engine of the spectrometer is a scanning Michelson interferometer micro-fabricated using deep reactive ion etching (DRIE) technology. The spectrum is obtained using the Fourier Transform techniques that allows covering a very wide spectral range limited by the detector responsivity. The moving mirror of the interferometer is driven by a relatively large stroke electrostatic comb-drive actuator. Zirconium fluoride (ZrF4) multimode optical fibers are used to connect light between the white light source and the interferometer input, as well as the interferometer output to a PbSe photoconductive detector. The recorded signal-to-noise ratio is 25 dB at the wavelength of 3350 nm. The spectrometer is successfully used in measuring the absorption spectra of methylene chloride, quartz glass and polystyrene film. The presented solution provides a low cost method for producing miniaturized spectrometers in the near-/mid-infrared.

  2. Qualification of a Multi-Channel Infrared Laser Absorption Spectrometer for Monitoring CO, HCl, HCN, HF, and CO2 Aboard Manned Spacecraft

    NASA Technical Reports Server (NTRS)

    Briggs, Ryan M.; Frez, Clifford; Forouhar, Siamak; May, Randy D.; Meyer, Marit E.; Kulis, Michael J.; Berger, Gordon M.

    2015-01-01

    Monitoring of specific combustion products can provide early-warning detection of accidental fires aboard manned spacecraft and also identify the source and severity of combustion events. Furthermore, quantitative in situ measurements are important for gauging levels of exposure to hazardous gases, particularly on long-duration missions where analysis of returned samples becomes impractical. Absorption spectroscopy using tunable laser sources in the 2 to 5 micrometer wavelength range enables accurate, unambiguous detection of CO, HCl, HCN, HF, and CO2, which are produced in varying amounts through the heating of electrical components and packaging materials commonly used aboard spacecraft. Here, we report on calibration and testing of a five-channel laser absorption spectrometer designed to accurately monitor ambient gas-phase concentrations of these five compounds, with low-level detection limits based on the Spacecraft Maximum Allowable Concentrations. The instrument employs a two-pass absorption cell with a total optical pathlength of 50 cm and a dedicated infrared semiconductor laser source for each target gas. We present results from testing the five-channel sensor in the presence of trace concentrations of the target compounds that were introduced using both gas sources and oxidative pyrolysis (non-flaming combustion) of solid material mixtures.

  3. The Copernicus ultraviolet spectral atlas of Gamma Pegasi

    NASA Technical Reports Server (NTRS)

    Rogerson, J. B., Jr.

    1985-01-01

    An ultraviolet spectral atlas is presented for the B2 IV star Gamma Pegasi, which has been scanned from 970 to 1501 A by the Princeton spectrometer aboard the Copernicus satellite. From 970 to 1430 A the observations have a nominal resolution of 0.05 A. At the longer wavelengths the resolution is 0.1 A. The atlas is presented in graphs. Line identifications are also listed.

  4. The Copernicus ultraviolet spectral atlas of Tau Scorpii

    NASA Technical Reports Server (NTRS)

    Rogerson, J. B., Jr.; Upson, W. L., II

    1977-01-01

    An ultraviolet spectral atlas is presented for the B0 V star, Tau Scorpii. It has been scanned from 949 to 1560 A by the Princeton spectrometer aboard the Copernicus satellite. From 949 to 1420 A the observations have a nominal resolution of 0.05 A. At the longer wavelengths, the resolution is 0.1 A. The atlas is presented in both tables and graphs.

  5. Determination of technical readiness for an atmospheric carbon imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Mobilia, Joseph; Kumer, John B.; Palmer, Alice; Sawyer, Kevin; Mao, Yalan; Katz, Noah; Mix, Jack; Nast, Ted; Clark, Charles S.; Vanbezooijen, Roel; Magoncelli, Antonio; Baraze, Ronald A.; Chenette, David L.

    2013-09-01

    The geoCARB sensor uses a 4-channel push broom slit-scan infrared imaging grating spectrometer to measure the absorption spectra of sunlight reflected from the ground in narrow wavelength regions. The instrument is designed for flight at geostationary orbit to provide mapping of greenhouse gases over continental scales, several times per day, with a spatial resolution of a few kilometers. The sensor provides multiple daily maps of column-averaged mixing ratios of CO2, CH4, and CO over the regions of interest, which enables flux determination at unprecedented time, space, and accuracy scales. The geoCARB sensor development is based on our experience in successful implementation of advanced space deployed optical instruments for remote sensing. A few recent examples include the Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) on the geostationary Solar Dynamics Observatory (SDO), the Space Based Infrared System (SBIRS GEO-1) and the Interface Region Imaging Spectrograph (IRIS), along with sensors under development, the Near Infared camera (NIRCam) for James Webb (JWST), and the Global Lightning Mapper (GLM) and Solar UltraViolet Imager (SUVI) for the GOES-R series. The Tropospheric Infrared Mapping Spectrometer (TIMS), developed in part through the NASA Instrument Incubator Program (IIP), provides an important part of the strong technological foundation for geoCARB. The paper discusses subsystem heritage and technology readiness levels for these subsystems. The system level flight technology readiness and methods used to determine this level are presented along with plans to enhance the level.

  6. Adaptive Tunable Laser Spectrometer for Space Applications

    NASA Technical Reports Server (NTRS)

    Flesch, Gregory; Keymeulen, Didier

    2010-01-01

    An architecture and process for the rapid prototyping and subsequent development of an adaptive tunable laser absorption spectrometer (TLS) are described. Our digital hardware/firmware/software platform is both reconfigurable at design time as well as autonomously adaptive in real-time for both post-integration and post-launch situations. The design expands the range of viable target environments and enhances tunable laser spectrometer performance in extreme and even unpredictable environments. Through rapid prototyping with a commercial RTOS/FPGA platform, we have implemented a fully operational tunable laser spectrometer (using a highly sensitive second harmonic technique). With this prototype, we have demonstrated autonomous real-time adaptivity in the lab with simulated extreme environments.

  7. Environmental Temperature Effect on the Far-Infrared Absorption Features of Aromatic-Based Titan's Aerosol Analogs

    NASA Technical Reports Server (NTRS)

    Gautier, Thomas; Trainer, Melissa G.; Loeffler, Mark J.; Sebree, Joshua A.; Anderson, Carrie M.

    2016-01-01

    Benzene detection has been reported in Titans atmosphere both in the stratosphere at ppb levels by remote sensing and in the thermosphere at ppm levels by the Cassini's Ion and Neutral Mass Spectrometer. This detection supports the idea that aromatic and heteroaromatic reaction pathways may play an important role in Titans atmospheric chemistry, especially in the formation of aerosols. Indeed, aromatic molecules are easily dissociated by ultraviolet radiation and can therefore contribute significantly to aerosol formation. It has been shown recently that aerosol analogs produced from a gas mixture containing a low concentration of aromatic and/or heteroaromatic molecules (benzene, naphthalene, pyridine, quinoline and isoquinoline) have spectral signatures below 500/cm, a first step towards reproducing the aerosol spectral features observed by Cassini's Composite InfraRed Spectrometer (CIRS) in the far infrared. In this work we investigate the influence of environmental temperature on the absorption spectra of such aerosol samples, simulating the temperature range to which aerosols, once formed, are exposed during their transport through Titans stratosphere. Our results show that environmental temperature does not have any major effect on the spectral shape of these aerosol analogs in the far-infrared, which is consistent with the CIRS observations.

  8. Ultraviolet Imaging Telescope images of the reflection nebula NGC 7023 - Derivation of ultraviolet scattering properties of dust grains

    NASA Technical Reports Server (NTRS)

    Witt, Adolf N.; Petersohn, Jens K.; Bohlin, Ralph C.; O'Connell, Robert W.; Roberts, Morton S.; Smith, Andrew M.; Stecher, Theodore P.

    1992-01-01

    The Ultraviolet Imaging Telescope as part of the Astro-1 mission, was used to obtain high-resolution surface brightness distribution data in six ultraviolet wavelength bands for the bright reflection nebula NGC 7023. From the quantitative comparison of the measured surface brightness gradients ratios of nebular to stellar flux, and detail radial surface brightness profiles with corresponding data from the visible, two major conclusions results: (1) the scattering in the near- and far-ultraviolet in this nebula is more strongly forward-directed than in the visible; (2) the dust albedo in the ultraviolet for wavelengths not less than 140 nm is identical to that in the visible, with the exception of the 220 nm bump in the extinction curve. In the wavelengths region of the bump, the albedo is reduced by 25 to 30 percent in comparison with wavelengths regions both shorter and longer. This lower albedo is expected, if the bump is a pure absorption feature.

  9. Ultraviolet Views of Enceladus, Tethys, and Dione

    NASA Technical Reports Server (NTRS)

    Hansen, C. J.; Hendrix, A. R.

    2005-01-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) has collected ultraviolet observations of many of Saturn's icy moons since Cassini's insertion into orbit around Saturn. We will report on results from Enceladus, Tethys and Dione, orbiting in the Saturn system at distances of 3.95, 4.88 and 6.26 Saturn radii, respectively. Icy satellite science objectives of the UVIS include investigations of surface age and evolution, surface composition and chemistry, and tenuous exospheres. We address these objectives by producing albedo maps, and reflection and emission spectra, and observing stellar occultations. UVIS has four channels: EUV: Extreme Ultraviolet (55 nm to 110 nm), FUV: Far Ultraviolet (110 to 190 nm), HSP: High Speed Photometer, and HDAC: Hydrogen-Deuterium Absorption Cell. The EUV and FUV spectrographs image onto a 2-dimensional detector, with 64 spatial rows by 1024 spectral columns. To-date we have focused primarily on the far ultraviolet data acquired with the low resolution slit width (4.8 angstrom spectral resolution). Additional information is included in the original extended abstract.

  10. Antioxidant content and ultraviolet absorption characteristics of human tears.

    PubMed

    Choy, Camus Kar Man; Cho, Pauline; Benzie, Iris F F

    2011-04-01

    Dry eye syndrome is a common age-related disorder, and decreased antioxidant/ultraviolet (UV) radiation protection in tears may be part of the cause. This study aimed to compare the tear antioxidant content and flow rate in young and older adults. The total antioxidant content and UV absorbing properties of various commercially available ophthalmic solutions used to alleviate dry eye symptoms were also examined. Minimally stimulated tears were collected from 120 healthy Chinese adults with no ocular pathology. Two age groups were studied: 19 to 29 years (n = 58) and 50 to 75 years (n = 62). Tear samples from each subject and 13 ophthalmic solutions were analyzed for total antioxidant content (as the Ferric Reducing/Antioxidant Power value). Tear flow rates were estimated from time taken to collect a fixed volume of tear fluid. UV absorbance spectra of pooled fresh reflex tear fluid and the ophthalmic solutions were determined. Results showed that the antioxidant content of minimally stimulated tears from older subjects (398 ± 160 μmol/l) was not significantly lower than that of younger subjects (348 ± 159 μmol/l; p = 0.0915). However, there was a significant difference in the tear flow rates between the two groups (p < 0.0001), with the younger group having three to four fold higher flow rate. None of the commercial preparations tested had detectable antioxidant content, and none showed the UV absorption characteristics of natural reflex tears. The effect of low flow rate on the dynamic antioxidant supply to the corneal surface indicates that older subjects have poorer overall defense against photooxidative and other oxidative processes. This could predispose older persons to corneal stress and development of dry eye syndrome. The commercially available artificial tears tested lack both the antioxidant content and UV absorbing characteristics of natural tears. Artificial tears formulations that help restore natural antioxidant and UV absorbing properties to the

  11. Microscopic solvent structure of subcritical and supercritical methanol from ultraviolet/visible absorption and fluorescence spectroscopies

    NASA Astrophysics Data System (ADS)

    Bulgarevich, Dmitry S.; Sako, Takeshi; Sugeta, Tsutomu; Otake, Katsuto; Takebayashi, Yoshihiro; Kamizawa, Chiyoshi; Uesugi, Masayuki; Kato, Masahiro

    1999-09-01

    Ultraviolet/visible absorption and fluorescence spectroscopies at different temperatures and pressures were applied to investigate the microscopic solvent structures of subcritical and supercritical methanol using 4-nitroanisole, ethyl-(4-dimethylamino)benzoate, Reichardt's dye, and anthracene as the probe molecules. It was found that at temperatures higher than 150 °C the long winding chains of sequentially hydrogen-bonded methanol molecules were probably broken, but the small hydrogen-bonded aggregates possibly existed in methanol even at higher temperature. It was also found that the solvation process of the anthracene molecule in the S0-ground state obeyed the Langmuir adsorption model. However, in the case of fluorescence measurements in supercritical methanol, we detected deviations from the simple Langmuir adsorption model. These deviations were explained in terms of preferential solvation of the solvent molecules around photoexcited anthracene. Judging from the experimental results, it was concluded that the local density augmentation of the supercritical methanol around the nonpolar solute was a short-ranged effect, which did not correspond directly to the large isothermal compressibility of fluid near the critical point.

  12. The Copernicus ultraviolet spectral atlas of Beta Orionis

    NASA Technical Reports Server (NTRS)

    Rogerson, J. B., Jr.; Upson, W. L., II

    1982-01-01

    An ultraviolet spectral atlas is presented for the B8 Ia star Beta Orionis, which has been scanned from 999 to 1561 A by the Princeton spectrometer aboard the Copernicus satellite. From 999 to 1420 A the observations have a nominal resolution of 0.05 A. At the longer wavelengths the resolution is 0.1 A. The atlas is presented in graphs. Lines identified in the spectrum are also listed.

  13. The Copernicus ultraviolet spectral atlas of Iota Herculis

    NASA Technical Reports Server (NTRS)

    Upson, W. L., II; Rogerson, J. B., Jr.

    1980-01-01

    An ultraviolet spectral atlas is presented for the B3 IV star Iota Herculis, which has been scanned from 999 to 1467 A by the Princeton spectrometer aboard the Copernicus satellite. From 999 to 1422 A the observations have a nominal resolution of 0.05 A. At the longer wavelengths the resolution is 0.1 A. The atlas is presented in graphs. Lines identified in the spectrum are also listed.

  14. Analysis of airborne imaging spectrometer data for the Ruby Mountains, Montana, by use of absorption-band-depth images

    NASA Technical Reports Server (NTRS)

    Brickey, David W.; Crowley, James K.; Rowan, Lawrence C.

    1987-01-01

    Airborne Imaging Spectrometer-1 (AIS-1) data were obtained for an area of amphibolite grade metamorphic rocks that have moderate rangeland vegetation cover. Although rock exposures are sparse and patchy at this site, soils are visible through the vegetation and typically comprise 20 to 30 percent of the surface area. Channel averaged low band depth images for diagnostic soil rock absorption bands. Sets of three such images were combined to produce color composite band depth images. This relative simple approach did not require extensive calibration efforts and was effective for discerning a number of spectrally distinctive rocks and soils, including soils having high talc concentrations. The results show that the high spectral and spatial resolution of AIS-1 and future sensors hold considerable promise for mapping mineral variations in soil, even in moderately vegetated areas.

  15. Measurement of the Spectral Absorption of Liquid Water in Melting Snow With an Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Dozier, Jeff

    1995-01-01

    Melting of the snowpack is a critical parameter that drives aspects of the hydrology in regions of the Earth where snow accumulates seasonally. New techniques for measurement of snow melt over regional scales offer the potential to improve monitoring and modeling of snow-driven hydrological processes. In this paper we present the results of measuring the spectral absorption of liquid water in a melting snowpack with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS data were acquired over Mammoth Mountain, in east central California on 21 May 1994 at 18:35 UTC. The air temperature at 2926 m on Mammoth Mountain at site A was measured at 15-minute intervals during the day preceding the AVIRIS data acquisition. At this elevation. the air temperature did not drop below freezing the night of the May 20 and had risen to 6 degrees Celsius by the time of the overflight on May 21. These temperature conditions support the presence of melting snow at the surface as the AVIRIS data were acquired.

  16. Fast wavelength calibration method for spectrometers based on waveguide comb optical filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zhengang; Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240; Huang, Meizhen, E-mail: mzhuang@sjtu.edu.cn

    2015-04-15

    A novel fast wavelength calibration method for spectrometers based on a standard spectrometer and a double metal-cladding waveguide comb optical filter (WCOF) is proposed and demonstrated. By using the WCOF device, a wide-spectrum beam is comb-filtered, which is very suitable for spectrometer wavelength calibration. The influence of waveguide filter’s structural parameters and the beam incident angle on the comb absorption peaks’ wavelength and its bandwidth are also discussed. The verification experiments were carried out in the wavelength range of 200–1100 nm with satisfactory results. Comparing with the traditional wavelength calibration method based on discrete sparse atomic emission or absorption lines,more » the new method has some advantages: sufficient calibration data, high accuracy, short calibration time, fit for produce process, stability, etc.« less

  17. Electrospray-assisted ultraviolet aerodynamic particle sizer spectrometer for real-time characterization of bacterial particles.

    PubMed

    Jung, Jae Hee; Lee, Jung Eun; Hwang, Gi Byoung; Lee, Byung Uk; Lee, Seung Bok; Jurng, Jong Soo; Bae, Gwi Nam

    2010-01-15

    The ultraviolet aerodynamic particle sizer (UVAPS) spectrometer is a novel, commercially available aerosol counter for real-time, continuous monitoring of viable bioaerosols based on the fluorescence induced from living microorganisms. For aerosolization of liquid-based microorganisms, general aerosolization methods such as atomization or nebulization may not be adequate for an accurate and quantitative characterization of the microorganisms because of the formation of agglomerated particles. In such cases, biological electrospray techniques have an advantage because they generate nonagglomerated particles, attributable to the repulsive electrical forces among particles with unipolar charges. Biological electrosprays are quickly gaining potential for the detection and control of living organisms in applications ranging from mass spectrometry to developmental microbiology. In this study, we investigated the size distribution, total concentration, and fluorescence percentage of bacterial particles in a real-time manner by electrospray-assisted UVAPS. A suspension containing Escherichia coli as a test microorganism was sprayed in a steady cone-jet mode using a specially designed electrospray system with a point-to-orifice-plate configuration based on charge-reduced electrospray size spectrometry. With the electrospray process, 98% of the total E. coli particle number concentration had a size of <1 mum and the geometric mean diameter was 0.779 mum, as compared with the respective values of 78% and 0.907 mum after nebulization. The fractions of fluorescence responsive particles and of particles that contained viable organisms in culture were 12% and 7%, respectively, from the electrospray process and 34% and 24% from nebulization. These results demonstrate that (1) the presence of agglomerated particles can lead to markedly overestimated fluorescence and culturability percentages compared with the values obtained from nonagglomerated particles, and (2) electrospray

  18. Ultraviolet photometry from the Orbiting Astronomical Observatory. XXI - Absolute energy distribution of stars in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Code, A. D.; Fairchild, E. T.

    1976-01-01

    The absolute energy distribution in the ultraviolet is given for the stars alpha Vir, eta UMa, and alpha Leo. The calibration is based on absolute heterochromatic photometry between 2920 and 1370 A carried out with an Aerobee sounding rocket. The fundamental radiation standard is the synchrotron radiation from 240-MeV electrons in a certain synchrotron storage ring. On the basis of the sounding-rocket calibration, the preliminary OAO-2 spectrometer calibration has been revised; the fluxes for the three program stars are tabulated in energy per second per square centimeter per unit wavelength interval.

  19. Organic molecules and nanoparticles in inorganic crystals: Vitamin C in CaCO3 as an ultraviolet absorber

    NASA Astrophysics Data System (ADS)

    Sato, H.; Ikeya, M.

    2004-03-01

    Organic molecules and nanoparticles embedded in inorganic crystalline lattices have been studied to add different properties and functions to composite materials. Calcium carbonate was precipitated by dropping an aqueous solution of CaCl2 into that of Na2CO3 containing dissolved vitamin C (ascorbic acid). The optical absorption ascribed to divalent ascorbate anions in the lattice was observed in the ultraviolet B (wavelength: 280-315 nm) region, while solid vitamin C exhibited absorption in the ultraviolet C (100-280 nm) region. The divalent ascorbate anion is only stable in CaCO3 due to the absence of oxygen molecules. Doping CaCO3 with nanoparticles of ZnO also enhanced the absorption in the ultraviolet A (315-380 nm) region. These composite materials are suggested for use as UV absorbers.

  20. Distributed Water Pollution Source Localization with Mobile UV-Visible Spectrometer Probes in Wireless Sensor Networks.

    PubMed

    Ma, Junjie; Meng, Fansheng; Zhou, Yuexi; Wang, Yeyao; Shi, Ping

    2018-02-16

    Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths.

  1. Distributed Water Pollution Source Localization with Mobile UV-Visible Spectrometer Probes in Wireless Sensor Networks

    PubMed Central

    Zhou, Yuexi; Wang, Yeyao; Shi, Ping

    2018-01-01

    Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths. PMID:29462929

  2. Rapid, Time-Division Multiplexed, Direct Absorption- and Wavelength Modulation-Spectroscopy

    PubMed Central

    Klein, Alexander; Witzel, Oliver; Ebert, Volker

    2014-01-01

    We present a tunable diode laser spectrometer with a novel, rapid time multiplexed direct absorption- and wavelength modulation-spectroscopy operation mode. The new technique allows enhancing the precision and dynamic range of a tunable diode laser absorption spectrometer without sacrificing accuracy. The spectroscopic technique combines the benefits of absolute concentration measurements using calibration-free direct tunable diode laser absorption spectroscopy (dTDLAS) with the enhanced noise rejection of wavelength modulation spectroscopy (WMS). In this work we demonstrate for the first time a 125 Hz time division multiplexed (TDM-dTDLAS-WMS) spectroscopic scheme by alternating the modulation of a DFB-laser between a triangle-ramp (dTDLAS) and an additional 20 kHz sinusoidal modulation (WMS). The absolute concentration measurement via the dTDLAS-technique allows one to simultaneously calibrate the normalized 2f/1f-signal of the WMS-technique. A dTDLAS/WMS-spectrometer at 1.37 μm for H2O detection was built for experimental validation of the multiplexing scheme over a concentration range from 50 to 3000 ppmV (0.1 MPa, 293 K). A precision of 190 ppbV was achieved with an absorption length of 12.7 cm and an averaging time of two seconds. Our results show a five-fold improvement in precision over the entire concentration range and a significantly decreased averaging time of the spectrometer. PMID:25405508

  3. Airborne interferometer for atmospheric emission and solar absorption.

    PubMed

    Keith, D W; Dykema, J A; Hu, H; Lapson, L; Anderson, J G

    2001-10-20

    The interferometer for emission and solar absorption (INTESA) is an infrared spectrometer designed to study radiative transfer in the troposphere and lower stratosphere from a NASA ER-2 aircraft. The Fourier-transform spectrometer (FTS) operates from 0.7 to 50 mum with a resolution of 0.7 cm(-1). The FTS observes atmospheric thermal emission from multiple angles above and below the aircraft. A heliostat permits measurement of solar absorption spectra. INTESA's calibration system includes three blackbodies to permit in-flight assessment of radiometric error. Results suggest that the in-flight radiometric accuracy is ~0.5 K in the mid-infrared.

  4. Extreme ultraviolet observations of G191-B2B and the local interstellar medium with the Hopkins Ultraviolet Telescope

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.; Davidsen, Arthur F.; Blair, William P.; Bowers, Charles W.; Van Dyke Dixon, W.; Durrance, Samuel T.; Feldman, Paul D.; Ferguson, Henry C.; Henry, Richard C.; Kriss, Gerard A.

    1993-01-01

    During the Astro-l mission in 1990 December, the Hopkins Ultraviolet Telescope (HUT) was used to observe the extreme ultraviolet spectrum (415-912 A) of the hot DA white dwarf GI91-B2B. Absorption by neutral helium shortward of the 504 A He I absorption edge is clearly detected in the raw spectrum. Model fits to the observed spectrum require interstellar neutral helium and neutral hydrogen column densities of 1.45 +/- 0.065 x 10 exp 17/sq cm and 1.69 +/- 0.12 x 10 exp 18/sq cm, respectively. Comparison of the neutral columns yields a direct assessment of the ionization state of the local interstellar cloud surrounding the Sun. The neutral hydrogen to helium ratio of 11.6 +/- 1.0 observed by HUT strongly contradicts the widespread view that hydrogen is much more ionized than helium in the local interstellar medium, a view which has motivated some exotic theoretical explanations for the supposed high ionization.

  5. Infrared absorption of methanol clusters (CH3OH)n with n = 2-6 recorded with a time-of-flight mass spectrometer using infrared depletion and vacuum-ultraviolet ionization.

    PubMed

    Han, Hui-Ling; Camacho, Cristopher; Witek, Henryk A; Lee, Yuan-Pern

    2011-04-14

    We investigated IR spectra in the CH- and OH-stretching regions of size-selected methanol clusters, (CH(3)OH)(n) with n = 2-6, in a pulsed supersonic jet by using the IR-VUV (vacuum-ultraviolet) ionization technique. VUV emission at 118 nm served as the source of ionization in a time-of-flight mass spectrometer. The tunable IR laser emission served as a source of predissociation or excitation before ionization. The variations of intensity of protonated methanol cluster ions (CH(3)OH)(n)H(+) and CH(3)OH(+) and (CH(3)OH)(2)(+) were monitored as the IR laser light was tuned across the range 2650-3750 cm(-1). Careful processing of these action spectra based on photoionization efficiencies and the production and loss of each cluster due to photodissociation yielded IR spectra of the size-selected clusters. Spectra of methanol clusters in the OH region have been extensively investigated; our results are consistent with previous reports, except that the band near 3675 cm(-1) is identified as being associated with the proton acceptor of (CH(3)OH)(2). Spectra in the CH region are new. In the region 2800-3050 cm(-1), bands near 2845, 2956, and 3007 cm(-1) for CH(3)OH split into 2823, 2849, 2934, 2955, 2984, and 3006 cm(-1) for (CH(3)OH)(2) that correspond to proton donor and proton acceptor, indicating that the methanol dimer has a preferred open-chain structure. In contrast, for (CH(3)OH)(3), the splitting diminishes and the bands near 2837, 2954, and 2987 cm(-1) become narrower, indicating a preferred cyclic structure. Anharmonic vibrational wavenumbers predicted for the methanol open-chain dimer and the cyclic trimer with the B3LYP∕VPT2∕ANO1 level of theory are consistent with experimental results. For the tetramer and pentamer, the spectral pattern similar to that of the trimer but with greater widths was observed, indicating that the most stable structures are also cyclic.

  6. Airborne tunable diode laser spectrometer for trace-gas measurement in the lower stratosphere

    NASA Technical Reports Server (NTRS)

    Podolske, James; Loewenstein, Max

    1993-01-01

    This paper describes the airborne tunable laser absorption spectrometer, a tunable diode laser instrument designed for in situ trace-gas measurement in the lower stratosphere from an ER-2 high-altitude research aircraft. Laser-wavelength modulation and second-harmonic detection are employed to achieve the required constituent detection sensitivity. The airborne tunable laser absorption spectrometer was used in two polar ozone campaigns, the Airborne Antarctic Ozone Experiment and the Airborne Arctic Stratospheric Expedition, and measured nitrous oxide with a response time of 1 s and an accuracy not greater than 10 percent.

  7. Superconducting gamma and fast-neutron spectrometers with high energy resolution

    DOEpatents

    Friedrich, Stephan; , Niedermayr, Thomas R.; Labov, Simon E.

    2008-11-04

    Superconducting Gamma-ray and fast-neutron spectrometers with very high energy resolution operated at very low temperatures are provided. The sensor consists of a bulk absorber and a superconducting thermometer weakly coupled to a cold reservoir, and determines the energy of the incident particle from the rise in temperature upon absorption. A superconducting film operated at the transition between its superconducting and its normal state is used as the thermometer, and sensor operation at reservoir temperatures around 0.1 K reduces thermal fluctuations and thus enables very high energy resolution. Depending on the choice of absorber material, the spectrometer can be configured either as a Gamma-spectrometer or as a fast-neutron spectrometer.

  8. Multiple-Diode-Laser Gas-Detection Spectrometer

    NASA Technical Reports Server (NTRS)

    Webster, Christopher R.; Beer, Reinhard; Sander, Stanley P.

    1988-01-01

    Small concentrations of selected gases measured automatically. Proposed multiple-laser-diode spectrometer part of system for measuring automatically concentrations of selected gases at part-per-billion level. Array of laser/photodetector pairs measure infrared absorption spectrum of atmosphere along probing laser beams. Adaptable to terrestrial uses as monitoring pollution or control of industrial processes.

  9. High-resolution crystal spectrometer for the 10-60 (angstrom) EUV region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiersdorfer, P; Brown, G V; Goddard, R

    2004-02-20

    A vacuum crystal spectrometer with nominal resolving power approaching 1000 is described for measuring emission lines with wavelength in the extreme ultraviolet region up to 60 Angstroms. The instrument utilizes a flat octadecyl hydrogen maleate (OHM) crystal and a thin-window 1-D position-sensitive gas proportional detector. This detector employs a 1 {micro}m-thick 100 x8 mm{sup 2} aluminized polyimide window and operates at one atmosphere pressure. The spectrometer has been implemented on the Livermore electron beam ion traps. The performance of the instrument is illustrated in measurements of the newly discovered magnetic field-sensitive line in Ar{sup 8+}.

  10. Online investigations on ozonation products of pyrene and benz[ a]anthracene particles with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer

    NASA Astrophysics Data System (ADS)

    Gao, Shaokai; Zhang, Yang; Meng, Junwang; Shu, Jinian

    The reaction products of ozone with pyrene and benz[ a]anthracene absorbed on azelaic acid particles under the pseudo-first-order reaction conditions have been investigated with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS). The pyrene and benz[ a]anthracene particles with the initial concentrations of ˜1 mg m -3 are respectively exposed to ˜22 ppm ozone in a reaction chamber with a volume of ˜180 L. The time-of-flight mass spectra of the particulate ozonides are obtained. The assignments of the mass spectra reveal that 4-carboxy-5-phenanthrene-carboxyaldehyde (71%) and hydroxypyrene (23%) are the main solid state ozonides of pyrene, while 2-(2-formyl)phenyl-3-naphthoic acid (35%), hydroxybenz[ a]anthrone (30%), and benz[ a]anthracene-7,12-dione (18%) are the main solid state ozonides of benz[ a]anthracene. The pathways of the ozonations are proposed in the paper.

  11. Compact Solid-State 213 nm Laser Enables Standoff Deep Ultraviolet Raman Spectrometer: Measurements of Nitrate Photochemistry.

    PubMed

    Bykov, Sergei V; Mao, Michael; Gares, Katie L; Asher, Sanford A

    2015-08-01

    We describe a new compact acousto-optically Q-switched diode-pumped solid-state (DPSS) intracavity frequency-tripled neodymium-doped yttrium vanadate laser capable of producing ~100 mW of 213 nm power quasi-continuous wave as 15 ns pulses at a 30 kHz repetition rate. We use this new laser in a prototype of a deep ultraviolet (UV) Raman standoff spectrometer. We use a novel high-throughput, high-resolution Echelle Raman spectrograph. We measure the deep UV resonance Raman (UVRR) spectra of solid and solution sodium nitrate (NaNO3) and ammonium nitrate (NH4NO3) at a standoff distance of ~2.2 m. For this 2.2 m standoff distance and a 1 min spectral accumulation time, where we only monitor the symmetric stretching band, we find a solid state NaNO3 detection limit of ~100 μg/cm(2). We easily detect ~20 μM nitrate water solutions in 1 cm path length cells. As expected, the aqueous solutions UVRR spectra of NaNO3 and NH4NO3 are similar, showing selective resonance enhancement of the nitrate (NO3(-)) vibrations. The aqueous solution photochemistry is also similar, showing facile conversion of NO3(-) to nitrite (NO2(-)). In contrast, the observed UVRR spectra of NaNO3 and NH4NO3 powders significantly differ, because their solid-state photochemistries differ. Whereas solid NaNO3 photoconverts with a very low quantum yield to NaNO2, the NH4NO3 degrades with an apparent quantum yield of ~0.2 to gaseous species.

  12. Multilayer Thin Film Polarizer Design for Far Ultraviolet using Induced Transmission and Absorption Technique

    NASA Technical Reports Server (NTRS)

    Kim, Jongmin; Zukic, Muamer; Wilson, Michele M.; Park, Jung Ho; Torr, Douglas G.

    1994-01-01

    Good theoretical designs of far ultraviolet polarizers have been reported using a MgF2/Al/MgF2 three layer structure on a thick Al layer as a substrate. The thicknesses were determined to induce transmission and absorption of p-polarized light. In these designs Al optical constants were used from films produced in ultrahigh vacuum (UHV: 10(exp -10) torr). Reflectance values for polarizers fabricated in a conventional high vacuum (p approx. 10(exp -6 torr)) using the UHV design parameters differed dramatically from the design predictions. Al is a highly reactive material and is oxidized even in a high vacuum chamber. In order to solve the problem other metals have been studied. It is found that a larger reflectance difference is closely related to higher amplitude and larger phase difference of Fresnel reflection coefficients between two polarizations at the boundary of MgF2/metal. It is also found that for one material a larger angle of incidence from the surface normal brings larger amplitude and phase difference. Be and Mo are found good materials to replace Al. Polarizers designed for 121.6 nm with Be at 60 deg and with Mo at 70 deg are shown as examples.

  13. VUV spectroscopy in impurity injection experiments at KSTAR using prototype ITER VUV spectrometer.

    PubMed

    Seon, C R; Hong, J H; Song, I; Jang, J; Lee, H Y; An, Y H; Kim, B S; Jeon, T M; Park, J S; Choe, W; Lee, H G; Pak, S; Cheon, M S; Choi, J H; Kim, H S; Biel, W; Bernascolle, P; Barnsley, R

    2017-08-01

    The ITER vacuum ultra-violet (VUV) core survey spectrometer has been designed as a 5-channel spectral system so that the high spectral resolving power of 200-500 could be achieved in the wavelength range of 2.4-160 nm. To verify the design of the ITER VUV core survey spectrometer, a two-channel prototype spectrometer was developed. As a subsequent step of the prototype test, the prototype VUV spectrometer has been operated at KSTAR since the 2012 experimental campaign. From impurity injection experiments in the years 2015 and 2016, strong emission lines, such as Kr xxv 15.8 nm, Kr xxvi 17.9 nm, Ne vii 46.5 nm, Ne vi 40.2 nm, and an array of largely unresolved tungsten lines (14-32 nm) could be measured successfully, showing the typical photon number of 10 13 -10 15 photons/cm 2 s.

  14. Ultraviolet Absorption Induces Hydrogen-Atom Transfer in G⋅C Watson-Crick DNA Base Pairs in Solution.

    PubMed

    Röttger, Katharina; Marroux, Hugo J B; Grubb, Michael P; Coulter, Philip M; Böhnke, Hendrik; Henderson, Alexander S; Galan, M Carmen; Temps, Friedrich; Orr-Ewing, Andrew J; Roberts, Gareth M

    2015-12-01

    Ultrafast deactivation pathways bestow photostability on nucleobases and hence preserve the structural integrity of DNA following absorption of ultraviolet (UV) radiation. One controversial recovery mechanism proposed to account for this photostability involves electron-driven proton transfer (EDPT) in Watson-Crick base pairs. The first direct observation is reported of the EDPT process after UV excitation of individual guanine-cytosine (G⋅C) Watson-Crick base pairs by ultrafast time-resolved UV/visible and mid-infrared spectroscopy. The formation of an intermediate biradical species (G[-H]⋅C[+H]) with a lifetime of 2.9 ps was tracked. The majority of these biradicals return to the original G⋅C Watson-Crick pairs, but up to 10% of the initially excited molecules instead form a stable photoproduct G*⋅C* that has undergone double hydrogen-atom transfer. The observation of these sequential EDPT mechanisms across intermolecular hydrogen bonds confirms an important and long debated pathway for the deactivation of photoexcited base pairs, with possible implications for the UV photochemistry of DNA. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The Extreme Ultraviolet Explorer Mission

    NASA Technical Reports Server (NTRS)

    Bowyer, S.; Malina, R. F.

    1991-01-01

    The Extreme Ultraviolet Explorer (EUVE) mission, currently scheduled from launch in September 1991, is described. The primary purpose of the mission is to survey the celestial sphere for astronomical sources of extreme ultraviolet (EUV) radiation with the use of three EUV telescope, each sensitive to a different segment of the EUV band. A fourth telescope is planned to perform a high-sensitivity search of a limited sample of the sky in the shortest wavelength bands. The all-sky survey is planned to be carried out in the first six months of the mission in four bands, or colors, 70-180 A, 170-250 A, 400-600 A, and 500-700 A. The second phase of the mission is devoted to spectroscopic observations of EUV sources. A high-efficiency grazing-incidence spectrometer using variable line-space gratings is planned to provide spectral data with about 1-A resolution. An end-to-end model of the mission, from a stellar source to the resulting scientific data, is presented. Hypothetical data from astronomical sources were processed through this model and are shown.

  16. Ultraviolet spectrophotometry of three LINERs

    NASA Technical Reports Server (NTRS)

    Goodrich, R. W.; Keel, W. C.

    1986-01-01

    Three galaxies known to be LINERs were observed spectroscopically in the ultraviolet in an attempt to detect the presumed nonthermal continuum source thought to be the source of photoionization in the nuclei. NGC 4501 was found to be too faint for study with the IUE spectrographs, while NGC 5005 had an extended ultraviolet light profile. Comparison with the optical light profile of NGC 5005 indicates that the ultraviolet source is distributed spatially in the same manner as the optical starlight, probably indicating that the ultraviolet excess is due to a component of hot stars in the nucleus. These stars contribute detectable absorption features longward of 2500 A; together with optical data, the IUE spectra suggest a burst of star formation about 1 billion yr ago, with a lower rate continuing to produce a few OB stars. In NGC 4579, a point source contributing most of the ultraviolet excess is found that is much different than the optical light distribution. Furthermore, the ultraviolet to X-ray spectral index in NGC 4579 is 1.4, compatible with the UV to X-ray indices found for samples of Seyfert galaxies. This provides compelling evidence for the detection of the photoionizing continuum in NGC 4579 and draws the research fields of normal galaxies and active galactic nuclei closer together. The emission-line spectrum of NGC 4579 is compared with calculations from a photoionization code, CLOUDY, and several shock models. The photoionization code is found to give superior results, adding to the increasing weight of evidence that the LINER phenomenon is essentially a scaled-down version of the Seyfert phenomenon.

  17. Light absorption of organic aerosol from pyrolysis of corn stalk

    NASA Astrophysics Data System (ADS)

    Li, Xinghua; Chen, Yanju; Bond, Tami C.

    2016-11-01

    Organic aerosol (OA) can absorb solar radiation in the low-visible and ultra-violet wavelengths thereby modifying radiative forcing. Agricultural waste burning emits a large quantity of organic carbon in many developing countries. In this work, we improved the extraction and analysis method developed by Chen and Bond, and extended the spectral range of OC absorption. We examined light absorbing properties of primary OA from pyrolysis of corn stalk, which is a major type of agricultural wastes. Light absorption of bulk liquid extracts of OA was measured using a UV-vis recording spectrophotometer. OA can be extracted by methanol at 95%, close to full extent, and shows polar character. Light absorption of organic aerosol has strong spectral dependence (Absorption Ångström exponent = 7.7) and is not negligible at ultra-violet and low-visible regions. Higher pyrolysis temperature produced OA with higher absorption. Imaginary refractive index of organic aerosol (kOA) is 0.041 at 400 nm wavelength and 0.005 at 550 nm wavelength, respectively.

  18. A new model for Mars atmospheric dust based upon analysis of ultraviolet through infrared observations from Mariner 9, Viking, and Phobos

    NASA Technical Reports Server (NTRS)

    Clancy, R. T.; Lee, S. W.; Gladstone, G. R.; McMillan, W. W.; Rousch, T.

    1995-01-01

    We propose key modifications to the Toon et al. (1977) model of the particle size distribution and composition of Mars atmospheric dust, based on a variety of spacecraft and wavelength observations of the dust. A much broader (r(sub eff)variance-0.8 micron), smaller particle size (r(sub mode)-0.02 microns) distribution coupled with a "palagonite-like" composition is argued to fit the complete ultraviolet-to-30-micron absorption properties of the dust better than the montmorillonite-basalt r(sub eff)variance= 0.4 micron, r(sub mode)= 0.40 micron dust model of Toon et al. Mariner 9 (infrared interferometer spectrometer) IRIS spectra of high atmospheric dust opacities during the 1971 - 1972 Mars global dust storm are analyzed in terms of the Toon et al. dust model, and a Hawaiian palagonite sample with two different size distribution models incorporating smaller dust particle sizes. Viking Infrared Thermal Mapper (IRTM) emission-phase-function (EPF) observations at 9 microns are analyzed to retrieve 9-micron dust opacities coincident with solar band dust opacities obtained from the same EPF sequences. These EPF dust opacities provide an independent measurement of the visible/9-microns extinction opacity ratio (> or equal to 2) for Mars atmospheric dust, which is consistent with a previous measurement by Martin (1986). Model values for the visible/9-microns opacity ratio and the ultraviolet and visible single-scattering albedos are calculated for the palagonite model with the smaller particle size distributions and compared to the same properties for the Toon et al. model of dust. The montmorillonite model of the dust is found to fit the detailed shape of the dust 9-micron absorption well. However, it predicts structured, deep absorptions at 20 microns which are not observed and requires a separate ultraviolet-visible absorbing component to match the observed behavior of the dust in this wavelength region. The modeled palagonite does not match the 8- to 9-micron

  19. Spectrophotometer-Integrating-Sphere System for Computing Solar Absorptance

    NASA Technical Reports Server (NTRS)

    Witte, William G., Jr.; Slemp, Wayne S.; Perry, John E., Jr.

    1991-01-01

    A commercially available ultraviolet, visible, near-infrared spectrophotometer was modified to utilize an 8-inch-diameter modified Edwards-type integrated sphere. Software was written so that the reflectance spectra could be used to obtain solar absorptance values of 1-inch-diameter specimens. A descriptions of the system, spectral reflectance, and software for calculation of solar absorptance from reflectance data are presented.

  20. Ultra-Wideband Optical Modulation Spectrometer (OMS) Development

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan (Technical Monitor); Tolls, Volker

    2004-01-01

    The optical modulation spectrometer (OMS) is a novel, highly efficient, low mass backend for heterodyne receiver systems. Current and future heterodyne receiver systems operating at frequencies up to a few THz require broadband spectrometer backends to achieve spectral resolutions of R approximately 10(exp 5) to 10(exp 6) to carry out many important astronomical investigations. Among these are observations of broad emission and absorption lines from extra-galactic objects at high redshifts, spectral line surveys, and observations of planetary atmospheres. Many of these lines are pressure or velocity broadened with either large half-widths or line wings extending over several GHz. Current backend systems can cover the needed bandwidth only by combining the output of several spectrometers, each with typically up to 1 GHz bandwidth, or by combining several frequency-shifted spectra taken with a single spectrometer. An ultra-wideband optical modulation spectrometer with 10 - 40 GHz bandwidth will enable broadband ob- servations without the limitations and disadvantages of hybrid spectrometers. Spectrometers like the OMS will be important for both ground-based observatories and future space missions like the Single Aperture Far-Infrared Telescope (SAFIR) which might carry IR/submm array heterodyne receiver systems requiring a spectrometer for each array pixel. Small size, low mass and small power consumption are extremely important for space missions. This report summarizes the specifications developed for the OMS and lists already identified commercial parts. The report starts with a review of the principle of operation, then describes the most important components and their specifications which were derived from theory, and finishes with a conclusion and outlook.

  1. Stratospheric ozone measurement with an infrared heterodyne spectrometer

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Kostiuk, T.; Mumma, M. J.; Buhl, D.; Kunde, V. G.; Brown, L. W.

    1978-01-01

    Measurements of a stratospheric ozone concentration profile are made by detecting infrared absorption lines with a heterodyne spectrometer. The infrared spectrometer is based on a line-by-line tunable CO2 lasers, a liquid-nitrogen cooled HgCdTe photomixer, and a 64-channel spectral line receiver. The infrared radiation from the source is mixed with local-oscillator radiation. The difference frequency signal in a bandwidth above and below the local-oscillator frequency is detected. The intensity in each sideband is found by subtracting sideband contributions. It is found that absolute total column density is 0.32 plus or minus 0.02 cm-atm with a peak mixing ratio at about 24 km. The (7,1,6)-(7,1,7) O3 line center frequency is identified as 1043.1772/cm. Future work will involve a number of ozone absorption lines and measurements of diurnal variation. Completely resolved stratospheric lines may be inverted to yield concentration profiles of trace constituents and stratospheric gases.

  2. Picosecond flash spectroscopic studies on ultraviolet stabilizers and stabilized polymers

    NASA Technical Reports Server (NTRS)

    Scott, G. W.

    1982-01-01

    Spectroscopic and excited state decay kinetics are reported for monomeric and polymeric forms of ultraviolet stabilizers in the 2-(2'-hydroxyphenyl)-benzotriazole and 2-hydroxybenzophenone classes. For some of these molecules in various solvents at room temperature, (1) ground state absorption spectra, (2) emission spectra, (3) picosecond time-resolved transient absorption spectra, (4) ground state absorption recovery kinetics, (5) emission kinetics, and (6) transient absorption kinetics are reported. In the solid state at low temperatures, emission spectra and their temperature dependent kinetics up to approximately 200K as well as, in one case, the 12K excitation spectra of the observed dual emission are also reported.

  3. Glucose determination with fiber optic spectrometers

    NASA Astrophysics Data System (ADS)

    Starke, Eva; Kemper, Ulf; Barschdorff, Dieter

    1999-05-01

    Noninvasive blood glucose monitoring is the aim of research activities concerning the detection of small glucose concentrations dissolved in water and blood plasma. One approach for these measurements is the exploitation of absorption bands in the near infrared. However, the strong absorption of water represents a major difficulty. Transmission measurements of glucose dissolved in water and in blood plasma in the spectral region around 1600 nm with one- beam spectrometers and a FT-IR spectrometer are discussed. The evaluation of the data is carried out using a two-layer Lambert-Beer model and neural networks. In order to reduce the dimensions of a potential measuring device, an integrated acousto-optic tunable filter (AOTF) with an Erbium doped fiber amplifier as a radiation source is used. The fiber optic components are examined concerning their suitability. The smallest concentrations of glucose dissolved in water that can be separated are approximately 50 mg/dl. In the range of 50 mg/dl to 1000 mg/dl a correlation coefficient of 0.98 between real and estimated glucose concentrations is achieved using neural networks. In blood plasma so far glucose concentrations of about 100 mg/dl can be distinguished with good accuracy.

  4. Reference ultraviolet wavelengths of CrIII measured by Fourier transform spectrometry

    NASA Astrophysics Data System (ADS)

    Smillie, D. G.; Pickering, J. C.; Smith, P. L.

    2008-10-01

    We report CrIII ultraviolet (UV) transition wavelengths measured using a high-resolution Fourier transform spectrometer (FTS), for the first time, available for use as wavelength standards. The doubly ionized iron group element spectra dominate the observed opacity of hot B stars in the UV, and improved, accurate, wavelengths are required for the analysis of astronomical spectra. The spectrum was excited using a chromium-neon Penning discharge lamp and measured with the Imperial College vacuum ultraviolet FTS. 140 classified 3d34s-3d34p CrIII transition lines, in the spectral range 38000 to 49000 cm-1 (2632 to 2041 Å), the strongest having wavelength uncertainties less than one part in 107, are presented.

  5. 40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The absorbance...

  6. 40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The absorbance...

  7. 40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The absorbance...

  8. A new model for Mars atmospheric dust based upon analysis of ultraviolet through infrared observations from Mariner 9, Viking, and Phobos

    NASA Technical Reports Server (NTRS)

    Clancy, R. T.; Lee, S. W.; Gladstone, G. R.; Mcmillan, W. W.; Rousch, T.

    1995-01-01

    We propose key modifications to the Toon et al. (1977) model of the particle size distribution and composition of Mars atmospheric dust, based on a variety of spacecraft and wavelength observations of the dust. A much broader (r(sub eff) variance approximately 0.8 micrometers), smaller particle size (r(sub mode) approximately 0.02 micrometers) distribution coupled with a 'palagonite-like' composition is argued to fit the complete ultraviolet-to-30-micrometer absorption properties of the dust better than the montmorillonite-basalt, r(sub eff) variance = 0.4 micrometers, r(sub mode) = 0.40 dust model of Toon et al. Mariner 9 (infrared interferometer spectrometer) IRIS spectra of high atmospheric dust opacities during the 1971-1972 Mars global dust storm are analyzed in terms of the Toon et al. dust model, and a Hawaiian palagonite sample (Rousch et al., 1991) with two different size distribution models incorporating smaller dust particle sizes. Viking Infrared Thermal Mapper (IRTM) emmission-phase-function (EPF) observations at 9 micrometers are analyzed to retrieve 9-micrometer dust opacities coincident with solar band dust opacities obtained from the same EPF sequences (Clancy and Lee, 1991). These EPF dust opacities provide an independent measurement of the visible/9-micrometer extinction opacity ratio (greater than or = 2) for Mars atmospheric dust, which is consistent with a previous measurement by Martin (1986). Model values for the visible/9-micrometer opacity ratio and the ultraviolet and visible single-scattering albedos are calculated for the palagonite model with the smaller particle size distributions compared to the same properties for the Toon et al. model of dust. The montmorillonite model of the dust is found to fit the detailed shape of the dust 9-micrometer absorption well. However, it predicts structured, deep aborptions at 20 micrometers which are not observed and requires a separate ultraviolet-visible absorbing component to match the observed

  9. Solar EUV Irradiance Measurements by the Auto-Calibrating EUV Spectrometers (SolACES) Aboard the International Space Station (ISS)

    NASA Astrophysics Data System (ADS)

    Schmidtke, G.; Nikutowski, B.; Jacobi, C.; Brunner, R.; Erhardt, C.; Knecht, S.; Scherle, J.; Schlagenhauf, J.

    2014-05-01

    SolACES is part of the ESA SOLAR ISS mission that started aboard the shuttle mission STS-122 on 7 February 2008. The instrument has recorded solar extreme ultraviolet (EUV) irradiance from 16 to 150 nm during the extended solar activity minimum and the beginning solar cycle 24 with rising solar activity and increasingly changing spectral composition. The SOLAR mission has been extended from a period of 18 months to > 8 years until the end of 2016. SolACES is operating three grazing incidence planar grating spectrometers and two three-current ionization chambers. The latter ones are considered as primary radiometric detector standards. Re-filling the ionization chambers with three different gases repeatedly and using overlapping band-pass filters, the absolute EUV fluxes are derived in these spectral intervals. This way the serious problem of continuing efficiency changes in space-borne instrumentation is overcome during the mission. Evaluating the three currents of the ionization chambers, the overlapping spectral ranges of the spectrometers and of the filters plus inter-comparing the results from the EUV photon absorption in the gases with different absorption cross sections, there are manifold instrumental possibilities to cross-check the results providing a high degree of reliability to the spectral irradiance derived. During the mission a very strong up-and-down variability of the spectrometric efficiency by orders of magnitude is observed. One of the effects involved is channeltron degradation. However, there are still open questions on other effects contributing to these changes. A survey of the measurements carried out and first results of the solar spectral irradiance (SSI) data are presented. Inter-comparison with EUV data from other space missions shows good agreement such that the international effort has started to elaborate a complete set of EUV-SSI data taking into account all data available from 2008 to 2013.

  10. Note: Retrofitting an analog spectrometer for high resolving power in NUV-NIR

    NASA Astrophysics Data System (ADS)

    Taylor, Andrew S.; Batishchev, Oleg V.

    2017-11-01

    We demonstrate how an older spectrometer designed for photographic films can be efficiently retrofitted with a narrow laser-cut slit and a modern μm-pixel-size imaging CMOS camera, yielding sub-pm resolution in the broad near ultraviolet to near infrared (NUV-NIR) spectral range. Resolving power approaching 106 is achieved. Such digital retrofitting of an analog instrument is practical for research and teaching laboratories.

  11. Spectrophotometric Attachment for the Vacuum Ultraviolet

    NASA Technical Reports Server (NTRS)

    Axelrod, Norman N.

    1961-01-01

    An absorption spectrophotometric attachment to a vacuum ultraviolet monochromator has been built and tested. With an empty sample chamber, the ratio of the radiant flux through the sample chamber to the radiant flux through the reference chamber was measured. By optimizing conditions at the entrance slit, the ratio was constant within experimental error over the region 1000-1600 A. The transmittance of thin celluloid films was measured with the attachment.

  12. Absorption of Dy3+ and Nd3+ ions in Ba R 2F8 single crystals

    NASA Astrophysics Data System (ADS)

    Apollonov, V. V.; Pushkar', A. A.; Uvarova, T. V.; Chernov, S. P.

    2008-09-01

    The Dy3+ absorption and excitation spectra of BaY2F8 and BaYb2F8 single crystals are investigated in the ultraviolet, vacuum ultraviolet, and visible ranges at a temperature of 300 K. These crystals exhibit intense broad absorption bands due to the spin-allowed 4 f-5 d transitions in the range (56-78) × 10-3 cm-1 and less intense absorption bands that correspond to the spin-forbidden transitions in the range (50-56) × 10-3 cm-1. The Nd3+ absorption spectra of BaY2F8 single crystals are studied in the range (34-82) × 10-3 cm-1 at 300 K for different crystal orientations.

  13. Application of Internal Standard Method for Several 3d-Transition Metallic Elements in Flame Atomic Absorption Spectrometry Using a Multi-wavelength High-resolution Spectrometer.

    PubMed

    Toya, Yusuke; Itagaki, Toshiko; Wagatsuma, Kazuaki

    2017-01-01

    We investigated a simultaneous internal standard method in flame atomic absorption spectrometry (FAAS), in order to better the analytical precision of 3d-transition metals contained in steel materials. For this purpose, a new spectrometer system for FAAS, comprising a bright xenon lamp as the primary radiation source and a high-resolution Echelle monochromator, was employed to measure several absorption lines at a wavelength width of ca. 0.3 nm at the same time, which enables the absorbances of an analytical line and also an internal standard line to be estimated. In considering several criteria for selecting an internal standard element and the absorption line, it could be suggested that platinum-group elements: ruthenium, rhodium, or palladium, were suitable for an internal standard element to determine the 3d-transition metal elements, such as titanium, iron, and nickel, by measuring an appropriate pair of these absorption lines simultaneously. Several variances of the absorption signal, such as a variation in aspirated amounts of sample solution and a short-period drift of the primary light source, would be corrected and thus reduced, when the absorbance ratio of the analytical line to the internal standard line was measured. In Ti-Pd, Ni-Rh, and Fe-Ru systems chosen as typical test samples, the repeatability of the signal respnses was investigated with/without the internal standard method, resulting in better precision when the internal standard method was applied in the FAAS with a nitrous oxide-acetylene flame rather than an air-acetylene flame.

  14. Contribution of nitrated phenols to wood burning brown carbon light absorption in Detling, United Kingdom during winter time.

    PubMed

    Mohr, Claudia; Lopez-Hilfiker, Felipe D; Zotter, Peter; Prévôt, André S H; Xu, Lu; Ng, Nga L; Herndon, Scott C; Williams, Leah R; Franklin, Jonathan P; Zahniser, Mark S; Worsnop, Douglas R; Knighton, W Berk; Aiken, Allison C; Gorkowski, Kyle J; Dubey, Manvendra K; Allan, James D; Thornton, Joel A

    2013-06-18

    We show for the first time quantitative online measurements of five nitrated phenol (NP) compounds in ambient air (nitrophenol C6H5NO3, methylnitrophenol C7H7NO3, nitrocatechol C6H5NO4, methylnitrocatechol C7H7NO4, and dinitrophenol C6H4N2O5) measured with a micro-orifice volatilization impactor (MOVI) high-resolution chemical ionization mass spectrometer in Detling, United Kingdom during January-February, 2012. NPs absorb radiation in the near-ultraviolet (UV) range of the electromagnetic spectrum and thus are potential components of poorly characterized light-absorbing organic matter ("brown carbon") which can affect the climate and air quality. Total NP concentrations varied between less than 1 and 98 ng m(-3), with a mean value of 20 ng m(-3). We conclude that NPs measured in Detling have a significant contribution from biomass burning with an estimated emission factor of 0.2 ng (ppb CO)(-1). Particle light absorption measurements by a seven-wavelength aethalometer in the near-UV (370 nm) and literature values of molecular absorption cross sections are used to estimate the contribution of NP to wood burning brown carbon UV light absorption. We show that these five NPs are potentially important contributors to absorption at 370 nm measured by an aethalometer and account for 4 ± 2% of UV light absorption by brown carbon. They can thus affect atmospheric radiative transfer and photochemistry and with that climate and air quality.

  15. Space-time resolving vacuum ultraviolet spectrometer based on a rotating polyhedral mirror

    NASA Astrophysics Data System (ADS)

    Lin, Xiaodong; Xie, Jikang

    2000-05-01

    Using a rotating polyhedral mirror and a vacuum ultraviolet (VUV) monochromater, a space-time resolving VUV diagnostic system is developed. Measurement of the O VI (103.2 nm) radiation on the HT-6M tokamak shows that the time resolution of the system is better than 4 ms and the space resolution is better than 2 cm. Compared with traditional instruments, this system has improved measurement efficiency, and error from shot-to-shot discharge variations is avoided.

  16. Intensity-Modulated Continuous-Wave Laser Absorption Spectrometer at 1.57 Micrometer for Atmospheric CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Lin, Bing

    2014-01-01

    Understanding the earth's carbon cycle is essential for diagnosing current and predicting future climates, which requires precise global measurements of atmospheric CO2 through space missions. The Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission will provide accurate global atmospheric CO2 measurements to meet carbon science requirements. The joint team of NASA Langley Research Center and ITT Exelis, Inc. proposes to use the intensity-modulated, continuous-wave (IM-CW) laser absorption spectrometer (LAS) approach for the ASCENDS mission. Prototype LAS instruments have been developed and used to demonstrate the power, signal-to-noise ratio, precision and accuracy, spectral purity, and stability of the measurement and the instrument needed for atmospheric CO2 observations from space. The ranging capability from laser platform to ground surfaces or intermediate backscatter layers is achieved by transmitted range-encoded IM laser signals. Based on the prototype instruments and current lidar technologies, space LAS systems and their CO2 column measurements are analyzed. These studies exhibit a great potential of using IM-CW LAS system for the active space CO2 mission ASCENDS.

  17. Toxic metals distribution in different components of Pakistani and imported cigarettes by electrothermal atomic absorption spectrometer.

    PubMed

    Kazi, T G; Jalbani, N; Arain, M B; Jamali, M K; Afridi, H I; Sarfraz, R A; Shah, A Q

    2009-04-15

    It was extensively investigated that a significant flux of toxic metals, along with other toxins, reaches the lungs through smoking. In present study toxic metals (TMs) (Al, Cd, Ni and Pb) were determined in different components of Pakistani local branded and imported cigarettes, including filler tobacco (FT), filter (before and after normal smoking by a single volunteer) and ash by electrothermal atomic absorption spectrometer (ETAAS). Microwave-assisted digestion method was employed. The validity and accuracy of methodology were checked by using certified sample of Virginia tobacco leaves (ICHTJ-cta-VTL-2). The percentages (%) of TMs in different components of cigarette were calculated with respect to their total contents in FT of all branded cigarettes before smoking, while smoke concentration has been calculated by subtracting the filter and ash contents from the filler tobacco content of each branded cigarette. The highest percentage (%) of Al was observed in ash of all cigarettes, with range 97.3-99.0%, while in the case of Cd, a reverse behaviour was observed, as a range of 15.0-31.3% of total contents were left in the ash of all branded cigarettes understudy.

  18. Reference Ultraviolet Wavelengths of Cr III Measured by Fourier Transform Spectrometry

    NASA Technical Reports Server (NTRS)

    Smillie, D.G.; Pickering, J.C.; Smith, P.L.

    2008-01-01

    We report Cr III ultraviolet (UV) transition wavelengths measured using a high-resolution Fourier transform spectrometer (FTS), for the first time, available for use as wavelength standards. The doubly ionized iron group element spectra dominate the observed opacity of hot B stars in the UV, and improved, accurate, wavelengths are required for the analysis of astronomical spectra. The spectrum was excited using a chromium-neon Penning discharge lamp and measured with the Imperial College vacuum ultraviolet FTS. 140 classified 3d(exp 3)4s- 3d(exp 3)4p Cr III transition lines, in the spectral range 38,000 to 49,000 cm(exp -1) (2632 to 2041 A), the strongest having wavelength uncertainties less than one part in 10(exp 7), are presented.

  19. Modelling ultraviolet-line diagnostics of stars, the ionized and the neutral interstellar medium in star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Vidal-García, A.; Charlot, S.; Bruzual, G.; Hubeny, I.

    2017-09-01

    We combine state-of-the-art models for the production of stellar radiation and its transfer through the interstellar medium (ISM) to investigate ultraviolet-line diagnostics of stars, the ionized and the neutral ISM in star-forming galaxies. We start by assessing the reliability of our stellar population synthesis modelling by fitting absorption-line indices in the ISM-free ultraviolet spectra of 10 Large Magellanic Cloud clusters. In doing so, we find that neglecting stochastic sampling of the stellar initial mass function in these young (∼10-100 Myr), low-mass clusters affects negligibly ultraviolet-based age and metallicity estimates but can lead to significant overestimates of stellar mass. Then, we proceed and develop a simple approach, based on an idealized description of the main features of the ISM, to compute in a physically consistent way the combined influence of nebular emission and interstellar absorption on ultraviolet spectra of star-forming galaxies. Our model accounts for the transfer of radiation through the ionized interiors and outer neutral envelopes of short-lived stellar birth clouds, as well as for radiative transfer through a diffuse intercloud medium. We use this approach to explore the entangled signatures of stars, the ionized and the neutral ISM in ultraviolet spectra of star-forming galaxies. We find that, aside from a few notable exceptions, most standard ultraviolet indices defined in the spectra of ISM-free stellar populations are prone to significant contamination by the ISM, which increases with metallicity. We also identify several nebular-emission and interstellar-absorption features, which stand out as particularly clean tracers of the different phases of the ISM.

  20. Extreme ultraviolet photoionization of aldoses and ketoses

    NASA Astrophysics Data System (ADS)

    Shin, Joong-Won; Dong, Feng; Grisham, Michael E.; Rocca, Jorge J.; Bernstein, Elliot R.

    2011-04-01

    Gas phase monosaccharides (2-deoxyribose, ribose, arabinose, xylose, lyxose, glucose galactose, fructose, and tagatose), generated by laser desorption of solid sample pellets, are ionized with extreme ultraviolet photons (EUV, 46.9 nm, 26.44 eV). The resulting fragment ions are analyzed using a time of flight mass spectrometer. All aldoses yield identical fragment ions regardless of size, and ketoses, while also generating same ions as aldoses, yields additional features. Extensive fragmentation of the monosaccharides is the result the EUV photons ionizing various inner valence orbitals. The observed fragmentation patterns are not dependent upon hydrogen bonding structure or OH group orientation.

  1. High-performance dispersive Raman and absorption spectroscopy as tools for drug identification

    NASA Astrophysics Data System (ADS)

    Pawluczyk, Olga; Andrey, Sam; Nogas, Paul; Roy, Andrew; Pawluczyk, Romuald

    2009-02-01

    Due to increasing availability of pharmaceuticals from many sources, a need is growing to quickly and efficiently analyze substances in terms of the consistency and accuracy of their chemical composition. Differences in chemical composition occur at very low concentrations, so that highly sensitive analytical methods become crucial. Recent progress in dispersive spectroscopy with the use of 2-dimensional detector arrays, permits for signal integration along a long (up to 12 mm long) entrance slit of a spectrometer, thereby increasing signal to noise ratio and improving the ability to detect small concentration changes. This is achieved with a non-scanning, non-destructive system. Two different methods using P&P Optica high performance spectrometers were used. High performance optical dispersion Raman and high performance optical absorption spectroscopy were employed to differentiate various acetaminophen-containing drugs, such as Tylenol and other generic brands, which differ in their ingredients. A 785 nm excitation wavelength was used in Raman measurements and strong Raman signals were observed in the spectral range 300-1800 cm-1. Measurements with the absorption spectrometer were performed in the wavelength range 620-1020 nm. Both Raman and absorption techniques used transmission light spectrometers with volume phase holographic gratings and provided sufficient spectral differences, often structural, allowing for drug differentiation.

  2. The far-ultraviolet emission spectrum of the K2 III star, Arcturus.

    NASA Technical Reports Server (NTRS)

    Moos, H. W.; Rottman, G. J.

    1972-01-01

    A moderate-resolution far-ultraviolet spectrum of the K2 IIIp star Arcturus, obtained with a rocket-borne spectrometer, shows chromospheric emission features. Hydrogen L-alpha and O I (1303 A) are clearly identified. The O I (1304 A) stellar surface brightness is as great or greater than that of the sun. Other metal lines, including those of carbon, are weak compared to the O I line.

  3. Modular soft x-ray spectrometer for applications in energy sciences and quantum materials

    DOE PAGES

    Chuang, Yi -De; Shao, Yu -Cheng; Cruz, Alejandro; ...

    2017-01-27

    Over the past decade, the advances in grating-based soft X-ray spectrometers have revolutionized the soft X-ray spectroscopies in materials research. However, these novel spectrometers are mostly dedicated designs, which cannot be easily adopted for applications with diverging demands. Here we present a versatile spectrometer design concept based on the Hettrick-Underwood optical scheme that uses modular mechanical components. The spectrometer’s optics chamber can be used with gratings operated in either inside or outside orders, and the detector assembly can be reconfigured accordingly. The spectrometer can be designed to have high spectral resolution, exceeding 10 000 resolving power when using small sourcemore » (~1μm) and detector pixels (~5μm) with high line density gratings (~3000 lines/mm), or high throughput at moderate resolution. We report two such spectrometers with slightly different design goals and optical parameters in this paper. We show that the spectrometer with high throughput and large energy window is particularly useful for studying the sustainable energy materials. We demonstrate that the extensive resonant inelastic X-ray scattering (RIXS) map of battery cathode material LiNi 1/3Co 1/3Mn 1/3O 2 can be produced in few hours using such a spectrometer. Unlike analyzing only a handful of RIXS spectra taken at selected excitation photon energies across the elemental absorption edges to determine various spectral features like the localized dd excitations and non-resonant fluorescence emissions, these features can be easily identified in the RIXS maps. Studying such RIXS maps could reveal novel transition metal redox in battery compounds that are sometimes hard to be unambiguously identified in X-ray absorption and emission spectra. As a result, we propose that this modular spectrometer design can serve as the platform for further customization to meet specific scientific demands.« less

  4. Modular soft x-ray spectrometer for applications in energy sciences and quantum materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, Yi -De; Shao, Yu -Cheng; Cruz, Alejandro

    Over the past decade, the advances in grating-based soft X-ray spectrometers have revolutionized the soft X-ray spectroscopies in materials research. However, these novel spectrometers are mostly dedicated designs, which cannot be easily adopted for applications with diverging demands. Here we present a versatile spectrometer design concept based on the Hettrick-Underwood optical scheme that uses modular mechanical components. The spectrometer’s optics chamber can be used with gratings operated in either inside or outside orders, and the detector assembly can be reconfigured accordingly. The spectrometer can be designed to have high spectral resolution, exceeding 10 000 resolving power when using small sourcemore » (~1μm) and detector pixels (~5μm) with high line density gratings (~3000 lines/mm), or high throughput at moderate resolution. We report two such spectrometers with slightly different design goals and optical parameters in this paper. We show that the spectrometer with high throughput and large energy window is particularly useful for studying the sustainable energy materials. We demonstrate that the extensive resonant inelastic X-ray scattering (RIXS) map of battery cathode material LiNi 1/3Co 1/3Mn 1/3O 2 can be produced in few hours using such a spectrometer. Unlike analyzing only a handful of RIXS spectra taken at selected excitation photon energies across the elemental absorption edges to determine various spectral features like the localized dd excitations and non-resonant fluorescence emissions, these features can be easily identified in the RIXS maps. Studying such RIXS maps could reveal novel transition metal redox in battery compounds that are sometimes hard to be unambiguously identified in X-ray absorption and emission spectra. As a result, we propose that this modular spectrometer design can serve as the platform for further customization to meet specific scientific demands.« less

  5. The Production of Titan's Ultraviolet Nitrogen Airglow

    NASA Astrophysics Data System (ADS)

    Stevens, Michael H.; Gustin, J.; Ajello, J. M.; Evans, J. S.; Meier, R. R.; Stewart, A. I. F.; Esposito, L. W.; McClintock, W. E.; Stephan, A. W.

    2010-10-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed Titan's dayside limb on 22 June, 2009, obtaining high quality extreme ultraviolet (EUV) and far ultraviolet (FUV) spectra from a distance of only 60,000 km (23 Titan radii). The observations reveal the same EUV and FUV emissions arising from photoelectron excitation and photofragmentation of molecular nitrogen (N2) on Earth but with the altitude of peak emission much higher on Titan near 1000 km altitude. In the EUV, emission bands from the photoelectron excited N2 Carroll-Yoshino c4'-X system and N I and N II multiplets arising from photofragmentation of N2 dominate, with no detectable c4'(0,0) emission near 958 Å, contrary to many interpretations of the lower resolution Voyager 1 Ultraviolet Spectrometer data. The FUV is dominated by emission bands from the N2 Lyman-Birge-Hopfield a-X system and additional N I multiplets. We also identify several N2 Vegard-Kaplan A-X bands between 1500-1900 Å, two of which are located near 1561 and 1657 Å where C I multiplets were previously identified from a separate UVIS disk observation. We compare these limb emissions to predictions from a terrestrial airglow model adapted to Titan that uses a solar spectrum appropriate for these June, 2009 observations. Volume production rates and limb radiances are calculated, including extinction by methane and allowance for multiple scattering within the readily excited c4'(0,v') system, and compared to UVIS observations. We find that for these airglow data only emissions arising from processes involving N2 are present.

  6. Metrology for terahertz time-domain spectrometers

    NASA Astrophysics Data System (ADS)

    Molloy, John F.; Naftaly, Mira

    2015-12-01

    In recent years the terahertz time-domain spectrometer (THz TDS) [1] has emerged as a key measurement device for spectroscopic investigations in the frequency range of 0.1-5 THz. To date, almost every type of material has been studied using THz TDS, including semiconductors, ceramics, polymers, metal films, liquid crystals, glasses, pharmaceuticals, DNA molecules, proteins, gases, composites, foams, oils, and many others. Measurements with a TDS are made in the time domain; conversion from the time domain data to a frequency spectrum is achieved by applying the Fourier Transform, calculated numerically using the Fast Fourier Transform (FFT) algorithm. As in many other types of spectrometer, THz TDS requires that the sample data be referenced to similarly acquired data with no sample present. Unlike frequency-domain spectrometers which detect light intensity and measure absorption spectra, a TDS records both amplitude and phase information, and therefore yields both the absorption coefficient and the refractive index of the sample material. The analysis of the data from THz TDS relies on the assumptions that: a) the frequency scale is accurate; b) the measurement of THz field amplitude is linear; and c) that the presence of the sample does not affect the performance characteristics of the instrument. The frequency scale of a THz TDS is derived from the displacement of the delay line; via FFT, positioning errors may give rise to frequency errors that are difficult to quantify. The measurement of the field amplitude in a THz TDS is required to be linear with a dynamic range of the order of 10 000. And attention must be given to the sample positioning and handling in order to avoid sample-related errors.

  7. Environmental temperature effect on the far-infrared absorption features of aromatic-based Titan's aerosol analogs

    NASA Astrophysics Data System (ADS)

    Gautier, Thomas; Trainer, Melissa G.; Loeffler, Mark J.; Sebree, Joshua A.; Anderson, Carrie M.

    2017-01-01

    Benzene detection has been reported in Titan's atmosphere both in the stratosphere at ppb levels by remote sensing (Coustenis et al., 2007; Vinatier et al., 2007) and in the thermosphere at ppm levels by the Cassini's Ion and Neutral Mass Spectrometer (Waite et al., 2007). This detection supports the idea that aromatic and heteroaromatic reaction pathways may play an important role in Titan's atmospheric chemistry, especially in the formation of aerosols. Indeed, aromatic molecules are easily dissociated by ultraviolet radiation and can therefore contribute significantly to aerosol formation. It has been shown recently that aerosol analogs produced from a gas mixture containing a low concentration of aromatic and/or heteroaromatic molecules (benzene, naphthalene, pyridine, quinoline and isoquinoline) have spectral signatures below 500 cm-1, a first step towards reproducing the aerosol spectral features observed by Cassini's Composite InfraRed Spectrometer (CIRS) in the far infrared (Anderson and Samuelson 2011, and references therein). In this work we investigate the influence of environmental temperature on the absorption spectra of such aerosol samples, simulating the temperature range to which aerosols, once formed, are exposed during their transport through Titan's stratosphere. Our results show that environmental temperature does not have any major effect on the spectral shape of these aerosol analogs in the far-infrared, which is consistent with the CIRS observations.

  8. Absorption spectrometer balloon flight and iodine investigations

    NASA Technical Reports Server (NTRS)

    1970-01-01

    A high altitude balloon flight experiment to determine the technical feasibility of employing absorption spectroscopy to measure SO2 and NO2 gases in the earth's atmosphere from above the atmospheric ozone layer is discussed. In addition to the balloon experiment the contract includes a ground-based survey of natural I emissions from geological sources and studies of the feasibility of mapping I2 from spacecraft. This report is divided into three major sections as follows: (1) the planning engineering and execution of the balloon experiment, (2) data reduction and analysis of the balloon data, and (3) the results of the I2 phase of the contract.

  9. Far Ultraviolet Spectroscopy of Saturn's Icy Moon Rhea

    NASA Astrophysics Data System (ADS)

    Elowitz, Mark; Hendrix, Amanda; Mason, Nigel J.; Sivaraman, Bhalamurugan

    2018-01-01

    We present an analysis of spatially resolved, far-UV reflectance spectra of Saturn’s icy satellite Rhea, collected by the Cassini Ultraviolet Imaging Spectrograph (UVIS). In recent years ultraviolet spectroscopy has become an important tool for analysing the icy satellites of the outer solar system (1Hendrix & Hansen, 2008). Far-UV spectroscopy provides unique information about the molecular structure and electronic transitions of chemical species. Many molecules that are suspected to be present in the icy surfaces of moons in the outer solar system have broad absorption features due to electronic transitions that occur in the far-UV portion of the spectrum. The studies show that Rhea, like the other icy satellites of the Saturnian system are dominated by water-ice as evident by the 165-nm absorption edge, with minor UV absorbing contaminants. Far-UV spectra of several Saturnian icy satellites, including Rhea and Dione, show an unexplained weak absorption feature centered near 184 nm. To carry out the geochemical survey of Rhea’s surface, the UVIS observations are compared with vacuum-UV spectra of thin-ice samples measured in laboratory experiments. Thin film laboratory spectra of water-ice and other molecular compounds in the solid phase were collected at near-vacuum conditions and temperatures identical to those at the surface of Rhea. Comparison between the observed far-UV spectra of Rhea’s surface ice and modelled spectra based on laboratory absorption measurements of different non-water-ice compounds show that two possible chemical compounds could explain the 184-nm absorption feature. The two molecular compounds include simple chlorine molecules and hydrazine monohydrate. Attempts to explain the source(s) of these compounds on Rhea and the scientific implications of their possible discovery will be summarized.[1] Hendrix, A. R. & Hansen, C. J. (2008). Icarus, 193, pp. 323-333.

  10. Lyman alpha SMM/UVSP absolute calibration and geocoronal correction

    NASA Technical Reports Server (NTRS)

    Fontenla, Juan M.; Reichmann, Edwin J.

    1987-01-01

    Lyman alpha observations from the Ultraviolet Spectrometer Polarimeter (UVSP) instrument of the Solar Maximum Mission (SMM) spacecraft were analyzed and provide instrumental calibration details. Specific values of the instrument quantum efficiency, Lyman alpha absolute intensity, and correction for geocoronal absorption are presented.

  11. Hydrazine Detection with a Tunable Diode Laser Spectrometer

    NASA Technical Reports Server (NTRS)

    Houseman, John; Webster, C. R.; May, R. D.; Anderson, M. S.; Margolis, J. S.; Jackson, Julie R.; Brown, Pamela R.

    1999-01-01

    Several instruments have been developed to measure low concentrations of hydrazine but none completely meet the sensitivity requirements while satisfying additional criteria such as quick response, stable calibration, interference free operation, online operation, reasonable cost, etc. A brief review is presented of the current technology including the electrochemical cell, the ion mobility spectrometer, the mass spectrometer, and the gas chromatograph. A review of the advantages and disadvantages of these instruments are presented here. The review also includes commercially unavailable technology such as the electronic nose and the Tunable Diode Laser (TDL) IR Spectrometer. It was found that the TDL could meet the majority of these criteria including fast response, minimum maintenance, portability, and reasonable cost. An experiment was conducted to demonstrate the feasibility of such a system using an existing (non-portable) instrument. A lead-salt tunable diode laser, cooled to 85 degrees Kelvin was used to record direct absorption and second-derivative spectra of Hydrazine at several pressures to study the sensitivity to low levels of Hydrazine. Spectra of NH3 and CO2 were used for wavelength identification of the scanned region. With a pathlength of 80 m, detection sensitivities of about 1 ppb were achieved for hydrazine in dry nitrogen at a cell pressure of 100 mbar. For spectroscopic detection of Hydrazine, spectral regions including strong Ammonia or Carbon Dioxide lines must be avoided. Strong Hydrazine absorption features were identified at 940/cm showing minimal contribution from Ammonia interferences as suitable candidates for Hydrazine gas detection. For the studies reported here, the particular laser diode could only cover the narrow regions near 962/cm and 965/cm where strong Ammonia interferences were expected. However, the high resolution (0.001/cm) of the TDL spectrometer allowed individual lines of Hydrazine to be identified away from

  12. Solar absorptance and thermal emittance of some common spacecraft thermal-control coatings

    NASA Technical Reports Server (NTRS)

    Henninger, J. H.

    1984-01-01

    Solar absorptance and thermal emittance of spacecraft materials are critical parameters in determining spacecraft temperature control. Because thickness, surface preparation, coatings formulation, manufacturing techniques, etc. affect these parameters, it is usually necessary to measure the absorptance and emittance of materials before they are used. Absorptance and emittance data for many common types of thermal control coatings, are together with some sample spectral data curves of absorptance. In some cases for which ultraviolet and particle radiation data are available, the degraded absorptance and emittance values are also listed.

  13. The SPIRIT airborne instrument: a three-channel infrared absorption spectrometer with quantum cascade lasers for in situ atmospheric trace-gas measurements

    NASA Astrophysics Data System (ADS)

    Catoire, Valéry; Robert, Claude; Chartier, Michel; Jacquet, Patrick; Guimbaud, Christophe; Krysztofiak, Gisèle

    2017-09-01

    An infrared absorption spectrometer called SPIRIT (SPectromètre Infra-Rouge In situ Toute altitude) has been developed for airborne measurements of trace gases in the troposphere. At least three different trace gases can be measured simultaneously every 1.6 s using the coupling of a single Robert multipass optical cell with three Quantum Cascade Lasers (QCLs), easily interchangeable to select species depending on the scientific objectives. Absorptions of the mid-infrared radiations by the species in the cell at reduced pressure (<40 hPa), with path lengths adjustable up to 167.78 m, are quantified using an HgCdTe photodetector cooled by Stirling cycle. The performances of the instrument are assessed: a linearity with a coefficient of determination R 2 > 0.979 for the instrument response is found for CO, CH4, and NO2 volume mixing ratios under typical tropospheric conditions. In-flight comparisons with calibrated gas mixtures allow to show no instrumental drift correlated with atmospheric pressure and temperature changes (when vertical profiling) and to estimate the overall uncertainties in the measurements of CO, CH4, and NO2 to be 0.9, 22, and 0.5 ppbv, respectively. In-flight precision (1 σ) for these species at 1.6 s sampling is 0.3, 5, and 0.3 ppbv, respectively.

  14. The Extreme Ultraviolet Explorer mission

    NASA Technical Reports Server (NTRS)

    Malina, R. F.; Battel, S. J.

    1989-01-01

    The Extreme Ultraviolet Explorer (EUVE) mission will be the first user of NASA's new Explorer platform. The instrumentation included on this mission consists of three grazing incidence scanning telescopes, a deep survey instrument and an EUV spectrometer. The bandpass covered is 80 to 900 A. During the first six months of the mission, the scanning telescopes will be used to make all-sky maps in four bandpasses; astronomical sources wil be detected and their positions determined to an accuracy of 0.1 deg. The deep survey instrument will survey the sky with higher sensitivity along the ecliptic in two bandpasses between 80 and 500 A. Engineering and design aspects of the science payload and features of the instrument design are described.

  15. Ultraviolet spectroscopic breath analysis using hollow-optical fiber as gas cell

    NASA Astrophysics Data System (ADS)

    Iwata, T.; Katagiri, T.; Matsuura, Y.

    2017-02-01

    For breath analysis on ultraviolet absorption spectroscopy, an analysis system using a hollow optical fiber as gas cell is developed. The hollow optical fiber functions as a long path and extremely small volume gas cell. Firstly, the measurement sensitivity of the system is evaluated by using NO gas as a gas sample. The result shows that NO gas with 50 ppb concentration is measured by using a system with a laser-driven, high intensity light source and a 3-meter long, aluminum-coated hollow optical fiber. Then an absorption spectrum of breath sample is measured in the wavelength region of around 200-300 nm and from the spectrum, it is found that the main absorbing components in breath were H2O, isoprene, and O3 converted from O2 by radiation of ultraviolet light. Then the concentration of isoprene in breath is estimated by using multiple linear regression analysis.

  16. Plans for the extreme ultraviolet explorer data base

    NASA Technical Reports Server (NTRS)

    Marshall, Herman L.; Dobson, Carl A.; Malina, Roger F.; Bowyer, Stuart

    1988-01-01

    The paper presents an approach for storage and fast access to data that will be obtained by the Extreme Ultraviolet Explorer (EUVE), a satellite payload scheduled for launch in 1991. The EUVE telescopes will be operated remotely from the EUVE Science Operation Center (SOC) located at the University of California, Berkeley. The EUVE science payload consists of three scanning telescope carrying out an all-sky survey in the 80-800 A spectral region and a Deep Survey/Spectrometer telescope performing a deep survey in the 80-250 A spectral region. Guest Observers will remotely access the EUVE spectrometer database at the SOC. The EUVE database will consist of about 2 X 10 to the 10th bytes of information in a very compact form, very similar to the raw telemetry data. A history file will be built concurrently giving telescope parameters, command history, attitude summaries, engineering summaries, anomalous events, and ephemeris summaries.

  17. Complex Resonance Absorption Structure in the X-Ray Spectrum of IRAS 13349+2438

    NASA Technical Reports Server (NTRS)

    Sako, M.; Kahn, S. M.; Behar, E.; Kaastra, J. S.; Brinkman, A. C.; Boller, Th.; Puchnarewicz, E. M.; Starling, R.; Liedahl, D. A.; Clavel, J.

    2000-01-01

    The luminous infrared-loud quasar IRAS 13349+2438 was observed with the XMM - Newton Observatory as part of the Performance Verification program. The spectrum obtained by the Reflection Grating Spectrometer (RGS) exhibits broad (FWHM - 1400 km/s) absorption lines from highly ionized elements including hydrogen- and helium-like carbon, nitrogen, oxygen, and neon, and several iron L - shell ions (Fe XVII - XX). Also shown in the spectrum is the first astrophysical detection of a broad absorption feature around lambda = 16 - 17 A identified as an unresolved transition array (UTA) of 2p - 3d inner-shell absorption by iron M-shell ions in a much cooler medium; a feature that might be misidentified as an O VII edge when observed with moderate resolution spectrometers. No absorption edges are clearly detected in the spectrum. We demonstrate that the RGS spectrum of IRAS 13349+2438 exhibits absorption lines from two distinct regions, one of which is tentatively associated with the medium that produces the optical/UV reddening.

  18. Retrieval of Total Ozone Amounts from Zenith-Sky Intensities in the Ultraviolet Region

    NASA Technical Reports Server (NTRS)

    Bojkov, B. R.; Bhartia, P. K.; Hilsenrath, E.; Labow, G. J.

    2004-01-01

    A new method to determine the total ozone column from zenith-sky intensities in the ultraviolet region has been developed for the Shuttle Solar Backscatter Ultraviolet Spectrometer (SSBUV) operating at the NASA Goddard Space Flight Center. The total ozone column amounts are derived by comparing the ratio of measured intensities from three wavelengths with the equivalent ratios calculated by a radiative transfer model. The differences between the retrieved ozone column amounts and the collocated Brewer double monochromator are within 2% for the measurement period beginning in April 2001. The methodology, as well as the influences of the ozone profiles, aerosols, surface albedo, and the solar zenith angle on the retrieved total ozone amounts will be presented.

  19. Spectral observations of the extreme ultraviolet background.

    PubMed

    Labov, S E; Bowyer, S

    1991-04-20

    A grazing incidence spectrometer was designed to measure the diffuse extreme ultraviolet background. It was flown on a sounding rocket, and data were obtained on the diffuse background between 80 and 650 angstroms. These are the first spectral measurements of this background below 520 angstroms. Several emission features were detected, including interplanetary He I 584 angstroms emission and geocoronal He II 304 angstroms emission. Other features observed may originate in a hot ionized interstellar gas, but if this interpretation is correct, gas at several different temperatures is present. The strongest of these features is consistent with O V emission at 630 angstroms. This emission, when combined with upper limits for other lines, restricts the temperature of this component to 5.5 < log T < 5.7, in agreement with temperatures derived from O VI absorption studies. A power-law distribution of temperatures is consistent with this feature only if the power-law coefficient is negative, as is predicted for saturated evaporation of clouds in a hot medium. In this case, the O VI absorption data confine the filling factor of the emission of f < or = 4% and the pressure to more than 3.7 x 10(4) cm-3 K, substantially above ambient interstellar pressure. Such a pressure enhancement has been predicted for clouds undergoing saturated evaporation. Alternatively, if the O V emission covers a considerable fraction of the sky, it would be a major source of ionization. A feature centered at about 99 angstroms is well fitted by a cluster of Fe XVIII and Fe XIX lines from gas at log T = 6.6-6.8. These results are consistent with previous soft X-ray observations with low-resolution detectors. A feature found near 178 angstroms is consistent with Fe X and Fe XI emission from gas at log T = 6; this result is consistent with results from experiments employing broad-band soft X-ray detectors.

  20. Ultraviolet reflectance properties of asteroids

    NASA Astrophysics Data System (ADS)

    Butterworth, P. S.; Meadows, A. J.

    1985-05-01

    An analysis of the UV spectra of 28 asteroids obtained with the Internal Ultraviolet Explorer (IUE) satellite is presented. The spectra lie within the range 2100-3200 A. The results are examined in terms of both asteroid classification and of current ideas concerning the surface mineralogy of asteroids. For all the asteroids examined, UV reflectivity declines approximately linearly toward shorter wavelengths. In general, the same taxonomic groups are seen in the UV as in the visible and IR, although there is some evidence for asteroids with anomalous UV properties and for UV subclasses within the S class. No mineral absorption features are reported of strength similar to the strongest features in the visible and IR regions, but a number of shallow absorptions do occur and may provide valuable information on the surface composition of many asteroids.

  1. Two-phase ultraviolet spectrophotometry of the pulsating white dwarf ZZ Piscium

    NASA Technical Reports Server (NTRS)

    Bond, H. E.; Kemper, E.; Grauer, A. D.; Holm, A. V.; Panek, R. J.; Schiffer, F. H., III

    1985-01-01

    Spectra of the pulsating white dwarf ZZ Psc (= G29-38) were obtained using the International Ultraviolet Explorer. By using a multiple-exposure technique in conjunction with simultaneous ground-based exposure-metering photometry, it was possible to obtain mean on-pulse and off-pulse spectra in the 1950-1310 A wavelength range. The ratio of the time-averaged on-pulse to off-pulse spectra is best fitted by a temperature variation that is in phase with the optical light variation. This result is consistent with the hypothesis that the observed variation is due to a high-order nonradial pulsation. Conventional ultraviolet spectra of ZZ Psc showed broad absorption features at 1390 and 1600 A. These features are also found in the spectra of the cool DA-type white dwarfs G226-29 and G67-23, and appear to increase in strength with decreasing temperature. A possible explanation for the 1600 A feature is absorption by the satellite band of resonance-broadened hydrogen Ly-alpha. Such absorption would also help explain a discrepancy between the observed pulsation amplitude shortward of 1650 A and the predicted amplitudes based on model atmospheres.

  2. Short Pulse Laser Absorption and Energy Partition at Relativistic Laser Intensities

    NASA Astrophysics Data System (ADS)

    Ping, Yuan

    2005-10-01

    We present the first absorption measurements at laser intensity between 10^17 to 10^20 W/cm^2 using an intergrating sphere and a suite of diagnostics that measures scale length, hot electrons and laser harmonics. A much-enhanced absorption in the regime of relativestic electron heating was observed. Furthermore, we present measurements on the partitioning of absorbed laser energy into thermal and non-thermal electrons when illuminating solid targets from 10^17 to 10^19 W/cm^2. This was measured using a sub-picosecond x-ray streak camera interfaced to a dual crystal von H'amos crystal spectrograph, a spherical crystal x-ray imaging spectrometer, an electron spectrometer and optical spectrometer. Our data suggests an intensity dependent energy-coupling transition with greater energy portion into non-thermal electrons that rapidly transition to thermal electrons. The details of these experimental results and modeling simulations will be presented.

  3. Search with Copernicus for ultraviolet emission lines in the planetary nebula NGC 3242

    NASA Technical Reports Server (NTRS)

    Schwartz, R. D.; Snow, T. P., Jr.; Upson, W. L., II

    1978-01-01

    The high-excitation planetary nebula NGC 3242 has been observed with the ultraviolet telescope-spectrometer aboard Copernicus. Wavelength intervals corresponding to the emission lines of O VI at 1032 A, He II at 1085 A, Si III at 1206 A, and N V at 1239 A have been scanned. Upper limits to the observed fluxes are reported and compared with predicted emission-line fluxes from this object.

  4. Ultra-portable, wireless smartphone spectrometer for rapid, non-destructive testing of fruit ripeness.

    PubMed

    Das, Anshuman J; Wahi, Akshat; Kothari, Ishan; Raskar, Ramesh

    2016-09-08

    We demonstrate a smartphone based spectrometer design that is standalone and supported on a wireless platform. The device is inherently low-cost and the power consumption is minimal making it portable to carry out a range of studies in the field. All essential components of the device like the light source, spectrometer, filters, microcontroller and wireless circuits have been assembled in a housing of dimensions 88 mm × 37 mm × 22 mm and the entire device weighs 48 g. The resolution of the spectrometer is 15 nm, delivering accurate and repeatable measurements. The device has a dedicated app interface on the smartphone to communicate, receive, plot and analyze spectral data. The performance of the smartphone spectrometer is comparable to existing bench-top spectrometers in terms of stability and wavelength resolution. Validations of the device were carried out by demonstrating non-destructive ripeness testing in fruit samples. Ultra-Violet (UV) fluorescence from Chlorophyll present in the skin was measured across various apple varieties during the ripening process and correlated with destructive firmness tests. A satisfactory agreement was observed between ripeness and fluorescence signals. This demonstration is a step towards possible consumer, bio-sensing and diagnostic applications that can be carried out in a rapid manner.

  5. Ultra-portable, wireless smartphone spectrometer for rapid, non-destructive testing of fruit ripeness

    NASA Astrophysics Data System (ADS)

    Das, Anshuman J.; Wahi, Akshat; Kothari, Ishan; Raskar, Ramesh

    2016-09-01

    We demonstrate a smartphone based spectrometer design that is standalone and supported on a wireless platform. The device is inherently low-cost and the power consumption is minimal making it portable to carry out a range of studies in the field. All essential components of the device like the light source, spectrometer, filters, microcontroller and wireless circuits have been assembled in a housing of dimensions 88 mm × 37 mm × 22 mm and the entire device weighs 48 g. The resolution of the spectrometer is 15 nm, delivering accurate and repeatable measurements. The device has a dedicated app interface on the smartphone to communicate, receive, plot and analyze spectral data. The performance of the smartphone spectrometer is comparable to existing bench-top spectrometers in terms of stability and wavelength resolution. Validations of the device were carried out by demonstrating non-destructive ripeness testing in fruit samples. Ultra-Violet (UV) fluorescence from Chlorophyll present in the skin was measured across various apple varieties during the ripening process and correlated with destructive firmness tests. A satisfactory agreement was observed between ripeness and fluorescence signals. This demonstration is a step towards possible consumer, bio-sensing and diagnostic applications that can be carried out in a rapid manner.

  6. Vacuum and ultraviolet radiation effects on binders and pigments for spacecraft thermal control coatings

    NASA Technical Reports Server (NTRS)

    Progar, D. J.; Wade, W. R.

    1971-01-01

    An evaluation of several silicone resin binders and powdered inorganic pigments for potential use in spacecraft thermal-control paint formulations is presented. The pigments were selected on the basis of a hypothesis relating the heat of formation of a compound to the compound's resistance to ultra-radiation-induced degradation. Reflectance measurements were made in situ to determine degradation rates due to ultraviolet radiation. The tested polydimethylsiloxane resins were not significantly affected by long exposures to ultraviolet radiation. All the pigments, which were dispersed in a polydimethylsiloxane resin, were degraded by ultraviolet radiation as determined by an increase of solar absorptance. For the materials evaluated in this study, no evidence was found to indicate that pigments with high heats of formation were resistant to ultraviolet degradation.

  7. Analysis of aircraft spectrometer data with logarithmic residuals

    NASA Technical Reports Server (NTRS)

    Green, A. A.; Craig, M. D.

    1985-01-01

    Spectra from airborne systems must be analyzed in terms of their mineral-related absorption features. Methods for removing backgrounds and extracting these features one at a time from reflectance spectra are discussed. Methods for converting radiance spectra into a form similar to reflectance spectra so that the feature extraction procedures can be implemented on aircraft spectrometer data are also discussed.

  8. A practical superconducting-microcalorimeter X-ray spectrometer for beamline and laboratory science

    DOE PAGES

    Doriese, W. B.; Abbamonte, P.; Alpert, B. K.; ...

    2017-05-01

    We describe a series of microcalorimeter X-ray spectrometers designed for a broad suite of measurement applications. The chief advantage of this type of spectrometer is that it can be orders of magnitude more efficient at collecting X-rays than more traditional high-resolution spectrometers that rely on wavelength-dispersive techniques. This advantage is most useful in applications that are traditionally photon-starved and/or involve radiation-sensitive samples. Each energy-dispersive spectrometer is built around an array of several hundred transition-edge sensors (TESs). TESs are superconducting thin films that are biased into their superconducting-to-normal-metal transitions. The spectrometers share a common readout architecture and many design elements, suchmore » as a compact, 65 mK detector package, 8-column time-division-multiplexed superconducting quantum-interference device readout, and a liquid-cryogen-free cryogenic system that is a two-stage adiabatic-demagnetization refrigerator backed by a pulse-tube cryocooler. We have adapted this flexible architecture to mate to a variety of sample chambers and measurement systems that encompass a range of observing geometries. There are two different types of TES pixels employed. The first, designed for X-ray energies below 10 keV, has a best demonstrated energy resolution of 2.1 eV (full-width-at-half-maximum or FWHM) at 5.9 keV. The second, designed for X-ray energies below 2 keV, has a best demonstrated resolution of 1.0 eV (FWHM) at 500 eV. Our team has now deployed seven of these X-ray spectrometers to a variety of light sources, accelerator facilities, and laboratory-scale experiments; these seven spectrometers have already performed measurements related to their applications. Another five of these spectrometers will come online in the near future. We have applied our TES spectrometers to the following measurement applications: synchrotron-based absorption and emission spectroscopy and energy

  9. A practical superconducting-microcalorimeter X-ray spectrometer for beamline and laboratory science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doriese, W. B.; Abbamonte, P.; Alpert, B. K.

    We describe a series of microcalorimeter X-ray spectrometers designed for a broad suite of measurement applications. The chief advantage of this type of spectrometer is that it can be orders of magnitude more efficient at collecting X-rays than more traditional high-resolution spectrometers that rely on wavelength-dispersive techniques. This advantage is most useful in applications that are traditionally photon-starved and/or involve radiation-sensitive samples. Each energy-dispersive spectrometer is built around an array of several hundred transition-edge sensors (TESs). TESs are superconducting thin films that are biased into their superconducting-to-normal-metal transitions. The spectrometers share a common readout architecture and many design elements, suchmore » as a compact, 65 mK detector package, 8-column time-division-multiplexed superconducting quantum-interference device readout, and a liquid-cryogen-free cryogenic system that is a two-stage adiabatic-demagnetization refrigerator backed by a pulse-tube cryocooler. We have adapted this flexible architecture to mate to a variety of sample chambers and measurement systems that encompass a range of observing geometries. There are two different types of TES pixels employed. The first, designed for X-ray energies below 10 keV, has a best demonstrated energy resolution of 2.1 eV (full-width-at-half-maximum or FWHM) at 5.9 keV. The second, designed for X-ray energies below 2 keV, has a best demonstrated resolution of 1.0 eV (FWHM) at 500 eV. Our team has now deployed seven of these X-ray spectrometers to a variety of light sources, accelerator facilities, and laboratory-scale experiments; these seven spectrometers have already performed measurements related to their applications. Another five of these spectrometers will come online in the near future. We have applied our TES spectrometers to the following measurement applications: synchrotron-based absorption and emission spectroscopy and energy

  10. A practical superconducting-microcalorimeter X-ray spectrometer for beamline and laboratory science

    NASA Astrophysics Data System (ADS)

    Doriese, W. B.; Abbamonte, P.; Alpert, B. K.; Bennett, D. A.; Denison, E. V.; Fang, Y.; Fischer, D. A.; Fitzgerald, C. P.; Fowler, J. W.; Gard, J. D.; Hays-Wehle, J. P.; Hilton, G. C.; Jaye, C.; McChesney, J. L.; Miaja-Avila, L.; Morgan, K. M.; Joe, Y. I.; O'Neil, G. C.; Reintsema, C. D.; Rodolakis, F.; Schmidt, D. R.; Tatsuno, H.; Uhlig, J.; Vale, L. R.; Ullom, J. N.; Swetz, D. S.

    2017-05-01

    We describe a series of microcalorimeter X-ray spectrometers designed for a broad suite of measurement applications. The chief advantage of this type of spectrometer is that it can be orders of magnitude more efficient at collecting X-rays than more traditional high-resolution spectrometers that rely on wavelength-dispersive techniques. This advantage is most useful in applications that are traditionally photon-starved and/or involve radiation-sensitive samples. Each energy-dispersive spectrometer is built around an array of several hundred transition-edge sensors (TESs). TESs are superconducting thin films that are biased into their superconducting-to-normal-metal transitions. The spectrometers share a common readout architecture and many design elements, such as a compact, 65 mK detector package, 8-column time-division-multiplexed superconducting quantum-interference device readout, and a liquid-cryogen-free cryogenic system that is a two-stage adiabatic-demagnetization refrigerator backed by a pulse-tube cryocooler. We have adapted this flexible architecture to mate to a variety of sample chambers and measurement systems that encompass a range of observing geometries. There are two different types of TES pixels employed. The first, designed for X-ray energies below 10 keV, has a best demonstrated energy resolution of 2.1 eV (full-width-at-half-maximum or FWHM) at 5.9 keV. The second, designed for X-ray energies below 2 keV, has a best demonstrated resolution of 1.0 eV (FWHM) at 500 eV. Our team has now deployed seven of these X-ray spectrometers to a variety of light sources, accelerator facilities, and laboratory-scale experiments; these seven spectrometers have already performed measurements related to their applications. Another five of these spectrometers will come online in the near future. We have applied our TES spectrometers to the following measurement applications: synchrotron-based absorption and emission spectroscopy and energy-resolved scattering

  11. A practical superconducting-microcalorimeter X-ray spectrometer for beamline and laboratory science.

    PubMed

    Doriese, W B; Abbamonte, P; Alpert, B K; Bennett, D A; Denison, E V; Fang, Y; Fischer, D A; Fitzgerald, C P; Fowler, J W; Gard, J D; Hays-Wehle, J P; Hilton, G C; Jaye, C; McChesney, J L; Miaja-Avila, L; Morgan, K M; Joe, Y I; O'Neil, G C; Reintsema, C D; Rodolakis, F; Schmidt, D R; Tatsuno, H; Uhlig, J; Vale, L R; Ullom, J N; Swetz, D S

    2017-05-01

    We describe a series of microcalorimeter X-ray spectrometers designed for a broad suite of measurement applications. The chief advantage of this type of spectrometer is that it can be orders of magnitude more efficient at collecting X-rays than more traditional high-resolution spectrometers that rely on wavelength-dispersive techniques. This advantage is most useful in applications that are traditionally photon-starved and/or involve radiation-sensitive samples. Each energy-dispersive spectrometer is built around an array of several hundred transition-edge sensors (TESs). TESs are superconducting thin films that are biased into their superconducting-to-normal-metal transitions. The spectrometers share a common readout architecture and many design elements, such as a compact, 65 mK detector package, 8-column time-division-multiplexed superconducting quantum-interference device readout, and a liquid-cryogen-free cryogenic system that is a two-stage adiabatic-demagnetization refrigerator backed by a pulse-tube cryocooler. We have adapted this flexible architecture to mate to a variety of sample chambers and measurement systems that encompass a range of observing geometries. There are two different types of TES pixels employed. The first, designed for X-ray energies below 10 keV, has a best demonstrated energy resolution of 2.1 eV (full-width-at-half-maximum or FWHM) at 5.9 keV. The second, designed for X-ray energies below 2 keV, has a best demonstrated resolution of 1.0 eV (FWHM) at 500 eV. Our team has now deployed seven of these X-ray spectrometers to a variety of light sources, accelerator facilities, and laboratory-scale experiments; these seven spectrometers have already performed measurements related to their applications. Another five of these spectrometers will come online in the near future. We have applied our TES spectrometers to the following measurement applications: synchrotron-based absorption and emission spectroscopy and energy-resolved scattering

  12. Ultraviolet Spectra of Two Magnetic White Dwarfs and Ultraviolet Spectra of Subluminous Objects Found in the Kiso Schmidt Survey

    NASA Technical Reports Server (NTRS)

    Wegner, Gary A.

    1987-01-01

    Low resolution International Ultraviolet Explorer (IUE) spectroscopic observations of two magnetic white dwarfs BPM25114 and K813-14 were obtained using both the SWP and LWP cameras. The first object has an observed magnetic field of 4 x 10(7) Gauss and the second has one of 3 x 10(7) Gauss. Both objects have overall spectral energy distributions appropriate for cool DA white dwarfs with T(eff) near 10,000 K and accordingly show strong lambda lambda 1400 and 1600 absorption in their spectra. Compared to non-magnetic DA white dwarfs of comparable effective temperature, there are some differences in the profiles, presumably produced by the magnetic fields in these objects. In addition, the ultraviolet spectra of a number of hot subluminous stars in the Kiso Schmidt survey were observed.

  13. Field Studies of Broadband Aerosol Optical Extinction in the Ultraviolet Spectral Region

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Attwood, A.; Brock, C. A.; Brown, S. S.

    2013-12-01

    Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross sections and complex refractive indices. In the case of brown carbon, its wavelength-dependent absorption in the ultraviolet spectral region has been suggested as an important component of aerosol radiative forcing. We describe a new field instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360-390 and 385-420 nm spectral regions using two light emitting diodes (LED) and a grating spectrometer with charge-coupled device (CCD) detector. We deployed this instrument during the Fire Lab at Missoula Experiment during Fall 2012 to measure biomass burning aerosol, and again during the Southern Oxidant and Aerosol Study in summer 2013 to measure organic aerosol in the Southeastern U.S. In both field experiments, we determined aerosol optical extinction as a function of wavelength and can interpret this together with size distribution and composition measurements to characterize the aerosol optical properties and radiative forcing.

  14. High-resolution vacuum-ultraviolet photoabsorption spectra of 1-butyne and 2-butyne

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacovella, U.; Holland, D. M. P.; Boyé-Péronne, S.

    2015-07-21

    The absolute photoabsorption cross sections of 1- and 2-butyne have been recorded at high resolution by using the vacuum-ultraviolet Fourier-Transform spectrometer at the SOLEIL Synchrotron. Both spectra show more resolved structure than previously observed, especially in the case of 2-butyne. In this work, we assess the potential importance of Rydberg states with higher values of orbital angular momentum, l, than are typically observed in photoabsorption experiments from ground state molecules. We show how the character of the highest occupied molecular orbitals in 1- and 2-butyne suggests the potential importance of transitions to such high-l (l = 3 and 4) Rydbergmore » states. Furthermore, we use theoretical calculations of the partial wave composition of the absorption cross section just above the ionization threshold and the principle of continuity of oscillator strength through an ionization threshold to support this conclusion. The new absolute photoabsorption cross sections are discussed in light of these arguments, and the results are consistent with the expectations. This type of argument should be valuable for assessing the potential importance of different Rydberg series when sufficiently accurate direct quantum chemical calculations are difficult, for example, in the n ≥ 5 manifolds of excited states of larger molecules.« less

  15. Measurements of stratospheric composition using a star pointing spectrometer

    NASA Technical Reports Server (NTRS)

    Fish, Deb J.; Jones, Rod L.; Freshwater, Ray A.; Roscoe, Howard K.; Oldham, Derek J.

    1994-01-01

    Measurements of stratospheric composition have been made with a novel star-pointing spectrometer. The instrument consists of a telescope that focuses light from stars, planets, or the moon onto a spectrometer and two dimensional CCD array detector. Atmospheric absorptions can be measured, from which atmospheric columns of several gases can be determined. The instrument was deployed in Abisko, 69 deg N, during the European Arctic Stratospheric Ozone Experiment (EASOE). The instrument has the potential for measuring O3, OClO, NO2, and NO3. In this paper, a method for the retrieval of vertical columns is described, and some examples of ozone measurements given.

  16. High Ultraviolet Absorption in Colloidal Gallium Nanoparticles Prepared from Thermal Evaporation

    PubMed Central

    Bravo, Iria; Catalan-Gomez, Sergio; Vázquez, Luis; Lorenzo, Encarnación; Pau, Jose Luis

    2017-01-01

    New methods for the production of colloidal Ga nanoparticles (GaNPs) are introduced based on the evaporation of gallium on expendable aluminum zinc oxide (AZO) layer. The nanoparticles can be prepared in aqueous or organic solvents such as tetrahydrofuran in order to be used in different sensing applications. The particles had a quasi mono-modal distribution with diameters ranging from 10 nm to 80 nm, and their aggregation status depended on the solvent nature. Compared to common chemical synthesis, our method assures higher yield with the possibility of tailoring particles size by adjusting the deposition time. The GaNPs have been studied by spectrophotometry to obtain the absorption spectra. The colloidal solutions exhibit strong plasmonic absorption in the ultra violet (UV) region around 280 nm, whose width and intensity mainly depend on the nanoparticles dimensions and their aggregation state. With regard to the colloidal GaNPs flocculate behavior, the water solvent case has been investigated for different pH values, showing UV-visible absorption because of the formation of NPs clusters. Using discrete dipole approximation (DDA) method simulations, a close connection between the UV absorption and NPs with a diameter smaller than ~40 nm was observed. PMID:28684687

  17. Method and apparatus for enhancing laser absorption sensitivity

    NASA Technical Reports Server (NTRS)

    Webster, Christopher R. (Inventor)

    1987-01-01

    A simple optomechanical method and apparatus is described for substantially reducing the amplitude of unwanted multiple interference fringes which often limit the sensitivities of tunable laser absorption spectrometers. An exterior cavity is defined by partially transmissible surfaces such as a laser exit plate, a detector input, etc. That cavity is spoiled by placing an oscillating plate in the laser beam. For tunable diode laser spectroscopy in the mid-infrared region, a Brewster-plate spoiler allows the harmonic detection of absorptances of less than 10 to the -5 in a single laser scan. Improved operation is achieved without subtraction techniques, without complex laser frequency modulation, and without distortion of the molecular lineshape signal. The technique is applicable to tunable lasers operating from UV to IR wavelengths and in spectrometers which employ either short or long pathlengths, including the use of retroreflectors or multipass cells.

  18. Ultraviolet Raman scattering from persistent chemical warfare agents

    NASA Astrophysics Data System (ADS)

    Kullander, Fredrik; Wästerby, Pär.; Landström, Lars

    2016-05-01

    Laser induced Raman scattering at excitation wavelengths in the middle ultraviolet was examined using a pulsed tunable laser based spectrometer system. Droplets of chemical warfare agents, with a volume of 2 μl, were placed on a silicon surface and irradiated with sequences of laser pulses. The Raman scattering from V-series nerve agents, Tabun (GA) and Mustard gas (HD) was studied with the aim of finding the optimum parameters and the requirements for a detection system. A particular emphasis was put on V-agents that have been previously shown to yield relatively weak Raman scattering in this excitation band.

  19. High sensitivity liquid phase measurements using broadband cavity enhanced absorption spectroscopy (BBCEAS) featuring a low cost webcam based prism spectrometer.

    PubMed

    Qu, Zhechao; Engstrom, Julia; Wong, Donald; Islam, Meez; Kaminski, Clemens F

    2013-11-07

    Cavity enhanced techniques enable high sensitivity absorption measurements in the liquid phase but are typically more complex, and much more expensive, to perform than conventional absorption methods. The latter attributes have so far prevented a wide spread use of these methods in the analytical sciences. In this study we demonstrate a novel BBCEAS instrument that is sensitive, yet simple and economical to set up and operate. We use a prism spectrometer with a low cost webcam as the detector in conjunction with an optical cavity consisting of two R = 0.99 dielectric mirrors and a white light LED source for illumination. High sensitivity liquid phase measurements were made on samples contained in 1 cm quartz cuvettes placed at normal incidence to the light beam in the optical cavity. The cavity enhancement factor (CEF) with water as the solvent was determined directly by phase shift cavity ring down spectroscopy (PS-CRDS) and also by calibration with Rhodamine 6G solutions. Both methods yielded closely matching CEF values of ~60. The minimum detectable change in absorption (αmin) was determined to be 6.5 × 10(-5) cm(-1) at 527 nm and was limited only by the 8 bit resolution of the particular webcam detector used, thus offering scope for further improvement. The instrument was used to make representative measurements on dye solutions and in the determination of nitrite concentrations in a variation of the widely used Griess Assay. Limits of detection (LOD) were ~850 pM for Rhodamine 6G and 3.7 nM for nitrite, respectively. The sensitivity of the instrument compares favourably with previous cavity based liquid phase studies whilst being achieved at a small fraction of the cost hitherto reported, thus opening the door to widespread use in the community. Further means of improving sensitivity are discussed in the paper.

  20. Absorption Cross-Sections of Sodium Diatomic Molecules

    NASA Technical Reports Server (NTRS)

    Fong, Zeng-Shevan

    1985-01-01

    The absorption cross sections of sodium dimers were studied using a heat pipe over operating in the non-heat-pipe mode. Three wavelength regions were observed. They are in the red, the green-blue, and the near ultraviolet regions. The absorption cross section depends on the wavelength of the incident light. Representative peak values for the v"=0 progression in the red and green-blue regions are 2.59 A sup 2 (average value) and 11.77 A sup 2 (T sub ave=624 K). The value for the C greater than X transitions is several tenths A sup 2. The cross sections were measured from absorption spectra taken as a function of temperature.

  1. Detection of fatty product falsifications using a portable near infrared spectrometer

    NASA Astrophysics Data System (ADS)

    Kalinin, A. V.; Krasheninnikov, V. N.

    2017-01-01

    Spreading sales of counterfeited fatty-oil foods leads to a development of portable and operational analyzer of typical fatty acids (FA) which may be a near infrared (NIR) spectrometer. In this work the calibration models for prediction of named FA were built with the spectra of FT-NIR spectrometer for different absorption bands of the FA. The best parameters were obtained for the wavelength sub-band 1.0-1.8 μ, which includes the 2nd and 3rd overtones of C-H stretching vibrations (near 1.7 and 1.2 μ) and the combination band (1.42 μ). Applicability of the portable spectrometer based on linear NIR array photosensor for the quality analysis of spread, butter and fish oil by the typical FA has been tested.

  2. In situ ozone data for evaluation of the laser absorption spectrometer ozone remote sensor: 1979 southeastern Virginia urban plume study summer field program

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Mcdougal, D. S.; Mathis, J. J., Jr.

    1980-01-01

    Ozone data from the 1979 Southeastern Virginia Urban Study (SEV-UPS) field program are presented. The SEV-UPS was conducted for evaluation of an ozone remote sensor, the Laser Absorption Spectrometer. During the measurement program, remote-sensor evaluation was in two areas; (1) determination of the remote sensor's accuracy, repeatability, and operational characteristics, and (2) demonstration of the application of remotely sensed ozone data in air-quality studies. Data from six experiments designed to provide in situ ozone data for evaluation of the sensor in area 1, above, are presented. Experiments consisted of overflights of a test area with the remote sensor aircraft while in situ measurements with a second aircraft and selected surface stations provided correlative ozone data within the viewing area of the remote sensor.

  3. Aerosol Angstrom Absorption Coefficient Comparisons during MILAGRO.

    NASA Astrophysics Data System (ADS)

    Marley, N. A.; Marchany-Rivera, A.; Kelley, K. L.; Mangu, A.; Gaffney, J. S.

    2007-12-01

    Measurements of aerosol absorption were obtained as part of the MAX-Mex component of the MILAGRO field campaign at site T0 (Instituto Mexicano de Petroleo in Mexico City) by using a 7-channel aethalometer (Thermo- Anderson) during the month of March, 2006. The absorption measurements obtained in the field at 370, 470, 520, 590, 660, 880, and 950 nm were used to determine the aerosol Angstrom absorption exponents by linear regression. Since, unlike other absorbing aerosol species (e.g. humic like substances, nitrated PAHs), black carbon absorption is relatively constant from the ultraviolet to the infrared with an Angstrom absorption exponent of -1 (1), a comparison of the Angstrom exponents can indicate the presence of aerosol components with an enhanced UV absorption over that expected from BC content alone. The Angstrom exponents determined from the aerosol absorption measurements obtained in the field varied from - 0.7 to - 1.3 during the study and was generally lower in the afternoon than the morning hours, indicating an increase in secondary aerosol formation and photochemically generated UV absorbing species in the afternoon. Twelve-hour integrated samples of fine atmospheric aerosols (<0.1micron) were also collected at site T0 and T1 (Universidad Technologica de Tecamac, State of Mexico) from 5 am to 5 pm (day) and from 5 pm to 5 am (night) during the month of March 2006. Samples were collected on quartz fiber filters with high volume impactor samplers. Continuous absorption spectra of these aerosol samples have been obtained in the laboratory from 280 to 900nm with the use of an integrating sphere coupled to a UV spectrometer (Beckman DU with a Labsphere accessory). The integrating sphere allows the detector to collect and spatially integrate the total radiant flux reflected from the sample and therefore allows for the measurement of absorption on highly reflective or diffusely scattering samples. These continuous spectra have also been used to obtain the

  4. Extreme ultraviolet spectroscopy diagnostics of low-temperature plasmas based on a sliced multilayer grating and glass capillary optics.

    PubMed

    Kantsyrev, V L; Safronova, A S; Williamson, K M; Wilcox, P; Ouart, N D; Yilmaz, M F; Struve, K W; Voronov, D L; Feshchenko, R M; Artyukov, I A; Vinogradov, A V

    2008-10-01

    New extreme ultraviolet (EUV) spectroscopic diagnostics of relatively low-temperature plasmas based on the application of an EUV spectrometer and fast EUV diodes combined with glass capillary optics is described. An advanced high resolution dispersive element sliced multilayer grating was used in the compact EUV spectrometer. For monitoring of the time history of radiation, filtered fast EUV diodes were used in the same spectral region (>13 nm) as the EUV spectrometer. The radiation from the plasma was captured by using a single inexpensive glass capillary that was transported onto the spectrometer entrance slit and EUV diode. The use of glass capillary optics allowed placement of the spectrometer and diodes behind the thick radiation shield outside the direction of a possible hard x-ray radiation beam and debris from the plasma source. The results of the testing and application of this diagnostic for a compact laser plasma source are presented. Examples of modeling with parameters of plasmas are discussed.

  5. The Infrared Solar Spectrum Measured by the SOLSPEC Spectrometer Onboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Thuillier, G.; Harder, J. W.; Shapiro, A.; Woods, T. N.; Perrin, J.-M.; Snow, M.; Sukhodolov, T.; Schmutz, W.

    2015-06-01

    A solar spectrum extending from the extreme ultraviolet to the near-infrared is an important input for solar physics, climate research, and atmospheric physics. Ultraviolet measurements have been conducted since the beginning of the space age, but measurements throughout the contiguous visible and infrared (IR) regions are much more sparse. Ageing is a key problem throughout the entire spectral domain, but most of the effort extended to understand degradation was concentrated on the ultraviolet spectral region, and these mechanisms may not be appropriate in the IR. This problem is further complicated by the scarcity of long-term data sets. Onboard the International Space Station, the SOLSPEC spectrometer measured an IR solar spectral irradiance lower than the one given by ATLAS 3, e.g. by about 7 % at 1 700 nm. We here evaluate the consequences of the lower solar spectral irradiance measurements and present a re-analysis of the on-orbit calibration lamp and solar data trend, which lead to a revised spectrum.

  6. Ultraviolet gas absorption and dust extinction toward M8

    NASA Technical Reports Server (NTRS)

    Boggs, Don; Bohm-Vitense, Erika

    1990-01-01

    Interstellar absorption lines are analyzed using high-resolution IUE spectra of 11 stars in the young cluster NGC 6530 located in the M8 region. High-velocity clouds at -35 km/s and -60 km/s are seen toward all cluster stars. The components arise in gases that are part of large interstellar bubbles centered on the cluster and driven by stellar winds of the most luminous members. Absorption lines of species of different ionization states are separated in velocity. The velocity stratification is best explained as a 'champagne' flow of ionized gas away from the cluster. The C IV/Si IV ratios toward the hotter cluster members are consistent with simple photoionization models if the gas-phase C/Si ratio is increased by preferential accretion onto dust grains. High ion column densities in the central cluster decline with distance from W93, suggesting that radiation from a hot source near W93 has photoionized gas in the central cluster.

  7. Modification of UV absorption profile of polymer film reflectors to increase solar-weighted reflectance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorgensen, Gary; Gee, Randall C.; White, David

    Provided are reflective thin film constructions including a reduced number of layers, which provides for increased solar-weighted hemispherical reflectance and durability. Reflective films include those comprising an ultraviolet absorbing abrasion resistant coating over a metal layer. Also provided are ultraviolet absorbing abrasion resistant coatings and methods for optimizing the ultraviolet absorption of an abrasion resistant coating. Reflective films disclosed herein are useful for solar reflecting, solar collecting, and solar concentrating applications, such as for the generation of electrical power.

  8. The early faint sun paradox: organic shielding of ultraviolet-labile greenhouse gases

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Chyba, C.

    1997-01-01

    Atmospheric mixing ratios of approximately 10(-5 +/- 1) for ammonia on the early Earth would have been sufficient, through the resulting greenhouse warming, to counteract the temperature effects of the faint early sun. One argument against such model atmospheres has been the short time scale for ammonia photodissociation by solar ultraviolet light. Here it is shown that ultraviolet absorption by steady-state amounts of high-altitude organic solids produced from methane photolysis may have shielded ammonia sufficiently that ammonia resupply rates were able to maintain surface temperatures above freezing.

  9. Effects of long-duration exposure on optical system components

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.

    1991-01-01

    The optical materials and UV detectors experiment (SOO50-1) was a set of 18 optical windows, filters, and ultraviolet detectors. The optical specimens were all retrieved in excellent condition. No delamination or blistering of the filters occurred. No discoloration of the optical window materials occurred, but the MgF2 window did experience roughing. The most notable degradation of the optics were the deposition of an organic film on the exposed surfaces. The film absorption was measured using a Fourier transform infrared spectrometer and a UV spectrometer. The 6 percent absorption at 3.4 microns corresponds to about 100 mgm/sq ft of organic film. The UV absorption was almost 100 percent at 200 nm and about 50 percent at 380 nm.

  10. Ultraviolet photometry from the Orbiting Astronomical Observatory. II Interstellar extinction.

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Savage, B. D.

    1972-01-01

    Evaluation of interstellar extinction curves over the region from 3600 to 1100 A for 17 stars. The observations were made by the two Wisconsin spectrometers on board the Orbiting Astronomical Observatory 2, with spectral resolutions of 10 and 20 A. The extinction curves generally show a pronounced maximum at 2175 plus or minus 25 A, a broad minimum in the region from 1800 to 1350 A, and finally a rapid rise to the far-ultraviolet. Large extinction variations from star to star are found, especially in the far-ultraviolet; however, with only two possible exceptions in this sample, the wavelength at the maximum of the extinction bump is essentially constant. These data are combined with visual and infrared observations to display the extinction behavior over a range in wavelength of about a factor of 20. The observations appear to require a multicomponent model of the interstellar dust.

  11. Direct index of refraction measurements at extreme-ultraviolet and soft-x-ray wavelengths.

    PubMed

    Rosfjord, Kristine; Chang, Chang; Miyakawa, Ryan; Barth, Holly; Attwood, David

    2006-03-10

    Coherent radiation from undulator beamlines has been used to directly measure the real and imaginary parts of the index of refraction of several materials at both extreme-ultraviolet and soft-x-ray wavelengths. Using the XOR interferometer, we measure the refractive indices of silicon and ruthenium, essential materials for extreme-ultraviolet lithography. Both materials are tested at wavelength (13.4 nm) and across silicon's L2 (99.8 eV) and L3 (99.2 eV) absorption edges. We further extend this direct phase measurement method into the soft-x-ray region, where measurements of chromium and vanadium are performed around their L3 absorption edges at 574.1 and 512.1 eV, respectively. These are the first direct measurements, to our knowledge, of the real part of the index of refraction made in the soft-x-ray region.

  12. A comparison of photospheric electric current and ultraviolet and X-ray emission in a solar active region

    NASA Astrophysics Data System (ADS)

    Haisch, B. M.; Bruner, M. E.; Hagyard, M. J.; Bonnet, R. M.

    1986-01-01

    This paper presents an extensive set of coordinated observations of a solar active region, taking into account spectroheliograms obtained with the aid of the Solar Maximum Mission (SMM) Ultraviolet Spectrometer Polarimeter (UVSP) instrument, SMM soft X-ray polychromator (XRP) raster maps, and high spatial resolution ultraviolet images of the sun in Lyman-alpha and in the 1600 A continuum. These data span together the upper solar atmosphere from the temperature minimum to the corona. The data are compared to maps of the inferred photospheric electric current derived from the Marshall Space Flight Center (MSFC) vector magnetograph observations. Some empirical correlation is found between regions of inferred electric current density and the brightest features in the ultraviolet continuum and to a lesser extent those seen in Lyman-alpha within an active region.

  13. Vacuum Ultraviolet Photodissociation and Fourier Transform-Ion Cyclotron Resonance (FT-ICR) Mass Spectrometry: Revisited.

    PubMed

    Shaw, Jared B; Robinson, Errol W; Paša-Tolić, Ljiljana

    2016-03-15

    We revisited the implementation of 193 nm ultraviolet photodissociation (UVPD) within the ion cyclotron resonance (ICR) cell of a Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer. UVPD performance characteristics were examined in the context of recent developments in the understanding of UVPD and in-cell tandem mass spectrometry. Efficient UVPD and photo-ECD of a model peptide and proteins within the ICR cell of a FT-ICR mass spectrometer are accomplished through appropriate modulation of laser pulse timing, relative to ion magnetron motion and the potential applied to an ion optical element upon which photons impinge. It is shown that UVPD yields efficient and extensive fragmentation, resulting in excellent sequence coverage for model peptide and protein cations.

  14. The polarization and ultraviolet spectrum of Markarian 231

    NASA Technical Reports Server (NTRS)

    Smith, Paul S.; Schmidt, Gary D.; Allen, Richard G.; Angel, J. R. P.

    1995-01-01

    Ultraviolet spectropolarimetry acquired with the Hubble Space Telescope (HST) of the peculiar Seyfert galaxy Mrk 231 is combined with new high-quality ground-based measurements to provide the first, nearly complete, record of its linear polarization from 1575 to 7900 A. The accompanying ultraviolet spectrum portrays the heavily extinguished emission-line spectrum of the active nucleus plus the emergence of a blue continuum shortward of approximately 2400 A. In addition, absorption features due to He I lambda 3188, Mg I lambda 2853, Mg II lambda 2798, and especially several resonance multiplets of Fe II are identified with a well-known optical absorption system blueshifted approximately 4600 km/s with respect to emission lines. The continuum is attributed to approximately 10(exp 5) hot, young stars surrounding the nucleus. This component dilutes the polarized nuclear light, implying that the intrinsic polarization of the active galactic nucleus (AGN) spectrum approaches 20% at 2800 A. The rapid decline in degree of polarization toward longer wavelengths is best explained by the strongly frequency-dependent scattering cross section of dust grains coupled with modest starlight dilution. Peculiar S-shaped inflections in both the degree and position angle of polarization through H alpha and other major emission lines are interpreted as effects of scattering from two regions offset in velocity by several hundred km/s. A third source of (weakly) polarized flux is required to explain a nearly 40 deg rotation in position angle between 3200 and 1800 A. The displaced absorption features, polarimetry, and optical/infrared properties of Mrk 231 all point to its classification as a low-ionization, or Mg II broad absorption line quasar, in which most, if not all, lines of sight to the active nucleus are heavily obscured by dust and low-ionization gas clouds.

  15. Comparison of photospheric electric current and ultraviolet and x-ray emission in a solar active region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haisch, B.M.; Bruner, M.E.; Hagyard, M.J.

    This paper presents an extensive set of coordinated observations of a solar active region, taking into account spectroheliograms obtained with the aid of the Solar Maximum Mission (SMM) Ultraviolet Spectrometer Polarimeter (UVSP) instrument, SMM soft x-ray polychromator (XRP) raster maps, and high spatial resolution ultraviolet images of the sun in Lyman-alpha and in the 1600 A continuum. These data span together the upper solar atmosphere from the temperature minimum to the corona. The data are compared to maps of the inferred photospheric electric current derived from the Marshall Space Flight Center (MSFC) vector magnetograph observations. Some empirical correlation is foundmore » between regions of inferred electric current density and the brightest features in the ultraviolet continuum and to a lesser extent those seen in Lyman-alpha within an active region. 29 references.« less

  16. Interpreting the Ultraviolet Aerosol Index Observed with the OMI Satellite Instrument to Understand Absorption by Organic Aerosols: Implications for Atmospheric Oxidation and Direct Radiative Effects

    NASA Technical Reports Server (NTRS)

    Hammer, Melanie S.; Martin, Randall V.; Donkelaar, Aaron van; Buchard, Virginie; Torres, Omar; Ridley, David A.; Spurr, Robert J. D.

    2016-01-01

    Satellite observations of the ultraviolet aerosol index (UVAI) are sensitive to absorption of solar radiation by aerosols; this absorption affects photolysis frequencies and radiative forcing. We develop a global simulation of the UVAI using the 3-D chemical transport model GEOSChem coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT). The simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument (OMI) for the year 2007. Simulated and observed values are highly consistent in regions where mineral dust dominates the UVAI, but a large negative bias (-0.32 to -0.97) exists between simulated and observed values in biomass burning regions. We determine effective optical properties for absorbing organic aerosol, known as brown carbon (BrC), and implement them into GEOS-Chem to better represent observed UVAI values over biomass burning regions. The inclusion of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from -0.57 to -0.09 over West Africa in January, from -0.32 to +0.0002 over South Asia in April, from -0.97 to -0.22 over southern Africa in July, and from -0.50 to +0.33 over South America in September. The spectral dependence of absorption after including BrC in the model is broadly consistent with reported observations for biomass burning aerosol, with absorbing Angstrom exponent (AAE) values ranging from 2.9 in the ultraviolet (UV) to 1.3 across the UV-Near IR spectrum. We assess the effect of the additional UV absorption by BrC on atmospheric photochemistry by examining tropospheric hydroxyl radical (OH) concentrations in GEOS-Chem. The inclusion of BrC decreases OH by up to 30% over South America in September, up to 20% over southern Africa in July, and up to 15% over other biomass burning regions. Global annual mean OH concentrations in GEOS-Chem decrease due to the presence of absorbing BrC, increasing the methyl chloroform lifetime from 5.62 to 5.68 years, thus

  17. REACTION OF AMINO-ACIDS AND PEPTIDE BONDS WITH FORMALDEHYDE AS MEASURED BY CHANGES IN THE ULTRA-VIOLET SPECTRA,

    DTIC Science & Technology

    AMINO ACIDS , CHEMICAL REACTIONS), (*PEPTIDES, CHEMICAL REACTIONS), (*FORMALDEHYDE, CHEMICAL REACTIONS), (*ULTRAVIOLET SPECTROSCOPY, PROTEINS), ABSORPTION SPECTRA, CHEMICAL BONDS, AMIDES, CHEMICAL EQUILIBRIUM, REACTION KINETICS

  18. Comparative analyses of the ultraviolet-B flux over the continental United State based on the NASA total ozone mapping spectrometer data and USDA ground-based measurements

    NASA Astrophysics Data System (ADS)

    Gao, Zhiqiang; Gao, Wei; Chang, Ni-Bin

    2010-10-01

    In recent years, the risk of health effects caused by the increased exposure to Ultraviolet-B (UVB) due to stratospheric ozone depletion has received wide attention. In the US, there are two ways to accurately measure the UVB. They include: 1) the National Aeronautical and Space Administration (NASA) Nimbus-7 total ozone mapping spectrometer (TOMS), and 2) the United State Department of Agriculture (USDA) ground-based network. This paper compares these two sensors' data for the ultraviolet index (UVI) nationally and regionally to support possible public health, agricultural, and ecological analyses in the future. The major findings of our study are: 1) although there are discrepancies between these two data sets, the temporal correlation coefficients can be as high as 98%. 2) Both types of data sources depict the macroscopic spatial pattern of the UVI across the continental US.indicating a strong spatial correlation; 3) The two data sources are generally consistent though the UVI of the NASA TOMS data are often about 0.13-1.05 units larger than those of the USDA ground-based measurements; and 4) Varying differences can be seen between the Midwest and two coastal regions. While the level of the UVI on the west coast has shown a decreasing trend in the past few years, its counterpart on the east coast showed an opposite trend in between 2000 and 2005. It is hard to conclude that the changes are due to variations of total ozone concentrations in this study period. The USDA ground-based measurements may be better applied for time series analysis for public health, ecological, and agricultural applications due to their ability to provide intensive calibrated point measurements.

  19. Study of high resolution x-ray spectrometer concepts for NIF experiments

    NASA Astrophysics Data System (ADS)

    Hill, K. W.; Bitter, M.; Delgado-Aparicio, L.; Efthimion, P.; Gao, L.; Maddox, J.; Pablant, N. A.; Beiersdorfer, P.; Chen, H.; Coppari, F.; Ma, T.; Nora, R.; Scott, H.; Schneider, M.; Mancini, R.

    2015-11-01

    Options have been investigated for DIM-insertable (Diagnostic Instrument Manipulator) high resolution (E/ ΔE ~ 3000 - 5000) Bragg crystal x-ray spectrometers for experiments on the NIF. Of interest are time integrated Cu K- and Ta L-edge absorption spectra and time resolved Kr He- β emission from compressed symcaps for inference of electron temperature from dielectronic satellites and electron density from Stark broadening. Cylindrical and conical von Hamos, Johann, and advanced high throughput designs have been studied. Predicted x-ray intensities, spectrometer throughputs, spectral resolution, and spatial focusing properties, as well as lab evaluations of some spectrometer candidates will be presented. Performed under the auspices of the US DOE by PPPL under contract DE-AC02-09CH11466 and by LLNL under contract DE-AC52-07NA27344.

  20. Photo-induced intersubband absorption in {Si}/{SiGe} quantum wells

    NASA Astrophysics Data System (ADS)

    Boucaud, P.; Gao, L.; Visocekas, F.; Moussa, Z.; Lourtioz, J.-M.; Julien, F. H.; Sagnes, I.; Campidelli, Y.; Badoz, P.-A.; Vagos, P.

    1995-12-01

    We have investigated photo-induced intersubband absorption in the valence band of {Si}/{SiGe} quantum wells. Carriers are optically generated in the quantum wells using an argon ion laser. The resulting infrared absorption is probed with a step-scan Fourier transform infrared spectrometer. The photo-induced infrared absorption in SiGe quantum wells is dominated by two contributions: the free carrier absorption, which is similar to bulk absorption in a uniformly doped SiGe layer, and the valence subband absorption in the quantum wells. Both p- and s-polarized intersubband absorptions are measured. We have observed that the photo-induced intersubband absorption in doped samples is shifted to lower energy as compared to direct intersubband absorption. This absorption process is attributed to carriers away from the Brillouin zone center. We show that the photo-induced technique is appropriate to study valence band mixing effects and their influence on intersubband absorption.

  1. Theoretical Prediction of Si 2–Si 33 Absorption Spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Li -Zhen; Lu, Wen -Cai; Qin, Wei

    Here, the optical absorption spectra of Si 2–Si 33 clusters were systematically studied by a time-dependent density functional theory approach. The calculations revealed that the absorption spectrum becomes significantly broad with increasing cluster size, stretching from ultraviolet to the infrared region. The absorption spectra are closely related to the structural motifs. With increasing cluster size, the absorption intensity of cage structures gradually increases, but the absorption curves of the prolate and the Y-shaped structures are very sensitive to cluster size. If the transition energy reaches ~12 eV, it is noted that all the clusters have remarkable absorption in deep ultravioletmore » region of 100–200 nm, and the maximum absorption intensity is ~100 times that in the visible region. Further, the optical responses to doping in the Si clusters were studied.« less

  2. Theoretical Prediction of Si 2–Si 33 Absorption Spectra

    DOE PAGES

    Zhao, Li -Zhen; Lu, Wen -Cai; Qin, Wei; ...

    2017-07-07

    Here, the optical absorption spectra of Si 2–Si 33 clusters were systematically studied by a time-dependent density functional theory approach. The calculations revealed that the absorption spectrum becomes significantly broad with increasing cluster size, stretching from ultraviolet to the infrared region. The absorption spectra are closely related to the structural motifs. With increasing cluster size, the absorption intensity of cage structures gradually increases, but the absorption curves of the prolate and the Y-shaped structures are very sensitive to cluster size. If the transition energy reaches ~12 eV, it is noted that all the clusters have remarkable absorption in deep ultravioletmore » region of 100–200 nm, and the maximum absorption intensity is ~100 times that in the visible region. Further, the optical responses to doping in the Si clusters were studied.« less

  3. Electronic absorption spectroscopy of matrix-isolated polycyclic aromatic hydrocarbon cations. I - The naphthalene cation (C10H8/+/)

    NASA Technical Reports Server (NTRS)

    Salama, F.; Allamandola, L. J.

    1991-01-01

    The ultraviolet, visible, and near-infrared absorption spectra of naphthalene (C10H8) and its radical ion (C10H8/+/), formed by vacuum ultraviolet irradiation, were measured in argon and neon matrices at 4.2 K. The associated vibronic band systems and their spectroscopic assignments are discussed together with the physical and chemical conditions governing ion production in the solid phase. The absorption coefficients were calculated for the ion and found lower than previous values, presumably due to the low polarizability of the neon matrix.

  4. The Extreme Ultraviolet Explorer mission - Instrumentation and science goals

    NASA Technical Reports Server (NTRS)

    Bowyer, Stuart; Malina, Roger F.; Marshall, Herman L.

    1988-01-01

    NASA's Extreme Ultraviolet Explorer (EUVE) will carry out an all-sky survey from 80 to 800A in four bandpasses. It is expected that many types of sources will be detected, including white dwarfs and late type stars. A deep survey will also be carried out along the ecliptic which will have a limiting sensitivity a factor of 10 better than the all-sky survey in the bandpass from 80 to 300A. The payload includes a spectrometer to observe the brigher sources found in the surveys with a spectral resolution of 1 to 2A.

  5. Gas Measurement Using Static Fourier Transform Infrared Spectrometers.

    PubMed

    Köhler, Michael H; Schardt, Michael; Rauscher, Markus S; Koch, Alexander W

    2017-11-13

    Online monitoring of gases in industrial processes is an ambitious task due to adverse conditions such as mechanical vibrations and temperature fluctuations. Whereas conventional Fourier transform infrared (FTIR) spectrometers use rather complex optical and mechanical designs to ensure stable operation, static FTIR spectrometers do not require moving parts and thus offer inherent stability at comparatively low costs. Therefore, we present a novel, compact gas measurement system using a static single-mirror Fourier transform spectrometer (sSMFTS). The system works in the mid-infrared range from 650 cm - 1 to 1250 cm - 1 and can be operated with a customized White cell, yielding optical path lengths of up to 120 cm for highly sensitive quantification of gas concentrations. To validate the system, we measure different concentrations of 1,1,1,2-Tetrafluoroethane (R134a) and perform a PLS regression analysis of the acquired infrared spectra. Thereby, the measured absorption spectra show good agreement with reference data. Since the system additionally permits measurement rates of up to 200 Hz and high signal-to-noise ratios, an application in process analysis appears promising.

  6. Gas Measurement Using Static Fourier Transform Infrared Spectrometers

    PubMed Central

    Schardt, Michael; Rauscher, Markus S.; Koch, Alexander W.

    2017-01-01

    Online monitoring of gases in industrial processes is an ambitious task due to adverse conditions such as mechanical vibrations and temperature fluctuations. Whereas conventional Fourier transform infrared (FTIR) spectrometers use rather complex optical and mechanical designs to ensure stable operation, static FTIR spectrometers do not require moving parts and thus offer inherent stability at comparatively low costs. Therefore, we present a novel, compact gas measurement system using a static single-mirror Fourier transform spectrometer (sSMFTS). The system works in the mid-infrared range from 650 cm−1 to 1250 cm−1 and can be operated with a customized White cell, yielding optical path lengths of up to 120 cm for highly sensitive quantification of gas concentrations. To validate the system, we measure different concentrations of 1,1,1,2-Tetrafluoroethane (R134a) and perform a PLS regression analysis of the acquired infrared spectra. Thereby, the measured absorption spectra show good agreement with reference data. Since the system additionally permits measurement rates of up to 200 Hz and high signal-to-noise ratios, an application in process analysis appears promising. PMID:29137193

  7. A rocket measurement of the extreme ultraviolet dayglow

    NASA Technical Reports Server (NTRS)

    Christensen, A. B.

    1976-01-01

    Extreme ultraviolet spectra of the mid-latitude dayglow in the wavelength range of 550 to 1250A have been obtained with a rocket borne grating spectrometer at a resolution of 20A. Spectra were obtained in the altitude range of 140 to 280 km. The spectra are dominated by emissions from atomic multiplets and no molecular bands have been identified with certainty. The strongest emissions other than H Lyman-alpha are OI (989) and OII (834). Other prominent emissions include He I(584), N II(916) and N II(1085). An unexpected feature near 612A has an intensity comparable to He I(584).

  8. Analysis and design of the ultraviolet warning optical system based on interference imaging

    NASA Astrophysics Data System (ADS)

    Wang, Wen-cong; Hu, Hui-jun; Jin, Dong-dong; Chu, Xin-bo; Shi, Yu-feng; Song, Juan; Liu, Jin-sheng; Xiao, Ting; Shao, Si-pei

    2017-10-01

    Ultraviolet warning technology is one of the important methods for missile warning. It provides a very effective way to detect the target for missile approaching alarm. With the development of modern technology, especially the development of information technology at high speed, the ultraviolet early warning system plays an increasingly important role. Compared to infrared warning, the ultraviolet warning has high efficiency and low false alarm rate. In the modern warfare, how to detect the threats earlier, prevent and reduce the attack of precision-guided missile has become a new challenge of missile warning technology. Because the ultraviolet warning technology has high environmental adaptability, the low false alarm rate, small volume and other advantages, in the military field applications it has been developed rapidly. For the ultraviolet warning system, the optimal working waveband is 250 nm 280 nm (Solar Blind UV) due to the strong absorption of ozone layer. According to current application demands for solar blind ultraviolet detection and warning, this paper proposes ultraviolet warning optical system based on interference imaging, which covers solar blind ultraviolet (250nm-280nm) and dual field. This structure includes a primary optical system, an ultraviolet reflector array, an ultraviolet imaging system and an ultraviolet interference imaging system. It makes use of an ultraviolet beam-splitter to achieve the separation of two optical systems. According to the detector and the corresponding application needs of two visual field of the optical system, the calculation and optical system design were completed. After the design, the MTF of the two optical system is more than 0.8@39lp/mm.A single pixel energy concentration is greater than 80%.

  9. Pseudoslit Spectrometer

    NASA Technical Reports Server (NTRS)

    Reuter, Dennis C.; McCabe, George H.

    2004-01-01

    The pseudoslit spectrometer is a conceptual optoelectronic instrument that would offer some of the advantages, without the disadvantages, of prior linear-variable etalon (LVE) spectrometers and prior slit spectrometers. The pseudoslit spectrometer is so named because it would not include a slit, but the combined effects of its optical components would include a spatial filtering effect approximately equivalent to that of a slit. Like a prior LVE spectrometer, the pseudoslit spectrometer would include an LVE (essentially, a wedge-like narrowband- pass filter, the pass wavelength of which varies linearly with position in one dimension) in a focal plane covering an imaging planar array of photodetectors. However, the pseudoslit spectrometer would be more efficient because unlike a prior LVE spectrometer, the pseudoslit spectrometer would not have to be scanned across an entire field of view to obtain the spectrum of an object of interest that may occupy only a small portion of the field of view. Like a prior slit spectrometer, the pseudoslit spectrometer could acquire the entire spectrum of such a small object without need for scanning. However, the pseudoslit spectrometer would be optically and mechanically simpler: it would have fewer components and, hence, would pose less of a problem of alignment of components and would be less vulnerable to misalignment.

  10. A simple, low-cost, versatile CCD spectrometer for plasma spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Den Hartog, D. J.; Holly, D. J.

    1996-06-01

    The authors have constructed a simple, low-cost CCD spectrometer capable of both high resolution ({Delta}{lambda} {le} 0.015 nm) and large bandpass (110 nm with {Delta}{lambda} {approximately}0.3 nm). These two modes of operation provide two broad areas of capability for plasma spectroscopy. The first major application is measurement of emission line broadening; the second is emission line surveys from the ultraviolet to the near infrared. Measurements have been made on a low-temperature plasma produced by a miniature electrostatic plasma source and the high-temperature plasma in the MST Reversed-Field Pinch. The spectrometer is a modified Jarrell-Ash 0.5 m Ebert-Fastie monochromator. Light ismore » coupled into the entrance slit with a fused silica fiber optic bundle. The exposure time (2 ms minimum) is controlled by a fast electromechanical shutter. The exit plane detector is a compact and robust CCD detector developed for amateur astronomy by Santa Barbara Instrument Group. The CCD detector is controlled and read out by a Macintosh{reg_sign} computer. This spectrometer is sophisticated enough to serve well in a research laboratory, yet is simple and inexpensive enough to be affordable for instructional use.« less

  11. Bandgap-Engineered Zinc-Tin-Oxide Thin Films for Ultraviolet Sensors.

    PubMed

    Cheng, Tien-Hung; Chang, Sheng-Po; Chang, Shoou-Jinn

    2018-07-01

    Zinc-tin-oxide thin-film transistors were prepared by radio frequency magnetron co-sputtering, while an identical zinc-tin-oxide thin film was deposited simultaneously on a clear glass substrate to facilitate measurements of the optical properties. When we adjusted the deposition power of ZnO and SnO2, the bandgap of the amorphous thin film was dominated by the deposition power of SnO2. Since the thin-film transistor has obvious absorption in the ultraviolet region owing to the wide bandgap, the drain current increases with the generation of electron-hole pairs. As part of these investigations, a zinc-tin-oxide thin-film transistor has been fabricated that appears to be very promising for ultraviolet applications.

  12. INTERACTIONS OF SOLAR ULTRAVIOLET RADIATION AND DISSOLVED ORGANIC MATTER IN FRESHWATER AND MARINE ENVIRONMENTS

    EPA Science Inventory

    Solar radiation provides the primary driving force for the biogeochemical cycles upon which life and climate depend. Recent studies have demonstrated that the absorption of solar radiation, especially 'm the ultraviolet spectral region, results in photochemical reactions that can...

  13. Doing Solar Science With Extreme-ultraviolet and X-ray High Resolution Imaging Spectroscopy

    NASA Astrophysics Data System (ADS)

    Doschek, G. A.

    2005-12-01

    In this talk I will demonstrate how high resolution extreme-ultraviolet (EUV) and/or X-ray imaging spectroscopy can be used to provide unique information for solving several current key problems of the solar atmosphere, e.g., the morphology and reconnection site of solar flares, the structure of the transition region, and coronal heating. I will describe the spectra that already exist relevant to these problems and what the shortcomings of the data are, and how an instrument such as the Extreme-ultraviolet Imaging Spectrometer (EIS) on Solar-B as well as other proposed spectroscopy missions such as NEXUS and RAM will improve on the existing observations. I will discuss a few particularly interesting properties of the spectra and atomic data for highly ionized atoms that are important for the science problems.

  14. Observations of the Ultraviolet Spectra of Helium (DB) White Dwarfs and a Study of the Ultraviolet Spectra of White Dwarfs Containing Carbon

    NASA Technical Reports Server (NTRS)

    Wegner, G. A.

    1984-01-01

    Strong ultraviolet carbon lines were detected in the spectrum of the southern DC white dwarf BPM 11668. Observations of a number of hotter DB white dwarfs with IUE show no evidence of carbon features. Two additional DA white dwarfs were observed that have the strong unidentified absorption near 1400 A which now seems to be identified with another lower temperature feature as satellite lines to Lyman alpha radiation.

  15. Mid-infrared absorption spectroscopy using quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Haibach, Fred; Erlich, Adam; Deutsch, Erik

    2011-06-01

    Block Engineering has developed an absorption spectroscopy system based on widely tunable Quantum Cascade Lasers (QCL). The QCL spectrometer rapidly cycles through a user-selected range in the mid-infrared spectrum, between 6 to 12 μm (1667 to 833 cm-1), to detect and identify substances on surfaces based on their absorption characteristics from a standoff distance of up to 2 feet with an eye-safe laser. It can also analyze vapors and liquids in a single device. For military applications, the QCL spectrometer has demonstrated trace explosive, chemical warfare agent (CWA), and toxic industrial chemical (TIC) detection and analysis. The QCL's higher power density enables measurements from diffuse and highly absorbing materials and substrates. Other advantages over Fourier Transform Infrared (FTIR) spectroscopy include portability, ruggedness, rapid analysis, and the ability to function from a distance through free space or a fiber optic probe. This paper will discuss the basic technology behind the system and the empirical data on various safety and security applications.

  16. A dense plasma ultraviolet source

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Mcfarland, D. R.

    1978-01-01

    The intense ultraviolet emission from the NASA Hypocycloidal-Pinch (HCP) plasma is investigated. The HCP consists of three disk electrodes whose cross section has a configuration similar to the cross section of a Mather-type plasma focus. Plasma foci were produced in deuterium, helium, xenon, and krypton gases in order to compare their emission characteristics. Time-integrated spectra in the wavelength range from 200 nm to 350 nm and temporal variations of the uv emission were obtained with a uv spectrometer and a photomultiplier system. Modifications to enhance uv emission in the iodine-laser pump band (250 to 290 nm) and preliminary results produced by these modifications are presented. Finally, the advantages of the HCP as a uv over use of conventional xenon lamps with respect to power output limit, spectral range, and lifetime are discussed.

  17. The effect of Cd substitution doping on the bandgap and absorption spectrum of ZnO

    NASA Astrophysics Data System (ADS)

    Hou, Qingyu; Li, Yong; Qu, Lingfeng; Zhao, Chunwang

    2016-08-01

    Many research papers have reported that in the ultraviolet area of 290-360 nm wavelength range, blueshift and redshift in the absorption spectrum occurred in ZnO with Cd doping; however, there is no reasonable theoretical explanation to this so far. To solve this problem, this study investigates the differences of blueshift and redshift in doping system by adopting plane-wave ultrasoft pseudopotential technology based on the density functional theory and applying LDA + U method to calculate band structures, density of states and absorption spectrum distribution of the models, which is on the basis of model geometry optimization. By increasing the Cd doping concentration, the following results are obtained: increased volume of the mixed system, raised total energy, a decrease in stability, narrowed bandgaps and a significant redshift in the absorption spectrum in the ultraviolet or visible light area.

  18. A star-pointing UV-visible spectrometer for remote-sensing of the stratosphere

    NASA Technical Reports Server (NTRS)

    Roscoe, Howard K.; Freshwater, Ray A.; Jones, Rod L.; Fish, Debbie J.; Harries, John E.; Wolfenden, Roger; Stone, Phillip

    1994-01-01

    We have constructed a novel instrument for ground-based remote sensing, by mounting a UV-visible spectrometer on a telescope and observing the absorption by atmospheric constituents of light from stars. Potentially, the instrument can observe stratospheric O3, NO3, NO2, and OClO.

  19. Probing of Hermean Exosphere by ultraviolet spectroscopy: Instrument presentation, calibration philosophy and first lights results

    NASA Astrophysics Data System (ADS)

    Mariscal, J. F.; Rouanet, N.; Maria, J. L.; Quémerais, E.; Mine, P. O.; Zuppella, P.; Suman, M.; Nicolosi, P.; Pelizzo, M. G.; Yoshikawa, I.; Yoshioka, K.; Murakami, G.

    2017-11-01

    PHEBUS (Probing of Hermean Exosphere by Ultraviolet Spectroscopy) is a double spectrometer for the Extreme Ultraviolet range (55-155 nm) and the Far Ultraviolet range (145-315 nm) dedicated to the characterization of Mercury's exosphere composition and dynamics, and surface-exosphere connections. PHEBUS is part of the ESA BepiColombo cornerstone mission payload devoted to the study of Mercury. The BepiColombo mission consists of two spacecrafts: the Mercury Magnetospheric Orbiter (MMO) and the Mercury Planetary Orbiter (MPO) on which PHEBUS will be mounted. PHEBUS is a French-led instrument implemented in a cooperative scheme involving Japan (detectors), Russia (scanner) and Italy (ground calibration). Before launch, PHEBUS team want to perform a full absolute calibration on ground, in addition to calibrations which will be made in-flight, in order to know the instrument's response as precisely as possible. Instrument overview and calibration philosophy are introduced along with the first lights results observed by a first prototype.

  20. Far-ultraviolet Spectroscopy of the Nova-like Variable KQ Monocerotis: A New SW Sextantis Star?

    NASA Astrophysics Data System (ADS)

    Wolfe, Aaron; Sion, Edward M.; Bond, Howard E.

    2013-06-01

    New optical spectra obtained with the SMARTS 1.5 m telescope and archival International Ultraviolet Explorer (IUE) far-ultraviolet (FUV) spectra of the nova-like variable KQ Mon are discussed. The optical spectra reveal Balmer lines in absorption as well as He I absorption superposed on a blue continuum. The 2011 optical spectrum is similar to the KPNO 2.1 m IIDS spectrum we obtained 33 years earlier except that the Balmer and He I absorption is stronger in 2011. Far-ultraviolet IUE spectra reveal deep absorption lines due to C II, Si III, Si IV, C IV, and He II, but no P Cygni profiles indicative of wind outflow. We present the results of the first synthetic spectral analysis of the IUE archival spectra of KQ Mon with realistic optically thick, steady-state, viscous accretion-disk models with vertical structure and high-gravity photosphere models. We find that the photosphere of the white dwarf (WD) contributes very little FUV flux to the spectrum and is overwhelmed by the accretion light of a steady disk. Disk models corresponding to a WD mass of ~0.6 M ⊙, with an accretion rate of order 10-9 M ⊙ yr-1 and disk inclinations between 60° and 75°, yield distances from the normalization in the range of 144-165 pc. KQ Mon is discussed with respect to other nova-like variables. Its spectroscopic similarity to the FUV spectra of three definite SW Sex stars suggests that it is likely a member of the SW Sex class and lends support to the possibility that the WD is magnetic.

  1. Method for the determination of cobalt from biological products with graphite furnace atomic absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Zamfir, Oana-Liliana; Ionicǎ, Mihai; Caragea, Genica; Radu, Simona; Vlǎdescu, Marian

    2016-12-01

    Cobalt is a chemical element with symbol Co and atomic number 27 and atomic weight 58.93. 59 Co is the only stable cobalt isotope and the only isotope to exist naturally on Earth. Cobalt is the active center of coenzymes called cobalamin or cyanocobalamin the most common example of which is vitamin B12. Vitamin B12 deficiency can potentially cause severe and irreversible damage, especially to the brain and nervous system in the form of fatigue, depression and poor memory or even mania and psychosis. In order to study the degree of deficiency of the population with Co or the correctness of treatment with vitamin B12, a modern optoelectronic method for the determination of metals and metalloids from biological samples has been developed, Graphite Furnace - Atomic Absorption Spectrometer (GF- AAS) method is recommended. The technique is based on the fact that free atoms will absorb light at wavelengths characteristic of the element of interest. Free atoms of the chemical element can be produced from samples by the application of high temperatures. The system GF-AAS Varian used as biological samples, blood or urine that followed the digest of the organic matrix. For the investigations was used a high - performance GF-AAS with D2 - background correction system and a transversely heated graphite atomizer. As result of the use of the method are presented the concentration of Co in the blood or urine of a group of patient in Bucharest. The method is sensitive, reproducible relatively easy to apply, with a moderately costs.

  2. Effects of self-absorption on simultaneous estimation of temperature distribution and concentration fields of soot and metal-oxide nanoparticles in nanofluid fuel flames using a spectrometer

    NASA Astrophysics Data System (ADS)

    Liu, Guannan; Liu, Dong

    2018-06-01

    An improved inverse reconstruction model with consideration of self-absorption effect for the temperature distribution and concentration fields of soot and metal-oxide nanoparticles in nanofluid fuel flames was proposed based on the flame emission spectrometry. The effects of self-absorption on the temperature profile and concentration fields were investigated for various measurement errors, flame optical thicknesses and detecting lines numbers. The model neglecting the self-absorption caused serious reconstruction errors especially in the nanofluid fuel flames with large optical thicknesses, while the improved model was used to successfully recover the temperature distribution and concentration fields of soot and metal-oxide nanoparticles for the flames regardless of the optical thickness. Through increasing detecting lines number, the reconstruction accuracy can be greatly improved due to more flame emission information received by the spectrometer. With the adequate detecting lines number, the estimations for the temperature distribution and concentration fields of soot and metal-oxide nanoparticles in flames with large optical thicknesses were still satisfying even from the noisy radiation intensities with signal to noise ratio (SNR) as low as 46 dB. The results showed that the improved reconstruction model was effective and robust to concurrently retrieve the temperature distribution and volume fraction fields of soot and metal-oxide nanoparticles for the exact and noisy data in nanofluid fuel sooting flames with different optical thicknesses.

  3. Resistance of a lizard (the green anole, Anolis carolinensis; Polychridae) to ultraviolet radiation-induced immunosuppression

    USGS Publications Warehouse

    Cope, R.B.; Fabacher, D.L.; Lieske, C.; Miller, C.A.

    2001-01-01

    The green anole (Anolis carolinensis) is the most northerly distributed of its Neotropical genus. This lizard avoids a winter hibernation phase by the use of sun basking behaviors. Inevitably, this species is exposed to high doses of ambient solar ultraviolet radiation (UVR). Increases in terrestrial ultraviolet-B (UV-B) radiation secondary to stratospheric ozone depletion and habitat perturbation potentially place this species at risk of UVR-induced immunosuppression. Daily exposure to subinflammatory UVR (8 kJ/m2/day UV-B, 85 kJ/m2/day ultraviolet A [UV-A]), 6 days per week for 4 weeks (total cumulative doses of 192 kJ/m2 UV-B, 2.04 × 103 kJ/m2 UV-A) did not suppress the anole's acute or delayed type hypersensitivity (DTH) response to horseshoe crab hemocyanin. In comparison with the available literature UV-B doses as low as 0.1 and 15.9 kJ/m2 induced suppression of DTH responses in mice and humans, respectively. Exposure of anoles to UVR did not result in the inhibition of ex vivo splenocyte phagocytosis of fluorescein labeled Escherichia coli or ex vivo splenocyte nitric oxide production. Doses of UV-B ranging from 0.35 to 45 kJ/m2 have been reported to suppress murine splenic/peritoneal macrophage phagocytosis and nitric oxide production. These preliminary studies demonstrate the resistance of green anoles to UVR-induced immunosuppression. Methanol extracts of anole skin contained two peaks in the ultraviolet wavelength range that could be indicative of photoprotective substances. However, the resistance of green anoles to UVR is probably not completely attributable to absorption by UVR photoprotective substances in the skin but more likely results from a combination of other factors including absorption by the cutis and absorption and reflectance by various components of the dermis.

  4. Single-crystalline aluminum film for ultraviolet plasmonic nanolasers

    PubMed Central

    Chou, Bo-Tsun; Chou, Yu-Hsun; Wu, Yen-Mo; Chung, Yi-Cheng; Hsueh, Wei-Jen; Lin, Shih-Wei; Lu, Tien-Chang; Lin, Tzy-Rong; Lin, Sheng-Di

    2016-01-01

    Significant advances have been made in the development of plasmonic devices in the past decade. Plasmonic nanolasers, which display interesting properties, have come to play an important role in biomedicine, chemical sensors, information technology, and optical integrated circuits. However, nanoscale plasmonic devices, particularly those operating in the ultraviolet regime, are extremely sensitive to the metal and interface quality. Thus, these factors have a significant bearing on the development of ultraviolet plasmonic devices. Here, by addressing these material-related issues, we demonstrate a low-threshold, high-characteristic-temperature metal-oxide-semiconductor ZnO nanolaser that operates at room temperature. The template for the ZnO nanowires consists of a flat single-crystalline Al film grown by molecular beam epitaxy and an ultrasmooth Al2O3 spacer layer synthesized by atomic layer deposition. By effectively reducing the surface plasmon scattering and metal intrinsic absorption losses, the high-quality metal film and the sharp interfaces formed between the layers boost the device performance. This work should pave the way for the use of ultraviolet plasmonic nanolasers and related devices in a wider range of applications. PMID:26814581

  5. Thomson Thick X-Ray Absorption in a Broad Absorption Line Quasar, PG 0946+301.

    PubMed

    Mathur; Green; Arav; Brotherton; Crenshaw; deKool; Elvis; Goodrich; Hamann; Hines; Kashyap; Korista; Peterson; Shields; Shlosman; van Breugel W; Voit

    2000-04-20

    We present a deep ASCA observation of a broad absorption line quasar (BALQSO) PG 0946+301. The source was clearly detected in one of the gas imaging spectrometers, but not in any other detector. If BALQSOs have intrinsic X-ray spectra similar to normal radio-quiet quasars, our observations imply that there is Thomson thick X-ray absorption (NH greater, similar1024 cm-2) toward PG 0946+301. This is the largest column density estimated so far toward a BALQSO. The absorber must be at least partially ionized and may be responsible for attenuation in the optical and UV. If the Thomson optical depth toward BALQSOs is close to 1, as inferred here, then spectroscopy in hard X-rays with large telescopes like XMM would be feasible.

  6. Spectrally-resolved measurements of aerosol extinction at ultraviolet and visible wavelengths

    NASA Astrophysics Data System (ADS)

    Flores, M.; Washenfelder, R. A.; Brock, C. A.; Brown, S. S.; Rudich, Y.

    2012-12-01

    Aerosols play an important role in the Earth's radiative budget. Aerosol extinction includes both the scattering and absorption of light, and these vary with wavelength, aerosol diameter, and aerosol composition. Historically, aerosol absorption has been measured using filter-based or extraction methods that are prone to artifacts. There have been few investigations of ambient aerosol optical properties at the blue end of the visible spectrum and into the ultraviolet. Brown carbon is particularly important in this spectral region, because it both absorbs and scatters light, and encompasses a large and variable group of organic compounds from biomass burning and secondary organic aerosol. We have developed a laboratory instrument that combines new, high-power LED light sources with high-finesse optical cavities to achieve sensitive measurements of aerosol optical extinction. This instrument contains two broadband channels, with spectral coverage from 360 - 390 nm and 385 - 420 nm. Using this instrument, we report aerosol extinction in the ultraviolet and near-visible spectral region as a function of chemical composition and structure. We have measured the extinction cross-sections between 360 - 420 nm with 0.5 nm resolution using different sizes and concentrations of polystyrene latex spheres, ammonium sulfate, and Suwannee River fulvic acid. Fitting the real and imaginary part of the refractive index allows the absorption and scattering to be determined.

  7. Ultraviolet optical absorptions of semiconducting copper phosphate glasses

    NASA Technical Reports Server (NTRS)

    Bae, Byeong-Soo; Weinberg, Michael C.

    1993-01-01

    Results are presented of a quantitative investigation of the change in UV optical absorption in semiconducting copper phosphate glasses with batch compositions of 40, 50, and 55 percent CuO, as a function of the Cu(2+)/Cu(total) ratio in the glasses for each glass composition. It was found that optical energy gap, E(opt), of copper phosphate glass is a function of both glass composition and Cu(2+)/Cu(total) ratio in the glass. E(opt) increases as the CuO content for fixed Cu(2+)/Cu(total) ratio and the Cu(2+)/Cu(total) ratio for fixed glass composition are reduced.

  8. LADEE UVS (UltraViolet Visible Spectrometer) and the Search for Lunar Exospheric Dust: A Detailed Spectral Analysis

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Cook, Amanda; Colaprete, Anthony; Shirley, Mark; Vargo, Kara; Elphic, Richard C.; Hermalyn, Brendan; Stubbs, Timothy John; Glenar, David A.

    2014-01-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) executed science observations in lunar orbit spanning 2013-Oct-16- 2014-04-18 UT. LADEE's Ultraviolet/Visible Spectrometer (UVS) studies the composition and temporal variations of the tenuous lunar exosphere and dust environment, utilizing two sets of optics: a limb-viewing telescope, and a solar-viewer. The limb-viewing telescope observes illuminated dust and emitting gas species while the Sun is just behind the lunar limb. The solar viewer, with its diffuser, allows UVS to also stare directly at the solar disk as it approaches the limb, sampling progressively lower exosphere altitudes. Solar viewer "Occultation" activities occur at the lunar sunrise limb, as the LADEE spacecraft passes into the lunar night side, facing the Sun (the spacecraft orbit is near-equatorial retrograde). A loss of transmission of sunlight occurs by the occultation of dust grains along the line-of-sight. So-called "Inertial Limb" activities have the limb-viewing telescope pointed at the lit exosphere just after the Sun has set. Inertial Limb activities follow a similar progression of diminishing sampling altitudes but hold the solar elongation angle constant so the zodiacal light contribution remains constant while seeking to observe the weak lunar horizon glow. On the dark side of the moon, "Sodium Tail" activities pointed the limb-viewing telescope in the direction of the Moon's sodium tail (similar to anti-sunward), during different lunar phases. Of the UVS data sets, these show the largest excess of scattered blue light, indicative of the presence of small (approximately 100 nm) dust grains in the tail. Correlations are sought between dust in the sodium tail and meteor streams and magnetotail crossings to investigate impact- versus electrostatic-lofting. Once lofted, nanoparticles can become charged and picked up by the solar wind. The LADEE UVS Occultation, Inertial Limb, and Sodium Tail spectral datasets provide evidence of

  9. Surface reflectance retrieval from imaging spectrometer data using three atmospheric codes

    NASA Astrophysics Data System (ADS)

    Staenz, Karl; Williams, Daniel J.; Fedosejevs, Gunar; Teillet, Phil M.

    1994-12-01

    Surface reflectance retrieval from imaging spectrometer data has become important for quantitative information extraction in many application areas. In order to calculate surface reflectance from remotely measured radiance, radiative transfer codes play an important role for removal of the scattering and gaseous absorption effects of the atmosphere. The present study evaluates surface reflectances retrieved from airborne visible/infrared imaging spectrometer (AVIRIS) data using three radiative transfer codes: modified 5S (M5S), 6S, and MODTRAN2. Comparisons of the retrieved surface reflectance with ground-based reflectance were made for different target types such as asphalt, gravel, grass/soil mixture (soccer field), and water (Sooke Lake). The results indicate that the estimation of the atmospheric water vapor content is important for an accurate surface reflectance retrieval regardless of the radiative transfer code used. For the present atmospheric conditions, a difference of 0.1 in aerosol optical depth had little impact on the retrieved surface reflectance. The performance of MODTRAN2 is superior in the gas absorption regions compared to M5S and 6S.

  10. Intersstellar absorption lines between 2000 and 3000 A in nearby stars observed with BUSS. [Balloon Borne Ultraviolet Spectrophotometer

    NASA Technical Reports Server (NTRS)

    De Boer, K. S.; Lenhart, H.; Van Der Hucht, K. A.; Kamperman, T. M.; Kondo, Y.

    1986-01-01

    Spectra obtained between 2000 and 3000 A with the Balloon Borne Ultraviolet Spectrophotometer (BUSS) payload were examined for interstellar absorption lines. In bright stars, with spectral types between O9V and F5V, such lines were measured of Mg I, Mg II, Cr II, Mn II, Fe II and Zn II, with Cr II and Zn II data of especially high quality. Column densities were derived and interstellar abundances were determined for the above species. It was found that metal depletion increases with increasing E(B-V); Fe was most affected and Zn showed a small depletion for E(B-V) greater than 0.3 towards Sco-Oph. The metal column densities, derived for Alpha-And, Kappa-Dra, Alpha-Com, Alpha-Aql, and 29 Cyg were used to infer N(H I). It was shown that the ratio of Mg I to Na I is instrumental in determining the ionization structure along each line of sight. The spectra of Aql stars confirms the presence of large gas densities near Alpha-Oph. Moreover, data indicated that the Rho-Oph N(H I) value needs to be altered to 35 x 10 to the 20th/sq cm, based on observed ion ratios and analysis of the Copernicus L-alpha profile.

  11. Ultraviolet imaging detectors for the GOLD mission

    NASA Astrophysics Data System (ADS)

    Siegmund, O. H. W.; McPhate, J.; Curtis, T.; Jelinsky, S.; Vallerga, J. V.; Hull, J.; Tedesco, J.

    2016-07-01

    The GOLD mission is a NASA Explorer class ultraviolet Earth observing spectroscopy instrument that will be flown on a telecommunications satellite in geostationary orbit in 2018. Microchannel plate detectors operating in the 132 nm to 162 nm FUV bandpass with 2D imaging cross delay line readouts and electronics have been built for each of the two spectrometer channels for GOLD. The detectors are "open face" with CsI photocathodes, providing 30% efficiency at 130.4 nm and 15% efficiency at 160.8 nm. These detectors with their position encoding electronics provide 600 x 500 FWHM resolution elements and are photon counting, with event handling rates of > 200 KHz. The operational details of the detectors and their performance are discussed.

  12. The interaction of ultraviolet light with Arctic sea ice during SHEBA

    NASA Astrophysics Data System (ADS)

    Perovich, Donald K.

    The reflection, absorption and transmission of ultraviolet light by a sea-ice cover strongly impacts primary productivity, higher trophic components of the food web, and humans. Measurements of the incident irradiance at 305, 320, 340 and 380 nm and of the photosynthetically active radiation were made from April through September 1998 as part of the SHEBA (Surface Heat Budget of the Arctic Ocean program) field experiment in the Arctic Ocean. In addition, observations of snow depth and ice thickness were made at more than 100 sites encompassing a comprehensive range of conditions. The thickness observations were combined with a radiative transfer model to compute a time series of the ultraviolet light transmitted by the ice cover from April through September. Peak values of incident ultraviolet irradiance occurred in mid-June. Peak transmittance was later in the summer at the end of the melt season when the snow cover had completely melted, the ice had thinned and pond coverage was extensive. The fraction of the incident ultraviolet irradiance transmitted through the ice increased by several orders of magnitude as the melt season progressed. Ultraviolet transmittance was approximately a factor of ten greater for melt ponds than bare ice. Climate change has the potential to alter the amplitude and timing of the annual albedo cycle of sea ice. If the onset of melt occurs at increasingly earlier dates, ultraviolet transmittance will be significantly enhanced, with potentially deleterious biological impacts.

  13. VUV spectroscopic study of the ? state of H2

    NASA Astrophysics Data System (ADS)

    Dickenson, G. D.; Ubachs, W.

    2014-04-01

    Spectral lines, probing rotational quantum states J‧ = 0, 1, 2 of the inner well vibrations (υ‧ ≤ 8) in the ? state of molecular hydrogen, were recorded in high resolution using a vacuum ultraviolet Fourier transform absorption spectrometer in the wavelength range 73-86 nm. Accurate line positions and predissociation widths are determined from a fit to the absorption spectra. Improved values for the line positions are obtained, while the predissociation widths agree well with previous investigations.

  14. Total Absorption Study of Beta Decays Relevant for Nuclear Applications and Nuclear Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Algora, A.; Valencia, E.; Tain, J. L.

    2014-06-01

    We present an overview of our activities related to the study of the beta decay of neutron rich nuclei relevant for nuclear applications. Recent results of the study of the beta decay of Br using a new segmented total absorption spectrometer are presented. Our measurements were performed at the IGISOL facility using trap-assisted total absorption spectroscopy.

  15. Beta-spectrometer with Si-detectors for the study of 144Ce-144Pr decays

    NASA Astrophysics Data System (ADS)

    Alexeev, I. E.; Bakhlanov, S. V.; Bazlov, N. V.; Chmel, E. A.; Derbin, A. V.; Drachnev, I. S.; Kotina, I. M.; Muratova, V. N.; Pilipenko, N. V.; Semyonov, D. A.; Unzhakov, E. V.; Yeremin, V. K.

    2018-05-01

    Here we present the specifications of a newly developed beta-spectrometer, based on full absorption Si(Li) detector and thin transmission detector, allowing one to perform efficient separation beta-radiation and accompanying X-rays and gamma radiation. Our method is based on registration of coincident events from both detectors. The spectrometer can be used for precision measurements of various beta-spectra, namely for the beta-spectrum shape study of 144Pr, which is considered to be an advantageous anti-neutrino source for sterile neutrino searches.

  16. Scientific Payload Of The Emirates Mars Mission: Emirates Mars Infrared Spectrometer (Emirs) Overview.

    NASA Astrophysics Data System (ADS)

    Altunaiji, E. S.; Edwards, C. S.; Christensen, P. R.; Smith, M. D.; Badri, K. M., Sr.

    2017-12-01

    The Emirates Mars Mission (EMM) will launch in 2020 to explore the dynamics in the atmosphere of Mars on a global scale. EMM has three scientific instruments to an improved understanding of circulation and weather in the Martian lower and middle atmosphere. Two of the EMM's instruments, which are the Emirates eXploration Imager (EXI) and Emirates Mars Infrared Spectrometer (EMIRS) will focus on the lower atmosphere observing dust, ice clouds, water vapor and ozone. On the other hand, the third instrument Emirates Mars Ultraviolet Spectrometer (EMUS) will focus on both the thermosphere of the planet and its exosphere. The EMIRS instrument, shown in Figure 1, is an interferometric thermal infrared spectrometer that is jointly developed by Arizona State University (ASU) and Mohammed Bin Rashid Space Centre (MBRSC). It builds on a long heritage of thermal infrared spectrometers designed, built, and managed, by ASU's Mars Space Flight Facility, including the Thermal Emission Spectrometer (TES), Miniature Thermal Emission Spectrometer (Mini-TES), and the OSIRIS-REx Thermal Emission Spectrometer (OTES). EMIRS operates in the 6-40+ µm range with 5 cm-1 spectral sampling, enabled by a Chemical Vapor-Deposited (CVD) diamond beamsplitter and state of the art electronics. This instrument utilizes a 3×3 detector array and a scan mirror to make high-precision infrared radiance measurements over most of a Martian hemisphere. The EMIRS instrument is optimized to capture the integrated, lower-middle atmosphere dynamics over a Martian hemisphere and will capture 60 global images per week ( 20 images per orbit) at a resolution of 100-300 km/pixel. After processing through an atmospheric retrieval algorithm, EMIRS will determine the vertical temperature profiles to 50km altitude and measure the column integrated global distribution and abundances of key atmospheric parameters (e.g. dust, water ice (clouds) and water vapor) over the Martian day, seasons and year.

  17. Eddy covariance carbonyl sulphide flux measurements with a quantum cascade laser absorption spectrometer.

    PubMed

    Gerdel, Katharina; Spielmann, Felix Maximilian; Hammerle, Albin; Wohlfahrt, Georg

    2017-09-26

    The trace gas carbonyl sulphide (COS) has lately received growing interest in the eddy covariance (EC) community due to its potential to serve as an independent approach for constraining gross primary production and canopy stomatal conductance. Thanks to recent developments of fast-response high-precision trace gas analysers (e.g. quantum cascade laser absorption spectrometers (QCLAS)), a handful of EC COS flux measurements have been published since 2013. To date, however, a thorough methodological characterisation of QCLAS with regard to the requirements of the EC technique and the necessary processing steps has not been conducted. The objective of this study is to present a detailed characterization of the COS measurement with the Aerodyne QCLAS in the context of the EC technique, and to recommend best EC processing practices for those measurements. Data were collected from May to October 2015 at a temperate mountain grassland in Tyrol, Austria. Analysis of the Allan variance of high-frequency concentration measurements revealed sensor drift to occur under field conditions after an averaging time of around 50 s. We thus explored the use of two high-pass filtering approaches (linear detrending and recursive filtering) as opposed to block averaging and linear interpolation of regular background measurements for covariance computation. Experimental low-pass filtering correction factors were derived from a detailed cospectral analysis. The CO 2 and H 2 O flux measurements obtained with the QCLAS were compared against those obtained with a closed-path infrared gas analyser. Overall, our results suggest small, but systematic differences between the various high-pass filtering scenarios with regard to the fraction of data retained in the quality control and flux magnitudes. When COS and CO 2 fluxes are combined in the so-called ecosystem relative uptake rate, systematic differences between the high-pass filtering scenarios largely cancel out, suggesting that this

  18. Eddy covariance carbonyl sulphide flux measurements with a quantum cascade laser absorption spectrometer

    PubMed Central

    Gerdel, Katharina; Spielmann, Felix Maximilian; Hammerle, Albin; Wohlfahrt, Georg

    2017-01-01

    The trace gas carbonyl sulphide (COS) has lately received growing interest in the eddy covariance (EC) community due to its potential to serve as an independent approach for constraining gross primary production and canopy stomatal conductance. Thanks to recent developments of fast-response high-precision trace gas analysers (e.g. quantum cascade laser absorption spectrometers (QCLAS)), a handful of EC COS flux measurements have been published since 2013. To date, however, a thorough methodological characterisation of QCLAS with regard to the requirements of the EC technique and the necessary processing steps has not been conducted. The objective of this study is to present a detailed characterization of the COS measurement with the Aerodyne QCLAS in the context of the EC technique, and to recommend best EC processing practices for those measurements. Data were collected from May to October 2015 at a temperate mountain grassland in Tyrol, Austria. Analysis of the Allan variance of high-frequency concentration measurements revealed sensor drift to occur under field conditions after an averaging time of around 50 s. We thus explored the use of two high-pass filtering approaches (linear detrending and recursive filtering) as opposed to block averaging and linear interpolation of regular background measurements for covariance computation. Experimental low-pass filtering correction factors were derived from a detailed cospectral analysis. The CO2 and H2O flux measurements obtained with the QCLAS were compared against those obtained with a closed-path infrared gas analyser. Overall, our results suggest small, but systematic differences between the various high-pass filtering scenarios with regard to the fraction of data retained in the quality control and flux magnitudes. When COS and CO2 fluxes are combined in the so-called ecosystem relative uptake rate, systematic differences between the high-pass filtering scenarios largely cancel out, suggesting that this relative

  19. Eddy covariance carbonyl sulfide flux measurements with a quantum cascade laser absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Gerdel, Katharina; Spielmann, Felix Maximilian; Hammerle, Albin; Wohlfahrt, Georg

    2017-09-01

    The trace gas carbonyl sulfide (COS) has lately received growing interest from the eddy covariance (EC) community due to its potential to serve as an independent approach for constraining gross primary production and canopy stomatal conductance. Thanks to recent developments of fast-response high-precision trace gas analysers (e.g. quantum cascade laser absorption spectrometers, QCLAS), a handful of EC COS flux measurements have been published since 2013. To date, however, a thorough methodological characterisation of QCLAS with regard to the requirements of the EC technique and the necessary processing steps has not been conducted. The objective of this study is to present a detailed characterisation of the COS measurement with the Aerodyne QCLAS in the context of the EC technique and to recommend best EC processing practices for those measurements. Data were collected from May to October 2015 at a temperate mountain grassland in Tyrol, Austria. Analysis of the Allan variance of high-frequency concentration measurements revealed the occurrence of sensor drift under field conditions after an averaging time of around 50 s. We thus explored the use of two high-pass filtering approaches (linear detrending and recursive filtering) as opposed to block averaging and linear interpolation of regular background measurements for covariance computation. Experimental low-pass filtering correction factors were derived from a detailed cospectral analysis. The CO2 and H2O flux measurements obtained with the QCLAS were compared with those obtained with a closed-path infrared gas analyser. Overall, our results suggest small, but systematic differences between the various high-pass filtering scenarios with regard to the fraction of data retained in the quality control and flux magnitudes. When COS and CO2 fluxes are combined in the ecosystem relative uptake rate, systematic differences between the high-pass filtering scenarios largely cancel out, suggesting that this relative metric

  20. Eddy covariance carbonyl sulfide flux measurements with a quantum cascade laser absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Gerdel, Katharina; Spielmann, Felix M.; Hammerle, Albin; Wohlfahrt, Georg

    2016-04-01

    Carbonyl sulfide (COS) is the most abundant sulfur containing trace gas present in the troposphere at concentrations of around 500 ppt. Recent interest in COS by the ecosystem-physiological community has been sparked by the fact that COS co-diffuses into plant leaves pretty much the same way as carbon dioxide (CO2) does, but in contrast to CO2, COS is not known to be emitted by plants. Thus uptake of COS by vegetation has the potential to be used as a tracer for canopy gross photosynthesis, which cannot be measured directly, however represents a key term in the global carbon cycle. Since a few years, quantum cascade laser absorption spectrometers (QCLAS) are commercially available with the precision, sensitivity and time response suitable for eddy covariance (EC) flux measurements. While there exist a handful of published reports on EC flux measurements in the recent literature, no rigorous investigation of the applicability of QCLAS for EC COS flux measurements has been carried out so far, nor have been EC processing and QA/QC steps developed for carbon dioxide and water vapor flux measurements within FLUXNET been assessed for COS. The aim of this study is to close this knowledge gap, to discuss critical steps in the post-processing chain of COS EC flux measurements and to devise best-practice guidelines for COS EC flux data processing. To this end we collected EC COS (and CO2, H2O and CO) flux measurements above a temperate mountain grassland in Austria over the vegetation period 2015 with a commercially available QCLAS. We discuss various aspects of EC data post-processing, in particular issues with the time-lag estimation between sonic anemometer and QCLAS signals and QCLAS time series detrending, as well as QA/QC, in particular flux detection limits, random flux uncertainty, the interaction of various processing steps with common EC QA/QC filters (e.g. detrending and stationarity tests), u*-filtering, etc.

  1. Uvmas: Venus Ultraviolet-visual Mapping Spectrometer

    NASA Astrophysics Data System (ADS)

    Bellucci, G.; Zasova, L.; Altieri, F.; Formisano, V.; Ignatiev, N.; Moroz, V.

    with SO2 absorption. Many candidates were proposed for the "unknown" absorber. Some of them are sulfur, S2O, 1% solution of FeCl3 in H2SO4. Spectral and mapping facilities will allow to advance the problem.

  2. Measurement of transient gas flow parameters by diode laser absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolshov, M A; Kuritsyn, Yu A; Liger, V V

    2015-04-30

    An absorption spectrometer based on diode lasers is developed for measuring two-dimension maps of temperature and water vapour concentration distributions in the combustion zones of two mixing supersonic flows of fuel and oxidiser in the single run regime. The method of measuring parameters of hot combustion zones is based on detection of transient spectra of water vapour absorption. The design of the spectrometer considerably reduces the influence of water vapour absorption along the path of a sensing laser beam outside the burning chamber. The optical scheme is developed, capable of matching measurement results in different runs of mixture burning. Amore » new algorithm is suggested for obtaining information about the mixture temperature by constructing the correlation functions of the experimental spectrum with those simulated from databases. A two-dimensional map of temperature distribution in a test chamber is obtained for the first time under the conditions of plasma-induced combusion of the ethylene – air mixture. (laser applications and other topics in quantum electronics)« less

  3. Transition state region in the A-Band photodissociation of allyl iodide—A femtosecond extreme ultraviolet transient absorption study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacherjee, Aditi, E-mail: abhattacherjee@berkeley.edu, E-mail: andrewattar@berkeley.edu; Attar, Andrew R., E-mail: abhattacherjee@berkeley.edu, E-mail: andrewattar@berkeley.edu; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

    2016-03-28

    Femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy based on a high-harmonic generation source is used to study the 266 nm induced A-band photodissociation dynamics of allyl iodide (CH{sub 2} =CHCH{sub 2}I). The photolysis of the C—I bond at this wavelength produces iodine atoms both in the ground ({sup 2}P{sub 3/2}, I) and spin-orbit excited ({sup 2}P{sub 1/2}, I*) states, with the latter as the predominant channel. Using XUV absorption at the iodine N{sub 4/5} edge (45–60 eV), the experiments constitute a direct probe of not only the long-lived atomic iodine reaction products but also the fleeting transition state region ofmore » the repulsive n{sub I}σ{sup ∗}{sub C—I} excited states. Specifically, three distinct features are identified in the XUV transient absorption spectrum at 45.3 eV, 47.4 eV, and 48.4 eV (denoted transients A, B, and C, respectively), which arise from the repulsive valence-excited nσ{sup ∗} states and project onto the high-lying core-excited states of the dissociating molecule via excitation of 4d(I) core electrons. Transients A and B originate from 4d(I) → n(I) core-to-valence transitions, whereas transient C is best assigned to a 4d(I) →σ{sup ∗}(C—I) transition. The measured differential absorbance of these new features along with the I/I* branching ratios known from the literature is used to suggest a more definitive assignment, albeit provisional, of the transients to specific dissociative states within the A-band manifold. The transients are found to peak around 55 fs–65 fs and decay completely by 145 fs–185 fs, demonstrating the ability of XUV spectroscopy to map the evolution of reactants into products in real time. The similarity in the energies of transients A and B with analogous features observed in methyl iodide [Attar et al. J. Phys. Chem. Lett. 6, 5072, (2015)] together with the new observation of transient C in the present work provides a more complete picture of the valence

  4. The Physics and Diagnostic Potential of Ultraviolet Spectropolarimetry

    NASA Astrophysics Data System (ADS)

    Trujillo Bueno, Javier; Landi Degl'Innocenti, Egidio; Belluzzi, Luca

    2017-09-01

    The empirical investigation of the magnetic field in the outer solar atmosphere is a very important challenge in astrophysics. To this end, we need to identify, measure and interpret observable quantities sensitive to the magnetism of the upper chromosphere, transition region and corona. This paper provides an overview of the physics and diagnostic potential of spectropolarimetry in permitted spectral lines of the ultraviolet solar spectrum, such as the Mg ii h and k lines around 2800 Å, the hydrogen Lyman-α line at 1216 Å, and the Lyman-α line of He ii at 304 Å. The outer solar atmosphere is an optically pumped vapor and the linear polarization of such spectral lines is dominated by the atomic level polarization produced by the absorption and scattering of anisotropic radiation. Its modification by the action of the Hanle and Zeeman effects in the inhomogeneous and dynamic solar atmosphere needs to be carefully understood because it encodes the magnetic field information. The circular polarization induced by the Zeeman effect in some ultraviolet lines (e.g., Mg ii h & k) is also of diagnostic interest, especially for probing the outer solar atmosphere in plages and more active regions. The few (pioneering) observational attempts carried out so far to measure the ultraviolet spectral line polarization produced by optically pumped atoms in the upper chromosphere, transition region and corona are also discussed. We emphasize that ultraviolet spectropolarimetry is a key gateway to the outer atmosphere of the Sun and of other stars.

  5. Light extinction by Secondary Organic Aerosol: an intercomparison of three broadband cavity spectrometers

    NASA Astrophysics Data System (ADS)

    Varma, R. M.; Ball, S. M.; Brauers, T.; Dorn, H.-P.; Heitmann, U.; Jones, R. L.; Platt, U.; Pöhler, D.; Ruth, A. A.; Shillings, A. J. L.; Thieser, J.; Wahner, A.; Venables, D. S.

    2013-07-01

    Broadband optical cavity spectrometers are maturing as a technology for trace gas detection, but only recently have they been used to retrieve the extinction coefficient of aerosols. Sensitive broadband extinction measurements allow explicit separation of gas and particle phase spectral contributions, as well as continuous spectral measurements of aerosol extinction in favourable cases. In this work, we report an intercomparison study of the aerosol extinction coefficients measured by three such instruments: a broadband cavity ring-down spectrometer (BBCRDS), a cavity-enhanced differential optical absorption spectrometer (CE-DOAS), and an incoherent broadband cavity-enhanced absorption spectrometer (IBBCEAS). Experiments were carried out in the SAPHIR atmospheric simulation chamber as part of the NO3Comp campaign to compare the measurement capabilities of NO3 and N2O5 instrumentation. Aerosol extinction coefficients between 655 and 690 nm are reported for secondary organic aerosols (SOA) formed by the NO3 oxidation of β-pinene under dry and humid conditions. Despite different measurement approaches and spectral analysis procedures, the three instruments retrieved aerosol extinction coefficients that were in close agreement. The refractive index of SOA formed from the β-pinene + NO3 reaction was 1.61, and was not measurably affected by the chamber humidity or by aging of the aerosol over several hours. This refractive index is significantly larger than SOA refractive indices observed in other studies of OH and ozone-initiated terpene oxidations, and may be caused by the large proportion of organic nitrates in the particle phase. In an experiment involving ammonium sulphate particles the aerosol extinction coefficients as measured by IBBCEAS were found to be in reasonable agreement with those calculated using Mie theory. The results of the study demonstrate the potential of broadband cavity spectrometers for determining the optical properties of aerosols.

  6. Light extinction by secondary organic aerosol: an intercomparison of three broadband cavity spectrometers

    NASA Astrophysics Data System (ADS)

    Varma, R. M.; Ball, S. M.; Brauers, T.; Dorn, H.-P.; Heitmann, U.; Jones, R. L.; Platt, U.; Pöhler, D.; Ruth, A. A.; Shillings, A. J. L.; Thieser, J.; Wahner, A.; Venables, D. S.

    2013-11-01

    Broadband optical cavity spectrometers are maturing as a technology for trace-gas detection, but only recently have they been used to retrieve the extinction coefficient of aerosols. Sensitive broadband extinction measurements allow explicit separation of gas and particle phase spectral contributions, as well as continuous spectral measurements of aerosol extinction in favourable cases. In this work, we report an intercomparison study of the aerosol extinction coefficients measured by three such instruments: a broadband cavity ring-down spectrometer (BBCRDS), a cavity-enhanced differential optical absorption spectrometer (CE-DOAS), and an incoherent broadband cavity-enhanced absorption spectrometer (IBBCEAS). Experiments were carried out in the SAPHIR atmospheric simulation chamber as part of the NO3Comp campaign to compare the measurement capabilities of NO3 and N2O5 instrumentation. Aerosol extinction coefficients between 655 and 690 nm are reported for secondary organic aerosols (SOA) formed by the NO3 oxidation of β-pinene under dry and humid conditions. Despite different measurement approaches and spectral analysis procedures, the three instruments retrieved aerosol extinction coefficients that were in close agreement. The refractive index of SOA formed from the β-pinene + NO3 reaction was 1.61, and was not measurably affected by the chamber humidity or by aging of the aerosol over several hours. This refractive index is significantly larger than SOA refractive indices observed in other studies of OH and ozone-initiated terpene oxidations, and may be caused by the large proportion of organic nitrates in the particle phase. In an experiment involving ammonium sulfate particles, the aerosol extinction coefficients as measured by IBBCEAS were found to be in reasonable agreement with those calculated using the Mie theory. The results of the study demonstrate the potential of broadband cavity spectrometers for determining the optical properties of aerosols.

  7. The Loopy Ultraviolet Line Profiles of RU Lupi: Accretion, Outflows, and Fluorescence

    NASA Astrophysics Data System (ADS)

    Herczeg, Gregory J.; Walter, Frederick M.; Linsky, Jeffrey L.; Gahm, Gösta F.; Ardila, David R.; Brown, Alexander; Johns-Krull, Christopher M.; Simon, Michal; Valenti, Jeff A.

    2005-06-01

    We present far-ultraviolet (FUV) spectra of the classical T Tauri star RU Lup covering the 912-1710 Å spectral range, as observed by the Hubble Space Telescope STIS and the Far Ultraviolet Spectroscopic Explorer satellite. We use these spectra, which are rich in emission and absorption lines, to probe both the accreting and outflowing gas. Absorption in the Lyα profile constrains the extinction to AV~0.07 mag, which we confirm with other diagnostics. We estimate a mass accretion rate of (5+/-2)×10-8 Msolar yr-1 using the optical-NUV accretion continuum. The accreting gas is also detected in bright, broad lines of C IV, Si IV, and N V, which all show complex structures across the line profile. Many other emission lines, including those of H2 and Fe II, are pumped by Lyα. RU Lup's spectrum varies significantly in the FUV; our STIS observations occurred when RU Lup was brighter than several other observations in the FUV, possibly because of a high mass accretion rate.

  8. A Simple, Student-Built Spectrometer to Explore Infrared Radiation and Greenhouse Gases

    ERIC Educational Resources Information Center

    Bruce, Mitchell R. M.; Wilson, Tiffany A.; Bruce, Alice E.; Bessey, S. Max; Flood, Virginia J.

    2016-01-01

    In this experiment, students build a spectrometer to explore infrared radiation and greenhouse gases in an inquiry-based investigation to introduce climate science in a general chemistry lab course. The lab is based on the exploration of the thermal effects of molecular absorption of infrared radiation by greenhouse and non-greenhouse gases. A…

  9. Cavity ring-down spectroscopy of Doppler-broadened absorption line with sub-MHz absolute frequency accuracy.

    PubMed

    Cheng, C-F; Sun, Y R; Pan, H; Lu, Y; Li, X-F; Wang, J; Liu, A-W; Hu, S-M

    2012-04-23

    A continuous-wave cavity ring-down spectrometer has been built for precise determination of absolute frequencies of Doppler-broadened absorption lines. Using a thermo-stabilized Fabry-Pérot interferometer and Rb frequency references at the 780 nm and 795 nm, 0.1 - 0.6 MHz absolute frequency accuracy has been achieved in the 775-800 nm region. A water absorption line at 12579 cm(-1) is studied to test the performance of the spectrometer. The line position at zero-pressure limit is determined with an uncertainty of 0.3 MHz (relative accuracy of 0.8 × 10(-9)). © 2012 Optical Society of America

  10. UV Resonant Raman Spectrometer with Multi-Line Laser Excitation

    NASA Technical Reports Server (NTRS)

    Lambert, James L.; Kohel, James M.; Kirby, James P.; Morookian, John Michael; Pelletier, Michael J.

    2013-01-01

    A Raman spectrometer employs two or more UV (ultraviolet) laser wavel engths to generate UV resonant Raman (UVRR) spectra in organic sampl es. Resonant Raman scattering results when the laser excitation is n ear an electronic transition of a molecule, and the enhancement of R aman signals can be several orders of magnitude. In addition, the Ra man cross-section is inversely proportional to the fourth power of t he wavelength, so the UV Raman emission is increased by another fact or of 16, or greater, over visible Raman emissions. The Raman-scatter ed light is collected using a high-resolution broadband spectrograph . Further suppression of the Rayleigh-scattered laser light is provi ded by custom UV notch filters.

  11. Contribution of mycosporine-like amino acids and colored dissolved and particulate matter to sea ice optical properties and ultraviolet attenuation

    PubMed Central

    Uusikivi, Jari; Vähätalo, Anssi V.; Granskog, Mats A.; Sommaruga, Ruben

    2010-01-01

    In the Baltic Sea ice, the spectral absorption coefficients for particulate matter (PM) were about two times higher at ultraviolet wavelengths than at photosynthetically available radiation (PAR) wavelengths. PM absorption spectra included significant absorption by mycosporine-like amino acids (MAAs) between 320 and 345 nm. In the surface ice layer, the concentration of MAAs (1.37 μg L−1) was similar to that of chlorophyll a, resulting in a MAAs-to-chlorophyll a ratio as high as 0.65. Ultraviolet radiation (UVR) intensity and the ratio of UVR to PAR had a strong relationship with MAAs concentration (R2 = 0.97, n = 3) in the ice. In the surface ice layer, PM and especially MAAs dominated the absorption (absorption coefficient at 325 nm: 0.73 m−1). In the columnar ice layers, colored dissolved organic matter was the most significant absorber in the UVR (< 380 nm) (absorption coefficient at 325 nm: 1.5 m−1). Our measurements and modeling of UVR and PAR in Baltic Sea ice show that organic matter, both particulate and dissolved, influences the optical properties of sea ice and strongly modifies the UVR exposure of biological communities in and under snow-free sea ice. PMID:20585592

  12. Passive Ranging Using a Dispersive Spectrometer and Optical Filters

    DTIC Science & Technology

    2012-12-20

    transform spectrometers. These in- struments are very sensitive to vibration, however, making them difficult to use on an air or space-borne platform. This... techniques will scale to longer ranges. An instrument using filters is predicted to be more accurate at long ranges, but only if the grating...done by Leonpacher at AFIT. This research focused on the CO2 absorption feature at 4.3 µm. His technique compared the relative intensity between two

  13. Photoluminescence emission spectra of Makrofol® DE 1-1 upon irradiation with ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    El Ghazaly, M.; Aydarous, Abdulkadir

    Photoluminescence (PL) emission spectra of Makrofol® DE 1-1 (bisphenol-A based polycarbonate) upon irradiation with ultraviolet radiation of different wavelengths were investigated. The absorption-and attenuation coefficient measurements revealed that the Makrofol® DE 1-1 is characterized by high absorbance in the energy range 6.53-4.43 eV but for a lower energy than 4.43 eV, it is approximately transparent. Makrofol® DE 1-1 samples were irradiated with ultraviolet radiation of wavelength in the range from 250 (4.28 eV) to 400 (3.10 eV) nm in step of 10 nm and the corresponding photoluminescence (PL) emission spectra were measured with a spectrofluorometer. It is found that the integrated counts and the peak height of the photoluminescence emission (PL) bands are strongly correlated with the ultraviolet radiation wavelength. They are increased at the ultraviolet radiation wavelength 280 nm and have maximum at 290 nm, thereafter they decrease and diminish at 360 nm of ultraviolet wavelength. The position of the PL emission band peak was red shifted starting from 300 nm, which increased with the increase the ultraviolet radiation wavelength. The PL bandwidth increases linearly with the increase of the ultraviolet radiation wavelength. When Makrofol® DE 1-1 is irradiated with ultraviolet radiation of short wavelength (UVC), the photoluminescence emission spectra peaks also occur in the UVC but of a relatively longer wavelength. The current new findings should be considered carefully when using Makrofol® DE 1-1 in medical applications related to ultraviolet radiation.

  14. Study of an astronomical extreme ultraviolet rocket spectrometer for use on shuttle missions

    NASA Technical Reports Server (NTRS)

    Bowyer, C. S.

    1977-01-01

    The adaptation of an extreme ultraviolet astronomy rocket payload for flight on the shuttle was studied. A sample payload for determining integration and flight procedures for experiments which may typically be flown on shuttle missions was provided. The electrical, mechanical, thermal, and operational interface requirements between the payload and the orbiter were examined. Of particular concern was establishing a baseline payload accommodation which utilizes proven common hardware for electrical, data, command, and possibly real time monitoring functions. The instrument integration and checkout procedures necessary to assure satisfactory in-orbit instrument performance were defined and those procedures which can be implemented in such a way as to minimize their impact on orbiter integration schedules were identified.

  15. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) spectrometer design and performance

    NASA Technical Reports Server (NTRS)

    Macenka, Steven A.; Chrisp, Michael P.

    1987-01-01

    The development of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has been completed at JPL. This paper outlines the functional requirements of the spectrometer optics subsystem, and describes the spectrometer optical design. The optical subsystem performance is shown in terms of spectral modulation transfer functions, radial energy distributions, and system transmission at selected wavelengths for the four spectrometers. An outline of the spectrometer alignment is included.

  16. Ultrafast carrier thermalization and trapping in silicon-germanium alloy probed by extreme ultraviolet transient absorption spectroscopy

    PubMed Central

    Zürch, Michael; Chang, Hung-Tzu; Kraus, Peter M.; Cushing, Scott K.; Borja, Lauren J.; Gandman, Andrey; Kaplan, Christopher J.; Oh, Myoung Hwan; Prell, James S.; Prendergast, David; Pemmaraju, Chaitanya D.; Neumark, Daniel M.; Leone, Stephen R.

    2017-01-01

    Semiconductor alloys containing silicon and germanium are of growing importance for compact and highly efficient photonic devices due to their favorable properties for direct integration into silicon platforms and wide tunability of optical parameters. Here, we report the simultaneous direct and energy-resolved probing of ultrafast electron and hole dynamics in a silicon-germanium alloy with the stoichiometry Si0.25Ge0.75 by extreme ultraviolet transient absorption spectroscopy. Probing the photoinduced dynamics of charge carriers at the germanium M4,5-edge (∼30 eV) allows the germanium atoms to be used as reporter atoms for carrier dynamics in the alloy. The photoexcitation of electrons across the direct and indirect band gap into conduction band (CB) valleys and their subsequent hot carrier relaxation are observed and compared to pure germanium, where the Ge direct (ΔEgap,Ge,direct=0.8 eV) and Si0.25Ge0.75 indirect gaps (ΔEgap,Si0.25Ge0.75,indirect=0.95 eV) are comparable in energy. In the alloy, comparable carrier lifetimes are observed for the X, L, and Γ valleys in the conduction band. A midgap feature associated with electrons accumulating in trap states near the CB edge following intraband thermalization is observed in the Si0.25Ge0.75 alloy. The successful implementation of the reporter atom concept for capturing the dynamics of the electronic bands by site-specific probing in solids opens a route to study carrier dynamics in more complex materials with femtosecond and sub-femtosecond temporal resolution. PMID:28653020

  17. Ultraviolet Extensions

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Side-by-Side Comparison Click on image for larger view

    This ultraviolet image from NASA's Galaxy Evolution Explorer shows the Southern Pinwheel galaxy, also know as Messier 83 or M83. It is located 15 million light-years away in the southern constellation Hydra.

    Ultraviolet light traces young populations of stars; in this image, young stars can be seen way beyond the main spiral disk of M83 up to 140,000 light-years from its center. Could life exist around one of these far-flung stars? Scientists say it's unlikely because the outlying regions of a galaxy are lacking in the metals required for planets to form.

    The image was taken at scheduled intervals between March 15 and May 20, 2007. It is one of the longest-exposure, or deepest, images ever taken of a nearby galaxy in ultraviolet light. Near-ultraviolet light (or longer-wavelength ultraviolet light) is colored yellow, and far-ultraviolet light is blue.

    What Lies Beyond the Edge of a Galaxy The side-by-side comparison shows the Southern Pinwheel galaxy, or M83, as seen in ultraviolet light (right) and at both ultraviolet and radio wavelengths (left). While the radio data highlight the galaxy's long, octopus-like arms stretching far beyond its main spiral disk (red), the ultraviolet data reveal clusters of baby stars (blue) within the extended arms.

    The ultraviolet image was taken by NASA's Galaxy Evolution Explorer between March 15 and May 20, 2007, at scheduled intervals. Back in 2005, the telescope first photographed M83 over a shorter period of time. That picture was the first to reveal far-flung baby stars forming up to 63,000 light-years from the edge of the main spiral disk. This came as a surprise to astronomers because a galaxy's outer territory typically lacks high densities of star-forming materials.

    The newest picture of M83 from the Galaxy Evolution Explorer is shown at the right, and was taken over a longer period of

  18. A new membrane inlet interface of a vacuum ultraviolet lamp ionization miniature mass spectrometer for on-line rapid measurement of volatile organic compounds in air.

    PubMed

    Hou, Keyong; Wang, Junde; Li, Haiyang

    2007-01-01

    A novel membrane inlet interface coupled to a single-photon ionization (SPI) miniature time-of-flight mass spectrometer has been developed for on-line rapid measurement of volatile organic compounds (VOCs). The vacuum ultraviolet (VUV) light source for SPI was a commercial krypton discharge lamp with photon energy of 10.6 eV and photon flux of 10(10) photons/s. The experimental results showed that the sensitivity was 5 times as high as obtained with the traditional membrane inlet. The enrichment efficiency could be adjusted in the range of 10 to 20 times for different VOCs when a buffer cell was added to the inlet interface, and the memory effect was effectively eliminated. A detection limit as low as 25 parts-per-billion by volume (ppbv) for benzene has been achieved, with a linear dynamic range of three orders of magnitude. The rise times were 6 s, 10 s and 15 s for benzene, toluene and p-xylene, respectively, and the fall time was only 6 s for all of these compounds. The analytical capacity of this system was demonstrated by the on-line analysis of VOCs in single puff mainstream cigarette smoke, in which more than 50 compounds were detected in 2 s. Copyright 2007 John Wiley & Sons, Ltd.

  19. Configuration and calibration of a flat field grating spectrometer in the wavelength range 7-60 Å with a Manson ultrasoft x-ray source

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Shi, Z.; Fei, Z.; Jin, X.; Xiao, J.; Hutton, R.; Zou, Y.

    2011-06-01

    An ultrasoft x-ray and extreme ultraviolet spectrometer built and calibrated in the wavelength range of 7-60 Å is reported here. Details of the alignment of this flat field spectrometer with both a laser and a telescope are presented. The light path function rather than a standard calibration function, i.e. a polynomial function, is introduced as the fit function, which gives good agreement with the spectrometer design values and makes the calibration more reliable when extended to the region outside the points used for calibration, compared with a standard calibration function. The calibration results of a Manson ultrasoft x-ray source (model 2) with source targets of Cu, Fe and Ti are presented with all the peaks marked.

  20. Real Time Diagnostics of Jet Engine Exhaust Plumes Using a Chirped QC Laser Spectrometer

    NASA Astrophysics Data System (ADS)

    Hay, K. G.; Duxbury, G.; Langford, N.

    2010-06-01

    Quantitative measurements of real-time variations of the chemical composition of a jet engine exhaust plume is demonstrated using a 4.86 μmn intra-pulse quantum cascade laser spectrometer. The measurements of the gas turbine exhaust were carried out in collaboration with John Black and Mark Johnson at Rolls Royce. The recording of five sets of averaged spectra a second has allowed us to follow the build up of the combustion products within the exhaust, and to demonstrate the large variation of the integrated absorption of these absorption lines with temperature. The absorption cross sections of the lines of both carbon monoxide and water increase with temperature, whereas those of the three main absorption lines of carbon dioxide decrease. At the steady state limit the absorption lines of carbon dioxide are barely visible, and the spectrum is dominated by absorption lines of carbon monoxide and water.

  1. Detection of ultraviolet radiation using tissue equivalent radiochromic gel materials

    NASA Astrophysics Data System (ADS)

    Bero, M. A.; Abukassem, I.

    2009-05-01

    Ferrous Xylenol-orange Gelatin gel (FXG) is known to be sensitive to ionising radiation such as γ and X-rays. The effect of ionising radiation is to produce an increase in the absorption over a wide region of the visible spectrum, which is proportional to the absorbed dose. This study demonstrates that FXG gel is sensitive to ultraviolet radiation and therefore it could functions as UV detector. Short exposure to UV radiation produces linear increase in absorption measured at 550nm, however high doses of UV cause the ion indicator colour to fad away in a manner proportional to the incident UV energy. Light absorbance increase at the rate of 1.1% per minute of irradiation was monitored. The exposure level at which the detector has linear response is comparable to the natural summer UV radiation. Evaluating the UV ability to pass through tissue equivalent gel materials shows that most of the UV gets absorbed in the first 5mm of the gel materials, which demonstrate the damaging effects of this radiation type on human skin and eyes. It was concluded that FXG gel dosimeter has the potential to offer a simple, passive ultraviolet radiation detector with sensitivity suitable to measure and visualises the natural sunlight UV exposure directly by watching the materials colour changes.

  2. Capillary Absorption Spectrometer for 13C Isotopic Composition of Pico to Subpico Molar Sample Quantities

    NASA Astrophysics Data System (ADS)

    Moran, J.; Kelly, J.; Sams, R.; Newburn, M.; Kreuzer, H.; Alexander, M.

    2011-12-01

    Quick incorporation of IR spectroscopy based isotope measurements into cutting edge research in biogeochemical cycling attests to the advantages of a spectroscopy versus mass spectrometry method for making some 13C measurements. The simple principles of optical spectroscopy allow field portability and provide a more robust general platform for isotope measurements. We present results with a new capillary absorption spectrometer (CAS) with the capability of reducing the sample size required for high precision isotopic measurements to the picomolar level and potentially the sub-picomolar level. This work was motivated by the minute sample size requirements for laser ablation isotopic studies of carbon cycling in microbial communities but has potential to be a valuable tool in other areas of biological and geological research. The CAS instrument utilizes a capillary waveguide as a sample chamber for interrogating CO2 via near IR laser absorption spectroscopy. The capillary's small volume (~ 0.5 mL) combined with propagation and interaction of the laser mode with the entire sample reduces sample size requirements to a fraction of that accessible with commercially available IR absorption including those with multi-pass or ring-down cavity systems. Using a continuous quantum cascade laser system to probe nearly adjacent rovibrational transitions of different isotopologues of CO2 near 2307 cm-1 permits sample measurement at low analyte pressures (as low as 2 Torr) for further sensitivity improvement. A novel method to reduce cw-fringing noise in the hollow waveguide is presented, which allows weak absorbance features to be studied at the few ppm level after averaging 1,000 scans in 10 seconds. Detection limits down to the 20 picomoles have been observed, a concentration of approximately 400 ppm at 2 Torr in the waveguide with precision and accuracy at or better than 1 %. Improvements in detection and signal averaging electronics and laser power and mode quality are

  3. Development of high resolution x-ray spectrometers for the investigation of bioinorganic chemistry in metalloproteins

    NASA Astrophysics Data System (ADS)

    Drury, Owen Byron

    We have built an X-ray spectrometer for synchrotron-based high-resolution soft X-ray spectroscopy. The spectrometer uses four 9-pixel arrays of superconducting tunnel junctions (STJs) as sensors. They infer the energy of an absorbed X-ray from a temporary increase in tunneling current. The STJs are operated in a two-stage adiabatic demagnetization refrigerator (ADR) that uses liquid nitrogen and helium for precooling to 77 K and 4.2 K, and gallium gadolinium garnet and iron ammonium sulfate to attain a base temperature below 0.1 K. The sensors are held at the end of a 40-cm-long cold finger within ˜1 cm of a sample located inside the vacuum chamber of a synchrotron beam line end station. The spectrometer has an energy resolution between 10 eV and 20 eV FWHM below 1 keV, can be operated at rates up to ˜106 counts/s. STJ spectrometers are suited for chemical analysis of dilute samples by fluorescence-detected X-ray absorption spectroscopy (XAS) in cases where conventional germanium detectors do not have enough energy resolution. We have used this STJ spectrometer at the Advanced Light Source synchrotron for spectroscopy on the lower energy X-ray absorption edges of the elements Mo, S, Fe and N. These elements play an important role in biological nitrogen fixation at the metalloprotein nitrogenase, and we have examined if STJ spectrometers can be used to provide new insights into some of the open questions regarding the reaction mechanism of this protein. We have taken X-ray absorption near-edge spectra (XANES) and extended fine structure spectra (EXAFS) of an Fe 6N(CO)15-compound containing a single N atom inside a cluster of six Fe atoms, as postulated to exist inside the Fe-S cluster of the FeMo-cofactor (FeMo-co) in nitrogenase. The STJ detector has enabled the first-ever extended range EXAFS scans on nitrogen through the oxygen K-edge, enabling a comparison with N EXAFS on FeMo-co. We have taken iron L23-edge spectra of the Fe-S cluster in FeMo-co, which can be

  4. Brewster-plate spoiler - A novel method for reducing the amplitude of interference fringes that limit tunable-laser absorption sensitivities

    NASA Technical Reports Server (NTRS)

    Webster, C. R.

    1985-01-01

    A simple method is described for substantially reducing the amplitude of interference fringes that limit the sensitivities of tunable-laser high-resolution absorption spectrometers. A lead-salt diode laser operating in the 7-micron region is used with a single Brewster-plate spoiler to reduce the fringe amplitude by a factor of 30 and also to allow the detection of absorptances 0.001 percent in a single laser scan without subtraction techniques, without complex frequency modulation, and without distortion of the molecular line-shape signals. Application to multipass-cell spectrometers is described.

  5. Temperature dependence of the ClONO2 UV absorption spectrum

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.; Talukdar, Ranajit K.; Ravishankara, A. R.

    1994-01-01

    The temperature dependence of the ClONO2 absorption spectrum has been measured between 220 and 298 K and between 195 and 430 nm using a diode array spectrometer. The absorption cross sections were determined using both: (1) absolute pressure measurements at 296 K and (2) measurements at various temperatures relative to 296 K using a dual absorption cell arrangement. The temperature dependence of the ClONO2 absorption spectrum shows very broad structure. The amplitude of the temperature dependence relative to that at 296 K is weak at short wavelengths, less than 2% at 215 nm and 220 K, but significant at the wavelengths important in the stratosphere, about 30% at 325 nm and 220 K. Our ClONO2 absorption cross section data are in good general agreement with the previous measurements of Molina and Molina (1979).

  6. [Using ultraviolet-visible ( UV-Vis) absorption spectrum to estimate the dissolved organic matter (DOM) concentration in water, soils and sediments of typical water-level fluctuation zones of the Three Gorges Reservoir areas].

    PubMed

    Li, Lu-lu; Jiang, Tao; Lu, Song; Yan, Jin-long; Gao, Jie; Wei, Shi-qiang; Wang, Ding-yong; Guo, Nian; Zhao, Zhena

    2014-09-01

    Dissolved organic matter (DOM) is a very important component in terrestrial ecosystem. Chromophoric dissolved organic matter (CDOM) is a significant constituent of DOM, which can be measured by ultraviolet-visible (UV-Vis) absorption spectrum. Thus the relationship between CDOM and DOM was investigated and established by several types of models including single-wavelength model, double-wavelength model, absorption spectrum slope (S value) model and three-wavelength model, based on the UV-Vis absorption coefficients of soil and sediment samples (sampled in July of 2012) and water samples (sampled in November of 2012) respectively. The results suggested that the three-wavelength model was the best for fitting, and the determination coefficients of water, soil and sediment data were 0. 788, 0. 933 and 0. 856, respectively. Meanwhile, the nominal best model was validated with the UV-Vis data of 32 soil samples and 36 water samples randomly collected in 2013, showing the RRMSE and MRE were 16. 5% and 16. 9% respectively for soil DOM samples, 10. 32% and 9. 06% respectively for water DOM samples, which further suggested the prediction accuracy was higher in water DOM samples as compared with that in soil DOM samples.

  7. Quantum state engineering with ultra-short-period (AlN)m/(GaN)n superlattices for narrowband deep-ultraviolet detection.

    PubMed

    Gao, Na; Lin, Wei; Chen, Xue; Huang, Kai; Li, Shuping; Li, Jinchai; Chen, Hangyang; Yang, Xu; Ji, Li; Yu, Edward T; Kang, Junyong

    2014-12-21

    Ultra-short-period (AlN)m/(GaN)n superlattices with tunable well and barrier atomic layer numbers were grown by metal-organic vapour phase epitaxy, and employed to demonstrate narrowband deep ultraviolet photodetection. High-resolution transmission electron microscopy and X-ray reciprocal space mapping confirm that superlattices containing well-defined, coherently strained GaN and AlN layers as thin as two atomic layers (∼ 0.5 nm) were grown. Theoretical and experimental results demonstrate that an optical absorption band as narrow as 9 nm (210 meV) at deep-ultraviolet wavelengths can be produced, and is attributable to interband transitions between quantum states along the [0001] direction in ultrathin GaN atomic layers isolated by AlN barriers. The absorption wavelength can be precisely engineered by adjusting the thickness of the GaN atomic layers because of the quantum confinement effect. These results represent a major advance towards the realization of wavelength selectable and narrowband photodetectors in the deep-ultraviolet region without any additional optical filters.

  8. [Analysis of UV-visible absorption spectrum on the decolorization of industrial wastewater by disinfection].

    PubMed

    Huang, Xin; Wang, Long-Yong; Gao, Nai-Yun; Li, Wei-Guo

    2012-10-01

    The UV-Visible absorption spectrum of industrial wastewater was explored to introduce a substituting method determining the color of water, and to compare the decolorization efficacy of different disinfectants. The results show that the visible absorption spectrum(350-600 nm), instead of ultraviolet absorption spectrum, should be applied to characterize the color of wastewater. There is a good correlation between the features of visible absorption spectrum and the true color of wastewater. Both ozone and chlorine dioxide has a better decolorization performance than chlorine. However, the color of chlorine dioxide itself has a negative effect on decolorization. The changes in the features of visible absorption spectrum effectively reflect the variations in the color of wastewater after disinfection.

  9. Design of an FT-NIR spectrometer for online quality analysis of traditional Chinese medicine manufacturing process

    NASA Astrophysics Data System (ADS)

    Zhu, Ren; Wu, Lan; Wang, Shiming; Ye, Linhua; Ding, Zhihua

    2008-03-01

    As a fast, non-destructive analysis method, Fourier transform (FT) near-infrared (NIR) spectroscopy is very suitable and effective for online quality analysis of traditional Chinese medicine (TCM) manufacturing process. In this thesis, the theoretics of FT-NIRS was analyzed and an FT-NIR spectrometer with 4 cm -1 resolution in the 12500-5000 cm -1 frequency range was designed. The spectrometer was based on a Michelson interferometer with Bromine tungsten lamp as the NIR light source and InGaAs detector to collect the interference signal. Each element was designed and chosen to provide maximum sensitivity in the NIR spectral region. A fiber-optic flow cell system was used to realize online analysis of traditional Chinese medicine. The performance of the spectrometer was evaluated and the feasibility of using FT-NIR spectrometer to get absorption spectra of traditional Chinese medicine was demonstrated.

  10. UV spectroscopy with the CETUS multi-object spectrometer

    NASA Astrophysics Data System (ADS)

    Kendrick, Stephen E.; Woodruff, Robert; Hull, Anthony; Heap, Sara; Kutyrev, Alexander; Purves, Lloyd; Danchi, William

    2018-01-01

    The ultraviolet multi-object spectrograph (MOS) for the Cosmic Evolution Through UV Spectroscopy (CETUS) concept is a slit-based instrument allowing multiple simultaneous observations over a wide field of view. The UV MOS will be able to target up to 100 objects at a time without the issues of confusion with nearby sources or unwanted background like zodiacal stray light. The multiplexing will allow over 100,000 galaxies to be observed over a typical mission lifetime which greatly enhances the scientific yield. The MOS utilizes a next-generation micro-shutter array, an efficient aspheric Offner-like spectrometer design with a convex grating, and nanotube light traps for suppressing unwanted wavelengths. The optical coatings are also designed for optimizing the UV throughput while minimizing out-of-band signal at the detector.

  11. Neutral Mass Spectrometer (NMS) for the Lunar Atmosphere and Dust Environment Explorer (LADEE) Mission

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Mahaffy, Paul R.; Benna, Mehdi; King, Todd T.; Hodges, Richard

    2011-01-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) mission currently scheduled for launch in early 2013 aboard a Minotaur V will orbit the moon at a nominal periselene of 50 km to characterized the lunar atmosphere and dust environment. The science instrument payload includes a neutral mass spectrometer as well as an ultraviolet spectrometer and a dust detector. Although to date only He, Ar-40, K, Na and Rn-222 have been firmly identified in the lunar exosphere and arise from the solar wind (He), the lunar regolith (K and Na) and the lunar interior (Ar-40, Rn-222), upper limits have been set for a large number of other species, LADEE Neutral Mass Spectrometer (NMS) observations will determine the abundance of several species and substantially lower the present upper limits for many others. Additionally, LADEE NMS will observe the spatial distribution and temporal variability of species which condense at nighttime and show peak concentrations at the dawn terminator (e,g, Ar-40), possible episodic release from the lunar interior, and the results of sputtering or desorption processes from the regolith. In this presentation, we describe the LADEE NMS hardware and the anticipated science results.

  12. The Far-ultraviolet "Continuum" in Protoplanetary Disk Systems. II. Carbon Monoxide Fourth Positive Emission and Absorption

    NASA Astrophysics Data System (ADS)

    France, Kevin; Schindhelm, Eric; Burgh, Eric B.; Herczeg, Gregory J.; Harper, Graham M.; Brown, Alexander; Green, James C.; Linsky, Jeffrey L.; Yang, Hao; Abgrall, Hervé; Ardila, David R.; Bergin, Edwin; Bethell, Thomas; Brown, Joanna M.; Calvet, Nuria; Espaillat, Catherine; Gregory, Scott G.; Hillenbrand, Lynne A.; Hussain, Gaitee; Ingleby, Laura; Johns-Krull, Christopher M.; Roueff, Evelyne; Valenti, Jeff A.; Walter, Frederick M.

    2011-06-01

    We exploit the high sensitivity and moderate spectral resolution of the Hubble Space Telescope Cosmic Origins Spectrograph to detect far-ultraviolet (UV) spectral features of carbon monoxide (CO) present in the inner regions of protoplanetary disks for the first time. We present spectra of the classical T Tauri stars HN Tau, RECX-11, and V4046 Sgr, representative of a range of CO radiative processes. HN Tau shows CO bands in absorption against the accretion continuum. The CO absorption most likely arises in warm inner disk gas. We measure a CO column density and rotational excitation temperature of N(CO) = (2 ± 1) × 1017 cm-2 and T rot(CO) 500 ± 200 K for the absorbing gas. We also detect CO A-X band emission in RECX-11 and V4046 Sgr, excited by UV line photons, predominantly H I Lyα. All three objects show emission from CO bands at λ > 1560 Å, which may be excited by a combination of UV photons and collisions with non-thermal electrons. In previous observations these emission processes were not accounted for due to blending with emission from the accretion shock, collisionally excited H2, and photo-excited H2, all of which appeared as a "continuum" whose components could not be separated. The CO emission spectrum is strongly dependent upon the shape of the incident stellar Lyα emission profile. We find CO parameters in the range: N(CO) ~ 1018-1019 cm-2, T rot(CO) >~ 300 K for the Lyα-pumped emission. We combine these results with recent work on photo-excited and collisionally excited H2 emission, concluding that the observations of UV-emitting CO and H2 are consistent with a common spatial origin. We suggest that the CO/H2 ratio (≡ N(CO)/N(H2)) in the inner disk is ~1, a transition between the much lower interstellar value and the higher value observed in solar system comets today, a result that will require future observational and theoretical study to confirm. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data

  13. Spherical grating spectrometers

    NASA Astrophysics Data System (ADS)

    O'Donoghue, Darragh; Clemens, J. Christopher

    2014-07-01

    We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.

  14. MMI-based MOEMS FT spectrometer for visible and IR spectral ranges

    NASA Astrophysics Data System (ADS)

    Al-Demerdash, Bassem M.; Medhat, Mostafa; Sabry, Yasser M.; Saadany, Bassam; Khalil, Diaa

    2014-03-01

    MEMS spectrometers have very strong potential in future healthcare and environmental monitoring applications, where Michelson interferometers are the core optical engine. Recently, MEMS Michelson interferometers based on using silicon interface as a beam splitter (BS) has been proposed [7, 8]. This allows having a monolithically-integrated on-chip FTIR spectrometer. However silicon BS exhibits high absorption loss in the visible range and high material dispersion in the near infrared (NIR) range. For this reason, we propose in this work a novel MOEMS interferometer allowing operation over wider spectral range covering both the infrared (IR) and the visible ranges. The proposed architecture is based on spatial splitting and combining of optical beams using the imaging properties of Multi-Mode Interference MMI waveguide. The proposed structure includes an optical splitter for spatial splitting an input beam into two beams and a combiner for spatial combining the two interferometer beams. A MEMS moveable mirror is provided to produce an optical path difference between the two beams. The new interferometer is fabricated using DRIE technology on an SOI wafer. The movable mirror is metalized and attached to a comb-drive actuator fabricated in the same lithography step in a self-aligned manner on chip. The novel interferometer is tested as a Fourier transform spectrometer. Red laser, IR laser and absorption spectra of different materials are measured with a resolution of 2.5 nm at 635-nm wavelength. The structure is a very compact one that allows its integration and fabrication on a large scale with very low cost.

  15. The Ultraviolet Spectrograph (UVS) on Juno

    NASA Astrophysics Data System (ADS)

    Gladstone, G. R.; Persyn, S.; Eterno, J.; Slater, D. C.; Davis, M. W.; Versteeg, M. H.; Persson, K. B.; Siegmund, O. H.; Marquet, B.; Gerard, J.; Grodent, D. C.

    2008-12-01

    Juno, a NASA New Frontiers mission, plans for launch in August 2011, a 5-year cruise (including a flyby of Earth in October 2013 for a gravity boost), and 14 months around Jupiter after arriving in August 2016. The spinning (2 RPM), solar-powered Juno will study Jupiter from a highly elliptical orbit, in which the spacecraft (for about 6 hours once every 11 days) dives down over the north pole, skims the outermost atmosphere, and rises back up over the south pole. This orbit allows Juno avoid most of the intense particle radiation surrounding the planet and provides an excellent platform for investigating Jupiter's polar magnetosphere. Part of the exploration of Jupiter's polar magnetosphere will involve remote sensing of the far-ultraviolet H and H2 auroral emissions, plus gases such as methane and acetylene which add their absorption signature to the H2 emissions. This hydrocarbon absorption can be used to estimate the energy of the precipitating electrons; since more energetic electrons penetrate deeper into the atmosphere and the UV emissions they produce will show more absorption. Juno will carry an Ultraviolet Spectrograph (UVS) to make spectral images of Jupiter's aurora. UVS is a UV imaging spectrograph sensitive to both extreme and far ultraviolet emissions in the 70-205~nm range that will characterize the morphology and spectral nature of Jupiter's auroral emissions. Juno UVS consists of two separate sections: a dedicated telescope/spectrograph assembly and a vault electronics box. The telescope/spectrograph assembly contains a telescope which feeds a 0.15-m Rowland circle spectrograph. The telescope has an input aperture 40×40~mm2 and uses an off-axis parabolic primary mirror. A flat scan mirror situated at the front end of the telescope (used to target specific auroral features at up to ±30° perpendicular to the Juno spin plane) directs incoming light to the primary. The light is then focused onto the spectrograph entrance slit, which has a 'dog

  16. Variation of the 3-μm absorption feature on Mars: observations over eastern Valles Marineris by the mariner 6 infrared spectrometer

    USGS Publications Warehouse

    Calvin, Wendy M.

    1997-01-01

    A new approach for calibration of the shortest wavelength channel (1.8 to 6.0 μm) of the Mariner 6 infrared spectrometer was derived. This calibration provides a new description of the instrument response function from 1.8 to 3.7 μm and accounts for the thermal contribution to the signal at longer wavelengths. This allows the two segments from 1.8 to 6 μm to be merged into a single spectrum. The broad water of hydration absorption spans these two segments and is examined in these merged spectra using a method of band integration. Unlike previous analyses which rely on ratios at two wavelengths, the integration method can assess the band strength independently from the albedo in the near infrared. Spectra taken over the eastern end of the Valles Marineris are examined for variations of the band-integrated value, and three distinct clusters are found. Within the estimated uncertainty, two clusters (both low and high albedo) have approximately the same integrated band depth. The third cluster (medium albedo) has an integrated band depth about 10% higher. This difference cannot be systematically attributed to either surface or atmospheric parameters and suggests variation in the amount of water either chemically or physically bound in surface materials. Approximately one-half of the high integrated band depth cluster is associated with chaotic terrain at the source of outflow channels, the other half occurs over lower inertia plains adjacent to chasmata. This suggests both surface physical properties and mineralogy as well as water in exchange with the atmosphere contribute to the 3-μm bound water absorption.

  17. Comparison of ozone determinations by ultraviolet photometry and gas-phase titration

    NASA Technical Reports Server (NTRS)

    Demore, W. B.; Patapoff, M.

    1976-01-01

    A comparison of ozone determinations based on ultraviolet absorption photometry and gas-phase titration (GPT) shows good agreement between the two methods. Together with other results, these findings indicate that three candidate reference methods for ozone, UV photometry, IR photometry, and GPT are in substantial agreement. However, the GPT method is not recommended for routine use by air pollution agencies for calibration of ozone monitors because of susceptibility to experimental error.

  18. Laboratory Measurements of SO2 and N2 Absorption Spectra for Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Stark, Glenn

    2003-01-01

    This laboratory project focuses on the following topics: 1) Measurement of SO2 ultraviolet absorption cross sections; and 2) N2 band and Line Oscillator Strengths and Line Widths in the 80 to 100 nm region. Accomplishments for these projects are summarized.

  19. Ultraviolet Laser Lithography of Titania Photonic Crystals for Terahertz-Wave Modulation.

    PubMed

    Kirihara, Soshu; Nonaka, Koki; Kisanuki, Shoichiro; Nozaki, Hirotoshi; Sakaguchi, Keito

    2018-05-18

    Three-dimensional (3D) microphotonic crystals with a diamond structure composed of titania microlattices were fabricated using ultraviolet laser lithography, and the bandgap properties in the terahertz (THz) electromagnetic-wave frequency region were investigated. An acrylic resin paste with titania fine particle dispersions was used as the raw material for additive manufacturing. By scanning a spread paste surface with an ultraviolet laser beam, two-dimensional solid patterns were dewaxed and sintered. Subsequently, 3D structures with a relative density of 97% were created via layer lamination and joining. A titania diamond lattice with a lattice constant density of 240 µm was obtained. The properties of the electromagnetic wave were measured using a THz time-domain spectrometer. In the transmission spectra for the Γ-X direction, a forbidden band was observed from 0.26 THz to 0.44 THz. The frequency range of the bandgap agreed well with calculated results obtained using the plane⁻wave expansion method. Additionally, results of a simulation via transmission-line modeling indicated that a localized mode can be obtained by introducing a plane defect between twinned diamond lattice structures.

  20. Emirates Mars Ultraviolet Spectrometer's (EMUS) Prediction of Oxygen OI 135.6 nm and CO 4PG Emissions in the Martian Atmosphere

    NASA Astrophysics Data System (ADS)

    Almatroushi, H. R.; Lootah, F. H.; Deighan, J.; Fillingim, M. O.; Jain, S.; Bougher, S. W.; England, S.; Schneider, N. M.

    2017-12-01

    This research focuses on developing empirical and theoretical models for OI 135.6 nm and CO 4PG band system FUV dayglow emissions in the Martian thermosphere as predicted to be seen from the Emirates Mars Ultraviolet Spectrometer (EMUS), one of the three scientific instruments aboard the Emirates Mars Mission (EMM) to be launched in 2020. These models will aid in simulating accurate disk radiances which will be utilized as an input to an EMUS instrument simulator. The developed zonally averaged empirical models are based on FUV data from the IUVS instrument onboard the MAVEN mission, while the theoretical models are based on a basic Chapman profile. The models calculate the brightness (B) of those emissions taking into consideration observation geometry parameters such as emission angle (EA), solar zenith angle (SZA) and planet distance from the sun (Ds). Specifically, the empirical models takes a general form of Bn=A*cos(SZA)n/cos(EA)m , where Bn is the normalized brightness value of an emission feature, and A, n, and m are positive constant values. The model form shows that the brightness has a positive correlation with EA and a negative correlation with SZA. A comparison of both models are explained in this research while examining full Mars and half Mars disk images generated using geometry code specially developed for the EMUS instrument. Sensitivity analyses have also been conducted for the theoretical modeling to observe the contributions of electron impact on atomic oxygen and CO2 to the brightness of OI 135.6nm, in addition to the effect of electron temperature on the CO2± dissociative recombination contribution to the CO 4PG band system.

  1. Near infrared cavity enhanced absorption spectra of atmospherically relevant ether-1, 4-Dioxane.

    PubMed

    Chandran, Satheesh; Varma, Ravi

    2016-01-15

    1, 4-Dioxane (DX) is a commonly found ether in industrially polluted atmosphere. The near infrared absorption spectra of this compound has been recorded in the region 5900-8230 cm(-1) with a resolution of 0.08 cm(-1) using a novel Fourier transform incoherent broadband cavity-enhanced absorption spectrometer (FT-IBBCEAS). All recorded spectra were found to contain regions that are only weakly perturbed. The possible combinations of fundamental modes and their overtone bands corresponding to selected regions in the measured spectra are tabulated. Two interesting spectral regions were identified as 5900-6400 cm(-1) and 8100-8230 cm(-1). No significant spectral interference due to presence of water vapor was observed suggesting the suitability of these spectral signatures for spectroscopic in situ detection of DX. The technique employed here is much more sensitive than standard Fourier transform spectrometer measurements on account of long effective path length achieved. Hence significant enhancement of weaker absorption lines above the noise level was observed as demonstrated by comparison with an available measurement from database. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Evaluation of the airborne quantum cascade laser spectrometer (QCLS) measurements of the carbon and greenhouse gas suite - CO2, CH4, N2O, and CO - during the CalNex and HIPPO campaigns

    NASA Astrophysics Data System (ADS)

    Santoni, G. W.; Daube, B. C.; Kort, E. A.; Jiménez, R.; Park, S.; Pittman, J. V.; Gottlieb, E.; Xiang, B.; Zahniser, M. S.; Nelson, D. D.; McManus, J. B.; Peischl, J.; Ryerson, T. B.; Holloway, J. S.; Andrews, A. E.; Sweeney, C.; Hall, B.; Hintsa, E. J.; Moore, F. L.; Elkins, J. W.; Hurst, D. F.; Stephens, B. B.; Bent, J.; Wofsy, S. C.

    2014-06-01

    We present an evaluation of aircraft observations of the carbon and greenhouse gases CO2, CH4, N2O, and CO using a direct-absorption pulsed quantum cascade laser spectrometer (QCLS) operated during the HIPPO and CalNex airborne experiments. The QCLS made continuous 1 Hz measurements with 1σ Allan precisions of 20, 0.5, 0.09, and 0.15 ppb for CO2, CH4, N2O, and CO, respectively, over > 500 flight hours on 79 research flights. The QCLS measurements are compared to two vacuum ultraviolet (VUV) CO instruments (CalNex and HIPPO), a cavity ring-down spectrometer (CRDS) measuring CO2 and CH4 (CalNex), two broadband non-dispersive infrared (NDIR) spectrometers measuring CO2 (HIPPO), two onboard gas chromatographs measuring a variety of chemical species including CH4, N2O, and CO (HIPPO), and various flask-based measurements of all four species. QCLS measurements are tied to NOAA and WMO standards using an in-flight calibration system, and mean differences when compared to NOAA CCG flask data over the 59 HIPPO research flights were 100, 1, 1, and 2 ppb for CO2, CH4, N2O, and CO, respectively. The details of the end-to-end calibration procedures and the data quality assurance and quality control (QA/QC) are presented. Specifically, we discuss our practices for the traceability of standards given uncertainties in calibration cylinders, isotopic and surface effects for the long-lived greenhouse gas tracers, interpolation techniques for in-flight calibrations, and the effects of instrument linearity on retrieved mole fractions.

  3. Effective line intensity measurements of trans-nitrous acid (HONO) of the ν1 band near 3600 cm-1 using laser difference-frequency spectrometer

    NASA Astrophysics Data System (ADS)

    Maamary, Rabih; Fertein, Eric; Fourmentin, Marc; Dewaele, Dorothée; Cazier, Fabrice; Chen, Changshui; Chen, Weidong

    2017-07-01

    We report on the measurements of the effective line intensities of the ν1 fundamental band of trans-nitrous acid (trans-HONO) in the infrared near 3600 cm-1 (2.78 μm). A home-made widely tunable laser spectrometer based on difference-frequency generation (DFG) was used for this study. The strengths of 28 well-resolved absorption lines of the ν1 band were determined by scaling their absorption intensities to the well referenced absorption line intensity of the ν3 band of trans-HONO around 1250 cm-1 recorded simultaneously with the help of a DFB quantum cascade laser (QCL) spectrometer. The maximum measurement uncertainty of 12% in the line intensities is mainly determined by the uncertainty announced in the referenced line intensities, while the measurement precision in frequency positions of the absorption lines is better than 6×10-4 cm-1. The cross-measurement carried out in the present work allows one to perform intensity calibration using well referenced line parameters.

  4. Measuring the expressed abundance of the three phases of water with an imaging spectrometer over melting snow

    NASA Astrophysics Data System (ADS)

    Green, Robert O.; Painter, Thomas H.; Roberts, Dar A.; Dozier, Jeff

    2006-10-01

    From imaging spectrometer data, we simultaneously estimate the abundance of the three phases of water in an environment that includes melting snow, basing the analysis on the spectral shift in the absorption coefficient between water vapor, liquid water, and ice at 940, 980, and 1030 nm respectively. We apply a spectral fitting algorithm that measures the expressed abundance of the three phases of water to a data set acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over Mount Rainier, Washington, on 14 June 1996. Precipitable water vapor varies from 1 mm over the summit of Mount Rainier to 10 mm over the lower valleys to the northwest. Equivalent path absorption of liquid water varies from 0 to 13 mm, with the zero values over rocky areas and high-elevation snow and the high values associated with liquid water held in vegetation canopies and in melting snow. Ice abundance varies from 0 to 30 mm equivalent path absorption in the snow- and glacier-covered portions of Mount Rainier. The water and ice abundances are related to the amount of liquid water and the sizes of the ice grains in the near-surface layer. Precision of the estimates, calculated over locally homogeneous areas, indicates an uncertainty of better than 1.5% for all three phases, except for liquid water in vegetation, where an optimally homogeneous site was not found. The analysis supports new strategies for hydrological research and applications as imaging spectrometers become more available.

  5. Ultrafast carrier thermalization and trapping in silicon-germanium alloy probed by extreme ultraviolet transient absorption spectroscopy

    DOE PAGES

    Zürch, Michael; Chang, Hung-Tzu; Kraus, Peter M.; ...

    2017-06-06

    Semiconductor alloys containing silicon and germanium are of growing importance for compact and highly efficient photonic devices due to their favorable properties for direct integration into silicon platforms and wide tunability of optical parameters. Here, we report the simultaneous direct and energy-resolved probing of ultrafast electron and hole dynamics in a silicon-germanium alloy with the stoichiometry Si 0.25Ge 0.75 by extreme ultraviolet transient absorption spectroscopy. Probing the photoinduced dynamics of charge carriers at the germanium M 4,5-edge (~30 eV) allows the germanium atoms to be used as reporter atoms for carrier dynamics in the alloy. The photoexcitation of electrons acrossmore » the direct and indirect band gap into conduction band (CB) valleys and their subsequent hot carrier relaxation are observed and compared to pure germanium, where the Ge direct (ΔE gap,Ge,direct = 0.8 eV) and Si 0.25Ge 0.75 indirect gaps (ΔE gap,Si0.25Ge0.75,indirect = 0.95 eV) are comparable in energy. In the alloy, comparable carrier lifetimes are observed for the X, L, and Γ valleys in the conduction band. A midgap feature associated with electrons accumulating in trap states near the CB edge following intraband thermalization is observed in the Si 0.25Ge 0.75 alloy. The successful implementation of the reporter atom concept for capturing the dynamics of the electronic bands by site-specific probing in solids opens a route to study carrier dynamics in more complex materials with femtosecond and sub-femtosecond temporal resolution.« less

  6. Ultrafast carrier thermalization and trapping in silicon-germanium alloy probed by extreme ultraviolet transient absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zürch, Michael; Chang, Hung-Tzu; Kraus, Peter M.

    Semiconductor alloys containing silicon and germanium are of growing importance for compact and highly efficient photonic devices due to their favorable properties for direct integration into silicon platforms and wide tunability of optical parameters. Here, we report the simultaneous direct and energy-resolved probing of ultrafast electron and hole dynamics in a silicon-germanium alloy with the stoichiometry Si 0.25Ge 0.75 by extreme ultraviolet transient absorption spectroscopy. Probing the photoinduced dynamics of charge carriers at the germanium M 4,5-edge (~30 eV) allows the germanium atoms to be used as reporter atoms for carrier dynamics in the alloy. The photoexcitation of electrons acrossmore » the direct and indirect band gap into conduction band (CB) valleys and their subsequent hot carrier relaxation are observed and compared to pure germanium, where the Ge direct (ΔE gap,Ge,direct = 0.8 eV) and Si 0.25Ge 0.75 indirect gaps (ΔE gap,Si0.25Ge0.75,indirect = 0.95 eV) are comparable in energy. In the alloy, comparable carrier lifetimes are observed for the X, L, and Γ valleys in the conduction band. A midgap feature associated with electrons accumulating in trap states near the CB edge following intraband thermalization is observed in the Si 0.25Ge 0.75 alloy. The successful implementation of the reporter atom concept for capturing the dynamics of the electronic bands by site-specific probing in solids opens a route to study carrier dynamics in more complex materials with femtosecond and sub-femtosecond temporal resolution.« less

  7. Ultraviolet Spectral Behavior of TVCol During and After Flaring Activity

    NASA Astrophysics Data System (ADS)

    Sanad, M. R.; Abdel-Sabour, M. A.

    2018-01-01

    We studied the intermediate polar TVCol during and after its flare in November 1982 observed in the ultraviolet range with the International Ultraviolet Explorer. Two spectra revealing the variations of emission lines at different times are presented. We have estimated a new value of the reddening from the 2200 Å absorption feature, E ( B - V ) = 0.12 ± 0.02, and calculated the line fluxes of C IV and He II emission lines produced in the outer accretion disk. The average ultraviolet luminosity of emitting region during and after the flare is approximately 4 × 1032 erg s-1 and 9 × 1030 erg s-1, the corresponding average mass accretion rate is nearly 3 × 1015 erg s-1 (4.76 × 10-11 M ⊙ yr-1) and 5 × 1013 erg s-1 (7.93 × 10-13 M ⊙ yr-1), and the average temperature of the emitting region during and after flare is estimated to be of about 3.5 × 103 K and 2 × 103 K. We attribute this flare to a sudden increase in the mass accretion rate leading to the outburst activity.

  8. Ultraviolet, X-ray, and infrared observations of HDE 226868 equals Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Treves, A.; Chiappetti, L.; Tanzi, E. G.; Tarenghi, M.; Gursky, H.; Dupree, A. K.; Hartmann, L. W.; Raymond, J.; Davis, R. J.; Black, J.

    1980-01-01

    During April, May, and July of 1978, HDE 226868, the optical counterpart of Cygnus X-1, was repeatedly observed in the ultraviolet with the IUE satellite. Some X-ray and infrared observations have been made during the same period. The general shape of the spectrum is that expected from a late O supergiant. Strong absorption features are apparent in the ultraviolet, some of which have been identified. The equivalent widths of the most prominent lines appear to be modulated with the orbital phase. This modulation is discussed in terms of the ionization contours calculated by Hatchett and McCray, for a binary X-ray source in the stellar wind of the companion.

  9. Temperature dependence of the HNO3 UV absorption cross sections

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.; Talukdar, Ranajit K.; Ravishankara, A. R.; Solomon, Susan

    1993-01-01

    The temperature dependence of the HNO3 absorption cross sections between 240 and 360 K over the wavelength range 195 to 350 nm has been measured using a diode array spectrometer. Absorption cross sections were determined using both (1) absolute pressure measurements at 298 K and (2) a dual absorption cell arrangement in which the absorption spectrum at various temperatures is measured relative to the room temperature absorption spectrum. The HNO3 absorption spectrum showed a temperature dependence which is weak at short wavelengths but stronger at longer wavelengths which are important for photolysis in the lower stratosphere. The 298 K absorption cross sections were found to be larger than the values currently recommended for atmospheric modeling (DeMore et al., 1992). Our absorption cross section data are critically compared with the previous measurements of both room temperature and temperature-dependent absorption cross sections. Temperature-dependent absorption cross sections of HNO3 are recommended for use in atmospheric modeling. These temperature dependent HNO3 absorption cross sections were used in a two-dimensional dynamical-photochemical model to demonstrate the effects of the revised absorption cross sections on loss rate of HNO3 and the abundance of NO2 in the stratosphere.

  10. Tunable UV-visible absorption of SnS2 layered quantum dots produced by liquid phase exfoliation.

    PubMed

    Fu, Xiao; Ilanchezhiyan, P; Mohan Kumar, G; Cho, Hak Dong; Zhang, Lei; Chan, A Sattar; Lee, Dong J; Panin, Gennady N; Kang, Tae Won

    2017-02-02

    4H-SnS 2 layered crystals synthesized by a hydrothermal method were used to obtain via liquid phase exfoliation quantum dots (QDs), consisting of a single layer (SLQDs) or multiple layers (MLQDs). Systematic downshift of the peaks in the Raman spectra of crystals with a decrease in size was observed. The bandgap of layered QDs, estimated by UV-visible absorption spectroscopy and the tunneling current measurements using graphene probes, increases from 2.25 eV to 3.50 eV with decreasing size. 2-4 nm SLQDs, which are transparent in the visible region, show selective absorption and photosensitivity at wavelengths in the ultraviolet region of the spectrum while larger MLQDs (5-90 nm) exhibit a broad band absorption in the visible spectral region and the photoresponse under white light. The results show that the layered quantum dots obtained by liquid phase exfoliation exhibit well-controlled and regulated bandgap absorption in a wide tunable wavelength range. These novel layered quantum dots prepared using an inexpensive method of exfoliation and deposition from solution onto various substrates at room temperature can be used to create highly efficient visible-blind ultraviolet photodetectors and multiple bandgap solar cells.

  11. Spectral transmission of the pig lens: effect of ultraviolet A+B radiation.

    PubMed

    Artigas, C; Navea, A; López-Murcia, M-M; Felipe, A; Desco, C; Artigas, J-M

    2014-12-01

    To determine the spectral transmission curve of the crystalline lens of the pig. To analyse how this curve changes when the crystalline lens is irradiated with ultraviolet A+B radiation similar to that of the sun. To compare these results with literature data from the human crystalline lens. We used crystalline lenses of the common pig from a slaughterhouse, i.e. genetically similar pigs, fed with the same diet, and slaughtered at six months old. Spectral transmission was measured with a Perkin-Elmer Lambda 35 UV/VIS spectrometer. The lenses were irradiated using an Asahi Spectra Lax-C100 ultraviolet source, which made it possible to select the spectral emission band as well as the intensity and exposure time. The pig lens transmits all the visible spectrum (95%) and lets part of the ultraviolet A through (15%). Exposure to acute UV (A+B) irradiation causes a decrease in its transmission as the intensity or exposure time increases: this decrease is considerable in the UV region. We were able to determine the mean spectral transmission curve of the pig lens. It appears to be similar to that of the human lens in the visible spectrum, but different in the ultraviolet. Pig lens transmission is reduced by UV (A+B) irradiation and its transmission in the UV region can even disappear as the intensity or exposure time increases. An adequate exposure intensity and time of UV (A+B) radiation always causes an anterior subcapsular cataract (ASC). Copyright © 2014. Published by Elsevier Masson SAS.

  12. Probing the Martian atmosphere in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Lindner, Bernhard Lee

    1994-01-01

    Ozone is a key to understanding atmospheric chemistry on Mars. The O3 abundance has been inferred from UV spectra by several spacecraft, with the most complete coverage provided by Mariner 9. The Mariner 9 UV spectrometer scanned from 2100 to 3500 Angstroms in one of its two spectral channels every 3 seconds with a spectral resolution of 15 Angstroms and an effective field-of-view of approximately 300 sq km. The only atmospheric absorption in the 2000 to 3000 Angstrom region was assumed to come from the Hardey band system of ozone, which has an opacity of order unity. Therefore, the amount of ozone was inferred by fitting this absorption feature with laboratory data of ozone absorption, as shown in Fig 1. Mars O3 shows strong seasonal and latitudinal variation, with column abundances ranging from 0.2 micron-atm at equatorial latitudes to 60 micron-atm over the northern winter polar latitudes (1 micron-atm is a column abundance of 2.689 x 10(exp 15) molecules cm(exp -2). However, the O3 abundance is never great enough to significantly affect atmospheric temperatures or surface temperatures and frost budgets.

  13. Ultrafast nonlinear spectrometer for material characterization

    NASA Astrophysics Data System (ADS)

    Negres, Raluca Aurelia

    2001-11-01

    This work describes the use of a broadband spectral source for nonlinear spectroscopy to characterize various materials with potential applications in confocal microscopy, biological sample markers, optical limiting devices and optical switches. The goal is to study the spectrum of nonlinear absorption and the dispersion of nonlinear refraction as well as the dynamics of the nonlinearities by means of femtosecond excite-probe experiments. The principle is quite simple: if a sample is under the influence of a strong fs excitation pulse and a probe pulse beam is incident at the same time, or shortly after (within the decay time of the nonlinearity), then the probe pulse will sense the nonlinearity induced by the excitation. If the probe pulse is broadband, a femtosecond white-light continuum (WLC) in our case, we can monitor the nonlinearity induced over the entire continuum spectrum in one laser ``shot''. The use of femtosecond laser pulses to generate WLC will provide femtosecond time resolution for time-resolved spectroscopy. We built the nonlinear spectrometer and allowed for many degrees of flexibility in terms of choice of wavelengths for pump and probe beams and a dual detection system to cover both visible and infrared spectral ranges. We have the possibility of performing broad band spectral measurements using a spectrometer or selected narrow bandwidth probes incident on Si or Ge photodiodes, for improved S/N ratios. The intrinsic properties of the continuum probe demand a careful characterization of its spatial and temporal profile. Knowledge of the dispersion of the index of refraction in various optical elements, including the sample itself, is also required for a correct analysis of the transient absorption raw data, especially for short time-scale dynamics of nonlinear processes. We tested the system using well-characterized semiconductor samples, and the results came out in excellent agreement with those from previous picosecond Z-scan measurements

  14. Sensor system development for the WSO-UV (World Space Observatory-Ultraviolet) space-based astronomical telescope

    NASA Astrophysics Data System (ADS)

    Hayes-Thakore, Chris; Spark, Stephen; Pool, Peter; Walker, Andrew; Clapp, Matthew; Waltham, Nick; Shugarov, Andrey

    2015-10-01

    As part of a strategy to provide increasingly complex systems to customers, e2v is currently developing the sensor solution for focal plane array for the WSO-UV (World Space Observatory - Ultraviolet) programme, a Russian led 170 cm space astronomical telescope. This is a fully integrated sensor system for the detection of UV light across 3 channels: 2 high resolution spectrometers covering wavelengths of 115 - 176 nm and 174 - 310 nm and a Long-Slit Spectrometer covering 115 nm - 310 nm. This paper will describe the systematic approach and technical solution that has been developed based on e2v's long heritage, CCD experience and expertise. It will show how this approach is consistent with the key performance requirements and the overall environment requirements that the delivered system will experience through ground test, integration, storage and flight.

  15. Research in extreme ultraviolet and far ultraviolet astronomy

    NASA Technical Reports Server (NTRS)

    Labov, S. E.

    1985-01-01

    Instruments designed to explore different aspects of far and extreme ultraviolet cosmic radiation were studied. The far ultraviolet imager (FUVI) was flown on the Aries sounding rocket. Its unique large format 75mm detector mapped out the far ultraviolet background radiation with a resolution of only a few arc minutes. Analysis of this data indicates to what extent the FUVI background is extra galactic in origin. A power spectrum of the spatial fluctuations will have direct consequences for galactic evolution.

  16. Ultraviolet Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Wdowiak, T. J.

    1993-01-01

    Wide-field imaging systems equipped with objective prisms or gratings have had a long history of utility in groundbased observations of meteors and comets. Deployment of similar instruments from low Earth orbit would allow the first UV observations of meteors. This instrument can be used for comets and Lyman alpha coronae of Earth-orbit-crossing asteroids. A CaF2 prism imaging spectrograph designed for stellar observations was used aboard Skylab to observe Comet Kohoutek (1973f), but its 1300-A cut-off precluded Lyman alpha images and it was not used for observation of meteors. Because the observation of the UV spectrum of a meteor has never been attempted, researchers are denied the opportunity to obtain composition information from spectra at those wavelengths. We propose construction of a flight instrument functioning in the 1100-3200 A spectral range that is suitable for a dedicated satellite ('Quick Star') or as a space-station-attached payload. It can also be an autonomous package in the space shuttle cargo bay.

  17. Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K

    NASA Astrophysics Data System (ADS)

    Schulz, C.; Koch, J. D.; Davidson, D. F.; Jeffries, J. B.; Hanson, R. K.

    2002-03-01

    Spectrally resolved UV absorption cross-sections between 190 and 320 nm were measured in shock-heated CO 2 between 880 and 3050 K and H 2O between 1230 and 2860 K. Absorption spectra were acquired with 10 μs time resolution using a unique kinetic spectrograph, thereby enabling comparisons with time-dependent chemical kinetic modeling of post-shock thermal decomposition and chemical reactions. Although room temperature CO 2 is transparent (σ<10 -22 cm2) at wavelengths longer than 200 nm, hot CO 2 has significant absorption (σ>10 -20 cm2) extending to wavelengths longer than 300 nm. The temperature dependence of CO 2 absorption strongly suggests sharply increased transition probabilities from excited vibrational levels.

  18. Correlation spectrometer

    DOEpatents

    Sinclair, Michael B [Albuquerque, NM; Pfeifer, Kent B [Los Lunas, NM; Flemming, Jeb H [Albuquerque, NM; Jones, Gary D [Tijeras, NM; Tigges, Chris P [Albuquerque, NM

    2010-04-13

    A correlation spectrometer can detect a large number of gaseous compounds, or chemical species, with a species-specific mask wheel. In this mode, the spectrometer is optimized for the direct measurement of individual target compounds. Additionally, the spectrometer can measure the transmission spectrum from a given sample of gas. In this mode, infrared light is passed through a gas sample and the infrared transmission signature of the gasses present is recorded and measured using Hadamard encoding techniques. The spectrometer can detect the transmission or emission spectra in any system where multiple species are present in a generally known volume.

  19. Responsivity calibration of the LoWEUS spectrometer

    DOE PAGES

    Lepson, J. K.; Beiersdorfer, P.; Kaita, R.; ...

    2016-09-02

    We performed an in situ calibration of the relative responsivity function of the Long-Wavelength Extreme Ultraviolet Spectrometer (LoWEUS), while operating on the Lithium Tokamak Experiment (LTX) at Princeton Plasma Physics Laboratory. The calibration was accomplished by measuring oxygen lines, which are typically present in LTX plasmas. The measured spectral line intensities of each oxygen charge state were then compared to the calculated emission strengths given in the CHIANTI atomic database. Normalizing the strongest line in each charge state to the CHIANTI predictions, we obtained the differences between the measured and predicted values for the relative strengths of the other linesmore » of a given charge state. We find that a 3rd degree polynomial function provides a good fit to the data points. Lastly, our measurements show that the responsivity between about 120 and 300 Å varies by factor of ~30.« less

  20. The development of a tunable, single-frequency ultraviolet laser source for UV filtered Rayleigh scattering

    NASA Technical Reports Server (NTRS)

    Finkelstein, N.; Gambogi, J.; Lempert, Walter R.; Miles, Richard B.; Rines, G. A.; Finch, A.; Schwarz, R. A.

    1995-01-01

    We present the development of a flexible, high power, narrow line width, tunable ultraviolet source for diagnostic application. By frequency tripling the output of a pulsed titanium-sapphire laser, we achieve broadly tunable (227-360 nm) ultraviolet light with high quality spatial and spectral resolution. We also present the characterization of a mercury vapor cell which provides a narrow band, sharp edge absorption filter at 253.7 nm. These two components form the basis for the extension of the Filtered Rayleigh Scattering technique into the ultraviolet. The UV-FRS system is comprised of four pieces: a single frequency, cw tunable Ti:Sapphire seeding source; a high-powered pulsed Ti:Sapphire oscillator; a third harmonic generator system; and an atomic mercury vapor filter. In this paper we discuss the development and characterization of each of these elements.

  1. An overview of the extreme ultraviolet explorer and its scientific program

    NASA Technical Reports Server (NTRS)

    Malina, Roger F.; Finley, David S.; Jelinsky, Patrick; Vallerga, John; Bowyer, Stuart

    1987-01-01

    NASA's Extreme Ultraviolet Explorer (EUVE) will carry out an all-sky survey from 8 to 90 nm in four bandpasses; the limiting sensitivity will be between 2 to 3 orders of magnitude fainter than the hot white dwarf HZ 43. A deep survey will also be carried out along the ecliptic which will have a limiting sensitivity of 1 to 2 orders of magnitude fainter than the all-sky survey in the bandpass from 8 to 50 nm. The payload also includes a spectrometer which will be used to observe the brighter sources found in the surveys with a spectral resolution of 1 to 2 A.

  2. High Sensitivity Absorption Spectroscopy on Ti II VUV Resonance Lines of Astrophysical Interest

    NASA Astrophysics Data System (ADS)

    Wiese, Lm; Fedchak, Ja; Lawler, Je

    2000-06-01

    The neutral hydrogen regions of the Interstellar Medium (ISM) of our Galaxy and distant galaxies produce simple absorption spectra because most metals are singly ionized and in their ground fine structure level. Elemental abundance measurements and other studies of the ISM rely on accurate atomic oscillator strengths (f-values) for a few key lines in the second spectra of Ti and other metals. The Ti II VUV resonance lines at 1910.6 and 1910.9 Åare important in absorption line systems in which quasars provide the continuum and the ISM of intervening galaxies is observed. Some of these absorption line systems are redshifted to the visible and observed with ground based telescopes. We report the first laboratory measurement of these Ti II VUV resonance lines. Using High Sensitivity Absorption Spectroscopy, we determined f-values for the 1910 Ålines relative to well-known Ti II resonance lines at 3067 and 3384 ÅContinuum radiation from an Aladdin Storage Ring bending magnet at the Synchrotron Radiation Center (SRC) is passed through a discharge plasma containing Ti^+. The transmitted light is analyzed by our 3m vacuum echelle spectrometer equipped with VUV sensitive CCD array. The resolving power of our spectrometer/detector array is 300,000. F-values are determined to within 10%.

  3. Observations of Absorption Lines from Highly Ionized Atoms

    NASA Technical Reports Server (NTRS)

    Jenkins, E. B.

    1984-01-01

    In the ultraviolet spectra of hot stars, absorption lines can be seen from highly ionized species in the interstellar medium. Observations of these features which have been very influential in revising the perception of the medium's various physical states, are discussed. The pervasiveness of O 6 absorption lines, coupled with complementary observations of a diffuse background in soft X-rays and EUV radiation, shows that there is an extensive network of low density gas (n approx. fewX 0.001/cucm) existing at coronal temperatures, 5.3 or = log T or = 6.3. Shocks created by supernova explosions or mass loss from early-type stars can propagate freely through space and eventually transfer a large amount of energy to the medium. To create the coronal temperatures, the shocks must have velocities in excess of 150 km/sec; shocks at somewhat lower velocity 9v or = 100 km/sec) can be directly observed in the lines of Si3. Observations of other lines in the ultraviolet, such as Si 4V and C 5, may highlight the widespread presence of energetic uv radiation from very hot, dward stars. More advanced techniques in visible and X-ray astronomical spectroscopy may open up for inspection selected lines from atoms in much higher stages of ionization.

  4. Dynamics of defects in Ce³⁺ doped silica affecting its performance as protective filter in ultraviolet high-power lasers.

    PubMed

    Demos, Stavros G; Ehrmann, Paul R; Qiu, S Roger; Schaffers, Kathleen I; Suratwala, Tayyab I

    2014-11-17

    We investigate defects forming in Ce³⁺-doped fused silica samples following exposure to nanosecond ultraviolet laser pulses and their relaxation as a function of time and exposure to low intensity light at different wavelengths. A subset of these defects are responsible for inducing absorption in the visible and near infrared spectral range, which is of critical importance for the use of this material as ultraviolet light absorbing filter in high power laser systems. The dependence of the induced absorption as a function of laser fluence and methods to most efficiently mitigate this effect are presented. Experiments simulating the operation of the material as a UV protection filter for high power laser systems were performed in order to determine limitations and practical operational conditions.

  5. A New Optical Aerosol Spectrometer

    NASA Technical Reports Server (NTRS)

    Fonda, Mark; Malcolmson, Andrew; Bonin, Mike; Stratton, David; Rogers, C. Fred; Chang, Sherwood (Technical Monitor)

    1998-01-01

    An optical particle spectrometer capable of measuring aerosol particle size distributions from 0.02 to 100 micrometers has been developed. This instrument combines several optical methods in one, in-situ configuration; it can provide continuous data collection to encompass the wide dynamic size ranges and concentrations found in studies of modeled planetary atmospheres as well as terrestrial air quality research. Currently, the system is incorporated into an eight liter capacity spherical pressure vessel that is appropriate both for flowthrough and for in-situ particle generation. The optical sizing methods include polarization ratio, The scattering, and forward scattering detectors, with illumination from a fiber-coupled, Argon-ion laser. As particle sizes increase above 0.1 micrometer, a customized electronics and software system automatically shifts from polarization to diffraction-based measurements as the angular scattering detectors attain acceptable signal-to-noise ratios. The number concentration detection limits are estimated to be in the part-per-trillion (ppT by volume) range, or roughly 1000 submicron particles per cubic centimeter. Results from static experiments using HFC134A (approved light scattering gas standard), flow-through experiments using sodium chloride (NaCl) and carbon particles, and dynamic 'Tholin' (photochemical produced particles from ultraviolet (UV)-irradiated acetylene and nitrogen) experiments have been obtained. The optical spectrometer data obtained with particles have compared well with particle sizes determined by electron microscopy. The 'Tholin' tests provided real-time size and concentration data as the particles grew from about 30 nanometers to about 0.8 micrometers, with concentrations ranging from ppT to ppB, by volume. Tests are still underway, to better define sizing accuracy and concentration limits, these results will be reported.

  6. Ultraviolet light curves of beta Lyrae: Comparison of OAO A-2, IUE, and Voyager Observations

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji; Mccluskey, George E.; Silvis, Jeffery M. S.; Polidan, Ronald S.; Mccluskey, Carolina P. S.; Eaton, Joel A.

    1994-01-01

    The six-band ultraviolet light curves of beta Lyrae obtained with the Orbiting Astronomical Observatory (OAO) A-2 in 1970 exhibited a very unusual behavior. The secondary minimum deepened at shorter wavelength, indicating that one was not observing light variations caused primarily by the eclipses of two stars having a roughly Planckian energy distribution. It was then suggested that the light variations were caused by a viewing angle effect of an optically thick, ellipsoidal circumbinary gas cloud. Since 1978 beta Lyrae has been observed with the International Ultraviolet Explorer (IUE) satellite. We have constructed ultraviolet light curves from the IUE archival data for comparison with the OAO A-2 results. We find that they are in substantial agreement with each other. The Voyager ultraviolet spectrometer was also used to observe this binary during a period covered by IUE observations. The Voyager results agree with those of the two other satellite observatories at wavelengths longer than about 1350 A. However, in the wavelength region shorter than the Lyman-alpha line at 1216 A, the light curves at 1085 and 965 A show virtually no light variation except an apparent flaring near phase 0.7, which is also in evidence at longer wavelengths. We suggest that the optically thick circumbinary gas cloud, which envelops the two stars completely, assumes a roughly spherical shape when observed at these shorter wavelengths.

  7. Oxygen, Neon, and Iron X-Ray Absorption in the Local Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Gatuzz, Efrain; Garcia, Javier; Kallman, Timothy R.; Mendoza, Claudio

    2016-01-01

    We present a detailed study of X-ray absorption in the local interstellar medium by analyzing the X-ray spectra of 24 galactic sources obtained with the Chandra High Energy Transmission Grating Spectrometer and the XMM-Newton Reflection Grating Spectrometer. Methods. By modeling the continuum with a simple broken power-law and by implementing the new ISMabs X-ray absorption model, we have estimated the total H, O, Ne, and Fe column densities towards the observed sources. Results. We have determined the absorbing material distribution as a function of source distance and galactic latitude longitude. Conclusions. Direct estimates of the fractions of neutrally, singly, and doubly ionized species of O, Ne, and Fe reveal the dominance of the cold component, thus indicating an overall low degree of ionization. Our results are expected to be sensitive to the model used to describe the continuum in all sources.

  8. Total internal reflection-based side-pumping configuration for terawatt ultraviolet amplifier and laser oscillator development

    NASA Astrophysics Data System (ADS)

    Cadatal-Raduban, Marilou; Pham, Minh Hong; Pham, Duong Van; Bui, Duong Thi Thuy; Yamanoi, Kohei; Takeda, Kohei; Empizo, Melvin John F.; Mui, Luong Viet; Shimizu, Toshihiko; Nguyen, Hung Dai; Sarukura, Nobuhiko; Fukuda, Tsuguo

    2018-06-01

    A two-side-pumping scheme that is based on total internal reflection in a diamond-cut Ce3+:LiCaAlF6 crystal suitable for the development of an ultraviolet laser and femtosecond amplifier system is proposed. Experimental fluorescence images and lasing results that demonstrate total internal reflection of the excitation beam using this diamond-cut crystal are presented. Calculations for the optimized crystal geometry that facilitate high extraction efficiency and homogeneity of the absorbed excitation beam are also discussed. About 50% increase in extraction efficiency compared to previously reported chirped-pulse femtosecond ultraviolet amplifier operating at 50-GW peak power is expected using this total internal reflection-based two-side-pumping configuration and a diamond-cut Ce3+:LiCaAlF6 crystal with a geometry of {φ _1} = 103°, {φ _2} = {φ _4} = 82°, {φ _3} = 93°, a length of 1.23 cm, a height of 2 cm, and an absorption coefficient of 1.5 cm-1. Our results can be used as a guide during the crystal growth process by providing the appropriate crystal geometry and size for a particular absorption coefficient to achieve high extraction efficiency. With the appropriate crystal combined with multiple-beam pumping afforded by the side-pumping scheme, the development of an all-solid-state ultraviolet laser operating at terawatt level would be within reach.

  9. Tunable diode laser measurements of HO2NO2 absorption coefficients near 12.5 microns

    NASA Technical Reports Server (NTRS)

    May, R. D.; Molina, L. T.; Webster, C. R.

    1988-01-01

    A tunable diode laser spectrometer has been used to measure absorption coefficients of peroxynitric acid (HO2NO2) near the 803/cm Q branch. HO2NO2 concentrations in a low-pressure flowing gas mixture were determined from chemical titration procedures and UV absorption spectroscopy. The diode laser measured absorption coefficients, at a spectral resolution of better than 0.001/cm, are about 10 percent larger than previous Fourier transform infrared measurements made at a spectral resolution of 0.06/cm.

  10. Absolute far-ultraviolet spectrophotometry of hot subluminous stars from Voyager

    NASA Technical Reports Server (NTRS)

    Holberg, J. B.; Ali, B.; Carone, T. E.; Polidan, R. S.

    1991-01-01

    Observations, obtained with the Voyager ultraviolet spectrometers, are presented of absolute fluxes for two well-known hot subluminous stars: BD + 28 deg 4211, an sdO, and G191 - B2B, a hot DA white dwarf. Complete absolute energy distributions for these two stars, from the Lyman limit at 912 A to 1 micron, are given. For BD + 28 deg 4211, a single power law closely represents the entire observed energy distribution. For G191 - B2B, a pure hydrogen model atmosphere provides an excellent match to the entire absolute energy distribution. Voyager absolute fluxes are discussed in relation to those reported from various sounding rocket experiments, including a recent rocket observation of BD + 28 deg 4211.

  11. Interfacing an aspiration ion mobility spectrometer to a triple quadrupole mass spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamov, Alexey; Viidanoja, Jyrki; Kaerpaenoja, Esko

    2007-04-15

    This article presents the combination of an aspiration-type ion mobility spectrometer with a mass spectrometer. The interface between the aspiration ion mobility spectrometer and the mass spectrometer was designed to allow for quick mounting of the aspiration ion mobility spectrometer onto a Sciex API-300 triple quadrupole mass spectrometer. The developed instrumentation is used for gathering fundamental information on aspiration ion mobility spectrometry. Performance of the instrument is demonstrated using 2,6-di-tert-butyl pyridine and dimethyl methylphosphonate.

  12. Ultraviolet Studies of Interstellar Molecular Hydrogen

    NASA Astrophysics Data System (ADS)

    Sarlin, Scott Peter

    1998-12-01

    This work covers the design and conduct of two experiments designed to observe molecular hydrogen in the interstellar medium. The first experiment was intended to directly observe the ratio between H2 and CO column densities in translucent molecular clouds in order to calibrate CO radio maps and observations of this galaxy and others. H2 cannot be directly observed from the ground under ordinary circumstances, so a novel high resolution (30,000 λΔλ) ultraviolet (UV) spectrograph was designed and built to observe it in absorption in the spectra of a distant star (HD 206267). The instrument operated properly, but the target was not acquired and the sounding rocket's parachute did not deploy, destroying the instrument. The second experiment was to observe H2 absorption towards γ Cassiopeia at very high spectral resolution (-240,000 λΔλ) with a space shuttle experiment called IMAPS. Despite several problems, including a dramatic loss in sensitivity, H2 absorption lines from J=0, 1, 2, and 3 were detected and measured. In conjunction with published atomic line observations, this gas was determined to be from a very small, thermally dominated cloud embedded in a larger H I region. The lack of higher J-state detections preclude a definitive statement concerning the radiation field, although the data point towards limited UV excitation. Future directions for instrument development are then briefly discussed.

  13. Vacuum ultraviolet detector for gas chromatography.

    PubMed

    Schug, Kevin A; Sawicki, Ian; Carlton, Doug D; Fan, Hui; McNair, Harold M; Nimmo, John P; Kroll, Peter; Smuts, Jonathan; Walsh, Phillip; Harrison, Dale

    2014-08-19

    Analytical performance characteristics of a new vacuum ultraviolet (VUV) detector for gas chromatography (GC) are reported. GC-VUV was applied to hydrocarbons, fixed gases, polyaromatic hydrocarbons, fatty acids, pesticides, drugs, and estrogens. Applications were chosen to feature the sensitivity and universal detection capabilities of the VUV detector, especially for cases where mass spectrometry performance has been limited. Virtually all chemical species absorb and have unique gas phase absorption cross sections in the approximately 120-240 nm wavelength range monitored. Spectra are presented, along with the ability to use software for deconvolution of overlapping signals. Some comparisons with experimental synchrotron data and computed theoretical spectra show good agreement, although more work is needed on appropriate computational methods to match the simultaneous broadband electronic and vibronic excitation initiated by the deuterium lamp. Quantitative analysis is governed by Beer-Lambert Law relationships. Mass on-column detection limits reported for representatives of different classes of analytes ranged from 15 (benzene) to 246 pg (water). Linear range measured at peak absorption for benzene was 3-4 orders of magnitude. Importantly, where absorption cross sections are known for analytes, the VUV detector is capable of absolute determination (without calibration) of the number of molecules present in the flow cell in the absence of chemical interferences. This study sets the stage for application of GC-VUV technology across a wide breadth of research areas.

  14. Detection and quantification of snow algae with an airborne imaging spectrometer.

    PubMed

    Painter, T H; Duval, B; Thomas, W H; Mendez, M; Heintzelman, S; Dozier, J

    2001-11-01

    We describe spectral reflectance measurements of snow containing the snow alga Chlamydomonas nivalis and a model to retrieve snow algal concentrations from airborne imaging spectrometer data. Because cells of C. nivalis absorb at specific wavelengths in regions indicative of carotenoids (astaxanthin esters, lutein, beta-carotene) and chlorophylls a and b, the spectral signature of snow containing C. nivalis is distinct from that of snow without algae. The spectral reflectance of snow containing C. nivalis is separable from that of snow without algae due to carotenoid absorption in the wavelength range from 0.4 to 0.58 microm and chlorophyll a and b absorption in the wavelength range from 0.6 to 0.7 microm. The integral of the scaled chlorophyll a and b absorption feature (I(0.68)) varies with algal concentration (C(a)). Using the relationship C(a) = 81019.2 I(0.68) + 845.2, we inverted Airborne Visible Infrared Imaging Spectrometer reflectance data collected in the Tioga Pass region of the Sierra Nevada in California to determine algal concentration. For the 5.5-km(2) region imaged, the mean algal concentration was 1,306 cells ml(-1), the standard deviation was 1,740 cells ml(-1), and the coefficient of variation was 1.33. The retrieved spatial distribution was consistent with observations made in the field. From the spatial estimates of algal concentration, we calculated a total imaged algal biomass of 16.55 kg for the 0.495-km(2) snow-covered area, which gave an areal biomass concentration of 0.033 g/m(2).

  15. Detection and Quantification of Snow Algae with an Airborne Imaging Spectrometer

    PubMed Central

    Painter, Thomas H.; Duval, Brian; Thomas, William H.; Mendez, Maria; Heintzelman, Sara; Dozier, Jeff

    2001-01-01

    We describe spectral reflectance measurements of snow containing the snow alga Chlamydomonas nivalis and a model to retrieve snow algal concentrations from airborne imaging spectrometer data. Because cells of C. nivalis absorb at specific wavelengths in regions indicative of carotenoids (astaxanthin esters, lutein, β-carotene) and chlorophylls a and b, the spectral signature of snow containing C. nivalis is distinct from that of snow without algae. The spectral reflectance of snow containing C. nivalis is separable from that of snow without algae due to carotenoid absorption in the wavelength range from 0.4 to 0.58 μm and chlorophyll a and b absorption in the wavelength range from 0.6 to 0.7 μm. The integral of the scaled chlorophyll a and b absorption feature (I0.68) varies with algal concentration (Ca). Using the relationship Ca = 81019.2 I0.68 + 845.2, we inverted Airborne Visible Infrared Imaging Spectrometer reflectance data collected in the Tioga Pass region of the Sierra Nevada in California to determine algal concentration. For the 5.5-km2 region imaged, the mean algal concentration was 1,306 cells ml−1, the standard deviation was 1,740 cells ml−1, and the coefficient of variation was 1.33. The retrieved spatial distribution was consistent with observations made in the field. From the spatial estimates of algal concentration, we calculated a total imaged algal biomass of 16.55 kg for the 0.495-km2 snow-covered area, which gave an areal biomass concentration of 0.033 g/m2. PMID:11679355

  16. The missing UV absorption lines of NGC 4151

    NASA Technical Reports Server (NTRS)

    Leech, K. J.; Penston, M. V.; Snijders, M. A. J.; Ward, M. J.; Gull, T. R.

    1990-01-01

    Near simultaneous high dispersion long and short wavelength International Ultraviolet Explorer (IUE) observations of the Seyfert galaxy NGC 4151 are discussed. Previous observations revealed a narrow absorption system in Mg II not present in Ly alpha or C IV. The new observations confirm the presence of this system in Mg II and its absence in the other lines. Possible reasons for this are discussed. Future Hubble Space Telescope studies of NGC 4151 are discussed.

  17. 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer Greatly Expands Mass Spectrometry Toolbox

    NASA Astrophysics Data System (ADS)

    Shaw, Jared B.; Lin, Tzu-Yung; Leach, Franklin E.; Tolmachev, Aleksey V.; Tolić, Nikola; Robinson, Errol W.; Koppenaal, David W.; Paša-Tolić, Ljiljana

    2016-12-01

    We provide the initial performance evaluation of a 21 Tesla Fourier transform ion cyclotron resonance mass spectrometer operating at the Environmental Molecular Sciences Laboratory at the Pacific Northwest National Laboratory. The spectrometer constructed for the 21T system employs a commercial dual linear ion trap mass spectrometer coupled to a FTICR spectrometer designed and built in-house. Performance gains from moving to higher magnetic field strength are exemplified by the measurement of peptide isotopic fine structure, complex natural organic matter mixtures, and large proteins. Accurate determination of isotopic fine structure was demonstrated for doubly charged Substance P with minimal spectral averaging, and 8158 molecular formulas assigned to Suwannee River Fulvic Acid standard with root-mean-square (RMS) error of 10 ppb. We also demonstrated superior performance for intact proteins; namely, broadband isotopic resolution of the entire charge state distribution of apo-transferrin (78 kDa) and facile isotopic resolution of monoclonal antibody under a variety of acquisition parameters (e.g., 6 s time-domains with absorption mode processing yielded resolution of approximately 1 M at m/z = 2700).

  18. 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer Greatly Expands Mass Spectrometry Toolbox

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, Jared B.; Lin, Tzu-Yung; Leach, Franklin E.

    We provide the initial performance evaluation of a 21 Tesla Fourier transform ion cyclotron resonance mass spectrometer operating at the Environmental Molecular Sciences Laboratory at Pacific Northwest National Laboratory. The spectrometer constructed for the 21T system employs a commercial dual linear ion trap mass spectrometer coupled to a FTICR spectrometer designed and built in-house. Performance gains from moving to higher magnetic field strength are exemplified by the measurement of peptide isotopic fine structure, complex natural organic matter mixtures, and large proteins. Accurate determination of isotopic fine structure was demonstrated for doubly charged substance P with minimal spectral averaging, and 8,158more » molecular formulas assigned to Suwannee River Fulvic Acid standard with RMS error of 10 ppb. We also demonstrated superior performance for intact proteins; namely, broadband isotopic resolution of the entire charge state distribution of apotransferrin (78 kDa) and facile isotopic resolution of monoclonal antibody under a variety of acquisition parameters (e.g. 6 s time-domains with absorption mode processing yielded resolution of approximately 1M at m/z =2,700).« less

  19. Quantification of CO2 and CH4 megacity emissions using portable solar absorption spectrometers

    NASA Astrophysics Data System (ADS)

    Frey, Matthias; Hase, Frank; Blumenstock, Thomas; Morino, Isamu; Shiomi, Kei

    2017-04-01

    Urban areas already contribute to over 50% of the global population, additionally the percentage of the worldwide population living in Metropolitan areas is continuously growing. Thus, a precise knowledge of urban greenhouse gas (GHG) emissions is of utmost importance. Whereas, however, GHG emissions on a nationwide to continental scale can be relatively precisely estimated using satellite observations (and fossil fuel consumption statistics), reliable estimations for local to regional scale emissions pose a bigger problem due to lack of timely and spatially high resolved satellite data and possible biases of passive spectroscopic nadir observations (e.g. enhanced aerosol scattering in a city plume). Furthermore, emission inventories on the city scale might be missing contributions (e.g. methane leakage from gas pipes). Here, newly developed mobile low resolution Fourier Transform spectrometers (Bruker EM27/SUN) are utilized to quantify small scale emissions. This novel technique was successfully tested before by KIT and partners during campaigns in Berlin, Paris and Colorado for detecting emissions from various sources. We present results from a campaign carried out in February - April 2016 in the Tokyo bay area, one of the biggest Metropolitan areas worldwide. We positioned two EM27/SUN spectrometers on the outer perimeter of Tokyo along the prevailing wind axis upwind and downwind of the city source. Before and after the campaign, calibration measurements were performed in Tsukuba with a collocated high resolution FTIR spectrometer from the Total Carbon Column Observing Network (TCCON). During the campaign the observed XCO2 and XCH4 values vary significantly. Additionally, intraday variations are observed at both sites. Furthermore, an enhancement due to the Tokyo area GHG emissions is clearly visible for both XCO2 and XCH4. The observed signals are significantly higher compared to prior campaigns targeting other major cities. We perform a rough estimate of the

  20. Discovery of an Ultraviolet Counterpart to an Ultrafast X-Ray Outflow in the Quasar PG 1211+143

    NASA Astrophysics Data System (ADS)

    Kriss, Gerard A.; Lee, Julia C.; Danehkar, Ashkbiz; Nowak, Michael A.; Fang, Taotao; Hardcastle, Martin J.; Neilsen, Joseph; Young, Andrew

    2018-02-01

    We observed the quasar PG 1211+143 using the Cosmic Origins Spectrograph on the Hubble Space Telescope in 2015 April as part of a joint campaign with the Chandra X-ray Observatory and the Jansky Very Large Array. Our ultraviolet spectra cover the wavelength range 912–2100 Å. We find a broad absorption feature (∼ 1080 {km} {{{s}}}-1) at an observed wavelength of 1240 Å. Interpreting this as H I Lyα, in the rest frame of PG 1211+143 (z = 0.0809), this corresponds to an outflow velocity of ‑16,980 {km} {{{s}}}-1 (outflow redshift {z}{out}∼ -0.0551), matching the moderate ionization X-ray absorption system detected in our Chandra observation and reported previously by Pounds et al. With a minimum H I column density of {log} {N}{{H}{{I}}}> 14.5, and no absorption in other UV resonance lines, this Lyα absorber is consistent with arising in the same ultrafast outflow as the X-ray absorbing gas. The Lyα feature is weak or absent in archival ultraviolet spectra of PG 1211+143, strongly suggesting that this absorption is transient, and intrinsic to PG 1211+143. Such a simultaneous detection in two independent wavebands for the first time gives strong confirmation of the reality of an ultrafast outflow in an active galactic nucleus.

  1. Design of a grazing incidence EUV imaging spectrometer for the solar orbiter ESA mission

    NASA Astrophysics Data System (ADS)

    Da Deppo, Vania; Poletto, Luca

    2017-11-01

    The paper describes the optical design and performance of an extreme-ultraviolet (EUV) spectrometer for imaging spectroscopy to be part of the scientific payload of the Solar Orbiter (SOLO) mission. The main scientific objectives are to study the solar polar region and observe in detail the evolution of corona structures from a favourable point of view at only 45 solar radii from the Sun (0.2 AU). The instrument concept is based on a grazing incidence telescope, (1200 m focal length, 18 arcmin x 18 arcmin FoV), in Wolter configuration couple to a normalincidence VLS grating spectrometer, which preserve the stigmaticity in an extended spectral region and in the whole field-of-view. The spectral range covered by the instrument is the 116-126 nm region at the first order and the 57-63 nm region at the second order. The spectral resolving element is 65 mÅ (I order), corresponding to a velocity resolution of 16 km/s.

  2. Thin film optical coatings for the ultraviolet spectral region

    NASA Astrophysics Data System (ADS)

    Torchio, P.; Albrand, G.; Alvisi, M.; Amra, C.; Rauf, H.; Cousin, B.; Otrio, G.

    2017-11-01

    The applications and innovations related to the ultraviolet field are today in strong growth. To satisfy these developments which go from biomedical to the large equipment like the Storage Ring Free Electron Laser, it is crucial to control with an extreme precision the optical performances, in using the substrates and the thin film materials impossible to circumvent in this spectral range. In particular, the reduction of the losses by electromagnetic diffusion, Joule effect absorption, or the behavior under UV luminous flows of power, resistance to surrounding particulate flows... become top priority which concerns a broad European and international community. Our laboratory has the theoretical, experimental and technological tools to design and fabricate numerous multilayer coatings with desirable optical properties in the visible and infrared spectral ranges. We have extended our expertise to the ultraviolet. We present here some results on high reflectivity multidielectric mirrors towards 250 nm in wavelength, produced by Ion Plating Deposition. The latter technique allows us to obtain surface treatments with low absorption and high resistance. We give in this study the UV transparent materials and the manufacturing technology which have been the best suited to meet requirements. Single UV layers were deposited and characterized. HfO2/SiO2 mirrors with a reflectance higher than 99% at 300 nm were obtained. Optical and non-optical characterizations such as UV spectrophotometric measurements, X-Ray Diffraction spectra, Scanning Electron Microscope and Atomic Force Microscope images were performed

  3. Near shot-noise limited time-resolved circular dichroism pump-probe spectrometer

    NASA Astrophysics Data System (ADS)

    Stadnytskyi, Valentyn; Orf, Gregory S.; Blankenship, Robert E.; Savikhin, Sergei

    2018-03-01

    We describe an optical near shot-noise limited time-resolved circular dichroism (TRCD) pump-probe spectrometer capable of reliably measuring circular dichroism signals in the order of μdeg with nanosecond time resolution. Such sensitivity is achieved through a modification of existing TRCD designs and introduction of a new data processing protocol that eliminates approximations that have caused substantial nonlinearities in past measurements and allows the measurement of absorption and circular dichroism transients simultaneously with a single pump pulse. The exceptional signal-to-noise ratio of the described setup makes the TRCD technique applicable to a large range of non-biological and biological systems. The spectrometer was used to record, for the first time, weak TRCD kinetics associated with the triplet state energy transfer in the photosynthetic Fenna-Matthews-Olson antenna pigment-protein complex.

  4. On the accuracy of aerosol photoacoustic spectrometer calibrations using absorption by ozone

    NASA Astrophysics Data System (ADS)

    Davies, Nicholas W.; Cotterell, Michael I.; Fox, Cathryn; Szpek, Kate; Haywood, Jim M.; Langridge, Justin M.

    2018-04-01

    In recent years, photoacoustic spectroscopy has emerged as an invaluable tool for the accurate measurement of light absorption by atmospheric aerosol. Photoacoustic instruments require calibration, which can be achieved by measuring the photoacoustic signal generated by known quantities of gaseous ozone. Recent work has questioned the validity of this approach at short visible wavelengths (404 nm), indicating systematic calibration errors of the order of a factor of 2. We revisit this result and test the validity of the ozone calibration method using a suite of multipass photoacoustic cells operating at wavelengths 405, 514 and 658 nm. Using aerosolised nigrosin with mobility-selected diameters in the range 250-425 nm, we demonstrate excellent agreement between measured and modelled ensemble absorption cross sections at all wavelengths, thus demonstrating the validity of the ozone-based calibration method for aerosol photoacoustic spectroscopy at visible wavelengths.

  5. A nearly on-axis spectroscopic system for simultaneously measuring UV-visible absorption and X-ray diffraction in the SPring-8 structural genomics beamline.

    PubMed

    Sakaguchi, Miyuki; Kimura, Tetsunari; Nishida, Takuma; Tosha, Takehiko; Sugimoto, Hiroshi; Yamaguchi, Yoshihiro; Yanagisawa, Sachiko; Ueno, Go; Murakami, Hironori; Ago, Hideo; Yamamoto, Masaki; Ogura, Takashi; Shiro, Yoshitsugu; Kubo, Minoru

    2016-01-01

    UV-visible absorption spectroscopy is useful for probing the electronic and structural changes of protein active sites, and thus the on-line combination of X-ray diffraction and spectroscopic analysis is increasingly being applied. Herein, a novel absorption spectrometer was developed at SPring-8 BL26B2 with a nearly on-axis geometry between the X-ray and optical axes. A small prism mirror was placed near the X-ray beamstop to pass the light only 2° off the X-ray beam, enabling spectroscopic analysis of the X-ray-exposed volume of a crystal during X-ray diffraction data collection. The spectrometer was applied to NO reductase, a heme enzyme that catalyzes NO reduction to N2O. Radiation damage to the heme was monitored in real time during X-ray irradiation by evaluating the absorption spectral changes. Moreover, NO binding to the heme was probed via caged NO photolysis with UV light, demonstrating the extended capability of the spectrometer for intermediate analysis.

  6. Evaluation of hydrogen absorption cells for observations of the planetary coronas

    NASA Astrophysics Data System (ADS)

    Kuwabara, M.; Taguchi, M.; Yoshioka, K.; Ishida, T.; de Oliveira, N.; Ito, K.; Kameda, S.; Suzuki, F.; Yoshikawa, I.

    2018-02-01

    Newly designed Lyman-alpha absorption cells for imaging hydrogen planetary corona were characterized using an ultra high resolution Fourier transform spectrometer installed on the DESIRS (Dichroïsme Et Spectroscopie par Interaction avec le Rayonnement Synchrotron) beamline of Synchrotron SOLEIL in France. The early absorption cell installed in the Japanese Mars orbiter NOZOMI launched in 1998 had not been sufficiently optimized due to its short development time. The new absorption cells are equipped with the ability to change various parameters, such as filament shape, applied power, H2 gas pressure, and geometrical configuration. We found that the optical thickness of the new absorption cell was ˜4 times higher than the earlier one at the center wavelength of Lyman-alpha absorption, by optimizing the condition to promote thermal dissociation of H2 molecules into two H atoms on a hot tungsten filament. The Doppler temperature of planetary coronas could be determined with an accuracy better than 100 K with the performance of the newly developed absorption cell.

  7. Far-Ultraviolet Observations of the Circumstellar Gas in the 2 Andromedae System

    NASA Astrophysics Data System (ADS)

    Cheng, K.-P.; Neff, James E.

    2003-02-01

    The A5 star β Pictoris is a possible young planetary system and has the best-studied circumstellar disk. Our visible and ultraviolet observations of 2 Andromedae indicated that this A3 star has β Pictoris-like gas infall. We present the far-ultraviolet spectrum (905-1195 Å) of 2 And we obtained with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer (FUSE). Unlike β Pic, 2 And's FUSE spectrum does not show strong chromospheric emission lines from C III and O VI. However, 2 And's FUSE spectrum contains many nonphotospheric lines that allow us to probe the circumstellar gas. For example, between 1120 and 1140 Å, we detected several Fe III absorption lines arising from hyperfine levels of ground state, which cannot be formed in the interstellar medium. These lines are good diagnostics of the circumstellar gas. We also detected circumstellar Fe II, Cr III, Mn III, and O I (1D) lines. The simultaneous presence of these species suggests that the circumstellar environment of 2 And could include regions with different temperatures and densities.

  8. Probing the infrared counterparts of diffuse far-ultraviolet sources in the Galaxy

    NASA Astrophysics Data System (ADS)

    Saikia, Gautam; Shalima, P.; Gogoi, Rupjyoti; Pathak, Amit

    2017-12-01

    Recent availability of high quality infrared (IR) data for diffuse regions in the Galaxy and external galaxies have added to our understanding of interstellar dust. A comparison of ultraviolet (UV) and IR observations may be used to estimate absorption, scattering and thermal emission from interstellar dust. In this paper, we report IR and UV observations for selective diffuse sources in the Galaxy. Using archival mid-infrared (MIR) and far-infrared (FIR) observations from Spitzer Space Telescope, we look for counterparts of diffuse far-ultraviolet (FUV) sources observed by the Voyager, Far Ultraviolet Spectroscopic Explorer (FUSE) and Galaxy Evolution Explorer (GALEX) telescopes in the Galaxy. IR emission features at 8 μm are generally attributed to Polycyclic Aromatic Hydrocarbon (PAH) molecules, while emission at 24 μm are attributed to Very Small Grains (VSGs). The data presented here is unique and our study tries to establish a relation between various dust populations. By studying the FUV-IR correlations separately at low and high latitude locations, we have identified the grain component responsible for the diffuse FUV emission.

  9. First-principles C band absorption spectra of SO2 and its isotopologues

    NASA Astrophysics Data System (ADS)

    Jiang, Bin; Kumar, Praveen; Kłos, Jacek; Alexander, Millard H.; Poirier, Bill; Guo, Hua

    2017-04-01

    The low-energy wing of the C ˜ B12 ←X˜ 1A1 absorption spectra for SO2 in the ultraviolet region is computed for the 32S,33S,34S and 36S isotopes, using the recently developed ab initio potential energy surfaces (PESs) of the two electronic states and the corresponding transition dipole surface. The state-resolved absorption spectra from various ro-vibrational states of SO2(X˜ 1A1 ) are computed. When contributions of these excited ro-vibrational states are included, the thermally averaged spectra are broadened but maintain their key characters. Excellent agreement with experimental absorption spectra is found, validating the accuracy of the PESs. The isotope shifts of the absorption peaks are found to increase linearly with energy, in good agreement with experiment.

  10. Environmental phototoxicity: Solar ultraviolet radiation affects the toxicity of natural and man-made chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, R.A.; Berenbaum, M.R.

    1988-04-01

    Ultraviolet radiation appears to be toxic to all forms of unpigmented living cells, including bacteria, protozoa, nematodes, arthropods, fish, birds, and mammals. In addition to the direct absorption of solar energy by cellular constituents, toxicity may occur because of the absorption of sunlight by xenobiotics (or by naturally occurring compounds outside the target cell); these may be converted by light or by subsequent light-promoted reactions that induce cellular damage. This article describes the phototoxicity of photodynamic dyes, light-activated synthetic herbicides, petroleum and its constituents, and naturally occurring chemicals from plants. Detoxification mechanisms are also discussed.

  11. Hydrogen and Nitrogen Broadened Ethane and Propane Absorption Cross Sections

    NASA Astrophysics Data System (ADS)

    Hargreaves, Robert J.; Appadoo, Dominique; Billinghurst, Brant E.; Bernath, Peter F.

    2015-06-01

    High-resolution infrared absorption cross sections are presented for the ν9 band of ethane (C2H6) at 823 cm-1. These cross sections make use of spectra recorded at the Australian Synchrotron using a Fourier transform infrared spectrometer with maximum resolution of 0.00096 cm-1. The spectra have been recorded at 150, 120 and 90 K for hydrogen and nitrogen broadened C2H6. They cover appropriate temperatures, pressures and broadening gases associated with the atmospheres of the Outer Planets and Titan, and will improve atmospheric retrievals. The THz/Far-IR beamline at the Australian Synchrotron is unique in combining a high-resolution Fourier transform spectrometer with an 'enclosive flow cooling' (EFC) cell designed to study molecules at low temperatures. The EFC cell is advantageous at temperatures for which the vapor pressure is very low, such as C2H6 at 90 K. Hydrogen broadened absorption cross sections of propane between 700 and 1200 cm-1 will also be presented based on spectra obtained at the Canadian Light Source.

  12. Measurement of the solar ultraviolet radiation at ground level in Bangi, Malaysia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aljawi, Ohoud; Gopir, Geri; Duay, Abdul Basit

    2015-04-24

    Understanding the amount of ultraviolet (UV) radiation received by human, plant, and animal organisms near the earth’s surface is important to a wide range of fields such as cancer research, agriculture and forestry. The solar ultraviolet spectral irradiance at ground level was measured using the Avantes spectrometer for the period of January to March 2014 at Bangi (2°55´N, 101°46´E, 50 m above sea level) in Malaysia. These data were used to estimate the diurnal variation of UV irradiance (300 – 400 nm). The maximum irradiance of UV radiation was 45 W m{sup −2} on horizontal surface. The maximum irradiance ofmore » UV received in the local noon time, and the minimum values of UV irradiance was received in the local morning time. It is found a bigger value of UV radiation was observed on clear sky in January. The estimation of daily flux average of UV irradiance was (921± 91) kJ m{sup −2}.« less

  13. New measurements on water ice photodesorption and product formation under ultraviolet irradiation

    NASA Astrophysics Data System (ADS)

    Cruz-Diaz, Gustavo A.; Martín-Doménech, Rafael; Moreno, Elena; Muñoz Caro, Guillermo M.; Chen, Yu-Jung

    2018-03-01

    The photodesorption of icy grain mantles has been claimed to be responsible for the abundance of gas-phase molecules towards cold regions. Being water a ubiquitous molecule, it is crucial to understand its role in photochemistry and its behaviour under an ultraviolet field. We report new measurements on the ultraviolet (UV) photodesorption of water ice and its H2, OH, and O2 photoproducts using a calibrated quadrupole mass spectrometer. Solid water was deposited under ultra-high-vacuum conditions and then UV-irradiated at various temperatures starting from 8 K with a microwave discharged hydrogen lamp. Deuterated water was used for confirmation of the results. We found a photodesorption yield of 1.3 × 10-3 molecules per incident photon for water and 0.7 × 10-3 molecules per incident photon for deuterated water at the lowest irradiation temperature, 8 K. The photodesorption yield per absorbed photon is given and comparison with astrophysical scenarios, where water ice photodesorption could account for the presence of gas-phase water towards cold regions in the absence of a thermal desorption process, is addressed.

  14. Using high spectral resolution spectrophotometry to study broad mineral absorption features on Mars

    NASA Technical Reports Server (NTRS)

    Blaney, D. L.; Crisp, D.

    1993-01-01

    Traditionally telescopic measurements of mineralogic absorption features have been made using relatively low to moderate (R=30-300) spectral resolution. Mineralogic absorption features tend to be broad so high resolution spectroscopy (R greater than 10,000) does not provide significant additional compositional information. Low to moderate resolution spectroscopy allows an observer to obtain data over a wide wavelength range (hundreds to thousands of wavenumbers) compared to the several wavenumber intervals that are collected using high resolution spectrometers. However, spectrophotometry at high resolution has major advantages over lower resolution spectroscopy in situations that are applicable to studies of the Martian surface, i.e., at wavelengths where relatively weak surface absorption features and atmospheric gas absorption features both occur.

  15. Versatile mid-infrared frequency-comb referenced sub-Doppler spectrometer

    NASA Astrophysics Data System (ADS)

    Gambetta, A.; Vicentini, E.; Coluccelli, N.; Wang, Y.; Fernandez, T. T.; Maddaloni, P.; De Natale, P.; Castrillo, A.; Gianfrani, L.; Laporta, P.; Galzerano, G.

    2018-04-01

    We present a mid-IR high-precision spectrometer capable of performing accurate Doppler-free measurements with absolute calibration of the optical axis and high signal-to-noise ratio. The system is based on a widely tunable mid-IR offset-free frequency comb and a Quantum-Cascade-Laser (QCL). The QCL emission frequency is offset locked to one of the comb teeth to provide absolute-frequency calibration, spectral-narrowing, and accurate fine frequency tuning. Both the comb repetition frequency and QCL-comb offset frequency can be modulated to provide, respectively, slow- and fast-frequency-calibrated scanning capabilities. The characterisation of the spectrometer is demonstrated by recording sub-Doppler saturated absorption features of the CHF3 molecule at around 8.6 μm with a maximum signal-to-noise ratio of ˜7 × 103 in 10 s integration time, frequency-resolution of 160 kHz, and accuracy of less than 10 kHz.

  16. VUV-absorption cross section of carbon dioxide from 150 to 800 K and applications to warm exoplanetary atmospheres

    NASA Astrophysics Data System (ADS)

    Venot, O.; Bénilan, Y.; Fray, N.; Gazeau, M.-C.; Lefèvre, F.; Es-sebbar, Et.; Hébrard, E.; Schwell, M.; Bahrini, C.; Montmessin, F.; Lefèvre, M.; Waldmann, I. P.

    2018-01-01

    Context. Most exoplanets detected so far have atmospheric temperatures significantly higher than 300 K. Often close to their star, they receive an intense UV photons flux that triggers important photodissociation processes. The temperature dependency of vacuum ultraviolet (VUV) absorption cross sections are poorly known, leading to an undefined uncertainty in atmospheric models. Similarly, data measured at low temperatures similar to those of the high atmosphere of Mars, Venus, and Titan are often lacking. Aims: Our aim is to quantify the temperature dependency of the VUV absorption cross sections of important molecules in planetary atmospheres. We want to provide high-resolution data at temperatures prevailing in these media, and a simple parameterisation of the absorption in order to simplify its use in photochemical models. This study focuses on carbon dioxide (CO2). Methods: We performed experimental measurements of CO2 absorption cross sections with synchrotron radiation for the wavelength range (115-200 nm). For longer wavelengths (195-230 nm), we used a deuterium lamp and a 1.5 m Jobin-Yvon spectrometer. We used these data in our one-dimensional (1D) thermo-photochemical model in order to study their impact on the predicted atmospheric compositions. Results: The VUV absorption cross section of CO2 increases with the temperature. The absorption we measured at 150 K seems to be close to the absorption of CO2 in the fundamental ground state. The absorption cross section can be separated into two parts: a continuum and a fine structure superimposed on the continuum. The variation in the continuum of absorption can be represented by the sum of three Gaussian functions. Using data at high temperature in thermo-photochemical models significantly modifies the abundance and the photodissociation rates of many species in addition to CO2, such as methane and ammonia. These deviations have an impact on synthetic transmission spectra, leading to variations of up to 5 ppm

  17. Temperature dependence of the ClONO{sub 2} UV absorption spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkholder, J.B.; Talukdar, R.K.; Ravishankara, A.R.

    1994-04-01

    The temperature dependence of the ClONO{sub 2} absorption spectrum has been measured between 220 and 298 K and between 195 and 430 nm using a diode array spectrometer. The absorption cross sections were determined using both: (1) absolute pressure measurements at 296 K and (2) measurements at various temperatures relative to 296 K using a dual absorption cell arrangement. The temperature dependence of the ClONO{sub 2} absorption spectrum shows very broad structure. The amplitude of the temperature dependence relative to that at 296 K is weak at short wavelengths, < 2% at 215 nm and 220 K, but significant atmore » the wavelengths important in the stratosphere, {approximately} 30% at 325 nm and 220 K. The authors ClONO{sub 2} absorption cross section data are in good general agreement with the previous measurements of Molina and Molina.« less

  18. Chemical Properties of Brown Carbon Aerosol Generated at the Missoula Fire Sciences Laboratory

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Womack, C.; Franchin, A.; Middlebrook, A. M.; Wagner, N.; Manfred, K.

    2017-12-01

    Aerosol scattering and absorption are still among the largest uncertainties in quantifying radiative forcing. Biomass burning is a major source of light-absorbing carbonaceous aerosol in the United States. These aerosol are generally classified into two categories: black carbon (graphitic-like aerosol that absorbs broadly across the ultraviolet and visible spectral regions) and brown carbon (organic aerosol that absorbs strongly in the ultraviolet and near-visible spectral regions). The composition, volatility, and chemical aging of brown carbon are poorly known, but are important to understanding its radiative effects. We deployed three novel instruments to the Missoula Fire Sciences Laboratory in 2016 to measure brown carbon absorption: a photoacoustic spectrometer, broadband cavity enhanced spectrometer, and particle-into-liquid sampler coupled to a liquid waveguide capillary cell. The instruments sampled from a shared inlet with well-characterized dilution and thermal denuding. We sampled smoke from 32 controlled burns of fuels relevant to western U.S. wildfires. We use these measurements to determine the volatility of water-soluble brown carbon, and compare this to the volatility of water-soluble organic aerosol and total organic aerosol. We further examine the wavelength-dependence of the water-soluble brown carbon absorption as a function of denuder temperature. Together this gives new information about the solubility, volatility, and chemical composition of brown carbon.

  19. Enhanced Photocatalytic Activity of La3+-Doped TiO2 Nanotubes with Full Wave-Band Absorption

    NASA Astrophysics Data System (ADS)

    Xia, Minghao; Huang, Lingling; Zhang, Yubo; Wang, Yongqian

    2018-06-01

    TiO2 nanotubes doped with La3+ were synthesized by anodic oxidation method and the photocatalytic activity was detected by photodegrading methylene blue. As-prepared samples improved the absorption of both ultraviolet light and visible light and have a great enhancement on the photocatalytic activity while contrasting with the pristine TiO2 nanotubes. A tentative mechanism for the enhancement of photocatalytic activity with full wave-band absorption is proposed.

  20. The superconducting high-resolution soft X-ray spectrometer at the advanced biological and environmental X-ray facility

    NASA Astrophysics Data System (ADS)

    Friedrich, S.; Drury, O. B.; George, S. J.; Cramer, S. P.

    2007-11-01

    We have built a 36-pixel superconducting tunnel junction X-ray spectrometer for chemical analysis of dilute samples in the soft X-ray band. It offers an energy resolution of ˜10-20 eV FWHM below 1 keV, a solid angle coverage of ˜10 -3, and can be operated at total rates of up to ˜10 6 counts/s. Here, we describe the spectrometer performance in speciation measurements by fluorescence-detected X-ray absorption spectroscopy at the Advanced Biological and Environmental X-ray facility at the ALS synchrotron.