Sample records for ultraviolet background uvb

  1. Aligned metal absorbers and the ultraviolet background at the end of reionization

    NASA Astrophysics Data System (ADS)

    Doughty, Caitlin; Finlator, Kristian; Oppenheimer, Benjamin D.; Davé, Romeel; Zackrisson, Erik

    2018-04-01

    We use observations of spatially aligned C II, C IV, Si II, Si IV, and O I absorbers to probe the slope and intensity of the ultraviolet background (UVB) at z ˜ 6. We accomplish this by comparing observations with predictions from a cosmological hydrodynamic simulation using three trial UVBs applied in post-processing: a spectrally soft, fluctuating UVB calculated using multifrequency radiative transfer; a soft, spatially uniform UVB; and a hard, spatially uniform `quasars-only' model. When considering our paired high-ionization absorbers (C IV/Si IV), the observed statistics strongly prefer the hard, spatially uniform UVB. This echoes recent findings that cosmological simulations generically underproduce strong C IV absorbers at z > 5. A single low/high ionization pair (Si II/Si IV), by contrast, shows a preference for the HM12 UVB, whereas two more (C II/C IV and O I/C IV) show no preference for any of the three UVBs. Despite this, future observations of specific absorbers, particularly Si IV/C IV, with next-generation telescopes probing to lower column densities should yield tighter constraints on the UVB.

  2. Growth of antarctic cyanobacteria under ultraviolet radiation: UVA counteracts UVB inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quesada, A.; Mouget, J.L.; Vincent, W.F.

    A mat-forming cyanobacterium (Phormidium murayi West and West) isolated from an ice-shelf pond in Antarctica was grown under white light combined with a range of UVA and UVB irradiance. The 4-day growth rate decreased under increasing ultraviolet (UV) radiation, with a ninefold greater response to UVB relative to UVA. In vivo absorbance spectra showed that UVA and to a greater extent UVB caused a decrease in phycocyanin/chlorophyll a and an increase in carotenoids/chlorophyll a. The phycocyanin/chlorophyll a ratio was closely and positively correlated to the UVB-inhibited growth rate. Under fixed spectral gradients of UV radiation, the growth inhibition effect wasmore » dominated by UVB. However, at specific UVB irradiances the inhibition of growth depended on the ratio of UVB to UVA, and growth rates increased linearly with increasing UVA. These results are consistent with the view that UVB inhibition represents the balance between damage and repair processes that are each controlled by separate wavebands. They also underscore the need to consider UV spectral balance in laboratory and field assays of UVB toxicity. 49 refs., 6 figs.« less

  3. Narrowband ultraviolet B (UVB) phototherapy in children.

    PubMed

    Jury, C S; McHenry, P; Burden, A D; Lever, R; Bilsland, D

    2006-03-01

    While narrowband ultraviolet B (UVB) phototherapy is a well-established treatment for a range of skin conditions in adults, there is little in the literature about its use in children and data regarding its long-term carcinogenic potential are lacking. We undertook a retrospective review of the use of narrowband UVB phototherapy in a paediatric population attending two Glasgow Hospitals. Phototherapy case notes for all children aged 16 years and under at time of treatment were reviewed at two hospital sites between 1996 and 2002. In total, 77 children had been treated (median age 12 years, range 4-16). The conditions treated most frequently were psoriasis (45%) and atopic eczema (32%). Other dermatoses treated included alopecia areata, acne, hydroa vacciniforme and polymorphic light eruption. Treatment courses for atopic conditions were longer than those required for psoriatic conditions: median number of treatments 24 for atopic eczema (range 3-46), and 17.5 for psoriasis (range 9-35). By the end of treatment, 68% of the atopic patients and 63% of the patients with psoriasis had cleared. The adverse event profile was similar to that in adults, with erythema, herpes simplex reactivation and PLE all recorded. Anxiety was a problem for five patients. We conclude that narrowband UVB phototherapy is a useful and well-tolerated treatment for children with severe or intractable inflammatory skin disease, but concerns remain regarding long-term side-effects.

  4. Pollen sensitivity to ultraviolet-B (UV-B) suggests floral structure evolution in alpine plants.

    PubMed

    Zhang, Chan; Yang, Yong-Ping; Duan, Yuan-Wen

    2014-03-31

    Various biotic and abiotic factors are known to exert selection pressures on floral traits, but the influence of ultraviolet-B (UV-B) light on the evolution of flower structure remains relatively unexplored. We have examined the effectiveness of flower structure in blocking radiation and the effects of UV-B on pollen viability in 42 species of alpine plants in the Hengduan Mountains, China. Floral forms were categorized as either protecting or exposing pollen grains to UV-B. The floral materials of plants with exposed and protected pollen grains were able to block UV-B at similar levels. Exposure to UV-B radiation in vitro resulted in a significantly greater loss of viability in pollen from plant species with protective floral structures. The pronounced sensitivity of protected pollen to UV-B radiation was associated with the type of flower structure. These findings demonstrate that UV-B plays an important role in the evolution of protective floral forms in alpine plants.

  5. An ethanol extract derived from Bonnemaisonia hamifera scavenges ultraviolet B (UVB) radiation-induced reactive oxygen species and attenuates UVB-induced cell damage in human keratinocytes.

    PubMed

    Piao, Mei Jing; Hyun, Yu Jae; Cho, Suk Ju; Kang, Hee Kyoung; Yoo, Eun Sook; Koh, Young Sang; Lee, Nam Ho; Ko, Mi Hee; Hyun, Jin Won

    2012-12-14

    The present study investigated the photoprotective properties of an ethanol extract derived from the red alga Bonnemaisonia hamifera against ultraviolet B (UVB)-induced cell damage in human HaCaT keratinocytes. The Bonnemaisonia hamifera ethanol extract (BHE) scavenged the superoxide anion generated by the xanthine/xanthine oxidase system and the hydroxyl radical generated by the Fenton reaction (FeSO₄ + H₂O₂), both of which were detected by using electron spin resonance spectrometry. In addition, BHE exhibited scavenging activity against the 1,1-diphenyl-2-picrylhydrazyl radical and intracellular reactive oxygen species (ROS) that were induced by either hydrogen peroxide or UVB radiation. BHE reduced UVB-induced apoptosis, as shown by decreased apoptotic body formation and DNA fragmentation. BHE also attenuated DNA damage and the elevated levels of 8-isoprostane and protein carbonyls resulting from UVB-mediated oxidative stress. Furthermore, BHE absorbed electromagnetic radiation in the UVB range (280-320 nm). These results suggest that BHE protects human HaCaT keratinocytes against UVB-induced oxidative damage by scavenging ROS and absorbing UVB photons, thereby reducing injury to cellular components.

  6. Effects of ultraviolet-B radiation on fish: Histologic comparison of a UVB-sensitive and a UVB-tolerant species

    USGS Publications Warehouse

    Blazer, V.S.; Fabacher, D.L.; Little, E.E.; Ewing, M.S.; Kocan, K.M.

    1997-01-01

    Lahontan cutthroat trout Oncorhynchus clarki henshawi were sensitive to simulated solar ultraviolet-B radiation (UVB) and exhibited grossly visible signs of sunburn upon exposure. Razorback suckers Xyrauchen texanus, however, were tolerant to simulated solar UVB and showed no grossly visible signs of exposure. Cutthroat trout also had considerably less of an unidentified, possibly photoprotective, substance in the skin than did razorback suckers. In all attempt to characterize the cellular response to simulated solar UVB exposure in the skin of these two species, we examined sections from UVB-exposed fish by light and electron microscopy. Cutthroat trout showed grossly visible signs of sunburn by 48 h. Histologic observations included a sloughing of the mucous cells, necrosis and edema in the epidermis and dermis, and, in some cases, secondary fungal infections. Razorback suckers did not show any visible signs of sunburn during 72 h of experimental exposure. Histologic analyses revealed that cell necrosis had occurred, but the severe necrosis and sloughing noted in cutthroat trout was not observed. An increase in epidermal thickness, apparently due to hypertrophy and hyperplasia of large PAS-negative cells, occurred in the razorback suckers. These cells contained a large central region of low electron density and appeared to be club cells. In some, extensive interdigitation of the electron-lucent cytoplasm with adjacent epithelial cell margins occurred. Near the surface of the epidermis these cells were larger and the interface with epithelial cells lacked complex interdigitation. These cells may contain the substance that appears to protect razorback suckers against UV-B radiation.

  7. Ultraviolet-B radiation increases serum 25-hydroxyvitamin D levels: the effect of UVB dose and skin color.

    PubMed

    Armas, Laura A G; Dowell, Susan; Akhter, Mohammed; Duthuluru, Sowjanya; Huerter, Christopher; Hollis, Bruce W; Lund, Richard; Heaney, Robert P

    2007-10-01

    Ultraviolet (UV)-B light increases vitamin D levels, but the dose response and the effect of skin pigmentation have not been well characterized. We sought to define the relationship between UVB exposure and 25-hydroxyvitamin D (25-OH-D) concentrations as a function of skin pigmentation. Seventy two participants with various skin tones had 90% of their skin exposed to UVB light (20-80 mJ/cm2) 3 times a week for 4 weeks. Serum 25-OH-D was measured weekly. Eighty percent of the variation in treatment response was explained by UVB dose and skin tone. Therapeutically important changes in 25-OH-D were achieved with minimal tanning. Four weeks was not long enough to reach a steady state at the higher dose rates. The response of 25-OH-D levels to UVB light is dependent on skin pigmentation and the amount of UVB given, and useful increases in vitamin D status can be achieved by defined UVB doses small enough to produce only minimal tanning.

  8. The impact of natural sunlight exposure on the UVB-sun protection factor (UVB-SPF) and UVA protection factor (UVA-PF) of a UVA/UVB SPF 50 sunscreen.

    PubMed

    Stephens, Thomas J; Herndon, James H; Colón, Luz E; Gottschalk, Ronald W

    2011-02-01

    To compare the functional stability of Cetaphil UVA/UVB Defense SPF 50 as measured by its ultraviolet B sun protection factor (UVB-SPF) and ultraviolet A protection factor (UVA-PF) values following exposure to natural sunlight versus the UVB-SPF and UVA-PF values of unexposed product. These two randomized, controlled, evaluator-blinded, single-center trials were conducted according to the methods outlined in the 2007 Proposed Amendment to the Final Monograph, “Sunscreen Drug Products for Over-the-Counter Human Use.” Sunscreen samples were applied to glass plates and exposed to ultraviolet radiation in the form of natural sunlight in four minimal erythemal doses (MED) ranging from 2–6 MED (42–36 mJ/cm2). Three test sites were identified on the back of each study subject. Exposed sunscreen (one of four doses), unexposed sunscreen, and a UVB-SPF 15 control sunscreen were applied to the three test sites in a randomized fashion, followed by UV irradiation of incremental doses. Erythema and pigment darkening responses were assessed immediately following UV exposure and again 16–24 hours (erythema) or three to 24 hours (pigment darkening) after exposure. UVB-SPF and UVA-PF values were calculated for the exposed and unexposed samples. The calculated UVB-SPF and UVA-PF values for all test samples (exposed and unexposed) were >50 and >9, respectively, which were greater than the stated UVB-SPF and UVA-PF values on the product label. No differences were observed between the exposed and unexposed samples in UVB-SPF or UVA-PF. The UVA and UVB protection using standard evaluation techniques of Cetaphil UVA/UVB Defense SPF 50 remains stable despite exposure of the sunscreen to natural sunlight containing UVB ranging from 2–16 MED (41–336 mJ/cm2) and coexistent UVA.

  9. Inclusion of an ultraviolet radiation transfer component in an urban forest effects model for predicting tree influences on potential below-canopy exposure to UVB radiation

    Treesearch

    Gordon M. Heisler; Richard H. Grant; David J. Nowak; Wei Gao; Daniel E. Crane; Jeffery T. Walton

    2003-01-01

    Evaluating the impact of ultraviolet-B radiation (UVB) on urban populations would be enhanced by improved predictions of the UVB radiation at the level of human activity. This paper reports the status of plans for incorporating a UVB prediction module into an existing Urban Forest Effects (UFORE) model. UFORE currently has modules to quantify urban forest structure,...

  10. EFFECTS OF ULTRAVIOLET BACKGROUND AND LOCAL STELLAR RADIATION ON THE H I COLUMN DENSITY DISTRIBUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagamine, Kentaro; Choi, Jun-Hwan; Yajima, Hidenobu, E-mail: kn@physics.unlv.ed

    We study the impact of ultraviolet background (UVB) radiation field and the local stellar radiation on the H I column density distribution f(N{sub H{sub I}}) of damped Ly{alpha} systems (DLAs) and sub-DLAs at z = 3 using cosmological smoothed particle hydrodynamics simulations. We find that, in the previous simulations with an optically thin approximation, the UVB was sinking into the H I cloud too deeply, and therefore we underestimated the f(N{sub H{sub I}}) at 19 < log N{sub H{sub I}} < 21.2 compared to the observations. If the UVB is shut off in the high-density regions with n{sub gas}>6 xmore » 10{sup -3} cm{sup -3}, then we reproduce the observed f(N{sub H{sub I}}) at z = 3 very well. We also investigate the effect of local stellar radiation by postprocessing our simulation with a radiative transfer code and find that the local stellar radiation does not change the f(N{sub H{sub I}}) very much. Our results show that the shape of f(N{sub H{sub I}}) is determined primarily by the UVB with a much weaker effect by the local stellar radiation and that the optically thin approximation often used in cosmological simulation is inadequate to properly treat the ionization structure of neutral gas in and out of DLAs. Our result also indicates that the DLA gas is closely related to the transition region from optically thick neutral gas to optically thin ionized gas within dark matter halos.« less

  11. ESTIMATION OF UV-B EXPOSURE IN AMPHIBIAN AQUATIC ENVIRONMENTS

    EPA Science Inventory

    Estimation of ultraviolet radiation B (UV-B; 280 to 320 nm wavelenghts) dose is essential for determining whether UV-B contributes to amphibian population declines and malformations. UV-B dose in wetlands is effected by location, time of day and year, atmospheric levels of ozone,...

  12. [Effect of long-wave ultraviolet light (UV-A) and medium-wave ultraviolet rays (UV-B) on human skin. Critical comparison].

    PubMed

    Raab, W

    1980-04-15

    When discussing the effects of ultraviolet radiation on human skin, one should carefully distinguish between the long wave ultraviolet light (UV-A) and the short wave radiations (UV-B and UV-C). Ultraviolet A induces immediate pigmentation but, if high energies are applied, a permanent pigmentation is elicited. This type of ultraviolet A-induced pigmentation has been called "spontaneous" pigmentation as no erythematous reaction is necessary to induce or accelerate melanine formation. Ultraviolet B provokes erythema and consecutive pigmentation. Upon chronic exposure, ultraviolet B causes the wellknown actinic damage of the skin and even provokes carcinoma. With exposures to the sunlight (global radiation), one should be most careful. The public must be informed extensively about the dangers of excessive sunbaths. The use of artificial "suns" with spectra between 260 and 400 nm is limited as it may cause the same type of damage as the global radiation. An exact schedule for use of artificial lamps is strongly recommended. After one cycle of exposures, an interruption is necessary until the next cycle of irradiations may start. Upon continual use for tanning of the skin, artificial lamps may provoke irreversible damage of the skin. Radiation sources with emission spectra of wavelengths between 315 and 400 nm exclusively are well suited for the induction of skin pigmentation (cosmetic use). Potent radiation such as UVASUN systems provoke a "pleasant" permanent pigmentation after exposures for less than one hour. The use of ultraviolet A (UV-A) does not carry any risk for the human skin.

  13. Ultraviolet-B component of sunlight stimulates photosynthesis and flavonoid accumulation in variegated Plectranthus coleoides leaves depending on background light.

    PubMed

    Vidović, Marija; Morina, Filis; Milić, Sonja; Zechmann, Bernd; Albert, Andreas; Winkler, Jana Barbro; Veljović Jovanović, Sonja

    2015-05-01

    We used variegated Plectranthus coleoides as a model plant with the aim of clarifying whether the effects of realistic ultraviolet-B (UV-B) doses on phenolic metabolism in leaves are mediated by photosynthesis. Plants were exposed to UV-B radiation (0.90 W m(-2) ) combined with two photosynthetically active radiation (PAR) intensities [395 and 1350 μmol m(-2)  s(-1) , low light (LL) and high light (HL)] for 9 d in sun simulators. Our study indicates that UV-B component of sunlight stimulates CO2 assimilation and stomatal conductance, depending on background light. UV-B-specific induction of apigenin and cyanidin glycosides was observed in both green and white tissues. However, all the other phenolic subclasses were up to four times more abundant in green leaf tissue. Caffeic and rosmarinic acids, catechin and epicatechin, which are endogenous peroxidase substrates, were depleted at HL in green tissue. This was correlated with increased peroxidase and ascorbate peroxidase activities and increased ascorbate content. The UV-B supplement to HL attenuated antioxidative metabolism and partly recovered the phenolic pool indicating stimulation of the phenylpropanoid pathway. In summary, we propose that ortho-dihydroxy phenolics are involved in antioxidative defence in chlorophyllous tissue upon light excess, while apigenin and cyanidin in white tissue have preferentially UV-screening function. © 2014 John Wiley & Sons Ltd.

  14. UVB-induced epidermal pigmentation in mice eyes with no contact lens wear and non-UVB blocking and UVB blocking contact lens wear.

    PubMed

    Hiramoto, Keiichi; Kobayashi, Hiromi; Yamate, Yurika; Ishii, Masamitsu; Sato, Takao; Inoue, Masayasu

    2013-02-01

    Irradiation by ultraviolet (UV) B is known to increase the number of Dopa-positive melanocytes in the skin. This study examines the effectiveness of a contact lens for the defense of UVB eye irradiation-induced pigmentation. A 2.5 kJ/m(2) dose of UVB radiation was delivered by a sunlamp to the eye of C57BL/6j male mice, and changes in the expression of Dopa-positive melanocytes in the epidermis and the plasma level of alpha-melanocyte-stimulating hormone (α-MSH) was analyzed. The degree of change in the Dopa-positive melanocytes expression was reduced by UVB blocking contact lens using mice given UVB irradiation to the eye. The plasma level of α-MSH increased in the C57BL/6j mice after irradiation to the eye, but there was no increase in the UVB blocking contact lens mice given UVB irradiation to the eye. Both the increase of the expression of Dopa-positive melanocytes and the plasma level of α-MSH were strongly suppressed by an alignment fitting UVB blocking contact lens and only a slightly suspended UVB blocking contact lens. In addition, these changes were successfully inhibited by a UVB blocking contact lens but not by a non-UVB blocking contact lens with a similar absorbance. These observations suggest that the UVB blocking contact lens inhibits the pigmentation of the epidermis in mice by suppressing of the α-MSH. Copyright © 2012 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  15. Effect of UV-B light on total soluble phenolic contents of various whole and fresh-cut specialty crops

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND: The effect of ultraviolet-B (UV-B) light treatment on total soluble phenolic contents (TSP) of various whole and fresh-cut specialty crops was evaluated. Whole fruits (strawberries, blueberries, grapes), vegetables (cherry tomatoes, white sweet corn) and root crops (sweet potatoes, colo...

  16. UV-B photoreceptor-mediated signalling in plants.

    PubMed

    Heijde, Marc; Ulm, Roman

    2012-04-01

    Ultraviolet-B radiation (UV-B) is a key environmental signal that is specifically perceived by plants to promote UV acclimation and survival in sunlight. Whereas the plant photoreceptors for visible light are rather well characterised, the UV-B photoreceptor UVR8 was only recently described at the molecular level. Here, we review the current understanding of the UVR8 photoreceptor-mediated pathway in the context of UV-B perception mechanism, early signalling components and physiological responses. We further outline the commonalities in UV-B and visible light signalling as well as highlight differences between these pathways. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Inactivation of Pseudomonas aeruginosa biofilm after ultraviolet light-emitting diode treatment: a comparative study between ultraviolet C and ultraviolet B

    NASA Astrophysics Data System (ADS)

    Argyraki, Aikaterini; Markvart, Merete; Bjørndal, Lars; Bjarnsholt, Thomas; Petersen, Paul Michael

    2017-06-01

    The objective of this study was to test the inactivation efficiency of two different light-based treatments, namely ultraviolet B (UVB) and ultraviolet C (UVC) irradiation, on Pseudomonas aeruginosa biofilms at different growth stages (24, 48, and 72 h grown). In our experiments, a type of AlGaN light-emitting diodes (LEDs) was used to deliver UV irradiation on the biofilms. The effectiveness of the UVB at 296 nm and UVC at 266 nm irradiations was quantified by counting colony-forming units. The survival of less mature biofilms (24 h grown) was studied as a function of UV-radiant exposure. All treatments were performed on three different biological replicates to test reproducibility. It was shown that UVB irradiation was significantly more effective than UVC irradiation in inactivating P. aeruginosa biofilms. UVC irradiation induced insignificant inactivation on mature biofilms. The fact that the UVB at 296 nm exists in daylight and has such disinfection ability on biofilms provides perspectives for the treatment of infectious diseases.

  18. UV-B Measurements in Mexico City: Comparison with Modeled UVB and Black Carbon

    NASA Astrophysics Data System (ADS)

    Marley, N. A.; Gaffney, J. S.; Frederick, J. E.

    2004-12-01

    Ultraviolet-B radiation (UV-B) represents a chemically important region of the sun's spectrum. At the earth's surface, UV-B can initiate a number of important photochemical reactions (e.g., ozone photolysis) that lead to the formation of OH radicals. Where levels of nitrogen oxides are high and reactive hydrocarbons are found, as in Mexico City and other megacities, UV-B can initiate photochemical smog formation. We used a broadband instrument to obtain UV-B measurements in Mexico City during the Mexico City Metropolitan Area 2003/Mexico City Megacity 2003 field study. We then used a simple radiation model for the Mexico City latitude, altitude, and time of year to construct UV-B contours for comparison with our results. Early morning discrepancies involve reductions in UV-B that are consistent with the presence of significant levels of BC in the Mexico City environment. During most afternoons, UV-B reductions were dominated by clouds. The results are discussed in terms of the potential impacts of BC on UV-B and downwind photochemical processes. The authors wish to thank the researchers at Centro Nacional de Investigación en Calidad Ambiental (CENICA), Mexico City. This work was supported by the U.S. Department of Energy, Atmospheric Science Program (Marley and Gaffney), and the U.S. Environmental Protection Agency (Frederick). We also wish to acknowledge Drs. Mario and Luisa Molina for their help in organizing and directing the Mexico City Metropolitan Area 2003 field study, during which these data were collected.

  19. Solar ultraviolet radiation induces biological alterations in human skin in vitro: relevance of a well-balanced UVA/UVB protection.

    PubMed

    Bernerd, Francoise; Marionnet, Claire; Duval, Christine

    2012-06-01

    Cutaneous damages such as sunburn, pigmentation, and photoaging are known to be induced by acute as well as repetitive sun exposure. Not only for basic research, but also for the design of the most efficient photoprotection, it is crucial to understand and identify the early biological events occurring after ultraviolet (UV) exposure. Reconstructed human skin models provide excellent and reliable in vitro tools to study the UV-induced alterations of the different skin cell types, keratinocytes, fibroblasts, and melanocytes in a dose- and time-dependent manner. Using different in vitro human skin models, the effects of UV light (UVB and UVA) were investigated. UVB-induced damages are essentially epidermal, with the typical sunburn cells and DNA lesions, whereas UVA radiation-induced damages are mostly located within the dermal compartment. Pigmentation can also be obtained after solar simulated radiation exposure of pigmented reconstructed skin model. Those models are also highly adequate to assess the potential of sunscreens to protect the skin from UV-associated damage, sunburn reaction, photoaging, and pigmentation. The results showed that an effective photoprotection is provided by broad-spectrum sunscreens with a potent absorption in both UVB and UVA ranges.

  20. A New z = 0 Metagalactic Ultraviolet Background Limit

    NASA Astrophysics Data System (ADS)

    Adams, Joshua J.; Uson, Juan M.; Hill, Gary J.; MacQueen, Phillip J.

    2011-02-01

    We present new integral-field spectroscopy in the outskirts of two nearby, edge-on, late-type galaxies to search for the Hα emission that is expected from the exposure of their hydrogen gas to the metagalactic ultraviolet background (UVB). Despite the sensitivity of the VIRUS-P spectrograph on the McDonald 2.7 m telescope to low surface brightness emission and the large field of view, we do not detect Hα to 5σ upper limits of 6.4 × 10-19 erg s-1 cm-2 arcsec-2 in UGC 7321 and of 25 × 10-19 erg s-1 cm-2 arcsec-2 in UGC 1281 in each of the hundreds of independent spatial elements (fibers). We fit gas distribution models from overlapping 21 cm data of H I, extrapolate one scale length beyond the H I data, and estimate predicted Hα surface brightness maps. We analyze three types of limits from the data with stacks formed from increasingly large spatial regions and compare to the model predictions: (1) single fibers, (2) convolution of the fiber grid with a Gaussian, circular kernel (10'' full width at half-maximum), and (3) the co-added spectra from a few hundred fibers over the brightest model regions. None of these methods produce a significant detection (>5σ) with the most stringent constraints on the H I photoionization rate of Γ(z = 0) < 1.7 × 10-14 s-1 in UGC 7321 and Γ(z = 0) < 14 × 10-14 s-1 in UGC 1281. The UGC 7321 limit is below previous measurement limits and also below current theoretical models. Restricting the analysis to the fibers bound by the H I data leads to a comparable limit; the limit is Γ(z = 0) < 2.3 × 10-14 s-1 in UGC 7321. We discuss how a low Lyman limit escape fraction in z ~ 0 redshift star-forming galaxies might explain this lower than predicted UVB strength and the prospects of deeper data to make a direct detection. This paper includes data taken at the McDonald Observatory of the University of Texas at Austin.

  1. Influence of clouds on UV-B penetration to the earth's surface

    NASA Technical Reports Server (NTRS)

    Green, A. E. S.

    1979-01-01

    Radiometric measurements of cloud influence on ultraviolet B radiation (UV-B) were obtained. Mathematical models of the influence were defined to lay the groundwork for the construction of the global UV-B climatology from satellite determined ozone data. More refined measurements comparing UV-B radiation with total solar radiation were carried out. The cloudy case is referred to the cloudless sky irradiance and convenient transmission ratios are given An approach to the inversion of scattering data is summarized. An improved characterization of the UV-B radiation from a cloudless sky is also presented.

  2. The association of solar ultraviolet B (UVB) with reducing risk of cancer: multifactorial ecologic analysis of geographic variation in age-adjusted cancer mortality rates.

    PubMed

    Grant, William B; Garland, Cedric F

    2006-01-01

    Solar ultraviolet B (UVB) irradiance and vitamin D are associated with reduced cancer mortality rates. However, the previous ecologic study of UVB and cancer mortality rates in the U.S. (Grant, 2002) did not include other risk factors in the analysis. An ecologic study was performed using age-adjusted annual mortality rates for Caucasian Americans for 1950-69 and 1970-94, along with state-averaged values for selected years for alcohol consumption, Hispanic heritage, lung cancer (as a proxy for smoking), poverty, degree of urbanization and UVB in multiple regression analyses. Models were developed that explained much of the variance in cancer mortality rates, with stronger correlations for the earlier period. Fifteen types of cancer were inversely-associated with UVB. In the earlier period, most of the associations of cancer death rates with alcohol consumption (nine), Hispanic heritage (six), the proxy for smoking (ten), urban residence (seven) and poverty (inverse for eight) agreed well with the literature. These results provide additional support for the hypothesis that solar UVB, through photosynthesis of vitamin D, is inversely-associated with cancer mortality rates, and that various other cancer risk-modifying factors do not detract from this link. It is thought that sun avoidance practices after 1980, along with improved cancer treatment, led to reduced associations in the latter period. The results regarding solar UVB should be studied further with additional observational and intervention studies of vitamin D indices and cancer incidence, mortality and survival rates.

  3. Rapid transcriptome responses of maize (Zea mays) to UV-B in irradiated and shielded tissues

    PubMed Central

    Casati, Paula; Walbot, Virginia

    2004-01-01

    Background Depletion of stratospheric ozone has raised terrestrial levels of ultraviolet-B radiation (UV-B), an environmental change linked to an increased risk of skin cancer and with potentially deleterious consequences for plants. To better understand the processes of UV-B acclimation that result in altered plant morphology and physiology, we investigated gene expression in different organs of maize at several UV-B fluence rates and exposure times. Results Microarray hybridization was used to assess UV-B responses in directly exposed maize organs and organs shielded by a plastic that absorbs UV-B. After 8 hours of high UV-B, the abundance of 347 transcripts was altered: 285 were increased significantly in at least one organ and 80 were downregulated. More transcript changes occurred in directly exposed than in shielded organs, and the levels of more transcripts were changed in adult compared to seedling tissues. The time course of transcript abundance changes indicated that the response kinetics to UV-B is very rapid, as some transcript levels were altered within 1 hour of exposure. Conclusions Most of the UV-B regulated genes are organ-specific. Because shielded tissues, including roots, immature ears, and leaves, displayed altered transcriptome profiles after exposure of the plant to UV-B, some signal(s) must be transmitted from irradiated to shielded tissues. These results indicate that there are integrated responses to UV-B radiation above normal levels. As the same total UV-B irradiation dose applied at three intensities elicited different transcript profiles, the transcriptome changes exhibit threshold effects rather than a reciprocal dose-effect response. Transcriptome profiling highlights possible signaling pathways and molecules for future research. PMID:15003119

  4. Antioxidant responses of damiana (Turnera diffusa Willd) to exposure to artificial ultraviolet (UV) radiation in an in vitro model; part ii; UV-B radiation.

    PubMed

    Soriano-Melgar, Lluvia de Abril Alexandra; Alcaraz-Meléndez, Lilia; Méndez-Rodríguez, Lía C; Puente, María Esther; Rivera-Cabrera, Fernando; Zenteno-Savín, Tania

    2014-05-01

    Ultraviolet type B (UV-B) radiation effects on medicinal plants have been recently investigated in the context of climate change, but the modifications generated by UV-B radiation might be used to increase the content of antioxidants, including phenolic compounds. To generate information on the effect of exposure to artificial UV-B radiation at different highdoses in the antioxidant content of damiana plants in an in vitro model. Damiana plantlets (tissue cultures in Murashige- Skoog medium) were irradiated with artificial UV-B at 3 different doses (1) 0.5 ± 0.1 mW cm-2 (high) for 2 h daily, (2) 1 ± 0,1 mW cm-2 (severe) for 2 h daily, or (3) 1 ± 0.1 mW cm-2 for 4 h daily during 3 weeks. The concentration of photosynthetic pigments (chlorophylls a and b, carotenoids), vitamins (C and E) and total phenolic compounds, the enzymatic activity of superoxide dismutase (SOD, EC 1.15.1.1) and total peroxidases (POX, EC 1.11.1), as well as total antioxidant capacity and lipid peroxidation levels were quantified to assess the effect of high artificial UV-B radiation in the antioxidant content of in vitro damiana plants. Severe and high doses of artificial UV-B radiation modified the antioxidant content by increasing the content of vitamin C and decreased the phenolic compound content, as well as modified the oxidative damage of damiana plants in an in vitro model. UV-B radiation modified the antioxidant content in damiana plants in an in vitro model, depending on the intensity and duration of the exposure. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  5. Quercitrin Protects Skin from UVB-induced Oxidative Damage

    PubMed Central

    Yin, Yuanqin; Li, Wenqi; Son, Yong-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin; Yao, Hua; Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J; Luo, Jia; Gao, Ning; Shi, Xianglin; Zhang, Zhuo

    2013-01-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. PMID:23545178

  6. Human psychophysics and rodent spinal neurones exhibit peripheral and central mechanisms of inflammatory pain in the UVB and UVB heat rekindling models.

    PubMed

    O'Neill, Jessica; Sikandar, Shafaq; McMahon, Stephen B; Dickenson, Anthony H

    2015-09-01

    Translational research is key to bridging the gaps between preclinical findings and the patients, and a translational model of inflammatory pain will ideally induce both peripheral and central sensitisation, more effectively mimicking clinical pathophysiology in some chronic inflammatory conditions. We conducted a parallel investigation of two models of inflammatory pain, using ultraviolet B (UVB) irradiation alone and UVB irradiation with heat rekindling. We used rodent electrophysiology and human quantitative sensory testing to characterise nociceptive processing in the peripheral and central nervous systems in both models. In both species, UVB irradiation produces peripheral sensitisation measured as augmented evoked activity of rat dorsal horn neurones and increased perceptual responses of human subjects to mechanical and thermal stimuli. In both species, UVB with heat rekindling produces central sensitisation. UVB irradiation alone and UVB with heat rekindling are translational models of inflammation that produce peripheral and central sensitisation, respectively. The predictive value of laboratory models for human pain processing is crucial for improving translational research. The discrepancy between peripheral and central mechanisms of pain is an important consideration for drug targets, and here we describe two models of inflammatory pain that involve ultraviolet B (UVB) irradiation, which can employ peripheral and central sensitisation to produce mechanical and thermal hyperalgesia in rats and humans. We use electrophysiology in rats to measure the mechanically- and thermally-evoked activity of rat spinal neurones and quantitative sensory testing to assess human psychophysical responses to mechanical and thermal stimulation in a model of UVB irradiation and in a model of UVB irradiation with heat rekindling. Our results demonstrate peripheral sensitisation in both species driven by UVB irradiation, with a clear mechanical and thermal hypersensitivity of

  7. Protective effect of the standardized green tea seed extract on UVB-induced skin photoaging in hairless mice

    PubMed Central

    Lim, Jae-Youn; Kim, Ok-Kyung; Lee, Jeongmin; Lee, Min-Jae; Kang, Namgil

    2014-01-01

    BACKGROUND/OBJECTIVES Ultraviolet B (UVB) irradiation on skin can induce production of reactive oxygen species (ROS), which cause expression of matrix metalloproteinases (MMPs) and collagen degradation. Thus, chronic exposure of skin to UVB irradiation leads to histological changes consistent with aging, such as wrinkling, abnormal pigmentation, and loss of elasticity. We investigated the protective effect of the standardized green tea seed extract (GSE) on UVB-induced skin photoaging in hairless mice. MATERIALS/METHODS Skin photoaging was induced by UVB irradiation on the back of Skh-1 hairless mice three times per week and UVB irradiation was performed for 10 weeks. Mice were divided into six groups; normal control, UVB irradiated control group, positive control (UVB + dietary supplement of vitamin C 100 mg/kg), GSE 10 mg/kg (UVB + dietary supplement of GSE 10 mg/kg), GSE 100 mg/kg (UVB + dietary supplement of GSE 100 mg/kg), and GSE 200 mg/kg (UVB + dietary supplement of GSE 200 mg/kg). RESULTS The dietary supplement GSE attenuated UVB irradiation-induced wrinkle formation and the decrease in density of dermal collagen fiber. In addition, results of the antioxidant analysis showed that GSE induced a significant increase in antioxidant enzyme activity compared with the UVB irradiation control group. Dietary supplementation with GSE 200 mg/kg resulted in a significant decrease in expression of MMP-1, MMP-3, and MMP-9 and an increase in expression of TIMP and type-1 collagen. CONCLUSIONS Findings of this study suggest that dietary supplement GSE could be useful in attenuation of UVB irradiation-induced skin photoaging and wrinkle formation due to regulation of antioxidant defense systems and MMPs expression. PMID:25110559

  8. Effects of ultraviolet radiation (UVA+UVB) on young gametophytes of Gelidium floridanum: growth rate, photosynthetic pigments, carotenoids, photosynthetic performance, and ultrastructure.

    PubMed

    Simioni, Carmen; Schmidt, Eder C; Felix, Marthiellen R de L; Polo, Luz Karime; Rover, Ticiane; Kreusch, Marianne; Pereira, Debora T; Chow, Fungyi; Ramlov, Fernanda; Maraschin, Marcelo; Bouzon, Zenilda L

    2014-01-01

    This study investigated the effects of radiation (PAR+UVA+UVB) on the development and growth rates (GRs) of young gametophytes of Gelidium floridanum. In addition, photosynthetic pigments were quantified, carotenoids identified, and photosynthetic performance assessed. Over a period of 3 days, young gametophytes were cultivated under laboratory conditions and exposed to photosynthetically active radiation (PAR) at 80 μmol photons m(-2) s(-1) and PAR+UVA (0.70 W m(-2))+UVB (0.35 W m(-2)) for 3 h per day. The samples were processed for light and electron microscopy to analyze the ultrastructure features, as well as carry out metabolic studies of GRs, quantify the content of photosynthetic pigments, identify carotenoids and assess photosynthetic performance. PAR+UVA+UVB promoted increase in cell wall thickness, accumulation of floridean starch grains in the cytoplasm and disruption of chloroplast internal organization. Algae exposed to PAR+UVA+UVB also showed a reduction in GR of 97%. Photosynthetic pigments, in particular, phycoerythrin and allophycocyanin contents, decreased significantly from UV radiation exposure. This result agrees with the decrease in photosynthetic performance observed after exposure to ultraviolet radiation, as measured by a decrease in the electron transport rate (ETR), where values of ETRmax declined approximately 44.71%. It can be concluded that radiation is a factor that affects the young gametophytes of G. floridanum at this stage of development. © 2014 The American Society of Photobiology.

  9. Analysis of the UV-B Regime and Potential Effects on Alfalfa

    NASA Technical Reports Server (NTRS)

    Seitz, Jeffery C.

    1998-01-01

    Life at the surface of the Earth, over the last 400 m.y., evolved under conditions of decreased short-wave radiation (i.e., ultraviolet) relative to solar output due to absorption and scattering by constituents (e.g., ozone, water vapor, aerosols) in the upper atmosphere. However, a significant amount of ultraviolet radiation in the range from 280-320 nm, known as ultraviolet-B radiation, reaches the Earth's surface and has sufficient energy to be damaging to biologic tissue. Natural fluctuations in atmospheric constituents (seasonal variation, volcanic eruptions, etc.), changes in the orbital attitude of the Earth (precession, axial tilt, orbital eccentricity), and long-term solar variability contribute to changes in the total amount of ultraviolet radiation reaching the surface of the Earth, and thus, the biosphere. More recently, the atmospheric release of commercial propellants and refrigerants, known as chlorofluorocarbons (CFCs), has contributed to a significant depletion in naturally occurring ozone in the stratosphere. Thus, decreased stratospheric ozone has resulted in an increased UV-B flux at the Earth's surface which may have profound effects on terrestrial and marine organisms. In this study, we are investigating the effects of differing solar UV-B fluxes on alfalfa (Medicago sativa L.), an important agricultural crop. A long-term goal of this research is to develop spectral signatures to detect plant response to increased UV-B radiation from remote sensor platforms.

  10. Quercitrin protects skin from UVB-induced oxidative damage.

    PubMed

    Yin, Yuanqin; Li, Wenqi; Son, Young-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin; Yao, Hua; Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J; Luo, Jia; Gao, Ning; Shi, Xianglin; Zhang, Zhuo

    2013-06-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Quercitrin protects skin from UVB-induced oxidative damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Yuanqin; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY; Li, Wenqi

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidativemore » damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. - Highlights: • Oxidative stress plays a key role in UV-induced cell and tissue injuries. • Quercitrin decreases ROS generation and restores antioxidants irradiated by UVB. • Quercitrin reduces UVB-irradiated oxidative DNA damage, apoptosis, and inflammation. • Quercitrin functions as an antioxidant against UVB-induced skin injuries.« less

  12. UVB Radiation Delays Tribolium castaneum Metamorphosis by Influencing Ecdysteroid Metabolism.

    PubMed

    Sang, Wen; Yu, Lin; He, Li; Ma, Wei-Hua; Zhu, Zhi-Hui; Zhu, Fen; Wang, Xiao-Ping; Lei, Chao-Liang

    2016-01-01

    Ultraviolet B (UVB) radiation is an important environmental factor. It is generally known that UVB exhibits high genotoxicity due to causing DNA damage, potentially leading to skin carcinogenesis and aging in mammals. However, little is known about the effects of UVB on the development and metamorphosis of insects, which are the most abundant terrestrial animals. In the present study, we performed dose-response analyses of the effects UVB irradiation on Tribolium castaneum metamorphosis, assessed the function of the T. castaneum prothoracicotropic hormone gene (Trcptth), and analyzed ecdysteroid pathway gene expression profile and ecdysterone titers post-UVB irradiation. The results showed that UVB not only caused death of T. castaneum larvae, but also delayed larval-pupal metamorphosis and reduced the size and emergence rate of pupae. In addition, we verified the function of Trcptth, which is responsible for regulating metamorphosis. It was also found that the expression profiles of Trcptth as well as ecdysteroidogenesis and response genes were influenced by UVB radiation. Therefore, a disturbance pulse of ecdysteroid may be involved in delaying development under exposure to irradiation. To our knowledge, this is the first report indicating that UVB can influence the metamorphosis of insects. This study will contribute to a better understanding of the impact of UVB on signaling mechanisms in insect metamorphosis.

  13. Influence of uvA on the erythematogenic and therapeutic effects of uvB irradiation in psoriasis; photoaugmentation effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boer, J.; Schothorst, A.A.; Suurmond, D.

    1981-01-01

    The effect of repeated exposure to an additive dose of long ultraviolet (uvA) radiation on the erythemogenic and therapeutic effects of middle ultraviolet (uvB) irradiation was investigated in 8 patients with psoriasis. The surface of the backs of these patients was divided into 2 parts, 1 of which received only uvB irradiation 4 times a week and the other uvA + uvB. uvB was provided by Philips TL-12 lamps and uvA by glass-filtered Philips TL-09 lamps. uvA was held constantly at 10 J/cm2, whereas uvB alone were evaluated by 4 tests during the treatment to determine the minimal erythema dosemore » (MED). Test I (at the start of the therapy) showed a photoaugmentative effect which was no longer apparent in Test III (third week). Test III showed a reversal of the ratios of the MEDs of the sites irradiated with the uvA + uvB and uvB (MED A + B/MED B). This is ascribed to the marked pigmentation which appeared after repeated irradiation with the uvA + uvB combination. Comparison showed for the improvement of the psoriasis no distinct differences between uvA + uvB irradiation and uvB alone, but the former had the cosmetic advantage of giving pleasing tan.« less

  14. Ultraviolet radiation properties as applied to photoclimatherapy at the Dead Sea.

    PubMed

    Kudish, A I; Abels, D; Harari, M

    2003-05-01

    The Dead Sea basin, the lowest terrestrial point on earth, is recognized as a natural treatment center for patients with various cutaneous and rheumatic diseases. Psoriasis is the major skin disease treated at the Dead Sea with excellent improvement to complete clearance exceeding 85% after 4 weeks of treatment. These results were postulated to be associated with a unique spectrum of ultraviolet radiation present in the Dead Sea area. The UVB and UVA radiation at two sites is measured continuously by identical sets of broad-band Solar Light Co. Inc. meters (Philadelphia, PA). The spectral selectivity within the UVB and UVA spectrum was determined using a narrow-band spectroradiometer, UV-Optronics 742 (Orlando, FL). The optimum exposure time intervals for photoclimatherapy, defined as the minimum ratio of erythema to therapeutic radiation intensities, were also determined using a Solar Light Co. Inc. Microtops II, Ozone Monitor-Sunphotometer. The ultraviolet radiation at the Dead Sea is attenuated relative to Beer Sheva as a result of the increased optical path length and consequent enhanced scattering. The UVB radiation is attenuated to a greater extent than UVA and the shorter erythema UVB spectral range decreased significantly compared with the longer therapeutic UVB wavelengths. It was demonstrated that the relative attenuation within the UVB spectral range is greatest for the shorter erythema rays and less for the longer therapeutic UVB wavelengths, thus producing a greater proportion of the longer therapeutic UVB wavelengths in the ultraviolet spectrum. These measurements can be utilized to minimize the exposure to solar radiation by correlating the cumulative UVB radiation dose to treatment efficacy and by formulating a patient sun exposure treatment protocol for Dead Sea photoclimatherapy.

  15. UVB induces atypical melanocytic lesions and melanoma in human skin.

    PubMed Central

    Atillasoy, E. S.; Seykora, J. T.; Soballe, P. W.; Elenitsas, R.; Nesbit, M.; Elder, D. E.; Montone, K. T.; Sauter, E.; Herlyn, M.

    1998-01-01

    A direct causal relationship between ultraviolet (UV) light in the B range and melanoma development has not been demonstrated in humans; this study aims to establish causality. A total of 158 RAG-1 mice, grafted with human newborn foreskin, were separated into four groups and observed for a median of 10 months: 1) no treatment, 2) a single treatment with 7,12-dimethyl(a)benzanthracene (DMBA), 3) UVB irradiation at 500 J/m2 alone, three times weekly, and 4) a combination of DMBA and UVB. Twenty-three percent of 40 normal human skin grafts treated with UVB only and 38% of 48 grafts treated with the combination of DMBA and UVB developed solar lentigines within 5 to 10 months of treatment. Melanocytic hyperplasia was found in 73% of all UVB-treated xenografts. Histological melanocytic changes resembling lentigo and lentigo maligna were seen in several skin grafts treated with both DMBA and UVB. In one graft of an animal treated with a combination of DMBA and UVB, a human malignant melanoma, nodular type, developed. This experimental system demonstrates that chronic UVB irradiation with or without an initiating carcinogen can induce human melanocytic lesions, including melanoma. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:9588887

  16. Hormone-controlled UV-B responses in plants.

    PubMed

    Vanhaelewyn, Lucas; Prinsen, Els; Van Der Straeten, Dominique; Vandenbussche, Filip

    2016-08-01

    Ultraviolet B (UV-B) light is a portion of solar radiation that has significant effects on the development and metabolism of plants. Effects of UV-B on plants can be classified into photomorphogenic effects and stress effects. These effects largely rely on the control of, and interactions with, hormonal pathways. The fairly recent discovery of the UV-B-specific photoreceptor UV RESISTANCE LOCUS 8 (UVR8) allowed evaluation of the role of downstream hormones, leading to the identification of connections with auxin and gibberellin. Moreover, a substantial overlap between UVR8 and phytochrome responses has been shown, suggesting that part of the responses caused by UVR8 are under PHYTOCHROME INTERACTING FACTOR control. UV-B effects can also be independent of UVR8, and affect different hormonal pathways. UV-B affects hormonal pathways in various ways: photochemically, affecting biosynthesis, transport, and/or signaling. This review concludes that the effects of UV-B on hormonal regulation can be roughly divided in two: inhibition of growth-promoting hormones; and the enhancement of environmental stress-induced defense hormones. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. RESPONSE OF OXIDATIVE STRESS DEFENSE SYSTEMS IN RICE (ORYZA SATIVA) LEAVES WITH SUPPLEMENTAL UV-B RADIATION

    EPA Science Inventory

    The impact of elevated ultraviolet-B radiation (UV-B, 280-320 nm) on membrane systems and lipid peroxidation, and possible involvement of active oxygen radicals was investigated in leaves of two UV-B susceptible rice cultivars (Oryza sativa L. cvs IR74 and Dular). Rice seedlings ...

  18. Comparison of Solar UVA and UVB Radiation Measured in Selangor, Malaysia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamarudin, S. U.; Gopir, G.; Yatim, B.

    The solar ultraviolet A (UVA) radiation data was measured at Physics Building, Universiti Kebangsaan Malaysia (2 degree sign 55' N, 101 degree sign 46' E, 50m asl) by the Xplorer GLX Pasco that connected to UVA Light sensor. The measured solar UVA data were compared with the total daily solar ultraviolet B (UVB) radiation data recorded by the Malaysian Metrological Department at Petaling Jaya, Malaysia (3 degree sign 06' N, 101 degree sign 39' E, 50m asl) for 18 days in year 2007. The daily total average of UVA radiation received is (298{+-}105) kJm{sup -2} while the total daily maximummore » is (600{+-}56) kJm{sup -2}. From the analysis, it shows that the values of UVA radiation data were higher than UVB radiation data with the average ratio of 6.41% between 3-14%. A weak positive correlation was found (the correlation coefficient, r, is 0.22). The amount of UVA radiation that reached the earth surface is less dependence on UVB radiation and the factors were discussed.« less

  19. UV-B Radiation Induces Root Bending Through the Flavonoid-Mediated Auxin Pathway in Arabidopsis.

    PubMed

    Wan, Jinpeng; Zhang, Ping; Wang, Ruling; Sun, Liangliang; Wang, Wenying; Zhou, Huakun; Xu, Jin

    2018-01-01

    Ultraviolet (UV)-B radiation-induced root bending has been reported; however, the underlying mechanisms largely remain unclear. Here, we investigate whether and how auxin and flavonoids are involved in UV-B radiation-induced root bending in Arabidopsis using physiological, pharmacological, and genetic approaches. UV-B radiation modulated the direction of root growth by decreasing IAA biosynthesis and affecting auxin distribution in the root tips, where reduced auxin accumulation and asymmetric auxin distribution were observed. UV-B radiation increased the distribution of auxin on the nonradiated side of the root tips, promoting growth and causing root bending. Further analysis indicated that UV-B induced an asymmetric accumulation of flavonoids; this pathway is involved in modulating the accumulation and asymmetric distribution of auxin in root tips and the subsequent redirection of root growth by altering the distribution of auxin carriers in response to UV-B radiation. Taken together, our results indicate that UV-B radiation-induced root bending occurred through a flavonoid-mediated phototropic response to UV-B radiation.

  20. Photomorphogenic responses to ultraviolet-B light.

    PubMed

    Jenkins, Gareth I

    2017-11-01

    Exposure to ultraviolet B (UV-B) light regulates numerous aspects of plant metabolism, morphology and physiology through the differential expression of hundreds of genes. Photomorphogenic responses to UV-B are mediated by the photoreceptor UV RESISTANCE LOCUS8 (UVR8). Considerable progress has been made in understanding UVR8 action: the structural basis of photoreceptor function, how interaction with CONSTITUTIVELY PHOTOMORPHOGENIC 1 initiates signaling and how REPRESSOR OF UV-B PHOTOMORPHOGENESIS proteins negatively regulate UVR8 action. In addition, recent research shows that UVR8 mediates several responses through interaction with other signaling pathways, in particular auxin signaling. Nevertheless, many aspects of UVR8 action remain poorly understood. Most research to date has been undertaken with Arabidopsis, and it is important to explore the functions and regulation of UVR8 in diverse plant species. Furthermore, it is essential to understand how UVR8, and UV-B signaling in general, regulates processes under natural growth conditions. Ultraviolet B regulates the expression of many genes through UVR8-independent pathways, but the activity and importance of these pathways in plants growing in sunlight are poorly understood. © 2017 John Wiley & Sons Ltd.

  1. The UVR8 UV-B Photoreceptor: Perception, Signaling and Response

    PubMed Central

    Tilbrook, Kimberley; Arongaus, Adriana B.; Binkert, Melanie; Heijde, Marc; Yin, Ruohe; Ulm, Roman

    2013-01-01

    Ultraviolet-B radiation (UV-B) is an intrinsic part of sunlight that is accompanied by significant biological effects. Plants are able to perceive UV-B using the UV-B photoreceptor UVR8 which is linked to a specific molecular signaling pathway and leads to UV-B acclimation. Herein we review the biological process in plants from initial UV-B perception and signal transduction through to the known UV-B responses that promote survival in sunlight. The UVR8 UV-B photoreceptor exists as a homodimer that instantly monomerises upon UV-B absorption via specific intrinsic tryptophans which act as UV-B chromophores. The UVR8 monomer interacts with COP1, an E3 ubiquitin ligase, initiating a molecular signaling pathway that leads to gene expression changes. This signaling output leads to UVR8-dependent responses including UV-B-induced photomorphogenesis and the accumulation of UV-B-absorbing flavonols. Negative feedback regulation of the pathway is provided by the WD40-repeat proteins RUP1 and RUP2, which facilitate UVR8 redimerization, disrupting the UVR8-COP1 interaction. Despite rapid advancements in the field of recent years, further components of UVR8 UV-B signaling are constantly emerging, and the precise interplay of these and the established players UVR8, COP1, RUP1, RUP2 and HY5 needs to be defined. UVR8 UV-B signaling represents our further understanding of how plants are able to sense their light environment and adjust their growth accordingly. PMID:23864838

  2. Eliminate background interference from latent fingerprints using ultraviolet multispectral imaging

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Xu, Xiaojing; Wang, Guiqiang

    2014-02-01

    Fingerprints are the most important evidence in crime scene. The technology of developing latent fingerprints is one of the hottest research areas in forensic science. Recently, multispectral imaging which has shown great capability in fingerprints development, questioned document detection and trace evidence examination is used in detecting material evidence. This paper studied how to eliminate background interference from non-porous and porous surface latent fingerprints by rotating filter wheel ultraviolet multispectral imaging. The results approved that background interference could be removed clearly from latent fingerprints by using multispectral imaging in ultraviolet bandwidth.

  3. Photoreceptor-mediated bending towards UV-B in Arabidopsis.

    PubMed

    Vandenbussche, Filip; Tilbrook, Kimberley; Fierro, Ana Carolina; Marchal, Kathleen; Poelman, Dirk; Van Der Straeten, Dominique; Ulm, Roman

    2014-06-01

    Plants reorient their growth towards light to optimize photosynthetic light capture--a process known as phototropism. Phototropins are the photoreceptors essential for phototropic growth towards blue and ultraviolet-A (UV-A) light. Here we detail a phototropic response towards UV-B in etiolated Arabidopsis seedlings. We report that early differential growth is mediated by phototropins but clear phototropic bending to UV-B is maintained in phot1 phot2 double mutants. We further show that this phototropin-independent phototropic response to UV-B requires the UV-B photoreceptor UVR8. Broad UV-B-mediated repression of auxin-responsive genes suggests that UVR8 regulates directional bending by affecting auxin signaling. Kinetic analysis shows that UVR8-dependent directional bending occurs later than the phototropin response. We conclude that plants may use the full short-wavelength spectrum of sunlight to efficiently reorient photosynthetic tissue with incoming light. © The Author 2014. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.

  4. Protective mechanisms and acclimation to solar ultraviolet-B radiation in Oenothera stricta

    NASA Technical Reports Server (NTRS)

    Robberecht, R.; Caldwell, M. M.

    1981-01-01

    Plant adaptations ameliorating or repairing the damaging effects of ultraviolet-B (UV-B) radiation on plant tissue were investigated. The degree of phenotype plasticity in UV protective mechanisms and acclimation in relation to the natural solar UV-B radiation flux and in an enhanced UV-B irradiance environment was also examined. Mechanisms by which plants avoid radiation, adaptations altering the path of radiation incident on the leaf, and repair processes were considered. Attenuation of UV-B by tissues, UV-B irradiation into the leaf, and the effects of UV-B on photosynthesis were investigated.

  5. Caffeine Eye Drops Protect Against UV-B Cataract

    PubMed Central

    Kronschläger, Martin; Löfgren, Stefan; Yu, Zhaohua; Talebizadeh, Nooshin; Varma, Shambhu D.; Söderberg, Per

    2013-01-01

    The purpose of this study was to investigate if topically applied caffeine protects against in vivo ultraviolet radiation cataract and if so, to estimate the protection factor. Three experiments were carried out. First, two groups of Sprague-Dawley rats were pre-treated with a single application of either placebo or caffeine eye drops in both eyes. All animals were then unilaterally exposed in vivo to 8 kJ/m2 UV-B radiation for 15 min. One week later, the lens GSH levels were measured and the degree of cataract was quantified by measurement of in vitro lens light scattering. In the second experiment, placebo and caffeine pre-treated rats were divided in five UV-B radiation dose groups, receiving 0.0, 2.6, 3.7, 4.5 or 5.2 kJ/m2 UV-B radiation in one eye. Lens light scattering was determined after one week. In the third experiment, placebo and caffeine pre-treated rats were UV-B-exposed and the presence of activated caspase-3 was visualized by immunohistochemistry. There was significantly less UV-B radiation cataract in the caffeine group than in the placebo group (95% confidence interval for mean difference in lens light scattering between the groups = 0.10 ± 0.05 tEDC), and the protection factor for caffeine was 1.23. There was no difference in GSH levels between the placebo- and the caffeine group. There was more caspase-3 staining in UV-B-exposed lenses from the placebo group than in UV-B-exposed lenses from the caffeine group. Topically applied caffeine protects against ultraviolet radiation cataract, reducing lens sensitivity 1.23 times. PMID:23644096

  6. Tangeretin reduces ultraviolet B (UVB)-induced cyclooxygenase-2 expression in mouse epidermal cells by blocking mitogen-activated protein kinase (MAPK) activation and reactive oxygen species (ROS) generation.

    PubMed

    Yoon, Ji Hye; Lim, Tae-Gyu; Lee, Kyung Mi; Jeon, Ae Ji; Kim, Su Yeon; Lee, Ki Won

    2011-01-12

    The present study examined the effects of tangeretin, a polymethoxylated flavonone present in citrus fruits, on ultraviolet B (UVB)-induced cyclooxygenase-2 (COX-2) expression in JB6 P+ mouse skin epidermal cells. Tangeretin suppressed UVB-induced COX-2 expression and transactivation of nuclear factor-κB and activator protein-1 in JB6 P+ cells. Moreover, tangeretin blocked UVB-induced phosphorylation of Akt and mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated protein kinase, c-Jun N-terminal kinase, and p38, and attenuated the phosphorylation of MAPK kinases 1/2, 3/6, and 4. Tangeretin also limited the endogenous generation of reactive oxygen species (ROS), thereby protecting the cells against oxidative stress. However, tangeretin did not scavenge the stable 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and influence the nicotinamide adenine dinucleotide phosphate oxidase activity. These results suggest that the anti-inflammatory effects of tangeretin stem from its modulation of cell signaling and suppression of intracellular ROS generation. Tangeretin may have a potent chemopreventive effect in skin cancer.

  7. Baicalin Scavenged Reactive Oxygen Species and Protected Human Keratinocytes Against UVB-induced Cytotoxicity.

    PubMed

    Chang, Wen-Shin; Lin, En-Yuan; Hsu, Shih-Wei; Hu, Pei-Shin; Chuang, Chin-Liang; Liao, Cheng-Hsi; Fu, Chun-Kai; Su, Chung-Hao; Gong, Chi-Li; Hsiao, Chieh-Lun; Bau, DA-Tian; Tsai, Chia-Wen

    Ultraviolet B (UVB), with a wavelength of 280-320 nm, represents one of the most important environmental factors for skin disorders, including sunburn, hyperpigmentation, solar keratosis, solar elastosis and skin cancer. Therefore, protection against excessive UVA-induced damage is useful for prevention of sunburn and other human diseases. Baicalin, a major component of traditional Chinese medicine Scutellaria baicalensis, has been reported to possess antioxidant and cytostatic capacities. In this study, we examined whether baicalin is also capable of protecting human keratinocytes from UVB irradiation. The results showed that baicalin effectively scavenged reactive oxygen species (ROS) elevated within 4 h after UVB radiation and reversed the UVB-suppressed cell viability and UVB-induced apoptosis after 24 h. Our results demonstrated the utility of baicalin to complement the contributions of traditional Chinese medicine in UVB-induced damage to skin and suggested their potential application as pharmaceutical agents in long-term sun-shining injury prevention. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  8. MECHANISMS OF PLANT RESISTANCE TO INCREASED SOLAR ULTRAVIOLET-B RADIATION

    EPA Science Inventory

    Since the major conclusions of the project are being disseminated via the scientific literature, the final report consists of a compilation of 11 articles and manuscripts on the effects of ultraviolet-B radiation (UVB) on soybean growth and yield, stress interactions with UVB, an...

  9. UV-B Radiation Induces Root Bending Through the Flavonoid-Mediated Auxin Pathway in Arabidopsis

    PubMed Central

    Wan, Jinpeng; Zhang, Ping; Wang, Ruling; Sun, Liangliang; Wang, Wenying; Zhou, Huakun; Xu, Jin

    2018-01-01

    Ultraviolet (UV)-B radiation-induced root bending has been reported; however, the underlying mechanisms largely remain unclear. Here, we investigate whether and how auxin and flavonoids are involved in UV-B radiation-induced root bending in Arabidopsis using physiological, pharmacological, and genetic approaches. UV-B radiation modulated the direction of root growth by decreasing IAA biosynthesis and affecting auxin distribution in the root tips, where reduced auxin accumulation and asymmetric auxin distribution were observed. UV-B radiation increased the distribution of auxin on the nonradiated side of the root tips, promoting growth and causing root bending. Further analysis indicated that UV-B induced an asymmetric accumulation of flavonoids; this pathway is involved in modulating the accumulation and asymmetric distribution of auxin in root tips and the subsequent redirection of root growth by altering the distribution of auxin carriers in response to UV-B radiation. Taken together, our results indicate that UV-B radiation-induced root bending occurred through a flavonoid-mediated phototropic response to UV-B radiation. PMID:29868074

  10. UV-B radiation and photosynthetic irradiance acclimate eggplant for outdoor exposure

    NASA Technical Reports Server (NTRS)

    Latimer, J. G.; Mitchell, C. A.; Mitchell, G. A.

    1987-01-01

    Treatment of greenhouse-grown eggplant (Solanum melongena L. var. esculentum Nees. 'Burpee's Black Beauty') seedlings with supplemental photosynthetically active radiation from cool-white fluorescent lamps increased growth of plants subsequently transferred outdoors relative to growth of plants that received no supplemental radiation or were shaded to 45% of solar irradiation in the greenhouse before transfer outdoors. Eggplant seedlings transferred outdoors were placed under plastic tarps either to provide relative protection from solar ultraviolet-B (UV-B) radiation (280-315 nm) using Mylar film or to allow exposure to UV-B using cellulose acetate. Protection of seedlings from UV-B radiation resulted in greater leaf expansion than for UV-B-exposed seedlings, but no change in leaf or shoot dry weight occurred after 9 days of treatment. Specific leaf weight increased in response to UV-B exposure outdoors. Exposure of eggplant to UV-B radiation from fluorescent sunlamps in the greenhouse also decreased leaf expansion and leaf and shoot dry weight gain after 5 days of treatment. However, there were no differences in leaf or shoot dry weight relative to control plants after 12 days of UV-B treatment, indicating that UV-B treated plants had acclimated to the treatment and actually had caught up with non-UV-B-irradiated plants in terms of growth.

  11. UV-B radiation and photosynthetic irradiance acclimate eggplant for outdoor exposure.

    PubMed

    Latimer, J G; Mitchell, C A; Mitchell, G A

    1987-06-01

    Treatment of greenhouse-grown eggplant (Solanum melongena L. var. esculentum Nees. 'Burpee's Black Beauty') seedlings with supplemental photosynthetically active radiation from cool-white fluorescent lamps increased growth of plants subsequently transferred outdoors relative to growth of plants that received no supplemental radiation or were shaded to 45% of solar irradiation in the greenhouse before transfer outdoors. Eggplant seedlings transferred outdoors were placed under plastic tarps either to provide relative protection from solar ultraviolet-B (UV-B) radiation (280-315 nm) using Mylar film or to allow exposure to UV-B using cellulose acetate. Protection of seedlings from UV-B radiation resulted in greater leaf expansion than for UV-B-exposed seedlings, but no change in leaf or shoot dry weight occurred after 9 days of treatment. Specific leaf weight increased in response to UV-B exposure outdoors. Exposure of eggplant to UV-B radiation from fluorescent sunlamps in the greenhouse also decreased leaf expansion and leaf and shoot dry weight gain after 5 days of treatment. However, there were no differences in leaf or shoot dry weight relative to control plants after 12 days of UV-B treatment, indicating that UV-B treated plants had acclimated to the treatment and actually had caught up with non-UV-B-irradiated plants in terms of growth.

  12. Dandelion Extracts Protect Human Skin Fibroblasts from UVB Damage and Cellular Senescence

    PubMed Central

    Yang, Yafan; Li, Shuangshuang

    2015-01-01

    Ultraviolet (UV) irradiation causes damage in skin by generating excessive reactive oxygen species (ROS) and induction of matrix metalloproteinases (MMPs), leading to skin photoageing. Dandelion extracts have long been used for traditional Chinese medicine and native American medicine to treat cancers, hepatitis, and digestive diseases; however, less is known on the effects of dandelion extracts in skin photoageing. Here we found that dandelion leaf and flower extracts significantly protect UVB irradiation-inhibited cell viability when added before UVB irradiation or promptly after irradiation. Dandelion leaf and flower extracts inhibited UVB irradiation-stimulated MMP activity and ROS generation. Dandelion root extracts showed less action on protecting HDFs from UVB irradiation-induced MMP activity, ROS generation, and cell death. Furthermore, dandelion leaf and flower but not root extracts stimulated glutathione generation and glutathione reductase mRNA expression in the presence or absence of UVB irradiation. We also found that dandelion leaf and flower extracts help absorb UVB irradiation. In addition, dandelion extracts significantly protected HDFs from H2O2-induced cellular senescence. In conclusion, dandelion extracts especially leaf and flower extracts are potent protective agents against UVB damage and H2O2-induced cellular senescence in HDFs by suppressing ROS generation and MMP activities and helping UVB absorption. PMID:26576225

  13. Epidemiologic evidence for different roles of ultraviolet A and B radiation in melanoma mortality rates.

    PubMed

    Garland, Cedric F; Garland, Frank C; Gorham, Edward D

    2003-07-01

    The action spectrum of ultraviolet radiation mainly responsible for melanoma induction is unknown, but evidence suggests it could be ultraviolet A (UVA), which has a different geographic distribution than ultraviolet B (UVB). This study assessed whether melanoma mortality rates are more closely related to the global distribution of UVA or UVB. UVA and UVB radiation and age-adjusted melanoma mortality rates were obtained for all 45 countries reporting cancer data to the World Health Organization. Stratospheric ozone data were obtained from NASA satellites. Average population skin pigmentation was obtained from skin reflectometry measurements. Paradoxically, melanoma mortality rates decreased with increasing UVB in men (r = -0.48, p < 0.001), and women (r = -0.57, p < 0.001), and with increasing UVA in both sexes. By contrast, rates were positively associated with increasing UVA/UVB ratio in men (r = + 0.49, p < 0.001) and women (r = + 0.55, p < 0.001). After multiple adjustment that included controlling for skin pigmentation, only UVA was associated with melanoma mortality rates in men (p < 0.02) with a suggestive but non-significant trend present in women (p = 0.12). UVA radiation was associated with melanoma mortality rates after controlling for UVB and average pigmentation. The results require confirmation in observational studies.

  14. Different levels of UV-B resistance in Vaccinium corymbosum cultivars reveal distinct backgrounds of phenylpropanoid metabolites.

    PubMed

    Luengo Escobar, Ana; Magnum de Oliveira Silva, Franklin; Acevedo, Patricio; Nunes-Nesi, Adriano; Alberdi, Miren; Reyes-Díaz, Marjorie

    2017-09-01

    UV-B radiation induces several physiological and biochemical effects that can influence regulatory plant processes. Vaccinium corymbosum responds differently to UV-B radiation depending on the UV-B resistance of cultivars, according to their physiological and biochemical features. In this work, the effect of two levels of UV-B radiation during long-term exposure on the phenylpropanoid biosynthesis, and the expression of genes associated with flavonoid biosynthesis as well as the absolute quantification of secondary metabolites were studied in two contrasting UV-B-resistant cultivars (Legacy, resistant and Bluegold, sensitive). Multivariate analyses were performed to understand the role of phenylpropanoids in UV-B defense mechanisms. The amount of phenylpropanoid compounds was generally higher in Legacy than in Bluegold. Different expression levels of flavonoid biosynthetic genes for both cultivars were transiently induced, showing that even in longer period of UV-B exposure; plants are still adjusting their phenylpropanoids at the transcription levels. Multivariate analysis in Legacy indicated no significant correlation between gene expression and the levels of the flavonoids and phenolic acids. By contrast, in the Bluegold cultivar higher number of correlations between secondary metabolite and transcript levels was found. Taken together, the results indicated different adjustments between the cultivars for a successful UV-B acclimation. While the sensitive cultivar depends on metabolite adjustments to respond to UV-B exposure, the resistant cultivar also possesses an intrinsically higher antioxidant and UV-B screening capacity. Thus, we conclude that UV-B resistance involves not only metabolite level adjustments during the acclimation period, but also depends on the intrinsic metabolic status of the plant and metabolic features of the phenylpropanoid compounds. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. The Polyphenol Chlorogenic Acid Attenuates UVB-mediated Oxidative Stress in Human HaCaT Keratinocytes

    PubMed Central

    Cha, Ji Won; Piao, Mei Jing; Kim, Ki Cheon; Yao, Cheng Wen; Zheng, Jian; Kim, Seong Min; Hyun, Chang Lim; Ahn, Yong Seok; Hyun, Jin Won

    2014-01-01

    We investigated the protective effects of chlorogenic acid (CGA), a polyphenol compound, on oxidative damage induced by UVB exposure on human HaCaT cells. In a cell-free system, CGA scavenged 1,1-diphenyl-2-picrylhydrazyl radicals, superoxide anions, hydroxyl radicals, and intracellular reactive oxygen species (ROS) generated by hydrogen peroxide and ultraviolet B (UVB). Furthermore, CGA absorbed electromagnetic radiation in the UVB range (280–320 nm). UVB exposure resulted in damage to cellular DNA, as demonstrated in a comet assay; pre-treatment of cells with CGA prior to UVB irradiation prevented DNA damage and increased cell viability. Furthermore, CGA pre-treatment prevented or ameliorated apoptosis-related changes in UVB-exposed cells, including the formation of apoptotic bodies, disruption of mitochondrial membrane potential, and alterations in the levels of the apoptosis-related proteins Bcl-2, Bax, and caspase-3. Our findings suggest that CGA protects cells from oxidative stress induced by UVB radiation. PMID:24753819

  16. Ultra-violet B (UVB)-induced skin cell death occurs through a cyclophilin D intrinsic signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Chao; Yang, Bo; Yang, Zhi

    Highlights: Black-Right-Pointing-Pointer UVB radiated skin keratinocytes show cyclophilin D (Cyp-D) upregulation. Black-Right-Pointing-Pointer NAC inhibits UVB induced Cyp-D expression, while H{sub 2}O{sub 2} facilitates it. Black-Right-Pointing-Pointer Cyp-D-deficient cells are significantly less susceptible to UVB induced cell death. Black-Right-Pointing-Pointer Over-expression of Cyp-D causes spontaneous keratinocytes cell death. -- Abstract: UVB-induced skin cell damage involves the opening of mitochondrial permeability transition pore (mPTP), which leads to both apoptotic and necrotic cell death. Cyclophilin D (Cyp-D) translocation to the inner membrane of mitochondrion acts as a key component to open the mPTP. Our Western-Blot results in primary cultured human skin keratinocytes and in HaCaTmore » cell line demonstrated that UVB radiation and hydrogen peroxide (H{sub 2}O{sub 2}) induced Cyp-D expression, which was inhibited by anti-oxidant N-acetyl cysteine (NAC). We created a stable Cyp-D deficiency skin keratinocytes by expressing Cyp-D-shRNA through lentiviral infection. Cyp-D-deficient cells were significantly less susceptible than their counterparts to UVB- or H{sub 2}O{sub 2}-induced cell death. Further, cyclosporine A (Cs-A), a Cyp-D inhibitor, inhibited UVB- or H{sub 2}O{sub 2}-induced keratinocytes cell death. Reversely, over-expression of Cyp-D in primary keratinocytes caused spontaneous keratinocytes cell death. These results suggest Cyp-D's critical role in UVB/oxidative stress-induced skin cell death.« less

  17. Impact of UV-B exposure on amphibian embryos: linking species physiology and oviposition behaviour

    PubMed Central

    Palen, Wendy J; Williamson, Craig E; Clauser, Aaron A; Schindler, Daniel E

    2005-01-01

    Increasing ultraviolet-B radiation (UV-B) has recently captured the attention of ecologists as a key environmental stressor. Certain species may be particularly vulnerable as a result of either high natural exposure to UV-B or limited physiological capacity to withstand it. UV-B sensitivity has been examined at the cellular and individual level for a wide variety of taxa, but estimates of exposure to UV-B in natural systems are lacking and predictions of large-scale impacts are therefore limited. Here, we combine data on the physiological sensitivity to UV-B and patterns of field exposure across sites for embryos of several well-studied US Pacific Northwest amphibian species. We find substantial differences among species' physiological abilities to withstand UV-B and in the level of UV-B exposure of embryos in the field. More specifically, we find that species with the highest physiological sensitivity to UV-B are those with the lowest field exposures as a function of the location of embryos and the UV-B attenuation properties of water at each site. These results also suggest that conclusions made about species' vulnerability to UV-B in the absence of information on field exposures may often be misleading. PMID:16024386

  18. POTENTIAL IMPACTS OF INCREASED SOLAR UV-B ON GLOBAL PLANT PRODUCTIVITY

    EPA Science Inventory

    Ultraviolet-B radiation comprises only a small portion of the electromagnetic spectrum but has a disproportionately large photobiological effect. oth plants and animals are greatly affected by increases in UV-B radiation but there exists tremendous variability in the sensitivity ...

  19. REPRESSOR OF ULTRAVIOLET-B PHOTOMORPHOGENESIS function allows efficient phototropin mediated ultraviolet-B phototropism in etiolated seedlings.

    PubMed

    Vanhaelewyn, Lucas; Schumacher, Paolo; Poelman, Dirk; Fankhauser, Christian; Van Der Straeten, Dominique; Vandenbussche, Filip

    2016-11-01

    Ultraviolet B (UV-B) light is a part of the solar radiation which has significant effects on plant morphology, even at low doses. In Arabidopsis, many of these morphological changes have been attributed to a specific UV-B receptor, UV resistance locus 8 (UVR8). Recent findings showed that next to phototropin regulated phototropism, UVR8 mediated signaling is able of inducing directional bending towards UV-B light in etiolated seedlings of Arabidopsis, in a phototropin independent manner. In this study, kinetic analysis of phototropic bending was used to evaluate the relative contribution of each of these pathways in UV-B mediated phototropism. Diminishing UV-B light intensity favors the importance of phototropins. Molecular and genetic analyses suggest that UV-B is capable of inducing phototropin signaling relying on phototropin kinase activity and regulation of NPH3. Moreover, enhanced UVR8 responses in the UV-B hypersensitive rup1rup2 mutants interferes with the fast phototropin mediated phototropism. Together the data suggest that phototropins are the most important receptors for UV-B induced phototropism in etiolated seedlings, and a RUP mediated negative feedback pathway prevents UVR8 signaling to interfere with the phototropin dependent response. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Early exposure to ultraviolet-B radiation decreases immune function later in life

    PubMed Central

    Ceccato, Emma; Cramp, Rebecca L.; Seebacher, Frank; Franklin, Craig E.

    2016-01-01

    Amphibians have declined dramatically worldwide. Many of these declines are occurring in areas where no obvious anthropogenic stressors are present. It is proposed that in these areas, environmental factors such as elevated solar ultraviolet-B (UV-B) radiation could be responsible. Ultraviolet-B levels have increased in many parts of the world as a consequence of the anthropogenic destruction of the ozone layer. Amphibian tadpoles are particularly sensitive to the damaging effects of UV-B radiation, with exposure disrupting growth and fitness in many species. Given that UV-B can disrupt immune function in other animals, we tested the hypothesis that early UV-B exposure suppresses the immune responses of amphibian tadpoles and subsequent juvenile frogs. We exposed Limnodynastes peronii tadpoles to sublethal levels of UV-B radiation for 6 weeks after hatching, then examined indices of immune function in both the tadpoles and the subsequent metamorphs. There was no significant effect of UV-B on tadpole leucocyte counts or on their response to an acute antigen (phytohaemagglutinin) challenge. However, early UV-B exposure resulted in a significant reduction in both metamorph leucocyte abundance and their response to an acute phytohaemagglutinin challenge. These data demonstrate that early UV-B exposure can have carry-over effects on later life-history traits even if the applied stressor has no immediately discernible effect. These findings have important implications for our understanding of the effects of UV-B exposure on amphibian health and susceptibility to diseases such as chytridiomycosis. PMID:27668081

  1. Micro-Raman spectroscopy study of the effect of Mid-Ultraviolet radiation on erythrocyte membrane.

    PubMed

    Li, N; Li, S X; Guo, Z Y; Zhuang, Z F; Li, R; Xiong, K; Chen, S J; Liu, S H

    2012-07-02

    Mid-Ultraviolet (UVB) has a significant influence on human health. In this study, human erythrocytes were exposed to UVB to investigate the effects of UVB radiation on erythrocytes membrane. And Micro-Raman spectroscopy was employed to detect the damage. Principal component analysis (PCA) was used to classify the control erythrocytes and the irradiated erythrocytes. Results showed that the erythrocytes membrane was damaged by Mid-Ultraviolet (UVB) radiation. The intensity of the Raman peaks at 1126 cm(-1) and 1082 cm(-1) were used to calculate the Longitudinal Order-Parameters in Chains (S(trans)) which can present the liquidity and ionic permeability of erythrocyte membrane. After UVB radiation for 30 min, both the liquidity and ionic permeability decreased. At the same time, the intensity of the peaks at 1302 cm(-1) (α-helix), 1254 cm(-1) (random coil), 1452 cm(-1) and 1430 cm(-1) (CH(2)/CH(3) stretch) have also changed which indicated the membrane protein also been damaged by UVB. In the whole process of radiation, the more UVB radiation dose the more damage on the erythrocyte membrane. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Myricetin suppresses UVB-induced wrinkle formation and MMP-9 expression by inhibiting Raf

    PubMed Central

    Jung, Sung Keun; Lee, Ki Won; Kim, Ho Young; Oh, Mi Hyun; Byun, Sanguine; Lim, Sung Hwan; Heo, Yong-Seok; Kang, Nam Joo; Bode, Ann M.; Dong, Zigang; Lee, Hyong Joo

    2010-01-01

    Chronic exposure to solar ultraviolet (UV) light causes skin photoaging. Many studies have shown that naturally occurring phytochemicals have anti-photoaging effects, but their direct target molecule(s) and mechanism(s) remain unclear. We found that myricetin, a major flavonoid in berries and red wine, inhibited wrinkle formation in mouse skin induced by chronic UVB irradiation (0.18 J/cm2, 3 days/wk for 15 wk). Myricetin treatment reduced UVB-induced epidermal thickening of mouse skin and also suppressed UVB-induced matrix metalloproteinase-9 (MMP-9) protein expression and enzyme activity. Myricetin appeared to exert its anti-aging effects by suppressing UVB-induced Raf kinase activity and subsequent attenuation of UVB-induced phosphorylation of MEK and ERK in mouse skin. In vitro and in vivo pull-down assays revealed that myricetin bound with Raf in an ATP-noncompetitive manner. Overall, these results indicate that myricetin exerts potent anti-photoaging activity by regulating MMP-9 expression through the suppression of Raf kinase activity. PMID:20093107

  3. Assessment of the impact of increased solar ultraviolet radiation upon marine ecosystems

    NASA Technical Reports Server (NTRS)

    Worrest, R. C.; Vandyke, H.

    1978-01-01

    Reduction of the earth's ozone layer, with a resultant increase in transmission of solar ultraviolet radiation in the 290 to 320nm waveband (UV-B), via space shuttle operations through the stratosphere is considered. It is shown that simulated solar ultraviolet radiation can, under experimental conditions, detrimentally affect the marine organisms that form the base of the food web of oceanic and estuarine ecosystems. Whether a small increase in biologically harmful ultraviolet radiation might overwhelm these mechanisms and produce changes that will have damaging consequences to the biosphere is discussed. The potential for irreversible damage to the productivity, structure and/or functioning of a model estuarine ecosystem by increased UV-B radiation and whether these ecosystems are highly stable or amenable to adaptive change is studied. Data are provided to assess the potential impact upon marine ecosystems if space shuttle operations contribute to a reduction of the stratospheric ozone layer and the sensitivity of key community components to increased UV-B radiation is examined.

  4. Myricetin inhibits UVB-induced angiogenesis by regulating PI-3 kinase in vivo

    PubMed Central

    Jung, Sung Keun; Lee, Ki Won; Byun, Sanguine; Lee, Eun Jung; Kim, Jong-Eun; Bode, Ann M.; Dong, Zigang

    2010-01-01

    Myricetin is one of the principal phytochemicals in onions, berries and red wine. Previous studies showed that myricetin exhibits potent anticancer and chemopreventive effects. The present study examined the effect of myricetin on ultraviolet (UV) B-induced angiogenesis in an SKH-1 hairless mouse skin tumorigenesis model. Topical treatment with myricetin inhibited repetitive UVB-induced neovascularization in SKH-1 hairless mouse skin. The induction of vascular endothelial growth factor, matrix metalloproteinase (MMP)-9 and MMP-13 expression by chronic UVB irradiation was significantly suppressed by myricetin treatment. Immunohistochemical and western blot analyses revealed that myricetin inhibited UVB-induced hypoxia inducible factor-1α expression in mouse skin. Western blot analysis and kinase assay data revealed that myricetin suppressed UVB-induced phosphatidylinositol-3 (PI-3) kinase activity and subsequently attenuated the UVB-induced phosphorylation of Akt/p70S6K in mouse skin lysates. A pull-down assay revealed the direct binding of PI-3 kinase and myricetin in mouse skin lysates. Our results indicate that myricetin suppresses UVB-induced angiogenesis by regulating PI-3 kinase activity in vivo in mouse skin. PMID:20008033

  5. Ganoderma lucidum polysaccharides protect fibroblasts against UVB-induced photoaging

    PubMed Central

    Zeng, Qinghai; Zhou, Fang; Lei, Li; Chen, Jing; Lu, Jianyun; Zhou, Jianda; Cao, Ke; Gao, Lihua; Xia, Fang; Ding, Shu; Huang, Lihua; Xiang, Hong; Wang, Jingjing; Xiao, Yangfan; Xiao, Rong; Huang, Jinhua

    2017-01-01

    Ganoderma lucidum has featured in traditional Chinese medicine for >1,000 years. Ganoderma polysaccharides (GL-PS), a major active ingredient in Ganoderma, confer immune regulation, antitumor effects and significant antioxidant effects. The aim of the present study was to investigate the efficacy and mechanism of GL-PS-associated inhibition of ultraviolet B (UVB)-induced photoaging in human fibroblasts in vitro. Primary human skin fibroblasts were cultured, and a fibroblast photoaging model was built through exposure to UVB. Cell viability was measured by MTT assay. Aged cells were stained using a senescence-associated β-galactosidase staining (SA-β-gal) kit. ELISA kits were used to analyze matrix metalloproteinase (MMP) −1 and C-telopeptides of Type I collagen (CICP) protein levels in cellular supernatant. ROS levels were quantified by flow cytometry. Cells exposed to UVB had decreased cell viability, increased aged cells, decreased CICP protein expression, increased MMP-1 protein expression, and increased cellular ROS levels compared with non-exposed cells. However, cells exposed to UVB and treated with 10, 20 and 40 µg/ml GL-PS demonstrated increased cell viability, decreased aged cells, increased CICP protein expression, decreased MMP-1 protein expression, and decreased cellular ROS levels compared with UVB exposed/GL-PS untreated cells. These results demonstrate that GL-PS protects fibroblasts against photoaging by eliminating UVB-induced ROS. This finding indicates GL-PS treatment may serve as a novel strategy for antiphotoaging. PMID:27959406

  6. Lycium barbarum polysaccharide protects human keratinocytes against UVB-induced photo-damage.

    PubMed

    Li, Huaping; Li, Zhenjie; Peng, Liqian; Jiang, Na; Liu, Qing; Zhang, Erting; Liang, Bihua; Li, Runxiang; Zhu, Huilan

    2017-02-01

    Ultraviolet B (UVB) irradiation plays a key role in skin damage, which induces oxidative and inflammatory damages, thereby causing photoaging or photocarcinogenesis. Lycium barbarum polysaccharide (LBP), the most biologically active fraction of wolfberry, possesses significant antioxidative and anti-inflammatory effects on multiple tissues. In the present study, the photoprotective effects and potential underlying molecular mechanisms of LBP against UVB-induced photo-damage were investigated in immortalized human keratinocytes (HaCaT cells). The data indicated that pretreatment with LBP significantly attenuated UVB-induced decrease in cell viability, increase in ROS production and DNA damage. LBP also significantly suppressed UVB-induced p38 MAPK activation, and subsequently reversed caspase-3 activation and MMP-9 expression. Notably, LBP was found to induce Nrf2 nuclear translocation and increase the expression of Nrf2-dependent ARE target genes. Furthermore, the protective effects of LBP were abolished by siRNA-mediated Nrf2 silencing. These results showed that the antioxidant LBP could partially protect against UVB irradiation-induced photo-damage through activation of Nrf2/ARE pathway, thereby scavenging ROS and reducing DNA damage, and subsequently suppressing UVB-induced p38 MAP pathway. Thus, LBP can be potentially used for skincare against oxidative damage from environmental insults.

  7. The Role of p21 in Apoptosis, Proliferation, Cell Cycle Arrest, and Antioxidant Activity in UVB-Irradiated Human HaCaT Keratinocytes

    PubMed Central

    Chen, Aijun; Huang, Xin; Xue, Zhenan; Cao, Di; Huang, Kun; Chen, Jin; Pan, Yun; Gao, Yongliang

    2015-01-01

    Background Skin cancer is the most common cancer in the United States, and ultraviolet B (UVB) radiation-induced DNA damage is the major environmental factor underlying skin cancer development. p21, a p53-inducible protein, plays a key role in the cellular response to UVB-induced DNA damage. Material/Methods Through p21 silencing and overexpression, we investigated the role of p21 in apoptosis, proliferation, cell cycle arrest, and oxidative stress in UVB-irradiated HaCaT keratinocytes. Results We found that UVB exposure induced significant p21 downregulation (p<0.05) and was associated with significantly increased apoptosis, significantly decreased proliferation, and significantly increased G2 phase arrest (p<0.05) in UVB-irradiated HaCaT keratinocytes. p21 silencing significantly promoted apoptosis, significantly inhibited G2 phase arrest, and significantly inhibited proliferation (p<0.05), but after UVB irradiation, p21 silencing demonstrated a less significant pro-apoptotic effect and a more significant inhibition of G2 phase arrest (p<0.05), which was reflected in significantly higher proliferative activity (p<0.05). p21 overexpression acted in an anti-apoptotic manner in the absence of UVB-induced DNA damage but acted in a pro-apoptotic manner in the presence of UVB-induced DNA damage, displaying an “antagonistic duality” similar to other growth-promoting oncoproteins. p53 expression mirrored p21 expression, suggesting a regulatory feedback mechanism between p21 and p53 expression. p21 overexpression significantly downregulated glutathione peroxidase and superoxide dismutase antioxidant activity (p<0.05) while significantly upregulating hydrogen peroxide and malondialdehyde content (p<0.05), suggesting a role in decreasing antioxidant defense capabilities in UVB-irradiated HaCaT keratinocytes. Conclusions These findings reveal that p21 may play a key role in HaCaT keratinocytes’ response to UVB exposure. PMID:25925725

  8. Linalool prevents oxidative stress activated protein kinases in single UVB-exposed human skin cells

    PubMed Central

    Govindasamy, Kanimozhi; Ramasamy, Karthikeyan; Muthusamy, Ganesan; Shanmugam, Mohana; Thangaiyan, Radhiga; Robert, Beaulah Mary; Ponniresan, Veeramani kandan; Rathinaraj, Pierson

    2017-01-01

    Ultraviolet-B radiation (285–320 nm) elicits a number of cellular signaling elements. We investigated the preventive effect of linalool, a natural monoterpene, against UVB-induced oxidative imbalance, activation of mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) signaling in HDFa cells. We observed that linalool treatment (30 μM) prevented acute UVB-irradiation (20 mJ/cm2) mediated loss of activities of antioxidant enzymes in HDFa cells. The comet assay results illustrate that linalool significantly prevents UVB-mediated 8-deoxy guanosine formation (oxidative DNA damage) rather than UVB-induced cyclobutane pyrimidine (CPD) formation. This might be due to its ability to prevent UVB-induced ROS formation and to restore the oxidative imbalance of cells. This has been reflected in UVB-induced overexpression of MAPK and NF-κB signaling. We observed that linalool inhibited UVB-induced phosphorylation of ERK1, JNK and p38 proteins of MAPK family. Linalool inhibited UVB-induced activation of NF-κB/p65 by activating IκBa. We further observed that UVB-induced expression of TNF-α, IL6, IL-10, MMP-2 and MMP-9 was modulated by linalool treatment in HDFa cells. Thus, linalool protects the human skin cells from the oxidative damages of UVB radiation and modulates MAPK and NF-κB signaling in HDFa cells. The present findings substantiate that linalool may act as a photoprotective agent against UVB-induced skin damages. PMID:28467450

  9. Cortisol Release in Response to UVB Exposure in Xiphophorus Fish

    PubMed Central

    Contreras, Adam J.; Boswell, Mikki; Downs, Kevin P.; Pasquali, Amanda; Walter, Ronald B.

    2014-01-01

    Xiphophorus fishes are comprised of 26 known species. Interspecies hybridization between select species has been utilized to produce experimental models to study melanoma development. Xiphophorus melanoma induction protocols utilize ultraviolet light (UVB) to induce DNA damage and associated downstream tumorigenesis. However, the impact of induced stress caused by the UVB treatment of the experimental animals undergoing tumor induction protocols has not been assessed. Stress is an adaptive physiological response to excessive or unpredictable environmental stimuli. The stress response in fishes may be measured by assay of cortisol released into the water. Here, we present results from investigations of stress response during experimental treatment and UVB exposure in X. maculatus Jp 163 B, X. couchianus, and F1 interspecies hybrids produced from the mating X. maculatus Jp 163 B x X. couchianus. Overall, cortisol release rates for males and females after UVB exposure showed no statistical differences. At lower UVB doses (8 and 16 kJ/m2), X. couchianus exhibited 2 fold higher levels of DNA damage then either X. maculatus or the F1 hybrid. However, based on cortisol release rates, none of the fish types tested induced a primary stress response at the UVB lower doses (8 and 16 kJ/m2). In contrast, at a very high UVB dose (32 kJ/m2) both X. maculatus and the F1 hybrid showed a 5 fold increase in cortisol release rate. To determine the effect of pigmentation on UVB induced stress, wild type and albino X. hellerii were exposed to UVB (32 kJ/m2). Albino X. hellerii exhibited 3.7 fold increase in cortisol release while wild type X. hellerii did not exhibit a significant cortisol response to UVB. Overall, the data suggest the rather low UVB doses often employed in tumour induction protocols do not induce a primary stress response in Xiphophorus fishes. PMID:24625568

  10. The endogenous hormones in soybean seedlings under the joint actions of rare earth element La(III) and ultraviolet-B stress.

    PubMed

    Peng, Qi; Zhou, Qing

    2009-12-01

    The dynamic state of endogenous hormone content in soybean seedlings was investigated for a further demonstration of alleviating the damage of the ultraviolet ultraviolet-B (UV-B) radiation in the La(III)-treated soybean seedlings under UV-B stress. Using hydroponics culture, the effects of lanthanum(III) on the contents of endogenous hormone under elevated ultraviolet-B radiation (280–320 nm) was studied. The results showed that the content of indole-3-acetic acid (IAA) in soybean seedlings decreased initially and then increased when the seedlings underwent UV-B treatment during the stress and convalescent period; this was compared with a control; acetic acid oxidase (IAAO) activity increased at first (first to fifth day) and then decreased (sixth to 11th day). A similar change of abscisic acid content and IAAO content in soybean seedlings occurred; gibberellic acid (GA) content decreased during the experiment compared with control. The content of IAA and GA in soybean seedlings with La(III) + UV-B treatment was higher than those of UV-B treatment; IAAO activity and GA content in soybean seedlings with La (III) + UV-B treatment were lower than those of UV-B treatment. It suggested that the regulative effect of La(III) at the optimum concentration on endogenous hormone improved the ability of plant stress resistance, and its protective effect against low UV-B radiation was superior to high UV-B radiation. The defensive effect of La(III) on soybean seedlings under UV-B stress was carried out on the layer of defense system.

  11. IKKα contributes to UVB-induced VEGF expression by regulating AP-1 transactivation

    PubMed Central

    Dong, Wen; Li, Yi; Gao, Ming; Hu, Meiru; Li, Xiaoguang; Mai, Sanyue; Guo, Ning; Yuan, Shengtao; Song, Lun

    2012-01-01

    Exposure to ultraviolet B (UVB) irradiation from sunlight induces the upregulation of VEGF, a potent angiogenic factor that is critical for mediating angiogenesis-associated photodamage. However, the molecular mechanisms related to UVB-induced VEGF expression have not been fully defined. Here, we demonstrate that one of the catalytic subunits of the IκB kinase complex (IKK), IKKα, plays a critical role in mediating UVB-induced VEGF expression in mouse embryonic fibroblasts (MEFs), which requires IKKα kinase activity but is independent of IKKβ, IKKγ and the transactivation of NF-κB. We further show that the transcriptional factor AP-1 functions as the downstream target of IKKα that is responsible for VEGF induction under UVB exposure. Both the accumulation of AP-1 component, c-Fos and the transactivation of AP-1 by UVB require the activated IKKα located within the nucleus. Moreover, nuclear IKKα can associate with c-Fos and recruit to the vegf promoter regions containing AP-1-responsive element and then trigger phosphorylation of the promoter-bound histone H3. Thus, our results have revealed a novel independent role for IKKα in controlling VEGF expression during the cellular UVB response by regulating the induction of the AP-1 component and phosphorylating histone H3 to facilitate AP-1 transactivation. Targeting IKKα shows promise for the prevention of UVB-induced angiogenesis and the associated photodamage. PMID:22169952

  12. Protective effects of Aloe sterols against UVB-induced photoaging in hairless mice.

    PubMed

    Misawa, Eriko; Tanaka, Miyuki; Saito, Marie; Nabeshima, Kazumi; Yao, Ruiqing; Yamauchi, Kouji; Abe, Fumiaki; Yamamoto, Yuki; Furukawa, Fukumi

    2017-03-01

    Aloe vera is a traditional medical plant whose gel has been widely used in skin care. Previously, we have identified Aloe sterols from Aloe vera as active ingredients. This study investigated the protective effects of Aloe sterols without polysaccharides, against ultraviolet B (UVB)-induced skin photoaging in mice using Aloe vera gel extract (AVGE) obtained by supercritical fluid extraction. Aloe vera gel extract was supplemented in the diet (12 or 120 ppm), and HR-1 hairless mice were exposed to UVB irradiation for 7 weeks. Skin measurements and histological and analytical studies were performed. Repeated UVB irradiation induced rough wrinkling of skin with water content reduction and hyperkeratosis. AVGE administration resulted in the significant improvement of UVB-induced skin dryness, epidermal thickness, and wrinkle formation. The AVGE group also suppressed the degenerations of dermal collagen fibers and the appearance of cutaneous apoptosis cells induced by UVB. Furthermore, AVGE administration reduced the excess elevation of pro-inflammatory cytokines (IL-1β and TNF-α) and matrix metalloproteinases (MMP-2, MMP-9, MMP-12, and MMP-13) in UVB-exposed skin. The dietary ingestion of Aloe sterols protected against chronic UVB damage in mouse skin, and our results suggest that Aloe sterols may prevent skin photoaging through the anti-inflammation and MMP regulation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Impact of UV-B radiation on the digestive enzymes and immune system of larvae of Indian major carp Catla catla.

    PubMed

    Sharma, Jaigopal; Rao, Y Vasudeva; Kumar, S; Chakrabarti, Rina

    2010-03-01

    Ultraviolet radiation is a potent threat to the aquatic animals. Exposure to such stressor affects metabolic and immunological processes. The present investigation aims to study the effect of UV-B radiation on digestive enzymes and immunity of larvae of Catla catla. Larvae were exposed to ultraviolet-B (UV-B, 280-320 nm) radiation (145 microW/cm(2)) for three different exposure times of 5, 10 and 15 min on every other day. After 55 days, important digestive enzymes were assayed. For immunological study, lysozyme, glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT) levels were measured. Then the fish were kept for one month without radiation and lysozyme level was measured. Protein concentration varied directly with the duration of exposure and was highest among fish that had received the 15 min UV-B irradiation. Significantly higher amylase, protease, trypsin and chymotrypsin activities were found in 5 min exposed fish compared to others. Lysozyme level was significantly higher in control group compared to the UV-B treated fish. The lysozyme level decreased with the increasing duration of UV-B radiation. When fish were kept without UV-B radiation for one month, lysozyme level was brought to the normal level in all treatments, except 15 min exposed fish. The GOT and GPT levels were significantly higher in the 15 min exposed group than others. The effects of UV-B radiation on the digestive physiology and immune system of catla have been clearly observed in the present study. The decreased enzyme activities in UV-B radiated fish results into improper digestion and poor growth.

  14. Coal tar phototherapy for psoriasis reevaluated: erythemogenic versus suberythemogenic ultraviolet with a tar extract in oil and crude coal tar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, N.J.; Wortzman, M.S.; Breeding, J.

    1983-06-01

    Recent studies have questioned the therapeutic value of coal tar versus ultraviolet (UV) radiation and their relative necessity in phototherapy for psoriasis. In this investigation, different aspects of tar phototherapy have been studied in single-blind bilateral paired comparison studies. The effects of 1% crude coal tar were compared with those of petrolatum in conjunction with erythemogenic and suberythemogenic doses of ultraviolet light (UVB) using a FS72 sunlamp tubed cabinet. Crude coal tar was clinically superior to petrolatum with suberythemogenic ultraviolet. With the erythemogenic UVB, petrolatum was equal in efficacy to crude coal tar. Suberythemogenic UVB was also used adjunctively tomore » compare the effects of a 5% concentration of a tar extract in an oil base to 5% crude coal tar in petrolatum or the oil base without tar. The tar extract in oil plus suberythemogenic UVB produced significantly more rapid improvement than the oil base plus UVB. The direct bilateral comparison of equal concentrations of tar extract in oil base versus crude coal tar in petrolatum in a suberythemogenic UV photo regimen revealed no statistical differences between treatments. In a study comparing tar extract in oil and the oil base without ultraviolet radiation, the tar extract in oil side responded more rapidly.« less

  15. A polymethoxyflavone mixture, extracted from orange peels, suppresses the UVB-induced expression of MMP-1.

    PubMed

    Yoshizaki, Norihiro; Fujii, Takahiro; Hashizume, Ron; Masaki, Hitoshi

    2016-08-01

    Ultraviolet (UV) B is the main cause of skin photoageing, which has characteristic features such as deep wrinkles. UVB increases the expression of matrix metalloproteinases (MMPs) in the skin and can cause wrinkles by disrupting components of the extracellular matrix, such as collagen fibres. We now report that a polymethoxyflavone (PMF) mixture, extracted from orange peels, suppresses the UVB-induced expression of MMP-1 that involves the inhibition of c-jun N-terminal kinase (JNK) activity. Furthermore, the PMF mixture also inhibits the UVB-induced phosphorylation of JNK. Therefore, the results suggest that the PMF mixture suppresses the UVB-induced expression of MMP-1 through the inhibition of JNK phosphorylation and should be useful as an antiphotoageing agent. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. A Flexible Cosmic Ultraviolet Background Model

    NASA Astrophysics Data System (ADS)

    McQuinn, Matthew

    2016-10-01

    HST studies of the IGM, of the CGM, and of reionization-era galaxies are all aided by ionizing background models, which are a critical input in modeling the ionization state of diffuse, 10^4 K gas. The ionization state in turn enables the determination of densities and sizes of absorbing clouds and, when applied to the Ly-a forest, the global ionizing emissivity of sources. Unfortunately, studies that use these background models have no way of gauging the amount of uncertainty in the adopted model other than to recompute their results using previous background models with outdated observational inputs. As of yet there has been no systematic study of uncertainties in the background model and there unfortunately is no publicly available ultraviolet background code. A public code would enable users to update the calculation with the latest observational constraints, and it would allow users to experiment with varying the background model's assumptions regarding emissions and absorptions. We propose to develop a publicly available ionizing background code and, as an initial application, quantify the level of uncertainty in the ionizing background spectrum across cosmic time. As the background model improves, so does our understanding of (1) the sources that dominate ionizing emissions across cosmic time and (2) the properties of diffuse gas in the circumgalactic medium, the WHIM, and the Ly-a forest. HST is the primary telescope for studying both the highest redshift galaxies and low-redshift diffuse gas. The proposed program would benefit HST studies of the Universe at z 0 all the way up to z = 10, including of high-z galaxies observed in the HST Frontier Fields.

  17. A geometric ultraviolet-B radiation transfer model applied to vegetation canopies

    Treesearch

    Wei Gao; Richard H. Grant; Gordon M. Heisler; James R. Slusser

    2002-01-01

    The decrease in stratospheric ozone (O3) has prompted continued efforts to assess the potential damage to plant and animal life due to enhanced levels of solar ultraviolet (UV)-B (280-320 nm) radiation. The objective of this study was to develop and evaluate an analytical model to simulate the UV-B irradiance loading on horizontal below- canopy...

  18. Study of Hydroquinone Mediated Cytotoxicity and Hypopigmentation Effects from UVB-Irradiated Arbutin and DeoxyArbutin

    PubMed Central

    Chang, Nai-Fang; Chen, Yi-Shyan; Lin, Ying-Ju; Tai, Ting-Hsuan; Chen, An-Ni; Huang, Chen-Hsuan; Lin, Chih-Chien

    2017-01-01

    Arbutin (Arb) and deoxyArbutin (dA) are both effective hypopigmentation agents. However, they are glucoside derivatives of hydroquinone (HQ), which may be decayed into HQ under higher energy environments. Therefore, safety and toxicity are very important issues when considering the usage of these compounds. However, no study has verified the properties of Ultra-Violet B (UVB)-irradiated Arb and dA. In this work, we investigated the cytotoxicity and hypopigmentation effects of UVB-irradiated Arb and dA in Detroit 551 human fibroblast cells and B16-F10 mouse melanoma cells. The results showed that UVB-irradiated Arb and dA have strong cytotoxicity for the fibroblast cells, especially for dA, the caspase-3 is also activated by the treatment of UVB-irradiated dA in Detroit 551 cells. The results correlated with the produced HQ. In addition, UVB-irradiated Arb and dA suppressed the production of melanin in melanoma cells; this is due to the release of HQ that compensates for the UVB triggered Arb and dA decomposition. PMID:28467382

  19. Study of Hydroquinone Mediated Cytotoxicity and Hypopigmentation Effects from UVB-Irradiated Arbutin and DeoxyArbutin.

    PubMed

    Chang, Nai-Fang; Chen, Yi-Shyan; Lin, Ying-Ju; Tai, Ting-Hsuan; Chen, An-Ni; Huang, Chen-Hsuan; Lin, Chih-Chien

    2017-05-03

    Arbutin (Arb) and deoxyArbutin (dA) are both effective hypopigmentation agents. However, they are glucoside derivatives of hydroquinone (HQ), which may be decayed into HQ under higher energy environments. Therefore, safety and toxicity are very important issues when considering the usage of these compounds. However, no study has verified the properties of Ultra-Violet B (UVB)-irradiated Arb and dA. In this work, we investigated the cytotoxicity and hypopigmentation effects of UVB-irradiated Arb and dA in Detroit 551 human fibroblast cells and B16-F10 mouse melanoma cells. The results showed that UVB-irradiated Arb and dA have strong cytotoxicity for the fibroblast cells, especially for dA, the caspase-3 is also activated by the treatment of UVB-irradiated dA in Detroit 551 cells. The results correlated with the produced HQ. In addition, UVB-irradiated Arb and dA suppressed the production of melanin in melanoma cells; this is due to the release of HQ that compensates for the UVB triggered Arb and dA decomposition.

  20. Lanthanum (III) regulates the nitrogen assimilation in soybean seedlings under ultraviolet-B radiation.

    PubMed

    Huang, Guangrong; Wang, Lihong; Zhou, Qing

    2013-01-01

    Ultraviolet-B (UV-B, 280-320 nm) radiation has seriously affected the growth of plants. Finding the technology/method to alleviate the damage of UV-B radiation has become a frontal topic in the field of environmental science. The pretreatment with rare earth elements (REEs) is an effective method, but the regulation mechanism of REEs is unknown. Here, the regulation effects of lanthanum (La(III)) on nitrogen assimilation in soybean seedlings (Glycine max L.) under ultraviolet-B radiation were investigated to elucidate the regulation mechanism of REEs on plants under UV-B radiation. UV-B radiation led to the inhibition in the activities of the key enzymes (nitrate reductase, glutamine synthetase, glutamate synthase) in the nitrogen assimilation, the decrease in the contents of nitrate and soluble proteins, as well as the increase in the content of amino acid in soybean seedlings. The change degree of UV-B radiation at the high level (0.45 W m(-2)) was higher than that of UV-B radiation at the low level (0.15 W m(-2)). The pretreatment with 20 mg L(-1) La(III) could alleviate the effects of UV-B radiation on the activities of nitrate reductase, glutamine synthetase, glutamate synthase, and glutamate dehydrogenase, promoting amino acid conversion and protein synthesis in soybean seedlings. The regulation effect of La(III) under UV-B radiation at the low level was better than that of UV-B radiation at the high level. The results indicated that the pretreatment with 20 mg L(-1) La(III) could alleviate the inhibition of UV-B radiation on nitrogen assimilation in soybean seedlings.

  1. Ultraviolet radiation, human health, and the urban forest

    Treesearch

    Gordon M. Heisler; Richard H. Grant

    2000-01-01

    Excess exposure to ultraviolet (UV) radiation from the sun, particularly the ultraviolet B (UVB) portion, has been linked with adverse effects on human health ranging from skin cancers to eye diseases such as cataracts. Trees may prevent even greater disease rates in humans by reducing UV exposure. Tree shade greatly reduces UV irradiance when both the sun and sky are...

  2. Optical characteristics of natural waters protect amphibians from UV-B in the U.S. Pacific Northwest

    USGS Publications Warehouse

    Palen, Wendy J.; Schindler, David E.; Adams, Michael J.; Pearl, Christopher A.; Bury, R. Bruce; Diamond, S.A.

    2002-01-01

    Increased exposure to ultraviolet-B (UV-B) radiation has been proposed as a major environmental stressor leading to global amphibian declines. Prior experimental evidence from the U.S. Pacific Northwest (PNW) indicating the acute embryonic sensitivity of at least four amphibian species to UV-B has been central to the literature about amphibian decline. However, these results have not been expanded to address population-scale effects and natural landscape variation in UV-B transparency of water at amphibian breeding sites: both necessary links to assess the importance of UV-B for amphibian declines. We quantified the UV-B transparency of 136 potential amphibian breeding sites to establish the pattern of UV-B exposure across two montane regions in the PNW. Our data suggest that 85% of sites are naturally protected by dissolved organic matter in pond water, and that only a fraction of breeding sites are expected to experience UV-B intensities exceeding levels associated with elevated egg mortality. Thus, the spectral characteristics of natural waters likely mediate the physiological effects of UV-B on amphibian eggs in all but the clearest waters. These data imply that UV-B is unlikely to cause broad amphibian declines across the landscape of the American Northwest.

  3. Impacts of UVB radiation on food consumption of forest specialist tadpoles.

    PubMed

    Londero, James Eduardo Lago; Dos Santos, Caroline Peripolli; Segatto, Ana Lúcia Anversa; Passaglia Schuch, André

    2017-09-01

    Solar ultraviolet radiation B (UVB) is an important environmental stressor for amphibian populations due to its genotoxicity, especially in early developmental stages. Nonetheless, there is an absence of works focused on the UVB effects on tadpoles' food consumption efficiency. In this work, we investigated the effects of the exposure to a low environmental-simulated dose of UVB radiation on food consumption of tadpoles of the forest specialist Hypsiboas curupi [Hylidae, Anura] species. After UVB treatment tadpoles were divided and exposed to a visible light source or kept in the dark, in order to indirectly evaluate the efficiency of DNA repair performed by photolyases and nucleotide excision repair (NER), respectively. The body mass and the amount of food in tadpoles' guts were verified in both conditions and these data were complemented by the micronuclei frequency in blood cells. Furthermore, the keratinized labial tooth rows were analyzed in order to check for possible UVB-induced damage in this structure. Our results clearly show that the body weight decrease induced by UVB radiation occurs due to the reduction of tadpoles' food consumption. This behavior is directly correlated with the genotoxic impact of UVB light, since the micronuclei frequency significantly increased after treatments. Surprisingly, the results indicate that photoreactivation treatment was ineffective to restore the food consumption activity and body weight values, suggesting a low efficiency of photolyases enzymes in this species. In addition, UVB treatments induced a higher number of breaks in the keratinized labial tooth rows, which could be also associated with the decrease of food consumption. This work contributes to better understand the process of weight loss observed in tadpoles exposed to UVB radiation and emphasizes the susceptibility of forest specialist amphibian species to sunlight-induced genotoxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Tolerance of an albino fish to ultraviolet-B radiation

    USGS Publications Warehouse

    Fabacher, David L.; Little, Edward E.; Ostrander, Gary K.

    1999-01-01

    We exposed albino and pigmented medakaOryzias latipes to simulated solar ultraviolet-B (UVB) radiation to determine if albino medaka were less tolerant of UVB radiation than medaka pigmented with melanin. There was no difference in the number of albino and pigmented medaka that died during the exposure period. Spectrophotometric analyses of the outer dorsal skin layers from albino and pigmented medaka indicated that, prior to exposure, both groups of fish had similar amounts of an apparent colorless non-melanin photoprotective substance that appears to protect other fish species from UVB radiation. Our results indicate that albino medaka were as tolerant of UVB radiation as pigmented medaka because they had similar amounts of this photoprotective substance in the outer layers of the skin.

  5. Ganoderma lucidum polysaccharides protect fibroblasts against UVB-induced photoaging.

    PubMed

    Zeng, Qinghai; Zhou, Fang; Lei, Li; Chen, Jing; Lu, Jianyun; Zhou, Jianda; Cao, Ke; Gao, Lihua; Xia, Fang; Ding, Shu; Huang, Lihua; Xiang, Hong; Wang, Jingjing; Xiao, Yangfan; Xiao, Rong; Huang, Jinhua

    2017-01-01

    Ganoderma lucidum has featured in traditional Chinese medicine for >1,000 years. Ganoderma polysaccharides (GL-PS), a major active ingredient in Ganoderma, confer immune regulation, antitumor effects and significant antioxidant effects. The aim of the present study was to investigate the efficacy and mechanism of GL‑PS‑associated inhibition of ultraviolet B (UVB)‑induced photoaging in human fibroblasts in vitro. Primary human skin fibroblasts were cultured, and a fibroblast photoaging model was built through exposure to UVB. Cell viability was measured by MTT assay. Aged cells were stained using a senescence‑associated β-galactosidase staining (SA‑β‑gal) kit. ELISA kits were used to analyze matrix metalloproteinase (MMP) ‑1 and C‑telopeptides of Type I collagen (CICP) protein levels in cellular supernatant. ROS levels were quantified by flow cytometry. Cells exposed to UVB had decreased cell viability, increased aged cells, decreased CICP protein expression, increased MMP‑1 protein expression, and increased cellular ROS levels compared with non‑exposed cells. However, cells exposed to UVB and treated with 10, 20 and 40 µg/ml GL‑PS demonstrated increased cell viability, decreased aged cells, increased CICP protein expression, decreased MMP‑1 protein expression, and decreased cellular ROS levels compared with UVB exposed/GL‑PS untreated cells. These results demonstrate that GL‑PS protects fibroblasts against photoaging by eliminating UVB‑induced ROS. This finding indicates GL‑PS treatment may serve as a novel strategy for antiphotoaging.

  6. A small increase in UV-B increases the susceptibility of tadpoles to predation

    PubMed Central

    Alton, Lesley A.; Wilson, Robbie S.; Franklin, Craig E.

    2011-01-01

    Increased ultraviolet-B (UV-B) radiation as a consequence of ozone depletion is one of the many potential drivers of ongoing global amphibian declines. Both alone and in combination with other environmental stressors, UV-B is known to have detrimental effects on the early life stages of amphibians, but our understanding of the fitness consequences of these effects remains superficial. We examined the independent and interactive effects of UV-B and predatory chemical cues (PCC) on a suite of traits of Limnodynastes peronii embryos and tadpoles, and assessed tadpole survival time in a predator environment to evaluate the potential fitness consequences. Exposure to a 3 to 6 per cent increase in UV-B, which is comparable to changes in terrestrial UV-B associated with ozone depletion, had no effect on any of the traits measured, except survival time in a predator environment, which was reduced by 22 to 28 per cent. Exposure to PCC caused tadpoles to hatch earlier, have reduced hatching success, have improved locomotor performance and survive for longer in a predator environment, but had no effect on tadpole survival, behaviour or morphology. Simultaneous exposure to UV-B and PCC resulted in no interactive effects. These findings demonstrate that increased UV-B has the potential to reduce tadpole fitness, while exposure to PCCs improves their fitness. PMID:21270039

  7. Adverse Effects of UV-B Radiation on Plants Growing at Schirmacher Oasis, East Antarctica.

    PubMed

    Singh, Jaswant; Singh, Rudra P

    2014-01-01

    This study aimed to assess the impacts of ultraviolet-B (UV-B) radiation over a 28-day period on the levels of pigments of Umbilicaria aprina and Bryum argenteum growing in field. The depletion of stratospheric ozone is most prominent over Antarctica, which receives more UV-B radiation than most other parts of the planet. Although UV-B radiation adversely affects all flora, Antarctic plants are better equipped to survive the damaging effects of UV-B owing to defenses provided by UV-B absorbing compounds and other screening pigments. The UV-B radiations and daily average ozone values were measured by sun photometer and the photosynthetic pigments were analyzed by the standard spectrophotometric methods of exposed and unexposed selected plants. The daily average atmospheric ozone values were recorded from 5 January to 2 February 2008. The maximum daily average for ozone (310.7 Dobson Units (DU)) was recorded on 10 January 2008. On that day, average UV-B spectral irradiances were 0.016, 0.071, and 0.186 W m(-2) at wavelengths of 305, 312, and 320 nm, respectively. The minimum daily average ozone value (278.6 DU) was recorded on 31 January 2008. On that day, average UV-B spectral irradiances were 0.018, 0.085, and 0.210 W m(-2) at wavelengths of 305, 312, and 320 nm, respectively. Our results concludes that following prolonged UV-B exposure, total chlorophyll levels decreased gradually in both species, whereas levels of UV-B absorbing compounds, phenolics, and carotenoids gradually increased.

  8. Adverse Effects of UV-B Radiation on Plants Growing at Schirmacher Oasis, East Antarctica

    PubMed Central

    Singh, Jaswant; Singh, Rudra P.

    2014-01-01

    This study aimed to assess the impacts of ultraviolet-B (UV-B) radiation over a 28-day period on the levels of pigments of Umbilicaria aprina and Bryum argenteum growing in field. The depletion of stratospheric ozone is most prominent over Antarctica, which receives more UV-B radiation than most other parts of the planet. Although UV-B radiation adversely affects all flora, Antarctic plants are better equipped to survive the damaging effects of UV-B owing to defenses provided by UV-B absorbing compounds and other screening pigments. The UV-B radiations and daily average ozone values were measured by sun photometer and the photosynthetic pigments were analyzed by the standard spectrophotometric methods of exposed and unexposed selected plants. The daily average atmospheric ozone values were recorded from 5 January to 2 February 2008. The maximum daily average for ozone (310.7 Dobson Units (DU)) was recorded on 10 January 2008. On that day, average UV-B spectral irradiances were 0.016, 0.071, and 0.186 W m-2 at wavelengths of 305, 312, and 320 nm, respectively. The minimum daily average ozone value (278.6 DU) was recorded on 31 January 2008. On that day, average UV-B spectral irradiances were 0.018, 0.085, and 0.210 W m-2 at wavelengths of 305, 312, and 320 nm, respectively. Our results concludes that following prolonged UV-B exposure, total chlorophyll levels decreased gradually in both species, whereas levels of UV-B absorbing compounds, phenolics, and carotenoids gradually increased. PMID:24748743

  9. UVB exposure does not accelerate rates of litter decomposition in a semiarid riparian ecosystem

    USDA-ARS?s Scientific Manuscript database

    Aboveground litter decomposition is controlled mainly by substrate quality and climate factors across terrestrial ecosystems, but photodegradation from exposure to high-intensity ultraviolet-B (UVB) radiation may also be important in arid and semi-arid environments. We investigated the interactive e...

  10. Solar ultraviolet-B radiation and vitamin D: a cross-sectional population-based study using data from the 2007 to 2009 Canadian Health Measures Survey

    PubMed Central

    2012-01-01

    Background Exposure to solar ultraviolet-B (UV-B) radiation is a major source of vitamin D3. Chemistry climate models project decreases in ground-level solar erythemal UV over the current century. It is unclear what impact this will have on vitamin D status at the population level. The purpose of this study was to measure the association between ground-level solar UV-B and serum concentrations of 25-hydroxyvitamin D (25(OH)D) using a secondary analysis of the 2007 to 2009 Canadian Health Measures Survey (CHMS). Methods Blood samples collected from individuals aged 12 to 79 years sampled across Canada were analyzed for 25(OH)D (n = 4,398). Solar UV-B irradiance was calculated for the 15 CHMS collection sites using the Tropospheric Ultraviolet and Visible Radiation Model. Multivariable linear regression was used to evaluate the association between 25(OH)D and solar UV-B adjusted for other predictors and to explore effect modification. Results Cumulative solar UV-B irradiance averaged over 91 days (91-day UV-B) prior to blood draw correlated significantly with 25(OH)D. Independent of other predictors, a 1 kJ/m2 increase in 91-day UV-B was associated with a significant 0.5 nmol/L (95% CI 0.3-0.8) increase in mean 25(OH)D (P = 0.0001). The relationship was stronger among younger individuals and those spending more time outdoors. Based on current projections of decreases in ground-level solar UV-B, we predict less than a 1 nmol/L decrease in mean 25(OH)D for the population. Conclusions In Canada, cumulative exposure to ambient solar UV-B has a small but significant association with 25(OH)D concentrations. Public health messages to improve vitamin D status should target safe sun exposure with sunscreen use, and also enhanced dietary and supplemental intake and maintenance of a healthy body weight. PMID:22894564

  11. QUANTIFYING ULTRAVIOLET RADIATION DOSE RELATIVE TO WETLAND HABITAT VARIABLES FOR THE ASSESSMENT OF RISK TO AMPHIBIANS

    EPA Science Inventory

    Ultraviolet B radiation (UV-B) has increased globally over the last several decades due to reduction of stratospheric ozone. UV-B may also increase when climate change alters cloud cover, rainfall, and distributions of vegetation. In aquatic systems, these factors can also intera...

  12. Distribution of boreal toad populations in relation to estimated UV-B dose in Glacier National Park, Montana, USA

    USGS Publications Warehouse

    Hossack, B.R.; Diamond, S.A.; Corn, P.S.

    2006-01-01

    A recent increase in ultraviolet B radiation is one hypothesis advanced to explain suspected or documented declines of the boreal toad (Bufo boreas Baird and Girard, 1852) across much of the western USA, where some experiments have shown ambient UV-B can reduce embryo survival. We examined B. boreas occupancy relative to daily UV-B dose at 172 potential breeding sites in Glacier National Park, Montana, to assess whether UV-B limits the distribution of toads. Dose estimates were based on ground-level UV-B data and the effects of elevation, local topographic and vegetative features, and attenuation in the water column. We also examined temporal trends in surface UV-B and spring snowpack to determine whether populations are likely to have experienced increased UV-B exposure in recent decades. We found no support for the hypothesis that UV-B limits the distribution of populations in the park, even when we analyzed high-elevation ponds separately. Instead, toads were more likely to breed in water bodies with higher estimated UV-B doses. The lack of a detectable trend in surface UV-B since 1979, combined with earlier snow melt in the region and increasing forest density at high elevations, suggests B. boreas embryos and larvae likely have not experienced increased UV-B.

  13. Direct and Indirect Effects of UV-B Exposure on Litter Decomposition: A Meta-Analysis

    PubMed Central

    Song, Xinzhang; Peng, Changhui; Jiang, Hong; Zhu, Qiuan; Wang, Weifeng

    2013-01-01

    Ultraviolet-B (UV-B) exposure in the course of litter decomposition may have a direct effect on decomposition rates via changing states of photodegradation or decomposer constitution in litter while UV-B exposure during growth periods may alter chemical compositions and physical properties of plants. Consequently, these changes will indirectly affect subsequent litter decomposition processes in soil. Although studies are available on both the positive and negative effects (including no observable effects) of UV-B exposure on litter decomposition, a comprehensive analysis leading to an adequate understanding remains unresolved. Using data from 93 studies across six biomes, this introductory meta-analysis found that elevated UV-B directly increased litter decomposition rates by 7% and indirectly by 12% while attenuated UV-B directly decreased litter decomposition rates by 23% and indirectly increased litter decomposition rates by 7%. However, neither positive nor negative effects were statistically significant. Woody plant litter decomposition seemed more sensitive to UV-B than herbaceous plant litter except under conditions of indirect effects of elevated UV-B. Furthermore, levels of UV-B intensity significantly affected litter decomposition response to UV-B (P<0.05). UV-B effects on litter decomposition were to a large degree compounded by climatic factors (e.g., MAP and MAT) (P<0.05) and litter chemistry (e.g., lignin content) (P<0.01). Results suggest these factors likely have a bearing on masking the important role of UV-B on litter decomposition. No significant differences in UV-B effects on litter decomposition were found between study types (field experiment vs. laboratory incubation), litter forms (leaf vs. needle), and decay duration. Indirect effects of elevated UV-B on litter decomposition significantly increased with decay duration (P<0.001). Additionally, relatively small changes in UV-B exposure intensity (30%) had significant direct effects on litter

  14. The effects of different UV-B radiation intensities on morphological and biochemical characteristics in Ocimum basilicum L.

    PubMed

    Sakalauskaitė, Jurga; Viskelis, Pranas; Dambrauskienė, Edita; Sakalauskienė, Sandra; Samuolienė, Giedrė; Brazaitytė, Aušra; Duchovskis, Pavelas; Urbonavičienė, Dalia

    2013-04-01

    The effects of short-term ultraviolet B (UV-B) irradiation on sweet basil (Ocimum basilicum L. cv. Cinnamon) plants at the 3-4 leaf pair and flowering stages were examined in controlled environment growth chambers. Plants were exposed to 0 (reference), 2 and 4 kJ UV-B m(-2) day(-1) over 7 days. Exposure of basil plants to supplementary UV-B light resulted in increased assimilating leaf area, fresh biomass and dry biomass. Stimulation of physiological functions in young basil plants under either applied UV-B dose resulted in increased total chlorophyll content but no marked variation in carotenoid content. At the flowering stage the chlorophyll and carotenoid contents of basil were affected by supplementary UV-B radiation, decreasing with enhanced UV-B exposure. Both total antioxidant activity (2,2-diphenyl-1-picrylhydrazyl free radical assay) and total phenolic compound content were increased by UV-B light supplementation. Young and mature basil plants differed in their ascorbic acid content, which was dependent on UV-B dose and plant age. UV-B radiation resulted in decreased nitrate content in young basil plants (3-4 leaf pair stage). These results indicate that the application of short-exposure UV-B radiation beneficially influenced both growth parameters and biochemical constituents in young and mature basil plants. © 2012 Society of Chemical Industry.

  15. Interactive effects of elevated ozone and UV-B radiation on soil nematode diversity.

    PubMed

    Bao, Xuelian; Li, Qi; Hua, Jianfeng; Zhao, Tianhong; Liang, Wenju

    2014-01-01

    Ultraviolet-B (UV-B) radiation and elevated tropospheric ozone may cause reductions in the productivity and quality of important agricultural crops. However, research regarding their interactive effect is still scarce, especially on the belowground processes. Using the open top chambers experimental setup, we monitored the response of soil nematodes to the elevated O3 and UV-B radiation individually as well as in combination. Our results indicated that elevated O3 and UV-B radiation have impact not only on the belowground biomass of plants, but also on the community structure and functional diversity of soil nematodes. The canonical correspondence analysis suggested that soil pH, shoot biomass and microbial biomass C and N were relevant parameters that influencing soil nematode distribution. The interactive effects of elevated O3 and UV-B radiation was only observed on the abundance of bacterivores. UV-B radiation significantly increased the abundance of total nematodes and bacterivores in comparison with the control at pod-filling stage of soybean. Following elevated O3, nematode diversity index decreased and dominance index increased relative to the control at pod-filling stage of soybean. Nematode functional diversity showed response to the effects of elevated O3 and UV-B radiation at pod-bearing stage. Higher enrichment index and lower structure index in the treatment with both elevated O3 and UV-B radiation indicated a stressed soil condition and degraded soil food web. However, the ratios of nematode trophic groups suggested that the negative effects of elevated O3 on soil food web may be weakened by the UV-B radiations.

  16. An observer-blinded randomized controlled pilot trial comparing localized immersion psoralen-ultraviolet A with localized narrowband ultraviolet B for the treatment of palmar hand eczema.

    PubMed

    Brass, D; Fouweather, T; Stocken, D D; Macdonald, C; Wilkinson, J; Lloyd, J; Farr, P M; Reynolds, N J; Hampton, P J

    2017-12-13

    Hand eczema is a common inflammatory dermatosis that causes significant patient morbidity. Previous studies comparing psoralen-ultraviolet A (PUVA) with narrowband ultraviolet B (NB-UVB) have been small, nonrandomized and retrospective. To conduct an observer-blinded randomized controlled pilot study using validated scoring criteria to compare immersion PUVA with NB-UVB for the treatment of chronic hand eczema unresponsive to topical steroids. Sixty patients with hand eczema unresponsive to clobetasol propionate 0·05% were randomized to receive either immersion PUVA or NB-UVB twice weekly for 12 weeks with assessments at intervals of 4 weeks. The primary outcome measure was the proportion of patients achieving 'clear' or 'almost clear' Physician's Global Assessment (PGA) response at 12 weeks. Secondary outcome measures included assessment of the modified Total Lesion and Symptom Score (mTLSS) and the Dermatology Life Quality index (DLQI). In both treatment arms, 23 patients completed the 12-week assessment for the primary outcome measure. In the PUVA group, five patients achieved 'clear' and eight 'almost clear' [intention-to-treat (ITT) response rate 43%]. In the NB-UVB group, two achieved 'clear' and five 'almost clear' (ITT response rate 23%). For the secondary outcomes, median mTLSS scores were similar between groups at baseline (PUVA 9·5, NB-UVB 9) and at 12 weeks (PUVA 3, NB-UVB 4). Changes in DLQI were similar, with improvements in both groups. In this randomized pilot trial recruitment was challenging. After randomization, there were acceptable levels of compliance and safety in each treatment schedule, but lower levels of retention. Using validated scoring systems - PGA, mTLSS and DLQI - as measures of treatment response, the trial demonstrated that both PUVA and NB-UVB reduced the severity of chronic palmar hand eczema. © 2017 British Association of Dermatologists.

  17. UV-B susceptibility and photoreactivation in embryonic development of the two-spotted spider mite, Tetranychus urticae.

    PubMed

    Yoshioka, Yoshio; Gotoh, Tetsuo; Suzuki, Takeshi

    2018-05-14

    Developmental errors are often induced in the embryos of many organisms by environmental stress. Ultraviolet-B radiation (UV-B) is one of the most serious environmental stressors in embryonic development. Here, we investigated susceptibility to UV-B (0.5 kJ m -2 ) in embryos of the two-spotted spider mite, Tetranychus urticae, to examine the potential use of UV-B in control of this important agricultural pest worldwide. Peak susceptibility to UV-B (0% hatchability) was found in T. urticae eggs 36-48 h after oviposition at 25 °C, which coincides with the stages of morphogenesis forming the germ band and initial limb primordia. However, hatchability recovered to ~ 80% when eggs irradiated with UV-B were subsequently exposed to visible radiation (VIS) at 10.2 kJ m -2 , driving photoreactivation (the photoenzymatic repair of DNA damage). The recovery effect decreased to 40-70% hatchability, depending on the embryonic developmental stage, when VIS irradiation was delayed for 4 h after the end of exposure to UV-B. Thus UV-B damage to T. urticae embryos is critical, particularly in the early stages of morphogenesis, and photoreactivation functions to mitigate UV-B damage, even in the susceptible stages, but immediate VIS irradiation is needed after exposure to UV-B. These findings suggest that nighttime irradiation with UV-B can effectively kill T. urticae eggs without subsequent photoreactivation and may be useful in the physical control of this species.

  18. Antagonizing Effects and Mechanisms of Afzelin against UVB-Induced Cell Damage

    PubMed Central

    Shin, Seoung Woo; Jung, Eunsun; Kim, Seungbeom; Kim, Jang-Hyun; Kim, Eui-Gyun; Lee, Jongsung; Park, Deokhoon

    2013-01-01

    Ultraviolet (UV) radiation induces DNA damage, oxidative stress, and inflammatory processes in human keratinocytes, resulting in skin inflammation, photoaging, and photocarcinogenesis. Adequate protection of skin against the harmful effects of UV irradiation is essential. Therefore, in this study, we investigated the protective effects of afzelin, one of the flavonoids, against UV irradiation in human keratinocytes and epidermal equivalent models. Spectrophotometric measurements revealed that the afzelin extinction maxima were in the UVB and UVA range, and UV transmission below 376 nm was <10%, indicating UV-absorbing activity of afzelin. In the phototoxicity assay using the 3T3 NRU phototoxicity test (3T3-NRU-PT), afzelin presented a tendency to no phototoxic potential. In addition, in order to investigate cellular functions of afzelin itself, cells were treated with afzelin after UVB irradiation. In human keratinocyte, afzelin effectively inhibited the UVB-mediated increase in lipid peroxidation and the formation of cyclobutane pyrimidine dimers. Afzelin also inhibited UVB-induced cell death in human keratinocytes by inhibiting intrinsic apoptotic signaling. Furthermore, afzelin showed inhibitory effects on UVB-induced release of pro-inflammatory mediators such as interleukin-6, tumor necrosis factor-α, and prostaglandin-E2 in human keratinocytes by interfering with the p38 kinase pathway. Using an epidermal equivalent model exposed to UVB radiation, anti-apoptotic activity of afzelin was also confirmed together with a photoprotective effect at the morphological level. Taken together, our results suggest that afzelin has several cellular activities such as DNA-protective, antioxidant, and anti-inflammatory as well as UV-absorbing activity and may protect human skin from UVB-induced damage by a combination of UV-absorbing and cellular activities. PMID:23626759

  19. Antagonist effects of veratric acid against UVB-induced cell damages.

    PubMed

    Shin, Seoung Woo; Jung, Eunsun; Kim, Seungbeom; Lee, Kyung-Eun; Youm, Jong-Kyung; Park, Deokhoon

    2013-05-10

    Ultraviolet (UV) radiation induces DNA damage, oxidative stress, and inflammatory processes in human epidermis, resulting in inflammation, photoaging, and photocarcinogenesis. Adequate protection of skin against the harmful effect of UV irradiation is essential. In recent years naturally occurring herbal compounds such as phenolic acids, flavonoids, and high molecular weight polyphenols have gained considerable attention as beneficial protective agents. The simple phenolic veratric acid (VA, 3,4-dimethoxybenzoic acid) is one of the major benzoic acid derivatives from vegetables and fruits and it also occurs naturally in medicinal mushrooms which have been reported to have anti-inflammatory and anti-oxidant activities. However, it has rarely been applied in skin care. This study, therefore, aimed to explore the possible roles of veratric acid in protection against UVB-induced damage in HaCaT cells. Results showed that veratric acid can attenuate cyclobutane pyrimidine dimers (CPDs) formation, glutathione (GSH) depletion and apoptosis induced by UVB. Furthermore, veratric acid had inhibitory effects on the UVB-induced release of the inflammatory mediators such as IL-6 and prostaglandin-E2. We also confirmed the safety and clinical efficacy of veratric acid on human skin. Overall, results demonstrated significant benefits of veratric acid on the protection of keratinocyte against UVB-induced injuries and suggested its potential use in skin photoprotection.

  20. Ultraviolet-B radiation in a row-crop canopy: an extended 1-D model

    Treesearch

    Wei Gao; Richard H. Grant; Gordon M. Heisler; James R. Slusser

    2003-01-01

    A decrease in stratospheric ozone may result in a serious threat to plants, since biologically active short-wavelength ultraviolet-B (UV-B 280-320 nm) radiation will increase even with a relatively small decrease in ozone. Numerous investigations have demonstrated that the effect of UV-B enhancements on plants includes reduction in grain yield, alteration in species...

  1. The protective roles of TiO2 nanoparticles against UV-B toxicity in Daphnia magna.

    PubMed

    Liu, Jie; Wang, Wen-Xiong

    2017-09-01

    Aquatic environments are increasingly under environmental stress due to ultraviolet (UV) radiation and potential inputs of nanoparticles with intense application of nanotechnology. In this study, we investigated the interaction between UV-B radiation and titanium nanoparticles (TiO 2 -NPs) in a model freshwater cladoceran Daphnia magna. UV-B toxicity to Daphnia magna was examined when the daphnids were exposed to a range of TiO 2 -NPs concentrations with an initial 5 or 10min of 200μW/cm 2 UV-B radiation. In addition, UV-B toxicity was also examined in the presence of TiO 2 -NPs in the body of daphnids. Our results demonstrated that the daphnid mortality under UV-B radiation decreased significantly in the presence of TiO 2 -NPs both in the water and in the body, indicating that TiO 2 -NPs had some protective effects on D. magna against UV-B. Such protective effect was mainly caused by the blockage of UV-B by TiO 2 -NPs adsorption. UV-B produced reactive oxygen species (ROS) in the water and in the daphnids, which was not sufficient to cause mortality of daphnids over short periods of radiation. Previous studies focused on the effects of TiO 2 -NPs on the toxicity of total UV radiation, and did not attempt to differentiate the potential diverse roles of UV-A and UV-B. Our study indicated that TiO 2 -NPs may conversely protect the UV-B toxicity to daphnids. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Protective effect of pomegranate derived products on UVB-mediated damage in human reconstituted skin

    PubMed Central

    Afaq, Farrukh; Zaid, Mohammad Abu; Khan, Naghma; Dreher, Mark; Mukhtar, Hasan

    2010-01-01

    Solar ultraviolet (UV) radiation, particularly its UVB (290-320 nm) component, is the primary cause of many adverse biological effects including photoaging and skin cancer. UVB radiation causes DNA damage, protein oxidation and induces matrix metalloproteinases (MMPs). Photochemoprevention via the use of botanical antioxidants in affording protection to human skin against UVB damage is receiving increasing attention. Pomegranate, from the tree Punica granatum contains anthocyanins and hydrolyzable tannins and possesses strong anti-oxidant and anti-tumor promoting properties. In this study, we determined the effect of pomegranate derived products POMx juice, POMx extract and pomegranate oil (POMo) against UVB-mediated damage using reconstituted human skin (EpiDerm™ FT-200). EpiDerm was treated with POMx juice (1-2 μl/0.1 ml/well), POMx extract (5-10 μg/0.1 ml/well), and POMo (1-2 μl/0.1 ml/well) for 1 h prior to UVB (60 mJ/cm2) irradiation and was harvested 12 h post-UVB to assess protein oxidation, markers of DNA damage and photoaging by western blot analysis and immunohistochemistry. Pretreatment of Epiderm with pomegranate derived products resulted in inhibition of UVB-induced (i) cyclobutane pyrimidine dimers, (ii) 8-dihydro-2′-deoxyguanosine, (iii) protein oxidation, and (iv) PCNA protein expression. We also found that pretreatment of Epiderm with pomegranate derived products resulted in inhibition of UVB-induced (i) collagenase (MMP-1), (ii) gelatinase (MMP-2, MMP-9), (iii) stromelysin (MMP-3), (iv) marilysin (MMP-7), (v) elastase (MMP-12), and (vi) tropoelastin. Gelatin zymography revealed that pomegranate derived products inhibited UVB-induced MMP-2 and MMP-9 activities. Pomegranate derived products also caused a decrease in UVB-induced protein expression of c-Fos and phosphorylation of c-Jun. Collectively, these results suggest that all three pomegranate derived products may be useful against UVB-induced damage to human skin. PMID:19320737

  3. DISTRIBUTION PATTERNS OF LENTIC-BREEDING AMPHIBIANS IN RELATION OF ULTRAVIOLET RADIATION EXPOSURE IN WESTERN NORTH AMERICA

    EPA Science Inventory

    An increase in ultraviolet (UV-B) radiation has been posited to be a potential factor in the decline of some amphibian population...Much more work is still needed to determine whether UV-B, either alone or in concert with other factors, is causing widespread population losses in ...

  4. The effect of prescription eyewear on ocular exposure to ultraviolet radiation.

    PubMed Central

    Rosenthal, F S; Bakalian, A E; Taylor, H R

    1986-01-01

    Several studies have suggested that ultraviolet radiation in sunlight may cause cataracts and other eye disease. We evaluated the effect of prescription eyewear in attenuating ocular exposure to ultraviolet radiation (UVR) in the sunlight portions of the ultraviolet spectrum (295-350 nm). Using natural sunlight as the source, the attenuation was measured with two ultraviolet detectors, one sensitive to only UVB (295-315 nm) and one sensitive to both UVA and UVB (295-350 nm). A random sample of spectacles, spectacle lenses, and contact lenses was examined. The average transmission, as measured with either detector, was highest for soft contact lenses, followed by glass spectacle lenses, untinted hard contact lenses, and plastic spectacle lenses. Measurements performed with mannikins wearing spectacles showed that an average of 6.6 per cent of incident radiation reached the eye even when the lenses were covered with black opaque tape. The amount of exposure was increased substantially when the spectacles were moved 0.6 cm away from the forehead. The results show that the protection against ultraviolet exposure provided by prescription eyewear is highly variable and depends largely on its composition, size, and wearing position. PMID:3752323

  5. Resistance of a lizard (the green anole, Anolis carolinensis; Polychridae) to ultraviolet radiation-induced immunosuppression

    USGS Publications Warehouse

    Cope, R.B.; Fabacher, D.L.; Lieske, C.; Miller, C.A.

    2001-01-01

    The green anole (Anolis carolinensis) is the most northerly distributed of its Neotropical genus. This lizard avoids a winter hibernation phase by the use of sun basking behaviors. Inevitably, this species is exposed to high doses of ambient solar ultraviolet radiation (UVR). Increases in terrestrial ultraviolet-B (UV-B) radiation secondary to stratospheric ozone depletion and habitat perturbation potentially place this species at risk of UVR-induced immunosuppression. Daily exposure to subinflammatory UVR (8 kJ/m2/day UV-B, 85 kJ/m2/day ultraviolet A [UV-A]), 6 days per week for 4 weeks (total cumulative doses of 192 kJ/m2 UV-B, 2.04 × 103 kJ/m2 UV-A) did not suppress the anole's acute or delayed type hypersensitivity (DTH) response to horseshoe crab hemocyanin. In comparison with the available literature UV-B doses as low as 0.1 and 15.9 kJ/m2 induced suppression of DTH responses in mice and humans, respectively. Exposure of anoles to UVR did not result in the inhibition of ex vivo splenocyte phagocytosis of fluorescein labeled Escherichia coli or ex vivo splenocyte nitric oxide production. Doses of UV-B ranging from 0.35 to 45 kJ/m2 have been reported to suppress murine splenic/peritoneal macrophage phagocytosis and nitric oxide production. These preliminary studies demonstrate the resistance of green anoles to UVR-induced immunosuppression. Methanol extracts of anole skin contained two peaks in the ultraviolet wavelength range that could be indicative of photoprotective substances. However, the resistance of green anoles to UVR is probably not completely attributable to absorption by UVR photoprotective substances in the skin but more likely results from a combination of other factors including absorption by the cutis and absorption and reflectance by various components of the dermis.

  6. Sensitivity of two salamander (Ambystoma) species to ultraviolet radiation

    USGS Publications Warehouse

    Calfee, R.D.; Bridges, C.M.; Little, E.E.

    2006-01-01

    Increased ultraviolet-B (UV-B) radiation reaching the Earth's surface has been implicated in amphibian declines. Recent studies have shown that many amphibian species have differences in sensitivity depending on developmental stage. Embryos and larvae of Ambystoma maculatum (Spotted Salamander) and larvae of Ambystoma talpoideum (Mole Salamander) were exposed to five simulated UV-B treatments in controlled laboratory experiments to determine the relative sensitivity of different lifestages. Hatching success of the embryos exceeded 95% in all treatments; however, the larvae of both species exhibited greater sensitivity to UV-B exposure. Older larvae of A. maculatum that were not exposed to UV-B as embryos were more sensitive than larvae that had hatched during exposure to UV-B. Growth of surviving larvae of A. maculatum was significantly reduced as UV-B intensity increased, whereas growth of A. talpoideum was unaffected. These results were compared to ambient UV-B conditions in natural environments. It appears that the embryo stage is relatively unaffected by UV-B levels observed in natural habitats, probably because of protection from vegetation, organic matter in the water column, oviposition depth, and egg jelly. The larval stage of these species may be at greater risk, particularly if there is an increase in UV-B radiation exposure caused by increases in water clarity and/or decreases in dissolved organic carbon.

  7. ASSESSMENT OF THE RISK OF SOLAR ULTRAVIOLET RADIATION TO AMPHIBIANS. II: IN SITU CHARACTERIZATION OF SOLAR ULTRAVIOLET RADIATION IN AMPHIBIAN HABITATS

    EPA Science Inventory

    Ultraviolet B (UVB) radiation has been hypothesized as a potential cause of amphibian population declines and increased incidences of malformations. Realistic studies documenting UV irradiance or dose have rarely been conducted in wetlands used by amphibians. We demonstrate that ...

  8. Isoprene emission aids recovery of photosynthetic performance in transgenic Nicotiana tabacum following high intensity acute UV-B exposure.

    PubMed

    Centritto, Mauro; Haworth, Matthew; Marino, Giovanni; Pallozzi, Emanuele; Tsonev, Tsonko; Velikova, Violeta; Nogues, Isabel; Loreto, Francesco

    2014-09-01

    Isoprene emission by terrestrial plants is believed to play a role in mitigating the effects of abiotic stress on photosynthesis. Ultraviolet-B light (UV-B) induces damage to the photosynthetic apparatus of plants, but the role of isoprene in UV-B tolerance is poorly understood. To investigate this putative protective role, we exposed non-emitting (NE) control and transgenic isoprene emitting (IE) Nicotiana tabacum (tobacco) plants to high intensity UV-B exposure. Methanol emissions increased with UV-B intensity, indicating oxidative damage. However, isoprene emission was unaffected during exposure to UV-B radiation, but declined in the 48 h following UV-B treatment at the highest UV-B intensities of 9 and 15 Wm(-2). Photosynthesis and the performance of photosystem II (PSII) declined to similar extents in IE and NE plants following UV-B exposure, suggesting that isoprene emission did not ameliorate the immediate impact of UV-B on photosynthesis. However, after the stress, photosynthesis and PSII recovered in IE plants, which maintained isoprene formation, but not in NE plants. Recovery of IE plants was also associated with elevated antioxidant levels and cycling; suggesting that both isoprene formation and antioxidant systems contributed to reinstating the integrity and functionality of cellular membranes and photosynthesis following exposure to excessive levels of UV-B radiation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Quantifying the effects of corn growth and physiological responses to Ultraviolet-B radiation for modeling

    USDA-ARS?s Scientific Manuscript database

    To understand the consequences of rising levels of Ultraviolet-B (UV-B) radiation on maize (Zea mays L.), two experiments were conducted using sunlit plant growth chambers at a wide range UV-B radiation. Maize cultivars Terral-2100 and DKC 65-44 were grown in 2003 and 2008, respectively, at four le...

  10. Spectroscopic limits to an extragalactic far-ultraviolet background.

    PubMed

    Martin, C; Hurwitz, M; Bowyer, S

    1991-10-01

    We use a spectrum of the lowest intensity diffuse far-ultraviolet background obtained from a series of observations in a number of celestial view directions to constrain the properties of the extragalactic FUV background. The mean continuum level, IEG = 280 +/- 35 photons cm-2 s-1 angstrom-1 sr-1, was obtained in a direction with very low H I column density, and this represents a firm upper limit to any extragalactic background in the 1400-1900 angstroms band. Previous work has demonstrated that the far-ultraviolet background includes (depending on a view direction) contributions from dust-scattered Galactic light, high-ionization emission lines, two-photon emission from H II, H2 fluorescence, and the integrated light of spiral galaxies. We find no evidence in the spectrum of line or continuum features that would signify additional extragalactic components. Motivated by the observation of steep BJ and U number count distributions, we have made a detailed comparison of galaxy evolution models to optical and UV data. We find that the observations are difficult to reconcile with a dominant contribution from unclustered, starburst galaxies at low redshifts. Our measurement rules out large ionizing fluxes at z = 0, but cannot strongly constrain the QSO background light, which is expected to be 0.5%-4% of IEG. We present improved limits on radiative lifetimes of massive neutrinos. We demonstrated with a simple model that IGM radiation is unlikely to make a significant contribution to IEG. Since dust scattering could produce a significant part of the continuum in this lowest intensity spectrum, we carried out a series of tests to evaluate this possibility. We find that the spectrum of a nearby target with higher NH I, when corrected for H2 fluorescence, is very similar to the spectrum obtained in the low H I view direction. This is evidence that the majority of the continuum observed at low NH I is also dust reflection, indicating either the existence of a hitherto

  11. Protective effect of the standardized green tea seed extract on UVB-induced skin photoaging in hairless mice.

    PubMed

    Lim, Jae-Youn; Kim, Ok-Kyung; Lee, Jeongmin; Lee, Min-Jae; Kang, Namgil; Hwang, Jae-Kwan

    2014-08-01

    Ultraviolet B (UVB) irradiation on skin can induce production of reactive oxygen species (ROS), which cause expression of matrix metalloproteinases (MMPs) and collagen degradation. Thus, chronic exposure of skin to UVB irradiation leads to histological changes consistent with aging, such as wrinkling, abnormal pigmentation, and loss of elasticity. We investigated the protective effect of the standardized green tea seed extract (GSE) on UVB-induced skin photoaging in hairless mice. Skin photoaging was induced by UVB irradiation on the back of Skh-1 hairless mice three times per week and UVB irradiation was performed for 10 weeks. Mice were divided into six groups; normal control, UVB irradiated control group, positive control (UVB + dietary supplement of vitamin C 100 mg/kg), GSE 10 mg/kg (UVB + dietary supplement of GSE 10 mg/kg), GSE 100 mg/kg (UVB + dietary supplement of GSE 100 mg/kg), and GSE 200 mg/kg (UVB + dietary supplement of GSE 200 mg/kg). The dietary supplement GSE attenuated UVB irradiation-induced wrinkle formation and the decrease in density of dermal collagen fiber. In addition, results of the antioxidant analysis showed that GSE induced a significant increase in antioxidant enzyme activity compared with the UVB irradiation control group. Dietary supplementation with GSE 200 mg/kg resulted in a significant decrease in expression of MMP-1, MMP-3, and MMP-9 and an increase in expression of TIMP and type-1 collagen. Findings of this study suggest that dietary supplement GSE could be useful in attenuation of UVB irradiation-induced skin photoaging and wrinkle formation due to regulation of antioxidant defense systems and MMPs expression.

  12. OPTICAL CHARACTERISTICS OF NATURAL WATERS PROTECT AMPHIBIAN POPULATIONS FROM UV-B IN THE US PACIFIC NORTHWEST

    EPA Science Inventory

    Increased exposure to ultraviolet-B (UV-B) radiation has been proposed as a major environmental stressor leading to global amphibian declines. Prior experimental evidence from the US Pacific Northwest (PNW) indicating the acute embryonic sensitivity of at least 4 amphibian specie...

  13. Effects of ultraviolet-B radiation on fungal disease development in Cucumis sativus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orth, A.B.; Teramura, A.H.; Sisler, H.D.

    1990-09-01

    Stratospheric ozone depletion due to increased atmospheric pollutants has received considerable attention because of the potential increase in ultraviolet-B (UV-B, 280-320 nm) radiation that will reach the earth's surface. Three cucumber (Cucumis sativus L.) cultivars were exposed to a daily dose of 11.6 kJ m{sup {minus}2} biologically effective ultraviolet-B (UV-B{sub BE}) radiation in an unshaded greenhouse before and/or after injection by Colletotrichum lagenarium (Pass.) Ell. and Halst. or Cladosporium cucumerinum Ell. and Arth. and analyzed for disease development. Two of these cultivars, Poinsette and Calypso Hybrid, were disease resistant, while the third cultivar, Straight-8, was disease susceptible. Preinfectional treatment ofmore » 1 to 7 days with UV-B{sub BE} in Straight-8 led to greater severity of both diseases. Postinfectional UV treatment did not lead to increased disease severity caused by C. lagenarium, while preinfectional UV treatment in both Straight-8 and Poinsette substantially increased disease severity. Although resistant cultivars Poinsette and Calypso Hybrid showed increased anthracnose disease severity when exposed to UV-B, this effect was apparent only on the cotyledons. Both higher spore concentration and exposure to UV-B radiation resulted in greater disease severity. Of the cucumber cultivars tested for UV-B sensitivity, growth in Poinsette was most sensitive and Calypso Hybrid was least sensitive. These preliminary results indicate that the effects of UV-B radiation on disease development in cucumber vary depending on cultivar, timing and duration of UV-B exposure, inoculation level, and plant age.« less

  14. Impact of enhanced ultraviolet-B irradiance on cotton growth, development, yield, and qualities under field conditions

    Treesearch

    Wei Gao; Youfei Zheng; James R. Slusser; Gordon M. Heisler

    2003-01-01

    The stratospheric ozone depletion and enhanced solar ultraviolet-B (UV-B) irradiance may have adverse impacts on the productivity of agricultural crops. The effect of UV-B enhancements on agricultural crops includes reduction in yield, alteration in species competition, decrease in photosynthetic activity, susceptibility to disease, and changes in structure and...

  15. Thrombomodulin exerts cytoprotective effect on low-dose UVB-irradiated HaCaT cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwata, Masahiro; Laboratory of Vascular Medicine, Department of Cardiovascular and Respiratory Disorders Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520; Kawahara, Ko-ichi

    Thrombomodulin (TM) is an endothelial cell surface anticoagulant glycoprotein that performs antimetastatic, angiogenic, adhesive, and anti-inflammatory functions in various tissues. It is also expressed in epidermal keratinocytes. We found that a physiological dose (10 mJ/cm{sup 2}) of mid-wavelength ultraviolet irradiation (UVB) significantly induced TM expression via the p38mitogen-activated protein kinase (MAPK)/cyclic AMP response element (CRE) signaling pathway in the epidermal keratinocyte cell line HaCaT; this shows that TM regulates the survival of HaCaT cells. SB203580, a p38MAPK inhibitor, significantly decreased TM expression and the viability of cells exposed to UVB. Furthermore, overexpression of TM markedly increased cell viability, and itmore » was abrogated by TM small interfering RNA (siRNA), suggesting that TM may play an important role in exerting cytoprotective effect on epidermal keratinocytes against low-dose UVB.« less

  16. Ultraviolet B Phototherapy for Psoriasis: Review of Practical Guidelines.

    PubMed

    Mehta, Dhwani; Lim, Henry W

    2016-04-01

    Psoriasis is an inflammatory skin condition that affects approximately 2 % of people worldwide. Topical treatments, systemic treatments, biologic agents, and phototherapy are all treatment options for psoriasis. Ultraviolet (UV) B phototherapy is most appropriate for patients with >10 % affected body surface area who have not responded to topical treatments. This review outlines the use, dosage, safety, and efficacy of narrowband UVB (NB-UVB) and targeted phototherapy. NB-UVB and excimer laser are effective treatment options for psoriasis; they are administered two to three times weekly until clearance followed by maintenance treatment before discontinuation. Long-term data on NB-UVB indicate that it has a good safety profile. NB-UVB is commonly used with adjunctive topical treatments such as emollients, calcipotriene, cortico-steroids, retinoids, and tar. NB-UVB can be used in selected patients with traditional systemic agents such as methotrexate, mycophenolate mofetil, and cyclosporine, although the duration of the combined treatment should be kept to a minimum and patients need to be closely monitored. Acitretin can be safely used with phototherapy, but robust data on the combination use of biologic agents or phosphodiesterase inhibitors with phototherapy are lacking.

  17. Implications of mycosporine-like amino acid and antioxidant defenses in UV-B radiation tolerance for the algae species Ptercladiella capillacea and Gelidium amansii.

    PubMed

    Lee, Tse-Min; Shiu, Chia-Tai

    2009-02-01

    Ultraviolet-B (UV-B) radiation (0.5, 1.0, 1.5, and 3.0Wm(-2)) induced higher H(2)O(2) production and lipid peroxidation in alga Gelidium amansii inhabiting in lower subtidal regions than upper subtidal alga Ptercladiella capillacea. Compared to G. amansii, mycosporine-like amino acid (MAA) concentration in P. capillacea was higher and can be increased by 0.5-1.0Wm(-2) UV-B, while carotenoid concentration was lower but also increased by 1.5-3.0Wm(-2) UV-B. UV-B increased ascorbate concentration, but to a higher degree in P. capillacea. UV-B decreased glutathione concentration, but to a higher degree in G. amansii. UV-B increased ascorbate peroxidase (APX) and glutathione reductase (GR) activities in P.capillacea but decreased them in G. amansii. UV-B increased superoxide dismutase and catalase activities, but to a higher degree in G. amansii. So, G. amansii suffered greater oxidative stress from UV-B radiation. P. capillacea can effectively reduce UV-B sensitivity by increasing sunscreen ability and antioxidant defense capacity.

  18. Distinct physiological and metabolic reprogramming by highbush blueberry (Vaccinium corymbosum) cultivars revealed during long-term UV-B radiation.

    PubMed

    Luengo Escobar, Ana; Alberdi, Miren; Acevedo, Patricio; Machado, Mariana; Nunes-Nesi, Adriano; Inostroza-Blancheteau, Claudio; Reyes-Díaz, Marjorie

    2017-05-01

    Despite the Montreal protocol and the eventual recovery of the ozone layer over Antarctica, there are still concerns about increased levels of ultraviolet-B (UV-B) radiation in the Southern Hemisphere. UV-B induces physiological, biochemical and morphological stress responses in plants, which are species-specific and different even for closely related cultivars. In woody plant species, understanding of long-term mechanisms to cope with UV-B-induced stress is limited. Therefore, a greenhouse UV-B daily course simulation was performed for 21 days with two blueberry cultivars (Legacy and Bluegold) under UV-B BE irradiance doses of 0, 0.07 and 0.19 W m -2 . Morphological changes, photosynthetic performance, antioxidants, lipid peroxidation and metabolic features were evaluated. We found that both cultivars behaved differently under UV-B exposure, with Legacy being a UV-B-resistant cultivar. Interestingly, Legacy used a combined strategy: initially, in the first week of exposure its photoprotective compounds increased, coping with the intake of UV-B radiation (avoidance strategy), and then, increasing its antioxidant capacity. These strategies proved to be UV-B radiation dose dependent. The avoidance strategy is triggered early under high UV-B radiation in Legacy. Moreover, the rapid metabolic reprogramming capacity of this cultivar, in contrast to Bluegold, seems to be the most relevant contribution to its UV-B stress-coping strategy. © 2016 Scandinavian Plant Physiology Society.

  19. Eicosapentaenoic acid and docosahexaenoic acid reduce UVB- and TNF-alpha-induced IL-8 secretion in keratinocytes and UVB-induced IL-8 in fibroblasts.

    PubMed

    Storey, Amy; McArdle, Frank; Friedmann, Peter S; Jackson, Malcolm J; Rhodes, Lesley E

    2005-01-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFA) inhibit ultraviolet B (UVB)-induced inflammation and other inflammatory states, in vivo. We examined whether this may be mediated by modulation of interleukin (IL)-8, a chemokine pivotal to skin inflammation induced by UVB, in epidermal and dermal cells. We also explored the ability of n-3 PUFA to protect against tumor necrosis factor (TNF)-alpha induction of IL-8, and assessed relative potencies of the principal dietary n-3 PUFA, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Pre-supplementation, both HaCaT keratinocyte and CCD922SK fibroblast cell lines showed dose-responses for UVB-induced IL-8 release (p<0.001), assessed 48 h post-irradiation. Cells were supplemented with > or =90% purified EPA, DHA, oleic acid (OA) or vehicle control, for 4.5 d. EPA and DHA supplements were bioavailable to keratinocytes and fibroblasts. In keratinocytes, EPA and DHA were shown to reduce basal secretion of IL-8 by 66% and 63%, respectively (p<0.05), and UVB-induced levels by 66% and 65% at 48 h after 100 mJ per cm2, respectively, (p<0.01). A similar pattern occurred in fibroblasts, whereas OA had no influence on IL-8 release in either cell line. In addition, TNF-alpha-induced IL-8 secretion by keratinocytes was reduced by 54% and 42%, respectively, by EPA and DHA (p<0.001). Hence both n-3 PUFA inhibit production of UVB- and TNF-alpha-induced IL-8 in skin cells; this may be important in the photoprotective and other anti-inflammatory effects conferred by these agents.

  20. Effects of UVB radiation on grazing of two cladocerans from high-altitude Andean lakes

    PubMed Central

    Rejas, Danny

    2017-01-01

    Climate change and water extraction may result in increased exposition of the biota to ultraviolet-B radiation (UVB) in high-altitude Andean lakes. Although exposition to lethal doses in these lakes is unlikely, sub-lethal UVB doses may have strong impacts in key compartments such as zooplankton. Here, we aimed at determining the effect of sub-lethal UVB doses on filtration rates of two cladoceran species (Daphnia pulicaria and Ceriodaphnia dubia). We firstly estimated the Incipient Limiting Concentration (ILC) and the Gut Passage Time (GPT) for both species. Thereafter we exposed clones of each species to four increasing UVB doses (treatments): i) DUV-0 (Control), ii) DUV-1 (0.02 MJ m2), iii) DUV-2 (0.03 MJ m2) and iv) DUV-3 (0.15 MJ m2); and estimated their filtration rates using fluorescent micro-spheres. Our results suggest that increasing sub-lethal doses of UVB radiation may strongly disturb the structure and functioning of high-altitude Andean lakes. Filtration rates of D. pulicaria were not affected by the lowest dose applied (DUV-1), but decreased by 50% in treatments DUV-2 and DUV-3. Filtration rates for C. dubia were reduced by more than 80% in treatments DUV-1 and DUV-2 and 100% of mortality occurred at the highest UVB dose applied (DUV-3). PMID:28379975

  1. Ultraviolet radiation in the Atacama Desert.

    PubMed

    Cordero, R R; Damiani, A; Jorquera, J; Sepúlveda, E; Caballero, M; Fernandez, S; Feron, S; Llanillo, P J; Carrasco, J; Laroze, D; Labbe, F

    2018-03-31

    The world's highest levels of surface ultraviolet (UV) irradiance have been measured in the Atacama Desert. This area is characterized by its high altitude, prevalent cloudless conditions, and a relatively low total ozone column. In this paper, we provide estimates of the surface UV (monthly UV index at noon and annual doses of UV-B and UV-A) for all sky conditions in the Atacama Desert. We found that the UV index at noon during the austral summer is expected to be greater than 11 in the whole desert. The annual UV-B (UV-A) doses were found to range from about 3.5 kWh/m 2 (130 kWh/m 2 ) in coastal areas to 5 kWh/m 2 (160 kWh/m 2 ) on the Andean plateau. Our results confirm significant interhemispherical differences. Typical annual UV-B doses in the Atacama Desert are about 40% greater than typical annual UV-B doses in northern Africa. Mostly due to seasonal changes in the ozone, the differences between the Atacama Desert and northern Africa are expected to be about 60% in the case of peak UV-B levels (i.e. the UV-B irradiances at noon close to the summer solstice in each hemisphere). Interhemispherical differences in the UV-A are significantly lower since the effect of the ozone in this part of the spectrum is minor.

  2. The effect of UV-B radiation on photosynthesis and respiration of phytoplankton, benthic macroalgae and seagrasses.

    PubMed

    Larkum, A W; Wood, W F

    1993-04-01

    Several species of marine benthic algae, four species of phytoplankton and two species of seagrass have been subjected to ultraviolet B irradiation for varying lengths of time and the effects on respiration, photosynthesis and fluorescence rise kinetics studied. No effect on respiration was found. Photosynthesis was inhibited to a variable degree in all groups of plants after irradiation over periods of up to 1 h and variable fluorescence was also inhibited in a similar way. The most sensitive plants were phytoplankton and deep-water benthic algae. Intertidal benthic algae were the least sensitive to UV-B irradiation and this may be related to adaptation, through the accumulation of UV-B screening compounds, to high light/high UV-B levels. Inhibition of variable fluorescence (Fv) of the fluorescence rise curve was a fast and sensitive indicator of UV-B damage. Two plants studied, a brown alga and a seagrass, showed very poor recovery of Fv over a period of 32 h.

  3. Bias Selectable Dual Band AlGaN Ultra-violet Detectors

    NASA Technical Reports Server (NTRS)

    Yan, Feng; Miko, Laddawan; Franz, David; Guan, Bing; Stahle, Carl M.

    2007-01-01

    Bias selectable dual band AlGaN ultra-violet (UV) detectors, which can separate UV-A and UV-B using one detector in the same pixel by bias switching, have been designed, fabricated and characterized. A two-terminal n-p-n photo-transistor-like structure was used. When a forward bias is applied between the top electrode and the bottom electrode, the detectors can successfully detect W-A and reject UV-B. Under reverse bias, they can detect UV-B and reject UV-A. The proof of concept design shows that it is feasible to fabricate high performance dual-band UV detectors based on the current AlGaN material growth and fabrication technologies.

  4. Silver nanoparticles protect human keratinocytes against UVB radiation-induced DNA damage and apoptosis: potential for prevention of skin carcinogenesis

    PubMed Central

    Arora, Sumit; Tyagi, Nikhil; Bhardwaj, Arun; Rusu, Lilia; Palanki, Rohan; Vig, Komal; Singh, Shree R.; Singh, Ajay P.; Palanki, Srinivas; Miller, Michael E.; Carter, James E.; Singh, Seema

    2015-01-01

    Ultraviolet (UV)-B radiation from the sun is an established etiological cause of skin cancer, which afflicts more than a million lives each year in the United States alone. Here, we tested the chemopreventive efficacy of silver-nanoparticles (AgNPs) against UVB-irradiation-induced DNA damage and apoptosis in human immortalized keratinocytes (HaCaT). AgNPs were synthesized by reduction-chemistry and characterized for their physicochemical properties. AgNPs were well tolerated by HaCaT cells and their pretreatment protected them from UVB-irradiation-induced apoptosis along with significant reduction in cyclobutane-pyrimidine-dimer formation. Moreover, AgNPs pre-treatment led to G1-phase cell-cycle arrest in UVB-irradiated HaCaT cells. AgNPs were efficiently internalized in UVB-irradiated cells and localized into cytoplasmic and nuclear compartments. Furthermore, we observed an altered expression of various genes involved in cell-cycle, apoptosis and nucleotide-excision repair in HaCaT cells treated with AgNPs prior to UVB-irradiation. Together, these findings provide support for potential utility of AgNPs as novel chemopreventive agents against UVB-irradiation-induced skin carcinogenesis. PMID:25804413

  5. The Molecular and Physiological Responses of Physcomitrella patens to Ultraviolet-B Radiation1[W][OA

    PubMed Central

    Wolf, Luise; Rizzini, Luca; Stracke, Ralf; Ulm, Roman; Rensing, Stefan A.

    2010-01-01

    Ultraviolet-B (UV-B) radiation present in sunlight is an important trigger of photomorphogenic acclimation and stress responses in sessile land plants. Although numerous moss species grow in unshaded habitats, our understanding of their UV-B responses is very limited. The genome of the model moss Physcomitrella patens, which grows in sun-exposed open areas, encodes signaling and metabolic components that are implicated in the UV-B response in flowering plants. In this study, we describe the response of P. patens to UV-B radiation at the morphological and molecular levels. We find that P. patens is more capable of surviving UV-B stress than Arabidopsis (Arabidopsis thaliana) and describe the differential expression of approximately 400 moss genes in response to UV-B radiation. A comparative analysis of the UV-B response in P. patens and Arabidopsis reveals both distinct and conserved pathways. PMID:20427465

  6. Influence of the absorption behavior of sunscreens in the short-wavelength UV range (UVB) and the long-wavelength UV range (UVA) on the relation of the UVB absorption to sun protection factor

    NASA Astrophysics Data System (ADS)

    Weigmann, Hans-Juergen; Schanzer, Sabine; Antoniou, Christina; Sterry, Wolfram; Lademann, Juergen

    2010-09-01

    The absorption of filter substances in sunscreens, reducing the incident ultraviolet (UV) radiation, is the basis for the protecting ability of such formulations. The erythema-correlated sun protection factor (SPF), depending mainly on the intensity of the UVB radiation, is the common value to quantify the efficacy of the formulations avoiding sunburn. An ex vivo method combining tape stripping and optical spectroscopy is applied to measure the absorption of sunscreens in the entire UV spectral range. The obtained relations between the short-wavelength UV (UVB) absorption and the SPF confirm a clear influence of the long-wavelength UV (UVA) absorption on the SPF values. The data reflect the historical development of the relation of the concentration of UVB and UVA filters in sunscreens and points to the influence of additional ingredients, e.g., antioxidants and cell-protecting agents on the efficacy of the products.

  7. UV-B induction of the E3 ligase ARIADNE12 depends on CONSTITUTIVELY PHOTOMORPHOGENIC 1

    PubMed Central

    Xie, Lisi; Lang-Mladek, Christina; Richter, Julia; Nigam, Neha; Hauser, Marie-Theres

    2015-01-01

    The UV-B inducible ARIADNE12 (ARI12) gene of Arabidopsis thaliana is a member of the RING-between-RING (RBR) family of E3 ubiquitin ligases for which a novel ubiquitination mechanism was identified in mammalian homologs. This RING-HECT hybrid mechanism needs a conserved cysteine which is replaced by serine in ARI12 and might affect the E3 ubiquitin ligase activity. We have shown that under photomorphogenic UV-B, ARI12 is a downstream target of the classical ultraviolet B (UV-B) UV RESISTANCE LOCUS 8 (UVR8) pathway. However, under high fluence rate of UV-B ARI12 was induced independently of UVR8 and the UV-A/blue light and red/far-red photoreceptors. A key component of several light signaling pathways is CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1). Upon UV-B COP1 is trapped in the nucleus through interaction with UVR8 permitting the activation of genes that regulate the biosynthesis of UV-B protective metabolites and growth adaptations. To clarify the role of COP1 in the regulation of ARI12 mRNA expression and ARI12 protein stability, localization and interaction with COP1 was assessed with and without UV-B. We found that COP1 controls ARI12 in white light, low and high fluence rate of UV-B. Furthermore we show that ARI12 is indeed an E3 ubiquitin ligase which is mono-ubiquitinated, a prerequisite for the RING-HECT hybrid mechanism. Finally, genetic analyses with transgenes expressing a genomic pmARI12:ARI12-GFP construct confirm the epistatic interaction between COP1 and ARI12 in growth responses to high fluence rate UV-B. PMID:25817546

  8. Isolation of a novel UVB-tolerant rice mutant obtained by exposure to carbon-ion beams.

    PubMed

    Takano, Nao; Takahashi, Yuko; Yamamoto, Mitsuru; Teranishi, Mika; Yamaguchi, Hiroko; Sakamoto, Ayako N; Hase, Yoshihiro; Fujisawa, Hiroko; Wu, Jianzhong; Matsumoto, Takashi; Toki, Seiichi; Hidema, Jun

    2013-07-01

    UVB radiation suppresses photosynthesis and protein biosynthesis in plants, which in turn decreases growth and productivity. Here, an ultraviolet-B (UVB)-tolerant rice mutant, utr319 (UV Tolerant Rice 319), was isolated from a mutagenized population derived from 2500 M1 seeds (of the UVB-resistant cultivar 'Sasanishiki') that were exposed to carbon ions. The utr319 mutant was more tolerant to UVB than the wild type. Neither the levels of UVB-induced cyclobutane pyrimidine dimers (CPDs) or (6-4) pyrimidine-pyrimidone photodimers [(6-4) photoproducts], nor the repair of CPDs or (6-4) photoproducts, was altered in the utr319 mutant. Thus, the utr319 mutant may be impaired in the production of a previously unidentified factor that confers UVB tolerance. To identify the mutated region in the utr319 mutant, microarray-based comparative genomic hybridization analysis was performed. Two adjacent genes on chromosome 7, Os07g0264900 and Os07g0265100, were predicted to represent the mutant allele. Sequence analysis of the chromosome region in utr319 revealed a deletion of 45 419 bp. RNAi analysis indicated that Os07g0265100 is most likely the mutated gene. Database analysis indicated that the Os07g0265100 gene, UTR319, encodes a putative protein with unknown characteristics or function. In addition, the homologs of UTR319 are conserved only among land plants. Therefore, utr319 is a novel UVB-tolerant rice mutant and UTR319 may be crucial for the determination of UVB sensitivity in rice, although the function of UTR319 has not yet been determined.

  9. Effect of UV-B Radiation and Desiccation Stress on Photoprotective Compounds Accumulation in Marine Leptolyngbya sp.

    PubMed

    Joshi, Devika; Mohandass, C; Dhale, Mohan

    2018-01-01

    Increased awareness regarding the harmful effects of ultraviolet (UV)-B radiation has led to the search for new sources of natural UV-B protecting compounds. Mycosporine-like amino acids are one of such promising compounds found in several organisms. Cyanobacteria are ideal organisms for isolation of these compounds due to their compatibility and adaptability to thrive under harsh environmental conditions. In the following investigation, we report the production of shinorine in Leptolyngbya sp. isolated from the intertidal region. Based on the spectral characteristics and liquid chromatography-mass spectrometry analysis, the UV-absorbing compound was identified as shinorine. To the best of our knowledge, this is the first report on the occurrence of shinorine in Leptolyngbya sp. We also investigated the effect of artificial UV-B radiation and periodic desiccation on chlorophyll-a, total carotenoids, and mycosporine-like amino acids (MAAs) production. The UV-B radiation had a negative effect on growth and chlorophyll concentration, whereas it showed an inductive effect on the production of total carotenoids and MAAs. Desiccation along with UV-B radiation led to an increase in the concentration of photoprotective compounds. These results indicate that carotenoids and MAAs thus facilitate cyanobacteria to avoid and protect themselves from the deleterious effects of UV-B and desiccation.

  10. Alzheimer's lymphocytes are resistant to ultraviolet B-induced apoptosis.

    PubMed

    Zana, Marianna; Juhász, Anna; Rimanóczy, Agnes; Bjelik, Annamária; Baltás, Eszter; Ocsovszki, Imre; Boda, Krisztina; Penke, Botond; Dobozy, Attila; Kemény, Lajos; Janka, Zoltán; Kálmán, János

    2006-06-01

    In the present pilot investigation, the susceptibility of T-lymphocytes from Alzheimer's disease (AD) subjects (n=22) and aged-matched, non-demented controls (CNT) (n=12) was examined with ultraviolet (UV) B light-induced apoptosis in vitro. The basal apoptotic ratios were similar in both groups. However, the AD lymphocytes displayed significantly (p<0.0001) lower apoptotic levels than those of the CNT lymphocytes at all of the applied UVB exposure doses (100, 200 and 300 mJ/cm(2)). These observations indicate that AD lymphocytes are more resistant than CNT lymphocytes to UVB irradiation.

  11. Protective effect of mango (Mangifera indica L.) against UVB-induced skin aging in hairless mice.

    PubMed

    Song, Jae Hyoung; Bae, Eun Young; Choi, Goya; Hyun, Jin Won; Lee, Mi Young; Lee, Hye Won; Chae, Sungwook

    2013-04-01

    Mangifera indica L. (Anacardiaceae) is a medicinal plant whose extracts have been described as an antioxidant with anti-inflammatory and immunomodulatory activities. Skin aging is a consequence of chronic sun exposure to the sun and therefore ultraviolet (UV) radiation. Naturally occurring antioxidants are known to reduce skin aging. Therefore, the aim of the present study was to evaluate the protective role of mango extract against UVB-induced skin aging in hairless mice. HR-1 hairless male mice (6 weeks old) were divided into three groups: control (n = 5), UVB-treated vehicle (n = 5), and UVB-treated mango extract (n = 5) groups. UVB-irradiated mice from the mango extract group were orally administered 0.1 ml of water containing 100 mg of mango extract/kg body weight per day. The inhibitory activity of mango extract on wrinkle formation was determined by the analysis of the skin replica, epidermal thickness based on histological examination, and damage to collagen fiber. The mean length of wrinkles in UVB-treated vehicle group significantly improved after the oral administration of mango extract, which significantly inhibited the increase in epidermal thickness and epidermal hypertrophy (P < 0.05). Furthermore, a marked increase in collagen bundles was observed in the UVB-treated group after the administration of mango extract by Masson's trichrome staining. These results indicate that mango extract showed anti-photoaging activity in UVB-irradiated hairless mice. © 2013 John Wiley & Sons A/S.

  12. Photoprotection of human skin beyond ultraviolet radiation.

    PubMed

    Grether-Beck, Susanne; Marini, Alessandra; Jaenicke, Thomas; Krutmann, Jean

    2014-01-01

    Photoprotection of human skin by means of sunscreens or daily skin-care products is traditionally centered around the prevention of acute (e.g. sunburn) and chronic (e.g. skin cancer and photoaging) skin damage that may result from exposure to ultraviolet rays (UVB and UVA). Within the last decade, however, it has been appreciated that wavelengths beyond the ultraviolet spectrum, in particular visible light and infrared radiation, contribute to skin damage in general and photoaging of human skin in particular. As a consequence, attempts have been made to develop skin care/sunscreen products that not only protect against UVB or UVA radiation but provide photoprotection against visible light and infrared radiation as well. In this article, we will briefly review the current knowledge about the mechanisms responsible for visible light/infrared radiation-induced skin damage and then, based on this information, discuss strategies that have been successfully used or may be employed in the future to achieve photoprotection of human skin beyond ultraviolet radiation. In this regard we will particularly focus on the use of topical antioxidants and the challenges that result from the task of showing their efficacy. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Influence of ambient ultraviolet radiation on Bufo calamita egg development in a semiarid zone (Catalonia, Spain).

    PubMed

    Oromi, Neus; Marquis, Olivier; Miaud, Claude; Sanuy, Delfi

    2008-01-01

    Several experiments have shown that ambient ultraviolet-B radiation (UV-B) has negative effects on the development of amphibians' embryos. We studied the effects of UV-B radiation on development, survival and frequency of deformity during egg development in the Natterjack toad (Bufo calamita) from a semiarid region of Lleida (Catalonia, Spain). Eggs exposed to ambient levels of UV-B and those protected from UV-B with a filter exhibited similar developmental rate, mortality rate and frequency of developmental anomalies. These experiments show that eggs of Bufo calamita of the studied population are able to develop normally during embryonic period when exposed to current high levels of UV-B observed in Catalonia. These results will be used as reference for future studies on geographic variation in UV-B tolerance in this species.

  14. Exposure of Metarhizium acridum mycelium to light induces tolerance to UV-B radiation.

    PubMed

    Brancini, Guilherme T P; Rangel, Drauzio E N; Braga, Gilberto Ú L

    2016-03-01

    Metarhizium acridum is an entomopathogenic fungus commonly used as a bioinsecticide. The conidium is the fungal stage normally employed as field inoculum in biological control programs and must survive under field conditions such as high ultraviolet-B (UV-B) exposure. Light, which is an important stimulus for many fungi, has been shown to induce the production of M. robertsii conidia with increased stress tolerance. Here we show that a two-hour exposure to white or blue/UV-A light of fast-growing mycelium induces tolerance to subsequent UV-B irradiation. Red light, however, does not have the same effect. In addition, we established that this induction can take place with as little as 1 min of white-light exposure. This brief illumination scheme could be relevant in future studies of M. acridum photobiology and for the production of UV-B resistant mycelium used in mycelium-based formulations for biological control. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Cell-type-specific roles for COX-2 in UVB-induced skin cancer

    PubMed Central

    Herschman, Harvey

    2014-01-01

    In human tumors, and in mouse models, cyclooxygenase-2 (COX-2) levels are frequently correlated with tumor development/burden. In addition to intrinsic tumor cell expression, COX-2 is often present in fibroblasts, myofibroblasts and endothelial cells of the tumor microenvironment, and in infiltrating immune cells. Intrinsic cancer cell COX-2 expression is postulated as only one of many sources for prostanoids required for tumor promotion/progression. Although both COX-2 inhibition and global Cox-2 gene deletion ameliorate ultraviolet B (UVB)-induced SKH-1 mouse skin tumorigenesis, neither manipulation can elucidate the cell type(s) in which COX-2 expression is required for tumorigenesis; both eliminate COX-2 activity in all cells. To address this question, we created Cox-2 flox/flox mice, in which the Cox-2 gene can be eliminated in a cell-type-specific fashion by targeted Cre recombinase expression. Cox-2 deletion in skin epithelial cells of SKH-1 Cox-2 flox/flox;K14Cre + mice resulted, following UVB irradiation, in reduced skin hyperplasia and increased apoptosis. Targeted epithelial cell Cox-2 deletion also resulted in reduced tumor incidence, frequency, size and proliferation rate, altered tumor cell differentiation and reduced tumor vascularization. Moreover, Cox-2 flox/flox;K14Cre + papillomas did not progress to squamous cell carcinomas. In contrast, Cox-2 deletion in SKH-1 Cox-2 flox/flox; LysMCre + myeloid cells had no effect on UVB tumor induction. We conclude that (i) intrinsic epithelial COX-2 activity plays a major role in UVB-induced skin cancer, (ii) macrophage/myeloid COX-2 plays no role in UVB-induced skin cancer and (iii) either there may be another COX-2-dependent prostanoid source(s) that drives UVB skin tumor induction or there may exist a COX-2-independent pathway(s) to UVB-induced skin cancer. PMID:24469308

  16. Air pollution effects field research facility: 3. UV-B exposure and monitoring system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McEvers, J.A.; Hileman, M.S.; Edwards, N.T.

    1993-03-01

    The Oak Ridge National Laboratory Outdoor UltraViolet-B (UV-B) Exposure and Monitoring Facility was developed in 1980 to provide well-controlled and -monitored exposure of specific terrestrial plant. species to elevated levels of ultraviolet (UV) radiation. The introduction of various anthropogenic agents into the earth`s stratosphere has resulted in a decrease in the volume of ozone (O{sub 3}) present here. The decrease in O{sub 3} has resulted in an increase in the level of UV radiation reaching thee earth`s surface. Of particular interest is the level of UV-B, because it has the most detrimental effect on living tissue. A thorough understanding ofmore » the effects of elevated levels of UV-B on living tissue is critical to the formulation of economic policy regarding production of such agents and alternative strategies. The UV region of interest is referred to as UV-B and corresponds to radiation with a wavelength of 290 to 320 nm. Design, operation, and performance of the automated generation, exposure, and monitoring system are described. The system has proved to be reliable and easy to maintain and operate, and it provides significant flexibility in exposure programs. The system software is described, and detailed listings are provided. The ability to expose plants to controlled set point percentages of UV-B above the ambient level was developed.« less

  17. The gender differences in the inhibitory action of UVB-induced melanocyte activation by the administration of tranexamic acid.

    PubMed

    Hiramoto, Keiichi; Yamate, Yurika; Sugiyama, Daijiro; Takahashi, Yumi; Mafune, Eiichi

    2016-05-01

    Tranexamic acid has an inhibitory action on ultraviolet (UV) B-induced melanocyte activation. This study examined the sex differences in the inhibitory action of tranexamic acid on UVB-induced melanocyte activation. We irradiated the eye and ear of male and female mice with UVB at a dose of 1.0 kJ/m(2) using a 20SE sunlamp. We orally administered tranexamic acid (750 mg/kg/day) at 30 min before UVB exposure. Tranexamic acid inhibited the UVB-induced epidermal melanocyte activation, and the effect was more remarkable under UVB eye irradiation than under UVB ear irradiation. Furthermore, the melanocyte activity suppression effect was stronger in female mice than in male mice. Following the administration of tranexamic acid, the female displayed increased blood levels of β-endorphin and μ-opioid receptor and estradiol receptor β expression in comparison with the male. Furthermore, the effect of melanocyte activity suppression in the female mice was decreased by the administration of tamoxifen (antagonist of estrogen receptor) or naltrexone (antagonist of μ-opioid receptor). These results suggest that the suppression by tranexamic acid of the UVB-induced melanocyte activation (UVB sensitivity) is stronger in female mice than in male mice and that female hormones and β-endorphin play an important role in this sex difference. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Leaf expansion and development of photosynthetic capacity and pigments in Liquidambar Styraciflua (Hamamelidaceae)-effects of UV-B radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dillenburg, L.R.; Sullivan, J.H.; Teramura, A.H.

    1995-07-01

    In order to perform their functions as photosynthetic organs, leaves must cope with excess heat and potentially damaging ultraviolet radiation. Possible increases in the UV-B portion of the solar spectrum may place an additional burden on leaves, and this could be particularly important for young expanding leaves with poorly developed UV-B defense mechanisms. We evaluated the effects of supplemental UV-B radiation on leaf expansion and the development of photosynthetic capacity and pigments in sweetgum (Liquidambar styraciflua L.) seedlings. Seedlings were grown in the field under either ambient or ambient plus 3 or 5.0 kJ of biologically effective supplemental UV-B radiation.more » Although final leaf size was unaffected, the rate of leaf elongation and accumulation of leaf area was slower in leaves exposed to the lower supplemental UV-B irradiance. In contrast, chlorophyll accumulation and the development of photosynthetic capacity was more rapid in plants exposed to the higher, compared to the lower supplemental UV-B irradiance. The accumulation of anthocyanins and other putative flavonoids or UV-absorbing compounds was scarcely affected by exposure to supplemental UV-B radiation. These results suggest that the UV-B portion of the solar spectrum may, in the absence of gross affects on biomass, exert subtle influences on leaf ontogeny and the development of photosynthetic pigments and capacity in sweetgum. 44 refs., 6 figs.« less

  19. A measurement of the z = 0 UV background from Hα fluorescence

    NASA Astrophysics Data System (ADS)

    Fumagalli, Michele; Haardt, Francesco; Theuns, Tom; Morris, Simon L.; Cantalupo, Sebastiano; Madau, Piero; Fossati, Matteo

    2017-06-01

    We report the detection of extended Hα emission from the tip of the H I disc of the nearby edge-on galaxy UGC 7321, observed with the Multi Unit Spectroscopic Explorer (MUSE) instrument at the Very Large Telescope. The Hα surface brightness fades rapidly where the H I column density drops below N_{H I}˜ 10^{19} cm-2, consistent with fluorescence arising at the ionization front from gas that is photoionized by the extragalactic ultraviolet background (UVB). The surface brightness measured at this location is (1.2 ± 0.5) × 10-19 erg s- 1 cm- 2 arcsec- 2, where the error is mostly systematic and results from the proximity of the signal to the edge of the MUSE field of view, and from the presence of a sky line next to the redshifted Hα wavelength. By combining the Hα and the H I 21 cm maps with a radiative transfer calculation of an exponential disc illuminated by the UVB, we derive a value for the H I photoionization rate of Γ _{H I} ˜ (6-8)× 10^{-14} s^{-1}. This value is consistent with transmission statistics of the Lyα forest and with recent models of a UVB that is dominated by quasars.

  20. Protective Effect of Chitin Urocanate Nanofibers against Ultraviolet Radiation

    PubMed Central

    Ito, Ikuko; Yoneda, Toshikazu; Omura, Yoshihiko; Osaki, Tomohiro; Ifuku, Shinsuke; Saimoto, Hiroyuki; Azuma, Kazuo; Imagawa, Tomohiro; Tsuka, Takeshi; Murahata, Yusuke; Ito, Norihiko; Okamoto, Yoshiharu; Minami, Saburo

    2015-01-01

    Urocanic acid is a major ultraviolet (UV)-absorbing chromophore. Chitins are highly crystalline structures that are found predominantly in crustacean shells. Alpha-chitin consists of microfibers that contain nanofibrils embedded in a protein matrix. Acid hydrolysis is a common method used to prepare chitin nanofibrils (NFs). We typically obtain NFs by hydrolyzing chitin with acetic acid. However, in the present study, we used urocanic acid to prepare urocanic acid chitin NFs (UNFs) and examined its protective effect against UVB radiation. Hos: HR-1 mice coated with UNFs were UVB irradiated (302 nm, 150 mJ/cm2), and these mice showed markedly lower UVB radiation-induced cutaneous erythema than the control. Additionally, sunburn cells were rarely detected in the epidermis of UNFs-coated mice after UVB irradiation. Although the difference was not as significant as UNFs, the number of sunburn cells in mice treated with acetic acid chitin nanofibrils (ANFs) tended to be lower than in control mice. These results demonstrate that ANFs have a protective effect against UVB and suggest that the anti-inflammatory and antioxidant effects of NFs influence the protective effect of ANFs against UVB radiation. The combination of NFs with other substances that possess UV-protective effects, such as urocanic acid, may provide an enhanced protective effect against UVB radiation. PMID:26703629

  1. Enhancement of UVB radiation-mediated apoptosis by knockdown of cytosolic NADP+-dependent isocitrate dehydrogenase in HaCaT cells.

    PubMed

    Lee, Su Jeong; Park, Jeen-Woo

    2014-04-01

    Ultraviolet B (UVB) radiation induces the production of reactive oxygen species (ROS) that promote apoptotic cell death. We showed that cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) plays an essential role in the control of cellular redox balance and defense against oxidative damage, by supplying NADPH for antioxidant systems. In this study, we demonstrated that knockdown of IDPc expression by RNA interference enhances UVB-induced apoptosis of immortalized human HaCaT keratinocytes. This effect manifested as DNA fragmentation, changes in cellular redox status, mitochondrial dysfunction, and modulation of apoptotic marker expression. Based on our findings, we suggest that attenuation of IDPc expression may protect skin from UVB-mediated damage, by inducing the apoptosis of UV-damaged cells.

  2. Wild chrysanthemum extract prevents UVB radiation-induced acute cell death and photoaging.

    PubMed

    Sun, Sujiao; Jiang, Ping; Su, Weiting; Xiang, Yang; Li, Jian; Zeng, Lin; Yang, Shuangjuan

    2016-03-01

    Wild chrysanthemum (Chrysanthemum indicum L.) is traditionally used in folk medicine as an anti-inflammatory agent. It is also used in the southwest plateau region of China to prevent ultraviolet-induced skin damage. However, the role and mechanism by which wild chrysanthemum prevents UV-induced skin damage and photoaging have never been investigated in vitro. In the present study, we found that aqueous extracts from wild chrysanthemum strongly reduced high-dose UVB-induced acute cell death of human immortalized keratinocytic HaCat cells. Wild chrysanthemum extract was also demonstrated to reduce low-dose UVB-induced expression of the photoaging-related matrix metalloproteinases MMP-2 and MMP-9. The ROS level elevated by UVB irradiation was strongly attenuated by wild chrysanthemum extract. Further study revealed that wild chrysanthemum extract reduced UVB-triggered ERK1/2 and p38 MAPK phosphorylation and their protective role, which is partially dependent on inhibiting p38 activation. These results suggest that wild chrysanthemum extract can protect the skin from UVB-induced acute skin damage and photoaging by reducing the intracellular reactive oxygen species (ROS) level and inhibiting p38 MAPK phosphorylation. The present study confirmed the protective role of wild chrysanthemum against UV-induced skin disorders in vitro and indicated the possible mechanism. Further study to identify the active components in wild chrysanthemum extract would be useful for developing new drugs for preventing and treating skin diseases, including skin cancer and photoaging, induced by UV irradiation.

  3. Ultraviolet-B Protective Effect of Flavonoids from Eugenia caryophylata on Human Dermal Fibroblast Cells.

    PubMed

    Patwardhan, Juilee; Bhatt, Purvi

    2015-10-01

    The exposure of skin to ultraviolet-B (UV-B) radiations leads to deoxyribonucleic acid (DNA) damage and can induce production of free radicals which imbalance the redox status of the cell and lead to increased oxidative stress. Clove has been traditionally used for its analgesic, anti-inflammatory, anti-microbial, anti-viral, and antiseptic effects. To evaluate the UV-B protective activity of flavonoids from Eugenia caryophylata (clove) buds on human dermal fibroblast cells. Protective ability of flavonoid-enriched (FE) fraction of clove was studied against UV-B induced cytotoxicity, anti-oxidant regulation, oxidative DNA damage, intracellular reactive oxygen species (ROS) generation, apoptotic morphological changes, and regulation of heme oxygenase-1 (HO-1) gene through nuclear factor E2-related factor 2 antioxidant response element (Nrf2 ARE) pathway. FE fraction showed a significant antioxidant potential. Pretreatment of cells with FE fraction (10-40 μg/ml) reversed the effects of UV-B induced cytotoxicity, depletion of endogenous enzymatic antioxidants, oxidative DNA damage, intracellular ROS production, apoptotic changes, and overexpression of Nrf2 and HO-1. The present study demonstrated for the first time that the FE fraction from clove could confer UV-B protection probably through the Nrf2-ARE pathway, which included the down-regulation of Nrf2 and HO-1. These findings suggested that the flavonoids from clove could potentially be considered as UV-B protectants and can be explored further for its topical application to the area of the skin requiring protection. Pretreatment of human dermal fibroblast with flavonoid-enriched fraction of Eugenia caryophylata attenuated effects of ultraviolet-B radiationsIt also conferred protection through nuclear factor E2-related factor 2-antioxidant response pathway and increased tolerance of cells against oxidative stressFlavonoid-enriched fraction can be explored further for topical application to the skin as a

  4. Induction of IL-10 gene expression in human keratinocytes by UVB exposure in vivo and in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enk, C.D.; Blauvelt, A.; Katz, S.I.

    Numerous studies have demonstrated that ultraviolet B (UVB) irradiation has profound effects on the skin and systemic immune systems. Because many of the effects of UVB result in suppression of contact sensitivity responses and because IL-10 induces a Th2 rather than a Th1 response, we sought to determine whether UVB irradiation induces IL-10 transcription and subsequent protein secretion by human epidermal cells. Skin of nine volunteers was exposed to UVB or sham irradiation, and epidermal cell suspensions were prepared from suction blister roofs 24 h thereafter. mRNA was extracted using oligo dT-coated magnetic beads, and IL-10 cDNA was amplified withmore » a sensitive RT-PCR technique. We found that IL-10 was constitutively expressed by epidermal cells in 5 of 9 volunteers and that IL-10 message was up-regulated by UVB exposure in all experiments. Since epidermis consists of a heterogeneous cell population with distinct cytokine profiles, we determined whether UVB caused enhanced IL-10 transcription and protein secretion in human keratinocyte cultures. In these experiments, IL-10 was constitutively expressed by keratinocytes and UVB up-regulated IL-10 gene expression in a dose-dependent manner 24 h after in vitro irradiation, coinciding with IL-10 protein secretion into the culture supernatants. Taken together, the findings indicate that UVB irradiation induces IL-10 in human keratinocytes and suggest that keratinocyte-derived IL-10 may be an important component of the immunosuppression that results from UVB irradiation. 55 refs., 5 figs.« less

  5. Vitamin D production after UVB exposure - a comparison of exposed skin regions.

    PubMed

    Osmancevic, Amra; Sandström, Katarina; Gillstedt, Martin; Landin-Wilhelmsen, Kerstin; Larkö, Olle; Wennberg Larkö, Ann-Marie; F Holick, Michael; Krogstad, Anne-Lene

    2015-02-01

    Cholecalciferol is an essential steroid produced in the skin by solar ultraviolet B radiation (UVB 290-315nm). Skin production of cholecalciferol depends on factors affecting UVB flux, age and exposed skin area. Serum cholecalciferol and 25-hydroxyvitamin D3 [25(OH)D3] concentrations were measured after UVB irradiation of 3 different skin areas to compare the skin capacity to produce vitamin D in different anatomic sites in the same individuals. Ten voluntary Caucasians (skin photo type II & III, aged 48±12years (±SD)) were exposed to broadband UVB (280-320nm) between February and April. Hands and face, upper body and whole body were exposed to a suberythemic dose of UVB (median 101mJ/cm(2) (min 66, max 143)) (for 3 subsequent days 24h apart with a wash out period of about 3weeks (median 18days (min 11, max 25)) between the exposures of respective area. Serum concentrations of cholecalciferol and 25(OH)D3, were measured immediately before the first and 24h after the last dose of radiation. There was a significantly higher increase in serum cholecalciferol after UVB exposure of the two larger skin areas compared to face and hands, but no difference in increase was found between upper body and whole body exposures. Exposure of a larger skin area was superior to small areas and gave greater increase in both serum cholecalciferol and serum 25(OH)D3 concentrations. However, exposure of face and hands, i.e. only 5% of the body surface area, was capable of increasing serum concentrations of 25(OH)D3. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Effects of sodium nitroprusside (SNP) pretreatment on UV-B stress tolerance in lettuce (Lactuca sativa L.) seedlings.

    PubMed

    Esringu, Aslıhan; Aksakal, Ozkan; Tabay, Dilruba; Kara, Ayse Aydan

    2016-01-01

    Ultraviolet-B (UV-B) radiation is one of the most important abiotic stress factors that could influence plant growth, development, and productivity. Nitric oxide (NO) is an important plant growth regulator involved in a wide variety of physiological processes. In the present study, the possibility of enhancing UV-B stress tolerance of lettuce seedlings by the exogenous application of sodium nitroprusside (SNP) was investigated. UV-B radiation increased the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD) and total phenolic concentrations, antioxidant capacity, and expression of phenylalanine ammonia lyase (PAL) gene in seedlings, but the combination of SNP pretreatment and UV-B enhanced antioxidant enzyme activities, total phenolic concentrations, antioxidant capacity, and PAL gene expression even more. Moreover, UV-B radiation significantly inhibited chlorophylls, carotenoid, gibberellic acid (GA), and indole-3-acetic acid (IAA) contents and increased the contents of abscisic acid (ABA), salicylic acid (SA), malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide radical (O2•(-)) in lettuce seedlings. When SNP pretreatment was combined with the UV-B radiation, we observed alleviated chlorophylls, carotenoid, GA, and IAA inhibition and decreased content of ABA, SA, MDA, H2O2, and O2•(-) in comparison to non-pretreated stressed seedlings.

  7. Protective effect of rare earth against oxidative stress under ultraviolet-B radiation.

    PubMed

    Wang, Lihong; Huang, Xiaohua; Zhou, Qing

    2009-04-01

    The effects of lanthanum (III) (La(III)) in protecting soybean leaves against oxidative stress induced by ultraviolet-B (UV-B) radiation were investigated. The increase in contents of hydrogen peroxide (H(2)O(2)) and superoxide (O2*-) due to UV-B radiation suggested oxidative stress. The increase in the content of malondialdehyde (MDA) and the decrease in the index of unsaturated fatty acid (IUFA) indicated oxidative damage on cell membrane induced by UV-B radiation. La(III) partially reversed UV-B-radiation-induced damage of plant growth. The reduction in the contents of H(2)O(2), O2*-, and MDA and increase in the content of IUFA, compared with UV-B treatment, also indicated that La(III) alleviated the oxidative damage induced by UV-B radiation. The increase in the activities of superoxide dismutase and peroxidase and the contents of ascorbate, carotenoids, and flavonoids were observed in soybean leaves with La(III) + UV-B treatment, compared with UV-B treatment. Our data suggested that La(III) could protect soybean plants from UV-B-radiation-induced oxidative stress by reacting with reactive oxygen species directly or by improving the defense system of plants.

  8. Effect of enhanced UV-B radiation on pollen quantity, quality, and seed yield in Brassica rapa (Brassicaceae)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demchik, S.M.; Day, T.A.

    Three experiments examined the influence of ultraviolet-B radiation (UV-B; 280-320 nm) exposure on reproduction in Brassica rapa (Brassicacaeae). Plants were grown in a greenhouse under three biologically effective UV-B levels that stimulated either an ambient stratospheric ozone level (control), 16% ({open_quotes}low enhanced{close_quotes}), or 32% ({open_quotes}high enhanced{close_quotes}) ozone depletion levels at Morgantown, WV, USA in mid-March. In the first experiment,pollen production and viability per flower were reduced by {approx}50% under both enhanced UV-B levels relative to ambient controls. While plants under high-enhanced UV-B produced over 40% more flowers than plants under the two lower UV-B treatments, whole-plant production of viable pollenmore » was reduced under low-enhanced UV-B to 34% of ambient controls. In the second experiment, the influence of source-plant UV-B exposure on in vitro pollen from plants was examined and whether source-plant UV-B exposure influenced in vitro pollen germination and viability. Pollen from plants under both enhanced-UV-B was reduced from 65 to 18%. Viability of the pollen from plants grown under both enhanced UV-B treatments was reduced to a much lesser extent: only from {approx}43 to 22%. Thus, ambient source-plant pollen was more sensitive to enhanced UV-B levels to fertilize plants growing under ambient-UV-B levels, and assessed subsequent seed production and germination. Seed abortion rates were higher in plants pollinated with pollen from the enhanced UV-B treatments, than from ambient UV-B. Despite this, seed yield (number and mass) per plant was similar, regardless of the UV-B exposure of their pollen source. Our findings demonstrate that enhanced UV-B levels associated with springtime ozone depletion events have the capacity to substantially reduce viable pollen production, and could ultimately reduce reproductive success of B. rapa. 37 refs., 4 figs., 2 tabs.« less

  9. ROLE OF THE EGG JELLY COAT IN PROTECTING HYLA REGILLA AND BUFO CANORUS EMBRYOS FROM ULTRAVIOLET B RADIATION DURING DEVELOPMENT

    EPA Science Inventory

    Previous studies have suggested that Ultraviolet B (UVB) radiation may play a role in amphibian population declines. Some of these studies also indicate that egg hatching success is unaltered in some species of anurans as a result of UVB exposure. It has been proposed that the eg...

  10. Transcriptomic Profiling of Soybean in Response to High-Intensity UV-B Irradiation Reveals Stress Defense Signaling

    PubMed Central

    Yoon, Min Young; Kim, Moon Young; Shim, Sangrae; Kim, Kyung Do; Ha, Jungmin; Shin, Jin Hee; Kang, Sungtaeg; Lee, Suk-Ha

    2016-01-01

    The depletion of the ozone layer in the stratosphere has led to a dramatic spike in ultraviolet B (UV-B) intensity and increased UV-B light levels. The direct absorption of high-intensity UV-B induces complex abiotic stresses in plants, including excessive light exposure, heat, and dehydration. However, UV-B stress signaling mechanisms in plants including soybean (Glycine max [L.]) remain poorly understood. Here, we surveyed the overall transcriptional responses of two soybean genotypes, UV-B-sensitive Cheongja 3 and UV-B-resistant Buseok, to continuous UV-B irradiation for 0 (control), 0.5, and 6 h using RNA-seq analysis. Homology analysis using UV-B-related genes from Arabidopsis thaliana revealed differentially expressed genes (DEGs) likely involved in UV-B stress responses. Functional classification of the DEGs showed that the categories of immune response, stress defense signaling, and reactive oxygen species (ROS) metabolism were over-represented. UV-B-resistant Buseok utilized phosphatidic acid-dependent signaling pathways (based on subsequent reactions of phospholipase C and diacylglycerol kinase) rather than phospholipase D in response to UV-B exposure at high fluence rates, and genes involved in its downstream pathways, such as ABA signaling, mitogen-activated protein kinase cascades, and ROS overproduction, were upregulated in this genotype. In addition, the DEGs for TIR-NBS-LRR and heat shock proteins are positively activated. These results suggest that defense mechanisms against UV-B stress at high fluence rates are separate from the photomorphogenic responses utilized by plants to adapt to low-level UV light. Our study provides valuable information for deep understanding of UV-B stress defense mechanisms and for the development of resistant soybean genotypes that survive under high-intensity UV-B stress. PMID:28066473

  11. UV-B radiation-induced oxidative stress and p38 signaling pathway involvement in the benthic copepod Tigriopus japonicus.

    PubMed

    Kim, Bo-Mi; Rhee, Jae-Sung; Lee, Kyun-Woo; Kim, Min-Jung; Shin, Kyung-Hoon; Lee, Su-Jae; Lee, Young-Mi; Lee, Jae-Seong

    2015-01-01

    Ultraviolet B (UV-B) radiation presents an environmental hazard to aquatic organisms. To understand the molecular responses of the intertidal copepod Tigriopus japonicus to UV-B radiation, we measured the acute toxicity response to 96 h of UV-B radiation, and we also assessed the intracellular reactive oxygen species (ROS) levels, glutathione (GSH) content, and antioxidant enzyme (GST, GR, GPx, and SOD) activities after 24 h of exposure to UV-B with LD50 and half LD50 values. Also, expression patterns of p53 and hsp gene families with phosphorylation of p38 MAPK were investigated in UV-B-exposed copepods. We found that the ROS level, GSH content, and antioxidant enzyme activity levels were increased with the transcriptional upregulation of antioxidant-related genes, indicating that UV-B induces oxidative stress by generating ROS and stimulating antioxidant enzymatic activity as a defense mechanism. Additionally, we found that p53 expression was significantly increased after UV-B irradiation due to increases in the phosphorylation of the stress-responsive p38 MAPK, indicating that UV-B may be responsible for inducing DNA damage in T. japonicus. Of the hsp family genes, transcriptional levels of hsp20, hsp20.7, hsp70, and hsp90 were elevated in response to a low dose of UV-B radiation (9 kJ m(-2)), suggesting that these hsp genes may be involved in cellular protection against UV-B radiation. In this paper, we performed a pathway-oriented mechanistic analysis in response to UV-B radiation, and this analysis provides a better understanding of the effects of UV-B in the intertidal benthic copepod T. japonicus. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Oral administration of Aloe vera gel powder prevents UVB-induced decrease in skin elasticity via suppression of overexpression of MMPs in hairless mice.

    PubMed

    Saito, Marie; Tanaka, Miyuki; Misawa, Eriko; Yao, Ruiquing; Nabeshima, Kazumi; Yamauchi, Kouji; Abe, Fumiaki; Yamamoto, Yuki; Furukawa, Fukumi

    2016-07-01

    This study reports the effects of oral Aloe vera gel powder (AVGP) containing Aloe sterols on skin elasticity and the extracellular matrix in ultraviolet B (UVB)-irradiated hairless mice. Ten-week-old hairless mice were fed diets containing 0.3% AVGP for 8 weeks and irradiated UVB for 6 weeks. Mice treated with AVGP showed significant prevention of the UVB-induced decrease in skin elasticity. To investigate the mechanism underlying this suppression of skin elasticity loss, we measured the expression of matrix metalloproteinase (MMP)-2, -9, and -13. AVGP prevented both the UVB-induced increases in MMPs expressions. Moreover, we investigated hyaluronic acid (HA) content of mice dorsal skin and gene expression of HA synthase-2 (Has2). In the results, AVGP oral administration prevented UVB-induced decreasing in skin HA content and Has2 expression and attenuates the UVB-induced decrease in serum adiponectin, which promotes Has2 expression. These results suggested that AVGP has the ability to prevent the skin photoaging.

  13. Isolation of a novel UVB-tolerant rice mutant obtained by exposure to carbon-ion beams

    PubMed Central

    Takano, Nao; Takahashi, Yuko; Yamamoto, Mitsuru; Teranishi, Mika; Yamaguchi, Hiroko; Sakamoto, Ayako N.; Hase, Yoshihiro; Fujisawa, Hiroko; Wu, Jianzhong; Matsumoto, Takashi; Toki, Seiichi; Hidema, Jun

    2013-01-01

    UVB radiation suppresses photosynthesis and protein biosynthesis in plants, which in turn decreases growth and productivity. Here, an ultraviolet-B (UVB)-tolerant rice mutant, utr319 (UV Tolerant Rice 319), was isolated from a mutagenized population derived from 2500 M1 seeds (of the UVB-resistant cultivar ‘Sasanishiki’) that were exposed to carbon ions. The utr319 mutant was more tolerant to UVB than the wild type. Neither the levels of UVB-induced cyclobutane pyrimidine dimers (CPDs) or (6-4) pyrimidine-pyrimidone photodimers [(6-4) photoproducts], nor the repair of CPDs or (6-4) photoproducts, was altered in the utr319 mutant. Thus, the utr319 mutant may be impaired in the production of a previously unidentified factor that confers UVB tolerance. To identify the mutated region in the utr319 mutant, microarray-based comparative genomic hybridization analysis was performed. Two adjacent genes on chromosome 7, Os07g0264900 and Os07g0265100, were predicted to represent the mutant allele. Sequence analysis of the chromosome region in utr319 revealed a deletion of 45 419 bp. RNAi analysis indicated that Os07g0265100 is most likely the mutated gene. Database analysis indicated that the Os07g0265100 gene, UTR319, encodes a putative protein with unknown characteristics or function. In addition, the homologs of UTR319 are conserved only among land plants. Therefore, utr319 is a novel UVB-tolerant rice mutant and UTR319 may be crucial for the determination of UVB sensitivity in rice, although the function of UTR319 has not yet been determined. PMID:23381954

  14. The effect of single and repeated UVB radiation on rabbit cornea.

    PubMed

    Fris, Miroslav; Tessem, May-Britt; Cejková, Jitka; Midelfart, Anna

    2006-12-01

    Cumulative effect of ultraviolet radiation (UVR) is an important aspect of UV corneal damage. The purpose of this study was to apply high resolution magic angle spinning proton nuclear magnetic resonance (HR-MAS 1H NMR) spectroscopy to evaluate the effect of single and repeated UV radiation exposure of the same overall dose on the rabbit cornea. Corneal surfaces of 24 normal rabbit eyes were examined for the effects of UVB exposure (312 nm). In the first group (UVB1), animals were irradiated with a single dose (3.12 J/cm2; 21 min) of UVB radiation. The animals in the second group (UVB2) were irradiated three times for 7 min every other day (dose of 1.04 J/cm2; days 1, 3, 5) to give the same overall dose (3.12 J/cm2). The third group served as an untreated control group. One day after the last irradiation, the animals were sacrificed, and the corneas were removed and frozen. HR-MAS 1H NMR spectra from intact corneas were obtained. Special grouping patterns among the tissue samples and the relative percentage changes in particular metabolite concentrations were evaluated using modern statistical methods (multivariate analysis, one-way ANOVA). The metabolic profile of both groups of UVB-irradiated samples was significantly different from the control corneas. Substantial decreases in taurine, hypo-taurine and choline-derivatives concentrations and substantial elevation in glucose and betaine levels were observed following the UVR exposure. There was no significant difference between the effect of a single and repeated UVB irradiation of the same overall dose. For the first time, the effects of single and repeated UVR doses on the metabolic profile of the rabbit cornea were analysed and compared. The combination of HR-MAS 1H NMR spectroscopy and modern statistical methods (multivariate analysis, one-way ANOVA) proved suitable to assess the overall view of the metabolic alterations in the rabbit corneal tissue following UVB radiation exposure.

  15. Stratospheric ozone depletion and plant-insect interactions: Effects of UVB radiation on foliage quality of Citrus jambhiri for Trichoplusia ni

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCloud, E.S.; Berenbaum, M.R.

    1994-03-01

    Projected decreases in stratospheric ozone may result in increases in shortwave ultraviolet (UVB) irradiation at the earth's surface. Furanocoumarins, phototoxic compounds found in Citrus jambhiri foliage, increase in concentration when these plans are grown under enhanced UVB. Survivorship schedules of Trichoplusia ni (Lepidoptera: Noctuidae) caterpillars reared on plants in the presence and absence of enhanced UVB regimes differ significantly; larvae develop more slowly in early life when reared on plants exposed to increased UVB. This same developmental pattern is observed when T. ni larvae are reared on artificial diets amended with ecologically appropriate amounts of furanocoumarins. Thus, anthropogenically derived changesmore » in stratospheric ozone and concomitant changes in UV light quality at the earth's surface may influence ecological interactions between insects and their host plants by altering secondary metabolism and hence foliage quality for herbivores.« less

  16. Anti-photoaging effect of aaptamine in UVB-irradiated human dermal fibroblasts and epidermal keratinocytes.

    PubMed

    Kim, Min-Ji; Woo, Seon Wook; Kim, Myung-Suk; Park, Ji-Eun; Hwang, Jae-Kwan

    2014-12-01

    Chronic exposure to ultraviolet (UV) irradiation causes sunburn, inflammatory responses, skin cancer, and photoaging. Photoaging, in particular, generates reactive oxygen species (ROS) that stimulate mitogen-activated protein kinase (MAPK) signaling and transcription factors. UV irradiation also activates matrix metalloproteinases (MMPs) expression and inactivates collagen synthesis. Aaptamine, a marine alkaloid isolated from the marine sponge, has been reported to have antitumor, antimicrobial, antiviral, and antioxidant activities. However, the photo-protective effects of aaptamine have not been elucidated. In this study, our data demonstrated that aaptamine deactivated UVB-induced MAPK and activator protein-1 signaling by suppressing ROS, resulting in attenuating the expression of MMPs in UVB-irradiated human dermal fibroblasts. Aaptamine also decreased proinflammatory cytokines such as cyclooxygenase-2, tumor necrosis factor-α, interleukin-1β, and nuclear factor-kappa B subunits in UVB-irradiated human keratinocytes. In conclusion, we suggest that aaptamine represents a novel and effective strategy for treatment and prevention of photoaging.

  17. The effects of enhanced UV-B radiation on growth, stomata, flavonoid, and ABA content in cucumber leaves

    NASA Astrophysics Data System (ADS)

    An, Lizhe; Wang, Jianhui; Liu, Yanhong; Chen, Tuo; Xu, Shijian; Feng, Huyuan; Wang, Xunling

    2003-06-01

    Cucumber plants (Cucumis sativus L. cv. Jinchun No 3) grown in a greenhouse were treated with three different biologically effective ultraviolet-B (UV-B) radiation levels: 1.28 kJ. m-2 (CK), 8.82kJ.m-2 (T1) and 12.6 kJ. m-2 (T2). Irradiances corresponded to 8% and 21% reduction in stratospheric ozone in Lanzhou. Plants at three-leaf stage were irradiated 7 h daily for 25 days. The growth, stomata, flavonoid and ABA content in cucumber leaves exposed to 3 levels of UV-B radiation were determined in this paper. The results indicated that, compared with the control after 25 days UV-B radiation, RI of cucumber under T1 treatment is -18.0% and RI under T2 treatment is -48% mostly because of the reduce of leave area and dry weight accompanying with the increase of SLW; the rate of stomata closure under the treatments of T1 and T2 on the 6th day was up to respectively 70% and 89%, and amounted to 90% and 100% on the 18th day, and the guard cells in some stomata apparatus became permanent pores and lost their function at the same time; with the duration of UV-B radiation, the rise of the absorbance to ultraviolet light (305nm) showed the content increase of flavonoid; Abscisic acid (ABA) was determined by means of ELISA which showed that under the T1 treatment, the content of ABA was up to maximum to 510% higher than that of the control on the 21st day, meanwhile, under the treatment of T2, it was the highest on the 18th day to 680% of the control, and then had a decrease tendency on 21st day. The result still indicated that ABA accumulation could be induced by enhanced UV-B the radiation. The bigger was the dose of radiation, the higher was the accumulation of ABA. When intensity of UV-B radiation went beyond the degree of endurance of cucumber plants, ABA content descended then. Cucumber plants resist enhanced UV-B radiation by means of improving the contents of ABA and flavonoid. The increase of ABA content in cucumber leaves could lead to the stomata closure. Therefore

  18. Ultraviolet-B-induced DNA damage and ultraviolet-B tolerance mechanisms in species with different functional groups coexisting in subalpine moorlands.

    PubMed

    Wang, Qing-Wei; Kamiyama, Chiho; Hidema, Jun; Hikosaka, Kouki

    2016-08-01

    High doses of ultraviolet-B (UV-B; 280-315 nm) radiation can have detrimental effects on plants, and especially damage their DNA. Plants have DNA repair and protection mechanisms to prevent UV-B damage. However, it remains unclear how DNA damage and tolerance mechanisms vary among field species. We studied DNA damage and tolerance mechanisms in 26 species with different functional groups coexisting in two moorlands at two elevations. We collected current-year leaves in July and August, and determined accumulation of cyclobutane pyrimidine dimer (CPD) as UV-B damage and photorepair activity (PRA) and concentrations of UV-absorbing compounds (UACs) and carotenoids (CARs) as UV-B tolerance mechanisms. DNA damage was greater in dicot than in monocot species, and higher in herbaceous than in woody species. Evergreen species accumulated more CPDs than deciduous species. PRA was higher in Poaceae than in species of other families. UACs were significantly higher in woody than in herbaceous species. The CPD level was not explained by the mechanisms across species, but was significantly related to PRA and UACs when we ignored species with low CPD, PRA and UACs, implying the presence of another effective tolerance mechanism. UACs were correlated negatively with PRA and positively with CARs. Our results revealed that UV-induced DNA damage significantly varies among native species, and this variation is related to functional groups. DNA repair, rather than UV-B protection, dominates in UV-B tolerance in the field. Our findings also suggest that UV-B tolerance mechanisms vary among species under evolutionary trade-off and synergism.

  19. Solar ultraviolet-B radiation increases phenolic content and ferric reducing antioxidant power in Avena sativa.

    PubMed

    Ruhland, Christopher T; Fogal, Mitchell J; Buyarski, Christopher R; Krna, Matthew A

    2007-06-29

    We examined the influence of solar ultraviolet-B radiation (UV-B; 280-320 nm) on the maximum photochemical efficiency of photosystem II (F(v)/F(m)), bulk-soluble phenolic concentrations, ferric-reducing antioxidant power (FRAP) and growth of Avena sativa. Treatments involved placing filters on frames over potted plants that reduced levels of biologically effective UV-B by either 71% (reduced UV-B) or by 19% (near-ambient UV-B) over the 52 day experiment (04 July-25 August 2002). Plants growing under near-ambient UV-B had 38% less total biomass than those under reduced UV-B. The reduction in biomass was mainly the result of a 24% lower leaf elongation rate, resulting in shorter leaves and less total leaf area than plants under reduced UV-B. In addition, plants growing under near-ambient UV-B had up to 17% lower F(v)/F(m) values early in the experiment, and this effect declined with plant age. Concentrations of bulk-soluble phenolics and FRAP values were 17 and 24% higher under near-ambient UV-B than under reduced UV-B, respectively. There was a positive relationship between bulk-soluble phenolic concentrations and FRAP values. There were no UV-B effects on concentrations of carotenoids (carotenes + xanthophylls).

  20. UVA, UVB Light Doses and Harvesting Time Differentially Tailor Glucosinolate and Phenolic Profiles in Broccoli Sprouts.

    PubMed

    Moreira-Rodríguez, Melissa; Nair, Vimal; Benavides, Jorge; Cisneros-Zevallos, Luis; Jacobo-Velázquez, Daniel A

    2017-06-26

    Broccoli sprouts contain health-promoting glucosinolate and phenolic compounds that can be enhanced by applying ultraviolet light (UV). Here, the effect of UVA or UVB radiation on glucosinolate and phenolic profiles was assessed in broccoli sprouts. Sprouts were exposed for 120 min to low intensity and high intensity UVA (UVA L , UVA H ) or UVB (UVB L , UVB H ) with UV intensity values of 3.16, 4.05, 2.28 and 3.34 W/m², respectively. Harvest occurred 2 or 24 h post-treatment; and methanol/water or ethanol/water (70%, v / v ) extracts were prepared. Seven glucosinolates and 22 phenolics were identified. Ethanol extracts showed higher levels of certain glucosinolates such as glucoraphanin, whereas methanol extracts showed slight higher levels of phenolics. The highest glucosinolate accumulation occurred 24 h after UVB H treatment, increasing 4-methoxy-glucobrassicin, glucobrassicin and glucoraphanin by ~170, 78 and 73%, respectively. Furthermore, UVA L radiation and harvest 2 h afterwards accumulated gallic acid hexoside I (~14%), 4- O -caffeoylquinic acid (~42%), gallic acid derivative (~48%) and 1-sinapoyl-2,2-diferulolyl-gentiobiose (~61%). Increases in sinapoyl malate (~12%), gallotannic acid (~48%) and 5-sinapoyl-quinic acid (~121%) were observed with UVB H Results indicate that UV-irradiated broccoli sprouts could be exploited as a functional food for fresh consumption or as a source of bioactive phytochemicals with potential industrial applications.

  1. Antioxidant capacity of flavonoid in soybean seedlings under the joint actions of rare earth element La(III) and ultraviolet-B stress.

    PubMed

    Peng, Qi; Zhou, Qing

    2009-01-01

    The dynamic state of antioxidant capacity of flavonoid was investigated for a further demonstration of alleviating the damage of the ultraviolet (UV)-B radiation in the La-treated soybean seedlings under UV-B stress. Using hydroponics culture, the effects of lanthanum on the contents of flavonoid and its ability of antioxidant under elevated ultraviolet-B radiation (280-320 nm) was studied. The results showed flavonoid content in soybean seedlings with UV-B treatment during the stress and convalescent period was increased initially and then decreased, compared with control. Membrane permeability and MDA contents increase at first (first to fifth day) and then decrease (6th-11th day). A similar change of flavonoid content and clearance of flavonoid scavenging O2- and *OH in soybean seedlings occurred. Flavonoid content and ability of flavonoid scavenging O2- and *OH in soybean seedlings with La(III) + UV-B treatment were higher than those of UV-B treatment. Meanwhile, membrane permeability and MDA contents in soybean seedlings were lower than those of UV-B treatment. Compared with control, phenylalanine content in soybean seedlings with UV-B treatment is depressed, phenylalanine content in soybean seedlings with La(III) treatment was enhanced. However, phenylalanine content in La(III) + UV-B treatment is not decreased but slightly increased, compared with UV-B treatment. It suggested that the regulative effect of La(III) of the optimum concentration on flavonoid improved the metabolism of ROS, diminished the concentration of MDA and maintained normal plasma membrane permeability, and that its protective effect against low UV-B radiation is superior to that of high UV-B radiation. The defensive effect of La(III) on soybean seedlings under UV-B stress is carried out on the layer of defense system.

  2. Photoactivated UVR8-COP1 Module Determines Photomorphogenic UV-B Signaling Output in Arabidopsis

    PubMed Central

    Ouyang, Xinhao; Chen, Liangbi; Deng, Xing Wang

    2014-01-01

    In Arabidopsis, ultraviolet (UV)-B-induced photomorphogenesis is initiated by a unique photoreceptor UV RESISTANCE LOCUS 8 (UVR8) which utilizes its tryptophan residues as internal chromophore to sense UV-B. As a result of UV-B light perception, the UVR8 homodimer shaped by its arginine residues undergoes a conformational switch of monomerization. Then UVR8 associates with the CONSTITUTIVELY PHOTOMORPHOGENIC 1-SUPPRESSOR OF PHYA (COP1-SPA) core complex(es) that is released from the CULLIN 4-DAMAGED DNA BINDING PROTEIN 1 (CUL4-DDB1) E3 apparatus. This association, in turn, causes COP1 to convert from a repressor to a promoter of photomorphogenesis. It is not fully understood, however, regarding the biological significance of light-absorbing and dimer-stabilizing residues for UVR8 activity in photomorphogenic UV-B signaling. Here, we take advantage of transgenic UVR8 variants to demonstrate that two light-absorbing tryptophans, W233 and W285, and two dimer-stabilizing arginines, R286 and R338, play pivotal roles in UV-B-induced photomorphogenesis. Mutation of each residue results in alterations in UV-B light perception, UVR8 monomerization and UVR8-COP1 association in response to photomorphogenic UV-B. We also identify and functionally characterize two constitutively active UVR8 variants, UVR8W285A and UVR8R338A, whose photobiological activities are enhanced by the repression of CUL4, a negative regulator in this pathway. Based on our molecular and biochemical evidence, we propose that the UVR8-COP1 affinity in plants critically determines the photomorphogenic UV-B signal transduction coupling with UVR8-mediated UV-B light perception. PMID:24651064

  3. Photochemoprevention of UVB-induced skin carcinogenesis in SKH-1 mice by brown algae polyphenols.

    PubMed

    Hwang, Hyejeong; Chen, Tong; Nines, Ronald G; Shin, Hyeon-Cheol; Stoner, Gary D

    2006-12-15

    Chronic exposure of the skin to ultraviolet B (UVB) radiation induces oxidative stress, which plays a crucial role in the induction of skin cancer. In this study, the effect of dietary feeding and topical application of brown algae polyphenols on UVB radiation-induced skin carcinogenesis in SKH-1 mice was investigated. SKH-1 hairless mice were randomly divided into 9 groups, including control, UVB control and treatment groups. They were treated orally (0.1% and 0.5% with AIN-76 diet, w/w) and topically (3 and 6 mg/0.2 ml of vehicle) with brown algae polyphenols and irradiated with UVB for 26 weeks. Dietary feeding (0.1% and 0.5%) of brown algae polyphenols significantly reduced tumor multiplicity (45% and 56%) and tumor volume (54% and 65%), and topical administration (3 and 6 mg) significantly decreased tumor multiplicity (60% and 46%) and tumor volume (66% and 57%), respectively, per tumor-bearing mouse. Dietary feeding and topical administration of the polyphenols also inhibited tumor incidence by 6% and 21%, respectively, but the results were not significant. Dietary and topical administration of the polyphenols markedly inhibited cyclooxygenase-2 activity and cell proliferation. These observations show that brown algae polyphenols have an antiphotocarcinogenic effect which may be associated with the prevention of UVB-induced oxidative stress, inflammation, and cell proliferation in the skin. Copyright 2006 Wiley-Liss, Inc.

  4. UVB phototherapy in an outpatient setting or at home: a pragmatic randomised single-blind trial designed to settle the discussion. The PLUTO study

    PubMed Central

    Koek, Mayke BG; Buskens, Erik; Steegmans, Paul HA; van Weelden, Huib; Bruijnzeel-Koomen, Carla AFM; Sigurdsson, Vigfús

    2006-01-01

    Background Home ultraviolet B (UVB) treatment is a much-debated treatment, especially with regard to effectiveness, safety and side effects. However, it is increasingly being prescribed, especially in the Netherlands. Despite ongoing discussions, no randomised research has been performed, and only two studies actually compare two groups of patients. Thus, firm evidence to support or discourage the use of home UVB phototherapy has not yet been obtained. This is the goal of the present study, the PLUTO study (Dutch acronym for "national trial on home UVB phototherapy for psoriasis"). Methods We designed a pragmatic randomised single-blind multi-centre trial. This trial is designed to evaluate the impact of home UVB treatment versus UVB phototherapy in a hospital outpatient clinic as to effectiveness, quality of life and cost-effectiveness. In total 196 patients with psoriasis who were clinically eligible for UVB phototherapy were included. Normally 85% of the patients treated with UVB show a relevant clinical response. With a power of 80% and a 0.05 significance level it will be possible to detect a reduction in effectiveness of 15%. Effectiveness will be determined by calculating differences in the Psoriasis Area and Severity Index (PASI) and the Self Administered PASI (SAPASI) scores. Quality of life is measured using several validated generic questionnaires and a disease-specific questionnaire. Other outcome measures include costs, side effects, dosimetry, concomitant use of medication and patient satisfaction. Patients are followed throughout the therapy and for 12 months thereafter. The study is no longer recruiting patients, and is expected to report in 2006. Discussion In the field of home UVB phototherapy this trial is the first randomised parallel group study. As such, this trial addresses the weaknesses encountered in previous studies. The pragmatic design ensures that the results can be well generalised to the target population. Because, in addition to

  5. The measurement of ultraviolet radiation and sunburn time over southern Ontario

    NASA Technical Reports Server (NTRS)

    Evans, W. F. J.

    1994-01-01

    Studies of the depletion of ozone which have been conducted from the TOMS instrument on the NIMBUS 7 satellite indicate that total ozone has declined by 5 percent over the last 12 years at most mid-latitudes in the Northern Hemisphere typical of southern Ontario. The measurement of the actual resultant increases in UVB is now important. A monitoring program of UVB (biologically active solar ultraviolet radiation) has been conducted for the last 24 months at a site near Bolton, Ontario. The sunburn time varies from less than 17 minutes in late July, to over 4 hours in December on clear days. The levels depend on solar insolation and total ozone column. The ultraviolet levels are strongly affected by cloud and sky conditions. The implications of present and future depletion on the sunburn time are discussed.

  6. Protective effect of silk lutein on ultraviolet B-irradiated human keratinocytes.

    PubMed

    Pongcharoen, Sutatip; Warnnissorn, Prateep; Leŗtkajornsin, Ongart; Limpeanchob, Nanteetip; Sutheerawattananonda, Manote

    2013-01-01

    Carotenoids are efficient antioxidants that are of great importance for human health. Lutein and zeaxanthin are carotinoids present in high concentrations in the human retina which are involved in the photoprotection of the human eye. Lutein may also protect the skin from ultraviolet (UV)-induced damage. The present study investigated the protective effect of lutein extracted from yellow silk cocoons of Bombyx mori on human keratinocytes against UVB irradiation. A human keratinocyte cell line and primary human keratinocytes were used to investigate the UVB protection effects of silk lutein and plant lutein. Silk lutein showed no cytotoxicity to keratinocytes. Treatment with silk lutein prior to UVB irradiation enhanced cell viability and cell proliferation, and reduced cell apoptosis. The protective effects of silk lutein may be superior to those of plant lutein. Silk lutein may have a benefit for protection of keratinocytes against UVB-irradiation.

  7. Susceptible cytotoxicity to ultraviolet B light in fibroblasts and keratinocytes cultured from autoimmune-prone MRL/Mp-lpr/lpr mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furukawa, F.; Lyon, M.B.; Norris, D.A.

    1989-09-01

    The MRL/Mp-lpr/lpr (MRL/l) mouse is an autoimmune model of spontaneous lupus erythematosus (LE), in addition to lupus nephritis. In order to better understand the mechanisms of photosensitivity in LE, in vitro photocytotoxicity was examined by using fibroblasts and keratinocytes cultured from MRL/l mice, control MRL/Mp- +/+ (MRL/n) mice, and normal BALB/c mice. A colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and the acridine orange/ethidium bromide assay were used for determination of cytotoxicity. Fibroblasts cultured from newborn MRL/l mice showed higher susceptibility to single ultraviolet light B (UVB) light irradiation at a dose of 100-500 mJ than those from MRL/n, F1 hybrid ofmore » (MRL/l x MRL/n mice), and BALB/c mice. However, the susceptibility to UVB was not observed in young (1-month-old) and adult (4-month-old) MRL/l mice. UVA light irradiation was not cytotoxic. Keratinocytes cultured from MRL mice showed lower cytotoxicity to UVB irradiation than fibroblasts cultured. However, keratinocytes from newborn MRL/l mice showed higher cytotoxicity to 50 mJ UVB irradiation than cells from MRL/n mice. Syngeneic or allogeneic sera augmented UVB-induced cytotoxicity of fibroblasts cultured. UVB irradiation of spleen cells induced no significant difference of cytotoxicity between MRL/l and MRL/n mice. Based on the results of F1 hybrid of (MRL/l x MRL/n) mice, the susceptibility seemed to be associated with autoimmune traits and to be regulated by genetical background.« less

  8. Correlation between serum IL-17A level and SALT score in patients with alopecia areata before and after NB-UVB therapy.

    PubMed

    Morsy, Hanan; Maher, Reham; Negm, Dalia

    2018-06-01

    There is strong evidence that alopecia areata is of immunological background; Interleukin-17 (IL-17) is a Th17 pro-inflammatory cytokine that has been allied to the pathogenesis of different autoimmune and inflammatory diseases. This study aimed to measure serum IL-17A in patients with alopecia areata, and to study associations between IL-17A levels and disease severity before and after Narrowband-Ultraviolet B (NB-UVB), patient gender and age. Twenty patients with AA of the scalp were treated with (NB-UVB), and 15 healthy subjects' age and sex matched were enrolled as controls. Patients were assessed clinically by SALT score. Assay of serum levels of IL-17A by ELISA was done in patients and controls. The mean level of IL-17A was (15.63 Â ± 10.89 Pg/mL) in AA patient group, and (16.50 Â ± 5.02 Pg/mL) in control group. No statistically significant correlation was detected between SALT score and IL-17A level before (NB-UVB) treatment while a significant negative correlation between SALT score and IL-17A level was observed after treatment (r = -.448, P = .047). Mean SALT score for patients was (14.03 Â ± 13.48), and correlated positively with age (r = .446, P = .049). Although (NB-UVB) is an immune-modulatory type of treatment for alopecia areata of mild efficacy especially if it's used alone, it has shown significant decrease in serum IL-17A level among patients, and correlation to disease severity. © 2018 Wiley Periodicals, Inc.

  9. Enhancement of UVB radiation-mediated apoptosis by knockdown of cytosolic NADP+-dependent isocitrate dehydrogenase in HaCaT cells

    PubMed Central

    Lee, Su Jeong; Park, Jeen-Woo

    2014-01-01

    Ultraviolet B (UVB) radiation induces the production of reactive oxygen species (ROS) that promote apoptotic cell death. We showed that cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) plays an essential role in the control of cellular redox balance and defense against oxidative damage, by supplying NADPH for antioxidant systems. In this study, we demonstrated that knockdown of IDPc expression by RNA interference enhances UVB-induced apoptosis of immortalized human HaCaT keratinocytes. This effect manifested as DNA fragmentation, changes in cellular redox status, mitochondrial dysfunction, and modulation of apoptotic marker expression. Based on our findings, we suggest that attenuation of IDPc expression may protect skin from UVB-mediated damage, by inducing the apoptosis of UV-damaged cells. [BMB Reports 2014; 47(4): 209-214] PMID:24286310

  10. Beneficial effects of solar UV-B radiation on soybean yield mediated by reduced insect herbivory under field conditions.

    PubMed

    Mazza, Carlos A; Giménez, Patricia I; Kantolic, Adriana G; Ballaré, Carlos L

    2013-03-01

    Ultraviolet-B radiation (UV-B: 280-315 nm) has damaging effects on cellular components and macromolecules. In plants, natural levels of UV-B can reduce leaf area expansion and growth, which can lead to reduced productivity and yield. UV-B can also have important effects on herbivorous insects. Owing to the successful implementation of the Montreal Protocol, current models predict that clear-sky levels of UV-B radiation will decline during this century in response to ozone recovery. However, because of climate change and changes in land use practices, future trends in UV doses are difficult to predict. In the experiments reported here, we used an exclusion approach to study the effects of solar UV-B radiation on soybean crops, which are extensively grown in many areas of the world that may be affected by future variations in UV-B radiation. In a first experiment, performed under normal management practices (which included chemical pest control), we found that natural levels of UV-B radiation reduced soybean yield. In a second experiment, where no pesticides were applied, we found that solar UV-B significantly reduced insect herbivory and, surprisingly, caused a concomitant increase in crop yield. Our data support the idea that UV-B effects on agroecosystems are the result of complex interactions involving multiple trophic levels. A better understanding of the mechanisms that mediate the anti-herbivore effect of UV-B radiation may be used to design crop varieties with improved adaptation to the cropping systems that are likely to prevail in the coming decades in response to agricultural intensification. Copyright © Physiologia Plantarum 2012.

  11. BMAL1 and CLOCK proteins in regulating UVB-induced apoptosis and DNA damage responses in human keratinocytes.

    PubMed

    Sun, Yang; Wang, Peiling; Li, Hongyu; Dai, Jun

    2018-06-26

    A diverse array of biological processes are under circadian controls. In mouse skin, ultraviolet ray (UVR)-induced apoptosis and DNA damage responses are time-of-day dependent, which are controlled by core clock proteins. This study investigates the roles of clock proteins in regulating UVB responses in human keratinocytes (HKCs). We found that the messenger RNA expression of brain and muscle ARNT-like 1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK) genes is altered by low doses (5 mJ/cm 2 ) of UVB in the immortalized HaCat HKCs cell line. Although depletion of BMAL1 or CLOCK has no effect on the activation of Rad3-related protein kinases-checkpoint kinase 1-p53 mediated DNA damage checkpoints, it leads to suppression of UVB-stimulated apoptotic responses, and downregulation of UVB-elevated expression of DNA damage marker γ-H2AX and cell cycle inhibitor p21. Diminished apoptotic responses are also observed in primary HKCs depleted of BMAL1 or CLOCK after UVB irradiation. While CLOCK depletion shows a suppressive effect on UVB-induced p53 protein accumulation, depletion of either clock gene triggers early keratinocyte differentiation of HKCs at their steady state. These results suggest that UVB-induced apoptosis and DNA damage responses are controlled by clock proteins, but via different mechanisms in the immortalized human adult low calcium temperature and primary HKCs. Given the implication of UVB in photoaging and photocarcinogenesis, mechanistic elucidation of circadian controls on UVB effects in human skin will be critical and beneficial for prevention and treatment of skin cancers and other skin-related diseases. © 2018 Wiley Periodicals, Inc.

  12. Anthropogenic changes in the surface all-sky UV-B radiation through 1850-2005 simulated by an Earth system model

    NASA Astrophysics Data System (ADS)

    Watanabe, S.; Takemura, T.; Sudo, K.; Yokohata, T.; Kawase, H.

    2012-06-01

    The historical anthropogenic change in the surface all-sky UV-B (solar ultraviolet: 280-315 nm) radiation through 1850-2005 is evaluated using an Earth system model. Responses of UV-B dose to anthropogenic changes in ozone and aerosols are separately evaluated using a series of historical simulations including/excluding these changes. Increases in these air pollutants cause reductions in UV-B transmittance, which occur gradually/rapidly before/after 1950 in and downwind of industrial and deforestation regions. Furthermore, changes in ozone transport in the lower stratosphere, which is induced by increasing greenhouse gas concentrations, increase ozone concentration in the extratropical upper troposphere and lower stratosphere. These transient changes work to decrease the amount of UV-B reaching the Earth's surface, counteracting the well-known effect increasing UV-B due to stratospheric ozone depletion, which developed rapidly after ca. 1980. As a consequence, the surface UV-B radiation change between 1850 and 2000 is negative in the tropics and NH extratropics and positive in the SH extratropics. Comparing the contributions of ozone and aerosol changes to the UV-B change, the transient change in ozone absorption of UV-B mainly determines the total change in the surface UV-B radiation at most locations. On the other hand, the aerosol direct and indirect effects on UV-B play an equally important role to that of ozone in the NH mid-latitudes and tropics. A typical example is East Asia (25° N-60° N and 120° E-150° E), where the effect of aerosols (ca. 70%) dominates the total UV-B change.

  13. Anthropogenic changes in the surface all-sky UV-B radiation through 1850-2005 simulated by an Earth system model

    NASA Astrophysics Data System (ADS)

    Watanabe, S.; Takemura, T.; Sudo, K.; Yokohata, T.; Kawase, H.

    2012-02-01

    The historical anthropogenic change in the surface all-sky UV-B (solar ultraviolet: 280-315 nm) radiation through 1850-2005 is evaluated using an Earth system model. Responses of UV-B dose to anthropogenic changes in ozone and aerosols are separately evaluated using a series of historical simulations including/excluding these changes. Increases in these air pollutants cause reductions in UV-B transmittance, which occur gradually/rapidly before/after 1950 in and downwind of industrial and deforestation regions. Furthermore, changes in ozone transport in the lower stratosphere, which is induced by increasing greenhouse gas concentrations, increase ozone concentration in the extratropical upper troposphere and lower stratosphere. These transient changes work to decrease the amount of UV-B reaching the Earth's surface, counteracting the well-known effect increasing UV-B due to stratospheric ozone depletion, which developed rapidly after ca. 1980. As a consequence, the surface all-sky UV-B radiation change between 1850 and 2000 is negative in the tropics and NH extratropics and positive in the SH extratropics. Comparing the contributions of ozone and aerosol changes to the UV-B change, the transient change in ozone absorption of UV-B mainly determines the total change in the surface all-sky UV-B radiation at most locations. On the other hand, the aerosol direct and indirect effects on UV-B play an equally important role to that of ozone in the NH mid-latitudes and tropics. A typical example is East Asia (25° N-60° N and 120° E-150° E), where the effect of aerosols (ca. 70%) dominates the total UV-B change.

  14. Glucose transporter member 1 is involved in UVB-induced epidermal hyperplasia by enhancing proliferation in epidermal keratinocytes.

    PubMed

    Tochio, Takumi; Tanaka, Hiroshi; Nakata, Satoru

    2013-03-01

    Glucose transporter member 1 (GLUT-1) is one of the major facilitated glucose transporters and contributes to the promotion of keratinocyte proliferation in psoriasis and carcinogenic lesions. In this study, we postulate that GLUT-1 is involved in ultraviolet B (UVB)-induced epidermal hyperplasia. The purpose of this study is to investigate the possible role of GLUT-1 in UVB-induced hyperplasia. The effects of UVB on GLUT-1 expression levels were investigated in in vitro and in vivo studies. In addition, the involvement of epidermal growth factor (EGF) and hypoxia inducible factor-1 alpha (HIF-1α), transcriptional factors for GLUT-1, in GLUT-1-related events were investigated. GLUT-1 mRNA and its protein levels were markedly increased by UVB irradiation in HaCaT cells. In in vivo studies, a strong immunofluorescence signal of GLUT-1 was clearly observed around the basal layer of the epidermis, which proliferated excessively by UVB irradiation. In HaCaT cells, EGF mRNA and its protein levels were markedly increased by UVB irradiation, and then the GLUT-1 mRNA level was significantly increased by treatment with EGF. Additionally, the upregulation of GLUT-1 by both UVB irradiation and treatment with EGF was significantly suppressed by transfection with HIF-1α siRNA. We conclude that GLUT-1 is involved in UVB-induced epidermal hyperplasia by enhancing proliferation of epidermal basal cells, and the GLUT-1-related event might be regulated by an increase in HIF-1α stimulated by EGF. © 2013 The International Society of Dermatology.

  15. Solar UV-B radiation modulates chemical defenses against Anticarsia gemmatalis larvae in leaves of field-grown soybean.

    PubMed

    Dillon, Francisco M; Chludil, Hugo D; Zavala, Jorge A

    2017-09-01

    Although it is well known that solar ultraviolet B (UV-B) radiation enhances plant defenses, there is less knowledge about traits that define insect resistance in field-grown soybean. Here we study the effects of solar UV-B radiation on: a) the induction of phenolic compounds and trypsin proteinase inhibitors (TPI) in soybean undamaged leaves or damaged by Anticarsia gemmatalis neonates during six days, and b) the survival and mass gain of A. gemmatalis larvae that fed on soybean foliage. Two soybean cultivars (cv.), Charata and Williams, were grown under plastic with different transmittance to solar UV-B radiation, which generated two treatments: ambient UV-B (UVB+) and reduced UV-B (UVB-) radiation. Solar UV-B radiation decreased survivorship by 30% and mass gain by 45% of larvae that fed on cv. Charata, but no effect was found in those larvae that fed on cv. Williams. TPI activity and malonyl genistin were induced by A. gemmatalis damage in both cultivars, but solar UV-B radiation and damage only synergistically increased the induction of these compounds in cv. Williams. Although TPI activity and genistein derivatives were induced by herbivory, these results did not explain the differences found in survivorship and mass gain of larvae that fed on cv. Charata. However, we found a positive association between lower larval performance and the presence of two quercetin triglycosides and a kaempferol triglycoside in foliage of cv. Charata, which were identified by HPLC-DAD/MS 2 . We conclude that exclusion of solar UV-B radiation reduce resistance to A. gemmatalis, due to a reduction in flavonol concentration in a cultivar that has low levels of genistein derivatives like cv. Charata. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Sunscreen use and intentional exposure to ultraviolet A and B radiation: a double blind randomized trial using personal dosimeters

    PubMed Central

    Autier, P; Doré, J-F; Reis, A C; Grivegnée, A; Ollivaud, L; Truchetet, F; Chamoun, E; Rotmensz, N; Severi, G; Césarini, J-P

    2000-01-01

    A previous randomized trial found that sunscreen use could extend intentional sun exposure, thereby possibly increasing the risk of cutaneous melanoma. In a similarly designed trial, we examined the effect of the use of sunscreens having different sun protection factor (SPF) on actual exposure to ultraviolet B (UVB) and ultraviolet A (UVA) radiation. In June 1998, 58 European participants 18–24 years old were randomized to receive a SPF 10 or 30 sunscreens and were asked to complete daily records of their sun exposure during their summer holidays of whom 44 utilized a personal UVA and UVB dosimeter in a standard way during their sunbathing sessions. The median daily sunbathing duration was 2.4 hours in the SPF 10 group and 3.0 hours in the SPF 30 group (P = 0.054). The increase in daily sunbathing duration was paralleled by an increase in daily UVB exposure, but not by changes in UVA or UVB accumulated over all sunbathing sessions, or in daily UVA exposure. Of all participants, those who used the SPF 30 sunscreen and had no sunburn spent the highest number of hours in sunbathing activities. Differences between the two SPF groups in total number of sunbathing hours, daily sunbathing duration, and daily UVB exposure were largest among participants without sunburn during holidays. Among those with sunburn, the differences between the two groups tended to reduce. In conclusion, sunscreens used during sunbathing tended to increase the duration of exposures to doses of ultraviolet radiation below the sunburn threshold. © 2000 Cancer Research Campaign PMID:11027441

  17. Preventive effect of ultraviolet radiation on murine chronic sclerodermatous graft-versus-host disease.

    PubMed

    Mermet, Isabelle; Kleinclauss, François; Marandin, Aliette; Guérrini, Jean Sébastien; Angonin, Régis; Tiberghien, Pierre; Saas, Philippe; Aubin, François

    2007-12-27

    Although previous studies have demonstrated the efficient modulatory effects of ultraviolet radiation B (UVB) on cutaneous graft-versus-host disease (GVHD), most animal research on GVHD has been performed in murine models of acute GVHD. Here, we studied the preventive effect of UVB radiation on the occurrence of chronic sclerodermatous (Scl) GVHD in a murine model. Scl GVHD was induced by transplanting lethally irradiated BALB/c mice with B10.D2 bone marrow and spleen cells. Recipient mice were exposed to UVB before or after bone marrow and spleen cell infusion. Histological and clinical evaluation of GVHD was performed, in association with the characterization of epidermal Langerhans cells. UVB irradiation of recipients after, and more remarkably before, transplantation induced a decrease of Scl GVHD severity associated with epidermal Langerhans cells depletion. We conclude that UVB irradiation of recipient before or after transplantation has a preventive effect on cutaneous Scl GVHD and may represent an effective strategy for prevention of Scl GVHD.

  18. Polypeptide from Chlamys farreri inhibits UVB-induced apoptosis of HaCaT cells via iNOS/NO and HSP90

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengyang; Liu, Xiaojin; Liu, Tuo; Yan, Lin; Wang, Yuejun; Wang, Chunbo

    2009-09-01

    Polypeptide from Chlamys farreri (PCF) is a novel marine bioactive product that was isolated from the gonochoric Chinese scallop Chlamys farreri, and was found to be an effective antioxidant in our recent studies. In this study, we investigated the effect of PCF on ultraviolet B (UVB)-induced apoptosis of HaCaT cells and the intracellular signaling pathways involved. Pretreatment with the inducible nitric oxide synthase (iNOS) inhibitor S-methylisothiourea sulfate inhibited UVB-induced apoptosis, indicating that iNOS and NO play important roles in apoptosis. On the other hand, the inhibition of UVB-induced apoptosis in the immortalized keratinocyte (HaCaT) cells by PCF was estimated using a DNA ladder. PCF treatment inhibited UVB-induced iNOS activation, as determined by RT-PCR, NO production, as determined by ESR, and up-regulated heat shock protein (HSP) 90 activation, as determined by Western blotting. Our results indicate that iNOS and NO are involved in UVB-induced apoptosis of HaCaT cells and the protective effect of PCF against UVB irradiation is exerted by suppressing the expression of iNOS, followed by inhibition of NO release and enhanced activation of HSP90.

  19. Dietary Milk Sphingomyelin Prevents Disruption of Skin Barrier Function in Hairless Mice after UV-B Irradiation.

    PubMed

    Oba, Chisato; Morifuji, Masashi; Ichikawa, Satomi; Ito, Kyoko; Kawahata, Keiko; Yamaji, Taketo; Asami, Yukio; Itou, Hiroyuki; Sugawara, Tatsuya

    2015-01-01

    Exposure to ultraviolet-B (UV-B) irradiation causes skin barrier defects. Based on earlier findings that milk phospholipids containing high amounts of sphingomyelin (SM) improved the water content of the stratum corneum (SC) in normal mice, here we investigated the effects of dietary milk SM on skin barrier defects induced by a single dose of UV-B irradiation in hairless mice. Nine week old hairless mice were orally administrated SM (146 mg/kg BW/day) for a total of ten days. After seven days of SM administration, the dorsal skin was exposed to a single dose of UV-B (20 mJ/cm2). Administration of SM significantly suppressed an increase in transepidermal water loss and a decrease in SC water content induced by UV-B irradiation. SM supplementation significantly maintained covalently-bound ω-hydroxy ceramide levels and down-regulated mRNA levels of acute inflammation-associated genes, including thymic stromal lymphopoietin, interleukin-1 beta, and interleukin-6. Furthermore, significantly higher levels of loricrin and transglutaminase-3 mRNA were observed in the SM group. Our study shows for the first time that dietary SM modulates epidermal structures, and can help prevent disruption of skin barrier function after UV-B irradiation.

  20. UV-B Inhibits Leaf Growth through Changes in Growth Regulating Factors and Gibberellin Levels1[OPEN

    PubMed Central

    Fina, Julieta; AbdElgawad, Hamada; Prinsen, Els

    2017-01-01

    Ultraviolet-B (UV-B) radiation affects leaf growth in a wide range of species. In this work, we demonstrate that UV-B levels present in solar radiation inhibit maize (Zea mays) leaf growth without causing any other visible stress symptoms, including the accumulation of DNA damage. We conducted kinematic analyses of cell division and expansion to understand the impact of UV-B radiation on these cellular processes. Our results demonstrate that the decrease in leaf growth in UV-B-irradiated leaves is a consequence of a reduction in cell production and a shortened growth zone (GZ). To determine the molecular pathways involved in UV-B inhibition of leaf growth, we performed RNA sequencing on isolated GZ tissues of control and UV-B-exposed plants. Our results show a link between the observed leaf growth inhibition and the expression of specific cell cycle and developmental genes, including growth-regulating factors (GRFs) and transcripts for proteins participating in different hormone pathways. Interestingly, the decrease in the GZ size correlates with a decrease in the concentration of GA19, the immediate precursor of the active gibberellin, GA1, by UV-B in this zone, which is regulated, at least in part, by the expression of GRF1 and possibly other transcription factors of the GRF family. PMID:28400494

  1. Effects of solar ultraviolet radiation on coral reef organisms.

    PubMed

    Banaszak, Anastazia T; Lesser, Michael P

    2009-09-01

    Organisms living in shallow-water tropical coral reef environments are exposed to high UVR irradiances due to the low solar zenith angles (the angle of the sun from the vertical), the natural thinness of the ozone layer over tropical latitudes, and the high transparency of the water column. The hypothesis that solar ultraviolet radiation (UVR, 290-400 nm) is an important factor that affects the biology and ecology of coral reef organisms dates only to about 1980. It has been previously suggested that increased levels of biologically effective ultraviolet B radiation (UVB, 290-320 nm), which is the waveband primarily affected by ozone depletion, would have relatively small effects on corals and coral reefs and that these effects might be observed as changes in the minimum depths of occurrence of important reef taxa such as corals. This conclusion was based on predictions of increases in UVR as well as its attenuation with depth using the available data on UVR irradiances, ozone levels, and optical properties of the water overlying coral reefs. Here, we review the experimental evidence demonstrating the direct and indirect effects of UVR, both UVB and ultraviolet A (UVA, 320-400 nm) on corals and other reef associated biota, with emphasis on those studies conducted since 1996. Additionally, we re-examine the predictions made in 1996 for the increase in UVB on reefs with currently available data, assess whether those predictions were reasonable, and look at what changes might occur on coral reefs in the future as the multiple effects (i.e. increased temperature, hypercapnia, and ocean acidification) of global climate change continue.

  2. Impact of Nrf2 on UVB-induced skin inflammation/photoprotection and photoprotective effect of sulforaphane.

    PubMed

    Saw, Constance L; Huang, Mou-Tuan; Liu, Yue; Khor, Tin Oo; Conney, Allan H; Kong, Ah-Ng

    2011-06-01

    Ultraviolet (UV) of sunlight is a complete carcinogen that can burn skin, enhance inflammation, and drive skin carcinogenesis. Previously, we have shown that sulforaphane (SFN) inhibited chemically induced skin carcinogenesis via nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and others have shown that broccoli sprout extracts containing high SFN protected against UV-induced skin carcinogenesis in SKH-1 hairless mice. A recent study showed that there was no difference between Nrf2 knockout (Nrf2 KO) and Nrf2 wild-type (WT) BALB/C mice after exposing to high dose of UVB. Since Nrf2 plays critical roles in the anti-oxidative stress/anti-inflammatory responses, it is relevant to assess the role of Nrf2 for photoprotection against UV. In this context, the role of Nrf2 in UVB-induced skin inflammation in Nrf2 WT and Nrf2 KO C57BL/6 mice was studied. A single dose of UVB (300 mJ/cm(2)) resulted in skin inflammation in both WT and Nrf2 KO (-/-) mice (KO mice) at 8 h and 8 d following UVB irradiation. In the WT mice inflammation returned to the basal level to a greater extent when compared to the KO mice. SFN treatment of Nrf2 WT but not Nrf2 KO mice restored the number of sunburn cells back to their basal level by 8 d after UVB irradiation. Additionally, UVB-induced short-term inflammatory biomarkers (interleukin-1β and interleukin-6) were increased in the KO mice and UVB-induced apoptotic cells in the KO mice were significantly higher as compared to that in the WT. Taken together, our results show that functional Nrf2 confers a protective effect against UVB-induced inflammation, sunburn reaction, and SFN-mediated photoprotective effects in the skin. Copyright © 2010 Wiley-Liss, Inc.

  3. Photo-protection by 3-bromo-4, 5-dihydroxybenzaldehyde against ultraviolet B-induced oxidative stress in human keratinocytes.

    PubMed

    Hyun, Yu Jae; Piao, Mei Jing; Zhang, Rui; Choi, Yung Hyun; Chae, Sungwook; Hyun, Jin Won

    2012-09-01

    Exposure of the skin to ultraviolet B (UVB) radiation leads to epidermal damage and the generation of reactive oxygen species (ROS) in skin cells, including keratinocytes. Therefore, the photo-protective effect of 3-bromo-4, 5-dihydroxybenzaldehyde (BDB) against UVB was assessed in human HaCaT keratinocytes exposed to UVB radiation in vitro. BDB restored cell viability, which decreased upon exposure to UVB radiation. BDB exhibited scavenging activity against 1, 1-diphenyl-2-picrylhydrazyl radicals, intracellular ROS induced by hydrogen peroxide (H(2)O(2)) or UVB radiation, the superoxide anion generated by the xanthine/xanthine oxidase system, and the hydroxyl radical generated by the Fenton reaction (FeSO(4)+H(2)O(2)). Moreover, BDB absorbed UVB and decreased injury resulting from UVB-induced oxidative stress to lipids, proteins and DNA. Finally, BDB reduced UVB-induced apoptosis, as exemplified by fewer apoptotic bodies and a reduction in DNA fragmentation. Taken together, these results suggest that BDB protects human keratinocytes against UVB-induced oxidative stress by scavenging ROS and absorbing UVB rays, thereby reducing injury to cellular components. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Inhibition of mTOR by apigenin in UVB-irradiated keratinocytes: A new implication of skin cancer prevention.

    PubMed

    Bridgeman, Bryan B; Wang, Pu; Ye, Boping; Pelling, Jill C; Volpert, Olga V; Tong, Xin

    2016-05-01

    Ultraviolet B (UVB) radiation is the major environmental risk factor for developing skin cancer, the most common cancer worldwide, which is characterized by aberrant activation of Akt/mTOR (mammalian target of rapamycin). Importantly, the link between UV irradiation and mTOR signaling has not been fully established. Apigenin is a naturally occurring flavonoid that has been shown to inhibit UV-induced skin cancer. Previously, we have demonstrated that apigenin activates AMP-activated protein kinase (AMPK), which leads to suppression of basal mTOR activity in cultured keratinocytes. Here, we demonstrated that apigenin inhibited UVB-induced mTOR activation, cell proliferation and cell cycle progression in mouse skin and in mouse epidermal keratinocytes. Interestingly, UVB induced mTOR signaling via PI3K/Akt pathway, however, the inhibition of UVB-induced mTOR signaling by apigenin was not Akt-dependent. Instead, it was driven by AMPK activation. In addition, mTOR inhibition by apigenin in keratinocytes enhanced autophagy, which was responsible, at least in part, for the decreased proliferation in keratinocytes. In contrast, apigenin did not alter UVB-induced apoptosis. Taken together, our results indicate the important role of mTOR inhibition in UVB protection by apigenin, and provide a new target and strategy for better prevention of UV-induced skin cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Cell-type-specific roles for COX-2 in UVB-induced skin cancer.

    PubMed

    Jiao, Jing; Mikulec, Carol; Ishikawa, Tomo-o; Magyar, Clara; Dumlao, Darren S; Dennis, Edward A; Fischer, Susan M; Herschman, Harvey

    2014-06-01

    In human tumors, and in mouse models, cyclooxygenase-2 (COX-2) levels are frequently correlated with tumor development/burden. In addition to intrinsic tumor cell expression, COX-2 is often present in fibroblasts, myofibroblasts and endothelial cells of the tumor microenvironment, and in infiltrating immune cells. Intrinsic cancer cell COX-2 expression is postulated as only one of many sources for prostanoids required for tumor promotion/progression. Although both COX-2 inhibition and global Cox-2 gene deletion ameliorate ultraviolet B (UVB)-induced SKH-1 mouse skin tumorigenesis, neither manipulation can elucidate the cell type(s) in which COX-2 expression is required for tumorigenesis; both eliminate COX-2 activity in all cells. To address this question, we created Cox-2(flox/flox) mice, in which the Cox-2 gene can be eliminated in a cell-type-specific fashion by targeted Cre recombinase expression. Cox-2 deletion in skin epithelial cells of SKH-1 Cox-2(flox/flox);K14Cre(+) mice resulted, following UVB irradiation, in reduced skin hyperplasia and increased apoptosis. Targeted epithelial cell Cox-2 deletion also resulted in reduced tumor incidence, frequency, size and proliferation rate, altered tumor cell differentiation and reduced tumor vascularization. Moreover, Cox-2(flox/flox);K14Cre(+) papillomas did not progress to squamous cell carcinomas. In contrast, Cox-2 deletion in SKH-1 Cox-2(flox/flox); LysMCre(+) myeloid cells had no effect on UVB tumor induction. We conclude that (i) intrinsic epithelial COX-2 activity plays a major role in UVB-induced skin cancer, (ii) macrophage/myeloid COX-2 plays no role in UVB-induced skin cancer and (iii) either there may be another COX-2-dependent prostanoid source(s) that drives UVB skin tumor induction or there may exist a COX-2-independent pathway(s) to UVB-induced skin cancer. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Ultraviolet-B radiation and the immune response of rainbow trout: Chapter 18

    USGS Publications Warehouse

    Fabacher, David L.; Little, Edward E.; Jones, S.B.; DeFabo, E.C.; Webber, L.J.; Stolen, Joanne S.; Fletcher, Thelma C.

    1994-01-01

    As part of a larger study on global climate change and ozone depletion we are investigating the effects of ultraviolet-B (UVB) radiation on fishes. We conducted a number of experiments to explore the possible effects of UVB radiation on the immune response of juvenile rainbow trout Oncorhynchus mykiss. In one study, the fish developed sunburn and fungal infection on the dorsal skin after exposure to levels of UVB that simulated ambient solar UVB levels observed at mid-latitudes. In a separate study, UVB-exposed rainbow trout with surgically administered dorsal lesions developed fungal infection on the lesions and surrounding skin. Many of these fish subsequently died within a 9 day exposure period. Fish with surgical lesions, but not exposed to UVB radiation, did not develop fungal infection and did not die. In mammals, UVB-induced immunosuppression is thought to occur through the isomerization of urocanic acid or the formation of DNA pyrimidine dimers, or through some interaction between the two. We found a substance that appeared, upon HPLC detection, to be trans-urocanic acid in the skin of UVB-exposed and unexposed rainbow trout. Neurotransmitter stimulation of adrenoceptors may be involved in changes in pigmentation observed in UVB-exposed fishes. We measured adrenoceptors in skin membranes from rainbow trout exposed to UVB and found a decrease in cz2-adrenoceptors compared with fish not exposed to UVB. Results of our study indicate that prolonged exposure of juvenile rainbow trout to mid-latitude levels of solar UVB may play an important role in the initiation of certain disease outbreaks and may decrease survival of fish that have lesions on the dorsal skin.

  7. Egg hatching response to a range of ultraviolet-B (UV-B) radiation doses for four predatory mites and the herbivorous spider mite Tetranychus urticae.

    PubMed

    Koveos, Dimitrios S; Suzuki, Takeshi; Terzidou, Anastasia; Kokkari, Anastasia; Floros, George; Damos, Petros; Kouloussis, Nikos A

    2017-01-01

    Egg hatchability of four predatory mites-Phytoseiulus persimilis Athias-Henriot, Iphiseius [Amblyseius] degenerans Berlese, Amblyseius swirskii Athias-Henriot, and Euseius finlandicus Oudemans (Acari: Phytoseiidae)-and the spider mite Tetranychus urticae Koch (Acari: Tetranychidae) was determined under various UV-B doses either in constant darkness (DD) or with simultaneous irradiation using white light. Under UV-B irradiation and DD or simultaneous irradiation with white light, the predator's eggs hatched in significantly lower percentages than in the control non-exposed eggs, which indicates deleterious effects of UV-B on embryonic development. In addition, higher hatchability percentages were observed under UV-B irradiation and DD in eggs of the predatory mites than in eggs of T. urticae. This might be caused by a higher involvement of an antioxidant system, shield effects by pigments or a mere shorter duration of embryonic development in predatory mites than in T. urticae, thus avoiding accumulative effects of UV-B. Although no eggs of T. urticae hatched under UV-B irradiation and DD, variable hatchability percentages were observed under simultaneous irradiation with white light, which suggests the involvement of a photoreactivation system that reduces UV-B damages. Under the same doses with simultaneous irradiation with white light, eggs of T. urticae displayed higher photoreactivation and were more tolerant to UV-B than eggs of the predatory mites. Among predators variation regarding the tolerance to UV-B effects was observed, with eggs of P. persimilis and I. degenerans being more tolerant to UV-B radiation than eggs of A. swirskii and E. finlandicus.

  8. Plant Responses to Increased UV-B Radiation: A Research Project

    NASA Technical Reports Server (NTRS)

    DAntoni, H. L.; Skiles, J. W.; Armstrong, R.; Coughlan, J.; Daleo, G.; Mayoral, A.; Lawless, James G. (Technical Monitor)

    1994-01-01

    Ozone decrease implies more ultraviolet-B (UV-B) radiation reaching the surface of the Earth. Increased UV-B radiation triggers responses by living organisms. Despite the large potential impacts on vegetation, little is known about UV-B effects on terrestrial ecosystems. Long-term ecological studies are needed to quantify the effects of increased UV radiation on terrestrial ecosystems, asses the risks, and produce reliable data for prediction. Screening pigments are part of one of the protective mechanism in plants. Higher concentrations of screening pigments in leaves may be interpreted as a response to increased UV radiation. If the screening effect is not sufficient, important molecules will be disturbed by incoming radiation. Thus, genetics, photosynthesis, growth, plant and leaf shape and size, and pollen grains may be affected. This will have an impact on ecosystem dynamics, structure and productivity. It is necessary to monitor selected terrestrial ecosystems to permit detection and interpretation of changes attributable to global climate change and depleted ozone shield. The objectives of this project are: (1) To identify and measure indicators of the effects of increased solar UV-B radiation on terrestrial plants; (2) to select indicators with the greatest responses to UV-B exposure; (3) to test, adapt or create ecosystem models that use the information gathered by this project for prediction and to enhance our understanding of the effects of increased UV-B radiation on terrestrial ecosystems. As a first step to achieve these objectives we propose a three-year study of forest and steppe vegetation on the North slope of the Brooks Range (within the Arctic circle, in Alaska), in the Saguaro National Monument (near Tucson, Arizona) and in the forests and steppes of Patagonia (Argentina). We selected (1) vegetation north of the Polar Circle because at 70N there is 8% risk of plant damage due to increased UV-B radiation; (2) the foothills of Catalina Mountains

  9. Nuclear DNA damage-triggered NLRP3 inflammasome activation promotes UVB-induced inflammatory responses in human keratinocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasegawa, Tatsuya, E-mail: tatsuya.hasegawa@to.shiseido.co.jp; Nakashima, Masaya; Suzuki, Yoshiharu

    Ultraviolet (UV) radiation in sunlight can result in DNA damage and an inflammatory reaction of the skin commonly known as sunburn, which in turn can lead to cutaneous tissue disorders. However, little has been known about how UV-induced DNA damage mediates the release of inflammatory mediators from keratinocytes. Here, we show that UVB radiation intensity-dependently increases NLRP3 gene expression and IL-1β production in human keratinocytes. Knockdown of NLRP3 with siRNA suppresses UVB-induced production of not only IL-1β, but also other inflammatory mediators, including IL-1α, IL-6, TNF-α, and PGE{sub 2}. In addition, inhibition of DNA damage repair by knockdown of XPA,more » which is a major component of the nucleotide excision repair system, causes accumulation of cyclobutane pyrimidine dimer (CPD) and activation of NLRP3 inflammasome. In vivo immunofluorescence analysis confirmed that NLRP3 expression is also elevated in UV-irradiated human epidermis. Overall, our findings indicate that UVB-induced DNA damage initiates NLRP3 inflammasome activation, leading to release of various inflammatory mediators from human keratinocytes. - Highlights: • UVB radiation induces NLRP3 inflammasome activation in human keratinocytes. • NLRP3 knockdown suppresses production of UVB-induced inflammatory mediators. • UVB-induced DNA damage triggers NLRP3 inflammasome activation. • NLRP3 expression in human epidermis is elevated in response to UV radiation.« less

  10. EPA attenuates ultraviolet radiation-induced downregulation of aquaporin-3 in human keratinocytes.

    PubMed

    Jeon, Byoung-Kook; Kang, Moon-Kyung; Lee, Ghang-Tai; Lee, Kun-Kuk; Lee, Ho-Sub; Woo, Won-Hong; Mun, Yeun-Ja

    2015-08-01

    Eicosapentaenoic acid (EPA) is an omega-3 polyunsaturated fatty acid (ω-3 PUFA) that protects against photodamage and photocarcinogenesis in mammals. Aquaporin-3 (AQP3) is a water/glycerol transport protein that is found in basal layer keratinocytes. In this study, we have investigated the protective effect of EPA against ultraviolet B (UVB)-induced AQP3 downregulation in human keratinocytes. EPA treatment was found to increase AQP3 gene and protein expression in human epidermal keratinocytes (HaCaT). Using a specific inhibitor, we observed that the effect of EPA on AQP3 expression was mediated by extracellular signal-regulated kinase (ERK) activation. UVB radiation induced AQP3 downregulation in HaCaT cells, and it was found that EPA treatment attenuated UVB-induced AQP3 reduction and the associated cell death. UVB-induced downregulation of AQP3 was blocked by EPA and p38 inhibitor SB203580. Collectively, the present results show that EPA increased AQP3 expression and that this led to a reduction UVB-induced photodamage.

  11. Chondracanthus tenellus (Harvey) hommersand extract protects the human keratinocyte cell line by blocking free radicals and UVB radiation-induced cell damage.

    PubMed

    Piao, Mei Jing; Hyun, Yu Jae; Oh, Tae-Heon; Kang, Hee Kyoung; Yoo, Eun Sook; Koh, Young Sang; Lee, Nam Ho; Suh, In Soo; Hyun, Jin Won

    2012-12-01

    The aim of this study was to investigate the protective effects of the ethanol extract of the red algae Chondracanthus tenellus (Harvey) Hommersand (CTE) on cultured human keratinocyte cell line. The cellular protection conferred by CTE was evidenced by the ability of the extract to absorb ultraviolet B (UVB; 280-320 nm) and to scavenge the radical 1,1-diphenyl-2-picrylhydrazyl, as well as intracellular reactive oxygen species (ROS), induced by either hydrogen peroxide (H(2)O(2)) or UVB radiation. In addition, both superoxide anion generated by the xanthine/xanthine oxidase system and hydroxyl radical generated by the Fenton reaction (FeSO(4) + H(2)O(2)) were scavenged by CTE, as confirmed using electron spin resonance spectrometry. In the human keratinocyte cell line, CTE decreased the degree of injury resulting from UVB-induced oxidative stress to lipids, proteins, and DNA. CTE-treated cells also showed a reduction in UVB-induced apoptosis, as exemplified by fewer apoptotic bodies and less DNA fragmentation. Taken together, these results suggest that CTE confers protection on the human keratinocyte cell line against UVB-induced oxidative stress by absorbing UVB ray and scavenging ROS, thereby reducing injury to cellular constituents.

  12. Attempts to probe the ozone layer and the ultraviolet-B levels of the past.

    PubMed

    Björn, Lars Olof; McKenzie, Richard L

    2007-07-01

    To get a proper perspective on the current status of atmospheric ozone, which protects the biosphere from ultraviolet-B (UV-B; 280-315 nm) radiation, it would be of value to know how ozone and UV-B radiation have varied in the past. The record of worldwide ozone monitoring goes back only a few decades, and the record of reliable UV-B measurements is even shorter. Here we review indirect methods to assess their status further back in time. These include variations in the Sun's emission and how these affect the atmosphere, changes in the Earth's orbit, geologic imprints of atmospheric ozone, effects of catastrophic events such as volcanic eruptions, biological proxies of UV-B radiation, the spectral signature of terrestrial ozone in old recordings of star spectra, and the modeling of UV-B irradiance from ozone data and meteorological recordings. Although reliable reconstructions do not yet extend far into the past, there is some hope for future progress.

  13. Gardenia jasminoides Extract Attenuates the UVB-Induced Expressions of Cytokines in Keratinocytes and Indirectly Inhibits Matrix Metalloproteinase-1 Expression in Human Dermal Fibroblasts

    PubMed Central

    Seok, Jin Kyung; Suh, Hwa-Jin

    2014-01-01

    Ultraviolet radiation (UV) is a major cause of photoaging, which also involves inflammatory cytokines and matrix metalloproteinases (MMP). The present study was undertaken to examine the UVB-protecting effects of yellow-colored plant extracts in cell-based assays. HaCaT keratinocytes were exposed to UVB in the absence or presence of plant extracts, and resulting changes in cell viability and inflammatory cytokine expression were measured. Of the plant extracts tested, Gardenia jasminoides extract showed the lowest cytotoxicity and dose-dependently enhanced the viabilities of UVB-exposed cells. Gardenia jasminoides extract also attenuated the mRNA expressions of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in HaCaT cells stimulated by UVB. Conditioned medium from UVB-exposed HaCaT cells was observed to stimulate MMP-1 protein expression in human dermal fibroblasts, and this effect was much smaller for the conditioned medium of HaCaT cells exposed to UVB in the presence of Gardenia jasminoides extract. Gardenia jasminoides extract also exhibited antioxidative and antiapoptotic effects in HaCaT cells exposed to UVB. These results indicated that UVB-induced injury and inflammatory responses of skin cells can be attenuated by yellow-colored plant extracts, such as Gardenia jasminoides extract. PMID:24711853

  14. Assessment of DNA damage as a tool to measure UV-B tolerance in soybean lines differing in foliar flavonoid composition

    USDA-ARS?s Scientific Manuscript database

    Continued stratospheric ozone depletion and the resultant increase in ultraviolet-B radiation (UV-B) raises a concern for a potential decrease in crop yields and impacts on agricultural and natural ecosystems. Although the implementation of regulations that minimize inputs of chlorofluorocarbons in...

  15. Changes of MMP-1 and collagen type Ialpha1 by UVA, UVB and IRA are differentially regulated by Trx-1.

    PubMed

    Buechner, Nicole; Schroeder, Peter; Jakob, Sascha; Kunze, Kerstin; Maresch, Tanja; Calles, Christian; Krutmann, Jean; Haendeler, Judith

    2008-07-01

    Exposure of human skin to solar radiation, which includes ultraviolet (UV) radiation (UVA and UVB) visible light and infrared radiation, induces skin aging. The effects of light have been attributed to irradiation-induced reactive oxygen species (ROS) formation, but the specific signaling pathways are not well understood. Detrimental effects of solar radiation are dermal diseases and photoaging. Exposure of cultured human dermal fibroblasts to UVA, UVB or IRA increased ROS formation in vitro. One important redox regulator is the oxidoreductase thioredoxin-1 (Trx). Trx is ubiquitously expressed and has anti-oxidative and anti-apoptotic properties. Besides its function to reduce H(2)O(2), Trx binds to and regulates transcription factors. The aim of this study was to investigate whether Trx influences the regulation of MMP-1 and collagen Ialpha1 by UVA, UVB and IRA. We irradiated human dermal fibroblasts with UVA, UVB and IRA. UVA, UVB and IRA upregulated MMP-1 expression. Trx inhibited UVA-induced MMP-1 upregulation in a NFkappaB dependent manner. UVA, UVB and IRA reduced collagen Ialpha1 expression. Incubation with Trx inhibited the effects of UVB and IRA on collagen Ialpha1 expression. In conclusion, MMP-1 and collagen Ialpha1, which play important roles in aging processes, seems to be regulated by different transcriptional mechanisms and Trx can only influence distinct signaling pathways induced by UVA, UVB and probably IRA. Thus, Trx may serve as an important contributor to an "anti-aging therapeutic cocktail".

  16. [Effect of flavin adenine dinucleotide on ultraviolet B induced damage in cultured human corneal epithelial cells].

    PubMed

    Sakamoto, Asuka; Nakamura, Masatsugu

    2012-01-01

    This study evaluated the effects of flavin adenine dinucleotide (FAD) on ultraviolet B (UV-B)-induced damage in cultured human corneal epithelial (HCE-T) cells. The cultured HCE-T cells were treated with 0.003125-0.05% FAD before exposure to 80 mJ/cm2 UV-B. Cell viability was measured 24 h after UV-B irradiation using the MTS assay. Reactive oxygen species (ROS) were detected 30 min after UV-B irradiation using 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate acetyl ester. Apoptosis was evaluated 4 h after UV-B irradiation in the caspase-3/7 activity assay. UV-B irradiation reduced cell viability and stimulated ROS production and caspase-3/7 activity in HCE-T cells. Pretreatment of UV-B irradiated HCE-T cells with FAD significantly attenuated cell viability reduction and inhibited the stimulation of both ROS production and caspase-3/7 activity due to UV-B exposure compared with those with vehicle (0% FAD). These results clarified that FAD inhibits ROS-mediated apoptosis by UV-B irradiation in HCE-T cells and suggest that FAD may be effective as a radical scavenger in UV-B-induced corneal damage.

  17. Interference of silibinin with IGF-1R signalling pathways protects human epidermoid carcinoma A431 cells from UVB-induced apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Weiwei; Otkur, Wuxiyar; Li, Lingzhi

    Highlights: ► Silibinin protects A431 cells from UVB irradiation-induced apoptosis. ► Up-regulation of the IGF-1R-JNK/ERK pathways by UVB induces cell apoptosis. ► Silibinin inhibits IGF-1R pathways to repress caspase-8-mediated apoptosis. -- Abstract: Ultraviolet B (UVB) from sunlight is a major cause of cutaneous lesion. Silibinin, a traditional hepatic protectant, elicits protective effects against UVB-induced cellular damage. In A431 cells, the insulin-like growth factor-1 receptor (IGF-1R) was markedly up-regulated by UVB irradiation. The activation of the IGF-1R signalling pathways contributed to apoptosis of the cells rather than rescuing the cells from death. Up-regulated IGF-1R stimulated downstream mitogen-activated protein kinases (MAPKs), suchmore » as c-Jun N-terminal kinases (JNK) and extracellular signal-regulated protein kinases 1/2 (ERK1/2). The subsequent activation of caspase-8 and caspase-3 led to apoptosis. The activation of IGF-1R signalling pathways is the cause of A431 cell death. The pharmacological inhibitors and the small interfering RNA (siRNA) targeting IGF-1R suppressed the downstream activation of JNK/ERK-caspases to help the survival of the UVB-irradiated A431 cells. Indeed, silibinin treatment suppressed the IGF-1R-JNK/ERK pathways and thus protected the cells from UVB-induced apoptosis.« less

  18. p-Coumaric Acid Attenuates UVB-Induced Release of Stratifin from Keratinocytes and Indirectly Regulates Matrix Metalloproteinase 1 Release from Fibroblasts

    PubMed Central

    Seok, Jin Kyung

    2015-01-01

    Ultraviolet (UV) radiation-induced loss of dermal extracellular matrix is associated with skin photoaging. Recent studies demonstrated that keratinocyte-releasable stratifin (SFN) plays a critical role in skin collagen metabolism by inducing matrix metalloproteinase 1 (MMP1) expression in target fibroblasts. In the present study, we examined whether SFN released from UVB-irradiated epidermal keratinocytes increases MMP1 release from dermal fibroblasts, and whether these events are affected by p-coumaric acid (p-CA), a natural phenolic compound with UVB-shielding and antioxidant properties. HaCaT cells were exposed to UVB in the absence and presence of p-CA, and the conditioned medium was used to stimulate fibroblasts in medium transfer experiments. The cells and media were analyzed to determine the expressions/releases of SFN and MMP1. UVB exposure increased SFN release from keratinocytes into the medium. The conditioned medium of UVB-irradiated keratinocytes increased MMP1 release from fibroblasts. The depletion of SFN using a siRNA rendered the conditioned medium of UVB-irradiated keratinocytes ineffective at stimulating fibroblasts to release MMP1. p-CA mitigated UVB-induced SFN expression in keratinocytes, and attenuated the MMP1 release by fibroblasts in medium transfer experiments. In conclusion, the present study demonstrated that the use of UV absorbers such as p-CA would reduce UV-induced SFN-centered signaling events involved in skin photoaging. PMID:25954129

  19. p-Coumaric Acid Attenuates UVB-Induced Release of Stratifin from Keratinocytes and Indirectly Regulates Matrix Metalloproteinase 1 Release from Fibroblasts.

    PubMed

    Seok, Jin Kyung; Boo, Yong Chool

    2015-05-01

    Ultraviolet (UV) radiation-induced loss of dermal extracellular matrix is associated with skin photoaging. Recent studies demonstrated that keratinocyte-releasable stratifin (SFN) plays a critical role in skin collagen metabolism by inducing matrix metalloproteinase 1 (MMP1) expression in target fibroblasts. In the present study, we examined whether SFN released from UVB-irradiated epidermal keratinocytes increases MMP1 release from dermal fibroblasts, and whether these events are affected by p-coumaric acid (p-CA), a natural phenolic compound with UVB-shielding and antioxidant properties. HaCaT cells were exposed to UVB in the absence and presence of p-CA, and the conditioned medium was used to stimulate fibroblasts in medium transfer experiments. The cells and media were analyzed to determine the expressions/releases of SFN and MMP1. UVB exposure increased SFN release from keratinocytes into the medium. The conditioned medium of UVB-irradiated keratinocytes increased MMP1 release from fibroblasts. The depletion of SFN using a siRNA rendered the conditioned medium of UVB-irradiated keratinocytes ineffective at stimulating fibroblasts to release MMP1. p-CA mitigated UVB-induced SFN expression in keratinocytes, and attenuated the MMP1 release by fibroblasts in medium transfer experiments. In conclusion, the present study demonstrated that the use of UV absorbers such as p-CA would reduce UV-induced SFN-centered signaling events involved in skin photoaging.

  20. Ultraviolet radiation induces dose-dependent pigment dispersion in crustacean chromatophores.

    PubMed

    Gouveia, Glauce Ribeiro; Lopes, Thaís Martins; Neves, Carla Amorim; Nery, Luiz Eduardo Maia; Trindade, Gilma Santos

    2004-10-01

    Pigment dispersion in chromatophores as a response to UV radiation was investigated in two species of crustaceans, the crab Chasmagnathus granulata and the shrimp Palaemonetes argentinus. Eyestalkless crabs and shrimps maintained on either a black or a white background were irradiated with different UV bands. In eyestalkless crabs the significant minimal effective dose inducing pigment dispersion was 0.42 J/cm(2) for UVA and 2.15 J/cm(2) for UVB. Maximal response was achieved with 10.0 J/cm(2) UVA and 8.6 J/cm(2) UVB. UVA was more effective than UVB in inducing pigment dispersion. Soon after UV exposure, melanophores once again reached the initial stage of pigment aggregation after 45 min. Aggregated erythrophores of shrimps adapted to a white background showed significant pigment dispersion with 2.5 J/cm(2) UVA and 0.29 J/cm(2) UVC. Dispersed erythrophores of shrimps adapted to a black background did not show any significant response to UVA, UVB or UVC radiation. UVB did not induce any significant pigment dispersion in shrimps adapted to either a white or a black background. As opposed to the tanning response, which only protects against future UV exposure, the pigment dispersion response could be an important agent protecting against the harmful effects of UV radiation exposure.

  1. Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana.

    PubMed Central

    Rao, M V; Paliyath, G; Ormrod, D P

    1996-01-01

    Earlier studies with Arabidopsis thaliana exposed to ultraviolet B (UV-B) and ozone (O3) have indicated the differential responses of superoxide dismutase and glutathione reductase. In this study, we have investigated whether A. thaliana genotype Landsberg erecta and its flavonoid-deficient mutant transparent testa (tt5) is capable of metabolizing UV-B- and O3-induced activated oxygen species by invoking similar antioxidant enzymes. UV-B exposure preferentially enhanced guaiacol-peroxidases, ascorbate peroxidase, and peroxidases specific to coniferyl alcohol and modified the substrate affinity of ascorbate peroxidase. O3 exposure enhanced superoxide dismutase, peroxidases, glutathione reductase, and ascorbate peroxidase to a similar degree and modified the substrate affinity of both glutathione reductase and ascorbate peroxidase. Both UV-B and O3 exposure enhanced similar Cu,Zn-superoxide dismutase isoforms. New isoforms of peroxidases and ascorbate peroxidase were synthesized in tt5 plants irradiated with UV-B. UV-B radiation, in contrast to O3, enhanced the activated oxygen species by increasing membrane-localized NADPH-oxidase activity and decreasing catalase activities. These results collectively suggest that (a) UV-B exposure preferentially induces peroxidase-related enzymes, whereas O3 exposure invokes the enzymes of superoxide dismutase/ascorbate-glutathione cycle, and (b) in contrast to O3, UV-B exposure generated activated oxygen species by increasing NADPH-oxidase activity. PMID:8587977

  2. Effects of polypeptide from Chlamys farreri on amino acid content in guinea pig skin irradiated by chronic ultraviolet A and B

    NASA Astrophysics Data System (ADS)

    Yu, Guoying; Cao, Pengli; Guo, Kun; Wang, Yuejun; Sun, Mi; Wang, Chunbo

    2004-12-01

    We examined the effects of polypeptide from Chlamys farreri (PCF) on the amount of hydroxyproline in guinea pig skin irradiated by chronic ultraviolet A (UVA) and ultraviolet B (UVB) radiation. PCF was applied locally before repeated exposure of guinea pig to UVA and UVB. The contents of hydroxyproline and other amino acids in guinea pig skin were determined by automatic amino acid analyzer. Our results showed that: (1) long-time UVA and UVB radiation can reduce dramatically the amounts of hydroxyproline, aspartic acid, threonine, glycine, phenylalanine and lysine in guinea pig skin in comparison with the control group ( P<0.05); (2) Compared with model group, pre-treatment with 5% and 20% PCF prior to UVA and UVB radiation can inhibit the decline of amino acids content in guinea pig skin in a dose-dependent manner ( P<0.05). As the decrease of hydroxyproline, glycine and lysine contents in the skin directly reflexes type I collagen degeneration, our results indicated that the chronic application of PCF can protect skin type I collagen against UV radiation, and thus protect skin from photoaging.

  3. Ultraviolet radiation and nanoparticle induced intracellular free radicals generation measured in human keratinocytes by electron paramagnetic resonance spectroscopy.

    PubMed

    Rancan, F; Nazemi, B; Rautenberg, S; Ryll, M; Hadam, S; Gao, Q; Hackbarth, S; Haag, S F; Graf, C; Rühl, E; Blume-Peytavi, U; Lademann, J; Vogt, A; Meinke, M C

    2014-05-01

    Several nanoparticle-based formulations used in cosmetics and dermatology are exposed to sunlight once applied to the skin. Therefore, it is important to study possible synergistic effects of nanoparticles and ultraviolet radiation. Electron paramagnetic resonance spectroscopy (EPR) was used to detect intracellular free radicals induced by ultraviolet B (UVB) radiation and amorphous silica nanoparticle and to evaluate the influence of nanoparticle surface chemistry on particle cytotoxicity toward HaCaT cells. Uncoated titanium dioxide nanoparticles served as positive control. In addition, particle intracellular uptake, viability, and induction of interleukin-6 were measured. We found that photo-activated titanium dioxide particles induced a significant amount of intracellular free radicals. On the contrary, no intracellular free radicals were generated by the investigated silica nanoparticles in the dark as well as under UVB radiation. However, under UVB exposure, the non-functionalized silica nanoparticles altered the release of IL-6. At the same concentrations, the amino-functionalized silica nanoparticles had no influence on UVB-induced IL-6 release. EPR spectroscopy is a useful technique to measure nanoparticle-induced intracellular free radicals. Non-toxic concentrations of silica particles enhanced the toxicity of UVB radiation. This synergistic effect was not mediated by particle-generated free radicals and correlated with particle surface charge and intracellular distribution. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. The effect of topical piperine combined with narrowband UVB on vitiligo treatment: A clinical trial study.

    PubMed

    Shafiee, Anoosh; Hoormand, Mahmood; Shahidi-Dadras, Mohammad; Abadi, Alireza

    2018-05-21

    Vitiligo is the most common acquired hypopigmentary disease in the community. Piperine as an herbal extract derived from black pepper has strong impact on the melanocyte proliferation and adverse side effects less than synthetic drugs such as corticosteroids. For the first time, this study was aimed to evaluate the effect of topical piperine combined with narrowband ultraviolet B (NB-UVB) on vitiligo treatment. In this double-blind clinical trial, 63 patients with facial vitiligo were randomly divided into 2 groups: treated with piperine (case) and placebo (control). Also, both groups received NB-UVB phototherapy every other day for 3 months. In the case group, 10 patients have burning sensation on their skin areas (p value = .002). Also, redness of the treated areas was observed in 6 patients (p value = .028). Both side effects were temporary. Regarding repigmentation at time intervals of 1, 2, and 3 months after treatment, its level in the case group was significantly higher than the control group (p value < .001). Based on our findings, the combination therapy with NB-UVB/topical piperine has more influence on facial vitiligo than that of NB-UVB alone. It could be concluded that the simultaneous use of NB-UVB and topical piperine has a remarkable effect on treatment of vitiligo. Copyright © 2018 John Wiley & Sons, Ltd.

  5. The green tea modulates large intestinal microbiome and exo/endogenous metabolome altered through chronic UVB-exposure.

    PubMed

    Jung, Eun Sung; Park, Hye Min; Hyun, Seung Min; Shon, Jong Cheol; Singh, Digar; Liu, Kwang-Hyeon; Whon, Tae Woong; Bae, Jin-Woo; Hwang, Jae Sung; Lee, Choong Hwan

    2017-01-01

    The attenuating effects of green tea supplements (GTS) against the ultraviolet (UV) radiation induced skin damages are distinguished. However, the concomitant effects of GTS on the large intestinal microbiomes and associated metabolomes are largely unclear. Herein, we performed an integrated microbiome-metabolome analysis to uncover the esoteric links between gut microbiome and exo/endogenous metabolome maneuvered in the large intestine of UVB-exposed mice subjected to dietary GTS. In UVB-exposed mice groups (UVB), class Bacilli and order Bifidobacteriales were observed as discriminant taxa with decreased lysophospholipid levels compared to the unexposed mice groups subjected to normal diet (NOR). Conversely, in GTS fed UVB-exposed mice (U+GTS), the gut-microbiome diversity was greatly enhanced with enrichment in the classes, Clostridia and Erysipelotrichia, as well as genera, Allobaculum and Lachnoclostridium. Additionally, the gut endogenous metabolomes changed with an increase in amino acids, fatty acids, lipids, and bile acids contents coupled with a decrease in nucleobases and carbohydrate levels. The altered metabolomes exhibited high correlations with GTS enriched intestinal microflora. Intriguingly, the various conjugates of green tea catechins viz., sulfated, glucuronided, and methylated ones including their exogenous derivatives were detected from large intestinal contents and liver samples. Hence, we conjecture that the metabolic conversions for the molecular components in GTS strongly influenced the gut micro-environment in UVB-exposed mice groups, ergo modulate their gut-microbiome as well as exo/endogenous metabolomes.

  6. Ferulic acid, a phenolic phytochemical, inhibits UVB-induced matrix metalloproteinases in mouse skin via posttranslational mechanisms.

    PubMed

    Staniforth, Vanisree; Huang, Wen-Ching; Aravindaram, Kandan; Yang, Ning-Sun

    2012-05-01

    Matrix metalloproteinases MMP-2 and -9 are known to be overexpressed in ultraviolet B (UVB)-irradiated skin tissues and contribute to the acceleration of photoaging and the development of skin cancer. But the specific molecular mechanisms that can control or interfere with the expression and regulation of these MMP-2 and -9 activities in skin are not clearly understood. The aim of the present study was to analyze the suppressive effects of ferulic acid (FA), an abundant phenolic compound present in various dietary and medicinal plants, on UVB radiation-induced MMP-2 and -9 activities in mouse skin. For attenuation of chronic UVB irradiation damage to skin, inhibition of MMP-2 and -9 protein expression was detected using immunohistochemistry analysis. However, the in situ suppressive effects of FA did not interfere with the transcription or translation of MMP-2 and -9, suggesting that its action could be mediated via the proteasome pathway. Histological analyses showed that FA attenuates the degradation of collagen fibers, abnormal accumulation of elastic fibers and epidermal hyperplasia induced by UVB, demonstrating the functional and physiological relevance of FA effects in UVB-irradiated skin tissues. Together, our findings provide a novel and increased insight into the in vivo action of FA and suggest a possible clinical application in skin pathophysiological conditions associated with overexpression of MMP-2 and -9. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Fisetin inhibits UVB-induced cutaneous inflammation and activation of PI3K/AKT/NFκB signaling pathways in SKH-1 hairless mice†

    PubMed Central

    Pal, Harish Chandra; Athar, Mohammad; Elmets, Craig A.; Afaq, Farrukh

    2014-01-01

    Solar ultraviolet B (UVB) radiation has been shown to induce inflammation, DNA damage, p53 mutations, and alterations in signaling pathways eventually leading to skin cancer. In the present study, we investigated whether fisetin reduces inflammatory responses and modulates PI3K/AKT/NFκB cell survival signaling pathways in UVB exposed SKH-1 hairless mouse skin. Mice were exposed to 180 mJ/cm2 of UVB radiation on alternate days for a total of seven exposures, and fisetin (250 and 500 nmol) was applied topically after 15 min of each UVB exposure. Fisetin treatment to UVB exposed mice resulted in decreased hyperplasia and reduced infiltration of inflammatory cells. Fisetin treatment also reduced inflammatory mediators such as COX-2, PGE2 as well as its receptors (EP1- EP4), and MPO activity. Furthermore, fisetin reduced the level of inflammatory cytokines TNFα, IL-1β and IL-6 in UVB exposed skin. Fisetin treatment also reduced cell proliferation markers as well as DNA damage as evidenced by increased expression of p53 and p21 proteins. Further studies revealed that fisetin inhibited UVB-induced expression of PI3K, phosphorylation of AKT, and activation of the NFκB signaling pathway in mouse skin. Overall, these data suggest that fisetin may be useful against UVB-induced cutaneous inflammation and DNA damage. PMID:25169110

  8. Fisetin inhibits UVB-induced cutaneous inflammation and activation of PI3K/AKT/NFκB signaling pathways in SKH-1 hairless mice.

    PubMed

    Pal, Harish Chandra; Athar, Mohammad; Elmets, Craig A; Afaq, Farrukh

    2015-01-01

    Solar ultraviolet B (UVB) radiation has been shown to induce inflammation, DNA damage, p53 mutations and alterations in signaling pathways eventually leading to skin cancer. In this study, we investigated whether fisetin reduces inflammatory responses and modulates PI3K/AKT/NFκB cell survival signaling pathways in UVB-exposed SKH-1 hairless mouse skin. Mice were exposed to 180 mJ cm(-2) of UVB radiation on alternate days for a total of seven exposures, and fisetin (250 and 500 nmol) was applied topically after 15 min of each UVB exposure. Fisetin treatment to UVB-exposed mice resulted in decreased hyperplasia and reduced infiltration of inflammatory cells. Fisetin treatment also reduced inflammatory mediators such as COX-2, PGE2 as well as its receptors (EP1-EP4) and MPO activity. Furthermore, fisetin reduced the level of inflammatory cytokines TNFα, IL-1β and IL-6 in UVB-exposed skin. Fisetin treatment also reduced cell proliferation markers as well as DNA damage as evidenced by increased expression of p53 and p21 proteins. Further studies revealed that fisetin inhibited UVB-induced expression of PI3K, phosphorylation of AKT and activation of the NFκB signaling pathway in mouse skin. Overall, these data suggest that fisetin may be useful against UVB-induced cutaneous inflammation and DNA damage. © 2014 The American Society of Photobiology.

  9. Photoprotective Properties of Isothiocyanate and Nitrile Glucosinolate Derivatives From Meadowfoam (Limnanthes alba) Against UVB Irradiation in Human Skin Equivalent

    PubMed Central

    Carpenter, Evan L.; Le, Mai N.; Miranda, Cristobal L.; Reed, Ralph L.; Stevens, Jan F.; Indra, Arup K.; Ganguli-Indra, Gitali

    2018-01-01

    Exposure to ultraviolet B (UVB) irradiation of the skin leads to numerous dermatological concerns including skin cancer and accelerated aging. Natural product glucosinolate derivatives, like sulforaphane, have been shown to exhibit chemopreventive and photoprotective properties. In this study, we examined meadowfoam (Limnanthes alba) glucosinolate derivatives, 3-methoxybenzyl isothiocyanate (MBITC) and 3-methoxyphenyl acetonitrile (MPACN), for their activity in protecting against the consequences of UV exposure. To that end, we have exposed human primary epidermal keratinocytes (HPEKs) and 3D human skin reconstructed in vitro (EpiDermTM FT-400) to UVB insult and investigated whether MBITC and MPACN treatment ameliorated the harmful effects of UVB damage. Activity was determined by the compounds’ efficacy in counteracting UVB-induced DNA damage, matrix-metalloproteinase (MMP) expression, and proliferation. We found that in monolayer cultures of HPEK, MBITC and MPACN did not protect against a UVB-induced loss in proliferation and MBITC itself inhibited cell proliferation. However, in human reconstructed skin-equivalents, MBITC and MPACN decrease epidermal cyclobutane pyrimidine dimers (CPDs) and significantly reduce total phosphorylated γH2A.X levels. Both MBITC and MPACN inhibit UVB-induced MMP-1 and MMP-3 expression indicating their role to prevent photoaging. Both compounds, and MPACN in particular, showed activity against UVB-induced proliferation as indicated by fewer epidermal PCNA+ cells and prevented UVB-induced hyperplasia as determined by a reduction in reconstructed skin epidermal thickness (ET). These data demonstrate that MBITC and MPACN exhibit promising anti-photocarcinogenic and anti-photoaging properties in the skin microenvironment and could be used for therapeutic interventions. PMID:29867483

  10. Photoprotective Properties of Isothiocyanate and Nitrile Glucosinolate Derivatives From Meadowfoam (Limnanthes alba) Against UVB Irradiation in Human Skin Equivalent.

    PubMed

    Carpenter, Evan L; Le, Mai N; Miranda, Cristobal L; Reed, Ralph L; Stevens, Jan F; Indra, Arup K; Ganguli-Indra, Gitali

    2018-01-01

    Exposure to ultraviolet B (UVB) irradiation of the skin leads to numerous dermatological concerns including skin cancer and accelerated aging. Natural product glucosinolate derivatives, like sulforaphane, have been shown to exhibit chemopreventive and photoprotective properties. In this study, we examined meadowfoam ( Limnanthes alba ) glucosinolate derivatives, 3-methoxybenzyl isothiocyanate (MBITC) and 3-methoxyphenyl acetonitrile (MPACN), for their activity in protecting against the consequences of UV exposure. To that end, we have exposed human primary epidermal keratinocytes (HPEKs) and 3D human skin reconstructed in vitro (EpiDerm TM FT-400) to UVB insult and investigated whether MBITC and MPACN treatment ameliorated the harmful effects of UVB damage. Activity was determined by the compounds' efficacy in counteracting UVB-induced DNA damage, matrix-metalloproteinase (MMP) expression, and proliferation. We found that in monolayer cultures of HPEK, MBITC and MPACN did not protect against a UVB-induced loss in proliferation and MBITC itself inhibited cell proliferation. However, in human reconstructed skin-equivalents, MBITC and MPACN decrease epidermal cyclobutane pyrimidine dimers (CPDs) and significantly reduce total phosphorylated γH2A.X levels. Both MBITC and MPACN inhibit UVB-induced MMP-1 and MMP-3 expression indicating their role to prevent photoaging. Both compounds, and MPACN in particular, showed activity against UVB-induced proliferation as indicated by fewer epidermal PCNA+ cells and prevented UVB-induced hyperplasia as determined by a reduction in reconstructed skin epidermal thickness (ET). These data demonstrate that MBITC and MPACN exhibit promising anti-photocarcinogenic and anti-photoaging properties in the skin microenvironment and could be used for therapeutic interventions.

  11. Solar UV exposure among outdoor workers in Denmark measured with personal UV-B dosimeters: technical and practical feasibility.

    PubMed

    Grandahl, Kasper; Mortensen, Ole Steen; Sherman, David Zim; Køster, Brian; Lund, Paul-Anker; Ibler, Kristina Sophie; Eriksen, Paul

    2017-10-10

    Exposure to solar ultraviolet radiation is a well-known cause of skin cancer. This is problematic for outdoor workers. In Denmark alone, occupational skin cancer poses a significant health and safety risk for around 400,000 outdoor workers. Objective measures of solar ultraviolet radiation exposure are needed to help resolve this problem. This can be done using personal ultraviolet radiation dosimeters. We consider technical and practical feasibility of measuring individual solar ultraviolet exposure at work and leisure in professions with different á priori temporal high-level outdoor worktime, using aluminium gallium nitride (AlGaN) photodiode detector based personal UV-B dosimeters. Essential technical specifications including the spectral and angular responsivity of the dosimeters are described and pre-campaign dosimeter calibration applicability is verified. The scale and conduct of dosimeter deployment and campaign in-field measurements including failures and shortcomings affecting overall data collection are presented. Nationwide measurements for more than three hundred and fifty workers from several different professions were collected in the summer of 2016. On average, each worker's exposure was measured for a 2-week period, which included both work and leisure. Data samples of exposure at work during a Midsummer day show differences across professions. A construction worker received high-level occupational UV exposure most of the working day, except during lunch hour, accumulating to 5.1 SED. A postal service worker was exposed intermittently around noon and in the afternoon, preceded by no exposure forenoon when packing mail, accumulating to 1.6 SED. A crane fitter was exposed only during lunch hour, accumulating to 0.7 SED. These findings are in line with our specialist knowledge as occupational physicians. Large-scale use of personal UV-B dosimeters for measurement of solar ultraviolet radiation exposure at work and leisure in Denmark is indeed

  12. Ultraviolet A within Sunlight Induces Mutations in the Epidermal Basal Layer of Engineered Human Skin

    PubMed Central

    Huang, Xiao Xuan; Bernerd, Françoise; Halliday, Gary Mark

    2009-01-01

    The ultraviolet B (UVB) waveband within sunlight is an important carcinogen; however, UVA is also likely to be involved. By ascribing mutations to being either UVB or UVA induced, we have previously shown that human skin cancers contain similar numbers of UVB- and UVA-induced mutations, and, importantly, the UVA mutations were at the base of the epidermis of the tumors. To determine whether these mutations occurred in response to UV, we exposed engineered human skin (EHS) to UVA, UVB, or a mixture that resembled sunlight, and then detected mutations by both denaturing high-performance liquid chromatography and DNA sequencing. EHS resembles human skin, modeling differential waveband penetration to the basal, dividing keratinocytes. We administered only four low doses of UV exposure. Both UVA and UVB induced p53 mutations in irradiated EHS, suggesting that sunlight doses that are achievable during normal daily activities are mutagenic. UVA- but not UVB-induced mutations predominated in the basal epidermis that contains dividing keratinocytes and are thought to give rise to skin tumors. These studies indicate that both UVA and UVB at physiological doses are mutagenic to keratinocytes in EHS. PMID:19264911

  13. Reduction in cab and psb A RNA transcripts in response to supplementary ultraviolet-B radiation.

    PubMed

    Jordan, B R; Chow, W S; Strid, A; Anderson, J M

    1991-06-17

    The cab and psb A RNA transcript levels have been determined in Pisum sativum leaves exposed to supplementary ultraviolet-B radiation. The nuclear-encoded cab transcripts are reduced to low levels after only 4 h of UV-B treatment and are undetectable after 3 days exposure. In contrast, the chloroplast-encoded psb A transcript levels, although reduced, are present for at least 3 days. After short periods of UV-B exposure (4 h or 8 h), followed by recovery under control conditions, cab RNA transcript levels had not recovered after 1 day, but were re-established to ca. 60% of control levels after 2 more days. Increased irradiance during exposure to UV-B reduced the effect upon cab transcripts, although the decrease was still substantial. These results indicate rapid changes in the cellular regulation of gene expression in response to supplementary UV-B and suggest increased UV-B radiation may have profound consequences for future productivity of sensitive crop species.

  14. Anti-Melanogenic Potentials of Nanoparticles from Calli of Resveratrol-Enriched Rice against UVB-Induced Hyperpigmentation in Guinea Pig Skin.

    PubMed

    Lee, Taek Hwan; Kang, Ji Hee; Seo, Jae Ok; Baek, So-Hyeon; Moh, Sang Hyun; Chae, Jae Kyoung; Park, Yong Un; Ko, Young Tag; Kim, Sun Yeou

    2016-01-01

    We already reported that genetically engineered resveratrol-enriched rice (RR) showed to down-regulate skin melanogenesis. To be developed to increase the bioactivity of RR using calli from plants, RR was adopted for mass production using plant tissue culture technologies. In addition, high-pressure homogenization (HPH) was used to increase the biocompatibility and penetration of the calli from RR into the skin. We aimed to develop anti-melanogenic agents incorporating calli of RR (cRR) and nanoparticles by high-pressure homogenization, examining the synergistic effects on the inhibition of UVB-induced hyperpigmentation. Depigmentation was observed following topical application of micro-cRR, nano-calli of normal rice (cNR), and nano-cRR to ultraviolet B (UVB)-stimulated hyperpigmented guinea pig dorsal skin. Colorimetric analysis, tyrosinase immunostaining, and Fontana-Masson staining for UVB-promoted melanin were performed. Nano-cRR inhibited changes in the melanin color index caused by UVB-promoted hyperpigmentation, and demonstrated stronger anti-melanogenic potential than micro-cRR. In epidermal skin, nano-cRR repressed UVB-promoted melanin granules, thereby suppressing hyperpigmentation. The UVB-enhanced, highly expressed tyrosinase in the basal layer of the epidermis was inhibited by nano-cRR more prominently than by micro-cRR and nano-cNR. The anti-melanogenic potency of nano-cRR also depended on pH and particle size. Nano-cRR shows promising potential to regulate skin pigmentation following UVB exposure.

  15. Estimated ultraviolet radiation doses in wetlands in six national parks

    USGS Publications Warehouse

    Diamond, S.A.; Trenham, P.C.; Adams, Michael J.; Hossack, B.R.; Knapp, R.A.; Stark, L.; Bradford, D.; Corn, P.S.; Czarnowski, K.; Brooks, P.D.; Fagre, D.B.; Breen, B.; Dentenbeck, N.E.; Tonnessen, K.

    2005-01-01

    Ultraviolet-B radiation (UV-B, 280–320-nm wavelengths) doses were estimated for 1024 wetlands in six national parks: Acadia (Acadia), Glacier (Glacier), Great Smoky Mountains (Smoky), Olympic (Olympic), Rocky Mountain (Rocky), and Sequoia/Kings Canyon (Sequoia). Estimates were made using ground-based UV-B data (Brewer spectrophotometers), solar radiation models, GIS tools, field characterization of vegetative features, and quantification of DOC concentration and spectral absorbance. UV-B dose estimates were made for the summer solstice, at a depth of 1 cm in each wetland. The mean dose across all wetlands and parks was 19.3 W-h m−2 (range of 3.4–32.1 W-h m−2). The mean dose was lowest in Acadia (13.7 W-h m−2) and highest in Rocky (24.4 W-h m−2). Doses were significantly different among all parks. These wetland doses correspond to UV-B flux of 125.0 μW cm−2 (range 21.4–194.7 μW cm−2) based on a day length, averaged among all parks, of 15.5 h. Dissolved organic carbon (DOC), a key determinant of water-column UV-B flux, ranged from 0.6 (analytical detection limit) to 36.7 mg C L−1 over all wetlands and parks, and reduced potential maximal UV-B doses at 1-cm depth by 1%–87 %. DOC concentration, as well as its effect on dose, was lowest in Sequoia and highest in Acadia (DOC was equivalent in Acadia, Glacier, and Rocky). Landscape reduction of potential maximal UV-B doses ranged from zero to 77% and was lowest in Sequoia. These regional differences in UV-B wetland dose illustrate the importance of considering all aspects of exposure in evaluating the potential impact of UV-B on aquatic organisms.

  16. Ultraviolet-B phototoxicity and hypothetical photomelanomagenesis: intraocular and crystalline lens photoprotection.

    PubMed

    Mainster, Martin A; Turner, Patricia L

    2010-04-01

    Ultraviolet-B (UV-B) radiation can cause phototoxic macular injuries in young people who have been sunbathing but not sungazing and in welders. Welders have a reportedly increased risk of uveal melanoma. We analyze phakic and pseudophakic risks for solar and welding arc UV-B exposure. Optical radiation measurement, analysis, and perspective. Spectral transmittances were measured for UV-transmitting, UV-blocking, and blue-blocking intraocular lenses (IOLs). The photoprotective performances of crystalline and intraocular lenses were analyzed using relevant epidemiologic and laboratory data and action spectra for acute retinal phototoxicity and melanoma photocarcinogenesis. Crystalline lens UV-B retinal protection is deficient in children and young adults, increasing their potential susceptibility to acute retinal phototoxicity and hypothetical photomelanomagenesis. UV-B radiation has sufficient energy/photon to induce primary melanomagenic DNA lesions, unlike blue light or UV-A radiation. UV-blocking and blue-blocking IOLs have negligible UV-B transmittance. UV-transmitting IOL transmittance of UV-B radiation is equivalent to that of a 15-year-old crystalline lens. If optical radiation exposure is responsible for welders' increased risk of uveal melanoma, then UV-B radiation is the most probable causative agent and spectacle wear is a potential confounding factor in epidemiologic studies of ocular melanoma. Welders under 30 years of age are at greater risk for welding maculopathy than older welders. Children, adults under 30 years of age, and pseudophakic individuals with UV-transmitting IOLs should wear sunglasses in bright environments because of the UV-B window in their crystalline lenses or IOLs. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Protective Effects of LSGYGP from Fish Skin Gelatin Hydrolysates on UVB-Induced MEFs by Regulation of Oxidative Stress and Matrix Metalloproteinase Activity.

    PubMed

    Ma, Qingyu; Liu, Qiuming; Yuan, Ling; Zhuang, Yongliang

    2018-03-28

    A previous study has shown that tilapia fish skin gelatin hydrolysates inhibited photoaging in vivo, and that, Leu-Ser-Gly-Tyr-Gly-Pro (LSGYGP) identified in the hydrolysate had a high hydroxyl radical scavenging activity. In this study, activities of LSGYGP were further evaluated using ultraviolet B (UVB)-induced mouse embryonic fibroblasts (MEFs). UVB irradiation significantly increased the intercellular reactive oxygen species (ROS) production and matrix metalloproteinases (MMPs) activities and decreased the content of collagen in MEFs. LSGYGP reduced the intercellular ROS generation in UVB-induced MEFs. Meanwhile, the decrease of superoxide dismutase (SOD) activity and the increase of malondiaidehyde (MDA) content were inhibited by LSGYGP. LSGYGP reduced MMP-1 and MMP-9 activities in a dose-dependent manner. Molecular docking simulation indicated that LSGYGP inhibited MMPs activities by docking the active sites of MMP-1 and MMP-9. Furthermore, LSGYGP also affected the intercellular phosphorylation of UVB-induced the mitogen-activated protein kinase pathway. LSGYGP could protect collagen synthesis in MEFs under UVB irradiation by inhibiting oxidative stress and regulating MMPs activities.

  18. Protective Effects of LSGYGP from Fish Skin Gelatin Hydrolysates on UVB-Induced MEFs by Regulation of Oxidative Stress and Matrix Metalloproteinase Activity

    PubMed Central

    Ma, Qingyu; Liu, Qiuming; Yuan, Ling; Zhuang, Yongliang

    2018-01-01

    A previous study has shown that tilapia fish skin gelatin hydrolysates inhibited photoaging in vivo, and that, Leu-Ser-Gly-Tyr-Gly-Pro (LSGYGP) identified in the hydrolysate had a high hydroxyl radical scavenging activity. In this study, activities of LSGYGP were further evaluated using ultraviolet B (UVB)-induced mouse embryonic fibroblasts (MEFs). UVB irradiation significantly increased the intercellular reactive oxygen species (ROS) production and matrix metalloproteinases (MMPs) activities and decreased the content of collagen in MEFs. LSGYGP reduced the intercellular ROS generation in UVB-induced MEFs. Meanwhile, the decrease of superoxide dismutase (SOD) activity and the increase of malondiaidehyde (MDA) content were inhibited by LSGYGP. LSGYGP reduced MMP-1 and MMP-9 activities in a dose-dependent manner. Molecular docking simulation indicated that LSGYGP inhibited MMPs activities by docking the active sites of MMP-1 and MMP-9. Furthermore, LSGYGP also affected the intercellular phosphorylation of UVB-induced the mitogen-activated protein kinase pathway. LSGYGP could protect collagen synthesis in MEFs under UVB irradiation by inhibiting oxidative stress and regulating MMPs activities. PMID:29597313

  19. Interactive Effects of UV-B Light with Abiotic Factors on Plant Growth and Chemistry, and Their Consequences for Defense against Arthropod Herbivores

    PubMed Central

    Escobar-Bravo, Rocio; Klinkhamer, Peter G. L.; Leiss, Kirsten A.

    2017-01-01

    Ultraviolet-B (UV-B) light plays a crucial role in plant–herbivorous arthropods interactions by inducing changes in constitutive and inducible plant defenses. In particular, constitutive defenses can be modulated by UV-B-induced photomorphogenic responses and changes in the plant metabolome. In accordance, the prospective use of UV-B light as a tool to increase plant protection in agricultural practice has gained increasing interest. Changes in the environmental conditions might, however, modulate the UV-B -induced plant responses. While in some cases plant responses to UV-B can increase adaptation to changes in certain abiotic factors, UV-B-induced responses might be also antagonized by the changing environment. The outcome of these interactions might have a great influence on how plants interact with their enemies, e.g., herbivorous arthropods. Here, we provide a review on the interactive effects of UV-B and light quantity and quality, increased temperature and drought stress on plant biochemistry, and we discuss the implications of the outcome of these interactions for plant resistance to arthropod pests. PMID:28303147

  20. Proteomic analysis of UVB-induced protein expression- and redox-dependent changes in skin fibroblasts using lysine- and cysteine-labeling two-dimensional difference gel electrophoresis.

    PubMed

    Wu, Chieh-Lin; Chou, Hsiu-Chuan; Cheng, Chao-Sheng; Li, Ji-Min; Lin, Szu-Ting; Chen, Yi-Wen; Chan, Hong-Lin

    2012-04-03

    UVB is the most energetic and DNA-damaging to humans in ultraviolet radiation. Previous research has suggested that exposure to UVB causes skin pathologies because of direct DNA damage and the generation of reactive oxygen species (ROS). However, the detailed molecular mechanisms by which UVB leads to skin cancer have yet to be clarified. In the current study, normal skin fibroblast cells (CCD-966SK) were exposed to various doses of UVB, and the changes in protein expression and thiol reactivity were monitored with lysine- and cysteine-labeling 2D-DIGE and MALDI-TOF mass spectrometry. Our proteomic analysis revealed that 89 identified proteins showed significant changes in protein expression, and 37 in thiol reactivity. Many proteins that are known to be involved in protein folding, redox regulation and nucleotide biosynthesis were up-regulated under UVB irradiation. In contrast, proteins responsible for biosynthesis and protein degradation were down-regulated. In addition, the thiol-reactivity of proteins involving cytoskeleton, metabolism, and signal transduction were altered by UVB. In summary, these UVB-modulated cellular proteins and redox-regulated proteins might play important roles in the early stages of skin cancer formation and photoaging induced by UVB-irradiation. Such proteins might provide a potential target for the rational design of drugs to prevent UVB-induced diseases. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Protective effect of fermented Cyclopia intermedia against UVB-induced damage in HaCaT human keratinocytes.

    PubMed

    Im, A-Rang; Yeon, Sung Hum; Lee, Jung Seung; Um, Key An; Ahn, Young-Joon; Chae, Sungwook

    2016-07-29

    The fermented leaves and stems of Cyclopia intermedia are used to brew honeybush tea, a herbal tea indigenous to South Africa. The aim of this study was to evaluate the protective effect of fermented honeybush extracts (FH ex) and scale-up fermented honeybush extracts (SFH ex) against ultraviolet B (UVB)-induced damage in HaCaT keratinocytes. To this end, we examined UVB-induced cell viability, antioxidant enzymes, and inflammatory mediators in HaCaT cells. UVB significantly decreased HaCaT cell viability, whereas FH ex and SFH ex did not exhibit cytotoxic effects and increased the viability of the HaCaT cells. To further investigate the protective effects of FH ex on UVB-induced oxidative stress in HaCaT cells, the activities of superoxide dismutase (SOD), catalase (CAT), matrix metalloproteinases (MMPs), pro-inflammatory cytokines and skin barrier function in terms of involucrin, filaggrin, and loricrin were analyzed. UVB-induced treatment reduced the activity of antioxidant enzymes and skin barrier function, while FH ex or SFH ex increased their activity. These results suggest that FH ex exerted cytoprotective activity against UVB-induced oxidative stress in HaCaT cells through stimulation of antioxidant enzymes activities. Furthermore, FH ex and SFH ex suppressed the UVB-induced expression of inflammatory mediators, such as IL-1β, IL-6, and IL-8, at mRNA level together with down regulation of matrix metalloproteinase (MMPs). In addition, FH ex and SFH ex reversed the phosphorylation of mitogen-activated protein kinase (MAPK) induced by UVB-irradiation. Notably, FH ex and SFH ex markedly inhibited UVB-induced activation of ERK, p38, and JNK. Thus, this agent exhibits anti-oxidative and -inflammatory effects via lowering ROS production, suppressing p38, ERK, and JNK activation, and down-regulating expression of MMPs. These findings suggest that FH ex and SFH ex can be used as a skin anti-photoaging agent.

  2. INFLUENCE OF FLORAL OPTICAL PROPERTIES ON THE ULTRAVIOLET RADIATION ENVIRONMENT OF POLLEN

    EPA Science Inventory

    Pollen in unopened flowers of most species is totally screened from solar ultraviolet-B radiation by imbricated petals that are largely opaque to UV-B. Following flower opening but before another dehiscence, the anther walls of the species investigated filter out over 98% of the ...

  3. Influence of UVB exposure on the vitamin D status and calcium homoeostasis of growing sheep and goats.

    PubMed

    Kovács, S; Wilkens, M R; Liesegang, A

    2015-04-01

    The purpose of this study was to investigate the influence of exposure to ultraviolet radiation (UVB) on vitamin D status, intestinal calcium absorption and bone metabolism in growing sheep and goats. The hypothesis was that growing sheep and goats are able to synthesise vitamin D within their skin as a result of UVB exposure and that respective consequences for their vitamin D blood levels and the associated parameters can be shown. Fourteen 18-week-old lambs and goat kids were kept in an UVB-free environment and randomly assigned to two groups. One group was daily exposed to UVB (300 watt) for 12 weeks, and the other served as a control group. Except for the exposure to UVB, all animals were kept under the same conditions and fed according to their requirements. Before the start of the experiment and every second week, blood samples were taken. Also the left metatarsus of each animal was analysed by quantitative computer tomography to test for bone mineral status before the start, in week 7 and at the end of the experiment. After 12 weeks, the animals were slaughtered and samples were taken from skin, gastrointestinal tract and kidney for further analyses. In this study, exposure to UVB led to increased serum 1,25-dihydroxyvitamin D (1,25VitD) levels in goat kids, whereas in lambs, serum 25-hydroxyvitamin D (25VitD) levels were increased. In both species UVB-exposed animals showed lower 7-dehydrocholesterol (7DHC) values in skin than their respective control groups. These results indicate that growing goat kids and lambs are able to synthesise vitamin D in the skin when being exposed to UVB. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  4. Molecular Insights into SIRT1 Protection Against UVB-Induced Skin Fibroblast Senescence by Suppression of Oxidative Stress and p53 Acetylation.

    PubMed

    Chung, Ki Wung; Choi, Yeon Ja; Park, Min Hi; Jang, Eun Ji; Kim, Dae Hyun; Park, Byung Hyun; Yu, Byung Pal; Chung, Hae Young

    2015-08-01

    Stresses, such as exposure to ultraviolet radiation and those associated with aging, are known to cause premature cellular senescence that is characterized by growth arrest and morphological and gene expression changes. This study was designed to investigate the protective effect of Sirtuin1 (SIRT1) on the UVB-induced premature senescence. Under in vitro experimental conditions, exposure to a subcytotoxic dose of UVB enhanced human skin fibroblasts senescence, as characterized by increased β-galactosidase activity and increased levels of senescence-associated proteins. However, adenovirus-mediated SIRT1 overexpression significantly protected fibroblasts from UVB-induced cellular deterioration. Exposure to UVB-induced cell senescence was associated with oxidative stress and p38 mitogen-activated protein kinase activation. Molecular analysis demonstrated that deacetylation of Forkhead box O3α (FOXO3α) by SIRT1 changed the transcriptional activity of FOXO3α and increased resistance to the oxidative stress. In addition, SIRT1 suppressed UVB-induced p53 acetylation and its transcriptional activity, which directly affected the cell cycle arrest induced by UVB. Further study demonstrated that SIRT1 activation inhibited cell senescence in the skin of the HR1 hairless mouse exposed to UVB. The study identifies a new role for SIRT1 in the UVB-induced senescence of skin fibroblats and provides a potential target for skin protection through molecuar insights into the mechanisms responsible for UVB-induced photoaging. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Protective Effect of the Ethyl Acetate Fraction of Sargassum muticum Against Ultraviolet B–Irradiated Damage in Human Keratinocytes

    PubMed Central

    Piao, Mei Jing; Yoon, Weon Jong; Kang, Hee Kyoung; Yoo, Eun Sook; Koh, Young Sang; Kim, Dong Sam; Lee, Nam Ho; Hyun, Jin Won

    2011-01-01

    The aim of this study was to investigate the cytoprotective properties of the ethyl acetate fraction of Sargassum muticum (SME) against ultraviolet B (UVB)-induced cell damage in human keratinocytes (HaCaT cells). SME exhibited scavenging activity toward the 1,1-diphenyl-2-picrylhydrazyl radicals and hydrogen peroxide (H2O2) and UVB-induced intracellular reactive oxygen species (ROS). SME also scavenged the hydroxyl radicals generated by the Fenton reaction (FeSO4 + H2O2), which was detected using electron spin resonance spectrometry. In addition, SME decreased the level of lipid peroxidation that was increased by UVB radiation, and restored the level of protein expression and the activities of antioxidant enzymes that were decreased by UVB radiation. Furthermore, SME reduced UVB-induced apoptosis as shown by decreased DNA fragmentation and numbers of apoptotic bodies. These results suggest that SME protects human keratinocytes against UVB-induced oxidative stress by enhancing antioxidant activity in cells, thereby inhibiting apoptosis. PMID:22174656

  6. Flt3 is a target of coumestrol in protecting against UVB-induced skin photoaging.

    PubMed

    Park, Gaeun; Baek, Sohee; Kim, Jong-Eun; Lim, Tae-gyu; Lee, Charles C; Yang, Hee; Kang, Young-Gyu; Park, Jun Seong; Augustin, Martin; Mrosek, Michael; Lee, Chang Yong; Dong, Zigang; Huber, Robert; Lee, Ki Won

    2015-12-01

    While skin aging is a naturally occurring process by senescence, exposure to ultraviolet (UV) radiation accelerates wrinkle formation and sagging of skin. UV induces skin aging by degrading collagen via activating matrix metalloproteinases (MMPs). In this study, we show that coumestrol, a metabolite of the soybean isoflavone daidzein, has a preventive effect on skin photoaging in three-dimensional human skin equivalent model. Coumestrol inhibited UVB-induced MMP-1 expression and activity. Whole human kinase profiling assay identified FLT3 kinase as a novel target protein of coumestrol in UVB-induced signaling pathway in skin. Coumestrol suppresses FLT3 kinase activity, and subsequently, Ras/MEK/ERK and Akt/p70 ribosomal S6 kinase pathway. This suppresses AP-1 activity and in turn, diminishes MMP-1 gene transcription. Using X-ray crystallography, the binding of coumestrol to FLT3 was defined and implied ATP-competitive inhibition. Residues Lys644 and Phe830 showed local changes to accommodate coumestrol in the ATP-binding pocket. 4-APIA, a pharmacological inhibitor of FLT3, inhibited MMP-1 expression and induced signal transduction changes similar to coumestrol. Taken together, coumestrol inhibits UVB-induced MMP-1 expression by suppressing FLT3 kinase activity. These findings suggest that coumestrol is a novel dietary compound with potential application in preventing and improving UVB-associated skin aging. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Malbec grape (Vitis vinifera L.) responses to the environment: Berry phenolics as influenced by solar UV-B, water deficit and sprayed abscisic acid.

    PubMed

    Alonso, Rodrigo; Berli, Federico J; Fontana, Ariel; Piccoli, Patricia; Bottini, Rubén

    2016-12-01

    High-altitude vineyards receive elevated solar ultraviolet-B (UV-B) levels so producing high quality berries for winemaking because of induction in the synthesis of phenolic compounds. Water deficit (D) after veraison, is a commonly used tool to regulate berry polyphenols concentration in red wine cultivars. Abscisic acid (ABA) plays a crucial role in the acclimation to environmental factors/signals (including UV-B and D). The aim of the present study was to evaluate independent and interactive effects of high-altitude solar UV-B, moderate water deficit and ABA applications on Vitis vinifera cv. Malbec berries. The experiment was conducted during two growing seasons with two treatments of UV-B (+UV-B and -UV-B), watering (+D and -D) and ABA (+ABA and -ABA), in a factorial design. Berry fresh weight, sugar content, fruit yield, phenolic compounds profile and antioxidant capacity (ORAC) were analyzed at harvest. Previous incidence of high UV-B prevented deleterious effects of water deficit, i.e. berry weight reduction and diminution of sugar accumulation. High UV-B increased total phenols (mainly astilbin, quercetin and kaempferol) and ORAC, irrespectively of the combination with other factors. Fruit yield was reduced by combining water deficit and high UV-B or water deficit and ABA. Two applications of ABA were enough to induced biochemical changes increasing total anthocyanins, especially those with higher antioxidant capacity. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Methods for assessing the impacts of ultraviolet-B radiation on aquatic invertebrates

    USGS Publications Warehouse

    Hurtubise, R.D.; Little, Edward E.; Havel, J.E.; Little, Edward E.; Greenberg, Bruce M.; Delonay, Aaron J.

    1998-01-01

    A standard methodology for assessing the impacts of simulated solar ultraviolet-B radiation (UV-B) on aquatic invertebrates was established. A solar simulator was used to expose a variety of aquatic invertebrates to different levels of UV-B. The simulator was calibrated as close as possible to match local ambient solar radiation measured in and out of water with a scanning spectroradiometer. A series of repeated exposures were conducted to determine the effects of UV-B on two species of Ceriodaphnia. Survivorship of C. reticulata declined with increasing UV-B with 100% mortality occurring after four daily 5 hr exposures to a UV-B irradiance that was 14% of ambient sunlight (40.8/μW/cm2) and 70% mortality for C. dubia after seven days of an exposure to 5% of ambient (14.5μW/cm2). Significant reductions in fertility (#young/adult) was observed in both low and high light adapted individuals with low light individuals appearing to be more sensitive. This methodology allowed us to make comparisons to natural conditions in aquatic habitats and to make risk assessments for individual species.

  9. UVB induces epidermal 11β-hydroxysteroid dehydrogenase type 1 activity in vivo.

    PubMed

    Tiganescu, Ana; Hupe, Melanie; Jiang, Yan J; Celli, Anna; Uchida, Yoshikazu; Mauro, Theodora M; Bikle, Daniel D; Elias, Peter M; Holleran, Walter M

    2015-05-01

    Detrimental consequences of ultraviolet radiation (UVR) in skin include photoageing, immunosuppression and photocarcinogenesis, processes also significantly regulated by local glucocorticoid (GC) availability. In man, the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) generates the active GC cortisol from cortisone (or corticosterone from 11-dehydrocorticosterone in rodents). 11β-HSD1 oxo-reductase activity requires the cofactor NADPH, generated by hexose-6-phosphate dehydrogenase. We previously demonstrated increased 11β-HSD1 levels in skin obtained from photoexposed versus photoprotected anatomical regions. However, the direct effect of UVR on 11β-HSD1 expression remains to be elucidated. To investigate the cutaneous regulation of 11β-HSD1 following UVR in vivo, the dorsal skin of female SKH1 mice was irradiated with 50, 100, 200 and 400 mJ/cm(2) UVB. Measurement of transepidermal water loss, 11β-HSD1 activity, mRNA/protein expression and histological studies was taken at 1, 3 and 7 days postexposure. 11β-HSD1 and hexose-6-phosphate dehydrogenase mRNA expression peaked 1 day postexposure to 400 mJ/cm(2) UVB before subsequently declining (days 3 and 7). Corresponding increases in 11β-HSD1 protein and enzyme activity were observed 3 days postexposure coinciding with reduced GC receptor mRNA expression. Immunofluorescence studies revealed 11β-HSD1 localization to hyperproliferative epidermal keratinocytes in UVB-exposed skin. 11β-HSD1 expression and activity were also induced by 200 and 100 (but not 50) mJ/cm(2) UVB and correlated with increased transepidermal water loss (indicative of barrier disruption). UVB-induced 11β-HSD1 activation represents a novel mechanism that may contribute to the regulation of cutaneous responses to UVR exposure. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. The influence of urban area opacity on biologically active UV-B irradiance

    NASA Astrophysics Data System (ADS)

    Chubarova, Nataly; Rozental', Victor

    2013-04-01

    The study of UV irradiance changes in urban area is an essential problem due to the significant effect of UV irradiance on human health which can be positive (vitamin D synthesis) and negative (erythema, skin cancer, eye damage). According to the results of several experiments within the Moscow megacity we studied the effects of urban area opacity on the different types of biologically active UV-B irradiance on the base of a specially developed mobile photometric complex snd additional measurements of the urban opacity by Nikon Fisheye Converter FC-E8. We analyzed both the level of erythemally-active irradiance and the UV eye damaging radiation using the broadband UVB-1 YES pyranometer calibrated against ultraviolet spectroradiometer Bentham DTM-300 of the Medical University of Innsbruck (courtesy of Dr. M.Blumthaler). In order to estimate the effects of the urban opacity the measurements were normalized on similar measurements at the Meteorological Observatory of Moscow State University with zero opacity. This ratio is defined as an urban radiative transmittance (URT). Different atmospheric conditions were considered. In cloudy conditions the effect of opacity on URT is much less than that in conditions when the sun disk is open from clouds. We revealed some spectral features in transmittance of biologically active UV-B irradiance which is characterized by higher URT variations in overcast cloudy conditions due to more intensive scattering and smaller direct solar radiation component. In the absence of cloudiness the effect of opacity was studied for open and screening solar disk conditions. We obtained much higher URT in UVB spectral region compared with that for total solar irradiance for screening solar disk conditions with a significant URT dependence on the opacity only in UVB spectral region. No URT dependence was obtained for total solar irradiance in these conditions. Some model calculations were fulfilled to match the experimental results.

  11. Survey of the variation in ultraviolet outputs from ultraviolet A sunbeds in Bradford.

    PubMed

    Wright, A L; Hart, G C; Kernohan, E; Twentyman, G

    1996-02-01

    Concerns have been expressed for some time regarding the growth of the cosmetic suntanning industry and the potential harmful effects resulting from these exposures. Recently published work has appeared to confirm a link between sunbed use and skin cancer. A previous survey in Oxford some years ago demonstrated significant output variations, and we have attempted to extend and update that work. Ultraviolet A, UVB and blue-light output measurements were made on 50 sunbeds using a radiometer fitted with broad-band filters and detectors. A number of irradiance measurements were made on each sunbed within each waveband so that the uniformity of the output could also be assessed. UVA outputs varied by a factor of 3, with a mean of 13.5 mW/cm2; UVB outputs varied by a factor of 60, with a mean of 19.2 microW/cm2; and blue-light outputs varied by a factor of 2.5, with a mean of 2.5 mW/cm2. Outputs fall on average to 80% of the central value at either end of the sunbed. Facial units in sunbeds ranged in output between 18 and 45 mW/cm2. Output uniformity shows wide variation, with 16% of the sunbeds having an axial coefficient of variation > 10%. UVB output is highly tube-specific. Eyewear used in sunbeds should also protect against blue light.

  12. Photostability of commercial sunscreens upon sun exposure and irradiation by ultraviolet lamps

    PubMed Central

    Gonzalez, Helena; Tarras-Wahlberg, Nils; Strömdahl, Birgitta; Juzeniene, Asta; Moan, Johan; Larkö, Olle; Rosén, Arne; Wennberg, Ann-Marie

    2007-01-01

    Background Sunscreens are being widely used to reduce exposure to harmful ultraviolet (UV) radiation. The fact that some sunscreens are photounstable has been known for many years. Since the UV-absorbing ingredients of sunscreens may be photounstable, especially in the long wavelength region, it is of great interest to determine their degradation during exposure to UV radiation. Our aim was to investigate the photostability of seven commercial sunscreen products after natural UV exposure (UVnat) and artificial UV exposure (UVart). Methods Seven commercial sunscreens were studied with absorption spectroscopy. Sunscreen product, 0.5 mg/cm2, was placed between plates of silica. The area under the curve (AUC) in the spectrum was calculated for UVA (320–400 nm), UVA1 (340–400 nm), UVA2 (320–340 nm) and UVB (290–320 nm) before (AUCbefore) and after (AUCafter) UVart (980 kJ/m2 UVA and 12 kJ/m2 of UVB) and before and after UVnat. If theAUC Index (AUCI), defined as AUCI = AUCafter/AUCbefore, was > 0.80, the sunscreen was considered photostable. Results Three sunscreens were unstable after 90 min of UVnat; in the UVA range the AUCI was between 0.41 and 0.76. In the UVB range one of these sunscreens was unstable with an AUCI of 0.75 after 90 min. Three sunscreens were photostable after 120 min of UVnat; in the UVA range the AUCI was between 0.85 and 0.99 and in the UVB range between 0.92 and 1.0. One sunscreen showed in the UVA range an AUCI of 0.87 after UVnat but an AUCI of 0.72 after UVart. Five of the sunscreens were stable in the UVB region. Conclusion The present study shows that several sunscreens are photounstable in the UVA range after UVnat and UVart. There is a need for a standardized method to measure photostability, and the photostability should be marked on the sunscreen product. PMID:17324264

  13. Far-infrared suppresses skin photoaging in ultraviolet B-exposed fibroblasts and hairless mice

    PubMed Central

    Chiu, Hui-Wen; Chen, Cheng-Hsien; Chen, Yi-Jie; Hsu, Yung-Ho

    2017-01-01

    Ultraviolet (UV) induces skin photoaging, which is characterized by thickening, wrinkling, pigmentation, and dryness. Collagen, which is one of the main building blocks of human skin, is regulated by collagen synthesis and collagen breakdown. Autophagy was found to block the epidermal hyperproliferative response to UVB and may play a crucial role in preventing skin photoaging. In the present study, we investigated whether far-infrared (FIR) therapy can inhibit skin photoaging via UVB irradiation in NIH 3T3 mouse embryonic fibroblasts and SKH-1 hairless mice. We found that FIR treatment significantly increased procollagen type I through the induction of the TGF-β/Smad axis. Furthermore, UVB significantly enhanced the expression of matrix metalloproteinase-1 (MMP-1) and MMP-9. FIR inhibited UVB-induced MMP-1 and MMP-9. Treatment with FIR reversed UVB-decreased type I collagen. In addition, FIR induced autophagy by inhibiting the Akt/mTOR signaling pathway. In UVB-induced skin photoaging in a hairless mouse model, FIR treatment resulted in decreased skin thickness in UVB irradiated mice and inhibited the degradation of collagen fibers. Moreover, FIR can increase procollagen type I via the inhibition of MMP-9 and induction of TGF-β in skin tissues. Therefore, our study provides evidence for the beneficial effects of FIR exposure in a model of skin photoaging. PMID:28301572

  14. Far-infrared suppresses skin photoaging in ultraviolet B-exposed fibroblasts and hairless mice.

    PubMed

    Chiu, Hui-Wen; Chen, Cheng-Hsien; Chen, Yi-Jie; Hsu, Yung-Ho

    2017-01-01

    Ultraviolet (UV) induces skin photoaging, which is characterized by thickening, wrinkling, pigmentation, and dryness. Collagen, which is one of the main building blocks of human skin, is regulated by collagen synthesis and collagen breakdown. Autophagy was found to block the epidermal hyperproliferative response to UVB and may play a crucial role in preventing skin photoaging. In the present study, we investigated whether far-infrared (FIR) therapy can inhibit skin photoaging via UVB irradiation in NIH 3T3 mouse embryonic fibroblasts and SKH-1 hairless mice. We found that FIR treatment significantly increased procollagen type I through the induction of the TGF-β/Smad axis. Furthermore, UVB significantly enhanced the expression of matrix metalloproteinase-1 (MMP-1) and MMP-9. FIR inhibited UVB-induced MMP-1 and MMP-9. Treatment with FIR reversed UVB-decreased type I collagen. In addition, FIR induced autophagy by inhibiting the Akt/mTOR signaling pathway. In UVB-induced skin photoaging in a hairless mouse model, FIR treatment resulted in decreased skin thickness in UVB irradiated mice and inhibited the degradation of collagen fibers. Moreover, FIR can increase procollagen type I via the inhibition of MMP-9 and induction of TGF-β in skin tissues. Therefore, our study provides evidence for the beneficial effects of FIR exposure in a model of skin photoaging.

  15. Role of p53 in silibinin-mediated inhibition of ultraviolet B radiation-induced DNA damage, inflammation and skin carcinogenesis.

    PubMed

    Rigby, Cynthia M; Roy, Srirupa; Deep, Gagan; Guillermo-Lagae, Ruth; Jain, Anil K; Dhar, Deepanshi; Orlicky, David J; Agarwal, Chapla; Agarwal, Rajesh

    2017-01-01

    Non-melanoma skin cancers (NMSC) are a growing problem given that solar ultraviolet B (UVB) radiation exposure is increasing most likely due to depletion of the atmospheric ozone layer and lack of adequate sun protection. Better preventive methods are urgently required to reduce UV-caused photodamage and NMSC incidence. Earlier, we have reported that silibinin treatment activates p53 and reduces photodamage and NMSC, both in vitro and in vivo; but whether silibinin exerts its protective effects primarily through p53 remains unknown. To address this question, we generated p53 heterozygous (p53 +/- ) and p53 knockout (p53 -/- ) mice on SKH-1 hairless mouse background, and assessed silibinin efficacy in both short- and long-term UVB exposure experiments. In the chronic UVB-exposed skin tumorigenesis study, compared to p53 +/+ mice, p53 +/- mice developed skin tumors earlier and had higher tumor number, multiplicity and volume. Silibinin topical treatment significantly reduced the tumor number, multiplicity and volume in p53 +/+ mice but silibinin' protective efficacy was significantly compromised in p53 +/- mice. Additionally, silibinin treatment failed to inhibit precursor skin cancer lesions in p53 -/- mice but improved the survival of the mice. In short-term studies, silibinin application accelerated the removal of UVB-induced DNA damage in p53 +/+ mice while its efficacy was partially compromised in p53 -/- mice. Interestingly, silibinin treatment also inhibited the UVB-induced inflammatory markers in skin tissue. These results further confirmed that absence of the p53 allele predisposes mice to photodamage and photocarcinogenesis, and established that silibinin mediates its protection against UVB-induced photodamage, inflammation and photocarcinogenesis partly through p53 activation. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Role of p53 in silibinin-mediated inhibition of ultraviolet B radiation-induced DNA damage, inflammation and skin carcinogenesis

    PubMed Central

    Rigby, Cynthia M.; Roy, Srirupa; Deep, Gagan; Guillermo-Lagae, Ruth; Jain, Anil K.; Dhar, Deepanshi; Orlicky, David J.; Agarwal, Chapla; Agarwal, Rajesh

    2017-01-01

    Non-melanoma skin cancers (NMSC) are a growing problem given that solar ultraviolet B (UVB) radiation exposure is increasing most likely due to depletion of the atmospheric ozone layer and lack of adequate sun protection. Better preventive methods are urgently required to reduce UV-caused photodamage and NMSC incidence. Earlier, we have reported that silibinin treatment activates p53 and reduces photodamage and NMSC, both in vitro and in vivo; but whether silibinin exerts its protective effects primarily through p53 remains unknown. To address this question, we generated p53 heterozygous (p53+/−) and p53 knockout (p53−/−) mice on SKH-1 hairless mouse background, and assessed silibinin efficacy in both short- and long-term UVB exposure experiments. In the chronic UVB-exposed skin tumorigenesis study, compared to p53+/+ mice, p53+/− mice developed skin tumors earlier and had higher tumor number, multiplicity and volume. Silibinin topical treatment significantly reduced the tumor number, multiplicity and volume in p53+/+ mice but silibinin’ protective efficacy was significantly compromised in p53+/− mice. Additionally, silibinin treatment failed to inhibit precursor skin cancer lesions in p53−/− mice but improved the survival of the mice. In short-term studies, silibinin application accelerated the removal of UVB-induced DNA damage in p53+/+ mice while its efficacy was partially compromised in p53−/− mice. Interestingly, silibinin treatment also inhibited the UVB-induced inflammatory markers in skin tissue. These results further confirmed that absence of the p53 allele predisposes mice to photodamage and photocarcinogenesis, and established that silibinin mediates its protection against UVB-induced photodamage, inflammation and photocarcinogenesis partly through p53 activation. PMID:27729375

  17. Long non-coding RNA HOTAIR promotes UVB-induced apoptosis and inflammatory injury by up-regulation of PKR in keratinocytes.

    PubMed

    Liu, Guo; Zhang, Wenhao

    2018-06-11

    Excessive exposure to ultraviolet (UV) rays can cause damage of the skin and may induce cancer, immunosuppression, photoaging, and inflammation. The long non-coding RNA (lncRNA) HOX antisense intergenic RNA (HOTAIR) is involved in multiple human biological processes. However, its role in UVB-induced keratinocyte injury is unclear. This study was performed to investigate the effects of HOTAIR in UVB-induced apoptosis and inflammatory injury in human keratinocytes (HaCaT cells). Quantitative real-time polymerase chain reaction was performed to analyze the expression levels of HOTAIR, PKR, TNF-α, and IL-6. Cell viability was measured using trypan blue exclusion method and cell apoptosis using flow cytometry and western blot. ELISA was used to measure the concentrations of TNF-α and IL-6. Western blot was used to measure the expression of PKR, apoptosis-related proteins, and PI3K/AKT and NF-κB pathway proteins. UVB induced HaCaT cell injury by inhibiting cell viability and promoting cell apoptosis and expressions of IL-6 and TNF-α. UVB also promoted the expression of HOTAIR. HOTAIR suppression increased cell viability and decreased apoptosis and expression of inflammatory factors in UVB-treated cells. HOTAIR also promoted the expression of PKR. Overexpression of HOTAIR decreased cell viability and increased cell apoptosis and expression of inflammatory factors in UVB-treated cells by upregulating PKR. Overexpression of PKR decreased cell viability and promoted cell apoptosis in UVB-treated cells. Overexpression of PKR activated PI3K/AKT and NF-κB pathways. Our findings identified an essential role of HOTAIR in promoting UVB-induced apoptosis and inflammatory injury by up-regulating PKR in keratinocytes.

  18. The Greenhouse effect: impacts of ultraviolet-B (UV-B) radiation, carbon dioxide (CO2), and ozone (O3) on vegetation.

    PubMed

    Krupa, S V; Kickert, R N

    1989-01-01

    There is a fast growing and an extremely serious international scientific, public and political concern regarding man's influence on the global climate. The decrease in stratospheric ozone (O3) and the consequent possible increase in ultraviolet-B (UV-B) is a critical issue. In addition, tropospheric concentrations of 'greenhouse gases' such as carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) are increasing. These phenomena, coupled with man's use of chlorofluorocarbons (CFCs), chlorocarbons (CCs), and organo-bromines (OBs) are considered to result in the modification of the earth's O3 column and altered interactions between the stratosphere and the troposphere. A result of such interactions could be the global warming. As opposed to these processes, tropospheric O3 concentrations appear to be increasing in some parts of the world (e.g. North America). Such tropospheric increases in O3 and particulate matter may offset any predicted increases in UV-B at those locations. Presently most general circulation models (GCMs) used to predict climate change are one- or two-dimensional models. Application of satisfactory three-dimensional models is limited by the available computer power. Recent studies on radiative cloud forcing show that clouds may have an excess cooling effect to compensate for a doubling of global CO2 concentrations. There is a great deal of geographic patchiness or variability in climate. Use of global level average values fails to account for this variability. For example, in North America: 1. there may be a decrease in the stratospheric O3 column (1-3%); however, there appears to be an increase in tropospheric O3 concentrations (1-2%/year) to compensate up to 20-30% loss in the total O3 column; 2. there appears to be an increase in tropospheric CO2, N2O and CH4 at the rate of roughly 0.8%, 0.3% and 1-2%, respectively, per year; 3. there is a decrease in erythemal UV-B; and 4. there is a cooling of tropospheric air temperature due to

  19. Role of Ultraviolet Radiation in Papillomavirus-Induced Disease

    PubMed Central

    Uberoi, Aayushi; Yoshida, Satoshi; Frazer, Ian H.; Pitot, Henry C.; Lambert, Paul F.

    2016-01-01

    Human papillomaviruses are causally associated with 5% of human cancers. The recent discovery of a papillomavirus (MmuPV1) that infects laboratory mice provides unique opportunities to study the life cycle and pathogenesis of papillomaviruses in the context of a genetically manipulatable host organism. To date, MmuPV1-induced disease has been found largely to be restricted to severely immunodeficient strains of mice. In this study, we report that ultraviolet radiation (UVR), specifically UVB spectra, causes wild-type strains of mice to become highly susceptible to MmuPV1-induced disease. MmuPV1-infected mice treated with UVB develop warts that progress to squamous cell carcinoma. Our studies further indicate that UVB induces systemic immunosuppression in mice that correlates with susceptibility to MmuPV1-associated disease. These findings provide new insight into how MmuPV1 can be used to study the life cycle of papillomaviruses and their role in carcinogenesis, the role of host immunity in controlling papillomavirus-associated pathogenesis, and a basis for understanding in part the role of UVR in promoting HPV infection in humans. PMID:27244228

  20. Role of Ultraviolet Radiation in Papillomavirus-Induced Disease.

    PubMed

    Uberoi, Aayushi; Yoshida, Satoshi; Frazer, Ian H; Pitot, Henry C; Lambert, Paul F

    2016-05-01

    Human papillomaviruses are causally associated with 5% of human cancers. The recent discovery of a papillomavirus (MmuPV1) that infects laboratory mice provides unique opportunities to study the life cycle and pathogenesis of papillomaviruses in the context of a genetically manipulatable host organism. To date, MmuPV1-induced disease has been found largely to be restricted to severely immunodeficient strains of mice. In this study, we report that ultraviolet radiation (UVR), specifically UVB spectra, causes wild-type strains of mice to become highly susceptible to MmuPV1-induced disease. MmuPV1-infected mice treated with UVB develop warts that progress to squamous cell carcinoma. Our studies further indicate that UVB induces systemic immunosuppression in mice that correlates with susceptibility to MmuPV1-associated disease. These findings provide new insight into how MmuPV1 can be used to study the life cycle of papillomaviruses and their role in carcinogenesis, the role of host immunity in controlling papillomavirus-associated pathogenesis, and a basis for understanding in part the role of UVR in promoting HPV infection in humans.

  1. UV-B light contributes directly to the synthesis of chiloglottone floral volatiles

    PubMed Central

    Amarasinghe, Ranamalie; Poldy, Jacqueline; Matsuba, Yuki; Barrow, Russell A.; Hemmi, Jan M.; Pichersky, Eran; Peakall, Rod

    2015-01-01

    Background and Aims Australian sexually deceptive Chiloglottis orchids attract their specific male wasp pollinators by means of 2,5-dialkylcyclohexane-1,3-diones or ‘chiloglottones’, representing a newly discovered class of volatiles with unique structures. This study investigated the hypothesis that UV-B light at low intensities is directly required for chiloglottone biosynthesis in Chiloglottis trapeziformis. Methods Chiloglottone production occurs only in specific tissue (the callus) of the labellum. Cut buds and flowers, and whole plants with buds and flowers, sourced from the field, were kept in a growth chamber and interactions between growth stage of the flowers and duration and intensity of UV-B exposure on chiloglottone production were studied. The effects of the protein synthesis inhibitor cycloheximide were also examined. Key Results Chiloglottone was not present in buds, but was detected in buds that were manually opened and then exposed to sunlight, or artificial UV-B light for ≥5 min. Spectrophotometry revealed that the sepals and petals blocked UV-B light from reaching the labellum inside the bud. Rates of chiloglottone production increased with developmental stage, increasing exposure time and increasing UV-B irradiance intensity. Cycloheximide did not inhibit the initial production of chiloglottone within 5 min of UV-B exposure. However, inhibition of chiloglottone production by cycloheximide occurred over 2 h of UV-B exposure, indicating a requirement for de novo protein synthesis to sustain chiloglottone production under UV-B. Conclusions The sepals and petals of Chiloglottis orchids strongly block UV-B wavelengths of light, preventing chiloglottone production inside the bud. While initiation of chiloglottone biosynthesis requires only UV-B light, sustained chiloglottone biosynthesis requires both UV-B and de novo protein biosynthesis. The internal amounts of chiloglottone in a flower reflect the interplay between developmental stage

  2. The effects of quercetin-loaded PLGA-TPGS nanoparticles on ultraviolet B-induced skin damages in vivo.

    PubMed

    Zhu, Xianbing; Zeng, Xiaowei; Zhang, Xudong; Cao, Wei; Wang, Yilin; Chen, Houjie; Wang, Teng; Tsai, Hsiang-I; Zhang, Ran; Chang, Danfeng; He, Shuai; Mei, Lin; Shi, Xiaojun

    2016-04-01

    Ultraviolet (UV) radiation has deleterious effects on living organisms, and functions as a tumor initiator and promoter. Multiple natural compounds, like quercetin, have been shown the protective effects on UV-induced damage. However, quercetin is extremely hydrophobic and limited by its poor percutaneous permeation and skin deposition. Here, we show that quercetin-loaded PLGA-TPGS nanoparticles could overcome low hydrophilicity of quercetin and improve its anti-UVB effect. Quercetin-loaded NPs can significantly block UVB irradiation induced COX-2 up-expression and NF-kB activation in Hacat cell line. Moreover, PLGA-TPGS NPs could efficiently get through epidermis and reach dermis. Treatment of mice with quercetin-loaded NPs also attenuates UVB irradiation-associated macroscopic and histopathological changes in mice skin. These results demonstrated that copolymer PLGA-TPGS could be used as drug nanocarriers against skin damage and disease. The findings provide an external use of PLGA-TPGS nanocarriers for application in the treatment of skin diseases. Skin is the largest organ in the body and is subjected to ultraviolet (UV) radiation damage daily from the sun. Excessive exposure has been linked to the development of skin cancer. Hence, topically applied agents can play a major role in skin protection. In this article, the authors developed quercetin-loaded PLGA-TPGS nanoparticles and showed their anti-UVB effect. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. The effect of dehydroglyasperin C on UVB-mediated MMPs expression in human HaCaT cells.

    PubMed

    Xuan, Song Hua; Park, Young Min; Ha, Ji Hoon; Jeong, Yoon Ju; Park, Soo Nam

    2017-12-01

    The ultraviolet B (UVB) from solar radiation increases the generation of reactive oxygen species (ROS), which mediate the production of matrix metalloproteinases (MMPs), and acts mainly on the epidermis layer of the skin. This study was aimed at assessing the anti-photoaging effects of dehydroglyasperin C isolated from Glycyrrhiza uralensis Fisch on MMPs levels in HaCaT human keratinocytes and to elucidate the underlying mechanism. The cell viability was measured by MTT assay. Expression, phosphorylation and enzymatic activity of the protein were examined using ELISA, Western blot or gelatin zymography. Intracellular ROS measurement was evaluated by fluorescent ELISA and 2',7'-dichlorodihydrofluorescein diacetate (H 2 DCF-DA) assay. In the present study, we found that dehydroglyasperin C markedly inhibited UVB-mediated expression of collagenase (MMP-1) and gelatinase (MMP-9) by inhibiting ROS generation. Dehydroglyasperin C treatment also decreased the UVB irradiation-mediated activation of mitogen-activated protein kinase (MAPK), c-Jun phosphorylation, and c-Fos expression. In addition, the down-regulation of UVB-induced c-Jun phosphorylation caused by dehydroglyasperin C treatment was more than the down-regulation of c-Fos expression in the HaCaT human keratinocytes. Our results indicated that dehydroglyasperin C may function as a potential anti-photoaging agent by inhibiting UVB-mediated MMPs expression via suppression of MAPK and AP-1 signaling. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  4. Measuring diffuse ultraviolet exposures using Gafchromic EBT3 films

    NASA Astrophysics Data System (ADS)

    Tsang, P. Y.; Chan, P. M.; Yu, K. N.

    The present work proposed to use Gafchromic EBT3 films for determining spatial variations of ultraviolet (UV) exposures in the environment, which required many simultaneous measurements, and demonstrated the feasibility by showing the variation of the diffuse component of solar (UVA + UVB) exposures (in Jcm-2) in shaded areas under overhangs with the elevation angle θ for the edge of the overhangs.

  5. The effects of grape seeds polyphenols on SKH-1 mice skin irradiated with multiple doses of UV-B.

    PubMed

    Filip, Adriana; Daicoviciu, Doina; Clichici, Simona; Bolfa, Pompei; Catoi, Cornel; Baldea, Ioana; Bolojan, Laura; Olteanu, Diana; Muresan, Adriana; Postescu, I D

    2011-11-03

    The study investigated the protective activity of red grape seeds (Vitis vinifera L, Burgund Mare variety) (BM) extracts in vivo on multiple doses of ultraviolet radiation (UV)-B-induced deleterious effects in SKH-1 mice skin. Eighty 8-weeks-old female SKH-1 mice were divided into 8 groups: control, vehicle, UV-B irradiated, vehicle+UV-B irradiated, BM 2.5mg polyphenols (PF)/cm(2)+UV-B irradiated, BM 4 mg PF/cm(2)+UV-B irradiated, UV-B+BM 2.5mg PF/cm(2), UV-B+BM 4 mg PF/cm(2). The extract was applied topically before or after each UV-B exposure (240 mJ/cm(2)), for 10 days consecutively. The antioxidant activity of BM extract is higher than gallic acid (k(BM)=0.017, k(gallic acid)=0.013). Multiple doses of UV-B generated the formation of cyclobutane pyrimidine dimers (CPDs) and sunburn cells, increased glutathione peroxidase (GPx) and catalase (CAT) activities respectively glutathione (GSH) and IL-1β levels in skin. In group treated with 2.5mg PF/cm(2) before UV-B irradiation BM extract inhibited UV-B-induced sunburn cells, restored the superoxide dismutase (MnSOD) activity, increased insignificantly CAT and GPx activities and reduced IL-1β level. The BM 4.0 mg PF/cm(2) treatment decreased GSH level and reduced the percentage of CPDs positive cells in skin. Both doses of BM extract administered after UV-B irradiation increased the MnSOD and GPx activities and reduced the formation of sunburn cells in skin. Our results suggest that BM extract might be a potential chemo-preventive candidate in reducing the oxidative stress and apoptosis induced by multiple doses of UV-B in skin. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Effect of UVB radiation exposure in the expression of genes and proteins related to apoptosis in freshwater prawn embryos.

    PubMed

    Schramm, Heloísa; Jaramillo, Michael L; Quadros, Thaline de; Zeni, Eliane C; Müller, Yara M R; Ammar, Dib; Nazari, Evelise M

    2017-10-01

    Our previous studies showed that embryos of the freshwater prawn Macrobrachium olfersii exposed to ultraviolet B (UVB) radiation exhibited DNA damage, excessive ROS production, mitochondrial dysfunction and increased hsp70 expression, which are able, independently or together, to induce apoptosis. Thus, we attempted to elucidate some key apoptosis-related genes (ARG) and apoptosis-related proteins (ARP) and their expression during different stages of embryonic development, as well as to characterize the chronology of ARG expression and ARP contents after UVB radiation insult. We demonstrate that p53, Bax and Caspase3 genes are active in the embryonic cells at early embryonic developmental stages, and that the Bcl2 gene is active from the mid-embryonic stage. After UVB radiation exposure, we found an increase in ARP such as p53 and Bak after 3h of exposure. Moreover, an increase in ARG transcript levels for p53, Bax, Bcl2 and Caspase3 was observed at 6h after UVB exposure. Then, after 12h of UVB radiation exposure, an increase in Caspase3 gene expression and protein was observed, concomitantly with an increased number of apoptotic cells. Our data reveal that ARG and ARP are developmentally regulated in embryonic cells of M. olfersii and that UVB radiation causes apoptosis after 12h of exposure. Overall, we demonstrate that embryonic cells of M. olfersii are able to active the cell machinery against environmental changes, such as increased incidence of UVB radiation in aquatic ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Ultraviolet-B-induced mechanical hyperalgesia: A role for peripheral sensitisation.

    PubMed

    Bishop, Thomas; Marchand, Fabien; Young, Antony R; Lewin, Gary R; McMahon, Stephen B

    2010-07-01

    Ultraviolet (UV) induced cutaneous inflammation is emerging as a model of pain with a novel sensory phenotype. A UVB dose of 1000mJ/cm2 produces a highly significant thermal and mechanical hypersensitivity. Here we examined the properties and mechanisms of such hyperalgesia in rats. Significantly, the mechanical hyperalgesia (with approximately 60% change in withdrawal thresholds) was restricted to the lesion site with no changes in mechanical threshold in adjacent non-irradiated skin (i.e. no secondary hypersensitivity), suggesting a peripheral mechanism. Consistent with this, we found that primary mechanical hypersensitivity showed no significant changes after intrathecal treatment with 10microg of the NMDA-receptor antagonist MK-801. Using an in vitro skin-nerve preparation, in the presence and absence of UVB-inflammation, suprathreshold responses to skin displacement stimuli of 6-768microm of 103 peripheral nociceptors were recorded. At the peak of UVB-induced hyperalgesia we observed that mechanical response properties of Adelta-nociceptors recorded from UVB-inflamed skin (n=19) were significantly diminished, by approximately 50%, compared to those recorded from naïve skin (n=13). The mechanical response properties of heat-sensitive C-nociceptors were unchanged while their heat responses were significantly increased, by approximately 75%, in UVB-inflamed (n=26) compared to naïve skin (n=12). Heat-insensitive C-nociceptors, however, demonstrated significantly enhanced (by approximately 60%) response properties to mechanical stimulation in UVB-inflamed (n=21) compared to naïve skin (n=12). Notably alteration in mechanical responses of Adelta- and heat-insensitive C-nociceptors were particular to stronger stimuli. Spontaneous activity was not induced by this dose of UVB. We conclude that UVB-induced mechanical hyperalgesia may be explained by a net shift in peripheral nociceptor response properties. Copyright 2010 International Association for the Study of

  8. Antioxidant characterization and sensory evaluation during storage of ultraviolet-B light exposed baby carrots (abstract)

    USDA-ARS?s Scientific Manuscript database

    Baby carrot processing induces wounding stress activation of phenylalanine ammonia-lyase (PAL), enhancing its nutrient content by increasing synthesis of secondary metabolites. Ultraviolet-B (UV-B) exposure further promotes the formation of soluble phenolic compounds, significantly increasing antiox...

  9. AlGaN Ultraviolet Detectors for Dual-Band UV Detection

    NASA Technical Reports Server (NTRS)

    Miko, Laddawan; Franz, David; Stahle, Carl M.; Yan, Feng; Guan, Bing

    2010-01-01

    This innovation comprises technology that has the ability to measure at least two ultraviolet (UV) bands using one detector without relying on any external optical filters. This allows users to build a miniature UVA and UVB monitor, as well as to develop compact, multicolor imaging technologies for flame temperature sensing, air-quality control, and terrestrial/counter-camouflage/biosensing applications.

  10. Galectin-7 overexpression is associated with the apoptotic process in UVB-induced sunburn keratinocytes

    PubMed Central

    Bernerd, Francoise; Sarasin, Alain; Magnaldo, Thierry

    1999-01-01

    Galectin-7 is a β-galactoside binding protein specifically expressed in stratified epithelia and notably in epidermis, but barely detectable in epidermal tumors and absent from squamous carcinoma cell lines. Galectin-7 gene is an early transcriptional target of the tumor suppressor protein P53 [Polyak, K., Xia, Y., Zweier, J., Kinzler, K. & Vogelstein, B. (1997) Nature (London) 389, 300–305]. Because p53 transcriptional activity is increased by genotoxic stresses we have examined the possible effects of ultraviolet radiations (UVB) on galectin-7 expression in epidermal keratinocytes. The amounts of galectin-7 mRNA and protein are increased rapidly after UVB irradiation of epidermal keratinocytes. The increase of galectin-7 is parallel to P53 stabilization. UVB irradiation of skin reconstructed in vitro and of human skin ex vivo demonstrates that galectin-7 overexpression is associated with sunburn/apoptotic keratinocytes. Transfection of a galectin-7 expression vector results in a significant increase in terminal deoxynucleotidyltransferase-mediated UTP end labeling-positive keratinocytes. The present findings demonstrate a keratinocyte-specific protein involved in the UV-induced apoptosis, an essential process in the maintenance of epidermal homeostasis. PMID:10500176

  11. Blackberry extract inhibits UVB-induced oxidative damage and inflammation through MAP kinases and NF-κB signaling pathways in SKH-1 mice skin.

    PubMed

    Divya, Sasidharan Padmaja; Wang, Xin; Pratheeshkumar, Poyil; Son, Young-Ok; Roy, Ram Vinod; Kim, Donghern; Dai, Jin; Hitron, John Andrew; Wang, Lei; Asha, Padmaja; Shi, Xianglin; Zhang, Zhuo

    2015-04-01

    Extensive exposure of solar ultraviolet-B (UVB) radiation to skin induces oxidative stress and inflammation that play a crucial role in the induction of skin cancer. Photochemoprevention with natural products represents a simple but very effective strategy for the management of cutaneous neoplasia. In this study, we investigated whether blackberry extract (BBE) reduces chronic inflammatory responses induced by UVB irradiation in SKH-1 hairless mice skin. Mice were exposed to UVB radiation (100 mJ/cm(2)) on alternate days for 10 weeks, and BBE (10% and 20%) was applied topically a day before UVB exposure. Our results show that BBE suppressed UVB-induced hyperplasia and reduced infiltration of inflammatory cells in the SKH-1 hairless mice skin. BBE treatment reduced glutathione (GSH) depletion, lipid peroxidation (LPO), and myeloperoxidase (MPO) in mouse skin by chronic UVB exposure. BBE significantly decreased the level of pro-inflammatory cytokines IL-6 and TNF-α in UVB-exposed skin. Likewise, UVB-induced inflammatory responses were diminished by BBE as observed by a remarkable reduction in the levels of phosphorylated MAP Kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, BBE also reduced inflammatory mediators such as cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and inducible nitric oxide synthase (iNOS) levels in UVB-exposed skin. Treatment with BBE inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mouse skin. Immunohistochemistry analysis revealed that topical application of BBE inhibited the expression of 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8-oxodG), cyclobutane pyrimidine dimers (CPD), proliferating cell nuclear antigen (PCNA), and cyclin D1 in UVB-exposed skin. Collectively, these data indicate that BBE protects from UVB-induced oxidative damage and inflammation by modulating MAP kinase and NF-κB signaling pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Cell damage caused by ultraviolet B radiation in the desert cyanobacterium Phormidium tenue and its recovery process.

    PubMed

    Wang, Gaohong; Deng, Songqiang; Liu, Jiafeng; Ye, Chaoran; Zhou, Xiangjun; Chen, Lanzhou

    2017-10-01

    Phormidium tenue, a cyanobacterium that grows in the topsoil of biological soil crusts (BSCs), has the highest recovery rate among desert crust cyanobacteria after exposure to ultraviolet B (UV-B) radiation. However, the mechanism underlying its recovery process is unclear. To address this issue, we measured chlorophyll a fluorescence, generation of reactive oxygen species (ROS), lipid peroxidation, and repair of DNA breakage in P. tenue following exposure to UV-B. We found that UV-B radiation at all doses tested reduced photosynthesis and induced cell damage in P. tenue. However, P. tenue responded to UV-B radiation by rapidly reducing photosynthetic activity, which protects the cell by leaking less ROS. Antioxidant enzymes, DNA damage repair systems, and UV absorbing pigments were then induced to mitigate the damage caused by UV-B radiation. The addition of exogenous antioxidant chemicals ascorbate and N-acetylcysteine also mitigated the harmful effects caused by UV-B radiation and enhanced the recovery process. These chemicals could aid in the resistance of P. tenue to the exposure of intense UV-B radiation in desertified areas when inoculated onto the sand surface to form artificial algal crusts. Copyright © 2017. Published by Elsevier Inc.

  13. Protection against UVB-induced oxidative stress in human skin cells and skin models by methionine sulfoxide reductase A.

    PubMed

    Pelle, Edward; Maes, Daniel; Huang, Xi; Frenkel, Krystyna; Pernodet, Nadine; Yarosh, Daniel B; Zhang, Qi

    2012-01-01

    Environmental trauma to human skin can lead to oxidative damage of proteins and affect their activity and structure. When methionine becomes oxidized to its sulfoxide form, methionine sulfoxide reductase A (MSRA) reduces it back to methionine. We report here the increase in MSRA in normal human epidermal keratinocytes (NHEK) after ultraviolet B (UVB) radiation, as well as the reduction in hydrogen peroxide levels in NHEK pre-treated with MSRA after exposure. Further, when NHEK were pre-treated with a non-cytotoxic pentapeptide containing methionine sulfoxide (metSO), MSRA expression increased by 18.2%. Additionally, when the media of skin models were supplemented with the metSO pentapeptide and then exposed to UVB, a 31.1% reduction in sunburn cells was evident. We conclude that the presence of MSRA or an externally applied peptide reduces oxidative damage in NHEK and skin models and that MSRA contributes to the protection of proteins against UVB-induced damage in skin.

  14. Triolein reduces MMP-1 upregulation in dermal fibroblasts generated by ROS production in UVB-irradiated keratinocytes.

    PubMed

    Leirós, Gustavo J; Kusinsky, Ana Gabriela; Balañá, María Eugenia; Hagelin, Karin

    2017-02-01

    Cytokine production and oxidative stress generated by ultraviolet radiation B (UVB) skin exposure are main factors of skin photoaging. Interleukin-6 (IL-6) produced by irradiated keratinocytes is proposed to have a role in metalloproteinases (MMPs) expression activation in dermal fibroblasts. We examined the effect of triolein treatment of UVB-irradiated keratinocytes on MMP1 (interstitial collagenase) expression response of dermal fibroblasts. We assayed UVB-irradiated keratinocytes soluble signals, mainly IL-6 and reactive oxygen species (ROS). IL-6 expression and ROS generation were assayed in UVB-irradiated keratinocytes. MMP1 mRNA expression response was assayed in fibroblasts grown in keratinocytes conditioned medium. We evaluated the effect of treating keratinocytes with triolein on IL-6 expression and ROS generation in keratinocytes, and MMP1 expression in fibroblasts. The irradiation of epidermal cells with sublethal UVB doses increased IL-6 expression and ROS generation. Conditioned culture medium collected from keratinocytes was used to culture dermal fibroblasts. MMP1 mRNA expression increase was observed in fibroblasts cultured in medium collected from UVB-irradiated keratinocytes. Triolein treatment reduced the IL-6 expression and ROS generation in keratinocytes and this effect was reflected in downregulation of MMP1 expression in fibroblasts. Triolein reduces both the expression of IL-6 and ROS generation in irradiated keratinocytes. It seems to exert an anti-inflammatory and anti-oxidative stress effect on irradiated keratinocytes that in turn reduces MMP1 expression in dermal fibroblasts. Collectively, these results indicate that triolein could act as a photoprotective agent. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  15. The role of commercial tanning beds and ultraviolet A light in the treatment of psoriasis.

    PubMed

    Su, Johanna; Pearce, Daniel J; Feldman, Steven R

    2005-01-01

    Phototherapy is an effective, safe psoriasis treatment administered via office-based units or home devices. There is controversy over the use of commercial tanning beds; ultraviolet B (UVB) has documented efficacy although commercial beds emit largely UVA. To determine the efficacy of UVA and the role of commercial tanning beds in treating psoriasis. A literature search of UVA and commercial tanning was performed. UVA can be effective for psoriasis, but achieving the high doses required may not be practical. Tanning beds do emit UVB although amounts are variable. Because of variability in UVA and UVB output in different tanning bulbs, it is difficult to predict response rates using commercial tanning beds. UVA can be used to treat psoriasis but may not be practical. Commercial tanning beds, emitting both UVA and UVB, have a role in treating psoriasis as an alternative to office-based therapy.

  16. The protective effect of Kaempferia parviflora extract on UVB-induced skin photoaging in hairless mice.

    PubMed

    Park, Ji-Eun; Pyun, Hee-Bong; Woo, Seon Wook; Jeong, Jae-Hong; Hwang, Jae-Kwan

    2014-10-01

    Chronic skin exposure to ultraviolet (UV) light increases reactive oxygen species (ROS) and stimulates the expression of matrix metalloproteinases (MMPs) through c-Jun and c-Fos activation. These signaling cascades induce the degradation of extracellular matrix (ECM) components, resulting in photoaging. This study evaluated the preventive effect of the ethanol extract of Kaempferia parviflora Wall. ex. Baker (black ginger) on UVB-induced photoaging in vivo. To investigate the antiphotoaging effect of K. parviflora extract (KPE), UVB-irradiated hairless mice administered oral doses of KPE (100 or 200 mg/kg/day) for 13 weeks. In comparison to the UVB control group, KPE significantly prevented wrinkle formation and the loss of collagen fibers with increased type I, III, and VII collagen genes (COL1A1, COL3A1, and COL7A1). The decrease in wrinkle formation was associated with a significant reduction in the UVB-induced expression of MMP-2, MMP-3, MMP-9, and MMP-13 via the suppression of c-Jun and c-Fos activity. KPE also increased the expression of catalase, which acts as an antioxidant enzyme in skin. In addition, expression of inflammatory mediators, such as nuclear factor kappa B (NF-κB), interleukin-1β (IL-1β), and cyclooxygenase-2 (COX-2), was significantly reduced by KPE treatment. The results show that oral administration of KPE significantly prevents UVB-induced photoaging in hairless mice, suggesting its potential as a natural antiphotoaging material. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Risk factors for osteoporosis and bone status in postmenopausal women with psoriasis treated with UVB therapy.

    PubMed

    Osmancevic, Amra; Landin-Wilhelmsen, Kerstin; Larkö, Olle; Mellström, Dan; Wennberg, Ann-Marie; Hulthén, Lena; Krogstad, Anne-Lene

    2008-01-01

    The aims of this study were to examine whether postmenopausal women with psoriasis who were exposed to regular ultraviolet light B (UVB) therapy had greater bone mineral density than women of similar age from the same region, and to estimate the influence of risk factors on bone status. A total of 35 randomly selected women, age (mean +/- SD) 69.3 +/- 6.29 years (age range 60-82 years), with active psoriasis, mean onset at 37.0 years (+/- 23.5 SD) were studied. The patients had been previously exposed to broadband or narrowband UVB. Age-matched, women (n = 2448) from Göteborg, examined at the Geriatric out-patient clinic during the years 2001 and 2002, were used as controls. Bone mineral density was examined by Dual-Energy X-ray Absorptiometry (Hologic Delphi A) at the hip and the lumbar spine. Medical history and lifestyle factors were assessed with a questionnaire. Postmenopausal women with psoriasis were found to have higher bone mineral density than age-matched controls. Higher body weight, physical activity and UVB exposure could explain this finding.

  18. Development of UV-B screening compounds in response to variation in ambient levels of UV-B radiation

    NASA Astrophysics Data System (ADS)

    Sullivan, Joe H.; Xu, Chenping; Gao, Wei; Slusser, James R.

    2005-08-01

    The induction of UV-B screening compounds in response to exposure to UV-B radiation is a commonly reported response and is generally considered to be an adaptive response of plants for protection from UVinduced damage. However, a number of questions remain to be answered including the importance of qualitative and localization differences among species in providing protection, indirect consequences of changes in leaf secondary chemistry on ecological processes and the dose response of metabolite accumulation. In this study we utilized UV monitoring data provided on site by the USDA UV-B Monitoring and Research Program to monitor the changes in UV-screening compounds in soybeans under a range of UV-B levels due to natural variation in ambient UV-B radiation. Soybean cultivars Essex, Clark and Clark-magenta, an isoline of Clark that produces minimal levels of flavonols, were grown beneath shelters covered either with polyester to block most UV-B radiation or teflon which is nearly transparent in the UV range and harvested at regular intervals for pigment and protein analysis. Daily levels of weighted UV-B varied from <1 to >7 kJ m-2. Increases in UV-screening compounds showed a positive dose response to UV-B radiation in all cultivars with Essex showing the steepest dose response. UV-A also induced screening compounds in all species The hydroxycinnimates of the magenta isoline showed a steep dose response to UV-A and a rather constant (non dose specific) but small additional increment in response to UV-B. The Clark isoline, which produced primarily the flavonol quercetin, showed a dose response to UV-B intermediate between that of Clark-magenta and Essex. All three cultivars show similar tolerance to UV-B in field conditions indicating that UV-induced pigment production is adequate to protect them from excessive UV-B damage.

  19. Study of the anticorrelations between ozone and UV-B radiation using linear and exponential fits in Southern Brazil

    NASA Astrophysics Data System (ADS)

    Guarnieri, R.; Padilha, L.; Guarnieri, F.; Echer, E.; Makita, K.; Pinheiro, D.; Schuch, A.; Boeira, L.; Schuch, N.

    Ultraviolet radiation type B (UV-B 280-315nm) is well known by its damage to life on Earth, including the possibility of causing skin cancer in humans. However, the atmo- spheric ozone has absorption bands in this spectral radiation, reducing its incidence on Earth's surface. Therefore, the ozone amount is one of the parameters, besides clouds, aerosols, solar zenith angles, altitude, albedo, that determine the UV-B radia- tion intensity reaching the Earth's surface. The total ozone column, in Dobson Units, determined by TOMS spectrometer on board of a NASA satellite, and UV-B radiation measurements obtained by a UV-B radiometer model MS-210W (Eko Instruments) were correlated. The measurements were obtained at the Observatório Espacial do Sul - Instituto Nacional de Pesquisas Espaciais (OES/CRSPE/INPE-MCT) coordinates: Lat. 29.44oS, Long. 53.82oW. The correlations were made using UV-B measurements in fixed solar zenith angles and only days with clear sky were selected in a period from July 1999 to December 2001. Moreover, the mathematic behavior of correlation in dif- ferent angles was observed, and correlation coefficients were determined by linear and first order exponential fits. In both fits, high correlation coefficients values were ob- tained, and the difference between linear and exponential fit can be considered small.

  20. Suppression of cucumber powdery mildew by UV-B is affected by background light quality

    USDA-ARS?s Scientific Manuscript database

    Brief (5-10 min) exposure to UV-B radiation (280-300 nm) suppressed powdery mildew (Podosphaera xanthii) on Cucumis sativus. The effect was enhanced by red light (600-660 nm), but offset by blue light (420-500 nm) and UV-A (300-420 nm). Compared to untreated controls, 2 h red light from specific lig...

  1. Protective Effect of Garlic on Cellular Senescence in UVB-Exposed HaCaT Human Keratinocytes.

    PubMed

    Kim, Hye Kyung

    2016-07-29

    Ultraviolet (UV) irradiation generates reactive oxygen species (ROS) in the cells, which induces the cellular senescence and photoaging. The present study investigated the protective effects of garlic on photo-damage and cellular senescence in UVB-exposed human keratinocytes, HaCaT cells. An in vitro cell free system was used to examine the scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals and nitric oxide (NO). The effect of garlic extract on ROS formation, MMP-1 protein and mRNA expressions, cytokines such as interleukin (IL)-1β and IL-6, senescence associated-β-galactosidase (SA-β-gal) activity, and silent information regulator T1 (SIRT1) activity were determined in UVB-irradiated HaCaT cells. Garlic exhibited strong DPPH radical and NO scavenging activity in cell free system exhibiting IC50 values of 2.50 mg/mL and 4.38 mg/mL, respectively. Garlic pretreatment attenuated the production of UVB-induced intracellular ROS. MMP-1 level, which has been known to be induced by ROS, was dramatically elevated by UVB irradiation, and UVB-induced MMP-1 mRNA and protein expressions were significantly reduced by garlic treatment (50 µg/mL) comparable to those of UV-unexposed control cells. UV-induced pro-inflammatory cytokine productions (IL-6 and IL-1β) were significantly inhibited by pretreatment with garlic in a dose-dependent manner. SA-β-gal activity, a classical biomarker of cellular senescence, and SIRT1 activity, which has attracted attention as an anti-aging factor in recent years, were ameliorated by garlic treatment in UV-irradiated HaCaT cells. The present study provides the first evidence of garlic inhibiting UVB-induced photoaging as a result of augmentation of cellular senescence in HaCaT human keratinocytes.

  2. Protective Effect of Garlic on Cellular Senescence in UVB-Exposed HaCaT Human Keratinocytes

    PubMed Central

    Kim, Hye Kyung

    2016-01-01

    Ultraviolet (UV) irradiation generates reactive oxygen species (ROS) in the cells, which induces the cellular senescence and photoaging. The present study investigated the protective effects of garlic on photo-damage and cellular senescence in UVB-exposed human keratinocytes, HaCaT cells. An in vitro cell free system was used to examine the scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals and nitric oxide (NO). The effect of garlic extract on ROS formation, MMP-1 protein and mRNA expressions, cytokines such as interleukin (IL)-1β and IL-6, senescence associated-β-galactosidase (SA-β-gal) activity, and silent information regulator T1 (SIRT1) activity were determined in UVB-irradiated HaCaT cells. Garlic exhibited strong DPPH radical and NO scavenging activity in cell free system exhibiting IC50 values of 2.50 mg/mL and 4.38 mg/mL, respectively. Garlic pretreatment attenuated the production of UVB-induced intracellular ROS. MMP-1 level, which has been known to be induced by ROS, was dramatically elevated by UVB irradiation, and UVB-induced MMP-1 mRNA and protein expressions were significantly reduced by garlic treatment (50 µg/mL) comparable to those of UV-unexposed control cells. UV-induced pro-inflammatory cytokine productions (IL-6 and IL-1β) were significantly inhibited by pretreatment with garlic in a dose-dependent manner. SA-β-gal activity, a classical biomarker of cellular senescence, and SIRT1 activity, which has attracted attention as an anti-aging factor in recent years, were ameliorated by garlic treatment in UV-irradiated HaCaT cells. The present study provides the first evidence of garlic inhibiting UVB-induced photoaging as a result of augmentation of cellular senescence in HaCaT human keratinocytes. PMID:27483310

  3. Leptin deficiency-induced obesity exacerbates ultraviolet B radiation-induced cyclooxygenase-2 expression and cell survival signals in ultraviolet B-irradiated mouse skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Som D.; Katiyar, Santosh K., E-mail: skatiyar@uab.ed; Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294

    Obesity has been implicated in several inflammatory diseases and in different types of cancer. Chronic inflammation induced by exposure to ultraviolet (UV) radiation has been implicated in various skin diseases, including melanoma and nonmelanoma skin cancers. As the relationship between obesity and susceptibility to UV radiation-caused inflammation is not clearly understood, we assessed the role of obesity on UVB-induced inflammation, and mediators of this inflammatory response, using the genetically obese (leptin-deficient) mouse model. Leptin-deficient obese (ob/ob) mice and wild-type counterparts (C57/BL6 mice) were exposed to UVB radiation (120 mJ/cm{sup 2}) on alternate days for 1 month. The mice were thenmore » euthanized and skin samples collected for analysis of biomarkers of inflammatory responses using immunohistochemistry, western blotting, ELISA and real-time PCR. Here, we report that the levels of inflammatory responses were higher in the UVB-exposed skin of the ob/ob obese mice than those in the UVB-exposed skin of the wild-type non-obese mice. The levels of UVB-induced cyclooxygenase-2 expression, prostaglandin-E{sub 2} production, proinflammatory cytokines (i.e., tumor necrosis factor-alpha, interleukin-1beta, interleukin-6), and proliferating cell nuclear antigen and cell survival signals (phosphatidylinositol-3-kinase and p-Akt-Ser{sup 473}) were higher in the skin of the ob/ob obese mice than the those in skin of their wild-type non-obese counterparts. Compared with the wild-type non-obese mice, the leptin-deficient obese mice also exhibited greater activation of NF-kappaB/p65 and fewer apoptotic cells in the UVB-irradiated skin. Our study suggests for the first time that obesity in mice is associated with greater susceptibility to UVB-induced inflammatory responses and, therefore, obesity may increase susceptibility to UVB-induced inflammation-associated skin diseases, including the risk of skin cancer.« less

  4. Naringin protects ultraviolet B-induced skin damage by regulating p38 MAPK signal pathway.

    PubMed

    Ren, Xiaolin; Shi, Yuling; Zhao, Di; Xu, Mengyu; Li, Xiaolong; Dang, Yongyan; Ye, Xiyun

    2016-05-01

    Naringin is a bioflavonoid and has free radical scavenging and anti-inflammatory properties. We examined the effects of naringin on skin after ultraviolet radiation B (UVB) irradiation and the signal pathways by in vitro and in vivo assay. HaCaT cells pretreated with naringin significantly inhibited UVB induced-cell apoptosis and production of intracellular reactive oxygen species (ROS). The expressions of interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and cyclooxygenase-2 (COX-2) in HaCaT cells pretreated with naringin were decreased compared with the only UVB group. Also, the activation of p38 induced by UVB in HaCaT cells was reversed by naringin treatments. The inhibition function of naringin on p38 activity was more obvious than JNK. In vivo, topical treatments with naringin prevented the increase of epidermal thickness, IL-6 production, cell apoptosis and the overexpression of COX-2 in BALB/c mice skin irradiated with UVB. Naringin treatment also markedly blocked the activation of p38 in response to UVB stimulation in the mouse skin. Naringin can effectively protect against UVB-induced keratinocyte apoptosis and skin damage by inhibiting ROS production, COX-2 overexpression and strong inflammation reactions. It seemed that naringin played its role against UVB-induced skin damage through inhibition of mitogen-activated protein kinase (MAPK)/p38 activation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Apigenin prevents ultraviolet-B radiation induced cyclobutane pyrimidine dimers formation in human dermal fibroblasts.

    PubMed

    Britto, S Mary; Shanthakumari, D; Agilan, B; Radhiga, T; Kanimozhi, G; Prasad, N Rajendra

    2017-09-01

    Exposure to solar ultraviolet-B (UVB) radiation leads to the formation of cyclobutane pyrimidine dimers (CPDs). We investigated the protective effect of apigenin against UVB-induced CPDs formation in human dermal fibroblasts cells (HDFa). For this purpose, HDFa cells were treated with apigenin (15μM) prior to UVB irradiation (20mJ/cm 2 ); DNA damage and subsequent molecular end points were observed. Exposure to UVB radiation increased significant CPDs formation in HDFa cells and the frequencies of CPDs were reduced by treatment with apigenin (15μM). UVB-induced CPDs downregulates the expression of nucleotide excision repair (NER) genes such as xeroderma pigmentosum complementation group C, B, G and F (XPC, XPB, XPG and XPF), transcription factor II human (TFIIH) and excision repair cross-complementation group 1 (ERCC1) in HDFa cells. Conversely, apigenin treatment restored UVB-induced loss of NER proteins in HDFa cells, which indicates its preventive effect against CPDs formation. Besides, single low dose UVB-exposure induced nuclear fragmentation, apoptotic frequency and apoptotic proteins expression (Bax and Caspase-3) have been prevented by the apigenin pretreatment. Furthermore, apigenin exhibits strong UV absorbance property and showed 10.08 SPF value. Thus, apigenin can protect skin cells against UVB-induced CPDs formation probably through its sunscreen effect. Hence, apigenin can be considered as an effective protective agent against UV induced skin damages. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Long non-coding RNA HULC promotes UVB-induced injury by up-regulation of BNIP3 in keratinocytes.

    PubMed

    Zhao, Li; Man, Yigang; Liu, Shumei

    2018-08-01

    Ultraviolet radiation b (UVB) is a common high-energy radiation which can lead to cell damage and even skin cancer. The mechanisms of lncRNAs in various diseases have attracted much attention of researchers. Herein, we investigated the effects and regulations of lncRNA highly up-regulated in liver cancer (HULC) on UVB-induced injury in HaCaT cells. The HaCaT cells were exposed to UVB at a wavelength of 280-320 nm. Cell viability was detected at different times (0, 3, 6, 12 and 24 h) after UVB treatment. Cells were transfected with sh-HULC, pc-HULC, sh-BNIP3 (Bcl-2 interacting protein 3) or pc-BNIP3, respectively. ZM 39,923 HCl was used as JAK/STAT(1/3) inhibitor. Cell viability and apoptosis were tested by trypan blue dye and flow cytometry analysis, respectively. The expression levels of autophagy-related factors were analyzed by Western blot assay. The expression changes of HULC and BNIP3 were measured by qRT-PCR. We found that UVB decreased cell viability, increased apoptosis and autophagy, and up-regulated the expression of HULC in HaCaT cells. Overexpression of HULC reduced cell viability, enhanced apoptosis and autophagy, and up-regulated BNIP3 expression by activating JAK/STAT(1/3) signaling pathway. Finally, BNIP3 suppression increased cell viability, reduced apoptosis and autophagy via the deactivation of mTOR signaling pathway. The results demonstrated that lncRNA HULC up-regulated BNIP3 and activated JAK/STAT(1/3) signaling pathway to accelerate UVB-induced cell damage in HaCaT cells. This study provides a possible target for the clinical treatment of UVB-induced keratinocyte injury. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. Paeonol extracted from Paeonia suffruticosa Andr. ameliorated UVB-induced skin photoaging via DLD/Nrf2/ARE and MAPK/AP-1 pathway.

    PubMed

    Sun, ZhengWang; Du, Juan; Hwang, Eunson; Yi, Tae-Hoo

    2018-05-10

    Paeonia suffruticosa Andr. (PS) has been used in traditional Chinese medicine for a long time. However, there are no studies that investigate the preventive effects of PS on ultraviolet B (UVB)-induced photoaging. In this study, paeonol (PA) was detected the main compound in PS root. In vitro, PS and PA significantly inhibited UVB-induced phosphorylation of mitogen-activated protein kinase and activator protein 1 in keratinocytes, which consequently led to degradation of procollagen type I. On the other hand, PS and PA increased NAD(P)H:quinone oxidoreductase 1 and heme oxygenase-1 expression, confirmed by greater nuclear accumulation of nuclear factor E2-releated factor 2 (Nrf2). Furthermore, this study proved that the endogenous antioxidant system Nrf2/antioxidant response element was regulated by dihydrolipoamide dehydrogenase, a tricarboxylic acid (TCA) cycle-associated protein whose level was decreased after UVB exposure. PS and PA promoted the production of dihydrolipoamide dehydrogenase, as well as the activation of Nrf2 and antioxidant response element, resulting in preventing procollagen type I ruined caused by UVB. In vivo, topical application of PS and PA attenuated UVB-induced matrix metalloproteinase-1 production and promoted procollagen type I in hairless mice. These results suggested PA a promising botanical in protecting skin from UVB-induced photoaging. Copyright © 2018 John Wiley & Sons, Ltd.

  8. Wedelolactone mitigates UVB induced oxidative stress, inflammation and early tumor promotion events in murine skin: plausible role of NFkB pathway.

    PubMed

    Ali, Farrah; Khan, Bilal Azhar; Sultana, Sarwat

    2016-09-05

    UVB (Ultra-violet B) radiation is one of the major etiological factors in various dermal pathology viz. dermatitis, actinic folliculitis, solar urticaria, psoriasis and cancer among many others. UVB causes toxic manifestation in tissues by inciting inflammatory and tumor promoting events. We have designed this study to assess the anti-inflammatory and anti-tumor promotion effect of Wedelolactone (WDL) a specific IKK inhibitor. Results indicate significant restoration of anti-oxidative enzymes due to WDL treatments. We also found that WDL was effective in mitigating inflammatory markers consisting of MPO (myeloperoxidase), Mast cells trafficking, Langerhans cells suppression and COX 2 expression up regulation due to UVB exposure. We also deduce that WDL presented a promising intervention in attenuating early tumor promotion events caused by UVB exposure as indicated by the results of ODC (Ornithine Decarboxylase), Thymidine assay, Vimentin and VEGF (Vascular-endothelial growth factor) expression. This study was able to provide substantial cues for the therapeutic ability of Wedelolactone against inflammatory and tumor promoting events in murine skin depicting plausible role of NFkB pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The polypeptide in Chlamys farreri can protect human dermal fibroblasts from ultraviolet B damage

    NASA Astrophysics Data System (ADS)

    Zhang, Yujiang; Zhan, Songmei; Cao, Pengli; Liu, Ning; Chen, Xuehong; Wang, Yuejun; Wang, Chunbo

    2005-09-01

    To investigate the effect of polypeptide from Chlamys farreri (PCF) on NHDF in vitro, we modeled oxidative damage on normal human dermal fibroblasts (NHDF) exposed to ultraviolet B (UVB). In this study, 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) were tested to measure cell viability. Enzymes including superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), catalase (CAT) and xanthine oxidase (XOD) were determined biochemically. Total antioxidative capacity (T-AOC) and anti-superoxide anion capacity (A-SAC) were also determined. Ultrastructure of fibroblasts was observed under transmission electron microscope. The results showed that: UVB (1.176×10-4 J/cm2) suppressed the growth of fibroblasts and the introduction of PCF (0.25% 1%) before UVB reduced the suppression in a concentration-dependent manner. PCF could enhance the activities of SOD, GSH-PX and T-AOC as well as A-SAC. Also PCF could inhibit XOD activity, while it did not affect CAT activity. Ultrastructure of fibroblasts were damaged after UVB irradiation, concentration-dependent PCF reduced the destructive effect of UVB on cells. These results indicated that PCF can protect human dermal fibroblasts from being harmed by UVB irradiation via its antioxidant proerty.

  10. UV-B measurements in India

    NASA Astrophysics Data System (ADS)

    Prasad, B. S. N.; Gayathri, H. B.; Muralikrishnan, N.

    1992-01-01

    Global UV-B flux (sum of direct and diffuse radiations) data at four wavelengths 280, 290, 300 and 310 nm are recorded at several locations in India as part of Indian Middle Atmosphere Programme (IMAP). The stations have been selected considering distinct geographic features and possible influence of atmospheric aerosols and particulates on the ground reaching UV-B flux. Mysore (12.6°N, 76.6°E) has been selected as a continental station largely free from any industrial pollution and large scale bio-mass burning. An examination of the ground reaching UV-B flux at Mysore shows a marked dirunal and seasonal asymmetry. This can be attributed to the seasonally varying atmospheric aerosols and particulates which influence the scattering of UV-B radiation. The available parameterization models are used to reproduce the experimental UV-B irradiance by varying the input parameters to the model. These results on the dirunal and seasonal variation of global UV-B flux from experiment and models are discussed in this paper.

  11. Phototherapy with Narrow-Band UVB in Adult Guttate Psoriasis: Results and Patient Assessment.

    PubMed

    Fernández-Guarino, Montserrat; Aboín-González, Sonsoles; Velázquez, Diana; Barchino, Lucia; Cano, Natividad; Lázaro, Pablo

    2016-01-01

    Acute guttate psoriasis (AGP) is a distinctive clinical entity with good response to treatment with narrow-band ultraviolet B (NB-UVB). To investigate the results of NB-UVB phototherapy in adult patients with adult guttate psoriasis. We carried out a prospective, open, and observational study. Patients over 18 years with more than 5% of body surface area affected were included. The PASI was assessed prior to and after treatment. The follow-up period was 18 months. After treatment, patients completed a simple questionnaire to assess their overall impression of the treatment. The 67 adult patients with AGP included in this study had an initial PASI of 8.55 (SD 5.03). Patients were treated with a mean of 19.9 sessions (SD 13.5) and mean doses of 14 mJ/cm2 (SD 10.5). Of the 67 patients, 52 achieved PASI90 with 96.15% of PASI reduction, and of these, 46 (88%) maintained PASI90 during the 18 months of follow-up. Patients were very satisfied with the treatment. AGP is a defined clinical entity with a variable course. Phototherapy with NB-UVB appears to be a very good option for treatment of AGP because of the good results obtained and patient satisfaction. © 2016 S. Karger AG, Basel.

  12. Ultraviolet B eye irradiation aggravates atopic dermatitis via adrenocorticotropic hormone and NLRP3 inflammasome in NC/Nga mice.

    PubMed

    Hiramoto, Keiichi; Yamate, Yurika; Yokoyama, Satoshi

    2018-05-01

    Ultraviolet (UV) B irradiation has been shown to improve atopic dermatitis (AD). However, the relationship between UVB eye irradiation and AD is not known. This issue was addressed using a mouse model of AD. The eyes of NC/Nga mice were irradiated with UVB at a dose of 1.0 kJ/m 2 using a 20SE sunlamp for the duration of the experimental period. AD symptoms deteriorated upon UVB eye irradiation. The levels of adrenocorticotropic hormone (ACTH) in the plasma and nucleotide-binding domain and leucine-rich-containing family, pyrin domain-containing (NLRP)3 and neutrophil markers in the skin were increased in UVB-irradiated mice. Treatment with inhibitors of ACTH, caspase-1, interleukin-18, and thymic stromal lymphopoietin (TSLP) partly reversed the effects of irradiation, with the greatest improvement observed upon ACTH inhibition. The NLRP3 inflammasome was implicated in the effects of UVB irradiation. UVB eye irradiation causes AD symptom deterioration, which is likely mediated by ACTH and the activity of the inflammasome. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. QUALITY ASSURANCE AND SITE MANAGEMENT FOR PRIMENET AND URBAN ULTRAVIOLET RADIATION RESEARCH MONITORING PROGRAM.

    EPA Science Inventory

    Because exposure to ultraviolet (UV) radiation is an ecosystem stressor and poses a human health risk, the National Exposure Research Laboratory (NERL) has undertaken a research program to measure the intensity of UV-B radiation at various locations throughout the U.S. In Septem...

  14. Topical treatment with pterostilbene, a natural phytoalexin, effectively protects hairless mice against UVB radiation-induced skin damage and carcinogenesis.

    PubMed

    Sirerol, J Antoni; Feddi, Fatima; Mena, Salvador; Rodriguez, María L; Sirera, Paula; Aupí, Miguel; Pérez, Salvador; Asensi, Miguel; Ortega, Angel; Estrela, José M

    2015-08-01

    The aim of our study was to investigate in the SKH-1 hairless mouse model the effect of pterostilbene (Pter), a natural dimethoxy analog of resveratrol (Resv), against procarcinogenic ultraviolet B radiation (UVB)-induced skin damage. Pter prevented acute UVB (360 mJ/cm(2))-induced increase in skin fold, thickness, and redness, as well as photoaging-associated skin wrinkling and hyperplasia. Pter, but not Resv, effectively prevented chronic UVB (180 mJ/cm(2), three doses/week for 6 months)-induced skin carcinogenesis (90% of Pter-treated mice did not develop skin carcinomas, whereas a large number of tumors were observed in all controls). This anticarcinogenic effect was associated with (a) maintenance of skin antioxidant defenses (i.e., glutathione (GSH) levels, catalase, superoxide, and GSH peroxidase activities) close to control values (untreated mice) and (b) an inhibition of UVB-induced oxidative damage (using as biomarkers 8-hydroxy-2'-deoxyguanosine, protein carbonyls, and isoprostanes). The molecular mechanism underlying the photoprotective effect elicited by Pter was further evaluated using HaCaT immortalized human keratinocytes and was shown to involve potential modulation of the Nrf2-dependent antioxidant response. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Blackberry extract inhibits UVB-induced oxidative damage and inflammation through MAP kinases and NF-κB signaling pathways in SKH-1 mice skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Divya, Sasidharan Padmaja; Wang, Xin; Pratheeshkumar, Poyil

    Extensive exposure of solar ultraviolet-B (UVB) radiation to skin induces oxidative stress and inflammation that play a crucial role in the induction of skin cancer. Photochemoprevention with natural products represents a simple but very effective strategy for the management of cutaneous neoplasia. In this study, we investigated whether blackberry extract (BBE) reduces chronic inflammatory responses induced by UVB irradiation in SKH-1 hairless mice skin. Mice were exposed to UVB radiation (100 mJ/cm{sup 2}) on alternate days for 10 weeks, and BBE (10% and 20%) was applied topically a day before UVB exposure. Our results show that BBE suppressed UVB-induced hyperplasiamore » and reduced infiltration of inflammatory cells in the SKH-1 hairless mice skin. BBE treatment reduced glutathione (GSH) depletion, lipid peroxidation (LPO), and myeloperoxidase (MPO) in mouse skin by chronic UVB exposure. BBE significantly decreased the level of pro-inflammatory cytokines IL-6 and TNF-α in UVB-exposed skin. Likewise, UVB-induced inflammatory responses were diminished by BBE as observed by a remarkable reduction in the levels of phosphorylated MAP Kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, BBE also reduced inflammatory mediators such as cyclooxygenase-2 (COX-2), prostaglandin E{sub 2} (PGE{sub 2}), and inducible nitric oxide synthase (iNOS) levels in UVB-exposed skin. Treatment with BBE inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mouse skin. Immunohistochemistry analysis revealed that topical application of BBE inhibited the expression of 8-oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG), cyclobutane pyrimidine dimers (CPD), proliferating cell nuclear antigen (PCNA), and cyclin D1 in UVB-exposed skin. Collectively, these data indicate that BBE protects from UVB-induced oxidative damage and inflammation by modulating MAP kinase and NF-κB signaling pathways. - Highlights: • Blackberry extract inhibits UVB-induced glutathione

  16. Research in extreme ultraviolet and far ultraviolet astronomy

    NASA Technical Reports Server (NTRS)

    Labov, S. E.

    1985-01-01

    Instruments designed to explore different aspects of far and extreme ultraviolet cosmic radiation were studied. The far ultraviolet imager (FUVI) was flown on the Aries sounding rocket. Its unique large format 75mm detector mapped out the far ultraviolet background radiation with a resolution of only a few arc minutes. Analysis of this data indicates to what extent the FUVI background is extra galactic in origin. A power spectrum of the spatial fluctuations will have direct consequences for galactic evolution.

  17. Photoprotective Potential of Penta-O-Galloyl-β-DGlucose by Targeting NF-κB and MAPK Signaling in UVB Radiation-Induced Human Dermal Fibroblasts and Mouse Skin.

    PubMed

    Kim, Byung-Hak; Choi, Mi Sun; Lee, Hyun Gyu; Lee, Song-Hee; Noh, Kum Hee; Kwon, Sunho; Jeong, Ae Jin; Lee, Haeri; Yi, Eun Hee; Park, Jung Youl; Lee, Jintae; Joo, Eun Young; Ye, Sang-Kyu

    2015-11-01

    Exposure of the skin to ultraviolet radiation can cause skin damage with various pathological changes including inflammation. In the present study, we identified the skin-protective activity of 1,2,3,4,6-penta-O-galloyl-β-D-glucose (pentagalloyl glucose, PGG) in ultraviolet B (UVB) radiation-induced human dermal fibroblasts and mouse skin. PGG exhibited antioxidant activity with regard to intracellular reactive oxygen species (ROS) generation as well as ROS and reactive nitrogen species (RNS) scavenging. Furthermore, PGG exhibited anti-inflammatory activity, inhibiting the activation of nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling, resulting in inhibition of the expression of pro-inflammatory mediators. Topical application of PGG followed by chronic exposure to UVB radiation in the dorsal skin of hairless mice resulted in a significant decrease in the progression of inflammatory skin damages, leading to inhibited activation of NF-κB signaling and expression of pro-inflammatory mediators. The present study demonstrated that PGG protected from skin damage induced by UVB radiation, and thus, may be a potential candidate for the prevention of environmental stimuli-induced inflammatory skin damage.

  18. Biological Mechanisms Underlying the Ultraviolet Radiation-Induced Formation of Skin Wrinkling and Sagging I: Reduced Skin Elasticity, Highly Associated with Enhanced Dermal Elastase Activity, Triggers Wrinkling and Sagging

    PubMed Central

    Imokawa, Genji; Ishida, Koichi

    2015-01-01

    The repetitive exposure of skin to ultraviolet B (UVB) preferentially elicits wrinkling while ultraviolet A (UVA) predominantly elicits sagging. In chronically UVB or UVA-exposed rat skin there is a similar tortuous deformation of elastic fibers together with decreased skin elasticity, whose magnitudes are greater in UVB-exposed skin than in UVA-exposed skin. Comparison of skin elasticity with the activity of matrix metalloproteinases (MMPs) in the dermis of ovariectomized rats after UVB or UVA irradiation demonstrates that skin elasticity is more significantly decreased in ovariectomized rats than in sham-operated rats, which is accompanied by a reciprocal increase in elastase activity but not in the activities of collagenases I or IV. Clinical studies using animal skin and human facial skin demonstrated that topical treatment with a specific inhibitor or an inhibitory extract of skin fibroblast-derived elastase distinctly attenuates UVB and sunlight-induced formation of wrinkling. Our results strongly indicated that the upregulated activity of skin fibroblast-derived elastase plays a pivotal role in wrinkling and/or sagging of the skin via the impairment of elastic fiber configuration and the subsequent loss of skin elasticity. PMID:25856675

  19. Response of Two Plant Species to Two Ultraviolet-B Radiation Regimes

    NASA Technical Reports Server (NTRS)

    Levy, Daniel L.; Skiles, J. W.; Peterson, David (Technical Monitor)

    1996-01-01

    The depleted stratospheric ozone layer has been directly linked to increased levels of ultraviolet radiation at the earth's surface. It is important to understand what effect this will have on plants. We tested the hypothesis that in response to increased UV-B radiation (280-320 man), soybean (Glycine max Merrill) and alfalfa (Mercado Saliva L.) would produce higher concentrations of flavonoids than plants screened from UV-B. Soybean and alfalfa plants were grown successively in a growth chamber that provided UV-B radiation intensities 45% above summer field levels. A wooden frame was used to suspend mylar-D film over one group of plants and mono-acetate film over another group. Mylar is opaque in the 280-316 nm range, and acetate absorbs most radiation from 280-290 nm and then reduces intensities in the 290-320 nm range by roughly 15%. Leaf chlorophyll concentration was determined with a Minolta SPAD-502 chlorophyll meter; the BRAD meter was calibrated with N,N- extractions. Flavonoids were extracted with an acidified methanol/water solution. Soybean grown under the acetate treatment showed 26% smaller internodal lengths and higher concentrations of flavonoids compared to plants grown under mylar. Significant results for alfalfa included 22% greater leaf flavonoid concentration under acetate, 14% greater leaf chlorophyll concentration under mylar, and 32% greater above-ground biomass under mylar. We found that increased UV-B radiation leads to increased production of UV-B absorbing compounds (i.e. flavonoids) in soybean and alfalfa leaves. This suggests that a protective mechanism in these plants is triggered by UV-B. In response, flavonoids are produced that absorb UV-B, and consequently decrease potentially damaging effects to the plants. In addition, we hypothesize that this flavonoid protection mechanism saturates at certain UV-B intensities.

  20. Plasma Rich in Growth Factors Inhibits Ultraviolet B Induced Photoageing of the Skin in Human Dermal Fibroblast Culture.

    PubMed

    Anitua, Eduardo; Pino, Ander; Orive, Gorka

    Ultraviolet irradiation is able to deeply penetrate into the dermis and alter fibroblast structure and function, leading to a degradation of the dermal extracellular matrix. The regenerative effect of plasma rich in growth factors (PRGF) on skin ageing was investigated using UVB photo-stressed human dermal fibroblasts as an in vitro culture model. PRGF was assessed over the main indicative features of ultraviolet B irradiation, including ROS formation, cell viability and death detection, apoptosis/ necrosis analysis and biosynthetic activity measurement. Four different UV irradiation protocols were tested in order to analyze the beneficial effects of PRGF. Ultraviolet irradiation exhibited a dose dependent cytotoxicity and dose of 400mJ/cm2 was selected for subsequent experiments. PRGF increased the cell viability and decreased the cell death comparing to the non-treated group. The apoptosis and necrosis were significantly lower in PRGF treated fibroblasts. ROS production after UV irradiation was significantly reduced in the presence of PRGF. Procollagen type I, hyaluronic acid and TIMP-1 levels were higher in the when treated with PRGF. This preliminary in vitro study suggests that PRGF is able to prevent UVB derived photooxidative stress and to diminish the cell damage caused by ultraviolet irradiation.

  1. Increased 5-hydroxymethylcytosine and Ten-eleven Translocation Protein Expression in Ultraviolet B-irradiated HaCaT Cells

    PubMed Central

    Wang, Dan; Huang, Jin-Hua; Zeng, Qing-Hai; Gu, Can; Ding, Shu; Lu, Jian-Yun; Chen, Jing; Yang, Sheng-Bo

    2017-01-01

    Background: DNA hydroxymethylation refers to a chemical modification process in which 5-methylcytosine (5mC) is catalyzed to 5- hydroxymethylcytosine (5hmC) by ten-eleven translocation (TET) family proteins. Recent studies have revealed that aberrant TETs expression or 5hmC level may play important roles in the occurrence and development of various pathological and physiological processes including cancer and aging. This study aimed to explore the relation between aberrant DNA hydroxymethylation with skin photoaging and to investigate the levels of TETs, 5mC, and 5hmC expression 24 h after 40 mJ/cm2 and 80 mJ/cm2 doses of ultraviolet B (UVB) irradiation to HaCaT cells. Methods: To explore whether aberrant DNA hydroxymethylation is also related to skin photoaging, 40 mJ/cm2 and 80 mJ/cm2 doses of UVB were chosen to treat keratinocytes (HaCaT cells). After 24 h of UVB irradiation, 5mC and 5hmC levels were determined by immunohistochemistry (IHC) and immunofluorescence (IF), and at the same time, the expression levels of matrix metalloproteinase 1 (MMP-1) and TETs were assessed by reverse transcription-polymerase chain reaction or Western blot analysis. Results: After 40 mJ/cm2 and 80 mJ/cm2 doses of UVB exposure, both IHC and IF results showed that 5hmC levels increased significantly, while the 5mC levels did not exhibit significant changes in HaCaT cells, compared with HaCat cells without UVB exposure. Moreover, compared with HaCat cells without UVB exposure, the levels of TET1, TET2, and TET3 mRNA and protein expression were significantly upregulated (mRNA: P = 0.0022 and 0.0043 for TET1; all P < 0.0001 for TET2; all P = 0.0006 for TET3; protein: P = 0.0012 and 0.0006 for TET1; all P = 0.0022 for TET2; and all P = 0.0002 for TET3), and the levels of MMP-1 mRNA expression increased dose dependently in 40 mJ/cm2 and 80 mJ/cm2 UVB-irradiated groups. Conclusion: UVB radiation could cause increased 5hmC and TET expression, which might become a novel biomarker in UVB

  2. The Protective Effect of Baicalin against UVB Irradiation Induced Photoaging: An In Vitro and In Vivo Study

    PubMed Central

    Yin, Zhi-qiang; Hu, Yan-yan; Xu, Yang; Wu, Di; Permatasari, Felicia; Luo, Dan; Zhou, Bing-rong

    2014-01-01

    Objective This study was aimed to evaluate the anti-photoaging effects of baicalin on Ultraviolet B (UVB)-induced photoaging in the dorsal skin of hairless mice and premature senescence in human dermal fibroblasts. Methods We established in vivo and in vitro photoaging models by repeated exposures to UVB irradiation. By HE staining, masson staining, immunohistostaing and real-time RT-PCR, we analyzed epidermal thickness, collagen expression and the mRNA and protein levels of type I collagen, type III collagen, interstitial collagenase (MMP-1 and MMP-3) in UVB exposed dorsal mice skin. The aging condition in human dermal fibroblasts was determined by senescence-associated β-galactosidase (SA-β-gal) staining. Cell viability was determined using the Cell Counting Kit-8 (CCK-8). The G1 phase cell growth arrest was analyzed by flow cytometry. The senescence-related protein levels of p16INK-4a, p21WAF-1, and p53 and protein levels of phosphorylated histone H2AX were estimated by Western blotting. Results Topically application of baicalin treatment reduced UVB-induced epidermal thickening of mouse skin and also result in an increase in the production of collagen I and III, and a decrease in the expression of MMP-1 and MMP-3. Compared with the UVB-irradiated group, we found that the irradiated fibroblasts additionally treated with baicalin demonstrated a decrease in the expression of SA-β-gal, a increase in the cell viability, a decrease in the G1 phase cell proportion, a downregulation in the level of senescence-associated and γ-H2AX proteins. However, Baicalin had no difference in the normal fibroblasts without UVB irradiation and long-term Baicalin incubation of UVB-SIPS fibroblasts gave no effects on the cell proliferation. Conclusions Taken together, these results suggest that baicalin significantly antagonizes photoaging induced by UVB in vivo and in vitro, indicating the potential of baicalin application for anti-photoaging treatment. PMID:24949843

  3. The protective effect of baicalin against UVB irradiation induced photoaging: an in vitro and in vivo study.

    PubMed

    Zhang, Jia-an; Yin, Zhi; Ma, Li-wen; Yin, Zhi-qiang; Hu, Yan-yan; Xu, Yang; Wu, Di; Permatasari, Felicia; Luo, Dan; Zhou, Bing-rong

    2014-01-01

    This study was aimed to evaluate the anti-photoaging effects of baicalin on Ultraviolet B (UVB)-induced photoaging in the dorsal skin of hairless mice and premature senescence in human dermal fibroblasts. We established in vivo and in vitro photoaging models by repeated exposures to UVB irradiation. By HE staining, masson staining, immunohistostaing and real-time RT-PCR, we analyzed epidermal thickness, collagen expression and the mRNA and protein levels of type I collagen, type III collagen, interstitial collagenase (MMP-1 and MMP-3) in UVB exposed dorsal mice skin. The aging condition in human dermal fibroblasts was determined by senescence-associated β-galactosidase (SA-β-gal) staining. Cell viability was determined using the Cell Counting Kit-8 (CCK-8). The G1 phase cell growth arrest was analyzed by flow cytometry. The senescence-related protein levels of p16INK-4a, p21WAF-1, and p53 and protein levels of phosphorylated histone H2AX were estimated by Western blotting. Topically application of baicalin treatment reduced UVB-induced epidermal thickening of mouse skin and also result in an increase in the production of collagen I and III, and a decrease in the expression of MMP-1 and MMP-3. Compared with the UVB-irradiated group, we found that the irradiated fibroblasts additionally treated with baicalin demonstrated a decrease in the expression of SA-β-gal, a increase in the cell viability, a decrease in the G1 phase cell proportion, a downregulation in the level of senescence-associated and γ-H2AX proteins. However, Baicalin had no difference in the normal fibroblasts without UVB irradiation and long-term Baicalin incubation of UVB-SIPS fibroblasts gave no effects on the cell proliferation. Taken together, these results suggest that baicalin significantly antagonizes photoaging induced by UVB in vivo and in vitro, indicating the potential of baicalin application for anti-photoaging treatment.

  4. Detrimental Effects of UV-B Radiation in a Xeroderma Pigmentosum-Variant Cell Line

    PubMed Central

    Herman, Kimberly N.; Toffton, Shannon; McCulloch, Scott D.

    2014-01-01

    DNA polymerase η (pol η), of the Y-family, is well known for its in vitro DNA lesion bypass ability. The most well-characterized lesion bypassed by this polymerase is the cyclobutane pyrimidine dimer (CPD) caused by ultraviolet (UV) light. Historically, cellular and whole-animal models for this area of research have been conducted using UV-C (λ = 100–280 nm) owing to its ability to generate large quantities of CPDs and also the more structurally distorting 6-4 photoproduct. Although UV-C is useful as a laboratory tool, exposure to these wavelengths is generally very low owing to being filtered by stratospheric ozone. We are interested in the more environmentally relevant wavelength range of UV-B (λ = 280–315 nm) for its role in causing cytotoxicity and mutagenesis. We evaluated these endpoints in both a normal human fibroblast control line and a Xeroderma pigmentosum variant cell line in which the POLH gene contains a truncating point mutation, leading to a nonfunctional polymerase. We demonstrate that UV-B has similar but less striking effects compared to UV-C in both its cytotoxic and its mutagenic effects. Analysis of the mutation spectra after a single dose of UV-B shows that a majority of mutations can be attributed to mutagenic bypass of dipyrimidine sequences. However, we do note additional types of mutations with UV-B that are not previously reported after UV-C exposure. We speculate that these differences are attributed to a change in the spectra of photoproduct lesions rather than other lesions caused by oxidative stress. PMID:24549972

  5. Distribution patterns of lentic-breeding amphibians in relation to ultraviolet radiation exposure in western North America

    USGS Publications Warehouse

    Adams, Michael J.; Hossack, B.R.; Knapp, R.A.; Corn, P.S.; Diamond, S.A.; Trenham, P.C.; Fagre, D.B.

    2005-01-01

    An increase in ultraviolet-B (UV-B) radiation has been posited to be a potential factor in the decline of some amphibian population. This hypothesis has received support from laboratory and field experiments showing that current levels of UV-B can cause embryo mortality in some species, but little research has addressed whether UV-B is influencing the distribution of amphibian populations. We compared patterns of amphibian presence to site-specific estimates of UV-B dose at 683 ponds and lakes in Glacier, Olympic, and Sequoia–Kings Canyon National Parks. All three parks are located in western North America, a region with a concentration of documented amphibian declines. Site-specific daily UV-B dose was estimated using modeled and field-collected data to incorporate the effects of elevation, landscape, and water-column dissolved organic carbon. Of the eight species we examined (Ambystoma gracile, Ambystoma macrodactylum, Bufo boreas, Pseudacris regilla, Rana cascadae, Rana leuteiventris, Rana muscosa, Taricha granulosa), two species (T. granulosa and A. macrodactylum) had quadratic relationships with UV-B that could have resulted from negative UV-B effects. Both species were most likely to occur at moderate UV-B levels. Ambystoma macrodactylum showed this pattern only in Glacier National Park. Occurrence of A. macrodactylum increased as UV-B increased in Olympic National Park despite UV-B levels similar to those recorded in Glacier. We also found marginal support for a negative association with UV-B for P. regilla in one of the two parks where it occurred. We did not find evidence of a negative UV-B effect for any other species. Much more work is still needed to determine whether UV-B, either alone or in concert with other factors, is causing widespread population losses in amphibians.

  6. Association of amphibians with attenuation of ultraviolet-b radiation in montane ponds.

    PubMed

    Adams, Michael J; Schindler, Daniel E; Bury, Bruce R

    2001-08-01

    Ambient ultraviolet-b (UV-B) radiation (280-320 nm) has increased at north-temperate latitudes in the last two decades. UV-B can be detrimental to amphibians, and amphibians have shown declines in some areas during this same period. We documented the distribution of amphibians and salmonids in 42 remote, subalpine and alpine ponds in Olympic National Park, Washington, United States. We inferred relative exposure of amphibian habitats to UV-B by estimating the transmission of 305- and 320-nm radiation in pond water. We found breeding Ambystoma gracile, A. macrodactylum and Rana cascadae at 33%, 31%, and 45% of the study sites, respectively. Most R. cascadae bred in fishless shallow ponds with relatively low transmission of UV-B. The relationship with UV-B exposure remained marginally significant even after the presence of fish was included in the model. At 50 cm water depth, there was a 55% reduction in incident 305-nm radiation at sites where breeding populations of R. cascadae were detected compared to other sites. We did not detect associations between UV-B transmission and A. gracile or A. macrodactylum. Our field surveys do not provide evidence for decline of R. cascadae in Olympic National Park as has been documented in Northern California, but are consistent with the hypothesis that the spatial distribution of R. cascadae breeding sites is influenced by exposure to UV-B. Substrate or pond depth could also be related to the distribution of R. cascadae in Olympic National Park.

  7. Association of amphibians with attenuation of ultraviolet-b radiation in montane ponds

    USGS Publications Warehouse

    Adams, Michael J.; Schindler, Daniel E.; Bury, R. Bruce

    2001-01-01

    Ambient ultraviolet-b (UV-B) radiation (280–320 nm) has increased at north-temperate latitudes in the last two decades. UV-B can be detrimental to amphibians, and amphibians have shown declines in some areas during this same period. We documented the distribution of amphibians and salmonids in 42 remote, subalpine and alpine ponds in Olympic National Park, Washington, United States. We inferred relative exposure of amphibian habitats to UV-B by estimating the transmission of 305- and 320-nm radiation in pond water. We found breeding Ambystoma gracile, A. macrodactylum and Rana cascadae at 33%, 31%, and 45% of the study sites, respectively. Most R. cascadae bred in fishless shallow ponds with relatively low transmission of UV-B. The relationship with UV-B exposure remained marginally significant even after the presence of fish was included in the model. At 50 cm water depth, there was a 55% reduction in incident 305-nm radiation at sites where breeding populations of R. cascadae were detected compared to other sites. We did not detect associations between UV-B transmission and A. gracile or A. macrodactylum. Our field surveys do not provide evidence for decline of R. cascadae in Olympic National Park as has been documented in Northern California, but are consistent with the hypothesis that the spatial distribution of R. cascadae breeding sites is influenced by exposure to UV-B. Substrate or pond depth could also be related to the distribution of R. cascadae in Olympic National Park.

  8. 71-Mbit/s ultraviolet-B LED communication link based on 8-QAM-OFDM modulation.

    PubMed

    Sun, Xiaobin; Zhang, Zhenyu; Chaaban, Anas; Ng, Tien Khee; Shen, Chao; Chen, Rui; Yan, Jianchang; Sun, Haiding; Li, Xiaohang; Wang, Junxi; Li, Jinmin; Alouini, Mohamed-Slim; Ooi, Boon S

    2017-09-18

    A demonstration of ultraviolet-B (UVB) communication link is implemented utilizing quadrature amplitude modulation (QAM) orthogonal frequency-division multiplexing (OFDM). The demonstration is based on a 294-nm UVB-light-emitting-diode (UVB-LED) with a full-width at half-maximum (FWHM) of 9 nm and light output power of 190 μW, at 7 V, with a special silica gel lens on top of it. A -3-dB bandwidth of 29 MHz was measured and a high-speed near-solar-blind communication link with a data rate of 71 Mbit/s was achieved using 8-QAM-OFDM at perfect alignment. 23.6 Mbit/s using 2-QAM-OFDM when the angle subtended by the pointing directions of the UVB-LED and photodetector (PD) is 12 degrees, thus establishing a diffuse-line-of-sight (LOS) link. The measured bit-error rate (BER) of 2.8 ×10 -4 and 2.4 ×10 -4 , respectively, are well below the forward error correction (FEC) criterion of 3.8 ×10 -3 . The demonstrated high data-rate OFDM-based UVB communication link paves the way for realizing high-speed non-line-of-sight free-space optical communications.

  9. ER signaling is activated to protect human HaCaT keratinocytes from ER stress induced by environmental doses of UVB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mera, Kentaro; Kawahara, Ko-ichi; Tada, Ko-ichi

    Proteins are folded properly in the endoplasmic reticulum (ER). Various stress such as hypoxia, ischemia and starvation interfere with the ER function, causing ER stress, which is defined by the accumulation of unfolded protein (UP) in the ER. ER stress is prevented by the UP response (UPR) and ER-associated degradation (ERAD). These signaling pathways are activated by three major ER molecules, ATF6, IRE-1 and PERK. Using HaCaT cells, we investigated ER signaling in human keratinocytes irradiated by environmental doses of ultraviolet B (UVB). The expression of Ero1-L{alpha}, an upstream signaling molecule of ER stress, decreased at 1-4 h after 10more » mJ/cm{sup 2} irradiation, indicating that the environmental dose of UVB-induced ER stress in HaCaT cells, without growth retardation. Furthermore, expression of intact ATF6 was decreased and it was translocated to the nuclei. The expression of XBP-1, a downstream molecule of IRE-1, which is an ER chaperone whose expression is regulated by XBP-1, and UP ubiquitination were induced by 10 mJ/cm{sup 2} UVB at 4 h. PERK, which regulates apoptosis, was not phosphorylated. Our results demonstrate that UVB irradiation generates UP in HaCaT cells and that the UPR and ERAD systems are activated to protect cells from UVB-induced ER stress. This is the first report to show ER signaling in UVB-irradiated keratinocytes.« less

  10. Pterostilbene protects against UVB-induced photo-damage through a phosphatidylinositol-3-kinase-dependent Nrf2/ARE pathway in human keratinocytes.

    PubMed

    Li, Huaping; Jiang, Na; Liang, Bihua; Liu, Qing; Zhang, Erting; Peng, Liqian; Deng, Huiyan; Li, Runxiang; Li, Zhenjie; Zhu, Huilan

    2017-11-01

    Ultraviolet B (UVB) irradiation is the initial etiological factor for various skin disorders, including erythema, sunburn, photoaging, and photocarcinogenesis. Pterostilbene (Pter) displayed remarkable antioxidant, anti-inflammatory, and anticarcinogenic activities. This study aimed to investigate the effective mechanism of Pter against UVB-induced photodamage in immortalized human keratinocytes. Human keratinocytes were pretreated with Pter (5 and 10 μM) for 24 h prior to UVB irradiation (300 mJ/cm 2 ). Harvested cells were analyzed by MTT, DCFH-DA, comet, western blotting, luciferase promoter, small interference RNA transfection, and quantitative real-time polymerase chain reaction assay. Pter significantly attenuated UVB-induced cell death and reactive oxygen species (ROS) generation, and effectively increased nuclear translocation of NF-E2-related factor-2 (Nrf2), expression of Nrf2-dependent antioxidant enzymes, and DNA repair activity. Moreover, the protective effects of Pter were abolished by small interference RNA-mediated Nrf2 silencing. Furthermore, Pter was also found to induce the phosphorylation of Nrf2 and the known phosphatidylinositol-3-kinase (PI3K) phosphorylated kinase, Akt. The specific inhibitor of PI3K, LY294002, successfully abrogated Pter-induced Nrf2 phosphorylation, activation of Nrf2-antioxidant response element pathway, ROS scavenging ability, and DNA repair activity. The present study indicated that Pter effectively protected against UVB-induced photodamage by increasing endogenous defense mechanisms, scavenging UVB-induced ROS, and aiding in damaged DNA repair through a PI3K-dependent activation of Nrf2/ARE pathway.

  11. Gallic acid regulates skin photoaging in UVB-exposed fibroblast and hairless mice.

    PubMed

    Hwang, Eunson; Park, Sang-Yong; Lee, Hyun Ji; Lee, Tae Youp; Sun, Zheng-Wang; Yi, Tae Hoo

    2014-12-01

    Ultraviolet (UV) radiation is the primary factor in skin photoaging, which is characterized by wrinkle formation, dryness, and thickening. The mechanisms underlying skin photoaging are closely associated with degradation of collagen via upregulation of matrix metalloproteinase (MMP) activity, which is induced by reactive oxygen species (ROS) production. Gallic acid (GA), a phenolic compound, possesses a variety of biological activities including antioxidant and antiinflammatory activities. We investigated the protective effects of GA against photoaging caused by UVB irradiation using normal human dermal fibroblasts (NHDFs) in vitro and hairless mice in vivo. The production levels of ROS, interlukin-6, and MMP-1 were significantly suppressed, and type I procollagen expression was stimulated in UVB-irradiated and GA-treated NHDFs. GA treatment inhibited the activity of transcription factor activation protein 1. The effects of GA following topical application and dietary administration were examined by measuring wrinkle formation, histological modification, protein expression, and physiological changes such as stratum corneum hydration, transepidermal water loss, and erythema index. We found that GA decreased dryness, skin thickness, and wrinkle formation via negative modulation of MMP-1 secretion and positive regulation of elastin, type I procollagen, and transforming growth factor-β1. Our data indicate that GA is a potential candidate for the prevention of UVB-induced premature skin aging. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Protective effects of grape stem extract against UVB-induced damage in C57BL mice skin.

    PubMed

    Che, Denis Nchang; Xie, Guang Hua; Cho, Byoung Ok; Shin, Jae Young; Kang, Hyun Ju; Jang, Seon Il

    2017-08-01

    Humans have become exposed to another form of a trait which is ultraviolet B (UVB) radiation reaching the earth's surface. This has become a major source of oxidative stress that ultimately leads to inflammation, DNA damage, photoaging and pigmentation disorders etc. Although several studies have shown the photo-protective role of different grape parts like the fruits and seeds, little or no data demonstrating the in vivo photo-protective role of grape stem, which is the most discarded part of the grape are available. We evaluated the protective influence of grape stem extract against UVB-induced oxidative damage in C57BL mice characterized by epidermal hyperplasia, pigmentation, collagen degradation and inflammation. Grape stem extract was administered topically 1week before UVB irradiation (120mJ/cm 2 ) and continued until the termination of the experiment. A group of non-irradiated mice and a group of irradiated mice topically administered with propylene were used as a negative and positive control. Epidermal thickness, pigmentation, erythema, mast cell and neutrophil infiltration, collagen degradation and COX-2, Nrf2, and HO-1 expressions were evaluated. Grape stem extract markedly recovered skin damage induced by the UVB radiation through the prevention of epidermal hyperplasia, pigmentation, erythema, mast cell and neutrophil infiltrations, collagen degradation and COX-2, Nrf2, and HO-1 expressions. Our study demonstrated for the first time in C57BL mice that grape stem extract reduces UVB-induced oxidative damage and hence can play a protective role in skin photo-damage. Copyright © 2017. Published by Elsevier B.V.

  13. [Effect of lanthanum on the flavonoids contents and antioxidant capacity in soybean seedling under ultraviolet-B stress].

    PubMed

    Peng, Qi; Zhou, Qing

    2008-07-01

    Dynamic state of antioxidant capacity of flavonoids was investigated for a further demonstration of alleviating the damage of the UV-B radiation in the La-treated soybean seedlings under UV-B stress. Using hydroponics culture, the effects of lanthanum on the contents of flavonoids and its ability of antioxidant under elevated ultraviolet-B radiation (280-320 nm) was studied in this paper. The results showed flavonoids contents in Soybean seedlings during the stress and convalescent period increase firstly and then reduce. Membrane permeability and MDA contents increase firstly (1st-5th day) and then fall (6th to 11th day). A similar change of flavonoids contents and clearance of flavonoids scavenging O2*- and *OH in soybean seedlings occur; the flavonoids contents La(III) + UV-B > UV-B > La(III) > CK, La(III) + T1 > La(III) + T2. Plasma membrane permeability and MAD contents UV-B> La(III) + UV-B > CK > La(III), La(III) + T2 > La(III) + T1. The ability of Scavenging activities of free radical (O2*-, *OH) La(III) + UV-B > UV-B > La(III) > CK. It suggested that the regulative effect of La(III) on flavonoids, improved the metabolism of ROS, diminished the concentration of MDA and maintained normal Plasma membrane permeability, and that its protective effect against low UV-B radiation was superior to that of high UV-B radiation. To conclude, the defensive effect of La(III) on soybean seedlings under UV-B stress was carried out on the layer of defense system.

  14. Damage repair effect of He-Ne laser on wheat exposed to enhanced ultraviolet-B radiation.

    PubMed

    Yang, Liyan; Han, Rong; Sun, Yi

    2012-08-01

    We explored the use of He-Ne laser on alleviating the effects of ultraviolet-B (UV-B) light on winter wheat development. Triticum aestivum L. cv. Linyuan 077038 seeds were irradiated with either UV-B (10.08 kJ m(-2) d(-1)) (enhanced UV-B) or a combination of UV-B light and the He-Ne laser (5.43 mW mm(-2)). Plants also were exposed to the He-Ne laser alone. Our results showed that enhanced UV-B produced negative effects on seed germination and seedling development. Germination rate and shoot growth decreased compared with the control. Root development was inhibited, and root length was decreased. Chlorophyll content and expression of peroxidase (POD) isozymes and their activity decreased. Seedling height and shoot biomass dropped significantly compared to the control. Implementing the He-Ne laser partially alleviated the injury of enhanced UV-B radiation, because germination rate and shoot growth were enhanced together with root development. Chlorophyll content and POD expression and activity increased. Seedling height and shoot biomass were increased. Furthermore, the use of the He-Ne laser alone showed a favorable effect on seedling growth compared with the control. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  15. The imprints of the high light and UV-B stresses in Oryza sativa L. 'Kanchana' seedlings are differentially modulated.

    PubMed

    Faseela, Parammal; Puthur, Jos T

    2018-01-01

    High light and ultraviolet-B radiation (UV-B) are generally considered to have negative impact on photosynthesis and plant growth. The present study evaluates the tolerance potential of three cultivars of Oryza sativa L. (Kanchana, Mattatriveni and Harsha) seedlings towards high light and UV-B stress on the basis of photosynthetic pigment degradation, chlorophyll a fluorescence parameters and rate of lipid peroxidation, expressed by malondialdehyde content. Surprisingly, it was revealed that Kanchana was the most sensitive cultivar towards high light and at the same time it was the most tolerant cultivar towards UV-B stress. This contrasting feature of Kanchana towards high light and UV-B tolerance was further studied by analyzing photosystem (PS) I and II activity, mitochondrial activity, chlorophyll a fluorescence transient, enzymatic and non-enzymatic antioxidant defense system. Due to the occurrence of more PS I and PSII damages, the inhibition of photochemical efficiency and emission of dissipated energy as heat or fluorescence per PSII reaction center was higher upon high light exposure than UV-B treatments in rice seedlings of Kanchana. The mitochondrial activity was also found to be drastically altered upon high light as compared to UV-B treatments. The UV-B induced accumulation of non-enzymatic antioxidants (proline, total phenolics, sugar and ascorbate) and enzymatic antioxidants (ascorbate peroxidase, guaiacol peroxidase, superoxide dismutase and glutathione reductase) in rice seedlings than those subjected to high light exposure afforded more efficient protection against UV-B radiation in rice seedlings. Our results proved that high tolerance of Kanchana towards UV-B than high light treatments, correlated linearly with the protected photosynthetic and mitochondrial machinery which was provided by upregulation of antioxidants particularly by total phenolics, ascorbate and ascorbate peroxidase in rice seedlings. Data presented in this study conclusively

  16. Attenuation of UV-B exposure-induced inflammation by abalone hypobranchial gland and gill extracts

    PubMed Central

    Kuanpradit, Chitraporn; Jaisin, Yamaratee; Jungudomjaroen, Sumon; Mitu, Shahida Akter; Puttikamonkul, Srisombat; Sobhon, Prasert; Cummins, Scott F.

    2017-01-01

    Exposure to solar ultraviolet B (UV-B) is a known causative factor for many skin complications such as wrinkles, black spots, shedding and inflammation. Within the wavelengths 280–320 nm, UV-B can penetrate to the epidermal level. This investigation aimed to test whether extracts from the tropical abalone [Haliotis asinina (H. asinina)] mucus-secreting tissues, the hypobranchial gland (HBG) and gills, were able to attenuate the inflammatory process, using the human keratinocyte HaCaT cell line. Cytotoxicity of abalone tissue extracts was determined using an AlamarBlue viability assay. Results showed that HaCaT cells could survive when incubated in crude HBG and gill extracts at concentrations between <11.8 and <16.9 μg/ml, respectively. Subsequently, cell viability was compared between cultured HaCaT cells exposed to serial doses of UV-B from 1 to 11 (x10) mJ/cm2 and containing 4 different concentrations of abalone extract from both the HBG and gill (0, 0.1, 2.5, 5 μg/ml). A significant increase in cell viability was observed (P<0.001) following treatment with 2.5 and 5 μg/ml extract. Without extract, cell viability was significantly reduced upon exposure to UV-B at 4 mJ/cm2. Three morphological changes were observed in HaCaT cells following UV-B exposure, including i) condensation of cytoplasm; ii) shrunken cells and plasma membrane bubbling; and iii) condensation of chromatin material. A calcein AM-propidium iodide live-dead assay showed that cells could survive cytoplasmic condensation, yet cell death occurred when damage also included membrane bubbling and chromatin changes. Western blot analysis of HaCaT cell COX-2, p38, phospho-p38, SPK/JNK and phospho-SPK/JNK following exposure to >2.5 μg/ml extract showed a significant decrease in intensity for COX-2, phospho-p38 and phospho-SPK/JNK. The present study demonstrated that abalone extracts from the HGB and gill can attenuate inflammatory proteins triggered by UV-B. Hence, the contents of abalone extract

  17. Plant extracts and natural compounds used against UVB-induced photoaging.

    PubMed

    Cavinato, Maria; Waltenberger, Birgit; Baraldo, Giorgia; Grade, Carla V C; Stuppner, Hermann; Jansen-Dürr, Pidder

    2017-08-01

    Skin is continuously exposed to a variety of environmental stresses, including ultraviolet (UV) radiation. UVB is an inherent component of sunlight that crosses the epidermis and reaches the upper dermis, leading to increased oxidative stress, activation of inflammatory response and accumulation of DNA damage among other effects. The increase in UVB radiation on earth due to the destruction of stratospheric ozone poses a major environmental threat to the skin, increasing the risk of damage with long-term consequences, such as photoaging and photocarcinogenesis. Extracts from plants and natural compounds have been historically used in traditional medicine in the form of teas and ointments but the effect of most of these compounds has yet to be verified. Regarding the increasing concern of the population with issues related to quality of life and appearance, the cosmetic market for anti-aging and photoprotective products based on natural compounds is continuously growing, and there is increasing requirement of expansion on research in this field. In this review we summarized the most current and relevant information concerning plant extracts and natural compounds that are able to protect or mitigate the deleterious effects caused by photoaging in different experimental models.

  18. Djulis (Chenopodium formosanum Koidz.) Water Extract and Its Bioactive Components Ameliorate Dermal Damage in UVB-Irradiated Skin Models.

    PubMed

    Hong, Yong-Han; Huang, Ya-Ling; Liu, Yao-Cheng; Tsai, Pi-Jen

    2016-01-01

    Dermal photoaging is a condition of skin suffering inappropriate ultraviolet (UV) exposure and exerts inflammation, tissue alterations, redness, swelling, and uncomfortable feelings. Djulis ( Chenopodium formosanum Koidz.) is a cereal food and its antioxidant and pigment constituents may provide skin protection from photoaging, but it still lacks proved experiments. In this study, protective effects of djulis extract (CFE) on UVB-irradiated skin were explored. The results showed that HaCaT cells with 150  μ g/mL CFE treatment had higher survival and less production of interleukin- (IL-) 6, matrix metalloprotease- (MMP-) 1, and reactive oxygen species (ROS) in UVB-irradiated conditions. Subsequently, in animal studies, mice supplemented with CFE (100 mg/kg BW) were under UVB irradiation and had thinner epidermis and lower IL-6 levels in skin layer. These data demonstrate that bioactive compounds possessing the potency of antiphotoaging exist in CFE. Following that, we found rutin and chlorogenic acid (10-100  μ M) could significantly increase cell viability and decrease the production of IL-6 in UVB models. Additionally, djulis pigment-betanin has no effect of increasing cell viability in this study. Our findings suggest CFE can protect skin against UV-induced damage and this protection is mainly from contributions of rutin and chlorogenic acid.

  19. Djulis (Chenopodium formosanum Koidz.) Water Extract and Its Bioactive Components Ameliorate Dermal Damage in UVB-Irradiated Skin Models

    PubMed Central

    Huang, Ya-Ling; Liu, Yao-Cheng; Tsai, Pi-Jen

    2016-01-01

    Dermal photoaging is a condition of skin suffering inappropriate ultraviolet (UV) exposure and exerts inflammation, tissue alterations, redness, swelling, and uncomfortable feelings. Djulis (Chenopodium formosanum Koidz.) is a cereal food and its antioxidant and pigment constituents may provide skin protection from photoaging, but it still lacks proved experiments. In this study, protective effects of djulis extract (CFE) on UVB-irradiated skin were explored. The results showed that HaCaT cells with 150 μg/mL CFE treatment had higher survival and less production of interleukin- (IL-) 6, matrix metalloprotease- (MMP-) 1, and reactive oxygen species (ROS) in UVB-irradiated conditions. Subsequently, in animal studies, mice supplemented with CFE (100 mg/kg BW) were under UVB irradiation and had thinner epidermis and lower IL-6 levels in skin layer. These data demonstrate that bioactive compounds possessing the potency of antiphotoaging exist in CFE. Following that, we found rutin and chlorogenic acid (10–100 μM) could significantly increase cell viability and decrease the production of IL-6 in UVB models. Additionally, djulis pigment-betanin has no effect of increasing cell viability in this study. Our findings suggest CFE can protect skin against UV-induced damage and this protection is mainly from contributions of rutin and chlorogenic acid. PMID:27847821

  20. The effects of ultraviolet-B radiation on freshwater invertebrates: Experiments with a solar simulator

    USGS Publications Warehouse

    Hurtubise, R.D.; Havel, J.E.; Little, E.E.

    1998-01-01

    There is concern that decreases in stratospheric ozone will lead to hazardous levels of ultraviolet-B (UV-B) radiation at the Earth's surface. In clear water, UV-B may penetrate to significant depths. The purpose of the current study was to compare the sensitivity of freshwater invertebrates to UV-B. We used a solar simulator, calibrated to match local ambient solar radiation, to expose five species of freshwater invertebrates to enhanced levels of UV-B radiation. UV-B measurements in a eutrophic pond revealed that 10% of the irradiance penetrated to 30-cm depth and 1% to 57-cm depth. The irradiance at the upper 5-20 cm was comparable to levels used in the simulator. Median lethal dose (LD50) values were determined for the cladocerans Ceriodaphnia reticulata, Scapholeberis kingii (two induced color morphs), and Daphnia magna; the ostracod Cyprinotus incongruens; and the amphipod Hyalella azteca. Among the species, 96-h LD50 estimates were quite variable, ranging from 4.2 to 84.0 ??W cm-2. These estimates indicated S. kingii to be highly sensitive and H. azteca, C. reticulata, and D. magna to be moderately sensitive, whereas the ostracod C. incongruens was very tolerant to UV-B radiation. Overall, this study suggests that, in shallow ponds without physical refuges, UV-B radiation would have the strongest effects upon cladocerans and amphipods occurring in the water column, whereas ostracods would be better protected.

  1. The protective effects of fucosterol against skin damage in UVB-irradiated human dermal fibroblasts.

    PubMed

    Hwang, Eunson; Park, Sang-Yong; Sun, Zheng-wang; Shin, Heon-Sub; Lee, Don-Gil; Yi, Tae Hoo

    2014-06-01

    Exposure to ultraviolet (UV) light causes matrix metalloproteinase (MMP) overexpression and extracellular matrix depletion, leading to skin photoaging. The activation of MMP is related to increased interlukin-6 (IL-6) and type I procollagen production, which is regulated by transforming growth factor-β1 (TGF-β1). Activator protein-1 (AP-1) activation induces MMP-1 production and reduces type I procollagen secretion. Fucosterol, which is extracted and purified from the brown algae Hizikia fusiformis, is a phytosterol. We assessed the effects of fucosterol on photodamage and investigated its molecular mechanism of action in UVB-irradiated normal human dermal fibroblasts by using enzyme-linked immunosorbent assay, Western blot analysis, and reverse transcription-polymerase chain reaction. Our results showed that fucosterol significantly decreased the UVB-induced expression of MMP-1, IL-6, p-c-Jun, and p-c-Fos. Additionally, fucosterol markedly increased the UVB-induced production of type I procollagen and TGF-β1. Our results indicate that fucosterol regulates MMP-1 and type I procollagen expression by modulating AP-1 and TGF-β1 signaling and that MMP-1 activation is correlated with IL-6. These data suggest that fucosterol is a promising botanical agent to protect against skin photodamage.

  2. Effect of Microalgal Extracts of Tetraselmis suecica against UVB-Induced Photoaging in Human Skin Fibroblasts.

    PubMed

    Jo, Wol Soon; Yang, Kwang Mo; Park, Hee Sung; Kim, Gi Yong; Nam, Byung Hyouk; Jeong, Min Ho; Choi, Yoo Jin

    2012-12-01

    Exposure of cells to ultraviolet B (UVB) radiation can induce production of free radicals and reactive oxygen species (ROS), which damage cellular components. In addition, these agents can stimulate the expression of matrix metalloproteinase (MMP) and decrease collagen synthesis in human skin cells. In this study, we examined the anti-photoaging effects of extracts of Tetraselmis suecica (W-TS). W-TS showed the strongest scavenging activity against 2,2-difenyl-1-picrylhydrazyl (DPPH) and peroxyl radicals, followed by superoxide anions from the xanthine/xanthine oxidase system. We observed that the levels of both intracellular ROS and lipid peroxidation significantly increased in UVB-irradiated human skin fibroblast cells. Furthermore, the activities of enzymatic antioxidants (e.g., superoxide dismutase) and the levels of non-enzymatic antioxidants (e.g., glutathione) significantly decreased in cells. However, W-TS pretreatment, at the maximum tested concentration, significantly decreased intracellular ROS and malondialdehyde (MDA) levels, and increased superoxide dismutase and glutathione levels in the cells. At this same concentration, W-TS did not show cytotoxicity. Type 1 procollagen and MMP-1 released were quantified using RT-PCR techniques. The results showed that W-TS protected type 1 procollagen against UVBinduced depletion in fibroblast cells in a dose-dependent manner via inhibition of UVB-induced MMP-1. Taken together, the results of the study suggest that W-TS effectively inhibits UVB-induced photoaging in skin fibroblasts by its strong anti-oxidant ability.

  3. Effect of Microalgal Extracts of Tetraselmis suecica against UVB-Induced Photoaging in Human Skin Fibroblasts

    PubMed Central

    Jo, Wol Soon; Yang, Kwang Mo; Park, Hee Sung; Kim, Gi Yong; Nam, Byung Hyouk

    2012-01-01

    Exposure of cells to ultraviolet B (UVB) radiation can induce production of free radicals and reactive oxygen species (ROS), which damage cellular components. In addition, these agents can stimulate the expression of matrix metalloproteinase (MMP) and decrease collagen synthesis in human skin cells. In this study, we examined the anti-photoaging effects of extracts of Tetraselmis suecica (W-TS). W-TS showed the strongest scavenging activity against 2,2-difenyl-1-picrylhydrazyl (DPPH) and peroxyl radicals, followed by superoxide anions from the xanthine/xanthine oxidase system. We observed that the levels of both intracellular ROS and lipid peroxidation significantly increased in UVB-irradiated human skin fibroblast cells. Furthermore, the activities of enzymatic antioxidants (e.g., superoxide dismutase) and the levels of non-enzymatic antioxidants (e.g., glutathione) significantly decreased in cells. However, W-TS pretreatment, at the maximum tested concentration, significantly decreased intracellular ROS and malondialdehyde (MDA) levels, and increased superoxide dismutase and glutathione levels in the cells. At this same concentration, W-TS did not show cytotoxicity. Type 1 procollagen and MMP-1 released were quantified using RT-PCR techniques. The results showed that W-TS protected type 1 procollagen against UVBinduced depletion in fibroblast cells in a dose-dependent manner via inhibition of UVB-induced MMP-1. Taken together, the results of the study suggest that W-TS effectively inhibits UVB-induced photoaging in skin fibroblasts by its strong anti-oxidant ability. PMID:24278616

  4. Ultraviolet Phototherapy Management of Moderate-to-Severe Plaque Psoriasis

    PubMed Central

    2009-01-01

    immunosuppressant agents known as biologicals, which more specifically target the immune defects of the disease, is usually reserved for patients with contraindications and those failing or unresponsive to treatments with traditional immunosuppressants or phototherapy. Treatment plans are based on a long-term approach to managing the disease, patient’s expectations, individual responses and risk of complications. The treatment goals are several fold but primarily to: 1) improve physical signs and secondary psychological effects, 2) reduce inflammation and control skin shedding, 3) control physical signs as long as possible, and to 4) avoid factors that can aggravate the condition. Approaches are generally individualized because of the variable presentation, quality of life implications, co-existent medical conditions, and triggering factors (e.g. stress, infections and medications). Individual responses and commitments to therapy also present possible limitations. Phototherapy Ultraviolet phototherapy units have been licensed since February 1993 as a class 2 device in Canada. Units are available as hand held devices, hand and foot devices, full-body panel, and booth styles for institutional and home use. Units are also available with a range of ultraviolet A, broad and narrow band ultraviolet B (BB-UVB and NB-UVB) lamps. After establishing appropriate ultraviolet doses, three-times weekly treatment schedules for 20 to 25 treatments are generally needed to control symptoms. Evidence-Based Analysis Methods The literature search strategy employed keywords and subject headings to capture the concepts of 1) phototherapy and 2) psoriasis. The search involved runs in the following databases: Ovid MEDLINE (1996 to March Week 3 2009), OVID MEDLINE In-Process and Other Non-Indexed Citations, EMBASE (1980 to 2009 Week 13), the Wiley Cochrane Library, and the Centre for Reviews and Dissemination/International Agency for Health Technology Assessment. Parallel search strategies were developed

  5. EFFECTS OF ULTRAVIOLET-B LIGHT AND POLYAROMATIC HYDROCARBON EXPOSURE ON SEA URCHIN DEVELOPMENT AND BACTERIAL BIOLUMINESCENCE

    EPA Science Inventory

    Polycyclic aromatic hydrocarbons (PAHs) are relatively common contaminants of the Gulf of Mexico and may be activated to more toxic metabolites by ultraviolet-B (UV-B) light. A marine bacterial bioassay system (Vibrio fischeri) which focused on the reduction of luciferase-mediate...

  6. UV-B inhibition of hypocotyl growth in etiolated Arabidopsis thaliana seedlings is a consequence of cell cycle arrest initiated by photodimer accumulation

    PubMed Central

    Biever, Jessica J.; Brinkman, Doug; Gardner, Gary

    2014-01-01

    Ultraviolet (UV) radiation is an important constituent of sunlight that determines plant morphology and growth. It induces photomorphogenic responses but also causes damage to DNA. Arabidopsis mutants of the endonucleases that function in nucleotide excision repair, xpf-3 and uvr1-1, showed hypersensitivity to UV-B (280–320nm) in terms of inhibition of hypocotyl growth. SOG1 is a transcription factor that functions in the DNA damage signalling response after γ-irradiation. xpf mutants that carry the sog1-1 mutation showed hypocotyl growth inhibition after UV-B irradiation similar to the wild type. A DNA replication inhibitor, hydroxyurea (HU), also inhibited hypocotyl growth in etiolated seedlings, but xpf-3 was not hypersensitive to HU. UV-B irradiation induced accumulation of the G2/M-specific cell cycle reporter construct CYCB1;1-GUS in wild-type Arabidopsis seedlings that was consistent with the expected accumulation of photodimers and coincided with the time course of hypocotyl growth inhibition after UV-B treatment. Etiolated mutants of UVR8, a recently described UV-B photoreceptor gene, irradiated with UV-B showed inhibition of hypocotyl growth that was not different from that of the wild type, but they lacked UV-B-specific expression of chalcone synthase (CHS), as expected from previous reports. CHS expression after UV-B irradiation was not different in xpf-3 compared with the wild type, nor was it altered after HU treatment. These results suggest that hypocotyl growth inhibition by UV-B light in etiolated Arabidopsis seedlings, a photomorphogenic response, is dictated by signals originating from UV-B absorption by DNA that lead to cell cycle arrest. This process occurs distinct from UVR8 and its signalling pathway responsible for CHS induction. PMID:24591052

  7. Effects of ultraviolet-B exposure of Arabidopsis thaliana on herbivory by two crucifer-feeding insects (Lepidoptera)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant-Petersson, J.; Renwick, J.A.A.

    1996-02-01

    Larvae of Pieris rapae (L.) (Lepidoptera: Pieridae) and Trichoplusia ni (Huebner) (Lepidoptera: Noctuidae) were fed foliage from Arabidopsis thaliana (L.) Heynh. plants that had received a high dose of ultraviolet-B (UV-B) or from control plants. Treatments were compared using the Student independent t-test. P. rapae larvae consumed less of the foliage exposed to UV-B than control foliage. This difference as significant in older but not younger larvae, and the older P. rapae larvae fed foliage exposed to UV-B weighed significantly less. For T. ni, however, consumption and larval weights were approximately equal for UV-exposed and control foliage. No significant differencesmore » in growth rates per unit consumption on UV-exposed versus control foliage were found for either species. Chemical analysis showed that flavonoid levels increased in response to UV-B. Results suggested that UV-inducible flavonoids may act as feeding deterrents to P. rapae but not to T. ni. 56 refs., 6 figs.« less

  8. Ultraviolet-B radiation modifies the quantitative and qualitative profile of flavonoids and amino acids in grape berries.

    PubMed

    Martínez-Lüscher, J; Torres, N; Hilbert, G; Richard, T; Sánchez-Díaz, M; Delrot, S; Aguirreolea, J; Pascual, I; Gomès, E

    2014-06-01

    Grapevine cv. Tempranillo fruit-bearing cuttings were exposed to supplemental ultraviolet-B (UV-B) radiation under controlled conditions, in order to study its effect on grape traits, ripening, amino acids and flavonoid profile. The plants were exposed to two doses of UV-B biologically effective (5.98 and 9.66kJm(-2)d(-1)), applied either from fruit set to ripeness or from the onset of veraison to ripeness. A 0kJm(-2)d(-1) treatment was included as a control. UV-B did not significantly modify grape berry size, but increased the relative mass of berry skin. Time to reach ripeness was not affected by UV-B, which may explain the lack of changes in technological maturity. The concentration of must extractable anthocyanins, colour density and skin flavonols were enhanced by UV-B, especially in plants exposed from fruit set. The quantitative and qualitative profile of grape skin flavonols were modified by UV-B radiation. Monosubstituted flavonols relative abundance increased proportionally to the accumulated UV-B doses. Furthermore, trisubstituted forms, which where predominant in non-exposed berries, were less abundant as UV-B exposure increased. Although total free amino acid content remained unaffected by the treatments, the increased levels of gamma-aminobutyric acid (GABA), as well as the decrease in threonine, isoleucine, methionine, serine and glycine, revealed a potential influence of UV-B on the GABA-mediated signalling and amino acid metabolism. UV-B had an overall positive impact on grape berry composition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Cyanidin-3-Glucoside inhibits UVB-induced oxidative damage and inflammation by regulating MAP kinase and NF-κB signalling pathways in SKH-1 hairless mice skin

    PubMed Central

    Pratheeshkumar, Poyil; Son, Young-Ok; Wang, Xin; Divya, Sasidharan Padmaja; Joseph, Binoy; Hitron, John Andrew; Wang, Lei; Kim, Donghern; Yin, Yuanqin; Roy, Ram Vinod; Lu, Jian; Zhang, Zhuo; Wang, Yitao; Shi, Xianglin

    2015-01-01

    Skin cancer is one of the most commonly diagnosed cancers in the United States. Exposure to ultraviolet-B (UVB) radiation induces inflammation and photocarcinogenesis in mammalian skin. Cyanidin-3-Glucoside (C3G), a member of the anthocyanin family, is present in various vegetables and fruits especially in edible berries, and displays potent antioxidant and anticarcinogenic properties. In this study, we have assessed the in vivo effects of C3G on UVB irradiation induced chronic inflammatory responses in SKH-1 hairless mice, a well-established model for UVB-induced skin carcinogenesis. Here, we show that C3G inhibited UVB-induced skin damage and inflammation in SKH-1 hairless mice. Our results indicate that C3G inhibited glutathione depletion, lipid peroxidation and myeloperoxidation in mouse skin by chronic UVB exposure. C3G significantly decreased the production of UVB-induced pro-inflammatory cytokines, such as IL-6 and TNF-α, associated with cutaneous inflammation. Likewise, UVB-induced inflammatory responses were diminished by C3G as observed by a remarkable reduction in the levels of phosphorylated MAP Kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, C3G also decreased UVB-induced cyclooxygenase-2 (COX-2), PGE2 and iNOS levels, which are well-known key mediators of inflammation and cancer. Treatment with C3G inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mice skin. Immunofluorescence assay revealed that topical application of C3G inhibited the expression of 8-hydroxy-2′-deoxyguanosine, proliferating cell nuclear antigen, and cyclin D1 in chronic UVB exposed mouse skin. Collectively, these data indicates that C3G can provide substantial protection against the adverse effects of UVB radiation by modulating UVB-induced MAP kinase and NF-κB signaling pathways. PMID:25062774

  10. Effects of UV-B radiation on leaf hair traits of invasive plants-Combining historical herbarium records with novel remote sensing data.

    PubMed

    Václavík, Tomáš; Beckmann, Michael; Cord, Anna F; Bindewald, Anja M

    2017-01-01

    Ultraviolet-B (UV-B) radiation is a key but under-researched environmental factor that initiates diverse responses in plants, potentially affecting their distribution. To date, only a few macroecological studies have examined adaptations of plant species to different levels of UV-B. Here, we combined herbarium specimens of Hieracium pilosella L. and Echium vulgare L. with a novel UV-B dataset to examine differences in leaf hair traits between the plants' native and alien ranges. We analysed scans of 336 herbarium specimens using standardized measurements of leaf area, hair density (both species) and hair length (H. pilosella only). While accounting for other bioclimatic variables (i.e. temperature, precipitation) and effects of herbivory, we examined whether UV-B exposure explains the variability and geographical distribution of these traits in the native (Northern Hemisphere) vs. the alien (Southern Hemisphere) range. UV-B explained the largest proportion of the variability and geographical distribution of hair length in H. pilosella (relative influence 67.1%), and hair density in E. vulgare (66.2%). Corresponding with higher UV-B, foliar hairs were 25% longer for H. pilosella and 25% denser for E. vulgare in records from the Southern as compared to those from the Northern Hemisphere. However, focusing on each hemisphere separately or controlling for its effect in a regression analysis, we found no apparent influence of UV-B radiation on hair traits. Thus, our findings did not confirm previous experimental studies which suggested that foliar hairs may respond to higher UV-B intensities, presumably offering protection against detrimental levels of radiation. We cannot rule out UV-B radiation as a possible driver because UV-B radiation was the only considered variable that differed substantially between the hemispheres, while bioclimatic conditions (e.g. temperature, precipitation) and other considered variables (herbivory damage, collection date) were at similar

  11. Vulnerability and behavioral response to ultraviolet radiation in the components of a foliar mite prey-predator system.

    PubMed

    Tachi, Fuyuki; Osakabe, Masahiro

    2012-12-01

    Ambient ultraviolet-B (UVB) radiation impacts plant-dwelling arthropods including herbivorous and predatory mites. However, the effects of UVB on prey-predator systems, such as that between the herbivorous spider mite and predatory phytoseiid mite, are poorly understood. A comparative study was conducted to determine the vulnerability and behavioral responses of these mites to ultraviolet (UV) radiation. First, we analyzed dose-response (cumulative irradiance-mortality) curves for the eggs of phytoseiid mites (Neoseiulus californicus, Neoseiulus womersleyi, and Phytoseiulus persimilis) and the spider mite (Tetranychus urticae) to UVB radiation from a UV lamp. This indicated that the phytoseiid mites were more vulnerable than the spider mite, although P. persimilis was slightly more tolerant than the other two phytoseiid mites. Second, we compared the avoidance behavior of adult female N. californicus and two spider mite species (T. urticae, a lower leaf surface user; Panonychus citri, an upper leaf surface user) in response to solar UV and visible light. N. californicus actively avoided both types of radiation, whereas P. citri showed only minimal avoidance behavior. T. urticae actively avoided UV as well as N. californicus but exhibited a slow response to visible light as well as P. citri. Such variation in vulnerability and avoidance behavior accounts for differences in the species adaptations to solar UVB radiation. This may be the primary factor determining habitat use among these mites on host plant leaves, subsequently affecting accessibility by predators and also intraguild competition.

  12. Ultraviolet protective properties of branded and unbranded sunglasses available in the Indian market in UV phototherapy chambers.

    PubMed

    Dongre, Atul M; Pai, Gitanjali G; Khopkar, Uday S

    2007-01-01

    Patients receiving phototherapy for various dermatoses are at increased risk of eye damage due to ultraviolet (UV) rays. They are prescribed UV protective sunglasses by dermatologists but their exact protecting effects are not known. To study the ultraviolet protective properties of branded and unbranded UV protective sunglasses available in the Indian market, in UV phototherapy chambers. Sixteen different branded and unbranded UV protective sunglasses were collected from two opticians in Mumbai. Baseline irradiance of the UV chamber was calculated by exposing the photosensitive probe of UV photometer in the chamber. Then, the photosensitive probe of the UV photometer was covered with the UV protective glass to be studied and irradiance was noted. Such readings were taken for each of the UV protective sunglasses. The percentage reduction in the UV rays' penetration of different UV protective sunglasses was calculated. Thirteen sunglasses provided > 80% reduction in UVA rays penetration, of which four were branded (out of the four branded studied) and nine were unbranded (out of the 12 unbranded studied). More than 70% reduction in UVB penetration was provided by 12 sunglasses, which included 10 unbranded and two branded sunglasses. All branded sunglasses provided good protection against UVA penetration, but UVB protection provided by both branded and unbranded sunglasses was not satisfactory. A few unbranded sunglasses had poor efficacy for UVA and UVB spectra; one branded glass had poor efficacy for protection against the UVB spectrum. The efficacy of sunglasses used for phototherapy should be assessed before use.

  13. Vulnerability and behavioral response to ultraviolet radiation in the components of a foliar mite prey-predator system

    NASA Astrophysics Data System (ADS)

    Tachi, Fuyuki; Osakabe, Masahiro

    2012-12-01

    Ambient ultraviolet-B (UVB) radiation impacts plant-dwelling arthropods including herbivorous and predatory mites. However, the effects of UVB on prey-predator systems, such as that between the herbivorous spider mite and predatory phytoseiid mite, are poorly understood. A comparative study was conducted to determine the vulnerability and behavioral responses of these mites to ultraviolet (UV) radiation. First, we analyzed dose-response (cumulative irradiance-mortality) curves for the eggs of phytoseiid mites ( Neoseiulus californicus, Neoseiulus womersleyi, and Phytoseiulus persimilis) and the spider mite ( Tetranychus urticae) to UVB radiation from a UV lamp. This indicated that the phytoseiid mites were more vulnerable than the spider mite, although P. persimilis was slightly more tolerant than the other two phytoseiid mites. Second, we compared the avoidance behavior of adult female N. californicus and two spider mite species ( T. urticae, a lower leaf surface user; Panonychus citri, an upper leaf surface user) in response to solar UV and visible light. N. californicus actively avoided both types of radiation, whereas P. citri showed only minimal avoidance behavior. T. urticae actively avoided UV as well as N. californicus but exhibited a slow response to visible light as well as P. citri. Such variation in vulnerability and avoidance behavior accounts for differences in the species adaptations to solar UVB radiation. This may be the primary factor determining habitat use among these mites on host plant leaves, subsequently affecting accessibility by predators and also intraguild competition.

  14. Protective effect of Cornus walteri Wangerin leaf against UVB irradiation induced photoaging in human reconstituted skin.

    PubMed

    Park, Hyun-Chul; Jung, Taek Kyu; Kim, Mi Jin; Yoon, Kyung-Sup

    2016-12-04

    Cornus walteri Wangerin has been used in oriental traditional medicine for the treatment of antidiarrheal and inflammation. The efficacy of Cornus walteri Wangerin on skin anti-photoaging was investigated. Hydrolyzed Cornus walteri Wangerin leaf was tested for the anti-photoaging effects against ultraviolet B (UVB)-induced matrix metalloproteinase (MMP)-1, pro-inflammatory cytokines using human reconstituted skin (KeraSkin™-FT) and also tested for elastase activity in vitro. The MMP-1 and pro-inflammatory cytokine levels of the extract were evaluated by enzyme-linked immunosorbent assay (ELISA). The extract of hydrolyzed Cornus walteri Wangerin leaf (CWE) had the elastase inhibitory activity (IC 50 : 0.457mg/mL). CWE inhibited MMP-1 expression up to 61% in comparison with the control group which was not treated using CWE, but exposed to UVB. CWE also showed an inhibitory effect on releasing pro-inflammatory cytokines (IL-6 and IL-8) in KeraSkin™-FT (30% and 57% inhibition at dose of 50μg/mL, respectively). CWE is a promising anti-photoaging agent for the treatment of UVB-induced skin. Copyright © 2016. Published by Elsevier Ireland Ltd.

  15. Solar Ultraviolet-B Radiation Affects Seedling Emergence, DNA Integrity, Plant Morphology, Growth Rate, and Attractiveness to Herbivore Insects in Datura ferox.

    PubMed Central

    Ballare, C. L.; Scopel, A. L.; Stapleton, A. E.; Yanovsky, M. J.

    1996-01-01

    To study functional relationships between the effects of solar ultraviolet-B radiation (UV-B) on different aspects of the physiology of a wild plant, we carried out exclusion experiments in the field with the summer annual Datura ferox L. Solar UV-B incident over Buenos Aires reduced daytime seedling emergence, inhibited stem elongation and leaf expansion, and tended to reduce biomass accumulation during early growth. However, UV-B had no effect on calculated net assimilation rate. Using a monoclonal antibody specific to the cyclobutane-pyrimidine dimer (CPD), we found that plants receiving full sunlight had more CPDs per unit of DNA than plants shielded from solar UV-B, but the positive correlation between UV-B and CPD burden tended to level off at high (near solar) UV-B levels. At our field site, Datura plants were consumed by leaf beetles (Coleoptera), and the proportion of plants attacked by insects declined with the amount of UV-B received during growth. Field experiments showed that plant exposure to solar UV-B reduced the likelihood of leaf beetle attack by one-half. Our results highlight the complexities associated with scaling plant responses to solar UV-B, because they show: (a) a lack of correspondence between UV-B effects on net assimilation rate and whole-plant growth rate, (b) nonlinear UV-B dose-response curves, and (c) UV-B effects of plant attractiveness to natural herbivores. PMID:12226382

  16. The deceptive nature of UVA tanning versus the modest protective effects of UVB tanning on human skin.

    PubMed

    Miyamura, Yoshinori; Coelho, Sergio G; Schlenz, Kathrin; Batzer, Jan; Smuda, Christoph; Choi, Wonseon; Brenner, Michaela; Passeron, Thierry; Zhang, Guofeng; Kolbe, Ludger; Wolber, Rainer; Hearing, Vincent J

    2011-02-01

    The relationship between human skin pigmentation and protection from ultraviolet (UV) radiation is an important element underlying differences in skin carcinogenesis rates. The association between UV damage and the risk of skin cancer is clear, yet a strategic balance in exposure to UV needs to be met. Dark skin is protected from UV-induced DNA damage significantly more than light skin owing to the constitutively higher pigmentation, but an as yet unresolved and important question is what photoprotective benefit, if any, is afforded by facultative pigmentation (i.e. a tan induced by UV exposure). To address that and to compare the effects of various wavelengths of UV, we repetitively exposed human skin to suberythemal doses of UVA and/or UVB over 2 weeks after which a challenge dose of UVA and UVB was given. Although visual skin pigmentation (tanning) elicited by different UV exposure protocols was similar, the melanin content and UV-protective effects against DNA damage in UVB-tanned skin (but not in UVA-tanned skin) were significantly higher. UVA-induced tans seem to result from the photooxidation of existing melanin and its precursors with some redistribution of pigment granules, while UVB stimulates melanocytes to up-regulate melanin synthesis and increases pigmentation coverage, effects that are synergistically stimulated in UVA and UVB-exposed skin. Thus, UVA tanning contributes essentially no photoprotection, although all types of UV-induced tanning result in DNA and cellular damage, which can eventually lead to photocarcinogenesis. 2010 John Wiley & Sons A/S. This article is a US Government work and is in the public domain in the USA.

  17. Effect of combination of fractional CO2 laser and narrow-band ultraviolet B versus narrow-band ultraviolet B in the treatment of non-segmental vitiligo.

    PubMed

    El-Zawahry, Mohamed Bakr; Zaki, Naglaa Sameh; Wissa, Marian Youssry; Saleh, Marwah Adly

    2017-12-01

    The present study was designed to evaluate the effect of combining fractional CO 2 laser with narrow-band ultraviolet B (NB-UVB) versus NB-UVB in the treatment of non-segmental vitiligo. The study included 20 patients with non-segmental stable vitiligo. They were divided into two groups. Group I received a single session of fractional CO 2 laser therapy on the right side of the body followed by NB-UVB phototherapy twice per week for 8 weeks. Group II received a second session of fractional CO 2 laser therapy after 4 weeks from starting treatment with NB-UVB. The vitiligo lesions were assessed before treatment and after 8 weeks of treatment by VASI. At the end of the study period, the vitiligo area score index (VASI) in group I decreased insignificantly on both the right (-2.6%) and left (-16.4%) sides. In group II, VASI increased insignificantly on the right (+14.4%) and left (+2.5%) sides. Using Adobe Photoshop CS6 extended program to measure the area of vitiligo lesions, group I showed a decrease of -1.02 and -6.12% in the mean area percentage change of vitiligo lesions on the right and left sides, respectively. In group II the change was +9.84 and +9.13% on the right and left sides, respectively. In conclusion, combining fractional CO 2 laser with NB-UVB for the treatment of non-segmental vitiligo did not show any significant advantage over treatment with NB-UVB alone. Further study of this combination for longer durations in the treatment of vitiligo is recommended.

  18. 7-Hydroxycoumarin prevents UVB-induced activation of NF-κB and subsequent overexpression of matrix metalloproteinases and inflammatory markers in human dermal fibroblast cells.

    PubMed

    Karthikeyan, Ramasamy; Kanimozhi, Govindasamy; Prasad, Nagarajan Rajendra; Agilan, Balupillai; Ganesan, Muthusamy; Mohana, Shanmugham; Srithar, Gunaseelan

    2016-08-01

    Ultraviolet B (UVB) irradiation alters multiple molecular pathways in the skin, thereby inducing skin damage. Human dermal fibroblasts (HDFa) were subjected to single UVB-irradiation (18mJ/cm(2)) resulting in reactive oxygen species (ROS) generation, oxidative DNA damage and upregulation of nuclear factor kappa B (NF-κB) expression. Further, it has been observed that there was a significant cytokine production (TNF-α and IL-6) in UVB irradiated HDFa cells. Our results show that 7-hydroxycoumarin (7-OHC) prevents UVB-induced activation of NF-κB thereby subsequently preventing the overexpression of TNF-α and IL-6 in HDFa cells. Further, 7-OHC prevents UVB-induced activation of cyclooxygenase-2 (COX-2) expression, an inflammatory mediator in skin cells. Moreover, 7-OHC inhibited mRNA expression pattern of matrix metalloproteinases (MMP-1 and MMP-9) in UVB irradiated skin cells. Furthermore, 7-OHC restored antioxidant status, thereby scavenging the excessively generated ROS; consequently preventing the oxidative DNA damage. It has also been noticed that 7-OHC prevents UVB mediated DNA damage through activation of DNA repair enzymes such as XRCC1 and HOGG1. In this study, we treated HDFa cells with 7-OHC before and after UVB irradiation and we found that pretreatment showed better results when compared to posttreatment. Further, 7-OHC showed 9.8416 sun protection factor (SPF) value and it absorbs photons in the UVB wavelength rage. Thus, it has been concluded that sunscreen property, free radical scavenging potential and prevention of NF-κB activation play a role for photoprotective property of 7-OHC. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Ethanol extract of Dalbergia odorifera protects skin keratinocytes against ultraviolet B-induced photoaging by suppressing production of reactive oxygen species.

    PubMed

    Ham, Sun Ah; Hwang, Jung Seok; Kang, Eun Sil; Yoo, Taesik; Lim, Hyun Ho; Lee, Won Jin; Paek, Kyung Shin; Seo, Han Geuk

    2015-01-01

    Dalbergia odorifera T. Chen (Leguminosae), an indigenous medicinal herb, has been widely used in northern and eastern Asia to treat diverse diseases. Here, we investigated the anti-senescent effects of ethanolic extracts of Dalbergia odorifera (EEDO) in ultraviolet (UV) B-irradiated skin cells. EEDO significantly inhibited UVB-induced senescence of human keratinocytes in a concentration-dependent manner, concomitant with inhibition of reactive oxygen species (ROS) generation. UVB-induced increases in the levels of p53 and p21, biomarkers of cellular senescence, were almost completely abolished in the presence of EEDO. Sativanone, a major constituent of EEDO, also attenuated UVB-induced senescence and ROS generation in keratinocytes, indicating that sativanone is an indexing (marker) molecule for the anti-senescence properties of EEDO. Finally, treatment of EEDO to mice exposed to UVB significantly reduced ROS levels and the number of senescent cells in the skin. Thus, EEDO confers resistance to UVB-induced cellular senescence by inhibiting ROS generation in skin cells.

  20. Effect of narrow band ultraviolet B phototherapy as monotherapy or combination therapy for vitiligo: a meta-analysis.

    PubMed

    Li, Ronghua; Qiao, Meng; Wang, Xiaoyan; Zhao, Xintong; Sun, Qing

    2017-01-01

    The treatment of vitiligo is still one of the most difficult dermatological challenges, although there are many therapeutic options. Narrow band ultraviolet B (NB-UVB) phototherapy is considered to be a very important modality for generalized vitiligo. The aim of this study was to explore whether a combination of NB-UVB and topical agents would be superior to NB-UVB alone for treating vitiligo. We searched the electronic databases such as PUBMED, EMBASE, Cochrane Library, and Web of Science. The primary outcome was the proportion of ≥50% repigmentation (a clinical significance), and secondary outcome was the proportion of ≥75% repigmentation (an excellent response). Seven randomized controlled trials (RCTs) involving 240 patients (413 lesions) were included in this meta-analysis. The study showed no significant difference between NB-UVB combination therapy (NB-UVB and topical calcineurin inhibitor or vitamin D analogs) and NB-UVB monotherapy in the outcomes of ≥50% repigmentation and ≥75% repigmentation. However, lesions located on the face and neck had better results in ≥50% repigmentation (RR = 1.40, 95% CI 1.08-1.81) and ≥75% repigmentation (RR = 1.88, 95% CI 1.10-3.20) with NB-UVB and topical calcineurin inhibitor combination therapy vs. NB-UVB monotherapy. The meta-analysis suggested that adding neither topical calcineurin inhibitors nor topical vitamin-D3 analogs on NB-UVB can yield significantly superior outcomes than NB-UVB monotherapy for treatment of vitiligo. However, addition of topical calcineurin inhibitors to NB-UVB may increase treatment outcomes in vitiligo affecting face and neck. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Foraging behavior of honey bees (hymenoptera: Apidae) on Brassica nigra and B. rapa grown under simulated ambient and enhanced UV-B radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, S.A.; Robinson, G.E.; Conner, J.K.

    Two species of mustard, Brassica nigra and B. rapa, were grown under simulated ambient and enhanced ultraviolet-B (UV-B) radiation and exposed to pollinators, Apis mellifera L. Observations were made to determine whether UV-B-induced changes in these plants affected pollinator behavior. Total duration of the foraging trip, number of flowers visited, foraging time per flower, search time per flower, total amount of pollen collected, and pollen collected per flower were measured. There were no significant differences between UV-B treatments in any of the behaviors measured or in any of the pollen measurements. These results suggest that increases in the amount ofmore » solar UV-B reaching the earth`s surface may not have a negative effect on the relationship between these members of the genus Brassica and their honey bee pollinators. 28 refs., 2 figs., 1 tab.« less

  2. Spectral observations of the extreme ultraviolet background.

    PubMed

    Labov, S E; Bowyer, S

    1991-04-20

    A grazing incidence spectrometer was designed to measure the diffuse extreme ultraviolet background. It was flown on a sounding rocket, and data were obtained on the diffuse background between 80 and 650 angstroms. These are the first spectral measurements of this background below 520 angstroms. Several emission features were detected, including interplanetary He I 584 angstroms emission and geocoronal He II 304 angstroms emission. Other features observed may originate in a hot ionized interstellar gas, but if this interpretation is correct, gas at several different temperatures is present. The strongest of these features is consistent with O V emission at 630 angstroms. This emission, when combined with upper limits for other lines, restricts the temperature of this component to 5.5 < log T < 5.7, in agreement with temperatures derived from O VI absorption studies. A power-law distribution of temperatures is consistent with this feature only if the power-law coefficient is negative, as is predicted for saturated evaporation of clouds in a hot medium. In this case, the O VI absorption data confine the filling factor of the emission of f < or = 4% and the pressure to more than 3.7 x 10(4) cm-3 K, substantially above ambient interstellar pressure. Such a pressure enhancement has been predicted for clouds undergoing saturated evaporation. Alternatively, if the O V emission covers a considerable fraction of the sky, it would be a major source of ionization. A feature centered at about 99 angstroms is well fitted by a cluster of Fe XVIII and Fe XIX lines from gas at log T = 6.6-6.8. These results are consistent with previous soft X-ray observations with low-resolution detectors. A feature found near 178 angstroms is consistent with Fe X and Fe XI emission from gas at log T = 6; this result is consistent with results from experiments employing broad-band soft X-ray detectors.

  3. Generation of novel covalent RNA-protein complexes in cells by ultraviolet B irradiation: implications for autoimmunity.

    PubMed

    Andrade, Felipe; Casciola-Rosen, Livia A; Rosen, Antony

    2005-04-01

    To determine whether ultraviolet B (UVB) irradiation induces novel modifications in autoantigens targeted during experimental photoinduced epidermal damage. To search for novel UVB-induced autoantigen modifications, lysates made from UVB-irradiated human keratinocytes or HeLa cells were immunoblotted using human autoantibodies that recognize ribonucleoprotein autoantigens. Novel autoantigen structures identified were further characterized using nucleases and RNA hybridization. Human sera that recognize U1-70 kd (U1-70K) and La by immunoblotting also recognized multiple novel species when they were used to immunoblot lysates of UVB-irradiated keratinocytes or HeLa cells. These species were not present in control cells and were not observed when apoptosis was induced by Fas ligation or cytotoxic lymphocyte granule contents. Biochemical analysis using multiple assays revealed that these novel UVB-induced molecular species result from the covalent crosslinking between the U1 RNA and the hYRNA molecules with their associated proteins, including U1-70K, La, and likely components of the Sm particle. These data demonstrate that UVB irradiation of live cells can directly induce covalent RNA-protein complexes, which are recognized by human autoantibodies. As previously described for other autoantigens, these covalent complexes of RNA and proteins may have important consequences in terms of antigen capture and processing.

  4. ASSESSMENT OF THE RISK OF SOLAR ULTRAVIOLET RADIATION TO AMPHIBIANS: III. PREDICTION OF IMPACTS IN SELECTED NORTHERN MIDWESTERN WETLANDS

    EPA Science Inventory

    The deleterious effects of solar ultraviolet radiation, especially the UV-B portion of sunlight, have been hypothesized to reduce survival, increase the frequency of malformations, and contribute to the apparent worldwide decline of many amphibian species.

  5. Atmospheric constituents and surface-level UVB: Implications for a paleoaltimetry proxy and attempts to reconstruct UV exposure during volcanic episodes

    NASA Astrophysics Data System (ADS)

    Thomas, Brian C.; Goracke, Byron D.; Dalton, Sean M.

    2016-11-01

    Chemical and morphological features of spores and pollens have been linked to changes in solar ultraviolet radiation (specifically UVB, 280-315 nm) at Earth's surface. Variation in UVB exposure as inferred from these features has been suggested as a proxy for paleoaltitude; such proxies are important in understanding the uplift history of high altitude plateaus, which in turn is important for testing models of the tectonic processes responsible for such uplift. While UVB irradiance does increase with altitude above sea level, a number of other factors affect the irradiance at any given place and time. In this modeling study we use the TUV atmospheric radiative transfer model to investigate dependence of surface-level UVB irradiance and relative biological impact on a number of constituents in Earth's atmosphere that are variable over long and short time periods. We consider changes in O3 column density, and SO2 and sulfate aerosols due to periods of volcanic activity, including that associated with the formation of the Siberian Traps. We find that UVB irradiance may be highly variable under volcanic conditions and variations in several of these atmospheric constituents can easily mimic or overwhelm changes in UVB irradiance due to changes in altitude. On the other hand, we find that relative change with altitude is not very sensitive to different sets of atmospheric conditions. Any paleoaltitude proxy based on UVB exposure requires confidence that the samples under comparison were located at roughly the same latitude, under very similar O3 and SO2 columns, with similar atmospheric aerosol conditions. In general, accurate estimates of the surface-level UVB exposure at any time and location require detailed radiative transfer modeling taking into account a number of atmospheric factors; this result is important for paleoaltitude proxies as well as attempts to reconstruct the UV environment through geologic time and to tie extinctions, such as the end-Permian mass

  6. Comparison of UV-B measurements performed with a Brewer spectrophotometer and a new UVB-1 broad band detector

    NASA Technical Reports Server (NTRS)

    Bais, Alkiviadis F.; Zerefos, Christos S.; Meleti, Charicleia; Ziomas, Ioannis C.

    1994-01-01

    Measurements of the UV-B erythemal dose, based on solar spectra acquired with a Brewer spectrophotometer at Thessaloniki, Greece, are compared to measurements performed with the recently introduced, by the Yankee Environmental Systems, (Robertson type) broad band solar UV-B detector. The spectral response function of this detector, when applied to the Brewer spectral UV-B measurements, results in remarkably comparable estimates of the erythemal UV-B dose. The two instruments provide similar information on the UV-B dose when they are cross-examined under a variety of meteorological and atmospheric conditions and over the a large range of solar zenith angles and total ozone.

  7. The budget of biologically active ultraviolet radiation in the earth-atmosphere system

    NASA Technical Reports Server (NTRS)

    Frederick, John E.; Lubin, Dan

    1988-01-01

    This study applies the concept of a budget to describe the interaction of solar ultraviolet (UV) radiation with the earth-atmosphere system. The wavelength ranges of interest are the biologically relevant UV-B between 280 and 320 nm and the UV-A from 32000 to 400 nm. The Nimbus 7 solar backscattered ultraviolet (SBUV) instrument provides measurements of total column ozone and information concerning cloud cover which, in combination with a simple model of radiation transfer, define the fractions of incident solar irradiance absorbed in the atmosphere, reflected to space, and absorbed at the ground. Results for the month of July quantify the contribution of fractional cloud cover and cloud optical thickness to the radiation budget's three components. Scattering within a thick cloud layer makes the downward radiation field at the cloud base more isotropic than is the case for clear skies. For small solar zenith angles, typical of summer midday conditions, the effective pathlength of this diffuse irradiance through tropospheric ozone is greater than that under clear-sky conditions. The result is an enhanced absorption of UV-B radiation in the troposphere during cloud-covered conditions. Major changes in global cloud cover or cloud optical thicknesses could alter the ultraviolet radiation received by the biosphere by an amount comparable to that predicted for long-term trends in ozone.

  8. Gq protein mediates UVB-induced cyclooxygenase-2 expression by stimulating HB-EGF secretion from HaCaT human keratinocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, MiRan; Juhnn, Yong-Sung, E-mail: juhnn@snu.ac.kr

    Ultraviolet (UV) radiation induces cyclooxygenase-2 expression to produce cellular responses including aging and carcinogenesis in skin. We hypothesised that heterotrimeric G proteins mediate UV-induced COX-2 expression by stimulating secretion of soluble HB-EGF (sHB-EGF). In this study, we aimed to elucidate the role and underlying mechanism of the {alpha} subunit of Gq protein (G{alpha}q) in UVB-induced HB-EGF secretion and COX-2 induction. We found that expression of constitutively active G{alpha}q (G{alpha}qQL) augmented UVB-induced HB-EGF secretion, which was abolished by knockdown of G{alpha}q with shRNA in HaCaT human keratinocytes. G{alpha}q was found to mediate the UVB-induced HB-EGF secretion by sequential activation of phospholipasemore » C (PLC), protein kinase C{delta} (PKC{delta}), and matrix metaloprotease-2 (MMP-2). Moreover, G{alpha}qQL mediated UVB-induced COX-2 expression in an HB-EGF-, EGFR-, and p38-dependent manner. From these results, we concluded that G{alpha}q mediates UV-induced COX-2 expression through activation of EGFR by HB-EGF, of which ectodomain shedding was stimulated through sequential activation of PLC, PKC{delta} and MMP-2 in HaCaT cells.« less

  9. Fermented Acanthopanax koreanum Root Extract Reduces UVB- and H2O2-Induced Senescence in Human Skin Fibroblast Cells.

    PubMed

    Park, Min-Ja; Bae, Young-Seuk

    2016-07-28

    The present study assessed the effects of an aqueous extract of Acanthopanax koreanum root (AE) and of AE following fermentation by lactic acid bacteria (Lactobacillus plantarum and Bifidobacterium bifidum) (AEF) on human skin fibroblast HS68 cells exposed to ultraviolet B (UVB) irradiation and oxidative stress. AEF effectively antagonized the senescence-associated β-galactosidase staining and upregulation of p53 and p21(Cip1/WAF1) induced by UVB or H2O2 treatment in HS68 cells. It also exhibited excellent antioxidant activities in radical scavenging assays and reduced the intracellular level of reactive oxygen species induced by UVB or H2O2 treatment. The antioxidant and antisenescent activities of AEF were greater than those of nonfermented A. koreanum extract. AEF significantly repressed the UVB- or H2O2-induced activities of matrix metalloproteinase (MMP)-1 and -3, overexpression of MMP-1, and nuclear factor κB (NF-κB) activation. This repression of NF-κB activation and MMP-1 overexpression was attenuated by a mitogen-activated protein kinase activator, suggesting that this AEF activity was dependent on this signaling pathway. Taken together, these data indicated that AEF-mediated antioxidant and anti-photoaging activities may produce anti-wrinkle effects on human skin.

  10. Anti-inflammatory and antioxidant effects of Aloe saponaria Haw in a model of UVB-induced paw sunburn in rats.

    PubMed

    Silva, Mariane Arnoldi; Trevisan, Gabriela; Hoffmeister, Carin; Rossato, Mateus Fortes; Boligon, Aline Augusti; Walker, Cristiani Isabel Banderò; Klafke, Jonatas Zeni; Oliveira, Sara Marchesan; Silva, Cássia Regina; Athayde, Margareth Linde; Ferreira, Juliano

    2014-04-05

    Ultraviolet B (UVB) irradiation mainly affects biological tissues by inducing an increase in reactive oxygen species (ROS) production which leads to deleterious outcomes for the skin, including pain and inflammation. As a protective strategy, many studies have focused on the use of natural products. The aim of this study was to investigate the effects of Aloe saponaria on nociceptive, inflammatory, and oxidative parameters in a model of UVB-induced sunburn in adult male Wistar rats. Sunburned animals were topically treated with vehicle (base cream), 1% silver sulfadiazine (positive control) or A. saponaria (10%) once a day for 6days. UVB-induced nociception (allodynia and hyperalgesia), inflammation (edema and leukocyte infiltration) and oxidative stress (increases in H2O2, protein carbonyl levels and lipid peroxidation and a decrease in non protein thiol content) were reduced by both A. saponaria and sulfadiazine topical treatment. Furthermore, A. saponaria or its constituents aloin and rutin reduced the oxidative stress induced by H2O2 in skin homogenates in vitro. Our results demonstrate that topical A. saponaria treatment displayed anti-nociceptive and anti-inflammatory effects in a UVB-induced sunburn model, and these effects seem to be related to its antioxidant components. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. A comparative study of baby immature and adult shoots of Aloe vera on UVB-induced skin photoaging in vitro.

    PubMed

    Hwang, Eunson; Kim, Su Hyeon; Lee, Sarah; Lee, Choong Hwan; Do, Seon-Gil; Kim, Jinwan; Kim, Sun Yeou

    2013-12-01

    Ultraviolet (UV) irradiation induces photo-damage of the skin, which in turn causes depletion of the dermal extracellular matrix and chronic alterations in skin structure. Skin wrinkle formations are associated with collagen synthesis and matrix metalloproteinase (MMP) expression. The production of type I procollagen is regulated by transforming growth factor-β1 (TGF-β1) expression; the activation of MMP is also correlated with an increase of interleukin-6 (IL-6). Aloe barbadensis M. (Aloe vera) is widely used in cosmetic and pharmaceutical products. In this study, we examined whether baby aloe shoot extract (BAE, immature aloe extract), which is from the one-month-old shoots of Aloe vera, and adult aloe shoot extract (AE), which is from the four-month-old shoots of Aloe vera, have a protective effect on UVB-induced skin photoaging in normal human dermal fibroblasts (NHDFs). The effects of BAE and AE on UVB-induced photoaging were tested by measuring the levels of reactive oxygen species, MMP-1, MMP-3, IL-6, type I procollagen, and TGF-β1 after UVB irradiation. We found that NHDF cells treated with BAE after UVB-irradiation suppressed MMP-1, MMP-3, and IL-6 levels compared to the AE-treated cells. Furthermore, BAE treatment elevated type I procollagen and TGF-β1 levels. Our results suggest that BAE may potentially protect the skin from UVB-induced damage more than AE. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Early induced protein 1 (PrELIP1) and other photosynthetic, stress and epigenetic regulation genes are involved in Pinus radiata D. don UV-B radiation response.

    PubMed

    Valledor, Luis; Cañal, María Jesús; Pascual, Jesús; Rodríguez, Roberto; Meijón, Mónica

    2012-11-01

    The continuous atmospheric and environmental deterioration is likely to increase, among others, the influx of ultraviolet B (UV-B) radiation. The plants have photoprotective responses, which are complex mechanisms involving different physiological responses, to avoid the damages caused by this radiation that may lead to plant death. We have studied the adaptive responses to UV-B in Pinus radiata, given the importance of this species in conifer forests and reforestation programs. We analyzed the photosynthetic activity, pigments content, and gene expression of candidate genes related to photosynthesis, stress and gene regulation in needles exposed to UV-B during a 96 h time course. The results reveal a clear increase of pigments under UV-B stress while photosynthetic activity decreased. The expression levels of the studied genes drastically changed after UV-B exposure, were stress related genes were upregulated while photosynthesis (RBCA and RBCS) and epigenetic regulation were downregulated (MSI1, CSDP2, SHM4). The novel gene PrELIP1, fully sequenced for this work, was upregulated and expressed mainly in the palisade parenchyma of needles. This gene has conserved domains related to the dissipation of the UV-B radiation that give to this protein a key role during photoprotection response of the needles in Pinus radiata. Copyright © Physiologia Plantarum 2012.

  13. Solar ultraviolet-B radiation and vitamin D: a cross-sectional population-based study using data from the 2007 to 2009 Canadian Health Measures Survey.

    PubMed

    Greenfield, Jamie A; Park, Philip S; Farahani, Ellie; Malik, Suneil; Vieth, Reinhold; McFarlane, Norman A; Shepherd, Theodore G; Knight, Julia A

    2012-08-15

    Exposure to solar ultraviolet-B (UV-B) radiation is a major source of vitamin D3. Chemistry climate models project decreases in ground-level solar erythemal UV over the current century. It is unclear what impact this will have on vitamin D status at the population level. The purpose of this study was to measure the association between ground-level solar UV-B and serum concentrations of 25-hydroxyvitamin D (25(OH)D) using a secondary analysis of the 2007 to 2009 Canadian Health Measures Survey (CHMS). Blood samples collected from individuals aged 12 to 79 years sampled across Canada were analyzed for 25(OH)D (n = 4,398). Solar UV-B irradiance was calculated for the 15 CHMS collection sites using the Tropospheric Ultraviolet and Visible Radiation Model. Multivariable linear regression was used to evaluate the association between 25(OH)D and solar UV-B adjusted for other predictors and to explore effect modification. Cumulative solar UV-B irradiance averaged over 91 days (91-day UV-B) prior to blood draw correlated significantly with 25(OH)D. Independent of other predictors, a 1 kJ/m² increase in 91-day UV-B was associated with a significant 0.5 nmol/L (95% CI 0.3-0.8) increase in mean 25(OH)D (P = 0.0001). The relationship was stronger among younger individuals and those spending more time outdoors. Based on current projections of decreases in ground-level solar UV-B, we predict less than a 1 nmol/L decrease in mean 25(OH)D for the population. In Canada, cumulative exposure to ambient solar UV-B has a small but significant association with 25(OH)D concentrations. Public health messages to improve vitamin D status should target safe sun exposure with sunscreen use, and also enhanced dietary and supplemental intake and maintenance of a healthy body weight.

  14. Dihydrolipoyl dehydrogenase as a potential UVB target in skin epidermis; using an integrated approach of label-free quantitative proteomics and targeted metabolite analysis.

    PubMed

    Moon, Eunjung; Park, Hye Min; Lee, Choong Hwan; Do, Seon-Gil; Park, Jong-Moon; Han, Na-Young; Do, Moon Ho; Lee, Jong Ha; Lee, Hookeun; Kim, Sun Yeou

    2015-03-18

    Photodamage is extrinsically induced by overexposure to ultraviolet (UV) radiation, and it increases the risk of various skin disorders. Therefore, discovery of novel biomarkers of photodamage is important. In this study, using LC-MS/MS analysis of epidermis from UVB-irradiated hairless mice, we identified 57 proteins whose levels changed after UVB exposure, and selected 7 proteins related to the tricarboxylic acid (TCA) cycle through pathway analysis. Dihydrolipoyl dehydrogenase (DLD) was the only TCA cycle-associated protein that showed a decreased expression after the UVB exposure. We also performed targeted analysis to detect intermediates and products of the TCA cycle using GC-TOF-MS. Interestingly, malic acid and fumaric acid levels significantly decreased in the UVB-treated group. Our results demonstrate that DLD and its associated metabolites, malic acid and fumaric acid, may be candidate biomarkers of UVB-induced skin photoaging. Additionally, we showed that Aloe vera, a natural skin moisturizer, regulated DLD, malic acid and fumaric acid levels in UVB-exposed epidermis. Our strategy to integrate the proteome and targeted metabolite to detect novel UVB targets will lead to a better understanding of skin photoaging and photodamage. Our study also supports that A. vera exerts significant anti-photodamage activity via regulation of DLD, a novel UVB target, in the epidermis. This study is the first example of an integration of proteomic and metabolite analysis techniques to find new biomarker candidates for the regulation of the UVB-induced skin photoaging. DLD, malic acid, and fumaric acid can be used for development of cosmeceuticals and nutraceuticals regulating the change of skin metabolism induced by the UVB overexposure. Moreover, this is also the first attempt to investigate the role of the TCA cycle in photodamaged epidermis. Our integration of the proteomic and targeted metabolite analyses will lead to a better understanding of the unidentified

  15. Cyanidin-3-glucoside inhibits UVB-induced oxidative damage and inflammation by regulating MAP kinase and NF-κB signaling pathways in SKH-1 hairless mice skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratheeshkumar, Poyil; Son, Young-Ok; Wang, Xin

    Skin cancer is one of the most commonly diagnosed cancers in the United States. Exposure to ultraviolet-B (UVB) radiation induces inflammation and photocarcinogenesis in mammalian skin. Cyanidin-3-glucoside (C3G), a member of the anthocyanin family, is present in various vegetables and fruits especially in edible berries, and displays potent antioxidant and anticarcinogenic properties. In this study, we have assessed the in vivo effects of C3G on UVB irradiation induced chronic inflammatory responses in SKH-1 hairless mice, a well-established model for UVB-induced skin carcinogenesis. Here, we show that C3G inhibited UVB-induced skin damage and inflammation in SKH-1 hairless mice. Our results indicatemore » that C3G inhibited glutathione depletion, lipid peroxidation and myeloperoxidation in mouse skin by chronic UVB exposure. C3G significantly decreased the production of UVB-induced pro-inflammatory cytokines, such as IL-6 and TNF-α, associated with cutaneous inflammation. Likewise, UVB-induced inflammatory responses were diminished by C3G as observed by a remarkable reduction in the levels of phosphorylated MAP kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, C3G also decreased UVB-induced cyclooxygenase-2 (COX-2), PGE{sub 2} and iNOS levels, which are well-known key mediators of inflammation and cancer. Treatment with C3G inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mice skin. Immunofluorescence assay revealed that topical application of C3G inhibited the expression of 8-hydroxy-2′-deoxyguanosine, proliferating cell nuclear antigen, and cyclin D1 in chronic UVB exposed mouse skin. Collectively, these data indicates that C3G can provide substantial protection against the adverse effects of UVB radiation by modulating UVB-induced MAP kinase and NF-κB signaling pathways. - Highlights: • C3G inhibited UVB-induced oxidative damage and inflammation. • C3G inhibited UVB-induced COX-2, iNOS and PGE{sub 2} production.

  16. Royal jelly protects against ultraviolet B-induced photoaging in human skin fibroblasts via enhancing collagen production.

    PubMed

    Park, Hye Min; Hwang, Eunson; Lee, Kwang Gill; Han, Sang-Mi; Cho, Yunhi; Kim, Sun Yeou

    2011-09-01

    Royal jelly (RJ) is a honeybee product containing proteins, carbohydrates, fats, free amino acids, vitamins, and minerals. As its principal unsaturated fatty acid, RJ contains 10-hydroxy-2-decenoic acid (10-HDA), which may have antitumor and antibacterial activity and a capacity to stimulate collagen production. RJ has attracted interest in various parts of the world for its pharmacological properties. However, the effects of RJ on ultraviolet (UV)-induced photoaging of the skin have not been reported. In this study we measured the 10-HDA content of RJ by high-performance liquid chromatography and tested the effects of RJ on UVB-induced skin photoaging in normal human dermal fibroblasts. The effects of RJ and 10-HDA on UVB-induced photoaging were tested by measuring procollagen type I, transforming growth factor (TGF)-β1, and matrix metalloproteinase (MMP)-1 after UVB irradiation. The RJ contained about 0.211% 10-HDA. The UVB-irradiated human skin fibroblasts treated with RJ and 10-HDA had increased procollagen type I and TGF-β1 productions, but the level of MMP-1 was not changed. Thus RJ may potentially protect the skin from UVB-induced photoaging by enhancing collagen production.

  17. Mass spectrometry-based metabolite profiling in the mouse liver following exposure to ultraviolet B radiation.

    PubMed

    Park, Hye Min; Shon, Jong Cheol; Lee, Mee Youn; Liu, Kwang-Hyeon; Kim, Jeong Kee; Lee, Sang Jun; Lee, Choong Hwan

    2014-01-01

    Although many studies have been performed on the effects of ultraviolet (UV) radiation on the skin, only a limited number of reports have investigated these effects on non-skin tissue. This study aimed to describe the metabolite changes in the liver of hairless mice following chronic exposure to UVB radiation. We did not observe significant macroscopic changes or alterations in hepatic cholesterol and triglyceride levels in the liver of UVB-irradiated mice, compared with those for normal mice. In this study, we detected hepatic metabolite changes by UVB exposure and identified several amino acids, fatty acids, nucleosides, carbohydrates, phospholipids, lysophospholipids, and taurine-conjugated cholic acids as candidate biomarkers in response to UVB radiation in the mouse liver by using various mass spectrometry (MS)-based metabolite profiling including ultra-performance liquid chromatography-quadrupole time-of-flight (TOF)-MS, gas chromatography-TOF-MS and nanomate LTQ-MS. Glutamine exhibited the most dramatic change with a 5-fold increase in quantity. The results from altering several types of metabolites suggest that chronic UVB irradiation may impact significantly on major hepatic metabolism processes, despite the fact that the liver is not directly exposed to UVB radiation. MS-based metabolomic approach for determining regulatory hepatic metabolites following UV irradiation will provide a better understanding of the relationship between internal organs and UV light.

  18. Protective effect of cerium ion against ultraviolet B radiation-induced water stress in soybean seedlings.

    PubMed

    Mao, Chun Xia; Chen, Min Min; Wang, Lei; Zou, Hua; Liang, Chan Juan; Wang, Li Hong; Zhou, Qing

    2012-06-01

    Effects of cerium ion (Ce(III)) on water relations of soybean seedlings (Glycine max L.) under ultraviolet B radiation (UV-B, 280-320 nm) stress were investigated under laboratory conditions. UV-B radiation not only affected the contents of two osmolytes (proline, soluble sugar) in soybean seedlings, but also inhibited the transpiration in soybean seedlings by decreasing the stomatal density and conductance. The two effects caused the inhibition in the osmotic and metabolic absorption of water, which decreased the water content and the free water/bound water ratio. Obviously, UV-B radiation led to water stress, causing the decrease in the photosynthesis in soybean seedlings. The pretreatment with 20 mg L(-1) Ce(III) could alleviate UV-B-induced water stress by regulating the osmotic and metabolic absorption of water in soybean seedlings. The alleviated effect caused the increase in the photosynthesis and the growth of soybean seedlings. It is one of the protective effect mechanisms of Ce(III) against the UV-B radiation-induced damage to plants.

  19. Protective effects of antioxidin-RL from Odorrana livida against ultraviolet B-irradiated skin photoaging.

    PubMed

    Qin, Di; Lee, Wen-Hui; Gao, Zhiqin; Zhang, Weifen; Peng, Meiyu; Sun, Tongyi; Gao, Yuanyuan

    2018-03-01

    The unavoidable daily exposure of the skin to ultraviolet (UV) B radiation is proven to have deleterious effects. The action mechanism of antioxidin-RL, an antioxidant peptide purified from skin secretions of frog Odorrana livida with amino acid sequence of AMRLTYNRPCIYAT, is well characterized by NMR titration and mutation based on ABTS + scavenging activities. In order to explore the protective effects of antioxidin-RL against UVB-irradiated skin photoaging, cell uptake assay was used to detect the location of antioxidin-RL molecules serving various biological functions in the cells. The protective effects of antioxidin-RL on UVB-induced response were examined in vitro and in vivo. Results showed that antioxidin-RL successfully penetrated the cell membrane and exerted a positive effect on cell migration. It also effectively inhibited the UVB-induced excessive production of ROS and prevented oxidative damage to DNAs and proteins. Moreover, the mRNA expressions of MMP-1, VEGF, COX-2, and pro-inflammatory cytokines, such as IL-6 and TNF-α in antioxidin-RL-treated HaCaT and HSF cells were significantly down-regulated whereas those of FGF, procollagen type I and TGF-β1 up-regulated. Antioxidin-RL effectively prevented UVB-induced erythema on mouse skin, thereby inhibiting UVB-induced skin thickening and inflammation and increasing collagen deposition as demonstrated by in vivo experiments. Hence, the novel antioxidant peptide antioxidin-RL can effectively reduce UVB-induced skin reactions in vivo and in vitro, providing potential molecules against UVB-induced inflammation and photoaging. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. AtPDCD5 Plays a Role in Programmed Cell Death after UV-B Exposure in Arabidopsis1[OPEN

    PubMed Central

    Falcone Ferreyra, María Lorena; D’Andrea, Lucio; AbdElgawad, Hamada

    2016-01-01

    DNA damage responses have evolved to sense and react to DNA damage; the induction of DNA repair mechanisms can lead to genomic restoration or, if the damaged DNA cannot be adequately repaired, to the execution of a cell death program. In this work, we investigated the role of an Arabidopsis (Arabidopsis thaliana) protein, AtPDCD5, which is highly similar to the human PDCD5 protein; it is induced by ultraviolet (UV)-B radiation and participates in programmed cell death in the UV-B DNA damage response. Transgenic plants expressing AtPDCD5 fused to GREEN FLUORESCENT PROTEIN indicate that AtPDCD5 is localized both in the nucleus and the cytosol. By use of pdcd5 mutants, we here demonstrate that these plants have an altered antioxidant metabolism and accumulate higher levels of DNA damage after UV-B exposure, similar to levels in ham1ham2 RNA interference transgenic lines with decreased expression of acetyltransferases from the MYST family. By coimmunoprecipitation and pull-down assays, we provide evidence that AtPDCD5 interacts with HAM proteins, suggesting that both proteins participate in the same pathway of DNA damage responses. Plants overexpressing AtPDCD5 show less DNA damage but more cell death in root tips upon UV-B exposure. Finally, we here show that AtPDCD5 also participates in age-induced programmed cell death. Together, the data presented here demonstrate that AtPDCD5 plays an important role during DNA damage responses induced by UV-B radiation in Arabidopsis and also participates in programmed cell death programs. PMID:26884483

  1. Anti-photoaging potential of Botulinum Toxin Type A in UVB-induced premature senescence of human dermal fibroblasts in vitro through decreasing senescence-related proteins.

    PubMed

    Permatasari, Felicia; Hu, Yan-yan; Zhang, Jia-an; Zhou, Bing-rong; Luo, Dan

    2014-04-05

    This study was aimed to evaluate the anti-photoaging effects of Botulinum Toxin Type A (BoNTA) in Ultraviolet B-induced premature senescence (UVB-SIPS) of human dermal fibroblasts (HDFs) in vitro and the underlying mechanism. We established a stress-induced premature senescence model by repeated subcytotoxic exposures to Ultraviolet B (UVB) irradiation. The aging condition was determined by cytochemical staining of senescence-associated β-galactosidase (SA-β-gal). The tumor suppressor and senescence-associated protein levels of p16(INK-4a), p21(WAF-1), and p53 were estimated by Western blotting. The G1 phase cell growth arrest was analyzed by flow cytometry. The mRNA expressions of p16, p21, p53, COL1a1, COL3a1, MMP1, and MMP3 were determined by real-time PCR. The level of Col-1, Col-3, MMP-1, and MMP-3 were determined by ELISA. Compared with the UVB-irradiated group, we found that the irradiated fibroblasts additionally treated with BoNTA demonstrated a decrease in the expression of SA-β-gal, a decrease in the level of tumor suppressor and senescence-associated proteins, a decrease in the G1 phase cell proportion, an increase in the production of Col-1 and Col-3, and a decrease in the secretion of MMP-1 and MMP-3, in a dose-dependent manner. Taken together, these results indicate that BoNTA significantly antagonizes premature senescence induced by UVB in HDFs in vitro, therefore potential of intradermal BoNTA injection as anti-photoaging treatment still remains a question. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. DNA damage and repair in plants under ultraviolet and ionizing radiations.

    PubMed

    Gill, Sarvajeet S; Anjum, Naser A; Gill, Ritu; Jha, Manoranjan; Tuteja, Narendra

    2015-01-01

    Being sessile, plants are continuously exposed to DNA-damaging agents present in the environment such as ultraviolet (UV) and ionizing radiations (IR). Sunlight acts as an energy source for photosynthetic plants; hence, avoidance of UV radiations (namely, UV-A, 315-400 nm; UV-B, 280-315 nm; and UV-C, <280 nm) is unpreventable. DNA in particular strongly absorbs UV-B; therefore, it is the most important target for UV-B induced damage. On the other hand, IR causes water radiolysis, which generates highly reactive hydroxyl radicals (OH(•)) and causes radiogenic damage to important cellular components. However, to maintain genomic integrity under UV/IR exposure, plants make use of several DNA repair mechanisms. In the light of recent breakthrough, the current minireview (a) introduces UV/IR and overviews UV/IR-mediated DNA damage products and (b) critically discusses the biochemistry and genetics of major pathways responsible for the repair of UV/IR-accrued DNA damage. The outcome of the discussion may be helpful in devising future research in the current context.

  3. DNA Damage and Repair in Plants under Ultraviolet and Ionizing Radiations

    PubMed Central

    Gill, Sarvajeet S.; Gill, Ritu; Jha, Manoranjan; Tuteja, Narendra

    2015-01-01

    Being sessile, plants are continuously exposed to DNA-damaging agents present in the environment such as ultraviolet (UV) and ionizing radiations (IR). Sunlight acts as an energy source for photosynthetic plants; hence, avoidance of UV radiations (namely, UV-A, 315–400 nm; UV-B, 280–315 nm; and UV-C, <280 nm) is unpreventable. DNA in particular strongly absorbs UV-B; therefore, it is the most important target for UV-B induced damage. On the other hand, IR causes water radiolysis, which generates highly reactive hydroxyl radicals (OH•) and causes radiogenic damage to important cellular components. However, to maintain genomic integrity under UV/IR exposure, plants make use of several DNA repair mechanisms. In the light of recent breakthrough, the current minireview (a) introduces UV/IR and overviews UV/IR-mediated DNA damage products and (b) critically discusses the biochemistry and genetics of major pathways responsible for the repair of UV/IR-accrued DNA damage. The outcome of the discussion may be helpful in devising future research in the current context. PMID:25729769

  4. UV-B Irradiation Changes Specifically the Secondary Metabolite Profile in Broccoli Sprouts: Induced Signaling Overlaps with Defense Response to Biotic Stressors

    PubMed Central

    Mewis, Inga; Schreiner, Monika; Nguyen, Chau Nhi; Krumbein, Angelika; Ulrichs, Christian; Lohse, Marc; Zrenner, Rita

    2012-01-01

    Only a few environmental factors have such a pronounced effect on plant growth and development as ultraviolet light (UV). Concerns have arisen due to increased UV-B radiation reaching the Earth’s surface as a result of stratospheric ozone depletion. Ecologically relevant low to moderate UV-B doses (0.3–1 kJ m–2 d–1) were applied to sprouts of the important vegetable crop Brassica oleracea var. italica (broccoli), and eco-physiological responses such as accumulation of non-volatile secondary metabolites were related to transcriptional responses with Agilent One-Color Gene Expression Microarray analysis using the 2×204 k format Brassica microarray. UV-B radiation effects have usually been linked to increases in phenolic compounds. As expected, the flavonoids kaempferol and quercetin accumulated in broccoli sprouts (the aerial part of the seedlings) 24 h after UV-B treatment. A new finding is the specific UV-B-mediated induction of glucosinolates (GS), especially of 4-methylsulfinylbutyl GS and 4-methoxy-indol-3-ylmethyl GS, while carotenoids and Chl levels remained unaffected. Accumulation of defensive GS metabolites was accompanied by increased expression of genes associated with salicylate and jasmonic acid signaling defense pathways and up-regulation of genes responsive to fungal and bacterial pathogens. Concomitantly, plant pre-exposure to moderate UV-B doses had negative effects on the performance of the caterpillar Pieris brassicae (L.) and on the population growth of the aphid Myzus persicae (Sulzer). Moreover, insect-specific induction of GS in broccoli sprouts was affected by UV-B pre-treatment. PMID:22773681

  5. The effect of platelet-rich plasma on the outcome of short-term narrowband-ultraviolet B phototherapy in the treatment of vitiligo: a pilot study.

    PubMed

    Ibrahim, Zeinab A; El-Ashmawy, Amal A; El-Tatawy, Rania A; Sallam, Fersan A

    2016-06-01

    Narrowband - ultraviolet B (NB-UVB) is an emerging, effective, and safe therapy for vitiligo, but the treatment course often requires a long duration of time which may carry a potential risk for various side effects and patients' noncompliance. To explore the effect of platelet-rich plasma (PRP) injection on the outcome of short-term NB-UVB therapy for the patients with stable vitiligo. The study included 60 stable vitiligo patients with overall symmetrical lesions. For each patient, the left side of the body was treated with NB-UVB alone (control side) while the right side was treated with NB-UVB therapy in addition to intradermal injection of PRP, every 2 weeks for 4 months. There was statistically highly significant improvement in the repigmentation in the combination group(PRP plus NB-UVB) compared with NB-UVB group. Intradermal PRP injection in combination with NB-UVB could be considered as a simple, safe, tolerable, and cheap technique for treatment of vitiligo. It shortens the duration of NB-UVB therapy and is expected to increase patient compliance. Longer follow-up is needed. © 2015 Wiley Periodicals, Inc.

  6. Lycium barbarum Polysaccharides Protect Rat Corneal Epithelial Cells against Ultraviolet B-Induced Apoptosis by Attenuating the Mitochondrial Pathway and Inhibiting JNK Phosphorylation.

    PubMed

    Du, Shaobo; Han, Biao; Li, Kang; Zhang, Xuan; Sha, Xueli; Gao, Lan

    2017-01-01

    Lycium barbarum polysaccharides (LBPs) have been shown to play a key role in protecting the eyes by reducing the apoptosis induced by certain types of damage. However, it is not known whether LBPs can protect damaged corneal cells from apoptosis. Moreover, no reports have focused on the role of LBPs in guarding against ultraviolet B- (UVB-) induced apoptosis. The present study aimed to investigate the protective effect and underlying mechanism of LBPs against UVB-induced apoptosis in rat corneal epithelial (RCE) cells. The results showed that LBPs significantly prevented the loss of cell viability and inhibited cell apoptosis induced by UVB in RCE cells. LBPs also inhibited UVB-induced loss of mitochondrial membrane potential, downregulation of Bcl-2 , and upregulation of Bax and caspase-3. Finally, LBPs attenuated the phosphorylation of c-Jun NH 2 -terminal kinase (JNK) triggered by UVB. In summary, LBPs protect RCE cells against UVB-induced damage and apoptosis, and the underlying mechanism involves the attenuation of the mitochondrial apoptosis pathway and the inhibition of JNK phosphorylation.

  7. Nitric oxide alleviates oxidative damage induced by enhanced ultraviolet-B radiation in cyanobacterium.

    PubMed

    Xue, Lingui; Li, Shiweng; Sheng, Hongmei; Feng, Huyuan; Xu, Shijian; An, Lizhe

    2007-10-01

    To study the role of nitric oxide (NO) on enhanced ultraviolet-B (UV-B) radiation (280-320 nm)-induced damage of Cyanobacterium, the growth, pigment content, and antioxidative activity of Spirulina platensis-794 cells were investigated under enhanced UV-B radiation and under different chemical treatments with or without UV-B radiation for 6 h. The changes in chlorophyll-a, malondialdehyde content, and biomass confirmed that 0.5 mM: sodium nitroprusside (SNP), a donor of nitric oxide (NO), could markedly alleviate the damage caused by enhanced UV-B. Specifically, the biomass and the chlorophyll-a content in S. platensis-794 cells decreased 40% and 42%, respectively under enhanced UV-B stress alone, but they only decreased 10% and 18% in the cells treated with UV-B irradiation and 0.5 mM: SNP. Further experiments suggested that NO treatment significantly increased the activities of superoxide dismutase (SOD) and catalase (CAT), and decreased the accumulation of O (2)(-) in enhanced UV-B-irradiated cells. SOD and CAT activity increased 0.95- and 6.73-fold, respectively. The accumulation of reduced glutathione (GSH) increased during treatment with 0.5 mM: SNP in normal S. platensis cells, but SNP treatment could inhibit the increase of GSH in enhanced UV-B-stressed S. platensis cells. Thus, these results suggest that NO can strongly alleviate oxidative damage caused by UV-B stress by increasing the activities of SOD, peroxidase, CAT, and the accumulation of GSH, and by eliminating O (2)(-) in S. platensis-794 cells. In addition, the difference of NO origin between plants and cyanobacteria are discussed.

  8. Studies of the extreme ultraviolet/soft x-ray background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stern, R.A.

    1978-01-01

    The results of an extensive sky survey of the extreme ultraviolet (EUV)/soft x-ray background are reported. The data were obtained with a focusing telescope designed and calibrated at U.C. Berkeley which observed EUV sources and the diffuse background as part of the Apollo-Soyuz mission in July, 1975. With a primary field-of-view of 2.3 + 0.1/sup 0/ FWHM and four EUV bandpass filters (16 to 25, 20 to 73, 80 to 108, and 80 to 250 eV) the EUV telescope obtained background data included in the final observational sample for 21 discrete sky locations and 11 large angular scans, as wellmore » as for a number of shorter observations. Analysis of the data reveals as intense flux above 80 eV energy, with upper limits to the background intensity given for the lower energy filters Ca 2 x 10/sup 4/ and 6 x 10/sup 2/ ph cm/sup -2/ sec/sup -1/ ster/sup -1/ eV/sup -1/ at 21 and 45 eV respectively). The 80 to 108 eV flux agrees within statistical errors with the earlier results of Cash, Malina and Stern (1976): the Apollo-Soyuz average reported intensity is 4.0 +- 1.3 ph cm/sup -2/ sec/sup -1/ ster/sup -1/ eV/sup -1/ at Ca 100 eV, or roughly a factor of ten higher than the corresponding 250 eV intensity. The uniformity of the background flux is uncertain due to limitations in the statistical accuracy of the data; upper limits to the point-to-point standard deviation of the background intensity are (..delta..I/I approximately less than 0.8 +- 0.4 (80 to 108 eV) and approximately less than 0.4 +- 0.2 (80 to 250 eV). No evidence is found for a correlation between the telescope count rate and earth-based parameters (zenith angle, sun angle, etc.) for E approximately greater than 80 eV (the lower energy bandpasses are significantly affected by scattered solar radiation. Unlike some previous claims for the soft x-ray background, no simple dependence upon galactic latitude is seen.« less

  9. A combination of He-Ne laser irradiation and exogenous NO application efficiently protect wheat seedling from oxidative stress caused by elevated UV-B stress.

    PubMed

    Li, Yongfeng; Gao, Limei; Han, Rong

    2016-12-01

    The elevated ultraviolet-B (UV-B) stress induces the accumulation of a variety of intracellular reactive oxygen species (ROS), which seems to cause oxidative stress for plants. To date, very little work has been done to evaluate the biological effects of a combined treatment with He-Ne laser irradiation and exogenous nitric oxide (NO) application on oxidative stress resulting from UV-B radiation. Thus, our study investigated the effects of a combination with He-Ne laser irradiation and exogenous NO treatment on oxidative damages in wheat seedlings under elevated UV-B stress. Our data showed that the reductions in ROS levels, membrane damage parameters, while the increments in antioxidant contents and antioxidant enzyme activity caused by a combination with He-Ne laser and exogenous NO treatment were greater than those of each individual treatment. Furthermore, these treatments had a similar effect on transcriptional activities of plant antioxidant enzymes. This implied that the protective effects of a combination with He-Ne laser irradiation and exogenous NO treatment on oxidative stress resulting from UV-B radiation was more efficient than each individual treatment with He-Ne laser or NO molecule. Our findings might provide beneficial theoretical references for identifying some effective new pathways for plant UV-B protection.

  10. Protective Effect of Tropical Highland Blackberry Juice (Rubus adenotrichos Schltdl.) Against UVB-Mediated Damage in Human Epidermal Keratinocytes and in a Reconstituted Skin Equivalent Model

    PubMed Central

    Calvo-Castro, Laura; Syed, Deeba N.; Chamcheu, Jean C.; Vilela, Fernanda M. P.; Pérez, Ana M.; Vaillant, Fabrice; Rojas, Miguel; Mukhtar, Hasan

    2014-01-01

    Solar ultraviolet (UV) radiation, particularly its UVB (280–320 nm) spectrum, is the primary environmental stimulus leading to skin carcinogenesis. Several botanical species with antioxidant properties have shown photochemopreventive effects against UVB damage. Costa Rica’s tropical highland blackberry (Rubus adenotrichos) contains important levels of phenolic compounds, mainly ellagitannins and anthocyanins, with strong antioxidant properties. In this study, we examined the photochemopreventive effect of R. adenotrichos blackberry juice (BBJ) on UVB-mediated responses in human epidermal keratinocytes and in a three-dimensional (3D) reconstituted normal human skin equivalent (SE). Pretreatment (2 h) and posttreatment (24 h) of normal human epidermal keratinocytes (NHEKs) with BBJ reduced UVB (25 mJ cm−2)-mediated (1) cyclobutane pyrimidine dimers (CPDs) and (2) 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) formation. Furthermore, treatment of NHEKs with BBJ increased UVB-mediated (1) poly(ADP-ribose) polymerase cleavage and (2) activation of caspases 3, 8 and 9. Thus, BBJ seems to alleviate UVB-induced effects by reducing DNA damage and increasing apoptosis of damaged cells. To establish the in vivo significance of these findings to human skin, immunohistochemistry studies were performed in a 3D SE model, where BBJ was also found to decrease CPDs formation. These data suggest that BBJ may be developed as an agent to ameliorate UV-induced skin damage. PMID:23711186

  11. Protective effect of tropical highland blackberry juice (Rubus adenotrichos Schltdl.) against UVB-mediated damage in human epidermal keratinocytes and in a reconstituted skin equivalent model.

    PubMed

    Calvo-Castro, Laura; Syed, Deeba N; Chamcheu, Jean C; Vilela, Fernanda M P; Pérez, Ana M; Vaillant, Fabrice; Rojas, Miguel; Mukhtar, Hasan

    2013-01-01

    Solar ultraviolet (UV) radiation, particularly its UVB (280-320 nm) spectrum, is the primary environmental stimulus leading to skin carcinogenesis. Several botanical species with antioxidant properties have shown photochemopreventive effects against UVB damage. Costa Rica's tropical highland blackberry (Rubus adenotrichos) contains important levels of phenolic compounds, mainly ellagitannins and anthocyanins, with strong antioxidant properties. In this study, we examined the photochemopreventive effect of R. adenotrichos blackberry juice (BBJ) on UVB-mediated responses in human epidermal keratinocytes and in a three-dimensional (3D) reconstituted normal human skin equivalent (SE). Pretreatment (2 h) and posttreatment (24 h) of normal human epidermal keratinocytes (NHEKs) with BBJ reduced UVB (25 mJ cm(-2))-mediated (1) cyclobutane pyrimidine dimers (CPDs) and (2) 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation. Furthermore, treatment of NHEKs with BBJ increased UVB-mediated (1) poly(ADP-ribose) polymerase cleavage and (2) activation of caspases 3, 8 and 9. Thus, BBJ seems to alleviate UVB-induced effects by reducing DNA damage and increasing apoptosis of damaged cells. To establish the in vivo significance of these findings to human skin, immunohistochemistry studies were performed in a 3D SE model, where BBJ was also found to decrease CPDs formation. These data suggest that BBJ may be developed as an agent to ameliorate UV-induced skin damage. © 2013 The American Society of Photobiology.

  12. Genotypic variation of soybean and cotton crops in their response to UV-B radiation for vegetative growth and physiology

    NASA Astrophysics Data System (ADS)

    Reddy, K. R.; Koti, S.; Kakani, V. G.; Zhao, D.; Gao, W.

    2005-08-01

    The effects of ultraviolet-B (UV-B) radiation on seven cotton (DP 458B/RR, DP 5415RR, FM 832B, NuCOTN 33B, Pima S7, Tamcot HQ95 and SG 521B) and six soybean (D 88-5320, D 90-9216, Stalwart III, PI 471938, DG 5630RR, and DP 4933RR) genotypes were evaluated in sunlit controlled-environment chambers under optimum water, nutrient and temperature conditions. Plants were exposed to UV-B radiation levels of 4, 8, 12 and 16 (cotton); and 0, 5, 10 and 15 kJ m-2 d-1 (soybean) from emergence to 31 days after sowing (DAS) in cotton and 58 DAS in soybean. Growth and physiological responses were measured and quantified. Higher UV-B significantly reduced dry matter production, plant height, leaf area in all genotypes compared to control plants in both the crops; however, significant genotypic differences in the magnitude of the UV-B induced changes were observed. Cumulative stress response index (CSRI), the sum of individual percentage of relative responses to UV-B radiation, total response index (TRI), the sum of CSRI at all the levels of UV-B for each genotype were used to classify the genotypes for UV-B tolerance. The TRI ranged from -195 to - 417 in soybean and -40 to -524 in cotton. Based on TRI, cotton genotypes, DP 458B/RR, NuCOTN 33B and DP 5415RR were classified as tolerant; Pima S7, and FM 832B as intermediate; and SG 521B, and Tamcot HQ95 as sensitive. In soybean, PI 471938 was tolerant; Stalwart III and D 88-5320 as intermediate; DG 5630RR, DP 4933RR and D 90-9216 were identified as sensitive genotypes. Even though, relative injury of the leaves decreased and phenolic concentrations increased with increasing UV-B in all genotypes, there were no significant correlations between these parameters and TRI of the genotypes in either crop. The observed genotypic differences suggest that it is possible to breed and select UV-B tolerant soybean and cotton genotypes for a niche environment.

  13. Attenuation of UV-B exposure-induced inflammation by abalone hypobranchial gland and gill extracts.

    PubMed

    Kuanpradit, Chitraporn; Jaisin, Yamaratee; Jungudomjaroen, Sumon; Akter Mitu, Shahida; Puttikamonkul, Srisombat; Sobhon, Prasert; Cummins, Scott F

    2017-05-01

    Exposure to solar ultraviolet B (UV-B) is a known causative factor for many skin complications such as wrinkles, black spots, shedding and inflammation. Within the wavelengths 280‑320 nm, UV-B can penetrate to the epidermal level. This investigation aimed to test whether extracts from the tropical abalone [Haliotis asinina (H. asinina)] mucus-secreting tissues, the hypobranchial gland (HBG) and gills, were able to attenuate the inflammatory process, using the human keratinocyte HaCaT cell line. Cytotoxicity of abalone tissue extracts was determined using an AlamarBlue viability assay. Results showed that HaCaT cells could survive when incubated in crude HBG and gill extracts at concentrations between <11.8 and <16.9 µg/ml, respectively. Subsequently, cell viability was compared between cultured HaCaT cells exposed to serial doses of UV-B from 1 to 11 (x10) mJ/cm2 and containing 4 different concentrations of abalone extract from both the HBG and gill (0, 0.1, 2.5, 5 µg/ml). A significant increase in cell viability was observed (P<0.001) following treatment with 2.5 and 5 µg/ml extract. Without extract, cell viability was significantly reduced upon exposure to UV-B at 4 mJ/cm2. Three morphological changes were observed in HaCaT cells following UV-B exposure, including i) condensation of cytoplasm; ii) shrunken cells and plasma membrane bubbling; and iii) condensation of chromatin material. A calcein AM‑propidium iodide live‑dead assay showed that cells could survive cytoplasmic condensation, yet cell death occurred when damage also included membrane bubbling and chromatin changes. Western blot analysis of HaCaT cell COX‑2, p38, phospho‑p38, SPK/JNK and phospho‑SPK/JNK following exposure to >2.5 µg/ml extract showed a significant decrease in intensity for COX‑2, phospho‑p38 and phospho‑SPK/JNK. The present study demonstrated that abalone extracts from the HGB and gill can attenuate inflammatory proteins triggered by UV-B. Hence

  14. Pterocarpus santalinus L. Regulated Ultraviolet B Irradiation-induced Procollagen Reduction and Matrix Metalloproteinases Expression Through Activation of TGF-β/Smad and Inhibition of the MAPK/AP-1 Pathway in Normal Human Dermal Fibroblasts.

    PubMed

    Gao, Wei; Lin, Pei; Hwang, Eunson; Wang, Yushuai; Yan, Zhengfei; Ngo, Hien T T; Yi, Tae-Hoo

    2018-01-01

    Ultraviolet light-induced reactive oxygen species (ROS) damage human skin and prematurely cause aging. A growing body of research is focusing on considering plants and plant-derived compounds as antiphotoaging therapeutic material. Pterocarpus santalinus L., as an Indian traditional medicine, possesses antidiabetic, anti-inflammatory and antioxidative effects. Here, we studied the antiphotoaging effects of ethanolic extract of P. santalinus L. heartwood (EPS) on ultraviolet radiation B (UVB)-irradiated normal human dermal fibroblasts (NHDFs). Results showed that EPS significantly inhibited the upregulation of matrix metalloproteinases and IL-6 caused by UVB irradiation, and suppressed UVB-induced phosphorylation of extracellular signal-regulated kinase, Jun N-terminal kinase and p38, as well as the activation of AP-1 transcription factors. Further study indicated that UVB-induced production of MMP-1 and IL-6 could be inhibited by PD 98059 (an ERK inhibitor) and SP600125 (A JNK inhibitor), implied that EPS inhibited UVB-induced MMP-1 and IL-6 secretion by inactivating MAPK signaling pathway. In addition, EPS possessed an excellent antioxidant activity, which could increase cytoprotective antioxidants such as HO-1, NQ-O1 expression by facilitating the nuclear accumulation of Nrf2. Treatment of NHDFs with EPS also recovered UVB-induced procollagen type I reduction by activating TGF-β/Smad pathway. These findings demonstrated that EPS had a potential effect against UVB-induced skin photoaging. © 2017 The American Society of Photobiology.

  15. Resveratrol-Enriched Rice Attenuates UVB-ROS-Induced Skin Aging via Downregulation of Inflammatory Cascades

    PubMed Central

    Lee, Taek Hwan; Wahedi, Hussain Mustatab; Baek, So-Hyeon

    2017-01-01

    The skin is the outermost protective barrier between the internal and external environments in humans. Chronic exposure to ultraviolet (UV) radiation is a major cause of skin aging. UVB radiation penetrates the skin and induces ROS production that activates three major skin aging cascades: matrix metalloproteinase- (MMP-) 1-mediated aging; MAPK-AP-1/NF-κB-TNF-α/IL-6, iNOS, and COX-2-mediated inflammation-induced aging; and p53-Bax-cleaved caspase-3-cytochrome C-mediated apoptosis-induced aging. These mechanisms are collectively responsible for the wrinkling and photoaging characteristic of UVB-induced skin aging. There is an urgent requirement for a treatment that not only controls these pathways to prevent skin aging but also avoids the adverse effects often encountered when applying bioactive compounds in concentrated doses. In this study, we investigated the efficacy of genetically modified normal edible rice (NR) that produces the antiaging compound resveratrol (R) as a treatment for skin aging. This resveratrol-enriched rice (RR) overcomes the drawbacks of R and enhances its antiaging potential by controlling the abovementioned three major pathways of skin aging. RR does not exhibit the toxicity of R alone and promisingly downregulates the pathways underlying UVB-ROS-induced skin aging. These findings advocate the use of RR as a nutraceutical for antiaging purposes. PMID:28900534

  16. Resveratrol-Enriched Rice Attenuates UVB-ROS-Induced Skin Aging via Downregulation of Inflammatory Cascades.

    PubMed

    Subedi, Lalita; Lee, Taek Hwan; Wahedi, Hussain Mustatab; Baek, So-Hyeon; Kim, Sun Yeou

    2017-01-01

    The skin is the outermost protective barrier between the internal and external environments in humans. Chronic exposure to ultraviolet (UV) radiation is a major cause of skin aging. UVB radiation penetrates the skin and induces ROS production that activates three major skin aging cascades: matrix metalloproteinase- (MMP-) 1-mediated aging; MAPK-AP-1/NF- κ B-TNF- α /IL-6, iNOS, and COX-2-mediated inflammation-induced aging; and p53-Bax-cleaved caspase-3-cytochrome C-mediated apoptosis-induced aging. These mechanisms are collectively responsible for the wrinkling and photoaging characteristic of UVB-induced skin aging. There is an urgent requirement for a treatment that not only controls these pathways to prevent skin aging but also avoids the adverse effects often encountered when applying bioactive compounds in concentrated doses. In this study, we investigated the efficacy of genetically modified normal edible rice (NR) that produces the antiaging compound resveratrol (R) as a treatment for skin aging. This resveratrol-enriched rice (RR) overcomes the drawbacks of R and enhances its antiaging potential by controlling the abovementioned three major pathways of skin aging. RR does not exhibit the toxicity of R alone and promisingly downregulates the pathways underlying UVB-ROS-induced skin aging. These findings advocate the use of RR as a nutraceutical for antiaging purposes.

  17. Anti-photoaging properties of the phosphodiesterase 3 inhibitor cilostazol in ultraviolet B-irradiated hairless mice.

    PubMed

    Kim, Ha Neui; Gil, Chan Hee; Kim, Yu Ri; Shin, Hwa Kyoung; Choi, Byung Tae

    2016-08-03

    We investigated whether cilostazol, an activator of cyclic adenosine monophosphate (cAMP)-dependent intracellular signaling, could inhibit ultraviolet B (UVB) irradiation-induced photoaging in HR-1 hairless mice. Cilostazol decreased wrinkle formation and skin thickness in UVB-irradiated mice, as well as increased staining of collagen fibers and inhibition of reactive oxygen species (ROS) formation in the skin. Moreover, the proteolytic activities of gelatinase matrix metalloproteinase (MMP)-9 and collagenase MMP-3 were significantly decreased in UVB-irradiated mice treated with cilostazol. Western blotting showed that UVB-induced activation of p38 mitogen-activated protein kinases (MAPK) and nuclear factor (NF)-κB was significantly inhibited by cilostazol, whereas the activation of Akt was significantly enhanced by cilostazol. Confirmation of localized protein expression in the skin revealed marked p38 MAPK and NF-κB activation that was mainly detected in the dermis. Marked Akt activation was mainly detected in the epidermis. Our results suggest that cilostazol may have anti-photoaging effects on UVB-induced wrinkle formation by maintaining the extracellular matrix density in the dermis, which occurs via regulation of ROS and related p38 MAPK and NF-κB signaling, and subsequent down-regulation of MMPs. Therefore, cilostazol may protect against photoaging-induced wrinkle formation.

  18. Anti-photoaging properties of the phosphodiesterase 3 inhibitor cilostazol in ultraviolet B-irradiated hairless mice

    PubMed Central

    Kim, Ha Neui; Gil, Chan Hee; Kim, Yu Ri; Shin, Hwa Kyoung; Choi, Byung Tae

    2016-01-01

    We investigated whether cilostazol, an activator of cyclic adenosine monophosphate (cAMP)-dependent intracellular signaling, could inhibit ultraviolet B (UVB) irradiation-induced photoaging in HR-1 hairless mice. Cilostazol decreased wrinkle formation and skin thickness in UVB-irradiated mice, as well as increased staining of collagen fibers and inhibition of reactive oxygen species (ROS) formation in the skin. Moreover, the proteolytic activities of gelatinase matrix metalloproteinase (MMP)-9 and collagenase MMP-3 were significantly decreased in UVB-irradiated mice treated with cilostazol. Western blotting showed that UVB-induced activation of p38 mitogen-activated protein kinases (MAPK) and nuclear factor (NF)-κB was significantly inhibited by cilostazol, whereas the activation of Akt was significantly enhanced by cilostazol. Confirmation of localized protein expression in the skin revealed marked p38 MAPK and NF-κB activation that was mainly detected in the dermis. Marked Akt activation was mainly detected in the epidermis. Our results suggest that cilostazol may have anti-photoaging effects on UVB-induced wrinkle formation by maintaining the extracellular matrix density in the dermis, which occurs via regulation of ROS and related p38 MAPK and NF-κB signaling, and subsequent down-regulation of MMPs. Therefore, cilostazol may protect against photoaging-induced wrinkle formation. PMID:27484958

  19. Differential responses to high- and low-dose ultraviolet-B stress in tobacco Bright Yellow-2 cells

    PubMed Central

    Takahashi, Shinya; Kojo, Kei H.; Kutsuna, Natsumaro; Endo, Masaki; Toki, Seiichi; Isoda, Hiroko; Hasezawa, Seiichiro

    2015-01-01

    Ultraviolet (UV)-B irradiation leads to DNA damage, cell cycle arrest, growth inhibition, and cell death. To evaluate the UV-B stress–induced changes in plant cells, we developed a model system based on tobacco Bright Yellow-2 (BY-2) cells. Both low-dose UV-B (low UV-B: 740 J m−2) and high-dose UV-B (high UV-B: 2960 J m−2) inhibited cell proliferation and induced cell death; these effects were more pronounced at high UV-B. Flow cytometry showed cell cycle arrest within 1 day after UV-B irradiation; neither low- nor high-UV-B–irradiated cells entered mitosis within 12 h. Cell cycle progression was gradually restored in low-UV-B–irradiated cells but not in high-UV-B–irradiated cells. UV-A irradiation, which activates cyclobutane pyrimidine dimer (CPD) photolyase, reduced inhibition of cell proliferation by low but not high UV-B and suppressed high-UV-B–induced cell death. UV-B induced CPD formation in a dose-dependent manner. The amounts of CPDs decreased gradually within 3 days in low-UV-B–irradiated cells, but remained elevated after 3 days in high-UV-B–irradiated cells. Low UV-B slightly increased the number of DNA single-strand breaks detected by the comet assay at 1 day after irradiation, and then decreased at 2 and 3 days after irradiation. High UV-B increased DNA fragmentation detected by the terminal deoxynucleotidyl transferase dUTP nick end labeling assay 1 and 3 days after irradiation. Caffeine, an inhibitor of ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) checkpoint kinases, reduced the rate of cell death in high-UV-B–irradiated cells. Our data suggest that low-UV-B–induced CPDs and/or DNA strand-breaks inhibit DNA replication and proliferation of BY-2 cells, whereas larger contents of high-UV-B–induced CPDs and/or DNA strand-breaks lead to cell death. PMID:25954287

  20. Pharmacological activities of an eye drop containing Matricaria chamomilla and Euphrasia officinalis extracts in UVB-induced oxidative stress and inflammation of human corneal cells.

    PubMed

    Bigagli, Elisabetta; Cinci, Lorenzo; D'Ambrosio, Mario; Luceri, Cristina

    2017-08-01

    Ultraviolet B (UVB) exposure is a risk factor for corneal damage resulting in oxidative stress, inflammation and cell death. The aim of this study was to investigate the potential protective effects of a commercial eye drop (Dacriovis™) containing Matricaria chamomilla and Euphrasia officinalis extracts on human corneal epithelial cells (HCEC-12) against UVB radiation-induced oxidative stress and inflammation as well as the underlying mechanisms. The antioxidant potential of the eye drops was evaluated by measuring the ferric reducing antioxidant power and the total phenolic content by Folin-Ciocalteu reagent. HCEC-12 cells were exposed to UVB radiation and treated with the eye drops at various concentrations. Cell viability, wound healing assay, reactive oxygen species (ROS) levels, protein and lipid oxidative damage and COX-2, IL-1β, iNOS, SOD-2, HO-1 and GSS gene expression, were assessed. Eye drops were able to protect corneal epithelial cells from UVB-induced cell death and ameliorated the wound healing; the eye drops exhibited a strong antioxidant activity, decreasing ROS levels and protein and lipid oxidative damage. Eye drops also exerted anti-inflammatory activities by decreasing COX-2, IL-1β, iNOS expression, counteracted UVB-induced GSS and SOD-2 expression and restored HO-1 expression to control levels. These findings suggest that an eye drop containing Matricaria chamomilla and Euphrasia officinalis extracts exerts positive effects against UVB induced oxidative stress and inflammation and may be useful in protecting corneal epithelial cells from UVB exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Photochemoprotective effect of a fraction of a partially purified extract of Byrsonima crassifolia leaves against UVB-induced oxidative stress in fibroblasts and hairless mice.

    PubMed

    de Souza, Rebeca Oliveira; de Assis Dias Alves, Geórgia; Aguillera, Ana Luiza Scarano; Rogez, Hervé; Fonseca, Maria José Vieira

    2018-01-01

    Ultraviolet B (UVB) irradiation increases the risk of various skin disorders, leading to inflammation and oxidative stress and thereby increasing the risk of skin photoaging and carcinogenesis. The use of photochemoprotectors such as natural products with antioxidant and anti-inflammatory properties represents a strategy for preventing UVB-induced skin damage. We investigated the photochemoprotective effect of a fraction of a partially purified extract of Byrsonima crassifolia leaves (BCF) on fibroblasts and hairless mice exposed to UVB radiation. The mixture of phenolic compounds in BCF prevented the decrease in reduced glutathione (GSH) levels in fibroblast cultures induced by UVB radiation more than some of their individual standards ((+)-catechin (CAT), epigallocatechin gallate and quercetin 3-O-β-d-glucopyranoside). Prepared gel formulations increased skin antioxidant activity, and BCF components and the CAT standard were retained in the HRS/J hairless mice epidermis 2h after application. Topical treatment with the BCF or CAT formulations (1%) significantly reduced the decrease in GSH levels and decreased myeloperoxidase activity and the secretion of pro-inflammatory cytokines IL-1β and IL-6 induced by UVB radiation (P<0.05), indicating that both BCF and CAT had anti-inflammatory effects. BCF inhibited UVB-induced metalloproteinase (MMP)-9 secretion/activity, whereas CAT had no effect on MMP-9 activity in the skin of treated animals. These results therefore suggest that BCF can be used as a photochemoprotective agent and antioxidant in the prevention/treatment of inflammation and oxidative stress of the skin induced by UVB radiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Inhibition of ultraviolet-B epidermal ornithine decarboxylase induction and skin carcinogenesis in hairless mice by topical indomethacin and triamcinolone acetonide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, N.J.; Connor, M.J.; Breeding, J.

    1982-10-01

    Modulation of ultraviolet-B (UVB) skin carcinogenesis by topical treatment with two antiinflammatory drugs expected to have different mechanisms of action has been studied in the hairless mouse. Indomethacin is a nonsteroidal antiinflammatory agent which may act by inhibiting prostaglandin biosynthesis. Triamcinolone acetonide is a steroidal antiinflammatory agent. Both of these drugs inhibited the induction of epidermal ornithine decarboxylase by UVB when applied topically in a acetone vehicle. A UVB skin tumor study was designed. Groups of mice were irradiated daily with UVB for 20 days, each mouse receiving a total of 17.1 kJ UVB per sq m. Group 1 wasmore » treated with acetone immediately after each irradiation; Group 2 received 700 nmol indomethacin in acetone immediately after each irradiation; Group 3 received 14.4 nmol triamcinolone acetonide in acetone immediately after each irradiation. Mice were killed after 52 weeks, and the tumors were excised and examined histologically. Both topical indomethacin and topical triamcinolone acetonide were effective in reducing the incidence and size of the skin tumors induced by UVB. This evidence supports the hypothesis that the induction of ornithine decarboxylase may be a critical component of UVB skin carcinogenesis and that inhibition of ornithine decarboxylase induction can be used as a screen for agents which will inhibit UVB skin carcinogenesis.« less

  3. Research on the measurement of the ultraviolet irradiance in the xenon lamp aging test chamber

    NASA Astrophysics Data System (ADS)

    Ji, Muyao; Li, Tiecheng; Lin, Fangsheng; Yin, Dejin; Cheng, Weihai; Huang, Biyong; Lai, Lei; Xia, Ming

    2018-01-01

    This paper briefly introduces the methods of calibrating the irradiance in the Xenon lamp aging test chamber. And the irradiance under ultraviolet region is mainly researched. Three different detectors whose response wave range are respectively UVA (320 400nm), UVB (275 330nm) and UVA+B (280 400nm) are used in the experiment. Through comparing the measuring results with different detectors under the same xenon lamp source, we discuss the difference between UVA, UVB and UVA+B on the basis of the spectrum of the xenon lamp and the response curve of the detectors. We also point out the possible error source, when use these detectors to calibrate the chamber.

  4. Effects of climate change and UV-B on materials.

    PubMed

    Andrady, Anthony L; Hamid, Halim S; Torikai, Ayako

    2003-01-01

    The outdoor service life of common plastic materials is limited by their susceptibility to solar ultraviolet radiation. Of the solar wavelengths the UV-B component is particularly efficient in bringing about photodamage in synthetic and naturally occurring materials. This is particularly true of plastics, rubber and wood used in the building and agricultural industries. Any depletion in the stratospheric ozone layer and resulting increase in the UV-B component of terrestrial sunlight will therefore tend to decrease the service life of these materials. The extent to which the service life is reduced is, however, difficult to estimate as it depends on several factors. These include the chemical nature of the material, the additives it contains, the type and the amount of light-stabilizers (or protective coatings) used, and the amount of solar exposure it receives. Concomitant climate change is likely to increase the ambient temperature and humidity in some of the same regions likely to receive increased UV-B radiation. These factors, particularly higher temperatures, are also well known to accelerate the rate of photodegradation of materials, and may therefore further limit the service life of materials in these regions. To reliably assess the damage to materials as a consequence of ozone layer depletion, the wavelength sensitivity of the degradation process, dose-response relationships for the material and the effectiveness of available stabilizers need to be quantified. The data needed for the purpose are not readily available at this time for most of the commonly used plastics or wood materials. Wavelength sensitivity of a number of common plastic materials and natural biopolymers are available and generally show the damage (per photon) to decrease exponentially with the wavelength. Despite the relatively higher fraction of UV-A in sunlight, the UV-B content is responsible for a significant part of light-induced damage of materials. The primary approach to

  5. UV-B Perception and Acclimation in Chlamydomonas reinhardtii[OPEN

    PubMed Central

    Chappuis, Richard; Allorent, Guillaume

    2016-01-01

    Plants perceive UV-B, an intrinsic component of sunlight, via a signaling pathway that is mediated by the photoreceptor UV RESISTANCE LOCUS8 (UVR8) and induces UV-B acclimation. To test whether similar UV-B perception mechanisms exist in the evolutionarily distant green alga Chlamydomonas reinhardtii, we identified Chlamydomonas orthologs of UVR8 and the key signaling factor CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1). Cr-UVR8 shares sequence and structural similarity to Arabidopsis thaliana UVR8, has conserved tryptophan residues for UV-B photoreception, monomerizes upon UV-B exposure, and interacts with Cr-COP1 in a UV-B-dependent manner. Moreover, Cr-UVR8 can interact with At-COP1 and complement the Arabidopsis uvr8 mutant, demonstrating that it is a functional UV-B photoreceptor. Chlamydomonas shows apparent UV-B acclimation in colony survival and photosynthetic efficiency assays. UV-B exposure, at low levels that induce acclimation, led to broad changes in the Chlamydomonas transcriptome, including in genes related to photosynthesis. Impaired UV-B-induced activation in the Cr-COP1 mutant hit1 indicates that UVR8-COP1 signaling induces transcriptome changes in response to UV-B. Also, hit1 mutants are impaired in UV-B acclimation. Chlamydomonas UV-B acclimation preserved the photosystem II core proteins D1 and D2 under UV-B stress, which mitigated UV-B-induced photoinhibition. These findings highlight the early evolution of UVR8 photoreceptor signaling in the green lineage to induce UV-B acclimation and protection. PMID:27020958

  6. Objective validation of central sensitization in the rat UVB and heat rekindling model

    PubMed Central

    Weerasinghe, NS; Lumb, BM; Apps, R; Koutsikou, S; Murrell, JC

    2014-01-01

    Background The UVB and heat rekindling (UVB/HR) model shows potential as a translatable inflammatory pain model. However, the occurrence of central sensitization in this model, a fundamental mechanism underlying chronic pain, has been debated. Face, construct and predictive validity are key requisites of animal models; electromyogram (EMG) recordings were utilized to objectively demonstrate validity of the rat UVB/HR model. Methods The UVB/HR model was induced on the heel of the hind paw under anaesthesia. Mechanical withdrawal thresholds (MWTs) were obtained from biceps femoris EMG responses to a gradually increasing pinch at the mid hind paw region under alfaxalone anaesthesia, 96 h after UVB irradiation. MWT was compared between UVB/HR and SHAM-treated rats (anaesthetic only). Underlying central mechanisms in the model were pharmacologically validated by MWT measurement following intrathecal N-methyl-d-aspartate (NMDA) receptor antagonist, MK-801, or saline. Results Secondary hyperalgesia was confirmed by a significantly lower pre-drug MWT {mean [±standard error of the mean (SEM)]} in UVB/HR [56.3 (±2.1) g/mm2, n = 15] compared with SHAM-treated rats [69.3 (±2.9) g/mm2, n = 8], confirming face validity of the model. Predictive validity was demonstrated by the attenuation of secondary hyperalgesia by MK-801, where mean (±SEM) MWT was significantly higher [77.2 (±5.9) g/mm2 n = 7] in comparison with pre-drug [57.8 (±3.5) g/mm2 n = 7] and saline [57.0 (±3.2) g/mm2 n = 8] at peak drug effect. The occurrence of central sensitization confirmed construct validity of the UVB/HR model. Conclusions This study used objective outcome measures of secondary hyperalgesia to validate the rat UVB/HR model as a translational model of inflammatory pain. What's already known about this topic? Most current animal chronic pain models lack translatability to human subjects. Primary hyperalgesia is an established feature of the UVB/heat rekindling

  7. The role of lipid raft translocation of prohibitin in regulation of Akt and Raf-protected apoptosis of HaCaT cells upon ultraviolet B irradiation.

    PubMed

    Wu, Qiong; Wu, Shiyong

    2017-07-01

    Prohibitin (PHB) plays a role in regulation of ultraviolet B light (UVB)-induced apoptosis of human keratinocytes, HaCaT cells. The regulatory function of PHB appears to be associated with its lipid raft translocation. However, the detailed mechanism for PHB-mediated apoptosis of these keratinocytes upon UVB irradiation is not clear. In this report, we determined the role of lipid raft translocation of PHB in regulation of UVB-induced apoptosis. Our data show that upon UVB irradiation PHB is translocated from the non-raft membrane to the lipid rafts, which is correlated with a release of both Akt and Raf from membrane. Overexpression of Akt and/or Raf impedes UVB-induced lipid raft translocation of PHB. Immunoprecipitation analysis indicates that UVB alters the interactions among PHB, Akt, and Raf. Reduced expression of PHB leads to a decreased phosphorylation of Akt and ERK, as well as a decreased activity of Akt, and increased apoptosis of the cells upon UVB irradiation. These results suggest that PHB regulates UVB-induced apoptosis of keratinocytes via a mechanism that involves detachment from Akt and Raf on the plasma membrane, and sequential lipid raft translocation. © 2017 Wiley Periodicals, Inc.

  8. Modeling the survivability of brucella to exposure of Ultraviolet radiation and temperature

    NASA Astrophysics Data System (ADS)

    Howe, R.

    Accumulated summation of daily Ultra Violet-B (UV-B = 290? to 320 ? ) data? from The USDA Ultraviolet Radiation Monitoring Program show good correlation (R^2 = 77%) with daily temperature data during the five month period from February through June, 1998. Exposure of disease organisms, such as brucella to the effects of accumulated UV-B radiation, can be modeled for a 5 month period from February through June, 1998. Estimates of a lethal dosage for brucell of UV-B in the environment is dependent on minimum/maximum temperature and Solar Zenith Angle for the time period. The accumulated increase in temperature over this period also effects the decomposition of an aborted fetus containing brucella. Decomposition begins at some minimum daily temperature at 27 to 30 degrees C and peaks at 39 to 40C. It is useful to view the summation of temperature as a threshold for other bacteria growth, so that accumulated temperature greater than some value causes decomposition through competition with other bacteria and brucella die from the accumulated effects of UV-B, temperature and organism competition. Results of a study (Cook 1998) to determine survivability of brucellosis in the environment through exposure of aborted bovine fetuses show no one cause can be attributed to death of the disease agent. The combination of daily increase in temperature and accumulated UV-B radiation reveal an inverse correlation to survivability data and can be modeled as an indicator of brucella survivability in the environment in arid regions.

  9. Cyanidin-3-glucoside inhibits UVB-induced oxidative damage and inflammation by regulating MAP kinase and NF-κB signaling pathways in SKH-1 hairless mice skin.

    PubMed

    Pratheeshkumar, Poyil; Son, Young-Ok; Wang, Xin; Divya, Sasidharan Padmaja; Joseph, Binoy; Hitron, John Andrew; Wang, Lei; Kim, Donghern; Yin, Yuanqin; Roy, Ram Vinod; Lu, Jian; Zhang, Zhuo; Wang, Yitao; Shi, Xianglin

    2014-10-01

    Skin cancer is one of the most commonly diagnosed cancers in the United States. Exposure to ultraviolet-B (UVB) radiation induces inflammation and photocarcinogenesis in mammalian skin. Cyanidin-3-glucoside (C3G), a member of the anthocyanin family, is present in various vegetables and fruits especially in edible berries, and displays potent antioxidant and anticarcinogenic properties. In this study, we have assessed the in vivo effects of C3G on UVB irradiation induced chronic inflammatory responses in SKH-1 hairless mice, a well-established model for UVB-induced skin carcinogenesis. Here, we show that C3G inhibited UVB-induced skin damage and inflammation in SKH-1 hairless mice. Our results indicate that C3G inhibited glutathione depletion, lipid peroxidation and myeloperoxidation in mouse skin by chronic UVB exposure. C3G significantly decreased the production of UVB-induced pro-inflammatory cytokines, such as IL-6 and TNF-α, associated with cutaneous inflammation. Likewise, UVB-induced inflammatory responses were diminished by C3G as observed by a remarkable reduction in the levels of phosphorylated MAP kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, C3G also decreased UVB-induced cyclooxygenase-2 (COX-2), PGE2 and iNOS levels, which are well-known key mediators of inflammation and cancer. Treatment with C3G inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mice skin. Immunofluorescence assay revealed that topical application of C3G inhibited the expression of 8-hydroxy-2'-deoxyguanosine, proliferating cell nuclear antigen, and cyclin D1 in chronic UVB exposed mouse skin. Collectively, these data indicates that C3G can provide substantial protection against the adverse effects of UVB radiation by modulating UVB-induced MAP kinase and NF-κB signaling pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Ultraviolet B preconditioning enhances the hair growth-promoting effects of adipose-derived stem cells via generation of reactive oxygen species.

    PubMed

    Jeong, Yun-Mi; Sung, Young Kwan; Kim, Wang-Kyun; Kim, Ji Hye; Kwack, Mi Hee; Yoon, Insoo; Kim, Dae-Duk; Sung, Jong-Hyuk

    2013-01-01

    Hypoxia induces the survival and regenerative potential of adipose-derived stem cells (ASCs), but there are tremendous needs to find alternative methods for ASC preconditioning. Therefore, this work investigated: (1) the ability of low-dose ultraviolet B (UVB) radiation to stimulate the survival, migration, and tube-forming activity of ASCs in vitro; (2) the ability of UVB preconditioning to enhance the hair growth-promoting capacity of ASCs in vivo; and (3) the mechanism of action for ASC stimulation by UVB. Although high-dose UVB decreased the proliferation of ASCs, low-dose (10 or 20 mJ/cm(2)) treatment increased their survival, migration, and tube-forming activity. In addition, low-dose UVB upregulated the expression of ASC-derived growth factors, and a culture medium conditioned by UVB-irradiated ASCs increased the proliferation of dermal papilla and outer root sheet cells. Notably, injection of UVB-preconditioned ASCs into C(3)H/HeN mice significantly induced the telogen-to-anagen transition and increased new hair weight in vivo. UVB treatment significantly increased the generation of reactive oxygen species (ROS) in cultured ASCs, and inhibition of ROS generation by diphenyleneiodonium chloride (DPI) significantly attenuated UVB-induced ASC stimulation. Furthermore, NADPH oxidase 4 (Nox4) expression was induced in ASCs by UVB irradiation, and Nox4 silencing by small interfering RNA, like DPI, significantly reduced UVB-induced ROS generation. These results suggest that the primary involvement of ROS generation in UVB-mediated ASC stimulation occurs via the Nox4 enzyme. This is the first indication that a low dose of UVB radiation and/or the control of ROS generation could potentially be incorporated into a novel ASC preconditioning method for hair regeneration.

  11. Protective effects of a new phloretin derivative against UVB-induced damage in skin cell model and human volunteers.

    PubMed

    Shin, Seoungwoo; Kum, Hyunwoo; Ryu, Dehun; Kim, Minkyung; Jung, Eunsun; Park, Deokhoon

    2014-10-20

    The phenolic compound phloretin is a prominent member of the chemical class of dihydrochalcones. Phloretin is specifically found in apple and apple juice and known for its biological properties. We were particularly interested in its potential dermo-cosmetic applications. However, practical limitations of phloretin do exist due to its poor water-solubility. Phloretin was sulfonated with sulfuric acid (98%, wt) and mixed with saturated salt water to produce phloretin 3',3-disulfonate in order to increase its water-solubility. Here we reported the photoprotective effect of phloretin 3',3-disulfonate (PS), a new semi-synthetic derivative of phloretin. Results showed that PS attenuated cyclobutane pyrimidine dimer (CPDs) formation, glutathione (GSH) depletion and apoptosis induced by ultraviolet B (UVB). The photoprotective effect of PS is tightly correlated to the enhancement of nucleotide excision repair (NER) gene expression. Furthemore, PS had inhibitory effects on UVB-induced release of the inflammatory mediators, such as IL-6 and prostaglandin-E2. We also confirmed the safety and clinical efficacy of PS on human skin. Overall, the results demonstrated significant benefits of PS on the protection of keratinocytes against UVB-induced injuries and suggested its potential use in skin photoprotection.

  12. Protective Effects of a New Phloretin Derivative against UVB-Induced Damage in Skin Cell Model and Human Volunteers

    PubMed Central

    Shin, Seoungwoo; Kum, Hyunwoo; Ryu, Dehun; Kim, Minkyung; Jung, Eunsun; Park, Deokhoon

    2014-01-01

    The phenolic compound phloretin is a prominent member of the chemical class of dihydrochalcones. Phloretin is specifically found in apple and apple juice and known for its biological properties. We were particularly interested in its potential dermo-cosmetic applications. However, practical limitations of phloretin do exist due to its poor water-solubility. Phloretin was sulfonated with sulfuric acid (98%, wt) and mixed with saturated salt water to produce phloretin 3',3-disulfonate in order to increase its water-solubility. Here we reported the photoprotective effect of phloretin 3',3-disulfonate (PS), a new semi-synthetic derivative of phloretin. Results showed that PS attenuated cyclobutane pyrimidine dimer (CPDs) formation, glutathione (GSH) depletion and apoptosis induced by ultraviolet B (UVB). The photoprotective effect of PS is tightly correlated to the enhancement of nucleotide excision repair (NER) gene expression. Furthemore, PS had inhibitory effects on UVB-induced release of the inflammatory mediators, such as IL-6 and prostaglandin-E2. We also confirmed the safety and clinical efficacy of PS on human skin. Overall, the results demonstrated significant benefits of PS on the protection of keratinocytes against UVB-induced injuries and suggested its potential use in skin photoprotection. PMID:25334063

  13. Triple-combination treatment with oral α-lipoic acid, betamethasone injection, and NB-UVB for non-segmental progressive vitiligo.

    PubMed

    Li, Li; Li, Lu; Wu, Yan; Gao, Xing-Hua; Chen, Hong-Duo

    2016-06-01

    Vitiligo is an acquired depigmenting disease with uncertain etiopathogenesis and the treatment modalities need to be consistently updated. To evaluate a triple-combination treatment with oral α-lipoic acid (ALA), betamethasone injection, and narrowband ultraviolet B (NB-UVB) on vitiligo. Patients with non-segmental and progressive vitiligo lesions were randomly assigned to two groups. The treatment group and the control group were respectively treated with oral ALA and placebo, in combination with betamethasone injection and NB-UVB. The effectiveness and adverse events were evaluated by investigators and patients before and after treatment. Fifty non-segmental progressive vitiligo patients were enrolled in the study. The treatment period was 6 months. In treatment group, over 40% patients achieved > 50% improvement and ≥ 5 satisfaction score by 3-month therapy (M3). This percentage increased to 90% at M6. Treatment group achieved better efficacy than control group at M3, while no difference was seen at M6. The combined treatment with oral ALA, betamethasone injection, and NB-UVB was effective and safe on non-segmental progressive vitiligo. ALA could accelerate the initial response of repigmentation.

  14. Combined effects of Lanthanum(III) and elevated Ultraviolet-B radiation on root nitrogen nutrient in soybean seedlings.

    PubMed

    Huang, Guangrong; Wang, Lihong; Sun, Zhaoguo; Li, Xiaodong; Zhou, Qing; Huang, Xiaohua

    2015-02-01

    Rare earth element pollution and elevated ultraviolet-B (UV-B) radiation occur simultaneously in some regions, but the combined effects of these two factors on plants have not attracted enough attention. Nitrogen nutrient is vital to plant growth. In this study, the combined effects of lanthanum(III) and elevated UV-B radiation on nitrate reduction and ammonia assimilation in soybean (Glycine max L.) roots were investigated. Treatment with 0.08 mmol L(-1) La(III) did not change the effects of elevated UV-B radiation on nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), nitrate, ammonium, amino acids, or soluble protein in the roots. Treatment with 0.24 mmol L(-1) La(III) and elevated UV-B radiation synergistically decreased the NR, NiR, GS, and GOGAT activities as well as the nitrate, amino acid, and soluble protein levels, except for the GDH activity and ammonium content. Combined treatment with 1.20 mmol L(-1) La(III) and elevated UV-B radiation produced severely deleterious effects on all test indices, and these effects were stronger than those induced by La(III) or elevated UV-B radiation treatment alone. Following the withdrawal of La(III) and elevated UV-B radiation, all test indices for the combined treatments with 0.08/0.24 mmol L(-1) La(III) and elevated UV-B radiation recovered to a certain extent, but they could not recover for treatments with 1.20 mmol L(-1) La(III) and elevated UV-B radiation. In summary, combined treatment with La(III) and elevated UV-B radiation seriously affected nitrogen nutrition in soybean roots through the inhibition of nitrate reduction and ammonia assimilation.

  15. Caffeine and caffeine sodium benzoate have a sunscreen effect, enhance UVB-induced apoptosis, and inhibit UVB-induced skin carcinogenesis in SKH-1 mice.

    PubMed

    Lu, Yao-Ping; Lou, You-Rong; Xie, Jian-Guo; Peng, Qing-Yun; Zhou, Sherry; Lin, Yong; Shih, Weichung Joe; Conney, Allan H

    2007-01-01

    Topical application of caffeine sodium benzoate (caffeine-SB) immediately after UVB irradiation of SKH-1 mice enhanced UVB-induced apoptosis by a 2- to 3-fold greater extent than occurred after the topical application of an equimolar amount of caffeine. Although topical application of caffeine-SB or caffeine enhanced UVB-induced apoptosis, both substances were inactive on non-UVB-treated normal skin. Topical application of caffeine-SB or caffeine (each has UVB absorption properties) 0.5 h before irradiation with a high dose of UVB decreased UVB-induced thymine dimer formation and sunburn lesions (sunscreen effect). Caffeine-SB was more active than an equimolar amount of caffeine in exerting a sunscreen effect. In additional studies, caffeine-SB strongly inhibited the formation of tumors in UVB-pretreated 'high-risk mice' and in tumor-bearing mice, and the growth of UVB-induced tumors was also inhibited. Caffeine-SB and caffeine are the first examples of compounds that have both a sunscreen effect and enhance UVB-induced apoptosis. Our studies suggest that caffeine-SB and caffeine may be good agents for inhibiting the formation of sunlight-induced skin cancer.

  16. How does solar ultraviolet-B radiation improve drought tolerance of silver birch (Betula pendula Roth.) seedlings?

    PubMed

    Robson, T Matthew; Hartikainen, Saara M; Aphalo, Pedro J

    2015-05-01

    We hypothesized that solar ultraviolet (UV) radiation would protect silver birch seedlings from the detrimental effects of water stress through a coordinated suite of trait responses, including morphological acclimation, improved control of water loss through gas exchange and hydraulic sufficiency. To better understand how this synergetic interaction works, plants were grown in an experiment under nine treatment combinations attenuating ultraviolet-A and ultraviolet-B (UVB) from solar radiation together with differential watering to create water-deficit conditions. In seedlings under water deficit, UV attenuation reduced height growth, leaf production and leaf length compared with seedlings receiving the full spectrum of solar radiation, whereas the growth and morphology of well-watered seedlings was largely unaffected by UV attenuation. There was an interactive effect of the treatment combination on water relations, which was more apparent as a change in the water potential at which leaves wilted or plants died than through differences in gas exchange. This suggests that changes occur in the cell wall elastic modulus or accumulation of osmolites in cells under UVB. Overall, the strong negative effects of water deficit are partially ameliorated by solar UV radiation, whereas well-watered silver birch seedlings are slightly disadvantaged by the solar UV radiation they receive. © 2014 John Wiley & Sons Ltd.

  17. Responses of photosynthetic properties and chloroplast ultrastructure of Bryum argenteum from a desert biological soil crust to elevated ultraviolet-B radiation.

    PubMed

    Hui, Rong; Li, Xinrong; Chen, Cuiyun; Zhao, Xin; Jia, Rongliang; Liu, Lichao; Wei, Yongping

    2013-04-01

    Our understanding of plant responses to enhanced ultraviolet-B (UV-B) radiation has improved over recent decades. However, research on cryptogams is scarce and it remains controversial whether UV-B radiation causes changes in physiology related to photosynthesis. To investigate the effects of supplementary UV-B radiation on photosynthesis and chloroplast ultrastructure in Bryum argenteum Hedw., specimens were cultured for 10 days under four UV-B treatments (2.75, 3.08, 3.25 and 3.41 W m(-2) ), simulating depletion of 0% (control), 6%, 9% and 12% of stratospheric ozone at the latitude of Shapotou, a temperate desert area of northwest China. Analyses showed malondialdehyde content significantly increased, whereas chlorophyll (Chl) fluorescence parameters and Chl contents decreased with increased UV-B intensity. These results corresponded with changes in thylakoid protein complexes and chloroplast ultrastructure. Overall, enhanced UV-B radiation leads to significant decreases in photosynthetic function and serious destruction of the chloroplast ultrastructure of B. argenteum. The degree of negative influences increased with the intensity of UV-B radiation. These results may not only provide a potential mechanism for supplemental UV-B effects on photosynthesis of moss crust, but also establish a theoretical basis for further studies of adaptation and response mechanisms of desert ecosystems under future ozone depletion. Copyright © Physiologia Plantarum 2012.

  18. Impacts of long-term enhanced UV-B radiation on bryophytes in two sub-Arctic heathland sites of contrasting water availability.

    PubMed

    Arróniz-Crespo, M; Gwynn-Jones, D; Callaghan, T V; Núñez-Olivera, E; Martínez-Abaigar, J; Horton, P; Phoenix, G K

    2011-09-01

    Anthropogenic depletion of stratospheric ozone in Arctic latitudes has resulted in an increase of ultraviolet-B radiation (UV-B) reaching the biosphere. UV-B exposure is known to reduce above-ground biomass and plant height, to increase DNA damage and cause accumulation of UV-absorbing compounds in polar plants. However, many studies on Arctic mosses tended to be inconclusive. The importance of different water availability in influencing UV-B impacts on lower plants in the Arctic has been poorly explored and might partially explain the observed wide variation of responses, given the importance of water in controlling bryophyte physiology. This study aimed to assess the long-term responses of three common sub-Arctic bryophytes to enhanced UV-B radiation (+UV-B) and to elucidate the influence of water supply on those responses. Responses of three sub-Arctic bryophytes (the mosses Hylocomium splendens and Polytrichum commune and the liverwort Barbilophozia lycopodioides) to +UV-B for 15 and 13 years were studied in two field experiments using lamps for UV-B enhancement with identical design and located in neighbouring areas with contrasting water availability (naturally mesic and drier sites). Responses evaluated included bryophyte abundance, growth, sporophyte production and sclerophylly; cellular protection by accumulation of UV-absorbing compounds, β-carotene, xanthophylls and development of non-photochemical quenching (NPQ); and impacts on photosynthesis performance by maximum quantum yield (F(v) /F(m)) and electron transport rate (ETR) through photosystem II (PSII) and chlorophyll concentrations. Responses were species specific: H. splendens responded most to +UV-B, with reduction in both annual growth (-22 %) and sporophyte production (-44 %), together with increased β-carotene, violaxanthin, total chlorophyll and NPQ, and decreased zeaxanthin and de-epoxidation of the xanthophyll cycle pool (DES). Barbilophozia lycopodioides responded less to +UV-B, showing

  19. EFFECTS OF ULTRAVIOLET-B IRRADIANCE IN SOYBEAN. 6. INFLUENCE OF PHOSPHORUS NUTRITION ON GROWTH AND FLAVONIID CONTENT

    EPA Science Inventory

    Soybeans Glycine max Essex were hydroponically grown in a greenhouse at 2 levels of ultraviolet-B(UV-B) radiation and 4 levels of P. Plants were grown in each treatment combination to the complete expansion of the 4th trifoliolate leaf. UV-B radiation and reduced P supply general...

  20. [Effect of ultraviolet irradiation through glass on the level of 25-hydroxy vitamin D and bone metabolism in rats].

    PubMed

    Wu, Wei; Wang, Shu-Rong; Zhang, Wei

    2009-02-01

    Some research has shown that there is a dose-dependent relationship between ultraviolet B (UVB) and serum levels of 25-hydroxy vitamin D[25-(OH)D]\\. Vitamin D is correlated with bone metabolism. This study aimed to explore the effect of UVB irradiation through glass on serum levels of 25-(OH)D and bone metabolism in rats. Wistar rats were fed with vitamin D deficient diet and randomly divided into three groups: no UVB exposure, direct UVB exposure (160 min/d) and indirect UVB exposure (through glass) (160 min/d). By 21 days after exposure, bone mineral density (BMD) and serum levels of 25-(OH)D, parathyroid hormone (PTH), osteocalcin (OC), bone alkaline phosphatase (BALP) and carboxyterminal cross-linked telopeptide of type I collagen (ICTP) were measured. BMD (0.036+/-0.002 g/cm2) in the indirect UVB exposure group was significantly higher than that in the no UVB exposure group (0.029+/-0.002 g/cm2) (<0.01). Serum ICTP level in the indirect UVB exposure group was significantly lower than that in the no UVB exposure group (0.181+/-0.067 microg/L vs 0.194+/-0.066 microg/L; <0.01). Serum levels of PTH, 25-(OH)D, BALP and OC in the indirect UVB exposure group were not significantly different from those in the no UVB exposure group. Compared with the direct UVB exposure group, serum levels of OC (0.559+/-0.067 ng/mL vs 0.278+/-0.067 ng/mL; <0.05) and PTH (0.181+/-0.067 microg/L vs 0.109+/-0.067 microg/L; <0.05) in the indirect UVB exposure group significantly increased, while serum levels of 25-(OH)D significantly decreased (28.67+/-1.35 nmol/L vs 34.69+/-4.30 nmol/L; <0.01). There were no significant differences in BMD and serum levels of BALP and ICTP between the indirect UVB exposure and the direct UVB exposure groups. UVB irradiation through glass cannot elevate serum levels of 25-(OH)D, but can decrease bone turnover rate and increase BMD. The effect of UVB irradiation through glass on bone metabolism is similar to that of direct UVB irradiation.

  1. Fractional Er:YAG laser assisting topical betamethasone solution in combination with NB-UVB for resistant non-segmental vitiligo.

    PubMed

    Yan, Ru; Yuan, Jinping; Chen, Hongqiang; Li, Yuan-Hong; Wu, Yan; Gao, Xing-Hua; Chen, Hong-Duo

    2017-09-01

    Resistant non-segmental vitiligo is difficult to be treated. Ablative erbium-YAG (Er:YAG) laser has been used in the treatment of vitiligo, but the ablation of entire epidermis frustrated the compliance of patients. The purpose of this study is to investigate the effects of fractional Er:YAG laser followed by topical betamethasone and narrow band ultraviolet B (NB-UVB) therapy in the treatment of resistant non-segmental vitiligo. The vitiligo lesions of each enrolled patient were divided into four treatment parts, which were all irradiated with NB-UVB. Three parts were, respectively, treated with low, medium, or high energy of Er:YAG laser, followed by topical betamethasone solution application. A control part was spared with laser treatment and topical betamethasone. The treatment period lasted 6 months. The efficacy was assessed by two blinded dermatologists. Treatment protocol with high energy of 1800 mJ/P of fractional Er:YAG laser followed by topical betamethasone solution and in combination with NB-UVB made 60% patients achieve marked to excellent improvement in white patches. The protocol with medium energy of 1200 mJ/P of laser assisted approximate 36% patients achieve such improvement. The two protocols, respectively, showed better efficacies than NB-UVB only protocol. However, fractional Er:YAG laser at low energy of 600 mJ/P did not provide such contributions to the treatment of vitiligo. The fractional Er:YAG laser in combination with topical betamethasone solution and NB-UVB was suitable for resistant non-segmental vitiligo. The energy of laser was preferred to be set at relatively high level.

  2. Changes in ultrastructure and responses of antioxidant systems of algae (Dunaliella salina) during acclimation to enhanced ultraviolet-B radiation.

    PubMed

    Tian, Jiyuan; Yu, Juan

    2009-12-02

    Because of depletion of the stratospheric ozone layer, levels of solar ultraviolet-B (UV-B) radiation (280-315 nm), which penetrates the water column to an ecologically-significant depth, are increasing. In order to assess changes in ultrastructure and responses of antioxidant systems of algae during acclimation to enhanced ultraviolet-B radiation, Dunaliella salina was treated with higher dose of UV-B radiation (13.2 kJm(-2) d(-1) dose) in this study. As compared to the control panel (8.8 kJm(-2) d(-1)), the treatment D. salina had many changes in ultrastructures: (1) thylakoids became swelled, and some of them penetrated into the pyrenoid; (2) lipid globules accumulated; (3) the amounts of starch grains increased; (4) cristae of mitochondria disintegrated; (5) inclusions in vacuoles reduced; and (6) cisternae of Golgi dictyosomes became loose and swollen. Enhanced UV-B irradiation also induced different responses of the antioxidant systems in D. salina: (1) contents of TBARS (thiobarbituric acid reacting substance) and H(2)O(2) increased significantly (p<0.05); (2) levels of MAAs (mycosporine-like amino acids) increased at the beginning and subsequently decreased, and finally they leveled off at lower values; (3) there were not apparent variations for carotenoid contents, and contents of chlorophyll a presented a trend of initial increase and ultimate decrease; (4) both ascorbate and glutathione contents increased significantly (p<0.05); and (5) for the enzyme activities, POD activities increased remarkably (p<0.05), and SOD activities declined apparently (p<0.05), and CAT activity in D. salina had slight variations (p>0.05). In addition, growth curve displayed that enhanced UV-B radiation prominently inhibited increase of cell concentration when compared with control panel (p<0.05). Our results indicated that enhanced UV-B radiation caused ultrastructural changes of D. salina and induced different responses of antioxidant systems in D. salina.

  3. The contributions of adjusted ambient ultraviolet B radiation at place of residence and other determinants to serum 25-hydroxyvitamin D concentrations.

    PubMed

    Kelly, D; Theodoratou, E; Farrington, S M; Fraser, R; Campbell, H; Dunlop, M G; Zgaga, L

    2016-05-01

    Solar ultraviolet B (UVB) radiation is the major source of vitamin D (vitD) for humans. To describe ambient UVB radiation at wavelengths that induce vitD synthesis (vitD-UVB) in Scotland, and to examine the relationship to serum 25-hydroxyvitamin D (25OHD). We estimated the average vitD-UVB dose for each day of the year and for each postcode area in Scotland, using the Tropospheric Emission Monitoring Internet Service database. Cumulative and weighted vitD-UVB (CW-vitD-UVB) exposure at place of residence was calculated for each participant. Plasma 25OHD was assayed in 1964 healthy participants. Significant seasonal and geographical variation in vitD-UVB was observed. Ambient vitD-UVB exposure at place of residence was significantly associated with plasma 25OHD (P < 0·01). An average increase in 25OHD of 1 ng mL(-1) was observed for every 1000 mJ cm(-2) higher CW-vitD-UVB dose or for every 2·5 μg of daily supplement taken. Adequate 25OHD concentration (> 16 ng mL(-1)) was observed in the majority when CW-vitD-UVB dose was > 6000 mJ cm(-2), a level of ambient radiation achieved only in summer months in Scotland. When predicting vitD deficiency, dramatic improvement in the area under the curve was observed (from 0·55 to 0·70) after CW-vitD-UVB dose was added to the model, in addition to a range of other covariates. Ambient vitD-UVB can be a useful predictor of vitD status. Geotemporally mapped measurements of vitD-UVB can be used as a proxy for vitD status or as a covariate in epidemiological research, particularly if 25OHD is unavailable. © 2015 British Association of Dermatologists.

  4. Size is an essential parameter in governing the UVB-protective efficacy of silver nanoparticles in human keratinocytes.

    PubMed

    Palanki, Rohan; Arora, Sumit; Tyagi, Nikhil; Rusu, Lilia; Singh, Ajay P; Palanki, Srinivas; Carter, James E; Singh, Seema

    2015-09-15

    Ultraviolet (UV) radiation from sun, particularly its UVB component (290-320 nm), is considered the major etiological cause of skin cancer that impacts over 2 million lives in the United States alone. Recently, we reported that polydisperse colloidal suspension of silver nanoparticles (AgNPs) protected the human keratinocytes (HaCaT) against UVB-induced damage, thus indicating their potential for prevention of skin carcinogenesis. Here we sought out to investigate if size controlled the chemopreventive efficacy of AgNPs against UVB-induced DNA damage and apoptosis. Percent cell viability was examined by WST-1 assay after treating the cells with various doses (1-10 μg/mL) of AgNPs of different sizes (10, 20, 40, 60 and 100 nm) for 12 and 24 h. For protection studies, cells were treated with AgNPs of different sizes at a uniform concentration of 1 μg/mL. After 3 h, cells were irradiated with UVB (40 mJ/cm(2)) and dot-blot analysis was performed to detect cyclobutane pyrimidine dimers (CPDs) as an indication of DNA damage. Apoptosis was analyzed by flow cytometry after staining the cells with 7-Amino-Actinomycin (7-AAD) and PE Annexin V. Immunoblot analysis was accomplished by processing the cells for protein extraction and Western blotting using specific antibodies against various proteins. The data show that the pretreatment of HaCaT cells with AgNPs in the size range of 10-40 nm were effective in protecting the skin cells from UVB radiation-induced DNA damage as validated by reduced amounts of CPDs, whereas no protection was observed with AgNPs of larger sizes (60 and 100 nm). Similarly, only smaller size AgNPs (10-40 nm) were effective in protecting the skin cells from UV radiation-induced apoptosis. At the molecular level, UVB -irradiation of HaCaT cells led to marked increase in expression of pro-apoptotic protein (Bax) and decrease in anti-apoptotic proteins (Bcl-2 and Bcl-xL), while it remained largely unaffected in skin cells pretreated with smaller size Ag

  5. Inhibition of Ultraviolet B-Induced Expression of the Proinflammatory Cytokines TNF-α and VEGF in the Cornea by Fucoxanthin Treatment in a Rat Model.

    PubMed

    Chen, Shiu-Jau; Lee, Ching-Ju; Lin, Tzer-Bin; Liu, Hsiang-Jui; Huang, Shuan-Yu; Chen, Jia-Zeng; Tseng, Kuang-Wen

    2016-01-07

    Ultraviolet B (UVB) irradiation is the most common cause of radiation damage to the eyeball and is a risk factor for human corneal damage. We determined the protective effect of fucoxanthin, which is a carotenoid found in common edible seaweed, on ocular tissues against oxidative UVB-induced corneal injury. The experimental rats were intravenously injected with fucoxanthin at doses of 0.5, 5 mg/kg body weight/day or with a vehicle before UVB irradiation. Lissamine green for corneal surface staining showed that UVB irradiation caused serious damage on the corneal surface, including severe epithelial exfoliation and deteriorated epithelial smoothness. Histopathological lesion examination revealed that levels of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α) and vascular endothelial growth factor (VEGF), significantly increased. However, pretreatment with fucoxanthin inhibited UVB radiation-induced corneal disorders including evident preservation of corneal surface smoothness, downregulation of proinflammatory cytokine expression, and decrease of infiltrated polymorphonuclear leukocytes from UVB-induced damage. Moreover, significant preservation of the epithelial integrity and inhibition of stromal swelling were also observed after UVB irradiation in fucoxanthin-treated groups. Pretreatment with fucoxanthin may protect against UVB radiation-induced corneal disorders by inhibiting expression of proinflammatory factors, TNF-α, and VEGF and by blocking polymorphonuclear leukocyte infiltration.

  6. Whey peptides prevent chronic ultraviolet B radiation-induced skin aging in melanin-possessing male hairless mice.

    PubMed

    Kimura, Yoshiyuki; Sumiyoshi, Maho; Kobayashi, Toshiya

    2014-01-01

    Whey proteins or peptides exhibit various actions, including an antioxidant action, an anticancer action, and a protective action against childhood asthma and atopic syndrome. The effects of orally administered whey peptides (WPs) on chronic ultraviolet B (UVB) radiation-induced cutaneous changes, including changes in cutaneous thickness, elasticity, wrinkle formation, etc., have not been examined. In this study, we studied the preventive effects of WPs on cutaneous aging induced by chronic UVB irradiation in melanin-possessing male hairless mice (HRM). UVB (36-180 mJ/cm(2)) was irradiated to the dorsal area for 17 wk in HRM, and the measurements of cutaneous thickness and elasticity in UVB irradiated mice were performed every week. WPs (200 and 400 mg/kg, twice daily) were administered orally for 17 wk. WPs inhibited the increase in cutaneous thickness, wrinkle formation, and melanin granules and the reduction in cutaneous elasticity associated with photoaging. Furthermore, it has been reported that UVB irradiation-induced skin aging is closely associated with the increase in expression of matrix metalloproteinase (MMP), vascular endothelial growth factor (VEGF), Ki-67-, and 8-hydroxy-2'-deoxyguanosine (8-OHdG)-positive cells. WPs also prevented increases in the expression of MMP-2 and pro-MMP-9, VEGF, and Ki-67- and 8-OHdG-positive cells induced by chronic UVB irradiation. It was found that WPs prevent type IV collagen degradation, angiogenesis, proliferation, and DNA damage caused by UVB irradiation. Overall, these results demonstrate the considerable benefit of WPs for protection against solar UV-irradiated skin aging as a supplemental nutrient.

  7. Effects of ultraviolet-B radiation on the growth, physiology and cannabinoid production of Cannabis sativa L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lydon, J.

    The concentration of cannabinoids in Cannabis sativa L. is correlated with high ultraviolet-B (UV-B) radiation environments. ..delta../sup 9/-Tetrahydrocannabinolic acid and cannabidiolic acid, both major secondary products of C. sativa, absorb UV-B radiation and may function as solar screens. The object of this study was to test the effects of UV-B radiation on the physiology and cannabinoid production of C. sativa. Drug and fiber-type C. sativa were irradiated with three levels of UV-B radiation for 40 days in greenhouse experiments. Physiological measurements on leaf tissues were made by infra-red gas analysis. Drug and fiber-type control plants had similar CO/sub 2/ assimilationmore » rates from 26 to 32/sup 0/C. Drug-type control plant had higher dark respiration rates and stomatal conductances than fiber-type control plants. The concentration of ..delta../sup 9/-THC, but not of other cannabinoids) in both vegetative and reproductive tissues increased with UV-B dose in drug-type plants. None of the cannabinoids in fiber-type plants were affected by UV-B radiation. The increased level of ..delta../sup 9/-THC found in leaves after irradiation may account for the physiological and morphological insensitivity to UV-B radiation in the drug-type plants. However, fiber plants showed no comparable change in the level of cannabidoil (CBD). Resin stripped form fresh fiber-type floral tissue by sonication was spotted on filter paper and irradiated continuously for 7 days. Cannabidiol (CBD) gradually decreased when irradiated but ..delta../sup 9/-THC and cannabichromene did not.« less

  8. RNA-Seq transcriptomic analysis of the Morus alba L. leaves exposed to high-level UVB with or without dark treatment.

    PubMed

    Guan, Qijie; Yu, Jiaojiao; Zhu, Wei; Yang, Bingxian; Li, Yaohan; Zhang, Lin; Tian, Jingkui

    2018-03-01

    Ultraviolet-B (UVB) irradiation induces oxidative stress in plant cells due to the generation of excessive reactive oxygen species. Morus alba L. (M. abla) is an important medicinal plant used for the treatment of human diseases. Also, its leaves are widely used as food for silkworms. In our previous research, we found that a high level of UVB irradiation with dark incubation led to the accumulation of secondary metabolites in M. abla leaf. The aim of the present study was to describe and compare M. alba leaf transcriptomics with different treatments (control, UVB, UVB+dark). Leaf transcripts from M. alba were sequenced using an Illumina Hiseq 2000 system, which produced 14.27Gb of data including 153,204,462 paired-end reads among the three libraries. We de novo assembled 133,002 transcripts with an average length of 1270bp and filtered 69,728 non-redundant unigenes. A similarity search was performed against the non-redundant National Center of Biotechnology Information (NCBI) protein database, which returned 41.08% hits. Among the 20,040 unigenes annotated in UniProtKB/SwissProt database, 16,683 unigenes were assigned 102,232 gene ontology terms and 6667 unigenes were identified in 287 known metabolic pathways. Results of differential gene expression analysis together with real-time quantitative PCR tests indicated that UVB irradiation with dark incubation enhanced the flavonoid biosynthesis in M. alba leaf. Our findings provided a valuable proof for a better understanding of the metabolic mechanism under abiotic stresses in M. alba leaf. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Photoprotection against the UVB-induced oxidative stress and epidermal damage in mice using leaves of three different varieties of Lepidium meyenii (maca).

    PubMed

    Gonzales-Castañeda, Cynthia; Rivera, Valery; Chirinos, Ana Lucía; Evelson, Pablo; Gonzales, Gustavo Francisco

    2011-08-01

    Skin exposure to ultraviolet (UV) B radiation leads to epidermal damage and generation of reactive oxygen species. The photoprotective effect of extracts of three varieties of leaves (red, yellow, and black) from maca (Lepidium meyenii), a plant from the Peruvian highlands, was assessed in mouse skin exposed to UVB radiation. The hydroalcoholic extracts of three varieties of maca leaves were applied topically to the dorsal skin of young-adult male mice prior to exposition to UVB radiation. The three varieties had UVA/UVB absorptive properties and presented antioxidant activity, being highest with red maca, followed by black and yellow maca. The three varieties of maca leaves prevented the development of sunburn cells, epidermal hyperplasia, leukocytic infiltration, and other alterations produced by UVB radiation. Mice treated with black maca showed the highest superoxide dismutase levels, and mice treated with black and yellow maca showed higher catalase levels in skin, whereas red maca protected the skin and liver against significant increases in the lipid peroxidation activity observed in the unprotected animals. The presence of significant antioxidant activity and the inhibition of lipid peroxidation suggest that the observed protection could be partly attributable to this mechanism. © 2011 The International Society of Dermatology.

  10. Resveratrol enhances ultraviolet B-induced cell death through nuclear factor-{kappa}B pathway in human epidermoid carcinoma A431 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Preeti; Kalra, Neetu; Nigam, Nidhi

    Resveratrol has been reported to suppress cancer progression in several in vivo and in vitro models, whereas ultraviolet B (UVB), a major risk for skin cancer, is known to induce cell death in cancerous cells. Here, we investigated whether resveratrol can sensitize A431 human epidermoid carcinoma cells to UVB-induced cell death. We examined the combined effect of UVB (30 mJ/cm{sup 2}) and resveratrol (60 {mu}M) on A431 cells. Exposure of A431 carcinoma cells to UVB radiation or resveratrol can inhibit cell proliferation and induce apoptosis. However, the combination of resveratrol and UVB exposure was associated with increased proliferation inhibition ofmore » A431 cells compared with either agent alone. Furthermore, results showed that resveratrol and UVB treatment of A431 cells disrupted the nuclear factor-kappaB (NF-{kappa}B) pathway by blocking phosphorylation of serine 536 and inactivating NF-{kappa}B and subsequent degradation of I{kappa}B{alpha}, which regulates the expression of survivin. Resveratrol and UVB treatment also decreased the phosphorylation of tyrosine 701 of the important transcription factor signal transducer activator of transcription (STAT1), which in turn inhibited translocation of phospho-STAT1 to the nucleus. Moreover, resveratrol/UVB also inhibited the metastatic protein LIMK1, which reduced the motility of A431 cells. In conclusion, our study demonstrates that the combination of resveratrol and UVB act synergistically against skin cancer cells. Thus, resveratrol is a potential chemotherapeutic agent against skin carcinogenesis.« less

  11. Responses of He-Ne laser on agronomic traits and the crosstalk between UVR8 signaling and phytochrome B signaling pathway in Arabidopsis thaliana subjected to supplementary ultraviolet-B (UV-B) stress.

    PubMed

    Gao, Limei; Li, Yongfeng; Shen, Zhihua; Han, Rong

    2018-05-01

    UV-B acclimation effects and UV-B damage repair induced by a 632.8-nm He-Ne laser were investigated in Arabidopsis thaliana plants in response to supplementary UV-B stress. There was an increasing trend in growth parameters in the combination-treated plants with He-Ne laser and UV-B light compared to those stressed with enhanced UV-B light alone during different developmental stages of plants. The photosynthetic efficiency (Pn) and survival rates of seedlings were significantly higher in the combination treatments than UV-B stress alone. The expression of UVR8, phytochrome B (PhyB), and their mediated signal responsive genes such as COP1, HY5, and CHS were also significantly upregulated in plants with the laser irradiation compared with other groups without the laser. Levels of flavonol accumulation in leaves and capsule yield of He-Ne laser-treated plants were increased. The phyB-9 mutants were more sensitive to enhanced UV-B stress and had no obvious improvements in plant phenotypic development and physiological damage caused by enhanced UV-B stress after He-Ne laser irradiation. Our results suggested that UVR8 and its mediated signaling pathway via interaction with COP1 can be induced by He-Ne laser, and these processes were dependent on cytoplasmic PhyB levels in plant cells, which might be one of the most important mechanisms of He-Ne laser on UV-B protection and UV-B damage repair. These current data have also elucidated that the biostimulatory effects of He-Ne laser on Arabidopsis thaliana plants would happen not only during the early growth stage but also during the entire late developmental stage.

  12. Oral administration of Lactobacillus plantarum HY7714 protects hairless mouse against ultraviolet B-induced photoaging.

    PubMed

    Kim, Hyun Mee; Lee, Dong Eun; Park, Soo Dong; Kim, Yong-Tae; Kim, Yu Jin; Jeong, Ji Woong; Jang, Sung Sik; Ahn, Young-Tae; Sim, Jae-Hun; Huh, Chul-Sung; Chung, Dae Kyun; Lee, Jung-Hee

    2014-11-28

    Ultraviolet (UV) irradiation alters multiple molecular pathways in the skin, thereby inducing skin damage, including photoaging. In recent years, probiotics have gained interest due to their beneficial effects on skin health, such as inhibiting atopic dermatitis and improving skin immunity or inflammation. However, little is known about the effects of probiotics on UVBinduced photoaging. In this study, we evaluated the effect of Lactobacillus plantarum HY7714 against UVB-induced photoaging in human dermal fibroblasts and hairless mice. The results showed that L. plantarum HY7714 treatment effectively rescued UVB-reduced procollagen expression through the inhibition of UVB-induced matrix metalloproteinase (MMP)-1 expression in human dermal fibroblasts. Data from a western blot showed that L. plantarum HY7714 inhibited the phosphorylation of Jun N-terminal kinase, thereby suppressing the UVB-induced phosphorylation and expression of c-Jun. Oral administration of L. plantarum HY7714 clearly inhibited the number, depth, and area of wrinkles in hairless mouse skin. Histological data showed that L. plantarum HY7714 significantly inhibited UVB-induced epidermal thickness in mice. Western blot and zymography data also revealed that L. plantarum HY7714 effectively inhibited MMP-13 expression as well as MMP-2 and -9 activities in dermal tissue. Collectively, these results provide further insight regarding the skin biological actions of L. plantarum HY7714, a potential skin anti-photoaging agent.

  13. Protective effect of crocin on ultraviolet B‑induced dermal fibroblast photoaging.

    PubMed

    Deng, Mingwu; Li, Dong; Zhang, Yichen; Zhou, Guangdong; Liu, Wei; Cao, Yilin; Zhang, Wenjie

    2018-06-11

    Ultraviolet B (UVB) radiation induces the production of reactive oxygen species (ROS), resulting in the aging of dermal fibroblasts. Crocin, a bioactive constituent of Crocus sativus, possesses anti‑oxidation effects. The purpose of the present study was to evaluate the protective effect of crocin on UVB‑induced dermal fibroblast photoaging. Human dermal fibroblasts were isolated and cultured with different concentrations of crocin prior to and following exposure to UVB irradiation. The senescent phenotypes of cells were evaluated, including cell proliferation, cell cycle, senescence‑associated β‑galactosidase (SA‑β‑gal) expression, intracellular ROS, expression of antioxidant protein glutathione peroxidase 1 (GPX‑1) and extracellular matrix protein collagen type 1 (Col‑1). Crocin rescued the cell proliferation inhibited by UVB irradiation, prevented cell cycle arrest and markedly decreased the number of SA‑β‑gal‑positive cells. In addition, crocin reduced UVB‑induced ROS by increasing GPX‑1 expression and other direct neutralization effects. Furthermore, crocin promoted the expression of the extracellular matrix protein Col‑1. Crocin could effectively prevent UVB‑induced cell damage via the reduction of intracellular ROS; thus, it could potentially be used in the prevention of skin photoaging.

  14. Orally administered betaine reduces photodamage caused by UVB irradiation through the regulation of matrix metalloproteinase-9 activity in hairless mice.

    PubMed

    Im, A-Rang; Lee, Hee Jeong; Youn, Ui Joung; Hyun, Jin Won; Chae, Sungwook

    2016-01-01

    Betaine is widely distributed in plants, microorganisms, in several types of food and in medical herbs, including Lycium chinense. The administration of 100 mg betaine/kg body weight/day is an effective strategy for preventing ultraviolet irradiation‑induced skin damage. The present study aimed to determine the preventive effects of betaine on ultraviolet B (UVB) irradiation‑induced skin damage in hairless mice. The mice were divided into three groups: Control (n=5), UVB‑treated vehicle (n=5) and UVB‑treated betaine (n=5) groups. The level of irradiation was progressively increased between 60 mJ/cm2 per exposure at week 1 (one minimal erythematous dose = 60 mJ/cm2) and 90 mJ/cm2 per exposure at week 7. The formation of wrinkles significantly increased following UVB exposure in the UVB‑treated vehicle group. However, treatment with betaine suppressed UVB‑induced wrinkle formation, as determined by the mean length, mean depth, number, epidermal thickness and collagen damage. Furthermore, oral administration of betaine also inhibited the UVB‑induced expression of mitogen‑activated protein kinase kinase (MEK), extracellular signal‑regulated kinase (ERK), and matrix metalloproteinase‑9 (MMP‑9). These findings suggested that betaine inhibits UVB‑induced skin damage by suppressing increased expression of MMP‑9 through the inhibition of MEK and ERK.

  15. Responses of photosynthetic properties and chloroplast ultrastructure of two moss crusts from a desert biological soil crust to supplementary UV-B radiation

    NASA Astrophysics Data System (ADS)

    Hui, Rong; Li, Xinrong; Zhao, Yang; Pan, Yanxia

    2016-04-01

    Our understanding of plant responses to supplementary ultraviolet-B (UV-B) radiation due to stratospheric ozone depletion has improved over recent decades. However, research on biological soil crusts (BSCs) is scarce and it remains controversial. Laboratory studies were conducted to investigate the influence of UV-B radiation on the Bryum argenteum and Didymodon vinealis isolated from BSCs, which are both dominant species in moss crusts found within patches of shrubs and herbs in the Tengger Desert of northern China. The aim of the current work was to evaluate whether supplementary UV-B radiation affected photosynthetic properties and chloroplast ultrastructure of two moss crusts and whether response differences were observed between the crusts. Four levels of UV-B radiation of 2.75 (control), 3.08, 3.25, and 3.41 W m-2 was achieved using fluorescence tube systems for 10 days, simulating 0, 6, 9, and 12% of stratospheric ozone at the latitude of Shapotou, respectively. We measured photosynthetic apparatus as assessed by chlorophyll a fluorescence parameters, photosynthetic pigment contents, and observations of chloroplast ultrastructure. Additionally, soluble proteins and UV-B absorbing compounds were simultaneously investigated. The results of this study showed that chlorophyll a fluorescence parameters (i.e., the maximal quantum yield of PSII photochemistry, the effective quantum yield of PSII photochemistry, and photochemical quenching coefficient), photosynthetic pigment contents, soluble protein contents, total flavonoid contents and the ultrastructure were negatively influenced by elevated UV-B radiation and the degree of detrimental effects significantly increased with the intensity of UV-B radiation. Moreover, results demonstrated that the negative effects on photosynthesis and chloroplast ultrastructure were more serious in B. argenteum than that in D. vinealis. These results may not only provide a potential mechanism for supplemental UV-B effects on

  16. Effects of a turmeric extract (Curcuma longa) on chronic ultraviolet B irradiation-induced skin damage in melanin-possessing hairless mice.

    PubMed

    Sumiyoshi, Maho; Kimura, Yoshiyuki

    2009-12-01

    Turmeric (the rhizomes of Curcuma longa L., Zingiberacease) is widely used as a dietary pigment and spice, and has been traditionally used for the treatment of inflammation, skin wounds and hepatic disorders in Ayurvedic, Unani and Chinese medicine. Although the topical application or oral administration of turmeric is used to improve skin trouble, there is no evidence to support this effect. The aim of this study was to clarify whether turmeric prevents chronic ultraviolet B (UVB)-irradiated skin damage. We examined the effects of a turmeric extract on skin damage including changes in skin thickness and elasticity, pigmentation and wrinkling caused by long-term, low-dose ultraviolet B irradiation in melanin-possessing hairless mice. The extract (at 300 or 1000 mg/kg, twice daily) prevented an increase in skin thickness and a reduction in skin elasticity induced by chronic UVB exposure. It also prevented the formation of wrinkles and melanin (at 1000 mg/kg, twice daily) as well as increases in the diameter and length of skin blood vessels and in the expression of matrix metalloproteinase-2 (MMP-2). Prevention of UVB-induced skin aging by turmeric may be due to the inhibition of increases in MMP-2 expression caused by chronic irradiation.

  17. Alleviation of Ultraviolet B-Induced Photodamage by Coffea arabica Extract in Human Skin Fibroblasts and Hairless Mouse Skin

    PubMed Central

    Wu, Po-Yuan; Huang, Chi-Chang; Chu, Yin; Huang, Ya-Han; Lin, Ping; Liu, Yu-Han; Wen, Kuo-Ching; Lin, Chien-Yih; Hsu, Mei-Chich; Chiang, Hsiu-Mei

    2017-01-01

    Coffea arabica extract (CAE) containing 48.3 ± 0.4 mg/g of chlorogenic acid and a trace amount of caffeic acid was found to alleviate photoaging activity in human skin fibroblasts. In this study, polyphenol-rich CAE was investigated for its antioxidant and antiinflammatory properties, as well as for its capability to alleviate ultraviolet B (UVB)-induced photodamage in BALB/c hairless mice. The results indicated that 500 μg/mL of CAE exhibited a reducing power of 94.7%, ferrous ion chelating activity of 46.4%, and hydroxyl radical scavenging activity of 20.3%. The CAE dose dependently reduced UVB-induced reactive oxygen species (ROS) generation in fibroblasts. Furthermore, CAE inhibited the UVB-induced expression of cyclooxygenase-2 and p-inhibitor κB, and the translocation of nuclear factor-kappa B (NF-κB) to the nucleus of fibroblasts. In addition, CAE alleviated UVB-induced photoaging and photodamage in BALB/c hairless mice by restoring the collagen content and reduced UVB-induced epidermal hyperplasia. CAE also inhibited UVB-induced NF-κB, interleukin-6, and matrix metalloproteinase-1 expression in the hairless mouse skin. The results indicated that CAE exhibits antiphotodamage activity by inhibiting UV-induced oxidative stress and inflammation. Therefore, CAE is a candidate for use in antioxidant, antiinflammatory, and antiphotodamage products. PMID:28387707

  18. Lemon balm extract (Melissa officinalis, L.) promotes melanogenesis and prevents UVB-induced oxidative stress and DNA damage in a skin cell model.

    PubMed

    Pérez-Sánchez, Almudena; Barrajón-Catalán, Enrique; Herranz-López, María; Castillo, Julián; Micol, Vicente

    2016-11-01

    Solar ultraviolet (UV) radiation is one of the main causes of a variety of cutaneous disorders, including photoaging and skin cancer. Its UVB component (280-315nm) leads to oxidative stress and causes inflammation, DNA damage, p53 induction and lipid and protein oxidation. Recently, an increase in the use of plant polyphenols with antioxidant and anti-inflammatory properties has emerged to protect human skin against the deleterious effects of sunlight. This study evaluates the protective effects of lemon balm extract (LBE) (Melissa Officinalis, L) and its main phenolic compound rosmarinic acid (RA) against UVB-induced damage in human keratinocytes. The LBE composition was determined by HPLC analysis coupled to photodiode array detector and ion trap mass spectrometry with electrospray ionization (HPLC-DAD-ESI-IT-MS/MS). Cell survival, ROS generation and DNA damage were determined upon UVB irradiation in the presence of LBE. The melanogenic capacity of LBE was also determined. RA and salvianolic acid derivatives were the major compounds, but caffeic acid and luteolin glucuronide were also found in LBE. LBE and RA significantly increased the survival of human keratinocytes upon UVB radiation, but LBE showed a stronger effect. LBE significantly decreased UVB-induced intracellular ROS production. Moreover, LBE reduced UV-induced DNA damage and the DNA damage response (DDR), which were measured as DNA strand breaks in the comet assay and histone H2AX activation, respectively. Finally, LBE promoted melanogenesis in the cell model. These results suggest that LBE may be considered as a candidate for the development of oral/topical photoprotective ingredients against UVB-induced skin damage. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Borago officinalis L. attenuates UVB-induced skin photodamage via regulation of AP-1 and Nrf2/ARE pathway in normal human dermal fibroblasts and promotion of collagen synthesis in hairless mice.

    PubMed

    Seo, Seul A; Park, Bom; Hwang, Eunson; Park, Sang-Yong; Yi, Tae-Hoo

    2018-07-01

    Ultraviolet B (UVB) irradiation is regarded as the main cause of skin photodamage. After exposure to UVB irradiation, collagen degradation is accelerated by upregulation of matrix metalloproteinases (MMPs), and collagen synthesis is decreased via downregulation of transforming growth factor (TGF)-β1 signaling. Borago officinalis L. (BO) is an annual herb with medicinal and culinary applications. Although BO has been demonstrated to have antioxidant and anti-inflammatory activities, its potential anti-photoaging effects have not been examined. In this study, we examined the protective effects of BO against skin photodamage in UVB-exposed normal human dermal fibroblasts (NHDFs) in vitro and hairless mice in vivo. BO downregulated the expression of MMP-1, MMP-3, and IL-6, and enhanced TGF-β1 by modulating activator protein (AP-1) and nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) signaling in UVB-irradiated NHDFs. We also found that dietary BO reduced wrinkle formation, epidermal thickness, and erythema in UVB-exposed skin. Moreover, skin hydration and collagen synthesis were improved by dietary BO treatment. Our results demonstrate that BO can be used in functional foods, cosmetic products, and medicines for prevention and treatment of UVB-induced skin photodamage. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Ultraviolet-B radiation causes an upregulation of survivin in human keratinocytes and mouse skin.

    PubMed

    Aziz, Moammir Hasan; Ghotra, Amaninderapal S; Shukla, Yogeshwer; Ahmad, Nihal

    2004-01-01

    Understanding of the mechanism of ultraviolet (UV)-mediated cutaneous damages is far from complete. The cancer-specific expression of Survivin, a member of the inhibitor of apoptosis family of proteins, coupled with its importance in inhibiting cell death and in regulating cell division, makes it a target for cancer treatment. This study was designed to investigate the modulation of Survivin during UV response, both in vitro and in vivo. We used UV-B-mediated damages in normal human epidermal keratinocytes (NHEK) cells as an in vitro model and SKH-1 hairless mouse model for the in vivo studies. For in vitro studies, NHEK were treated with UV-B and samples were processed at 5, 15, 30 min, 1, 3, 6, 12 and 24 h after treatment. Our data demonstrated that UV-B exposure (50 mJ/cm2) to NHEK resulted in a significant upregulation in Survivin messenger RNA (mRNA) and protein levels. We also observed that UV-B exposure to NHEK resulted in significant (1) decrease in Smac/DIABLO and (2) increase in p53. For in vivo studies, the SKH-1 hairless mice were subjected to a single exposure of UV-B (180 mJ/cm2), and samples were processed at 3, 6, 12 and 24 h after UV-B exposure. UV-B treatment resulted in a significant increase in protein or mRNA levels (or both) of Survivin, phospho-Survivin and p53 and a concomitant decrease in Smac/DIABLO in mouse skin. This study demonstrated, for the first time, the involvement of Survivin (and the associated events) in UV-B response in vitro and in vivo in experimental models regarded to have relevance to human situations.

  1. Changes in biologically active ultraviolet radiation reaching the Earth's surface.

    PubMed

    Madronich, S; McKenzie, R L; Björn, L O; Caldwell, M M

    1998-10-01

    Stratospheric ozone levels are near their lowest point since measurements began, so current ultraviolet-B (UV-B) radiation levels are thought to be close to their maximum. Total stratospheric content of ozone-depleting substances is expected to reach a maximum before the year 2000. All other things being equal, the current ozone losses and related UV-B increases should be close to their maximum. Increases in surface erythemal (sunburning) UV radiation relative to the values in the 1970s are estimated to be: about 7% at Northern Hemisphere mid-latitudes in winter/spring; about 4% at Northern Hemisphere mid-latitudes in summer/fall; about 6% at Southern Hemisphere mid-latitudes on a year-round basis; about 130% in the Antarctic in spring; and about 22% in the Arctic in spring. Reductions in atmospheric ozone are expected to result in higher amounts of UV-B radiation reaching the Earth's surface. The expected correlation between increases in surface UV-B radiation and decreases in overhead ozone has been further demonstrated and quantified by ground-based instruments under a wide range of conditions. Improved measurements of UV-B radiation are now providing better geographical and temporal coverage. Surface UV-B radiation levels are highly variable because of cloud cover, and also because of local effects including pollutants and surface reflections. These factors usually decrease atmospheric transmission and therefore the surface irradiances at UV-B as well as other wavelengths. Occasional cloud-induced increases have also been reported. With a few exceptions, the direct detection of UV-B trends at low- and mid-latitudes remains problematic due to this high natural variability, the relatively small ozone changes, and the practical difficulties of maintaining long-term stability in networks of UV-measuring instruments. Few reliable UV-B radiation measurements are available from pre-ozone-depletion days. Satellite-based observations of atmospheric ozone and clouds are

  2. Biological Effects of Sunlight, Ultraviolet Radiation, Visible Light, Infrared Radiation and Vitamin D for Health.

    PubMed

    Holick, Michael F

    2016-03-01

    Humans evolved in sunlight and had depended on sunlight for its life giving properties that was appreciated by our early ancestors. However, for more than 40 years the lay press and various medical and dermatology associations have denounced sun exposure because of its association with increased risk for skin cancer. The goal of this review is to put into perspective the many health benefits that have been associated with exposure to sunlight, ultraviolet A (UVA) ultraviolet B (UVB), visible and infrared radiation. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  3. The Response of Human Skin Commensal Bacteria as a Reflection of UV Radiation: UV-B Decreases Porphyrin Production

    PubMed Central

    Wang, Yanhan; Zhu, Wenhong; Shu, Muya; Jiang, Yong; Gallo, Richard L.; Liu, Yu-Tsueng; Huang, Chun-Ming

    2012-01-01

    Recent global radiation fears reflect the urgent need for a new modality that can simply determine if people are in a radiation risk of developing cancer and other illnesses. Ultraviolet (UV) radiation has been thought to be the major risk factor for most skin cancers. Although various biomarkers derived from the responses of human cells have been revealed, detection of these biomarkers is cumbersome, probably requires taking live human tissues, and varies significantly depending on human immune status. Here we hypothesize that the reaction of Propionibacterium acnes (P. acnes), a human resident skin commensal, to UV radiation can serve as early surrogate markers for radiation risk because the bacteria are immediately responsive to radiation. In addition, the bacteria can be readily accessible and exposed to the same field of radiation as human body. To test our hypothesis, P. acnes was exposed to UV-B radiation. The production of porphyrins in P. acnes was significantly reduced with increasing doses of UV-B. The porphyrin reduction can be detected in both P. acnes and human skin bacterial isolates. Exposure of UV-B to P. acnes- inoculated mice led to a significant decrease in porphyrin production in a single colony of P. acnes and simultaneously induced the formation of cyclobutane pyrimidine dimers (CPD) in the epidermal layers of mouse skin. Mass spectrometric analysis via a linear trap quadrupole (LTQ)-Orbitrap XL showed that five peptides including an internal peptide (THLPTGIVVSCQNER) of a peptide chain release factor 2 (RF2) were oxidized by UV-B. Seven peptides including three internal peptides of 60 kDa chaperonin 1 were de-oxidized by UV-B. When compared to UV-B, gamma radiation also decreased the porphyrin production of P. acnes in a dose-dependent manner, but induced a different signature of protein oxidation/de-oxidation. We highlight that uncovering response of skin microbiome to radiation will facilitate the development of pre-symptomatic diagnosis

  4. The response of human skin commensal bacteria as a reflection of UV radiation: UV-B decreases porphyrin production.

    PubMed

    Wang, Yanhan; Zhu, Wenhong; Shu, Muya; Jiang, Yong; Gallo, Richard L; Liu, Yu-Tsueng; Huang, Chun-Ming

    2012-01-01

    Recent global radiation fears reflect the urgent need for a new modality that can simply determine if people are in a radiation risk of developing cancer and other illnesses. Ultraviolet (UV) radiation has been thought to be the major risk factor for most skin cancers. Although various biomarkers derived from the responses of human cells have been revealed, detection of these biomarkers is cumbersome, probably requires taking live human tissues, and varies significantly depending on human immune status. Here we hypothesize that the reaction of Propionibacterium acnes (P. acnes), a human resident skin commensal, to UV radiation can serve as early surrogate markers for radiation risk because the bacteria are immediately responsive to radiation. In addition, the bacteria can be readily accessible and exposed to the same field of radiation as human body. To test our hypothesis, P. acnes was exposed to UV-B radiation. The production of porphyrins in P. acnes was significantly reduced with increasing doses of UV-B. The porphyrin reduction can be detected in both P. acnes and human skin bacterial isolates. Exposure of UV-B to P. acnes- inoculated mice led to a significant decrease in porphyrin production in a single colony of P. acnes and simultaneously induced the formation of cyclobutane pyrimidine dimers (CPD) in the epidermal layers of mouse skin. Mass spectrometric analysis via a linear trap quadrupole (LTQ)-Orbitrap XL showed that five peptides including an internal peptide (THLPTGIVVSCQNER) of a peptide chain release factor 2 (RF2) were oxidized by UV-B. Seven peptides including three internal peptides of 60 kDa chaperonin 1 were de-oxidized by UV-B. When compared to UV-B, gamma radiation also decreased the porphyrin production of P. acnes in a dose-dependent manner, but induced a different signature of protein oxidation/de-oxidation. We highlight that uncovering response of skin microbiome to radiation will facilitate the development of pre-symptomatic diagnosis

  5. Lighting considerations in controlled environments for nonphotosynthetic plant responses to blue and ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Caldwell, M. M.; Flint, S. D.

    1994-01-01

    This essay will consider both physical and photobiological aspects of controlled environment lighting in the spectral region beginning in the blue and taken to the normal limit of the solar spectrum in the ultraviolet. The primary emphasis is directed to questions of plant response to sunlight. Measurement and computations used in radiation dosimetry in this part of the spectrum are also briefly treated. Because of interest in the ozone depletion problem, there has been some activity in plant UV-B research and there are several recent reviews available. Some aspects of growth chamber lighting as it relates to UV-B research were covered earlier. Apart from work related to the blue/UV-A receptor, less attention has been given to UV-A responses.

  6. Solar ultraviolet radiation from cancer induction to cancer prevention: solar ultraviolet radiation and cell biology.

    PubMed

    Tuorkey, Muobarak J

    2015-09-01

    Although decades have elapsed, researchers still debate the benefits and hazards of solar ultraviolet radiation (UVR) exposure. On the one hand, humans derive most of their serum 25-hydroxycholecalciferol [25(OH)D3], which has potent anticancer activity, from solar UVB radiation. On the other hand, people are more aware of the risk of cancer incidence associated with harmful levels of solar UVR from daily sunlight exposure. Epidemiological data strongly implicate UV radiation exposure as a major cause of melanoma and other cancers, as UVR promotes mutations in oncogenes and tumor-suppressor genes. This review highlights the impact of the different mutagenic effects of solar UVR, along with the cellular and carcinogenic challenges with respect to sun exposure.

  7. UVB radiation and its role in the treatment of postmenopausal women with osteoporosis

    NASA Astrophysics Data System (ADS)

    Falkenbach, A.; Sedlmeyer, Annette; Unkelbach, Uwe

    In humans, the serum concentration of parathyroid hormone (PTH) is higher in winter than in summer. The increase of PTH can be suppressed by oral vitamin D supplements, which is considered beneficial to those with osteoporosis. The present study investigates whether this effect can also be achieved by serial ultraviolet (UV) irradiation of the skin. In total, 34 women suffering from postmenopausal osteoporosis were included in the open trial. In late winter, 20 patients were irradiated with a spectrum containing UVB, eight times over a period of 4 weeks. The serum concentrations of 25-hydroxyvitamin D [25(OH)D], 1,25-dihydroxyvitamin D [1,25(OH)2D], PTH, osteocalcin, alkaline phosphatase (AP), calcium and phosphorus were measured before the first, and 2 days after the last, dose of radiation. The data were compared to the controls (n=14, no UV exposure), who were evaluated once at the start of the study and then again 4 weeks later. After UV irradiation the level of 25(OH)D was increased, whilst that of PTH remained unchanged. The serum level of osteocalcin decreased in the control group, but did not change in the group of women who had been exposed to UV radiation. The present study of osteoporotic women does not confirm previous findings in studies of healthy volunteers i.e. that PTH can be suppressed by exposure to UVB radiation in winter. Further studies are required to specify whether there are subgroups of osteoporotic people who may benefit from exposure to UVB radiation during winter.

  8. Flavonoids Derived from Abelmoschus esculentus Attenuates UV-B Induced Cell Damage in Human Dermal Fibroblasts Through Nrf2-ARE Pathway.

    PubMed

    Patwardhan, Juilee; Bhatt, Purvi

    2016-05-01

    Ultraviolet-B (UV-B) radiation is a smaller fraction of the total radiation reaching the Earth but leads to extensive damage to the deoxyribonucleic acid (DNA) and other biomolecules through formation of free radicals altering redox homeostasis of the cell. Abelmoschus esculentus (okra) has been known in Ayurveda as antidiabetic, hypolipidemic, demulscent, antispasmodic, diuretic, purgative, etc. The aim of this study is to evaluate the protective effect of flavonoids from A. esculentus against UV-B-induced cell damage in human dermal fibroblasts. UV-B protective activity of ethyl acetate (EA) fraction of okra was studied against UV-B-induced cytotoxicity, antioxidant regulation, oxidative DNA damage, intracellular reactive oxygen species (ROS) generation, apoptotic morphological changes, and regulation of heme oxygenase-1 (HO-1) gene through nuclear factor E2-related factor 2-antioxidant response element (Nrf2-ARE) pathway. Flavonoid-rich EA fraction depicted a significant antioxidant potential also showing presence of rutin. Pretreatment of cells with EA fraction (10-30 μg/ml) prevented UV-B-induced cytotoxicity, depletion of endogenous enzymatic antioxidants, oxidative DNA damage, intracellular ROS production, apoptotic changes, and overexpression of Nrf2 and HO-1. Our study demonstrated for the 1(st) time that EA fraction of okra may reduce oxidative stress through Nrf2-ARE pathway as well as through endogenous enzymatic antioxidant system. These results suggested that flavonoids from okra may be considered as potential UV-B protective agents and may also be formulated into herbal sunscreen for topical application. Flavonoid-enriched ethyl acetate (EA) fraction from A. esculentus protected against ultraviolet-B (UV-B)-induced oxidative DNA damageEA fraction prevented UV-B-induced cytotoxicity, depletion of endogenous enzymatic antioxidants, and intracellular reactive oxygen species productionEA fraction could reduce oxidative stress through the Nrf2-ARE

  9. Action spectra affect variability of the climatology of biologically effective ultraviolet radiation on cloud-free days.

    PubMed

    Grifoni, D; Zipoli, G; Sabatini, F; Messeri, G; Bacci, L

    2013-12-01

    Action spectrum (AS) describes the relative effectiveness of ultraviolet (UV) radiation in producing biological effects and allows spectral UV irradiance to be weighted in order to compute biologically effective UV radiation (UVBE). The aim of this research was to study the seasonal and latitudinal distribution over Europe of daily UVBE doses responsible for various biological effects on humans and plants. Clear sky UV radiation spectra were computed at 30-min time intervals for the first day of each month of the year for Rome, Potsdam and Trondheim using a radiative transfer model fed with climatological data. Spectral data were weighted using AS for erythema, vitamin D synthesis, cataract and photokeratitis for humans, while the generalised plant damage and the plant damage AS were used for plants. The daily UVBE doses for the above-mentioned biological processes were computed and are analysed in this study. The patterns of variation due to season (for each location) and latitude (for each date) resulted as being specific for each adopted AS. The biological implications of these results are briefly discussed highlighting the importance of a specific UVBE climatology for each biological process.

  10. Ultraviolet B radiation induces impaired lifecycle traits and modulates expression of cytochrome P450 (CYP) genes in the copepod Tigriopus japonicus.

    PubMed

    Puthumana, Jayesh; Lee, Min-Chul; Park, Jun Chul; Kim, Hui-Su; Hwang, Dae-Sik; Han, Jeonghoon; Lee, Jae-Seong

    2017-03-01

    To evaluate the effects of ultraviolet B (UV-B) radiation at the developmental, reproductive, and molecular levels in aquatic invertebrates, we measured UV-B-induced acute toxicity, impairments in developmental and reproductive traits, and UV-B interaction with the entire family of cytochrome P450 (CYP) genes in the intertidal benthic copepod Tigriopus japonicus. We found a significant, dose-dependent reduction (P<0.05) in the survival of T. japonicus that began as a developmental delay and decreased fecundity. The 48h LD10 and LD50 were 1.35 and 1.84kJ/m 2 , and the CYP inhibitor (PBO) elevated mortality, confirming the involvement of CYP genes in UV-B induced toxicity. Low-dose UV-B (1.5kJ/m 2 ) induced developmental delays, and higher doses (6-18kJ/m 2 ) caused reproductive impairments in ovigerous females. The significant up-regulation of CYP genes belonging to clans 2/3/MT/4/20 in T. japonicus exposed to UV-B (12kJ/m 2 ) confirmed molecular interaction between UV-B and CYP genes. Moreover, orphan CYPs, such as CYP20A1, provide good insight on the deorphanization of invertebrate CYPs. Overall, these results demonstrate the involvement of UV-B radiation in the expression of all the CYP genes in T. japonicus and their susceptibility to UV-B radiation. This will provide a better understanding of the mechanistic effects of UV-B in copepods through the predicted AhR-mediated up-regulation of CYP genes. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. 5,7-Dimethoxyflavone, an activator of PPARα/γ, inhibits UVB-induced MMP expression in human skin fibroblast cells.

    PubMed

    Kim, Jae Kyung; Mun, Sukyeong; Kim, Myung-Suk; Kim, Mi-Bo; Sa, Bo-Kyung; Hwang, Jae-Kwan

    2012-03-01

    Peroxisome proliferator-activated receptors (PPARs), which are members of the nuclear hormone receptor superfamily, are a family of ligand-activated transcription factors that consist of three isotypes (PPAR α, δ and γ). PPAR activity was previously thought to be limited to lipid metabolism and glucose homeostasis; however, intensive studies of PPARα/γ in recent years have revealed their importance in age-related inflammation and photoaging as regulators of cytokines, matrix metalloproteinases (MMPs) and nuclear factor-kappa B (NF-κB). We evaluated the ability of the PPARα/γ activator 5,7-dimethoxyflavone (5,7-DMF) to inhibit ultraviolet B (UVB)-induced MMP expression in Hs68 human skin fibroblasts. Hs68 cells were treated with 5,7-DMF and then exposed to UVB irradiation. MMP expression, production and activity were determined by reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assay and gelatin zymography. PPARα/γ expression, catalase expression, and mitogen-activated protein kinase (MAPK), activator protein-1 (AP-1) and NF-κB signalling were evaluated by Western blot analysis. PPARα/γ activity was assessed with the GAL4/PPARα/γ transactivation assay. We found that 5,7-DMF strongly decreased MMP expression, production and activity. In addition, 5,7-DMF significantly increased PPARα/γ activation and catalase expression, thereby downregulating UVB-induced reactive oxygen species (ROS) production, ROS-induced MAPK signalling and downstream transcription factors. Finally, 5,7-DMF reduced IκBα phosphorylation, blocked NF-κB p65 nuclear translocation, strongly suppressed proinflammatory cytokines such as interleukin-6 (IL-6) and IL-8. 5,7-DMF prevents UVB-induced MMP expression by suppressing UVB-induced oxidative stress and age-related inflammation via NF-κB and MAPK/AP-1 pathways. Our findings suggest the usefulness of 5,7-DMF for preventing and treating skin photoaging. © 2011 John Wiley & Sons A/S.

  12. UVA, UVB Light, and Methyl Jasmonate, Alone or Combined, Redirect the Biosynthesis of Glucosinolates, Phenolics, Carotenoids, and Chlorophylls in Broccoli Sprouts

    PubMed Central

    Moreira-Rodríguez, Melissa; Benavides, Jorge

    2017-01-01

    Broccoli sprouts contain health-promoting phytochemicals that can be enhanced by applying ultraviolet light (UV) or phytohormones. The separate and combined effects of methyl jasmonate (MJ), UVA, or UVB lights on glucosinolate, phenolic, carotenoid, and chlorophyll profiles were assessed in broccoli sprouts. Seven-day-old broccoli sprouts were exposed to UVA (9.47 W/m2) or UVB (7.16 W/m2) radiation for 120 min alone or in combination with a 25 µM MJ solution, also applied to sprouts without UV supplementation. UVA + MJ and UVB + MJ treatments increased the total glucosinolate content by ~154% and ~148%, respectively. MJ induced the biosynthesis of indole glucosinolates, especially neoglucobrassicin (~538%), showing a synergistic effect with UVA stress. UVB increased the content of aliphatic and indole glucosinolates, such as glucoraphanin (~78%) and 4-methoxy-glucobrassicin (~177%). UVA increased several phenolics such as gallic acid (~57%) and a kaempferol glucoside (~25.4%). MJ treatment decreased most phenolic levels but greatly induced accumulation of 5-sinapoylquinic acid (~239%). MJ treatments also reduced carotenoid and chlorophyll content, while UVA increased lutein (~23%), chlorophyll b (~31%), neoxanthin (~34%), and chlorophyll a (~67%). Results indicated that UV- and/or MJ-treated broccoli sprouts redirect the carbon flux to the biosynthesis of specific glucosinolates, phenolics, carotenoids, and chlorophylls depending on the type of stress applied. PMID:29113068

  13. UVA, UVB Light, and Methyl Jasmonate, Alone or Combined, Redirect the Biosynthesis of Glucosinolates, Phenolics, Carotenoids, and Chlorophylls in Broccoli Sprouts.

    PubMed

    Moreira-Rodríguez, Melissa; Nair, Vimal; Benavides, Jorge; Cisneros-Zevallos, Luis; Jacobo-Velázquez, Daniel A

    2017-11-04

    Broccoli sprouts contain health-promoting phytochemicals that can be enhanced by applying ultraviolet light (UV) or phytohormones. The separate and combined effects of methyl jasmonate (MJ), UVA, or UVB lights on glucosinolate, phenolic, carotenoid, and chlorophyll profiles were assessed in broccoli sprouts. Seven-day-old broccoli sprouts were exposed to UVA (9.47 W/m²) or UVB (7.16 W/m²) radiation for 120 min alone or in combination with a 25 µM MJ solution, also applied to sprouts without UV supplementation. UVA + MJ and UVB + MJ treatments increased the total glucosinolate content by ~154% and ~148%, respectively. MJ induced the biosynthesis of indole glucosinolates, especially neoglucobrassicin (~538%), showing a synergistic effect with UVA stress. UVB increased the content of aliphatic and indole glucosinolates, such as glucoraphanin (~78%) and 4-methoxy-glucobrassicin (~177%). UVA increased several phenolics such as gallic acid (~57%) and a kaempferol glucoside (~25.4%). MJ treatment decreased most phenolic levels but greatly induced accumulation of 5-sinapoylquinic acid (~239%). MJ treatments also reduced carotenoid and chlorophyll content, while UVA increased lutein (~23%), chlorophyll b (~31%), neoxanthin (~34%), and chlorophyll a (~67%). Results indicated that UV- and/or MJ-treated broccoli sprouts redirect the carbon flux to the biosynthesis of specific glucosinolates, phenolics, carotenoids, and chlorophylls depending on the type of stress applied.

  14. Evaluation of drug and sunscreen permeation via skin irradiated with UVA and UVB: comparisons of normal skin and chronologically aged skin.

    PubMed

    Hung, Chi-Feng; Fang, Chia-Lang; Al-Suwayeh, Saleh A; Yang, Shih-Yung; Fang, Jia-You

    2012-12-01

    Ultraviolet (UV) exposure is the predominant cause of skin aging. A systematic evaluation of drug skin permeation via photoaged skin is lacking. The aim of this work was to investigate whether UVA and UVB affect absorption by the skin of drugs and sunscreens, including tetracycline, quercetin, and oxybenzone. The dorsal skin of nude mice was subjected to UVA (24 and 39 J/cm(2)) or UVB (150, 200, and 250 mJ/cm(2)) irradiation. Levels of skin water loss, erythema, and sebum were evaluated, and histological examinations of COX-2 and claudin-1 expressions were carried out. Permeation of the permeants into and through the skin was determined in vitro using a Franz cell. In vivo skin uptake was also evaluated. Senescent skin (24 weeks old) was used for comparison. Wrinkling and scaling were significant signs of skin treated with UVA and UVB, respectively. The level of claudin-1, an indicator of tight junctions (TJs), was reduced by UVA and UVB irradiation. UVA enhanced tetracycline and quercetin skin deposition by 11- and 2-fold, respectively. A similar enhancement was shown for flux profiles. Surprisingly, a lower UVA dose revealed greater enhancement compared to the higher dose. The skin deposition and flux of tetracycline both decreased with UVB exposure. UVB also significantly reduced quercetin flux. The skin absorption behavior of chronologically aged skin approximated that of the UVA group, with photoaged skin showing higher enhancement. UV generally exhibited a negligible effect on modulating oxybenzone permeation. Skin disruption produced by UV does not necessarily result in enhanced skin absorption. It depends on the UV wavelength, irradiated energy, and physicochemical properties of the permeant. To the best of our knowledge, this is the first report establishing drug permeation profiles for UV-irradiated skin. Copyright © 2012 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. 8-Oxo-2'-deoxyguanosine ameliorates UVB-induced skin damage in hairless mice by scavenging reactive oxygen species and inhibiting MMP expression.

    PubMed

    Lee, Jin-Ku; Ko, Seong-Hee; Ye, Sang-Kyu; Chung, Myung-Hee

    2013-04-01

    Skin is uniquely vulnerable to damage caused by reactive oxygen species (ROS), which are most commonly produced in response to ultraviolet (UV) light. ROS generated at injury sites play an important role in modulating the inflammatory response. Besides inhibiting Rac, 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dG) has also shown notable antioxidant action. We tested whether 8-oxo-dG could protect skin from UVB-induced damage by scavenging ROS. HaCaT cells and hairless mice were irradiated with 15 and 180 mJ/cm(2) narrow-spectrum UVB, respectively. ROS generation was detected through incubation with DCFDA and confocal microscopy. Western blot analyses and immunohistochemistry were performed to verify the activities of ERK, JNK, p38, ATF-2, and c-Jun, and the expression of matrix metalloproteinases (MMPs), in UVB-irradiated HaCaT cells and murine skin. Hydrogen peroxide production and protein carbonyl concentrations were measured in UVB-damaged mouse skin. MMP-1 and MMP-9 expression in UVB-irradiated HaCaT cells was measured by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). In UVB-irradiated HaCaT cells, 8-oxo-dG inhibited ROS production, subsequent activation of mitogen-activated protein kinase (MAPK), ATF-2, and c-Jun, and MMP expression. It also prevented UV-induced skin reactions in hairless mice, inhibiting the increase in protein carbonyl content, activation of MAPKs, ATF-2, and c-Jun, the increases in MMP-9 and -13 expression, and epidermal hyperplasia. 8-oxo-dG can be considered an endogenous antioxidant and its potent antioxidant activity might be a beneficial property that could be exploited to protect skin from ROS-associated photodamage. Copyright © 2013. Published by Elsevier Ireland Ltd.

  16. Identification of microRNA-mRNA functional interactions in UVB-induced senescence of human diploid fibroblasts

    PubMed Central

    2013-01-01

    Background Cellular senescence can be induced by a variety of extrinsic stimuli, and sustained exposure to sunlight is a key factor in photoaging of the skin. Accordingly, irradiation of skin fibroblasts by UVB light triggers cellular senescence, which is thought to contribute to extrinsic skin aging, although molecular mechanisms are incompletely understood. Here, we addressed molecular mechanisms underlying UVB induced senescence of human diploid fibroblasts. Results We observed a parallel activation of the p53/p21WAF1 and p16INK4a/pRb pathways. Using genome-wide transcriptome analysis, we identified a transcriptional signature of UVB-induced senescence that was conserved in three independent strains of human diploid fibroblasts (HDF) from skin. In parallel, a comprehensive screen for microRNAs regulated during UVB-induced senescence was performed which identified five microRNAs that are significantly regulated during the process. Bioinformatic analysis of miRNA-mRNA networks was performed to identify new functional mRNA targets with high confidence for miR-15a, miR-20a, miR-20b, miR-93, and miR-101. Already known targets of these miRNAs were identified in each case, validating the approach. Several new targets were identified for all of these miRNAs, with the potential to provide new insight in the process of UVB-induced senescence at a genome-wide level. Subsequent analysis was focused on miR-101 and its putative target gene Ezh2. We confirmed that Ezh2 is regulated by miR-101 in human fibroblasts, and found that both overexpression of miR-101 and downregulation of Ezh2 independently induce senescence in the absence of UVB irradiation. However, the downregulation of miR-101 was not sufficient to block the phenotype of UVB-induced senescence, suggesting that other UVB-induced processes induce the senescence response in a pathway redundant with upregulation of miR-101. Conclusion We performed a comprehensive screen for UVB-regulated microRNAs in human diploid

  17. Nanoencapsulation of coenzyme Q10 and vitamin E acetate protects against UVB radiation-induced skin injury in mice.

    PubMed

    Pegoraro, Natháli S; Barbieri, Allanna V; Camponogara, Camila; Mattiazzi, Juliane; Brum, Evelyne S; Marchiori, Marila C L; Oliveira, Sara M; Cruz, Letícia

    2017-02-01

    This study aimed to investigate the feasibility of producing semisolid formulations based on nanocapsule suspensions containing the association of the coenzyme Q10 and vitamin E acetate by adding gellan gum (2%) to the suspensions. Furthermore, we studied their application as an alternative for the treatment of inflammation induced by ultraviolet B (UVB) radiation. For this, an animal model of injury induced by UVB-radiation was employed. All semisolids presented pH close to 5.5, drug content above 95% and mean diameter on the nanometric range, after redispersion in water. Besides, the semisolids presented non-Newtonian flow with pseudoplastic behavior and suitable spreadability factor values. The results also showed that the semisolid containing coenzyme Q10-loaded nanocapsules with higher vitamin E acetate concentration reduced in 73±8% the UVB radiation-induced ear edema. Moreover, all formulations tested were able to reduce inflammation parameters evaluated through MPO activity and histological procedure on injured tissue and the semisolids containing the nanoencapsulated coenzyme Q10 reduced oxidative parameters assessment through the non-protein thiols levels and lipid peroxidation. This way, the semisolids based on nanocapsules may be considered a promising approach for the treatment and prevention of skin inflammation diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Silibinin inhibits ultraviolet B radiation-induced DNA-damage and apoptosis by enhancing interleukin-12 expression in JB6 cells and SKH-1 hairless mouse skin.

    PubMed

    Narayanapillai, Sreekanth; Agarwal, Chapla; Deep, Gagan; Agarwal, Rajesh

    2014-06-01

    Recent studies have demonstrated silibinin efficacy against ultraviolet B (UVB)-induced skin carcinogenesis via different mechanisms in cell lines and animal models; however, its role in regulating interleukin-12 (IL-12), an immunomodulatory cytokine that reduces UVB-induced DNA damage and apoptosis, is not known. Here, we report that UVB irradiation causes caspase 3 and PARP cleavage and apoptosis, and addition of recombinant IL-12 or silibinin immediately after UVB significantly protects UVB-induced apoptosis in JB6 cells. IL-12 antibody-mediated blocking of IL-12 activity compromised the protective effects of both IL-12 and silibinin. Both silibinin and IL-12 also accelerated the repair of UVB-caused cyclobutane-pyrimidine dimers (CPDs) in JB6 cells. Additional studies confirmed that indeed silibinin causes a significant increase in IL-12 levels in UVB-irradiated JB6 cells as well as in mouse skin epidermis, and that similar to cell-culture findings, silibinin topical application immediately after UVB exposure causes a strong protection against UVB-induced TUNEL positive cells in epidermis possibly through a significantly accelerated repair of UVB-caused CPDs. Together, these findings for the first time provide an important insight regarding the pharmacological mechanism wherein silibinin induces endogenous IL-12 in its efficacy against UVB-caused skin damages. In view of the fact that an enhanced endogenous IL-12 level could effectively remove UVB-caused DNA damage and associated skin cancer, our findings suggest that the use of silibinin in UVB-damaged human skin would also be a practical and translational strategy to manage solar radiation-caused skin damages as well as skin cancer. © 2013 Wiley Periodicals, Inc.

  19. UVA-UVB Photoprotective Activity of Topical Formulations Containing Morinda citrifolia Extract

    PubMed Central

    Serafini, Mairim Russo; Detoni, Cassia Britto; Menezes, Paula dos Passos; Pereira Filho, Rose Nely; Fortes, Vanessa Silveira; Vieira, Maria José Fonseca; Guterres, Sílvia Stanisçuaski; de Albuquerque Junior, Ricardo Luiz Cavalcanti; Araújo, Adriano Antunes de Souza

    2014-01-01

    Exposure to solar radiation, particularly its ultraviolet (UV) component, has a variety of harmful effects on human health. Some of these effects include sunburn cell formations, basal and squamous cell cancers, melanoma, cataracts, photoaging of the skin, and immune suppression. The beneficial photoprotective effects of topical formulations with the extract, Morinda citrifolia, have not been investigated. This present study aims to investigate the potential benefits of M. citrifolia topical application on the dorsal skin of mice, exposed to UVA-UVB light. Using 7 days of treatment, [before (baseline values) and 20 h after UV exposure], the thickness, skin barrier damage (TEWL), erythema, and histological alterations were evaluated. The results showed that the formulations containing the extract protected the skin against UV-induced damage. PMID:25133171

  20. UVA-UVB photoprotective activity of topical formulations containing Morinda citrifolia extract.

    PubMed

    Serafini, Mairim Russo; Detoni, Cassia Britto; Menezes, Paula dos Passos; Pereira Filho, Rose Nely; Fortes, Vanessa Silveira; Vieira, Maria José Fonseca; Guterres, Sílvia Stanisçuaski; Cavalcanti de Albuquerque Junior, Ricardo Luiz; Araújo, Adriano Antunes de Souza

    2014-01-01

    Exposure to solar radiation, particularly its ultraviolet (UV) component, has a variety of harmful effects on human health. Some of these effects include sunburn cell formations, basal and squamous cell cancers, melanoma, cataracts, photoaging of the skin, and immune suppression. The beneficial photoprotective effects of topical formulations with the extract, Morinda citrifolia, have not been investigated. This present study aims to investigate the potential benefits of M. citrifolia topical application on the dorsal skin of mice, exposed to UVA-UVB light. Using 7 days of treatment, [before (baseline values) and 20 h after UV exposure], the thickness, skin barrier damage (TEWL), erythema, and histological alterations were evaluated. The results showed that the formulations containing the extract protected the skin against UV-induced damage.

  1. UV-B exposure impairs resistance to infection by Trichinella spiralis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goettsch, W.; Garssen, J.; Deijns, A.

    1994-03-01

    To assess the possibility that increases in UV-B exposure on the earth's surface could lead to impaired resistance to several infectious diseases, we studied the effect of UV-B exposure on resistance against Trichinella spiralis. Wistar rats, orally infected with T. spiralis larvae, were exposed to suberythemal doses of UV-B radiation daily for 5 days at different time periods before or after infection. A significant increase in the number of Trichinella larvae was found in the carcasses of rats irradiated with UV-B between 6 and 10 days after infection. These data indicate that exposure to UV-B radiation suppresses the resistance tomore » a parasitic infection. We suggested that UV-B radiation especially suppresses cellular immune responses against these worms because specific IgM, IgG, and IgE titers were not significantly altered by UV-B exposure. These data indicate that UV-B irradiation plays a role in the course of infection with T. spiralis, which suggests that increases of UV-B exposure might also lead to problems with other infectious diseases and might affect vaccination because of the interaction of UV-B irradiation with memory T-cells. 38 refs., 3 figs., 1 tab.« less

  2. Tolerance to solar ultraviolet-B radiation in the citrus red mite, an upper surface user of host plant leaves.

    PubMed

    Fukaya, Midori; Uesugi, Ryuji; Ohashi, Hirokazu; Sakai, Yuta; Sudo, Masaaki; Kasai, Atsushi; Kishimoto, Hidenari; Osakabe, Masahiro

    2013-01-01

    Plant-dwelling mites are potentially exposed to solar ultraviolet-B (UVB) radiation that causes deleterious and often lethal effects, leading most mites to inhabit the lower (underside) leaf surfaces. However, in species of spider mite belonging to the Genus Panonychus, a substantial portion of individuals occur on upper leaf surfaces. We investigated whether the upper leaf surfaces of citrus trees are favorable for P. citri, and to what extent they are tolerant to UVB radiation. If eggs are not adequately protected from UVB damage, females may avoid ovipositing on the upper surfaces of sunny leaves. To test this, we conducted laboratory experiments using a UVB lamp, and semioutdoor manipulative experiments. As a result, P. citri eggs are tolerant to UVB. Field studies revealed that the ratio of eggs and adult females on upper leaf surfaces were larger for shaded than for sunny leaves. However, 64-89% of eggs hatched successfully even on sunny upper leaf surfaces. Nutritional evaluation revealed that whether on sunny or shaded leaves, in fecundity and juvenile development P. citri reaped the fitness benefits of upper leaf surfaces. Consequently, P. citri is tolerant to UVB damage, and inhabiting the upper surfaces of shaded leaves is advantageous to this mite. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  3. Identification of influential events concerning the Antarctic ozone hole over southern Brazil and the biological effects induced by UVB and UVA radiation in an endemic treefrog species.

    PubMed

    Passaglia Schuch, André; Dos Santos, Mauricio Beux; Mendes Lipinski, Victor; Vaz Peres, Lucas; Dos Santos, Caroline Peripolli; Zanini Cechin, Sonia; Jorge Schuch, Nelson; Kirsh Pinheiro, Damaris; da Silva Loreto, Elgion Lúcio

    2015-08-01

    The increased incidence of solar ultraviolet radiation (UV) due to ozone depletion has been affecting both terrestrial and aquatic ecosystems and it may help to explain the enigmatic decline of amphibian populations in specific localities. In this work, influential events concerning the Antarctic ozone hole were identified in a dataset containing 35 years of ozone measurements over southern Brazil. The effects of environmental doses of UVB and UVA radiation were addressed on the morphology and development of Hypsiboas pulchellus tadpole (Anura: Hylidae), as well as on the induction of malformation after the conclusion of metamorphosis. These analyzes were complemented by the detection of micronucleus formation in blood cells. 72 ozone depletion events were identified from 1979 to 2013. Surprisingly, their yearly frequency increased three-fold during the last 17 years. The results clearly show that H. pulchellus tadpole are much more sensitive to UVB than UVA light, which reduces their survival and developmental rates. Additionally, the rates of micronucleus formation by UVB were considerably higher compared to UVA even after the activation of photolyases enzymes by a further photoreactivation treatment. Consequently, a higher occurrence of malformation was observed in UVB-irradiated individuals. These results demonstrate the severe genotoxic impact of UVB radiation on this treefrog species and its importance for further studies aimed to assess the impact of the increased levels of solar UVB radiation on declining species of the Hylidae family. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Effects of solar UV-B radiation on aquatic ecosystems

    NASA Astrophysics Data System (ADS)

    Häder, D.-P.

    Solar UV degrades dissolved organic carbon photolytically so that they can readily be taken up by bacterioplankton. On the other hand solar UV radiation inhibits bacterioplankton activity. Bacterioplankton productivity is far greater than previously thought and is comparable to phytoplankton primary productivity. According to the "microbial loop hypothesis," bacterioplankton is seen in the center of a food web, having a similar function to phytoplankton and protists. The penetration of UV and PAR into the water column can be measured. Marine waters show large temporal and regional differences in their concentrations of dissolved and particulate absorbing substances. A network of dosimeters (ELDONET) has been installed in Europe ranging from Abisko in Northern Sweden to Gran Canaria. Cyanobacteria are capable of fixing atmospheric nitrogen which is then made available to higher plants. The agricultural potential of cyanobacteria has been recognized as a biological fertilizer for wet soils such as in rice paddies. UV-B is known to impair processes such as growth, survival, pigmentation, motility, as well as the enzymes of nitrogen metabolism and CO 2 fixation. The marine phytoplankton represents the single most important ecosystem on our planet and produces about the same biomass as all terrestrial ecosystems taken together. It is the base of the aquatic food chain and any changes in the size and composition of phytoplankton communities will directly affect food production for humans from marine sources. Another important role of marine phytoplankton is to serve as a sink for atmospheric carbon dioxide. Recent investigations have shown a large sensitivity of most phytoplankton organisms toward solar short-wavelength ultraviolet radiation (UV-B); even at ambient levels of UV-B radiation many organisms seem to be under UV stress. Because of their requirement for solar energy, the phytoplankton dwell in the top layers of the water column. In this near-surface position

  5. Effects of solar UV-B radiation on aquatic ecosystems.

    PubMed

    Hader, D P

    2000-01-01

    Solar UV degrades dissolved organic carbon photolytically so that they can readily be taken up by bacterioplankton. On the other hand solar UV radiation inhibits bacterioplankton activity. Bacterioplankton productivity is far greater than previously thought and is comparable to phytoplankton primary productivity. According to the "microbial loop hypothesis," bacterioplankton is seen in the center of a food web, having a similar function to phytoplankton and protists. The penetration of UV and PAR into the water column can be measured. Marine waters show large temporal and regional differences in their concentrations of dissolved and particulate absorbing substances. A network of dosimeters (ELDONET) has been installed in Europe ranging from Abisko in Northern Sweden to Gran Canaria. Cyanobacteria are capable of fixing atmospheric nitrogen which is then made available to higher plants. The agricultural potential of cyanobacteria has been recognized as a biological fertilizer for wet soils such as in rice paddies. UV-B is known to impair processes such as growth, survival, pigmentation, motility, as well as the enzymes of nitrogen metabolism and CO2 fixation. The marine phytoplankton represents the single most important ecosystem on our planet and produces about the same biomass as all terrestrial ecosystems taken together. It is the base of the aquatic food chain and any changes in the size and composition of phytoplankton communities will directly affect food production for humans from marine sources. Another important role of marine phytoplankton is to serve as a sink for atmospheric carbon dioxide. Recent investigations have shown a large sensitivity of most phytoplankton organisms toward solar short-wavelength ultraviolet radiation (UV-B); even at ambient levels of UV-B radiation many organisms seem to be under UV stress. Because of their requirement for solar energy, the phytoplankton dwell in the top layers of the water column. In this near-surface position

  6. The use of satellite data to measure ultraviolet-B penetrance and its potential association with age of multiple sclerosis onset.

    PubMed

    Amram, Ofer; Schuurman, Nadine; Randall, Ellen; Zhu, Feng; Saeedi, Jameelah; Rieckmann, Peter; Yee, Irene; Tremlett, Helen

    2018-04-01

    Studies have indicated an association between low Ultraviolet B (UVB) exposure and an increased risk of developing multiple sclerosis (MS). Few studies, however, have explored whether UVB exposure is associated with the age at MS symptom onset. We investigated the potential association between cumulative early life ambient UVB exposure and age at MS onset, using satellite data to measure ambient UVB exposure. Adult onset MS patients were selected from the University of British Columbia's MS genetic database (1980-2005). Patients' places of residence from birth to age 18 years were geocoded (latitude and longitude) and assigned UVB values using NASA's Total Ozone Mapping Spectrometer (TOMS) dataset. Linear regression was used to explore the relationship between cumulative UVB exposure (measured for age periods 0-6, 7-12, 13-18, 0-12, and 0-18) and age at MS onset. 3226 patients were included in the analysis. Of these, 74% were female, with an overall mean symptom onset age of 33.3 years. At onset, a total of 2944 (91%) had a relapsing-remitting disease course, 254 (8%) had primary progressive and the disease course for 28 (1%) was unknown. No significant associations between cumulative early life ambient UVB exposure and age at MS onset were observed. Patient sex, MS phenotype, and immigration to Canada after age 18 were significantly associated with age of onset (p < 0.01). Early life ambient UVB, as measured by satellite imagery, was not significantly associated with the age at MS onset. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Biological weighting function for the inhibition of phytoplankton photosynthesis by ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Cullen, John J.; Neale, Patrick J.; Lesser, Michael P.

    1992-01-01

    Severe reduction of stratospheric ozone over Antarctica has focused increasing concern on the biological effects of ultraviolet-B (UVB) radiation (280 to 320 nanometers). Measurements of photosynthesis from an experimental system, in which phytoplankton are exposed to a broad range of irradiance treatments, are fit to an analytical model to provide the spectral biological weighting function that can be used to predict the short-term effects of ozone depletion on aquatic photosynthesis. Results show that UVA (320 to 400 nanometers) significantly inhibits the photosynthesis of a marine diatom and a dinoflagellate, and that the effects of UVB are even more severe. Application of the model suggests that the Antarctic ozone hole might reduce near-surface photosynthesis by 12 to 15 percent, but less so at depth. The experimental system makes possible routine estimation of spectral weightings for natural phytoplankton.

  8. Inhibition of ultraviolet light-induced oxidative events in the skin and internal organs of hairless mice by isoflavone genistein.

    PubMed

    Wei, Huachen; Zhang, Xueshu; Wang, Yan; Lebwohl, Mark

    2002-11-08

    We have previously demonstrated that soybean isoflavone genistein inhibits ultraviolet-B (UVB)-induced skin tumorigenesis in hairless mice. In the present study, we further investigated the possible mechanism(s) of action whereby genistein inhibits photocarcinogenesis with focuses on UVB-induced oxidative events, including hydrogen peroxide (H(2)O(2)) production, lipid peroxidation (as represented by malondialdehyde, MDA), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) formation in vivo. We demonstrated that subacute exposure to UVB substantially increased the level of H(2)O(2), lipid peroxides, and 8-OHdG in skin of hairless mice. In addition, chronic exposure to low-dose UVB (0.9-1.2 kJ/m(2) for 20 weeks) substantially increased the levels of 8-OHdG not only in the epidermis, but also in the internal organs such as liver, brain, and spleen of mice with exception of kidney. However, genistein did not affect the level of UVB-induced pyrimidine dimmers in the same UVB exposed mouse skin, indicating selective inhibition of oxidative DNA damage by genistein. Induction of H(2)O(2) was independent of UVB fluences whereas the levels of MDA and 8-OHdG were induced in an UVB fluence-dependent manner. The results suggest that H(2)O(2) be generated as an acute cutaneous response to UVB irradiation, while MDA and 8-OHdG are accumulated with increasing UVB exposure and more closely related to chronic effects of UVB radiation. Pre-treatment of animals with 10 micromol of genistein 1 h prior to UVB exposure significantly inhibited UVB-induced H(2)O(2) and MDA in skin and 8-OHdG in epidermis as well as internal organs. Suppression of 8-OHdG formation by genistein has been corroborated in purified DNA irradiated with UVA and B. In summary, our results suggest that UVB irradiation elicit a series of oxidative events, which can be substantially inhibited by isoflavonoid genistein through either direct quenching of reactive oxygen species or indirect antiinflammatory effects. Thus, the

  9. The pattern and time course of somatosensory changes in the human UVB sunburn model reveal the presence of peripheral and central sensitization.

    PubMed

    Gustorff, Burkhard; Sycha, Thomas; Lieba-Samal, Doris; Rolke, Roman; Treede, Rolf-Detlef; Magerl, Walter

    2013-04-01

    The ultraviolet B (UVB) sunburn model was characterized with a comprehensive battery of quantitative sensory testing (QST). Primary hyperalgesia in UVB-irradiated skin and secondary hyperalgesia in adjacent nonirradiated skin were studied in 22 healthy subjects 24h after irradiation with UVB at 3-fold minimal erythema dose of a skin area 5 cm in diameter at the thigh and compared to mirror-image contralateral control areas. The time course of hyperalgesia over 96 h was studied in a subgroup of 12 subjects. Within the sunburn area, cold hyperesthesia (P=.01), profound generalized hyperalgesia to heat (P<.001), cold (P<.05), pinprick and pressure (P<.001), and mild dynamic mechanical allodynia (P<.001) were present. The finding of cold hyperalgesia and cold hyperesthesia is new in this model. The sunburn was surrounded by large areas of pinprick hyperalgesia (mean±SEM, 218±32 cm(2)) and a small rim of dynamic mechanical allodynia but no other sensory changes. Although of smaller magnitude, secondary hyperalgesia and dynamic mechanical allodynia adjacent to the UVB-irradiated area were statistically highly significant. Primary and secondary hyperalgesia developed in parallel within hours, peaked after 24-32 h, and lasted for more than 96 h. These data reveal that the UVB sunburn model activates a broad spectrum of peripheral and central sensitization mechanisms and hence is a useful human surrogate model to be used as a screening tool for target engagement in phases 1 and 2a of drug development. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  10. Thread Embedding Acupuncture Inhibits Ultraviolet B Irradiation-Induced Skin Photoaging in Hairless Mice.

    PubMed

    Kim, Yoon-Jung; Kim, Ha-Neui; Shin, Mi-Sook; Choi, Byung-Tae

    2015-01-01

    Thread embedding acupuncture (TEA) is an acupuncture treatment applied to many diseases in Korean medical clinics because of its therapeutic effects by continuous stimulation to tissues. It has recently been used to enhance facial skin appearance and antiaging, but data from evidence-based medicine are limited. To investigate whether TEA therapy can inhibit skin photoaging by ultraviolet B (UVB) irradiation, we performed analyses for histology, histopathology, in situ zymography and western blot analysis in HR-1 hairless mice. TEA treatment resulted in decreased wrinkle formation and skin thickness (Epidermis; P = 0.001 versus UV) in UVB irradiated mice and also inhibited degradation of collagen fibers (P = 0.010 versus normal) by inhibiting proteolytic activity of gelatinase matrix-metalloproteinase-9 (MMP-9). Western blot data showed that activation of c-Jun N-terminal kinase (JNK) induced by UVB (P = 0.002 versus normal group) was significantly inhibited by TEA treatment (P = 0.005 versus UV) with subsequent alleviation of MMP-9 activation (P = 0.048 versus UV). These results suggest that TEA treatment can have anti-photoaging effects on UVB-induced skin damage by maintenance of collagen density through regulation of expression of MMP-9 and related JNK signaling. Therefore, TEA therapy may have potential roles as an alternative treatment for protection against skin damage from aging.

  11. Thread Embedding Acupuncture Inhibits Ultraviolet B Irradiation-Induced Skin Photoaging in Hairless Mice

    PubMed Central

    Kim, Yoon-Jung; Kim, Ha-Neui; Shin, Mi-Sook; Choi, Byung-Tae

    2015-01-01

    Thread embedding acupuncture (TEA) is an acupuncture treatment applied to many diseases in Korean medical clinics because of its therapeutic effects by continuous stimulation to tissues. It has recently been used to enhance facial skin appearance and antiaging, but data from evidence-based medicine are limited. To investigate whether TEA therapy can inhibit skin photoaging by ultraviolet B (UVB) irradiation, we performed analyses for histology, histopathology, in situ zymography and western blot analysis in HR-1 hairless mice. TEA treatment resulted in decreased wrinkle formation and skin thickness (Epidermis; P = 0.001 versus UV) in UVB irradiated mice and also inhibited degradation of collagen fibers (P = 0.010 versus normal) by inhibiting proteolytic activity of gelatinase matrix-metalloproteinase-9 (MMP-9). Western blot data showed that activation of c-Jun N-terminal kinase (JNK) induced by UVB (P = 0.002 versus normal group) was significantly inhibited by TEA treatment (P = 0.005 versus UV) with subsequent alleviation of MMP-9 activation (P = 0.048 versus UV). These results suggest that TEA treatment can have anti-photoaging effects on UVB-induced skin damage by maintenance of collagen density through regulation of expression of MMP-9 and related JNK signaling. Therefore, TEA therapy may have potential roles as an alternative treatment for protection against skin damage from aging. PMID:26185518

  12. Effects of enhanced ultraviolet-B radiation, water deficit, and their combination on UV-absorbing compounds and osmotic adjustment substances in two different moss species.

    PubMed

    Hui, Rong; Zhao, Ruiming; Song, Guang; Li, Yixuan; Zhao, Yang; Wang, Yanli

    2018-05-01

    A simulation experiment was conducted to explore the influence of enhanced ultraviolet-B (UV-B) radiation, water deficit, and their combination on UV-absorbing compounds and osmotic adjustment substances of mosses Bryum argenteum and Didymodon vinealis isolated from biological soil crusts (BSCs) growing in a revegetated area of the Tengger Desert, China. Four levels of UV-B radiation and two gradients of water regime were employed. Compared with their controls, amounts of total flavonoids, chlorophyll, carotenoids, soluble sugars, and soluble proteins significantly decreased (p < 0.05), but proline content significantly increased (p < 0.05), when exposed to either enhanced UV-B or water deficit. The negative effects of enhanced UV-B were alleviated when water deficit was applied. There were increases in UV-absorbing compounds and osmotic adjustment substances when exposed to a combination of enhanced UV-B and water deficit compared with single stresses, except for the proline content in D. vinealis. In addition, our results also indicated interspecific differences in response to enhanced UV-B, water deficit, and their combination. Compared with B. argenteum, D. vinealis was more resistant to enhanced UV-B and water deficit singly and in combination. These results suggest that the damage of enhanced UV-B on both species might be alleviated by water deficit. This alleviation is important for understanding the response of BSCs to UV-B radiation in future global climate change. This also provides novel insights into assessment damages of UV-B to BSC stability in arid and semiarid regions.

  13. UVB phototherapy in an outpatient setting or at home: a pragmatic randomised single-blind trial designed to settle the discussion. The PLUTO study.

    PubMed

    Koek, Mayke B G; Buskens, Erik; Steegmans, Paul H A; van Weelden, Huib; Bruijnzeel-Koomen, Carla A F M; Sigurdsson, Vigfús

    2006-08-01

    Home ultraviolet B (UVB) treatment is a much-debated treatment, especially with regard to effectiveness, safety and side effects. However, it is increasingly being prescribed, especially in the Netherlands. Despite ongoing discussions, no randomised research has been performed, and only two studies actually compare two groups of patients. Thus, firm evidence to support or discourage the use of home UVB phototherapy has not yet been obtained. This is the goal of the present study, the PLUTO study (Dutch acronym for "national trial on home UVB phototherapy for psoriasis"). We designed a pragmatic randomised single-blind multi-centre trial. This trial is designed to evaluate the impact of home UVB treatment versus UVB phototherapy in a hospital outpatient clinic as to effectiveness, quality of life and cost-effectiveness. In total 196 patients with psoriasis who were clinically eligible for UVB phototherapy were included. Normally 85% of the patients treated with UVB show a relevant clinical response. With a power of 80% and a 0.05 significance level it will be possible to detect a reduction in effectiveness of 15%. Effectiveness will be determined by calculating differences in the Psoriasis Area and Severity Index (PASI) and the Self Administered PASI (SAPASI) scores. Quality of life is measured using several validated generic questionnaires and a disease-specific questionnaire. Other outcome measures include costs, side effects, dosimetry, concomitant use of medication and patient satisfaction. Patients are followed throughout the therapy and for 12 months thereafter. The study is no longer recruiting patients, and is expected to report in 2006. In the field of home UVB phototherapy this trial is the first randomised parallel group study. As such, this trial addresses the weaknesses encountered in previous studies. The pragmatic design ensures that the results can be well generalised to the target population. Because, in addition to effectiveness, aspects such as

  14. The diffuse extreme-ultraviolet background - Constraints on hot coronal plasma

    NASA Technical Reports Server (NTRS)

    Paresce, F.; Stern, R.

    1981-01-01

    The Apollo-Soyuz data and data reported by Cash et al. (1976) have been reanalyzed in terms of both isothermal models and temperature distribution models. In the latter case, a power-law form is assumed for the relation between emission measure and temperature. A new upper limit on diffuse flux in the 20-73 eV band derived from Apollo-Soyuz observations made in the earth's shadow has been incorporated in the calculation. In the considered investigation the results of the new analysis are presented and the implications for the physical properties of the hot component of the interstellar medium are discussed. The analysis of the Berkeley extreme ultraviolet (EUV) diffuse background measurements using either isothermal or power law temperature distribution models for the emitting plasma indicates excellent qualitative agreement with hard X-ray data that suggest the sun to be immersed in a hot plasma that pervades most of space out to approximately 100 pc.

  15. The Canadian Ozone Watch and UV-B advisory programs

    NASA Technical Reports Server (NTRS)

    Kerr, J. B.; Mcelroy, C. T.; Tarasick, D. W.; Wardle, D. I.

    1994-01-01

    The Ozone Watch, initiated in March, 1992, is a weekly bulletin describing the state of the ozone layer over Canada. The UV-B advisory program, which started in May, 1992, produces daily forecasts of clear-sky UV-B radiation. The forecast procedures use daily ozone measurements from the eight-station monitoring network, the output from the Canadian operational forecast model and a UV-B algorithm based on three years of spectral UV-B measurements with the Brewer spectrophotometer.

  16. UVB radiation and human monocyte accessory function: Differential effects on pre-mitotic events in T-cell activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krutmann, J.K.; Kammer, G.M.; Toossi, Z.

    Purified T lymphocytes fail to proliferate in response to antigenic and mitogenic stimuli when cultured in the presence of accessory cells that have been exposed in vitro to sublethal doses of UVB radiation. Because proliferation represents a final stage in the T-cell activation process, the present study was conducted to determine whether T cells were able to progress through any of the pre-mitotic stages when UVB-irradiated monocytes were used as model accessory cells. In these experiments, monoclonal anti-CD3 antibodies were employed as the mitogenic stimulus. Culture of T cells with UVB-irradiated monocytes did allow the T cells to undergo anmore » increase in intracellular free calcium, which is one of the first steps in the activation sequence. The T cells expressed interleukin-2 receptors, although at a reduced level. However, T cells failed to produce interleukin-2 above background levels when they were placed in culture with monocytes exposed to UVB doses as low as 50 J/m2. Incubation of T cells with UVB-irradiated monocytes did not affect the subsequent capacity of T cells to proliferate, since they developed a normal proliferative response in secondary culture when restimulated with anti-CD3 antibodies and unirradiated monocytes. These studies indicate that T lymphocytes become partially activated when cultured with UVB-irradiated monocytes and mitogenic anti-CD3 monoclonal antibodies. In addition, they suggest that interleukin-2 production is the T-cell activation step most sensitive to inhibition when UVB-irradiated monocytes are employed as accessory cells.« less

  17. Topical application of spent coffee ground extracts protects skin from ultraviolet B-induced photoaging in hairless mice.

    PubMed

    Choi, Hyeon-Son; Park, Eu Ddeum; Park, Yooheon; Han, Sung Hee; Hong, Ki Bae; Suh, Hyung Joo

    2016-06-08

    The aim of this study was to evaluate the protective effect of spent coffee ground (SCG) on ultraviolet (UV) B-induced photoaging in hairless mice. The oil fraction (OSCG) and ethanol extract (ESCG) of SCG were prepared from SCG. OSCG contained a much higher level of caffeine (547.32 ± 1.68 μg mg(-1)) when compared to the sum of its chlorogenic acid derivatives (∼119 μg mg(-1)), and pyrazines were the major aromatic compounds in OSCG. OSCG effectively inhibited the UVB-induced increase in intracellular reactive oxygen species in HaCaT cells. Topical application of OSCG or ESCG significantly reduced the UVB-induced wrinkle formation in mice dorsal skin. The combined application of OSCG and ESCG (OEH) led to a decrease in the wrinkle area by over 35% when compared with the UVB-treated control (UVBC). Epidermal thickness was also reduced by 40%. This result was connected to the significant reduction in transdermal water loss (27%) and erythema formation (48%) that result from UVB irradiation. Polarization-sensitive optical coherence tomography (PS-OCT) and antibody-based histological analyses showed that OSCG and ESCG effectively suppressed the UVB-induced decrease in collagen content. The level of type 1 collagen (COL1) in the OEH group was enhanced by around 40% compared with the UVB control group (UVBC). This was attributed to the down-regulation of matrix metalloproteinases (MMP2, 9, and 13), which are known to be responsible for collagen destruction. Our results indicate that topical treatment with OSCG/ESCG protects mouse skin from UVB-induced photoaging by down-regulating MMPs; therefore, suggesting the potential of SCG extracts as a topical anti-photoaging agent.

  18. Effect of ingested concentrate and components of sake on epidermal permeability barrier disruption by UVB irradiation.

    PubMed

    Hirotsune, Masato; Haratake, Akinori; Komiya, Aya; Sugita, Jun; Tachihara, Toru; Komai, Tsuyoshi; Hizume, Kazuhisa; Ozeki, Kenji; Ikemoto, Takeshi

    2005-02-23

    Daily topical applications of the concentrate of sake (CS) have been shown to reduce epidermal barrier disruption in murine skin caused by ultraviolet B (UVB) radiation, while one of the components of sake, ethyl alpha-D-glucoside (alpha-EG), also reduces barrier disruption. We confirmed the effect of oral ingestion of various doses of CS on epidermal barrier disruption caused by UVB irradiation in hairless mice. Then, to identify the effective components, we quantitatively analyzed alpha-EG, organic acids, and glycerol, the main components of CS, and examined the effect of various concentration of each on barrier disruption. alpha-EG and organic acids showed comparable results to CS itself, and transepidermal water loss levels in murine skin were significantly decreased as compared with the control. Furthermore, an investigation of the dose dependency of these agents was performed and the results showed the significant effectiveness of alpha-EG. In addition, red wine concentrate (WC) and beer concentrate (BC) were examined in order to confirm the unique effects of CS. Similar effects were not found with WC and BC.

  19. Quality assurance of the UV irradiances of the UV-B Monitoring and Research Program: the Mauna Loa test case

    NASA Astrophysics Data System (ADS)

    Zempila, Melina Maria; Davis, John; Janson, George; Olson, Becky; Chen, Maosi; Durham, Bill; Simpson, Scott; Straube, Jonathan; Sun, Zhibin; Gao, Wei

    2017-09-01

    The USDA UV-B Monitoring and Research Program (UVMRP) is an ongoing effort aiming to establish a valuable, longstanding database of ground-based ultraviolet (UV) solar radiation measurements over the US. Furthermore, the program aims to achieve a better understanding of UV variations through time, and develop a UV climatology for the Northern American section. By providing high quality radiometric measurements of UV solar radiation, UVMRP is also focusing on advancing science for agricultural, forest, and range systems in order to mitigate climate impacts. Within these foci, the goal of the present study is to investigate, analyze, and validate the accuracy of the measurements of the UV multi-filter rotating shadowband radiometer (UV-MFRSR) and Yankee (YES) UVB-1 sensor at the high altitude, pristine site at Mauna Loa, Hawaii. The response-weighted irradiances at 7 UV channels of the UV-MFRSR along with the erythemal dose rates from the UVB-1 radiometer are discussed, and evaluated for the period 2006-2015. Uncertainties during the calibration procedures are also analyzed, while collocated groundbased measurements from a Brewer spectrophotometer along with model simulations are used as a baseline for the validation of the data. Besides this quantitative research, the limitations and merits of the existing UVMRP methods are considered and further improvements are introduced.

  20. Lighting considerations in controlled environments for nonphotosynthetic plant responses to blue and ultraviolet radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caldwell, M.M.; Flint, S.D.

    1994-12-31

    This essay will consider both physical and photobiological aspects of controlled environment lighting in the spectral region beginning in the blue and taken to the normal limit of the solar spectrum in the ultraviolet. The primary emphasis is directed to questions of plant response to sunlight. Measurement and computations used in radiation dosimetry in this part of the spectrum are also briefly treated. Because of interest in the ozone depletion problem, there has been some activity in plant UV-B research and there are several recent reviews available. Some aspects of growth chamber lighting as it relates to UV-B research weremore » covered earlier. Apart from work related to the blue/UV-A receptor, less attention has been given to UV-A responses.« less

  1. UV-B Radiation Contributes to Amphibian Population Declines

    NASA Astrophysics Data System (ADS)

    Blaustein, Andrew

    2007-05-01

    UV-B (280-315 nm) radiation is the most significant biologically damaging radiation at the terrestrial surface. At the organismal level, UV-B radiation can slow growth rates, cause immune dysfunction and result in sublethal damage. UV-B radiation can lead to mutations and cell death. Over evolutionary time, UV radiation has been an important stressor on living organisms. Natural events, including impacts from comets and asteroids, volcanic activity, supernova explosions and solar flares, can cause large-scale ozone depletion with accompanying increases in UV radiation. However, these natural events are transient. Moreover, the amount of ozone damage due to natural events depends upon a number of variables, including the magnitude of the event. This is different from modern-day human-induced production of chlorofluorocarbons (CFCs) and other chemicals that deplete stratospheric ozone continuously, resulting in long-term increases in UV-B radiation at the surface of the earth. We will briefly review the effects of UV-B exposure in one group of aquatic organisms_amphibians. UV-B has been implicated as a possible factor contributing to global declines and range reductions in amphibian populations.

  2. Protective effect of 3,4-dihydroxybenzoic acid isolated from Cladophora wrightiana Harvey against ultraviolet B radiation-induced cell damage in human HaCaT keratinocytes.

    PubMed

    Cha, Ji Won; Piao, Mei Jing; Kim, Ki Cheon; Zheng, Jian; Yao, Cheng Wen; Hyun, Chang Lim; Kang, Hee Kyoung; Yoo, Eun Sook; Koh, Young Sang; Lee, Nam Ho; Ko, Mi Hee; Hyun, Jin Won

    2014-03-01

    The aim of the present study was to elucidate the protective properties of 3,4-dihydroxybenzoic acid (DBA) isolated from Cladophora wrightiana Harvey (a green alga) against ultraviolet B (UVB)-induced damage to human HaCaT keratinocytes. DBA exhibited scavenging actions against the 1,1-diphenyl-2-picrylhydrazyl radical, the superoxide anion, and the hydroxyl radical. Furthermore, DBA decreased the levels of intracellular reactive oxygen species generated by hydrogen peroxide or UVB treatment of the cells. DBA also decreased the UVB-augmented levels of phospho-histone H2A.X and the extent of comet tail formation, which are both indications of DNA damage. In addition, the compound safeguarded keratinocytes from UVB-induced injury by reversing the production of apoptotic bodies, overturning the disruption of mitochondrial membrane potential, increasing the expression of the anti-apoptotic protein, B-cell lymphoma 2, and decreasing the expression of the pro-apoptotic proteins, Bcl-2-associated X and cleaved caspase-3. Taken together, these results demonstrate that DBA isolated from a green alga protects human keratinocytes against UVB-induced oxidative stress and apoptosis.

  3. Combination treatment of elevated UVB radiation, CO2 and temperature has little effect on silver birch (Betula pendula) growth and phytochemistry.

    PubMed

    Lavola, Anu; Nybakken, Line; Rousi, Matti; Pusenius, Jyrki; Petrelius, Mari; Kellomäki, Seppo; Julkunen-Tiitto, Riitta

    2013-12-01

    Elevations of carbon dioxide, temperature and ultraviolet-B (UBV) radiation in the growth environment may have a high impact on the accumulation of carbon in plants, and the different factors may work in opposite directions or induce additive effects. To detect the changes in the growth and phytochemistry of silver birch (Betula pendula) seedlings, six genotypes were exposed to combinations of ambient or elevated levels of CO2 , temperature and UVB radiation in top-closed chambers for 7 weeks. The genotypes were relatively similar in their responses, and no significant interactive effects of three-level climate factors on the measured parameters were observed. Elevated UVB had no effect on growth, nor did it alter plant responses to CO2 and/or temperature in combined treatments. Growth in all plant parts increased under elevated CO2 , and height and stem biomass increased under elevated temperature. Increased carbon distribution to biomass did not reduce its allocation to phytochemicals: condensed tannins, most flavonols and phenolic acids accumulated under elevated CO2 and elevated UVB, but this effect disappeared under elevated temperature. Leaf nitrogen content decreased under elevated CO2 . We conclude that, as a result of high genetic variability in phytochemicals, B. pendula seedlings have potential to adapt to the tested environmental changes. The induction in protective flavonoids under UVB radiation together with the positive impact of elevated CO2 and temperature mitigates possible UVB stress effects, and thus atmospheric CO2 concentration and temperature are the climate change factors that will dictate the establishment and success of birch at higher altitudes in the future. © 2013 Scandinavian Plant Physiology Society.

  4. Excimer laser therapy and narrowband ultraviolet B therapy for exfoliative cheilitis.

    PubMed

    Bhatia, Bhavnit K; Bahr, Brooks A; Murase, Jenny E

    2015-06-01

    Exfoliative cheilitis is a condition of unknown etiology characterized by hyperkeratosis and scaling of vermilion epithelium with cyclic desquamation. It remains largely refractory to treatment, including corticosteroid therapy, antibiotics, antifungals, and immunosuppressants. We sought to evaluate the safety and efficacy of excimer laser therapy and narrowband ultraviolet B therapy in female patients with refractory exfoliative cheilitis. We reviewed the medical records of two female patients who had been treated unsuccessfully for exfoliative cheilitis. We implemented excimer laser therapy, followed by hand-held narrowband UVB treatments for maintenance therapy, and followed them for clinical improvement and adverse effects. Both patients experienced significant clinical improvement with minimal adverse effects with excimer laser therapy 600-700 mJ/cm 2 twice weekly for several months. The most common adverse effects were bleeding and burning, which occurred at higher doses. The hand-held narrowband UVB unit was also an effective maintenance tool. Limitations include small sample size and lack of standardization of starting dose and dose increments. Excimer laser therapy is a well-tolerated and effective treatment for refractory exfoliative cheilitis with twice weekly laser treatments of up to 700 mJ/cm 2 . Transitioning to the hand-held narrowband UVB device was also an effective maintenance strategy.

  5. Tranexamic acid suppresses ultraviolet B eye irradiation-induced melanocyte activation by decreasing the levels of prohormone convertase 2 and alpha-melanocyte-stimulating hormone.

    PubMed

    Hiramoto, Keiichi; Yamate, Yurika; Sugiyama, Daijiro; Takahashi, Yumi; Mafune, Eiichi

    2014-12-01

    Tranexamic acid (trans-4-aminomethylcyclohexanecarboxylic acid) is a medicinal amino acid used in skin whitening care. This study examined the effects of tranexamic acid on the melanocyte activation of the skin induced by an ultraviolet (UV) B eye irradiation. The eye or ear was locally exposed to UVB at a dose of 1.0 kJ/m(2) using a 20SE sunlamp after covering the remaining body surface with aluminum foil. UVB eye irradiation induced melanocyte activation of the skin, similar to that observed following UVB ear irradiation, which was suppressed by the administration of tranexamic acid treatment. The plasma α-melanocyte-stimulating hormone (α-MSH) content was increased by UVB irradiation of the eye; however, the increase in α-MSH was suppressed by tranexamic acid treatment. In addition, UVB eye irradiation induced the up-regulation of prohormone convertase (PC) 2 in the pituitary gland. Meanwhile, the increase in PC2 induced by UVB eye irradiation was suppressed by tranexamic acid treatment. These results clearly indicate that tranexamic acid decreases the expression of PC2, which cleavages from proopiomelanocortin to α-MSH in the pituitary gland, thereby suppressing melanocyte activation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Pinus densiflora extract protects human skin fibroblasts against UVB-induced photoaging by inhibiting the expression of MMPs and increasing type I procollagen expression.

    PubMed

    Jung, Hoe-Yune; Shin, Jae-Cheon; Park, Seon-Min; Kim, Na-Ri; Kwak, Wonjung; Choi, Bo-Hwa

    2014-01-01

    Exposure to ultraviolet (UV) light can cause skin photoaging, which is associated with upregulation of matrix metalloproteinases (MMPs) and downregulation of collagen synthesis. It has been reported that MMPs, especially MMP-1, MMP-3 and MMP-9, decrease the elasticity of the dermis by degrading collagen. In this study, we assessed the effects of Pinus densiflora extract (PDE) on photoaging and investigated its mechanism of action in human skin fibroblast (Hs68) cells after UVB exposure using real-time polymerase chain reaction, Western blot analysis, and enzymatic activity assays. PDE exhibited an antioxidant activity and inhibited elastase activities in vitro. We also found that PDE inhibited UVB-induced cytotoxicity, MMP-1 production and expression of MMP-1, -3 and -9 mRNA in Hs68 cells. In addition, PDE decreased UVB-induced MMP-2 activity and MMP-2 mRNA expression. Moreover, PDE prevented the decrease of type I procollagen mediated by exposure to UVB irradiation, an effect that is linked to the upregulation and downregulation of Smad3 and Smad7, respectively. Another effect of UV irradiation is to stimulate activator protein 1 (AP-1) activity via overexpression of c-Jun/c-Fos, which, in turn, upregulates MMP-1, -3, and -9. In this study, we found that PDE suppressed UV-induced c-Jun and c-Fos mRNA expression. Taken together, these results demonstrate that PDE regulates UVB-induced expression of MMPs and type I procollagen synthesis by inhibiting AP-1 activity and restoring impaired Smad signaling, suggesting that PDE may be useful as an effective anti-photoaging agent.

  7. Assessment of ultraviolet B–blocking effects of weekly disposable contact lenses on corneal surface in a mouse model

    PubMed Central

    Lin, David Pei-Cheng; Chang, Han-Hsin; Yang, Li-Chien; Huang, Tzu-Ping; Liu, Hsiang-Jui; Chang, Lin-Song; Lin, Chien-Hsun

    2013-01-01

    Purpose Weekly disposable soft contact lenses have been widely used recently, but their shield effects against ultraviolet (UV) irradiation remain to be evaluated. This study investigated the bioprotective effects of several weekly soft contact lenses against UVB irradiation on the corneal surface in a mouse model. Methods Fifty ICR mice were randomly divided into five groups: (1) blank control, (2) exposed to UVB without contact lens protection, (3) exposed to UVB and protected with Vifilcon A contact lenses, (4) exposed to UVB and protected with Etafilcon A contact lenses, and (5) exposed to UVB and protected with HEMA+MA contact lenses. The exposure to UVB irradiation was performed at 0.72 J/cm2/day after anesthesia for a 7-day period, followed by cornea surface assessment for smoothness, opacity, and grading of lissamine green staining. Tissue sections were prepared for hematoxylin and eosin staining and immunohistochemical detection by using antibodies against myeloperoxidase, cytokeratin-5, P63, Ki-67, nuclear factor-kappa B (p65), cyclooxygenase-2, Fas L, and Fas. Results The results showed impaired corneal surface with myeloperoxidase+ polymorphonuclear leukocyte infiltration into the stroma after UVB exposure, in contrast to the intact status of the blank controls. The corneas with Etafilcon A and HEMA+MA contact lenses maintained more cells positive for cytokeratin-5, P63, and Ki-67 compared to those with Vifilcon A or without contact lens protection. Furthermore, less proinflammatory factors, including nuclear factor-kappa (p65), cyclooxygenase-2, Fas L, and Fas, were induced in the corneas protected by Etafilcon A and HEMA+MA. Conclusions This study demonstrated various protective effects of weekly disposable contact lenses against UVB irradiation. The mouse model used in the present study may be used extensively for in vivo assessment of UV shield efficacy. PMID:23734085

  8. ALA-PDT elicits oxidative damage and apoptosis in UVB-induced premature senescence of human skin fibroblasts.

    PubMed

    Zhou, Bing-Rong; Zhang, Li-Chao; Permatasari, Felicia; Liu, Juan; Xu, Yang; Luo, Dan

    2016-06-01

    5-Aminolevulinic acid photodynamic therapy (ALA-PDT) has been used for the treatment of skin photoaging. It can significantly improve the appearance of fine lines, dotted pigmentation, and roughness of photoaged skin. However, the mechanisms by which ALA-PDT yields rejuvenating effects on photoaged skin have not been well elucidated. Thus, in this study we explored the effects of ALA-PDT in photoaged fibroblasts. We established a stress-induced premature senescence (SIPS) model by repeated exposures of human dermal fibroblasts (HDFs) to ultraviolet B (UVB) irradiation. Cells were irradiated by red light laser at 635nm wavelength (50mW/cm(2)). Intracellular protoporphyrin IX (PpIX) was detected by confocal microscopy. Intracellular reactive oxygen species (ROS) level and mitochondrial membrane potential (MMP) change were detected by fluorescence microscopy and flow cytometry. Morphological changes were observed by optical microscopy. Proliferative activity was measured by a cell counting kit-8 (CCK-8). Cell apoptosis was detected by fluorescence microscopy using Hoechst staining and flow cytometry using annexin V/propidium Iodide double staining. Intracellular PpIX fluorescence in UVB-induced premature senescent HDFs (UVB-SIPS-HDFs) reached the highest intensity after incubation with 1.00mmol/L ALA for 6h (P<0.05). Compared with control group, intracellular ROS level, MMP, and apoptotic rate were increased (P<0.05) and proliferative activity was decreased (P<0.05) in UVB-SIPS-HDFs treated with ALA-PDT, which were positively correlated to ALA incubation time and red light laser dose. Our study demonstrated that ALA-PDT elicits oxidative damage and apoptosis in photoaged fibroblasts in vitro, which may be the basis for the rejuvenating effects on photoaged skin. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Effects of simulated solar UVB radiation on early developmental stages of the northwestern salamander (Ambystoma gracile) from three lakes

    USGS Publications Warehouse

    Calfee, R.D.; Little, E.E.; Pearl, C.A.; Hoffman, R.L.

    2010-01-01

    Solar ultraviolet radiation (UV) has received much attention as a factor that could play a role in amphibian population declines. UV can be hazardous to some amphibians, but the resultant effects depend on a variety of environmental and behavioral factors. In this study, the potential effects of UV on the Northwestern Salamander, Ambystoma gracile, from three lakes were assessed in the laboratory using a solar simulator. We measured the survival of embryos and the survival and growth of larvae exposed to four UV treatments in controlled laboratory studies, the UV absorbance of egg jelly, oviposition depths in the lakes, and UV absorbance in water samples from the three lakes. Hatching success of embryos decreased in the higher UV treatments as compared to the control treatments, and growth of surviving larvae was significantly reduced in the higher UVB irradiance treatments. The egg jelly exhibited a small peak of absorbance within the UVB range (290-320 nm). The magnitude of UV absorbance differed among egg jellies from the three lakes. Oviposition depths at the three sites averaged 1.10 m below the water surface. Approximately 66 of surface UVB radiation was attenuated at 10-cm depth in all three lakes. Results of this study indicate that larvae may be sensitive to UVB exposure under laboratory conditions; however, in field conditions the depths of egg deposition in the lakes, absorbance of UV radiation by the water column, and the potential for behavioral adjustments may mitigate severe effects of UV radiation. Copyright 2010 Society for the Study of Amphibians and Reptiles.

  10. The solar ultraviolet B radiation protection provided by shading devices with regard to its diffuse component.

    PubMed

    Kudish, Avraham I; Harari, Marco; Evseev, Efim G

    2011-10-01

    The composition of the incident solar global ultraviolet B (UVB) radiation with regard to its beam and diffuse radiation fractions is highly relevant with regard to outdoor sun protection. This is especially true with respect to sun protection during leisure-time outdoor sun exposure at the shore and pools, where people tend to escape the sun under shade trees or different types of shading devices, e.g., umbrellas, overhangs, etc., believing they offer protection from the erythemal solar radiation. The degree of sun protection offered by such devices is directly related to the composition of the solar global UVB radiation, i.e., its beam and diffuse fractions. The composition of the incident solar global UVB radiation can be determined by measuring the global UVB (using Solar Light Co. Inc., Model 501A UV-Biometer) and either of its components. The beam component of the UVB radiation was determined by measuring the normal incidence beam radiation using a prototype, tracking instrument consisting of a Solar Light Co. Inc. Model 501A UV-Biometer mounted on an Eppley Solar Tracker Model St-1. The horizontal beam component of the global UVB radiation was calculated from the measured normal incidence using a simple geometric correlation and the diffuse component is determined as the difference between global and horizontal beam radiations. Horizontal and vertical surfaces positioned under a horizontal overhang/sunshade or an umbrella are not fully protected from exposure to solar global UVB radiation. They can receive a significant fraction of the UVB radiation, depending on their location beneath the shading device, the umbrella radius and the albedo (reflectance) of the surrounding ground surface in the case of a vertical surface. Shading devices such as an umbrella or horizontal overhang/shade provide relief from the solar global radiation and do block the solar global UVB radiation to some extent; nevertheless, a significant fraction of the solar global UVB

  11. UVB-irradiated keratinocytes induce melanoma-associated ganglioside GD3 synthase gene in melanocytes via secretion of tumor necrosis factor α and interleukin 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyata, Maiko; Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065; Ichihara, Masatoshi

    Highlights: • Melanocytes showed low ST8SIA1 and high B3GALT4 levels in contrast with melanomas. • Direct UVB irradiation of melanocytes did not induce ganglioside synthase genes. • Culture supernatants of UVB-irradiated keratinocytes induced ST8SIA1 in melanocytes. • TNFα and IL-6 secreted from keratinocytes enhanced ST8SIA1 expression in melanocytes. • Inflammatory cytokines induced melanoma-related ST8SIA1 in melanocytes. - Abstract: Although expression of gangliosides and their synthetic enzyme genes in malignant melanomas has been well studied, that in normal melanocytes has been scarcely analyzed. In particular, changes in expression levels of glycosyltransferase genes responsible for ganglioside synthesis during evolution of melanomas frommore » melanocytes are very important to understand roles of gangliosides in melanomas. Here, expression of glycosyltransferase genes related to the ganglioside synthesis was analyzed using RNAs from cultured melanocytes and melanoma cell lines. Quantitative RT-PCR revealed that melanomas expressed high levels of mRNA of GD3 synthase and GM2/GD2 synthase genes and low levels of GM1/GD1b synthase genes compared with melanocytes. As a representative exogenous stimulation, effects of ultraviolet B (UVB) on the expression levels of 3 major ganglioside synthase genes in melanocytes were analyzed. Although direct UVB irradiation of melanocytes caused no marked changes, culture supernatants of UVB-irradiated keratinocytes (HaCaT cells) induced definite up-regulation of GD3 synthase and GM2/GD2 synthase genes. Detailed examination of the supernatants revealed that inflammatory cytokines such as TNFα and IL-6 enhanced GD3 synthase gene expression. These results suggest that inflammatory cytokines secreted from UVB-irradiated keratinocytes induced melanoma-associated ganglioside synthase genes, proposing roles of skin microenvironment in the promotion of melanoma-like ganglioside profiles in melanocytes.« less

  12. Conidia survival of Aspergillus section Nigri, Flavi and Circumdati under UV-A and UV-B radiation with cycling temperature/light regime.

    PubMed

    García-Cela, Maria Esther; Marín, Sonia; Reyes, Monica; Sanchis, Vicent; Ramos, Antonio J

    2016-04-01

    Bio-geographical differences in fungal infection distribution have been observed around the world, confirming that climatic conditions are decisive in colonization. This research is focused on the impact of ultraviolet radiation (UV) on Aspergillus species, based on the consideration that an increase in UV-B radiation may have large ecological effects. Conidia of six mycotoxigenic Aspergillus species isolated from vineyards located in the northeast and south of Spain were incubated for 15 days under light/dark cycles and temperatures between 20 and 30 °C per day. Additionally, 6 h of exposure to UV-A or UV-B radiation per day were included in the light exposure. UV irradiance used were 1.7 ± 0.2 mW cm(-2) of UV-A (peak 365 nm) and 0.10 ± 0.2 mW cm(-2) of UV-B (peak 312 nm). The intrinsic decrease in viability of conidia over time was accentuated when they were UV irradiated. UV-B radiation was more harmful. Conidial sensitivity to UV light was marked in Aspergillus section Circumdati. Conidia pigmentation could be related to UV sensitivity. Different resistance was observed within species belonging to sections Flavi and Nigri. An increase in UV radiation could lead to a reduction in the Aspergillus spp. inoculum present in the field (vineyards, nuts, cereal crops). In addition, it could unbalance the spore species present in the field, leading to a higher predominance of dark-pigmented conidia. © 2015 Society of Chemical Industry.

  13. Regulation of Human Skin Pigmentation in situ by Repetitive UV Exposure – Molecular Characterization of Responses to UVA and/or UVB

    PubMed Central

    Choi, Wonseon; Miyamura, Yoshinori; Wolber, Rainer; Smuda, Christoph; Reinhold, William; Liu, Hongfang; Kolbe, Ludger; Hearing, Vincent J.

    2012-01-01

    Ultraviolet (UV) radiation is a major environmental factor that affects pigmentation in human skin and can eventually result in various types of UV-induced skin cancers. The effects of various wavelengths of UV on melanocytes and other types of skin cells in culture have been studied but little is known about gene expression patterns in situ following in situe exposure of human skin to different types of UV (UVA and/or UVB). Paracrine factors expressed by keratinocytes and/or fibroblasts that affect skin pigmentation might be regulated differently by UV, as might their corresponding receptors expressed on melanocytes. To test the hypothesis that different mechanisms are involved in the pigmentary responses of the skin to different types of UV, we used immunohistochemical and whole human genome microarray analyses to characterize human skin in situ to examine how melanocyte-specific proteins and paracrine melanogenic factors are regulated by repetitive exposure to different types of UV compared with unexposed skin as a control. The results show that gene expression patterns induced by UVA or UVB are distinct, UVB eliciting dramatic increases in a large number of genes involved in pigmentation as well as in other cellular functions, while UVA had little or no effect on those. The expression patterns characterize the distinct responses of the skin to UVA or UVB, and identify several potential previously unidentified factors involved in UV-induced responses of human skin. PMID:20147966

  14. Effects of the nonsugar fraction of brown sugar on chronic ultraviolet B irradiation-induced photoaging in melanin-possessing hairless mice.

    PubMed

    Sumiyoshi, Maho; Hayashi, Teruaki; Kimura, Yoshiyuki

    2009-04-01

    Brown sugar has been used traditionally for the treatment of skin trouble as a component of soaps or lotions. Symptoms of aging including wrinkles and pigmentation develop earlier in sun-exposed skin than unexposed skin, a phenomenon referred to as photoaging. Ultraviolet B (UVB) radiation is one of the most important environmental factors influencing photoaging. The aim of this study was to clarify whether the nonsugar fraction of brown sugar prevents chronic UVB-induced aging of the skin using melanin-possessing hairless mice. The nonsugar fraction (1% or 3% solution, 50 mul/mouse) was applied topically to the dorsal region every day for 19 weeks. Both solutions prevented an increase in skin thickness and reduction in skin elasticity caused by the UVB. The 3% solution also prevented wrinkles and melanin pigmentation as well as increases in the diameter and length of skin blood vessels. Increases in the expression of matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF) in UVB-irradiated skin was inhibited by the nonsugar fraction. Prevention of UVB-induced aging of the skin by topical application of the nonsugar fraction of brown sugar may be due to inhibition of increases in MMP-2 and VEGF expression.

  15. The Preventive Effect of Coffee Compounds on Dermatitis and Epidermal Pigmentation after Ultraviolet Irradiation in Mice.

    PubMed

    Yamate, Yurika; Hiramoto, Keiichi; Sato, Eisuke F

    2017-01-01

    Ultraviolet (UV) irradiation is well known to promote inflammation and pigmentation of skin. UVB mainly affects dermatitis and pigmentation. Coffee contains a number of polyphenols, such as caffeic acid (CA) and chlorogenic acid (CGA) but their in vivo bioactivity for photobiology remains unclear. C57BL/6j male mice were irradiated with UVB (1.0 kJ/m2/day) for 3 days. Five days after the final session of UVB irradiation, the dorsal skin, ear epidermis, and blood samples were analyzed to investigate the inflammatory factors, melanogenesis factors and related hormones. After the oral administration of CA (100 mg/day) or CGA (100 mg/day) for 8 days, only CA was found to inhibit dermatitis and pigmentation. The pathway by which CA inhibits dermatitis is related to the mitogen-activated protein kinase (MAPK)/extracellular signal regulated kinase (ERK)1/2/cAMP response element binding protein (CREB) pathway. Otherwise, the pathway by which CA inhibits pigmentation is related to the activation of the β-endorphin-μ-opioid receptor and suppresses the cAMP-microphthalmia-associated transcription factor (MITF) pathway. It is suggested that the oral administration of CA prevented dermatitis and pigmentation after UVB irradiation in mice. © 2017 S. Karger AG, Basel.

  16. Vitamin D2 Stability During the Refrigerated Storage of Ultraviolet B-Treated Cultivated Culinary-Medicinal Mushrooms.

    PubMed

    Slawinska, Aneta; Fornal, Emilia; Radzki, Wojciech; Jablonska-Rys, Ewa; Parfieniuk, Ewa

    2017-01-01

    The effects of ultraviolet B (UVB) irradiation on the synthesis of vitamin D2 and its stability during refrigerated storage was determined in fresh cultivated culinary-medicinal mushrooms (Agaricus bisporus, Pleurotus ostreatus, and Lentinus edodes) after harvest. The irradiated mushrooms were stored at 4°C for up to 10 days. The concentrations of vitamin D2 and ergosterol were determined using ultrahigh-performance liquid chromatography/tandem mass spectrometry. The cultivated mushrooms not treated with UVB were devoid of vitamin D2. After UVB irradiation, we obtained mushrooms with a large amount of ergocalciferol. A. bisporus showed the lowest vitamin D2 content (3.55 ± 0.11 μg D2/g dry weight); P. ostreatus contained 58.96 ± 1.15 μg D2/g dry weight, and L. edodes contained 29.46 ± 2.21 μg/g dry weight. During storage at 4°C, the amount of vitamin D2 was gradually decreased in P. ostreatus and L. edodes, whereas in A. bisporus vitamin D2 gradually increased until the sixth day, then decreased. Mushrooms exposed to UVB radiation contain a significant amount of vitamin D2 and are therefore an excellent food source of vitamin D.

  17. Combined effects of lanthanum(III) and elevated ultraviolet-B radiation on root growth and ion absorption in soybean seedlings.

    PubMed

    Huang, Guang Rong; Wang, Li Hong; Zhou, Qing

    2014-03-01

    Rare earth element accumulation in the soil and elevated ultraviolet (UV)-B radiation (280-315 nm) are important environmental issues worldwide. To date, there have been no reports concerning the combined effects of lanthanum (La)(III) and elevated UV-B radiation on plant roots in regions where the two issues occur simultaneously. Here, the combined effects of La(III) and elevated UV-B radiation on the growth, biomass, ion absorption, activities, and membrane permeability of roots in soybean (Glycine max L.) seedlings were investigated. A 0.08 mmol L(-1) La(III) treatment improved the root growth and biomass of soybean seedlings, while ion absorption, activities, and membrane permeability were obviously unchanged; a combined treatment with 0.08 mmol L(-1) La(III) and elevated UV-B radiation (2.63/6.17 kJ m(-2) day(-1)) exerted deleterious effects on the investigated indices. The deleterious effects were aggravated in the other combined treatments and were stronger than those of treatments with La(III) or elevated UV-B radiation alone. The combined treatment with 0.24/1.20 mmol L(-1) La(III) and elevated UV-B radiation exerted synergistically deleterious effects on the growth, biomass, ion absorption, activities, and membrane permeability of roots in soybean seedlings. In addition, the deleterious effects of the combined treatment on the root growth were due to the inhibition of ion absorption induced by the changes in the root activity and membrane permeability.

  18. Topical application of glycolic acid suppresses the UVB induced IL-6, IL-8, MCP-1 and COX-2 inflammation by modulating NF-κB signaling pathway in keratinocytes and mice skin.

    PubMed

    Tang, Sheau-Chung; Liao, Pei-Yun; Hung, Sung-Jen; Ge, Jheng-Siang; Chen, Shiou-Mei; Lai, Ji-Ching; Hsiao, Yu-Ping; Yang, Jen-Hung

    2017-06-01

    Glycolic acid (GA), commonly present in fruits, has been used to treat dermatological diseases. Extensive exposure to solar ultraviolet B (UVB) irradiation plays a crucial role in the induction of skin inflammation. The development of photo prevention from natural materials represents an effective strategy for skin keratinocytes. The aim of this study was to investigate the molecular mechanisms underlying the glycolic acid (GA)-induced reduction of UVB-mediated inflammatory responses. We determined the effects of different concentrations of GA on the inflammatory response of human keratinocytes HaCaT cells and C57BL/6J mice dorsal skin. After GA was topically applied, HaCaT and mice skin were exposed to UVB irradiation. GA reduced the production of UVB-induced nuclear factor kappa B (NF-κB)-dependent inflammatory mediators [interleukin (IL)-1β, IL-6, IL-8, cyclooxygenase (COX)-2, tumor necrosis factor-α, and monocyte chemoattractant protein (MCP-1)] at both mRNA and protein levels. GA inhibited the UVB-induced promoter activity of NF-κB in HaCaT cells. GA attenuated the elevation of senescence associated with β-galactosidase activity but did not affect the wound migration ability. The topical application of GA inhibited the genes expression of IL-1β, IL-6, IL-8, COX-2, and MCP-1 in UVB-exposed mouse skin. The mice to UVB irradiation after GA was topically applied for 9 consecutive days and reported that 1-1.5% of GA exerted anti-inflammatory effects on mouse skin. We clarified the molecular mechanism of GA protection against UVB-induced inflammation by modulating NF-κB signaling pathways and determined the optimal concentration of GA in mice skin exposed to UVB irradiation. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  19. Tiron Inhibits UVB-Induced AP-1 Binding Sites Transcriptional Activation on MMP-1 and MMP-3 Promoters by MAPK Signaling Pathway in Human Dermal Fibroblasts

    PubMed Central

    Zhang, Chao; Zhao, Mei; Zhang, Quan-Wu; Gao, Feng-Hou

    2016-01-01

    Recent research found that Tiron was an effective antioxidant that could act as the intracellular reactive oxygen species (ROS) scavenger or alleviate the acute toxic metal overload in vivo. In this study, we investigated the inhibitory effect of Tiron on matrix metalloproteinase (MMP)-1 and MMP-3 expression in human dermal fibroblast cells. Western blot and ELISA analysis revealed that Tiron inhibited ultraviolet B (UVB)-induced protein expression of MMP-1 and MMP-3. Real-time quantitative PCR confirmed that Tiron could inhibit UVB-induced mRNA expression of MMP-1 and MMP-3. Furthermore, Tiron significantly blocked UVB-induced activation of the MAPK signaling pathway and activator protein (AP)-1 in the downstream of this transduction pathway in fibroblasts. Through the AP-1 binding site mutation, it was found that Tiron could inhibit AP-1-induced upregulation of MMP-1 and MMP-3 expression through blocking AP-1 binding to the AP-1 binding sites in the MMP-1 and MMP-3 promoter region. In conclusion, Tiron may be a novel antioxidant for preventing and treating skin photoaging UV-induced. PMID:27486852

  20. Evaluation of the UVB-screening capacity and restorative effects exerted by farnesol gel on UVB-caused sunburn.

    PubMed

    Wu, Guan Xuan; Huang, Han Hsiang; Chang, Huoy Rou; Kuo, Shyh Ming

    2018-04-01

    Farnesol, a natural 15-carbon organic compound, has various microbiological and cellular activities. It has been found to exert apoptosis-inducing effects against carcinoma cells as well as antiallergic and anti-inflammatory effects in vivo. In the current study, a series of formulations composed of various concentrations of hydroxypropyl methylcellulose (HPMC) with the addition of hyaluronan (HA) and xanthan gum (XG) was designed to evaluate the UVB-screening and H 2 O 2 -eliminating effects of farnesol in normal fibroblasts. Farnesol at 0.005, 0.0075, and 0.01% exhibited significant capacity for H 2 O 2 scavenging; at 0.0025%, it showed insignificant effects. Under 120-min UVB exposure, screening with plural gel composed of 0.0025% farnesol, 0.5% HA, and 0.5% XG containing 1.5% or 2% HPMC retained normal fibroblast viability. After 60-min exposure to UVB, screening with plural gel composed of farnesol, HA, XG, and 0.5%, 1.0%, 1.5%, or 2% HPMC decreased the ratio of the G1 phase and increased ratio of the S phase in comparison with the accumulated cell cycle of the normal fibroblasts without screening. The gel with 2% HPMC displayed the strongest cell cycle-reversal ability. In vivo histopathological results showed that the prepared plural gels with 0.5% or 2% HPMC and farnesol, HA, and XG had greater antiphotoaging and reparative effects against UVB-induced changes and damage in the skin. In conclusion, the current in vitro and in vivo results demonstrated that the prepared plural composed of 0.0025% farnesol, 0.5% HA, 0.5% XG, and 2% HPMC possessed the greatest UVB-screening capacity and the strongest restorative effects on UVB-induced sunburned skin. © 2018 Wiley Periodicals, Inc.

  1. MHY884, a newly synthesized tyrosinase inhibitor, suppresses UVB-induced activation of NF-κB signaling pathway through the downregulation of oxidative stress.

    PubMed

    Choi, Yeon Ja; Uehara, Yohei; Park, Ji Young; Kim, Seong Jin; Kim, So Ra; Lee, Hee Won; Moon, Hyung Ryong; Chung, Hae Young

    2014-03-01

    The skin is the primary target of prolonged and repeated ultraviolet (UVB) irradiation which induces cutaneous inflammation and pigmentation. Nuclear factor κB (NF-κB) is the major factor mediating UVB-induced inflammatory responses through the expression of various proinflammatory proteins such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). We have previously reported that the synthetic novel compound 4-(5-chloro-2,3-dihydrobenzo[d]thiazol-2-yl)-2,6-dimethoxyphenol (MHY884) strongly suppressed tyrosinase activity and melanin synthesis in B16F10 melanoma cells. In the present study, we investigated the effect of MHY884 on the inhibition of UVB-induced NF-κB activation and its proinflammatory downstream proteins through the suppression of oxidative stress in an in vivo model of photoaging. Generation of reactive oxygen species (ROS) and peroxynitrite was measured in vitro and in B16F10 melanoma cells to verify the scavenging activity of MHY884. MHY884 suppressed oxidative stress both in vitro and in the melanoma cells in a dose-dependent manner. Next, melanin-possessing hairless mice were pre-treated with MHY884 and then irradiated with UVB repeatedly. Topical application of MHY884 attenuated UVB-induced oxidative stress, resulting in reduced NF-κB activity. Pre-treatment with MHY884 inhibited Akt and IκB kinase α/β signaling pathways, leading to decreased translocation and phosphorylation of p65, a subunit of NF-κB. This result correlated with the expression levels of iNOS and COX-2 in the skin of MHY884-treated mice. Thus, the novel tyrosinase inhibitor MHY884 suppressed NF-κB activation signaling pathway by scavenging UVB-induced oxidative stress. The discovery of MHY884, a novel tyrosinase inhibitor that targets NF-κB signaling, is significant, because this compound is a promising protective agent against UVB-induced skin damage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Ecologically relevant UV-B dose combined with high PAR intensity distinctly affect plant growth and accumulation of secondary metabolites in leaves of Centella asiatica L. Urban.

    PubMed

    Müller, Viola; Albert, Andreas; Barbro Winkler, J; Lankes, Christa; Noga, Georg; Hunsche, Mauricio

    2013-10-05

    We investigated the effects of environmentally relevant dose of ultraviolet (UV)-B and photosynthetic active radiation (PAR) on saponin accumulation in leaves on the example of Centella asiatica L. Urban. For this purpose, plants were exposed to one of four light regimes i.e., two PAR intensities with or without UV-B radiation. The experiment was conducted in technically complex sun simulators under almost natural irradiance and climatic conditions. As observed, UV-B radiation increased herb and leaf production as well as the content of epidermal flavonols, which was monitored by non-destructive fluorescence measurements. Specific fluorescence indices also indicate an increase in the content of anthocyanins under high PAR; this increase was likewise observed for the saponin concentrations. In contrast, UV-B radiation had no distinct effects on saponin and sapogenin concentrations. Our findings suggest that besides flavonoids, also saponins were accumulated under high PAR protecting the plant from oxidative damage. Furthermore, glycosylation of sapogenins seems to be important either for the protective function and/or for compartmentalization of the compounds. Moreover, our study revealed that younger leaves contain higher amounts of saponins, while in older leaves the sapogenins were the most abundant constituents. Concluding, our results proof that ambient dose of UV-B and high PAR intensity distinctly affect the accumulation of flavonoids and saponins, enabling the plant tissue to adapt to the light conditions. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Decursin inhibits UVB-induced MMP expression in human dermal fibroblasts via regulation of nuclear factor-κB.

    PubMed

    Hwang, Bo-Mi; Noh, Eun-Mi; Kim, Jong-Suk; Kim, Jeong-Mi; Hwang, Jin-Ki; Kim, Hye-Kyung; Kang, Jae-Seon; Kim, Do-Sung; Chae, Han-Jung; You, Yong-Ouk; Kwon, Kang-Beom; Lee, Young-Rae

    2013-02-01

    Decursin, a coumarin compound, was originally isolated from the roots of Angelica gigas almost four decades ago, and it was found to exhibit cytotoxicity against various types of human cancer cells and anti-amnesic activity in vivo through the inhibition of AChE activity. However, the anti-skin photoaging effects of decursin have not been reported to date. In the present study, we investigated the inhibitory effects of decursin on the expression of matrix metalloproteinase (MMP)-1 and MMP-3 in human dermal fibroblast (HDF) cells. Western blot analysis and real-time PCR revealed that decursin inhibited the ultraviolet (UV)B-induced expression of MMP-1 and MMP-3 in a dose-dependent manner. Decursin significantly blocked the UVB-induced activation of nuclear factor-κB (NF-κB). However, decursin showed no effect on MAPK or AP-1 activity. In this study, decursin prevented the UVB-induced expression of MMPs via the inhibition of NF-κB activation. In conclusion, decursin may be a potential agent for the prevention and treatment of skin photoaging.

  4. Sulforaphane suppresses ultraviolet B-induced inflammation in HaCaT keratinocytes and HR-1 hairless mice.

    PubMed

    Shibata, Akira; Nakagawa, Kiyotaka; Yamanoi, Hiroko; Tsuduki, Tsuyoshi; Sookwong, Phumon; Higuchi, Ohki; Kimura, Fumiko; Miyazawa, Teruo

    2010-08-01

    Ultraviolet B (UVB) irradiation induces skin damage and inflammation. One way to reduce the inflammation is via the use of molecules termed photochemopreventive agents. Sulforaphane (4-methylsulfinylbutyl isothiocyanate, SF), which is found in cruciferous vegetables, is known for its potent physiological properties. This study was designed to evaluate the effect of SF on skin inflammation in vitro and in vivo. In in vitro study using immortalized human keratinocytes (HaCaT), UVB caused marked inflammatory responses [i.e., decrease of HaCaT viability and increase of production of an inflammatory marker interleukin-6 (IL-6)]. SF recovered the cell proliferation and suppressed the IL-6 production. These anti-inflammatory effects of SF were explained by its ability to reduce UVB-induced inflammatory gene expressions [IL-6, IL-1beta and cyclooxgenase-2 (COX-2)]. Because SF seems to have an impact on COX-2 expression, we focused on COX-2 and found that SF reduced UVB-induced COX-2 protein expression. In support of this, PGE(2) released from HaCaT was suppressed by SF. Western blot analysis revealed that SF inhibited p38, ERK and SAPK/JNK activation, indicating that the inhibition of mitogen-activated protein kinases (MAPK) by SF would attenuate the expression of inflammatory mediators (e.g., COX-2), thereby reducing inflammatory responses. Moreover, we conducted skin thickening assay using HR-1 hairless mice and found that UVB-induced skin thickness, COX-2 protein expression and hyperplasia were all suppressed by feeding SF to the mice. These results suggest that SF has a potential use as a compound for protection against UVB-induced skin inflammation. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Enzymological mechanism for the regulation of lanthanum chloride on flavonoid synthesis of soybean seedlings under enhanced ultraviolet-B radiation.

    PubMed

    Fan, Caixia; Hu, Huiqing; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2014-01-01

    In order to probe into the enzymological mechanism for the regulation of lanthanum chloride (LaCl3) on flavonoid synthesis in plants under enhanced ultraviolet-B (UV-B) radiation, the effects of LaCl₃ (20 and 60 mg l(-1)) on the content of flavonoids as well as the activities of phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), 4-coumarate : coenzyme A ligase (4CL), and chalcone synthase (CHS) in soybean seedlings under enhanced UV-B radiation (2.6 and 6.2 kJ m(-2) day(-1)) were investigated. Enhanced UV-B radiation (2.6 and 6.2 kJ m(-2) day(-1)) caused the increase in the content of flavonoids as well as the activities of PAL, C4H, 4CL, and CHS in soybean seedlings. The treatment of 20 mg l(-1) LaCl₃ also efficiently increased these indices, which promoted the flavonoid synthesis and provided protective effects for resisting enhanced UV-B radiation. On the contrary, the treatment of 60 mg l(-1) LaCl₃ decreased the content of flavonoids as well as the activities of C4H, 4CL, and CHS in soybean seedlings except increasing the activity of PAL, which were not beneficial to the flavonoid synthesis and provided negative effects for resisting enhanced UV-B radiation. In conclusion, enhanced UV-B radiation caused the increase in the flavonoid synthesis by promoting the activities of PAL, C4H, 4CL, and CHS in soybean seedlings. The treatment of LaCl₃ could change flavonoid synthesis in soybean seedlings under enhanced UV-B radiation by regulating the activities of PAL, C4H, 4CL, and CHS, which is an enzymological mechanism for the regulation of LaCl₃ on flavonoid synthesis in plants under enhanced UV-B radiation.

  6. Apollo-Soyuz survey of the extreme-ultraviolet/soft X-ray background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stern, R.; Bowyer, S.

    1979-06-15

    The results of an extensive sky survey of the extreme-ultraviolet (EUV)/soft X-ray background are reported. The data were obtained with a telescope, designed and calibrated at the University of California at Berkeley, which observed EUV sources and the diffuse background as part of the Apollo-Soyuz mission in 1975 July. With a primary field of view of 2 /sup 0/.3 +- 0 /sup 0/.1 FWHM and four EUV bandpass filters (16--25, 20--73, 80--108, and 80--250 eV), the EUV telescope obtained useful background data for 21 sky points, 11 large angle scans, and an additional group of short observations of both types.more » Analysis of the data reveals an intense 80--108 eV diffuse flux of 4.0 +- 1.3 photons cm/sup -2/ sr/sup -1/ eV/sup -1/ (broad-band weighted average). This is roughly a factor of 10 higher than the corresponding 150--280 eV average intensity and confirms the earlier results of Cash, Malina, and Stern. Galactic contributions to the background intensity at still lower energies are most likely masked by large fluxes of geocoronal or interplanetary solar-scattered resonance radiation; however, we drive upper limits to the local galactic background of 2 x 10/sup 4/ and 6 x 10/sup 2/ photons cm/sup -2/ sr/sup -1/ eV/sup -1/ averaged over the 16--25 eV and 20--73 eV bands, respectively. The uniformity of the background flux is uncertain due to limitations in the statistical accuracy of the data; we discuss probable upper limits to any spatial anisotropy. No evidence is found for a correlation between the telescope count rate and Earth-based parameters (zenith angle, Sun angle, etc.) for E> or approx. =80 eV. Unlike some previous claims for the soft X-ray background, no simple dependence upon galactic latitude is seen.Fitting models of thermal emission to the Apollo-Soyuz data yields constraints on model parameters that are consistent for a limited range of temperatures with the EUV results of Cash, Malina, and Stern and the soft X-ray data of Burstein et al.« less

  7. Cynaropicrin attenuates UVB-induced oxidative stress via the AhR-Nrf2-Nqo1 pathway.

    PubMed

    Takei, Kenjiro; Hashimoto-Hachiya, Akiko; Takahara, Masakazu; Tsuji, Gaku; Nakahara, Takeshi; Furue, Masutaka

    2015-04-16

    Due to its antioxidant and anti-inflammatory activities, artichoke (Cynara scolymus) has been used as folk medicine to treat various diseases. Cynaropicrin (Cyn), a sesquiterpene lactone, is the major bioactive phytochemical in the artichoke; however, its pharmacological mechanism remains unknown. Because some phytochemicals exert their antioxidant activity by activating aryl hydrocarbon receptor (AhR), leading to subsequent induction of the antioxidant pathway including nuclear factor E2-related factor 2 (Nrf2) and quinone oxidoreductase 1 (Nqo1), we investigated whether Cyn also activates the AhR-Nrf2-Nqo1 pathway. Cyn indeed induced the activation (nuclear translocation) of AhR, leading to nuclear translocation of Nrf2 and dose-dependent upregulation of Nrf2 and Nqo1 mRNAs in human keratinocytes. The Cyn-induced AhR-Nrf2-Nqo1 activation was AhR- and Nrf2-dependent, as demonstrated by the observation that it was absent in keratinocytes transfected by siRNA against either AhR or Nrf2. In accordance with these findings, Cyn actively inhibited generation of reactive oxygen species from keratinocytes irradiated with ultraviolet B (UVB) in a Nrf2-dependent manner. Cyn also inhibited the production of proinflammatory cytokines such as interleukin 6 and tumor necrosis factor-α from UVB-treated keratinocytes. Our findings demonstrate that Cyn is a potent activator of the AhR-Nrf2-Nqo1 pathway, and could therefore be applied to prevention of UVB-induced photo aging. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Exposure of human melanocytes to UVB twice and subsequent incubation leads to cellular senescence and senescence-associated pigmentation through the prolonged p53 expression.

    PubMed

    Choi, Suh-Yeon; Bin, Bum-Ho; Kim, Wanil; Lee, Eunkyung; Lee, Tae Ryong; Cho, Eun-Gyung

    2018-06-01

    Ultraviolet radiation (UVR) is a well-known factor in skin aging and pigmentation, and daily exposure to subcytotoxic doses of UVR might accelerate senescence and senescence-associated phenomena in human melanocytes. To establish an in vitro melanocyte model to mimic the conditions of repeated exposure to subcytotoxic doses of UVB irradiation and to investigate key factor(s) for melanocyte senescence and senescence-associated phenomena. Human epidermal melanocytes were exposed twice with 20 mJ/cm 2 UVB over a 24-h interval and subsequently cultivated for 2 weeks. Senescent phenotypes were addressed morphologically, and by measuring the senescence-associated β-galactosidase (SA-β-Gal) activity, cell proliferation capacity with cell cycle analysis, and melanin content. The established protocol successfully induced melanocyte senescence, and senescent melanocytes accompanied hyperpigmentation. Prolonged expression of p53 was responsible for melanocyte senescence and hyperpigmentation, and treatment with the p53-inhibitor pifithrin-α at 2-weeks post-UVB irradiation, but not at 48 h, significantly reduced melanin content along with decreases in tyrosinase levels. Melanocyte senescence model will be useful for studying the long-term effects of UVB irradiation and pigmentation relevant to physiological photoaging, and screening compounds effective for senescence-associated p53-mediated pigmentation. Copyright © 2018 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  9. Impacts of diurnal variation of ultraviolet-B and photosynthetically active radiation on phycobiliproteins of the hot-spring cyanobacterium Nostoc sp. strain HKAR-2.

    PubMed

    Kannaujiya, Vinod K; Sinha, Rajeshwar P

    2017-01-01

    The effects of diurnal variation of photosynthetically active radiation (PAR; 400-700 nm) and ultraviolet-B (UV-B; 280-315 nm) radiation on phycobiliproteins (PBPs) and photosynthetic pigments (PP) have been studied in the hot-spring cyanobacterium Nostoc sp. strain HKAR-2. The variations in PBPs and PP were monitored by alternating light and dark under PAR, UV-B, and PAR + UV-B radiations over a period of 25 h. There was a decline in the amount of Chl a and PBPs during light periods of UV-B and PAR + UV-B and an increase during dark periods showing a circadian rhythm by destruction and resynthesis of pigment-protein complex. However, a marked induction in carotenoids was recorded during light periods of the same radiations. Moreover, the ratio of Chl a/PE and Chl a/PC was increased in dark periods showing the resynthesis of bleached Chl a. The wavelength shift in emission fluorescence of PBPs toward shorter wavelengths further indicated the bleaching and destruction of PBPs during light periods. Oxidative damage upon exposure to PAR, UV-B, and PAR + UV-B was alleviated by induction of antioxidative enzymes such as superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX). The studied cyanobacterium exhibits a significant increase in the activities of SOD, CAT, and APX upon exposure to UV-B and PAR + UV-B radiations. The results indicate that pigment-protein composition of Nostoc sp. stain HKAR-2 was significantly altered during diurnal variation of light/radiation, which might play an important role in optimization for their productivity in a particular cyanobacterium.

  10. Silibinin enhances the repair of ultraviolet B-induced DNA damage by activating p53-dependent nucleotide excision repair mechanism in human dermal fibroblasts

    PubMed Central

    Guillermo-Lagae, Ruth; Deep, Gagan; Ting, Harold; Agarwal, Chapla; Agarwal, Rajesh

    2015-01-01

    Ultraviolet radiation B (UVB) is the main cause of DNA damage in epidermal cells; and if not repaired, this DNA damage leads to skin cancer. In earlier studies, we have reported that natural flavonolignan silibinin exerts strong chemopreventive efficacy against UVB-induced skin damage and carcinogenesis; however mechanistic studies are still being actively pursued. Here, we investigated the role of nucleotide excision repair (NER) pathway in silibinin's efficacy to repair UVB-induced DNA damage. Normal human dermal fibroblasts (NHDFs) were exposed to UVB (1 mJ/cm2) with pre- or post- silibinin (100 μM) treatment, and cyclobutane pyrimidine dimers (CPDs) formation/repair was measured. Results showed that post-UVB silibinin treatment accelerates DNA repair via activating the NER pathway including the expression of XPA (xeroderma pigmentosum complementation group A), XPB, XPC, and XPG. In UVB exposed fibroblasts, silibinin treatment also increased p53 and GADD45α expression; the key regulators of the NER pathway and DNA repair. Consistently, post-UVB silibinin treatment increased the mRNA transcripts of XPA and GADD45α. Importantly, silibinin showed no effect on UVB-induced DNA damage repair in XPA- and XPB-deficient human dermal fibroblasts suggesting their key role in silibinin-mediated DNA damage repair. Moreover, in the presence of pifithrin-α, an inhibitor of p53, the DNA repair efficacy of silibinin was compromised associated with a reduction in XPA and GADD45α transcripts. Together, these findings suggest that silibinin's efficacy against UVB-induced photodamage is primarily by inhibiting NER and p53; and these findings further support silibinin's usage as a potential inexpensive, effective, and non-toxic agent for skin cancer chemoprevention. PMID:26447614

  11. Silibinin enhances the repair of ultraviolet B-induced DNA damage by activating p53-dependent nucleotide excision repair mechanism in human dermal fibroblasts.

    PubMed

    Guillermo-Lagae, Ruth; Deep, Gagan; Ting, Harold; Agarwal, Chapla; Agarwal, Rajesh

    2015-11-24

    Ultraviolet radiation B (UVB) is the main cause of DNA damage in epidermal cells; and if not repaired, this DNA damage leads to skin cancer. In earlier studies, we have reported that natural flavonolignan silibinin exerts strong chemopreventive efficacy against UVB-induced skin damage and carcinogenesis; however mechanistic studies are still being actively pursued. Here, we investigated the role of nucleotide excision repair (NER) pathway in silibinin's efficacy to repair UVB-induced DNA damage. Normal human dermal fibroblasts (NHDFs) were exposed to UVB (1 mJ/cm2) with pre- or post- silibinin (100 μM) treatment, and cyclobutane pyrimidine dimers (CPDs) formation/repair was measured. Results showed that post-UVB silibinin treatment accelerates DNA repair via activating the NER pathway including the expression of XPA (xeroderma pigmentosum complementation group A), XPB, XPC, and XPG. In UVB exposed fibroblasts, silibinin treatment also increased p53 and GADD45α expression; the key regulators of the NER pathway and DNA repair. Consistently, post-UVB silibinin treatment increased the mRNA transcripts of XPA and GADD45α. Importantly, silibinin showed no effect on UVB-induced DNA damage repair in XPA- and XPB-deficient human dermal fibroblasts suggesting their key role in silibinin-mediated DNA damage repair. Moreover, in the presence of pifithrin-α, an inhibitor of p53, the DNA repair efficacy of silibinin was compromised associated with a reduction in XPA and GADD45α transcripts. Together, these findings suggest that silibinin's efficacy against UVB-induced photodamage is primarily by inhibiting NER and p53; and these findings further support silibinin's usage as a potential inexpensive, effective, and non-toxic agent for skin cancer chemoprevention.

  12. Rapamycin Protects Skin Fibroblasts from Ultraviolet B-Induced Photoaging by Suppressing the Production of Reactive Oxygen Species.

    PubMed

    Qin, Dengke; Ren, Runjian; Jia, Chuanlong; Lu, Yongzhou; Yang, Qingjian; Chen, Liang; Wu, Xinyuan; Zhu, Jingjing; Guo, Yu; Yang, Ping; Zhou, Yiqun; Zhu, Ningwen; Bi, Bo; Liu, Tianyi

    2018-01-01

    Ultraviolet B (UVB) irradiation alters multiple molecular pathways in the skin, thereby inducing skin photoaging. Murine dermal fibroblasts (MDFs) were subjected to a series of 4 sub-cytotoxic UVB doses (120 mJ/cm2), resulting in changes in cell shape, DNA damage, cell cycle arrest, extracellular matrix variations, reactive oxygen species (ROS) generation, and alterations in major intracellular antioxidant and cellular autophagy levels. Rapamycin (RAPA) is a new macrolide immunosuppressive agent that is primarily used in oncology, cardiology, and transplantation medicine and has been found to extend the lifespan of genetically heterogeneous mice. Several studies have shown that RAPA may have anti-aging effects in cells and organisms. Thus, in this study, we explored the effects and mechanisms of RAPA against the photoaging process using a well-established cellular photoaging model. We developed a stress-induced premature senescence (SIPS) model through repeated exposure of MDFs to ultraviolet B (UVB) irradiation. The cells were cultured in the absence or presence of RAPA for 48 h. Senescent phenotypes were assessed by examining cell viability, cell morphology, senescence-associated β-galactosidase (SA-β-gal) expression, cell cycle progression, intracellular ROS production, matrix metalloproteinase (MMP) synthesis and degradation, extracellular matrix (ECM) component protein expression, alterations in major intracellular antioxidant levels, and the cellular autophagy level. Compared with the UVB group, pretreatment with RAPA (5 µM) significantly decreased the staining intensity and percentage of SA-β-gal-positive cells and preserved the elongated cell shape. Moreover, cells pretreated with RAPA showed inhibition of the reduction in the type I collagen content by blocking the UVB-induced upregulation of MMP expression. RAPA also decreased photoaging cell cycle arrest and downregulated p53 and p21 expression. RAPA application significantly attenuated irradiation

  13. The effects of simulated solar UVB radiation on early developmental stages of the Northwestern Salamander (Ambystoma gracile) from three lakes

    USGS Publications Warehouse

    Calfee, Robin D.; Little, Edward E.; Pearl, Christopher A.; Hoffman, Robert L.

    2010-01-01

    Solar ultraviolet radiation (UV) has received much attention as a factor that could play a role in amphibian population declines. UV can be hazardous to some amphibians, but the resultant effects depend on a variety of environmental and behavioral factors. In this study, the potential effects of UV on the Northwestern Salamander, Ambystoma gracile, from three lakes were assessed in the laboratory using a solar simulator. We measured the survival of embryos and the survival and growth of larvae exposed to four UV treatments in controlled laboratory studies, the UV absorbance of egg jelly, oviposition depths in the lakes, and UV absorbance in water samples from the three lakes. Hatching success of embryos decreased in the higher UV treatments as compared to the control treatments, and growth of surviving larvae was significantly reduced in the higher UVB irradiance treatments. The egg jelly exhibited a small peak of absorbance within the UVB range (290–320 nm). The magnitude of UV absorbance differed among egg jellies from the three lakes. Oviposition depths at the three sites averaged 1.10 m below the water surface. Approximately 66% of surface UVB radiation was attenuated at 10-cm depth in all three lakes. Results of this study indicate that larvae may be sensitive to UVB exposure under laboratory conditions; however, in field conditions the depths of egg deposition in the lakes, absorbance of UV radiation by the water column, and the potential for behavioral adjustments may mitigate severe effects of UV radiation.

  14. Increased susceptibility to in vitro ultraviolet B radiation in fibroblasts and lymphocytes cultured from systemic lupus erythematosus patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golan, T.D.; Foltyn, V.; Roueff, A.

    1991-02-01

    Sunlight is known to induce exacerbations of systemic lupus erythematosus (SLE) but its mechanism remains unclear. We have previously reported that ultraviolet A (UVA) exposure induces an increase in total DNA synthesis (DS) in vitro but a decrease in unscheduled DNA repair synthesis (UDRS) of splenocytes of murine SLE strains. In order to investigate whether similar observations are characteristic of human SLE, peripheral blood lymphocytes (PBL) and dermal fibroblast (DF) cultures of 20 patients and 15 matched controls were exposed in vitro to UVA or UVB at different doses. Thirteen (65%) SLE DF cultures exposed to UVB light (12-24 J/m2)more » showed an increase in DS compared to paired unirradiated cultures. In contrast, UVB-irradiated DF from normal individuals had no significant increase in DS following UVB irradiation. When SLE DF were exposed to higher doses of UVB (48-96 J/m2), 90% of cultures showed a decrease in DS compared to only 20% in the control group. All of the SLE DF cultures showed a decrease of their unscheduled DNA repair capacity following UVB (24-48 J/m2) irradiation whereas no UDRS was apparent in 74% of controls under the same conditions. Similar findings regarding UDRS were observed in SLE PBL cultures and were also confirmed by autoradiography. UVA exposure (0-3840 J/m2) had no effect on DS nor on UDRS in DF or PBL cultured from SLE and controls. The relevance of these in vitro findings to the in vivo pathogenesis of the disease is discussed.« less

  15. Salvianolic Acid B Protects Normal Human Dermal Fibroblasts Against Ultraviolet B Irradiation-Induced Photoaging Through Mitogen-Activated Protein Kinase and Activator Protein-1 Pathways.

    PubMed

    Sun, Zhengwang; Park, Sang-Yong; Hwang, Eunson; Zhang, Mengyang; Jin, Fengxie; Zhang, Baochun; Yi, Tae Hoo

    2015-01-01

    Exposure to ultraviolet (UV) light causes increased matrix metalloproteinase (MMP) activity and decreased collagen synthesis, leading to skin photoaging. Salvianolic acid B (SAB), a polyphenol, was extracted and purified from salvia miltiorrhiza. We assessed effects of SAB on UVB-induced photoaging and investigated its molecular mechanism of action in UVB-irradiated normal human dermal fibroblasts. Our results show that SAB significantly inhibited the UVB-induced expression of metalloproteinases-1 (MMP-1) and interleukin-6 (IL-6) while promoting the production of type I procollagen and transforming growth factor β1 (TGF-β1). Moreover, treatment with SAB in the range of 1-100 μg/mL significantly inhibited UVB-induced extracellular signal-regulated kinase (ERK), Jun N-terminal kinase (JNK) and p38 phosphorylation, which resulted in decreasing UVB-induced phosphorylation of c-Fos and c-Jun. These results indicate that SAB downregulates UV-induced MMP-1 expression by inhibiting Mitogen-activated protein kinase (MAPK) signaling pathways and activator protein-1 (AP-1) activation. Our results suggest a potential use for SAB in skin photoprotection. © 2015 The American Society of Photobiology.

  16. Genoprotective effect of Phyllanthus orbicularis extract against UVA, UVB and solar radiation.

    PubMed

    Vernhes Tamayo, Marioly; Schuch, André Passaglia; Yagura, Teiti; Baly Gil, Luis; Menck, Carlos Frederico Martins; Sánchez-Lamar, Angel

    2018-05-16

    One approach to protect the human skin against harmful effects of solar ultraviolet (UV) radiation is to use natural products as photoprotectors. In this work, the extract from specie Phyllanthus orbicularis K was evaluated as a protective agent against the photodamage by UVB, UVA artificial lamps and environmental sunlight exposure. The plasmid DNA solutions were exposed to radiations using the DNA-dosimeter system in presence of plant extract. The DNA repair enzymes, E. coli Formamidopyrimidine-DNA glycosylase (Fpg) and T4 bacteriophage endonuclease V (T4-endo V), were employed to discriminate oxidized DNA damage and cyclobutane pyrimidine dimers (CPD) respectively. The supercoiled and relaxed forms of DNA were separated through electrophoretic migration in agarose gels. These DNA forms were quantified to determine strands break, representing the types of lesion levels. The results showed that, in presence of P. orbicularis extract, the CPD and oxidative damage were reduced in irradiated DNA samples. The photoprotective effect of extract was more evident for UVB and sunlight radiation than for UVA. This work documents the UV absorbing properties of P. orbicularis aqueous extract and opens up new vistas in its characterization as protective agent against DNA damage induced by environmental sunlight radiation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. A review of the role of solar ultraviolet-B irradiance and vitamin D in reducing risk of dental caries.

    PubMed

    Grant, William B

    2011-07-01

    Large geographical variations in dental health and tooth loss among US adolescents and young adults have been reported since the mid-1800s. Studies in the 1920s and 1930s noted that vitamin D and ultraviolet-B (UVB) irradiance reduced caries formation, the proposed mechanism being improved calcium absorption and metabolism. This paper reviews the history of studies of dental caries with respect to vitamin D, geographical location and available solar UVB doses. In addition, data on mean dental health rank by state for US servicemen from three periods, 1918, 1934 and 1943, were used in regression analyses with respect to summertime solar UVB doses and an index for mottled enamel, a proxy for natural fluoridation of drinking water, for 1935. There was a significant inverse correlation for dental health rank with respect to solar UVB from doses of 4.0 to 6.5 kJ/m(2) with little change thereafter. Adding data for mottled enamel rates for the states with UvB doses <6.6 kJ/m(2) improved the adjusted R(2) from 0.45 to 0.52. The mechanism whereby UVB reduces risk of dental caries is likely through production of vitamin D, followed by induction of cathelicidin and defensins, which have antimicrobial properties. Serum 25-hydroxyvitamin D concentrations at or above 30-40 ng/ml should significantly reduce the formation of dental caries. It is unfortunate that the UVB and vitamin D findings were not given more consideration in the 1950s as a way to reduce the risk of dental caries when water fluoridation was being proposed.

  18. A review of the role of solar ultraviolet-B irradiance and vitamin D in reducing risk of dental caries

    PubMed Central

    2011-01-01

    Large geographical variations in dental health and tooth loss among US adolescents and young adults have been reported since the mid-1800s. Studies in the 1920s and 1930s noted that vitamin D and ultraviolet-B (UVB) irradiance reduced caries formation, the proposed mechanism being improved calcium absorption and metabolism. This paper reviews the history of studies of dental caries with respect to vitamin D, geographical location and available solar UVB doses. In addition, data on mean dental health rank by state for US servicemen from three periods, 1918, 1934 and 1943, were used in regression analyses with respect to summertime solar UVB doses and an index for mottled enamel, a proxy for natural fluoridation of drinking water, for 1935. There was a significant inverse correlation for dental health rank with respect to solar UVB from doses of 4.0 to 6.5 kJ/m2 with little change thereafter. Adding data for mottled enamel rates for the states with UvB doses <6.6 kJ/m2 improved the adjusted R2 from 0.45 to 0.52. The mechanism whereby UVB reduces risk of dental caries is likely through production of vitamin D, followed by induction of cathelicidin and defensins, which have antimicrobial properties. Serum 25-hydroxyvitamin D concentrations at or above 30–40 ng/ml should significantly reduce the formation of dental caries. It is unfortunate that the UVB and vitamin D findings were not given more consideration in the 1950s as a way to reduce the risk of dental caries when water fluoridation was being proposed. PMID:22110779

  19. Role of root UV-B sensing in Arabidopsis early seedling development.

    PubMed

    Tong, Hongyun; Leasure, Colin D; Hou, Xuewen; Yuen, Gigi; Briggs, Winslow; He, Zheng-Hui

    2008-12-30

    All sun-exposed organisms are affected by UV-B [(UVB) 280-320 nm], an integral part of sunlight. UVB can cause stresses or act as a developmental signal depending on its fluence levels. In plants, the mechanism by which high-fluence-rate UVB causes damages and activates DNA-repair systems has been extensively studied. However, little is known about how nondamaging low-fluence-rate UVB is perceived to regulate plant morphogenesis and development. Here, we report the identification of an Arabidopsis mutant, root UVB sensitive 1 (rus1), whose primary root is hypersensitive to very low-fluence-rate (VLF) UVB. Under standard growth-chamber fluorescent white light, rus1 displays stunted root growth and fails to form postembryonic leaves. Experiments with different monochromatic light sources showed that rus1 phenotypes can be rescued if the seedlings are allowed to grow in light conditions with minimum UVB. We determined that roots, not other organs, perceive the UVB signal. Genetic and molecular analyses confirmed that the root light-sensitive phenotypes are independent of all other known plant photoreceptors. Three rus1 alleles have been identified and characterized. A map-based approach was used to identify the RUS1 locus. RUS1 encodes a protein that contains DUF647 (domain of unknown function 647), a domain highly conserved in eukaryotes. Our results demonstrate a root VLF UVB-sensing mechanism that is involved in Arabidopsis early seedling morphogenesis and development.

  20. Research in extreme ultraviolet and far ultraviolet astronomy

    NASA Technical Reports Server (NTRS)

    Bowyer, C. S.

    1985-01-01

    The Far Ultraviolet imager (FUVI) was flown on the Aries class sounding rocket 24.015, producing outstanding results. The diffuse extreme ultraviolet (EUV) background spectrometer which is under construction is described. It will be launched on the Black Brant sounding rocket flight number 27.086. Ongoing design studies of a high resolution spectrometer are discussed. This instrument incorporates a one meter normal incidence mirror and will be suitable for an advanced Spartan mission.

  1. Multiple Roles for UV RESISTANCE LOCUS8 in Regulating Gene Expression and Metabolite Accumulation in Arabidopsis under Solar Ultraviolet Radiation1[W][OA

    PubMed Central

    Morales, Luis O.; Brosché, Mikael; Vainonen, Julia; Jenkins, Gareth I.; Wargent, Jason J.; Sipari, Nina; Strid, Åke; Lindfors, Anders V.; Tegelberg, Riitta; Aphalo, Pedro J.

    2013-01-01

    Photomorphogenic responses triggered by low fluence rates of ultraviolet B radiation (UV-B; 280–315 nm) are mediated by the UV-B photoreceptor UV RESISTANCE LOCUS8 (UVR8). Beyond our understanding of the molecular mechanisms of UV-B perception by UVR8, there is still limited information on how the UVR8 pathway functions under natural sunlight. Here, wild-type Arabidopsis (Arabidopsis thaliana) and the uvr8-2 mutant were used in an experiment outdoors where UV-A (315–400 nm) and UV-B irradiances were attenuated using plastic films. Gene expression, PYRIDOXINE BIOSYNTHESIS1 (PDX1) accumulation, and leaf metabolite signatures were analyzed. The results show that UVR8 is required for transcript accumulation of genes involved in UV protection, oxidative stress, hormone signal transduction, and defense against herbivores under solar UV. Under natural UV-A irradiance, UVR8 is likely to interact with UV-A/blue light signaling pathways to moderate UV-B-driven transcript and PDX1 accumulation. UVR8 both positively and negatively affects UV-A-regulated gene expression and metabolite accumulation but is required for the UV-B induction of phenolics. Moreover, UVR8-dependent UV-B acclimation during the early stages of plant development may enhance normal growth under long-term exposure to solar UV. PMID:23250626

  2. Evaluating the Clinical and Physiological Effects of Long Term Ultraviolet B Radiation on Guinea Pigs (Cavia porcellus)

    PubMed Central

    Watson, Megan K.; Stern, Adam W.; Labelle, Amber L.; Joslyn, Stephen; Fan, Timothy M.; Leister, Katie; Kohles, Micah; Marshall, Kemba; Mitchell, Mark A.

    2014-01-01

    Vitamin D is an important hormone in vertebrates. Most animals acquire this hormone through their diet, secondary to exposure to ultraviolet B (UVB) radiation, or a combination thereof. The objectives for this research were to evaluate the clinical and physiologic effects of artificial UVB light supplementation on guinea pigs (Cavia porcellus) and to evaluate the long-term safety of artificial UVB light supplementation over the course of six months. Twelve juvenile acromelanic Hartley guinea pigs were randomly assigned to one of two treatment groups: Group A was exposed to 12 hours of artificial UVB radiation daily and Group B received only ambient fluorescent light for 12 hours daily. Animals in both groups were offered the same diet and housed under the same conditions. Blood samples were collected every three weeks to measure blood chemistry values, parathyroid hormone, ionized calcium, and serum 25-hydroxyvitamin D3 (25-OHD3) levels. Serial ophthalmologic examinations, computed tomography scans, and dual energy x-ray absorptiometry scans were performed during the course of the study. At the end of the study the animals were euthanized and necropsied. Mean ± SD serum 25-OHD3 concentrations differed significantly in the guinea pigs (p<0.0001) between the UVB supplementation group (101.49±21.81 nmol/L) and the control group (36.33±24.42 nmol/L). An increased corneal thickness in both eyes was also found in the UVB supplementation compared to the control group (right eye [OD]: p<0.0001; left eye [OS]: p<0.0001). There were no apparent negative clinical or pathologic side effects noted between the groups. This study found that exposing guinea pigs to UVB radiation long term significantly increased their circulating serum 25-OHD3 levels, and that this increase was sustainable over time. Providing guinea pigs exposure to UVB may be an important husbandry consideration that is not currently recommended. PMID:25517408

  3. Sunshine is good medicine. The health benefits of ultraviolet-B induced vitamin D production.

    PubMed

    Grant, W B; Strange, R C; Garland, C F

    2003-04-01

    Most public health statements regarding exposure to solar ultraviolet radiation (UVR) recommend avoiding it, especially at midday, and using sunscreen. Excess UVR is a primary risk factor for skin cancers, premature photoageing and the development of cataracts. In addition, some people are especially sensitive to UVR, sometimes due to concomitant illness or drug therapy. However, if applied uncritically, these guidelines may actually cause more harm than good. Humans derive most of their serum 25-hydroxycholecalciferol (25(OH)D3) from solar UVB radiation (280-315 nm). Serum 25(OH)D3 metabolite levels are often inadequate for optimal health in many populations, especially those with darker skin pigmentation, those living at high latitudes, those living largely indoors and in urban areas, and during winter in all but the sunniest climates. In the absence of adequate solar UVB exposure or artificial UVB, vitamin D can be obtained from dietary sources or supplements. There is compelling evidence that low vitamin D levels lead to increased risk of developing rickets, osteoporosis and osteomaloma, 16 cancers (including cancers of breast, ovary, prostate and non-Hodgkin's lymphoma), and other chronic diseases such as psoriasis, diabetes mellitus, hypertension, heart disease, myopathy, multiple sclerosis, schizophrenia, hyperparathyroidism and susceptibility to tuberculosis. The health benefits of UVB seem to outweigh the adverse effects. The risks can be minimized by avoiding sunburn, excess UVR exposure and by attention to dietary factors, such as antioxidants and limiting energy and fat consumption. It is anticipated that increasing attention will be paid to the benefits of UVB radiation and vitamin D and that health guidelines will be revised in the near future.

  4. The effect of vitamin C deficiency and chronic ultraviolet-B exposure on corneal ultrastructure: a preliminary investigation

    PubMed Central

    Hayes, Sally; Cafaro, Thamara A.; Boguslawska, Patrycja J.; Kamma-Lorger, Christina S.; Boote, Craig; Harris, Jonathan; Young, Robert; Hiller, Jennifer; Terrill, Nicholas; Meek, Keith M.

    2011-01-01

    Purpose In the visually debilitating condition of climatic droplet keratopathy, corneal transparency is progressively lost. Although the precise cause of the disease and the mechanism by which it progresses are not known, a lifetime exposure to high solar radiation and a vitamin C–deficient diet may be involved in its development. This study examines the effect of dietary ascorbate levels and ultraviolet (UV)-B exposure on corneal stromal structure. Methods Eight guinea pigs were divided into four treatment groups (A, B, C, and D). For 15 weeks, Groups A and C were fed an ascorbate-rich diet (2 mg/100 g bodyweight/day), while Groups B and D received an ascorbate-deficient diet (0.07 mg/100 g bodyweight/day). For the last 12 weeks of the study, Groups C and D also experienced chronic UVB exposure (0.12 J/cm2 for 40 min/day). Following euthanasia, the corneas were enucleated and their stromal ultrastructure examined using X-ray scattering and electron microscopy. Results UVB exposure resulted in an increased corneal thickness (p<0.001), but this was not accompanied by a widespread expansion of the collagen fibrillar array, and in the case of ascorbate-deficient animals, stromal thickening was associated with the compaction of collagen fibrils (p<0.01). Neither UVB exposure nor ascorbic acid deficiency caused any change in the average diameter or D-periodicity of the stromal collagen fibrils. Conclusions UVB-induced changes in the corneal ultrastructure were most pronounced in animals fed an ascorbic acid–deficient diet. This suggests that ascorbic acid may play a vital role in protecting the corneal stroma from the harmful effects of UVB. PMID:22171156

  5. Ultraviolet B Exposure Inhibits Angiotensin II-Induced Abdominal Aortic Aneurysm Formation in Mice by Expanding CD4+Foxp3+ Regulatory T Cells.

    PubMed

    Hayashi, Tomohiro; Sasaki, Naoto; Yamashita, Tomoya; Mizoguchi, Taiji; Emoto, Takuo; Amin, Hilman Zulkifli; Yodoi, Keiko; Matsumoto, Takuya; Kasahara, Kazuyuki; Yoshida, Naofumi; Tabata, Tokiko; Kitano, Naoki; Fukunaga, Atsushi; Nishigori, Chikako; Rikitake, Yoshiyuki; Hirata, Ken-Ichi

    2017-08-31

    Pathogenic immune responses are known to play an important role in abdominal aortic aneurysm (AAA) development. Ultraviolet B (UVB) irradiation has been demonstrated to have therapeutic potential not only for cutaneous diseases but also for systemic inflammatory diseases in mice by suppressing immunoinflammatory responses. We investigated the effect of UVB irradiation on experimental AAA. We used an angiotensin II-induced AAA model in apolipoprotein E-deficient mice fed a high-cholesterol diet. Mice aged 10 weeks were irradiated with 5 kJ/m 2 UVB once weekly for 6 weeks (UVB-irradiated, n=38; nonirradiated, n=42) and were euthanized for evaluation of AAA formation at 16 weeks. Overall, 93% of angiotensin II-infused mice developed AAA, with 60% mortality possibly because of aneurysm rupture. UVB irradiation significantly decreased the incidence (66%) and mortality (29%) of AAA ( P =0.004 and P =0.006, respectively). UVB-irradiated mice had significantly smaller diameter AAA ( P =0.008) and fewer inflammatory cells in the aortic aneurysm tissue than nonirradiated mice, along with systemic expansion of CD4 + Foxp3 + regulatory T cells and decreased effector CD4 + CD44 high CD62L low T cells in para-aortic lymph nodes. Genetic depletion of regulatory T cells abrogated these beneficial effects of UVB treatment, demonstrating a critical role of regulatory T cells. Our data suggest that UVB-dependent expansion of regulatory T cells has beneficial effects on experimental AAA and may provide a novel strategy for the treatment of AAA. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  6. Impact of ambient and supplemental ultraviolet-B stress on kidney bean plants: an insight into oxidative stress management.

    PubMed

    Singh, Suruchi; Sarkar, Abhijit; Agrawal, S B; Agrawal, Madhoolika

    2014-11-01

    In the present study, the response of kidney bean (Phaseolus vulgaris L. cv. Pusa Komal) plants was evaluated under three different levels of ultraviolet-B (UV-B), i.e., excluded UV-B (eUV-B), ambient UV-B (aUV-B; 5.8 kJ m(-2) day(-1)), and supplemental UV-B (sUV-B; 280-315 nm; ambient + 7.2 kJ m(-2) day(-1)), under near-natural conditions. eUV-B treatment clearly demonstrated that both aUV-B and sUV-B are capable of causing significant changes in the plant's growth, metabolism, economic yield, genome template stability, total protein, and antioxidative enzyme profiles. The experimental findings showed maximum plant height at eUV-B, but biomass accumulation was minimum. Significant reductions in quantum yield (Fv/Fm) were observed under both aUV-B and sUV-B, as compared to eUV-B. UV-B-absorbing flavonoids increased under higher UV-B exposures with consequent increments in phenylalanine ammonia lyase (PAL) activities. The final yield was significantly higher in plants grown under eUV-B, compared to those under aUV-B and sUV-B. Total protein profile through sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and analysis of isoenzymes, like superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), and glutathione reductase (GR), through native PAGE revealed major changes in the leaf proteome under aUV-B and sUV-B, depicting induction of some major stress-related proteins. The random amplified polymorphic DNA (RAPD) profile of genomic DNA also indicated a significant reduction of genome template stability under UV-B exposure. Thus, it can be inferred that more energy is diverted for inducing protection mechanisms rather than utilizing it for growth under high UV-B level.

  7. Interactions between the impacts of ultraviolet radiation, elevated CO2, and nutrient limitation on marine primary producers.

    PubMed

    Beardall, John; Sobrino, Cristina; Stojkovic, Slobodanka

    2009-09-01

    It is well known that UV radiation can cause deleterious effects to the physiological performance, growth and species assemblages of marine primary producers. In this review we describe the range of interactions observed between these impacts of ultraviolet radiation (UVR, 280-400 nm) with other environmental factors such as the availability of photosynthetically active radiation (PAR), nutrient status and levels of dissolved CO2, all of which can, in turn, be influenced by global climate change. Thus, increases in CO2 levels can affect the sensitivity of some species to UV-B radiation (UV-B), while others show no such impact on UV-B susceptibility. Both nitrogen- and phosphorus-limitation can have direct interactive effects on the susceptibility of algal cells and communities to UVR, though such effects are somewhat variable. Nutrient depletion can also potentially lead to a dominance of smaller celled species, which may be less able to screen out and are thus likely to be more susceptible to UVR-induced damage. The variability of responses to such interactions can lead to alterations in the species composition of algal assemblages.

  8. Ultraviolet-B radiation enhancement in dielectric barrier discharge based xenon chloride exciplex source by air

    NASA Astrophysics Data System (ADS)

    Gulati, P.; Prakash, R.; Pal, U. N.; Kumar, M.; Vyas, V.

    2014-07-01

    A single barrier dielectric barrier discharge tube of quartz with multi-strip Titanium-Gold (Ti-Au) coatings have been developed and utilized for ultraviolet-B (UV-B) radiation production peaking at wavelength 308 nm. The observed radiation at this wavelength has been examined for the mixtures of the Xenon together with chlorine and air admixtures. The gas mixture composition, chlorine gas content, total gas pressure, and air pressure dependency of the UV intensity, has been analyzed. It is found that the larger concentration of Cl2 deteriorates the performance of the developed source and around 2% Cl2 in this source produced optimum results. Furthermore, an addition of air in the xenon and chlorine working gas environment leads to achieve same intensity of UV-B light but at lower working gas pressure where significant amount of gas is air.

  9. Caffeic acid, a phenolic phytochemical in coffee, directly inhibits Fyn kinase activity and UVB-induced COX-2 expression

    PubMed Central

    Kang, Nam Joo; Lee, Ki Won; Shin, Bong Jik; Jung, Sung Keun; Hwang, Mun Kyung; Bode, Ann M.; Heo, Yong-Seok; Dong, Zigang

    2009-01-01

    Caffeic acid (3,4-dihydroxycinnamic acid) is a well-known phenolic phytochemical present in many foods, including coffee. Recent studies suggested that caffeic acid exerts anticarcinogenic effects, but little is known about the underlying molecular mechanisms and specific target proteins. In this study, we found that Fyn, one of the members of the non-receptor protein tyrosine kinase family, was required for ultraviolet (UV) B-induced cyclooxygenase-2 (COX-2) expression, and caffeic acid suppressed UVB-induced skin carcinogenesis by directly inhibiting Fyn kinase activity. Caffeic acid more effectively suppressed UVB-induced COX-2 expression and subsequent prostaglandin E2 production in JB6 P+ mouse skin epidermal (JB6 P+) cells compared with chlorogenic acid (5-O-caffeoylquinic acid), an ester of caffeic acid with quinic acid. Data also revealed that caffeic acid more effectively induced the downregulation of COX-2 expression at the transcriptional level mediated through the inhibition of activator protein-1 (AP-1) and nuclear factor-κB transcription activity compared with chlorogenic acid. Fyn kinase activity was suppressed more effectively by caffeic acid than by chlorogenic acid, and downstream mitogen-activated protein kinases (MAPKs) were subsequently blocked. Pharmacological Fyn kinase inhibitor (3-(4-chlorophenyl)1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine and leflunomide) data also revealed that Fyn is involved in UVB-induced COX-2 expression mediated through the phosphorylation of MAPKs in JB6 P+ cells. Pull-down assays revealed that caffeic acid directly bound with Fyn and non-competitively with adenosine triphosphate. In vivo data from mouse skin also supported the idea that caffeic acid suppressed UVB-induced COX-2 expression by blocking Fyn kinase activity. These results suggested that this compound could act as a potent chemopreventive agent against skin cancer. PMID:19073879

  10. Ultraviolet B exposure activates Stat3 signaling via phosphorylation at tyrosine705 in skin of SKH1 hairless mouse: a target for the management of skin cancer?

    PubMed

    Ahsan, Haseeb; Aziz, Moammir Hasan; Ahmad, Nihal

    2005-07-22

    Understanding the molecular determinants of ultraviolet (UV) response may lead to the development of novel targets; and therefore, better approaches for the management of cancers, which mainly arise due to the exposure of skin to UV (particularly its UVB spectrum). Signal transducer and activator of transcription (Stat) proteins have been shown to activate multiple signaling pathways to contribute to oncogenesis. Here, we studied the regulation of Stat3 during UVB exposure-mediated responses in the skin of SKH-1 hairless mouse, a model regarded to possess relevance to human situations. Our data demonstrated that a single UVB (180 mJ/cm(2)) exposure to the skin of SKH-1 hairless mice resulted in significant upregulation in (i) protein levels of Stat3 and (ii) phosphorylation of Stat3 at tyrosine(705). Further, the activation of Stat3 was found to be associated with a decrease in apoptotic response of UVB and a gradual time-dependent increase in leukocyte infiltration and hyperplasia. In conclusion, we have demonstrated, for the first time, that UVB exposure to skin resulted in an activation of pro-survival protein Stat3. Based on our observation, we suggest that Stat3 could serve as a target for the management of UVB exposure-mediated damages including skin cancer.

  11. Influence of UVB radiation on the lethal and sublethal toxicity of dispersed crude oil to planktonic copepod nauplii.

    PubMed

    Almeda, Rodrigo; Harvey, Tracy E; Connelly, Tara L; Baca, Sarah; Buskey, Edward J

    2016-06-01

    Toxic effects of petroleum to marine zooplankton have been generally investigated using dissolved petroleum hydrocarbons and in the absence of sunlight. In this study, we determined the influence of natural ultraviolet B (UVB) radiation on the lethal and sublethal toxicity of dispersed crude oil to naupliar stages of the planktonic copepods Acartia tonsa, Temora turbinata and Pseudodiaptomus pelagicus. Low concentrations of dispersed crude oil (1 μL L(-1)) caused a significant reduction in survival, growth and swimming activity of copepod nauplii after 48 h of exposure. UVB radiation increased toxicity of dispersed crude oil by 1.3-3.8 times, depending on the experiment and measured variables. Ingestion of crude oil droplets may increase photoenhanced toxicity of crude oil to copepod nauplii by enhancing photosensitization. Photoenhanced sublethal toxicity was significantly higher when T. turbinata nauplii were exposed to dispersant-treated oil than crude oil alone, suggesting that chemical dispersion of crude oil may promote photoenhanced toxicity to marine zooplankton. Our results demonstrate that acute exposure to concentrations of dispersed crude oil and dispersant (Corexit 9500) commonly found in the sea after oil spills are highly toxic to copepod nauplii and that natural levels of UVB radiation substantially increase the toxicity of crude oil to these planktonic organisms. Overall, this study emphasizes the importance of considering sunlight in petroleum toxicological studies and models to better estimate the impact of crude oil spills on marine zooplankton. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Influence of altitude and enhanced ultraviolet-B radiation on tuber production, seed viability, leaf pigments and morphology in the wild potato species Solanum kurtzianum Bitter & Wittm collected from an elevational gradient.

    PubMed

    Ibañez, V N; Berli, F J; Masuelli, R W; Bottini, R A; Marfil, C F

    2017-08-01

    Climate change could lead to an upward shift in plant distribution, exposing populations to higher levels of ultraviolet (UV)-B radiation. In the framework of an in situ strategy for conserving potato wild relatives, we evaluated the effect of high UV-B levels on natural population of Solanum kurtzianum. The hypothesis is that plants from naturally higher altitudes are more adapted to increased UV-B radiation. Two populations from low and high altitudes were field supplemented using UV-B-lamps (+UV-B) or excluded from it with plastic filters. Additionally, to assess in which extent the plant responses to these artificial experimental conditions are reproducible in natural conditions, three genotypes were cultivated in two mountain experimental gardens (EG) at different elevations. +UV-B treatment induced changes in leaf morphology and increases in phenolic compounds in both populations, indicating plant adaptation, since chlorophylls and reproductive structures were not negatively affected. These results indicate that this environmental factor may not limit the displacement of populations towards sites with higher UV-B levels. Meanwhile, in higher-altitude EG a tubers yield reduction, mainly through a decreased tuber number and a bigger accumulation of phenolic compounds than in +UV-B treatment were observed, suggesting that UV-B is not the only factor involved in plants adaptation to high altitude environments. Copyright © 2017. Published by Elsevier B.V.

  13. Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors.

    PubMed

    Caldwell, M M; Bornman, J F; Ballaré, C L; Flint, S D; Kulandaivelu, G

    2007-03-01

    There have been significant advances in our understanding of the effects of UV-B radiation on terrestrial ecosystems, especially in the description of mechanisms of plant response. A further area of highly interesting research emphasizes the importance of indirect UV radiation effects on plants, pathogens, herbivores, soil microbes and ecosystem processes below the surface. Although photosynthesis of higher plants and mosses is seldom affected by enhanced or reduced UV-B radiation in most field studies, effects on growth and morphology (form) of higher plants and mosses are often manifested. This can lead to small reductions in shoot production and changes in the competitive balance of different species. Fungi and bacteria are generally more sensitive to damage by UV-B radiation than are higher plants. However, the species differ in their UV-B radiation sensitivity to damage, some being affected while others may be very tolerant. This can lead to changes in species composition of microbial communities with subsequent influences on processes such as litter decomposition. Changes in plant chemical composition are commonly reported due to UV-B manipulations (either enhancement or attenuation of UV-B in sunlight) and may lead to substantial reductions in consumption of plant tissues by insects. Although sunlight does not penetrate significantly into soils, the biomass and morphology of plant root systems of plants can be modified to a much greater degree than plant shoots. Root mass can exhibit sizeable declines with more UV-B. Also, UV-B-induced changes in soil microbial communities and biomass, as well as altered populations of small invertebrates have been reported and these changes have important implications for mineral nutrient cycling in the soil. Many new developments in understanding the underlying mechanisms mediating plant response to UV-B radiation have emerged. This new information is helpful in understanding common responses of plants to UV-B radiation

  14. High-fat diet exacerbates inflammation and cell survival signals in the skin of ultraviolet B-irradiated C57BL/6 mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meeran, Syed M.; Singh, Tripti; Nagy, Tim R.

    Inflammation induced by chronic exposure to ultraviolet (UV) radiation has been implicated in various skin diseases. We formulated the hypothesis that a high-fat diet may influence the UV-induced inflammatory responses in the skin. C57BL/6 mice were fed a high-fat diet or control diet and exposed to UVB radiation (120 mJ/cm{sup 2}) three times/week for 10 weeks. The mice were then sacrificed and skin and plasma samples collected for analysis of biomarkers of inflammatory responses using immunohistochemistry, western blotting, ELISA and real-time PCR. We found that the levels of inflammatory biomarkers were increased in the UVB-exposed skin of the mice fedmore » the high-fat diet than the UVB-exposed skin of the mice fed the control diet. The levels of inflammatory biomarkers of early responses to UVB exposure (e.g., myeloperoxidase, cyclooxygenase-2, prostaglandin-E{sub 2}), proinflammatory cytokines (i.e., tumor necrosis factor-alpha, interleukin-1beta, interleukin-6), and proliferating cell nuclear antigen and cell survival signals (phosphatidylinositol-3-kinase and p-Akt-Ser{sup 473}) were higher in high-fat-diet-fed mouse skin than control-diet-fed mouse skin. The plasma levels of insulin growth factor-1 were greater in the UVB-irradiated mice fed the high-fat diet than the UVB-irradiated mice fed the control diet, whereas the levels of plasma adiponectin were significantly lower. This pronounced exacerbation of the UVB-induced inflammatory responses in the skin of mice fed a high-fat diet suggests that high-fat diet may increase susceptibility to inflammation-associated skin diseases, including the risk of skin cancer.« less

  15. Naringenin targets ERK2 and suppresses UVB-induced photoaging.

    PubMed

    Jung, Sung Keun; Ha, Su Jeong; Jung, Chang Hwa; Kim, Yun Tai; Lee, Hoo-Keun; Kim, Myoung Ok; Lee, Mee-Hyun; Mottamal, Madhusoodanan; Bode, Ann M; Lee, Ki Won; Dong, Zigang

    2016-05-01

    A number of natural phytochemicals have anti-photoaging properties that appear to be mediated through the inhibition of matrix metalloproteinase-1 (MMP-1) expression, but their direct target molecule(s) and mechanism(s) remain unclear. We investigated the effect of naringenin, a major flavonoid found in citrus, on UVB-induced MMP-1 expression and identified its direct target. The HaCaT human skin keratinocyte cell line and 3-dimensional (3-D) human skin equivalent cultures were treated or not treated with naringenin for 1 hr before exposure to UVB. The mechanism and target(s) of naringenin were analysed by kinase assay and multiplex molecular assays. Dorsal skins of hairless mice were exposed to UVB 3 times per week, with a dose of irradiation that was increased weekly by 1 minimal erythema dose (MED; 45 mJ/cm(2)) to 4 MED over 15 weeks. Wrinkle formation, water loss and water content were then assessed. Naringenin suppressed UVB-induced MMP-1 expression and AP-1 activity, and strongly suppressed UVB-induced phosphorylation of Fos-related antigen (FRA)-1 at Ser265. Importantly, UVB irradiation-induced FRA1 protein stability was reduced by treatment with naringenin, as well as with a mitogen-activated protein kinase (MEK) inhibitor. Naringenin significantly suppressed UVB-induced extracellular signal-regulated kinase 2 (ERK2) activity and subsequently attenuated UVB-induced phosphorylation of p90(RSK) by competitively binding with ATP. Constitutively active MEK (CA-MEK) increased FRA1 phosphorylation and expression and also induced MMP-1 expression, whereas dominant-negative ERK2 (DN-ERK2) had opposite effects. U0126, a MEK inhibitor, also decreased FRA1 phosphorylation and expression as well as MMP-1 expression. The photoaging data obtained from mice clearly demonstrated that naringenin significantly inhibited UVB-induced wrinkle formation, trans-epidermal water loss and MMP-13 expression. Naringenin exerts potent anti-photoaging effects by suppressing ERK2

  16. Perception of solar UVB radiation by phytophagous insects: Behavioral responses and ecosystem implications

    PubMed Central

    Mazza, Carlos A.; Zavala, Jorge; Scopel, Ana L.; Ballaré, Carlos L.

    1999-01-01

    Most of our present knowledge about the impacts of solar UVB radiation on terrestrial ecosystems comes from studies with plants. Recently, the effects of UVB on the growth and survival of consumer species have begun to receive attention, but very little is known about UVB impacts on animal behavior. Here we report that manipulations of the flux of solar UVB received by field-grown soybean crops had large and consistent effects on the density of the thrips (Caliothrips phaseoli, Thysanoptera: Thripidae) populations that invaded the canopies, as well as on the amount of leaf damage caused by the insects. Solar UVB strongly reduced thrips herbivory. Thrips not only preferred leaves from plants that were not exposed to solar UVB over leaves from UVB-exposed plants in laboratory and field choice experiments, but they also appeared to directly sense and avoid exposure to solar UVB. Additional choice experiments showed that soybean leaf consumption by the late-season soybean worm Anticarsia gemmatalis (Lepidoptera: Noctuidae) was much less intense in leaves with even slight symptoms of an early thrips attack than in undamaged leaves. These experiments suggest that phytophagous insects can present direct and indirect behavioral responses to solar UVB. The indirect responses are mediated by changes in the plant host that are induced by UVB and, possibly, by other insects whose behavior is affected by UVB. PMID:9927679

  17. Characterization of a Human Skin Equivalent Model to Study the Effects of Ultraviolet B Radiation on Keratinocytes

    PubMed Central

    Van Lonkhuyzen, Derek R.; Dawson, Rebecca A.; Kimlin, Michael G.; Upton, Zee

    2014-01-01

    The incidences of skin cancers resulting from chronic ultraviolet radiation (UVR) exposure are on the incline in both Australia and globally. Hence, the cellular and molecular pathways that are associated with UVR-induced photocarcinogenesis need to be urgently elucidated, in order to develop more robust preventative and treatment strategies against skin cancers. In vitro investigations into the effects of UVR (in particular, the highly mutagenic UVB wavelength) have, to date, mainly involved the use of cell culture and animal models. However, these models possess biological disparities to native skin, which, to some extent, have limited their relevance to the in vivo situation. To address this, we characterized a three-dimensional, tissue-engineered human skin equivalent (HSE) model (consisting of primary human keratinocytes cultured on a dermal-derived scaffold) as a representation of a more physiologically relevant platform to study keratinocyte responses to UVB. Significantly, we demonstrate that this model retains several important epidermal properties of native skin. Moreover, UVB irradiation of the HSE constructs was shown to induce key markers of photodamage in the HSE keratinocytes, including the formation of cyclobutane pyrimidine dimers, the activation of apoptotic pathways, the accumulation of p53, and the secretion of inflammatory cytokines. Importantly, we also demonstrate that the UVB-exposed HSE constructs retain the capacity for epidermal repair and regeneration after photodamage. Together, our results demonstrate the potential of this skin equivalent model as a tool to study various aspects of the acute responses of human keratinocytes to UVB radiation damage. PMID:24219750

  18. Reduction of ultraviolet transmission through cotton T-shirt fabrics with low ultraviolet protection by various laundering methods and dyeing: clinical implications.

    PubMed

    Wang, S Q; Kopf, A W; Marx, J; Bogdan, A; Polsky, D; Bart, R S

    2001-05-01

    The public has long been instructed to wear protective clothing against ultraviolet (UV) damage. Our purpose was to determine the UV protection factor (UPF) of two cotton fabrics used in the manufacture of summer T-shirts and to explore methods that could improve the UPF of these fabrics. Each of the two types of white cotton fabrics (cotton T-shirt and mercerized cotton print cloth) used in this study was divided into 4 treatment groups: (1) water-only (machine washed with water), (2) detergent-only (washed with detergent), (3) detergent-UV absorber (washed with detergent and a UV absorber), and (4) dyes (dyed fabrics). Ultraviolet transmission through the fabrics was measured with a spectrophotometer before and after laundry and dyeing treatments. Based on UV transmission through these fabrics, the UPF values were calculated. Before any treatments, the mean UPFs were 4.94 for the T-shirt fabric and 3.13 for the print cloth. There was greater UVA (320-400 nm) than UVB (280-320 nm) transmission through these fabrics. After 5 washings with water alone and with detergent alone, UPF increased by 51% and 17%, respectively, for the cotton T-shirt fabric. Washing the T-shirt fabrics with detergent plus the UV-absorbing agent increased the UPF by 407% after 5 treatments. Dyeing the fabric blue or yellow increased the UPF by 544% and 212%, respectively. Similar changes in UPFs were observed for the print cloth fabric. The two cotton fabrics used in this study offered limited protection against UV radiation as determined by spectrophotometric analysis. Laundering with detergent and water improves UPF slightly by causing fabric shrinkage. Dyeing fabrics or adding a UV-absorbing agent during laundering substantially reduces UV transmission and increases UPF. More UVA is transmitted through the fabrics than UVB.

  19. Accumulation of flavonoids and related compounds in birch induced by UV-B irradiance.

    PubMed

    Lavola, Anu

    1998-01-01

    A growth chamber experiment was conducted to examine the effects of UV-B exposure (4.9 kJ m(-2) day(-1) of biologically effective UV-B, 280-320 nm) on shoot growth and secondary metabolite production in Betula pendula (Roth) and B. resinifera (Britt.) seedlings originating from environments in Finland, Germany and Alaska differing in solar UV-B radiation and climate. Neither shoot growth nor the composition of secondary metabolites was affected by UV-B irradiance, but the treatment induced significant changes in the amounts of individual secondary metabolites in leaves. Leaves of seedlings exposed to UV-B radiation contained higher concentrations of several flavonoids, condensed tannins and some hydroxycinnamic acids than leaves of control seedlings that received no UV-B radiation. At the population level, there was considerable variation in secondary metabolite responses to UV-B radiation: among populations, the induced response was most prominent in Alaskan populations, which were adapted to the lowest ambient UV-B radiation environment. I conclude that solar UV-B radiation plays an important role in the formation of secondary chemical characteristics in birch trees.

  20. Topical Formulation Containing Naringenin: Efficacy against Ultraviolet B Irradiation-Induced Skin Inflammation and Oxidative Stress in Mice

    PubMed Central

    Martinez, Renata M.; Pinho-Ribeiro, Felipe A.; Steffen, Vinicius S.; Silva, Thais C. C.; Caviglione, Carla V.; Bottura, Carolina; Fonseca, Maria J. V.; Vicentini, Fabiana T. M. C.; Vignoli, Josiane A.; Baracat, Marcela M.; Georgetti, Sandra R.; Verri, Waldiceu A.; Casagrande, Rubia

    2016-01-01

    Naringenin (NGN) exhibits anti-inflammatory and antioxidant activities, but it remains undetermined its topical actions against ultraviolet B (UVB)-induced inflammation and oxidative stress in vivo. The purpose of this study was to evaluate the physicochemical and functional antioxidant stability of NGN containing formulations, and the effects of selected NGN containing formulation on UVB irradiation-induced skin inflammation and oxidative damage in hairless mice. NGN presented ferric reducing power, ability to scavenge 2,2′-azinobis (3-ethylbenzothiazoline- 6-sulfonic acid) (ABTS) and hydroxyl radical, and inhibited iron-independent and dependent lipid peroxidation. Among the three formulations containing NGN, only the F3 kept its physicochemical and functional stability over 180 days. Topical application of F3 in mice protected from UVB-induced skin damage by inhibiting edema and cytokine production (TNF-α, IL-1β, IL-6, and IL-10). Furthermore, F3 inhibited superoxide anion and lipid hydroperoxides production and maintained ferric reducing and ABTS scavenging abilities, catalase activity, and reduced glutathione levels. In addition, F3 maintained mRNA expression of cellular antioxidants glutathione peroxidase 1, glutathione reductase and transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2), and induced mRNA expression of heme oxygenase-1. In conclusion, a formulation containing NGN may be a promising approach to protecting the skin from the deleterious effects of UVB irradiation. PMID:26741806