Sample records for ultraviolet emission lines

  1. Search with Copernicus for ultraviolet emission lines in the planetary nebula NGC 3242

    NASA Technical Reports Server (NTRS)

    Schwartz, R. D.; Snow, T. P., Jr.; Upson, W. L., II

    1978-01-01

    The high-excitation planetary nebula NGC 3242 has been observed with the ultraviolet telescope-spectrometer aboard Copernicus. Wavelength intervals corresponding to the emission lines of O VI at 1032 A, He II at 1085 A, Si III at 1206 A, and N V at 1239 A have been scanned. Upper limits to the observed fluxes are reported and compared with predicted emission-line fluxes from this object.

  2. Extreme Ultraviolet Emission Lines of Iron Fe XI-XIII

    NASA Astrophysics Data System (ADS)

    Lepson, Jaan; Beiersdorfer, P.; Brown, G. V.; Liedahl, D. A.; Brickhouse, N. S.; Dupree, A. K.

    2013-04-01

    The extreme ultraviolet (EUV) spectral region (ca. 20--300 Å) is rich in emission lines from low- to mid-Z ions, particularly from the middle charge states of iron. Many of these emission lines are important diagnostics for astrophysical plasmas, providing information on properties such as elemental abundance, temperature, density, and even magnetic field strength. In recent years, strides have been made to understand the complexity of the atomic levels of the ions that emit the lines that contribute to the richness of the EUV region. Laboratory measurements have been made to verify and benchmark the lines. Here, we present laboratory measurements of Fe XI, Fe XII, and Fe XIII between 40-140 Å. The measurements were made at the Lawrence Livermore electron beam ion trap (EBIT) facility, which has been optimized for laboratory astrophysics, and which allows us to select specific charge states of iron to help line identification. We also present new calculations by the Hebrew University - Lawrence Livermore Atomic Code (HULLAC), which we also utilized for line identification. We found that HULLAC does a creditable job of reproducing the forest of lines we observed in the EBIT spectra, although line positions are in need of adjustment, and line intensities often differed from those observed. We identify or confirm a number of new lines for these charge states. This work was supported by the NASA Solar and Heliospheric Program under Contract NNH10AN31I and the DOE General Plasma Science program. Work was performed in part under the auspices of the Department of Energy by Lawrence Livermore National Laboratory under Contract DEAC52-07NA27344.

  3. The Relationship between Ultraviolet Line Emission and Magnetic Field Strength in Magnetic Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    Howell, Steve B.; Cash, Jennifer; Mason, Keith O.; Herzog, Adrienne E.

    1999-02-01

    We present the first UV spectral observations of six magnetic cataclysmic variables discovered by the ROSAT Wide Field Camera (WFC). Using the^ International Ultraviolet Explorer (IUE), 1200-3400 Å spectra were obtained of the AM Herculis stars RE 0531-46, RE 1149+28, RE 1844-74, QS Tel (RE 1938-46), and HU Aqr (RE 2107-05) and the DQ Herculis star PQ Gem (RE 0751+14). The high-state UV spectra are dominated by strong emission lines. Continuum flux distributions for these stars (from 100 to 5500 Å) reveal that over this entire range, none of the spectral energy distributions can be fitted by a single-valued blackbody. Our new UV observations and additional archival IUE spectra were used to discover a correlation between the strength of the high-state UV emission lines and the strength of the white dwarf magnetic field. Model spectral results are used to confirm the production of the UV emission lines by photoionization from X-ray and EUV photons.

  4. Far-ultraviolet MAMA detector imagery and emission-line CCD imagery of NGC 6240

    NASA Technical Reports Server (NTRS)

    Smith, Andrew M.; Hill, Robert S.; Vrba, Frederick J.; Timothy, J. G.

    1992-01-01

    An image of the luminous infrared galaxy NGC 6240 at 1480 A was obtained using a multianode microchannel array (MAMA) detector with a rocket-borne telescope. At distances greater than 12 arcsec from the nucleus, the measured ultraviolet luminosity implies intensive star formation activity equal to 2-3 times that of a spiral galaxy such as M83. Optical images in the H-beta and forbidden O III 5007 A emission lines reveal a region of high excitation east of the nucleus between the centers of disks 1 and 2 as described by Bland-Hawthorn et al.

  5. Line identifications, line strengths, and continuum flux measurements in the ultraviolet spectrum of Arcturus

    NASA Technical Reports Server (NTRS)

    Carpenter, K. G.; Wing, R. F.; Stencel, R. E.

    1985-01-01

    The ultraviolet spectrum of Arcturus has been observed at high resolution with the IUE satellite. Line identifications, mean absolute 'continuum' flux measurements, integrated absolute emission-line fluxes, and measurements of selected absorption line strengths are presented for the 2250-2930 A region. In the 1150-2000 A region, identifications are given primarily on the basis of low-resolution spectra. Chromospheric emission lines have been identified with low-excitation species including H I, C I, C II, O I, Mg I, Mg II, Al II, Si I, Si II, S I, and Fe II; there is no evidence for lines of C IV, N V, or other species requiring high temperatures. A search for molecular absorption features in the 2500-2930 A interval has led to several tentative identifications, but only OH could be established as definitely present. Iron lines strongly dominate the identifications in the 2250-2930 A region, Fe II accounting for about 86 percent of the emission features and Fe I for 43 percent of the identified absorption features.

  6. Analysis of solar ultraviolet lines

    NASA Technical Reports Server (NTRS)

    Chipman, E.

    1971-01-01

    The formation of the strongest ultra-violet emission lines of Mg II, O I, C II, and C III in the solar atmosphere is studied in detail. The equations of statistical equilibrium and radiative transfer for each ion are solved using a general computer program that is capable of solving non-LTE line-formation problems for arbitrary atmospheric and atomic models. Interpreting the results in terms of the structure of the solar atmosphere, it is concluded that the HSRA atmosphere has a temperature too low by about 500 K near h = 1100 km and that a temperature plateau with T sub e approximately = 18,000 K and width close to 60 km exists in the upper chromosphere. The structure of the solar atmosphere in the range 20,000 to 100,000 K and the effects of microturbulence on the formation of lines are also investigated. Approximate analytic line-formation problems are solved, and more exact solutions are derived later. An attempt is made to make the best possible fit to the Ca II K line center-to-limb profiles with a one-component atmosphere, with an assumed source function and microturbulent velocity.

  7. The Loopy Ultraviolet Line Profiles of RU Lupi: Accretion, Outflows, and Fluorescence

    NASA Astrophysics Data System (ADS)

    Herczeg, Gregory J.; Walter, Frederick M.; Linsky, Jeffrey L.; Gahm, Gösta F.; Ardila, David R.; Brown, Alexander; Johns-Krull, Christopher M.; Simon, Michal; Valenti, Jeff A.

    2005-06-01

    We present far-ultraviolet (FUV) spectra of the classical T Tauri star RU Lup covering the 912-1710 Å spectral range, as observed by the Hubble Space Telescope STIS and the Far Ultraviolet Spectroscopic Explorer satellite. We use these spectra, which are rich in emission and absorption lines, to probe both the accreting and outflowing gas. Absorption in the Lyα profile constrains the extinction to AV~0.07 mag, which we confirm with other diagnostics. We estimate a mass accretion rate of (5+/-2)×10-8 Msolar yr-1 using the optical-NUV accretion continuum. The accreting gas is also detected in bright, broad lines of C IV, Si IV, and N V, which all show complex structures across the line profile. Many other emission lines, including those of H2 and Fe II, are pumped by Lyα. RU Lup's spectrum varies significantly in the FUV; our STIS observations occurred when RU Lup was brighter than several other observations in the FUV, possibly because of a high mass accretion rate.

  8. A First Comparison of Millimeter Continuum and Mg ii Ultraviolet Line Emission from the Solar Chromosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bastian, T. S.; Chintzoglou, G.; De Pontieu, B.

    We present joint observations of the Sun by the Atacama Large Millimeter/submillimeter Array (ALMA) and the Interface Region Imaging Spectrograph ( IRIS ). Both millimeter/submillimeter- λ continuum emission and ultraviolet (UV) line emission originate from the solar chromosphere and both have the potential to serve as powerful and complementary diagnostics of physical conditions in this enigmatic region of the solar atmosphere. The observations were made of a solar active region on 2015 December 18 as part of the ALMA science verification effort. A map of the Sun’s continuum emission was obtained by ALMA at a wavelength of 1.25 mm (239more » GHz). A contemporaneous map was obtained by IRIS in the Mg ii h doublet line at 2803.5 Å. While a clear correlation between the 1.25 mm brightness temperature T{sub B} and the Mg ii h line radiation temperature T {sub rad} is observed, the slope is <1, perhaps as a result of the fact that these diagnostics are sensitive to different parts of the chromosphere and that the Mg ii h line source function includes a scattering component. There is a significant difference (35%) between the mean T{sub B} (1.25 mm) and mean T {sub rad} (Mg ii). Partitioning the maps into “sunspot,” “quiet areas,” and “plage regions” we find the relation between the IRIS Mg ii h line T {sub rad} and the ALMA T {sub B} region-dependent. We suggest this may be the result of regional dependences of the formation heights of the IRIS and ALMA diagnostics and/or the increased degree of coupling between the UV source function and the local gas temperature in the hotter, denser gas in plage regions.« less

  9. International Ultraviolet Explorer (IUE)

    NASA Technical Reports Server (NTRS)

    Boehm, Karl-Heinz

    1992-01-01

    The observation, data reduction, and interpretation of ultraviolet spectra (obtained with the International Ultraviolet Explorer) of Herbig-Haro objects, stellar jets, and (in a few cases) reflection nebulae in star-forming regions is discussed. Intermediate results have been reported in the required semi-annual reports. The observations for this research were obtained in 23 (US1) IUE shifts. The spectra were taken in the low resolution mode with the large aperture. The following topics were investigated: (1) detection of UV spectra of high excitation Herbig-Haro (HH) objects, identification of emission lines, and a preliminary study of the energy distribution of the ultraviolet continuum; (2) details of the continuum energy distribution of these spectra and their possible interpretation; (3) the properties of the reddening (extinction) of HH objects; (4) the possible time variation of strong emission lines in high excitation HH objects; (5) the ultraviolet emission of low excitation HH objects, especially in the fluorescent lines of the H2 molecule; (6) the ultraviolet emission in the peculiar object HH24; (7) the spatial emission distribution of different lines and different parts of the continuum in different HH objects; and (8) some properties of reflection nebula, in the environment of Herbig-Haro objects. Each topic is discussed.

  10. GAME: GAlaxy Machine learning for Emission lines

    NASA Astrophysics Data System (ADS)

    Ucci, G.; Ferrara, A.; Pallottini, A.; Gallerani, S.

    2018-06-01

    We present an updated, optimized version of GAME (GAlaxy Machine learning for Emission lines), a code designed to infer key interstellar medium physical properties from emission line intensities of ultraviolet /optical/far-infrared galaxy spectra. The improvements concern (a) an enlarged spectral library including Pop III stars, (b) the inclusion of spectral noise in the training procedure, and (c) an accurate evaluation of uncertainties. We extensively validate the optimized code and compare its performance against empirical methods and other available emission line codes (PYQZ and HII-CHI-MISTRY) on a sample of 62 SDSS stacked galaxy spectra and 75 observed HII regions. Very good agreement is found for metallicity. However, ionization parameters derived by GAME tend to be higher. We show that this is due to the use of too limited libraries in the other codes. The main advantages of GAME are the simultaneous use of all the measured spectral lines and the extremely short computational times. We finally discuss the code potential and limitations.

  11. Red Fluorescent Line Emission from Hydrogen Molecules in Diffuse Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Spaans, Marco

    1996-01-01

    We have modeled the fluorescent pumping of electronic and vibrational emissions of molecular hydrogen (H2) within diffuse molecular clouds that are illuminated by ultraviolet continuum radiation. Fluorescent line intensities are predicted for transitions at ultraviolet, infrared, and red visible wavelengths as functions of the gas density, the visual extinction through the cloud, and the intensity of the incident UV continuum radiation. The observed intensity in each fluorescent transition is roughly proportional to the integrated rate of H2 photodissociation along the line of sight. Although the most luminous fluorescent emissions detectable from ground-based observatories lie at near-infrared wavelengths, we argue that the lower sky brightness at visible wavelengths makes the red fluorescent transitions a particularly sensitive probe. Fabry-Perot spectrographs of the type that have been designed to observe very faint diffuse Ha emissions are soon expected to yield sensitivities that will be adequate to detect H2 vibrational emissions from molecular clouds that are exposed to ultraviolet radiation no stronger than the mean radiation field within the Galaxy. Observations of red H2 fluorescent emission together with cospatial 21 cm H I observations could serve as a valuable probe of the gas density in diffuse molecular clouds.

  12. The far-ultraviolet emission spectrum of the K2 III star, Arcturus.

    NASA Technical Reports Server (NTRS)

    Moos, H. W.; Rottman, G. J.

    1972-01-01

    A moderate-resolution far-ultraviolet spectrum of the K2 IIIp star Arcturus, obtained with a rocket-borne spectrometer, shows chromospheric emission features. Hydrogen L-alpha and O I (1303 A) are clearly identified. The O I (1304 A) stellar surface brightness is as great or greater than that of the sun. Other metal lines, including those of carbon, are weak compared to the O I line.

  13. Simultaneous detection and analysis of optical and ultraviolet broad emission lines in quasars at z 2.2

    NASA Astrophysics Data System (ADS)

    Bisogni, S.; di Serego Alighieri, S.; Goldoni, P.; Ho, L. C.; Marconi, A.; Ponti, G.; Risaliti, G.

    2017-06-01

    We studied the spectra of six z 2.2 quasars obtained with the X-shooter spectrograph at the Very Large Telescope. The redshift of these sources and the X-shooter's spectral coverage allow us to cover the rest of the spectral range 1200-7000 Å for the simultaneous detection of optical and ultraviolet lines emitted by the broad-line region. Simultaneous measurements, avoiding issues related to quasars variability, help us understand the connection between the different broad-line region line profiles generally used as virial estimators of black hole masses in quasars. The goal of this work is to compare the different emission lines for each object to check on the reliability of Hα, Mg II and C iv with respect to Hβ. Hα and Mg II linewidths correlate well with Hβ, while C iv shows a poorer correlation, due to the presence of strong blueshifts and asymmetries in the profile. We compared our sample with the only other two whose spectra were taken with the same instrument and for all examined lines our results are in agreement with the ones obtained with X-shooter at z 1.5-1.7. We finally evaluate C III] as a possible substitute of C iv in the same spectral range and find that its behaviour is more coherent with those of the other lines: we believe that, when a high quality spectrum such as the ones we present is available and a proper modelization with the Fe II and Fe III emissions is performed, it is more appropriate to use this line than that of C iv if not corrected for the contamination by non-virialized components. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under programme 086.B-0320(A).The reduced spectra (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/603/A1

  14. The far-ultraviolet /1180-1950 A/ emission spectrum of Arcturus

    NASA Technical Reports Server (NTRS)

    Mckinney, W. R.; Giles, J. W.; Moos, H. W.

    1976-01-01

    The far-ultraviolet (1180-1950 A) emission spectrum of the K2 IIIp star, Arcturus, has been obtained with a rocket-borne multichannel spectrometer. The use of multiple detectors gave an increase in effective observing time and permitted an improvement in spectral resolution over two previous rocket measurements. H I at 1216-A and O I at 1304 A are the only identified emissions, and the observed H I 1216-A flux is low compared with previous observations. A third unidentified feature was observed at 1511 A. The absence of many lines found in emission from the sun is striking. The absence of certain features implies that the coronal temperature must be either below 50,000 K or above 350,000 K.

  15. Atomic emission lines in the near ultraviolet; hydrogen through krypton, section 1

    NASA Technical Reports Server (NTRS)

    Kelly, R. L.

    1979-01-01

    A compilation of spectra from the first 36 elements was prepared from published literature available through October 1977. In most cases, only those lines which were actually observed in emission or absorption are listed. The wavelengths included range from 2000 Angstroms to 3200 Angstroms with some additional lines up to 3500 Angstroms. Only lines of stripped atoms are reported; no molecular bands are included.

  16. Atomic emission lines in the near ultraviolet; hydrogen through krypton, section 2

    NASA Technical Reports Server (NTRS)

    Kelly, R. L.

    1979-01-01

    A compilation of spectra from the first 36 elements was prepared from published literature available through October 1977. In most cases, only those lines which were actually observed in emission or absorption are listed. The wavelengths included range from 2000 Angstroms to 3200 Angstroms with some additional lines up to 3500 Angstroms. Only lines of stripped atoms are reported; no molecular bands are included.

  17. A survey of ultraviolet interstellar absorption lines

    NASA Technical Reports Server (NTRS)

    Bohlin, R. C.; Jenkins, E. B.; Spitzer, L., Jr.; York, D. G.; Hill, J. K.; Savage, B. D.; Snow, T. P., Jr.

    1983-01-01

    A telescope-spectrometer on the Copernicus spacecraft made possible the measurement of many ultraviolet absorption lines produced by the interstellar gas. The present survey provides data on ultraviolet absorption lines in the spectra of 88 early-type stars. The stars observed are divided into four classes, including reddened stars, unreddened bright stars, moderately reddened bright stars, and unreddened and moderately reddened faint stars. Data are presented for equivalent width, W, radial velocity V, and rms line width, D, taking into account some 10 to 20 lines of N I, O I, Si II, P II, S II, Cl I, Cl II, Mn II, Fe II, Ni II, Cu II, and H2. The data are based on multiple scans for each line. Attention is given to details of observations, the data reduction procedure, and the computation of equivalent width, mean velocity, and velocity dispersion.

  18. Contemporaneous Ultraviolet and Optical Observations of Direct and Raman-scattered O VI Lines in Symbiotic Stars

    NASA Astrophysics Data System (ADS)

    Birriel, Jennifer J.; Espey, Brian R.; Schulte-Ladbeck, Regina E.

    2000-12-01

    Symbiotic stars are binary systems consisting of a hot star, typically a white dwarf, and a cool giant companion. The wind from the cool star is ionized by the radiation from the hot star, resulting in the characteristic combination of sharp nebular emission lines and stellar molecular absorption bands in the optical spectrum. Most of the emission lines are readily identifiable with common ions. However, two strong, broad emission lines at 6825 and 7082 Å defied identification with known atoms and ions. In 1989 Schmid made the case that these long unidentified emission lines resulted from the Raman scattering of the O VI resonance photons at 1032, 1038 Å by neutral hydrogen. We present contemporaneous far-UV and optical observations of direct and Raman-scattered O VI lines for nine symbiotic stars obtained with the Hopkins Ultraviolet Telescope (Astro-2) and various ground-based optical telescopes. The O VI emission lines are present in every instance in which the λλ6825, 7082 lines are present, in support of the Schmid Raman-scattering model. We calculate the scattering efficiencies and discuss the results in terms of the Raman-scattering model. Additionally, we measure the flux of the Fe II fluorescence line at 1776 Å, which is excited by the O VI line at 1032 Å, and calculate the first estimates of the conversion efficiencies for this process.

  19. Spectrophotometry of emission-line stars in the magellanic clouds

    NASA Technical Reports Server (NTRS)

    Bohannan, Bruce

    1990-01-01

    The strong emission lines in the most luminous stars in the Magellanic Clouds indicate that these stars have such strong stellar winds that their photospheres are so masked that optical absorption lines do not provide an accurate measure of photospheric conditions. In the research funded by this grant, temperatures and gravities of emission-line stars both in the Large (LMC) and Small Magellanic Clouds (SMC) have been measured by fitting of continuum ultraviolet-optical fluxes observed with IUE with theoretical model atmospheres. Preliminary results from this work formed a major part of an invited review 'The Distribution of Types of Luminous Blue Variables'. Interpretation of the IUE observations obtained in this grant and archive data were also included in a talk at the First Boulder-Munich Hot Stars Workshop. Final results of these studies are now being completed for publication in refereed journals.

  20. Modelling ultraviolet-line diagnostics of stars, the ionized and the neutral interstellar medium in star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Vidal-García, A.; Charlot, S.; Bruzual, G.; Hubeny, I.

    2017-09-01

    We combine state-of-the-art models for the production of stellar radiation and its transfer through the interstellar medium (ISM) to investigate ultraviolet-line diagnostics of stars, the ionized and the neutral ISM in star-forming galaxies. We start by assessing the reliability of our stellar population synthesis modelling by fitting absorption-line indices in the ISM-free ultraviolet spectra of 10 Large Magellanic Cloud clusters. In doing so, we find that neglecting stochastic sampling of the stellar initial mass function in these young (∼10-100 Myr), low-mass clusters affects negligibly ultraviolet-based age and metallicity estimates but can lead to significant overestimates of stellar mass. Then, we proceed and develop a simple approach, based on an idealized description of the main features of the ISM, to compute in a physically consistent way the combined influence of nebular emission and interstellar absorption on ultraviolet spectra of star-forming galaxies. Our model accounts for the transfer of radiation through the ionized interiors and outer neutral envelopes of short-lived stellar birth clouds, as well as for radiative transfer through a diffuse intercloud medium. We use this approach to explore the entangled signatures of stars, the ionized and the neutral ISM in ultraviolet spectra of star-forming galaxies. We find that, aside from a few notable exceptions, most standard ultraviolet indices defined in the spectra of ISM-free stellar populations are prone to significant contamination by the ISM, which increases with metallicity. We also identify several nebular-emission and interstellar-absorption features, which stand out as particularly clean tracers of the different phases of the ISM.

  1. Ultraviolet emission lines in young low-mass galaxies at z ≃ 2: physical properties and implications for studies at z > 7

    NASA Astrophysics Data System (ADS)

    Stark, Daniel P.; Richard, Johan; Siana, Brian; Charlot, Stéphane; Freeman, William R.; Gutkin, Julia; Wofford, Aida; Robertson, Brant; Amanullah, Rahman; Watson, Darach; Milvang-Jensen, Bo

    2014-12-01

    We present deep spectroscopy of 17 very low mass (M⋆ ≃ 2.0 × 106-1.4 × 109 M⊙) and low luminosity (MUV ≃ -13.7 to -19.9) gravitationally lensed galaxies in the redshift range z ≃ 1.5-3.0. Deep rest-frame ultraviolet spectra reveal large equivalent width emission from numerous emission lines (N IV], O III], C IV, Si III], C III]) which are rarely seen in individual spectra of more massive star-forming galaxies. C III] is detected in 16 of 17 low-mass star-forming systems with rest-frame equivalent widths as large as 13.5 Å. Nebular C IV emission is present in the most extreme C III] emitters, requiring an ionizing source capable of producing a substantial component of photons with energies in excess of 47.9 eV. Photoionization models support a picture whereby the large equivalent widths are driven by the increased electron temperature and enhanced ionizing output arising from metal-poor gas and stars (0.04-0.13 Z⊙), young stellar populations (6-50 Myr), and large ionization parameters (log U = -2.16 to -1.84). The young ages implied by the emission lines and continuum spectral energy distributions (SEDs) indicate that the extreme line emitters in our sample are in the midst of a significant upturn in their star formation activity. The low stellar masses, blue UV colours, and large specific star formation rates of our sample are similar to those of typical z ≳ 6 galaxies. Given the strong attenuation of Lyα in z ≳ 6 galaxies, we suggest that C III] is likely to provide our best probe of early star-forming galaxies with ground-based spectrographs and one off the most efficient means of confirming z ≳ 10 galaxies with the James Webb Space Telescope.

  2. A search for far-ultraviolet emissions from the lunar atmosphere.

    PubMed

    Fastie, W G; Feldman, P D; Henry, R C; Moos, H W; Barth, C A; Thomas, G E; Donahue, T M

    1973-11-16

    An ultraviolet spectrometer aboard the Apollo 17 orbiting spacecraft attempted to measure ultraviolet emissions from the lunar atmosphere. The only emissions observed were from a transient atmosphere introduced by the lunar landing engine. The absence of atomic hydrogen implies that solar wind protons are converted to hydrogen molecules at the lunar surface.

  3. ULTRAVIOLET SPECTROSCOPY OF RAPIDLY ROTATING SOLAR-MASS STARS: EMISSION-LINE REDSHIFTS AS A TEST OF THE SOLAR-STELLAR CONNECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linsky, Jeffrey L.; Bushinsky, Rachel; Ayres, Tom

    2012-07-20

    We compare high-resolution ultraviolet spectra of the Sun and thirteen solar-mass main-sequence stars with different rotational periods that serve as proxies for their different ages and magnetic field structures. In this, the second paper in the series, we study the dependence of ultraviolet emission-line centroid velocities on stellar rotation period, as rotation rates decrease from that of the Pleiades star HII314 (P{sub rot} = 1.47 days) to {alpha} Cen A (P{sub rot} = 28 days). Our stellar sample of F9 V to G5 V stars consists of six stars observed with the Cosmic Origins Spectrograph on the Hubble Space Telescopemore » (HST) and eight stars observed with the Space Telescope Imaging Spectrograph on HST. We find a systematic trend of increasing redshift with more rapid rotation (decreasing rotation period) that is similar to the increase in line redshift between quiet and plage regions on the Sun. The fastest-rotating solar-mass star in our study, HII314, shows significantly enhanced redshifts at all temperatures above log T = 4.6, including the corona, which is very different from the redshift pattern observed in the more slowly rotating stars. This difference in the redshift pattern suggests that a qualitative change in the magnetic-heating process occurs near P{sub rot} = 2 days. We propose that HII314 is an example of a solar-mass star with a magnetic heating rate too large for the physical processes responsible for the redshift pattern to operate in the same way as for the more slowly rotating stars. HII314 may therefore lie above the high activity end of the set of solar-like phenomena that is often called the 'solar-stellar connection'.« less

  4. Ultraviolet imaging telescope and optical emission-line observations of H II regions in M81

    NASA Technical Reports Server (NTRS)

    Hill, Jesse K.; Cheng, K.-P.; Bohlin, Ralph C.; Cornett, Robert H.; Hintzen, P. M. N.; O'Connell, Robert W.; Roberts, Morton S.; Smith, Andrew M.; Smith, Eric P.; Stecher, Theodore P.

    1995-01-01

    Images of the type Sab spiral galaxy M81 were obtained in far-UV and near-UV bands by the Ultraviolet Imaging Telescope (UIT) during the Astro-1 Spacelab mission of 1990 December. Magnitudes in the two UV bands are determined for 52 H II regions from the catalog of Petit, Sivan, & Karachentsev (1988). Fluxes of the H-alpha and H-beta emission lines are determined from CCD images. Extinctions for the brightest H II regions are determined from observed Balmer decrements. Fainter H II regions are assigned the average of published radio-H-alpha extinctions for several bright H II regions. The radiative transfer models of Witt, Thronson, & Capuano (1992) are shown to predict a relationship between Balmer Decrement and H-alpha extinction consistent with observed line and radio fluxes for the brightest 7 H II regions and are used to estimate the UV extinction. Ratios of Lyman continuum with ratios predicted by model spectra computed for initial mass function (IMF) slope equal to -1.0 and stellar masses ranging from 5 to 120 solar mass. Ages and masses are estimated by comparing the H-alpha and far-UV fluxes and their ratio with the models. The total of the estimated stellar masses for the 52 H II regions is 1.4 x 10(exp 5) solar mass. The star-formation rate inferred for M81 from the observed UV and H-alpha fluxes is low for a spiral galaxy at approximately 0.13 solar mass/yr, but consistent with the low star-formation rates obtained by Kennicutt (1983) and Caldwell et al. (1991) for early-type spirals.

  5. Pluto's Far Ultraviolet Spectrum and Airglow Emissions

    NASA Astrophysics Data System (ADS)

    Steffl, A.; Schindhelm, E.; Kammer, J.; Gladstone, R.; Greathouse, T. K.; Parker, J. W.; Strobel, D. F.; Summers, M. E.; Versteeg, M. H.; Ennico Smith, K.; Hinson, D. P.; Linscott, I.; Olkin, C.; Parker, A. H.; Retherford, K. D.; Singer, K. N.; Tsang, C.; Tyler, G. L.; Weaver, H. A., Jr.; Woods, W. W.; Young, L. A.; Stern, A.

    2015-12-01

    The Alice far ultraviolet spectrograph on the New Horizons spacecraft is the second in a family of six instruments in flight on, or under development for, NASA and ESA missions. Here, we present initial results from the Alice observations of Pluto during the historic flyby. Pluto's far ultraviolet spectrum is dominated by sunlight reflected from the surface with absorption by atmospehric constituents. We tentatively identify C2H2 and C2H4 in Pluto's atmosphere. We also present evidence for weak airglow emissions.

  6. Combined Ultraviolet and Optical Spectra of 48 Low-Redshift QSOs and the Relation of the Continuum and Emission-Line Properties

    NASA Astrophysics Data System (ADS)

    Corbin, Michael R.; Boroson, Todd A.

    1996-11-01

    We present combined ultraviolet and optical spectra of 48 QSOs and Seyfert 1 galaxies in the redshift range 0.034-0.774. The UV spectra were obtained non-simultaneously with the optical and are derived from archival Hubble Space Telescope (HST) Faint Object Spectrograph and International Ultraviolet Explorer (IUE) observations. The sample consists of 22 radio- quiet objects, 12 flat radio spectrum radio-loud objects, and 14 steep radio spectrum objects, and it covers approximately 2.5 decades in ultraviolet continuum luminosity. The sample objects are among the most luminous known in this redshift range and include 3C 273 and Fairall 9, as well as many objects discovered in the Bright Quasar Survey. We measure and compare an array of emission-line and continuum parameters, including 2 keV X-ray luminosities derived from the Einstein database. We examine individual correlations and also apply a principal components analysis (PCA) in an effort to determine the underlying sources of variance among these observables. Our main results are as follows. 1. The C IV λ1549 profile asymmetry is correlated with the UV continuum luminosity measured at the position of that line, such that increasing continuum luminosity produces increasing redward asymmetry. This is the same correlation found between Hβ asymmetry and 2 keV luminosity in a larger sample of objects and appears to be followed by both radio-loud and radio-quiet sources. The C IV profile asymmetry is also correlated with the FWZI of the Lyα profile, with more redward asymmetric profiles associated with wider profile bases. The PCA reveals that the correlated increase in luminosity, C IV redward asymmetry, and profile base width accounts for over half the statistical variance in the sample. 2. There is a statistically significant difference between the FWZI distributions of the Lyα and Hβ lines, such that the former is wider on average by ~10^4^ km s^-1^. The FWHM values of the broad Hβ line are weakly

  7. On the Failure of Standard Emission Measure Analysis for Solar Extreme-Ultraviolet and Ultraviolet Irradiance Spectra

    NASA Astrophysics Data System (ADS)

    Judge, P. G.; Woods, T. N.; Brekke, P.; Rottman, G. J.

    1995-12-01

    We perform emission measure analysis of new and accurate UV ( lambda > 1200 A) and extreme-ultraviolet (EUV) ( lambda <= 1200 A) irradiance ("Sun-as-a-star") emission-line spectra of the Sun. Our data consist of (1) daily averaged UV irradiances from the SOLSTICE on the UARS spacecraft and (2) EUV irradiances obtained on the same date from a \\frac {1}{4} m spectrograph flown on a sounding rocket. Both instruments have a spectral resolution of roughly 1 A. The absolute uncertainties in these data are at most +/-15% (+/-2 sigma ), one of the highest photometric accuracies yet achieved. We find large, highly significant and systematic discrepancies in the emission measure analysis of transition region lines which can only be accounted for by a breakdown of one or more standard assumptions. All strong lines above 1000 A, which are from the Li and Na isoelectronic sequences, are too strong by factors of between 2.5 and 7 compared with their counterparts in the EUV region. Previous studies were tantalizingly close to finding these discrepancies, but those data lacked the wavelength coverage and relative photometric precision necessary for definitive conclusions. We argue that either dynamical effects, inaccurate treatments of atomic processes, and/or Lyman continuum absorption are the culprits. However, we favor the former explanation. In any event, this study should have implications for models of the solar transition region, for observing programs with the CDS and SUMER instruments on SOHO, and for analysis of UV spectra for stars across the cool half of the H-R diagram. Finally, the discrepancy is not seen for the "coronal" Li-like ions.

  8. Photoluminescence emission spectra of Makrofol® DE 1-1 upon irradiation with ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    El Ghazaly, M.; Aydarous, Abdulkadir

    Photoluminescence (PL) emission spectra of Makrofol® DE 1-1 (bisphenol-A based polycarbonate) upon irradiation with ultraviolet radiation of different wavelengths were investigated. The absorption-and attenuation coefficient measurements revealed that the Makrofol® DE 1-1 is characterized by high absorbance in the energy range 6.53-4.43 eV but for a lower energy than 4.43 eV, it is approximately transparent. Makrofol® DE 1-1 samples were irradiated with ultraviolet radiation of wavelength in the range from 250 (4.28 eV) to 400 (3.10 eV) nm in step of 10 nm and the corresponding photoluminescence (PL) emission spectra were measured with a spectrofluorometer. It is found that the integrated counts and the peak height of the photoluminescence emission (PL) bands are strongly correlated with the ultraviolet radiation wavelength. They are increased at the ultraviolet radiation wavelength 280 nm and have maximum at 290 nm, thereafter they decrease and diminish at 360 nm of ultraviolet wavelength. The position of the PL emission band peak was red shifted starting from 300 nm, which increased with the increase the ultraviolet radiation wavelength. The PL bandwidth increases linearly with the increase of the ultraviolet radiation wavelength. When Makrofol® DE 1-1 is irradiated with ultraviolet radiation of short wavelength (UVC), the photoluminescence emission spectra peaks also occur in the UVC but of a relatively longer wavelength. The current new findings should be considered carefully when using Makrofol® DE 1-1 in medical applications related to ultraviolet radiation.

  9. Outer atmospheres of cool stars. XII - A survey of IUE ultraviolet emission line spectra of cool dwarf stars

    NASA Technical Reports Server (NTRS)

    Linsky, J. L.; Bornmann, P. L.; Carpenter, K. G.; Hege, E. K.; Wing, R. F.; Giampapa, M. S.; Worden, S. P.

    1982-01-01

    Quantitative information is obtained on the chromospheres and transition regions of M dwarf stars, in order to determine how the outer atmospheres of dMe stars differ from dM stars and how they compare with the outer atmospheres of quiet and active G and K type dwarfs. IUE spectra of six dMe and four dM stars, together with ground-based photometry and spectroscopy of the Balmer and Ca II H and K lines, show no evidence of flares. It is concluded, regarding the quiescent behavior of these stars, that emission-line spectra resemble that of the sun and contain emission lines formed in regions with 4000-20,000 K temperatures that are presumably analogous to the solar chromosphere, as well as regions with temperatures of 20,000-200,000 K that are presumably analogous to the solar transition region. Emission-line surface fluxes are proportional to the emission measure over the range of temperatures at which the lines are formed.

  10. SEURAT: SPH scheme extended with ultraviolet line radiative transfer

    NASA Astrophysics Data System (ADS)

    Abe, Makito; Suzuki, Hiroyuki; Hasegawa, Kenji; Semelin, Benoit; Yajima, Hidenobu; Umemura, Masayuki

    2018-05-01

    We present a novel Lyman alpha (Ly α) radiative transfer code, SEURAT (SPH scheme Extended with Ultraviolet line RAdiative Transfer), where line scatterings are solved adaptively with the resolution of the smoothed particle hydrodynamics (SPH). The radiative transfer method implemented in SEURAT is based on a Monte Carlo algorithm in which the scattering and absorption by dust are also incorporated. We perform standard test calculations to verify the validity of the code; (i) emergent spectra from a static uniform sphere, (ii) emergent spectra from an expanding uniform sphere, and (iii) escape fraction from a dusty slab. Thereby, we demonstrate that our code solves the {Ly} α radiative transfer with sufficient accuracy. We emphasize that SEURAT can treat the transfer of {Ly} α photons even in highly complex systems that have significantly inhomogeneous density fields. The high adaptivity of SEURAT is desirable to solve the propagation of {Ly} α photons in the interstellar medium of young star-forming galaxies like {Ly} α emitters (LAEs). Thus, SEURAT provides a powerful tool to model the emergent spectra of {Ly} α emission, which can be compared to the observations of LAEs.

  11. Ultraviolet Communication for Medical Applications

    DTIC Science & Technology

    2015-06-01

    DEI procured several UVC phosphors and tested them with vacuum UV (VUV) excitation. Available emission peaks include: 226 nm, 230 nm, 234 nm, 242...SUPPLEMENTARY NOTES Report contains color. 14. ABSTRACT Under this Phase II SBIR effort, Directed Energy Inc.’s (DEI) proprietary ultraviolet ( UV ...15. SUBJECT TERMS Non-line-of-sight (NLOS), networking, optical communication, plasma-shells, short range, ultraviolet ( UV ) light 16. SECURITY

  12. Ultraviolet emissions from the upper atmospheres of the planets

    NASA Technical Reports Server (NTRS)

    Moos, H. W.

    1981-01-01

    Some recent results on planetary upper atmospheres obtained by means of orbiting ultraviolet observatories are reviewed with emphasis on Jupiter and Io torus. Consideration is given to long-term variation in Jovian Ly alpha emission, UV polar auroras on Jupiter, and UV emission from the Io torus. Requirements for UV planetary astronomy are briefly discussed.

  13. Heterodyne detection of CO2 emission lines and wind velocities in the atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Betz, A. L.; Johnson, M. A.; Mclaren, R. A.; Sutton, E. C.

    1975-01-01

    Strong 10 micrometer line emission from (c-12)(o-16)2 in the upper atmosphere of Venus was detected by heterodyne techniques. Observations of the absolute Doppler shift of the emission features indicate mean zonal wind velocities less than 10 m/sec in the upper atmosphere near the equator. No evidence was found of the 100 m/sec wind velocity implied by the apparent 4-day rotation period of ultraviolet cloud features.

  14. Ultraviolet Fe VII absorption and Fe II emission lines of central stars of planetary nebulae

    NASA Technical Reports Server (NTRS)

    Cheng, Kwang-Ping; Feibelman, Walter A.; Bruhweiler, Frederick C.

    1991-01-01

    The SWP camera of the IUE satellite was used in the high-dispersion mode to search for Fe VII absorption and Fe II high-excitation emission lines in five additional very hot central stars of planetary nebulae. Some of the Fe VII lines were detected at 1208, 1239, and 1332 A in all the objects of this program, LT 5, NGC 6058, NGC 7094, A43, and Lo 1 (= K1-26), as well as some of the Fe II emission lines at A 1360, 1776, 1869, 1881, 1884, and 1975 A. Two additional objects, NGC 2867 and He 2-131, were obtained from the IUE archive and were evaluated. The present study probably exhausts the list of candidates that are sufficiently bright and hot to be reached with the high-dispersion mode of the IUE.

  15. Ultraviolet Fe VII absorption and Fe II emission lines of central stars of planetary nebulae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Kwang-Ping; Feibelman, W.A.; Bruhweiler, F.C.

    1991-08-01

    The SWP camera of the IUE satellite was used in the high-dispersion mode to search for Fe VII absorption and Fe II high-excitation emission lines in five additional very hot central stars of planetary nebulae. Some of the Fe VII lines were detected at 1208, 1239, and 1332 A in all the objects of this program, LT 5, NGC 6058, NGC 7094, A43, and Lo 1 (= K1-26), as well as some of the Fe II emission lines at A 1360, 1776, 1869, 1881, 1884, and 1975 A. Two additional objects, NGC 2867 and He 2-131, were obtained from themore » IUE archive and were evaluated. The present study probably exhausts the list of candidates that are sufficiently bright and hot to be reached with the high-dispersion mode of the IUE. 17 refs.« less

  16. Laboratory calibration of density-dependent lines in the extreme ultraviolet spectral region

    NASA Astrophysics Data System (ADS)

    Lepson, J. K.; Beiersdorfer, P.; Gu, M. F.; Desai, P.; Bitter, M.; Roquemore, L.; Reinke, M. L.

    2012-05-01

    We have been making spectral measurements in the extreme ultraviolet (EUV) from different laboratory sources in order to investigate the electron density dependence of various astrophysically important emission lines and to test the atomic models underlying the diagnostic line ratios. The measurement are being performed at the Livermore EBIT-I electron beam ion trap, the National Spherical Torus Experiment (NSTX) at Princeton, and the Alcator C-Mod tokamak at the Massachusetts Institute of Technology, which together span an electron density of four orders of magnitude and which allow us to test the various models at high and low density limits. Here we present measurements of Fe XXII and Ar XIV, which include new data from an ultra high resolution (λ/Δλ >4000) spectrometer at the EBIT-I facility. We found good agreement between the measurements and modeling calculations for Fe XXII, but poorer agreement for Ar XIV.

  17. Ultraviolet and Radio Emission from the Northern Middle Lobe of Centaurus A

    NASA Technical Reports Server (NTRS)

    Neff, Susan

    2009-01-01

    We present deep GALEX ultraviolet (135 - 280 nm) images of the Northern Middle Lobe (NML) of the nearby radio galaxy Centaurus A. We find that the ultraviolet emission appears to have a complex interaction with soft X-ray, H-alpha emission, and radio emission, which should help constrain various models of energy transport in the NML. We also present new 90cm VLA images of the NML. The radio morphology at this wavelength is indicative of a more complex system than either a straightforward flaring jet (Morganti et al. 1999) or a bubble with trailing stem (Saxton et al. 2001). New limits are placed on the lack of radio emission from any corresponding southern counterpart to the NML.

  18. Constraining UV Continuum Slopes of Active Galactic Nuclei with CLOUDY Models of Broad-line Region Extreme-ultraviolet Emission Lines

    NASA Astrophysics Data System (ADS)

    Moloney, Joshua; Shull, J. Michael

    2014-10-01

    Understanding the composition and structure of the broad-line region (BLR) of active galactic nuclei (AGNs) is important for answering many outstanding questions in supermassive black hole evolution, galaxy evolution, and ionization of the intergalactic medium. We used single-epoch UV spectra from the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope to measure EUV emission-line fluxes from four individual AGNs with 0.49 <= z <= 0.64, two AGNs with 0.32 <= z <= 0.40, and a composite of 159 AGNs. With the CLOUDY photoionization code, we calculated emission-line fluxes from BLR clouds with a range of density, hydrogen ionizing flux, and incident continuum spectral indices. The photoionization grids were fit to the observations using single-component and locally optimally emitting cloud (LOC) models. The LOC models provide good fits to the measured fluxes, while the single-component models do not. The UV spectral indices preferred by our LOC models are consistent with those measured from COS spectra. EUV emission lines such as N IV λ765, O II λ833, and O III λ834 originate primarily from gas with electron temperatures between 37,000 K and 55,000 K. This gas is found in BLR clouds with high hydrogen densities (n H >= 1012 cm-3) and hydrogen ionizing photon fluxes (ΦH >= 1022 cm-2 s-1). Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS5-26555.

  19. Exciplex vacuum ultraviolet emission spectra of KrAr: Temperature dependence and potentials

    NASA Astrophysics Data System (ADS)

    Subtil, J.-L.; Jonin, C.; Laporte, P.; Reininger, R.; Spiegelmann, F.; Gürtler, P.

    1996-11-01

    The temperature dependence of the emissions from the 0+(3P1)and 1(3P2) Kr*Ar exciplex states in the range 85-350 K was studied using time resolved techniques, vacuum ultraviolet synchrotron radiation, and argon samples doped with minimal amounts of krypton. As the temperature is increased, the emission shifts to the blue, its width increases by almost a factor of 2, and the line shape becomes asymmetrical. The experimental line shapes have been simulated by means of Franck-Condon density calculations using the available ground state potential of Aziz and Slaman [Mol. Phys. 58, 679 (1986)] and by modeling the exciplex potentials as Morse curves. The potential parameters for the 0+ and 1 states are re=5.05±0.01 and 5.07±0.01 a0, respectively; De=1150±200 cm-1 and β=1.4±0.1 a0-1 for both states. The latter two values yield ωe=140 cm-1 and ωexe=4.3 cm-1. The energy positions of the exciplexes's wells and their depths are compared with published results.

  20. Ultraviolet emission lines of Si II in cool star and solar spectra

    NASA Astrophysics Data System (ADS)

    Laha, Sibasish; Keenan, Francis P.; Ferland, Gary J.; Ramsbottom, Catherine A.; Aggarwal, Kanti M.; Ayres, Thomas R.; Chatzikos, Marios; van Hoof, Peter A. M.; Williams, Robin J. R.

    2016-01-01

    Recent atomic physics calculations for Si II are employed within the CLOUDY modelling code to analyse Hubble Space Telescope (HST) STIS ultraviolet spectra of three cool stars, β Geminorum, α Centauri A and B, as well as previously published HST/GHRS observations of α Tau, plus solar quiet Sun data from the High Resolution Telescope and Spectrograph. Discrepancies found previously between theory and observation for line intensity ratios involving the 3s23p 2PJ-3s3p2 4P_{J^' }} intercombination multiplet of Si II at ˜ 2335 Å are significantly reduced, as are those for ratios containing the 3s23p 2PJ-3s3p2 2D_{J^' }} transitions at ˜1816 Å. This is primarily due to the effect of the new Si II transition probabilities. However, these atomic data are not only very different from previous calculations, but also show large disagreements with measurements, specifically those of Calamai et al. for the intercombination lines. New measurements of transition probabilities for Si II are hence urgently required to confirm (or otherwise) the accuracy of the recently calculated values. If the new calculations are confirmed, then a long-standing discrepancy between theory and observation will have finally been resolved. However, if the older measurements are found to be correct, then the agreement between theory and observation is simply a coincidence and the existing discrepancies remain.

  1. Solar coronal temperature diagnostics using emission line from multiple stages of ionization of iron

    NASA Technical Reports Server (NTRS)

    Brosius, Jeffrey W.; Davila, Joseph M.; Thomas, Roger J.; Thompson, William T.

    1994-01-01

    We obtained spatially resolved extreme-ultraviolet (EUV) spectra of AR 6615 on 1991 May 7 with NASA/ Goddard Space Flight Center's Solar EUV Rocket Telescope and Spectrograph (SERTS). Included are emission lines from four different stages of ionization of iron: Fe(+15) lambda 335 A, Fe(+14) lambda 327 A, Fe(+13) lambda 334 A, and Fe(+12) lambda 348 A. Using intensity ratios from among these lines, we have calculated the active region coronal temperature along the Solar Extreme Ultraviolet Telescope and Spectrograph (SERTS) slit. Temperatures derived from line ratios which incorporate adjacent stages of ionization are most sensitive to measurement uncertainties and yield the largest scatter. Temperatures derived from line ratios which incorporate nonadjacent stages of ionization are less sensitive to measurement uncertainties and yield little scatter. The active region temperature derived from these latter ratios has an average value of 2.54 x 10(exp 6) K, with a standard deviation approximately 0.12 x 10(exp 6) K, and shows no significant variation with position along the slit.

  2. Emission Line Properties of Seyfert Galaxies in the 12 μm Sample

    NASA Astrophysics Data System (ADS)

    Malkan, Matthew A.; Jensen, Lisbeth D.; Rodriguez, David R.; Spinoglio, Luigi; Rush, Brian

    2017-09-01

    We present optical and ultraviolet spectroscopic measurements of the emission lines of 81 Seyfert 1 and 104 Seyfert 2 galaxies that comprise nearly all of the IRAS 12 μm AGN sample. We have analyzed the emission-line luminosity functions, reddening, and other diagnostics. For example, the narrow-line regions (NLR) of Seyfert 1 and 2 galaxies do not significantly differ from each other in most of these diagnostics. Combining the Hα/Hβ ratio with a new reddening indicator—the [S II]6720/[O II]3727 ratio—we find the average E(B-V) is 0.49 ± 0.35 for type 1 and 0.52 ± 0.26 for type 2 Seyferts. The NLR of Sy 1s has an ionization level insignificantly higher than that of Sy 2s. For the broad-line region (BLR), we find that the C IV equivalent width correlates more strongly with [O III]/Hβ than with UV luminosity. Our bright sample of local active galaxies includes 22 Seyfert nuclei with extremely weak broad wings in Hα, known as Seyfert 1.9s and 1.8s, depending on whether or not broad Hβ wings are detected. Aside from these weak broad lines, our low-luminosity Seyferts are more similar to the Sy 2s than to Sy 1s. In a BPT diagram, we find that Sy 1.8s and 1.9s overlap the region occupied by Sy 2s. We compare our results on optical emission lines with those obtained by previous investigators, using AGN subsamples from the Sloan Digital Sky Survey. The luminosity functions of forbidden emission lines [O II]λ3727 Å, [O III]λ5007 Å, and [S II]λ6720 Å in Sy 1s and Sy 2s are indistinguishable. They all show strong downward curvature. Unlike the LFs of Seyfert galaxies measured by the Sloan Digital Sky Survey, ours are nearly flat at low luminosities. The larger number of faint Sloan “AGN” is attributable to their inclusion of weakly emitting LINERs and H II+AGN “composite” nuclei, which do not meet our spectral classification criteria for Seyferts. In an Appendix, we have investigated which emission line luminosities can provide the most reliable

  3. Probing 67P/Churyumov-Gerasimenko's Electron Environment Through Ultraviolet Emission by Rosetta Alice Observations

    NASA Astrophysics Data System (ADS)

    Schindhelm, Eric; Noonan, John; Keeney, Brian A.; Broiles, Thomas; Bieler, Andre; A'Hearn, Michael F.; Bertaux, Jean-Loup; Feaga, Lori M.; Feldman, Paul D.; Parker, Joel Wm.; Steffl, Andrew Joseph; Stern, S. Alan; Weaver, Harold A.

    2016-10-01

    The Alice Far-Ultraviolet (FUV) Spectrograph onboard ESA's Rosetta spacecraft has observed the coma of comet 67P/Churyumov-Gerasimenko from far approach in summer 2014 until the end of mission in September 2016. We present an overall perspective of the bright FUV emission lines (HI 1026 Å, OI 1302/1305/1306 Å multiplet, OI] 1356 Å, CO 1510 (1-0) Å, and CI 1657 Å) above the sunward hemisphere, detailing their spatial extent and brightness as a function of time and the heliocentric distance of the comet. We compare our observed gas column densities derived using electron temperatures and densities from the Ion Electron Sensor (IES) with those derived using the Inner Coma Environment Simulator (ICES) models in periods when electron-impact excited emission dominates over solar fluorescence emission. The electron population is characterized with 2 three-dimensional kappa functions, one dense and warm, one rarefied and hot.

  4. Spectral lines and characteristic of temporal variations in photoionized plasmas induced with laser-produced plasma extreme ultraviolet source

    NASA Astrophysics Data System (ADS)

    Saber, I.; Bartnik, A.; Wachulak, P.; Skrzeczanowski, W.; Jarocki, R.; Fiedorowicz, H.

    2017-11-01

    Spectral lines for Kr/Ne/H2 photoionized plasma in the ultraviolet and visible (UV/Vis) wavelength ranges have been created using a laser-produced plasma (LPP) EUV source. The source is based on a double-stream gas puff target irradiated with a commercial Nd:YAG laser. The laser pulses were focused onto a gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Spectral lines from photoionization in neutral Kr/Ne/H2 and up to few charged states were observed. The intense emission lines were associated with the Kr transition lines. Experimental and theoretical investigations on intensity variations for some ionic lines are presented. A decrease in the intensity with the delay time between the laser pulse and the spectrum acquisition was revealed. Electron temperature and electron density in the photoionized plasma have been estimated from the characteristic emission lines. Temperature was obtained using Boltzmann plot method, assuming that the population density of atoms and ions are considered in a local thermodynamic equilibrium (LTE). Electron density was calculated from the Stark broadening profile. The temporal evaluation of the plasma and the way of optimizing the radiation intensity of LPP EUV sources is discussed.

  5. The early-type strong emission-line supergiants of the Magellanic Clouds - A spectroscopic zoology

    NASA Technical Reports Server (NTRS)

    Shore, S. N.; Sanduleak, N.

    1984-01-01

    The results of a spectroscopic survey of 21 early-type extreme emission line supergiants of the Large and Small Magellanic Clouds using IUE and optical spectra are presented. The combined observations are discussed and the literature on each star in the sample is summarized. The classification procedures and the methods by which effective temperatures, bolometric magnitudes, and reddenings were assigned are discussed. The derived reddening values are given along with some results concerning anomalous reddening among the sample stars. The derived mass, luminosity, and radius for each star are presented, and the ultraviolet emission lines are described. Mass-loss rates are derived and discussed, and the implications of these observations for the evolution of the most massive stars in the Local Group are addressed.

  6. X-ray and extreme ultraviolet spectroscopy on DIII-D

    NASA Astrophysics Data System (ADS)

    Victor, B. S.; Allen, S. L.; Beiersdorfer, P.; Magee, E. W.

    2017-06-01

    Two spectrometers were installed to measure tungsten emission in the core of DIII-D plasmas during a metal rings experimental campaign. The spectral range of the high-resolution (1340 spectral channels), variable-ruled grating X-ray and Extreme Ultraviolet Spectrometer (XEUS) extends from 10-71 dot A. The spectral range of the second spectrometer, the Long-Wavelength Extreme Ultraviolet Spectrometer (LoWEUS), measures between 31-174 dot A. Three groups of tungsten lines were identified with XEUS: W38+-W45+ from 47-63 dot A, W27+-W35+ from 45-55 dot A, and W28+-W33+ from 16-30 dot A. Emission lines from tungsten charge states W28+, W43+, W44+, and W45+ are identified and the line amplitude is presented versus time. Peak emission of W43+-W45+ occurs between core Te=2.5-3 keV, and peak emission of W28+ occurs at core Te<=1.3 keV. One group of tungsten lines, W40+-W45+, between 120-140 dot A, was identified with LoWEUS. W43+-W45+ lines measured with LoWEUS track the sawtooth cycle. Sensitivity to the sawtooth cycle and the correlation of the peak emission with core electron temperature show that these spectrometers track the on-axis tungsten emission of DIII-D plasmas.

  7. The Emission, Lifetimes, and Formation Threshold of the Vegard-Kaplan Transition of Solid Nitrogen Exposed to Far-ultraviolet Radiation

    NASA Astrophysics Data System (ADS)

    Lu, Hsiao-Chi; Lo, Jen-Iu; Peng, Yu-Chain; Chou, Sheng-Lung; Lin, Meng-Yeh; Cheng, Bing-Ming

    2016-11-01

    Irradiation of solid nitrogen at 4 K with far-ultraviolet light from a synchrotron caused excitation to the upper state of the Vegard-Kaplan (VK) system; the emission in that system was simultaneously recorded in wavelength region 200-440 nm. The lifetimes of emission lines for VK (0, 1) to (0, 12) transitions were measured in the range of 2.12 ˜ 2.65 s. The threshold wavelength to observe the VK emission was 175.0 ± 3.5 nm, corresponding to energy 7.08 ± 0.14 eV. This investigation of the generation of icy VK nitrogen enhances our understanding of its photochemistry in space.

  8. ULTRAVIOLET SPECTROSCOPY OF BL Hyi AND EF Eri IN HIGH AND INTERMEDIATE STATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanad, M. R.; Abdel-Sabour, M. A.

    2016-08-01

    We present the first phase-resolved ultraviolet spectroscopy of two polar systems, BL Hyi and EF Eri, in high and intermediate states from the International Ultraviolet Explorer ( IUE ) during the periods between 1982–1995 and 1979–1991, respectively. The flux curves for the C iv and He ii emission lines for both systems showing variations in their fluxes at different orbital phases are presented. The emission lines are produced in the accretion stream. The reddening for the two polars is found to be 0.00. Our results show that there are variations of the line fluxes with time, similar to the lightmore » curves found for both BL Hyi and EF Eri in the optical, infrared, ultraviolet, and X-ray bands. IUE observations support a radiative shock model of BL Hyi with the heating of matter by radiation from the accretion shock and cooling by the electrons scattering off ultraviolet photons from the surface of the white dwarf. EF Eri observations support a two-temperature white dwarf model producing sufficient ultraviolet flux for orbital modulations.« less

  9. DETECTION OF THE INTERMEDIATE-WIDTH EMISSION LINE REGION IN QUASAR OI 287 WITH THE BROAD EMISSION LINE REGION OBSCURED BY THE DUSTY TORUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhenzhen; Zhou, Hongyan; Wang, Huiyuan

    2015-10-20

    The existence of intermediate-width emission line regions (IELRs) in active galactic nuclei has been discussed for over two decades. A consensus, however, is yet to be arrived at due to the lack of convincing evidence for their detection. We present a detailed analysis of the broadband spectrophotometry of the partially obscured quasar OI 287. The ultraviolet intermediate-width emission lines (IELs) are very prominent, in high contrast to the corresponding broad emission lines (BELs) which are heavily suppressed by dust reddening. Assuming that the IELR is virialized, we estimated its distance to the central black hole to be ∼2.9 pc, similarmore » to the dust sublimation radius of ∼1.3 pc. Photo-ionization calculations suggest that the IELR has a hydrogen density of ∼10{sup 8.8}–10{sup 9.4} cm{sup −3}, within the range of values quoted for the dusty torus near the sublimation radius. Both its inferred location and physical conditions suggest that the IELR originates from the inner surface of the dusty torus. In the spectrum of this quasar, we identified only one narrow absorption-line system associated with the dusty material. With the aid of photo-ionization model calculations, we found that the obscuring material might originate from an outer region of the dusty torus. We speculate that the dusty torus, which is exposed to the central ionizing source, may produce IELs through photo-ionization processes, as well as obscure BELs as a natural “coronagraph.” Such a “coronagraph” could be found in a large number of partially obscured quasars and may be a useful tool to study IELRs.« less

  10. An improved ultraviolet spectral line list for the symbiotic star RR Telescopii

    NASA Technical Reports Server (NTRS)

    Doschek, G. A.; Feibelman, W. A.

    1993-01-01

    We have remeasured wavelengths and intensities of International Ultraviolet Explorer (IUE) spectra of the symbiotic star, RR Tel. The main work is centered on the long 820 minute exposure high-resolution spectrum obtained on 1983 June 18. The list is intended to serve as a source of improved intensities and wavelengths for the ultraviolet spectrum of this star. A complete line list with intensities based on this exposure has not been published previously. The strongest spectral lines are saturated in the 820 minute exposure, and intensities for these lines are mostly obtained from a 20 minute exposure obtained on the same day. A few intensities are obtained from other exposures if neither the 820 nor the 20 minute exposure is satisfactory. There are 111 lines in our list between 1168 and 1980 A. Some of the very weakest lines may not be real. These are indicated by question marks. We also discuss some of the plasma diagnostics available using spectral lines of O v and O iv.

  11. Line Identifications in the Far Ultraviolet Spectrum of the Eclipsing Binary System 31 Cygni

    NASA Astrophysics Data System (ADS)

    Hagen Bauer, Wendy; Bennett, P. D.

    2011-05-01

    The eclipsing binary system 31 Cygni (K4 Ib + B3 V) was observed at several phases with the Far Ultraviolet Spectrosocopic Explorer (FUSE) satellite. During total eclipse, a rich emission spectrum was observed, produced by scattering of hot star photons in the extended wind of the K supergiant. The system was observed during deep chromospheric eclipse, and 2.5 months after total eclipse ended. We present an atlas of line identifications in these spectra. During total eclipse, emission features from C II , C III, N I, N II, N III, O I, Si II, P II, P III, S II, S III, Ar I, Cr III, Fe II, Fe III, and Ni II were detected. The strongest emission features arise from N II. These lines appear strongly in absorption during chromospheric eclipse, and even 2.5 months after total eclipse, the absorption bottoms out on the underlying emission seen during total eclipse. The second strongest features in the emission spectrum arise from Fe III. Any chromospheric Fe III absorption is buried within strong chromospheric absorption from other species, mainly Fe II. The emission profiles of most of the doubly-ionized species are red-shifted relative to the systemic velocity, with asymmetric profiles with a steeper long-wavelength edge. Emission profiles from singly-ionized species tend to be more symmetric and centered near the systemic velocity. In deep chromospheric eclipse, absorption features are seen from neutral and singly-ionized species, arising from lower levels up to 3 eV. Many strong chromospheric features are doubled in the observation obtained during egress from eclipse. The 31 Cygni spectrum taken 2.5 months after total eclipse ended ws compared to single-star B spectra from the FUSE archives. There was still some additional chromospheric absorption from strong low-excitation Fe II, O I and Ar I.

  12. X-ray and extreme ultraviolet spectroscopy on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Victor, Brian S.; Allen, Steve L.; Beiersdorfer, P.

    Two spectrometers were installed to measure tungsten emission in the core of DIII-D plasmas during a metal rings experimental campaign. The spectral range of the high-resolution (1340 spectral channels), variable-ruled grating X-ray and Extreme Ultraviolet Spectrometer (XEUS) extends from10–71more » $$\\dot{A}$$ . The spectral range of the second spectrometer, the Long-Wavelength Extreme Ultraviolet Spectrometer (LoWEUS), measures between 31–174$$\\dot{A}$$ . Three groups of tungsten lines were identified with XEUS: W 38+-W 45+ from 47–63$$\\dot{A}$$ , W 27+-W 35+ from 45–55$$\\dot{A}$$ , and W 28+-W 33+ from 16–30$$\\dot{A}$$ . Emission lines from tungsten charge states W 28+, W 43+, W 44+, and W 45+ are identified and the line amplitude is presented versus time. Peak emission of W 43+-W 45+ occurs between core Te=2.5-3 keV, and peak emission of W28+ occurs at core Te 1:3 keV. One group of tungsten lines, W 40+-W 45+, between 120–140$$\\dot{A}$$ , was identified with LoWEUS. W 43+- W 45+ lines measured with LoWEUS track the sawtooth cycle. Furthermore, sensitivity to the sawtooth cycle and the correlation of the peak emission with core electron temperature show that these spectrometers track the on-axis tungsten emission of DIII-D plasmas.« less

  13. X-ray and extreme ultraviolet spectroscopy on DIII-D

    DOE PAGES

    Victor, Brian S.; Allen, Steve L.; Beiersdorfer, P.; ...

    2017-06-14

    Two spectrometers were installed to measure tungsten emission in the core of DIII-D plasmas during a metal rings experimental campaign. The spectral range of the high-resolution (1340 spectral channels), variable-ruled grating X-ray and Extreme Ultraviolet Spectrometer (XEUS) extends from10–71more » $$\\dot{A}$$ . The spectral range of the second spectrometer, the Long-Wavelength Extreme Ultraviolet Spectrometer (LoWEUS), measures between 31–174$$\\dot{A}$$ . Three groups of tungsten lines were identified with XEUS: W 38+-W 45+ from 47–63$$\\dot{A}$$ , W 27+-W 35+ from 45–55$$\\dot{A}$$ , and W 28+-W 33+ from 16–30$$\\dot{A}$$ . Emission lines from tungsten charge states W 28+, W 43+, W 44+, and W 45+ are identified and the line amplitude is presented versus time. Peak emission of W 43+-W 45+ occurs between core Te=2.5-3 keV, and peak emission of W28+ occurs at core Te 1:3 keV. One group of tungsten lines, W 40+-W 45+, between 120–140$$\\dot{A}$$ , was identified with LoWEUS. W 43+- W 45+ lines measured with LoWEUS track the sawtooth cycle. Furthermore, sensitivity to the sawtooth cycle and the correlation of the peak emission with core electron temperature show that these spectrometers track the on-axis tungsten emission of DIII-D plasmas.« less

  14. Emission line spectra of S VII ? S XIV in the 20 ? 75 ? wavelength region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepson, J K; Beiersdorfer, P; Behar, E

    As part of a larger project to complete a comprehensive catalogue of astrophysically relevant emission lines in support of new-generation X-ray observatories using the Lawrence Livermore electron beam ion traps EBIT-I and EBIT-II, the authors present observations of sulfur lines in the soft X-ray and extreme ultraviolet regions. The database includes wavelength measurements with standard errors, relative intensities, and line assignments for 127 transitions of S VII through S XIV between 20 and 75 {angstrom}. The experimental data are complemented with a full set of calculations using the Hebrew University Lawrence Livermore Atomic Code (HULLAC). A comparison of the laboratorymore » data with Chandra measurements of Procyon allows them to identify S VII-S XI lines.« less

  15. Space Telescope and Optical Reverberation Mapping Project. V. Optical Spectroscopic Campaign and Emission-line Analysis for NGC 5548

    DOE PAGES

    Pei, L.; Fausnaugh, M. M.; Barth, A. J.; ...

    2017-03-10

    Here, we present the results of an optical spectroscopic monitoring program targeting NGC 5548 as part of a larger multiwavelength reverberation mapping campaign. The campaign spanned 6 months and achieved an almost daily cadence with observations from five ground-based telescopes. The Hβ and He II λ4686 broad emission-line light curves lag that of the 5100 Å optical continuum bymore » $${4.17}_{-0.36}^{+0.36}\\,\\mathrm{days}$$ and $${0.79}_{-0.34}^{+0.35}\\,\\mathrm{days}$$, respectively. The Hβ lag relative to the 1158 Å ultraviolet continuum light curve measured by the Hubble Space Telescope is ~50% longer than that measured against the optical continuum, and the lag difference is consistent with the observed lag between the optical and ultraviolet continua. This suggests that the characteristic radius of the broad-line region is ~50% larger than the value inferred from optical data alone. We also measured velocity-resolved emission-line lags for Hβ and found a complex velocity-lag structure with shorter lags in the line wings, indicative of a broad-line region dominated by Keplerian motion. The responses of both the Hβ and He ii emission lines to the driving continuum changed significantly halfway through the campaign, a phenomenon also observed for C iv, Lyα, He II(+O III]), and Si Iv(+O Iv]) during the same monitoring period. Finally, given the optical luminosity of NGC 5548 during our campaign, the measured Hβ lag is a factor of five shorter than the expected value implied by the R BLR–L AGN relation based on the past behavior of NGC 5548.« less

  16. Space Telescope and Optical Reverberation Mapping Project. V. Optical Spectroscopic Campaign and Emission-line Analysis for NGC 5548

    NASA Astrophysics Data System (ADS)

    Pei, L.; Fausnaugh, M. M.; Barth, A. J.; Peterson, B. M.; Bentz, M. C.; De Rosa, G.; Denney, K. D.; Goad, M. R.; Kochanek, C. S.; Korista, K. T.; Kriss, G. A.; Pogge, R. W.; Bennert, V. N.; Brotherton, M.; Clubb, K. I.; Dalla Bontà, E.; Filippenko, A. V.; Greene, J. E.; Grier, C. J.; Vestergaard, M.; Zheng, W.; Adams, Scott M.; Beatty, Thomas G.; Bigley, A.; Brown, Jacob E.; Brown, Jonathan S.; Canalizo, G.; Comerford, J. M.; Coker, Carl T.; Corsini, E. M.; Croft, S.; Croxall, K. V.; Deason, A. J.; Eracleous, Michael; Fox, O. D.; Gates, E. L.; Henderson, C. B.; Holmbeck, E.; Holoien, T. W.-S.; Jensen, J. J.; Johnson, C. A.; Kelly, P. L.; Kim, S.; King, A.; Lau, M. W.; Li, Miao; Lochhaas, Cassandra; Ma, Zhiyuan; Manne-Nicholas, E. R.; Mauerhan, J. C.; Malkan, M. A.; McGurk, R.; Morelli, L.; Mosquera, Ana; Mudd, Dale; Muller Sanchez, F.; Nguyen, M. L.; Ochner, P.; Ou-Yang, B.; Pancoast, A.; Penny, Matthew T.; Pizzella, A.; Poleski, Radosław; Runnoe, Jessie; Scott, B.; Schimoia, Jaderson S.; Shappee, B. J.; Shivvers, I.; Simonian, Gregory V.; Siviero, A.; Somers, Garrett; Stevens, Daniel J.; Strauss, M. A.; Tayar, Jamie; Tejos, N.; Treu, T.; Van Saders, J.; Vican, L.; Villanueva, S., Jr.; Yuk, H.; Zakamska, N. L.; Zhu, W.; Anderson, M. D.; Arévalo, P.; Bazhaw, C.; Bisogni, S.; Borman, G. A.; Bottorff, M. C.; Brandt, W. N.; Breeveld, A. A.; Cackett, E. M.; Carini, M. T.; Crenshaw, D. M.; De Lorenzo-Cáceres, A.; Dietrich, M.; Edelson, R.; Efimova, N. V.; Ely, J.; Evans, P. A.; Ferland, G. J.; Flatland, K.; Gehrels, N.; Geier, S.; Gelbord, J. M.; Grupe, D.; Gupta, A.; Hall, P. B.; Hicks, S.; Horenstein, D.; Horne, Keith; Hutchison, T.; Im, M.; Joner, M. D.; Jones, J.; Kaastra, J.; Kaspi, S.; Kelly, B. C.; Kennea, J. A.; Kim, M.; Kim, S. C.; Klimanov, S. A.; Lee, J. C.; Leonard, D. C.; Lira, P.; MacInnis, F.; Mathur, S.; McHardy, I. M.; Montouri, C.; Musso, R.; Nazarov, S. V.; Netzer, H.; Norris, R. P.; Nousek, J. A.; Okhmat, D. N.; Papadakis, I.; Parks, J. R.; Pott, J.-U.; Rafter, S. E.; Rix, H.-W.; Saylor, D. A.; Schnülle, K.; Sergeev, S. G.; Siegel, M.; Skielboe, A.; Spencer, M.; Starkey, D.; Sung, H.-I.; Teems, K. G.; Turner, C. S.; Uttley, P.; Villforth, C.; Weiss, Y.; Woo, J.-H.; Yan, H.; Young, S.; Zu, Y.

    2017-03-01

    We present the results of an optical spectroscopic monitoring program targeting NGC 5548 as part of a larger multiwavelength reverberation mapping campaign. The campaign spanned 6 months and achieved an almost daily cadence with observations from five ground-based telescopes. The Hβ and He II λ4686 broad emission-line light curves lag that of the 5100 Å optical continuum by {4.17}-0.36+0.36 {days} and {0.79}-0.34+0.35 {days}, respectively. The Hβ lag relative to the 1158 Å ultraviolet continuum light curve measured by the Hubble Space Telescope is ˜50% longer than that measured against the optical continuum, and the lag difference is consistent with the observed lag between the optical and ultraviolet continua. This suggests that the characteristic radius of the broad-line region is ˜50% larger than the value inferred from optical data alone. We also measured velocity-resolved emission-line lags for Hβ and found a complex velocity-lag structure with shorter lags in the line wings, indicative of a broad-line region dominated by Keplerian motion. The responses of both the Hβ and He II emission lines to the driving continuum changed significantly halfway through the campaign, a phenomenon also observed for C IV, Lyα, He II(+O III]), and Si IV(+O IV]) during the same monitoring period. Finally, given the optical luminosity of NGC 5548 during our campaign, the measured Hβ lag is a factor of five shorter than the expected value implied by the R BLR-L AGN relation based on the past behavior of NGC 5548.

  17. Space Telescope and Optical Reverberation Mapping Project. V. Optical Spectroscopic Campaign and Emission-line Analysis for NGC 5548

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, L.; Fausnaugh, M. M.; Barth, A. J.

    Here, we present the results of an optical spectroscopic monitoring program targeting NGC 5548 as part of a larger multiwavelength reverberation mapping campaign. The campaign spanned 6 months and achieved an almost daily cadence with observations from five ground-based telescopes. The Hβ and He II λ4686 broad emission-line light curves lag that of the 5100 Å optical continuum bymore » $${4.17}_{-0.36}^{+0.36}\\,\\mathrm{days}$$ and $${0.79}_{-0.34}^{+0.35}\\,\\mathrm{days}$$, respectively. The Hβ lag relative to the 1158 Å ultraviolet continuum light curve measured by the Hubble Space Telescope is ~50% longer than that measured against the optical continuum, and the lag difference is consistent with the observed lag between the optical and ultraviolet continua. This suggests that the characteristic radius of the broad-line region is ~50% larger than the value inferred from optical data alone. We also measured velocity-resolved emission-line lags for Hβ and found a complex velocity-lag structure with shorter lags in the line wings, indicative of a broad-line region dominated by Keplerian motion. The responses of both the Hβ and He ii emission lines to the driving continuum changed significantly halfway through the campaign, a phenomenon also observed for C iv, Lyα, He II(+O III]), and Si Iv(+O Iv]) during the same monitoring period. Finally, given the optical luminosity of NGC 5548 during our campaign, the measured Hβ lag is a factor of five shorter than the expected value implied by the R BLR–L AGN relation based on the past behavior of NGC 5548.« less

  18. High-resolution ultraviolet observations of interstellar lines toward Zeta Persei observed with the balloon-borne ultraviolet stellar spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snow, T.P.; Lamers, H.J.G.L.M.; Joseph, C.L.

    1987-10-01

    The balloon-borne ultraviolet stellar spectrometer payload has been used to obtain high-resolution data on interstellar absorption lines toward Zeta Per. The only lines clearly present in the 2150-2450 region were several Fe II features, which show double structure. The two velocity components were sufficiently well separated that it was possible to construct separate curves of growth to derive the Fe II column densities for the individual components. These column densities and the component velocity separation were then used to compute a realistic two-component curve of growth for the line of sight to Zeta Per, which was then used to reanalyzemore » existing ultraviolet data from Copernicus. The results were generally similar to an earlier two-component analysis of the Copernicus data, with the important exception that the silicon depletion increased from near zero to about 1 dex. This makes the Zeta Per depletion pattern quite similar to those derived for other reddened lines of sight, supporting the viewpoint that the general diffuse interstellar medium has a nearly constant pattern of depletions. 31 references.« less

  19. Metal line blanketing and opacity in the ultraviolet of alpha 2 Canum Venaticorum

    NASA Technical Reports Server (NTRS)

    Molnar, M. R.

    1972-01-01

    Ultraviolet photometry by OAO-2 was made of alpha 2 CVn covering the entire 5.5d period of this magnetic Ap variable. The light curves ranging from 1330 A to 3320 A indicate the dominant role of rare-earth line-blanketing in redistributing flux. In a broad depression of the continuum covering 2300-2600 A, scanner observations possibly identify strong lines of Eu III as major contributors to this feature. At maximum intensity of the rare-earth lines, the ultraviolet continuum shortward of 2900 A is greatly diminished while the longer wavelength regions into the visual become brighter. In addition, there is evidence that the hydrogen line opacity is variable and the photoionization edge of Si I at 1680 A is identified.

  20. Database of emission lines

    NASA Astrophysics Data System (ADS)

    Binette, L.; Ortiz, P.; Joguet, B.; Rola, C.

    1998-11-01

    A widely accessible data bank (available through Netscape) and consiting of all (or most) of the emission lines reported in the litterature is being built. It will comprise objects as diverse as HII regions, PN, AGN, HHO. One of its use will be to define/refine existing diagnostic emission line diagrams.

  1. The Far-Infrared Emission Line and Continuum Spectrum of the Seyfert Galaxy NGC 1068

    NASA Technical Reports Server (NTRS)

    Spinoglio, Luigi; Smith, Howard A.; Gonzalez-Alfonso, Eduardo; Fisher, Jacqueline

    2005-01-01

    We report on the analysis of the first complete far-infrared spectrum (43-197 microns) of the Seyfert 2 galaxy NGC 1068 as observed with the Long Wavelength Spectrometer (LWS) onboard the Infrared Space Observatory (ISO). In addition to the 7 expected ionic fine structure emission lines, the OH rotational lines at 79, 119 and 163 microns were all detected in emission, which is unique among galaxies with full LWS spectra, where the 119 micron line, where detected, is always in absorption. The observed line intensities were modelled together with IS0 Short Wavelength Spectrometer (SWS) and optical and ultraviolet line intensities from the literature, considering two independent emission components: the AGN component and the starburst component in the circumnuclear ring of approximately 3kpc in size. Using the UV to mid-IR emission line spectrum to constrain the nuclear ionizing continuum, we have confirmed previous results: a canonical power-law ionizing spectrum is a poorer fit than one with a deep absorption trough, while the presence of a big blue bump is ruled out. Based on the instantaneous starburst age of 5 Myr constrained by the Br gamma equivalent width in the starburst ring, and starburst synthesis models of the mid- and far-infrared fine-structure line emission, a low ionization parameter (U=10(exp -3.5)) and low densities (n=100 cm (exp -3)) are derived. Combining the AGN and starburst components, we succeed in modeling the overall UV to far-IR atomic spectrum of SGC 1068, reproducing the line fluxes to within a factor 2.0 on average with a standard deviation of 1.4. The OH 119 micron emission indicates that the line is collisionally excited, and arises in a warm and dense region. The OH emission has been modeled using spherically symmetric, non-local, non-LTE radiative transfer models. The models indicate that the bulk of the emission arises from the nuclear region, although some extended contribution from the starburst is not ruled out. The OH abundance

  2. ULTRAVIOLET SPECTROSCOPY OF PQ Gem AND V405 Aur FROM THE HST AND IUE SATELLITES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanad, M. R., E-mail: mrsanad1@yahoo.com

    Ultraviolet spectra of two intermediate polars (IPs), PQ Gem and V405 Aur, observed with Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph and Faint Object Spectrograph and International Ultraviolet Explorer (IUE) satellites were analyzed during the period between 1994–2000. We estimated the reddening of the two systems from the 2200 Å feature. Six spectra of the two systems revealing modulations of line fluxes at different times are presented. PQ Gem and V405 Aur are featured by spectral lines in different ionization states. This paper focuses on the third ionized carbon emission line at 1550 Å and the first ionized heliummore » emission line at 1640 Å produced in the optically thin outer region of the accretion curtain for the two systems by calculating spectral line fluxes. From HST and IUE data, we deduced ultraviolet luminosities and ultraviolet accretion rates for the two binary stars. The average temperature of the accretion streams for PQ Gem and V405 Aur are ∼4500 K and 4100 K, respectively. The results reveal that there are modulations in fluxes of spectral lines, ultraviolet luminosities, and ultraviolet accretion rates with time for both systems. These modulations are referred to the changes of both density and temperature as a result of the variations of mass transfer rate from the secondary star to the primary star. The current results are consistent with an accretion curtain model for IPs.« less

  3. The Sloan Digital Sky Survey Reverberation Mapping Project: Ensemble Spectroscopic Variability of Quasar Broad Emission Lines

    NASA Astrophysics Data System (ADS)

    Sun, Mouyuan; Trump, Jonathan R.; Shen, Yue; Brandt, W. N.; Dawson, Kyle; Denney, Kelly D.; Hall, Patrick B.; Ho, Luis C.; Horne, Keith; Jiang, Linhua; Richards, Gordon T.; Schneider, Donald P.; Bizyaev, Dmitry; Kinemuchi, Karen; Oravetz, Daniel; Pan, Kaike; Simmons, Audrey

    2015-09-01

    We explore the variability of quasars in the Mg ii and {{H}}β broad emission lines and ultraviolet/optical continuum emission using the Sloan Digital Sky Survey Reverberation Mapping project (SDSS-RM). This is the largest spectroscopic study of quasar variability to date: our study includes 29 spectroscopic epochs from SDSS-RM over 6 months, containing 357 quasars with Mg ii and 41 quasars with {{H}}β . On longer timescales, the study is also supplemented with two-epoch data from SDSS-I/II. The SDSS-I/II data include an additional 2854 quasars with Mg ii and 572 quasars with {{H}}β . The Mg ii emission line is significantly variable ({{Δ }}f/f∼ 10% on ∼100-day timescales), a necessary prerequisite for its use for reverberation mapping studies. The data also confirm that continuum variability increases with timescale and decreases with luminosity, and the continuum light curves are consistent with a damped random-walk model on rest-frame timescales of ≳ 5 days. We compare the emission-line and continuum variability to investigate the structure of the broad-line region. Broad-line variability shows a shallower increase with timescale compared to the continuum emission, demonstrating that the broad-line transfer function is not a δ-function. {{H}}β is more variable than Mg ii (roughly by a factor of ∼1.5), suggesting different excitation mechanisms, optical depths and/or geometrical configuration for each emission line. The ensemble spectroscopic variability measurements enabled by the SDSS-RM project have important consequences for future studies of reverberation mapping and black hole mass estimation of 1\\lt z\\lt 2 quasars.

  4. Neutral Hydrogen and Its Emission Lines in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Vial, Jean-Claude; Chane-Yook, Martine

    2016-12-01

    Since the Lyman-α rocket observations of Gabriel ( Solar Phys. 21, 392, 1971), it has been realized that the hydrogen (H) lines could be observed in the corona and that they offer an interesting diagnostic for the temperature, density, and radial velocity of the coronal plasma. Moreover, various space missions have been proposed to measure the coronal magnetic and velocity fields through polarimetry in H lines. A necessary condition for such measurements is to benefit from a sufficient signal-to-noise ratio. The aim of this article is to evaluate the emission in three representative lines of H for three different coronal structures. The computations have been performed with a full non-local thermodynamic-equilibrium (non-LTE) code and its simplified version without radiative transfer. Since all collisional and radiative quantities (including incident ionizing and exciting radiation) are taken into account, the ionization is treated exactly. Profiles are presented at two heights (1.05 and 1.9 solar radii, from Sun center) in the corona, and the integrated intensities are computed at heights up to five solar radii. We compare our results with previous computations and observations ( e.g. Lα from Ultraviolet Coronal Spectrometer) and find a rough (model-dependent) agreement. Since the Hα line is a possible candidate for ground-based polarimetry, we show that in order to detect its emission in various coronal structures, it is necessary to use a very narrow (less than 2 Å wide) bandpass filter.

  5. Atomic Oscillator Strengths in the Vacuum Ultraviolet

    NASA Technical Reports Server (NTRS)

    Nave, Gillian; Sansonetti, Craig J.; Szabo, Csilla I.

    2006-01-01

    We have developed techniques to measure branching fractions in the vacuum ultraviolet using diffraction grating spectroscopy and phosphor image plates as detectors. These techniques have been used to measure branching fractions in Fe II that give prominent emission lines in astrophysical objects.

  6. Ultraviolet Opacity and Fluorescence in Supernova Envelopes

    NASA Technical Reports Server (NTRS)

    Li, Hongwei; McCray, Richard

    1996-01-01

    By the time the expanding envelope of a Type 2 supernova becomes transparent in the optical continuum, most of the gamma-ray luminosity produced by radioactive Fe/Co/Ni clumps propagates into the hydrogen/helium envelope and is deposited there, if at all. The resulting fast electrons excite He 1 and H 1, the two- photon continua of which are the dominant internal sources of ultraviolet radiation. The UV radiation is blocked by scattering in thousands of resonance lines of metals and converted by fluorescence into optical and infrared emission lines that escape freely. We describe results of Monte Carlo calculations that simulate non-LTE scattering and fluorescence in more than five million allowed lines of Ca, Sc, Ti, V, Cr, Mn, Fe, Co, and Ni. For a model approximating conditions in the envelope of SN 1987A, the calculated emergent spectrum resembles the observed one. For the first 2 yr after explosion, the ultraviolet radiation (lambda less than or approximately equals 3000) is largely blocked and converted into a quasi continuum of many thousands of weak optical and infrared emission lines and some prominent emission features, such as the Ca 2 lambdalambda8600 triplet. Later, as the envelope cools and expands, it becomes more transparent, and an increasing fraction of the luminosity emerges in the UV band.

  7. Visible and near-ultraviolet spectra of low-pressure rare-gas microwave discharges

    NASA Technical Reports Server (NTRS)

    Campbell, J. P.; Spisz, E. W.; Bowman, R. L.

    1971-01-01

    The spectral emission characteristics of three commercial low pressure rare gas discharge lamps wire obtained in the near ultraviolet and visible wavelength range. All three lamps show a definite continuum over the entire wavelength range from 0.185 to 0.6 micrometers. Considerable line emission is superimposed on much of the continuum for wavelengths greater than 0.35 micrometers. These sources were used to make transmittance measurements on quartz samples in the near ultraviolet wavelength range.

  8. Atomic and molecular emissions in the middle ultraviolet dayglow

    NASA Astrophysics Data System (ADS)

    Bucsela, Eric J.; Cleary, David D.; Dymond, Kenneth F.; McCoy, Robert P.

    1998-12-01

    Dayglow spectra in the middle ultraviolet, obtained during a sounding rocket flight from White Sands Missile Range in 1992, have been analyzed to determine the altitude distributions of thermospheric atomic and molecular species and to address a number of problems related to airglow excitation mechanisms. Among the atomic and molecular profiles retrieved are the N2 second positive, N2 Vegard-Kaplan and NO gamma band systems, and the OI 297.2 nm, OII 247.0 nm, and NII 214.3 nm emissions. A self-consistent study of the emission profiles was conducted by comparing observed intensities with one another and to forward models. Model photoelectron and photon fluxes were generated by the field line interhemispheric plasma model (FLIP) and two solar flux models. Neutral densities were obtained from mass-spectrometer/incoherent scatter (MSIS)-90. The results from the data analysis suggest that the major species' densities are within 40% of MSIS values. Evidence for the accuracy of the modeled densities and fluxes is seen in the close agreement between the calculated and observed intensities of the N2 second positive emission. Analysis of the OI 297.2 nm emission shows that the reaction N2(A)+O is the dominant source of O(1S) in the daytime thermosphere. The data imply that the vibrationally averaged yield of O(1S) from the reaction is 0.43+/-0.12, which is smaller than the laboratory value measured for the N2(A,v'=0) level. The cause of a disagreement between model and data for the Vegard-Kaplan emission is unclear, but the discrepancy can be eliminated if the N2(A)+O quenching coefficient or the A state lifetime is increased by a factor between 2 and 4. The observed intensity of OII 247.0 nm is greater than expected by a factor of 2, implying possible inadequacies in the EUVAC and/or EUV91 solar models used in the analysis.

  9. The Extreme-ultraviolet Emission from Sun-grazing Comets

    NASA Technical Reports Server (NTRS)

    Bryans, Paul; Pesnell, William D.

    2012-01-01

    The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory has observed two Sun-grazing comets as they passed through the solar atmosphere. Both passages resulted in a measurable enhancement of extreme-ultraviolet (EUV) radiance in several of the AIA bandpasses.We explain this EUV emission by considering the evolution of the cometary atmosphere as it interacts with the ambient solar atmosphere. Molecules in the comet rapidly sublimate as it approaches the Sun. They are then photodissociated by the solar radiation field to create atomic species. Subsequent ionization of these atoms produces a higher abundance of ions than normally present in the corona and results in EUV emission in the wavelength ranges of the AIA telescope passbands.

  10. Extreme ultraviolet emission spectra of Gd and Tb ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilbane, D.; O'Sullivan, G.

    2010-11-15

    Theoretical extreme ultraviolet emission spectra of gadolinium and terbium ions calculated with the Cowan suite of codes and the flexible atomic code (FAC) relativistic code are presented. 4d-4f and 4p-4d transitions give rise to unresolved transition arrays in a range of ions. The effects of configuration interaction are investigated for transitions between singly excited configurations. Optimization of emission at 6.775 nm and 6.515 nm is achieved for Gd and Tb ions, respectively, by consideration of plasma effects. The resulting synthetic spectra are compared with experimental spectra recorded using the laser produced plasma technique.

  11. Long-term Ultraviolet Monitoring of a Tidal Disruption Event at only 90 Mpc

    NASA Astrophysics Data System (ADS)

    Maksym, W. Peter; Cenko, Bradley; Eracleous, Michael; Keel, William C.; Irwin, Jimmy; Sigurdsson, Steinn; Fruchter, Andrew; Gezari, Suvi; Bogdanovic, Tamara; Roth, Katherine

    2018-01-01

    At only 90 Mpc, ASASSN-14li is one of the nearest tidal disruption events (TDEs) to permit high-quality multi-wavelength monitoring, and is the first TDE with ultraviolet spectroscopic observations between Lyman alpha and Mg II λ2800Å. We present results from a continued long-term ultraviolet monitoring campaign with the Hubble Space Telescope. Prior observations had showed an array of broad emission lines common to Seyferts. Surpisingly, however, uncommon lines such as He II λ1640Å, N III] λ1750Å and N IV] λ1486Å had been enhanced, whereas others such as C III] λ1909Å and Mg II λ2800Å are notably absent. Our campaign shows contnued continuum emission accompanied by the gradual disappearance of broad line emission, which may indicate the gradual disappearance of a TDE wind as the accretion rate declines to sub-critical levels. Variability of the semi-forbidden lines supports stimulation by the TDE. A continued absence of low-ionization lines like Mg II in our monitoring may constrain the presence of ionized unbound material at large radii.

  12. Ultraviolet Spectral Behavior of TVCol During and After Flaring Activity

    NASA Astrophysics Data System (ADS)

    Sanad, M. R.; Abdel-Sabour, M. A.

    2018-01-01

    We studied the intermediate polar TVCol during and after its flare in November 1982 observed in the ultraviolet range with the International Ultraviolet Explorer. Two spectra revealing the variations of emission lines at different times are presented. We have estimated a new value of the reddening from the 2200 Å absorption feature, E ( B - V ) = 0.12 ± 0.02, and calculated the line fluxes of C IV and He II emission lines produced in the outer accretion disk. The average ultraviolet luminosity of emitting region during and after the flare is approximately 4 × 1032 erg s-1 and 9 × 1030 erg s-1, the corresponding average mass accretion rate is nearly 3 × 1015 erg s-1 (4.76 × 10-11 M ⊙ yr-1) and 5 × 1013 erg s-1 (7.93 × 10-13 M ⊙ yr-1), and the average temperature of the emitting region during and after flare is estimated to be of about 3.5 × 103 K and 2 × 103 K. We attribute this flare to a sudden increase in the mass accretion rate leading to the outburst activity.

  13. Modeling Ultraviolet Emissions Near Io

    NASA Technical Reports Server (NTRS)

    Linker, Jon A.

    2000-01-01

    In this report, we describe work awarded to Science Applications International Corporation, for the period 6/l/99 to 5/31/00. During this time period, we have investigated the interaction of Io, Jupiter's innermost Galilean satellite, with the Io plasma torus, and the role this interaction plays in producing ultraviolet (UV) emissions from neutral oxygen and sulfur. Io, the innermost of Jupiter's Galilean satellites, plays a unique role in the jovian magnetosphere. Neutral material that escapes from Io is ionized to form the lo torus, a dense, heavy-ion plasma that corotates with Jupiter and interacts with Io. Io supplies not only the torus, but is a major source of plasma for the entire magnetosphere. Ionization and charge-exchange of neutrals near lo strongly influences the plasma interaction, and Io's neutral atmosphere plays an important role in the generation of currents that couple Io to Jupiter. There have been no in situ measurements of the neutral density near Io, but remote observations of neutrals near lo have been performed for many years. Recent observations from the Hubble Space Telescope (HST) have shown detailed structure in UV emissions from neutral species near Io. Electron-impact of the neutrals by the Io torus plasma is the primary mechanism responsible for exciting these emissions. Previously, we have modeled the Io plasma environment using three-dimensional magnetohydrodynamic (MHD) simulations, and we have shown that the interaction between Io and the plasma torus plays an important role in producing the morphology of the observed emissions. In the past year, we have extended these studies to use both UV observations and Galileo particle and field measurements to investigate the Io interaction.

  14. QSO Broad Emission Line Asymmetries: Evidence of Gravitational Redshift?

    NASA Astrophysics Data System (ADS)

    Corbin, Michael R.

    1995-07-01

    The broad optical and ultraviolet emission lines of QSOs and active galactic nuclei (AGNs) display both redward and blueward asymmetries. This result is particularly well established for Hβ and C IV λ1549, and it has been found that Hβ becomes increasingly redward asymmetric with increasing soft X-ray luminosity. Two models for the origin of these asymmetries are investigated: (1) Anisotropic line emission from an ensemble of radially moving clouds, and (2) Two-component profiles consisting of a core of intermediate (˜1000-4000 km s-1) velocity width and a very broad (˜5000-20,000 km s-1) base, in which the asymmetries arise due to a velocity difference between the centroids of the components. The second model is motivated by the evidence that the traditional broad-line region is actually composed of an intermediate-line region (ILR) of optically thick clouds and a very broad line region (VBLR) of optically thin clouds lying closer to the central continuum source. Line profiles produced by model (1) are found to be inconsistent with those observed, being asymmetric mainly in their cores, whereas the asymmetries of actual profiles arise mainly from excess emission in their wings. By contrast, numerical fitting to actual Hβ and C IV λ1549 line profiles reveals that the majority can be accurately modeled by two components, either two Gaussians or the combination of a Gaussian base and a logarithmic core. The profile asymmetries in Hβ can be interpreted as arising from a shift of the base component over a range ˜6300 km s-1 relative to systemic velocity as defined by the position of the [O III] λ5007 line. A similar model appears to apply to C IV λ1549. The correlation between Hβ asymmetry and X-ray luminosity may thus be interpreted as a progressive red- shift of the VBLR velocity centroid relative to systemic velocity with increasing X-ray luminosity. This in turn suggests that the underlying effect is gravitational red shift, as soft X-ray emission

  15. Magnetic fluorescent lamp having reduced ultraviolet self-absorption

    DOEpatents

    Berman, Samuel M.; Richardson, Robert W.

    1985-01-01

    The radiant emission of a mercury-argon discharge in a fluorescent lamp assembly (10) is enhanced by providing means (30) for establishing a magnetic field with lines of force along the path of electron flow through the bulb (12) of the lamp assembly, to provide Zeeman splitting of the ultraviolet spectral line. Optimum results are obtained when the magnetic field strength causes a Zeeman splitting of approximately 1.7 times the thermal line width.

  16. Far-ultraviolet imagery of the Orion Nebula

    NASA Technical Reports Server (NTRS)

    Carruthers, G. R.; Opal, C. B.

    1977-01-01

    Two electrographic cameras carried on a sounding rocket have yielded useful-resolution far-ultraviolet (1000-2000 A) imagery of the Orion Nebula. The brightness distribution in the images is consistent with a primary source which is due to scattering of starlight by dust grains, although an emission-line contribution, particularly in the fainter outer regions, is not ruled out. The results are consistent with an albedo of the dust grains that is high in the far-ultraviolet and which increases toward shorter wavelengths below 1230 A.

  17. Changes in the ultraviolet spectrum of EG Andromedae

    NASA Technical Reports Server (NTRS)

    Stencel, R. E.

    1984-01-01

    Ultraviolet observations of EG Andromedae, a symbiotic star, are reported which clearly show pronounced eclipse-like effects on the high-temperature far-UV continuum. Continuum and emission-line variations with phase are reported and related to synoptic hydrogen alpha data. System parameters are characterized.

  18. Vacuum ultraviolet emission characteristics from He-Ne-Xe gas discharge in an alternating current plasma display panel cell

    NASA Astrophysics Data System (ADS)

    Seo, Jeong Hyun; Jeong, Heui Seob; Lee, Joo Yul; Yoon, Cha Keun; Kim, Joong Kyun; Whang, Ki-Woong

    2000-08-01

    We measured the time integrated vacuum ultraviolet (VUV) emission spectra of He-Ne-Xe gas mixture from a surface type alternating current (ac) plasma display panel cell. The measured emission lines are the resonance line (147 nm) from Xe*(1s4), the first continuum (150 nm) and the second continuum (173 nm) from Xe dimer excited states. The relative intensities of VUV spectral lines from Xe* and Xe2* are dependent on the He/Ne mixing ratio as well as the Xe partial and total pressure. The intensity of 147 nm VUV increases with the Ne content increase and Xe2* molecular emission increases with the He content increase. Infrared (IR) spectra and the time variation of VUV were measured to explain the reaction pathway and the effect of the mixing ratio of He/Ne on the spectral intensity. A detailed study for the decay time shows that the decay time of 147 nm has two time constants and the radiation of 150 and 173 nm results mainly from Xe*(1s5). The IR spectra shows that the contribution from Xe**(>6 s) to Xe*(1s5) and Xe*(1s4) in He-Xe is different from that of Ne-Xe. The change of IR intensity explains the spectral intensity variations of He-Xe and Ne-Xe discharge.

  19. ABRUPT LONGITUDINAL MAGNETIC FIELD CHANGES AND ULTRAVIOLET EMISSIONS ACCOMPANYING SOLAR FLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstone, B. M.; Petrie, G. J. D.; Sudol, J. J.

    2012-11-20

    We have used Transition Region and Coronal Explorer 1600 A images and Global Oscillation Network Group (GONG) magnetograms to compare ultraviolet (UV) emissions from the chromosphere to longitudinal magnetic field changes in the photosphere during four X-class solar flares. An abrupt, significant, and persistent change in the magnetic field occurred across more than 10 pixels in the GONG magnetograms for each flare. These magnetic changes lagged the GOES flare start times in all cases, showing that they were consequences and not causes of the flares. Ultraviolet emissions were spatially coincident with the field changes. The UV emissions tended to lagmore » the GOES start times for the flares and led the changes in the magnetic field in all pixels except one. The UV emissions led the photospheric field changes by 4 minutes on average with the longest lead being 9 minutes; however, the UV emissions continued for tens of minutes, and more than an hour in some cases, after the field changes were complete. The observations are consistent with the picture in which an Alfven wave from the field reconnection site in the corona propagates field changes outward in all directions near the onset of the impulsive phase, including downward through the chromosphere and into the photosphere, causing the photospheric field changes, whereas the chromosphere emits in the UV in the form of flare kernels, ribbons, and sequential chromospheric brightenings during all phases of the flare.« less

  20. Ultraviolet emissions from the magnetic footprints of Io, Ganymede and Europa on Jupiter.

    PubMed

    Clarke, J T; Ajello, J; Ballester, G; Ben Jaffel, L; Connerney, J; Gérard, J-C; Gladstone, G R; Grodent, D; Pryor, W; Trauger, J; Waite, J H

    2002-02-28

    Io leaves a magnetic footprint on Jupiter's upper atmosphere that appears as a spot of ultraviolet emission that remains fixed underneath Io as Jupiter rotates. The specific physical mechanisms responsible for generating those emissions are not well understood, but in general the spot seems to arise because of an electromagnetic interaction between Jupiter's magnetic field and the plasma surrounding Io, driving currents of around 1 million amperes down through Jupiter's ionosphere. The other galilean satellites may also leave footprints, and the presence or absence of such footprints should illuminate the underlying physical mechanism by revealing the strengths of the currents linking the satellites to Jupiter. Here we report persistent, faint, far-ultraviolet emission from the jovian footprints of Ganymede and Europa. We also show that Io's magnetic footprint extends well beyond the immediate vicinity of Io's flux-tube interaction with Jupiter, and much farther than predicted theoretically; the emission persists for several hours downstream. We infer from these data that Ganymede and Europa have persistent interactions with Jupiter's magnetic field despite their thin atmospheres.

  1. Near-ultraviolet Excess in Slowly Accreting T Tauri Stars: Limits Imposed by Chromospheric Emission

    NASA Astrophysics Data System (ADS)

    Ingleby, Laura; Calvet, Nuria; Bergin, Edwin; Herczeg, Gregory; Brown, Alexander; Alexander, Richard; Edwards, Suzan; Espaillat, Catherine; France, Kevin; Gregory, Scott G.; Hillenbrand, Lynne; Roueff, Evelyne; Valenti, Jeff; Walter, Frederick; Johns-Krull, Christopher; Brown, Joanna; Linsky, Jeffrey; McClure, Melissa; Ardila, David; Abgrall, Hervé; Bethell, Thomas; Hussain, Gaitee; Yang, Hao

    2011-12-01

    Young stars surrounded by disks with very low mass accretion rates are likely in the final stages of inner disk evolution and therefore particularly interesting to study. We present ultraviolet (UV) observations of the ~5-9 Myr old stars RECX-1 and RECX-11, obtained with the Cosmic Origins Spectrograph and Space Telescope Imaging Spectrograph on the Hubble Space Telescope, as well as optical and near-infrared spectroscopic observations. The two stars have similar levels of near-UV emission, although spectroscopic evidence indicates that RECX-11 is accreting and RECX-1 is not. The line profiles of Hα and He I λ10830 in RECX-11 show both broad and narrow redshifted absorption components that vary with time, revealing the complexity of the accretion flows. We show that accretion indicators commonly used to measure mass accretion rates, e.g., U-band excess luminosity or the Ca II triplet line luminosity, are unreliable for low accretors, at least in the middle K spectral range. Using RECX-1 as a template for the intrinsic level of photospheric and chromospheric emission, we determine an upper limit of 3 × 10-10 M ⊙ yr-1 for RECX-11. At this low accretion rate, recent photoevaporation models predict that an inner hole should have developed in the disk. However, the spectral energy distribution of RECX-11 shows fluxes comparable to the median of Taurus in the near-infrared, indicating that substantial dust remains. Fluorescent H2 emission lines formed in the innermost disk are observed in RECX-11, showing that gas is present in the inner disk, along with the dust. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  2. Rotation of dwarf star chromospheres in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Hallam, K. L.; Wolff, C. L.

    1981-01-01

    Periodic variations in the ultraviolet fluxes of chromospheric emission line multiplets are investigated for F, G and K stars as evidence of rotational modulation. Vacuum ultraviolet spectra were obtained with the IUE spacecraft for six stars as many as 11 times over the period April 23 to December 3, 1980. Variations in the emission fluxes of the hydrogen Lyman-alpha, Si II and Mg II lines are observed with periods up to 47 days. The periodicity, which is identified with rotational modulation, is found to persist over many rotational cycles, although the periods and time dependences of the fluxes from the different ionic species are not identical, probably due to differential rotation and global distributions. The spread of the UV periods is observed to be within 10%, with one or two peaks per cycle and a ratio of modulated to umodulated flux ranging from 1.1 to 3.0, analogous to solar behavior.

  3. Non-Gaussian Velocity Distributions in Solar Flares from Extreme Ultraviolet Lines: A Possible Diagnostic of Ion Acceleration

    NASA Astrophysics Data System (ADS)

    Jeffrey, Natasha L. S.; Fletcher, Lyndsay; Labrosse, Nicolas

    2017-02-01

    In a solar flare, a large fraction of the magnetic energy released is converted rapidly to the kinetic energy of non-thermal particles and bulk plasma motion. This will likely result in non-equilibrium particle distributions and turbulent plasma conditions. We investigate this by analyzing the profiles of high temperature extreme ultraviolet emission lines from a major flare (SOL2014-03-29T17:44) observed by the EUV Imaging Spectrometer (EIS) on Hinode. We find that in many locations the line profiles are non-Gaussian, consistent with a kappa distribution of emitting ions with properties that vary in space and time. At the flare footpoints, close to sites of hard X-ray emission from non-thermal electrons, the κ index for the Fe xvi 262.976 Å line at 3 MK takes values of 3-5. In the corona, close to a low-energy HXR source, the Fe xxiii 263.760 Å line at 15 MK shows κ values of typically 4-7. The observed trends in the κ parameter show that we are most likely detecting the properties of the ion population rather than any instrumental effects. We calculate that a non-thermal ion population could exist if locally accelerated on timescales ≤0.1 s. However, observations of net redshifts in the lines also imply the presence of plasma downflows, which could lead to bulk turbulence, with increased non-Gaussianity in cooler regions. Both interpretations have important implications for theories of solar flare particle acceleration.

  4. Non-Gaussian Velocity Distributions in Solar Flares from Extreme Ultraviolet Lines: A Possible Diagnostic of Ion Acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffrey, Natasha L. S.; Fletcher, Lyndsay; Labrosse, Nicolas

    2017-02-10

    In a solar flare, a large fraction of the magnetic energy released is converted rapidly to the kinetic energy of non-thermal particles and bulk plasma motion. This will likely result in non-equilibrium particle distributions and turbulent plasma conditions. We investigate this by analyzing the profiles of high temperature extreme ultraviolet emission lines from a major flare (SOL2014-03-29T17:44) observed by the EUV Imaging Spectrometer (EIS) on Hinode . We find that in many locations the line profiles are non-Gaussian, consistent with a kappa distribution of emitting ions with properties that vary in space and time. At the flare footpoints, close tomore » sites of hard X-ray emission from non-thermal electrons, the κ index for the Fe xvi 262.976 Å line at 3 MK takes values of 3–5. In the corona, close to a low-energy HXR source, the Fe xxiii 263.760 Å line at 15 MK shows κ values of typically 4–7. The observed trends in the κ parameter show that we are most likely detecting the properties of the ion population rather than any instrumental effects. We calculate that a non-thermal ion population could exist if locally accelerated on timescales ≤0.1 s. However, observations of net redshifts in the lines also imply the presence of plasma downflows, which could lead to bulk turbulence, with increased non-Gaussianity in cooler regions. Both interpretations have important implications for theories of solar flare particle acceleration.« less

  5. Search for ultraviolet emission lines from a hot gaseous halo in the edge-on galaxy NGC 4244

    NASA Technical Reports Server (NTRS)

    Deharveng, J.-M.; Joubert, M.; Bixler, J.; Bowyer, S.; Malina, R.

    1986-01-01

    Short and long wavelength IUE spectra of the halo region in the edge-on galaxy NGC 4244 are analyzed in order to identify evidence of line emission at the level of 0.000001 ergs per cu cm sr/s. Features are found at 1245 A and 1402 A, having peaks four times greater than the rms intensity fluctuations of nearby spectra. The spectral features are identified with semi-forbidden N V, semi-forbidden S IV at 1240 A, and Si IV and semi-forbidden O IV multiplets at 1400 A, respectively. The appearance of high-peak features and the lack of astrophysically important lines in the sample are evidence of a gas near T = 10 exp 5.2 and emission measure (EM) equal to about 0.000001 pc. However, the case for the existence of such a gas is weakened due to the existence of two other similarly sized features with no identifiable astrophysical origin and the extremely faint nature of the candidate features. The assumed upper limit for the line intensities in NGC 4244 leads to the conclusion that at T less than 100,000 K any emitting gas is either highly clumped or has a p/k value of less than 1000 per cu cm K. It is suggested that if the observed low level features in the short wavelength spectrum are real, the temperature and emission measures allow for a single component gas in the halo of NGC 4244, and are in agreement with those derived by Paresce et al. (1983).

  6. Morphological Processing of Ultraviolet Emissions of Electrical Corona Discharge for Analysis and Diagnostic Use

    NASA Technical Reports Server (NTRS)

    Schubert, Matthew R.; Moore, Andrew J.

    2015-01-01

    Electron cascades from electrical discharge produce secondary emissions from atmospheric plasma in the ultraviolet band. For a single point of discharge, these emissions exhibit a stereotypical discharge morphology, with latent information about the discharge location. Morphological processing can uncover the location and therefore can have diagnostic utility.

  7. Morphological processing of ultraviolet emissions of electrical corona discharge for analysis and diagnostic use.

    PubMed

    Schubert, Matthew; Moore, Andrew J

    2016-03-01

    Electron cascades from electrical discharge produce secondary emissions from atmospheric plasma in the ultraviolet band. For a single point of discharge, these emissions exhibit a stereotypical discharge morphology, with latent information about the discharge location. Morphological processing can uncover the location and therefore have diagnostic utility.

  8. Time-Resolved Ultraviolet Spectroscopy of the M-Dwarf GJ 876 Exoplanetary System

    NASA Technical Reports Server (NTRS)

    France, Kevin; Linsky, Jeffrey L.; Tian, Feng; Froning, Cynthia S.; Roberge, Aki

    2012-01-01

    Extrasolar planets orbiting M-stars may represent our best chance to discover habitable worlds in the coming decade. The ultraviolet spectrum incident upon both Earth-like and Jovian planets is critically important for proper modeling of their atmospheric heating and chemistry. In order to provide more realistic inputs for atmospheric models of planets orbiting low-mass stars, we present new near- and far-ultraviolet (NUV and FUV) spectroscopy of the M-dwarf exoplanet host GJ 876 (U4V). Using the COS and STIS spectrographs aboard the Hubble Space Telescope, we have measured the 1150 - 3140 Ang. spectrum of GJ 876. We have reconstructed the stellar H I Ly-alpha emission line profile, and find that the integrated Ly-apha flux is roughly equal to the rest of the integrated flux (1150 - 1210 Ang + 1220 - 3140 Ang) in the entire ultraviolet bandpass (F(Ly-alpha)/F(FUV+NUV) approximately equals 0.7). This ratio is approximately 2500 x greater than the solar value. We describe the ultraviolet line spectrum and report surprisingly strong fluorescent emission from hot H2 (T(H2) > 2000 K). We show the light-curve of a chromospheric + transition region flare observed in several far-UV emission lines, with flare/ quiescent flux ratios :2: 10. The strong FUV radiation field of an M-star (and specifically Ly-alpha) is important for determining the abundance of O2 - and the formation of biomarkers - in the lower atmospheres of Earth-like planets in the habitable zones of low-mass stars.

  9. Exciton localization and ultralow onset ultraviolet emission in ZnO nanopencils-based heterojunction diodes.

    PubMed

    Jiang, Junyan; Zhang, Yuantao; Chi, Chen; Long, Yan; Han, Xu; Wu, Bin; Zhang, Baolin; Du, Guotong

    2016-09-05

    n-GaN/i-ZnO/p-GaN double heterojunction diodes were constructed by vertically binding p-GaN wafer on the tip of ZnO nanopencil arrays grown on n-GaN/sapphire substrates. An increased quantum confinement in the tip of ZnO nanopencils has been verified by photoluminescence measurements combined with quantitative analyses. Under forward bias, a sharp ultraviolet emission at ~375 nm due to localized excitons recombination can be observed in ZnO. The electroluminescence mechanism of the studied diode is tentatively elucidated using a simplified quantum confinement model. Additionally, the improved performance of the studied diode featuring an ultralow emission onset, a good operation stability and an enhanced ultraviolet emission shows the potential of our approach. This work provides a new route for the design and development of ZnO-based excitonic optoelectronic devices.

  10. The Mars diffuse aurora: A model of ultraviolet and visible emissions

    NASA Astrophysics Data System (ADS)

    Gérard, J.-C.; Soret, L.; Shematovich, V. I.; Bisikalo, D. V.; Bougher, S. W.

    2017-05-01

    A new type of Martian aurora, characterized by an extended spatial distribution, an altitude lower than the discrete aurora and electron precipitation up to 200 keV has been observed following solar activity on several occasions from the MAVEN spacecraft. We describe the results of Monte Carlo simulations of the production of several ultraviolet and violet auroral emissions for initial electron energies extending from 0.25 to 200 keV. These include the CO2+ ultraviolet doublet (UVD) at 288.3 and 289.6 nm and the Fox-Duffendack-Barker (FDB) bands, CO Cameron and Fourth Positive bands, OI 130.4 and 297.2 nm and CI 156.1 nm and 165.7 nm multiplets. We calculate the nadir and limb production rates of several of these emissions for a unit precipitated energy flux. Our results indicate that electrons in the range 50-200 keV produce maximum CO2+ UVD emission below 75 km, in agreement with the MAVEN observations. We calculate the efficiency of photon production per unit precipitated electron power. The strongest emissions are the CO2+ FDB, UVD and CO Cameron bands and the oxygen emission at 297.2 nm. The metastable a 3Π state which radiates the Cameron bands is deactivated by collisions below about 110 km. As a consequence, we show that the Cameron band emission is expected to peak at a higher altitude than the CO2+ UVD and FDB bands. Collisional quenching also causes the intensity ratio of the CO2+ UVD to CO Cameron bands to increase below ∼100 km in the energetic diffuse aurora.

  11. Ultraviolet line diagnostics of accretion disk winds in cataclysmic variables

    NASA Technical Reports Server (NTRS)

    Vitello, Peter; Shlosman, Isaac

    1993-01-01

    The IUE data base is used to analyze the UV line shapes of the cataclysmic variables RW Sex, RW Tri, and V Sge. Observed lines are compared to synthetic line profiles computed using a model of rotating biconical winds from accretion disks. The wind model calculates the wind ionization structure self-consistently including photoionization from the disk and boundary layer and treats 3D line radiation transfer in the Sobolev approximation. It is found that winds from accretion disks provide a good fit for reasonable parameters to the observed UV lines which include the P Cygni profiles for low-inclination systems and pure emission at large inclination. Disk winds are preferable to spherical winds which originate on the white dwarf because they: (1) require a much lower ratio of mass-loss rate to accretion rate and are therefore more plausible energetically; (2) provide a natural source for a biconical distribution of mass outflow which produces strong scattering far above the disk leading to P Cygni profiles for low-inclination systems and pure line emission profiles at high inclination with the absence of eclipses in UV lines; and (3) produce rotation-broadened pure emission lines at high inclination.

  12. Ultraviolet observations of cool stars. VI - L alpha and Mg II emission line profiles /and a search for flux variability/ in Arcturus

    NASA Technical Reports Server (NTRS)

    Mcclintock, W.; Moos, H. W.; Henry, R. C.; Linsky, J. L.; Barker, E. S.

    1978-01-01

    High-precision, high-resolution profiles of the L alpha and Mg II k chromospheric emission lines from Arcturus (alpha Boo) obtained with the Princeton Experimental Package aboard the Copernicus satellite are presented. Asymmetries seen in the profiles of these lines are probably intrinsic to the star, rather than the result of interstellar absorption. In contrast to previous observations of the Ca II K emission line, no evidence is found during a three-year period for variability in the profiles or in the total fluxes from these lines on time scales ranging from hours to months. Also presented is a flux profile of the O I 1302 line and flux upper limits for L beta, O VI 1032, Si III 1206, and O V 1218.

  13. Emission measures derived from far ultraviolet spectra of T Tauri stars

    NASA Astrophysics Data System (ADS)

    Cram, L. E.; Giampapa, M. S.; Imhoff, C. L.

    1980-06-01

    Spectroscopic diagnostics based on UV emission line observations have been developed to study the solar chromosphere, transition region, and corona. The atmospheric properties that can be inferred from observations of total line intensities include the temperature, by identifying the ionic species present; the temperature distribution of the emission measure, from the absolute intensities; and the electron density of the source, from line intensity ratios sensitive to the electron density. In the present paper, the temperature distribution of the emission measure is estimated from observations of far UV emission line fluxes of the T Tauri stars, RW Aurigae and RU Lupi, made on the IUE. A crude estimate of the electron density of one star is obtained, using density-sensitive line ratios.

  14. The Lyman Continuum Escape Fraction of Emission Line-selected z ∼ 2.5 Galaxies Is Less Than 15%

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutkowski, Michael J.; Hayes, Matthew; Scarlata, Claudia

    Recent work suggests that strong emission line, star-forming galaxies (SFGs) may be significant Lyman continuum leakers. We combine archival Hubble Space Telescope broadband ultraviolet and optical imaging (F275W and F606W, respectively) with emission line catalogs derived from WFC3 IR G141 grism spectroscopy to search for escaping Lyman continuum (LyC) emission from homogeneously selected z ∼ 2.5 SFGs. We detect no escaping Lyman continuum from SFGs selected on [O ii] nebular emission ( N = 208) and, within a narrow redshift range, on [O iii]/[O ii]. We measure 1 σ upper limits to the LyC escape fraction relative to the non-ionizingmore » UV continuum from [O ii] emitters, f {sub esc} ≲ 5.6%, and strong [O iii]/[O ii] > 5 ELGs, f {sub esc} ≲ 14.0%. Our observations are not deep enough to detect f {sub esc} ∼ 10% typical of low-redshift Lyman continuum emitters. However, we find that this population represents a small fraction of the star-forming galaxy population at z ∼ 2. Thus, unless the number of extreme emission line galaxies grows substantially to z ≳ 6, such galaxies may be insufficient for reionization. Deeper survey data in the rest-frame ionizing UV will be necessary to determine whether strong line ratios could be useful for pre-selecting LyC leakers at high redshift.« less

  15. The origin of N III lambda 990 and C III lambda 977 emission in AGN narrow-line region gas

    NASA Technical Reports Server (NTRS)

    Ferguson, J. W.; Ferland, G. J.; Pradhan, A. K.

    1995-01-01

    We discuss implications of Hopkins Ultraviolet Telescope (HUT) detections of C III lambda 977 and N III lambda 990 emission from the narrow-line region of the Seyfert 2 galaxy NGC 1068. In their discovery paper Kriss et al. showed that the unexpectedly great strength of these lines implies that the emitting gas must be shock-heated if the lines are collisionally excited. Here we investigate other processes which excite these lines in photoionization equilibrium. Recombination, mainly dielectronic, and continuum fluorescence are strong contributors to the line. The resulting intensities are sensitive to the velocity field of the emitting gas and require that the turbulence be of the same order of magnitude as the observed line width. We propose optical observations that will decide whether the gas is collisionally or radiatively heated.

  16. MICROLENSING OF QUASAR BROAD EMISSION LINES: CONSTRAINTS ON BROAD LINE REGION SIZE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerras, E.; Mediavilla, E.; Jimenez-Vicente, J.

    2013-02-20

    We measure the differential microlensing of the broad emission lines between 18 quasar image pairs in 16 gravitational lenses. We find that the broad emission lines are in general weakly microlensed. The results show, at a modest level of confidence (1.8{sigma}), that high ionization lines such as C IV are more strongly microlensed than low ionization lines such as H{beta}, indicating that the high ionization line emission regions are more compact. If we statistically model the distribution of microlensing magnifications, we obtain estimates for the broad line region size of r{sub s} = 24{sup +22} {sub -15} and r{sub s}more » = 55{sup +150} {sub -35} lt-day (90% confidence) for the high and low ionization lines, respectively. When the samples are divided into higher and lower luminosity quasars, we find that the line emission regions of more luminous quasars are larger, with a slope consistent with the expected scaling from photoionization models. Our estimates also agree well with the results from local reveberation mapping studies.« less

  17. Observations of two peculiar emission objects in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Kafatos, M.; Michalitsianos, A. G.; Allen, D. A.; Stencel, R. E.

    1983-01-01

    Ultraviolet and visual wavelength spectra were obtained of two peculiar emission objects, Henize S63 and Sanduleak's star in the Large Magellanic Cloud. Previously not observed in the near- or far-ultraviolet, both objects exhibit strong permitted and semiforbidden line emissions. Estimates based on the absolute continuum flux of the hot companion star in Hen S63 indicate that it rivals the luminosity of the carbon star primary. The emission-line profile structure in both objects does not suggest Wolf-Rayet type emission. Carbon in Sanduleak's star (LMC anonymous) is conspicuously absent, while N V, semiforbidden N IV, and semiforbidden N III dominate the UV emission-line spectrum. Nitrogen is overabundant with respect to carbon and oxygen in both objects. The large overabundance of nitrogen in Sanduleak's star suggests evidence for CNO processes material similar to that seen in Nu Car.

  18. Mapping low- and high-density clouds in astrophysical nebulae by imaging forbidden line emission

    NASA Astrophysics Data System (ADS)

    Steiner, J. E.; Menezes, R. B.; Ricci, T. V.; Oliveira, A. S.

    2009-06-01

    Emission line ratios have been essential for determining physical parameters such as gas temperature and density in astrophysical gaseous nebulae. With the advent of panoramic spectroscopic devices, images of regions with emission lines related to these physical parameters can, in principle, also be produced. We show that, with observations from modern instruments, it is possible to transform images taken from density-sensitive forbidden lines into images of emission from high- and low-density clouds by applying a transformation matrix. In order to achieve this, images of the pairs of density-sensitive lines as well as the adjacent continuum have to be observed and combined. We have computed the critical densities for a series of pairs of lines in the infrared, optical, ultraviolet and X-rays bands, and calculated the pair line intensity ratios in the high- and low-density limit using a four- and five-level atom approximation. In order to illustrate the method, we applied it to Gemini Multi-Object Spectrograph (GMOS) Integral Field Unit (GMOS-IFU) data of two galactic nuclei. We conclude that this method provides new information of astrophysical interest, especially for mapping low- and high-density clouds; for this reason, we call it `the ld/hd imaging method'. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation on behalf of the Gemini partnership: the National Science Foundation (United States); the Science and Technology Facilities Council (United Kingdom); the National Research Council (Canada), CONICYT (Chile); the Australian Research Council (Australia); Ministério da Ciência e Tecnologia (Brazil) and Secretaria de Ciencia y Tecnologia (Argentina). E-mail: steiner@astro.iag.usp.br

  19. Accurate oscillator strengths for interstellar ultraviolet lines of Cl I

    NASA Technical Reports Server (NTRS)

    Schectman, R. M.; Federman, S. R.; Beideck, D. J.; Ellis, D. J.

    1993-01-01

    Analyses on the abundance of interstellar chlorine rely on accurate oscillator strengths for ultraviolet transitions. Beam-foil spectroscopy was used to obtain f-values for the astrophysically important lines of Cl I at 1088, 1097, and 1347 A. In addition, the line at 1363 A was studied. Our f-values for 1088, 1097 A represent the first laboratory measurements for these lines; the values are f(1088)=0.081 +/- 0.007 (1 sigma) and f(1097) = 0.0088 +/- 0.0013 (1 sigma). These results resolve the issue regarding the relative strengths for 1088, 1097 A in favor of those suggested by astronomical measurements. For the other lines, our results of f(1347) = 0.153 +/- 0.011 (1 sigma) and f(1363) = 0.055 +/- 0.004 (1 sigma) are the most precisely measured values available. The f-values are somewhat greater than previous experimental and theoretical determinations.

  20. Improved ultraviolet emission performance from polarization-engineered n-ZnO/p-GaN heterojunction diode

    NASA Astrophysics Data System (ADS)

    Jiang, Junyan; Zhang, Yuantao; Chi, Chen; Shi, Zhifeng; Yan, Long; Li, Pengchong; Zhang, Baolin; Du, Guotong

    2016-02-01

    O-polar ZnO films were grown on N-polar p-GaN/sapphire substrates by photo-assisted metal-organic chemical vapor deposition, and further heterojunction light-emitting diodes based O-polar n-ZnO/N-polar p-GaN were proposed and fabricated. It is experimentally demonstrated that the interface polarization of O-polar n-ZnO/N-polar p-GaN heterojunction can shift the location of the depletion region from the interface deep into the ZnO side. When a forward bias is applied to the proposed diode, a strong and high-purity ultraviolet emission located at 385 nm can be observed. Compared with conventional Zn-polar n-ZnO/Ga-polar p-GaN heterostructure diode, the ultraviolet emission intensity of the proposed heterojunction diode is greatly enhanced due to the presence of polarization-induced inversion layer at the ZnO side of the heterojunction interface. This work provides an innovative path for the design and development of ZnO-based ultraviolet diode.

  1. A Falling Corona Model for the Anomalous Behavior of the Broad Emission Lines in NGC 5548

    NASA Astrophysics Data System (ADS)

    Sun, Mouyuan; Xue, Yongquan; Cai, Zhenyi; Guo, Hengxiao

    2018-04-01

    NGC 5548 has been intensively monitored by the AGN Space Telescope and Optical Reverberation Mapping collaboration. Approximately after half of the light curves, the correlation between the broad emission lines and the lag-corrected ultraviolet (UV) continua becomes weak. This anomalous behavior is accompanied by an increase of soft X-ray emission. We propose a simple model to understand this anomalous behavior, i.e., the corona might fall down, thereby increasing the covering fraction of the inner disk. Therefore, X-ray and extreme-UV emission suffer from spectral variations. The UV continua variations are driven by both X-ray and extreme-UV variations. Consequently, the spectral variability induced by the falling corona would dilute the correlation between the broad emission lines and the UV continua. Our model can explain many additional observational facts, including the dependence of the anomalous behavior on velocity and ionization energy. We also show that the time lag and correlation between the X-ray and the UV variations change as NGC 5548 displays the anomalous behavior. The time lag is dramatically longer than the expectation from disk reprocessing if the anomalous behavior is properly excluded. During the anomalous state, the time lag approaches the light-travel timescale of disk reprocessing albeit with a much weaker correlation. We speculate that the time lag in the normal state is caused by reprocessing of the broad line region gas. As NGC 5548 enters the abnormal state, the contribution of the broad line region gas is smaller; the time lag reflects disk reprocessing. We also discuss alternative scenarios.

  2. Far-Ultraviolet Observations of the Circumstellar Gas in the 2 Andromedae System

    NASA Astrophysics Data System (ADS)

    Cheng, K.-P.; Neff, James E.

    2003-02-01

    The A5 star β Pictoris is a possible young planetary system and has the best-studied circumstellar disk. Our visible and ultraviolet observations of 2 Andromedae indicated that this A3 star has β Pictoris-like gas infall. We present the far-ultraviolet spectrum (905-1195 Å) of 2 And we obtained with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer (FUSE). Unlike β Pic, 2 And's FUSE spectrum does not show strong chromospheric emission lines from C III and O VI. However, 2 And's FUSE spectrum contains many nonphotospheric lines that allow us to probe the circumstellar gas. For example, between 1120 and 1140 Å, we detected several Fe III absorption lines arising from hyperfine levels of ground state, which cannot be formed in the interstellar medium. These lines are good diagnostics of the circumstellar gas. We also detected circumstellar Fe II, Cr III, Mn III, and O I (1D) lines. The simultaneous presence of these species suggests that the circumstellar environment of 2 And could include regions with different temperatures and densities.

  3. Identification of S VIII through S XIV emission lines between 17.5 and 50 nm in a magnetically confined plasma

    NASA Astrophysics Data System (ADS)

    McCarthy, K. J.; Tamura, N.; Combs, S. K.; García, R.; Hernández Sánchez, J.; Navarro, M.; Panadero, N.; Pastor, I.; Soleto, A.; the TJ-II Team

    2018-03-01

    43 spectral emission lines from F-like to Li-like sulphur ions have been identified in the wavelength range from 17.5 to 50 nm in spectra obtained following tracer injection into plasmas created in a magnetically confined plasma device, the stellarator TJ-II. Plasmas created and maintained in this heliac device with electron cyclotron resonance heating achieve central electron temperatures and densities up to 1.5 keV and 8 × 1018 m-3, respectively. Tracer injections were performed with ≤6 × 1016 atoms of sulphur contained within ˜300 μm diameter polystyrene capsules, termed tracer encapsulated solid pellets, using a gas propulsion system to achieve velocities between 250 and 450 m s-1. Once ablation of the exterior polystyrene shell by plasma particles is completed, the sulphur is deposited in the plasma core where it is ionized up to S+13 and transported about the plasma. In order to aid line identification, which is made using a number of atomic line emission databases, spectra are collected before and after injection using a 1 m focal length normal incidence spectrometer equipped with a CCD camera. This work is motivated by the need to clearly identify sulphur emission lines in the vacuum ultraviolet range of magnetically confined plasmas, as sulphur x-ray emission lines are regularly observed in both tokamak and stellarator plasmas.

  4. Mg II Chromospheric Emission Line Bisectors Of HD39801 And Its Relation With The Activity Cycle

    NASA Astrophysics Data System (ADS)

    García García, Leonardo Enrique; Pérez Martínez, M. Isabel

    2016-07-01

    Betelgeuse is a cool star of spectral type M and luminosity class I. In the present work, the activity cycle of Betelgeuse was obtained from the integrated emission flux of the Mg II H and K lines, using more than 250 spectra taken from the International Ultraviolet Explorer (IUE) online database. Of which it was found, based on a Lomb Scargle periodogram, a cycle of 16 years, along with 2 sub-cycles with a period of the order of 0.60 and 0.65 years, which may be due to turbulence or possible stellar flares. In addition, an analysis of line asymmetry was made by means of the chromospheric emission line bisectors, due to the strong self-absorption observed in this lines, the blue and red wings were analyzed independently. In order to measure such asymmetry, a "line shift" was calculated, from which several cycles of variability were obtained from a Lomb Scargle periodogram, spanning from few months to 4 years. In the sense, the most significant cycle is about 0.44 and 0.33 years in the blue and red wing respectively. It is worth noting, that the rotation period of the star doesn't play an important role in the variability of the Mg II lines. This technique provides us with a new way to study activity cycles of evolved stars.

  5. Ultraviolet Imaging Telescope observations of the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Hennessy, Gregory S.; O'Connell, Robert W.; Cheng, Kwang P.; Bohlin, Ralph C.; Collins, Nicholas R.; Gull, Theodore P.; Hintzen, Paul; Isensee, Joan E.; Landsman, Wayne B.; Roberts, Morton S.

    1992-01-01

    We obtained ultraviolet images of the Crab Nebula with the Ultraviolet Imaging Telescope during the Astro-1 Space Shuttle mission in 1990 December. The UV continuum morphology of the Crab is generally similar to that in the optical region, but the wispy structures are less conspicuous in the UV and X-ray. UV line emission from the thermal filaments is not strong. UV spectral index maps with a resolution of 10 arcsecs show a significant gradient across the nebula, with the outer parts being redder, as expected from synchrotron losses. The location of the bluest synchrotron continuum does not coincide with the pulsar.

  6. Observations of Cygnus X-2 with IUE: Ultraviolet results from a multiwavelength campaign

    NASA Technical Reports Server (NTRS)

    Vrtilek, S. D.; Raymond, J. C.; Garcia, M. R.; Verbunt, F.; Hasinger, Guenther; Kuerster, M.

    1989-01-01

    The observations of the low-mass x ray binary, Cyg X-2, taken with the International Ultraviolet Explorer (IUE) in a campaign conducted in June and October of 1988 are reported. A direct relationship between the strength of the UV continuum and line emission and the placement of the x ray spectrum in one of three branches of the so-called Z-shaped curve is found by comparison with simultaneous x ray observations. All three previously known x ray spectral states are detected; the UV continuum and line emission increase monotonically along the Z with the least emission in the horizontal branch, and the most in the flaring branch. Emission lines due to HeII, CIV, NIII, NIV, NV, SiIV, and MgII are observed.

  7. Far-ultraviolet and optical spectrophotometry of X-ray selected Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Clarke, J. T.; Bowyer, S.; Grewing, M.

    1986-01-01

    Five X-ray selected Seyfert galaxies were examined via near-simultaneous far-ultraviolet and optical spectrophotometry in an effort to test models for excitation of emission lines by X-ray and ultraviolet continuum photoionization. The observed Ly-alpha/H-beta ratio in the present sample averages 22, with an increase found toward the high-velocity wings of the H lines in the spectrum of at least one of the Seyfert I nuclei. It is suggested that Seyfert galaxies with the most high-velocity gas exhibit the highest Ly-alpha/H-beta ratios at all velocities in the line profiles, and that sometimes this ratio may be highest for the highest velocity material in the broad-line clouds. Since broad-lined objects are least affected by Ly-alpha trapping effects, they have Ly-alpha/H-beta ratios much closer to those predicted by early photoionization calculations.

  8. Characteristics of extreme ultraviolet emission from high-Z plasmas

    NASA Astrophysics Data System (ADS)

    Ohashi, H.; Higashiguchi, T.; Suzuki, Y.; Kawasaki, M.; Suzuki, C.; Tomita, K.; Nishikino, M.; Fujioka, S.; Endo, A.; Li, B.; Otsuka, T.; Dunne, P.; O'Sullivan, G.

    2016-03-01

    We demonstrate the extreme ultraviolet (EUV) and soft x-ray sources in the 2 to 7 nm spectral region related to the beyond EUV (BEUV) question at 6.x nm and the water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs), extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on high-Z plasma UTA source, coupled to multilayer mirror optics.

  9. Observations of emission in bright, low redshift quasars

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Ultraviolet, infrared, and optical spectra were combined to obtain a data set sample as broad as possible in the range of hydrogen lines in individual quasars. From the measured Lyman fluxes, coupled with Balmer and Paschen line fluxes measured in these same objects, an effort was made to establish observational constraints that would guide models of the broad emission line regions of quasars. It was found that IUE spectra were generally of sufficiently high quality to derive line profiles of the ultraviolet lines Lyman alpha and CIV 1550 A, which were compared to the Balmer line profiles. The objects observed and the line fluxes are tabulated. Plots of line profiles are included.

  10. Ba2Mg(BO3)2:Bi3+ - A new phosphor with ultraviolet light emission

    NASA Astrophysics Data System (ADS)

    Lakshminarasimhan, N.; Jayakiruba, S.; Prabhavathi, K.

    2017-10-01

    Ultraviolet light emission was observed in a new Ba2Mg(BO3)2:Bi3+ phosphor. Bi3+ substitution for Ba2+ in the lattice was supplemented with K+ to maintain the charge neutrality. The samples of the formula Ba2-2xBixKxMg(BO3)2 [x = 0, 0.001, 0.01, 0.02, and 0.05] synthesized by solid state reaction were characterized using powder X-ray diffraction for their phase formation. Raman and diffuse reflectance UV-Vis spectroscopic techniques were used to obtain information on the vibrational modes and optical properties, respectively. The room temperature photoluminescence measurements revealed an ultraviolet emission at 370 nm when excited using 304 nm wavelength and the Stokes shift is 5868 cm-1.

  11. Line spectrum and ion temperature measurements from tungsten ions at low ionization stages in large helical device based on vacuum ultraviolet spectroscopy in wavelength range of 500-2200 Å.

    PubMed

    Oishi, T; Morita, S; Huang, X L; Zhang, H M; Goto, M

    2014-11-01

    Vacuum ultraviolet spectra of emissions released from tungsten ions at lower ionization stages were measured in the Large Helical Device (LHD) in the wavelength range of 500-2200 Å using a 3 m normal incidence spectrometer. Tungsten ions were distributed in the LHD plasma by injecting a pellet consisting of a small piece of tungsten metal and polyethylene tube. Many lines having different wavelengths from intrinsic impurity ions were observed just after the tungsten pellet injection. Doppler broadening of a tungsten candidate line was successfully measured and the ion temperature was obtained.

  12. Line Tunable Ultraviolet Laser

    NASA Technical Reports Server (NTRS)

    Walsh, Brian M.; Barnes, Norman P.

    2004-01-01

    An ultraviolet laser is demonstrated using a dual wavelength Nd:YAG oscillator, sum frequency and second harmonic process. Synchronous pulses at 1.052 and 1.319 micrometers are amplified, mixed and subsequently doubled, producing pulses at 0.293 micrometers.

  13. Spectroscopy of an unusual emission line M star

    NASA Technical Reports Server (NTRS)

    Schneider, Donald P.; Greenstein, Jesse L.; Schmidt, Maarten; Gunn, James E.

    1991-01-01

    Moderate-resolution spectroscopy of an unusual late-type faint emission-line star, PC 0025 + 0047, is reported. A very strong (greater than 250 A equivalent width) an H-alpha emission line was detected by the present automated line search algorithm. The spectrum was found to have two unresolved emission lines (H-alpha and H-beta) near zero velocity, superposed on the absorption spectrum of a very red M dwarf which has strong K I, and relatively weak bands of TiO. From the weakness of the subordinate lines of Na I (8192 A) and other spectral features, it is inferred that it is definitely a cooler, and probably fainter, analog of LHS 2924. The strength of the emission lines indicates that PC 0025 + 0447 is very young and may be a fading predecessor brown drawf at an estimated M(bol) approaching 14m at a distance of about 60 pc.

  14. The polarization and ultraviolet spectrum of Markarian 231

    NASA Technical Reports Server (NTRS)

    Smith, Paul S.; Schmidt, Gary D.; Allen, Richard G.; Angel, J. R. P.

    1995-01-01

    Ultraviolet spectropolarimetry acquired with the Hubble Space Telescope (HST) of the peculiar Seyfert galaxy Mrk 231 is combined with new high-quality ground-based measurements to provide the first, nearly complete, record of its linear polarization from 1575 to 7900 A. The accompanying ultraviolet spectrum portrays the heavily extinguished emission-line spectrum of the active nucleus plus the emergence of a blue continuum shortward of approximately 2400 A. In addition, absorption features due to He I lambda 3188, Mg I lambda 2853, Mg II lambda 2798, and especially several resonance multiplets of Fe II are identified with a well-known optical absorption system blueshifted approximately 4600 km/s with respect to emission lines. The continuum is attributed to approximately 10(exp 5) hot, young stars surrounding the nucleus. This component dilutes the polarized nuclear light, implying that the intrinsic polarization of the active galactic nucleus (AGN) spectrum approaches 20% at 2800 A. The rapid decline in degree of polarization toward longer wavelengths is best explained by the strongly frequency-dependent scattering cross section of dust grains coupled with modest starlight dilution. Peculiar S-shaped inflections in both the degree and position angle of polarization through H alpha and other major emission lines are interpreted as effects of scattering from two regions offset in velocity by several hundred km/s. A third source of (weakly) polarized flux is required to explain a nearly 40 deg rotation in position angle between 3200 and 1800 A. The displaced absorption features, polarimetry, and optical/infrared properties of Mrk 231 all point to its classification as a low-ionization, or Mg II broad absorption line quasar, in which most, if not all, lines of sight to the active nucleus are heavily obscured by dust and low-ionization gas clouds.

  15. Ground-based observation of emission lines from the corona of a red-dwarf star.

    PubMed

    Schmitt, J H; Wichmann, R

    2001-08-02

    All 'solar-like' stars are surrounded by coronae, which contain magnetically confined plasma at temperatures above 106 K. (Until now, only the Sun's corona could be observed in the optical-as a shimmering envelope during a total solar eclipse.) As the underlying stellar 'surfaces'-the photospheres-are much cooler, some non-radiative process must be responsible for heating the coronae. The heating mechanism is generally thought to be magnetic in origin, but is not yet understood even for the case of the Sun. Ultraviolet emission lines first led to the discovery of the enormous temperature of the Sun's corona, but thermal emission from the coronae of other stars has hitherto been detectable only from space, at X-ray wavelengths. Here we report the detection of emission from highly ionized iron (Fe XIII at 3,388.1 A) in the corona of the red-dwarf star CN Leonis, using a ground-based telescope. The X-ray flux inferred from our data is consistent with previously measured X-ray fluxes, and the non-thermal line width of 18.4 km s-1 indicates great similarities between solar and stellar coronal heating mechanisms. The accessibility and spectral resolution (45,000) of the ground-based instrument are much better than those of X-ray satellites, so a new window to the study of stellar coronae has been opened.

  16. Line Profile of H Lyman-Beta Emission from Dissociative Excitation of H2

    NASA Technical Reports Server (NTRS)

    Ajello, Joseph M.; Ahmed, Syed M.; Liu, Xian-Ming

    1996-01-01

    A high-resolution ultraviolet spectrometer was employed for a measurement of the H Lyman-Beta(H L(sub Beta)) emission Doppler line profile at 1025.7 A from dissociative excitation of H2 by electron impact. Analysis of the deconvolved line profile reveals the existence of a narrow central peak, less than 30 mA full width at half maximum (FWHM), and a broad pedestal base about 260 mA FWHM. Analysis of the red wing of the line profile is complicated by a group of Wemer and Lyman rotational lines 160-220 mA from the line center. Analysis of the blue wing of the line profile gives the kinetic-energy distribution. There are two main kinetic-energy components to the H(3p) distribution: (1) a slow distribution with a peak value near 0 eV from singly excited states, and (2) a fast distribution with a peak contribution near 7 eV from doubly excited states. Using two different techniques, the absolute cross section of H L(sub Beta)p is found to be 3.2+/-.8 x 10(exp -19)sq cm at 100-eV electron impact energy. The experimental cross-section and line-profile results can be compared to previous studies of H(alpha) (6563.7 A) for principal quantum number n=3 and L(sub alpha)(1215.7 A) for n=2.

  17. 2D-model of oxygen emissions lines for Europa

    NASA Astrophysics Data System (ADS)

    Cessateur, Gaël; Barthelemy, Mathieu; Lilensten, Jean; Rubin, Martin; Maggiolo, Romain; De Keyser, Johan

    2017-04-01

    The Jovian moon Europa is an interesting case study as an archetype for icy satellites, and will be one of the primary targets of the ESA JUICE mission which should be launched in 2022. Hosting a thin neutral gas atmosphere mainly composed of O2 and H2O, Europa can be studied by its airglow and dayglow emissions. A 1D photochemistry model has first been developed to assess the impact of the solar UV flux on the visible emission, such as the red and green oxygen lines (Cessateur et al. 2016). For limb polar viewing, red line emissions can reach a few hundreds of Rayleigh close to the surface. The impact of the precipitating electrons has also been studied. The density and temperature of the electrons are first derived from the multifluid MHD model from Rubin et al. (2015). A 2D emission model has thus been developed to estimate the airglow emissions. When electrons are the major source of the visible emissions, the solar UV flux can be responsible for up to 15% of those emissions for some specific line of sight. Oxygen emission lines in the UV have also been considered, such as 130.5 and 135.6 nm. For the latter, we did estimate some significant line emissions reaching 700 Rayleigh for a polar limb viewing angle close to the surface. Oxygen emission lines are significant (higher than 10 R) for altitudes lower than 100 km for all lines, except for the red line emissions where emissions are still above 10 R up to 200 km from the surface. A sensitivity study has also been performed in order to assess the impact of the uncertainties relative to the dissociative-excitation cross sections. Cessateur G, Barthelemy M & Peinke I. Photochemistry-emission coupled model for Europa and Ganymede. J. Space Weather Space Clim., 6, A17, 2016 Rubin, M., et al. Self-consistent multifluid MHD simulations of Europa's exospheric interaction with Jupiter's magnetosphere, J. Geophys. Res. Space Physics, 120, 3503-3524, 2015

  18. Line spectrum and ion temperature measurements from tungsten ions at low ionization stages in large helical device based on vacuum ultraviolet spectroscopy in wavelength range of 500–2200 Å

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oishi, T., E-mail: oishi@LHD.nifs.ac.jp; Morita, S.; Goto, M.

    2014-11-15

    Vacuum ultraviolet spectra of emissions released from tungsten ions at lower ionization stages were measured in the Large Helical Device (LHD) in the wavelength range of 500–2200 Å using a 3 m normal incidence spectrometer. Tungsten ions were distributed in the LHD plasma by injecting a pellet consisting of a small piece of tungsten metal and polyethylene tube. Many lines having different wavelengths from intrinsic impurity ions were observed just after the tungsten pellet injection. Doppler broadening of a tungsten candidate line was successfully measured and the ion temperature was obtained.

  19. Emission lines in the long period Cepheid l Carinae

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, Erika; Love, Stanley G.

    1991-01-01

    For the Cepheid (l) Carinae with a pulsation period of 35.5 days we have studied the emission line fluxes as a function of pulsational phase in order to find out whether we see chromosphere and transition layer emission or whether we see emission due to an outward moving shock. All emission lines show a steep increase in flux shortly before maximum light suggestive of a shock moving through the surface layers. The large ratio of the C IV to C II line fluxes shows that these are not transition layer lines. During maximum light the large ratio of the C IV to C II line fluxes also suggests that we see emission from a shock with velocities greater than 100 km/sec such that C IV emission can be excited. With such velocities mass outflow appears possible. The variations seen in the Mg II line profiles show that there is an internal absorption over a broad velocity band independent of the pulsational phase. We attribute this absorption to a circumstellar 'shell'. This 'shell' appears to be seen also as spatially extended emission in the O I line at 1300 angstrom, which is probably excited by resonance with Ly beta.

  20. Far-Infrared Line Emission from High Redshift Quasars

    NASA Technical Reports Server (NTRS)

    Benford, D. J.; Cox, P.; Hunter, T. R.; Malhotra, S.; Phillips, T. G.; Yun, M. S.

    2002-01-01

    Recent millimeter and submillimeter detections of line emission in high redshift objects have yielded new information and constraints on star formation at early epochs. Only CO transitions and atomic carbon transitions have been detected from these objects, yet bright far-infrared lines such as C+ at 158 microns and N+ at 205 microns should be fairly readily detectable when redshifted into a submillimeter atmospheric window. We have obtained upper limits for C+ emission &om two high redshift quasars, BR1202-0725 at z=4.69 and BRI1335-0415 at z=4.41. These limits show that the ratio of the C+ line luminosity to the total far-infrared luminosity is less than 0.0l%, ten times smaller than has been observed locally. Additionally, we have searched for emission in the N+ 205 micron line from the Cloverleaf quasar, H1413+117, and detected emission in CO J=7-6. The N+ emission is found to be below the amount predicted based on comparison to the only previous detection of this line, in the starburst galaxy M82.

  1. ASASSN-15LH: A SUPERLUMINOUS ULTRAVIOLET REBRIGHTENING OBSERVED BY SWIFT AND HUBBLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Peter J.; Yang, Yi; Wang, Lifan

    2016-09-01

    We present and discuss ultraviolet and optical photometry from the Ultraviolet/Optical Telescope, X-ray limits from the X-Ray Telescope on Swift, and imaging polarimetry and ultraviolet/optical spectroscopy with the Hubble Space Telescope , all from observations of ASASSN-15lh. It has been classified as a hydrogen-poor superluminous supernova (SLSN I), making it more luminous than any other supernova observed. ASASSN-15lh is not detected in the X-rays in individual or co-added observations. From the polarimetry we determine that the explosion was only mildly asymmetric. We find the flux of ASASSN-15lh to increase strongly into the ultraviolet, with an ultraviolet luminosity 100 times greatermore » than the hydrogen-rich, ultraviolet-bright SLSN II SN 2008es. We find that objects as bright as ASASSN-15lh are easily detectable beyond redshifts of ∼4 with the single-visit depths planned for the Large Synoptic Survey Telescope. Deep near-infrared surveys could detect such objects past a redshift of ∼20, enabling a probe of the earliest star formation. A late rebrightening—most prominent at shorter wavelengths—is seen about two months after the peak brightness, which is itself as bright as an SLSN. The ultraviolet spectra during the rebrightening are dominated by the continuum without the broad absorption or emission lines seen in SLSNe or tidal disruption events (TDEs) and the early optical spectra of ASASSN-15lh. Our spectra show no strong hydrogen emission, showing only Ly α absorption near the redshift previously found by optical absorption lines of the presumed host. The properties of ASASSN-15lh are extreme when compared to either SLSNe or TDEs.« less

  2. Emission Lines from the Gas Disk Around TW Hydra and the Origin of the Inner Hole

    NASA Technical Reports Server (NTRS)

    Gorti, U.; Hollenbach, D.; Najita, J.; Pascucci, I.

    2011-01-01

    We compare line emission calculated from theoretical disk models with optical to submillimeter wavelength observational data of the gas disk surrounding TW Hya and infer the spatial distribution of mass in the gas disk. The model disk that best matches observations has a gas mass ranging from approx.10(exp -4) to 10(exp -5) M for 0.06AU < r < 3.5 AU and approx. 0.06M for 3.5AU < r < 200 AU. We find that the inner dust hole (r < 3.5 AU) in the disk must be depleted of gas by approx. 1-2 orders of magnitude compared with the extrapolated surface density distribution of the outer disk. Grain growth alone is therefore not a viable explanation for the dust hole. CO vibrational emission arises within r approx. 0.5 AU from thermal excitation of gas. [O i] 6300Å and 5577Å forbidden lines and OH mid-infrared emission are mainly due to prompt emission following UV photodissociation of OH and water at r < or approx. 0.1 AU and at r approx. 4 AU. [Ne ii] emission is consistent with an origin in X-ray heated neutral gas at r < or approx. 10 AU, and may not require the presence of a significant extreme-ultraviolet (h? > 13.6 eV) flux from TW Hya. H2 pure rotational line emission comes primarily from r approx. 1 to 30 AU. [Oi] 63microns, HCO+, and CO pure rotational lines all arise from the outer disk at r approx. 30-120 AU. We discuss planet formation and photoevaporation as causes for the decrease in surface density of gas and dust inside 4 AU. If a planet is present, our results suggest a planet mass approx. 4-7MJ situated at 3 AU. Using our photoevaporation models and the best surface density profile match to observations, we estimate a current photoevaporative mass loss rate of 4x10(exp -9M)/yr and a remaining disk lifetime of approx.5 million years.

  3. Intense ultraviolet emission from needle-like WO3 nanostructures synthesized by noncatalytic thermal evaporation

    PubMed Central

    2011-01-01

    Photoluminescence measurements showed that needle-like tungsten oxide nanostructures synthesized at 590°C to 750°C by the thermal evaporation of WO3 nanopowders without the use of a catalyst had an intense near-ultraviolet (NUV) emission band that was different from that of the tungsten oxide nanostructures obtained in other temperature ranges. The intense NUV emission might be due to the localized states associated with oxygen vacancies and surface states. PMID:21752275

  4. Pluto's Ultraviolet Airglow and Detection of Ions in the Upper Atmosphere

    NASA Astrophysics Data System (ADS)

    Steffl, A.; Young, L. A.; Kammer, J.; Gladstone, R.; Hinson, D. P.; Summers, M. E.; Strobel, D. F.; Stern, S. A.; Weaver, H. A., Jr.; Olkin, C.; Ennico Smith, K.

    2017-12-01

    In July 2015, the Alice ultraviolet spectrograph aboard the New Horizons spacecraft made numerous observations of Pluto and its atmosphere. We present here the far ultraviolet reflectance spectrum of Pluto and airglow emissions from its atmosphere. At wavelengths greater than 1400Å, Pluto's spectrum is dominated by sunlight reflected from the surface of the planet. Various hydrocarbon species such as C2H4 are detected in absorption of the solar continuum. Below 1400Å, Pluto's atmosphere is opaque and the surface cannot be detected. However, after carefully removing various sources of background light, we see extremely faint airglow emissions (<0.05 Rayleighs/Ångstrom) from Pluto's atmosphere. All of the emissions are produced by nitrogen in various forms: molecular, atomic, and singly ionized. The detection of N+ at 1086Å is the first, and thus far only, direct detection of ions in Pluto's atmosphere. This N+ emission line is produced primarily by dissociative photoionization of molecular N2 by solar EUV photons (energy > 34.7 eV; wavelength < 360Å). Notably absent from Pluto's spectrum are emission lines from argon at 1048 and 1067Å. We place upper limits on the amount of argon in Pluto's atmosphere above the tau=1 level (observed to be at 750km tangent altitude) that are significantly lower than pre-encounter atmospheric models.

  5. Ultraviolet carbon lines in the spectrum of the white dwarf BPM 11668

    NASA Technical Reports Server (NTRS)

    Wegner, G.

    1983-01-01

    The southern hemisphere DC white dwarf BPM 11668 has been found to show strong ultraviolet lines of neutral carbon using observations from the IUE satellite. This star seems typical of the growing number of DC white dwarfs found to be of this type and appears to have a carbon abundance near C:He = 0.0001, with an effective temperature of 8500 K.

  6. The Ultraviolet Spectrum of the Jovian Dayglow

    NASA Technical Reports Server (NTRS)

    Liu, Weihong; Dalgarno, A.

    1995-01-01

    The ultraviolet spectra of molecular hydrogen H2 and HD due to solar fluorescence and photoelectron excitation are calculated and compared with the Jovian equatorial dayglow spectrum measured at 3 A resolution at solar maximum. The dayglow emission is accounted for in both brightness and spectral shape by the solar fluorescence and photoelectron excitation and requires no additional energy source. The emission is characterized by an atmospheric temperature of 530 K and an H2 column density of 10(exp 20) cm(exp -2). The dayglow spectrum contains a cascade contribution to the Lyman band emission from high-lying E and F states. Its relative weakness at short wavelengths is due to both self-absorption by H2 and absorption by CH4. Strong wavelength coincidences of solar emission lines and absorption lines of H2 and HD produce unique line spectra which can be identified in the dayglow spectrum. The strongest fluorescence is due to absorption of the solar Lyman-beta line at 1025.72 A by the P(1) line of the (6, 0) Lyman band of H2 at 1025.93 A. The fluorescence lines due to absorption of the solar O 6 line at 1031.91 A by vibrationally excited H2 via the Q(3) line of the (1, 1) Werner band at 1031.86 A are identified. The fluorescence lines provide a sensitive measure of the atmospheric temperature. There occurs an exact coincidence of the solar O 6 line at 1031.91 A and the R(0) line of the (6, 0) Lyman band of HD at 1031-91 A, but HD on Jupiter is difficult to detect due to the dominance of the H2 emission where the HD emission is particularly strong. Higher spectral resolution and higher sensitivity may make possible such a detection. The high resolution (0.3 A) spectra of H2 and HD are presented to stimulate search for the HD on Jupiter with the Hubble Space Telescope.

  7. Ultraviolet spectroscopy of V Sagittae in high, intermediate and low states from HST and IUE satellites

    NASA Astrophysics Data System (ADS)

    Sanad, M. R.

    2015-11-01

    We present the first phase resolved ultraviolet spectroscopic study of V Sge in high, intermediate and low states observed with the Hubble Space Telescope High Resolution Spectrograph (HST HRS) and International Ultraviolet Explorer (IUE) during the period 1978-1996 to diagnose the ultraviolet fluxes of C IV 1550 Å and He II 1640 Å emission lines originating in the accretion disk during different orbital phases. Different spectra showing the variations in line fluxes at different orbital phases are presented. The reddening of V Sge is determined from the 2200 Å feature. We concentrated on calculating the line fluxes of C IV & He II emission lines. From HST and IUE data, we derived an accretion luminosity and an accretion rate for V Sge. The average temperature of the outer rim of the accretion disk {˜}10000 K. Our results show that there are variations in line fluxes, accretion luminosities and accretion rates with time for V Sge. These variations are attributed to the variations of both density and temperature as a result of a changing rate of mass transfer from the secondary star to the white dwarf. These results from the HST and IUE observations are consistent with the binary model consisting of a white dwarf, a disk around the white dwarf, and a lobe-filling main-sequence companion (Hachisu & Kato, Astrophys. J. 598:527H, 2003).

  8. Lattice-matched double dip-shaped BAlGaN/AlN quantum well structures for ultraviolet light emission devices

    NASA Astrophysics Data System (ADS)

    Park, Seoung-Hwan; Ahn, Doyeol

    2018-05-01

    Ultraviolet light emission characteristics of lattice-matched BxAlyGa1-x-y N/AlN quantum well (QW) structures with double AlGaN delta layers were investigated theoretically. In contrast to conventional single dip-shaped QW structure where the reduction effect of the spatial separation between electron and hole wave functions is negligible, proposed double dip-shaped QW shows significant enhancement of the ultraviolet light emission intensity from a BAlGaN/AlN QW structure due to the reduced spatial separation between electron and hole wave functions. The emission peak of the double dip-shaped QW structure is expected to be about three times larger than that of the conventional rectangular AlGaN/AlN QW structure.

  9. The far ultraviolet spectrum of Pluto and the discovery of its ionosphere

    NASA Astrophysics Data System (ADS)

    Steffl, A.; Stern, A.; Gladstone, R.; Parker, J. W.; Greathouse, T. K.; Retherford, K. D.; Young, L. A.; Schindhelm, E.; Kammer, J.; Strobel, D. F.; Summers, M. E.; Versteeg, M.; Olkin, C.; Weaver, H. A., Jr.; Hinson, D. P.; Linscott, I.

    2016-12-01

    During the New Horizons spacecraft's encounter with Pluto in July 2015, the Alice far ultraviolet spectrograph made numerous observations of Pluto and its atmosphere. We present here the far ultraviolet spectrum of Pluto. We observe faint emission (<0.01 Rayleighs/Ångstrom) from singly ionized nitrogen at 108.6 nm-the first detection of an ionosphere at Pluto. This N+ line is produced primarily by dissociative photoionization of molecular N2 by solar EUV photons (energy > 34.7 eV; wavelength < 36nm). Notably absent from Pluto's spectrum are emission lines from argon at 104.8 and 106.7 nm. We place upper limits on the amount of argon in Pluto's atmosphere above the tau=1 level (observed to be at 750km tangent altitude) that are significantly lower than previous models. We also identify and derive column densities for various hydrocarbon species such as C2H4 through their absorption of sunlight reflected from Pluto's surface.

  10. The BUSS spectrum of Beta Lyrae. [Balloon-borne Ultraviolet Stellar Spectrograph

    NASA Technical Reports Server (NTRS)

    Hack, M.; Sahade, J.; De Jager, C.; Kondo, Y.

    1983-01-01

    The spectrum of Beta Lyrae from about 1975 to 3010 A taken with the Balloon-borne ultraviolet Stellar Spectrograph experiment in May 1976 at phase 0.61 P is analyzed. Results show the presence of N II semi-forbidden emission and provide evidence for about the same location, in the outer envelope of the system, of the layers responsible for the resonance Mg II doublet emissions and for the "narrow" H-alpha emission. In addition, three sets of absorption lines, P Cygni profiles of Fe III and broad Beals Type III emissions of Mg II, are found to be present.

  11. Measurements of density dependent intensity ratios of extreme ultraviolet line emission from Fe X, XI, and XII

    NASA Astrophysics Data System (ADS)

    Shimizu, Erina; Ali, Safdar; Tsuda, Takashi; Sakaue, Hiroyuki A.; Kato, Daiji; Murakami, Izumi; Hara, Hirohisa; Watanabe, Tetsuya; Nakamura, Nobuyuki

    2017-05-01

    We report high-resolution density dependent intensity ratio measurements for middle charge states of iron in the extreme ultraviolet (EUV) spectral wavelength range of 160-200 Å. The measurements were performed at the Tokyo EBIT laboratory by employing a flat-field grazing incidence spectrometer installed on a low energy compact electron beam ion trap. The intensity ratios for several line pairs stemming from Fe X, Fe XI and Fe XII were extracted from spectra collected at the electron beam energies of 340 and 400 eV by varying the beam current between 7.5 and 12 mA at each energy. In addition, the effective electron densities were obtained experimentally by imaging the electron beam profile and ion cloud size with a pinhole camera and visible spectrometer, respectively. In this paper, the experimental results are compared with previous data from the literature and with the present calculations performed using a collisional-radiative model. Our experimental results show a rather good agreement with the calculations and previous reported results.

  12. Community-LINE Source Model (C-LINE) to estimate roadway emissions

    EPA Pesticide Factsheets

    C-LINE is a web-based model that estimates emissions and dispersion of toxic air pollutants for roadways in the U.S. This reduced-form air quality model examines what-if scenarios for changes in emissions such as traffic volume fleet mix and vehicle speed.

  13. Coronal Physics and the Chandra Emission Line Project

    NASA Technical Reports Server (NTRS)

    Brickhouse, N. S.; Drake, J. J.

    2000-01-01

    With the launch of the Chandra X-ray Observatory, high resolution X-ray spectroscopy of cosmic sources has begun. Early, deep observations of three stellar coronal sources Capella, Procyon, and HR 1099 are providing not only invaluable calibration data, but also benchmarks for plasma spectral models. These models are needed to interpret data from stellar coronae, galaxies and clusters of galaxies, supernova, remnants and other astrophysical sources. They have been called into question in recent years as problems with understanding low resolution ASCA and moderate resolution Extreme Ultraviolet Explorer Satellite (EUVE) data have arisen. The Emission Line Project is a collaborative effort, to improve the models, with Phase I being the comparison of models with observed spectra of Capella, Procyon, and HR 1099. Goals of these comparisons are (1) to determine and verify accurate and robust diagnostics and (2) to identify and prioritize issues in fundamental spectroscopy which will require further theoretical and/or laboratory work. A critical issue in exploiting the coronal data for these purposes is to understand the extent, to which common simplifying assumptions (coronal equilibrium, negligible optical depth) apply. We will discuss recent, advances in our understanding of stellar coronae, in this context.

  14. Modelling and Display of the Ultraviolet Sky

    NASA Astrophysics Data System (ADS)

    Daniels, J.; Henry, R.; Murthy, J.; Allen, M.; McGlynn, T. A.; Scollick, K.

    1994-12-01

    A computer program is currently under development to model in 3D - one dimension of which is wavelength - all the known and major speculated sources of ultraviolet (900 A - 3100 A ) radiation over the celestial sphere. The software is being written in Fortran 77 and IDL and currently operates under IRIX (the operating system of the Silicon Graphics Iris Machine); all output models are in FITS format. Models along with display software will become available to the astronomical community. The Ultraviolet Sky Model currently includes the Zodiacal Light, Point Sources of Emission, and the Diffuse Galactic Light. The Ultraviolet Sky Model is currently displayed using SkyView: a package under development at NASA/ GSFC, which allows users to retrieve and display publically available all-sky astronomical survey data (covering many wavebands) over the Internet. We present a demonstration of the SkyView display of the Ultraviolet Model. The modelling is a five year development project: the work illustrated here represents product output at the end of year one. Future work includes enhancements to the current models and incorporation of the following models: Galactic Molecular Hydrogen Fluorescence; Galactic Highly Ionized Atomic Line Emission; Integrated Extragalactic Light; and speculated sources in the intergalactic medium such as Ionized Plasma and radiation from Non-Baryonic Particle Decay. We also present a poster which summarizes the components of the Ultraviolet Sky Model and outlines a further package that will be used to display the Ultraviolet Model. This work is supported by United States Air Force Contract F19628-93-K-0004. Dr J. Daniels is supported with a post-doctoral Fellowship from the Leverhulme Foundation, London, United Kingdom. We are also grateful for the encouragement of Dr Stephen Price (Phillips Laboratory, Hanscomb Air Force Base, MA)

  15. Optical emission line monitor with background observation and cancellation

    DOEpatents

    Goff, D.R.; Notestein, J.E.

    1985-01-04

    A fiber optics based optical emission line monitoring system is provided in which selected spectral emission lines, such as the sodium D-line emission in coal combustion, may be detected in the presence of interferring background or blackbody radiation with emissions much greater in intensity than that of the emission line being detected. A bifurcated fiber optic light guide is adapted at the end of one branch to view the combustion light which is guided to a first bandpass filter, adapted to the common trunk end of the fiber. A portion of the light is reflected back through the common trunk portion of the fiber to a second bandpass filter adapted to the end of the other branch of the fiber. The first filter bandpass is centered at a wavelength corresponding to the emission line to be detected with a bandwidth of about three nanometers (nm). The second filter is centered at the same wavelength but having a width of about 10 nm. First and second light detectors are located to view the light passing through the first and second filters respectively. Thus, the second detector is blind to the light corresponding to the emission line of interest detected by the first detector and the difference between the two detector outputs is uniquely indicative of the intensity of only the combustion flame emission of interest. This instrument can reduce the effects of interfering blackbody radiation by greater than 20 dB.

  16. Optical emission line monitor with background observation and cancellation

    DOEpatents

    Goff, David R.; Notestein, John E.

    1986-01-01

    A fiber optics based optical emission line monitoring system is provided in which selected spectral emission lines, such as the sodium D-line emission in coal combustion, may be detected in the presence of interferring background or blackbody radiation with emissions much greater in intensity than that of the emission line being detected. A bifurcated fiber optic light guide is adapted at the end of one branch to view the combustion light which is guided to a first bandpass filter, adapted to the common trunk end of the fiber. A portion of the light is reflected back through the common trunk portion of the fiber to a second bandpass filter adapted to the end of the other branch of the fiber. The first filter bandpass is centered at a wavelength corresponding to the emission line to be detected with a bandwidth of about three nanometers (nm). The second filter is centered at the same wavelength but having a width of about 10 nm. First and second light detectors are located to view the light passing through the first and second filters respectively. Thus, the second detector is blind to the light corresponding to the emission line of interest detected by the first detector and the difference between the two detector outputs is uniquely indicative of the intensity of only the combustion flame emission of interest. This instrument can reduce the effects of interferring blackbody radiation by greater than 20 dB.

  17. Observations of emission lines in M supergiants

    NASA Technical Reports Server (NTRS)

    Lambert, D. L.

    1979-01-01

    Copernicus observations of Mg 2 h and k emission lines from M giants and supergiants are described. Supergiants with extensive circumstellar gas shells show an asymmetric k line. The asymmetry is ascribed to superimposed lines of Fe 1 and Mn 1. The Mg 2 line width fit the Wilson-Bappu relation derived from observations of G and K Stars. Results of correlated ground-based observations include (1) the discovery of K 1 fluorescent emission from the Betelgeuse shell; (2) extimates of the mass-loss rates; and (3) the proposal that silicate dust grains must account for the major fraction of the Si atoms in the Betelgeuse shell.

  18. Copernicus ultraviolet spectra of OB supergiants with strong stellar winds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchings, J.B.

    1976-03-01

    Spectral scans at approximately 0.2 A resolution have been obtained in the far-ultraviolet of eight stars which have high mass-loss rates from stellar winds. The P Cygni characteristics of the line profiles appear to vary inversely as the mass flow rate, and in P Cygni itself the C III lambda 1175 line shows no velocity shift, or emission. It is suggested that higher mass flow rates occur through a denser, slower moving envelope in which collisional interactions are important. (auth)

  19. Shuttle-based measurements: GLO ultraviolet earthlimb view

    NASA Astrophysics Data System (ADS)

    Gardner, James A.; Murad, Edmond; Viereck, Rodney A.; Knecht, David J.; Pike, Charles P.; Broadfoot, A. Lyle

    1996-11-01

    The GLO experiment is an on-going shuttle-based spectrograph/imager project that has returned ultraviolet (100 - 400 nm) limb views. High spectral (0.35 nm FWHM) and temporal (4 s) resolution spectra include simultaneous altitude profiles (in the range of 80 - 400 km tangent height with 10 km resolution) of dayglow and nightglow features. Measured emissions include the NO gamma, N2 Vegard-Kaplan and second positive, N2+ first negative, and O2 Herzberg I band systems and both atomic and cation lines of N, O, and Mg. This data represents a low solar activity benchmark for future observations. We report on the status of the GLO project, which included three space flights in 1995, and present spectral data on important ultraviolet band systems.

  20. X-Ray Emission from Ultraviolet Luminous Galaxies and Lyman Break Galaxies

    NASA Technical Reports Server (NTRS)

    Hornschemeier, Ann; Ptak, A. F.; Salim, S.; Heckman, T. P.; Overzier, R.; Mallery, R.; Rich, M.; Strickland, D.; Grimes, J.

    2009-01-01

    We present results from an XMM mini-survey of GALEX-selected Ultraviolet-Luminous Galaxies (UVLGs) that appear to include an interesting subset that are analogs to the distant (3emission of LBGs appear to be broadly similar to that of galaxies in the local Universe, possibly indicating similarity in the production of accreting binaries over large evolutionary timescales in the Universe. We have detected luminous X-ray emission from one UVLG that permits basic X-ray spectroscopic analysis, and have direct X-ray constraints on a total of 6 UVLGs. We find evidence for likely large scatter in the assumed X-ray/star-formation rate relation for LBGs.

  1. Ultraviolet and optical spectrophotometry of the Seyfert 1.8 galaxy Markarian 609

    NASA Technical Reports Server (NTRS)

    Rudy, Richard J.; Cohen, Ross D.; Ake, T. B.

    1988-01-01

    Ultraviolet and optical observations of the Seyfert 1.8 galaxy Mrk 609 were collected simultaneously. The observations reveal strong line and continuum emission in the UV, an increase in the flux of H-beta and He I 5876, and a decrease in the H-alpha/H-beta value since the measurements by Osterbrock (1978, 1981), as well as an extended population of early-type stars, which is considered to be the source powering the larger part of the far-IR emission. Special attention is given to the origin of steep broad-line Balmer decrement measured by Osterbrock, since the strong UV continuum and the emission lines of Mrk 609 observed rule out reddening as the cause of the Balmer decrement. It is suggested that smaller-than-normal optical depths are likely to be the cause of the decrement.

  2. Rosetta photoelectron emission and solar ultraviolet flux at comet 67P

    NASA Astrophysics Data System (ADS)

    Johansson, Fredrik L.; Odelstad, E.; Paulsson, J. J. P.; Harang, S. S.; Eriksson, A. I.; Mannel, T.; Vigren, E.; Edberg, N. J. T.; Miloch, W. J.; Simon Wedlund, C.; Thiemann, E.; Eparvier, F.; Andersson, L.

    2017-07-01

    The Langmuir Probe instrument on Rosetta monitored the photoelectron emission current of the probes during the Rosetta mission at comet 67P/Churyumov-Gerasimenko, in essence acting as a photodiode monitoring the solar ultraviolet radiation at wavelengths below 250 nm. We have used three methods of extracting the photoelectron saturation current from the Langmuir probe measurements. The resulting data set can be used as an index of the solar far and extreme ultraviolet at the Rosetta spacecraft position, including flares, in wavelengths which are important for photoionization of the cometary neutral gas. Comparing the photoemission current to data measurements by MAVEN/EUVM and TIMED/SEE, we find good correlation when 67P was at large heliocentric distances early and late in the mission, but up to 50 per cent decrease of the expected photoelectron current at perihelion. We discuss possible reasons for the photoemission decrease, including scattering and absorption by nanograins created by disintegration of cometary dust far away from the nucleus.

  3. Emission line galaxies and active galactic nuclei in WINGS clusters

    NASA Astrophysics Data System (ADS)

    Marziani, P.; D'Onofrio, M.; Bettoni, D.; Poggianti, B. M.; Moretti, A.; Fasano, G.; Fritz, J.; Cava, A.; Varela, J.; Omizzolo, A.

    2017-03-01

    We present the analysis of the emission line galaxies members of 46 low-redshift (0.04 < z < 0.07) clusters observed by WINGS (WIde-field Nearby Galaxy cluster Survey). Emission line galaxies were identified following criteria that are meant to minimize biases against non-star-forming galaxies and classified employing diagnostic diagrams. We examined the emission line properties and frequencies of star-forming galaxies, transition objects, and active galactic nuclei (AGNs: LINERs and Seyferts), unclassified galaxies with emission lines, and quiescent galaxies with no detectable line emission. A deficit of emission line galaxies in the cluster environment is indicated by both a lower frequency, and a systematically lower Balmer emission line equivalent width and luminosity with respect to control samples; this implies a lower amount of ionized gas per unit mass and a lower star formation rate if the source is classified as Hii region. A sizable population of transition objects and of low-luminosity LINERs (≈ 10-20% of all emission line galaxies) are detected among WINGS cluster galaxies. These sources are a factor of ≈1.5 more frequent, or at least as frequent, as in control samples with respect to Hii sources. Transition objects and LINERs in clusters are most affected in terms ofline equivalent width by the environment and appear predominantly consistent with so-called retired galaxies. Shock heating can be a possible gas excitation mechanism that is able to account for observed line ratios. Specific to the cluster environment, we suggest interaction between atomic and molecular gas and the intracluster medium as a possible physical cause of line-emitting shocks. The data whose description is provided in Table B.1, and emission line catalog of the WINGS database are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A83

  4. Ultraviolet and Visible Emission Mechanisms in Astrophysics

    NASA Technical Reports Server (NTRS)

    Stancil, Phillip C.; Schultz, David R.

    2003-01-01

    The project involved the study of ultraviolet (UV) and visible emission mechanisms in astrophysical and atmospheric environments. In many situations, the emission is a direct consequence of a charge transferring collision of an ion with a neutral with capture of an electron to an excited state of the product ion. The process is also important in establishing the ionization and thermal balance of an astrophysical plasma. As little of the necessary collision data are available, the main thrust of the project was the calculation of total and state-selective charge transfer cross sections and rate coefficients for a very large number of collision systems. The data was computed using modern explicit techniques including the molecular-orbital close-coupling (MOCC), classical trajectory Monte Carlo (CTMC), and continuum distorted wave (CDW) methods. Estimates were also made in some instances using the multichannel Landau-Zener (MCLZ) and classical over-the-barrier (COB) models. Much of the data which has been computed has been formatted for inclusion in a charge transfer database on the World Wide Web (cfadc.phy.ornl.gov/astro/ps/data/). A considerable amount of data has been generated during the lifetime of the grant. Some of it has not been analyzed, but it will be as soon as possible, the data placed on our website, and papers ultimately written.

  5. Measurement of temperature profiles in flames by emission-absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Simmons, F. S.; Arnold, C. B.; Lindquist, G. H.

    1972-01-01

    An investigation was conducted to explore the use of infrared and ultraviolet emission-absorption spectroscopy for determination of temperature profiles in flames. Spectral radiances and absorptances were measured in the 2.7-micron H2O band and the 3064-A OH band in H2/O2 flames for several temperature profiles which were directly measured by a sodium line-reversal technique. The temperature profiles, determined by inversion of the infrared and ultraviolet spectra, showed an average disagreement with line-reversal measurements of 50 K for the infrared and 200 K for the ultraviolet at a temperature of 2600 K. The reasons for these discrepancies are discussed in some detail.

  6. Significant contribution of the Cerenkov line-like radiation to the broad emission lines of quasars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, D. B.; You, J. H.; Chen, W. P.

    2014-01-01

    The Cerenkov line-like radiation in a dense gas (N {sub H} > 10{sup 13} cm{sup –3}) is potentially important in the exploration of the optical broad emission lines of quasars and Seyfert 1 galaxies. With this quasi-line emission mechanism, some long standing puzzles in the study of quasars could be resolved. In this paper, we calculate the power of the Cerenkov line-like radiation in dense gas and compare with the powers of other radiation mechanisms by a fast electron to confirm its importance. From the observed gamma-ray luminosity of 3C 279, we show that the total number of fast electronsmore » is sufficiently high to allow effective operation of the quasi-line emission. We present a model calculation for the luminosity of the Cerenkov Lyα line of 3C 279, which is high enough to compare with observations. We therefore conclude that the broad line of quasars may be a blend of the Cerenkov emission line with the real line produced by the bound-bound transition. A new approach to the absorption of the Cerenkov line is presented with the method of escape probability, which markedly simplifies the computation in the optically thick case. The revised set of formulae for the Cerenkov line-like radiation is more convenient in applications.« less

  7. Measuring SO2 ship emissions with an ultraviolet imaging camera

    NASA Astrophysics Data System (ADS)

    Prata, A. J.

    2014-05-01

    Over the last few years fast-sampling ultraviolet (UV) imaging cameras have been developed for use in measuring SO2 emissions from industrial sources (e.g. power plants; typical emission rates ~ 1-10 kg s-1) and natural sources (e.g. volcanoes; typical emission rates ~ 10-100 kg s-1). Generally, measurements have been made from sources rich in SO2 with high concentrations and emission rates. In this work, for the first time, a UV camera has been used to measure the much lower concentrations and emission rates of SO2 (typical emission rates ~ 0.01-0.1 kg s-1) in the plumes from moving and stationary ships. Some innovations and trade-offs have been made so that estimates of the emission rates and path concentrations can be retrieved in real time. Field experiments were conducted at Kongsfjord in Ny Ålesund, Svalbard, where SO2 emissions from cruise ships were made, and at the port of Rotterdam, Netherlands, measuring emissions from more than 10 different container and cargo ships. In all cases SO2 path concentrations could be estimated and emission rates determined by measuring ship plume speeds simultaneously using the camera, or by using surface wind speed data from an independent source. Accuracies were compromised in some cases because of the presence of particulates in some ship emissions and the restriction of single-filter UV imagery, a requirement for fast-sampling (> 10 Hz) from a single camera. Despite the ease of use and ability to determine SO2 emission rates from the UV camera system, the limitation in accuracy and precision suggest that the system may only be used under rather ideal circumstances and that currently the technology needs further development to serve as a method to monitor ship emissions for regulatory purposes. A dual-camera system or a single, dual-filter camera is required in order to properly correct for the effects of particulates in ship plumes.

  8. Note: Enhancement of the extreme ultraviolet emission from a potassium plasma by dual laser irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higashiguchi, Takeshi, E-mail: higashi@cc.utsunomiya-u.ac.jp; Yamaguchi, Mami; Otsuka, Takamitsu

    2014-09-15

    Emission spectra from multiply charged potassium ions ranging from K{sup 3+} to K{sup 5+} have been obtained in the extreme ultraviolet (EUV) spectral region. A strong emission feature peaking around 38 nm, corresponding to a photon energy of 32.6 eV, is the dominant spectral feature at time-averaged electron temperatures in the range of 8−12 eV. The variation of this emission with laser intensity and the effects of pre-pulses on the relative conversion efficiency (CE) have been explored experimentally and indicate that an enhancement of about 30% in EUV CE is readily attainable.

  9. 40 CFR 1060.510 - How do I test EPA Low-Emission Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false How do I test EPA Low-Emission Fuel... NONROAD AND STATIONARY EQUIPMENT Test Procedures § 1060.510 How do I test EPA Low-Emission Fuel Lines for permeation emissions? For EPA Low-Emission Fuel Lines, measure emissions according to SAE J2260, which is...

  10. 40 CFR 1060.510 - How do I test EPA Low-Emission Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false How do I test EPA Low-Emission Fuel... NONROAD AND STATIONARY EQUIPMENT Test Procedures § 1060.510 How do I test EPA Low-Emission Fuel Lines for permeation emissions? For EPA Low-Emission Fuel Lines, measure emissions according to SAE J2260, which is...

  11. 40 CFR 1060.510 - How do I test EPA Low-Emission Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How do I test EPA Low-Emission Fuel... NONROAD AND STATIONARY EQUIPMENT Test Procedures § 1060.510 How do I test EPA Low-Emission Fuel Lines for permeation emissions? For EPA Low-Emission Fuel Lines, measure emissions according to SAE J2260, which is...

  12. 40 CFR 1060.510 - How do I test EPA Low-Emission Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false How do I test EPA Low-Emission Fuel... NONROAD AND STATIONARY EQUIPMENT Test Procedures § 1060.510 How do I test EPA Low-Emission Fuel Lines for permeation emissions? For EPA Low-Emission Fuel Lines, measure emissions according to SAE J2260, which is...

  13. 40 CFR 1060.510 - How do I test EPA Low-Emission Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How do I test EPA Low-Emission Fuel... NONROAD AND STATIONARY EQUIPMENT Test Procedures § 1060.510 How do I test EPA Low-Emission Fuel Lines for permeation emissions? For EPA Low-Emission Fuel Lines, measure emissions according to SAE J2260, which is...

  14. An Atlas of Computed Equivalent Widths of Quasar Broad Emission Lines

    NASA Astrophysics Data System (ADS)

    Korista, Kirk; Baldwin, Jack; Ferland, Gary; Verner, Dima

    We present graphically the results of several thousand photoionization calculations of broad emission-line clouds in quasars, spanning 7 orders of magnitude in hydrogen ionizing flux and particle density. The equivalent widths of 42 quasar emission lines are presented as contours in the particle density-ionizing flux plane for a typical incident continuum shape, solar chemical abundances, and cloud column density of N(H) = 1023 cm-2. Results are similarly given for a small subset of emission lines for two other column densities (1022 and 1024 cm-2), five other incident continuum shapes, and a gas metallicity of 5 Z⊙. These graphs should prove useful in the analysis of quasar emission-line data and in the detailed modeling of quasar broad emission-line regions. The digital results of these emission-line grids and many more are available over the Internet.

  15. The difficulty of ultraviolet emssion from supernovae

    NASA Technical Reports Server (NTRS)

    Colgate, S. A.

    1971-01-01

    There are certain conceptual difficulties in the theory of the generation of ultraviolet radiation which is presumed for the creation of the optical fluorescence mechanism of supernova light emission and ionization of a nebula as large as the Gum nebula. Requirements concerning the energy distribution of the ultraviolet photons are: 1) The energy of the greater part of the photons must be sufficient to cause both helium fluorescence and hydrogen ionization. 2) If the photons are emitted in an approximate black body spectrum, the fraction of energy emitted in the optical must be no more than what is already observed. Ultraviolet black body emission depends primarily on the energy source. The probability that the wide mixture of elements present in the interstellar medium and supernova ejecta results in an emission localized in a limited region with less than 0.001 emission in the visible, for either ionization or fluorescence ultraviolet, is remote. Therefore transparent emission must be excluded as unlikely, and black body or at least quasi-black-body emission is more probable.

  16. VizieR Online Data Catalog: Emission lines for SDSS Coronal-Line Forest AGNs (Rose+, 2015)

    NASA Astrophysics Data System (ADS)

    Rose, M.; Elvis, M.; Tadhunter, C. N.

    2017-11-01

    In this paper, we make use of SDSS spectra. The basic properties of the CLiF AGN sample studied in this paper are given in Table 1. Note that the outputs of the SDSS pipeline are used only for the sample selection. Detailed measurements of emission line parameters such as the flux and velocity widths are measured using our own methods (Section 4). The redshifts were determined using single Gaussian fits to the [O III] λ5007 emission line. This line was chosen because it is the most prominent emission line in the optical spectra of these and most other AGN. (5 data files).

  17. Extreme ultraviolet observations from Voyager 1 encounter with Jupiter

    NASA Technical Reports Server (NTRS)

    Broadfoot, A. L.; Belton, M. J. S.; Takacs, P. Z.; Sandel, B. R.; Shemansky, D. E.; Holberg, J. B.; Ajello, J. M.; Atreya, S. K.; Donahue, T. M.; Moos, H. W.

    1979-01-01

    Observations of the optical extreme ultraviolet spectrum of the Jupiter planetary system during the Voyager 1 encounter have revealed previously undetected physical processes of significant proportions. Bright emission lines of S(+2), S(+3), O(+2) indicating an electron temperature of 100,000 K have been identified in preliminary analyses of the Io plasma torus spectrum. Strong auroral atomic and molecular hydrogen emissions have been observed in the polar regions of Jupiter near magnetic field lines that map the torus into the atmosphere of Jupiter. The observed resonance scattering of solar hydrogen Lyman alpha by the atmosphere of Jupiter and the solar occultation experiment suggest a hot thermosphere (greater than or equal to 1000 K) with a large atomic hydrogen abundance. A stellar occultation by Ganymede indicates that its atmosphere is at most an exosphere.

  18. THE COVERING FACTOR OF WARM DUST IN WEAK EMISSION-LINE ACTIVE GALACTIC NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xudong; Liu, Yuan, E-mail: zhangxd@ihep.ac.cn, E-mail: liuyuan@ihep.ac.cn

    2016-10-20

    Weak emission-line active galactic nuclei (WLAGNs) are radio-quiet active galactic nuclei (AGNs) that have nearly featureless optical spectra. We investigate the ultraviolet to mid-infrared spectral energy distributions of 73 WLAGNs (0.4 < z < 3) and find that most of them are similar to normal AGNs. We also calculate the covering factor of warm dust of these 73 WLAGNs. No significant difference is indicated by a KS test between the covering factor of WLAGNs and normal AGNs in the common range of bolometric luminosity. The implication for several models of WLAGNs is discussed. The super-Eddington accretion is unlikely to bemore » the dominant reason for the featureless spectrum of a WLAGN. The present results are still consistent with the evolution scenario, i.e., WLAGNs are in a special stage of AGNs.« less

  19. Far-infrared line emission from the galaxy. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Stacey, G. J.

    1985-01-01

    The diffuse 157.74 micron (CII) emission from the Galaxy was sampled at several galactic longitudes near the galactic plane including complete scan across the plane at (II) = 2.16 deg and (II) = 7.28 deg. The observed (CII) emission profiles follow closely the nearby (12)CO (J=1to0) emission profiles. The (CII) emission probably arises in neutral photodissociation regions near the edges of giant moleclar clouds (GMC's). These regions have densities of approximately 350 cm(-3) and temperatures of approximately 300 K, and amount to 4x10(8) solar mass of hydrogen in the inner Galaxy. The total 157.74 micron luminosity of the Galaxy is estimated to be 6x10(7) solar luminosity. Estimates were also made of the galactic emission in other far-infrared (FIR) cooling lines. The (CII) line was found to be the dominant FIR emission line from the galaxy and the primary coolant for the warm neutral gas near the galactic plane. Other cooling lines predicted to be prominent in the galactic spectrum are discussed. The 145.53 micron (OI) emission line from the Orion nebula was also measured.

  20. Bright Points and Subflares in Ultraviolet Lines and X-Rays

    NASA Technical Reports Server (NTRS)

    Rovira, M.; Schmieder, B.; Demoulin, P.; Simnett, G. M.; Hagyard, M. J.; Reichmann, E.; Reichmann, E.; Tandberg-Hanssen, E.

    1999-01-01

    We have analyzed an active region which was observed in H.alpha (Multichannel Subtractive Double Pass Spectrograph), in UV lines (SMM/UVSP), and in X-rays (SMM/HXIS). In this active region there were only a few subflares and many small bright points visible in UV and in X-rays. Using an extrapolation based on the Fourier transform, we have computed magnetic field lines connecting different photospheric magnetic polarities from ground-based magnetograms. Along the magnetic inversion lines we find two different zones: (1) a high-shear region (> 70 deg) where subflares occur, and (2) a low-shear region along the magnetic inversion line where UV bright points are observed. In these latter regions the magnetic topology is complex with a mixture of polarities. According to the velocity field observed in the Si IV lamda.1402 line and the extrapolation of the magnetic field, we notice that each UV bright point is consistent with emission from low-rising loops with downflows at both ends. We notice some hard X-ray emissions above the bright-point regions with temperatures up to 8 x 10(exp 6) K, which suggests some induced reconnection due to continuous emergence of new flux. This reconnection is also enhanced by neighboring subflares.

  1. High-resolution, far-ultraviolet study of Beta Draconis (G2 Ib-II) - Transition region structure and energy balance

    NASA Technical Reports Server (NTRS)

    Brown, A.; Jordan, C.; Stencel, R. E.; Linsky, J. L.; Ayres, T. R.

    1984-01-01

    High-resolution far ultraviolet spectra of the star Beta Draconis have been obtained with the IUE satellite. The observations and emission line data from the spectra are presented, the interpretation of the emission line widths and shifts is discussed, and the implications are given in terms of atmospheric properties. The emission measure distribution is derived, and density diagnostics involving both line ratios and line opacity arguments is investigated. The methods for calculating spherically symmetric models of the atmospheric structure are outlined, and several such models are presented. The extension of these models to log T(e) greater than 5.3 using the observed X-ray flux is addressed, the energy balance of an 'optimum' model is investigated, and possible models of energy transport and deposition are discussed.

  2. Observations of southern emission-line stars

    NASA Technical Reports Server (NTRS)

    Henize, K. G.

    1976-01-01

    A catalog of 1929 stars showing H-alpha emission on photographic plates is presented which covers the entire southern sky south of declination -25 deg to a red limiting magnitude of about 11.0. The catalog provides previous designations of known emission-line stars equatorial (1900) and galactic coordinates, visual and photographic magnitudes, H-alpha emission parameters, spectral types, and notes on unusual spectral features. The objects listed include 16 M stars, 25 S stars, 37 carbon stars, 20 symbiotic stars, 40 confirmed or suspected T Tauri stars, 16 novae, 14 planetary nebulae, 11 P Cygni stars, 9 Bep stars, 87 confirmed or suspected Wolf-Rayet stars, and 26 'peculiar' stars. Two new T associations are discovered, one in Lupus and one in Chamaeleon. Objects with variations in continuum or H-alpha intensity are noted, and the distribution by spectral type is analyzed. It is found that the sky distribution of these emission-line stars shows significant concentrations in the region of the small Sagittarius cloud and in the Carina region.

  3. Ultraviolet spectrophotometry of three LINERs

    NASA Technical Reports Server (NTRS)

    Goodrich, R. W.; Keel, W. C.

    1986-01-01

    Three galaxies known to be LINERs were observed spectroscopically in the ultraviolet in an attempt to detect the presumed nonthermal continuum source thought to be the source of photoionization in the nuclei. NGC 4501 was found to be too faint for study with the IUE spectrographs, while NGC 5005 had an extended ultraviolet light profile. Comparison with the optical light profile of NGC 5005 indicates that the ultraviolet source is distributed spatially in the same manner as the optical starlight, probably indicating that the ultraviolet excess is due to a component of hot stars in the nucleus. These stars contribute detectable absorption features longward of 2500 A; together with optical data, the IUE spectra suggest a burst of star formation about 1 billion yr ago, with a lower rate continuing to produce a few OB stars. In NGC 4579, a point source contributing most of the ultraviolet excess is found that is much different than the optical light distribution. Furthermore, the ultraviolet to X-ray spectral index in NGC 4579 is 1.4, compatible with the UV to X-ray indices found for samples of Seyfert galaxies. This provides compelling evidence for the detection of the photoionizing continuum in NGC 4579 and draws the research fields of normal galaxies and active galactic nuclei closer together. The emission-line spectrum of NGC 4579 is compared with calculations from a photoionization code, CLOUDY, and several shock models. The photoionization code is found to give superior results, adding to the increasing weight of evidence that the LINER phenomenon is essentially a scaled-down version of the Seyfert phenomenon.

  4. Ultraviolet spectral variations of symbiotic nova PU Vul during and after second eclipse

    NASA Astrophysics Data System (ADS)

    Sanad, M. R.

    2016-12-01

    I have analyzed spectral data of the symbiotic nova PU Vul observed with the International Ultraviolet Explorer (IUE) during the period 1993-1996. The study concentrated on the two sources of nebular emitting regions, the first is a nebula around the white dwarf partially eclipsed by a cool giant star and the second is a very extended nebular region not affected by the eclipse of the giant star. I concentrated on the N IV] 1486 Å and C IV 1550 Å emission lines produced in the first region and N III] 1750 Å and C III] 1909 Å emission lines produced in the second region very far from the giant star.

  5. New transparent flexible nanopaper as ultraviolet filter based on red emissive Eu(III) nanofibrillated cellulose

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Chang, Hui; Xue, Bailiang; Han, Qing; Lü, Xingqiang; Zhang, Sufeng; Li, Xinping; Zhu, Xunjin; Wong, Wai-kwok; Li, Kecheng

    2017-11-01

    A new kind of highly red emissive and transparent nanopapers as ultraviolet filter are produced from lanthanide complex Eu(TTA)3(H2O)2 grafted nanofibrillated cellulose (NFC) by a filtration process using a Buchner funnel. The nanopapers Eu-NFC 1-4 with different thickness (0.023 mm, 1; 0.04 mm, 2; 0.081 mm, 3 and 0.1 mm, 4) possess a fibres with dimensions of approximately 50 nm in diameter and several micrometres in length. Those nanopapers exhibit excellent ultraviolet A (UVA; 320-400 nm) filter property and high optical transmittance (>73% at wavelength of 600 nm). The presence of Eu(TTA)3(H2O)2 in Eu-NFC nanopapers can block 97% UVA (at 348 nm) light and convert it into pure red emission (CIE: x = 0.663, y = 0.333) through the efficient triplet-triplet energy transfer process. The efficient red emission can significantly improve the photo-stability of β-diketones type UVA filter. It can sustain for 10 h without decomposition under UV irradiation at 365 nm, which makes it possible to be applied in UVA filters. Moreover, its low coefficient of thermal expansion (CTE: 6.39 ppm K-1 of nanocellulose), is superior to petroleum-based materials for red organic light-emitting devices.

  6. Ultraviolet and optical observations of metal deficient red giants and chromospheric models

    NASA Technical Reports Server (NTRS)

    Duprele, A. K.; Avrett, E. H.; Hartmann, L.; Smith, G.

    1984-01-01

    Three metal deficient field stars were observed in the ultraviolet and optical spectral regions: HD 165195, HD 110281, and HD 232078. High dispersion spectra near H alpha, and low dispersion, long wavelength IUE spectra were obtained. The H alpha profiles have strong asymmetric emission with absorption cores that are frequently asymmetric. The surface flux of Mg II lines is similar to that of luminous Pop I stars in spite of the lower metal abundance. Semi-empirical atmospheric models suggest that the characteristic emission in the wings of the H alpha line can arise within static chromospheres. Radial expansion gives an asymmetric, blue-shifted H alpha core accompanied by greater emission in the red line wing than the blue wing. Wind models with extended atmospheres suggest mass loss rates - 2 billion M/yr. Thus H alpha provides no evidence that steady mass loss is substantial enough to significantly affect the evolution of stars on the red giant branch of globular clusters.

  7. A far-ultraviolet atlas of symbiotic stars observed with IUE. 1. The SWP range

    NASA Technical Reports Server (NTRS)

    Meier, S. R.; Kafatos, M.; Fahey, R. P.; Michalitsianos, A. G.

    1994-01-01

    This atlas contains sample spectra from the far-ultraviolet observations of 32 symbiotic stars obtained with the International Ultraviolet Explorer (IUE) satellite. In all, 394 low-resolution spectra from the short-wavelength primary (SWP) camera covering the range 1200-2000 A have been extracted from the IUE archive, calibrated, and measured. Absolute line fluxes and wavelengths for the prominent emission lines have been tabulated. Tables of both the general properties of these symbiotics and of features specific to the spectrum of each are included. The spectra shown are representative of the different classes of symbiotic stars that are currently in the IUE archive. These include known eclipsing systems and those that have been observed in outburst (as well as quiescence).

  8. Variability of ultraviolet emission in the carbon star TX Piscium

    NASA Technical Reports Server (NTRS)

    Johnson, Hollis R.; Baumert, John H.; Querci, Francois; Querci, Monique

    1986-01-01

    Multiple low-resolution IUE observations of the cool carbon star TX Psc (N0; C6, 2) permit an analysis of the variations in strength of the strongest emission lines - the Mg II line at 2800 A, the C II line at 2330 A, and certain Fe II lines. The integrated flux of the Mg II line varied by at least a factor of eight, while that of the C II line varies by at least a factor of five. The variations in Fe II may be considerably larger. The lines appear to vary together. The continuous flux in the best observed range from 2800 to 3200 A does not vary noticeably.

  9. Nebular Continuum and Line Emission in Stellar Population Synthesis Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byler, Nell; Dalcanton, Julianne J.; Conroy, Charlie

    Accounting for nebular emission when modeling galaxy spectral energy distributions (SEDs) is important, as both line and continuum emissions can contribute significantly to the total observed flux. In this work, we present a new nebular emission model integrated within the Flexible Stellar Population Synthesis code that computes the line and continuum emission for complex stellar populations using the photoionization code Cloudy. The self-consistent coupling of the nebular emission to the matched ionizing spectrum produces emission line intensities that correctly scale with the stellar population as a function of age and metallicity. This more complete model of galaxy SEDs will improvemore » estimates of global gas properties derived with diagnostic diagrams, star formation rates based on H α , and physical properties derived from broadband photometry. Our models agree well with results from other photoionization models and are able to reproduce observed emission from H ii regions and star-forming galaxies. Our models show improved agreement with the observed H ii regions in the Ne iii/O ii plane and show satisfactory agreement with He ii emission from z = 2 galaxies, when including rotating stellar models. Models including post-asymptotic giant branch stars are able to reproduce line ratios consistent with low-ionization emission regions. The models are integrated into current versions of FSPS and include self-consistent nebular emission predictions for MIST and Padova+Geneva evolutionary tracks.« less

  10. Spectroscopic survey of the far-ultraviolet /1160-1700 A/ emissions of Capella

    NASA Technical Reports Server (NTRS)

    Vitz, R. C.; Weiser, H.; Moos, H. W.; Weinstein, A.; Warden, E. S.

    1976-01-01

    A far-ultraviolet spectral survey of Capella (Alpha Aur, G5 III + G0 III) has been obtained using a highly sensitive rocketborne spectrograph with a microchannel plate detector. The spectral distribution is very similar to that of the sun; however, if the line surface fluxes are due to the primary (G5 III), then, except for Ly-alpha, they are about an order of magnitude greater than those of the quiet sun

  11. Ultraviolet Changes of the Central Source and the Very Nearby Ejecta

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.; Nielsen, Krister; Vierira, Gladys; Hillier, John; Walborn, Nolan; Davidson, Kris

    2004-01-01

    We utilized the high spatial and high spectral resolution of the HST/STIS MAMA echelle modes in the ultraviolet (0.025 inch spatial resolution and 30,000 to 120,000 spectral resolving power) to view changes in and around Eta Carinae before and after the X-Ray drop which occurred on June 29, 2003 (M. Corcoran, IAUC 8160). Major changes in the spectra of the Central Source and nearby nebulosities occurred between June 22 and July 5. Visibility of the Central Source dropped, especially between 1175 and 1350 Angstroms, but not uniformly throughout the ultraviolet. This fading is likely due to multiple line absorptions both in the source and in the intervening ejecta. Nebular emission of Si III] and Fe III, located 0.09 sec. to the west, disappeared. By July 29, a bright feature extending up to 0.071 sec. east of the Central Source became prominent in broad emission lines near 2500 Angstroms, but was not noticeable longward of 2900 Angstroms. ACS/HRC imagery and STIS CCD spectra taken concurrently are being examined for larger scale changes. Numerous narrow velocity components between -146 and -585 kilometers per second were identified in spectra before the minimum. New components appeared primarily in Fe II absorption lines with velocities between -170 and -380 kilometers per second. While the lines of the -513 kilometers per second component did not change, most lines of the -146 kilometers per second component changed considerably. Lines originating from high energy levels diminished or disappeared, while lines originating from lower energy levels strengthened. Strong absorption lines of Ti II, not present before the X-Ray drop, appeared within seven days, but disappeared by July 29. Further analysis of these unprecedented data will provide significant new information about the structure of Eta Carinae and its periodic variations.

  12. The First Hours of the GW170817 Kilonova and the Importance of Early Optical and Ultraviolet Observations for Constraining Emission Models

    NASA Astrophysics Data System (ADS)

    Arcavi, Iair

    2018-03-01

    The kilonova associated with GW170817 displayed early blue emission, which has been interpreted as a signature of either radioactive decay in low-opacity ejecta, relativistic boosting of radioactive decay in high-velocity ejecta, the cooling of material heated by a wind or by a “cocoon” surrounding a jet, or a combination thereof. Distinguishing between these mechanisms is important for constraining the ejecta components and their parameters, which tie directly into the physics we can learn from these events. I compile published ultraviolet, optical, and infrared light curves of the GW170817 kilonova and examine whether the combined data set can be used to distinguish between early-emission models. The combined optical data show an early rise consistent with radioactive decay of low-opacity ejecta as the main emission source, but the subsequent decline is fit well by all models. A lack of constraints on the ultraviolet flux during the first few hours after discovery allows for both radioactive decay and other cooling mechanisms to explain the early bolometric light curve. This analysis demonstrates that early (few hours after merger) high-cadence optical and ultraviolet observations will be critical for determining the source of blue emission in future kilonovae.

  13. Far Ultraviolet Spectroscopic Explorer Observations of the Seyfert 1.5 Galaxy NGC 5548 in a Low State

    NASA Technical Reports Server (NTRS)

    Brotherton, M. S.; Green, R. F.; Kriss, G. A.; Oegerle, W.; Kaiser, M. E.; Zheng, W.; Hutchings, J. B.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We present far-ultraviolet spectra of the Seyfert 1.5 galaxy NGC 5548 obtained in 2000 June with the Far Ultraviolet Spectroscopic Explorer (FUSE). Our data span the observed wavelength range 915-1185 A at a resolution of approximately 20 km s(exp -1). The spectrum shows a weak continuum and emission from O VI (lambda)(lambda)1032, 1038, C III (lambda)977, and He II (lambda)1085. The FUSE data were obtained when the AGN (Active Galactic Nuclei) was in a low state, which has revealed strong, narrow O VI emission lines. We also resolve intrinsic, associated absorption lines of O VI and the Lyman series. Several distinct kinematic components are present, spanning a velocity range of approximately 0 to -1300 km s(exp -1) relative to systemic, with kinematic structure similar to that seen in previous observations of longer wavelength ultraviolet (UV) lines. We explore the relationships between the far-UV (ultraviolet) absorbers and those seen previously in the UV and X-rays. We find that the high-velocity UV absorption component is consistent with being low-ionization, contrary to some previous claims, and is consistent with its non-detection in high-resolution X-ray spectra. The intermediate velocity absorbers, at -300 to -400 km s(exp -1), show H I and O VI column densities consistent with having contributions from both a high-ionization X-ray absorber and a low-ionization UV absorber. No single far-UV absorbing component can be solely identified with the X-ray absorber.

  14. The VIRUS Emission Line Detection Recipe

    NASA Astrophysics Data System (ADS)

    Gössl, C. A.; Hopp, U.; Köhler, R.; Grupp, F.; Relke, H.; Drory, N.; Gebhardt, K.; Hill, G.; MacQueen, P.

    2007-10-01

    HETDEX, the Hobby-Eberly Telescope Dark Energy Experiment, will measure the imprint of the baryonic acoustic oscillations on the galaxy population at redshifts of 1.8 < z < 3.7 to constrain the nature of dark energy. The survey will be performed over at least 200 deg^2. The tracer population for this blind search will be Ly-α emitting galaxies through their most prominent emission line. The data reduction pipeline will extract these emission line objects from ˜35,000 spectra per exposure (5 million per night, i.e. 500 million in total) while performing astrometric, photometric, and wavelength calibration fully automatically. Here we will present our ideas how to find and classify objects even at low signal-to-noise ratios.

  15. An ultraviolet study of B[e] stars: evidence for pulsations, luminous blue variable type variations and processes in envelopes

    NASA Astrophysics Data System (ADS)

    Krtičková, I.; Krtička, J.

    2018-06-01

    Stars that exhibit a B[e] phenomenon comprise a very diverse group of objects in a different evolutionary status. These objects show common spectral characteristics, including the presence of Balmer lines in emission, forbidden lines and strong infrared excess due to dust. Observations of emission lines indicate illumination by an ultraviolet ionizing source, which is key to understanding the elusive nature of these objects. We study the ultraviolet variability of many B[e] stars to specify the geometry of the circumstellar environment and its variability. We analyse massive hot B[e] stars from our Galaxy and from the Magellanic Clouds. We study the ultraviolet broad-band variability derived from the flux-calibrated data. We determine variations of individual lines and the correlation with the total flux variability. We detected variability of the spectral energy distribution and of the line profiles. The variability has several sources of origin, including light absorption by the disc, pulsations, luminous blue variable type variations, and eclipses in the case of binaries. The stellar radiation of most of B[e] stars is heavily obscured by circumstellar material. This suggests that the circumstellar material is present not only in the disc but also above its plane. The flux and line variability is consistent with a two-component model of a circumstellar environment composed of a dense disc and an ionized envelope. Observations of B[e] supergiants show that many of these stars have nearly the same luminosity, about 1.9 × 105 L⊙, and similar effective temperatures.

  16. Molecular line emission models of Herbig-Haro objects. II - HCO(+) emission

    NASA Technical Reports Server (NTRS)

    Wolfire, Mark G.; Koenigl, Arieh

    1993-01-01

    We present time-dependent models of the chemistry and temperature of interstellar molecular gas clumps that are exposed to the radiation from propagating stellar-jet shocks. The X-ray, EUV, and FUV radiation from the shock initiates ion chemistry and also heats the gas in the clumps. Using representative parameters, we show that, on the shock transit time between the clumps, the abundances of the ionized molecular species that are produced in the clumps can exceed the values determined from steady state models by several orders of magnitude. Collisional excitation by the heated gas can lead to measurable line emission from several ionized species; as in previous investigations of X-ray-irradiated molecular gas, we find that electron impacts contribute significantly to this process. We apply these results to the interpretation of the HCO(+) line emission that has already been detected in several Herbig-Haro objects. We demonstrate that this picture provides a natural explanation of the fact that the line intensity typically peaks ahead of the associated shock, as well as of the reported low line-center velocities and narrow line widths. We tabulate several diagnostic line intensities of HCO(+) and other molecular species that may be used to infer the physical conditions in the emitting gas.

  17. 3C 159 - a double emission-line radio galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tytler, D.; Browne, I.

    1985-09-01

    An optical identification for 3C 159 is reported with a 19-mag emission-line radio galaxy at z = 0.482. Photometric measurements show it to be unusually bright and blue. The emission lines are of exceptionally high luminosity, and are split into two components separated by 598 + or - 13 km/s and 3 kpc along the spectrograph slit. A VLA may show that one of the radio lobes has two hot spots with tails of emission leading to both. 21 references.

  18. Observations of the Magnetic Cataclysmic Variable VV Puppis with the Far Ultraviolet Spectroscopic Explorer

    NASA Astrophysics Data System (ADS)

    Hoard, D. W.; Szkody, Paula; Ishioka, Ryoko; Ferrario, L.; Gänsicke, B. T.; Schmidt, Gary D.; Kato, Taichi; Uemura, Makoto

    2002-10-01

    We present the first far-ultraviolet (FUV) observations of the magnetic cataclysmic variable VV Puppis, obtained with the Far Ultraviolet Spectroscopic Explorer satellite. In addition, we have obtained simultaneous ground-based optical photometric observations of VV Pup during part of the FUV observation. The shapes of the FUV and optical light curves are consistent with each other and with those of past observations at optical, extreme-ultraviolet, and X-ray wavelengths. Time-resolved FUV spectra during the portion of VV Pup's orbit when the accreting magnetic pole of the white dwarf can be seen show an increasing continuum level as the accretion spot becomes more directly visible. The most prominent features in the spectrum are the O VI λλ1031.9, 1037.6 emission lines. We interpret the shape and velocity shift of these lines in the context of an origin in the accretion funnel near the white dwarf surface. A blackbody function with Tbb>~90,000 K provides an adequate fit to the FUV spectral energy distribution of VV Pup. Based on observations with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer. FUSE is operated for NASA by Johns Hopkins University under NASA contract NAS 5-32985.

  19. Extreme ultraviolet explorer satellite observation of Jupiter's Io plasma torus

    NASA Technical Reports Server (NTRS)

    Hall, D. T; Gladstone, G. R.; Moos, H. W.; Bagenal, F.; Clarke, J. T.; Feldman, P. D.; Mcgrath, M. A.; Schneider, N. M.; Shemansky, D. E.; Strobel, D. F.

    1994-01-01

    We present the first Extreme Ultraviolet Explorer (EUVE) satellite observation of the Jupiter system, obtained during the 2 day period 1993 March 30 through April 1, which shows a rich emission-line spectrum from the Io plasma torus spanning wavelengths 370 to 735 A. The emission features correspond primarily to known multiplets of oxygen and sulfur ions, but a blended feature near 372 A is a plausible Na II transition. The summed detected energy flux of (7.2 +/- 0.2) x 10(exp -11) ergs/sq cm(s) corresponds to a radiated power of approximately equal to 4 x 10(exp 11) W in this spectral range. All ansa emissions show a distinct dawn-dusk brightness asymmetry and the measured dusk/dawn ratio of the bright S III lambda-680 feature is 2.3 +/- 0.3, significantly larger than the ratio measured by the Voyager spacecraft ultraviolet (UV) instruments. A preliminary estimate of ion partitioning indicates that the oxygen/sulfur ion ratio is approximately equal to 2, compared to the value approximately equal to 1.3 measured by Voyager, and that (Na(+))/(e) greater than 0.01.

  20. Rocket and spacecraft studies of ultraviolet emissions from astrophysical targets

    NASA Technical Reports Server (NTRS)

    Fastie, W. G.; Moos, H. W.; Feldman, P. D.; Henry, R. C.

    1975-01-01

    Rocket and spacecraft far-UV spectral measurements of several astrophysical targets are reviewed. These include observations of Ly-alpha emissions from Arcturus, Apollo-17 far-UV spectrometry of eta UMa and five other stars, Apollo-17 observations of the lunar atmosphere and the diffuse UV background, and far-UV spectral studies of Venus, Jupiter, and Comet Kohoutek. The Arcturus observations indicated a chromosphere with neutral atomic-hydrogen and atomic-oxygen emissions as well as a very weak atomic-carbon line. The planetary studies revealed O I and C I emissions in the Venusian spectrum as well as large Ly-alpha emissions and possible molecular-hydrogen emissions in that of Jupiter. The lunar observations demonstrated that solar protons do not produce an atomic-hydrogen atmosphere on the moon.

  1. The gravitational lens system Q0957+561 in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Dolan, J. F.; Michalitsianos, A. G.; Thompson, R. W.; Boyd, P. T.; Wolinski, K. G.; Bless, R. C.; Nelson, M. J.; Percival, J. W.; Taylor, M. J.; Elliot, J. L.

    1995-01-01

    Photometric and polarimetric observations of both images of the gravitationally lensed quasar Q0957+561 (z(sub em) = 1.41) were obtained in the UV in 1993 with the High Speed Photometer on board the Hubble Space Photometer on board the Hubble Space Telescope. The images exhibited no significant polarization in a bandpass centered on 2770 A (observer's frame); p less than or = 3.2 % (2 sigma upper limit) in each image. The ratio of the flux density in image A to that in image B in late 1993 had a constant valuee, 1.021 +/- 0.008, in four different UV bandpass between 1400 A and 3040 A observer's frame). These results are consistent with the prediction of the gravitation lens interpretation that the photometric ratio of the images measured simultaneously should be independent of frequency. Reprocessed archival spectra of the two images obtained between 1981 and 1983 by the International Ultraviolet Explorer (IUE) show that the photometric ratio of A to B varies between 0.96 and 2.0 in the Ly alpha emission line, and between 0.77 and 1.8 in the O VI lambda 1037 emission line (quasar rest frame). The photometric ratio of A to B at any single epoch is often significantly different in the two emission lines. Accepting the system as a gravitational lens implies that in the quasar the flux in the Ly alpha emsisson line can vary independently of the flux in the 0 IV emission line.

  2. 40 CFR 1060.515 - How do I test EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use good...

  3. 40 CFR 1060.515 - How do I test EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use good...

  4. 40 CFR 1060.515 - How do I test EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use good...

  5. 40 CFR 1060.515 - How do I test EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use good...

  6. 40 CFR 1060.515 - How do I test EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and EPA Cold-Weather Fuel Lines for permeation emissions? 1060.515 Section 1060.515 Protection of... Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions? Measure emission as follows for EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines: (a) Prior to permeation testing, use good...

  7. Simultaneous Ultraviolet Line and Continuum Variability Studies in Seyfert 1 Galaxies and Quasars

    NASA Astrophysics Data System (ADS)

    Honnappa, Vijayakumar; Prabhakar, Vedavvathi

    Simultaneous Ultraviolet Line and Continuum Variability Studies in Seyfert 1 Galaxies and Quasars Vijayakumar H. Doddamani*and P. Vedavathi Department of Physics, Bangalore University, Bangalore-560056, *Corresponding author:drvkdmani@gmail.com, Abstract The line and continuum flux variability is a hallmark phenomenon of Seyfert 1 galaxies and quasars. Large amplitude luminosity variability is observed in AGNs from x-rays through radio waves over a wide-ranging timescales from minutes to years. The combinations of high luminosity and short variability time scales suggests, that the power of AGN is produced by a phenomena more efficient in terms of energy release per unit mass than ordinary stellar processes. The basic structure of AGNs thus developed based on the variability studies consists of a central super massive black hole surrounded by an accretion disk or more generally optically thick plasma radiating brightly at UV and soft X-ray wavelengths. The variability studies have been important tools of understanding the physics of the central regions of AGNs, which in general cannot be resolved with the existing or planned ground and space telescopes. Therefore, we have undertaken a study of the simultaneous ultraviolet line and continuum flux variability studies in MRK501, ESOB113-IG45 (also called as Fairall 9), MRK1506, MRK1095 V*GQCOM, PG1211+143, MRK205, PG1226+023 (also known as 3C273), PG1351+640, MRK 1383, MRK876 and QSO2251-178 as these objects have been repeatedly observed by IUE satellite over several years.. It is observed that Fairall 9, MRK 1095 and 3C273 exhibit the large amplitude variability (» 30 times) over the observed timescale, which spans several years. The remaining nine objects exhibit small amplitude (» 5 times) variability over the long time scale of observations. The highest amplitude variability is observed in Lya with a least in the MgII line. The amplitude of variability decreases in the order of Lya, CIV and Mg II, lines. These

  8. Reddening and He i{sup ∗} λ 10830 Absorption Lines in Three Narrow-line Seyfert 1 Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Shaohua; Zhou, Hongyan; Shi, Xiheng

    We report the detection of heavy reddening and the He i* λ 10830 absorption lines at the active galactic nucleus (AGN) redshift in three narrow-line Seyfert 1 galaxies: SDSS J091848.61+211717.0, SDSS J111354.66+124439.0, and SDSS J122749.13+321458.9. They exhibit very red optical to near-infrared colors, narrow Balmer/Paschen broad emission lines and He i* λ 10830 absorption lines. The ultraviolet-optical-infrared nucleus continua are reddened by the SMC extinction law of E ( B − V ) ∼ 0.74, 1.17, and 1.24 mag for three objects, which are highly consistent with the values obtained from the broad-line Balmer decrements, but larger than those ofmore » narrow emission lines. The reddening analysis suggests that the extinction dust simultaneously obscures the accretion disk, the broad emission-line region, and the hot dust from the inner edge of the torus. It is possible that the dust obscuring the AGN structures is the dusty torus itself. Furthermore, the Cloudy analysis of the He i* λ 10830 absorption lines proposes the distance of the absorption materials to be the extend scale of the torus, which greatly increases probabilities of the obscure and absorption materials being the dusty torus.« less

  9. Ultraviolet observations of four symbiotic stars

    NASA Technical Reports Server (NTRS)

    Michalitsianos, A. G.; Feibelman, W. A.; Hobbs, R. W.; Kafatos, M.

    1982-01-01

    Observations were obtained with the International Ultraviolet Explorer (IUE) of four symbiotic stars. The UV spectra of YY Her, SY Mus, CL Sco, and BX Mon are characterized by varying degrees of thermal excitation. These low resolution spectra have been analyzed in terms of line-blanketed model atmospheres of early A, B, and F type stars in order to identify the nature of the hot companion in these systems. The expected emission from early main sequence stars does not fully explain the observed distribution of UV continuum energy over the entire IUE spectral range (1200-3200 A). More likely the observed continuum may be originating from an accretion disk and/or hot subdwarf that photoionizes circumstellar material, and gives rise to the high excitation lines that have been detected. The Bowen fluorescent excited lines of O III in SY Mus exhibit slightly broadened profiles that suggest possible turbulent motions in an extended circumstellar cloud with characteristic velocities of approximately 300 km/s.

  10. The 1982 ultraviolet eclipse of the symbiotic binary AR Pav

    NASA Technical Reports Server (NTRS)

    Hutchings, J. B.; Cowley, A. P.; Ake, T. B.; Imhoff, C. L.

    1983-01-01

    Observations with the International Ultraviolet Explorer (IUE) of the symbiotic binary AR Pav through its 1982 eclipse show that the hot star is not eclipsed. The hot star is associated with an extended region of continuum emission which is partially eclipsed. The eclipsed radiation is hotter near to its center, with a maximum temperature of about 9000 K. The uneclipsed flux is hotter than this. UV emission lines are not measurably eclipsed and presumably arise in a much larger region than the continuum. These data provide new constraints on models of the system but also are apparently in contradiction to those based on ground-based data.

  11. Rosetta Langmuir Probe Photoelectron Emission and Solar Ultraviolet Flux at Comet 67P

    NASA Astrophysics Data System (ADS)

    Johansson, F. L.; Odelstad, E.; Paulsson, J. J.; Harang, S. S.; Eriksson, A. I.; Mannel, T.; Vigren, E.; Edberg, N. J. T.; Miloch, W. J.; Simon Wedlund, C.; Thiemann, E.; Epavier, F.; Andersson, L.

    2017-12-01

    The Langmuir Probe instrument on Rosetta monitored the photoelectron emission current of the probes during the Rosetta mission at comet 67P/Churyumov-Gerasimenko, in essence acting as a photodiode monitoring the solar ultraviolet radiation at wavelengths below 250 nm. We have used three methods of extracting the photoelectron saturation current from the Langmuir probe measurements. The resulting dataset can be used as an index of the solar far and extreme ultraviolet at the Rosetta spacecraft position, including flares, in wavelengths that are important for photoionisation of the cometary neutral gas. Comparing the photoemission current to data measurements by MAVEN/EUVM and TIMED/SEE, we find good correlation when 67P was at large heliocentric distances early and late in the mission, but up to 50 percent decrease of the expected photoelectron current at perihelion. We discuss possible reasons for the photoemission decrease, including scattering and absorption by nanograins created by disintegration of cometary dust far away from the nucleus.

  12. Fe II emission lines. I - Chromospheric spectra of red giants

    NASA Technical Reports Server (NTRS)

    Judge, P. G.; Jordan, C.

    1991-01-01

    A 'difference filtering' algorithm developed by Ayers (1979) is used to construct high-quality high-dispersion long-wavelength IUE spectra of three giant stars. Measurements of all the emission lines seen between 2230 and 3100 A are tabulated. The emission spectrum of Fe II is discussed in comparison with other lines whose formation mechanisms are well understood. Systematic changes in the Fe II spectrum are related to the different physical conditions in the three stars, and examples are given of line profiles and ratios which can be used to determine conditions in the outer atomspheres of giants. It is concluded that most of the Fe II emission results from collisional excitation and/or absorption of photospheric photons at optical wavelengths, but some lines are formed by fluorescence, being photoexcited by other strong chromospheric lines. Between 10 and 20 percent of the radiative losses of Fe II arise from 10 eV levels radiatively excited by the strong chromospheric H Ly-alpha line.

  13. Laser-ultraviolet-A-induced ultraweak photon emission in mammalian cells.

    PubMed

    Niggli, Hugo J; Tudisco, Salvatore; Privitera, Giuseppe; Applegate, Lee Ann; Scordino, Agata; Musumeci, Franco

    2005-01-01

    Photobiological research in the last 30 yr has shown the existence of ultraweak photon emission in biological tissue, which can be detected with sophisticated photomultiplier systems. Although the emission of this ultraweak radiation, often termed biophotons, is extremely low in mammalian cells, it can be efficiently increased by ultraviolet light. Most recently it was shown that UV-A (330 to 380 nm) releases such very weak cell radiation in differentiated human skin fibroblasts. Based on these findings, a new and powerful tool in the form of UV-A-laser-induced biophotonic emission of cultured cells was developed with the intention to detect biophysical changes between carcinogenic and normal cells. With suspension densities ranging from 1 to 8 x 10(6) cells/mL, it was evident that an increase of the UV-A-laser-light induced photon emission intensity could be observed in normal as well as melanoma cells. Using this new detection procedure of ultraweak light emission, photons in cell suspensions as low as 100 microL could be determined, which is a factor of 100 lower compared to previous procedures. Moreover, the detection procedure has been further refined by turning off the photomultiplier system electronically during irradiation leading to the first measurements of induced light emission in the cells after less than 10 micros instead of 150 ms, as reported in previous procedures. This improvement leads to measurements of light bursts up 10(7) photons/s instead of several hundred as found with classical designs. Overall, we find decreasing induction ratings between normal and melanoma cells as well as cancer-prone and melanoma cells. Therefore, it turns out that this highly sensitive and noninvasive device enables us to detect high levels of ultraweak photon emission following UV-A-laser-induced light stimulation within the cells, which enables future development of new biophysical strategies in cell research. Copyright 2005 Society of Photo

  14. Detection of CI line emission towards the oxygen-rich AGB star omi Ceti

    NASA Astrophysics Data System (ADS)

    Saberi, M.; Vlemmings, W. H. T.; De Beck, E.; Montez, R.; Ramstedt, S.

    2018-05-01

    We present the detection of neutral atomic carbon CI(3P1-3P0) line emission towards omi Cet. This is the first time that CI is detected in the envelope around an oxygen-rich M-type asymptotic giant branch (AGB) star. We also confirm the previously tentative CI detection around V Hya, a carbon-rich AGB star. As one of the main photodissociation products of parent species in the circumstellar envelope (CSE) around evolved stars, CI can be used to trace sources of ultraviolet (UV) radiation in CSEs. The observed flux density towards omi Cet can be reproduced by a shell with a peak atomic fractional abundance of 2.4 × 10-5 predicted based on a simple chemical model where CO is dissociated by the interstellar radiation field. However, the CI emission is shifted by 4 km s-1 from the stellar velocity. Based on this velocity shift, we suggest that the detected CI emission towards omi Cet potentially arises from a compact region near its hot binary companion. The velocity shift could, therefore, be the result of the orbital velocity of the binary companion around omi Cet. In this case, the CI column density is estimated to be 1.1 × 1019 cm-2. This would imply that strong UV radiation from the companion and/or accretion of matter between two stars is most likely the origin of the CI enhancement. However, this hypothesis can be confirmed by high-angular resolution observations.

  15. The spectrum of the tropical oxygen nightglow observed at 3 A resolution with the Hopkins Ultraviolet Telescope

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.; Davidsen, A. F.; Blair, W. P.; Bowers, C. W.; Durrance, S. T.; Kriss, G. A.; Ferguson, H. C.; Kimble, R. A.; Long, K. S.

    1992-01-01

    Ultraviolet spectra of the tropical oxygen nightglow in the range of 830 to 1850 A (in first order) at 3 A resolution were obtained with the Hopkins Ultraviolet Telescope in December 1990. The data are presented which were obtained on a setting celestial target as the zenith angle of the line-of-sight varied from 77 to 95 deg. The dominant features in the spectrum (other than geocoronal hydrogen) are O I 1304 and 1356 and the radiative recombination continuum near 911 A. The continuum is resolved and found to be consistent with an electron temperature in the range 1000-1250 K. The observed ratio of the brightness of O I 1356 to the continuum suggests that O(+)-O(-) mutual neutralization contributes about 40 percent to the 1356 A emission. The dependence of the optically thin emissions on zenith angle is consistent with a simple ionospheric model. Weak O I 989 emission is also detected, but there is no evidence for any similarly produced atomic nitrogen emissions.

  16. Steelmaking process control using remote ultraviolet atomic emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Arnold, Samuel

    Steelmaking in North America is a multi-billion dollar industry that has faced tremendous economic and environmental pressure over the past few decades. Fierce competition has driven steel manufacturers to improve process efficiency through the development of real-time sensors to reduce operating costs. In particular, much attention has been focused on end point detection through furnace off gas analysis. Typically, off-gas analysis is done with extractive sampling and gas analyzers such as Non-dispersive Infrared Sensors (NDIR). Passive emission spectroscopy offers a more attractive approach to end point detection as the equipment can be setup remotely. Using high resolution UV spectroscopy and applying sophisticated emission line detection software, a correlation was observed between metal emissions and the process end point during field trials. This correlation indicates a relationship between the metal emissions and the status of a steelmaking melt which can be used to improve overall process efficiency.

  17. Shock-layer-induced ultraviolet emissions measured by rocket payloads

    NASA Astrophysics Data System (ADS)

    Caveny, Leonard H.; Mann, David M.

    1991-08-01

    Hypervelocity missiles in the continuum and near-continuum atmosphere produce high temperature shocklayers (i.e., greater than 4000 K at 3.5 km/s and 9000 K at 5.5 km/s). Atmospheric oxygen and nitrogen react and the products are excited to produce nitrogen oxide gamma-band radiation. Analyses and shock tube experiments explored the reaction chemistry and the emissions. Two rocket experiments were conducted to obtain ultraviolet (UV) data under flight conditions using innovative onboard instruments. The first (Bow Shock 1) flew onboard a Terrier-Malemute in April 1990; the second (Bow Shock 2) flew aboard a Strypi XI (Castor 1/Antares IIa/Star 27) in February 1991. The principal instruments were: (1) scanning UV spectrometers, from 190 to 400 nm, (2) quartz fiber-optic coupled photometers to measure selected spectral features, and (3) atomic oxygen (130.4 nm) and hydrogen Lyman-alpha (121.6 nm) detectors. Bow Shock 1 acquired new data on the spectral intensity from UV emissions at 3.5 km/s between 40 and 70 km. For example, at 55 km, the observations included well-defined spectra of nitrogen oxide gamma-band UV emitters with signal strengths more than 10 times stronger than recent theory predicted. Significant signal strength persisted to 70 km, 20 km higher than anticipated. Bow Shock 2 extended the velocity to 5 km/s. An additional scanning spectrometer and 8 photometers observed the downstream shock structures and shock plume interactions. Initial data interpretations indicate that aerodynamic interactions significantly enhance plume emissions.

  18. PEARS Emission Line Galaxies

    NASA Technical Reports Server (NTRS)

    Pirzkal, Nor; Rothberg, Barry; Ly, Chun; Rhoads, James E.; Malhotra, Sangeeta; Grogin, Norman A.; Dahlen, Tomas; Meurer, Gerhardt R.; Walsh, Jeremy; Hathi, Nimish P.; hide

    2012-01-01

    We present a full analysis of the Probing Evolution And Reionization Spectroscopically (PEARS) slitless grism spectroscopic data obtained vl'ith the Advanced Camera for Surveys on HST. PEARS covers fields within both the Great Observatories Origins Deep Survey (GOODS) North and South fields, making it ideal as a random surveY of galaxies, as well as the availability of a wide variety of ancillary observations to support the spectroscopic results. Using the PEARS data we are able to identify star forming galaxies within the redshift volume 0 < z < 1.5. Star forming regions in the PEARS survey are pinpointed independently of the host galaxy. This method allOW8 us to detect the presence of multiple emission line regions (ELRs) within a single galaxy. 1162 [OII], [OIII] and/or H-alpha emission lines have been identified in the PEARS sample of approx 906 galaxies down to a limiting flux of approx 10 - 18 erg/s/sq cm . The ELRs have also been compared to the properties of the host galaxy, including morphology, luminosity, and mass. From this analysis we find three key results: 1) The computed line luminosities show evidence of a flattening in the luminosity function with increasing redshift; 2) The star forming systems show evidence of disturbed morphologies, with star formation occurring predominantly within one effective (half-light) radius. However, the morphologies show no correlation with host stellar mass; and 3) The number density of star forming galaxies with M(*) >= 10(exp 9) Solar M decreases by an order of magnitude at z<=0.5 relative to the number at 0.5 < z < 0.9 in support of the argument for galaxy downsizing.

  19. Ethylene line emission from the North Pole of Jupiter

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor; Espenak, F.; Romani, P.; Goldstein, J.

    1991-01-01

    A significant enhancement in infrared emission from hydrocarbon constituents of Jupiter's stratosphere was observed at a north polar hot spot (60 degrees latitude, 180 degrees longitude). A unique probe of this phenomena is ethylene (C2H4), which has not been observed previously from the ground. The profile of the emission line from ethylene at 951.742 cm-1, measured near the north pole of Jupiter, was analyzed to determine the morphology of the enhancement, the increase in C2H4 abundance and local temperature, as well as possible information on the altitude (pressure regions) where the increased emission is formed. Measurements were made using infrared heterodyne spectroscopy at the NASA Infrared Telescope Facility on Mauna Kea, Hawaii in December 1989. At 181 degrees longitude a very strong emission line was seen, which corresponds to a 13-fold increase in C2H4 abundance or a 115K increase in temperature in the upper stratosphere, compared to values outside the hot spot. The hot spot was found to be localized to approx. 10 degrees in longitude; the line shape (width) implied that the enhanced emission originated very high in the stratosphere.

  20. An Ultraviolet Spectrum of the Tidal Disruption Flare ASASSN-14li

    NASA Astrophysics Data System (ADS)

    Cenko, S. Bradley; Cucchiara, Antonino; Roth, Nathaniel; Veilleux, Sylvain; Prochaska, J. Xavier; Yan, Lin; Guillochon, James; Maksym, W. Peter; Arcavi, Iair; Butler, Nathaniel R.; Filippenko, Alexei V.; Fruchter, Andrew S.; Gezari, Suvi; Kasen, Daniel; Levan, Andrew J.; Miller, Jon M.; Pasham, Dheeraj R.; Ramirez-Ruiz, Enrico; Strubbe, Linda E.; Tanvir, Nial R.; Tombesi, Francesco

    2016-02-01

    We present a Hubble Space Telescope Space Telescope Imaging Spectrograph spectrum of ASASSN-14li, the first rest-frame ultraviolet (UV) spectrum of a tidal disruption flare (TDF). The underlying continuum is well fit by a blackbody with {T}{UV}=3.5× {10}4 K, an order of magnitude smaller than the temperature inferred from X-ray spectra (and significantly more precise than previous efforts based on optical and near-UV photometry). Superimposed on this blue continuum, we detect three classes of features: narrow absorption from the Milky Way (probably a high-velocity cloud), and narrow absorption and broad (˜2000-8000 km s-1) emission lines at or near the systemic host velocity. The absorption lines are blueshifted with respect to the emission lines by Δv = -(250-400) km s-1. Due both to this velocity offset and the lack of common low-ionization features (Mg II, Fe II), we argue these arise from the same absorbing material responsible for the low-velocity outflow discovered at X-ray wavelengths. The broad nuclear emission lines display a remarkable abundance pattern: N III], N IV], and He II are quite prominent, while the common quasar emission lines of C III] and Mg II are weak or entirely absent. Detailed modeling of this spectrum will help elucidate fundamental questions regarding the nature of the emission processes at work in TDFs, while future UV spectroscopy of ASASSN-14li would help to confirm (or refute) the previously proposed connection between TDFs and “N-rich” quasars.

  1. An Ultraviolet Spectrum of the Tidal Disruption Flare ASASSN-14li

    NASA Technical Reports Server (NTRS)

    Cenko, S. Bradley; Cucchiara, Antonio; Roth, Nathaniel; Veilleux, Sylvain; Prochaska, J. Xavier; Yan, Lin; Guillochon, James; Maksym, W. Peter; Arcavi, Iair; Butler, Nathaniel R.

    2016-01-01

    We present a Hubble Space Telescope Space Telescope Imaging Spectrograph spectrum of ASASSN-14li, the first rest-frame ultraviolet (UV) spectrum of a tidal disruption flare (TDF). The underlying continuum is well fit by a blackbody with T(sub UV) = 3.5 x 10(exp. 4) K, an order of magnitude smaller than the temperature inferred from X-ray spectra (and significantly more precise than previous efforts based on optical and near-UV photometry).Superimposed on this blue continuum, we detect three classes of features: narrow absorption from the Milky Way (probably a high-velocity cloud), and narrow absorption and broad {approx. 2000-8000 km s(exp. -1)} emission lines at or near the systemic host velocity. The absorption lines are blueshifted with respect to the emission lines by Delta(sub v) = -(250-400) km s(exp. -1). Due both to this velocity offset and the lack of common low-ionization features (Mg II, Fe II), we argue these arise from the same absorbing material responsible for the low-velocity outflow discovered at X-ray wavelengths. The broad nuclear emission lines display a remarkable abundance pattern: N III], N IV], and He II are quite prominent, while the common quasar emission lines of C III] and Mg II are weak or entirely absent. Detailed modeling of this spectrum will help elucidate fundamental questions regarding the nature of the emission processes at work in TDFs, while future UV spectroscopy of ASASSN-14li would help to confirm (or refute) the previously proposed connection between TDFs and N-rich quasars.

  2. A Penning discharge source for extreme ultraviolet calibration

    NASA Technical Reports Server (NTRS)

    Finley, David S.; Jelinsky, Patrick; Bowyer, Stuart; Malina, Roger F.

    1986-01-01

    A Penning discharge lamp for use in the calibration of instruments and components for the extreme ultraviolet has been developed. This source is sufficiently light and compact to make it suitable for mounting on the movable slit assembly of a grazing incidence Rowland circle monochromator. Because this is a continuous discharge source, it is suitable for use with photon counting detectors. Line radiation is provided both by the gas and by atoms sputtered off the interchangeable metal cathodes. Usable lines are produced by species as highly ionized as Ne IV and Al V. The wavelength coverage provided is such that a good density of emission lines is available down to wavelengths as short as 100A. This source fills the gap between 100 and 300A, which is inadequately covered by the other available compact continuous radiation sources.

  3. The Iron Abundance of IOTA Herculis From Ultraviolet Iron Lines

    NASA Astrophysics Data System (ADS)

    Grigsby, J.; Mulliss, C.; Baer, G.

    1995-03-01

    We have obtained (Adelman 1992, 1993, private comunication) coadded, high-resolution IUE spectra of Iota Herculis (B3 IV) in both short wavelength (SWP) and long wavelength (LWP) regions. The spectra span the ultraviolet spectrum from 110 - 300 nm and have a SNR of roughly 30 -50; they are described in Adelman et. al. (1993, ApJ 419, 276). Abundance indicators were 54 lines of Fe II and 26 lines of Fe III whose atomic parameters have been measured in the laboratory. LTE synthetic spectra for comparison with observations were produced with the Kurucz model atmosphere and spectral synthesis codes ATLAS9/SYNTHE (Kurucz 1979, ApJS 40,1; Kurucz and Avrett 1981, SAO Special Report 391). Model parameters were chosen from the literature: effective temperature = 17500 K, log g =3.75, v sin i= 11 km/s, and turbulent velocity = 0 km/s. (Peters and Polidan 1985, in IAU Symposium 111, ed. D. S. Hayes et al. (Dordrecht: Reidel), 417). We determined the equivalent widths of the chosen lines by fitting gaussian profiles to the lines and by measuring the equivalent widths of the gaussians. We derived abundances by fitting a straight line to a plot of observed equivalent widths vs. synthetic equivalent widths; we adjusted the iron abundance of the models until a slope of unity was achieved. The abundances derived from the different ionization stages are in agreement: Fe II lines indicate an iron abundance that is 34 +15/-10% the solar value([Fe/H]=-0.47 +0.16-0.15dex), while from Fe III lines we obtain 34 +/- 10% ([Fe/H]=-0.47 +0.11/-0.15 dex). A search of the literature suggests that no previous investigations of this star's iron abundance have found agreement between the different ionization stages. We thank Saul Adelman for his generous assistance, and the Faculty Research Fund Board of Wittenberg University for support of this research.

  4. Global Far-ultraviolet Properties of the Cygnus Loop

    NASA Astrophysics Data System (ADS)

    Kim, Il-Joong; Seon, Kwang-Il; Lim, Yeo-Myeong; Lee, Dae-Hee; Han, Wonyong; Min, Kyoung-Wook; Edelstein, Jerry

    2014-03-01

    We present the C III λ977, O VI λλ1032, 1038 and N IV] λ1486 emission line maps of the Cygnus Loop, obtained with the newly processed data of the Spectroscopy of Plasma Evolution from Astrophysical Radiation (SPEAR; also known as FIMS) mission. In addition, the Si IV+O IV] line complexes around 1400 Å are resolved into two separate emission lines whose intensity demonstrates a relatively high Si IV region that was predicted in the previous study. The morphological similarity between the O VI and X-ray images, as well as a comparison of the O VI intensity with the value expected from the X-ray results, indicates that large portions of the observed O VI emissions could be produced from X-ray emitting gas. Comparisons of the far-ultraviolet (FUV) images with the optical and H I 21 cm images reveal spatial variations of shock-velocity populations and high FUV extinction in the direction of a previously identified H I cloud. By calculating the FUV line ratios for several subregions of the Cygnus Loop, we investigate the spatial variation of the population of radiative shock velocities as well as the effects of resonance scattering, X-ray emitting gas, and nonradiative shocks. The FUV and X-ray luminosity comparisons between the Cygnus Loop and the Vela supernova remnant suggest that the fraction of shocks in the early evolutionary stages is much larger in the Cygnus Loop.

  5. Test of the decaying dark matter hypothesis using the Hopkins Ultraviolet Telescope

    NASA Technical Reports Server (NTRS)

    Davidsen, A. F.; Kriss, G. A.; Ferguson, H. C.; Blair, W. P.; Bowers, C. W.; Kimble, R. A.

    1991-01-01

    Sciama's hypothesis that the dark matter associated with galaxies, galaxy clusters, and the intergalactic medium consists of tau neutrinos of rest mass 28-30 eV whose decay generates ultraviolet photons of energy roughly 14-15 eV, has been tested using the Hopkins Ultraviolet Telescope flows aboard the Space Shuttle Columbia. A straightforward application of Sciama's model predicts that a spectral line from neutrino decay photons should be observed from the rich galaxy cluster Abell 665 with an SNR of about 30. No such emission was detected. For neutrinos in the mass range 27.2-32.1 eV, the observations set a lower lifetime limit significantly greater than Sciama's model requires.

  6. Variability of Lyman-alpha emission from Jupiter

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Jovian Lyman-alpha emission line was again observed in 1978 using the high resolution spectrometer on the Copernicus satellite. In intensity of 8.4+3.0 kilo Rayleighs was measured. This value represents a significant increase in intensity over previous (1976) Copernicus observations, but is lower than the recent (1979) values obtained by Voyager I and IUE. The increase in intensity was accompanied by a significant increase in line width, giving strong support to the theory that the emission results from resonant scattering of the solar Ly-alpha line by H atoms in the upper Jovian atmosphere. The strength of Jovian Ly-alpha emission correlates well with the level of solar activity. The solar extreme ultraviolet radiation varies with the solar cycle. This radiation causes the dissociation of H2 and CH4 into H atoms in the Jovian atmosphere. Therefore, in times of high solar activity, the H column density will increase, causing the observed stronger Jovian Ly-alpha emission.

  7. Doppler line profiles measurement of the Jovian Lyman Alpha emission with OAO-C

    NASA Technical Reports Server (NTRS)

    Barker, E. S.; Cochran, W. D.; Smith, H. J.

    1982-01-01

    Observation of Jupiter made with the high resolution ultraviolet spectrometer of the Orbiting Astronomical Observatory copernicus in April and May, 1980, yield a Jovian Lyman alpha emission intensity of 7 + or 2.5 RR. This indicates a decrease by about a factor of two since the Voyager ultraviolet spectrometer measurements, nearly a year earlier. An unusually high column abundance of hydrogen atoms above the methane homopause at the Voyager epoch is indicated. Since the auroral charged particle bombardment of molecular hydrogen is expected to contribute significantly to the global population of the hydrogen atoms, it is suggested that at the time of the Voyager Jupiter encounter unusually high auroral activity existed, perhaps d to the high concentration of the Io plasma torus. The temporal variation of the Saturn lyman alpha emission, when contrasted with the Jovian data, reveals that the auroral processes are not nearly as important in determining the Saturn Lyman alpha intensity in the nonauroral region.

  8. X-ray Emission Line Spectroscopy of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Wang, Daniel

    What are the origins of the diffuse soft X-ray emission from non-AGN galaxies? Preliminary analysis of XMM-Newton RGS spectra shows that a substantial fraction of the emission cannot arise from optically-thin thermal plasma, as commonly assumed, and may originate in charge exchange at the interface with neutral gas. We request the support for a comprehensive observing, data analysis, and modeling program to spectroscopically determine the origins of the emission. First, we will use our scheduled XMM-Newton AO-10 368 ks observations of the nearest compact elliptical galaxy M32 to obtain the first spectroscopic calibration of the cumulative soft X-ray emission from the old stellar population and will develop a spectral model for the charge exchange, as well as analysis tools to measure the spatial and kinematic properties of the X-ray line- emitting plasma. Second, we will characterize the truly diffuse emission from the hot plasma and/or its interplay with the neutral gas in a sample of galactic spheroids and active star forming/starburst regions in nearby galaxies observed by XMM-Newton. In particular, we will map out the spatial distributions of key emission lines and measure (or tightly constrain) the kinematics of hot plasma outflows for a few X-ray-emitting regions with high-quality RGS data. For galaxies with insufficient counting statistics in individual emission lines, we will conduct a spectral stacking analysis to constrain the average properties of the X-ray-emitting plasma. We will use the results of these X-ray spectroscopic analyses, together with complementary X-ray CCD imaging/spectral data and observations in other wavelength bands, to test the models of the emission. In addition to the charge exchange, alternative scenarios such as resonance scattering and relic AGN photo-ionization will also be examined for suitable regions. These studies are important to the understanding of the relationship between the diffuse soft X-ray emission and various

  9. Interferometric investigation of emission lines from the solar corona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, P.M.; Henderson, G.

    1973-11-01

    The profiles of the Fe XN, lambda 5303, and Fe X, lambda 6374, emission lines of the solar corona were observed at different posttions using a photoelectric scanning Fabry -- Perot interferometer. These profiles were obtained during the eclipse of 7th March 1970, in Mexico and at the Pic-du-Midi coronagraph in October, 1970. The half-widths of these profiles were determined for both the coronal lines and temperatures were derived from these widths. No systematic temperature variation was discovered, however there was some suggestion of the existence of a fluctuation with time in the width of the emission lines. (auth)

  10. HST-COS Observations on Hydrogen, Helium, Carbon, and Nitrogen Emission from the SN 1987A Reverse Shock

    NASA Technical Reports Server (NTRS)

    France, Kevin; McCray, Richard; Penton, Steven V.; Kirshner, Robert P.; Challis, Peter; Laming, J. Martin; Bouchet, Patrice; Chevalier, Roger; Garnavich, Peter M.; Fransson, Claes; hide

    2011-01-01

    We present the most sensitive ultraviolet observations of Supernova 1987 A to date. Imaging spectroscopy from the Hubble Space Telescope-Cosmic Origins Spectrograph shows many narrow (Delta v approximates 300 km/s) emission lines from the circumstellar ring, broad Delta v approximates 10-20 x 10(exp 3) km/s) emission lines from the reverse shock, and ultraviolet continuum emission. The high signal-to-noise ratio (>40 per resolution element) broad Ly-alpha emission is excited by soft X-ray and EUV heating of mostly neutral gas in the circumstellar ring and outer supernova debris. The ultraviolet continuum at lambda > 1350 A can be explained by H-I two-photon (2s(exp 2)S(sub 1/2)-l(exp 2)S(sub 1/2)) emission from the same region. We confirm our earlier, tentative detection of N V lambda 1240 emission from the reverse shock and present the first detections of broad He II lambda1640, C IV lambda 1550, and N IV ] lambda1486 emission lines from the reverse shock. The helium abundance in the high-velocity material is He/H = 0.14 +/- 0.06. The N V /H alpha line ratio requires partial ion-electron equilibration (T(sub e)/T(sub p) approximately equal to 0.14-0.35). We find that the N/C abundance ratio in the gas crossing the reverse shock is significantly higher than that in the circumstellar ring, a result that may be attributed to chemical stratification in the outer envelope of the supernova progenitor. The N/C abundance may have been stratified prior to the ring expUlsion, or this result may indicate continued CNO processing in the progenitor subsequent to the expUlsion of the circumstellar ring.

  11. Laser-produced lithium plasma as a narrow-band extended ultraviolet radiation source for photoelectron spectroscopy.

    PubMed

    Schriever, G; Mager, S; Naweed, A; Engel, A; Bergmann, K; Lebert, R

    1998-03-01

    Extended ultraviolet (EUV) emission characteristics of a laser-produced lithium plasma are determined with regard to the requirements of x-ray photoelectron spectroscopy. The main features of interest are spectral distribution, photon flux, bandwidth, source size, and emission duration. Laser-produced lithium plasmas are characterized as emitters of intense narrow-band EUV radiation. It can be estimated that the lithium Lyman-alpha line emission in combination with an ellipsoidal silicon/molybdenum multilayer mirror is a suitable EUV source for an x-ray photoelectron spectroscopy microscope with a 50-meV energy resolution and a 10-mum lateral resolution.

  12. Winds from accretion disks - Ultraviolet line formation in cataclysmic variables

    NASA Technical Reports Server (NTRS)

    Shlosman, Isaac; Vitello, Peter

    1993-01-01

    Winds from accretion disks in cataclysmic variable stars are ubiquitous. Observations by IUE reveal P Cygni-shaped profiles of high-ionization lines which are attributed to these winds. We have studied the formation of UV emission lines in cataclysmic variables by constructing kinematical models of biconical rotating outflows from disks around white dwarfs. The photoionization in the wind is calculated taking into account the radiation fields of the disk, the boundary layer, and the white dwarf. The 3D radiative transfer is solved in the Sobolev approximation. Effects on the line shapes of varying basic physical parameters of the wind are shown explicitly. We identify and map the resonant scattering regions in the wind which have strongly biconical character regardless of the assumed velocity and radiation fields. Rotation at the base of the wind introduces a radial shear which decreases the line optical depth and reduces the line core intensity. We find that it is possible to reproduce the observed P Cygni line shapes and make some predictions to be verified in high-resolution observations.

  13. The peak altitude of H3+ auroral emission: comparison with the ultraviolet

    NASA Astrophysics Data System (ADS)

    Blake, J.; Stallard, T.; Miller, S.; Melin, H.; O'Donoghue, J.; Baines, K.

    2013-09-01

    The altitude of Saturn's peak auroral emission has previously been measured for specific cases in both the ultraviolet (UV) and the infrared (IR). Gerard et al [2009] concludes that the night side H2 UV emission is within the range of 800 to 1300 km above the 1-bar pressure surface. However, using colour ratio spectroscopy, Gustin et al [2009] located the emission layer at or above 610 km. Measurements of the infrared auroral altitude was conducted by Stallard et al [2012] on H3+ emissions from nine VIMS Cassini images, resulting in a measurement of 1155 ± 25 km above the 1-bar pressure surface. Here we present data analysed in a manner similar to Stallard et al [2012] on the observations of H3+ emission in twenty images taken by the Visual Infrared Mapping Spectrometer (VIMS) aboard the spacecraft Cassini from the years 2006, 2008 and 2012. The bins covered were 3.39872, 3.51284, 3.64853, 4.18299 and 4.33280 μm. These observations were selected from a set of 15,000 as they contained a useful alignment of the aurorae on the limb and the body of the planet. The specific conditions that had to be met for each image were as follows; minimum integration time of 75 milliseconds per pixel, minimum number of pixels in the x and y direction of 32, the image must include the latitude range of 70 to 90 degrees for either hemisphere and the sub spacecraft angle must be between 0 and 20 degrees. This alignment allowed for the altitudinal profiles to be analysed in terms of the difference between the latitude of aurorae on the limb and on the body of Saturn; thus permitting an investigation into the effects of misalignment. In this instance, misalignment was defined as the difference between the latitude of the peak emission latitude on the planet and the latitude of the limb; assuming the aurorae to be approximately circular. A statistical study by Badman et al [2011] showed that centre of the oval is on average offset anti sunward of the pole by about 1.6 degrees. To

  14. The Production of Titan's Ultraviolet Nitrogen Airglow

    NASA Astrophysics Data System (ADS)

    Stevens, Michael H.; Gustin, J.; Ajello, J. M.; Evans, J. S.; Meier, R. R.; Stewart, A. I. F.; Esposito, L. W.; McClintock, W. E.; Stephan, A. W.

    2010-10-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed Titan's dayside limb on 22 June, 2009, obtaining high quality extreme ultraviolet (EUV) and far ultraviolet (FUV) spectra from a distance of only 60,000 km (23 Titan radii). The observations reveal the same EUV and FUV emissions arising from photoelectron excitation and photofragmentation of molecular nitrogen (N2) on Earth but with the altitude of peak emission much higher on Titan near 1000 km altitude. In the EUV, emission bands from the photoelectron excited N2 Carroll-Yoshino c4'-X system and N I and N II multiplets arising from photofragmentation of N2 dominate, with no detectable c4'(0,0) emission near 958 Å, contrary to many interpretations of the lower resolution Voyager 1 Ultraviolet Spectrometer data. The FUV is dominated by emission bands from the N2 Lyman-Birge-Hopfield a-X system and additional N I multiplets. We also identify several N2 Vegard-Kaplan A-X bands between 1500-1900 Å, two of which are located near 1561 and 1657 Å where C I multiplets were previously identified from a separate UVIS disk observation. We compare these limb emissions to predictions from a terrestrial airglow model adapted to Titan that uses a solar spectrum appropriate for these June, 2009 observations. Volume production rates and limb radiances are calculated, including extinction by methane and allowance for multiple scattering within the readily excited c4'(0,v') system, and compared to UVIS observations. We find that for these airglow data only emissions arising from processes involving N2 are present.

  15. Near-Infrared Emission Lines of Nova Cassiopeiae 1995

    NASA Astrophysics Data System (ADS)

    Rudy, R. J.; Lynch, D. K.; Mazuk, S. M.; Venturini, C. C.; Puetter, R. C.

    2000-12-01

    The slow nova V 723 Cas (Nova Cas 1995) exhibits comparatively narrow emission features (FWHM 500 km sec-1) that make it ideal for classifying weak lines and lines blended with stronger features. We present spectra from 0.8-2.5 microns that track the gradual incrase in excitation of Nova Cas and discuss the emission lines that were present. During the period encompassed by these observations Nova Cas reached only moderate excitation-the most energetic coronal lines were [S VIII] 9913 and [Al IX] 20444; lines such as [S IX] 12523 that are prominent in some novae were not detected. Additional coronal lines present include [Si VI] 19641, [Ca VIII] 23205, and [Si VII] 24807. New lines identified include features of [Fe V], [Fe VI]. These iron features are not coronal lines, arising from transitions among low-lying terms rather than within the ground term itself. Also detected was [Ti VI] 17151 that was first identified in V1974 Cygni (Nova Cyg 1992), and possibly [Ti VII] 22050. Accurate wavelengths for a number of unidentified lines are also presented. These unidentified features are discussed with regard to their likely level of excitation and their presence in other novae. This work was supported by the IR&D program of the Aerospace Corporation. RCP acknowledges support from NASA.

  16. A Suzaku Observation of the Neutral Fe-line Emission from RCW 86

    NASA Technical Reports Server (NTRS)

    Ueno, Masaru; Sato, Rie; Kataoka, Jun; Bamba, Aya; Harrus, Ilana; Hiraga, Junko; Hughes, John P.; Kilbourne, Caroline A.; Koyama, Katsuji; Kokubun, Motohide; hide

    2007-01-01

    The newly operational X-ray satellite Suzaku observed the supernova remnant (SNR) RCW 86 in February 2006 to study the nature of the 6.4 keV emission line first detected with the Advanced Satellite for Cosmology and Astronomy (ASCA). The new data confirms the existence of the line, localizing it for the first time inside a low temperature emission region and not at the locus of the continuum hard X-ray emission. We also report the first detection of a 7.1 keV line that we interpret as the K(beta) emission from neutral or low-ionized iron. The Fe-K line features are consistent with a non-equilibrium plasma of Fe-rich ejecta with n(sub e) less than or approx. equal to 10(exp 9)/cu cm s and kT(sub e) > 1 keV. We found a sign that Fe K(alpha) line is intrinsically broadened 47 (35-57) eV (99% error region). Cr-K line is also marginally detected, which is supporting the ejecta origin for the Fe-K line. By showing that the hard continuum above 3 keV has different spatial distribution from the Fe-K line, we confirmed it to be synchrotron X-ray emission.

  17. Extreme ultraviolet spectra of Venusian airglow observed by EXCEED

    NASA Astrophysics Data System (ADS)

    Nara, Yusuke; Yoshikawa, Ichiro; Yoshioka, Kazuo; Murakami, Go; Kimura, Tomoki; Yamazaki, Atsushi; Tsuchiya, Fuminori; Kuwabara, Masaki; Iwagami, Naomoto

    2018-06-01

    Extreme ultraviolet (EUV) spectra of Venus in the wavelength range 520 - 1480 Å with 3 - 4 Å resolutions were obtained in March 2014 by an EUV imaging spectrometer EXCEED (Extreme Ultraviolet Spectroscope for Exospheric Dynamics) on the HISAKI spacecraft. Due to its high sensitivity and long exposure time, many new emission lines and bands were identified. Already known emissions such as the O II 834 Å, O I 989 Å, H ILy - β 1026 Å, and the C I 1277 Å lines (Broadfoot et al., 1974; Bertaux et al., 1980; Feldman et al., 2000) are also detected in the EXCEED spectrum. In addition, N2 band systems such as the Lyman-Birge-Hopfield (a 1Πg - X 1Σg+) (2, 0), (2, 1), (3, 1), (3, 2) and (5, 3) bands, the Birge-Hopfield (b1Πu - X 1 Σg+) (1, 3) band, and the Carroll-Yoshino (c 4‧ 1 Σu+ - X 1Σg+) (0, 0) and (0, 1) bands together are identified for the first time in the Venusian airglow. We also identified the CO Hopfield-Birge (B 1Σ+ - X 1Σ+) (1, 0) band in addition to the already known (0, 0) band, and the CO Hopfield-Birge (C 1Σ+ - X 1Σ+) (0, 1), (0, 2) bands in addition to the already known (0, 0) band (Feldman et al., 2000; Gérard et al., 2011).

  18. High-resolution crystal spectrometer for the 10-60 A extreme ultraviolet region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiersdorfer, P.; Brown, G.V.; Goddard, R.

    2004-10-01

    A vacuum crystal spectrometer with nominal resolving power approaching 1000 is described for measuring emission lines with wavelength in the extreme ultraviolet region up to 60 A. The instrument utilizes a flat octadecyl hydrogen maleate crystal and a thin-window 1D position-sensitive gas proportional detector. This detector employs a 1-{mu}m-thick 100x8 mm{sup 2} aluminized polyimide window and operates at one atmosphere pressure. The spectrometer has been implemented on the Livermore electron beam ion traps. The performance of the instrument is illustrated in measurements of the newly discovered magnetic field-sensitive line in Ar{sup 8+}.

  19. Observations of O VI Emission from the Diffuse Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Shelton, R. L.; Kruk, J. W.; Murphy, E. M.; Andersson, B. G.; Blair, W. P.; Dixon, W. V.; Edelstein, J.; Fullerton, A. W.; Gry, C.; Howk, J. C.; hide

    2001-01-01

    We report the first Far Ultraviolet Spectroscopic Explorer (FUSE) measurements of diffuse O(VI) (lambda lambda 1032,1038) emission from the general diffuse interstellar medium outside of supernova remnants or superbubbles. We observed a 30 arcsec x 30 arcsec region of the sky centered at l = 315.0 deg and b = -41.3 deg. From the observed intensities (2930 +/- 290 (random) +/- 410 (systematic) and 1790 +/- 260 (random) +/- 250 (systematic) photons/sq cm/s/sr in the 1032 and 1038 angstrom emission lines, respectively), derived equations, and assumptions about the source location, we calculate the intrinsic intensity, electron density, thermal pressure, and emitting depth. The intensities are too large for the emission to originate solely in the Local Bubble. Thus, we conclude that the Galactic thick disk and lower halo also contribute. High velocity clouds are ruled out because there are none near the pointing direction. The calculated emitting depth is small, indicating that the O(VI)-bearing gas fills a small volume. The observations can also be used to estimate the cooling rate of the hot interstellar medium and constrain models. The data also yield the first intensity measurement of the C(II) 3s 2S(1/2) to 2p 2P(3/2) emission line at 1037 angstrom and place upper limits on the intensities of ultraviolet line emission from C(I), C(III), Si(II), S(III), S(IV), S(VI), and Fe(III).

  20. Extreme Ultraviolet Emission Spectrum of CO_2 Induced by Electron Impact at 200 eV

    NASA Technical Reports Server (NTRS)

    Kanik, I.; Ajello, J. M.; James, G. K.

    1993-01-01

    We present the extreme ultraviolet (EUV) emission spectrum of CO_2 induced by electronimpact at 200 eV. There are 36 spectral features which are identified with a resolution of 0.5 nmover the wavelength range of 40 to 125 nm. Absolute emission cross sections were obtained for eachof these features. The EUV emission spectrum induced by electron impact consist of atomicmultiplets of CI,II and OI,II,III as well as CO and CO^+ molecular band systems produced bydissociative excitation. The CI (119.4 nm) multiplet is the strongest feature of CI with a peak crosssection of 3.61 x 10^(-19) cm^2 at 200 eV. The strongest feature of OI in the EUV spectrum is theOI (99.0 nm) multiplet with a peak cross section of 3.59 x 10^(-19) cm^2 at 200 eV.

  1. Ultraviolet variability and mass expulsion from R Aquarii

    NASA Technical Reports Server (NTRS)

    Kafatos, M.; Michalitsianos, A. G.; Hollis, J. M.

    1986-01-01

    Ultraviolet spectra in the 1200-3200 A range indicate that the extended nebular features which resemble a jet in the peculiar variable R Aquarii (M7e + pec) increased in excitation in 1985. The emission properties of the compact H II region that surrounds the unresolved binary, and those of the extended nebular jet, have been analyzed from low-resolution IUE spectra of these regions. In particular, the UV line intensities observed in the jet appear variable on a time scale of about 1.5 yr. A new accretion disk model is proposed that explains the kinematic and ionization properties of discrete components which comprise the jet emission nebulosity, the appearance of the jet in the 1980s, and morphology that uniquely characterizes the R Aquarii system at radio, optical, UV, and X-ray wavelengths.

  2. The Far-ultraviolet "Continuum" in Protoplanetary Disk Systems. II. Carbon Monoxide Fourth Positive Emission and Absorption

    NASA Astrophysics Data System (ADS)

    France, Kevin; Schindhelm, Eric; Burgh, Eric B.; Herczeg, Gregory J.; Harper, Graham M.; Brown, Alexander; Green, James C.; Linsky, Jeffrey L.; Yang, Hao; Abgrall, Hervé; Ardila, David R.; Bergin, Edwin; Bethell, Thomas; Brown, Joanna M.; Calvet, Nuria; Espaillat, Catherine; Gregory, Scott G.; Hillenbrand, Lynne A.; Hussain, Gaitee; Ingleby, Laura; Johns-Krull, Christopher M.; Roueff, Evelyne; Valenti, Jeff A.; Walter, Frederick M.

    2011-06-01

    We exploit the high sensitivity and moderate spectral resolution of the Hubble Space Telescope Cosmic Origins Spectrograph to detect far-ultraviolet (UV) spectral features of carbon monoxide (CO) present in the inner regions of protoplanetary disks for the first time. We present spectra of the classical T Tauri stars HN Tau, RECX-11, and V4046 Sgr, representative of a range of CO radiative processes. HN Tau shows CO bands in absorption against the accretion continuum. The CO absorption most likely arises in warm inner disk gas. We measure a CO column density and rotational excitation temperature of N(CO) = (2 ± 1) × 1017 cm-2 and T rot(CO) 500 ± 200 K for the absorbing gas. We also detect CO A-X band emission in RECX-11 and V4046 Sgr, excited by UV line photons, predominantly H I Lyα. All three objects show emission from CO bands at λ > 1560 Å, which may be excited by a combination of UV photons and collisions with non-thermal electrons. In previous observations these emission processes were not accounted for due to blending with emission from the accretion shock, collisionally excited H2, and photo-excited H2, all of which appeared as a "continuum" whose components could not be separated. The CO emission spectrum is strongly dependent upon the shape of the incident stellar Lyα emission profile. We find CO parameters in the range: N(CO) ~ 1018-1019 cm-2, T rot(CO) >~ 300 K for the Lyα-pumped emission. We combine these results with recent work on photo-excited and collisionally excited H2 emission, concluding that the observations of UV-emitting CO and H2 are consistent with a common spatial origin. We suggest that the CO/H2 ratio (≡ N(CO)/N(H2)) in the inner disk is ~1, a transition between the much lower interstellar value and the higher value observed in solar system comets today, a result that will require future observational and theoretical study to confirm. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data

  3. Cloudy 94 and Applications to Quasar Emission Line Regions

    NASA Technical Reports Server (NTRS)

    Ferland, Gary J.

    2000-01-01

    This review discusses the most recent developments of the plasma simulation code Cloudy and its application to the, emission-line regions of quasars. The longterm goal is to develop the tools needed to determine the chemical composition of the emitting gas and the luminosity of the central engine for any emission line source. Emission lines and the underlying thermal continuum are formed in plasmas that are far from thermodynamic equilibrium. Their thermal and ionization states are the result of a balance of a vast set of microphysical processes. Once produced, radiation must, propagate out of the (usually) optically thick source. No analytic solutions are possible, and recourse to numerical simulations is necessary. I am developing the large-scale plasma simulation code Cloudy as an investigative tool for this work, much as an observer might build a spectrometer. This review describes the current version of Cloudy, version 94. It describes improvements made since the, release of the previous version, C90. The major recent, application has been the development of the "Locally Optimally-Emitting Cloud" (LOC) model of AGN emission line regions. Powerful selection effects, introduced by the atomic physics and line formation process, permit individual lines to form most efficiently only near certain selected parameters. These selection effects, together with the presence of gas with a wide range of conditions, are enough to reproduce the spectrum of a typical quasar with little dependence on details. The spectrum actually carries little information to the identity of the emitters. I view this as a major step forward since it provides a method to handle accidental details at the source, so that we can concentrate on essential information such as the luminosity or chemical composition of the quasar.

  4. SUMER: Solar Ultraviolet Measurements of Emitted Radiation

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Axford, W. I.; Curdt, W.; Gabriel, A. H.; Grewing, M.; Huber, M. C. E.; Jordan, M. C. E.; Lemaire, P.; Marsch, E.; Poland, A. I.

    1988-01-01

    The SUMER (solar ultraviolet measurements of emitted radiation) experiment is described. It will study flows, turbulent motions, waves, temperatures and densities of the plasma in the upper atmosphere of the Sun. Structures and events associated with solar magnetic activity will be observed on various spatial and temporal scales. This will contribute to the understanding of coronal heating processes and the solar wind expansion. The instrument will take images of the Sun in EUV (extreme ultra violet) light with high resolution in space, wavelength and time. The spatial resolution and spectral resolving power of the instrument are described. Spectral shifts can be determined with subpixel accuracy. The wavelength range extends from 500 to 1600 angstroms. The integration time can be as short as one second. Line profiles, shifts and broadenings are studied. Ratios of temperature and density sensitive EUV emission lines are established.

  5. A Calibrated H-alpha Index to Monitor Emission Line Objects

    NASA Astrophysics Data System (ADS)

    Hintz, Eric G.; Joner, M. D.

    2013-06-01

    Over an 8 year period we have developed a calibrated H-alpha index, similar to the more traditional H-beta index, based on spectrophotometric observations (Joner & Hintz, 2013) from the DAO 1.2-m Telescope. While developing the calibration for this filter set we also obtained spectra of a number of emission line systems such as high mass x-ray binaries (HMXB), Be stars, and young stellar objects. From this work we find that the main sequence stars fill a very tight relation in the H-alpha/H-beta plane and that the emission line objects are easily detected. We will present the overall location of these emission line objects. We will also present the changes experiences by these objects over the course of the years of the project.

  6. Linear Polarization Measurements of Chromospheric Emission Lines

    NASA Technical Reports Server (NTRS)

    Sheeley, N. R., Jr.; Keller, C. U.

    2003-01-01

    We have used the Zurich Imaging Stokes Polarimeter (ZIMPOL I) with the McMath-Pierce 1.5 m main telescope on Kitt Peak to obtain linear polarization measurements of the off-limb chromosphere with a sensitivity better than 1 x 10(exp -5). We found that the off-disk observations require a combination of good seeing (to show the emission lines) and a clean heliostat (to avoid contamination by scattered light from the Sun's disk). When these conditions were met, we obtained the following principal results: 1. Sometimes self-reversed emission lines of neutral and singly ionized metals showed linear polarization caused by the transverse Zeeman effect or by instrumental cross talk from the longitudinal Zeeman effect in chromospheric magnetic fields. Otherwise, these lines tended to depolarize the scattered continuum radiation by amounts that ranged up to 0.2%. 2. Lines previously known to show scattering polarization just inside the limb (such as the Na I lambda5889 D2 and the He I lambda5876 D3 lines) showed even more polarization above the Sun's limb, with values approaching 0.7%. 3. The O I triplet at lambda7772, lambda7774, and lambda7775 showed a range of polarizations. The lambda7775 line, whose maximum intrinsic polarizability, P(sub max), is less than 1%, revealed mainly Zeeman contributions from chromospheric magnetic fields. However, the more sensitive lambda7772 (P(sub max) = 19%) and lambda7774 (P(sub max) = 29%) lines had relatively strong scattering polarizations of approximately 0.3% in addition to their Zeeman polarizations. At times of good seeing, the polarization spectra resolve into fine structures that seem to be chromospheric spicules.

  7. Emission-line maps with OSIRIS-TF: The case of M101

    NASA Astrophysics Data System (ADS)

    Méndez-Abreu, J.

    2013-05-01

    We investigate the suitability of GTC/OSIRIS Tunable Filters (TFs) for obtaining emission-line maps of extended objects. We developed a technique to reconstruct an emission-line image from a set of images taken at consecutive central wavelengths. We demonstrate the feasibility of the reconstruction method by generating a flux calibrated Hα image of the well-known spiral galaxy M101. We tested our emission-line fluxes and ratios by using data present in the literature. We found that the differences in both Hα fluxes and N II/Hα line ratios are ~15% and ~50%, respectively. These results are fully in agreement with the expected values for our observational setup. The proposed methodology will allow us to use OSIRIS/GTC to perform accurate spectrophotometric studies of extended galaxies in the local Universe.

  8. A STUDY OF RO-VIBRATIONAL OH EMISSION FROM HERBIG Ae/Be STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brittain, Sean D.; Reynolds, Nickalas; Najita, Joan R.

    2016-10-20

    We present a study of ro-vibrational OH and CO emission from 21 disks around Herbig Ae/Be stars. We find that the OH and CO luminosities are proportional over a wide range of stellar ultraviolet luminosities. The OH and CO line profiles are also similar, indicating that they arise from roughly the same radial region of the disk. The CO and OH emission are both correlated with the far-ultraviolet luminosity of the stars, while the polycyclic aromatic hydrocarbon (PAH) luminosity is correlated with the longer wavelength ultraviolet luminosity of the stars. Although disk flaring affects the PAH luminosity, it is notmore » a factor in the luminosity of the OH and CO emission. These properties are consistent with models of UV-irradiated disk atmospheres. We also find that the transition disks in our sample, which have large optically thin inner regions, have lower OH and CO luminosities than non-transition disk sources with similar ultraviolet luminosities. This result, while tentative given the small sample size, is consistent with the interpretation that transition disks lack a gaseous disk close to the star.« less

  9. Ultraviolet spectroscopy of symbiotic nova V1016 Cyg with IUE and HST

    NASA Astrophysics Data System (ADS)

    Sanad, M. R.

    2017-04-01

    We present International Ultraviolet Explorer (IUE) & Hubble Space Telescope Space Telescope Imaging Spectrograph (HST STIS) observations of the symbiotic nova V1016 Cyg through the period 1978 - 2000. Four spectra at different times revealing the changes in line fluxes are presented. The outflow velocity of the emitting region was calculated to be 900-2000 km s-1 (FWHM). The reddening of V1016 Cyg was determined from 2200 Å absorption feature to be E (B-V) = 0.36 ± 0.02. We calculated the fluxes of CIV 1550 Å & CIII] 1909 Å emission lines produced in a stellar wind from the hot white dwarf. We determined the average wind mass loss rate to be ˜2.3 × 10-6 M⊙, the average temperature of the emitting region to be ˜1.3 × 105 K, and an average ultraviolet luminosity to be ˜2 × 1035 erg s-1. The results show that there are modulations of line fluxes with time. We attributed these spectral modulations to the changes of density and temperature in the emitting region as a result of the variable stellar wind.

  10. Measuring SO2 ship emissions with an ultra-violet imaging camera

    NASA Astrophysics Data System (ADS)

    Prata, A. J.

    2013-11-01

    Over the last few years fast-sampling ultra-violet (UV) imaging cameras have been developed for use in measuring SO2 emissions from industrial sources (e.g. power plants; typical fluxes ~1-10 kg s-1) and natural sources (e.g. volcanoes; typical fluxes ~10-100 kg s-1). Generally, measurements have been made from sources rich in SO2 with high concentrations and fluxes. In this work, for the first time, a UV camera has been used to measure the much lower concentrations and fluxes of SO2 (typical fluxes ~0.01-0.1 kg s-1) in the plumes from moving and stationary ships. Some innovations and trade-offs have been made so that estimates of the fluxes and path concentrations can be retrieved in real-time. Field experiments were conducted at Kongsfjord in Ny Ålesund, Svalbard, where emissions from cruise ships were made, and at the port of Rotterdam, Netherlands, measuring emissions from more than 10 different container and cargo ships. In all cases SO2 path concentrations could be estimated and fluxes determined by measuring ship plume speeds simultaneously using the camera, or by using surface wind speed data from an independent source. Accuracies were compromised in some cases because of the presence of particulates in some ship emissions and the restriction of single-filter UV imagery, a requirement for fast-sampling (>10 Hz) from a single camera. Typical accuracies ranged from 10-30% in path concentration and 10-40% in flux estimation. Despite the ease of use and ability to determine SO2 fluxes from the UV camera system, the limitation in accuracy and precision suggest that the system may only be used under rather ideal circumstances and that currently the technology needs further development to serve as a method to monitor ship emissions for regulatory purposes.

  11. Molecular line emission models of Herbig-Haro objects. I - H2 emission

    NASA Technical Reports Server (NTRS)

    Wolfire, Mark G.; Konigl, Arieh

    1991-01-01

    A comprehensive model for molecular hydrogen emssion in Herbig-Haro objects that are associated with the heads of radiative stellar jets is presented by using a simple representation of the jet head as a comprising a leading bow shock and a trailing jet shock, separated by a dense layer of cool shocked gas. Attention is given to collisional excitation in a nondissociative shock and formation pumping in the molecular reformation zone behind a dissociative shock, employing detailed shock and photodissociation-region emission models that incorporate most of the relevant atomic physics and chemistry. The conditions under which each of these excitation mechanisms may be expected to contribute to the observed emission are discussed, and a general diagnostic scheme for discriminating among them is constructed. Applying this scheme to the HH 1-2 system, strong evidence for excitation by the radiation field of a fast shock is found. It is inferred that FUV pumping contributes a significant fraction of the H2 line emission, and it is shown that this can occur only if the UV pump lines are not strongly self-shielded.

  12. The Surprising Absence of Absorption in the Far-ultraviolet Spectrum of Mrk 231

    NASA Technical Reports Server (NTRS)

    Veilleux, S.; Trippe, M.; Hamann, F.; Rupke, D. S. N.; Tripp, T. M.; Netzer, H.; Lutz, D.; Sembach, K. R.; Krug, H.; Teng, Stacy H.; hide

    2013-01-01

    Mrk 231, the nearest (z = 0.0422) quasar, hosts both a galactic-scale wind and a nuclear-scale iron low-ionization broad absorption line (FeLoBAL) outflow. We recently obtained a far-ultraviolet (FUV) spectrum of this object covering approx. 1150-1470A with the Cosmic Origins Spectrograph on board the Hubble Space Telescope. This spectrum is highly peculiar, highlighted by the presence of faint (< or approx.2% of predictions based on H(alpha)), broad (> or approx.10,000 km/s at the base), and highly blueshifted (centroid at approx. 3500 km/s) Ly(aplpha) emission. The FUV continuum emission is slightly declining at shorter wavelengths (consistent with F(sub lambda) Alpha Lambda(sup 1.7)) and does not show the presence of any obvious photospheric or wind stellar features. Surprisingly, the FUV spectrum also does not show any unambiguous broad absorption features. It thus appears to be dominated by the AGN, rather than hot stars, and virtually unfiltered by the dusty FeLoBAL screen. The observed Ly(alpha) emission is best explained if it is produced in the outflowing BAL cloud system, while the Balmer lines arise primarily from the standard broad emission line region seen through the dusty (Av approx. 7 mag) broad absorption line region. Two possible geometric models are discussed in the context of these new results.

  13. Variability of Lyman-alpha emission from Jupiter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, W.D.; Barker, E.S.

    1979-12-01

    The Jovian L..cap alpha.. emission line was reobserved in 1978 March using the high-resolution spectrometer of the Copernicus satellite. An intensity of 8.3 +- 2.9 kilorayleighs was measured. This value represents a significant increase in intensity over previous (1976) Copernicus observations, but is lower than the recent (1979) values obtained by Voyager 1 and IUE. The increase in intensity has been accompanied by a significant increase in line width givin strong support to the theory that the emission results from resonant scattering of the solar L..cap alpha.. line by H atoms in the upper Jovian atmosphere. The strength of Jovianmore » L..cap alpha.. emission correlates well with the level of solar activity. The solar extreme ultraviolet radiation varies with the solar cycle. This radiation causes the dissociation of H/sub 2/ and CH/sub 4/ into H atoms in the Jovian atmosphere. Therefore, in times of high solar activity, the H column density will increase, causing the observed stronger Jovian L..cap alpha.. emission.« less

  14. Calibration of H-alpha/H-beta Indexes for Emission Line Objects

    NASA Astrophysics Data System (ADS)

    Hintz, Eric G.; Joner, Michael D.

    2016-01-01

    In Joner and Hintz (2015) they report on a standard star system for calibration of H-alpha and H-beta observations. This work was based on data obtained with the Dominion Astrophysical Observatory 1.2-m telescope. As part of the data acquisition for that project, a large number of emission line objects were also observed. We will report on the preliminary results for the emission line data set. This will include a comparison of equivalent width measurements of each line with the matching index. We will also examine the relation between the absorption line objects previously published and the emission line objects, along with a discussion of the transition point. Object types included are Be stars, high mass x-ray binaries, one low mass x-ray binary, Herbig Ae/Be stars, pre-main sequence stars, T Tauri stars, young stellar objects, and one BY Draconis star. Some of these objects come from Cygnus OB-2, NGC 659, NGC 663, NGC 869 and NGC 884.

  15. Economical Emission-Line Mapping: ISM Properties of Nearby Protogalaxy Analogs

    NASA Astrophysics Data System (ADS)

    Monkiewicz, Jacqueline A.

    2017-01-01

    Optical emission line imaging can produce a wealth of information about the conditions of the interstellar medium, but a full set of custom emission-line filters for a professional-grade telescope camera can cost many thousands of dollars. A cheaper alternative is to use commercially-produced 2-inch narrow-band astrophotography filters. In order to use these standardized filters with professional-grade telescope cameras, custom filter mounts must be manufactured for each individual filter wheel. These custom filter adaptors are produced by 3-D printing rather than standard machining, which further lowers the total cost.I demonstrate the feasibility of this technique with H-alpha, H-beta, and [OIII] emission line mapping of the low metallicity star-forming galaxies IC10 and NGC 1569, taken with my astrophotography filter set on three different 2-meter class telescopes in Southern Arizona.

  16. Ultraviolet continuum and H2 fluorescent emission in Herbig-Haro objects 43 and 47

    NASA Technical Reports Server (NTRS)

    Schwartz, R. D.

    1983-01-01

    IUE short wavelength spectra are presented for the low excitation Herbig-Haro objects HH 43 and HH 47. In the former, several emission lines in the Lyman band of H2 from an excited state are observed which are due to fluorescence from the H Ly-alpha line pumping a lower state (that is in turn excited by a low-velocity shock wave). No evidence of highly ionized gas emission is found in the UV spectra, and both objects exhibit a UV continuum which peaks in the vicinity of 1500 A and is probably caused by H two-photon emission enhanced by low velocity shock collisional excitation.

  17. Ultraviolet emission enhancement in ZnO thin films modified by nanocrystalline TiO2

    NASA Astrophysics Data System (ADS)

    Zheng, Gaige; Lu, Xi; Qian, Liming; Xian, Fenglin

    2017-05-01

    In this study, nanocrystalline TiO2 modified ZnO thin films were prepared by electron beam evaporation. The structural, morphological and optical properties of the samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), UV-visible spectroscopy, fluorescence spectroscopy, respectively. The composition of the films was examined by energy dispersive X-ray spectroscopy (EDX). The photoluminescent spectrum shows that the pure ZnO thin film exhibits an ultraviolet (UV) emission peak and a strong green emission band. Surface analysis indicates that the ZnO thin film contains many oxygen vacancy defects on the surface. After the ZnO thin film is modified by the nanocrystalline TiO2 layer, the UV emission of ZnO is largely enhanced and the green emission is greatly suppressed, which suggests that the surface defects such as oxygen vacancies are passivated by the TiO2 capping layer. As for the UV emission enhancement of the ZnO thin film, the optimized thickness of the TiO2 capping layer is ∼16 nm. When the thickness is larger than 16 nm, the UV emission of the ZnO thin film will decrease because the TiO2 capping layer absorbs most of the excitation energy. The UV emission enhancement in the nanocrystalline TiO2 modified ZnO thin film can be attributed to surface passivation and flat band effect.

  18. Double-peaked Emission Lines Due to a Radio Outflow in KISSR 1219

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharb, P.; Vaddi, S.; Subramanian, S.

    We present the results from 1.5 and 5 GHz phase-referenced VLBA and 1.5 GHz Karl G. Jansky Very Large Array (VLA) observations of the Seyfert 2 galaxy KISSR 1219, which exhibits double-peaked emission lines in its optical spectrum. The VLA and VLBA data reveal a one-sided core-jet structure at roughly the same position angles, providing evidence of an active galactic nucleus outflow. The absence of dual parsec-scale radio cores puts the binary black-hole picture in doubt for the case of KISSR 1219. The high brightness temperatures of the parsec-scale core and jet components (>10{sup 6} K) are consistent with thismore » interpretation. Doppler boosting with jet speeds of ≳0.55 c to ≳0.25 c , going from parsec to kiloparsec scales, at a jet inclination ≳50° can explain the jet one-sidedness in this Seyfert 2 galaxy. A blueshifted broad emission line component in [O iii] is also indicative of an outflow in the emission line gas at a velocity of ∼350 km s{sup −1}, while the [O i] doublet lines suggest the presence of shock-heated gas. A detailed line ratio study using the MAPPINGS III code further suggests that a shock+precursor model can explain the line ionization data well. Overall, our data suggest that the radio outflow in KISSR 1219 is pushing the emission line clouds, both ahead of the jet and in a lateral direction, giving rise to the double peak emission line spectra.« less

  19. The Ultraviolet Spectrograph on NASA's Juno Mission

    NASA Astrophysics Data System (ADS)

    Gladstone, G. Randall; Persyn, Steven C.; Eterno, John S.; Walther, Brandon C.; Slater, David C.; Davis, Michael W.; Versteeg, Maarten H.; Persson, Kristian B.; Young, Michael K.; Dirks, Gregory J.; Sawka, Anthony O.; Tumlinson, Jessica; Sykes, Henry; Beshears, John; Rhoad, Cherie L.; Cravens, James P.; Winters, Gregory S.; Klar, Robert A.; Lockhart, Walter; Piepgrass, Benjamin M.; Greathouse, Thomas K.; Trantham, Bradley J.; Wilcox, Philip M.; Jackson, Matthew W.; Siegmund, Oswald H. W.; Vallerga, John V.; Raffanti, Rick; Martin, Adrian; Gérard, J.-C.; Grodent, Denis C.; Bonfond, Bertrand; Marquet, Benoit; Denis, François

    2017-11-01

    The ultraviolet spectrograph instrument on the Juno mission (Juno-UVS) is a long-slit imaging spectrograph designed to observe and characterize Jupiter's far-ultraviolet (FUV) auroral emissions. These observations will be coordinated and correlated with those from Juno's other remote sensing instruments and used to place in situ measurements made by Juno's particles and fields instruments into a global context, relating the local data with events occurring in more distant regions of Jupiter's magnetosphere. Juno-UVS is based on a series of imaging FUV spectrographs currently in flight—the two Alice instruments on the Rosetta and New Horizons missions, and the Lyman Alpha Mapping Project on the Lunar Reconnaissance Orbiter mission. However, Juno-UVS has several important modifications, including (1) a scan mirror (for targeting specific auroral features), (2) extensive shielding (for mitigation of electronics and data quality degradation by energetic particles), and (3) a cross delay line microchannel plate detector (for both faster photon counting and improved spatial resolution). This paper describes the science objectives, design, and initial performance of the Juno-UVS.

  20. Extreme ultraviolet spectroscopy of low pressure helium microwave driven discharges

    NASA Astrophysics Data System (ADS)

    Espinho, Susana; Felizardo, Edgar; Tatarova, Elena; Alves, Luis Lemos

    2016-09-01

    Surface wave driven discharges are reliable plasma sources that can produce high levels of vacuum and extreme ultraviolet radiation (VUV and EUV). The richness of the emission spectrum makes this type of discharge a possible alternative source in EUV/VUV radiation assisted applications. However, due to challenging experimental requirements, publications concerning EUV radiation emitted by microwave plasmas are scarce and a deeper understanding of the main mechanisms governing the emission of radiation in this spectral range is required. To this end, the EUV radiation emitted by helium microwave driven plasmas operating at 2.45 GHz has been studied for low pressure conditions. Spectral lines from excited helium atoms and ions were detected via emission spectroscopy in the EUV/VUV regions. Novel data concerning the spectral lines observed in the 23 - 33 nm wavelength range and their intensity behaviour with variation of the discharge operational conditions are presented. The intensity of all the spectral emissions strongly increases with the microwave power delivered to the plasma up to 400 W. Furthermore, the intensity of all the ion spectral emissions in the EUV range decreases by nearly one order of magnitude as the pressure was raised from 0.2 to 0.5 mbar. Work funded by FCT - Fundacao para a Ciencia e a Tecnologia, under Project UID/FIS/50010/2013 and grant SFRH/BD/52412/2013 (PD-F APPLAuSE).

  1. HST-COS Observations of Hydrogen, Helium, Carbon, and Nitrogen Emission from the SN 1987A Reverse Shock

    NASA Astrophysics Data System (ADS)

    France, Kevin; McCray, Richard; Penton, Steven V.; Kirshner, Robert P.; Challis, Peter; Laming, J. Martin; Bouchet, Patrice; Chevalier, Roger; Garnavich, Peter M.; Fransson, Claes; Heng, Kevin; Larsson, Josefin; Lawrence, Stephen; Lundqvist, Peter; Panagia, Nino; Pun, Chun S. J.; Smith, Nathan; Sollerman, Jesper; Sonneborn, George; Sugerman, Ben; Wheeler, J. Craig

    2011-12-01

    We present the most sensitive ultraviolet observations of Supernova 1987A to date. Imaging spectroscopy from the Hubble Space Telescope-Cosmic Origins Spectrograph shows many narrow (Δv ~ 300 km s-1) emission lines from the circumstellar ring, broad (Δv ~ 10-20 × 103 km s-1) emission lines from the reverse shock, and ultraviolet continuum emission. The high signal-to-noise ratio (>40 per resolution element) broad Lyα emission is excited by soft X-ray and EUV heating of mostly neutral gas in the circumstellar ring and outer supernova debris. The ultraviolet continuum at λ > 1350 Å can be explained by H I two-photon (2s 2 S 1/2-1s 2 S 1/2) emission from the same region. We confirm our earlier, tentative detection of N V λ1240 emission from the reverse shock and present the first detections of broad He II λ1640, C IV λ1550, and N IV] λ1486 emission lines from the reverse shock. The helium abundance in the high-velocity material is He/H = 0.14 ± 0.06. The N V/Hα line ratio requires partial ion-electron equilibration (Te /Tp ≈ 0.14-0.35). We find that the N/C abundance ratio in the gas crossing the reverse shock is significantly higher than that in the circumstellar ring, a result that may be attributed to chemical stratification in the outer envelope of the supernova progenitor. The N/C abundance may have been stratified prior to the ring expulsion, or this result may indicate continued CNO processing in the progenitor subsequent to the expulsion of the circumstellar ring. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  2. THE NATURE OF ACTIVE GALACTIC NUCLEI WITH VELOCITY OFFSET EMISSION LINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Müller-Sánchez, F.; Comerford, J.; Stern, D.

    We obtained Keck/OSIRIS near-IR adaptive optics-assisted integral-field spectroscopy to probe the morphology and kinematics of the ionized gas in four velocity-offset active galactic nuclei (AGNs) from the Sloan Digital Sky Survey. These objects possess optical emission lines that are offset in velocity from systemic as measured from stellar absorption features. At a resolution of ∼0.″18, OSIRIS allows us to distinguish which velocity offset emission lines are produced by the motion of an AGN in a dual supermassive black hole system, and which are produced by outflows or other kinematic structures. In three galaxies, J1018+2941, J1055+1520, and J1346+5228, the spectral offsetmore » of the emission lines is caused by AGN-driven outflows. In the remaining galaxy, J1117+6140, a counterrotating nuclear disk is observed that contains the peak of Pa α emission 0.″2 from the center of the galaxy. The most plausible explanation for the origin of this spatially and kinematically offset peak is that it is a region of enhanced Pa α emission located at the intersection zone between the nuclear disk and the bar of the galaxy. In all four objects, the peak of ionized gas emission is not spatially coincident with the center of the galaxy as traced by the peak of the near-IR continuum emission. The peaks of ionized gas emission are spatially offset from the galaxy centers by 0.″1–0.″4 (0.1–0.7 kpc). We find that the velocity offset originates at the location of this peak of emission, and the value of the offset can be directly measured in the velocity maps. The emission-line ratios of these four velocity-offset AGNs can be reproduced only with a mixture of shocks and AGN photoionization. Shocks provide a natural explanation for the origin of the spatially and spectrally offset peaks of ionized gas emission in these galaxies.« less

  3. Line Emission and X-ray Line Polarization of Multiply Ionized Mo Ions

    NASA Astrophysics Data System (ADS)

    Petkov, E. E.; Safronova, A. S.; Kantsyrev, V. L.; Shlyaptseva, V. V.; Stafford, A.; Safronova, U. I.; Shrestha, I. K.; Schultz, K. A.; Childers, R.; Cooper, M. C.; Beiersdorfer, P.; Hell, N.; Brown, G. V.

    2016-10-01

    We present a comprehensive experimental and theoretical study of the line emission from multiply ionized Mo ions produced by two different sets of experiments: at LLNL EBIT and the pulsed power generator Zebra at UNR. Mo line emission and polarization measurements were accomplished at EBIT for the first time. In particular, benchmarking experiments at the LLNL EBIT with Mo ions produced at electron beam energies from 2.75 keV up to 15 keV allowed us to break down these very complicated spectra into spectra with only few ionization stages and to select processes that influence them as well as to measure line polarization. The EBIT data were recorded using the EBIT Calorimeter Spectrometer and a crystal spectrometer with a Ge crystal. X-ray Mo spectra and pinhole images were collected from Z-pinch plasmas produced from various wire loads. Non-LTE modeling, high-precision relativistic atomic and polarization data were used to analyze L-shell Mo spectra. The influence of different plasma processes including electron beams on Mo line radiation is summarized. This work was supported by NNSA under DOE Grant DE-NA0002954. Experiments at the NTF/UNR were funded in part by DE-NA0002075. Work at LLNL was performed under the auspices of the U.S. DOE under contract DE-AC52-07NA27344.

  4. IUE observations of circumstellar emission from the late-type variable R AQR (M6 + pec)

    NASA Technical Reports Server (NTRS)

    Hobbs, R. W.; Michalitsianos, A. G.; Kafatos, M.

    1981-01-01

    The IUE observations of R Aqr (M7 + pec) obtained in low dispersion are discussed with particular reference to circumstellar emission. Strong permitted, semiforbidden, and forbidden emission lines are seen, superimposed on a bright ultraviolet continuum. It is deduced that the strong emission line spectrum that involves C III, C IV, Si III, (0 II) and (0 III) probably arises from a dense compact nebula the size of which is comparable to the orbital radius of the binary system of which R Aqr is the primary star. The low excitation emission lines of Fe II, Mg II, 0 I, and Si II probably a white dwarf, comparable to or somewhat brighter than the Sun, since such a star can produce enough ionizing photons to excite the continuum and emission line spectrum and yet be sufficiently faint as to escape detection by direct observation. The UV continuum is attributed to Balmer recombination from the dense nebula and not to blackbody emission from the hot companion.

  5. Infrared coronal emission lines and the possibility of their maser emission in Seyfert nuclei

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew A.; Feldman, Uri; Smith, Howard A.; Klapisch, Marcel; Bhatia, Anand K.; Bar-Shalom, Abi

    1993-01-01

    Energetic emitting regions have traditionally been studied via x-ray, UV and optical emission lines of highly ionized intermediate mass elements. Such lines are often referred to as 'coronal lines' since the ions, when produced by collisional ionization, reach maximum abundance at electron temperatures of approx. 10(exp 5) - 10(exp 6) K typical of the sun's upper atmosphere. However, optical and UV coronal lines are also observed in a wide variety of Galactic and extragalactic sources including the Galactic interstellar medium, nova shells, supernova remnants, galaxies and QSOs. Infrared coronal lines are providing a new window for observation of energetic emitting regions in heavily dust obscured sources such as infrared bright merging galaxies and Seyfert nuclei and new opportunities for model constraints on physical conditions in these sources. Unlike their UV and optical counterparts, infrared coronal lines can be primary coolants of collisionally ionized plasmas with 10(exp 4) less than T(sub e)(K) less than 10(exp 6) which produce little or no optical or shorter wavelength coronal line emission. In addition, they provide a means to probe heavily dust obscured emitting regions which are often inaccessible to optical or UV line studies. In this poster, we provide results from new model calculations to support upcoming Infrared Space Observatory (ISO) and current ground-based observing programs involving infrared coronal emission lines in AGN. We present a complete list of infrared (lambda greater than 1 micron) lines due to transitions within the ground configurations 2s(2)2p(k) and 3s(2)3p(k) (k = 1 to 5) or the first excited configurations 2s2p and 3s3p of highly ionized (x greater than or equal to 100 eV) astrophysically abundant (n(X)/n(H) greater than or equal to 10(exp -6)) elements. Included are approximately 74 lines in ions of O, Ne, Na, Mg, Al, Si, S, Ar, Ca, Fe, and Ni spanning a wavelength range of approximately 1 - 280 microns. We present new

  6. Ultraviolet spectroscopy of old novae and symbiotic stars

    NASA Technical Reports Server (NTRS)

    Lambert, D. L.; Slovak, M. H.; Shields, G. A.; Ferland, G. J.

    1981-01-01

    The IUE spectra are presented for two old novae and for two of the symbiotic variables. Prominent emission line spectra are revealed as a continuum whose appearance is effected by the system inclination. These data provide evidence for hot companions in the symbiotic stars, making plausible the binary model for these peculiar stars. Recent IUE spectra of dwarf novae provide additional support for the existence of optically thick accretion disks in active binary systems. The ultraviolet data of the eclipsing dwarf novae EX Hya and BV Cen appear flatter than for the noneclipsing systems, an effect which could be ascribed to the system inclination.

  7. Prediction of emission line fluxes of gravitationally lensed very high-z galaxies

    NASA Astrophysics Data System (ADS)

    Inoue, Akio; Shimizu, Ikkoh; Okamoto, Takashi; Yoshida, Naoki; Matsuo, Hiroshi; Tamura, Yoichi

    2015-08-01

    Spectroscopic confirmation of very high-z galaxy candidates is extremely valuable because this is a direct proof of the existence of galaxies in the early Universe and put a strong constraint on the structure formation theory to produce such galaxies during the limited age of the Universe. Before the completion of the cosmic reionization, hydrogen Ly-alpha emission line is hard to be observed and we need other emission lines to confirm the redshift of galaxies. By using a state-of-the-art cosmological hydrodynamics simulation of galaxy formation and evolution with an emission line model based on Cloudy, we predict the line fluxes of some gravitationally-lensed very high-z galaxy candidates. We also discuss their detectability with the current and future telescopes.

  8. A Link Between X-ray Emission Lines and Radio Jets in 4U 1630-47?

    NASA Astrophysics Data System (ADS)

    Neilsen, Joseph; Coriat, Mickaël; Fender, Rob; Lee, Julia C.; Ponti, Gabriele; Tzioumis, A.; Edwards, Phillip; Broderick, Jess

    2014-06-01

    Recently, Díaz Trigo et al. reported an XMM-Newton detection of relativistically Doppler-shifted emission lines associated with steep-spectrum radio emission in the stellar-mass black hole candidate 4U 1630-47 during its 2012 outburst. They interpreted these lines as indicative of a baryonic jet launched by the accretion disk. We present a search for the same lines earlier in the same outburst using high-resolution X-ray spectra from the Chandra HETGS. While our observations (eight months prior to the XMM-Newton campaign) also coincide with detections of steep spectrum radio emission by the Australia Telescope Compact Array, we find a strong disk wind but no evidence for any relativistic X-ray emission lines. Indeed, despite ˜5× brighter radio emission, our Chandra spectra allow us to place an upper limit on the flux in the blueshifted Fe XXVI line that is ˜20× weaker than the line observed by Díaz Trigo et al. Thus we can conclusively say that radio emission is not universally associated with relativistically Doppler-shifted emission lines in 4U 1630-47. We explore several scenarios that could explain our differing results, including variations in the geometry of the jet or a mass-loading process or jet baryon content that evolves with the accretion state of the black hole. We also consider the possibility that the radio emission arises in an interaction between a jet and the nearby ISM, in which case the X-ray emission lines might be unrelated to the radio emission.

  9. A simple sub-nanosecond ultraviolet light pulse generator with high repetition rate and peak power.

    PubMed

    Binh, P H; Trong, V D; Renucci, P; Marie, X

    2013-08-01

    We present a simple ultraviolet sub-nanosecond pulse generator using commercial ultraviolet light-emitting diodes with peak emission wavelengths of 290 nm, 318 nm, 338 nm, and 405 nm. The generator is based on step recovery diode, short-circuited transmission line, and current-shaping circuit. The narrowest pulses achieved have 630 ps full width at half maximum at repetition rate of 80 MHz. Optical pulse power in the range of several hundreds of microwatts depends on the applied bias voltage. The bias voltage dependences of the output optical pulse width and peak power are analysed and discussed. Compared to commercial UV sub-nanosecond generators, the proposed generator can produce much higher pulse repetition rate and peak power.

  10. Observations of the Ultraviolet Spectra of Carbon White Dwarfs

    NASA Technical Reports Server (NTRS)

    Wagner, G. A.

    1982-01-01

    Strong ultraviolet carbon lines were detected in additional white DC (continuous visual spectra) dwarfs using the IUE. These lines are not seen in the ultraviolet spectrum of the cool DC star Stein 2051 B. The bright DA white dwarf LB 3303 has a strong unidentified absorption near lambda 1400.

  11. Ultraviolet observations of clusters of Wolf-Rayet stars in the SBm3 galaxy NGC 4214 and Ultraviolet and optical observations of LINER's

    NASA Technical Reports Server (NTRS)

    Filippenko, Alexei V.

    1992-01-01

    The purpose of the grant was to obtain and analyze IUE (UV) and ground-based (optical) spectra of the central bar of NGC 4214, which contains several bright H II regions, in order to further explore the properties of the Wolf-Rayet stars in this galaxy. Several spatially distinct regions, with widely different equivalent widths of optical Wolf-Rayet lines, could be sampled by the large IUE entrance aperture. By using newly developed extraction techniques, the spectra of these H II regions could be isolated, and differences in their stellar populations would be systematically studied. Data were obtained with IUE in late February and early March, 1992. Some of the shifts were successful, but a few were not -- apparently the blind offset from the nearby star did not work equally well in all cases. Thus, the signal-to-noise ratio is somewhat lower than we had hoped. This necessitated a more careful extraction of the spectra of individual H II regions from the two-dimensional spectra. (A program that models the point spread function in the spatial direction was used to deblend the distinct H II regions.) The IUE data are currently being analyzed in conjunction with ground-based optical spectra. There appear to be obvious variations in the stellar population over angular scales of only a few arc seconds. The second part of the research performed under this grant was a continuation of a project that uses IUE (UV) and ground-based (optical) spectra to infer the physical conditions in Low-Ionization Nuclear Emission-Line Regions (LINER's). We have obtained spectra of a few key objects that cover a representative range in LINER continuum and emission-line properties. The overall goals are to (1) separate the emission into spatially distinct components, (2) establish whether the observed nuclear ultraviolet continua indicate sufficient photoionizing fluxes to account for the emission lines, (3) determine whether the nuclear emission can be explained by hot stars alone, (4

  12. Hydrogen line ratios in Seyfert galaxies and low redshift quasars

    NASA Technical Reports Server (NTRS)

    Kriss, G. R.

    1984-01-01

    New observations of the Lymal alpha radiation/hydrogen alpha radiation ratio in a set of X-ray selected active galactic nuclei and an archival study of International Ultraviolet Explorer (IUE) observations of Lymal alpha low redshift quasars and Seyfert galaxies have been used to form a large sample for studying the influence of soft X-rays on the enhancement of Balmer emission in the broad line region. In common models of broad line clouds, the Balmer lines are formed deep in the interior, largely by collisional excitation. Heating within the clouds is provided by soft X-ray radiation, while Lymal alpha is formed mainly by recombination after photoionization. The ratio Lymal alpha/Halpha is expected to depend weakly on the ratio of ionizing ultraviolet luminosity to X-ray luminosity (L sub UV/l sub x). If the Lymal alpha luminosity is used as a measure of L sub UV' a weak dependence of Lymal/H alpha on the X-ray luminosity is found similar to previous results.

  13. Line identifications in the ultraviolet spectra of Tau Herculis, B5 IV, and Zeta Draconis, B6 III

    NASA Technical Reports Server (NTRS)

    Underhill, A. B.; Adelman, S. J.

    1976-01-01

    Tables of the lines found on two tracings each of the ultraviolet spectrum of Tau Her, B5 IV, and Zeta Dra, B6 III, made by the Copernicus satellite and possible identifications are given. The ranges 1025-1451A for Tau Her and 1035 to 1425A for Zeta Dra are covered by the U2 spectrometer at a resolution of 0.2A; the ranges 2028 to 2959A for Tau Her and 2000 to 3000A for Zeta Dra are covered by the V2 spectrometer at a resolution of 0.4A. The observed density of lines in the U2 region is 1.1 lines/A for Tau Her and 1.7 lines/A for Zeta Dra. In the V2 region it is 0.8 lines/A for Tau Her and 0.9 lines/A for Zeta Dra.

  14. Electromagnetic plasma wave emissions from the auroral field lines

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.

    1977-01-01

    The most important types of auroral radio emissions are reviewed, both from a historical perspective as well as considering the latest results. Particular emphasis is placed on four types of electromagnetic emissions which are directly associated with the plasma on the auroral field lines. These emissions are (1) auroral hiss, (2) saucers, (3) ELF noise bands, and (4) auroral kilometric radiation. Ray tracing and radio direction finding measurements indicate that both the auroral hiss and auroral kilometric radiation are generated along the auroral field lines relatively close to the earth, at radial distances from about 2.5 to 5 R sub e. For the auroral hiss the favored mechanism appears to be amplified Cerenkov radiation. For the auroral kilometric radiation several mechanisms have been proposed, usually involving the intermediate generation of electrostatic waves by the precipitating electrons.

  15. International Ultraviolet Explorer (IUE) ultraviolet spectral atlas of selected astronomical objects

    NASA Technical Reports Server (NTRS)

    Wu, Chi-Chao; Reichert, Gail A.; Ake, Thomas B.; Boggess, Albert; Holm, Albert V.; Imhoff, Catherine L.; Kondo, Yoji; Mead, Jaylee M.; Shore, Steven N.

    1992-01-01

    The IUE Ultraviolet Spectral Atlas of Selected Astronomical Objects (or 'the Atlas'), is based on the data that were available in the IUE archive in 1986, and is intended to be a quick reference for the ultraviolet spectra of many categories of astronomical objects. It shows reflected sunlight from the Moon, planets, and asteroids, and also shows emission from comets. Comprehensive compilations of UV spectra for main sequence, subgiant, giant, bright giant, and supergiant stars are published elsewhere. This Atlas contains the spectra for objects occupying other areas of the Hertzsprung-Russell diagram: pre-main sequence stars, chemically peculiar stars, pulsating variables, subluminous stars, and Wolf-Rayet stars. This Atlas also presents phenomena such as the chromospheric and transition region emissions from late-type stars; composite spectra of stars, gas streams, accretion disks and gas envelopes of binary systems; the behavior of gas ejecta shortly after the outburst of novac and supernovac; and the H II regions, planetary nebulae, and supernova remnants. Population 2 stars, globular clusters, and luminous stars in the Magellanic Clouds, M31, and M33, are also included in this publication. Finally, the Atlas gives the ultraviolet spectra of galaxies of different Hubble types and of active galaxies.

  16. Up-down asymmetry measurement of tungsten distribution in large helical device using two extreme ultraviolet (EUV) spectrometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y., E-mail: liu.yang@nifs.ac.jp; Zhang, H. M.; Morita, S.

    Two space-resolved extreme ultraviolet spectrometers working in wavelength ranges of 10-130 Å and 30-500 Å have been utilized to observe the full vertical profile of tungsten line emissions by simultaneously measuring upper- and lower-half plasmas of LHD, respectively. The radial profile of local emissivity is reconstructed from the measured vertical profile in the overlapped wavelength range of 30-130 Å and the up-down asymmetry is examined against the local emissivity profiles of WXXVIII in the unresolved transition array spectrum. The result shows a nearly symmetric profile, suggesting a good availability in the present diagnostic method for the impurity asymmetry study.

  17. The Physics and Diagnostic Potential of Ultraviolet Spectropolarimetry

    NASA Astrophysics Data System (ADS)

    Trujillo Bueno, Javier; Landi Degl'Innocenti, Egidio; Belluzzi, Luca

    2017-09-01

    The empirical investigation of the magnetic field in the outer solar atmosphere is a very important challenge in astrophysics. To this end, we need to identify, measure and interpret observable quantities sensitive to the magnetism of the upper chromosphere, transition region and corona. This paper provides an overview of the physics and diagnostic potential of spectropolarimetry in permitted spectral lines of the ultraviolet solar spectrum, such as the Mg ii h and k lines around 2800 Å, the hydrogen Lyman-α line at 1216 Å, and the Lyman-α line of He ii at 304 Å. The outer solar atmosphere is an optically pumped vapor and the linear polarization of such spectral lines is dominated by the atomic level polarization produced by the absorption and scattering of anisotropic radiation. Its modification by the action of the Hanle and Zeeman effects in the inhomogeneous and dynamic solar atmosphere needs to be carefully understood because it encodes the magnetic field information. The circular polarization induced by the Zeeman effect in some ultraviolet lines (e.g., Mg ii h & k) is also of diagnostic interest, especially for probing the outer solar atmosphere in plages and more active regions. The few (pioneering) observational attempts carried out so far to measure the ultraviolet spectral line polarization produced by optically pumped atoms in the upper chromosphere, transition region and corona are also discussed. We emphasize that ultraviolet spectropolarimetry is a key gateway to the outer atmosphere of the Sun and of other stars.

  18. A Link between X-Ray Emission Lines and Radio Jets in 4U 1630-47?

    NASA Astrophysics Data System (ADS)

    Neilsen, Joseph; Coriat, Mickaël; Fender, Rob; Lee, Julia C.; Ponti, Gabriele; Tzioumis, Anastasios K.; Edwards, Philip G.; Broderick, Jess W.

    2014-03-01

    Recently, Díaz Trigo et al. reported an XMM-Newton detection of relativistically Doppler-shifted emission lines associated with steep-spectrum radio emission in the stellar-mass black hole candidate 4U 1630-47 during its 2012 outburst. They interpreted these lines as indicative of a baryonic jet launched by the accretion disk. Here we present a search for the same lines earlier in the same outburst using high-resolution X-ray spectra from the Chandra HETGS. While our observations (eight months prior to the XMM-Newton campaign) also coincide with detections of steep spectrum radio emission by the Australia Telescope Compact Array, we find no evidence for any relativistic X-ray emission lines. Indeed, despite ~5 × brighter radio emission, our Chandra spectra allow us to place an upper limit on the flux in the blueshifted Fe XXVI line that is >~ 20 × weaker than the line observed by Díaz Trigo et al. We explore several scenarios that could explain our differing results, including variations in the geometry of the jet or a mass-loading process or jet baryon content that evolves with the accretion state of the black hole. We also consider the possibility that the radio emission arises in an interaction between a jet and the nearby interstellar medium, in which case the X-ray emission lines might be unrelated to the radio emission.

  19. PREDICTION OF FORBIDDEN ULTRAVIOLET AND VISIBLE EMISSIONS IN COMET 67P/CHURYUMOV–GERASIMENKO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghuram, Susarla; Galand, Marina; Bhardwaj, Anil, E-mail: raghuramsusarla@gmail.com

    Remote observation of spectroscopic emissions is a potential tool for the identification and quantification of various species in comets. The CO Cameron band (to trace CO{sub 2}) and atomic oxygen emissions (to trace H{sub 2}O and/or CO{sub 2}, CO) have been used to probe neutral composition in the cometary coma. Using a coupled-chemistry-emission model, various excitation processes controlling the CO Cameron band and different atomic oxygen and atomic carbon emissions have been modeled in comet 67P/Churyumov–Gerasimenko at 1.29 AU (perihelion) and at 3 AU heliocentric distances, which is being explored by ESA's Rosetta mission. The intensities of the CO Cameronmore » band, atomic oxygen, and atomic carbon emission lines as a function of projected distance are calculated for different CO and CO{sub 2} volume mixing ratios relative to water. Contributions of different excitation processes controlling these emissions are quantified. We assess how CO{sub 2} and/or CO volume mixing ratios with respect to H{sub 2}O can be derived based on the observed intensities of the CO Cameron band, atomic oxygen, and atomic carbon emission lines. The results presented in this work serve as baseline calculations to understand the behavior of low out-gassing cometary coma and compare them with the higher gas production rate cases (e.g., comet Halley). Quantitative analysis of different excitation processes governing the spectroscopic emissions is essential to study the chemistry of inner coma and to derive neutral gas composition.« less

  20. Inferring physical properties of galaxies from their emission-line spectra

    NASA Astrophysics Data System (ADS)

    Ucci, G.; Ferrara, A.; Gallerani, S.; Pallottini, A.

    2017-02-01

    We present a new approach based on Supervised Machine Learning algorithms to infer key physical properties of galaxies (density, metallicity, column density and ionization parameter) from their emission-line spectra. We introduce a numerical code (called GAME, GAlaxy Machine learning for Emission lines) implementing this method and test it extensively. GAME delivers excellent predictive performances, especially for estimates of metallicity and column densities. We compare GAME with the most widely used diagnostics (e.g. R23, [N II] λ6584/Hα indicators) showing that it provides much better accuracy and wider applicability range. GAME is particularly suitable for use in combination with Integral Field Unit spectroscopy, both for rest-frame optical/UV nebular lines and far-infrared/sub-millimeter lines arising from photodissociation regions. Finally, GAME can also be applied to the analysis of synthetic galaxy maps built from numerical simulations.

  1. The Nature of Active Galactic Nuclei with Velocity Offset Emission Lines

    NASA Astrophysics Data System (ADS)

    Müller-Sánchez, F.; Comerford, J.; Stern, D.; Harrison, F. A.

    2016-10-01

    We obtained Keck/OSIRIS near-IR adaptive optics-assisted integral-field spectroscopy to probe the morphology and kinematics of the ionized gas in four velocity-offset active galactic nuclei (AGNs) from the Sloan Digital Sky Survey. These objects possess optical emission lines that are offset in velocity from systemic as measured from stellar absorption features. At a resolution of ˜0.″18, OSIRIS allows us to distinguish which velocity offset emission lines are produced by the motion of an AGN in a dual supermassive black hole system, and which are produced by outflows or other kinematic structures. In three galaxies, J1018+2941, J1055+1520, and J1346+5228, the spectral offset of the emission lines is caused by AGN-driven outflows. In the remaining galaxy, J1117+6140, a counterrotating nuclear disk is observed that contains the peak of Paα emission 0.″2 from the center of the galaxy. The most plausible explanation for the origin of this spatially and kinematically offset peak is that it is a region of enhanced Paα emission located at the intersection zone between the nuclear disk and the bar of the galaxy. In all four objects, the peak of ionized gas emission is not spatially coincident with the center of the galaxy as traced by the peak of the near-IR continuum emission. The peaks of ionized gas emission are spatially offset from the galaxy centers by 0.″1-0.″4 (0.1-0.7 kpc). We find that the velocity offset originates at the location of this peak of emission, and the value of the offset can be directly measured in the velocity maps. The emission-line ratios of these four velocity-offset AGNs can be reproduced only with a mixture of shocks and AGN photoionization. Shocks provide a natural explanation for the origin of the spatially and spectrally offset peaks of ionized gas emission in these galaxies. Based on observations at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the

  2. Frequent ultraviolet brightenings observed in a solar active region with solar maximum mission

    NASA Technical Reports Server (NTRS)

    Porter, J. G.; Toomre, J.; Gebbie, K. B.

    1984-01-01

    Observations of the temporal behavior of ultraviolet emission from bright points within an active region of the sun are reported. Frequent and rapid brightenings in Si IV and O IV line emission are seen. The observations suggest that intermittent heating events of modest amplitude are occurring at many sites within an active region. By selecting the brightest site at any given time within an active region and then sampling its behavior in detail within a 120 s interval, it is found that about two-thirds of the samples show variations of the Si IV line intensity. The brightenings typically last about 40-60 s; intensity increases of about 20-100 percent are frequently observed. The results suggest that heating due to magnetic field reconnection within an active region is proceeding almost stochastically. Events involving only a modest release of energy occur the most frequently.

  3. Continuing Studies in Support of Ultraviolet Observations of Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Clark, John

    1997-01-01

    This program was a one-year extension of an earlier Planetary Atmospheres program grant, covering the period 1 August 1996 through 30 September 1997. The grant was for supporting work to complement an active program observing planetary atmospheres with Earth-orbital telescopes, principally the Hubble Space Telescope (HST). The recent concentration of this work has been on HST observations of Jupiter's upper atmosphere and aurora, but it has also included observations of Io, serendipitous observations of asteroids, and observations of the velocity structure in the interplanetary medium. The observations of Jupiter have been at vacuum ultraviolet wavelengths, including imaging and spectroscopy of the auroral and airglow emissions. The most recent HST observations have been at the same time as in situ measurements made by the Galileo orbiter instruments, as reflected in the meeting presentations listed below. Concentrated efforts have been applied in this year to the following projects: The analysis of HST WFPC 2 images of Jupiter's aurora, including the Io footprint emissions. We have performed a comparative analysis of the lo footprint locations with two magnetic field models, studied the statistical properties of the apparent dawn auroral storms on Jupiter, and found various other repeated patterns in Jupiter's aurora. Analysis and modeling of airglow and auroral Ly alpha emission line profiles from Jupiter. This has included modeling the aurora] line profiles, including the energy degradation of precipitating charged particles and radiative transfer of the emerging emissions. Jupiter's auroral emission line profile is self-absorbed, since it is produced by an internal source, and the resulting emission with a deep central absorption from the overlying atmosphere permits modeling of the depth of the emissions, plus the motion of the emitting layer with respect to the overlying atmospheric column from the observed Doppler shift of the central absorption. By contrast

  4. A Far-ultraviolet Fluorescent Molecular Hydrogen Emission Map of the Milky Way Galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jo, Young-Soo; Min, Kyoung-Wook; Seon, Kwang-Il

    We present the far-ultraviolet (FUV) fluorescent molecular hydrogen (H{sub 2}) emission map of the Milky Way Galaxy obtained with FIMS/SPEAR covering ∼76% of the sky. The extinction-corrected intensity of the fluorescent H{sub 2} emission has a strong linear correlation with the well-known tracers of the cold interstellar medium (ISM), including color excess E(B–V) , neutral hydrogen column density N (H i), and H α emission. The all-sky H{sub 2} column density map was also obtained using a simple photodissociation region model and interstellar radiation fields derived from UV star catalogs. We estimated the fraction of H{sub 2} ( f {submore » H2}) and the gas-to-dust ratio (GDR) of the diffuse ISM. The f {sub H2} gradually increases from <1% at optically thin regions where E(B–V) < 0.1 to ∼50% for E(B–V)  = 3. The estimated GDR is ∼5.1 × 10{sup 21} atoms cm{sup −2} mag{sup −1}, in agreement with the standard value of 5.8 × 10{sup 21} atoms cm{sup −2} mag{sup −1}.« less

  5. X-RAY EMISSION LINE PROFILES FROM WIND CLUMP BOW SHOCKS IN MASSIVE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ignace, R.; Waldron, W. L.; Cassinelli, J. P.

    2012-05-01

    The consequences of structured flows continue to be a pressing topic in relating spectral data to physical processes occurring in massive star winds. In a preceding paper, our group reported on hydrodynamic simulations of hypersonic flow past a rigid spherical clump to explore the structure of bow shocks that can form around wind clumps. Here we report on profiles of emission lines that arise from such bow shock morphologies. To compute emission line profiles, we adopt a two-component flow structure of wind and clumps using two 'beta' velocity laws. While individual bow shocks tend to generate double-horned emission line profiles,more » a group of bow shocks can lead to line profiles with a range of shapes with blueshifted peak emission that depends on the degree of X-ray photoabsorption by the interclump wind medium, the number of clump structures in the flow, and the radial distribution of the clumps. Using the two beta law prescription, the theoretical emission measure and temperature distribution throughout the wind can be derived. The emission measure tends to be power law, and the temperature distribution is broad in terms of wind velocity. Although restricted to the case of adiabatic cooling, our models highlight the influence of bow shock effects for hot plasma temperature and emission measure distributions in stellar winds and their impact on X-ray line profile shapes. Previous models have focused on geometrical considerations of the clumps and their distribution in the wind. Our results represent the first time that the temperature distribution of wind clump structures are explicitly and self-consistently accounted for in modeling X-ray line profile shapes for massive stars.« less

  6. Si III OV Bright Line of Scattering Polarized Light That Has Been Observed in the CLASP and Its Center-to-Limb Variation

    NASA Technical Reports Server (NTRS)

    Katsukawa, Yukio; Ishikawa, Ryoko; Kano, Ryohei; Kubo, Masahito; Noriyuki, Narukage; Kisei, Bando; Hara, Hirohisa; Yoshiho, Suematsu; Goto, Motouji; Ishikawa, Shinnosuke; hide

    2017-01-01

    The CLASP (Chromospheric Lyman-Alpha Spectro- Polarimeter) rocket experiment, in addition to the ultraviolet region of the Ly alpha emission line (121.57 nm), emission lines of Si III (120.65 nm) and OV (121.83 nm) is can be observed. These are optically thin line compared to a Ly alpha line, if Rarere captured its polarization, there is a possibility that dripping even a new physical diagnosis chromosphere-transition layer. In particular, OV bright light is a release from the transition layer, further, three P one to one S(sub 0) is a forbidden line (cross-triplet transition between lines), it was not quite know whether to polarization.

  7. Investigating the Fraction of Radio-Loud Quasars with High Velocity Broad Emission LInes

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Anirban; Gilbert, Miranda; Brotherton, Michael S.

    2018-06-01

    Quasars show a bimodal distribution in their radio emission, with some having powerful radio-emitting jets (radio-loud), and most having weak or no jets (radio-quiet). Surveys have shown around 10% of of quasars have detectable radio emissions. These quasars are called radio-loud. Several multiwavelength studies have shown that radio-loud quasars have different properties than radio-quiet quasars. This fraction of radio-loud quasars to radio-quiet quasars has been assumed to be constant across all parameter space. In this study, we breakdown the parameter space with respect to the increasing velocity dispersion of broad emission lines. Our sample has been drawn from 2011 Shen et al. catalog of more than 100,000 quasars. In this study, we demonstrate that this fraction varies with respect to the increasing velocity dispersion (FWHM) of broad emission lines. We compare three different emission lines: H-Beta, MgII, and CIV. We observe with increasing FWHM of these three emission lines, fraction of radio-loud quasars within the subset increases. This poster presents our initial results into investigating whether the fraction of RL quasars remains 10% in different parameter space.

  8. Bayesian Redshift Classification of Emission-line Galaxies with Photometric Equivalent Widths

    NASA Astrophysics Data System (ADS)

    Leung, Andrew S.; Acquaviva, Viviana; Gawiser, Eric; Ciardullo, Robin; Komatsu, Eiichiro; Malz, A. I.; Zeimann, Gregory R.; Bridge, Joanna S.; Drory, Niv; Feldmeier, John J.; Finkelstein, Steven L.; Gebhardt, Karl; Gronwall, Caryl; Hagen, Alex; Hill, Gary J.; Schneider, Donald P.

    2017-07-01

    We present a Bayesian approach to the redshift classification of emission-line galaxies when only a single emission line is detected spectroscopically. We consider the case of surveys for high-redshift Lyα-emitting galaxies (LAEs), which have traditionally been classified via an inferred rest-frame equivalent width (EW {W}{Lyα }) greater than 20 Å. Our Bayesian method relies on known prior probabilities in measured emission-line luminosity functions and EW distributions for the galaxy populations, and returns the probability that an object in question is an LAE given the characteristics observed. This approach will be directly relevant for the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX), which seeks to classify ˜106 emission-line galaxies into LAEs and low-redshift [{{O}} {{II}}] emitters. For a simulated HETDEX catalog with realistic measurement noise, our Bayesian method recovers 86% of LAEs missed by the traditional {W}{Lyα } > 20 Å cutoff over 2 < z < 3, outperforming the EW cut in both contamination and incompleteness. This is due to the method’s ability to trade off between the two types of binary classification error by adjusting the stringency of the probability requirement for classifying an observed object as an LAE. In our simulations of HETDEX, this method reduces the uncertainty in cosmological distance measurements by 14% with respect to the EW cut, equivalent to recovering 29% more cosmological information. Rather than using binary object labels, this method enables the use of classification probabilities in large-scale structure analyses. It can be applied to narrowband emission-line surveys as well as upcoming large spectroscopic surveys including Euclid and WFIRST.

  9. Test of prototype ITER vacuum ultraviolet spectrometer and its application to impurity study in KSTAR plasmas.

    PubMed

    Seon, C R; Hong, J H; Jang, J; Lee, S H; Choe, W; Lee, H H; Cheon, M S; Pak, S; Lee, H G; Biel, W; Barnsley, R

    2014-11-01

    To optimize the design of ITER vacuum ultraviolet (VUV) spectrometer, a prototype VUV spectrometer was developed. The sensitivity calibration curve of the spectrometer was calculated from the mirror reflectivity, the grating efficiency, and the detector efficiency. The calibration curve was consistent with the calibration points derived in the experiment using the calibrated hollow cathode lamp. For the application of the prototype ITER VUV spectrometer, the prototype spectrometer was installed at KSTAR, and various impurity emission lines could be measured. By analyzing about 100 shots, strong positive correlation between the O VI and the C IV emission intensities could be found.

  10. An optical emission-line phase of the extreme carbon star IRC +30219

    NASA Technical Reports Server (NTRS)

    Cohen, M.

    1980-01-01

    Optical spectroscopic monitoring of the extreme carbon star IRC +30219 has revealed striking changes between 1977 and 1980. The stellar photosphere was barely visible in early 1979. There was an emission line spectrum consisting of H, forbidden O I, forbidden O II, forbidden N I, forbidden N II, forbidden S II, and He I. It is likely that these lines arose in a shocked region where recent stellar mass loss encountered the extensive circumstellar envelope. By late 1979, this emission-line spectrum had vanished, and the photosphere had reappeared. The weakening of the photospheric features in early 1979 was caused by increased attenuation of starlight and overlying thermal emission, both due to recently condensed hot dust grains.

  11. Infrared Emission and Thermal Processes in Spiral Galaxies

    NASA Technical Reports Server (NTRS)

    Mundy, Lee; Wolfire, Mark

    1999-01-01

    In this research we constructed theoretical models of the infrared and submillimeter line and continuum emission from the neutral interstellar medium in the Milky Way and external galaxies. The model line intensities were compared to observations of the Galactic disk and several galaxies to determine the average physical properties of the neutral gas including the density, temperature, and ultraviolet radiation field which illuminates the gas. In addition we investigated the heating mechanisms in the Galactic disk and estimated the emission rate of the [C 11] 158 micrometer line as a function of position in the Galaxy. We conclude that the neutral gas is heated mainly by the grain photoelectric effect and that a two phase (CNM+WNM) is possible between Galactic radii R = 3 kpc and R = 18 kpc. Listings of meeting presentations and publications are included.

  12. Spectral observations of the extreme ultraviolet background.

    PubMed

    Labov, S E; Bowyer, S

    1991-04-20

    A grazing incidence spectrometer was designed to measure the diffuse extreme ultraviolet background. It was flown on a sounding rocket, and data were obtained on the diffuse background between 80 and 650 angstroms. These are the first spectral measurements of this background below 520 angstroms. Several emission features were detected, including interplanetary He I 584 angstroms emission and geocoronal He II 304 angstroms emission. Other features observed may originate in a hot ionized interstellar gas, but if this interpretation is correct, gas at several different temperatures is present. The strongest of these features is consistent with O V emission at 630 angstroms. This emission, when combined with upper limits for other lines, restricts the temperature of this component to 5.5 < log T < 5.7, in agreement with temperatures derived from O VI absorption studies. A power-law distribution of temperatures is consistent with this feature only if the power-law coefficient is negative, as is predicted for saturated evaporation of clouds in a hot medium. In this case, the O VI absorption data confine the filling factor of the emission of f < or = 4% and the pressure to more than 3.7 x 10(4) cm-3 K, substantially above ambient interstellar pressure. Such a pressure enhancement has been predicted for clouds undergoing saturated evaporation. Alternatively, if the O V emission covers a considerable fraction of the sky, it would be a major source of ionization. A feature centered at about 99 angstroms is well fitted by a cluster of Fe XVIII and Fe XIX lines from gas at log T = 6.6-6.8. These results are consistent with previous soft X-ray observations with low-resolution detectors. A feature found near 178 angstroms is consistent with Fe X and Fe XI emission from gas at log T = 6; this result is consistent with results from experiments employing broad-band soft X-ray detectors.

  13. FAR-ULTRAVIOLET OBSERVATION OF THE AQUILA RIFT WITH FIMS/SPEAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, S.-J.; Min, K.-W.; Seon, K.-I.

    2012-07-20

    We present the results of far ultraviolet (FUV) observations of the broad region around the Aquila Rift including the Galactic plane. As compared with various wavelength data sets, dust scattering is found to be the major origin of the diffuse FUV continuum in this region. The FUV intensity clearly correlates with the dust extinction level for E(B - V) < 0.2, while this correlation disappears for E(B - V) > 0.2 due to heavy dust extinction combined with the effect of nonuniform interstellar radiation fields. The FUV intensity also correlates well with H{alpha} intensity, implying that at least some fractionmore » of the observed H{alpha} emission could be the dust-scattered light of H{alpha} photons originating elsewhere in the Galaxy. Most of the Aquila Rift region is seen devoid of diffuse FUV continuum due to heavy extinction while strong emission is observed in the surrounding regions. Molecular hydrogen fluorescent emission lines are clearly seen in the spectrum of 'Aquila-Serpens', while 'Aquila-East' does not show any apparent line features. CO emission intensity is also found to be higher in the 'Aquila-Serpens' region than in the 'Aquila-East' region. In this regard, we note that regions of star formation have been found in 'Aquila-Serpens' but not in 'Aquila-East'.« less

  14. Inference of a 7.75 eV lower limit in the ultraviolet pumping of interstellar polycyclic aromatic hydrocarbon cations with resulting unidentified infrared emissions

    NASA Technical Reports Server (NTRS)

    Robinson, M. S.; Beegle, L. W.; Wdowiak, T. J.

    1997-01-01

    The discrete infrared features known as the unidentified infrared (UIR) bands originating in starburst regions of other galaxies, and in H II regions and planetary nebulae within the Milky Way, are widely thought to be the result of ultraviolet pumped infrared fluorescence of polycyclic aromatic hydrocarbon (PAH) molecules and ions. These UIR emissions are estimated to account for 10%-30% of the total energy emitted by galaxies. Laboratory absorption spectra including the vacuum ultraviolet region, as described in this paper, show a weakening of the intensity of absorption features as the population of cations increases, suggesting that strong pi* <-- pi transitions are absent in the spectra of PAH cations. This implies a lower energy bound for ultraviolet photons that pump infrared emissions from such ions at 7.75 eV, an amount greater than previously thought. The implications include size and structure limitations on the PAH molecules and ions which are apparent constituents of the interstellar medium. Also, this might affect estimations of the population of early-type stars in regions of rapid star formation.

  15. Characteristics of soft x-ray and extreme ultraviolet (XUV) emission from laser-produced highly charged rhodium ions

    NASA Astrophysics Data System (ADS)

    Barte, Ellie Floyd; Hara, Hiroyuki; Tamura, Toshiki; Gisuji, Takuya; Chen, When-Bo; Lokasani, Ragava; Hatano, Tadashi; Ejima, Takeo; Jiang, Weihua; Suzuki, Chihiro; Li, Bowen; Dunne, Padraig; O'Sullivan, Gerry; Sasaki, Akira; Higashiguchi, Takeshi; Limpouch, Jiří

    2018-05-01

    We have characterized the soft x-ray and extreme ultraviolet (XUV) emission of rhodium (Rh) plasmas produced using dual pulse irradiation by 150-ps or 6-ns pre-pulses, followed by a 150-ps main pulse. We have studied the emission enhancement dependence on the inter-pulse time separation and found it to be very significant for time separations less than 10 ns between the two laser pulses when using 6-ns pre-pulses. The behavior using a 150-ps pre-pulse was consistent with such plasmas displaying only weak self-absorption effects in the expanding plasma. The results demonstrate the advantage of using dual pulse irradiation to produce the brighter plasmas required for XUV applications.

  16. Classification of Hot Stars by Disk Variability using Hα Line Emission Characteristics

    NASA Astrophysics Data System (ADS)

    Hoyt Hannah, Christian; Glennon Fagan, W.; Tycner, Christopher

    2018-06-01

    The variability associated with circumstellar disks around hot and massive stars has been observed on time scales ranging from less than a day to decades. Variations detected in line emission from circumstellar disks on long time scales are typically attributed to disk-growth and disk-loss events. However, in order to fully describe and model such phenomena, adequate spectroscopic observations over long time scales are needed. In this project, we conduct a comprehensive study that is based on spectra recorded over a 14-year period (2005 to 2018) of roughly 100 B-type stars. Using results from a representative sample of over 20 targets, we illustrate how the Hα emission line, one of the most prominent emission features from circumstellar disks, can be used to monitor the variability associated with these systems. Using high-resolution spectra, we utilize line emission characteristics such as equivalent width, peak strength(s), and line-width to setup a classification scheme that describes different types of variabilities. This in turn can be used to divide the systems in disk-growth, disk-loss, variable and stable categories. With additional numerical disk modeling, the recorded variations based on emission line characteristics can also be used to describe changes in disk temperature and density structure. The aim is to develop a tool to help further our understanding of the processes behind the production and eventual dissipation of the circumstellar disks found in hot stars. This work has been supported by NSF grant AST-1614983.

  17. The Wardle Instability in Interstellar Shocks. 2; Gas Temperture and Line Emission

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Stone, James M.

    1997-01-01

    We have modeled the gas temperature structure in unstable C-type shocks and obtained predictions for the resultant CO and H2 rotational line emissions, using numerical simulations of the Wardle instability. Our model for the thermal balance of the gas includes ion-neutral frictional heating; compressional heating; radiative cooling due to rotational and ro-vibrational transitions of the molecules CO, H2O, and H2; and gas-grain collisional cooling. We obtained results for the gas temperature distribution in-and H2 and CO line emission from-shocks of neutral Alfvenic Mach number 10 and velocity 20 or 40 km/ s in which the Wardle instability has saturated. Both two- and three-dimensional simulations were carried out for shocks in which the preshock magnetic field is perpendicular to the shock propagation direction, and a two-dimensional simulation was carried out for the case in which the magnetic field is obliquely oriented with respect to the shock propagation direction. Although the Wardle instability profoundly affects the density structure behind C-type shocks, most of the shock-excited molecular line emission is generated upstream of the region where the strongest effects of the instability are felt. Thus the Wardle instability has a relatively small effect on the overall gas temperature distribution in-and the emission-line spectrum from-C-type shocks, at least for the cases that we have considered. In none of the cases that we have considered thus far did any of the predicted emission-line luminosities change by more than a factor of 2.5, and in most cases the effects of instability were significantly smaller than that. Slightly larger changes in the line luminosities seem likely for three-dimensional simulations of oblique shocks, although such simulations have yet to be carried out and lie beyond the scope of this study. Given the typical uncertainties that are always present when model predictions are compared with real astronomical data, we conclude that

  18. Resist Parameter Extraction from Line-and-Space Patterns of Chemically Amplified Resist for Extreme Ultraviolet Lithography

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro; Oizumi, Hiroaki; Itani, Toshiro; Tagawa, Seiichi

    2010-11-01

    The development of extreme ultraviolet (EUV) lithography has progressed owing to worldwide effort. As the development status of EUV lithography approaches the requirements for the high-volume production of semiconductor devices with a minimum line width of 22 nm, the extraction of resist parameters becomes increasingly important from the viewpoints of the accurate evaluation of resist materials for resist screening and the accurate process simulation for process and mask designs. In this study, we demonstrated that resist parameters (namely, quencher concentration, acid diffusion constant, proportionality constant of line edge roughness, and dissolution point) can be extracted from the scanning electron microscopy (SEM) images of patterned resists without the knowledge on the details of resist contents using two types of latest EUV resist.

  19. Accurate Emission Line Diagnostics at High Redshift

    NASA Astrophysics Data System (ADS)

    Jones, Tucker

    2017-08-01

    How do the physical conditions of high redshift galaxies differ from those seen locally? Spectroscopic surveys have invested hundreds of nights of 8- and 10-meter telescope time as well as hundreds of Hubble orbits to study evolution in the galaxy population at redshifts z 0.5-4 using rest-frame optical strong emission line diagnostics. These surveys reveal evolution in the gas excitation with redshift but the physical cause is not yet understood. Consequently there are large systematic errors in derived quantities such as metallicity.We have used direct measurements of gas density, temperature, and metallicity in a unique sample at z=0.8 to determine reliable diagnostics for high redshift galaxies. Our measurements suggest that offsets in emission line ratios at high redshift are primarily caused by high N/O abundance ratios. However, our ground-based data cannot rule out other interpretations. Spatially resolved Hubble grism spectra are needed to distinguish between the remaining plausible causes such as active nuclei, shocks, diffuse ionized gas emission, and HII regions with escaping ionizing flux. Identifying the physical origin of evolving excitation will allow us to build the necessary foundation for accurate measurements of metallicity and other properties of high redshift galaxies. Only then can we expoit the wealth of data from current surveys and near-future JWST spectroscopy to understand how galaxies evolve over time.

  20. On the dispersion in brightness of far-ultraviolet emission lines of cool giant stars

    NASA Technical Reports Server (NTRS)

    Simon, T.

    1984-01-01

    Low-resolution spectra have been obtained with the short-wavelength camera of IUE for late-type giant stars of spectral type F5 III-G8 III. These stars are believed to be in their first crossing of the H-R diagram, as inferred from their location along the blue edge of the Hertzsprung gap or their high abundance of lithium. From the earliest spectral type observed along the blue edge of the gap, the normalized C IV flux, which is indicative of 100,000 K plasma, increases to a maximum at G0 and then falls with advancing spectral type. The total range in emission measure of 100,000 K gas is an order of magnitude or more among stars making their first appearance as yellow giants and averages about 25 times higher in these stars than in other G8-K0 yellow giants, the majority of which are probably He-burning post-red giants. The observations tentatively show that transition region emission, and by inference coronal emission, increases in intensity with the growth of convection zones in late-type giants and then declines at lower surface temperatures, perhaps because of rotational spin-down and a weakening of dynamo action.

  1. Ultraviolet Broad Absorption Features and the Spectral Energy Distribution of the QSO PG 1351+64. 3.1

    NASA Technical Reports Server (NTRS)

    Zheng, W.; Kriss, G. A.; Wang, J. X.; Brotherton, M.; Oegerle, W. R.; Blair, W. P.; Davidsen, A. F.; Green, R. F.; Hutchings, J. B.; Kaiser, M. E.; hide

    2001-01-01

    We present a moderate-resolution (approximately 20 km s(exp -1) spectrum of the mini broad absorption line QSO PG 1351+64 between 915-1180 A, obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). Additional low-resolution spectra at longer wavelengths were also obtained with the Hubble Space Telescope (HST) and ground-based telescopes. Broad absorption is present on the blue wings of C III (lambda)977, Ly(beta), O VI (lambda)(lambda)1032,1038, Ly(alpha), N V (lambda)(lambda)1238,1242, Si IV (lambda)(lambda)1393,1402, and C IV (lambda)(lambda)1548,1450. The absorption profile can be fitted with five components at velocities of approximately -780, -1049, -1629, -1833, and -3054 km s(exp -1) with respect to the emission-line redshift of z = 0.088. All the absorption components cover a large fraction of the continuum source as well as the broad-line region. The O VI emission feature is very weak, and the O VI/Ly(alpha) flux ratio is 0.08, one of the lowest among low-redshift active galaxies and QSOs. The UV (ultraviolet) continuum shows a significant change in slope near 1050 A in the restframe. The steeper continuum shortward of the Lyman limit extrapolates well to the observed weak X-ray flux level. The absorbers' properties are similar to those of high-redshift broad absorption-line QSOs. The derived total column density of the UV absorbers is on the order of 10(exp 21) cm(exp -2), unlikely to produce significant opacity above 1 keV in the X-ray. Unless there is a separate, high-ionization X-ray absorber, the QSO's weak X-ray flux may be intrinsic. The ionization level of the absorbing components is comparable to that anticipated in the broad-line region, therefore the absorbers may be related to broad-line clouds along the line of sight.

  2. Ultraviolet Broad Absorption Features and the Spectral Energy Distribution of the QSO PG 1351+641. 2.5

    NASA Technical Reports Server (NTRS)

    Zheng, W.; Kriss, G. A.; Wang, J. X.; Brotherton, M.; Oegerle, W. R.; Blair, W. P.; Davidsen, A. F.; Green, R. F.; Hutchings, J. B.; Kaiser, M. E.; hide

    2001-01-01

    We present a moderate-resolution (approximately 20 km/s) spectrum of the broad-absorption line QSO PG 1351+64 between 915-1180 angstroms, obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). Additional low-resolution spectra at longer wavelengths were also obtained with the Hubble Space Telescope (HST) and ground-based telescopes. Broad absorption is present on the blue wings of C III lambda977, Ly-beta, O VI lambda-lambda-1032,1038, Ly-alpha, N V lambda-lambda-1238,1242, Si IV lambda-lambda-1393,1402, and C IV lambda-lambda-1548,1450. The absorption profile can be fitted with five components at velocities of approximately -780, -1049, -1629, -1833, and -3054 km/s with respect to the emission-line redshift of z = 0.088. All the absorption components cover a large fraction of the continuum source as well as the broad-line region. The O VI emission feature is very weak, and the O VI/Ly-alpha flux ratio is 0.08, one of the lowest among low-redshift active galaxies and QSOs. The ultraviolet continuum shows a significant change in slope near 1050 angstroms in the restframe. The steeper continuum shortward of the Lyman limit extrapolates well to the observed weak X-ray flux level. The absorbers' properties are similar to those of high-redshift broad absorption-line QSOs. The derived total column density of the UV absorbers is on the order of 10(exp 21)/s, unlikely to produce significant opacity above 1 keV in the X-ray. Unless there is a separate, high-ionization X-ray absorber, the QSO's weak X-ray flux may be intrinsic. The ionization level of the absorbing components is comparable to that anticipated in the broad-line region, therefore the absorbers may be related to broad-line clouds along the line of sight.

  3. Constraints on the outer radius of the broad emission line region of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Landt, Hermine; Ward, Martin J.; Elvis, Martin; Karovska, Margarita

    2014-03-01

    Here we present observational evidence that the broad emission line region (BELR) of active galactic nuclei (AGN) generally has an outer boundary. This was already clear for sources with an obvious transition between the broad and narrow components of their emission lines. We show that the narrow component of the higher-order Paschen lines is absent in all sources, revealing a broad emission line profile with a broad, flat top. This indicates that the BELR is kinematically separate from the narrow emission line region. We use the virial theorem to estimate the BELR outer radius from the flat top width of the unblended profiles of the strongest Paschen lines, Paα and Paβ, and find that it scales with the ionizing continuum luminosity roughly as expected from photoionization theory. The value of the incident continuum photon flux resulting from this relationship corresponds to that required for dust sublimation. A flat-topped broad emission line profile is produced by both a spherical gas distribution in orbital motion and an accretion disc wind if the ratio between the BELR outer and inner radius is assumed to be less than ˜100-200. On the other hand, a pure Keplerian disc can be largely excluded, since for most orientations and radial extents of the disc the emission line profile is double-horned.

  4. Dark matter line emission constraints from NuSTAR observations of the bullet cluster

    DOE PAGES

    Riemer-Sørensen, S.; Wik, D.; Madejski, G.; ...

    2015-08-27

    Some dark matter candidates, e.g., sterile neutrinos, provide observable signatures in the form of mono-energetic line emission. Here, we present the first search for dark matter line emission in themore » $$3-80\\;\\mathrm{keV}$$ range in a pointed observation of the Bullet Cluster with NuSTAR. We do not detect any significant line emission and instead we derive upper limits (95% CL) on the flux, and interpret these constraints in the context of sterile neutrinos and more generic dark matter candidates. NuSTAR does not have the sensitivity to constrain the recently claimed line detection at $$3.5\\;\\mathrm{keV}$$, but improves on the constraints for energies of $$10-25\\;\\mathrm{keV}$$.« less

  5. Study of extreme-ultraviolet emission and properties of a coronal streamer from PROBA2/SWAP, HINODE/EIS and Mauna Loa Mk4 observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goryaev, F.; Slemzin, V.; Vainshtein, L.

    2014-02-01

    Wide-field extreme-ultraviolet (EUV) telescopes imaging in spectral bands sensitive to 1 MK plasma on the Sun often observe extended, ray-like coronal structures stretching radially from active regions to distances of 1.5-2 R {sub ☉}, which represent the EUV counterparts of white-light streamers. To explain this phenomenon, we investigated the properties of a streamer observed on 2010 October 20 and 21, by the PROBA2/SWAP EUV telescope together with the Hinode/EIS (HOP 165) and the Mauna Loa Mk4 white-light coronagraph. In the SWAP 174 Å band comprising the Fe IX-Fe XI lines, the streamer was detected to a distance of 2 Rmore » {sub ☉}. We assume that the EUV emission is dominated by collisional excitation and resonant scattering of monochromatic radiation coming from the underlying corona. Below 1.2 R {sub ☉}, the plasma density and temperature were derived from the Hinode/EIS data by a line-ratio method. Plasma conditions in the streamer and in the background corona above 1.2 R {sub ☉} from the disk center were determined by forward-modeling the emission that best fit the observational data in both EUV and white light. It was found that the plasma in the streamer above 1.2 R {sub ☉} is nearly isothermal, with a temperature of T = 1.43 ± 0.08 MK. The hydrostatic scale-height temperature determined from the evaluated density distribution was significantly higher (1.72 ± 0.08 MK), which suggests the existence of outward plasma flow along the streamer. We conclude that, inside the streamer, collisional excitation provided more than 90% of the observed EUV emission, whereas, in the background corona, the contribution of resonance scattering became comparable with that of collisions at R ≳ 2 R {sub ☉}.« less

  6. Theoretical quasar emission-line ratios. VII - Energy-balance models for finite hydrogen slabs

    NASA Technical Reports Server (NTRS)

    Hubbard, E. N.; Puetter, R. C.

    1985-01-01

    The present energy balance calculations for finite, isobaric, hydrogen-slab quasar emission line clouds incorporate probabilistic radiative transfer (RT) in all lines and bound-free continua of a five-level continuum model hydrogen atom. Attention is given to the line ratios, line formation regions, level populations and model applicability results obtained. H lines and a variety of other considerations suggest the possibility of emission line cloud densities in excess of 10 to the 10th/cu cm. Lyman-beta/Lyman-alpha line ratios that are in agreement with observed values are obtained by the models. The observed Lyman/Balmer ratios can be achieved with clouds whose column depths are about 10 to the 22nd/sq cm.

  7. Emission of methane, carbon monoxide, carbon dioxide and short‐chain hydrocarbons from vegetation foliage under ultraviolet irradiation

    PubMed Central

    FRASER, WESLEY T.; BLEI, EMANUEL; FRY, STEPHEN C.; NEWMAN, MARK F.; REAY, DAVID S.; SMITH, KEITH A.

    2015-01-01

    Abstract The original report that plants emit methane (CH 4) under aerobic conditions caused much debate and controversy. Critics questioned experimental techniques, possible mechanisms for CH 4 production and the nature of estimating global emissions. Several studies have now confirmed that aerobic CH 4 emissions can be detected from plant foliage but the extent of the phenomenon in plants and the precise mechanisms and precursors involved remain uncertain. In this study, we investigated the role of environmentally realistic levels of ultraviolet (UV) radiation in causing the emission of CH 4 and other gases from foliage obtained from a wide variety of plant types. We related our measured emissions to the foliar content of methyl esters and lignin and to the epidermal UV absorbance of the species investigated. Our data demonstrate that the terrestrial vegetation foliage sampled did emit CH 4, with a range in emissions of 0.6–31.8 ng CH 4 g−1 leaf DW h−1, which compares favourably with the original reports of experimental work. In addition to CH 4 emissions, our data show that carbon monoxide, ethene and propane are also emitted under UV stress but we detected no significant emissions of carbon dioxide or ethane. PMID:25443986

  8. The effect of nonequilibrium ionization on ultraviolet line shifts in the solar transition region

    NASA Technical Reports Server (NTRS)

    Spadaro, D.; Noci, G.; Zappala, R. A.; Antiochos, S. K.

    1990-01-01

    The line profiles and wavelength positions of all the important emission lines due to carbon were computed for a variety of steady state siphon flow loop models. For the lines from the lower ionization states (C II-C IV) a preponderance of blueshifts was found, contrary to the observations. The lines from the higher ionization states can show either a net red- or blueshift, depending on the position of the loop on the solar disk. Similar results are expected for oxygen. It is concluded that the observed redshifts cannot be explained by the models proposed here.

  9. Study on Emission Spectral Lines of Iron, Fe in Laser-Induced Breakdown Spectroscopy (LIBS) on Soil Samples

    NASA Astrophysics Data System (ADS)

    Idris, Nasrullah; Lahna, Kurnia; Fadhli; Ramli, Muliadi

    2017-05-01

    In this work, LIBS technique has been used for detection of heavy metal especially iron, Fe in soil sample. As there are a large number of emission spectral lines due to Fe and other constituents in soil, this study is intended to identify emission spectral lines of Fe and finally to find best fit emission spectral lines for carrying out a qualitative and quantitative analysis. LIBS apparatus used in this work consists of a laser system (Neodymium Yttrium Aluminum Garnet, Nd-YAG: Quanta Ray; LAB SERIES; 1,064 nm; 500 mJ; 8 ns) and an optical multichannel analyzer (OMA) system consisting of a spectrograph (McPherson model 2061; 1,000 mm focal length; f/8.6 Czerny- Turner) and an intensified charge coupled device (ICCD) 1024x256 pixels (Andor I*Star). The soil sample was collected from Banda Aceh city, Aceh, Indonesia. For spectral data acquisition, the soil sample has been prepared by a pressing machine in the form of pellet. The laser beam was focused using a high density lens (f=+150 mm) and irradiated on the surface of the pellet for generating luminous plasma under 1 atmosphere of air surrounding. The plasma emission was collected by an optical fiber and then sent to the optical multichannel analyzer (OMA) system for acquisition of the emission spectra. It was found that there are many Fe emission lines both atomic lines (Fe I) and ionic lines (Fe II) appeared in all detection windows in the wavelength regions, ranging from 200 nm to 1000 nm. The emission lines of Fe with strong intensities occurs together with emission lines due to other atoms such as Mg, Ca, and Si. Thus, the identification of emission lines from Fe is complicated by presence of many other lines due to other major and minor elements in soil. Considering the features of the detected emission lines, several emission spectral lines of Fe I (atomic emission line), especially Fe I 404.58 nm occurring at visible range are potential to be good candidate of analytical lines in relation to detection

  10. Everything you ever wanted to know about the ultraviolet spectra of star-forming galaxies but were afraid to ask

    NASA Technical Reports Server (NTRS)

    Kinney, A. L.; Bohlin, R.; Calzetti, D.; Panagia, N.; Wyse, R.

    1993-01-01

    We present ultraviolet spectra of 143 star-forming galaxies of different morphological types and activity classes including S0, Sa, Sb, Sc, Sd, irregular, starburst, blue compact, blue compact dwarf, Liner, and Seyfert 2 galaxies. These IUE spectra cover the wavelength range from 1200 to 3200 A and are taken in a large aperture (10 x 20 inch). The ultraviolet spectral energy distributions are shown for a subset of the galaxies, ordered by spectral index, and separated by type for normal galaxies, Liners, starburst galaxies, blue compact (BCG) and blue compact dwarf (BCDG) galaxies, and Seyfert 2 galaxies. The ultraviolet spectra of Liners are, for the most part, indistinguishable from the spectra of normal galaxies. Starburst galaxies have a large range of ultraviolet slope, from blue to red. The star-forming galaxies which are the bluest in the optical (BCG and BCDG), also have the 'bluest' average ultraviolet slope of beta = -1.75 +/- 0.63. Seyfert 2 galaxies are the only galaxies in the sample that consistently have detectable UV emission lines.

  11. Solar CIV Vacuum-Ultraviolet Fabry-Perot Interferometers

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; West, Edward A.; Rees, David; McKay, Jack A.; Zukic, Maumer; Herman, Peter

    2006-01-01

    Aims: A tunable, high spectral resolution, high effective finesse, vacuum ultraviolet (VUV) Fabry-Perot interferometer (PPI) is designed for obtaining narrow-passband images, magnetograms, and Dopplergrams of the transition region emission line of CIV (155 nm). Methods: The integral part of the CIV narrow passband filter package (with a 2-10 pm FWHM) consists of a multiple etalon system composed of a tunable interferometer that provides high-spectral resolution and a static low-spectral resolution interferometer that allows a large effective free spectral range. The prefilter for the interferometers is provided by a set of four mirrors with dielectric high-reflective coatings. A tunable interferometer, a VUV piezoelectric-control etalon, has undergone testing using the surrogate F2 eximer laser line at 157 nm for the CIV line. We present the results of the tests with a description of the overall concept for a complete narrow-band CIV spectral filter. The static interferometer of the filter is envisioned as being hudt using a set of fixed MgF2 plates. The four-mirror prefilter is designed to have dielectric multilayer n-stacks employing the design concept used in the Ultraviolet Imager of NASA's Polar Spacecraft. A dual etalon system allows the effective free spectral range to be commensurate with the prefilter profile. With an additional etalon, a triple etalon system would allow a spectrographic resolution of 2 pm. The basic strategy has been to combine the expertise of spaceflight etalon manufacturing with VUV coating technology to build a VUV FPI which combines the best attributes of imagers and spectrographs into a single compact instrument. Results. Spectro-polarimetry observations of the transition region CIV emission can be performed to increase the understanding of the magnetic forces, mass motion, evolution, and energy release within the solar atmosphere at the base of the corona where most of the magnetic field is approximately force-free. The 2D imaging

  12. EMISSION SIGNATURES FROM SUB-PARSEC BINARY SUPERMASSIVE BLACK HOLES. I. DIAGNOSTIC POWER OF BROAD EMISSION LINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Khai; Bogdanović, Tamara

    Motivated by advances in observational searches for sub-parsec supermassive black hole binaries (SBHBs) made in the past few years, we develop a semi-analytic model to describe spectral emission-line signatures of these systems. The goal of this study is to aid the interpretation of spectroscopic searches for binaries and to help test one of the leading models of binary accretion flows in the literature: SBHB in a circumbinary disk. In this work, we present the methodology and a comparison of the preliminary model with the data. We model SBHB accretion flows as a set of three accretion disks: two mini-disks thatmore » are gravitationally bound to the individual black holes and a circumbinary disk. Given a physically motivated parameter space occupied by sub-parsec SBHBs, we calculate a synthetic database of nearly 15 million broad optical emission-line profiles and explore the dependence of the profile shapes on characteristic properties of SBHBs. We find that the modeled profiles show distinct statistical properties as a function of the semimajor axis, mass ratio, eccentricity of the binary, and the degree of alignment of the triple disk system. This suggests that the broad emission-line profiles from SBHB systems can in principle be used to infer the distribution of these parameters and as such merit further investigation. Calculated profiles are more morphologically heterogeneous than the broad emission lines in observed SBHB candidates and we discuss improved treatment of radiative transfer effects, which will allow a direct statistical comparison of the two groups.« less

  13. Sodium D-line emission from Io - Comparison of observed and theoretical line profiles

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Matson, D. L.; Johnson, T. V.; Bergstralh, J. T.

    1978-01-01

    High-resolution spectra of the D-line profiles have been obtained for Io's sodium emission cloud. These lines, which are produced through resonance scattering of sunlight, are broad and asymmetric and can be used to infer source and dynamical properties of the sodium cloud. In this paper we compare line profile data with theoretical line shapes computed for several assumed initial velocity distributions corresponding to various source mechanisms. We also examine the consequences of source distributions which are nonuniform over the surface of Io. It is found that the experimental data are compatible with escape of sodium atoms from the leading hemisphere of Io and with velocity distributions characteristic of sputtering processes. Thermal escape and simple models of plasma sweeping are found to be incompatible with the observations.

  14. The Ultraviolet Spectrograph (UVS) on Juno

    NASA Astrophysics Data System (ADS)

    Gladstone, G. R.; Persyn, S.; Eterno, J.; Slater, D. C.; Davis, M. W.; Versteeg, M. H.; Persson, K. B.; Siegmund, O. H.; Marquet, B.; Gerard, J.; Grodent, D. C.

    2008-12-01

    Juno, a NASA New Frontiers mission, plans for launch in August 2011, a 5-year cruise (including a flyby of Earth in October 2013 for a gravity boost), and 14 months around Jupiter after arriving in August 2016. The spinning (2 RPM), solar-powered Juno will study Jupiter from a highly elliptical orbit, in which the spacecraft (for about 6 hours once every 11 days) dives down over the north pole, skims the outermost atmosphere, and rises back up over the south pole. This orbit allows Juno avoid most of the intense particle radiation surrounding the planet and provides an excellent platform for investigating Jupiter's polar magnetosphere. Part of the exploration of Jupiter's polar magnetosphere will involve remote sensing of the far-ultraviolet H and H2 auroral emissions, plus gases such as methane and acetylene which add their absorption signature to the H2 emissions. This hydrocarbon absorption can be used to estimate the energy of the precipitating electrons; since more energetic electrons penetrate deeper into the atmosphere and the UV emissions they produce will show more absorption. Juno will carry an Ultraviolet Spectrograph (UVS) to make spectral images of Jupiter's aurora. UVS is a UV imaging spectrograph sensitive to both extreme and far ultraviolet emissions in the 70-205~nm range that will characterize the morphology and spectral nature of Jupiter's auroral emissions. Juno UVS consists of two separate sections: a dedicated telescope/spectrograph assembly and a vault electronics box. The telescope/spectrograph assembly contains a telescope which feeds a 0.15-m Rowland circle spectrograph. The telescope has an input aperture 40×40~mm2 and uses an off-axis parabolic primary mirror. A flat scan mirror situated at the front end of the telescope (used to target specific auroral features at up to ±30° perpendicular to the Juno spin plane) directs incoming light to the primary. The light is then focused onto the spectrograph entrance slit, which has a 'dog

  15. Galileo Ultraviolet Spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Hord, C. W.; Mcclintock, W. E.; Stewart, A. I. F.; Barth, C. A.; Esposito, L. W.; Thomas, G. E.; Sandel, B. R.; Hunten, D. M.; Broadfoot, A. L.; Shemansky, D. E.

    1992-01-01

    The Galileo ultraviolet spectrometer experiment uses data obtained by the Ultraviolet Spectrometer (UVS) mounted on the pointed orbiter scan platform and from the Extreme Ultraviolet Spectrometer (EUVS) mounted on the spinning part of the orbiter with the field of view perpendicular to the spin axis. The UVS is a Ebert-Fastie design that covers the range 113-432 nm with a wavelength resolution of 0.7 nm below 190 and 1.3 nm at longer wavelengths. The UVS spatial resolution is 0.4 deg x 0.1 deg for illuminated disk observations and 1 deg x 0.1 deg for limb geometries. The EUVS is a Voyager design objective grating spectrometer, modified to cover the wavelength range from 54 to 128 nm with wavelength resolution 3.5 nm for extended sources and 1.5 nm for point sources and spatial resolution of 0.87 deg x 0.17 deg. The EUVS instrument will follow up on the many Voyager UVS discoveries, particularly the sulfur and oxygen ion emissions in the Io torus and molecular and atomic hydrogen auroral and airglow emissions from Jupiter. The UVS will obtain spectra of emission, absorption, and scattering features in the unexplored, by spacecraft, 170-432 nm wavelength region. The UVS and EUVS instruments will provide a powerful instrument complement to investigate volatile escape and surface composition of the Galilean satellites, the Io plasma torus, micro- and macro-properties of the Jupiter clouds, and the composition structure and evolution of the Jupiter upper atmosphere.

  16. Stellar Activity in the Broadband Ultraviolet

    NASA Astrophysics Data System (ADS)

    Findeisen, K.; Hillenbrand, L.; Soderblom, D.

    2011-07-01

    The completion of the GALEX All-Sky Survey in the ultraviolet allows activity measurements to be acquired for many more stars than is possible with the limited sensitivity of ROSAT or the limited sky coverage of Chandra, XMM, or spectroscopic surveys for line emission in the optical or ultraviolet. We have explored the use of GALEX photometry as an activity indicator, using stars within 50 pc as a calibration sample representing the field and in selected nearby associations representing the youngest stages of stellar evolution. We present preliminary relations between UV flux and the optical activity indicator R'HK and between UV flux and age. We demonstrate that far-UV (FUV, 1350-1780 Å) excess flux is roughly proportional to R'HK. We also detect a correlation between near-UV (NUV, 1780-2830 Å) flux and activity or age, but the effect is much more subtle, particularly for stars older than ~0.5-1 Gyr. Both the FUV and NUV relations show large scatter, ~0.2 mag when predicting UV flux, ~0.18 dex when predicting R'HK, and ~0.4 dex when predicting age. This scatter appears to be evenly split between observational errors in current state-of-the-art data and long-term activity variability in the sample stars.

  17. Compact advanced extreme-ultraviolet imaging spectrometer for spatiotemporally varying tungsten spectra from fusion plasmas.

    PubMed

    Song, Inwoo; Seon, C R; Hong, Joohwan; An, Y H; Barnsley, R; Guirlet, R; Choe, Wonho

    2017-09-01

    A compact advanced extreme-ultraviolet (EUV) spectrometer operating in the EUV wavelength range of a few nanometers to measure spatially resolved line emissions from tungsten (W) was developed for studying W transport in fusion plasmas. This system consists of two perpendicularly crossed slits-an entrance aperture and a space-resolved slit-inside a chamber operating as a pinhole, which enables the system to obtain a spatial distribution of line emissions. Moreover, a so-called v-shaped slit was devised to manage the aperture size for measuring the spatial resolution of the system caused by the finite width of the pinhole. A back-illuminated charge-coupled device was used as a detector with 2048 × 512 active pixels, each with dimensions of 13.5 × 13.5 μm 2 . After the alignment and installation on Korea superconducting tokamak advanced research, the preliminary results were obtained during the 2016 campaign. Several well-known carbon atomic lines in the 2-7 nm range originating from intrinsic carbon impurities were observed and used for wavelength calibration. Further, the time behavior of their spatial distributions is presented.

  18. Temporal variations of electron density and temperature in Kr/Ne/H2 photoionized plasma induced by nanosecond pulses from extreme ultraviolet source

    NASA Astrophysics Data System (ADS)

    Saber, I.; Bartnik, A.; Wachulak, P.; Skrzeczanowski, W.; Jarocki, R.; Fiedorowicz, H.

    2017-06-01

    Spectral investigations of low-temperature photoionized plasmas created in a Kr/Ne/H2 gas mixture were performed. The low-temperature plasmas were generated by gas mixture irradiation using extreme ultraviolet pulses from a laser-plasma source. Emission spectra in the ultraviolet/visible range from the photoionized plasmas contained lines that mainly corresponded to neutral atoms and singly charged ions. Temporal variations in the plasma electron temperature and electron density were studied using different characteristic emission lines at various delay times. Results, based on Kr II lines, showed that the electron temperature decreased from 1.7 to 0.9 eV. The electron densities were estimated using different spectral lines at each delay time. In general, except for the Hβ line, in which the electron density decreased from 3.78 × 1016 cm-3 at 200 ns to 5.77 × 1015 cm-3 at 2000 ns, most of the electron density values measured from the different lines were of the order of 1015 cm-3 and decreased slightly while maintaining the same order when the delay time increased. The time dependences of the measured and simulated intensities of a spectral line of interest were also investigated. The validity of the partial or full local thermodynamic equilibrium (LTE) conditions in plasma was explained based on time-resolved electron density measurements. The partial LTE condition was satisfied for delay times in the 200 ns to 1500 ns range. The results are summarized, and the dominant basic atomic processes in the gas mixture photoionized plasma are discussed.

  19. Ultraviolet safety assessments of insect light traps.

    PubMed

    Sliney, David H; Gilbert, David W; Lyon, Terry

    2016-01-01

    Near-ultraviolet (UV-A: 315-400 nm), "black-light," electric lamps were invented in 1935 and ultraviolet insect light traps (ILTs) were introduced for use in agriculture around that time. Today ILTs are used indoors in several industries and in food-service as well as in outdoor settings. With recent interest in photobiological lamp safety, safety standards are being developed to test for potentially hazardous ultraviolet emissions. A variety of UV "Black-light" ILTs were measured at a range of distances to assess potential exposures. Realistic time-weighted human exposures are shown to be well below current guidelines for human exposure to ultraviolet radiation. These UV-A exposures would be far less than the typical UV-A exposure in the outdoor environment. Proposals are made for realistic ultraviolet safety standards for ILT products.

  20. Investigation of ultraviolet fluxes of normal and peculiar stars

    NASA Technical Reports Server (NTRS)

    Deutschman, W. A.; Schild, R. E.

    1974-01-01

    Data from Project Celescope, a program that photographed the ultraviolet sky, in order to study several problems in current astrophysics are analyzed. Two star clusters, the Pleiades and the Hyades, reveal differences between the two that we are unable to explain simply from their differences in chemical abundance, rotation, or reddening. Data for Orion show large scatter, which appears to be in the sense that the Orion stars are too faint for their ground-based photometry. Similarly, many supergiants in the association Sco OB1 are too faint in the ultraviolet, but the ultraviolet brightness appears to be only poorly correlated with spectral type. Ultraviolet Celescope data for several groups of peculiar stars have also been analyzed. The strong He I stars are too faint in the ultraviolet, possibly owing to enhancement of O II continuous opacity due to oxygen overabundance. The Be stars appear to have ultraviolet colors normal for their MK spectral types. The P Cygni stars are considerably fainter than main-sequence stars of comparable spectral type, probably owing, at least in part, to line blocking by resonance lines of multiply ionized light metals. The Wolf-Rayet stars have ultraviolet color temperatures of O stars.

  1. The Ultraviolet Radiation Environment around M Dwarf Exoplanet Host Stars

    NASA Technical Reports Server (NTRS)

    France, Kevin; Froning, Cynthia S.; Linsky, Jeffrey L.; Roberge, Aki; Stocke, John T.; Tian, Feng; Bushinsky, Rachel; Desert, Jean-Michel; Mauas, Pablo; Mauas, Pablo; hide

    2013-01-01

    The spectral and temporal behavior of exoplanet host stars is a critical input to models of the chemistry and evolution of planetary atmospheres. Ultraviolet photons influence the atmospheric temperature profiles and production of potential biomarkers on Earth-like planets around these stars. At present, little observational or theoretical basis exists for understanding the ultraviolet spectra of M dwarfs, despite their critical importance to predicting and interpreting the spectra of potentially habitable planets as they are obtained in the coming decades. Using observations from the Hubble Space Telescope, we present a study of the UV radiation fields around nearby M dwarf planet hosts that covers both far-UV (FUV) and near-UV (NUV) wavelengths. The combined FUV+NUV spectra are publicly available in machine-readable format. We find that all six exoplanet host stars in our sample (GJ 581, GJ 876, GJ 436, GJ 832, GJ 667C, and GJ 1214) exhibit some level of chromospheric and transition region UV emission. No "UV-quiet" M dwarfs are observed. The bright stellar Lyman-alpha emission lines are reconstructed, and we find that the Lyman-alpha line fluxes comprise approximately 37%-75% of the total 1150-3100 A flux from most M dwarfs; approximately greater than 10(exp3) times the solar value. We develop an empirical scaling relation between Lyman-alpha and Mg II emission, to be used when interstellar H I attenuation precludes the direct observation of Lyman-alpha. The intrinsic unreddened flux ratio is F(Lyman-alpha)/F(Mg II) = 10(exp3). The F(FUV)/F(NUV) flux ratio, a driver for abiotic production of the suggested biomarkers O2 and O3, is shown to be approximately 0.5-3 for all M dwarfs in our sample, greather than 10(exp3) times the solar ratio. For the four stars with moderate signal-to-noise Cosmic Origins Spectrograph time-resolved spectra, we find UV emission line variability with amplitudes of 50%.500% on 10(exp2)-10(exp3) s timescales. This effect should be taken

  2. Broadband sensitized white light emission of g-C{sub 3}N{sub 4}/Y{sub 2}MoO{sub 6}:Eu{sup 3+} composite phosphor under near ultraviolet excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Bing, E-mail: hanbing@zzuli.edu.cn; Xue, Yongfei; Li, Pengju

    2015-12-15

    The g-C{sub 3}N{sub 4}/Y{sub 2}MoO{sub 6}:Eu{sup 3+} composite phosphors were synthesized and characterized by X-ray diffraction, Fourier transform-infrared spectroscopy, ultraviolet visible diffuse reflection spectra, photoluminescence spectra and luminescence decay curves. Under the excitation of 360 nm near ultraviolet light, these composite phosphors show tunable emission from blue to red region, in which white light emission can be obtained in term of appropriate quality proportion of Y{sub 2}MoO{sub 6}:Eu{sup 3+} relative to g-C{sub 3}N{sub 4}/Y{sub 2}MoO{sub 6}:Eu{sup 3+}. In addition, the emission color can be also dependent on the excitation wavelength in g-C{sub 3}N{sub 4}/Y{sub 2}MoO{sub 6}:Eu{sup 3+} composite phosphor. -more » Graphical abstract: Under the excitation of 360 nm near ultraviolet light, the g-C{sub 3}N{sub 4}/Y{sub 2}MoO{sub 6}:Eu{sup 3+} composite phosphors show tunable emission from blue to red region, in which white light emission can be obtained. - Highlights: • The g-C3N4/Y2MoO6:Eu{sup 3+} composite phosphors were synthesized and characterized. • White light emission was realized in the g-C3N4/Y2MoO6:Eu{sup 3+} composites under UV excitation. • A novel idea to realize the broadband sensitized white light emission in phosphors was provided.« less

  3. Dissociative excitation of vacuum ultraviolet emission features by electron impact on molecular gases. 3: CO2

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.; Borst, W. L.; Zipf, E. C.

    1972-01-01

    Vacuum ultraviolet multiplets of C I, C II, and O I were produced by electron impact of CO2. Absolute emission cross sections for these multiplets were measured from threshold to 350 eV. The electrostatically focussed electron gun used in this series of experiments is described in detail. The atomic multiplets which were produced by dissociative excitation of CO2 and the cross sections at 100 eV are given. The dependence of the excitation functions on electron energy shows that these multiplets are produced by electric-dipole-allowed transitions in CO2.

  4. Kr photoionized plasma induced by intense extreme ultraviolet pulses

    NASA Astrophysics Data System (ADS)

    Bartnik, A.; Wachulak, P.; Fiedorowicz, H.; Skrzeczanowski, W.

    2016-04-01

    Irradiation of any gas with an intense EUV (extreme ultraviolet) radiation beam can result in creation of photoionized plasmas. The parameters of such plasmas can be significantly different when compared with those of the laser produced plasmas (LPP) or discharge plasmas. In this work, the photoionized plasmas were created in a krypton gas irradiated using an LPP EUV source operating at a 10 Hz repetition rate. The Kr gas was injected into the vacuum chamber synchronously with the EUV radiation pulses. The EUV beam was focused onto a Kr gas stream using an axisymmetrical ellipsoidal collector. The resulting low temperature Kr plasmas emitted electromagnetic radiation in the wide spectral range. The emission spectra were measured either in the EUV or an optical range. The EUV spectrum was dominated by emission lines originating from Kr III and Kr IV ions, and the UV/VIS spectra were composed from Kr II and Kr I lines. The spectral lines recorded in EUV, UV, and VIS ranges were used for the construction of Boltzmann plots to be used for the estimation of the electron temperature. It was shown that for the lowest Kr III and Kr IV levels, the local thermodynamic equilibrium (LTE) conditions were not fulfilled. The electron temperature was thus estimated based on Kr II and Kr I species where the partial LTE conditions could be expected.

  5. Kr photoionized plasma induced by intense extreme ultraviolet pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartnik, A., E-mail: andrzej.bartnik@wat.edu.pl; Wachulak, P.; Fiedorowicz, H.

    Irradiation of any gas with an intense EUV (extreme ultraviolet) radiation beam can result in creation of photoionized plasmas. The parameters of such plasmas can be significantly different when compared with those of the laser produced plasmas (LPP) or discharge plasmas. In this work, the photoionized plasmas were created in a krypton gas irradiated using an LPP EUV source operating at a 10 Hz repetition rate. The Kr gas was injected into the vacuum chamber synchronously with the EUV radiation pulses. The EUV beam was focused onto a Kr gas stream using an axisymmetrical ellipsoidal collector. The resulting low temperature Krmore » plasmas emitted electromagnetic radiation in the wide spectral range. The emission spectra were measured either in the EUV or an optical range. The EUV spectrum was dominated by emission lines originating from Kr III and Kr IV ions, and the UV/VIS spectra were composed from Kr II and Kr I lines. The spectral lines recorded in EUV, UV, and VIS ranges were used for the construction of Boltzmann plots to be used for the estimation of the electron temperature. It was shown that for the lowest Kr III and Kr IV levels, the local thermodynamic equilibrium (LTE) conditions were not fulfilled. The electron temperature was thus estimated based on Kr II and Kr I species where the partial LTE conditions could be expected.« less

  6. Molecular hydrogen fluorescence and accretion in far-ultraviolet spectra of classical T Tauri stars

    NASA Astrophysics Data System (ADS)

    Herczeg, Gregory J.

    2005-11-01

    Far-ultraviolet spectra of classical T Tauri stars reveal accretion, outflows, and H 2 fluorescence. The E140M echelle spectrograph on HST /STIS and the FUSE satellite offer high spectral resolution and broad wavelength coverage, and enables our unique and detailed analysis of the H 2 lines. A strong and broad Lya emission line excites warm H 2 into many levels of the B and C electronic states, from which we can detect as many as 200 H 2 emission lines. These H2 lines are narrow and often asymmetric, with excess blueshifted emission that can extend to 100 km s -1 from some sources. The fluorescent H 2 emission probes diverse environments around CTTSs. High spectral and spatial resolution are essential for identifying the location and studying the kinematics of the gas, which constrain the origin of the H 2 emission. Several other spectral characteristics, including absorption of H2 emission by the wind and H 2 absorption lines, also provide valuable diagnostics of the origin of this emission. The H 2 emission is most likely produced at the surface of a circumstellar disk in some sources, but is produced by outflows from other sources. DF Tau appears to show H 2 emission from both a disk and an outflow. The excitation of H 2 can be determined from relative line strengths by measuring self-absorption in lines with low-energy lower levels, or by reconstructing the Lya profile incident upon the warm H 2 using the total flux from a single upper level and the opacity in the pumping transition. Based on those diagnostics and the rich H 2 spectrum of TW Hya, the H 2 at the warm disk surface has a column density of log N (H 2 ) = [Special characters omitted.] , a temperature T = [Special characters omitted.] K, and a filling factor of H 2 , as seen by the source of Lya emission, of 0.25 +/- 0.08 (all 2s error bars). The total FUV luminosity from CTTSs ranges from 2 x 10 -3 to 3 x 10 -2 [Special characters omitted.] , much of which is in the Lya line. With the exception of

  7. The ultraviolet variations of iota Cas

    NASA Technical Reports Server (NTRS)

    Molnar, M. R.; Mallama, A. D.; Soskey, D. G.; Holm, A. V.

    1976-01-01

    The Ap variable star iota Cas was observed with the photometers on OAO-2 covering the spectral range 1430-4250 A. The ultraviolet light curves show a double wave with primary minimum and maximum at phase ? 0.00 and 0.35, respectively. Secondary minimum light is at phase ? 0.65 with secondary maximum at phase ? 0.85. The light curves longward of 3150 A vary in opposition to those shortward of this 'null region'. Ground-based coude spectra show that the Fe II and Cr II line strengths have a double-wave variation such that maximum strength occurs at minimum ultraviolet light. We suggest that the strong ultraviolet opacities due to photoionization and line blanketing by these metals may cause the observed photometric variations. We have also constructed an oblique-rotator model which shows iron and chromium lying in a great circle band rather than in circular spots.

  8. Polarization of submillimetre lines from interstellar medium

    NASA Astrophysics Data System (ADS)

    Zhang, Heshou; Yan, Huirong

    2018-04-01

    Magnetic fields play important roles in many astrophysical processes. However, there is no universal diagnostic for the magnetic fields in the interstellar medium (ISM) and each magnetic tracer has its limitation. Any new detection method is thus valuable. Theoretical studies have shown that submillimetre fine-structure lines are polarized due to atomic alignment by ultraviolet photon-excitation, which opens up a new avenue to probe interstellar magnetic fields. We will, for the first time, perform synthetic observations on the simulated three-dimensional ISM to demonstrate the measurability of the polarization of submillimetre atomic lines. The maximum polarization for different absorption and emission lines expected from various sources, including star-forming regions are provided. Our results demonstrate that the polarization of submillimetre atomic lines is a powerful magnetic tracer and add great value to the observational studies of the submilimetre astronomy.

  9. Ultraviolet Extensions

    NASA Technical Reports Server (NTRS)

    2008-01-01

    time. In fact, it is one of the 'deepest,' or longest-exposure, images of a nearby galaxy in ultraviolet light. This deeper view shows more clusters of stars, as well as stars in the very remote reaches of the galaxy, up to 140,000 light-years away from its core.

    The view at the left is a combination of the ultraviolet picture at the right and data taken by the telescopes of the National Science Foundation's Very Large Array in New Mexico. The radio data, colored here in red, reveal extended galactic arms of gaseous hydrogen atoms, which are raw ingredients for stars. Astronomers are excited that the remote clusters of baby stars match up with the extended arms, because this helps them better understand how stars can be created out in the boondocks of a galaxy.

    M83 is located 15 million light-years away in the southern constellation Hydra.

    In the Galaxy Evolution Explorer image on the right, near-ultraviolet light (or longer-wavelength ultraviolet light) is colored yellow and far-ultraviolet light is blue. In the combined image at the left, far-ultraviolet light is blue, near-ultraviolet light is green, and the radio emission at a wavelength of 21 centimeters is red.

  10. SDSS-IV eBOSS emission-line galaxy pilot survey

    DOE PAGES

    Comparat, J.; Delubac, T.; Jouvel, S.; ...

    2016-08-09

    The Sloan Digital Sky Survey IV extended Baryonic Oscillation Spectroscopic Survey (SDSS-IV/eBOSS) will observe 195,000 emission-line galaxies (ELGs) to measure the Baryonic Acoustic Oscillation standard ruler (BAO) at redshift 0.9. To test different ELG selection algorithms, 9,000 spectra were observed with the SDSS spectrograph as a pilot survey based on data from several imaging surveys. First, using visual inspection and redshift quality flags, we show that the automated spectroscopic redshifts assigned by the pipeline meet the quality requirements for a reliable BAO measurement. We also show the correlations between sky emission, signal-to-noise ratio in the emission lines, and redshift error.more » Then we provide a detailed description of each target selection algorithm we tested and compare them with the requirements of the eBOSS experiment. As a result, we provide reliable redshift distributions for the different target selection schemes we tested. Lastly, we determine an target selection algorithms that is best suited to be applied on DECam photometry because they fulfill the eBOSS survey efficiency requirements.« less

  11. Measurement of X-ray emission efficiency for K-lines.

    PubMed

    Procop, M

    2004-08-01

    Results for the X-ray emission efficiency (counts per C per sr) of K-lines for selected elements (C, Al, Si, Ti, Cu, Ge) and for the first time also for compounds and alloys (SiC, GaP, AlCu, TiAlC) are presented. An energy dispersive X-ray spectrometer (EDS) of known detection efficiency (counts per photon) has been used to record the spectra at a takeoff angle of 25 degrees determined by the geometry of the secondary electron microscope's specimen chamber. Overall uncertainty in measurement could be reduced to 5 to 10% in dependence on the line intensity and energy. Measured emission efficiencies have been compared with calculated efficiencies based on models applied in standardless analysis. The widespread XPP and PROZA models give somewhat too low emission efficiencies. The best agreement between measured and calculated efficiencies could be achieved by replacing in the modular PROZA96 model the original expression for the ionization cross section by the formula given by Casnati et al. (1982) A discrepancy remains for carbon, probably due to the high overvoltage ratio.

  12. The first linear polarization spectra of Wolf-Rayet stars in the ultraviolet - EZ Canis Majoris and Theta Muscae

    NASA Technical Reports Server (NTRS)

    Schulte-Ladbeck, R. E.; Nordsieck, K. H.; Code, A. D.; Anderson, C. M.; Babler, B. L.; Bjorkman, K. S.; Clayton, G. C.; Magalhaes, A. M.; Meade, M. R.; Shepherd, D.

    1992-01-01

    During the 1990 December Astro-1 Space Shuttle mission, spectropolarimetry was conducted in the wavelength region from 1400 to 3200 A of the Wolf-Rayet stars EZ CMa (WN5) and Theta Mus (WC6 + O9.5I) with the Wisconsin Ultraviolet Photo-Polarimeter Experiment. The UV polarization of EZ CMa displays features which correspond to emission lines. This indicates a large, about 0.8 percent, intrinsic UV-continuum polarization, and provides further evidence that the wind of EZ CMa is highly distorted. The polarization of Theta Mus does not change across emission lines, or the strong interstellar 2200 A feature. The polarization decreases smoothly to shorter wavelengths, at constant position angle. The combined UV-optical polarization spectrum of Theta Mus can be described well with interstellar polarization following a Serkowski law.

  13. High-resolution ultraviolet radiation fields of classical T Tauri stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    France, Kevin; Schindhelm, Eric; Bergin, Edwin A.

    2014-04-01

    The far-ultraviolet (FUV; 912-1700 Å) radiation field from accreting central stars in classical T Tauri systems influences the disk chemistry during the period of giant planet formation. The FUV field may also play a critical role in determining the evolution of the inner disk (r < 10 AU), from a gas- and dust-rich primordial disk to a transitional system where the optically thick warm dust distribution has been depleted. Previous efforts to measure the true stellar+accretion-generated FUV luminosity (both hot gas emission lines and continua) have been complicated by a combination of low-sensitivity and/or low-spectral resolution and did not includemore » the contribution from the bright Lyα emission line. In this work, we present a high-resolution spectroscopic study of the FUV radiation fields of 16 T Tauri stars whose dust disks display a range of evolutionary states. We include reconstructed Lyα line profiles and remove atomic and molecular disk emission (from H{sub 2} and CO fluorescence) to provide robust measurements of both the FUV continuum and hot gas lines (e.g., Lyα, N V, C IV, He II) for an appreciable sample of T Tauri stars for the first time. We find that the flux of the typical classical T Tauri star FUV radiation field at 1 AU from the central star is ∼10{sup 7} times the average interstellar radiation field. The Lyα emission line contributes an average of 88% of the total FUV flux, with the FUV continuum accounting for an average of 8%. Both the FUV continuum and Lyα flux are strongly correlated with C IV flux, suggesting that accretion processes dominate the production of both of these components. On average, only ∼0.5% of the total FUV flux is emitted between the Lyman limit (912 Å) and the H{sub 2} (0-0) absorption band at 1110 Å. The total and component-level high-resolution radiation fields are made publicly available in machine-readable format.« less

  14. The metallicities of the broad emission line regions in the nitrogen-loudest quasars

    NASA Astrophysics Data System (ADS)

    Batra, Neelam Dhanda; Baldwin, Jack A.

    2014-03-01

    We measured the metallicity Z in the broad emission-line regions (BELRs) of 43 Sloan Digital Sky Survey (SDSS) quasars with the strongest N IV] and N III] emission lines. These N-loud quasi-stellar objects (QSOs) have unusually low-black-hole masses. We used the intensity ratio of N lines to collisionally excited emission lines of other heavy elements to find metallicities in their BELR regions. We found that seven of the eight line-intensity ratios that we employed give roughly consistent metallicities as measured, but that for each individual QSO their differences from the mean of all metallicity measurements depend on the ionization potential of the ions that form the emission lines. After correcting for this effect, the different line-intensity ratios give metallicities that generally agree to within the 0.24 dex uncertainty in the measurements of the line-intensity ratios. The metallicities are very high, with mean log Z for the whole sample of 5.5 Z⊙ and a maximum of 18 Z⊙. Our results argue against the possibility that the strong N lines represent an overabundance only of N but not of all heavy elements. They are compatible with either that (1) the BELR gas has been chemically enriched by the general stellar population in the central bulge of the host galaxy, but the locally optimally emitting cloud model used in the analysis needs some fine tuning or (2) that instead this gas has been enriched by intense star formation on the very local scale of the active nucleus that has resulted in an abundance gradient within the BELR.

  15. Design of a portable optical emission tomography system for microwave induced compact plasma for visible to near-infrared emission lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rathore, Kavita, E-mail: kavira@iitk.ac.in, E-mail: pmunshi@iitk.ac.in, E-mail: sudeepb@iitk.ac.in; Munshi, Prabhat, E-mail: kavira@iitk.ac.in, E-mail: pmunshi@iitk.ac.in, E-mail: sudeepb@iitk.ac.in; Bhattacharjee, Sudeep, E-mail: kavira@iitk.ac.in, E-mail: pmunshi@iitk.ac.in, E-mail: sudeepb@iitk.ac.in

    A new non-invasive diagnostic system is developed for Microwave Induced Plasma (MIP) to reconstruct tomographic images of a 2D emission profile. A compact MIP system has wide application in industry as well as research application such as thrusters for space propulsion, high current ion beams, and creation of negative ions for heating of fusion plasma. Emission profile depends on two crucial parameters, namely, the electron temperature and density (over the entire spatial extent) of the plasma system. Emission tomography provides basic understanding of plasmas and it is very useful to monitor internal structure of plasma phenomena without disturbing its actualmore » processes. This paper presents development of a compact, modular, and versatile Optical Emission Tomography (OET) tool for a cylindrical, magnetically confined MIP system. It has eight slit-hole cameras and each consisting of a complementary metal–oxide–semiconductor linear image sensor for light detection. The optical noise is reduced by using aspheric lens and interference band-pass filters in each camera. The entire cylindrical plasma can be scanned with automated sliding ring mechanism arranged in fan-beam data collection geometry. The design of the camera includes a unique possibility to incorporate different filters to get the particular wavelength light from the plasma. This OET system includes selected band-pass filters for particular argon emission 750 nm, 772 nm, and 811 nm lines and hydrogen emission H{sub α} (656 nm) and H{sub β} (486 nm) lines. Convolution back projection algorithm is used to obtain the tomographic images of plasma emission line. The paper mainly focuses on (a) design of OET system in detail and (b) study of emission profile for 750 nm argon emission lines to validate the system design.« less

  16. Mid-infrared rotational line emission from interstellar molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Burton, Michael G.; Hollenbach, D. J.; Tielens, A. G. G.

    1992-11-01

    The line emission from the v = 0-0 S(0), S(2), and S(3), and the v = 1-0 and v = 2-1 S(1) transitions of molecular hydrogen in clouds exposed to high FUV fluxes and in shocks is modeled. Particular attention is given to the lowest pure rotational H2 transitions at 20 and 17 microns, respectively. It is found that, in photodissociation regions (PDRs), the emission comes from warm (greater than about 100 k) molecular gas, situated at optical depths greater than about 1, beyond the hot atomic surface layer of the clouds. For FUV fields, G0 = 1000 to 100,000 times the average interstellar field densities n = 10 exp 3 - 10 exp 7/cu cm, the typical line intensities are in the range 10 exp -6 to 10 exp -4 ergs/s sq cm sr. The predictions for the line intensities from both C-type and J-type shock models are compared. The results are applied to recent observations of the 0-0 S(1) transition in both the PDR and the shocked gas in Orion.

  17. Ultraviolet safety assessments of insect light traps

    PubMed Central

    Sliney, David H.; Gilbert, David W.; Lyon, Terry

    2016-01-01

    ABSTRACT Near-ultraviolet (UV-A: 315–400 nm), “black-light,” electric lamps were invented in 1935 and ultraviolet insect light traps (ILTs) were introduced for use in agriculture around that time. Today ILTs are used indoors in several industries and in food-service as well as in outdoor settings. With recent interest in photobiological lamp safety, safety standards are being developed to test for potentially hazardous ultraviolet emissions. A variety of UV “Black-light” ILTs were measured at a range of distances to assess potential exposures. Realistic time-weighted human exposures are shown to be well below current guidelines for human exposure to ultraviolet radiation. These UV-A exposures would be far less than the typical UV-A exposure in the outdoor environment. Proposals are made for realistic ultraviolet safety standards for ILT products. PMID:27043058

  18. Excitation Mechanisms of Near-Infrared Emission Lines in LINER Galaxies

    NASA Astrophysics Data System (ADS)

    Boehle, Anna

    2017-01-01

    I will present high spatial resolution, integral field spectroscopic observations of the nearby LINER (low ionization nuclear emission line region) galaxy NGC 404. LINERs are found at the centers of ~1/3 of galaxies within 40 Mpc, but their physical nature is not well understood. Although NGC 404 is thought to host a intermediate mass black hole at its center, it is unclear whether accretion onto the black hole or another mechanism such as shock excitation drives its LINER emission. We use the OSIRIS near-infrared integral field spectrograph at Keck Observatory behind laser guide star adaptive optics to map the strength and kinematics of [FeII], H2, and hydrogen recombination lines in the nucleus of NGC 404. These observations have a spatial pixel sampling of 0.5 pc and span the central 30 pc of the galaxy. We find that the ionized and molecular gas show differences in their morphology and kinematics on parsec scales. In particular, there are regions with line ratios of [FeII]/Pa-β that are much higher than previously seen in spatially integrated spectra, significantly restricting the possible excitation mechanisms of the near-infrared emission lines in this source. We are also applying these analysis techniques to 10 additional nearby LINERs, a part of a larger sample of 14 sources, to understand what drives the emission lines in these active galaxies. As a part of this program, I worked on the upgrade of the detector in the OSIRIS spectrograph, which has allowed observations for this survey obtained since January 2016 to be taken with increased instrument sensitivity of a factor of ~2 at J-band wavelengths (1.2 - 1.4 microns) and ~1.6 at H- and K-band wavelengths (1.5 - 2.4 microns). I will present results from the LINER survey, the OSIRIS detector upgrade, and also touch on related work using stellar orbits around the Milky Way supermassive black hole Sgr A* to constrain the mass and distance to our own Galactic Center.

  19. Summary of Quantitative Interpretation of Image Far Ultraviolet Auroral Data

    NASA Technical Reports Server (NTRS)

    Frey, H. U.; Immel, T. J.; Mende, S. B.; Gerard, J.-C.; Hubert, B.; Habraken, S.; Span, J.; Gladstone, G. R.; Bisikalo, D. V.; Shematovich, V. I.; hide

    2002-01-01

    Direct imaging of the magnetosphere by instruments on the IMAGE spacecraft is supplemented by simultaneous observations of the global aurora in three far ultraviolet (FUV) wavelength bands. The purpose of the multi-wavelength imaging is to study the global auroral particle and energy input from thc magnetosphere into the atmosphere. This paper describes provides the method for quantitative interpretation of FUV measurements. The Wide-Band Imaging Camera (WIC) provides broad band ultraviolet images of the aurora with maximum spatial and temporal resolution by imaging the nitrogen lines and bands between 140 and 180 nm wavelength. The Spectrographic Imager (SI), a dual wavelength monochromatic instrument, images both Doppler-shifted Lyman alpha emissions produced by precipitating protons, in the SI-12 channel and OI 135.6 nm emissions in the SI-13 channel. From the SI-12 Doppler shifted Lyman alpha images it is possible to obtain the precipitating proton flux provided assumptions are made regarding the mean energy of the protons. Knowledge of the proton (flux and energy) component allows the calculation of the contribution produced by protons in the WIC and SI-13 instruments. Comparison of the corrected WIC and SI-13 signals provides a measure of the electron mean energy, which can then be used to determine the electron energy fluxun-. To accomplish this reliable modeling emission modeling and instrument calibrations are required. In-flight calibration using early-type stars was used to validate the pre-flight laboratory calibrations and determine long-term trends in sensitivity. In general, very reasonable agreement is found between in-situ measurements and remote quantitative determinations.

  20. A photoionization model for the optical line emission from cooling flows

    NASA Technical Reports Server (NTRS)

    Donahue, Megan; Voit, G. M.

    1991-01-01

    The detailed predictions of a photoionization model previously outlined in Voit and Donahue (1990) to explain the optical line emission associated with cooling flows in X-ray emitting clusters of galaxies are presented. In this model, EUV/soft X-ray radiation from condensing gas photoionizes clouds that have already cooled. The energetics and specific consequences of such a model, as compared to other models put forth in the literature is discussed. Also discussed are the consequences of magnetic fields and cloud-cloud shielding. The results illustrate how varying the individual column densities of the ionized clouds can reproduce the range of line ratios observed and strongly suggest that the emission-line nebulae are self-irradiated condensing regions at the centers of cooling flows.

  1. Riemann sum method for non-line-of-sight ultraviolet communication in noncoplanar geometry

    NASA Astrophysics Data System (ADS)

    Song, Peng; Zhou, Xianli; Song, Fei; Zhao, Taifei; Li, Yunhong

    2017-12-01

    The non-line-of-sight ultraviolet (UV) communication relies on the scattering common volume, however, it is difficult to carry out the triple integral operation of the scattering common volume. Based on UV single-scattering propagation theory and the spherical coordinate, we propose to use the Riemann sum method (RSM) to analyze the link path loss (PL) of UV communication system in noncoplanar geometries, and carried out related simulations. In addition, an outdoor testbed using UV light-emitting diode was set up to provide support for the validity of the RSM. When the elevation angles of the transmitter or the receiver are small, using RSM, the channel PL and temporal response of UV communication systems can be effectively and efficiently calculated. It is useful in UV embedded system design.

  2. Pure ultraviolet emission from ZnO quantum dots-based/GaN heterojunction diodes by MgO interlayer

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Liang, Renli; Chen, Jingwen; Zhang, Jun; Wang, Shuai; Zhao, Chong; Zhang, Wei; Dai, Jiangnan; Chen, Changqing

    2017-07-01

    We demonstrate the fabrication and characterization of ZnO/GaN-based heterojunction light-emitting diodes (LEDs) by using air-stable and solution-processable ZnO quantum dots (QDs) with a thin MgO interlayer acting as an electron blocking layer (EBL). The ZnO QDs/MgO/ p-GaN heterojunction can only display electroluminescence (EL) characteristic in reverse bias regime. Under sufficient reverse bias, a fairly pure ultraviolet EL emission located at 370 nm deriving from near band edge of ZnO with a full width at half maximum (FWHM) of 8.3 nm had been obtained, while the deep-level emission had been almost totally suppressed. The EL origination and corresponding carrier transport mechanisms were investigated qualitatively in terms of photoluminescence (PL) results and energy band diagram.[Figure not available: see fulltext.

  3. Compositionally graded relaxed AlGaN buffers on semipolar GaN for mid-ultraviolet emission

    NASA Astrophysics Data System (ADS)

    Young, Erin C.; Wu, Feng; Romanov, Alexey E.; Haeger, Daniel A.; Nakamura, Shuji; Denbaars, Steven P.; Cohen, Daniel A.; Speck, James S.

    2012-10-01

    In this Letter, we report on the growth and properties of relaxed, compositionally graded AlxGa1 - xN buffer layers on freestanding semipolar (202¯1) GaN substrates. Continuous and step compositional grades with Al concentrations up to x = 0.61 have been achieved, with emission wavelengths in the mid-ultraviolet region as low as 265 nm. Coherency stresses were relaxed progressively throughout the grades by misfit dislocation generation via primary (basal) slip and secondary (non-basal) slip systems. Threading dislocation densities in the final layers of the grades were less than 106/cm2 as confirmed by plan-view transmission electron microscopy and cathodoluminescence studies.

  4. Analytical performance study of solar blind non-line-of-sight ultraviolet short-range communication links.

    PubMed

    Xu, Zhengyuan; Ding, Haipeng; Sadler, Brian M; Chen, Gang

    2008-08-15

    Motivated by recent advances in solid-state incoherent ultraviolet sources and solar blind detectors, we study communication link performance over a range of less than 1 km with a bit error rate (BER) below 10(-3) in solar blind non-line-of-sight situation. The widely adopted yet complex single scattering channel model is significantly simplified by means of a closed-form expression for tractable analysis. Path loss is given as a function of transceiver geometry as well as atmospheric scattering and attenuation and is compared with experimental data for model validation. The BER performance of a shot-noise-limited receiver under this channel model is demonstrated.

  5. Survey of emission-line galaxies: Universidad Complutense de Madrid list

    NASA Technical Reports Server (NTRS)

    Zamorano, J.; Rego, Gallego, J.; Gallego, J. G.; Vitores, A. G.RA, R.; Gonzalez-Riestra, R..; Rodriguez-Caderot, G.

    1994-01-01

    A low-dispersion objective-prism survey for low-redshift emission-line galaxies (ELGs) is being carried out by the University Complutense de Madrid with the Schmidt telescope at the German-Spanish Observatory of Calar Alto (Almeria, Spain). A 4 deg full aperture prism, which provides a dispersion of 1950 A/mm, and IIIaF emulsion combination has been used to search for ELGs selected by the presence of H-alpha emission in their spectra. Our survey has proved to be able to recover objects already found by similar surveys with different techniques and, what is more important, to discover new objects not previously cataloged. A compilation of descriptions and positions, along with finding charts when necessary, is presented for 160 extragalactic emission-line objects. This is the first list, which contains objects located in a region of the sky covering 270 sq deg in 10 fields near alpha = 0(sup h) and delta = 20 deg.

  6. Mid Infrared Hydrogen Recombination Line Emission from the Maser Star MWC 349A

    NASA Technical Reports Server (NTRS)

    Smith, Howard A.; Strelnitski, V.; Miles, J. W.; Kelly, D. M.; Lacy, J. H.

    1997-01-01

    We have detected and spectrally resolved the mid-IR hydrogen recombination lines H6(alpha)(12.372 micrometers), H7(alpha)(19.062 micrometers), H7(beta)(l1.309 micrometers) and H8(gamma)(12.385 micrometers) from the star MWC349A. This object has strong hydrogen maser emission (reported in the millimeter and submillimeter hydrogen recombination lines from H36(alpha) to H21(alpha)) and laser emission (reported in the H15(alpha), H12(alpha) and H10(alpha) lines). The lasers/masers are thought to arise predominantly in a Keplerian disk around the star. The mid-IR lines do not show evident signs of lasing, and can be well modeled as arising from the strong stellar wind, with a component arising from a quasi-static atmosphere around the disk, similar to what is hypothesized for the near IR (less than or equal to 4 micrometers) recombination lines. Since populations inversions in the levels producing these mid-IR transitions are expected at densities up to approximately 10(exp 11)/cu cm, these results imply either that the disk does not contain high-density ionized gas over long enough path lengths to produce a gain approximately 1, and/or that any laser emission from such regions is small compared to the spontaneous background emission from the rest of the source as observed with a large beam. The results reinforce the interpretation of the far-IR lines as true lasers.

  7. 40 CFR 63.1569 - What are my requirements for HAP emissions from bypass lines?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true What are my requirements for HAP emissions from bypass lines? 63.1569 Section 63.1569 Protection of Environment ENVIRONMENTAL PROTECTION... HAP emissions from bypass lines? (a) What work practice standards must I meet? (1) You must meet each...

  8. FAR-ULTRAVIOLET SPECTRAL IMAGES OF THE VELA SUPERNOVA REMNANT: SUPPLEMENTS AND COMPARISONS WITH OTHER WAVELENGTH IMAGES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Il-Joong; Seon, Kwang-Il; Han, Wonyong

    We present the improved far-ultraviolet (FUV) emission-line images of the entire Vela supernova remnant (SNR) using newly processed Spectroscopy of Plasma Evolution from Astrophysical Radiation/Far-Ultraviolet Imaging Spectrograph (SPEAR/FIMS) data. The incomplete C III {lambda}977 and O VI {lambda}{lambda}1032, 1038 images presented in the previous study are updated to cover the whole region. The C IV {lambda}{lambda}1548, 1551 image with a higher resolution and new images at Si IV {lambda}{lambda}1394, 1403, O IV] {lambda}1404, He II {lambda}1640.5, and O III] {lambda}{lambda}1661, 1666 are also shown. Comparison of emission-line ratios for two enhanced FUV regions reveals that the FUV emissions of themore » east-enhanced FUV region may be affected by nonradiative shocks of another very young SNR, the Vela Jr. SNR (RX J0852.0-4622, G266.6-1.2). This result is the first FUV detection that is likely associated with the Vela Jr. SNR, supporting previous arguments that the Vela Jr. SNR is close to us. The comparison of the improved FUV images with soft X-ray images shows that an FUV filamentary feature forms the boundary of the northeast-southwest asymmetrical sections of the X-ray shell. The southwest FUV features are characterized as the region where the Vela SNR is interacting with slightly denser ambient medium within the dim X-ray southwest section. From a comparison with the H{alpha} image, we identify a ring-like H{alpha} feature overlapped with an extended hot X-ray feature of similar size and two local peaks of C IV emission. Their morphologies are expected when the H{alpha} ring is in direct contact with the near or far side of the Vela SNR.« less

  9. Mid-IR Properties of an Unbiased AGN Sample of the Local Universe. 1; Emission-Line Diagnostics

    NASA Technical Reports Server (NTRS)

    Weaver, K. A.; Melendez, M.; Muhotzky, R. F.; Kraemer, S.; Engle, K.; Malumuth. E.; Tueller, J.; Markwardt, C.; Berghea, C. T.; Dudik, R. P.; hide

    2010-01-01

    \\Ve compare mid-IR emission-lines properties, from high-resolution Spitzer IRS spectra of a statistically-complete hard X-ray (14-195 keV) selected sample of nearby (z < 0.05) AGN detected by the Burst Alert Telescope (BAT) aboard Swift. The luminosity distribution for the mid-infrared emission-lines, [O IV] 25.89 microns, [Ne II] 12.81 microns, [Ne III] 15.56 microns and [Ne V] 14.32 microns, and hard X-ray continuum show no differences between Seyfert 1 and Seyfert 2 populations, although six newly discovered BAT AGNs are shown to be under-luminous in [O IV], most likely the result of dust extinction in the host galaxy. The overall tightness of the mid-infrared correlations and BAT luminosities suggests that the emission lines primarily arise in gas ionized by the AGN. We also compared the mid-IR emission-lines in the BAT AGNs with those from published studies of star-forming galaxies and LINERs. We found that the BAT AGN fall into a distinctive region when comparing the [Ne III]/[Ne II] and the [O IV]/[Ne III] quantities. From this we found that sources that have been previously classified in the mid-infrared/optical as AGN have smaller emission line ratios than those found for the BAT AGNs, suggesting that, in our X-ray selected sample, the AGN represents the main contribution to the observed line emission. Overall, we present a different set of emission line diagnostics to distinguish between AGN and star forming galaxies that can be used as a tool to find new AGN.

  10. Measurement of the deuterium Balmer series line emission on EAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, C. R.; Xu, Z.; Jin, Z.

    Volume recombination plays an important role towards plasma detachment for magnetically confined fusion devices. High quantum number states of the Balmer series of deuterium are used to study recombination. On EAST (Experimental Advanced Superconducting Tokamak), two visible spectroscopic measurements are applied for the upper/lower divertor with 13 channels, respectively. Both systems are coupled with Princeton Instruments ProEM EMCCD 1024B camera: one is equipped on an Acton SP2750 spectrometer, which has a high spectral resolution ∼0.0049 nm with 2400 gr/mm grating to measure the D{sub α}(H{sub α}) spectral line and with 1200 gr/mm grating to measure deuterium molecular Fulcher band emissionsmore » and another is equipped on IsoPlane SCT320 using 600 gr/mm to measure high-n Balmer series emission lines, allowing us to study volume recombination on EAST and to obtain the related line averaged plasma parameters (T{sub e}, n{sub e}) during EAST detached phases. This paper will present the details of the measurements and the characteristics of deuterium Balmer series line emissions during density ramp-up L-mode USN plasma on EAST.« less

  11. Modeling of radiative properties of Sn plasmas for extreme-ultraviolet source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, Akira; Sunahara, Atsushi; Furukawa, Hiroyuki

    Atomic processes in Sn plasmas are investigated for application to extreme-ultraviolet (EUV) light sources used in microlithography. We develop a full collisional radiative (CR) model of Sn plasmas based on calculated atomic data using Hebrew University Lawrence Livermore Atomic Code (HULLAC). Resonance and satellite lines from singly and multiply excited states of Sn ions, which contribute significantly to the EUV emission, are identified and included in the model through a systematic investigation of their effect on the emission spectra. The wavelengths of the 4d-4f+4p-4d transitions of Sn{sup 5+} to Sn{sup 13+} are investigated, because of their importance for determining themore » conversion efficiency of the EUV source, in conjunction with the effect of configuration interaction in the calculation of atomic structure. Calculated emission spectra are compared with those of charge exchange spectroscopy and of laser produced plasma EUV sources. The comparison is also carried out for the opacity of a radiatively heated Sn sample. A reasonable agreement is obtained between calculated and experimental EUV emission spectra observed under the typical condition of EUV sources with the ion density and ionization temperature of the plasma around 10{sup 18} cm{sup -3} and 20 eV, respectively, by applying a wavelength correction to the resonance and satellite lines. Finally, the spectral emissivity and opacity of Sn plasmas are calculated as a function of electron temperature and ion density. The results are useful for radiation hydrodynamics simulations for the optimization of EUV sources.« less

  12. Twenty-two emission-line AGNs from the HEAO-1 X-ray survey

    NASA Technical Reports Server (NTRS)

    Remillard, R. A.; Bradt, H. V. D.; Brissenden, R. J. V.; Buckley, D. A. H.; Roberts, W.; Schwartz, D. A.; Stroozas, B. A.; Tuohy, I. R.

    1993-01-01

    We report 22 emission-line AGN as bright, hard X-ray sources. All of them appear to be new classifications with the exception of one peculiar IRAS source which is a known quasar and has no published spectrum. This sample exhibits a rich diversity in optical spectral properties and luminosities, ranging from a powerful broad-absorption-line quasar to a weak nucleus embedded in a nearby NGC galaxy. Two cases confer X-ray luminosities in excess of 10 exp 47 erg/s. However, there is a degree of uncertainty in the X-ray identification for the AGN fainter than V about 16.5. Optically, several AGN exhibit very strong Fe II emission. One Seyfert galaxy with substantial radio flux is an exception to the common association of strong Fe II emission and radio-quiet AGN. The previously recognized IRAS quasar shows extreme velocities in the profiles of the forbidden lines; the 0 III pair is broadened to the point that the lines are blended. Several of these AGN show evidence of intrinsic obscuration, illustrating the effectiveness of hard X-ray surveys in locating AGN through high column density.

  13. Infrared coronal emission lines and the possibility of their laser emission in Seyfert nuclei

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew A.; Feldman, Uri; Smith, Howard A.; Klapisch, Marcel; Bhatia, Anand K.; Bar-Shalom, Avi

    1993-01-01

    Results are presented from detailed balance calculations, and a compilation of atomic data and other model calculations designed to support upcoming ISO and current observing programs involving IR coronal emission lines, together with a table with a complete line list of infrared transitions within the ground configurations 2s2 2p(k), 3s2 3p(k), and the first excited configurations 2s 2p and 3s 3p of highly ionized astrophysically abundant elements. The temperature and density parameter space for dominant cooling via IR coronal lines is presented, and the relationship of IR and optical coronal lines is discussed. It is found that, under physical conditions found in Seyfert nuclei, 14 of 70 transitions examined have significant population inversions in levels that give rise to IR coronal lines. Several IR coronal line transitions were found to have laser gain lengths that correspond to column densities of 10 exp 24-25/sq cm which are modeled to exist in Seyfert nuclei. Observations that can reveal inverted level populations and laser gain in IR coronal lines are suggested.

  14. The discovery of pulsed iron line emission from Centaurus X-3

    NASA Technical Reports Server (NTRS)

    Day, C. S. R.; Nagase, F.; Asai, K.; Takeshima, T.

    1993-01-01

    We present the first discovery of pulsed iron line emission from an X-ray binary, namely Cen X-3. Compared with the continuum pulsations, the iron line pulsations are shallow (50 percent change in amplitude), smeared (the profile is a single-peaked sinusoid) and phase-shifted (by about half a cycle). We also discuss the constraints on the origin of the line imposed by this discovery and by other observations.

  15. A New Radio Spectral Line Survey of Planetary Nebulae: Exploring Radiatively-driven Heating and Chemistry of Molecular Gas

    NASA Astrophysics Data System (ADS)

    Bublitz, Jesse; Kastner, Joel H.; Santander-García, Miguel; Montez, Rodolfo; Alcolea, Javier; Balick, Bruce; Bujarrabal, Valentín

    2018-01-01

    We report the results of a survey of mm-wave molecular line emission from nine nearby (<1.5 kpc), well-studied, molecule-rich planetary nebulae (PNe) with the Institut de Radioastronomie Millimétrique (IRAM) 30 m telescope. Our sample comprises molecule-rich PNe spanning a wide range of central star UV luminosities as well as central star and nebular X-ray emission properties. Nine molecular line frequencies were chosen to investigate the molecular chemistry of these nebulae. New detections of one or more of five molecules -- the molecular mass tracer 13CO and the chemically important trace species HCO+, CN, HCN, and HNC -- were made in at least one PN. We present analysis of emission line flux ratios that are potential diagnostics of the influence that ultraviolet and X-ray radiation have on the chemistry of residual molecular gas in PNe.

  16. VUV dissociative excitation cross sections of H2O, NH3, and CH4 by electron impact. [Vacuum Ultra-Violet

    NASA Technical Reports Server (NTRS)

    Morgan, H. D.; Mentall, J. E.

    1974-01-01

    Absolute excitation functions for excited fragments resulting from electron bombardment of H2O, NH3, and CH4 by low-energy electrons (0 to 300 eV) have been measured in the vacuum ultraviolet (1100 to 1950 A). The predominant emission for each molecule was the H Lyman-alpha line, while the O I, N I, C I, and C II emissions were at least an order of magnitude weaker. Absolute cross sections at 100 eV are given along with the appearance potential of the various processes and the possible dissociative-excitation channels through which such processes proceed.

  17. Nebular Line Emission and Stellar Mass of Bright z 8 Galaxies "Super-Eights"

    NASA Astrophysics Data System (ADS)

    Holwerda, Benne; Bouwens, Rychard; Trenti, Michele; Oesch, Pascal; Labbe, Ivo; Smit, Renske; Roberts-Borsani, Guido; Bernard, Stephanie; Bridge, Joanna

    2018-05-01

    Searches for the Lyman-alpha emission from the very first galaxies ionizing the Universe have proved to be extremely difficult with limited success beyond z 7 (<3% detections). However, a search of all CANDELS yielded four bright z 8 sources with associated strong Lyman-alpha lines, despite the Universe expected to be 70% neutral at this time. The key to their selection is an extremely red IRAC color ([3.6]-[4.5]> 0.5, Roberts-Borsani+ 2016), indicative of very strong nebular line emission. Do such extreme line emitting galaxies produce most of the photons to reionize the Universe? We propose to expand the sample of bright z 8 galaxies with reliable IRAC colors with seven more Y-band dropouts found with HST and confirmed through HST/Spitzer. The Spitzer observations will test how many of bright z 8 galaxies are IRAC-red and measure both their stellar mass and [OIII]+Hbeta line strength. Together with Keck/VLT spectroscopy, they will address these questions: I) Do all luminous z 8 galaxies show such red IRAC colors ([OIII] emission / hard spectra)? II) Is luminosity or a red IRAC color the dominant predictor for Lyman-alpha emission? III) Or are these sources found along exceptionally transparent sightlines into the early Universe? With 11 bright z 8 sources along different lines-of-sight, all prime targets for JWST, we will aim to determine which of the considered factors (luminosity, color, sight-line) drives the high Lyman-alpha prevalence (100%) and insight into the sources reionizing the Universe.

  18. Observations of the 12.3 micron Mg I emission line during a major solar flare

    NASA Technical Reports Server (NTRS)

    Deming, Drake; Jennings, Donald E.; Osherovich, Vladimir; Wiedemann, Gunter; Hewagama, Tilak

    1990-01-01

    The extremely Zeeman-sensitive 12.32 micron Mg I solar emission line was observed during a 3B/X5.7 solar flare on October 24, 1989. When compared to postflare values, Mg I emission-line intensity in the penumbral flare ribbon was 20 percent greater at the peak of the flare in soft X-rays, and the 12 micron continuum intensity was 7 percent greater. The flare also excited the emission line in the umbra where it is normally absent. The umbral flare emission exhibits a Zeeman splitting 200 G less than the adjacent penumbra, suggesting that it is excited at higher altitude. The absolute penumbral magnetic field strength did not change by more than 100 G between the flare peak and postflare period. However, a change in the inclination of the field lines, probably related to the formation and development of the flare loop system, was seen.

  19. CAN A NANOFLARE MODEL OF EXTREME-ULTRAVIOLET IRRADIANCES DESCRIBE THE HEATING OF THE SOLAR CORONA?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tajfirouze, E.; Safari, H.

    2012-01-10

    Nanoflares, the basic units of impulsive energy release, may produce much of the solar background emission. Extrapolation of the energy frequency distribution of observed microflares, which follows a power law to lower energies, can give an estimation of the importance of nanoflares for heating the solar corona. If the power-law index is greater than 2, then the nanoflare contribution is dominant. We model a time series of extreme-ultraviolet emission radiance as random flares with a power-law exponent of the flare event distribution. The model is based on three key parameters: the flare rate, the flare duration, and the power-law exponentmore » of the flare intensity frequency distribution. We use this model to simulate emission line radiance detected in 171 A, observed by Solar Terrestrial Relation Observatory/Extreme-Ultraviolet Imager and Solar Dynamics Observatory/Atmospheric Imaging Assembly. The observed light curves are matched with simulated light curves using an Artificial Neural Network, and the parameter values are determined across the active region, quiet Sun, and coronal hole. The damping rate of nanoflares is compared with the radiative losses cooling time. The effect of background emission, data cadence, and network sensitivity on the key parameters of the model is studied. Most of the observed light curves have a power-law exponent, {alpha}, greater than the critical value 2. At these sites, nanoflare heating could be significant.« less

  20. Laser-Induced Breakdown Spectroscopy Infrared Emission From Inorganic and Organic Substances

    DTIC Science & Technology

    2006-11-01

    using a liquid-nitrogen cooled indium antimonide (InSb) detector and the signal was recorded using a gated electronic circuit (boxcar averager). All...contaminants by analyzing the atomic spectral emission lines that result subsequent to plasmas generated by laser power. The ultraviolet-visible-near infrared...UV- Vis-NIR) spectral region exploited in conventional LIBS largely elucidates the elemental composition of the laser target by profiling these

  1. Key issues of ultraviolet radiation of OH at high altitudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuhuai; Wan, Tian; Jiang, Jianzheng

    2014-12-09

    Ultraviolet (UV) emissions radiated by hydroxyl (OH) is one of the fundamental elements in the prediction of radiation signature of high-altitude and high-speed vehicle. In this work, the OH A{sup 2}Σ{sup +}→X{sup 2}Π ultraviolet emission band behind the bow shock is computed under the experimental condition of the second bow-shock ultraviolet flight (BSUV-2). Four related key issues are discussed, namely, the source of hydrogen element in the high-altitude atmosphere, the formation mechanism of OH species, efficient computational algorithm of trace species in rarefied flows, and accurate calculation of OH emission spectra. Firstly, by analyzing the typical atmospheric model, the verticalmore » distributions of the number densities of different species containing hydrogen element are given. According to the different dominating species containing hydrogen element, the atmosphere is divided into three zones, and the formation mechanism of OH species is analyzed in the different zones. The direct simulation Monte Carlo (DSMC) method and the Navier-Stokes equations are employed to compute the number densities of the different OH electronically and vibrationally excited states. Different to the previous work, the trace species separation (TSS) algorithm is applied twice in order to accurately calculate the densities of OH species and its excited states. Using a non-equilibrium radiation model, the OH ultraviolet emission spectra and intensity at different altitudes are computed, and good agreement is obtained with the flight measured data.« less

  2. Key issues of ultraviolet radiation of OH at high altitudes

    NASA Astrophysics Data System (ADS)

    Zhang, Yuhuai; Wan, Tian; Jiang, Jianzheng; Fan, Jing

    2014-12-01

    Ultraviolet (UV) emissions radiated by hydroxyl (OH) is one of the fundamental elements in the prediction of radiation signature of high-altitude and high-speed vehicle. In this work, the OH A2Σ+→ X2Π ultraviolet emission band behind the bow shock is computed under the experimental condition of the second bow-shock ultraviolet flight (BSUV-2). Four related key issues are discussed, namely, the source of hydrogen element in the high-altitude atmosphere, the formation mechanism of OH species, efficient computational algorithm of trace species in rarefied flows, and accurate calculation of OH emission spectra. Firstly, by analyzing the typical atmospheric model, the vertical distributions of the number densities of different species containing hydrogen element are given. According to the different dominating species containing hydrogen element, the atmosphere is divided into three zones, and the formation mechanism of OH species is analyzed in the different zones. The direct simulation Monte Carlo (DSMC) method and the Navier-Stokes equations are employed to compute the number densities of the different OH electronically and vibrationally excited states. Different to the previous work, the trace species separation (TSS) algorithm is applied twice in order to accurately calculate the densities of OH species and its excited states. Using a non-equilibrium radiation model, the OH ultraviolet emission spectra and intensity at different altitudes are computed, and good agreement is obtained with the flight measured data.

  3. Linearized spectrum correlation analysis for line emission measurements

    NASA Astrophysics Data System (ADS)

    Nishizawa, T.; Nornberg, M. D.; Den Hartog, D. J.; Sarff, J. S.

    2017-08-01

    A new spectral analysis method, Linearized Spectrum Correlation Analysis (LSCA), for charge exchange and passive ion Doppler spectroscopy is introduced to provide a means of measuring fast spectral line shape changes associated with ion-scale micro-instabilities. This analysis method is designed to resolve the fluctuations in the emission line shape from a stationary ion-scale wave. The method linearizes the fluctuations around a time-averaged line shape (e.g., Gaussian) and subdivides the spectral output channels into two sets to reduce contributions from uncorrelated fluctuations without averaging over the fast time dynamics. In principle, small fluctuations in the parameters used for a line shape model can be measured by evaluating the cross spectrum between different channel groupings to isolate a particular fluctuating quantity. High-frequency ion velocity measurements (100-200 kHz) were made by using this method. We also conducted simulations to compare LSCA with a moment analysis technique under a low photon count condition. Both experimental and synthetic measurements demonstrate the effectiveness of LSCA.

  4. Synthetic nebular emission from massive galaxies - I: origin of the cosmic evolution of optical emission-line ratios

    NASA Astrophysics Data System (ADS)

    Hirschmann, Michaela; Charlot, Stephane; Feltre, Anna; Naab, Thorsten; Choi, Ena; Ostriker, Jeremiah P.; Somerville, Rachel S.

    2017-12-01

    Galaxies occupy different regions of the [O III]λ5007/H β-versus-[N II]λ6584/H α emission-line ratio diagram in the distant and local Universe. We investigate the origin of this intriguing result by modelling self-consistently, for the first time, nebular emission from young stars, accreting black holes (BHs) and older, post-asymptotic giant branch (post-AGB) stellar populations in galaxy formation simulations in a full cosmological context. In post-processing, we couple new-generation nebular-emission models with high-resolution, cosmological zoom-in simulations of massive galaxies to explore which galaxy physical properties drive the redshift evolution of the optical-line ratios [O III]λ5007/H β, [N II]λ6584/H α, [S II]λλ6717, 6731/H α and [O I]λ6300/H α. The line ratios of simulated galaxies agree well with observations of both star-forming and active local Sloan Digital Sky Survey galaxies. Towards higher redshifts, at fixed galaxy stellar mass, the average [O III]/H β is predicted to increase and [N II]/H α, [S II]/H α and [O I]/H α to decrease - widely consistent with observations. At fixed stellar mass, we identify star formation history, which controls nebular emission from young stars via the ionization parameter, as the primary driver of the cosmic evolution of [O III]/H β and [N II]/H α. For [S II]/H α and [O I]/H α, this applies only to redshifts greater than z = 1.5, the evolution at lower redshift being driven in roughly equal parts by nebular emission from active galactic nuclei and post-AGB stellar populations. Instead, changes in the hardness of ionizing radiation, ionized-gas density, the prevalence of BH accretion relative to star formation and the dust-to-metal mass ratio (whose impact on the gas-phase N/O ratio we model at fixed O/H) play at most a minor role in the cosmic evolution of simulated galaxy line ratios.

  5. On the origin of the iron fluorescent line emission from the Galactic Ridge

    NASA Astrophysics Data System (ADS)

    Eze, R. N. C.

    2015-04-01

    The Galactic Ridge X-ray Emission (GRXE) spectrum has strong iron emission lines at 6.4, 6.7, and 7.0 keV, each corresponding to the neutral (or low-ionized), He-like, and H-like iron ions. The 6.4 keV fluorescence line is due to irradiation of neutral (or low ionized) material (iron) by hard X-ray sources, indicating uniform presence of the cold matter in the Galactic plane. In order to resolve the origin of the cold fluorescent matter, we examined the contribution of the 6.4 keV line emission from white dwarf surfaces in the hard X-ray emitting symbiotic stars (hSSs) and magnetic cataclysmic variables (mCVs) to the GRXE. In our spectral analysis of 4 hSSs and 19 mCVs observed with Suzaku, we were able to resolve the three iron emission lines. We found that the equivalent-widths (EWs) of the 6.4 keV lines of hSSs are systematically higher than those of mCVs, such that the EWs of the merged hSSs and mCVs are 179-11+46 eV and 93-3+20 eV, respectively. The EW of hSSs compares favorably with the typical EWs of the 6.4 keV line in the GRXE of 90-300 eV depending on Galactic positions. Average 6.4 keV line luminosities of the hSSs and mCVs are 9.2 ×1039 and 1.6 ×1039 photons s-1, respectively, indicating that hSSs are intrinsically more efficient 6.4 keV line emitters than mCVs. We estimated required space densities of hSSs and mCVs to account for all the GRXE 6.4 keV line emission flux to be 2 ×10-7 pc-3 and 1 ×10-6 pc-3, respectively. We also estimated the actual 6.4 keV line contribution from the mCVs with a known space density, which is as much as 20% of the observed GRXE flux, and for the hSSs, for which only five hSSs are known, we noted that they could contribute a significant percentage to the observed GRXE flux since we believe there is still more hSSs yet to be discovered in the Galaxy. We therefore conclude that the GRXE 6.4 keV line flux could be significantly explained by hSSs and mCVs 6.4 keV line flux.

  6. Study of Opacity Effects on Emission Lines at EXTRAP T2R RFP

    NASA Astrophysics Data System (ADS)

    Stancalie, Viorica; Rachlew, Elisabeth

    We have investigated the influence of opacity on hydrogen (H-α and Ly-β) and Li-like oxygen emission lines from the EXTRAP T2R reversed field pinch. We used the Atomic Data Analysis System (AzDAS) based on the escape factor approximation for radiative transfer to calculate metastable and excited population densities via a collisional-radiative model. Population escape factor, emergent escape factor and modified line profiles are plotted vs. optical depth. The simulated emission line ratios in the density/temperature plane are in good agreement with experimental data for electron density and temperature measurements.

  7. A Highly Doppler Blueshifted Fe-K Emission Line in the High-Redshift QSO PKS 2149-306.

    PubMed

    Yaqoob; George; Nandra; Turner; Zobair; Serlemitsos

    1999-11-01

    We report the results from an ASCA observation of the high-luminosity, radio-loud quasar PKS 2149-306 (redshift 2.345), covering the approximately 1.7-30 keV band in the quasar frame. We find the source to have a luminosity approximately 6x1047 ergs s-1 in the 2-10 keV band (quasar frame). We detect an emission line centered at approximately 17 keV in the quasar frame. Line emission at this energy has not been observed in any other active galaxy or quasar to date. We present evidence rejecting the possibility that this line is the result of instrumental artifacts or a serendipitous source. The most likely explanation is blueshifted Fe-K emission (the equivalent width is EW approximately 300+/-200 eV, quasar frame). Bulk velocities of the order of 0.75c are implied by the data. We show that Fe-K line photons originating in an accretion disk and Compton scattering off a leptonic jet aligned along the disk axis can account for the emission line. Curiously, if the emission-line feature recently discovered in another quasar (PKS 0637-752, z=0.654) at 1.6 keV in the quasar frame is due to blueshifted O vii emission, the Doppler blueshifting factor in both quasars is similar ( approximately 2.7-2.8).

  8. Nebular line emission from z > 7 galaxies in a cosmological simulation: rest-frame UV to optical lines

    NASA Astrophysics Data System (ADS)

    Shimizu, Ikkoh; Inoue, Akio K.; Okamoto, Takashi; Yoshida, Naoki

    2016-10-01

    We have performed very large and high-resolution cosmological hydrodynamic simulations in order to investigate detectability of nebular lines in the rest-frame ultraviolet (UV) to optical wavelength range from galaxies at z > 7. We find that the expected line fluxes are very well correlated with the apparent UV magnitudes. The C IV 1549 Å and C III] 1909 Å lines of galaxies brighter than 26 AB magnitudes are detectable with current facilities such as the Very Large Telescope (VLT) XShooter and the Keck Multi-Object Spectrometer for Infra-Red Exploration (MOSFIRE). Metal lines such as C IV 1549 Å, C III] 1909 Å, [O II] 3727 Å and [O III] 4959/5007 Å are good targets for spectroscopic observation with the Thirty-Metre Telescope (TMT), European Extremely Large Telescope (E-ELT), Giant Magellan Telescope (GMT) and James Webb Space Telescope (JWST). We also expect Hα and Hβ lines to be detectable with these telescopes. Additionally, we predict the detectability of nebular lines for z > 10 galaxies, which will be found with JWST, the Wide-Field Infrared Survey Telescope (WFIRST) and First Light And Reionization Explorer (FLARE) (11 ≤ z ≤ 15). We conclude that the C IV 1549 Å, C III] 1909 Å, [O III] 4959/5007 Å and Hβ lines from even z ˜15 galaxies could be strong targets for TMT, E-ELT and JWST. We also find that magnification by gravitational lensing is of great help in detecting such high-z galaxies. According to our model, the C III] 1909 Å line in z > 9 galaxy candidates is detectable even using current facilities.

  9. SUMER: Solar Ultraviolet Measurements of Emitted Radiation

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Axford, W. I.; Curdt, W.; Gabriel, A. H.; Grewing, M.; Huber, M. C. E.; Jordan, S. D.; Kuehne, M.; Lemaire, P.; Marsch, E.

    1992-01-01

    The experiment Solar Ultraviolet Measurements of Emitted Radiation (SUMER) is designed for the investigations of plasma flow characteristics, turbulence and wave motions, plasma densities and temperatures, structures and events associated with solar magnetic activity in the chromosphere, the transition zone and the corona. Specifically, SUMER will measure profiles and intensities of Extreme Ultraviolet (EUV) lines emitted in the solar atmosphere ranging from the upper chromosphere to the lower corona; determine line broadenings, spectral positions and Doppler shifts with high accuracy, provide stigmatic images of selected areas of the Sun in the EUV with high spatial, temporal and spectral resolution and obtain full images of the Sun and the inner corona in selectable EUV lines, corresponding to a temperature from 10,000 to more than 1,800,000 K.

  10. Semi-transparent all-oxide ultraviolet light-emitting diodes based on ZnO/NiO-core/shell nanowires

    NASA Astrophysics Data System (ADS)

    Shi, Zhi-Feng; Xu, Ting-Ting; Wu, Di; Zhang, Yuan-Tao; Zhang, Bao-Lin; Tian, Yong-Tao; Li, Xin-Jian; Du, Guo-Tong

    2016-05-01

    Semi-transparent all-oxide light-emitting diodes based on ZnO/NiO-core/shell nanowire structures were prepared on double-polished c-Al2O3 substrates. The entire heterojunction diode showed an average transparency of ~65% in the ultraviolet and visible regions. Under forward bias, the diode displayed an intense ultraviolet emission at ~382 nm, and its electroluminescence performance was remarkable in terms of a low emission onset, acceptable operating stability, and the ability to optically excite emissive semiconductor nanoparticle chromophores.Semi-transparent all-oxide light-emitting diodes based on ZnO/NiO-core/shell nanowire structures were prepared on double-polished c-Al2O3 substrates. The entire heterojunction diode showed an average transparency of ~65% in the ultraviolet and visible regions. Under forward bias, the diode displayed an intense ultraviolet emission at ~382 nm, and its electroluminescence performance was remarkable in terms of a low emission onset, acceptable operating stability, and the ability to optically excite emissive semiconductor nanoparticle chromophores. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07236k

  11. Compositionally graded relaxed AlGaN buffers on semipolar GaN for mid-ultraviolet emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Erin C.; Wu Feng; Haeger, Daniel A.

    In this Letter, we report on the growth and properties of relaxed, compositionally graded Al{sub x}Ga{sub 1-x}N buffer layers on freestanding semipolar (2021) GaN substrates. Continuous and step compositional grades with Al concentrations up to x = 0.61 have been achieved, with emission wavelengths in the mid-ultraviolet region as low as 265 nm. Coherency stresses were relaxed progressively throughout the grades by misfit dislocation generation via primary (basal) slip and secondary (non-basal) slip systems. Threading dislocation densities in the final layers of the grades were less than 10{sup 6}/cm{sup 2} as confirmed by plan-view transmission electron microscopy and cathodoluminescence studies.

  12. Limb observations of the 12.32 micron solar emission line during the 1991 July total eclipse

    NASA Technical Reports Server (NTRS)

    Deming, Drake; Jennings, Donald E.; Mccabe, George; Noyes, Robert; Wiedemann, Gunter; Espenak, Fred

    1992-01-01

    The limb profile of the Mg I 12.32-micron emission line is determined by occultation in the July 11, 1991 total solar eclipse over Mauna Kea. It is shown that the emission peaks are very close to the 12-micron continuum limb, as predicted by recent theory for this line as a non-LTE photospheric emission. The increase in optical depth for this extreme limb-viewing situation indicates that most of the observed emission arises from above the chromospheric temperature minimum, and it is found that this emission is extended to heights well in excess of the model predictions. The line emission can be observed as high as 2000 km above the 12-micron continuum limb, whereas theory predicts it to remain observable no higher than about 500 km above the continuum limb. The substantial limb extension observed in this line is quantitatively consistent with limb extensions seen in the far-IR continuum, and it is concluded that it is indicative of departures from gravitational hydrostatic equilibrium, or spatial inhomogeneities, in the upper solar atmosphere.

  13. Spectral properties of X-ray selected narrow emission line galaxies

    NASA Astrophysics Data System (ADS)

    Romero-Colmenero, E.

    1998-03-01

    This thesis reports a study of the X-ray and optical properties of two samples of X-ray selected Narrow Emission Line Galaxies (NELGs), and their comparison with the properties of broad line Active Galactic Nuclei (AGN). One sample (18 NELGs) is drawn from the ROSAT International X-ray Optical Survey (RIXOS), the other (19 NELGs and 33 AGN) from the ROSAT UK Deep Survey. ROSAT multi-channel X-ray spectra have been extracted and fitted with power-law, bremsstrahlung and black body models for the brighter RIXOS sources. In most cases, power-law and bremsstrahlung models provide the best results. The average spectral energy index, alpha, of the RIXOS NELGs is 0.96 +/- 0.07, similar to that of AGN (alpha~1). For the fainter RIXOS NELGs, as well as for all the UK Deep Survey sources, counts in three spectral bands have been extracted and fitted with a power-law model, assuming the Galactic value for N_H. The brighter RIXOS sources demonstrated that the results obtained by these two different extraction and fitting procedures provide consistent results. Two average X-ray spectra, one for the NELGs and another for the AGN, were created from the UK Deep Survey sources. The power-law slope of the average NELG is alpha = 0.45 +/- 0.09, whilst that of the AGN is alpha = 0.96 +/- 0.03. ROSAT X-ray surveys have shown that the fractional surface density of NELGs increases with respect to AGN at faint fluxes (<= 2e-15 ergs cm-2 s-1), thus suggesting that NELGs are important contributors to the residual soft (<2 keV) X-ray background (XRB). Moreover, the spectral slope of this background (alpha~0.4, 1-10 keV) is harder than that of AGN (alpha~1), which are known to contribute most of the XRB at higher flux levels. The work presented in this thesis shows unequivocally for the first time that the integrated spectrum of the faintest NELGs (alpha~0.4) is consistent with that of the soft X-ray background, finally reconciling it with the properties of the sources that are thought to

  14. Spectral properties of x-ray selected narrow emission line galaxies

    NASA Astrophysics Data System (ADS)

    Romero Colmenero, Encarnacion

    This thesis reports a study of the X-ray and optical properties of two samples of X-ray selected Narrow Emission Line Galaxies (NELGs), and their comparison with the properties of broad line Active Galactic Nuclei (AGN). One sample (18 NELGs) is drawn from the ROSAT International X-ray Optical Survey (RIXOS), the other (19 NELGs and 33 AGN) from the ROSAT UK Deep Survey. ROSAT multi-channel X-ray spectra have been extracted and fitted with power-law, bremsstrahlung and black body models for the brighter RIXOS sources. In most cases, power-law and bremsstrahlung models provide the best results. The average spectral energy index, alpha, of the RIXOS NELGs is 0.96 +/- 0.07, similar to that of AGN (alpha ~ 1). For the fainter RIXOS NELGs, as well as for all the UK Deep Survey sources, counts in three spectral bands have been extracted and fitted with a power-law model, assuming the Galactic value for NH. The brighter RIXOS sources demonstrated that the results obtained by these two different extraction and fitting procedures provide consistent results. Two average X-ray spectra, one for the NELGs and another for the AGN, were created from the UK Deep Survey sources. The power-law spectral slope of the average NELG is S = 0.45 +/- 0.09, whilst that of the AGN is S = 0.96 +/- 0.03. ROSAT X-ray surveys have shown that the fractional surface density of NELGs increases with respect to AGN at faint fluxes (< 2 x 10-15erg cm-2 s -1), thus suggesting that NELGs are important contributors to the residual soft (< 2 keV) X-ray background (XRB). Moreover, the spectral slope of this background (S ~ 0.4, 1-10 keV) is harder than that of AGN (S ~ 1), which are known to contribute most of the XRB at higher flux levels. The work presented in this thesis shows unequivocally for the first time that the integrated spectrum of the faintest NELGs (alpha ~ 0.4) is consistent with that of the soft X-ray background, finally reconciling it with the properties of the sources that are thought to

  15. Time variations of oxygen emission lines and solar wind dynamic parameters in low latitude region

    NASA Astrophysics Data System (ADS)

    Jamlongkul, P.; Wannawichian, S.; Mkrtichian, D.; Sawangwit, U.; A-thano, N.

    2017-09-01

    Aurora phenomenon is an effect of collision between precipitating particles with gyromotion along Earth’s magnetic field and Earth’s ionospheric atoms or molecules. The particles’ precipitation occurs normally around polar regions. However, some auroral particles can reach lower latitude regions when they are highly energetic. A clear emission from Earth’s aurora is mostly from atomic oxygen. Moreover, the sun’s activities can influence the occurrence of the aurora as well. This work studies time variations of oxygen emission lines and solar wind parameters, simultaneously. The emission’s spectral lines were observed by Medium Resolution Echelle Spectrograph (MRES) along with 2.4 meters diameter telescope at Thai National Observatory, Intanon Mountain, Chiang Mai, Thailand. Oxygen (OI) emission lines were calibrated by Dech-Fits spectra processing program and Dech95 2D image processing program. The correlations between oxygen emission lines and solar wind dynamics will be analyzed. This result could be an evidence of the aurora in low latitude region.

  16. Investigating the 3.3 micron infrared fluorescence from naphthalene following ultraviolet excitation

    NASA Technical Reports Server (NTRS)

    Williams, Richard M.; Leone, Stephen R.

    1994-01-01

    Polycyclic aromatic hydrocarbon (PAH) type molecules are proposed as the carriers of the unidentified infrared (UIR) bands. Detailed studies of the 3.3 micrometer infrared emission features from naphthalene, the simplest PAH, following ultraviolet laser excitation are used in the interpretation of the 3.29 micrometer (3040 cm(sup -1)) UIR band. A time-resolved Fourier transform spectrometer is used to record the infrared emission spectrum of gas-phase naphthalene subsequent to ultraviolet excitation facilitated by an excimer laser operated at either 193 nm or 248 nm. The emission spectra differ significantly from the absorption spectrum in the same spectral region. Following 193 nm excitation the maximum in the emission profile is red-shifted 45 cm(sup -1) relative to the absorption maximum; a 25 cm(sup -1) red-shift is observed after 248 nm excitation. The red-shifting of the emission spectrum is reduced as collisional and radiative relaxation removes energy from the highly vibrationally excited molecules. Coupling between the various vibrational modes is thought to account for the differences between absorption and emission spectra. Strong visible emission is also observed following ultraviolet excitation. Visible emission may play an important role in the rate of radiative relaxation, which according to the interstellar PAH hypothesis occurs only by the slow emission of infrared photons. Studying the visible emission properties of PAH type molecules may be useful in the interpretation of the DIB's observed in absorption.

  17. The SAMI Galaxy Survey: Publicly Available Spatially Resolved Emission Line Data Products

    NASA Astrophysics Data System (ADS)

    Medling, Anne; Green, Andrew W.; Ho, I.-Ting; Groves, Brent; Croom, Scott; SAMI Galaxy Survey Team

    2017-01-01

    The SAMI Galaxy Survey is collecting optical integral field spectroscopy of up to 3400 nearby (z<0.1) galaxies with a range of stellar masses and in a range of environments. The first public data release contains nearly 800 galaxies from the Galaxy And Mass Assembly (GAMA) Survey. In addition to releasing the reduced data cubes, we also provide emission line fits (flux and kinematic maps of strong emission lines including Halpha and Hbeta, [OII]3726,29, [OIII]4959,5007, [OI]6300, [NII]6548,83, and [SII]6716,31), extinction maps, star formation classification masks, and star formation rate maps. We give an overview of the data available for your favorite emission line science and present a few early science results. For example, a sample of edge-on disk galaxies show enhanced extraplanar emission related to SF-driven outflows, which are correlated with a bursty star formation history and higher star formation rate surface densities. Interestingly, the star formation rate surface densities of these wind hosts are 5-100 times lower than the canonical threshold for driving winds (0.1 MSun/yr/kpc2), indicating that galactic winds may be more important in normal star-forming galaxies than previously thought.

  18. The generation of a tunable laser emission in the vacuum ultraviolet and its application to supersonic jet/multiphoton ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Uchimura, Tomohiro; Onoda, Takayuki; Lin, Cheng-Huang; Imasaka, Totaro

    1999-08-01

    An optical parametric oscillator and a Ti:sapphire laser are used as a pump source for the generation of high-order vibrational stimulated Raman emission in the vacuum ultraviolet region. This tunable laser is employed as an excitation/ionization source in a supersonic jet/multiphoton ionization/time-of-flight mass spectrometric study of benzene. The merits and potential advantages of this approach are discussed in this study.

  19. IRIS Ultraviolet Spectral Properties of a Sample of X-Class Solar Flares

    NASA Astrophysics Data System (ADS)

    Butler, Elizabeth; Kowalski, Adam; Cauzzi, Gianna; Allred, Joel C.; Daw, Adrian N.

    2018-06-01

    The white-light (near-ultraviolet (NUV) and optical) continuum emission comprises the majority of the radiated energy in solar flares. However, there are nearly as many explanations for the origin of the white-light continuum radiation as there are white-light flares that have been studied in detail with spectra. Furthermore, there are rarely robust constraints on the time-resolved dynamics in the white-light emitting flare layers. We are conducting a statistical study of the properties of Fe II lines, Mg II lines, and NUV continuum intensity in bright flare kernels observed by the Interface Region Imaging Spectrograph (IRIS), in order to provide comprehensive constraints for radiative-hydrodynamic flare models. Here we present a new technique for identifying bright flare kernels and preliminary relationships among IRIS spectral properties for a sample of X-class solar flares.

  20. Ultraviolet Polariton Laser

    DTIC Science & Technology

    2015-09-17

    Ultraviolet Polariton Laser Significant progress was achieved in the epitaxy of deep UV AlN/ AlGaN Bragg mirrors and microcavity structures paving...the way to the successful fabrication of vertical cavity emitting laser structures and polariton lasers. For the first time DBRs providing sufficient...high reflectivity for polariton emission were demonstrated. Thanks to a developed strain balanced Al0.85Ga0.15N template, the critical thickness

  1. Achieving EMC Emissions Compliance for an Aeronautics Power Line Communications System

    NASA Astrophysics Data System (ADS)

    Dominiak, S.; Vos, G.; ter Meer, T.; Widmer, H.

    2012-05-01

    Transmitting data over the power distribution network - Power Line Communications (PLC) -provides an interesting solution to reducing the weight and complexity of wiring networks in commercial aircraft. One of the potential roadblocks for the introduction of this technology is achieving EMC emissions compliance. In this article an overview of the EMC conducted and radiated emissions testing for PLC- enabled aeronautics equipment is presented. Anomalies resulting from chamber resonances leading to discrepancies between the conducted emissions tests and the measured radiated emissions are identified and described. Measurements made according to the current version of the civil aeronautical EMC standard, EUROCAE ED-14F (RTCA DO-160F), show that PLC equipment can achieve full EMC emissions compliance.

  2. Polarisation of auroral emission lines in the Earth's upper atmosphere : first results and perspectives

    NASA Astrophysics Data System (ADS)

    Lamy, H.; Barthelemy, M.; Simon Wedlund, C.; Lilensten, J.; Bommier, V.

    2011-12-01

    Polarisation of light is a key observable to provide information about asymmetry or anisotropy within a radiative source. Following the pioneering and controversial work of Duncan in 1959, the polarisation of auroral emission lines in the Earth's upper atmosphere has been overlooked for a long time, even though the red intense auroral line (6300Å) produced by collisional impacts with electrons precipitating along magnetic field lines is a good candidate to search for polarisation. This problem was investigated again by Lilensten et al (2006) and observations were obtained by Lilensten et al (2008) confirming that the red auroral emission line is polarised. More recent measurements obtained by Barthélemy et al (2011) are presented and discussed. The results are compared to predictions of the theoretical work of Bommier et al (2011) and are in good agreement. Following these encouraging results, a new dedicated spectropolarimeter is currently under construction between BIRA-IASB and IPAG to provide simultaneously the polarisation of the red line and of other interesting auroral emission lines such as N2+ 1NG (4278Å), other N2 bands, etc... Perspectives regarding the theoretical polarisation of some of these lines will be presented. The importance of these polarisation measurements in the framework of atmospheric modeling and geomagnetic activity will be discussed.

  3. Disc origin of broad optical emission lines of the TDE candidate PTF09djl

    NASA Astrophysics Data System (ADS)

    Liu, F. K.; Zhou, Z. Q.; Cao, R.; Ho, L. C.; Komossa, S.

    2017-11-01

    An otherwise dormant supermassive black hole (SMBH) in a galactic nucleus flares up when it tidally disrupts a star passing by. Most of the tidal disruption events (TDEs) and candidates discovered in the optical/UV have broad optical emission lines with complex and diverse profiles of puzzling origin. In this Letter, we show that the double-peaked broad H α line of the TDE candidate PTF09djl can be well modelled with a relativistic elliptical accretion disc and the peculiar substructures with one peak at the line rest wavelength and the other redshifted to about 3.5 × 104 km s-1 are mainly due to the orbital motion of the emitting matter within the disc plane of large inclination 88° and pericentre orientation nearly vertical to the observer. The accretion disc has an extreme eccentricity 0.966 and semimajor axis of 340 BH Schwarzschild radii. The viewing angle effects of large disc inclination lead to significant attenuation of He emission lines originally produced at large electron scattering optical depth and to the absence/weakness of He emission lines in the spectra of PTF09djl. Our results suggest that the diversities of line intensity ratios among the line species in optical TDEs are probably due to the differences of disc inclinations.

  4. Pulse-phase dependence of emission lines in the X-ray pulsar 4U 1626-67

    NASA Astrophysics Data System (ADS)

    Beri, Aru; Paul, Biswajit; Dewangan, Gulab C.

    2015-07-01

    We present results from a pulse-phase-resolved spectroscopy of the complex emission lines around 1 keV in the unique accretion-powered X-ray pulsar 4U 1626-67, using the observation made with XMM-Newton in 2003. In this source, the redshifted and blueshifted emission lines and the linewidths measured earlier with Chandra suggest their accretion-disc origin. Another possible signature of lines produced in the accretion disc can be a modulation of the line strength with the pulse phase. We have found that the line fluxes have pulse-phase dependence, making 4U 1626-67 only the second pulsar after Hercules X-1 to show such variability. The O VII line at 0.568 keV from 4U 1626-67 varied by a factor of ˜4, stronger than the continuum variability, which supports the accretion-disc origin. The line flux variability can appear due to variable illumination of the accretion disc by the pulsar or, more likely, a warp-like structure in the accretion disc. We also discuss some further possible diagnostics of the accretion disc in 4U 1626-67 with pulse-phase-resolved emission-line spectroscopy.

  5. Tuning extreme ultraviolet emission for optimum coupling with multilayer mirrors for future lithography through control of ionic charge states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohashi, Hayato, E-mail: ohashi@cc.utsunomiya-u.ac.jp; Higashiguchi, Takeshi, E-mail: higashi@cc.utsunomiya-u.ac.jp; Suzuki, Yuhei

    2014-01-21

    We report on the identification of the optimum plasma conditions for a laser-produced plasma source for efficient coupling with multilayer mirrors at 6.x nm for beyond extreme ultraviolet lithography. A small shift to lower energies of the peak emission for Nd:YAG laser-produced gadolinium plasmas was observed with increasing laser power density. Charge-defined emission spectra were observed in electron beam ion trap (EBIT) studies and the charge states responsible identified by use of the flexible atomic code (FAC). The EBIT spectra displayed a larger systematic shift of the peak wavelength of intense emission at 6.x nm to longer wavelengths with increasingmore » ionic charge. This combination of spectra enabled the key ion stage to be confirmed as Gd{sup 18+}, over a range of laser power densities, with contributions from Gd{sup 17+} and Gd{sup 19+} responsible for the slight shift to longer wavelengths in the laser-plasma spectra. The FAC calculation also identified the origin of observed out-of-band emission and the charge states responsible.« less

  6. EMISSION-LINE OBJECTS PROJECTED UPON THE GALACTIC BULGE*

    PubMed Central

    Herbig, G. H.

    1969-01-01

    Low-dispersion slit spectrograms have been obtained of 34 faint objects that lie in the direction of the galactic bulge and have the Hα line in emission upon a detectable continuum. Eleven of these are certain or probable symbiotic stars. A rough comparison with R CrB stars in the same area suggests that these brightest symbiotics in the bulge have in the mean Mv ≈ -3 to -4, which suggest Population II red giants rather than conventional Population I M-type objects. The sample also contains a number of hot stars having H and [O II] or [O III] in emission, as well as four conventional Be stars, and six certain or possible planetary nebulae. Images PMID:16578699

  7. Emission-line objects projected upon the galactic bulge.

    PubMed

    Herbig, G H

    1969-08-01

    Low-dispersion slit spectrograms have been obtained of 34 faint objects that lie in the direction of the galactic bulge and have the Halpha line in emission upon a detectable continuum. Eleven of these are certain or probable symbiotic stars. A rough comparison with R CrB stars in the same area suggests that these brightest symbiotics in the bulge have in the mean M(v) approximately -3 to -4, which suggest Population II red giants rather than conventional Population I M-type objects. The sample also contains a number of hot stars having H and [O II] or [O III] in emission, as well as four conventional Be stars, and six certain or possible planetary nebulae.

  8. Imaging Extended Emission-Line Regions of Obscured AGN with the Subaru Hyper Suprime-Cam Survey

    NASA Astrophysics Data System (ADS)

    Sun, Ai-Lei; Greene, Jenny E.; Zakamska, Nadia L.; Goulding, Andy; Strauss, Michael A.; Huang, Song; Johnson, Sean; Kawaguchi, Toshihiro; Matsuoka, Yoshiki; Marsteller, Alisabeth A.; Nagao, Tohru; Toba, Yoshiki

    2018-05-01

    Narrow-line regions excited by active galactic nuclei (AGN) are important for studying AGN photoionization and feedback. Their strong [O III] lines can be detected with broadband images, allowing morphological studies of these systems with large-area imaging surveys. We develop a new broad-band imaging technique to reconstruct the images of the [O III] line using the Subaru Hyper Suprime-Cam (HSC) Survey aided with spectra from the Sloan Digital Sky Survey (SDSS). The technique involves a careful subtraction of the galactic continuum to isolate emission from the [O III]λ5007 and [O III]λ4959 lines. Compared to traditional targeted observations, this technique is more efficient at covering larger samples without dedicated observational resources. We apply this technique to an SDSS spectroscopically selected sample of 300 obscured AGN at redshifts 0.1 - 0.7, uncovering extended emission-line region candidates with sizes up to tens of kpc. With the largest sample of uniformly derived narrow-line region sizes, we revisit the narrow-line region size - luminosity relation. The area and radii of the [O III] emission-line regions are strongly correlated with the AGN luminosity inferred from the mid-infrared (15 μm rest-frame) with a power-law slope of 0.62^{+0.05}_{-0.06}± 0.10 (statistical and systematic errors), consistent with previous spectroscopic findings. We discuss the implications for the physics of AGN emission-line regions and future applications of this technique, which should be useful for current and next-generation imaging surveys to study AGN photoionization and feedback with large statistical samples.

  9. Global modeling of thermospheric airglow in the far ultraviolet

    NASA Astrophysics Data System (ADS)

    Solomon, Stanley C.

    2017-07-01

    The Global Airglow (GLOW) model has been updated and extended to calculate thermospheric emissions in the far ultraviolet, including sources from daytime photoelectron-driven processes, nighttime recombination radiation, and auroral excitation. It can be run using inputs from empirical models of the neutral atmosphere and ionosphere or from numerical general circulation models of the coupled ionosphere-thermosphere system. It uses a solar flux module, photoelectron generation routine, and the Nagy-Banks two-stream electron transport algorithm to simultaneously handle energetic electron distributions from photon and auroral electron sources. It contains an ion-neutral chemistry module that calculates excited and ionized species densities and the resulting airglow volume emission rates. This paper describes the inputs, algorithms, and code structure of the model and demonstrates example outputs for daytime and auroral cases. Simulations of far ultraviolet emissions by the atomic oxygen doublet at 135.6 nm and the molecular nitrogen Lyman-Birge-Hopfield bands, as viewed from geostationary orbit, are shown, and model calculations are compared to limb-scan observations by the Global Ultraviolet Imager on the TIMED satellite. The GLOW model code is provided to the community through an open-source academic research license.

  10. Spontaneous emission and atomic line shift in causal perturbation theory

    NASA Astrophysics Data System (ADS)

    Marzlin, Karl-Peter; Fitzgerald, Bryce

    2018-04-01

    We derive a spontaneous emission rate and line shift for two-level atoms coupled to the radiation field using causal perturbation theory. In this approach, employing the theory of distribution splitting prevents the occurrence of divergent integrals. Our method confirms the result for an atomic decay rate but suggests that the cutoff frequency for the atomic line shift is determined by the atomic mass, rather than the Bohr radius or electron mass.

  11. Far ultraviolet excitation processes in comets

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.; Opal, C. B.; Meier, R. R.; Nicolas, K. R.

    1976-01-01

    Recent observations of atomic oxygen and carbon in the far ultraviolet spectrum of comet Kohoutek have demonstrated the existence of these atomic species in the cometary coma. However, in order to identify the source of their origin, it is necessary to relate the observed ultraviolet flux to the atomic production rate. Analyses of observed OI wavelength 1304 and CI wavelength 1657 A multiplets have been carried out using high resolution solar spectra. Also examined is the possibility of observing ultraviolet fluorescence from molecules such as CO and H2, as well as resonance scattering either from atomic ions for which there are strong corresponding solar lines (CII) or from atoms for which there is an accidental wavelength coincidence (SI).

  12. Redshifts of high-temperature emission lines in the far-ultraviolet spectra of late-type stars. II - New, precise measurements of dwarfs and giants

    NASA Technical Reports Server (NTRS)

    Ayres, Thomas R.; Jensen, Eberhard; Engvold, Oddbjorn

    1988-01-01

    Results are presented from an IUE SWP camera investigation of the occurrence of gasdynamic flows, analogous to the downdrafts of 10 to the 5th K material observed over magnetic active regions of the sun, among stars of late spectral type. The SWP calibration spectra study conducted documents the existence of local, small, persistent distortions of the echelle wavelength scales that are of unknown origin. Attention is given to the enormous widths of the stellar high-excitation emission lines in both the dwarfs and the giants, with respect to the comparatively small, subsonic Doppler shifts; the widths are typically an order of magnitude greater than the redshifts.

  13. Toyota's inspection system for vehicular emissions at assembly lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, T.; Nakano, H.; Usami, I.

    1976-01-01

    In order that all Toyota production vehicles may satisfy the emission requirements and be free from possible defects such as catalytic converter damage, a system called ECAS, which allows us to assure satisfactory basic emission performance levels has been developed and put into actual use at assembly lines. This system consists of the following four tests: Idle Test, Functional Test, Short Cycle Test and Steady State Inspection Test. By using this system, all operations from vehicle setup, on a chassis dynamometer to statistical analysis of the data, measurement, judgement of the obtained data, type-out of the results, indication for actionmore » to be taken, data filing and statistical treatment of the data, are processed automatically and controlled by the computer. In the Short Cycle Test the up-stream emissions of the vehicle, tracing Toyota's unique short cyclic mode on a chassis dynamometer, are continuously measured. Based on the emission levels during each mode and the total emission level obtained from the above test we can diagnose, not only the emission control systems of a vehicle and its engine conditions such as valve clearance maladjustment and carburetor defects, but also the emission characteristics of this vehicle.« less

  14. X-ray line emission from the Puppis A supernova remnant - Oxygen lines

    NASA Technical Reports Server (NTRS)

    Winkler, P. F.; Clark, G. W.; Markert, T. H.; Petre, R.; Canizares, C. R.

    1981-01-01

    Six prominent X-ray emission lines of O VII and O VIII have been detected from a portion of the Puppis A supernova remnant in observations with the Einstein Observatory Focal Plane Crystal Spectrometer. The lines are sufficiently well resolved to serve as diagnostics of the emitting plasma. From the relative intensities of the lines, it is inferred that the population of O VIII is about 1.5 times that of O VII, and that electron collisions are the dominant excitation mechanism in the plasma. A locus of allowed electron temperatures and interstellar-absorption column densities is derived: 1.5 x 10 to the 6th K, and (2-6) x 10 to the 21st per sq cm. The data are consistent with either a thin plasma source in equilibrium at a temperature of 2.2 x 10 to the 6th K with a column density of 4 x 10 to the 21st per sq cm, or with a nonequilibrium source in which the electrons have been shock-heated to a higher temperature and oxygen is underionized.

  15. Weak Emission-line Quasars in the Context of a Modified Baldwin Effect

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad

    2016-01-01

    Based on spectroscopic data for a sample of high-redshift quasars, I will show that the anti-correlation between the rest-frame equivalent width (EW) of the C IV λ1549 broad-emission line and the Hβ-based Eddington ratio extends across the widest possible ranges of redshift (0 < z < 3.5) and bolometric luminosity(~1044 < L < ~1048 erg s-1). Given this anti-correlation, hereby referred to as a modified Baldwin effect (MBE), weak emission line quasars (WLQs), typically showing EW(C IV) < ~10 Å, are expected to have extremely high Eddington ratios (L/LEdd > ~4). I will present new near-infrared spectroscopy of the broad Hβ line, as well as complementary EW(C IV) information, for all WLQs for which such information is currently available, nine sources in total. I will show that while four of these WLQs can be accommodated by the MBE, the otherfive deviate significantly from this relation, at the > ~3σ level, by exhibiting C IV lines much weaker than predicted from their Hβ-based Eddington ratios. Assuming the supermassive black hole masses in all quasars can be determined reliably using the single-epoch Hβ-method, these results indicate that EW(C IV)cannot depend solely on the Eddington ratio. I will briefly discuss a strategy for further investigation into the roles that basic physical properties play in controlling the relative strengths of broad-emission lines in quasars.

  16. (12)CO (3-2) & (1-0) emission line observations of nearby starburst galaxy nuclei

    NASA Technical Reports Server (NTRS)

    Devereux, Nicholas; Taniguchi, Yoshiaki; Sanders, D. B.; Nakai, N.; Young, J. S.

    1994-01-01

    New measurements of the (12)CO (1-0) and (12)CO (3-2) line emission are presented for the nuclei of seven nearby starburst galaxies selected from a complete sample of 21 nearby starburst galaxies for which the nuclear star formation rates are measured to be comparable to the archetype starburst galaxies M82 and NGC 253. The new observations capitalize on the coincidence between the beam size of the 45 m Nobeyama telescope at 115 GHz and that of the 15 m James Clerk Maxwell Telescope at 345 GHz to measure the value of the (12)CO (3-2)/(1-0) emission line ratio in a 15 sec (less than or equal to 2.5 kpc) diameter region centered on the nuclear starburst. In principle, the (12)CO (3-2)/(1-0) emission line ratio provides a measure of temperature and optical depth for the (12)CO gas. The error weighted mean value of the (12)CO (3-2)/(1-0) emission line ratio measured for the seven starburst galaxy nuclei is -0.64 +/- 0.06. The (12)CO (3-2)/(1-0) emission line ratio measured for the starburst galaxy nuclei is significantly higher than the average value measured for molecular gas in the disk of the Galaxy, implying warmer temperatures for the molecular gas in starburst galaxy nuclei. On the other hand, the (12)CO (3-2)/(1-0) emission line ratio measured for the starburst galaxy nuclei is not as high as would be expected if the molecular gas were hot, greater than 20 K, and optically thin, tau much less than 1. The total mass of molecular gas contained within the central 1.2-2.8 kpc diameter region of the starburst galaxy nuclei ranges from 10(exp 8) to 10(exp 9) solar mass. While substantial, the molecular gas mass represents only a small percentage, approximately 9%-16%, of the dynamical mass in the same region.

  17. Probing the infrared counterparts of diffuse far-ultraviolet sources in the Galaxy

    NASA Astrophysics Data System (ADS)

    Saikia, Gautam; Shalima, P.; Gogoi, Rupjyoti; Pathak, Amit

    2017-12-01

    Recent availability of high quality infrared (IR) data for diffuse regions in the Galaxy and external galaxies have added to our understanding of interstellar dust. A comparison of ultraviolet (UV) and IR observations may be used to estimate absorption, scattering and thermal emission from interstellar dust. In this paper, we report IR and UV observations for selective diffuse sources in the Galaxy. Using archival mid-infrared (MIR) and far-infrared (FIR) observations from Spitzer Space Telescope, we look for counterparts of diffuse far-ultraviolet (FUV) sources observed by the Voyager, Far Ultraviolet Spectroscopic Explorer (FUSE) and Galaxy Evolution Explorer (GALEX) telescopes in the Galaxy. IR emission features at 8 μm are generally attributed to Polycyclic Aromatic Hydrocarbon (PAH) molecules, while emission at 24 μm are attributed to Very Small Grains (VSGs). The data presented here is unique and our study tries to establish a relation between various dust populations. By studying the FUV-IR correlations separately at low and high latitude locations, we have identified the grain component responsible for the diffuse FUV emission.

  18. On the physical association of the peculiar emission: Line stars HD 122669 and HD 122691

    NASA Technical Reports Server (NTRS)

    Garrison, R. F.; Hiltner, W. A.; Sanduleak, N.

    1975-01-01

    Spectroscopic and photometric observations indicate a physical association between the peculiar early-type emission-line stars HD 122669 and HD 122691. The latter has undergone a drastic change in the strength of its emission lines during the past twenty years. There is some indication that both stars vary with shorter time scales.

  19. Ultraviolet corona detection sensor study

    NASA Technical Reports Server (NTRS)

    Schmitt, R. J.; MATHERN

    1976-01-01

    The feasibility of detecting electrical corona discharge phenomena in a space simulation chamber via emission of ultraviolet light was evaluated. A corona simulator, with a hemispherically capped point to plane electrode geometry, was used to generate corona glows over a wide range of pressure, voltage, current, electrode gap length and electrode point radius. Several ultraviolet detectors, including a copper cathode gas discharge tube and a UV enhanced silicon photodiode detector, were evaluated in the course of the spectral intensity measurements. The performance of both silicon target vidicons and silicon intensified target vidicons was evaluated analytically using the data generated by the spectroradiometer scans and the performance data supplied by the manufacturers.

  20. Improved documentation of spectral lines for inductively coupled plasma emission spectrometry

    NASA Astrophysics Data System (ADS)

    Doidge, Peter S.

    2018-05-01

    An approach to improving the documentation of weak spectral lines falling near the prominent analytical lines used in inductively coupled plasma optical emission spectrometry (ICP-OES) is described. Measurements of ICP emission spectra in the regions around several hundred prominent lines, using concentrated solutions (up to 1% w/v) of some 70 elements, and comparison of the observed spectra with both recent published work and with the output of a computer program that allows calculation of transitions between the known energy levels, show that major improvements can be made in the coverage of spectral atlases for ICP-OES, with respect to "classical" line tables. It is argued that the atomic spectral data (wavelengths, energy levels) required for the reliable identification and documentation of a large majority of the weak interfering lines of the elements detectable by ICP-OES now exist, except for most of the observed lines of the lanthanide elements. In support of this argument, examples are provided from a detailed analysis of a spectral window centered on the prominent Pb II 220.353 nm line, and from a selected line-rich spectrum (W). Shortcomings in existing analyses are illustrated with reference to selected spectral interferences due to Zr. This approach has been used to expand the spectral-line library used in commercial ICP-ES instruments (Agilent 700-ES/5100-ES). The precision of wavelength measurements is evaluated in terms of the shot-noise limit, while the absolute accuracy of wavelength measurement is characterised through comparison with a small set of precise Ritz wavelengths for Sb I, and illustrated through the identification of Zr III lines; it is further shown that fractional-pixel absolute wavelength accuracies can be achieved. Finally, problems with the wavelengths and classifications of certain Au I lines are discussed.

  1. N III Bowen Lines and Fluorescence Mechanism in the Symbiotic Star AG Peg

    NASA Astrophysics Data System (ADS)

    Hyung, Siek; Lee, Seong-Jae; Lee, Kang Hwan

    2018-03-01

    We have investigated the intensities and full width at half maximum (FWHM) of the high dispersion spectroscopic N III emission lines of AG Peg, observed with the Hamilton Echelle Spectrograph (HES) in three different epochs at Mt. Hamilton's Lick Observatory. The earlier theoretical Bowen line study assumed the continuum fluorescence effect, presenting a large discrepancy with the present data. Hence, we analyzed the observed N III lines assuming line fluorescence as the only suitable source: (1) The O III and N III resonance line profiles near λ 374 were decomposed, using the Gaussian function, and the contributions from various O III line components were determined. (2) Based on the theoretical resonant N III intensities, the expected N III Bowen intensities were obtained to fit the observed values. Our study shows that the incoming line photon number ratio must be considered to balance at each N III Bowen line level in the ultraviolet radiation according to the observed lines in the optical zone. We also found that the average FWHM of the N III Bowen lines was about 5 km·s-1 greater than that of the O III Bowen lines, perhaps due to the inherently different kinematic characteristics of their emission zones.

  2. Spectroscopic limits to an extragalactic far-ultraviolet background.

    PubMed

    Martin, C; Hurwitz, M; Bowyer, S

    1991-10-01

    We use a spectrum of the lowest intensity diffuse far-ultraviolet background obtained from a series of observations in a number of celestial view directions to constrain the properties of the extragalactic FUV background. The mean continuum level, IEG = 280 +/- 35 photons cm-2 s-1 angstrom-1 sr-1, was obtained in a direction with very low H I column density, and this represents a firm upper limit to any extragalactic background in the 1400-1900 angstroms band. Previous work has demonstrated that the far-ultraviolet background includes (depending on a view direction) contributions from dust-scattered Galactic light, high-ionization emission lines, two-photon emission from H II, H2 fluorescence, and the integrated light of spiral galaxies. We find no evidence in the spectrum of line or continuum features that would signify additional extragalactic components. Motivated by the observation of steep BJ and U number count distributions, we have made a detailed comparison of galaxy evolution models to optical and UV data. We find that the observations are difficult to reconcile with a dominant contribution from unclustered, starburst galaxies at low redshifts. Our measurement rules out large ionizing fluxes at z = 0, but cannot strongly constrain the QSO background light, which is expected to be 0.5%-4% of IEG. We present improved limits on radiative lifetimes of massive neutrinos. We demonstrated with a simple model that IGM radiation is unlikely to make a significant contribution to IEG. Since dust scattering could produce a significant part of the continuum in this lowest intensity spectrum, we carried out a series of tests to evaluate this possibility. We find that the spectrum of a nearby target with higher NH I, when corrected for H2 fluorescence, is very similar to the spectrum obtained in the low H I view direction. This is evidence that the majority of the continuum observed at low NH I is also dust reflection, indicating either the existence of a hitherto

  3. Ultraviolet spectra of planetary nebulae. X - Physical conditions in the compact planetary nebula Sw St 1

    NASA Technical Reports Server (NTRS)

    Flower, D. R.; Goharji, A.; Cohen, M.

    1984-01-01

    Photoelectric visual and ultraviolet observations of the compact planetary nebula Sw St 1 are analyzed. The electron density, determined from the C III 1907/1909 A line ratio, is N(e) = (1.1 + or - 0.1) x 10 to the 5th/cu cm, consistent with the high emission measure and high critical frequency determined from observations of the thermal radio emission. The C/O abundance ratio in the nebula is found to be N(C)/N(O) = 0.72 + or - 0.1, i.e. the envelope is oxygen-rich, as suggested by the identification of the silicate feature in the 8-13 micron infrared spectrum. Difficulties remain in accurately determining the reddening constant to the nebula and its electron temperature.

  4. JPL Fourier transform ultraviolet spectrometer

    NASA Technical Reports Server (NTRS)

    Cageao, R. P.; Friedl, R. R.; Sander, Stanley P.; Yung, Y. L.

    1994-01-01

    The Fourier Transform Ultraviolet Spectrometer (FTUVS) is a new high resolution interferometric spectrometer for multiple-species detection in the UV, visible and near-IR. As an OH sensor, measurements can be carried out by remote sensing (limb emission and column absorption), or in-situ sensing (long-path absorption or laser-induced fluorescence). As a high resolution detector in a high repetition rate (greater than 10 kHz) LIF system, OH fluorescence can be discriminated against non-resonant background emission and laser scatter, permitting (0, 0) excitation.

  5. NEW Fe IX LINE IDENTIFICATIONS USING SOLAR AND HELIOSPHERIC OBSERVATORY/SOLAR ULTRAVIOLET MEASUREMENT OF EMITTED RADIATION AND HINODE/EIS JOINT OBSERVATIONS OF THE QUIET SUN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landi, E.; Young, P. R.

    2009-12-20

    In this work, we study joint observations of Hinode/EUV Imaging Spectrometer (EIS) and Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation of Fe IX lines emitted by the same level of the high energy configuration 3s {sup 2}3p {sup 5}4p. The intensity ratios of these lines are dependent on atomic physics parameters only and not on the physical parameters of the emitting plasma, so that they are excellent tools to verify the relative intensity calibration of high-resolution spectrometers that work in the 170-200 A and 700-850 A wavelength ranges. We carry out extensive atomic physics calculations to improve themore » accuracy of the predicted intensity ratio, and compare the results with simultaneous EIS-SUMER observations of an off-disk quiet Sun region. We were able to identify two ultraviolet lines in the SUMER spectrum that are emitted by the same level that emits one bright line in the EIS wavelength range. Comparison between predicted and measured intensity ratios, wavelengths and energy separation of Fe IX levels confirms the identifications we make. Blending and calibration uncertainties are discussed. The results of this work are important for cross-calibrating EIS and SUMER, as well as future instrumentation.« less

  6. Exploring possible relations between optical variability time scales and broad emission line shapes in AGN

    NASA Astrophysics Data System (ADS)

    Bon, Edi; Jovanović, Predrag; Marziani, Paola; Bon, Nataša; Otašević, Aleksandar

    2018-06-01

    Here we investigate the connection of broad emission line shapes and continuum light curve variability time scales of type-1 Active Galactic Nuclei (AGN). We developed a new model to describe optical broad emission lines as an accretion disk model of a line profile with additional ring emission. We connect ring radii with orbital time scales derived from optical light curves, and using Kepler's third law, we calculate mass of central supermassive black hole (SMBH). The obtained results for central black hole masses are in a good agreement with other methods. This indicates that the variability time scales of AGN may not be stochastic, but rather connected to the orbital time scales which depend on the central SMBH mass.

  7. Ultraviolet Views of Enceladus, Tethys, and Dione

    NASA Technical Reports Server (NTRS)

    Hansen, C. J.; Hendrix, A. R.

    2005-01-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) has collected ultraviolet observations of many of Saturn's icy moons since Cassini's insertion into orbit around Saturn. We will report on results from Enceladus, Tethys and Dione, orbiting in the Saturn system at distances of 3.95, 4.88 and 6.26 Saturn radii, respectively. Icy satellite science objectives of the UVIS include investigations of surface age and evolution, surface composition and chemistry, and tenuous exospheres. We address these objectives by producing albedo maps, and reflection and emission spectra, and observing stellar occultations. UVIS has four channels: EUV: Extreme Ultraviolet (55 nm to 110 nm), FUV: Far Ultraviolet (110 to 190 nm), HSP: High Speed Photometer, and HDAC: Hydrogen-Deuterium Absorption Cell. The EUV and FUV spectrographs image onto a 2-dimensional detector, with 64 spatial rows by 1024 spectral columns. To-date we have focused primarily on the far ultraviolet data acquired with the low resolution slit width (4.8 angstrom spectral resolution). Additional information is included in the original extended abstract.

  8. Polarized Balmer line emission from supernova remnant shock waves efficiently accelerating cosmic rays

    NASA Astrophysics Data System (ADS)

    Shimoda, Jiro; Ohira, Yutaka; Yamazaki, Ryo; Laming, J. Martin; Katsuda, Satoru

    2018-01-01

    Linearly polarized Balmer line emissions from supernova remnant shocks are studied taking into account the energy loss of the shock owing to the production of non-thermal particles. The polarization degree depends on the downstream temperature and the velocity difference between upstream and downstream regions. The former is derived once the line width of the broad component of the H α emission is observed. Then, the observation of the polarization degree tells us the latter. At the same time, the estimated value of the velocity difference independently predicts adiabatic downstream temperature that is derived from Rankine Hugoniot relations for adiabatic shocks. If the actually observed downstream temperature is lower than the adiabatic temperature, there is a missing thermal energy which is consumed for particle acceleration. It is shown that a larger energy-loss rate leads to more highly polarized H α emission. Furthermore, we find that polarized intensity ratio of H β to H α also depends on the energy-loss rate and that it is independent of uncertain quantities such as electron temperature, the effect of Lyman line trapping and our line of sight.

  9. A rocket observation of the far-ultraviolet spectrum of Saturn

    NASA Technical Reports Server (NTRS)

    Weiser, H.; Moos, H. W.

    1978-01-01

    Far-ultraviolet (1160-1750 A) spectra of the Saturnian disk and the ring system have been obtained by using a very sensitive rocket-borne spectrograph with a microchannel plate detector. The use of two apertures of different diameter in the telescope focal plane permitted the separation of the contribution of the planetary disk from that of the rings. H I lambda 1216 was the only atomic spectral line emission detected in the planet and the rings. A weak signal from the disk between 1300 A and 1500 A was observed. Geometric disk albedos, averaged over 50 A, were determined from 1500 A to 1700 A. Measurements of the ring reflectivity longward of 1650 A are compatible with H2O frost but not NH3 frost.

  10. On the Origin of the Flare Emission in IRIS ’ SJI 2832 Filter:Balmer Continuum or Spectral Lines?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleint, Lucia; Krucker, Säm; Heinzel, Petr

    Continuum (“white-light,” WL) emission dominates the energetics of flares. Filter-based observations, such as the IRIS SJI 2832 filter, show WL-like brightenings during flares, but it is unclear whether the emission arises from real continuum emission or enhanced spectral lines, possibly turning into emission. The difficulty in filter-based observations, contrary to spectral observations, is to determine which processes contribute to the observed brightening during flares. Here we determine the contribution of the Balmer continuum and the spectral line emission to IRIS ’ SJI 2832 emission by analyzing the appropriate passband in simultaneous IRIS NUV spectra. We find that spectral line emissionmore » can contribute up to 100% to the observed slitjaw images (SJI) emission, that the relative contributions usually temporally vary, and that the highest SJI enhancements that are observed are most likely because of the Balmer continuum. We conclude that care should be taken when calling SJI 2832 a continuum filter during flares, because the influence of the lines on the emission can be significant.« less

  11. Searching for Dwarf H Alpha Emission-line Galaxies within Voids III: First Spectra

    NASA Astrophysics Data System (ADS)

    Moody, J. Ward; Draper, Christian; McNeil, Stephen; Joner, Michael D.

    2017-02-01

    The presence or absence of dwarf galaxies with {M}r\\prime > -14 in low-density voids is determined by the nature of dark matter halos. To better understand what this nature is, we are conducting an imaging survey through redshifted Hα filters to look for emission-line dwarf galaxies in the centers of two nearby galaxy voids called FN2 and FN8. Either finding such dwarfs or establishing that they are not present is a significant result. As an important step in establishing the robustness of the search technique, we have observed six candidates from the survey of FN8 with the Gillett Gemini telescope and GMOS spectrometer. All of these candidates had emission, although none was Hα. The emission in two objects was the [O III]λ4959, 5007 doublet plus Hβ, and the emission in the remaining four was the [O II]λ3727 doublet, all from objects beyond the void. While no objects were within the void, these spectra show that the survey is capable of finding emission-line dwarfs in the void centers that are as faint as {M}r\\prime ˜ -12.4, should they be present. These spectra also show that redshifts estimated from our filtered images are accurate to several hundred km s-1 if the line is identified correctly, encouraging further work in finding ways to conduct redshift surveys through imaging alone.

  12. ALMA WILL DETERMINE THE SPECTROSCOPIC REDSHIFT z > 8 WITH FIR [O III] EMISSION LINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, A. K.; Shimizu, I.; Tamura, Y.

    We investigate the potential use of nebular emission lines in the rest-frame far-infrared (FIR) for determining spectroscopic redshift of z > 8 galaxies with the Atacama Large Millimeter/submillimeter Array (ALMA). After making a line emissivity model as a function of metallicity, especially for the [O III] 88 μm line which is likely to be the strongest FIR line from H II regions, we predict the line fluxes from high-z galaxies based on a cosmological hydrodynamics simulation of galaxy formation. Since the metallicity of galaxies reaches at ∼0.2 Z {sub ☉} even at z > 8 in our simulation, we expectmore » the [O III] 88 μm line as strong as 1.3 mJy for 27 AB objects, which is detectable at a high significance by <1 hr integration with ALMA. Therefore, the [O III] 88 μm line would be the best tool to confirm the spectroscopic redshifts beyond z = 8.« less

  13. Extreme Ultraviolet Spectra of Few-Times Ionized Tungsten for Divertor Plasma Diagnostics

    DOE PAGES

    Clementson, Joel; Lennartsson, Thomas; Beiersdorfer, Peter

    2015-09-09

    The extreme ultraviolet (EUV) emission from few-times ionized tungsten atoms has been experimentally studied at the Livermore electron beam ion trap facility. The ions were produced and confined during low-energy operations of the EBIT-I electron beam ion trap. By varying the electron-beam energy from around 30–300 eV, tungsten ions in charge states expected to be abundant in tokamak divertor plasmas were excited, and the resulting EUV emission was studied using a survey spectrometer covering 120–320 Å. It is found that the emission strongly depends on the excitation energy; below 150 eV, it is relatively simple, consisting of strong isolated linesmore » from a few charge states, whereas at higher energies, it becomes very complex. For divertor plasmas with tungsten impurity ions, this emission should prove useful for diagnostics of tungsten flux rates and charge balance, as well as for radiative cooling of the divertor volume. Several lines in the 194–223 Å interval belonging to the spectra of five- and seven-times ionized tungsten (Tm-like W VI and Ho-like W VIII) were also measured using a high-resolution spectrometer.« less

  14. Simultaneous Chandra X-ray, HST Ultraviolet, and Ulysses Radio Observations of Jupiter's Aurora

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Lugaz, N.; Waite, J. H., Jr.; Cravens, T. E.; Gladstone, G. R.; Ford, P.; Grodent, D.; Bhardwaj, A.; MacDowall, R. J.

    2004-01-01

    Observations of Jupiter carried out by the Chandra ACIS-S instrument over 24-26 February, 2003, show that the auroral X-ray spectrum consists of line emission consistent with high-charge states of precipitating ions, and not a continuum as might be expected from bremsstrahlung. The part of the spectrum due to oxygen peaks around 650 eV, which indicates a high fraction of fully-stripped oxygen in the precipitating ion flux. A combination of the OVIII emission lines at 653 eV and 774 eV, as well as the OVII emission lines at 561 eV and 666 eV, are evident in the measure auroral spectrum. There is also line emission at lower energies in the spectral region extending from 250 to 350 eV, which could be from sulfur and/or carbon. The Jovian auroral X- ray spectra are significantly different from the X-ray spectra of comets. The charge state distribution of the oxygen ions implied by the measured auroral X-ray spectra strongly suggests that, independent of the source of the energetic ions - magnetospheric or solar wind - the ions have undergone additional acceleration. This spectral evidence for ion acceleration is also consistent with the relatively high intensities of the X-rays compared to the available phase space density of the (unaccelerated) source populations of solar wind or magnetospheric ions at Jupiter, which are orders of magnitude too small to explain the observed emissions. The Chandra X-ray observations were executed simultaneously with observations at ultraviolet wavelengths by the Hubble Space Telescope and at radio wavelengths by the Ulysses spacecraft. These additional data sets suggest that the source of the X-rays is magnetospheric in origin, and that the precipitating particles are accelerated by strong field-aligned electric fields, which simultaneously create both the several-MeV energetic ion population and the relativistic electrons observed in situ by Ulysses that are correlated with approximately 40 minute quasi-periodic radio outbursts.

  15. The Impact of Diffuse Ionized Gas on Emission-line Ratios and Gas Metallicity Measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Yan, Renbin; MaNGA Team

    2016-01-01

    Diffuse Ionized Gas (DIG) is prevalent in star-forming galaxies. Using a sample of galaxies observed by MaNGA, we demonstrate how DIG in star-forming galaxies impact the measurements of emission line ratios, hence the gas-phase metallicity measurements and the interpretation of diagnostic diagrams. We demonstrate that emission line surface brightness (SB) is a reasonably good proxy to separate HII regions from regions dominated by diffuse ionized gas. For spatially-adjacent regions or regions at the same radius, many line ratios change systematically with emission line surface brightness, reflecting a gradual increase of dominance by DIG towards low SB. DIG could significantly bias the measurement of gas metallicity and metallicity gradient. Because DIG tend to have a higher temperature than HII regions, at fixed metallicity DIG displays lower [NII]/[OII] ratios. DIG also show lower [OIII]/[OII] ratios than HII regions, due to extended partially-ionized regions that enhance all low-ionization lines ([NII], [SII], [OII], [OI]). The contamination by DIG is responsible for a substantial portion of the scatter in metallicity measurements. At different surface brightness, line ratios and line ratio gradients can differ systematically. As DIG fraction could change with radius, it can affect the metallicity gradient measurements in systematic ways. The three commonly used strong-line metallicity indicators, R23, [NII]/[OII], O3N2, are all affected in different ways. To make robust metallicity gradient measurements, one has to properly isolate HII regions and correct for DIG contamination. In line ratio diagnostic diagrams, contamination by DIG moves HII regions towards composite or LINER-like regions.

  16. Performance evaluation of non-line-of-sight optical communication system operating in the solar-blind ultraviolet spectrum

    NASA Astrophysics Data System (ADS)

    Raptis, Nikos; Pikasis, Evangelos; Syvridis, Dimitris

    2016-10-01

    For several years, it has been examined if the attributes of the wavelengths in C band of the Ultraviolet (UV) spectrum that lie between 200 and 280 nm can be exploited in order to set up short range covert links of low rate in a Non-Line-of-Sight (NLOS) regime. In the present work, it is experimentally investigated and verified that using this band, short range and low rate NLOS links using the same transmitter/receiver pair under different atmospheric conditions without applying extreme power levels can be implemented rather effectively. The transmitter was composed of four Light Emitting Diodes. At the receiving side, an optical filter was followed by a Photo-Multiplier Tube. Initially, we measured the power losses of the channels with and without fog (artificially generated) for ranges up to 20 meters and several transmitters/receiver configurations. Secondly, the performance of Fourth-order Pulse Position Modulation (4-PPM) and Flip Orthogonal Frequency Division Multiplexing (Flip-OFDM) was evaluated for such channels and 10 Kbit/s rate. Applying emissions at 265 nm, NLOS links can operate efficiently especially in harsh environments, as the power losses were lowered when fog appeared. In terms of the modulation formats, 4-PPM performed better in most cases. Better results were obtained for both schemes when the medium became thicker due to the presence of fog. Finally, some initial measurements were realized with a Silicon Carbide PiN photodiode for the same rate but low elevation angles. The performance was exactly the opposite compared to a receiver with inherent gain when the atmosphere thickened.

  17. Study of chemical shift in Kα, Kβ1,3 and Kβ// X-ray emission lines of 37Rb compounds with WDXRF

    NASA Astrophysics Data System (ADS)

    Kainth, Harpreet Singh; Singh, Ranjit; Singh, Tejbir; Mehta, D.; Shahi, J. S.; Kumar, Sanjeev

    2018-05-01

    The positive and negative chemical shifts in Kα, Kβ1,3 and Kβ// X-ray emission lines of rubidium compounds were measured with high resolution WDXRF spectrometer. The measured energy shifts in Kα emission lines ranges from -2.95 eV to -3.64 eV, Kβ1,3 emission lines ranges from 1.16 eV to 1.32 eV and Kβ// emission lines ranges from 1.31 eV to 4.36 eV respectively. In the present work, it has been found that chemical shift in Kβ// X-ray emission lines were found to be larger than Kα and Kβ1,3 X-ray emission lines. To find the cause of chemical shift, various factors like effective charge, line intensity ratio, bond length and electro-negativity were calculated and correlated with the chemical shift.

  18. B Stars with and without emission lines, parts 1 and 2

    NASA Technical Reports Server (NTRS)

    Underhill, A. (Editor); Doazan, V. (Editor)

    1982-01-01

    The spectra for B stars for which emission lines occur not on the main sequence, but only among the supergiants, and those B stars for which the presence of emission in H ahlpa is considered to be a significant factor in delineating atmospheric structure are examined. The development of models that are compatible with all known facts about a star and with the laws of physics is also discussed.

  19. Performance results from in-flight commissioning of the Juno Ultraviolet Spectrograph (Juno-UVS)

    NASA Astrophysics Data System (ADS)

    Greathouse, T. K.; Gladstone, G. R.; Davis, M. W.; Slater, D. C.; Versteeg, M. H.; Persson, K. B.; Walther, B. C.; Winters, G. S.; Persyn, S. C.; Eterno, J. S.

    2013-09-01

    We present a description of the Juno ultraviolet spectrograph (Juno-UVS) and results from its in-flight commissioning performed between December 5th and 13th 2011 and its first periodic maintenance between October 10th and 12th 2012. Juno-UVS is a modest power (9.0 W) ultraviolet spectrograph based on the Alice instruments now in flight aboard the European Space Agency's Rosetta spacecraft, NASA's New Horizons spacecraft, and the LAMP instrument aboard NASA's Lunar Reconnaissance Orbiter. However, unlike the other Alice spectrographs, Juno-UVS sits aboard a spin stabilized spacecraft. The Juno-UVS scan mirror allows for pointing of the slit approximately +/-30° from the spacecraft spin plane. This ability gives Juno-UVS access to half the sky at any given spacecraft orientation. The planned 2 rpm spin rate for the primary mission results in integration times per 0.2° spatial resolution element per spin of only ~17 ms. Thus, for calibration purposes, data were retrieved from many spins and then remapped and co-added to build up exposure times on bright stars to measure the effective area, spatial resolution, scan mirror pointing positions, etc. The primary job of Juno-UVS will be to characterize Jupiter's UV auroral emissions and relate them to in-situ particle measurements. The ability to point the slit will make operations more flexible, allowing Juno-UVS to observe the atmospheric footprints of magnetic field lines through which Juno flies, giving a direct connection between energetic particle measurements on the spacecraft and the far-ultraviolet emissions produced by Jupiter's atmosphere in response to those particles.

  20. Detection of H-alpha emission in the hot white dwarf G191-B2B

    NASA Astrophysics Data System (ADS)

    Reid, Neill; Wegner, Gary

    1988-12-01

    High-resolution spectra of G191-B2B, the hottest known DA white dwarf were obtained which reveal emission in the core of the H-alpha line. The observations show little variation in the line profile over a period of four days, ruling out line-doubling in a close binary as an explanation. The observed emission cannot be due to a nearby red dwarf companion, while the absence of any spatially extended emission argues against either a planetary nebula remnant or local ionization of the interstellar medium. The determination of the systemic velocity, using the companion red dwarf G191-B2A, is 5 + or - 2 km/s and shows that both the H-alpha emission and the high-excitation species observed in the ultraviolet are redshifted by 19 + or - 3 km/s, suggesting a photospheric origin. The low redshift implies a mass of 0.45 solar mass for this hot white dwarf, although the uncertainties in the effective temperature and parallax permit masses in the range 0.29 to 0.60 solar mass.

  1. The effect of stellar evolution uncertainties on the rest-frame ultraviolet stellar lines of C IV and He II in high-redshift Lyman-break galaxies

    NASA Astrophysics Data System (ADS)

    Eldridge, John J.; Stanway, Elizabeth R.

    2012-01-01

    Young, massive stars dominate the rest-frame ultraviolet (UV) spectra of star-forming galaxies. At high redshifts (z > 2), these rest-frame UV features are shifted into the observed-frame optical and a combination of gravitational lensing, deep spectroscopy and spectral stacking analysis allows the stellar population characteristics of these sources to be investigated. We use our stellar population synthesis code Binary Population and Spectral Synthesis (BPASS) to fit two strong rest-frame UV spectral features in published Lyman-break galaxy spectra, taking into account the effects of binary evolution on the stellar spectrum. In particular, we consider the effects of quasi-homogeneous evolution (arising from the rotational mixing of rapidly rotating stars), metallicity and the relative abundance of carbon and oxygen on the observed strengths of He IIλ1640 Å and C IVλ1548, 1551 Å spectral lines. We find that Lyman-break galaxy spectra at z ˜ 2-3 are best fitted with moderately sub-solar metallicities, and with a depleted carbon-to-oxygen ratio. We also find that the spectra of the lowest metallicity sources are best fitted with model spectra in which the He II emission line is boosted by the inclusion of the effect of massive stars being spun-up during binary mass transfer so these rapidly rotating stars experience quasi-homogeneous evolution.

  2. An Explanation of Remarkable Emission-line Profiles in Post-flare Coronal Rain

    NASA Astrophysics Data System (ADS)

    Lacatus, Daniela A.; Judge, Philip G.; Donea, Alina

    2017-06-01

    We study broad redshifted emission in chromospheric and transition region lines that appears to correspond to a form of post-flare coronal rain. Profiles of Mg II, C II, and Si IV lines were obtained using IRIS before, during, and after the X2.1 flare of 2015 March 11 (SOL2015-03-11T16:22). We analyze the profiles of the five transitions of Mg II (the 3p-3s h and k transitions, and three lines belonging to the 3d-3p transitions). We use analytical methods to understand the unusual profiles, together with higher-resolution observational data of similar phenomena observed by Jing et al. The peculiar line ratios indicate anisotropic emission from the strands that have cross-strand line center optical depths (k line) of between 1 and 10. The lines are broadened by unresolved Alfvénic motions whose energy exceeds the radiation losses in the Mg II lines by an order of magnitude. The decay of the line widths is accompanied by a decay in the brightness, suggesting a causal connection. If the plasma is ≲99% ionized, ion-neutral collisions can account for the dissipation; otherwise, a dynamical process seems necessary. Our work implies that the motions are initiated during the impulsive phase, to be dissipated as radiation over a period of an hour, predominantly by strong chromospheric lines. The coronal “rain” we observe is far more turbulent than most earlier reports have indicated, with implications for plasma heating mechanisms.

  3. Ultraviolet to optical diffuse sky emission as seen by the Hubble Space Telescope Faint Object Spectrograph

    NASA Astrophysics Data System (ADS)

    Kawara, Kimiaki; Matsuoka, Yoshiki; Sano, Kei; Brandt, Timothy D.; Sameshima, Hiroaki; Tsumura, Kohji; Oyabu, Shinki; Ienaka, Nobuyuki

    2017-04-01

    We present an analysis of the blank-sky spectra observed with the Faint Object Spectrograph on board the Hubble Space Telescope. We study the diffuse sky emission from ultraviolet to optical wavelengths, which is composed of zodiacal light (ZL), diffuse Galactic light (DGL), and residual emission. The observations were performed towards 54 fields distributed widely over the sky, with spectral coverage from 0.2 to 0.7 μm. In order to avoid contaminating light from earthshine, we use the data collected only in orbital nighttime. The observed intensity is decomposed into the ZL, DGL, and residual emission, in eight photometric bands spanning our spectral coverage. We found that the derived ZL reflectance spectrum is flat in the optical, which indicates major contribution of C-type asteroids to the interplanetary dust (IPD). In addition, the ZL reflectance spectrum has an absorption feature at ∼0.3 μm. The shape of the DGL spectrum is consistent with those found in earlier measurements and model predictions. While the residual emission contains a contribution from the extragalactic background light, we found that the spectral shape of the residual looks similar to the ZL spectrum. Moreover, its optical intensity is much higher than that measured from beyond the IPD cloud by Pioneer 10/11, and also than that of the integrated galaxy light. These findings may indicate the presence of an isotropic ZL component, which is missed in the conventional ZL models.

  4. Hopkins Ultraviolet Telescope determination of the Io torus electron temperature

    NASA Technical Reports Server (NTRS)

    Hall, D. T.; Bednar, C. J.; Durrance, S. T.; Feldman, P. D.; Mcgrath, M. A.; Moos, H. W.; Strobel, D. F.

    1994-01-01

    Sulfur ion emissions from the Io plasma torus observed by the Hopkins Ultraviolet Telescope (HUT) in 1990 December have been analyzed to determine the effective temperature of the exciting electrons. Spectra were obtained with a long slit that extended from 3.1 to 8.7 Jupiter radii R(sub J) on both dawn and dusk torus ansae. The average temperature of electrons exciting S(2+) emissions from the dawn ansa is (4800 +/- 2400) K lower than on the dusk ansa, a dawn-dusk asymmetry comparable in both sign and magnitude to that measured by the Voyager Ultraviolet Spectrograph (UVS) experiment. Emissions from S(2+) ions are generated in a source region with electron temperatures in the range 32,000-56,000 K; S(3+) ion emissions are excited by electrons that average 20,000-40,000 K hotter. This distinct difference suggests that the S(3+) emission source region is spatially separate from the S(2+) source region. Estimated relative aperture filling factors suggest that the S(3+) emissions originate from a region more extended out of the centrifugal plane than the S(2+) emissions.

  5. A support vector machine for spectral classification of emission-line galaxies from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Shi, Fei; Liu, Yu-Yan; Sun, Guang-Lan; Li, Pei-Yu; Lei, Yu-Ming; Wang, Jian

    2015-10-01

    The emission-lines of galaxies originate from massive young stars or supermassive blackholes. As a result, spectral classification of emission-line galaxies into star-forming galaxies, active galactic nucleus (AGN) hosts, or compositions of both relates closely to formation and evolution of galaxy. To find efficient and automatic spectral classification method, especially in large surveys and huge data bases, a support vector machine (SVM) supervised learning algorithm is applied to a sample of emission-line galaxies from the Sloan Digital Sky Survey (SDSS) data release 9 (DR9) provided by the Max Planck Institute and the Johns Hopkins University (MPA/JHU). A two-step approach is adopted. (i) The SVM must be trained with a subset of objects that are known to be AGN hosts, composites or star-forming galaxies, treating the strong emission-line flux measurements as input feature vectors in an n-dimensional space, where n is the number of strong emission-line flux ratios. (ii) After training on a sample of emission-line galaxies, the remaining galaxies are automatically classified. In the classification process, we use a 10-fold cross-validation technique. We show that the classification diagrams based on the [N II]/Hα versus other emission-line ratio, such as [O III]/Hβ, [Ne III]/[O II], ([O III]λ4959+[O III]λ5007)/[O III]λ4363, [O II]/Hβ, [Ar III]/[O III], [S II]/Hα, and [O I]/Hα, plus colour, allows us to separate unambiguously AGN hosts, composites or star-forming galaxies. Among them, the diagram of [N II]/Hα versus [O III]/Hβ achieved an accuracy of 99 per cent to separate the three classes of objects. The other diagrams above give an accuracy of ˜91 per cent.

  6. 40 CFR 1048.320 - What happens if one of my production-line engines fails to meet emission standards?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-line engines fails to meet emission standards? 1048.320 Section 1048.320 Protection of Environment...-line engines fails to meet emission standards? If you have a production-line engine with final... conformity is automatically suspended for that failing engine. You must take the following actions before...

  7. 40 CFR 1048.320 - What happens if one of my production-line engines fails to meet emission standards?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-line engines fails to meet emission standards? 1048.320 Section 1048.320 Protection of Environment...-line engines fails to meet emission standards? If you have a production-line engine with final... conformity is automatically suspended for that failing engine. You must take the following actions before...

  8. 40 CFR 1048.320 - What happens if one of my production-line engines fails to meet emission standards?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-line engines fails to meet emission standards? 1048.320 Section 1048.320 Protection of Environment...-line engines fails to meet emission standards? If you have a production-line engine with final... conformity is automatically suspended for that failing engine. You must take the following actions before...

  9. Cassini UVIS Observations of Titan Ultraviolet Airglow Spectra with Laboratory Modeling from Electron- and Proton-Excited N2 Emission Studies

    NASA Astrophysics Data System (ADS)

    Ajello, J. M.; West, R. A.; Malone, C. P.; Gustin, J.; Esposito, L. W.; McClintock, W. E.; Holsclaw, G. M.; Stevens, M. H.

    2011-12-01

    Joseph M. Ajello, Robert A. West, Rao S. Mangina Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 Charles P. Malone Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 & Department of Physics, California State University, Fullerton, CA 92834 Michael H. Stevens Space Science Division, Naval Research Laboratory, Washington, DC 20375 Jacques Gustin Laboratoire de Physique Atmosphérique et Planétaire, Université de Liège, Liège, Belgium A. Ian F. Stewart, Larry W. Esposito, William E. McClintock, Gregory M. Holsclaw Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 E. Todd Bradley Department of Physics, University of Central Florida, Orlando, FL 32816 The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed photon emissions of Titan's day and night limb-airglow and disk-airglow on multiple occasions, including three eclipse observations from 2009 through 2010. The 77 airglow observations analyzed in this paper show EUV (600-1150 Å) and FUV (1150-1900 Å) atomic multiplet lines and band emissions (lifetimes less than ~100 μs), including the Lyman-Birge-Hopfield (LBH) band system, arising from photoelectron induced fluorescence and solar photo-fragmentation of molecular nitrogen (N2). The altitude of peak UV emission on the limb of Titan during daylight occurred inside the thermosphere/ionosphere (near 1000 km altitude). However, at night on the limb, the same emission features, but much weaker in intensity, arise in the lower atmosphere below 1000 km (lower thermosphere, mesosphere, haze layer) extending downwards to near the surface at ~300 km, possibly resulting from proton- and/or heavier ion-induced emissions as well as secondary-electron-induced emissions. The eclipse observations are unique. UV emissions were observed during only one of the three eclipse events, and no Vegard-Kaplan (VK) or LBH emissions were seen. Through regression analysis using

  10. Al x Ga1‑ x N-based semipolar deep ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Akaike, Ryota; Ichikawa, Shuhei; Funato, Mitsuru; Kawakami, Yoichi

    2018-06-01

    Deep ultraviolet (UV) emission from Al x Ga1‑ x N-based light-emitting diodes (LEDs) fabricated on semipolar (1\\bar{1}02) (r-plane) AlN substrates is presented. The growth conditions are optimized. A high NH3 flow rate during metalorganic vapor phase epitaxy yields atomically flat Al y Ga1‑ y N (y > x) on which Al x Ga1‑ x N/Al y Ga1‑ y N multiple quantum wells with abrupt interfaces and good periodicity are fabricated. The fabricated r-Al x Ga1‑ x N-based LED emits at 270 nm, which is in the germicidal wavelength range. Additionally, the emission line width is narrow, and the peak wavelength is stable against the injection current, so the semipolar LED shows promise as a UV emitter.

  11. Detection of emission lines from z ˜ 3 DLAs towards the QSO J2358+0149

    NASA Astrophysics Data System (ADS)

    Srianand, Raghunathan; Hussain, Tanvir; Noterdaeme, Pasquier; Petitjean, Patrick; Krühler, Thomas; Japelj, Jure; Pâris, Isabelle; Kashikawa, Nobunari

    2016-07-01

    Using VLT/X-shooter, we searched for emission line galaxies associated with four damped Lyman α systems (DLAs) and one sub-DLA at 2.73 ≤z ≤3.25 towards QSO J2358+0149. We detect [O III] emission from a `low-cool' DLA at zabs = 2.9791 (having log N(H I) = 21.69 ± 0.10, [Zn/H] = -1.83 ± 0.18) at an impact parameter of, ρ ˜ 12 kpc. The associated galaxy is compact with a dynamical mass of (1-6) × 109 M⊙, very high excitation ([O III]/[O II] and [O III]/[Hβ] both greater than 10), 12+[O/H]≤8.5 and moderate star formation rate (SFR ≤2 M⊙ yr-1). Such properties are typically seen in the low-z extreme blue compact dwarf galaxies. The kinematics of the gas is inconsistent with that of an extended disc and the gas is part of either a large scale wind or cold accretion. We detect Lyα emission from the zabs = 3.2477 DLA [having log N(H I) = 21.12 ± 0.10 and [Zn/H] = -0.97 ± 0.13]. The Lyα emission is redshifted with respect to the metal absorption lines by 320 km s-1, consistent with the location of the red hump expected in radiative transport models. We derive SFR ˜0.2-1.7 M⊙ yr-1 and Lyα escape fraction of ≥10 per cent. No other emission line is detected from this system. Because the DLA has a small velocity separation from the quasar (˜500 km s-1) and the DLA emission is located within a small projected distance (ρ < 5 kpc), we also explore the possibility that the Lyα emission is being induced by the QSO itself. QSO-induced Lyα fluorescence is possible if the DLA is within a physical separation of 340 kpc to the QSO. Detection of stellar continuum light and/or the oxygen emission lines would disfavour this possibility. We do not detect any emission line from the remaining three systems.

  12. The outer atmospheres of cool M giants: High-dispersion ultraviolet spectra of Rho Per, 2 Cen, and g Her

    NASA Technical Reports Server (NTRS)

    Eaton, Joel A.; Johnson, Hollis R.

    1986-01-01

    Long duration IUE spectra were obtained to extend coverage of cool giants studied in the ultraviolet at high dispersion to M6. The chromospheric spectra of the three stars, which consist of a profusion of Fe II lines and a few lines of Mg II, Mg I, Al II, C II, C I, Cr II, and Fe I, are remarkably similar, both among themselves and with respect to stars of earlier spectral type. These lines present a picture of a warm chromosphere that is static in the average but may be far from uniform in density and ionization. The Mg II emission lines of 2 Cen show 2 unresolved absorption components, the shorter at the velocity of the local interstellar medium. The longer is blueshifted from the star by 12 to 18 km/sec and must be one of very few observed shell lines uncontaminated by interstellar absorption.

  13. MODELING THE LINE-OF-SIGHT INTEGRATED EMISSION IN THE CORONA: IMPLICATIONS FOR CORONAL HEATING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viall, Nicholeen M.; Klimchuk, James A.

    2013-07-10

    One of the outstanding problems in all of space science is uncovering how the solar corona is heated to temperatures greater than 1 MK. Though studied for decades, one of the major difficulties in solving this problem has been unraveling the line-of-sight (LOS) effects in the observations. The corona is optically thin, so a single pixel measures counts from an indeterminate number (perhaps tens of thousands) of independently heated flux tubes, all along that pixel's LOS. In this paper we model the emission in individual pixels imaging the active region corona in the extreme ultraviolet. If LOS effects are notmore » properly taken into account, erroneous conclusions regarding both coronal heating and coronal dynamics may be reached. We model the corona as an LOS integration of many thousands of completely independently heated flux tubes. We demonstrate that despite the superposition of randomly heated flux tubes, nanoflares leave distinct signatures in light curves observed with multi-wavelength and high time cadence data, such as those data taken with the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. These signatures are readily detected with the time-lag analysis technique of Viall and Klimchuk in 2012. Steady coronal heating leaves a different and equally distinct signature that is also revealed by the technique.« less

  14. Unusual broad-line Mg II emitters among luminous galaxies in the baryon oscillation spectroscopic survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roig, Benjamin; Blanton, Michael R.; Ross, Nicholas P.

    2014-02-01

    Many classes of active galactic nuclei (AGNs) have been observed and recorded since the discovery of Seyfert galaxies. In this paper, we examine the sample of luminous galaxies in the Baryon Oscillation Spectroscopic Survey. We find a potentially new observational class of AGNs, one with strong and broad Mg II λ2799 line emission, but very weak emission in other normal indicators of AGN activity, such as the broad-line Hα, Hβ, and the near-ultraviolet AGN continuum, leading to an extreme ratio of broad Hα/Mg II flux relative to normal quasars. Meanwhile, these objects' narrow-line flux ratios reveal AGN narrow-line regions withmore » levels of activity consistent with the Mg II fluxes and in agreement with that of normal quasars. These AGN may represent an extreme case of the Baldwin effect, with very low continuum and high equivalent width relative to typical quasars, but their ratio of broad Mg II to broad Balmer emission remains very unusual. They may also be representative of a class of AGN where the central engine is observed indirectly with scattered light. These galaxies represent a small fraction of the total population of luminous galaxies (≅ 0.1%), but are more likely (about 3.5 times) to have AGN-like nuclear line emission properties than other luminous galaxies. Because Mg II is usually inaccessible for the population of nearby galaxies, there may exist a related population of broad-line Mg II emitters in the local universe which is currently classified as narrow-line emitters (Seyfert 2 galaxies) or low ionization nuclear emission-line regions.« less

  15. The High-Excitation Planetary Nebula NCG 246: Optical and Near-Ultraviolet Observations and Two-dimensional Numerical Models

    NASA Technical Reports Server (NTRS)

    Szentgyorgyi, Andrew; Raymond, John; Franco, Jose; Villaver, Eva; Lopez-Martin, Luis

    2003-01-01

    We have imaged the planetary nebula (PN) NGC 246 in the near-ultraviolet wavelengths [Ne v] 342.6 nm, the Bowen fluorescence line of 0 111 at 344.4 nm, and a nearby line-free region centered on 338.6 nm, as well as H(alpha), [O III] 500.7 nm, and [S II] 673.0 and 671.5 nm. Imaging in the 344.4 nm line is necessary to deconvolve contamination of the [Ne v] images by O III 342.9 nm. The emission from the shell and inner parts of the nebula is detected in [Ne v]. The radial profiles of the [Ne v] brightness decrease with radius from the exciting star, indicating that the bulk of the emission from this ion is due to the hard UV stellar radiation field, with a (probably) marginal contribution from collisional ionization in a shock between the PN shell and the interstellar medium (ISM). In contrast, the radial profiles of the emission in H(alpha), [0 III] 500.7 nm, and [S II] are flatter and peak at the location of the shell. The emission of [S II] probably traces the interaction of the PN with the ambient ISM. We also present two-dimensional numerical simulations for this PN-ISM interaction. The simulations consider the stellar motion with respect to the ambient ISM, with a velocity of 85 km/s , and include the time evolution of the wind parameters and UV radiation field from the progenitor star.

  16. VizieR Online Data Catalog: Vatican Emission-line stars (Coyne+ 1974-1983)

    NASA Astrophysics Data System (ADS)

    Coyne, G. V.; Lee, T. A.; de Graeve, E.; Wisniewski, W.; Corbally, C.; Otten, L. B.; MacConnell, D. J.

    2009-10-01

    The survey represents a search for Hα emission-line stars, and was conducted with a 12{deg} objective prism on the Vatican Schmidt telescope. The Vatican Emission Stars (VES) survey covers the galactic plane (|b|<=5{deg}) between galactic longitudes 58 and 174{deg}. The catalog was re-examined by B. Skiff (Lowell Observatory), and tne VES stars were cross-identified with modern surveys: GSC (Cat. I/255), Tycho-2 (I/256), 2MASS (II/246), IRAS point source catalog (II/125), MSX6C (V/114), CMC14 (I/304), GSC-2.3 (I/305), UCAC2 (I/289). Cross-identifications are also supplied with HD/BD/GCVS names, and with Dearborn catalog of red stars (II/68). Many of the stars in the first four papers are not early-type emission-line stars, but instead M giants, where the sharp TiO bandhead at 6544{AA} was mistaken for H-{alpha} emission on the objective-prism plates. Based on the revision of paper V and a later list prepared by Jack MacConnell, a column identifies the "non H-alpha" stars explicitly. The links with the Dearborn, IRAS, and MSX catalogues help identify the red stars. These and other identifications and comments are given in the remarks at the end of each line, or in longer notes in a separate file, indicated by an asterisk (*) next to the star number. (3 data files).

  17. VizieR Online Data Catalog: Vatican Emission-line stars (Coyne+ 1974-1983)

    NASA Astrophysics Data System (ADS)

    Coyne, G. V.; Lee, T. A.; de Graeve, E.; Wisniewski, W.; Corbally, C.; Otten, L. B.; MacConnell, D. J.

    2008-03-01

    The survey represents a search for Hα emission-line stars, and was conducted with a 12{deg} objective prism on the Vatican Schmidt telescope. The Vatican Emission Stars (VES) survey covers the galactic plane (|b|<=5{deg}) between galactic longitudes 58 and 174{deg}. The catalog was re-examined by B. Skiff (Lowell Observatory), and tne VES stars were cross-identified with modern surveys: GSC (Cat. I/255), Tycho-2 (I/256), 2MASS (II/246), IRAS point source catalog (II/125), MSX6C (V/114), CMC14 (I/304), GSC-2.3 (I/305), UCAC2 (I/289). Cross-identifications are also supplied with HD/BD/GCVS names, and with Dearborn catalog of red stars (II/68). Many of the stars in the first four papers are not early-type emission-line stars, but instead M giants, where the sharp TiO bandhead at 6544{AA} was mistaken for H-{alpha} emission on the objective-prism plates. Based on the revision of paper V and a later list prepared by Jack MacConnell, a column identifies the "non H-alpha" stars explicitly. The links with the Dearborn, IRAS, and MSX catalogues help identify the red stars. These and other identifications and comments are given in the remarks at the end of each line, or in longer notes in a separate file, indicated by an asterisk (*) next to the star number. (2 data files).

  18. 40 CFR 1045.320 - What happens if one of my production-line engines fails to meet emission standards?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-line engines fails to meet emission standards? 1045.320 Section 1045.320 Protection of Environment... production-line engines fails to meet emission standards? (a) If you have a production-line engine with final... conformity is automatically suspended for that failing engine. You must take the following actions before...

  19. 40 CFR 1045.320 - What happens if one of my production-line engines fails to meet emission standards?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-line engines fails to meet emission standards? 1045.320 Section 1045.320 Protection of Environment... production-line engines fails to meet emission standards? (a) If you have a production-line engine with final... conformity is automatically suspended for that failing engine. You must take the following actions before...

  20. 40 CFR 1054.320 - What happens if one of my production-line engines fails to meet emission standards?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-line engines fails to meet emission standards? 1054.320 Section 1054.320 Protection of Environment... production-line engines fails to meet emission standards? (a) If you have a production-line engine with final... conformity is automatically suspended for that failing engine. You must take the following actions before...

  1. 40 CFR 1045.320 - What happens if one of my production-line engines fails to meet emission standards?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-line engines fails to meet emission standards? 1045.320 Section 1045.320 Protection of Environment... production-line engines fails to meet emission standards? (a) If you have a production-line engine with final... conformity is automatically suspended for that failing engine. You must take the following actions before...

  2. 40 CFR 1054.320 - What happens if one of my production-line engines fails to meet emission standards?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-line engines fails to meet emission standards? 1054.320 Section 1054.320 Protection of Environment... production-line engines fails to meet emission standards? (a) If you have a production-line engine with final... conformity is automatically suspended for that failing engine. You must take the following actions before...

  3. First Detection of Near-infrared Line Emission from Organics in Young Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Mandell, Avi M.; Bast, Jeanette; van Dishoeck, Ewine F.; Blake, Geoffrey A.; Salyk, Colette; Mumma, Michael J.; Villanueva, Geronimo

    2012-03-01

    We present an analysis of high-resolution spectroscopy of several bright T Tauri stars using the CRIRES spectrograph on the Very Large Telescope and NIRSPEC spectrograph on the Keck Telescope, revealing the first detections of emission from HCN and C2H2 in circumstellar disks at near-infrared wavelengths. Using advanced data reduction techniques, we achieve a dynamic range with respect to the disk continuum of ~500 at 3 μm, revealing multiple emission features of H2O, OH, HCN, and C2H2. We also present stringent upper limits for two other molecules thought to be abundant in the inner disk, CH4 and NH3. Line profiles for the different detected molecules are broad but centrally peaked in most cases, even for disks with previously determined inclinations of greater than 20°, suggesting that the emission has both a Keplerian and non-Keplerian component as observed previously for CO emission. We apply two different modeling strategies to constrain the molecular abundances and temperatures: we use a simplified single-temperature local thermal equilibrium (LTE) slab model with a Gaussian line profile to make line identifications and determine a best-fit temperature and initial abundance ratios, and we compare these values with constraints derived from a detailed disk radiative transfer model assuming LTE excitation but utilizing a realistic temperature and density structure. Abundance ratios from both sets of models are consistent with each other and consistent with expected values from theoretical chemical models, and analysis of the line shapes suggests that the molecular emission originates from within a narrow region in the inner disk (R < 1 AU). Based partially on observations collected at the European Southern Observatory Very Large Telescope under program ID 179.C-0151, program ID 283.C-5016, and program ID 082.C-0432 (P.I.: Pontopiddan).

  4. Received response based heuristic LDPC code for short-range non-line-of-sight ultraviolet communication.

    PubMed

    Qin, Heng; Zuo, Yong; Zhang, Dong; Li, Yinghui; Wu, Jian

    2017-03-06

    Through slight modification on typical photon multiplier tube (PMT) receiver output statistics, a generalized received response model considering both scattered propagation and random detection is presented to investigate the impact of inter-symbol interference (ISI) on link data rate of short-range non-line-of-sight (NLOS) ultraviolet communication. Good agreement with the experimental results by numerical simulation is shown. Based on the received response characteristics, a heuristic check matrix construction algorithm of low-density-parity-check (LDPC) code is further proposed to approach the data rate bound derived in a delayed sampling (DS) binary pulse position modulation (PPM) system. Compared to conventional LDPC coding methods, better bit error ratio (BER) below 1E-05 is achieved for short-range NLOS UVC systems operating at data rate of 2Mbps.

  5. FLARE-LIKE VARIABILITY OF THE Mg II {lambda}2800 EMISSION LINE IN THE {gamma}-RAY BLAZAR 3C 454.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leon-Tavares, J.; Chavushyan, V.; Patino-Alvarez, V.

    2013-02-01

    We report the detection of a statistically significant flare-like event in the Mg II {lambda}2800 emission line of 3C 454.3 during the outburst of autumn 2010. The highest levels of emission line flux recorded over the monitoring period (2008-2011) coincide with a superluminal jet component traversing through the radio core. This finding crucially links the broad emission line fluctuations to the non-thermal continuum emission produced by relativistically moving material in the jet and hence to the presence of broad-line region clouds surrounding the radio core. If the radio core were located at several parsecs from the central black hole, thenmore » our results would suggest the presence of broad-line region material outside the inner parsec where the canonical broad-line region is envisaged to be located. We briefly discuss the implications of broad emission line material ionized by non-thermal continuum in the context of virial black hole mass estimates and gamma-ray production mechanisms.« less

  6. Determination of Differential Emission Measure from Solar Extreme Ultraviolet Images

    NASA Astrophysics Data System (ADS)

    Su, Yang; Veronig, Astrid M.; Hannah, Iain G.; Cheung, Mark C. M.; Dennis, Brian R.; Holman, Gordon D.; Gan, Weiqun; Li, Youping

    2018-03-01

    The Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) has been providing high-cadence, high-resolution, full-disk UV-visible/extreme ultraviolet (EUV) images since 2010, with the best time coverage among all the solar missions. A number of codes have been developed to extract plasma differential emission measures (DEMs) from AIA images. Although widely used, they cannot effectively constrain the DEM at flaring temperatures with AIA data alone. This often results in much higher X-ray fluxes than observed. One way to solve the problem is by adding more constraint from other data sets (such as soft X-ray images and fluxes). However, the spatial information of plasma DEMs are lost in many cases. In this Letter, we present a different approach to constrain the DEMs. We tested the sparse inversion code and show that the default settings reproduce X-ray fluxes that could be too high. Based on the tests with both simulated and observed AIA data, we provided recommended settings of basis functions and tolerances. The new DEM solutions derived from AIA images alone are much more consistent with (thermal) X-ray observations, and provide valuable information by mapping the thermal plasma from ∼0.3 to ∼30 MK. Such improvement is a key step in understanding the nature of individual X-ray sources, and particularly important for studies of flare initiation.

  7. Modification of the optoelectronic properties of two-dimensional MoS2 crystals by ultraviolet-ozone treatment

    NASA Astrophysics Data System (ADS)

    Yang, Hae In; Park, Seonyoung; Choi, Woong

    2018-06-01

    We report the modification of the optoelectronic properties of mechanically-exfoliated single layer MoS2 by ultraviolet-ozone exposure. Photoluminescence emission of pristine MoS2 monotonically decreased and eventually quenched as ultraviolet-ozone exposure time increased from 0 to 10 min. The reduction of photoluminescence emission accompanied reduction of Raman modes, suggesting structural degradation in ultraviolet-ozone exposed MoS2. Analysis with X-ray photoelectron spectroscopy revealed that the formation of Ssbnd O and Mosbnd O bonding increases with ultraviolet-ozone exposure time. Measurement of electrical transport properties of MoS2 in a bottom-gate thin-film transistor configuration suggested the presence of insulating MoO3 after ultraviolet-ozone exposure. These results demonstrate that ultraviolet-ozone exposure can significantly influence the optoelectronic properties of single layer MoS2, providing important implications on the application of MoS2 and other two-dimensional materials into optoelectronic devices.

  8. Observations of Ultraviolet Emission from Mg+ in the Lower and Middle Thermosphere

    NASA Astrophysics Data System (ADS)

    Minschwaner, K.; Shukla, N.; Fortna, C.; Budzien, S.; Dymond, K.; McCoy, R.

    2004-12-01

    New observations of ionized magnesium dayglow are reported from the Ionospheric Spectroscopy and Atmospheric Chemistry (ISAAC) instrument on the ARGOS satellite. We focused on two periods, October 14-28 1999 and November 15-30 1999, when ISAAC obtained high quality limb spectra between 2600 and 3000 Å and from 85 to 350 km tangent altitude. In addition to the resonant scattering by Mg+ near 2800 Å, these limb spectra also contain signatures of fluorescent scattering by nitric oxide in the gamma bands, emission by molecular nitrogen in the Vergard-Kaplan bands, and atomic emission by oxygen in the 2972 Å line. A retrieval algorithm has been developed to measure the abundance of nitric oxide using the intensity of fluorescent scattering in the γ (1,5) band at 2670 Å. This technique then allows for separating the overlapping emission by nitric oxide in the γ (1,6) band from the Mg+ doublet at 2800 Å. Retrieved Mg+ column densities have been mapped as a function of altitude and geomagnetic latitude.

  9. The early ultraviolet, optical, and radio evolution of the soft X-ray transient GRO J0422+32

    NASA Technical Reports Server (NTRS)

    Shrader, C. R.; Wagner, R. Mark; Hjellming, R. M.; Han, X. H.; Starrfield, S. G.

    1994-01-01

    We have monitored the evolution of the transient X-ray source GRO J0422+32 from approximately 2 weeks postdiscovery into its early decline phase at ultraviolet, optical, and radio wavelengths. Optical and ultraviolet spectra exhibit numerous, but relatively weak, high-excitation emission lines such as those arising from He II, N III, N V, and C IV superposed on an intrinsically blue continuum. High-resolution optical spectroscopy reveals line profiles which are double peaked, and in the case of the higher order Balmer lines, superposed on a broad absorption profile. The early outburst optical-ultraviolet continuum energy distribution is well represented by a two power-law fit with a break at approximately equal 4000 A. Radio observations with the Very Large Array (VLA) reveal a flat-spectrum source, slowly increasing in intensity at the earliest epochs observed, followed by an approximate power-law decay light curve with an index of -1. Light curves for each wavelength domain are presented and discussed. Notable are the multiple secondary outbursts seen in the optical more than 1 year postdiscovery, and spectral changes associated with secondary rises seen in the radio and UV. We find that the ultraviolet and optical characteristics of GRO J0422+32 as well as its radio evolution, are similar to other recent well-observed soft X-ray transients (also called X-ray novae) such as Cen X-4, A0620-00 (V616 Mon), and Nova Muscae 1991 (GS 1124-683), suggesting that GRO J0422+32 is also a member of that subclass of low-mass X-ray binaries. We present definitive astrometric determination of the source position, and place an upper limit of R approximately equals 20 from our analysis of the Palomar Observatory Sky Survey (POSS). Additionally, we derive distinct values for color excess from analysis of the optical (E(B-V) = 0.23) and ultraviolet (E(B-V) = 0.4) data, suggesting an intrinsic magnitude of 19-19.5 for the progenitor if it is mid-K dwarf. This leads to a likely range

  10. Anomalous broadening and shift of emission lines in filaments

    NASA Astrophysics Data System (ADS)

    Ilyin, A. A.; Golik, S. S.; Shmirko, K. A.; Mayor, A. Yu.; Proschenko, D. Yu.

    2017-11-01

    The temporal evolution of width and shift of N I 746.8 and O I 777.4 nm lines is investigated in filament plasma produced by tightly focused femtosecond laser pulse (0.9 mJ, 48 fs). Nitrogen line shift is determined by joint action of electron impact shift and far-off resonance AC Stark effect. Intensive (I 1010 W/cm2 ) electric field of ASE and postpulses result in possible LS coupling break for O I 3p 5P level and generation of Rabi sidebands. The blue-shifted main femtosecond pulse and Rabi sideband cause the stimulated emission of N21+ system.

  11. Astro-1 Image Taken by Ultraviolet Imaging Telescope

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This image shows a part of the Cygnus loop supernova remnant, taken by the Ultraviolet Imaging Telescope (UIT) on the Astro Observatory during the Astro-1 mission (STS-35) on December 5, 1990. Pictured is a portion of the huge Cygnus loop, an array of interstellar gas clouds that have been blasted by a 900,000 mile per hour shock wave from a prehistoric stellar explosion, which occurred about 20,000 years ago, known as supernova. With ultraviolet and x-rays, astronomers can see emissions from extremely hot gases, intense magnetic fields, and other high-energy phenomena that more faintly appear in visible and infrared light or in radio waves that are crucial to deepening the understanding of the universe. The Astro Observatory was designed to explore the universe by observing and measuring the ultraviolet radiation from celestial objects. Three instruments make up the Astro Observatory: The Hopkins Ultraviolet Telescope (HUT), the Ultraviolet Imaging Telescope (UIT), and the Wisconsin Ultraviolet Photo-Polarimetry Experiment (WUPPE). The Marshall Space Flight Center had managment responsibilities for the Astro-1 mission. The Astro-1 Observatory was launched aboard the Space Shuttle Orbiter Columbia (STS-35) on December 2, 1990.

  12. IUE observations of circumstellar emission from the late type variable R Aquarii /M7 + pec/

    NASA Technical Reports Server (NTRS)

    Michalitsianos, A. G.; Hobbs, R. W.; Kafatos, M.

    1980-01-01

    IUE observations of R Aquarii (M7 + pec) have been obtained in low dispersion in order to study its circumstellar emission. Strong permitted, semiforbidden, and forbidden emission lines are identified that are superposed on a bright ultraviolet continuum. From the analysis it is deduced that the strong emission-line spectrum that involves semiforbidden C III, C IV, semiforbidden Si III, forbidden O II, and forbidden O III probably arises from a dense compact nebula the size of which is comparable to the binary system of which R Aqr is the primary star. Low-excitation emission lines of Fe II, Mg II, O I, and Si II suggest the presence of a warm chromosphere (T less than about 10,000 K) in the primary M7 late type giant. The secondary is identified as a white dwarf, comparable to or somewhat brighter than the sun, since such a star can produce enough ionizing photons to excite the continuum and emission-line spectrum and yet be sufficiently faint to escape detection by direct observation. The UV continuum observed is attributed to Balmer recombination and not to blackbody emission from the hot companion. The general spectral properties of R Aqr between 1200 A and 3200 A are discussed in the context of the model for the circumstellar nebula, the companion, and the mass-loss rate of the primary star.

  13. Microlensing and Intrinsic Variability of the Broad Emission Lines of Lensed Quasars

    NASA Astrophysics Data System (ADS)

    Fian, C.; Guerras, Eduardo; Mediavilla, E.; Jiménez-Vicente, J.; Muñoz, J. A.; Falco, E. E.; Motta, V.; Hanslmeier, A.

    2018-05-01

    We study the broad emission lines in a sample of 11 gravitationally lensed quasars with at least two epochs of observation to identify intrinsic variability and to disentangle it from microlensing. To improve our statistical significance and emphasize trends, we also include 15 lens systems with single-epoch spectra. Mg II and C III] emission lines are only weakly affected by microlensing, but C IV shows strong microlensing in some cases, even for regions of the line core, presumably associated with small projected velocities. However, excluding the strongly microlensed cases, there is a strikingly good match, on average, between the red wings of the C IV and C III] profiles. Analysis of these results supports the existence of two regions in the broad-line region (BLR), one that is insensitive to microlensing (of size ≳50 lt-day and kinematics not confined to a plane) and another that shows up only when it is magnified by microlensing (of size of a few light-days, comparable to the accretion disk). Both regions can contribute in different proportions to the emission lines of different species and, within each line profile, to different velocity bins, all of which complicates detailed studies of the BLR based on microlensing size estimates. The strength of the microlensing indicates that some spectral features that make up the pseudo-continuum, such as the shelf-like feature at λ1610 or several Fe III blends, may in part arise from an inner region of the accretion disk. In the case of Fe II, microlensing is strong in some blends but not in others. This opens up interesting possibilities to study quasar accretion disk kinematics. Intrinsic variability seems to affect the same features prone to microlensing, with similar frequency and amplitude, but does not induce outstanding profile asymmetries. We measure intrinsic variability (≲20%) of the wings with respect to the cores in the C IV, C III], and Mg II lines consistent with reverberation mapping studies.

  14. Broad line emission from iron K- and L-shell transitions in the active galaxy 1H 0707-495.

    PubMed

    Fabian, A C; Zoghbi, A; Ross, R R; Uttley, P; Gallo, L C; Brandt, W N; Blustin, A J; Boller, T; Caballero-Garcia, M D; Larsson, J; Miller, J M; Miniutti, G; Ponti, G; Reis, R C; Reynolds, C S; Tanaka, Y; Young, A J

    2009-05-28

    Since the 1995 discovery of the broad iron K-line emission from the Seyfert galaxy MCG-6-30-15 (ref. 1), broad iron K lines have been found in emission from several other Seyfert galaxies, from accreting stellar-mass black holes and even from accreting neutron stars. The iron K line is prominent in the reflection spectrum created by the hard-X-ray continuum irradiating dense accreting matter. Relativistic distortion of the line makes it sensitive to the strong gravity and spin of the black hole. The accompanying iron L-line emission should be detectable when the iron abundance is high. Here we report the presence of both iron K and iron L emission in the spectrum of the narrow-line Seyfert 1 galaxy 1H 0707-495. The bright iron L emission has enabled us to detect a reverberation lag of about 30 s between the direct X-ray continuum and its reflection from matter falling into the black hole. The observed reverberation timescale is comparable to the light-crossing time of the innermost radii around a supermassive black hole. The combination of spectral and timing data on 1H 0707-495 provides strong evidence that we are witnessing emission from matter within a gravitational radius, or a fraction of a light minute, from the event horizon of a rapidly spinning, massive black hole.

  15. The Ly(alpha) Line Profiles of Ultraluminous Infrared Galaxies: Fast Winds and Lyman Continuum Leakage

    NASA Technical Reports Server (NTRS)

    Martin, Crystal L.; Dijkstra, Mark; Henry, Alaina L.; Soto, Kurt T.; Danforth, Charles W.; Wong, Joseph

    2015-01-01

    We present new Hubble Space Telescope Cosmic Origins Spectrograph far-ultraviolet (far-UV) spectroscopy and Keck Echellete optical spectroscopy of 11 ultraluminous infrared galaxies (ULIRGs), a rare population of local galaxies experiencing massive gas inflows, extreme starbursts, and prominent outflows. We detect Ly(alpha) emission from eight ULIRGs and the companion to IRAS09583+4714. In contrast to the P Cygni profiles often seen in galaxy spectra, the Ly(alpha) profiles exhibit prominent, blueshifted emission out to Doppler shifts exceeding -1000 km/s in three H II-dominated and two AGN-dominated ULIRGs. To better understand the role of resonance scattering in shaping the Ly(alpha) line profiles, we directly compare them to non-resonant emission lines in optical spectra. We find that the line wings are already present in the intrinsic nebular spectra, and scattering merely enhances the wings relative to the line core. The Ly(alpha) attenuation (as measured in the COS aperture) ranges from that of the far-UV continuum to over 100 times more. A simple radiative transfer model suggests the Ly(alpha) photons escape through cavities which have low column densities of neutral hydrogen and become optically thin to the Lyman continuum in the most advanced mergers. We show that the properties of the highly blueshifted line wings on the Ly(alpha) and optical emission-line profiles are consistent with emission from clumps of gas condensing out of a fast, hot wind. The luminosity of the Ly(alpha) emission increases nonlinearly with the ULIRG bolometric luminosity and represents about 0.1-1% of the radiative cooling from the hot winds in the H II-dominated ULIRGs.

  16. A New Diagnostic Diagram of Ionization Sources for High-redshift Emission Line Galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Hao, Lei

    2018-04-01

    We propose a new diagram, the kinematics–excitation (KEx) diagram, which uses the [O III] λ5007/Hβ line ratio and the [O III] λ5007 emission line width (σ [O III]) to diagnose the ionization source and physical properties of active galactic nuclei (AGNs) and star-forming galaxies (SFGs). The KEx diagram is a suitable tool to classify emission line galaxies at intermediate redshift because it uses only the [O III] λ5007 and Hβ emission lines. We use the main galaxy sample of SDSS DR7 and the Baldwin‑Phillips‑Terlevich (BPT) diagnostic to calibrate the diagram at low redshift. The diagram can be divided into three regions: the KEx-AGN region, which consists mainly of pure AGNs, the KEx-composite region, which is dominated by composite galaxies, and the KEx-SFG region, which contains mostly SFGs. LINERs strongly overlap with the composite and AGN regions. AGNs are separated from SFGs in this diagram mainly because they preferentially reside in luminous and massive galaxies and have higher [O III]/Hβ than SFGs. The separation between AGNs and SFGs is even cleaner thanks to the additional 0.15/0.12 dex offset in σ [O III] at fixed luminosity/stellar mass. We apply the KEx diagram to 7866 galaxies at 0.3 < z < 1 in the DEEP2 Galaxy Redshift Survey, and compare it to an independent X-ray classification scheme using Chandra observations. X-ray AGNs are mostly located in the KEx-AGN region, while X-ray SFGs are mostly located in the KEx-SFG region. Almost all Type 1 AGNs lie in the KEx-AGN region. These tests support the reliability of this classification diagram for emission line galaxies at intermediate redshift. At z ∼ 2, the demarcation line between SFGs and AGNs is shifted by ∼0.3 dex toward higher values of σ [O III] due to evolution effects.

  17. HST WFC3 Early Release Science: Emission-Line Galaxies from IR Grism Observations

    NASA Technical Reports Server (NTRS)

    Straughn, A. N.; Kuntschner, H.; Kuemmel, M.; Walsh, J. R.; Cohen, S. H.; Gardner, J. P.; Windhorst, R. A.; O'Connell, R. W.; Pirzkal, N.; Meurer, G.; hide

    2010-01-01

    We present grism spectra of emission line galaxies (ELGs) from 0.6-1.6 microns from the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). These new infrared grism data augment previous optical Advanced Camera for Surveys G800L (0.6-0.95 micron) grism data in GOODS South, extending the wavelength coverage well past the G800L red cutoff. The ERS grism field was observed at a depth of 2 orbits per grism, yielding spectra of hundreds of faint objects, a subset of which are presented here. ELGs are studied via the Ha, [O III ], and [OII] emission lines detected in the redshift ranges 0.2 less than or equal to z less than or equal to 1.6, 1.2 less than or equal to z less than or equal to 2.4 and 2.0 less than or equal to z less than or equal to 3.6 respectively in the G102 (0.8-1.1 microns; R approximately 210) and C141 (1.1-1.6 microns; R approximately 130) grisms. The higher spectral resolution afforded by the WFC3 grisms also reveals emission lines not detectable with the G800L grism (e.g., [S II] and [S III] lines). From these relatively shallow observations, line luminosities, star formation rates, and grism spectroscopic redshifts are determined for a total of 25 ELGs to M(sub AB)(F098M) approximately 25 mag. The faintest source in our sample with a strong but unidentified emission line--is MAB(F098M)=26.9 mag. We also detect the expected trend of lower specific star formation rates for the highest mass galaxies in the sample, indicative of downsizing and discovered previously from large surveys. These results demonstrate the remarkable efficiency and capability of the WFC3 NIR grisms for measuring galaxy properties to faint magnitudes.

  18. Unreported Emission Lines of Rb, Ce, La, Sr, Y, Zr, Pb and Se Detected Using Laser-Induced Breakdown Spectroscopy

    NASA Technical Reports Server (NTRS)

    Lepore, K. H.; Mackie, J.; Dyar, M. D.; Fassett, C. I.

    2017-01-01

    Information on emission lines for major and minor elements is readily available from the National Institute of Standards and Technology (NIST) as part of the Atomic Spectra Database. However, tabulated emission lines are scarce for some minor elements and the wavelength ranges presented on the NIST database are limited to those included in existing studies. Previous work concerning minor element calibration curves measured using laser-induced break-down spectroscopy found evidence of Zn emission lines that were not documented on the NIST database. In this study, rock powders were doped with Rb, Ce, La, Sr, Y, Zr, Pb and Se in concentrations ranging from 10 percent to 10 parts per million. The difference between normalized spectra collected on samples containing 10 percent dopant and those containing only 10 parts per million were used to identify all emission lines that can be detected using LIBS (Laser-Induced Breakdown Spectroscopy) in a ChemCam-like configuration at the Mount Holyoke College LIBS facility. These emission spectra provide evidence of many previously undocumented emission lines for the elements measured here.

  19. Solar ultraviolet radiation in a changing climate

    EPA Science Inventory

    The projected large increases in damaging ultraviolet radiation as a result of global emissions of ozone-depleting substances have been forestalled by the success of the Montreal Protocol. New challenges are now arising in relation to climate change. We highlight the complex inte...

  20. Evidence for Fluorescent Fe II Emission from Extended Low Ionization Outflows in Obscured Quasars

    NASA Astrophysics Data System (ADS)

    Wang, Tinggui; Ferland, Gary J.; Yang, Chenwei; Wang, Huiyuan; Zhang, Shaohua

    2016-06-01

    Recent studies have shown that outflows in at least some broad absorption line (BAL) quasars are extended well beyond the putative dusty torus. Such outflows should be detectable in obscured quasars. We present four WISE selected infrared red quasars with very strong and peculiar ultraviolet Fe II emission lines: strong UV Fe II UV arising from transitions to ground/low excitation levels, and very weak Fe II at wavelengths longer than 2800 Å. The spectra of these quasars display strong resonant emission lines, such as C IV, Al III and Mg II but sometimes, a lack of non-resonant lines such as C III], S III and He II. We interpret the Fe II lines as resonantly scattered light from the extended outflows that are viewed nearly edge-on, so that the accretion disk and broad line region are obscured by the dusty torus, while the extended outflows are not. We show that dust free gas exposed to strong radiation longward of 912 Å produces Fe II emission very similar to that observed. The gas is too cool to collisionally excite Fe II lines, accounting for the lack of optical emission. The spectral energy distribution from the UV to the mid-infrared can be modeled as emission from a clumpy dusty torus, with UV emission being reflected/scattered light either by the dusty torus or the outflow. Within this scenario, we estimate a minimum covering factor of the outflows from a few to 20% for the Fe II scattering region, suggesting that Fe II BAL quasars are at a special stage of quasar evolution.

  1. Overview of Key Results from SDO Extreme ultraviolet Variability Experiment (EVE)

    NASA Astrophysics Data System (ADS)

    Woods, Tom; Eparvier, Frank; Jones, Andrew; Mason, James; Didkovsky, Leonid; Chamberlin, Phil

    2016-10-01

    The SDO Extreme ultraviolet Variability Experiment (EVE) includes several channels to observe the solar extreme ultraviolet (EUV) spectral irradiance from 1 to 106 nm. These channels include the Multiple EUV Grating Spectrograph (MEGS) A, B, and P channels from the University of Colorado (CU) and the EUV SpectroPhometer (ESP) channels from the University of Southern California (USC). The solar EUV spectrum is rich in many different emission lines from the corona, transition region, and chromosphere. The EVE full-disk irradiance spectra are important for studying the solar impacts in Earth's ionosphere and thermosphere and are useful for space weather operations. In addition, the EVE observations, with its high spectral resolution of 0.1 nm and in collaboration with AIA solar EUV images, have proven valuable for studying active region evolution and explosive energy release during flares and coronal eruptions. These SDO measurements have revealed interesting results such as understanding the flare variability over all wavelengths, discovering and classifying different flare phases, using coronal dimming measurements to predict CME properties of mass and velocity, and exploring the role of nano-flares in continual heating of active regions.

  2. Galaxy emission line classification using three-dimensional line ratio diagrams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogt, Frédéric P. A.; Dopita, Michael A.; Kewley, Lisa J.

    2014-10-01

    Two-dimensional (2D) line ratio diagnostic diagrams have become a key tool in understanding the excitation mechanisms of galaxies. The curves used to separate the different regions—H II-like or excited by an active galactic nucleus (AGN)—have been refined over time but the core technique has not evolved significantly. However, the classification of galaxies based on their emission line ratios really is a multi-dimensional problem. Here we exploit recent software developments to explore the potential of three-dimensional (3D) line ratio diagnostic diagrams. We introduce the ZQE diagrams, which are a specific set of 3D diagrams that separate the oxygen abundance and themore » ionization parameter of H II region-like spectra and also enable us to probe the excitation mechanism of the gas. By examining these new 3D spaces interactively, we define the ZE diagnostics, a new set of 2D diagnostics that can provide the metallicity of objects excited by hot young stars and that cleanly separate H II region-like objects from the different classes of AGNs. We show that these ZE diagnostics are consistent with the key log [N II]/Hα versus log [O III]/Hβ diagnostic currently used by the community. They also have the advantage of attaching a probability that a given object belongs to one class or the other. Finally, we discuss briefly why ZQE diagrams can provide a new way to differentiate and study the different classes of AGNs in anticipation of a dedicated follow-up study.« less

  3. The different origins of high- and low-ionization broad emission lines revealed by gravitational microlensing in the Einstein cross

    NASA Astrophysics Data System (ADS)

    Braibant, L.; Hutsemékers, D.; Sluse, D.; Anguita, T.

    2016-07-01

    We investigate the kinematics and ionization structure of the broad emission line region of the gravitationally lensed quasar QSO2237+0305 (the Einstein cross) using differential microlensing in the high- and low-ionization broad emission lines. We combine visible and near-infrared spectra of the four images of the lensed quasar and detect a large-amplitude microlensing effect distorting the high-ionization CIV and low-ionization Hα line profiles in image A. While microlensing only magnifies the red wing of the Balmer line, it symmetrically magnifies the wings of the CIV emission line. Given that the same microlensing pattern magnifies both the high- and low-ionization broad emission line regions, these dissimilar distortions of the line profiles suggest that the high- and low-ionization regions are governed by different kinematics. Since this quasar is likely viewed at intermediate inclination, we argue that the differential magnification of the blue and red wings of Hα favors a flattened, virialized, low-ionization region whereas the symmetric microlensing effect measured in CIV can be reproduced by an emission line formed in a polar wind, without the need of fine-tuned caustic configurations. Based on observations made with the ESO-VLT, Paranal, Chile; Proposals 076.B-0197 and 076.B-0607 (PI: Courbin).

  4. The Number Density Evolution of Extreme Emission Line Galaxies in 3D-HST: Results from a Novel Automated Line Search Technique for Slitless Spectroscopy

    NASA Astrophysics Data System (ADS)

    Maseda, Michael V.; van der Wel, Arjen; Rix, Hans-Walter; Momcheva, Ivelina; Brammer, Gabriel B.; Franx, Marijn; Lundgren, Britt F.; Skelton, Rosalind E.; Whitaker, Katherine E.

    2018-02-01

    The multiplexing capability of slitless spectroscopy is a powerful asset in creating large spectroscopic data sets, but issues such as spectral confusion make the interpretation of the data challenging. Here we present a new method to search for emission lines in the slitless spectroscopic data from the 3D-HST survey utilizing the Wide-Field Camera 3 on board the Hubble Space Telescope. Using a novel statistical technique, we can detect compact (extended) emission lines at 90% completeness down to fluxes of 1.5(3.0)× {10}-17 {erg} {{{s}}}-1 {{cm}}-2, close to the noise level of the grism exposures, for objects detected in the deep ancillary photometric data. Unlike previous methods, the Bayesian nature allows for probabilistic line identifications, namely redshift estimates, based on secondary emission line detections and/or photometric redshift priors. As a first application, we measure the comoving number density of Extreme Emission Line Galaxies (restframe [O III] λ5007 equivalent widths in excess of 500 Å). We find that these galaxies are nearly 10× more common above z ∼ 1.5 than at z ≲ 0.5. With upcoming large grism surveys such as Euclid and WFIRST, as well as grisms featured prominently on the NIRISS and NIRCam instruments on the James Webb Space Telescope, methods like the one presented here will be crucial for constructing emission line redshift catalogs in an automated and well-understood manner. This work is based on observations taken by the 3D-HST Treasury Program and the CANDELS Multi-Cycle Treasury Program with the NASA/ESA HST, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  5. Juno Ultraviolet Spectrograph (Juno-UVS) Observations of Jupiter during Approach

    NASA Astrophysics Data System (ADS)

    Gladstone, Randy; Versteeg, Maarten; Greathouse, Thomas K.; Hue, Vincent; Davis, Michael; Gerard, Jean-Claude; Grodent, Denis; Bonfond, Bertrand

    2016-10-01

    We present the initial results from Juno Ultraviolet Spectrograph (Juno-UVS) observations of Jupiter obtained during approach in June 2016. Juno-UVS is an imaging spectrograph with a bandpass of 70<λ<205 nm. This wavelength range includes all important ultraviolet (UV) emissions from the H2 bands and the H Lyman series which are produced in Jupiter's auroras, and also the absorption signatures of aurorally-produced hydrocarbons. The Juno-UVS instrument telescope has a 4 x 4 cm2 input aperture and uses an off-axis parabolic primary mirror. A flat scan mirror situated near the entrance of the telescope is used to observe at up to ±30° perpendicular to the Juno spin plane. The light is focused onto the spectrograph entrance slit, which has a "dog-bone" shape 7.2° long, in three sections of 0.2°, 0.025°, and 0.2° width (as projected onto the sky). Light entering the slit is dispersed by a toroidal grating which focuses UV light onto a curved microchannel plate (MCP) cross delay line (XDL) detector with a solar blind UV-sensitive CsI photocathode. Tantalum surrounds the spectrograph assembly to shield the detector and its electronics from high-energy electrons. All other electronics are located in Juno's spacecraft vault, including redundant low-voltage and high-voltage power supplies, command and data handling electronics, heater/actuator electronics, scan mirror electronics, and event processing electronics. The purpose of Juno-UVS is to remotely sense Jupiter's auroral morphology and brightness to provide context for in situ measurements by Juno's particle instruments. Prior to Jupiter Orbit Insertion (JOI) on July 5, Juno approach observations provide a rare opportunity to correlate local solar wind conditions with Jovian auroral emissions. Some of Jupiter's auroral emissions (e.g., polar emissions) may be controlled or at least affected by the solar wind. Here we compare synoptic Juno-UVS observations of Jupiter's auroral emissions (~40 minutes per hour

  6. Silicon X-ray line emission from solar flares and active regions

    NASA Technical Reports Server (NTRS)

    Parkinson, J. H.; Wolff, R. S.; Kestenbaum, H. L.; Ku, W. H.-M.; Lemen, J. R.; Long, K. S.; Novick, R.; Suozzo, R. J.; Weisskopf, M. C.

    1978-01-01

    New observations of solar flare and active region X-ray spectra obtained with the Columbia University instrument on OSO-8 are presented and discussed. The high sensitivity of the graphite crystal panel has allowed both line and continuum spectra to be served with moderate spectral resolution. Observations with higher spectral resolution have been made with a panel of pentaerythritol crystals. Twenty-nine lines between 1.5 and 7.0 A have been resolved and identified, including several dielectronic recombination satellite lines to Si XIV and Si XIII lines which have been observed for the first time. It has been found that thermal continuum models specified by single values of temperature and emission measure have fitted the data adequately, there being good agreement with the values of these parameters derived from line intensity ratios.

  7. Mass loss from red giants - Results from ultraviolet spectroscopy

    NASA Technical Reports Server (NTRS)

    Linsky, J. L.

    1985-01-01

    New instrumentation in space, primarily the IUE spacecraft, has enabled the application of ultraviolet spectroscopic techniques to the determination of physical properties and reliable mass loss rates for red giant winds. One important result is the determination of where in the H-R diagram are found stars with hot outer atmospheres and with cool winds. So far it appears that single cool stars, except perhaps the so-called hybrid stars, have either hot outer atmospheres or cool winds but not both. The C II resonance (1335 A) and intersystem (2325 A) multiplets have been used to derive temperatures, densities, and geometrical extents for the chromospheric portions of red giant winds, with the result that the red giants and the earlier giants with hot coronae have qualitatively different chromospheres. Mass loss rates can now be derived accurately from the analysis of asymmetric emission lines, such as the Mg II resonance lines, and from P Cygni profile lines of atoms in the dominant ionization stage when a hot star is available to probe the wind of a red giant. The Zeta Aur systems, consisting of a K-M supergiant and a main sequence B star are important systems for reliable mass loss rates for the red supergiant components are becoming available.

  8. Intermediate-line Emission in AGNs: The Effect of Prescription of the Gas Density

    NASA Astrophysics Data System (ADS)

    Adhikari, T. P.; Hryniewicz, K.; Różańska, A.; Czerny, B.; Ferland, G. J.

    2018-03-01

    The requirement of an intermediate-line component in the recently observed spectra of several active galactic nuclei (AGNs) points to the possible existence of a physically separate region between the broad-line region (BLR) and narrow-line region (NLR). In this paper we explore the emission from the intermediate-line region (ILR) by using photoionization simulations of the gas clouds distributed radially from the center of the AGN. The gas clouds span distances typical for the BLR, ILR, and NLR, and the appearance of dust at the sublimation radius is fully taken into account in our model. The structure of a single cloud is calculated under the assumption of constant pressure. We show that the slope of the power-law radial profile of the cloud density does not affect the existence of the ILR in major types of AGNs. We found that the low-ionization iron line, Fe II, appears to be highly sensitive to the presence of dust and therefore becomes a potential tracer of dust content in line-emitting regions. We show that the use of a disk-like cloud density profile computed for the upper part of the atmosphere of the accretion disk reproduces the observed properties of the line emissivities. In particular, the distance of the Hβ line inferred from our model agrees with that obtained from reverberation mapping studies in the Sy1 galaxy NGC 5548.

  9. Performance of a Line Loss Correction Method for Gas Turbine Emission Measurements

    NASA Astrophysics Data System (ADS)

    Hagen, D. E.; Whitefield, P. D.; Lobo, P.

    2015-12-01

    International concern for the environmental impact of jet engine exhaust emissions in the atmosphere has led to increased attention on gas turbine engine emission testing. The Society of Automotive Engineers Aircraft Exhaust Emissions Measurement Committee (E-31) has published an Aerospace Information Report (AIR) 6241 detailing the sampling system for the measurement of non-volatile particulate matter from aircraft engines, and is developing an Aerospace Recommended Practice (ARP) for methodology and system specification. The Missouri University of Science and Technology (MST) Center for Excellence for Aerospace Particulate Emissions Reduction Research has led numerous jet engine exhaust sampling campaigns to characterize emissions at different locations in the expanding exhaust plume. Particle loss, due to various mechanisms, occurs in the sampling train that transports the exhaust sample from the engine exit plane to the measurement instruments. To account for the losses, both the size dependent penetration functions and the size distribution of the emitted particles need to be known. However in the proposed ARP, particle number and mass are measured, but size is not. Here we present a methodology to generate number and mass correction factors for line loss, without using direct size measurement. A lognormal size distribution is used to represent the exhaust aerosol at the engine exit plane and is defined by the measured number and mass at the downstream end of the sample train. The performance of this line loss correction is compared to corrections based on direct size measurements using data taken by MST during numerous engine test campaigns. The experimental uncertainty in these correction factors is estimated. Average differences between the line loss correction method and size based corrections are found to be on the order of 10% for number and 2.5% for mass.

  10. ORIGIN OF THE GALACTIC DIFFUSE X-RAY EMISSION: IRON K-SHELL LINE DIAGNOSTICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nobukawa, Masayoshi; Uchiyama, Hideki; Nobukawa, Kumiko K.

    This paper reports detailed K-shell line profiles of iron (Fe) and nickel (Ni) of the Galactic Center X-ray Emission (GCXE), Galactic Bulge X-ray Emission (GBXE), Galactic Ridge X-ray Emission (GRXE), magnetic Cataclysmic Variables (mCVs), non-magnetic Cataclysmic Variables (non-mCVs), and coronally Active Binaries (ABs). For the study of the origin of the GCXE, GBXE, and GRXE, the spectral analysis is focused on equivalent widths of the Fe i-K α , Fe xxv-He α , and Fe xxvi-Ly α  lines. The global spectrum of the GBXE is reproduced by a combination of the mCVs, non-mCVs, and ABs spectra. On the other hand,more » the GRXE spectrum shows significant data excesses at the Fe i-K α and Fe xxv-He α  line energies. This means that additional components other than mCVs, non-mCVs, and ABs are required, which have symbiotic phenomena of cold gas and very high-temperature plasma. The GCXE spectrum shows larger excesses than those found in the GRXE spectrum at all the K-shell lines of iron and nickel. Among them the largest ones are the Fe i-K α , Fe xxv-He α , Fe xxvi-Ly α , and Fe xxvi-Ly β  lines. Together with the fact that the scale heights of the Fe i-K α , Fe xxv-He α , and Fe xxvi-Ly α lines are similar to that of the central molecular zone (CMZ), the excess components would be related to high-energy activity in the extreme envelopment of the CMZ.« less

  11. Ultraviolet emission in Tm3+-doped fluoride fiber pumped with two infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Mejía, E. B.

    2006-12-01

    An infrared, two-wavelength pumping scheme for generating UV in Tm3+-doped fibers is investigated and proposed as an alternative because the pump wavelengths are accessible from laser diodes. Spectral characterizations of fiber samples with different concentrations revealed that moderate concentrations are best suitable to produce UV (348-362nm) emission when single—or double-line pumping with 1117 and 725nm. Detailed spectroscopic measurements realized to the fiber with the best performance, the 2000ppmwt, allowed to obtain the copumping wavelengths (in the ˜725nm region) that enhanced the UV emission. For example, when applying tens of milliwatts at 725nm, which represented a 28% increase of total pump power, the UV emission increased in an avalanchelike fashion up to three orders of magnitude. Then, a high-power 1117nm source that currently exists in the market and a moderate power 725nm source under development are possible to be used as pumps for this scheme.

  12. Rings of Molecular Line Emission in the Disk Orbiting the Young, Close Binary V4046 Sgr

    NASA Astrophysics Data System (ADS)

    Dickson-Vandervelde, Dorothy; Kastner, Joel H.; Qi, C.; Forveille, Thierry; Hily-Blant, Pierre; Oberg, Karin; Wilner, David; Andrews, Sean; Gorti, Uma; Rapson, Valerie; Sacco, Germano; Principe, David

    2018-01-01

    We present analysis of a suite of subarcsecond ALMA Band 6 (1.1 - 1.4 mm) molecular line images of the circumbinary, protoplanetary disk orbiting V4046 Sgr. The ~20 Myr-old V4046 Sgr system, which lies a mere ~73 pc from Earth, consists of a close (separation ~10 Rsun) pair of roughly solar-mass stars that are orbited by a gas-rich crcumbinary disk extending to ~350 AU in radius. The ALMA images reveal that the molecules CO and HCN and their isotopologues display centrally peaked surface brightness morphologies, whereas the cyanide group molecules (HC3N, CH3CN), deuterated molecules (DCN, DCO+), hydrocarbons (as traced by C2H), and potential CO ice line tracers (N2H+, and H2CO) appear as a sequence of sharp and diffuse rings of increasing radii. The characteristic sizes of these molecular emission rings, which range from ~25 to >100 AU in radius, are evident in radial emission-line surface brightness profiles extracted from the deprojected disk images. We find that emission from 13CO emission transitions from optically thin to thick within ~50 AU, whereas C18O emission remains optically thin within this radius. We summarize the insight into the physical and chemical processes within this evolved protoplanetary disk that can be obtained from comparisons of the various emission-line morphologies with each other and with that of the continuum (large-grain) emission on size scales of tens of AU.This research is supported by NASA Exoplanets program grant NNX16AB43G to RIT

  13. Seeing High Velocity Clouds and Turbulent Mixing Layers in the Ultraviolet: Predictions from Hydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Shelton, Robin L.

    2018-06-01

    High velocity clouds (HVCs) and turbulent mixing layers (TMLs) emit light across a wide range of wavelengths. In order to aid in the detection of their ultraviolet emission, we predict the UV emission line intensities emitted by C II, C III, C IV, N II, N III, N IV, N V, O III, O IV, O V, O VI, Si II, Si III, and Si IV in a variety of simulated HVCs and TMLs. These predictions are based on detailed hydrodynamic simulations made with the FLASH code and employing non-equilibrium ionization calculations for carbon, nitrogen, oxygen, and silicon. The results are compared with FUSE and SPEAR/FIMS observations and with predictions from other models of hot/cool interfaces. We also present methods for scaling the results so that they can be applied to more or less dense environments.

  14. Anomalous broadening and shift of emission lines in a femtosecond laser plasma filament in air

    NASA Astrophysics Data System (ADS)

    Ilyin, A. A.; Golik, S. S.; Shmirko, K. A.; Mayor, A. Yu.; Proschenko, D. Yu.

    2017-12-01

    The temporal evolution of the width and shift of N I 746.8 and O I 777.4 nm lines is investigated in a filament plasma produced by a tightly focused femtosecond laser pulse (0.9 mJ, 48 fs). The nitrogen line shift and width are determined by the joint action of electron impact shift and the far-off resonance AC Stark effect. The intensive (I = 1.2·1010 W/cm2) electric field of ASE (amplified spontaneous emission) and post-pulses result in a possible LS coupling break for the O I 3p 5P level and the generation of Rabi sidebands. The blueshifted main femtosecond pulse and Rabi sideband cause the stimulated emission of the N2 1+ system. The maximal widths of emission lines are approximately 6.7 times larger than the calculated Stark widths.

  15. A dense plasma ultraviolet source

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Mcfarland, D. R.

    1978-01-01

    The intense ultraviolet emission from the NASA Hypocycloidal-Pinch (HCP) plasma is investigated. The HCP consists of three disk electrodes whose cross section has a configuration similar to the cross section of a Mather-type plasma focus. Plasma foci were produced in deuterium, helium, xenon, and krypton gases in order to compare their emission characteristics. Time-integrated spectra in the wavelength range from 200 nm to 350 nm and temporal variations of the uv emission were obtained with a uv spectrometer and a photomultiplier system. Modifications to enhance uv emission in the iodine-laser pump band (250 to 290 nm) and preliminary results produced by these modifications are presented. Finally, the advantages of the HCP as a uv over use of conventional xenon lamps with respect to power output limit, spectral range, and lifetime are discussed.

  16. The mean ultraviolet spectrum of a representative sample of faint z ˜ 3 Lyman alpha emitters

    NASA Astrophysics Data System (ADS)

    Nakajima, Kimihiko; Fletcher, Thomas; Ellis, Richard S.; Robertson, Brant E.; Iwata, Ikuru

    2018-06-01

    We discuss the rest-frame ultraviolet (UV) emission line spectra of a large (˜100) sample of low luminosity redshift z ˜ 3.1 Lyman alpha emitters (LAEs) drawn from a Subaru imaging survey in the SSA22 survey field. Our earlier work based on smaller samples indicated that such sources have high [O III]/[O II] line ratios possibly arising from a hard ionizing spectrum that may be typical of similar sources in the reionization era. With optical spectra secured from VLT/VIMOS, we re-examine the nature of the ionizing radiation in a larger sample using the strength of the high ionization diagnostic emission lines of CIII]λ1909, CIVλ1549, HEIIλ1640, and O III]λλ1661, 1666 Å in various stacked subsets. Our analysis confirms earlier suggestions of a correlation between the strength of Ly α and CIII] emission and we find similar trends with broad-band UV luminosity and rest-frame UV colour. Using various diagnostic line ratios and our stellar photoionization models, we determine both the gas phase metallicity and hardness of the ionization spectrum characterized by ξion - the number of Lyman continuum photons per UV luminosity. We confirm our earlier suggestion that ξion is significantly larger for LAEs than for continuum-selected Lyman break galaxies, particularly for those LAEs with the faintest UV luminosities. We briefly discuss the implications for cosmic reionization if the metal-poor intensely star-forming systems studied here are representative examples of those at much higher redshift.

  17. Errors associated with fitting Gaussian profiles to noisy emission-line spectra

    NASA Technical Reports Server (NTRS)

    Lenz, Dawn D.; Ayres, Thomas R.

    1992-01-01

    Landman et al. (1982) developed prescriptions to predict profile fitting errors for Gaussian emission lines perturbed by white noise. We show that their scaling laws can be generalized to more complicated signal-dependent 'noise models' of common astronomical detector systems.

  18. Carbon monoxide line emission from photon dominated regions

    NASA Astrophysics Data System (ADS)

    Koester, B.; Stoerzer, H.; Stutzki, J.; Sternberg, A.

    1994-04-01

    We present a theoretical study of (12)CO and (13)CO rotational line emission from photon dominated regions (PDRs). We incorporate the effects of clumpy cloud structure by computing the physical structures of plane-parallel photo dominated PDRs with finite thickness which are illuminated by UV-radiation fields from either one or both sides. We examine the influence of the gas density (no (H) = 10 4/cu cm to 107/cu cm), the UV intensity (chi = 103 to 106 times the intensity of the average interstellar UV field), the cloud thickness (measured in units of the visual extinction (AV, 2 less than or = AV less than or = 10) and the Doppler width (1 km/s and 3 km/s) on the emergent CO line center brightness temperatures. We explicitly include the effects of the C-13 chemistry on the line intensities. The high brightness temperatures of the (13)CO J = 6 to 5 line observed in several sources can be explained as originating in high density PDRs (n(H) greater than or = 106/cu cm) which are illuminated from two sides and under the assumption that several PDR clumps lie along the line of sight. To model the observed low-J (12)CO and (13)CO line ratios the models require densities of close to 105/cu cm or higher. Due to chemical fractionation the isotopic line intensity ratios for (12)CI/(13)CI can be a factor 2 to 3 lower than the intrinsic isotopic C-12/C-13 ratio. The high-J (12)CO brightness temperatures that we find are in general agreement with earlier PDR models.

  19. The nature of the [O III] emission line system in the black hole hosting globular cluster RZ2109

    NASA Astrophysics Data System (ADS)

    Steele, Matthew M.

    This work, focused on the description and understanding of the nature of a [O III] emission line source associated with an accreting stellar mass black hole in a globlar cluster, is comprised of three papers. In the first paper, we present a multi-facility study of the optical spectrum of the extra- galactic globular cluster RZ2109, which hosts a bright black hole X-ray source. The optical spectrum of RZ2109 shows strong and very broad [O III]lambdalambda4959,5007 emission in addition to the stellar absorption lines typical of a globular cluster. We use observations over an extended period of time to constrain the variability of these [O III] emission lines. We find that the equivalent width of the lines is similar in all of the datasets; the change in L[O III]lambda5007 is ≤ 10% between the first and last observations, which were separated by 467 days. The velocity profile of the line also shows no significant variability over this interval. Using a simple geometric model we demonstrate that the observed [O III]lambda5007 line velocity structure can be described by a two component model with most of the flux contributed by a bipolar conical outflow of about 1,600 km s -1 , and the remainder from a Gaussian component with a FWHM of several hundred km s-1 . In the second paper, we present an analysis of the elemental composition of the emission line system associated with the black hole hosting globular cluster RZ2109 located in NGC4472. From medium resolution GMOS optical spectroscopy we find a [O III]lambda5007/Hbeta emission line ratio of 106 for a 3200 km s-1 measurement aperture covering the full velocity width of the [O III]lambda5007 line, with a 95% confidence level lower and upper limits of [O III]lambda5007/Hbeta > 35.7 and < -110 (Hbeta absorption). For a narrower 600 km s-1 aperture covering the highest luminosity velocity structure in the line complex, we find [O III]lambda5007/Hbeta = 62, with corresponding 95% confidence lower and upper limits of

  20. Space Telescope and Optical Reverberation Mapping Project: Unraveling the Broad Line Region and the Intrinsic Absorption in NGC 5548

    NASA Astrophysics Data System (ADS)

    Kriss, G.; Storm Team

    2015-07-01

    The Space Telescope and Optical Reverberation Mapping (STORM) project monitored the Seyfert 1 galaxy NGC 5548 over a six-month period, obtaining 171 far-ultraviolet HST/COS spectra at approximately daily intervals. We find significant correlated variability in the continuum and broad emission lines, with amplitudes ranging from a factor of two in the emission lines to a factor of three in the continuum. The variations of all the strong emission lines lag behind those of the continuum, with He II lagging by ˜ 2.5 days and Ly&alpha,; C IV, and Si IV lagging by 5 to 6 days. The broad UV absorption lines discovered by Kaastra et al. (2014) and associated with the new soft X-ray obscurer are continuously present in the STORM campaign COS spectra. Their strength varies with the degree of soft X-ray obscuration as revealed by the Swift X-ray spectra. The narrow absorption lines associated with the historical warm absorber varied in response to the changing UV flux on a daily basis with lags of 3 to 8 days. The ionization response allows precise determinations of the locations, mass flux, and kinetic luminosities of the absorbers.

  1. THE CONNECTIONS BETWEEN THE UV AND OPTICAL Fe ii EMISSION LINES IN TYPE 1 AGNs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovacević-Dojcinović, Jelena; Popović, Luka Č., E-mail: jkovacevic@aob.bg.ac.rs, E-mail: lpopovic@aob.bg.ac.rs

    We investigate the spectral properties of the UV (λλ2650–3050 Å) and optical (λλ4000–5500 Å) Fe ii emission features in a sample of 293 Type 1 active galactic nuclei (AGNs) from the Sloan Digital Sky Survey database. We explore different correlations between their emission line properties, as well as the correlations with other emission lines from the spectral range. We find several interesting correlations and outline the most interesting results as follows. (i) There is a kinematical connection between the UV and optical Fe ii lines, indicating that the UV and optical Fe ii lines originate from the outer part ofmore » the broad line region, the so-called intermediate line region. (ii) The unexplained anticorrelations of the optical Fe ii equivalent width (EW Fe ii{sub opt}) versus EW [O iii] 5007 Å and EW Fe ii{sub opt} versus FWHM Hβ have not been detected for the UV Fe ii lines. (iii) The significant averaged redshift in the UV Fe ii lines, which is not present in optical Fe ii, indicates an inflow in the UV Fe ii emitting clouds, and probably their asymmetric distribution. (iv) Also, we confirm the anticorrelation between the intensity ratio of the optical and UV Fe ii lines and the FWHM of Hβ, and we find the anticorrelations of this ratio with the widths of Mg ii 2800 Å, optical Fe ii, and UV Fe ii. This indicates a very important role for the column density and microturbulence in the emitting gas. We discuss the starburst activity in high-density regions of young AGNs as a possible explanation of the detected optical Fe ii correlations and intensity line ratios of the UV and optical Fe ii lines.« less

  2. Solar Flare Termination Shock and Synthetic Emission Line Profiles of the Fe xxi 1354.08 Å Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Lijia; Li, Gang; Reeves, Kathy

    Solar flares are among the most energetic phenomena that occur in the solar system. In the standard solar flare model, a fast mode shock, often referred to as the flare termination shock (TS), can exist above the loop-top source of hard X-ray emissions. The existence of the TS has been recently related to spectral hardening of a flare’s hard X-ray spectra at energies >300 keV. Observations of the Fe xxi 1354.08 Å line during solar flares by the Interface Region Imaging Spectrograph ( IRIS ) spacecraft have found significant redshifts with >100 km s{sup −1}, which is consistent with amore » reconnection downflow. The ability to detect such a redshift with IRIS suggests that one may be able to use IRIS observations to identify flare TSs. Using a magnetohydrodynamic simulation to model magnetic reconnection of a solar flare and assuming the existence of a TS in the downflow of the reconnection plasma, we model the synthetic emission of the Fe xxi 1354.08 line in this work. We show that the existence of the TS in the solar flare may manifest itself in the Fe xxi 1354.08 Å line.« less

  3. Simultaneous Chandra X ray, Hubble Space Telescope Ultraviolet, and Ulysses Radio Observations of Jupiter's Aurora

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Lugaz, N.; Waite, J. H., Jr.; Cravens, T. E.; Gladstone, G. R.; Ford, P.; Grodent, D.; Bhardwaj. A.; MacDowall, R. J.; Desch, M. D. 8; hide

    2005-01-01

    Observations of Jupiter carried out by the Chandra Advanced CCD Imaging Spectrometer (ACIS-S) instrument over 24-26 February 2003 show that the auroral X-ray spectrum consists of line emission consistent with high-charge states of precipitating ions, and not a continuum as might be expected from bremsstrahlung. The part of the spectrum due to oxygen peaks around 650 eV, which indicates a high fraction of fully stripped oxygen in the precipitating ion flux. A combination of the OVIII emission lines at 653 eV and 774 eV, as well as the OVII emission lines at 561 eV and 666 eV, are evident in the measure auroral spectrum. There is also line emission at lower energies in the spectral region extending from 250 to 350 eV, which could be from sulfur and/or carbon. The Jovian auroral X-ray spectra are significantly different from the X-ray spectra of comets. The charge state distribution of the oxygen ions implied by the measured auroral X-ray spectra strongly suggests that independent of the source of the energetic ions, magnetospheric or solar wind, the ions have undergone additional acceleration. This spectral evidence for ion acceleration is also consistent with the relatively high intensities of the X rays compared with the available phase space density of the (unaccelerated) source populations of solar wind or magnetospheric ions at Jupiter, which are orders of magnitude too small to explain the observed emissions. The Chandra X-ray observations were executed simultaneously with observations at ultraviolet wavelengths by the Hubble Space Telescope and at radio wavelengths by the Ulysses spacecraft. These additional data sets suggest that the source of the X rays is magnetospheric in origin and that the precipitating particles are accelerated by strong field-aligned electric fields, which simultaneously create both the several-MeV energetic ion population and the relativistic electrons observed in situ by Ulysses that are correlated with approx.40 min quasi

  4. DISSECTING THE POWER SOURCES OF LOW-LUMINOSITY EMISSION-LINE GALAXY NUCLEI VIA COMPARISON OF HST-STIS AND GROUND-BASED SPECTRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantin, Anca; Castillo, Christopher A.; Shields, Joseph C.

    Using a sample of ∼100 nearby line-emitting galaxy nuclei, we have built the currently definitive atlas of spectroscopic measurements of Hα and neighboring emission lines at subarcsecond scales. We employ these data in a quantitative comparison of the nebular emission in Hubble Space Telescope (HST) and ground-based apertures, which offer an order-of-magnitude difference in contrast, and provide new statistical constraints on the degree to which transition objects and low-ionization nuclear emission-line regions (LINERs) are powered by an accreting black hole at ≲10 pc. We show that while the small-aperture observations clearly resolve the nebular emission, the aperture dependence in themore » line ratios is generally weak, and this can be explained by gradients in the density of the line-emitting gas: the higher densities in the more nuclear regions potentially flatten the excitation gradients, suppressing the forbidden emission. The transition objects show a threefold increase in the incidence of broad Hα emission in the high-resolution data, as well as the strongest density gradients, supporting the composite model for these systems as accreting sources surrounded by star-forming activity. The narrow-line LINERs appear to be the weaker counterparts of the Type 1 LINERs, where the low accretion rates cause the disappearance of the broad-line component. The enhanced sensitivity of the HST observations reveals a 30% increase in the incidence of accretion-powered systems at z ≈ 0. A comparison of the strength of the broad-line emission detected at different epochs implies potential broad-line variability on a decade-long timescale, with at least a factor of three in amplitude.« less

  5. Carbon and oxygen X-ray line emission from the interstellar medium

    NASA Technical Reports Server (NTRS)

    Schnopper, H. W.; Delvaille, J. P.; Rocchia, R.; Blondel, C.; Cheron, C.; Christy, J. C.; Ducros, R.; Koch, L.; Rothenflug, R.

    1982-01-01

    A soft X-ray, 0.3-1.0 keV spectrum from a 1 sr region which includes a portion of the North Polar Spur, obtained by three rocketborne lithium-drifted silicon detectors, shows the C V, C VI, O VII and O VIII emission lines. The spectrum is well fitted by a two-component, modified Kato (1976) model, where the coronal emission is in collisional equilibrium, with interstellar medium and North Polar Spur temperatures of 1.1 and 3.8 million K, respectively.

  6. 40 CFR Table 36 to Subpart Uuu of... - Work Practice Standards for HAP Emissions From Bypass Lines

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Emissions From Bypass Lines 36 Table 36 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 36 Table 36 to Subpart UUU of Part 63—Work Practice Standards for HAP Emissions From Bypass Lines...

  7. 40 CFR Table 36 to Subpart Uuu of... - Work Practice Standards for HAP Emissions From Bypass Lines

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Emissions From Bypass Lines 36 Table 36 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Pt. 63, Subpt. UUU, Table 36 Table 36 to Subpart UUU of Part 63—Work Practice Standards for HAP Emissions From Bypass Lines...

  8. LHEA contributions to the Future of Ultraviolet Astronomy Based on Six Years of IUE Research

    NASA Technical Reports Server (NTRS)

    Mushotzky, R. F.; Urry, C. M.

    1984-01-01

    Astronomical models of galactic nuclei emission spectra are reassessed in light of ultraviolet and X-ray spectroscopic observations. Spectral analysis of BL Lacertae objects using data collected by the International Ultraviolet Explorer (IUE) and other astronomical observatories is presented.

  9. Metallicity and the level of the ultraviolet rising branch in elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Faber, S. M.

    1986-01-01

    This final report concerns a project to study the systematics of the ultraviolet flux level in elliptical galaxies. Prior to the inception of this work, the systematic behavior of the ultraviolet flux level was basically unknown and ultraviolet fluxes were observed to vary greatly from galaxy to galaxy. There was a suggestion, however, that there might be a dependence of ultraviolet flux on galaxy metallicity, but the correlation was based on just six galaxies. IUE spectra of elliptical galaxies have been reanalyzed and placed on a consistent, homogenous flux system. The major conclusion is a confirmation of the original hypothesis: galaxies with stronger Mg2 lines show enhanced ultraviolet flux.

  10. Emission line shapes produced by dissociative excitation of atmospheric gases

    NASA Technical Reports Server (NTRS)

    Zipf, E. C.; Wells, W. C.

    1980-01-01

    The spectral line shapes of the radiation emitted from O atoms produced by the dissociative excitation of O2, CO, CO2 and NO are investigated. Doppler line shapes are derived from time-of-flight spectra of O (5S0) atoms decaying by the emission of 1356-A radiation after being produced in electron impact experiments at incident electron energies from 25 to 300 eV. It is shown that the effective line width of the radiation is large compared with the Doppler absorption widths of ambient O atoms in both photoelectron and auroral excitation, and thus the dissociatively excited component of the O I 1304-A airglow will behave as though it were optically thin, exhibiting pronounced limb brightening effects and a scale height characteristic of the initial, local source function. It is found that the average kinetic energy of the dissociation fragments inferred from O I (5S) time-of-flight spectra is in good agreement with that of O I (3S) atoms in the electron impact dissociation of CO2, although not for O2. Finally, it is suggested that although electron impact dissociation of CO and CO2 contributes to the 1304-A emission in the upper atmosphere of Venus, it cannot be the dominant source of this radiation since the absolute cross sections for the reaction are too small.

  11. Angular distribution of ions and extreme ultraviolet emission in laser-produced tin droplet plasma

    NASA Astrophysics Data System (ADS)

    Chen, Hong; Wang, Xinbing; Duan, Lian; Lan, Hui; Chen, Ziqi; Zuo, Duluo; Lu, Peixiang

    2015-05-01

    Angular-resolved ion time-of-flight spectra as well as extreme ultraviolet radiation in laser-produced tin droplet plasma are investigated experimentally and theoretically. Tin droplets with a diameter of 150 μm are irradiated by a pulsed Nd:YAG laser. The ion time-of-flight spectra measured from the plasma formed by laser irradiation of the tin droplets are interpreted in terms of a theoretical elliptical Druyvesteyn distribution to deduce ion density distributions including kinetic temperatures of the plasma. The opacity of the plasma for extreme ultraviolet radiation is calculated based on the deduced ion densities and temperatures, and the angular distribution of extreme ultraviolet radiation is expressed as a function of the opacity using the Beer-Lambert law. Our results show that the calculated angular distribution of extreme ultraviolet radiation is in satisfactory agreement with the experimental data.

  12. The physical relation between disc and coronal emission in quasars

    NASA Astrophysics Data System (ADS)

    Lusso, Elisabeta; Risaliti, Guido

    2017-12-01

    We propose a modified version of the observed non-linear relation between the X-ray (2 keV) and the ultraviolet (2500 Å) emission in quasars (i.e. LX ∝ LUV^γ ) which involves the full width at half-maximum, FWHM, of the broad emission line, i.e. LX ∝ L_UV^γ FWHM^β. By analysing a sample of 550 optically selected non-jetted quasars in the redshift range of 0.36–2.23 from the Sloan Digital Sky Survey cross matched with the XMM-Newton catalogue 3XMM-DR6, we found that the additional dependence of the observed LX ‑ LUV correlation on the FWHM of the MgII broad emission line is statistically significant. Our statistical analysis leads to a much tighter relation with respect to the one neglecting FWHM, and it does not evolve with redshift. We interpret this new relation within an accretion disc corona scenario where reconnection and magnetic loops above the accretion disc can account for the production of the primary X-ray radiation. For a broad line region size depending on the disc luminosity as R_blr ∝ L^0.5 , we find that L_X ∝ L_UV^4/7 FWHM^4/7, which is in very good agreement with the observed correlation.

  13. Comet Kohoutek - Ultraviolet images and spectrograms

    NASA Technical Reports Server (NTRS)

    Opal, C. B.; Carruthers, G. R.; Prinz, D. K.; Meier, R. R.

    1974-01-01

    Emissions of atomic oxygen (1304 A), atomic carbon (1657 A), and atomic hydrogen (1216 A) from Comet Kohoutek were observed with ultraviolet cameras carried on a sounding rocket on Jan. 8, 1974. Analysis of the Lyman alpha halo at 1216 A gave an atomic hydrogen production rate of 4.5 x 10 to the 29th atoms per second.

  14. Calibration of a high harmonic spectrometer by laser induced plasma emission.

    PubMed

    Farrell, J P; McFarland, B K; Bucksbaum, P H; Gühr, M

    2009-08-17

    We present a method that allows for a convenient switching between high harmonic generation (HHG) and accurate calibration of the vacuum ultraviolet (VUV) spectrometer used to analyze the harmonic spectrum. The accurate calibration of HHG spectra is becoming increasingly important for the determination of electronic structures. The wavelength of the laser harmonics themselves depend on the details of the harmonic geometry and phase matching, making them unsuitable for calibration purposes. In our calibration mode, the target resides directly at the focus of the laser, thereby enhancing plasma emission and suppressing harmonic generation. In HHG mode, the source medium resides in front or after the focus, showing enhanced HHG and no plasma emission lines. We analyze the plasma emission and use it for a direct calibration of our HHG spectra. (c) 2009 Optical Society of America

  15. Herschel GASPS spectral observations of T Tauri stars in Taurus. Unraveling far-infrared line emission from jets and discs

    NASA Astrophysics Data System (ADS)

    Alonso-Martínez, M.; Riviere-Marichalar, P.; Meeus, G.; Kamp, I.; Fang, M.; Podio, L.; Dent, W. R. F.; Eiroa, C.

    2017-07-01

    Context. At early stages of stellar evolution young stars show powerful jets and/or outflows that interact with protoplanetary discs and their surroundings. Despite the scarce knowledge about the interaction of jets and/or outflows with discs, spectroscopic studies based on Herschel and ISO data suggests that gas shocked by jets and/or outflows can be traced by far-IR (FIR) emission in certain sources. Aims: We want to provide a consistent catalogue of selected atomic ([OI] and [CII]) and molecular (CO, H2O, and OH) line fluxes observed in the FIR, separate and characterize the contribution from the jet and the disc to the observed line emission, and place the observations in an evolutionary picture. Methods: The atomic and molecular FIR (60-190 μm) line emission of protoplanetary discs around 76 T Tauri stars located in Taurus are analysed. The observations were carried out within the Herschel key programme Gas in Protoplanetary Systems (GASPS). The spectra were obtained with the Photodetector Array Camera and Spectrometer (PACS). The sample is first divided in outflow and non-outflow sources according to literature tabulations. With the aid of archival stellar/disc and jet/outflow tracers and model predictions (PDRs and shocks), correlations are explored to constrain the physical mechanisms behind the observed line emission. Results: Outflow sources exhibit brighter atomic and molecular emission lines and higher detection rates than non-outflow sources. The line detection fractions decrease with SED evolutionary status (from Class I to Class III). We find correlations between [OI] 63.18 μm and [OI] 6300 Å, o-H2O 78.74 μm, CO 144.78 μm, OH 79.12+79.18 μm, and the continuum flux at 24 μm. The atomic line ratios can be explain either by fast (Vshock > 50 km s-1) dissociative J-shocks at low densities (n 103 cm-3) occurring along the jet and/or PDR emission (G0 > 102, n 103-106 cm-3). To account for the [CII] absolute fluxes, PDR emission or UV irradiation of

  16. Study of Star Formation Regions with Molecular Hydrogen Emission Lines

    NASA Astrophysics Data System (ADS)

    Pak, Soojong

    The goal of my dissertation is to understand the large-scale, near-infrared (near-IR) H2 emission from the central kiloparsec (kpc) regions of galaxies, and to study the structure and physics of photon-dominated regions (or photodissociation regions, hereafter PDRs). In order to explore the near-IR H2 lines, our group built the University of Texas near-IR Fabry-Perot Spectrometer optimized for observations of extended, low surface brightness sources. In this instrument project, I designed and built a programmable high voltage DC amplifier for the Fabry-Perot piezoelectric transducers, a temperature-controlled cooling box for the Fabry-Perot etalon, instrument control software, and data reduction software. With this instrument, we observed H2 emission lines in the inner 400 pc of the Galaxy, the central ~1 kpc of NGC 253 and M82, and the star formation regions in the Magellanic Clouds. We also observed the Magellanic Clouds in the CO J=1/to0 line. We found that the H2 emission is very extended in the central kpc of the galaxies and is mostly UV-excited. The ratios of the H2 (1,0) S(1) luminosities to the far-IR continuum luminosities in the central kpc regions do not change from the Galactic center to starburst galaxies and to ultraluminous IR bright galaxies. Using the data from the Magellanic Clouds, we studied the microscopic structure of star forming clouds. We compiled data sets including our H2 (1,0) S(1) and CO J=1/to0 results and published (C scII) and far-IR data from the Magellanic Clouds, and compared these observations with models we made using a PDR code and a radiative transfer code. Assuming the cloud is spherical, we derived the physical sizes of H2, (C scII), and CO emission regions. The average cloud size appears to increase as the metallicity decreases. Our results agree with the theory of photoionization-regulated star formation in which the interplay between the ambipolar diffusion and ionization by far-UV photons determines the size of stable

  17. The nuclear region of low luminosity flat radio spectrum sources. II. Emission-line spectra

    NASA Astrophysics Data System (ADS)

    Gonçalves, A. C.; Serote Roos, M.

    2004-01-01

    We report on the spectroscopic study of 19 low luminosity Flat Radio Spectrum (LL FRS) sources selected from Marchã's et al. (\\cite{March96}) 200 mJy sample. In the optical, these objects are mainly dominated by the host galaxy starlight. After correcting the data for this effect, we obtain a new set of spectra clearly displaying weak emission lines; such features carry valuable information concerning the excitation mechanisms at work in the nuclear regions of LL FRS sources. We have used a special routine to model the spectra and assess the intensities and velocities of the emission lines; we have analyzed the results in terms of diagnostic diagrams. Our analysis shows that 79% of the studied objects harbour a Low Ionization Nuclear Emission-line Region (or LINER) whose contribution was swamped by the host galaxy starlight. The remaining objects display a higher ionization spectrum, more typical of Seyferts; due to the poor quality of the spectra, it was not possible to identify any possible large Balmer components. The fact that we observe a LINER-type spectrum in LL FRS sources supports the idea that some of these objects could be undergoing an ADAF phase; in addition, such a low ionization emission-line spectrum is in agreement with the black hole mass values and sub-Eddington accretion rates published for some FRS sources. Based on observations collected at the Multiple Mirror Telescope on Mt. Hopkins. Full Fig. 1 is only available in electronic form at http://www.edpsciences.org

  18. Emission-line studies of young stars. 4: The optical forbidden lines

    NASA Astrophysics Data System (ADS)

    Hamann, Fred

    1994-08-01

    Optical forbidden line strengths and profiles are discussed for a sample of 30 T Tauri stars and 12 Herbig Ae-Be stars. Transitions of (C I), (N II), (O I), (O II), (S II), (Ca II), (Cr II), (Fe II), and (Ni II) are detected. Profile variability occurred in DG Tau and probably other sources. The ensemble profiles can be divided into four generic components that may represent distinct emitting regions; (1) narrow rest-velocity lines, (2) 'low'-velocity lines (peaking at less than or approximately +/- 50 km s-1), (3) 'high'-velocity (usually greater than or approximately +/- 100 km s-1) blueshifted peaks or wings, and (4) high-velocity redshifted peaks. Among T Tauri stars, the rest-velocity lines appear most often in sources with weak and narrow permitted lines, such as the Ca II triplet. The low- and high-velocity blueshifted components usually appear together in sources with strong and broad Ca II triplet lines. If the velocity-shifted lines form in jets, the smallest (full) opening angles required by the profiles are less than or approximately 20 deg for the narrow, blueshifted (Ca II) lines of DG Tau and HL Tau. Other lines in DG Tau are much broader, implying larger opening angles or greater velocity dispersions. The variability in DG Tau also implies significant changes in the collimation or velocity coherence on timescales of a few years. RW Aur and AS 353A have blue- and redshifted line peaks that could form in oppositely directed jets. The strong (S II) lambda 6716 and lambda 6731 lines in RW Aur are exclusively redshifted and require opening angles less than or approximately 60 deg. Measurements of different profiles in the same spectrum show that the physical conditions change with the line-of-sight velocities. The most persistent trends are for more (N II) and (O II) and less (O I) lambda 5577 flux at high velocities. Constraints on the physical conditions are derived by modeling the emission lines via multilevel ions in 'coronal ionization equilibrium

  19. Emission-line studies of young stars. 4: The optical forbidden lines

    NASA Technical Reports Server (NTRS)

    Hamann, Fred

    1994-01-01

    Optical forbidden line strengths and profiles are discussed for a sample of 30 T Tauri stars and 12 Herbig Ae-Be stars. Transitions of (C I), (N II), (O I), (O II), (S II), (Ca II), (Cr II), (Fe II), and (Ni II) are detected. Profile variability occurred in DG Tau and probably other sources. The ensemble profiles can be divided into four generic components that may represent distinct emitting regions; (1) narrow rest-velocity lines, (2) 'low'-velocity lines (peaking at less than or approximately +/- 50 km s(exp -1)), (3) 'high'-velocity (usually greater than or approximately +/- 100 km s(exp -1)) blueshifted peaks or wings, and (4) high-velocity redshifted peaks. Among T Tauri stars, the rest-velocity lines appear most often in sources with weak and narrow permitted lines, such as the Ca II triplet. The low- and high-velocity blueshifted components usually appear together in sources with strong and broad Ca II triplet lines. If the velocity-shifted lines form in jets, the smallest (full) opening angles required by the profiles are less than or approximately 20 deg for the narrow, blueshifted (Ca II) lines of DG Tau and HL Tau. Other lines in DG Tau are much broader, implying larger opening angles or greater velocity dispersions. The variability in DG Tau also implies significant changes in the collimation or velocity coherence on timescales of a few years. RW Aur and AS 353A have blue- and redshifted line peaks that could form in oppositely directed jets. The strong (S II) lambda 6716 and lambda 6731 lines in RW Aur are exclusively redshifted and require opening angles less than or approximately 60 deg. Measurements of different profiles in the same spectrum show that the physical conditions change with the line-of-sight velocities. The most persistent trends are for more (N II) and (O II) and less (O I) lambda 5577 flux at high velocities. Constraints on the physical conditions are derived by modeling the emission lines via multilevel ions in 'coronal ionization

  20. Ionospheric-thermospheric UV tomography: 3. A multisensor technique for creating full-orbit reconstructions of atmospheric UV emission

    NASA Astrophysics Data System (ADS)

    Hei, Matthew A.; Budzien, Scott A.; Dymond, Kenneth F.; Nicholas, Andrew C.; Paxton, Larry J.; Schaefer, Robert K.; Groves, Keith M.

    2017-07-01

    We present the Volume Emission Rate Tomography (VERT) technique for inverting satellite-based, multisensor limb and nadir measurements of atmospheric ultraviolet emission to create whole-orbit reconstructions of atmospheric volume emission rate. The VERT approach is more general than previous ionospheric tomography methods because it can reconstruct the volume emission rate field irrespective of the particular excitation mechanisms (e.g., radiative recombination, photoelectron impact excitation, and energetic particle precipitation in auroras); physical models are then applied to interpret the airglow. The technique was developed and tested using data from the Special Sensor Ultraviolet Limb Imager and Special Sensor Ultraviolet Spectrographic Imager instruments aboard the Defense Meteorological Satellite Program F-18 spacecraft and planned for use with upcoming remote sensing missions. The technique incorporates several features to optimize the tomographic solutions, such as the use of a nonnegative algorithm (Richardson-Lucy, RL) that explicitly accounts for the Poisson statistics inherent in optical measurements, capability to include extinction effects due to resonant scattering and absorption of the photons from the lines of sight, a pseudodiffusion-based regularization scheme implemented between iterations of the RL code to produce smoother solutions, and the capability to estimate error bars on the solutions. Tests using simulated atmospheric emissions verify that the technique performs well in a variety of situations, including daytime, nighttime, and even in the challenging terminator regions. Lastly, we consider ionospheric nightglow and validate reconstructions of the nighttime electron density against Advanced Research Project Agency (ARPA) Long-range Tracking and Identification Radar (ALTAIR) incoherent scatter radar data.

  1. Angular distribution of ions and extreme ultraviolet emission in laser-produced tin droplet plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hong; Duan, Lian; Lan, Hui

    Angular-resolved ion time-of-flight spectra as well as extreme ultraviolet radiation in laser-produced tin droplet plasma are investigated experimentally and theoretically. Tin droplets with a diameter of 150 μm are irradiated by a pulsed Nd:YAG laser. The ion time-of-flight spectra measured from the plasma formed by laser irradiation of the tin droplets are interpreted in terms of a theoretical elliptical Druyvesteyn distribution to deduce ion density distributions including kinetic temperatures of the plasma. The opacity of the plasma for extreme ultraviolet radiation is calculated based on the deduced ion densities and temperatures, and the angular distribution of extreme ultraviolet radiation is expressedmore » as a function of the opacity using the Beer–Lambert law. Our results show that the calculated angular distribution of extreme ultraviolet radiation is in satisfactory agreement with the experimental data.« less

  2. The red and green lines of atomic oxygen in the nightglow of Venus

    NASA Technical Reports Server (NTRS)

    Fox, J. L.

    1990-01-01

    O(1D) and O(1S), the excited states that give rise to the atomic oxygen red and green lines, are produced in the Venus nightglow in dissociative recombination of O2(+). The emissions should also be excited by precipitation of soft electrons, the suggested source of the 'auroral' emission features of atomic oxygen at 1304 and 1356 A, which have been reported from observations of the Pioneer Venus Orbiter Ultraviolet Spectrometer. No emisison at 6300 or 5577 A was detected, however, by the visible spectrophotometers on the Soviet spacecraft Veneras 9 and 10; upper limits have been placed on the intensities of these features. The constraints placed on models for the auroral production mechanism by the Venera upper limits by modeling the intensities of the red and green lines in the nightglow are evaluated, combining a model for the vibrational distribution of O2(+) on the nightside of Venus with rate coefficients recently computed by Guberman for production of O(1S) and O(1D) in dissociative recombination of O2(+) from different vibrational levels. The integrated overhead intensities are 1 - 2 R for the green line and about 46 R for the red line.

  3. Calibration of the Voyager Ultraviolet Spectrometers and the Composition of the Heliosphere Neutrals: Reassessment

    NASA Astrophysics Data System (ADS)

    Ben-Jaffel, Lotfi; Holberg, J. B.

    2016-06-01

    The data harvest from the Voyagers’ (V 1 and V 2) Ultraviolet Spectrometers (UVS) covers encounters with the outer planets, measurements of the heliosphere sky-background, and stellar spectrophotometry. Because their period of operation overlaps with many ultraviolet missions, the calibration of V1 and V2 UVS with other spectrometers is invaluable. Here we revisit the UVS calibration to assess the intriguing sensitivity enhancements of 243% (V1) and 156% (V2) proposed recently. Using the Lyα airglow from Saturn, observed in situ by both Voyagers, and remotely by International Ultraviolet Explorer (IUE), we match the Voyager values to IUE, taking into account the shape of the Saturn Lyα line observed with the Goddard High Resolution Spectrograph on board the Hubble Space Telescope. For all known ranges of the interplanetary hydrogen density, we show that the V1 and V2 UVS sensitivities cannot be enhanced by the amounts thus far proposed. The same diagnostic holds for distinct channels covering the diffuse He I 58.4 nm emission. Our prescription is to keep the original calibration of the Voyager UVS with a maximum uncertainty of 30%, making both instruments some of the most stable EUV/FUV spectrographs in the history of space exploration. In that frame, we reassess the excess Lyα emission detected by Voyager UVS deep in the heliosphere, to show its consistency with a heliospheric but not galactic origin. Our finding confirms results obtained nearly two decades ago—namely, the UVS discovery of the distortion of the heliosphere and the corresponding obliquity of the local interstellar magnetic field (˜ 40^\\circ from upwind) in the solar system neighborhood—without requiring any revision of the Voyager UVS calibration.

  4. CO line emission from galaxies in the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Vallini, L.; Pallottini, A.; Ferrara, A.; Gallerani, S.; Sobacchi, E.; Behrens, C.

    2018-01-01

    We study the CO line luminosity (LCO), the shape of the CO spectral line energy distribution (SLED), and the value of the CO-to-H2 conversion factor in galaxies in the Epoch of Reionization (EoR). For this aim, we construct a model that simultaneously takes into account the radiative transfer and the clumpy structure of giant molecular clouds (GMCs) where the CO lines are excited. We then use it to post-process state-of-the-art zoomed, high resolution (30 pc), cosmological simulation of a main-sequence (M* ≈ 1010 M⊙, SFR ≈ 100 M⊙ yr- 1) galaxy, 'Althæa', at z ≈ 6. We find that the CO emission traces the inner molecular disc (r ≈ 0.5 kpc) of Althæa with the peak of the CO surface brightness co-located with that of the [C II] 158 μm emission. Its LCO(1-0) = 104.85 L⊙ is comparable to that observed in local galaxies with similar stellar mass. The high (Σgas ≈ 220 M⊙ pc- 2) gas surface density in Althæa, its large Mach number (M ≈ 30) and the warm kinetic temperature (Tk ≈ 45 K) of GMCs yield a CO SLED peaked at the CO(7-6) transition, i.e. at relatively high-J and a CO-to-H2 conversion factor α _CO≈ 1.5 M_{⊙} (K km s^{-1} pc^2)^{-1} lower than that of the Milky Way. The Atacama Large Millimeter/submillimeter Array observing time required to detect (resolve) at 5σ the CO(7-6) line from galaxies similar to Althæa is ≈13 h (≈38 h).

  5. Explosive Events in the Quiet Sun: Extreme Ultraviolet Imaging Spectroscopy Instrumentation and Observations

    NASA Astrophysics Data System (ADS)

    Rust, Thomas Ludwell

    Explosive event is the name given to slit spectrograph observations of high spectroscopic velocities in solar transition region spectral lines. Explosive events show much variety that cannot yet be explained by a single theory. It is commonly believed that explosive events are powered by magnetic reconnection. The evolution of the line core appears to be an important indicator of which particular reconnection process is at work. The Multi-Order Solar Extreme Ultraviolet Spectrograph (MOSES) is a novel slitless spectrograph designed for imaging spectroscopy of solar extreme ultraviolet (EUV) spectral lines. The spectrograph design forgoes a slit and images instead at three spectral orders of a concave grating. The images are formed simultaneously so the resulting spatial and spectral information is co-temporal over the 20' x 10' instrument field of view. This is an advantage over slit spectrographs which build a field of view one narrow slit at a time. The cost of co-temporal imaging spectroscopy with the MOSES is increased data complexity relative to slit spectrograph data. The MOSES data must undergo tomographic inversion for recovery of line profiles. I use the unique data from the MOSES to study transition region explosive events in the He ii 304 A spectral line. I identify 41 examples of explosive events which include 5 blue shifted jets, 2 red shifted jets, and 10 bi-directional jets. Typical doppler speeds are approximately 100kms-1. I show the early development of one blue jet and one bi-directional jet and find no acceleration phase at the onset of the event. The bi-directional jets are interesting because they are predicted in models of Petschek reconnection in the transition region. I develop an inversion algorithm for the MOSES data and test it on synthetic observations of a bi-directional jet. The inversion is based on a multiplicative algebraic reconstruction technique (MART). The inversion successfully reproduces synthetic line profiles. I then use

  6. Photon scattering in the solar ultraviolet lines of HeI and HeII

    NASA Astrophysics Data System (ADS)

    Jordan, C.; Smith, G. R.; Houdebine, E. R.

    2005-09-01

    Observations made with the Coronal Diagnostic Spectrometer (CDS) onboard the Solar and Heliospheric Observatory (SOHO) are used to investigate the behaviour of the intensities of the emission lines of HeI, HeII and OIII at the quiet Sun-centre and at θ= 60° towards the equatorial limb. The aim is to examine the possible effects of photon scattering on the spatial variation of the optically thick helium lines. At the quiet Sun-centre, we find that, in agreement with previous work, the ratios of the intensities of the HeI 584-Åand HeII 304-Ålines to those of the OIII 600-Åline decrease systematically as the intensity of the OIII line increases. However, we find that the dependence of these ratios on the OIII intensity is not unique, but differs between the individual regions studied. Similar results are found at θ= 60°. We have also used line intensities and intensity ratios to investigate limb-to-disc effects and variations across a sample of supergranulation cell boundaries and adjacent cell interiors at both locations. The results do not exclude photon scattering as the cause of the larger observed ratios in cell interiors. The differences between the apparent widths of boundaries in OIII at Sun-centre and 60° show that the emitting material is extended in height, which will aid the process of scattering into cell interiors. Photon scattering could also account for the lack of oscillations in the HeI intensities in a cell interior studied by Pietarila & Judge. Three-dimensional radiative transfer calculations in chosen geometries are now needed to account for the observations in detail.

  7. 40 CFR 1042.320 - What happens if one of my production-line engines fails to meet emission standards?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-line engines fails to meet emission standards? 1042.320 Section 1042.320 Protection of Environment... if one of my production-line engines fails to meet emission standards? (a) If you have a production....315(a)), the certificate of conformity is automatically suspended for that failing engine. You must...

  8. 40 CFR 1042.320 - What happens if one of my production-line engines fails to meet emission standards?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-line engines fails to meet emission standards? 1042.320 Section 1042.320 Protection of Environment... if one of my production-line engines fails to meet emission standards? (a) If you have a production....315(a)), the certificate of conformity is automatically suspended for that failing engine. You must...

  9. 40 CFR 1042.320 - What happens if one of my production-line engines fails to meet emission standards?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-line engines fails to meet emission standards? 1042.320 Section 1042.320 Protection of Environment... if one of my production-line engines fails to meet emission standards? (a) If you have a production....315(a)), the certificate of conformity is automatically suspended for that failing engine. You must...

  10. Nebular and auroral emission lines of [Cl iii] in the optical spectra of planetary nebulae

    PubMed Central

    Keenan, Francis P.; Aller, Lawrence H.; Ramsbottom, Catherine A.; Bell, Kenneth L.; Crawford, Fergal L.; Hyung, Siek

    2000-01-01

    Electron impact excitation rates in Cl III, recently determined with the R-matrix code, are used to calculate electron temperature (Te) and density (Ne) emission line ratios involving both the nebular (5517.7, 5537.9 Å) and auroral (8433.9, 8480.9, 8500.0 Å) transitions. A comparison of these results with observational data for a sample of planetary nebulae, obtained with the Hamilton Echelle Spectrograph on the 3-m Shane Telescope, reveals that the R1 = I(5518 Å)/I(5538 Å) intensity ratio provides estimates of Ne in excellent agreement with the values derived from other line ratios in the echelle spectra. This agreement indicates that R1 is a reliable density diagnostic for planetary nebulae, and it also provides observational support for the accuracy of the atomic data adopted in the line ratio calculations. However the [Cl iii] 8433.9 Å line is found to be frequently blended with a weak telluric emission feature, although in those instances when the [Cl iii] intensity may be reliably measured, it provides accurate determinations of Te when ratioed against the sum of the 5518 and 5538 Å line fluxes. Similarly, the 8500.0 Å line, previously believed to be free of contamination by the Earth's atmosphere, is also shown to be generally blended with a weak telluric emission feature. The [Cl iii] transition at 8480.9 Å is found to be blended with the He i 8480.7 Å line, except in planetary nebulae that show a relatively weak He i spectrum, where it also provides reliable estimates of Te when ratioed against the nebular lines. Finally, the diagnostic potential of the near-UV [Cl iii] lines at 3344 and 3354 Å is briefly discussed. PMID:10759562

  11. Mutation and repair in an ultraviolet-sensitive Chinese hamster ovary cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, R.D.

    1981-11-01

    An ultraviolet (UV) light-sensitive mutant of Chinese hamster ovary cells (CHO) has been isolated and characterized with respect to a number of post-irradiation responses. The UV-sensitive mutant, termed 43-3B, has the same growth rate and chromosome number as the wild-type CHO-9. 43-3B is hypersensitive to the lethal effects of UV light (D/sub 0/ of 0.3 J/m/sup 2/ as compared to 3.2 J/m/sup 2/ for the wild-type). A marked UV-hypermutability is observed in 43-3B as compared to the wild-type, as measured with markers for induced resistance to 6-thioguanine, ouabain, and diphtheria toxin. A factor of 38 to 65 more mutations aremore » induced per unit fluence in 43-3B than in CHO-9. The UV-sensitive mutant is also sensitive to killing by simulated solar light, although the D/sub 0/ ratio is not as great as for germicidal UV. 43-3B exhibits only about 17% of the wild-type level of UV-stimulated DNA repair synthesis, as measured by autoradiography of G/sub 1/ phase cells. A much reduced ability to recover control rates of semiconservative DNA synthesis after UV irradiation was observed in the repair-deficient 43-3B cell line. Recovery of colony-forming ability between fractionated UV exposures was observed in the wild-type CHO-9, but little recovery was seen in 43-3B. The present investigation demonstrates that a sensitive/wild-type pair of CHO cell lines can be used in comparative studies to determine the involvement of repair in a wide range of post-irradiation phenomena.« less

  12. Evidence for Doppler-Shifted Iron Emission Lines in Black Hole Candidate 4U 1630-47

    NASA Technical Reports Server (NTRS)

    Cui, Wei; Chen, Wan; Zhang, Shuang Nan

    2000-01-01

    We report the first detection of a pair of correlated the X-ray spectrum of black hole candidate 4U 1630-47 outburst, based on Rossi X-Ray Timing Explorer (RXTE) emission lines in during its 1996 observations of the source. At the peak plateau of the outburst, the emission lines are detected, centered mostly at approx. 5.7 and approx. 7.7 keV, respectively, while the line energies exhibit random variability approx. 5%. Interestingly, the lines move in a concerted manner to keep their separation roughly constant. The lines also vary greatly in strength, but with the lower energy line always much stronger than the higher energy one. The measured equivalent width ranges from approx. 50 to approx. 270 eV for the former, and from insignificant detection to approx. 140 eV for the latter; the two are reasonably correlated. The correlation between the lines implies a causal connection; perhaps they share a common origin. Both lines may arise from a single K & alpha; line of highly ionized iron that is Doppler shifted either in a Keplerian accretion disk or in a bipolar outflow or even both. In both scenarios, a change in the line energy might simply reflect a change in the ionization state of line-emitting matter. We discuss the implication of the results and also raise some questions about such interpretations.

  13. The O IV and S IV intercombination lines in solar and stellar ultraviolet spectra

    NASA Technical Reports Server (NTRS)

    Cook, J. W.; Keenan, F. P.; Dufton, P. L.; Kingston, A. E.; Pradhan, A. K.; Zhang, H. L.; Doyle, J. G.; Hayes, M. A.

    1995-01-01

    New calculations of O IV electron density diagnostic emission-line ratios involving the 1399.8, 1401.2, 1404.8, and 14076.4 A transitions are presented. A comparison of these calculations with observational data from a quiet solar region, a sunspot, and an active region obtained with the High Resolution Telescope and Spectrograph (HRTS), two flares observed with the SO82B spectrograph on board Skylab, and Hubble Space Telescope (HST) observations by the Goddard High Resolution Spectrograph (GHRS) of Capella, gives good results using the ratio R(sub 1) = I(1407.4 A)/I(1401.2 A). However, the electron density obtained using the ratio R(sub 2) = I(1407.4 A)/I(1404.8 A) is often an order of magnitude smaller. The O IV 1404.8 A line is blended with the S IV 1404.8 A line, and we investigate whether this ratio may still be used as a density diagnostic if the S IV 1406.1 A line intensity is used to correct for the presence of S IV 1404.8 A, using previous S IV calculations by Dufton et al. We still find systematic differences compared to density determinations from line ratios that do not involve the O IV 1404.8 A line, which we suggest are due to errors in earlier theoretical calculations of the S IV atomic data, and also possibly to previously unconsidered fluorescent pumping of the upper level of the S IV 1404.8 A transition.

  14. Demonstration of transverse-magnetic deep-ultraviolet stimulated emission from AlGaN multiple-quantum-well lasers grown on a sapphire substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiao-Hang, E-mail: xli@gatech.edu, E-mail: dupuis@gatech.edu; Kao, Tsung-Ting; Satter, Md. Mahbub

    2015-01-26

    We demonstrate transverse-magnetic (TM) dominant deep-ultraviolet (DUV) stimulated emission from photo-pumped AlGaN multiple-quantum-well lasers grown pseudomorphically on an AlN/sapphire template by means of photoluminescence at room temperature. The TM-dominant stimulated emission was observed at wavelengths of 239, 242, and 243 nm with low thresholds of 280, 250, and 290 kW/cm{sup 2}, respectively. In particular, the lasing wavelength of 239 nm is shorter compared to other reports for AlGaN lasers grown on foreign substrates including sapphire and SiC. The peak wavelength difference between the transverse-electric (TE)-polarized emission and TM-polarized emission was approximately zero for the lasers in this study, indicating the crossover of crystal-fieldmore » split-off hole and heavy-hole valence bands. The rapid variation of polarization between TE- and TM-dominance versus the change in lasing wavelength from 243 to 249 nm can be attributed to a dramatic change in the TE-to-TM gain coefficient ratio for the sapphire-based DUV lasers in the vicinity of TE-TM switch.« less

  15. The Origins of [C ii] Emission in Local Star-forming Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croxall, K. V.; Smith, J. D.; Pellegrini, E.

    The [C ii] 158 μ m fine-structure line is the brightest emission line observed in local star-forming galaxies. As a major coolant of the gas-phase interstellar medium, [C ii] balances the heating, including that due to far-ultraviolet photons, which heat the gas via the photoelectric effect. However, the origin of [C ii] emission remains unclear because C{sup +} can be found in multiple phases of the interstellar medium. Here we measure the fractions of [C ii] emission originating in the ionized and neutral gas phases of a sample of nearby galaxies. We use the [N ii] 205 μ m fine-structuremore » line to trace the ionized medium, thereby eliminating the strong density dependence that exists in the ratio of [C ii]/[N ii] 122 μ m. Using the FIR [C ii] and [N ii] emission detected by the KINGFISH (Key Insights on Nearby Galaxies: a Far- Infrared Survey with Herschel ) and Beyond the Peak Herschel programs, we show that 60%–80% of [C ii] emission originates from neutral gas. We find that the fraction of [C ii] originating in the neutral medium has a weak dependence on dust temperature and the surface density of star formation, and has a stronger dependence on the gas-phase metallicity. In metal-rich environments, the relatively cooler ionized gas makes substantially larger contributions to total [C ii] emission than at low abundance, contrary to prior expectations. Approximate calibrations of this metallicity trend are provided.« less

  16. Inferring Nighttime Ionospheric Parameters with the Far Ultraviolet Imager Onboard the Ionospheric Connection Explorer

    NASA Astrophysics Data System (ADS)

    Kamalabadi, Farzad; Qin, Jianqi; Harding, Brian J.; Iliou, Dimitrios; Makela, Jonathan J.; Meier, R. R.; England, Scott L.; Frey, Harald U.; Mende, Stephen B.; Immel, Thomas J.

    2018-06-01

    The Ionospheric Connection Explorer (ICON) Far Ultraviolet (FUV) imager, ICON FUV, will measure altitude profiles of OI 135.6 nm emissions to infer nighttime ionospheric parameters. Accurate estimation of the ionospheric state requires the development of a comprehensive radiative transfer model from first principles to quantify the effects of physical processes on the production and transport of the 135.6 nm photons in the ionosphere including the mutual neutralization contribution as well as the effect of resonant scattering by atomic oxygen and pure absorption by oxygen molecules. This forward model is then used in conjunction with a constrained optimization algorithm to invert the anticipated ICON FUV line-of-sight integrated measurements. In this paper, we describe the connection between ICON FUV measurements and the nighttime ionosphere, along with the approach to inverting the measured emission profiles to derive the associated O+ profiles from 150-450 km in the nighttime ionosphere that directly reflect the electron density in the F-region of the ionosphere.

  17. Emission-line diagnostics of nearby H II regions including interacting binary populations

    NASA Astrophysics Data System (ADS)

    Xiao, Lin; Stanway, Elizabeth R.; Eldridge, J. J.

    2018-06-01

    We present numerical models of the nebular emission from H II regions around young stellar populations over a range of compositions and ages. The synthetic stellar populations include both single stars and interacting binary stars. We compare these models to the observed emission lines of 254 H II regions of 13 nearby spiral galaxies and 21 dwarf galaxies drawn from archival data. The models are created using the combination of the BPASS (Binary Population and Spectral Synthesis) code with the photoionization code CLOUDY to study the differences caused by the inclusion of interacting binary stars in the stellar population. We obtain agreement with the observed emission line ratios from the nearby star-forming regions and discuss the effect of binary-star evolution pathways on the nebular ionization of H II regions. We find that at population ages above 10 Myr, single-star models rapidly decrease in flux and ionization strength, while binary-star models still produce strong flux and high [O III]/H β ratios. Our models can reproduce the metallicity of H II regions from spiral galaxies, but we find higher metallicities than previously estimated for the H II regions from dwarf galaxies. Comparing the equivalent width of H β emission between models and observations, we find that accounting for ionizing photon leakage can affect age estimates for H II regions. When it is included, the typical age derived for H II regions is 5 Myr from single-star models, and up to 10 Myr with binary-star models. This is due to the existence of binary-star evolution pathways, which produce more hot Wolf-Rayet and helium stars at older ages. For future reference, we calculate new BPASS binary maximal starburst lines as a function of metallicity, and for the total model population, and present these in Appendix A.

  18. X-ray Emission Line Anisotropy Effects on the Isoelectronic Temperature Measurement Method

    NASA Astrophysics Data System (ADS)

    Liedahl, Duane; Barrios, Maria; Brown, Greg; Foord, Mark; Gray, William; Hansen, Stephanie; Heeter, Robert; Jarrott, Leonard; Mauche, Christopher; Moody, John; Schneider, Marilyn; Widmann, Klaus

    2016-10-01

    Measurements of the ratio of analogous emission lines from isoelectronic ions of two elements form the basis of the isoelectronic method of inferring electron temperatures in laser-produced plasmas, with the expectation that atomic modeling errors cancel to first order. Helium-like ions are a common choice in many experiments. Obtaining sufficiently bright signals often requires sample sizes with non-trivial line optical depths. For lines with small destruction probabilities per scatter, such as the 1s2p-1s2 He-like resonance line, repeated scattering can cause a marked angular dependence in the escaping radiation. Isoelectronic lines from near-Z equimolar dopants have similar optical depths and similar angular variations, which leads to a near angular-invariance for their line ratios. Using Monte Carlo simulations, we show that possible ambiguities associated with anisotropy in deriving electron temperatures from X-ray line ratios are minimized by exploiting this isoelectronic invariance.

  19. [Effect of long-wave ultraviolet light (UV-A) and medium-wave ultraviolet rays (UV-B) on human skin. Critical comparison].

    PubMed

    Raab, W

    1980-04-15

    When discussing the effects of ultraviolet radiation on human skin, one should carefully distinguish between the long wave ultraviolet light (UV-A) and the short wave radiations (UV-B and UV-C). Ultraviolet A induces immediate pigmentation but, if high energies are applied, a permanent pigmentation is elicited. This type of ultraviolet A-induced pigmentation has been called "spontaneous" pigmentation as no erythematous reaction is necessary to induce or accelerate melanine formation. Ultraviolet B provokes erythema and consecutive pigmentation. Upon chronic exposure, ultraviolet B causes the wellknown actinic damage of the skin and even provokes carcinoma. With exposures to the sunlight (global radiation), one should be most careful. The public must be informed extensively about the dangers of excessive sunbaths. The use of artificial "suns" with spectra between 260 and 400 nm is limited as it may cause the same type of damage as the global radiation. An exact schedule for use of artificial lamps is strongly recommended. After one cycle of exposures, an interruption is necessary until the next cycle of irradiations may start. Upon continual use for tanning of the skin, artificial lamps may provoke irreversible damage of the skin. Radiation sources with emission spectra of wavelengths between 315 and 400 nm exclusively are well suited for the induction of skin pigmentation (cosmetic use). Potent radiation such as UVASUN systems provoke a "pleasant" permanent pigmentation after exposures for less than one hour. The use of ultraviolet A (UV-A) does not carry any risk for the human skin.

  20. IUE observations of the Henize-Carlson sample of peculiar emission line supergiants: The galactic analogs of the Magellanic Zoo

    NASA Technical Reports Server (NTRS)

    Shore, Steven N.; Brown, Douglas N.; Sanduleak, N.

    1986-01-01

    Some 15 stars from the Carlson-Henize survey of southern peculiar emission line stars were studied. From both the optical and UV spectra, they appear to be galactic counterparts of the most extreme early-type emission line supergiants of the Magellanic Clouds.