Sample records for ultraviolet light illumination

  1. Light-induced absorption and its relaxation under illumination of continuous wave ultraviolet light in Mn-doped near-stoichiometric LiNbO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Youwen; Kitamura, Kenji; Takekawa, Shunji

    2005-04-01

    The steady-state light-induced absorption and the temporal relaxation behavior under illumination of cw ultraviolet light in Mn-doped near-stoichiometric LiNbO{sub 3} with different crystal compositions are investigated. The ultraviolet-light-induced absorption has been assigned to small polarons Nb{sub Li}{sup 4+} by measuring the absorption spectra at room temperature. The dependences of relaxation behaviors (time constant and stretching factor) of light-induced absorption on various illumination conditions (intensity, polarization) and temperature are presented, which are very different from those observed in Fe-doped LiNbO{sub 3} illuminated with highly intense light pulse, though the temporal relaxation follows the same stretched-exponential decay behavior in both cases. Themore » results are explained reasonably by using the model of distance-dependent electron transition probabilities between localized deep traps and small polarons without any additional assumptions, and discussed to tailor doped near-stoichiometric LiNbO{sub 3} crystals for two-color holographic recording with cw laser light.« less

  2. Novel cylindrical illuminator tip for ultraviolet light delivery

    NASA Astrophysics Data System (ADS)

    Shangguan, HanQun; Haw, Thomas E.; Gregory, Kenton W.; Casperson, Lee W.

    1993-06-01

    The design, processing, and sequential testing of a novel cylindrical diffusing optical fiber tip for ultraviolet light delivery is described. This device has been shown to uniformly (+/- 15%) illuminate angioplasty balloons, 20 mm in length, that are used in an experimental photochemotherapeutic treatment of swine intimal hyperplasia. Our experiments show that uniform diffusing tips of < 400 micron diameter can be reliably constructed for this and other interstitial applications. Modeling results indicate that this design is scalable to smaller diameters. The diffusing tips are made by stripping the protective buffer and etching away the cladding over a length of 20 mm from the fiber tip and replacing it with a thin layer of optical epoxy mixed with Al2O3 powder. To improve the uniformity and ease of fabrication, we have evaluated a new device configuration where the tip is etched into a modified conical shape, and the distal end face is polished and then coated with an optically opaque epoxy. This is shown to uniformly scatter approximately 70% of the light launched into the fiber without forward transmission.

  3. Light transmission and ultraviolet protection of contact lenses under artificial illumination.

    PubMed

    Artigas, José M; Navea, Amparo; García-Domene, M Carmen; Gené, Andrés; Artigas, Cristina

    2016-04-01

    To determine the spectral transmission of contact lenses (CLs), with and without an ultraviolet (UV) filter to evaluate their capacity for protection under UV radiation from artificial illumination (incandescent, fluorescent, xenon (Xe) lamps, or white LEDs (light-emitting diode)). The transmission curves of nine soft CLs were obtained by using a PerkinElmer Lambda 35 UV-vis spectrophotometer. A CIE standard was used for the emission spectra of incandescent and fluorescent lamps, and Xe lamps and white LEDs were measured by using an International Light Technologies ILT-950 spectroradiometer. Five of the nine soft CLs analysed state that they incorporate UV filters, but the other four do not specify anything in this regard. The spectral transmission of all the CLs studied is excellent in the visible region. The CLs with UV filters filter out this radiation more or less effectively. Xe lamps emit a part in the UV region. Incandescent, fluorescent and white LEDs do not emit at all in the UV. Incorporating UV filters is important when the illumination is from a Xe lamp since this light source emits in the UV region. This, however, does not occur with incandescent and fluorescent lamps or white LEDs. The CLs that do incorporate UV filters meet all the standard requirements that the U.S. FDA (Food and Drug Administration) has for UV-blocking CLs Class II (OcularScience, CooperVision and Neolens), and AcuvueMoist and HydronActifresh400 even comply with the stricter Class I. The CLs without UV filters let UVA, UVB and even some UVC through. Copyright © 2015. Published by Elsevier Ltd.

  4. MAHLI Calibration Target in Ultraviolet Light

    NASA Image and Video Library

    2012-02-07

    During pre-flight testing in March 2011, the Mars Hand Lens Imager MAHLI camera on NASA Mars rover Curiosity took this image of the MAHLI calibration target under illumination from MAHLI two ultraviolet LEDs light emitting diodes.

  5. Stimulation of hair cells with ultraviolet light

    NASA Astrophysics Data System (ADS)

    Azimzadeh, Julien B.; Fabella, Brian A.; Hudspeth, A. J.

    2018-05-01

    Hair bundles are specialized organelles that transduce mechanical inputs into electrical outputs. To activate hair cells, physiologists have resorted to mechanical methods of hair-bundle stimulation. Here we describe a new method of hair-bundle stimulation, irradiation with ultraviolet light. A hair bundle illuminated by ultraviolet light rapidly moves towards its tall edge, a motion typically associated with excitatory stimulation. The motion disappears upon tip-link rupture and is associated with the opening of mechanotransduction channels. Hair bundles can be induced to move sinusoidally with oscillatory modulation of the stimulation power. We discuss the implications of ultraviolet stimulation as a novel hair-bundle stimulus.

  6. Photo-oxidation of polymer-like amorphous hydrogenated carbon under visible light illumination

    DOE PAGES

    Baxamusa, Salmaan; Laurence, Ted; Worthington, Matthew; ...

    2015-11-10

    Amorphous hydrogenated carbon (a-C:H), a polymer-like network typically synthesized by plasma chemical vapor deposition, has long been understood to exhibit optical absorption of visible light (λ > 400 nm). In this report we explain that this absorption is accompanied by rapid photo-oxidation (within minutes) that behaves in most respects like classic polymer photo-oxidation with the exception that it occurs under visible light illumination rather than ultraviolet illumination.

  7. Natural light illumination system.

    PubMed

    Whang, Allen Jong-Woei; Chen, Yi-Yung; Yang, Shu-Hua; Pan, Po-Hsuan; Chou, Kao-Hsu; Lee, Yu-Chi; Lee, Zong-Yi; Chen, Chi-An; Chen, Cheng-Nan

    2010-12-10

    In recent years, green energy has undergone a lot of development and has been the subject of many applications. Many research studies have focused on illumination with sunlight as a means of saving energy and creating healthy lighting. Natural light illumination systems have collecting, transmitting, and lighting elements. Today, most daylight collectors use dynamic concentrators; these include Sun tracking systems. However, this design is too expensive to be cost effective. To create a low-cost collector that can be easily installed on a large building, we have designed a static concentrator, which is prismatic and cascadable, to collect sunlight for indoor illumination. The transmission component uses a large number of optical fibers. Because optical fibers are expensive, this means that most of the cost for the system will be related to transmission. In this paper, we also use a prismatic structure to design an optical coupler for coupling n to 1. With the n-to-1 coupler, the number of optical fibers necessary can be greatly reduced. Although this new natural light illumination system can effectively guide collected sunlight and send it to the basement or to other indoor places for healthy lighting, previously there has been no way to manage the collected sunlight when lighting was not desired. To solve this problem, we have designed an optical switch and a beam splitter to control and separate the transmitted light. When replacing traditional sources, the lighting should have similar characteristics, such as intensity distribution and geometric parameters, to those of traditional artificial sources. We have designed, simulated, and optimized an illumination lightpipe with a dot pattern to redistribute the collected sunlight from the natural light illumination system such that it equals the qualities of a traditional lighting system. We also provide an active lighting module that provides lighting from the natural light illumination system or LED auxiliary

  8. Extending the use of ultraviolet light for fruit quality sorting in citrus packinghouses

    USDA-ARS?s Scientific Manuscript database

    Illumination with ultraviolet light (UV) is commonly used in citrus packinghouses as a means to aid in the identification and removal of decayed oranges from the packline. This technique is effective because areas of decay strongly fluoresce under UV illumination. It was observed that oranges often ...

  9. MAHLI First Night Imaging of Martian Rock Under Ultraviolet Lighting

    NASA Image and Video Library

    2013-01-24

    This image of a Martian rock dubbed Sayunei is illuminated by ultraviolet LEDs light emitting diodes is part of the first set of nighttime images taken by the Mars Hand Lens Imagery camera at the end of the robotic arm of NASA Mars rover Curiosity.

  10. Formation of the thioester, N,S-diacetylcysteine, from acetaldehyde and N,N'-diacetylcystine in aqueous solution with ultraviolet light

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1981-01-01

    The thioester, N,S-diacetylcysteine, is formed during the illumination of phosphate buffered (pH 7.0) aqueous solutions of acetaldehyde and N,N'-diacetylcystine with ultraviolet light. The yield of N,S-diacetylcysteine relative to N-acetylcysteine and unidentified products progressively increases as ultraviolet light below 239 nm, 253 nm and 281 nm is cut off with optical filters. When ultraviolet light below 320 nm is removed with an optical filter, there is no detectable reaction. Illumination of 0.025 M N,N'-diacetylcystine with 0.5 M and 1.0 M acetaldehyde with filtered ultraviolet light gives, respectively, 20% and 80% yields of N,S-diacetylcysteine. In the reaction with 1.0 M acetaldehyde, N-acetylcysteine forms early in the reaction and later decreases with its conversion to N,S-diacetylcysteine. The prebiotic significance of these reactions is discussed.

  11. Hybrid daylight/light-emitting diode illumination system for indoor lighting.

    PubMed

    Ge, Aiming; Qiu, Peng; Cai, Jinlin; Wang, Wei; Wang, Junwei

    2014-03-20

    A hybrid illumination method using both daylight and light-emitting diodes (LEDs) for indoor lighting is presented in this study. The daylight can be introduced into the indoor space by a panel-integration system. The daylight part and LEDs are combined within a specific luminaire that can provide uniform illumination. The LEDs can be turned on and dimmed through closed-loop control when the daylight illuminance is inadequate. We simulated the illumination and calculated the indoor lighting efficiency of our hybrid daylight and LED lighting system, and compared this with that of LED and fluorescent lighting systems. Simulation results show that the efficiency of the hybrid daylight/LED illumination method is better than that of LED and traditional lighting systems, under the same lighting conditions and lighting time; the method has hybrid lighting average energy savings of T5 66.28%, and that of the LEDs is 41.62%.

  12. 32 CFR 707.10 - Wake illumination light.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Wake illumination light. 707.10 Section 707.10... RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.10 Wake illumination light. Naval vessels may display a white spot light located near the stern to illuminate the wake. ...

  13. 32 CFR 707.10 - Wake illumination light.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Wake illumination light. 707.10 Section 707.10... RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.10 Wake illumination light. Naval vessels may display a white spot light located near the stern to illuminate the wake. ...

  14. 32 CFR 707.10 - Wake illumination light.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Wake illumination light. 707.10 Section 707.10... RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.10 Wake illumination light. Naval vessels may display a white spot light located near the stern to illuminate the wake. ...

  15. 32 CFR 707.10 - Wake illumination light.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Wake illumination light. 707.10 Section 707.10... RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.10 Wake illumination light. Naval vessels may display a white spot light located near the stern to illuminate the wake. ...

  16. Illumination control apparatus for compensating solar light

    NASA Technical Reports Server (NTRS)

    Owens, L. J. (Inventor)

    1978-01-01

    An illumination control apparatus is presented for supplementing light from solar radiation with light from an artificial light source to compensate for periods of insufficient levels of solar light. The apparatus maintains a desired illumination level within an interior space comprising an artificial light source connected to an electrical power source with a switch means for selectively energizing said light source. An actuator means for controlling the on-off operation of the switch means is connected to a light sensor which responses to the illumination level of the interior space. A limit switch carried adjacent to the actuator limits the movement of the actuator within a predetermined range so as to prevent further movement thereof during detection of erroneous illumination conditions.

  17. Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing

    NASA Astrophysics Data System (ADS)

    Wang, Zhaona; Yu, Ruomeng; Pan, Caofeng; Li, Zhaoling; Yang, Jin; Yi, Fang; Wang, Zhong Lin

    2015-09-01

    Zinc oxide is potentially a useful material for ultraviolet detectors; however, a relatively long response time hinders practical implementation. Here by designing and fabricating a self-powered ZnO/perovskite-heterostructured ultraviolet photodetector, the pyroelectric effect, induced in wurtzite ZnO nanowires on ultraviolet illumination, has been utilized as an effective approach for high-performance photon sensing. The response time is improved from 5.4 s to 53 μs at the rising edge, and 8.9 s to 63 μs at the falling edge, with an enhancement of five orders in magnitudes. The specific detectivity and the responsivity are both enhanced by 322%. This work provides a novel design to achieve ultrafast ultraviolet sensing at room temperature via light-self-induced pyroelectric effect. The newly designed ultrafast self-powered ultraviolet nanosensors may find promising applications in ultrafast optics, nonlinear optics, optothermal detections, computational memories and biocompatible optoelectronic probes.

  18. Wood's lamp illumination (image)

    MedlinePlus

    A Wood's lamp emits ultraviolet light and can be a diagnostic aid in determining if someone has a fungal ... is an infection on the area where the Wood's lamp is illuminating, the area will fluoresce. Normally ...

  19. Transmitting and reflecting diffuser. [for ultraviolet light

    NASA Technical Reports Server (NTRS)

    Keafer, L. S., Jr.; Burcher, E. E.; Kopia, L. P. (Inventor)

    1973-01-01

    A near-Lambertian diffuser is described which transmits and reflects ultraviolet light. An ultraviolet grade fused silica substrate is coated with vaporized fuse silica. The coating thickness is controlled, one thickness causing ultraviolet light to diffuse and another thickness causing ultraviolet light to reflect a near Lambertian pattern.

  20. Lightness of an object under two illumination levels.

    PubMed

    Zdravković, Suncica; Economou, Elias; Gilchrist, Alan

    2006-01-01

    Anchoring theory (Gilchrist et al, 1999 Psychological Review 106 795-834) predicts a wide range of lightness errors, including failures of constancy in multi-illumination scenes and a long list of well-known lightness illusions seen under homogeneous illumination. Lightness values are computed both locally and globally and then averaged together. Local values are computed within a given region of homogeneous illumination. Thus, for an object that extends through two different illumination levels, anchoring theory produces two values, one for the patch in brighter illumination and one for the patch in dimmer illumination. Observers can give matches for these patches separately, but they can also give a single match for the whole object. Anchoring theory in its current form is unable to predict these object matches. We report eight experiments in which we studied the relationship between patch matches and object matches. The results show that the object match represents a compromise between the match for the patch in the field of highest illumination and the patch in the largest field of illumination. These two principles are parallel to the rules found for anchoring lightness: highest luminance rule and area rule.

  1. Comparative and quantitative analysis of white light-emitting diodes and other lamps used for home illumination

    NASA Astrophysics Data System (ADS)

    Rubinger, Rero Marques; da Silva, Edna Raimunda; Pinto, Daniel Zaroni; Rubinger, Carla Patrícia Lacerda; Oliveira, Adhimar Flávio; da Costa Bortoni, Edson

    2015-01-01

    We compared the photometric and radiometric quantities in the visible, ultraviolet, and infrared spectra of white light-emitting diodes (LEDs), incandescent light bulbs and a compact fluorescent lamp used for home illumination. The color-rendering index and efficiency-related quantities were also used as auxiliary tools in this comparison. LEDs have a better performance in all aspects except for the color-rendering index, which is better with an incandescent light bulb. Compact fluorescent lamps presented results that, to our knowledge, do not justify their substitution for the incandescent light bulb. The main contribution of this work is an approach based on fundamental quantities to evaluate LEDs and other light sources.

  2. Lighting design for globally illuminated volume rendering.

    PubMed

    Zhang, Yubo; Ma, Kwan-Liu

    2013-12-01

    With the evolution of graphics hardware, high quality global illumination becomes available for real-time volume rendering. Compared to local illumination, global illumination can produce realistic shading effects which are closer to real world scenes, and has proven useful for enhancing volume data visualization to enable better depth and shape perception. However, setting up optimal lighting could be a nontrivial task for average users. There were lighting design works for volume visualization but they did not consider global light transportation. In this paper, we present a lighting design method for volume visualization employing global illumination. The resulting system takes into account view and transfer-function dependent content of the volume data to automatically generate an optimized three-point lighting environment. Our method fully exploits the back light which is not used by previous volume visualization systems. By also including global shadow and multiple scattering, our lighting system can effectively enhance the depth and shape perception of volumetric features of interest. In addition, we propose an automatic tone mapping operator which recovers visual details from overexposed areas while maintaining sufficient contrast in the dark areas. We show that our method is effective for visualizing volume datasets with complex structures. The structural information is more clearly and correctly presented under the automatically generated light sources.

  3. Influence of ultraviolet light irradiation on the corrosion behavior of carbon steel AISI 1015

    NASA Astrophysics Data System (ADS)

    Riazi, H. R.; Danaee, I.; Peykari, M.

    2013-03-01

    Corrosion of carbon steel in sodium chloride solution was studied under ultraviolet illumination using weight loss, polarization, electrochemical impedance spectroscopy and current transient tests. The polarization test revealed an increase in the corrosion current density observed under UV illumination. The impedance spectroscopy indicated that the charge transfer resistance of the system was decreased by irradiation of UV light on a carbon steel electrode. The weight loss of carbon steel in solution increased under UV light, which confirms the results obtained from electrochemical measurements. We propose that the main effect of UV irradiation is on the oxide film, which forms on the surface. Thus, in presence of UV, the conductivity of oxide film might increase and lead to higher metal dissolution and corrosion rate.

  4. 32 CFR 707.10 - Wake illumination light.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Wake illumination light. 707.10 Section 707.10 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY NAVIGATION SPECIAL RULES WITH... display a white spot light located near the stern to illuminate the wake. ...

  5. Bessel light sheet structured illumination microscopy

    NASA Astrophysics Data System (ADS)

    Noshirvani Allahabadi, Golchehr

    Biomedical study researchers using animals to model disease and treatment need fast, deep, noninvasive, and inexpensive multi-channel imaging methods. Traditional fluorescence microscopy meets those criteria to an extent. Specifically, two-photon and confocal microscopy, the two most commonly used methods, are limited in penetration depth, cost, resolution, and field of view. In addition, two-photon microscopy has limited ability in multi-channel imaging. Light sheet microscopy, a fast developing 3D fluorescence imaging method, offers attractive advantages over traditional two-photon and confocal microscopy. Light sheet microscopy is much more applicable for in vivo 3D time-lapsed imaging, owing to its selective illumination of tissue layer, superior speed, low light exposure, high penetration depth, and low levels of photobleaching. However, standard light sheet microscopy using Gaussian beam excitation has two main disadvantages: 1) the field of view (FOV) of light sheet microscopy is limited by the depth of focus of the Gaussian beam. 2) Light-sheet images can be degraded by scattering, which limits the penetration of the excitation beam and blurs emission images in deep tissue layers. While two-sided sheet illumination, which doubles the field of view by illuminating the sample from opposite sides, offers a potential solution, the technique adds complexity and cost to the imaging system. We investigate a new technique to address these limitations: Bessel light sheet microscopy in combination with incoherent nonlinear Structured Illumination Microscopy (SIM). Results demonstrate that, at visible wavelengths, Bessel excitation penetrates up to 250 microns deep in the scattering media with single-side illumination. Bessel light sheet microscope achieves confocal level resolution at a lateral resolution of 0.3 micron and an axial resolution of 1 micron. Incoherent nonlinear SIM further reduces the diffused background in Bessel light sheet images, resulting in

  6. Organic light emitting devices for illumination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hack, Michael; Lu, Min-Hao Michael; Weaver, Michael S

    An organic light emitting device an a method of obtaining illumination from such a device is provided. The device has a plurality of regions, each region having an organic emissive layer adapted to emit a different spectrum of light. The regions in combination emit light suitable for illumination purposes. The area of each region may be selected such that the device is more efficient than an otherwise equivalent device having regions of equal size. The regions may have an aspect ratio of at least about four. All parts of any given region may be driven at the same current.

  7. Scatter Measurements Made With Ultraviolet Light

    NASA Astrophysics Data System (ADS)

    Anthon, Erik W.

    1985-09-01

    The quality of optical surfaces is generally evaluated by how much light (normally visible light) is scattered by the surface. Most optical glasses and many coating materials are completely opaque to ultraviolet light (253.7 nm). Ultraviolet light tends to scatter much more than visible light. Scatter measurements made with ultraviolet light are therefore very sensitive and the scatter from second surfaces and from the interior (bulk) of the optical material is eliminated by the opacity. A novel scattermeter that operates with ultraviolet light has been developed. The construction and operation of this scattermeter will be described. Cleaning soon becomes the limiting factor when measuring the surfaces with very low level of scatter. Sensitivity to repeated cleaning has been investigated. Different surfaces are compared and uniformity of surfaces is measured by mapping a surface area with an x-y stage. Polished glass surfaces generally have much higher scatter than natural glass surfaces (fire polished, drawn or floated surfaces). Very low scatter levels have been found on thin drawn glass.

  8. Illumination preference, illumination constancy and colour discrimination by bumblebees in an environment with patchy light.

    PubMed

    Arnold, Sarah E J; Chittka, Lars

    2012-07-01

    Patchy illumination presents foraging animals with a challenge, as the targets being sought may appear to vary in colour depending on the illumination, compromising target identification. We sought to explore how the bumblebee Bombus terrestris copes with tasks involving flower colour discrimination under patchy illumination. Light patches varied between unobscured daylight and leaf-shade, as a bee might encounter in and around woodland. Using a flight arena and coloured filters, as well as one or two different colours of artificial flower, we quantified how bees chose to forage when presented with foraging tasks under patchy illumination. Bees were better at discriminating a pair of similar colours under simulated unobscured daylight illumination than when foraging under leaf-shade illumination. Accordingly, we found that bees with prior experience of simulated daylight but not leaf-shade illumination initially preferred to forage in simulated daylight when all artificial flowers contained rewards as well as when only one colour was rewarding, whereas bees with prior experience of both illuminants did not exhibit this preference. Bees also switched between illuminants less than expected by chance. This means that bees prefer illumination conditions with which they are familiar, and in which rewarding flower colours are easily distinguishable from unrewarding ones. Under patchy illumination, colour discrimination performance was substantially poorer than in homogenous light. The bees' abilities at coping with patchy light may therefore impact on foraging behaviour in the wild, particularly in woodlands, where illumination can change over short spatial scales.

  9. Ultraviolet light-an FDA approved technology

    USDA-ARS?s Scientific Manuscript database

    Ultraviolet Light (254 nm) is a U.S. Food and Drug Administration approved nonthermal intervention technology that can be used for decontamination of food and food contact surfaces. Ultraviolet light is a green technology that leaves no chemical residues. Results from our laboratory indicate that ex...

  10. Transparent ultraviolet photovoltaic cells.

    PubMed

    Yang, Xun; Shan, Chong-Xin; Lu, Ying-Jie; Xie, Xiu-Hua; Li, Bing-Hui; Wang, Shuang-Peng; Jiang, Ming-Ming; Shen, De-Zhen

    2016-02-15

    Photovoltaic cells have been fabricated from p-GaN/MgO/n-ZnO structures. The photovoltaic cells are transparent to visible light and can transform ultraviolet irradiation into electrical signals. The efficiency of the photovoltaic cells is 0.025% under simulated AM 1.5 illumination conditions, while it can reach 0.46% under UV illumination. By connecting several such photovoltaic cells in a series, light-emitting devices can be lighting. The photovoltaic cells reported in this Letter may promise the applications in glass of buildings to prevent UV irradiation and produce power for household appliances in the future.

  11. Illuminating system and method for specialized and decorative lighting using liquid light guides

    DOEpatents

    Zorn, Carl J.; Kross, Brian J.; Majewski, Stanislaw; Wojcik, Randolph F.

    1998-01-01

    The present invention comprises an illumination system for specialized decorative lighting including a light source, a flexible plastic tube sheath for distributing the light to a remote location, a transparent liquid core filling the tube that has an index of refraction greater than that of the plastic tube and an arrangement where light coupled from the light source is caused to leak from the liquid light guide at desired locations for the purposes of specialized lighting, such as underwater illumination in swimming pools.

  12. Anti-glare LED lamps with adjustable illumination light field.

    PubMed

    Chen, Yung-Sheng; Lin, Chung-Yi; Yeh, Chun-Ming; Kuo, Chie-Tong; Hsu, Chih-Wei; Wang, Hsiang-Chen

    2014-03-10

    We introduce a type of LED light-gauge steel frame lamp with an adjustable illumination light field that does not require a diffusion plate. Base on the Monte Carlo ray tracing method, this lamp has a good glare rating (GR) of 17.5 at 3050 lm. Compared with the traditional LED light-gauge steel frame lamp (without diffusion plate), the new type has low GR. The adjustability of the illumination light field could improve the zebra effect caused by the inadequate illumination light field of the lamp. Meanwhile, we adopt the retinal image analysis to discuss the influence of GR on vision. High GR could reflect stray light on the retinal image, which will reduce vision clarity and hasten the feeling of eye fatigue.

  13. Ultraviolet safety assessments of insect light traps.

    PubMed

    Sliney, David H; Gilbert, David W; Lyon, Terry

    2016-01-01

    Near-ultraviolet (UV-A: 315-400 nm), "black-light," electric lamps were invented in 1935 and ultraviolet insect light traps (ILTs) were introduced for use in agriculture around that time. Today ILTs are used indoors in several industries and in food-service as well as in outdoor settings. With recent interest in photobiological lamp safety, safety standards are being developed to test for potentially hazardous ultraviolet emissions. A variety of UV "Black-light" ILTs were measured at a range of distances to assess potential exposures. Realistic time-weighted human exposures are shown to be well below current guidelines for human exposure to ultraviolet radiation. These UV-A exposures would be far less than the typical UV-A exposure in the outdoor environment. Proposals are made for realistic ultraviolet safety standards for ILT products.

  14. Illuminating system and method for specialized and decorative lighting using liquid light guides

    DOEpatents

    Zorn, C.J.; Kross, B.J.; Majewski, S.; Wojcik, R.F.

    1998-08-25

    The present invention comprises an illumination system for specialized decorative lighting including a light source, a flexible plastic tube sheath for distributing the light to a remote location, a transparent liquid core filling the tube that has an index of refraction greater than that of the plastic tube and an arrangement where light coupled from the light source is caused to leak from the liquid light guide at desired locations for the purposes of specialized lighting, such as underwater illumination in swimming pools. 5 figs.

  15. Ultraviolet excitation of remote phosphor with symmetrical illumination used in dual-sided liquid-crystal display.

    PubMed

    Huang, Hsin-Tao; Tsai, Chuang-Chuang; Huang, Yi-Pai

    2010-08-01

    The UV-excited flat lighting (UFL) technique differs from conventional fluorescent lamp or LED illumination. It involves using a remote phosphor film to convert the wavelength of UV light to visible light, achieving high brightness and planar and uniform illumination. In particular, UFL can accomplish compact size, low power consumption, and symmetrical dual-sided illumination. Additionally, UFL utilizes a thermal radiation mechanism to release the large amount of heat that is generated upon illumination without thermal accumulation. These characteristics of the UFL technique can motivate a wide range of lighting applications in thin-film transistor LCD backlighting or general lighting.

  16. Effects of ultraviolet light on B-doped CdS thin films prepared by spray pyrolysis method using perfume atomizer

    NASA Astrophysics Data System (ADS)

    Novruzov, V. D.; Keskenler, E. F.; Tomakin, M.; Kahraman, S.; Gorur, O.

    2013-09-01

    Boron doped CdS thin films were deposited by spray pyrolysis method using perfume atomizer. The effects of ultraviolet light on the structural, optical and electrical properties of B-doped CdS thin films were investigated as a function of dopant concentration (B/Cd). X-ray diffraction studies showed that all samples were polycrystalline nature with hexagonal structure. It was determined that the preferred orientation of non-illuminated samples changes from (1 0 1) to (0 0 2) with B concentration. The c lattice constant of films decreases from 6.810 Å to 6.661 Å with boron doping. The XRD peak intensity increased with the illumination for almost all the samples. The lattice parameters of B-doped samples remained nearly constant after illumination. It was found that the optical transmittance, photoluminescence spectra, resistivity and carrier concentration of the B-doped samples are stable after the illumination with UV light. Also the effects of UV light on B-doped CdS/Cu2S solar cell were investigated and it was determined that photoelectrical parameters of B-doped solar cell were more durable against the UV light.

  17. Museum lighting: Why are some illuminants preferred?

    NASA Astrophysics Data System (ADS)

    Scuello, Michael; Abramov, Israel; Gordon, James; Weintraub, Steven

    2004-02-01

    We had shown earlier that viewers prefer to look at artworks under illuminants of ~3600 K. In the latest paper we tested the hypothesis that the preferred illuminant is one that appears neither warm nor cool and repeated the settings at each of four illuminances to test the stability of the findings. Observers looked at a neutral white reflectance standard hung on a matte-gray wall lit by overhead banks of lamps whose combined value could be adjusted continuously between 3000 and 4400 K while illuminance was kept constant. Illuminance ranged from 50 to 2000 lux. Observers adjusted color temperature until they were satisfied that the standard looked neither warm nor cool. The mean for a group of eight observers was approximately 3700, independent of intensity; this corresponds to a dominant wavelength of ~580 nm. In a separate study four observers scaled the apparent warmth or coolness of flashes of equiluminant monochromatic lights; the warm-cool transition was between 560 and 580 nm; warmness was completely predicted by the perceived redness of each light as derived from hue and saturation scaling functions from the same group.

  18. Multicolor white light-emitting diodes for illumination applications

    NASA Astrophysics Data System (ADS)

    Chi, Solomon W. S.; Chen, Tzer-Perng; Tu, Chuan-Cheng; Chang, Chih-Sung; Tsai, Tzong-Liang; Hsieh, Mario C. C.

    2004-01-01

    Semiconductor light emitting diode (LED) has become a promising device for general-purpose illumination applications. LED has the features of excellent durability, long operation life, low power consumption, no mercury containing and potentially high efficiency. Several white LED technologies appear capable of meeting the technical requirements of illumination. In this paper we present a new multi-color white (MCW) LED as a high luminous efficacy, high color rendering index and low cost white illuminator. The device consists of two LED chips, one is AlInGaN LED for emitting shorter visible spectra, another is AlInGaP LED for emitting longer visible spectra. At least one chip in the MCW-LED has two or more transition energy levels used for emitting two or more colored lights. The multiple colored lights generated from the MCW-LED can be mixed into a full-spectral white light. Besides, there is no phosphors conversion layer used in the MCW-LED structure. Therefore, its color rendering property and illumination efficiency are excellent. The Correlated Color Temperature (CCT) of the MCW-LED may range from 2,500 K to over 10,000 K. The theoretical General Color Rendering Index (Ra) could be as high as 94, which is close to the incandescent and halogen sources, while the Ra of binary complementary white (BCW) LED is about 30 ~ 45. Moreover, compared to the expensive ternary RGB (Red AlInGaP + Green AlInGaN + Blue AlInGaN) white LED sources, the MCW-LED uses only one AlInGaN chip in combination with one cheap AlInGaP chip, to form a low cost, high luminous performance white light source. The MCW-LED is an ideal light source for general-purpose illumination applications.

  19. Illumination system design for a three-aspherical-mirror projection camera for extreme-ultraviolet lithography.

    PubMed

    Li, Y; Kinoshita, H; Watanabe, T; Irie, S; Shirayone, S; Okazaki, S

    2000-07-01

    A scanning critical illumination system is designed to couple a synchrotron radiation source to a three-aspherical-mirror imaging system for extreme ultraviolet lithography. A static illumination area of H x V = 8 mm x 3 mm (where H is horizontal and V is vertical) can be obtained. Uniform intensity distribution and a large ring field of H x V = 150 mm x 3 mm can be achieved by scanning of the mirror of the condenser. The coherence factor (sigma) of this illumination system is approximately 0.6, with the same beam divergence in both the horizontal and the vertical directions. We describe the performance of the imaging optics at sigma = 0.6 to confirm that the illumination optics can meet the requirements for three-aspherical-mirror imaging optics with a feature size of 0.06 microm.

  20. Development of two-channel prototype ITER vacuum ultraviolet spectrometer with back-illuminated charge-coupled device and microchannel plate detectors.

    PubMed

    Seon, C R; Choi, S H; Cheon, M S; Pak, S; Lee, H G; Biel, W; Barnsley, R

    2010-10-01

    A vacuum ultraviolet (VUV) spectrometer of a five-channel spectral system is designed for ITER main plasma impurity measurement. To develop and verify the system design, a two-channel prototype system is fabricated with No. 3 (14.4-31.8 nm) and No. 4 (29.0-60.0 nm) among the five channels. The optical system consists of a collimating mirror to collect the light from source to slit, two holographic diffraction gratings with toroidal geometry, and two different electronic detectors. For the test of the prototype system, a hollow cathode lamp is used as a light source. To find the appropriate detector for ITER VUV system, two kinds of detectors of the back-illuminated charge-coupled device and the microchannel plate electron multiplier are tested, and their performance has been investigated.

  1. Microwave-driven ultraviolet light sources

    DOEpatents

    Manos, Dennis M.; Diggs, Jessie; Ametepe, Joseph D.

    2002-01-29

    A microwave-driven ultraviolet (UV) light source is provided. The light source comprises an over-moded microwave cavity having at least one discharge bulb disposed within the microwave cavity. At least one magnetron probe is coupled directly to the microwave cavity.

  2. Far-ultraviolet spectral changes of titanium dioxide with gold nanoparticles by ultraviolet and visible light

    NASA Astrophysics Data System (ADS)

    Tanabe, Ichiro; Kurawaki, Yuji

    2018-05-01

    Attenuated total reflectance spectra including the far-ultraviolet (FUV, ≤ 200 nm) region of titanium dioxide (TiO2) with and without gold (Au) nanoparticles were measured. A newly developed external light-irradiation system enabled to observe spectral changes of TiO2 with Au nanoparticles upon light irradiations. Absorption in the FUV region decreased and increased by the irradiation with ultraviolet and visible light, respectively. These spectral changes may reflect photo-induced electron transfer from TiO2 to Au nanoparticles under ultraviolet light and from Au nanoparticles to TiO2 under visible light, respectively.

  3. Ultraviolet safety assessments of insect light traps

    PubMed Central

    Sliney, David H.; Gilbert, David W.; Lyon, Terry

    2016-01-01

    ABSTRACT Near-ultraviolet (UV-A: 315–400 nm), “black-light,” electric lamps were invented in 1935 and ultraviolet insect light traps (ILTs) were introduced for use in agriculture around that time. Today ILTs are used indoors in several industries and in food-service as well as in outdoor settings. With recent interest in photobiological lamp safety, safety standards are being developed to test for potentially hazardous ultraviolet emissions. A variety of UV “Black-light” ILTs were measured at a range of distances to assess potential exposures. Realistic time-weighted human exposures are shown to be well below current guidelines for human exposure to ultraviolet radiation. These UV-A exposures would be far less than the typical UV-A exposure in the outdoor environment. Proposals are made for realistic ultraviolet safety standards for ILT products. PMID:27043058

  4. To compute lightness, illumination is not estimated, it is held constant.

    PubMed

    Gilchrist, Alan L

    2018-05-03

    The light reaching the eye from a surface does not indicate the black-gray-white shade of a surface (called lightness) because the effects of illumination level are confounded with the reflectance of the surface. Rotating a gray paper relative to a light source alters its luminance (intensity of light reaching the eye) but the lightness of the paper remains relatively constant. Recent publications have argued, as had Helmholtz (1866/1924), that the visual system unconsciously estimates the direction and intensity of the light source. We report experiments in which this theory was pitted against an alternative theory according to which illumination level and surface reflectance are disentangled by comparing only those surfaces that are equally illuminated, in other words, by holding illumination level constant. A 3-dimensional scene was created within which the rotation of a target surface would be expected to become darker gray according to the lighting estimation theory, but lighter gray according to the equi-illumination comparison theory, with results clearly favoring the latter. In a further experiment cues held to indicate light source direction (cast shadows, attached shadows, and glossy highlights) were completely eliminated and yet this had no effect on the results. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  5. Physiological responses to illuminance and color temperature of lighting.

    PubMed

    Kobayashi, H; Sato, M

    1992-01-01

    The present study was designed to examine the effects of illuminance and color temperature of room lighting. Four male students volunteered as subjects. Each of them performed a calculation task for 95 minutes under nine different lighting environments consisting of a combination of three levels of illuminance (320lx, 1000lx and 2000lx) and three levels of color temperature (3000 degrees K, 5000 degrees K and 7500 degrees K). Three types of fluorescent lamps were used as a light source to vary the color temperature. Blood pressure, critical flicker frequency (CFF) and accommodation time of eye movements were measured every 30 minutes during the task. The accommodation time was significantly influenced by the illuminance level and both the relaxation time and contraction time were prolonged under 2000lx. The diastolic blood pressure was significantly affected by the color temperature level and increased under 7500 degrees K. As for the CFF, the interaction between illuminance and color temperature was significant. These results mean that not only the illuminance but also color temperature produces physiological effects. The present study may be the first to recognize the effect of color temperature on the blood pressure.

  6. Far-ultraviolet spectral changes of titanium dioxide with gold nanoparticles by ultraviolet and visible light.

    PubMed

    Tanabe, Ichiro; Kurawaki, Yuji

    2018-05-15

    Attenuated total reflectance spectra including the far-ultraviolet (FUV, ≤200nm) region of titanium dioxide (TiO 2 ) with and without gold (Au) nanoparticles were measured. A newly developed external light-irradiation system enabled to observe spectral changes of TiO 2 with Au nanoparticles upon light irradiations. Absorption in the FUV region decreased and increased by the irradiation with ultraviolet and visible light, respectively. These spectral changes may reflect photo-induced electron transfer from TiO 2 to Au nanoparticles under ultraviolet light and from Au nanoparticles to TiO 2 under visible light, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Effect of ultraviolet illumination on the charge trapping behaviour in SiN(x)/InP metal-insulator-semiconductor structure provided by plasma enhanced chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Kim, C. H.; Han, I. K.; Lee, J. I.; Kang, K. N.; Kwon, S. D.; Choe, B.; Park, H. L.; Her, J.; Lim, H.

    1994-04-01

    In this work, we investigated the effect of ultraviolet illumination, which is known to generate silicon dangling bonds, on the charge trapping behaviors, utilizing the constant capacitance technique in SiN(x)/InP structure where conventional PE CVD was used to form the SiN films on InP. We found different behaviors of this structure with ultraviolet illumination compared to the case of SiN(x)/Si structure. Both the Si-rich condition during PE CVD and ultraviolet illumination seem to not only increase the number of traps but also broaden the energy level of the traps in the insulator near the SiN(x)/InP interface. In all cases (N-rich, Si-rich, with and without ultraviolet illumination) the amphoteric nature of the traps has been observed, which is a characteristic of Si-dangling bonds. Also, the effect of ultraviolet photons on the interface of SiN(x)/InP, especially in correlation with the deficiency of phosphorus at the interface, is discussed considering the existence of net negative fixed charges at the interface.

  8. Isolation and characterization of ultraviolet light-sensitive mutants of the blue-green alga Anacystis nidulans.

    NASA Technical Reports Server (NTRS)

    Asato, Y.

    1972-01-01

    Three independently isolated ultraviolet light sensitive (uvs) mutants of Anacystis nidulans were characterized. Strain uvs-1 showed the highest sensitivity to UV by its greatly reduced photoreactivation capacity following irradiation. Pretreatment with caffeine suppressed the dark-survival curve of strain uvs-1, thus indicating the presence of excision enzymes involved in dark repair. Under 'black' and 'white' illumination, strain uvs-1 shows photorecovery properties comparable with wild-type cultures. Results indicate that strains uvs-1, uvs-35, and uvs-88 are probably genetically distinct UV-sensitive mutants.

  9. An intraocular micro light-emitting diode device for endo-illumination during pars plana vitrectomy.

    PubMed

    Koelbl, Philipp S; Lingenfelder, Christian; Spraul, Christoph W; Kampmeier, Juergen; Koch, Frank Hj; Kim, Yong Keun; Hessling, Martin

    2018-03-01

    Development of a new, fiber-free, single-use endo-illuminator for pars plana vitrectomy as a replacement for fiber-based systems with external light sources. The hand-guided intraocularly placed white micro light-emitting diode is evaluated for its illumination properties and potential photochemical and thermal hazards. A micro light-emitting diode was used to develop a single-use intraocular illumination system. The light-source-on-tip device was implemented in a prototype with 23G trocar compatible outer diameter of 0.6 mm. The experimental testing was performed on porcine eyes. All calculations of possible photochemical and thermal hazards during the application of the intraocular micro light-emitting diode were calculated according to DIN EN ISO 15007-2: 2014. The endo-illuminator generated a homogeneous and bright illumination of the intraocular space. The color impression was physiologic and natural. Contrary to initial apprehension, the possible risk caused by inserting a light-emitting diode into the intraocular vitreous was much smaller when compared to conventional fiber-based illumination systems. The photochemical and thermal hazards allowed a continuous exposure time to the retina of at least 4.7 h. This first intraocular light source showed that a light-emitting diode can be introduced into the eye. The system can be built as single-use illumination system. This light-source-on-tip light-emitting diode-endo-illumination combines a chandelier wide-angle illumination with an adjustable endo-illuminator.

  10. Riboflavin and ultraviolet light reduce the infectivity of Babesia microti in whole blood.

    PubMed

    Tonnetti, Laura; Thorp, Aaron M; Reddy, Heather L; Keil, Shawn D; Goodrich, Raymond P; Leiby, David A

    2013-04-01

    Babesia microti is the parasite most frequently transmitted by blood transfusion in the United States. Previous work demonstrated the efficacy of riboflavin (RB) and ultraviolet (UV) light to inactivate B.microti in apheresis plasma and platelet units. In this study we investigated the effectiveness of RB and UV light to reduce the levels of B.microti in whole blood (WB). WB units were spiked with B. microti-infected hamster blood. Spearman-Karber methods were used to calculate infectivity of each sample in terms of hamster infectious dose 50% (HID50 ) value. After RB addition, the units were illuminated with 80 J/mLRBC UV light. Two samples were collected: one before illumination and one after illumination. The samples were serially diluted and dilutions injected into a group of five naive hamsters. Four weeks postinoculation (PI), blood was collected from the animals and evaluated by microscopic observation. One pilot study showed a good dose response in the animals and demonstrated that sample infectivity could be calculated in terms of an HID50 . Three additional replicates were performed in the same manner as the pilot study, but with fewer dilutions. Infectivity values were consistent between the experiments and were used to calculate log reduction. The posttreatment reduction of B. microti for all the experiments was more than 5 log. The data collected indicate that use of RB and UV is able to decrease the parasite load in WB units thus reducing the risk of transfusion-transmitted B. microti from blood components containing B. microti-infected RBCs. © 2012 American Association of Blood Banks.

  11. Even illumination in total internal reflection fluorescence microscopy using laser light.

    PubMed

    Fiolka, R; Belyaev, Y; Ewers, H; Stemmer, A

    2008-01-01

    In modern fluorescence microscopy, lasers are a widely used source of light, both for imaging in total internal reflection and epi-illumination modes. In wide-field imaging, scattering of highly coherent laser light due to imperfections in the light path typically leads to nonuniform illumination of the specimen, compromising image analysis. We report the design and construction of an objective-launch total internal reflection fluorescence microscopy system with excellent evenness of specimen illumination achieved by azimuthal rotation of the incoming illuminating laser beam. The system allows quick and precise changes of the incidence angle of the laser beam and thus can also be used in an epifluorescence mode. 2007 Wiley-Liss, Inc

  12. Is White Light the Best Illumination for Palmprint Recognition?

    NASA Astrophysics Data System (ADS)

    Guo, Zhenhua; Zhang, David; Zhang, Lei

    Palmprint as a new biometric has received great research attention in the past decades. It owns many merits, such as robustness, low cost, user friendliness, and high accuracy. Most of the current palmprint recognition systems use an active light to acquire clear palmprint images. Thus, light source is a key component in the system to capture enough of discriminant information for palmprint recognition. To the best of our knowledge, white light is the most widely used light source. However, little work has been done on investigating whether white light is the best illumination for palmprint recognition. In this study, we empirically compared palmprint recognition accuracy using white light and other six different color lights. The experiments on a large database show that white light is not the optimal illumination for palmprint recognition. This finding will be useful to future palmprint recognition system design.

  13. Illumination-parameter adjustable and illumination-distribution visible LED helmet for low-level light therapy on brain injury

    NASA Astrophysics Data System (ADS)

    Wang, Pengbo; Gao, Yuan; Chen, Xiao; Li, Ting

    2016-03-01

    Low-level light therapy (LLLT) has been clinically applied. Recently, more and more cases are reported with positive therapeutic effect by using transcranial light emitting diodes (LEDs) illumination. Here, we developed a LLLT helmet for treating brain injuries based on LED arrays. We designed the LED arrays in circle shape and assembled them in multilayered 3D printed helmet with water-cooling module. The LED arrays can be adjust to touch the head of subjects. A control circuit was developed to drive and control the illumination of the LLLT helmet. The software portion provides the control of on and off of each LED arrays, the setup of illumination parameters, and 3D distribution of LLLT light dose in human subject according to the illumination setups. This LLLT light dose distribution was computed by a Monte Carlo model for voxelized media and the Visible Chinese Human head dataset and displayed in 3D view at the background of head anatomical structure. The performance of the whole system was fully tested. One stroke patient was recruited in the preliminary LLLT experiment and the following neuropsychological testing showed obvious improvement in memory and executive functioning. This clinical case suggested the potential of this Illumination-parameter adjustable and illuminationdistribution visible LED helmet as a reliable, noninvasive, and effective tool in treating brain injuries.

  14. Novel Ultraviolet Light Absorbing Polymers For Optical Applications

    NASA Astrophysics Data System (ADS)

    Doddi, Namassivaya; Yamada, Akira; Dunks, Gary B.

    1988-07-01

    Ultraviolet light absorbing monomers have been developed that can be copolymerized with acrylates. The composition of the resultant stable copolymers can be adjusted to totally block the transmission of light below about 430 nm. Fabrication of lenses from the materials is accomplished by lathe cutting and injection molding procedures. These ultraviolet light absorbing materials are non-mutagenic and non-toxic and are currently being used in intraocular lenses.

  15. Pathogen inactivation by riboflavin and ultraviolet light illumination accelerates the red blood cell storage lesion and promotes eryptosis.

    PubMed

    Qadri, Syed M; Chen, Deborah; Schubert, Peter; Perruzza, Darian L; Bhakta, Varsha; Devine, Dana V; Sheffield, William P

    2017-03-01

    Pathogen reduction treatment using riboflavin and ultraviolet light illumination (Mirasol) effectively reduces the risk of transfusion-transmitted infections. This treatment is currently licensed for only platelets and plasma products, while its application to whole blood (WB) to generate pathogen-inactivated red blood cells (RBCs) is under development. RBC storage lesion, constituting numerous morphologic and biochemical changes, influences RBC quality and limits shelf life. Stored RBCs further show enhanced susceptibility to RBC programmed cell death (eryptosis) characterized by increased cytosolic Ca 2+ -provoked membrane phosphatidylserine (PS) externalization. Using a "pool-and-split" approach, we examined multiple variables of RBC storage lesion and eryptosis in RBC units, derived from Mirasol-treated or untreated WB, after 4 to 42 days of storage, under blood bank conditions. In comparison to untreated RBC units, Mirasol treatment significantly altered membrane microvesiculation, supernatant hemoglobin, osmotic fragility, and intracellular adenosine triphosphate levels but did not influence membrane CD47 expression and 2,3-diphosphoglycerate levels. Mirasol-treated RBCs showed significantly higher PS exposure after 42, but not after not more than 21, days of storage, which was accompanied by enhanced cytosolic Ca 2+ activity, ceramide abundance, and oxidative stress, but not p38 kinase activation. Mirasol treatment significantly augmented PS exposure, Ca 2+ entry, and protein kinase C activation after energy depletion, a pathophysiologic cell stressor. Mirasol-treated RBCs were, however, more resistant to cell shrinkage. Prolonged storage of Mirasol-treated RBCs significantly increases the proportion of eryptotic RBCs, while even short-term storage enhances the susceptibility of RBCs to stress-induced eryptosis, which could reduce posttransfusion RBC recovery in patients. © 2016 AABB.

  16. Organic light emitting devices for illumination

    DOEpatents

    Hack, Michael; Lu, Min-Hao Michael; Weaver, Michael S.

    2010-02-16

    An organic light emitting device is provided. The device has a plurality of regions, each region having an organic emissive layer adapted to emit a different spectrum of light. The regions in combination emit light suitable for illumination purposes. The area of each region may be selected such that the device is more efficient that an otherwise equivalent device having regions of equal size. The regions may have an aspect ratio of at least about four. All parts of any given region may be driven at the same current.

  17. The influence of the environment and clothing on human exposure to ultraviolet light.

    PubMed

    Liu, Jin; Zhang, Wei

    2015-01-01

    The aim of this study is to determine the effect of clothing and the environment on human exposure to ultraviolet light. The ultraviolet (ultraviolet A and ultraviolet B) light intensity was measured, and air quality parameters were recorded in 2014 in Beijing, China. Three types of clothing (white polyester cloth, pure cotton white T-shirt, and pure cotton black T-shirt) were individually placed on a mannequin. The ultraviolet (ultraviolet A and ultraviolet B) light intensities were measured above and beneath each article of clothing, and the percentage of ultraviolet light transmission through the clothing was calculated. (1) The ultraviolet light transmission was significantly higher through white cloth than through black cloth; the transmission was significantly higher through polyester cloth than through cotton. (2) The weather significantly influenced ultraviolet light transmission through white polyester cloth; transmission was highest on clear days and lowest on overcast days (ultraviolet A: P=0.000; ultraviolet B: P=0.008). (3) Air quality parameters (air quality index and particulate matter 2.5 and 10) were inversely related to the ultraviolet light intensity that reached the earth's surface. Ultraviolet B transmission through white polyester cloth was greater under conditions of low air pollution compared with high air pollution. Clothing color and material and different types of weather affected ultraviolet light transmission; for one particular cloth, the transmission decreased with increasing air pollution.

  18. The Direct Lighting Computation in Global Illumination Methods

    NASA Astrophysics Data System (ADS)

    Wang, Changyaw Allen

    1994-01-01

    Creating realistic images is a computationally expensive process, but it is very important for applications such as interior design, product design, education, virtual reality, and movie special effects. To generate realistic images, state-of-art rendering techniques are employed to simulate global illumination, which accounts for the interreflection of light among objects. In this document, we formalize the global illumination problem into a eight -dimensional integral and discuss various methods that can accelerate the process of approximating this integral. We focus on the direct lighting computation, which accounts for the light reaching the viewer from the emitting sources after exactly one reflection, Monte Carlo sampling methods, and light source simplification. Results include a new sample generation method, a framework for the prediction of the total number of samples used in a solution, and a generalized Monte Carlo approach for computing the direct lighting from an environment which for the first time makes ray tracing feasible for highly complex environments.

  19. Simulation and comparison of the illuminance, uniformity, and efficiency of different forms of lighting used in basketball court illumination.

    PubMed

    Sun, Wen-Shing; Tien, Chuen-Lin; Tsuei, Chih-Hsuan; Pan, Jui-Wen

    2014-10-10

    We simulate and compare the illuminance, uniformity, and efficiency of metal-halide lamps, white LED light sources, and hybrid light box designs combining sunlight and white LED lighting used for indoor basketball court illumination. According to the optical simulation results and our examination of real situations, we find that hybrid light box designs combining sunlight and white LEDs do perform better than either metal-halide lamps or white LED lights. An evaluation of the sunlight concentrator system used in our inverted solar cell shows that the energy consumption of stadium lighting can be reduced significantly.

  20. High extraction efficiency ultraviolet light-emitting diode

    DOEpatents

    Wierer, Jonathan; Montano, Ines; Allerman, Andrew A.

    2015-11-24

    Ultraviolet light-emitting diodes with tailored AlGaN quantum wells can achieve high extraction efficiency. For efficient bottom light extraction, parallel polarized light is preferred, because it propagates predominately perpendicular to the QW plane and into the typical and more efficient light escape cones. This is favored over perpendicular polarized light that propagates along the QW plane which requires multiple, lossy bounces before extraction. The thickness and carrier density of AlGaN QW layers have a strong influence on the valence subband structure, and the resulting optical polarization and light extraction of ultraviolet light-emitting diodes. At Al>0.3, thinner QW layers (<2.5 nm are preferred) result in light preferentially polarized parallel to the QW plane. Also, active regions consisting of six or more QWs, to reduce carrier density, and with thin barriers, to efficiently inject carriers in all the QWs, are preferred.

  1. Color and illuminance level of lighting can modulate willingness to eat bell peppers.

    PubMed

    Hasenbeck, Aimee; Cho, Sungeun; Meullenet, Jean-François; Tokar, Tonya; Yang, Famous; Huddleston, Elizabeth A; Seo, Han-Seok

    2014-08-01

    Food products are often encountered under colored lighting, particularly in restaurants and retail stores. However, relatively little attention has been paid to whether the color of ambient lighting can affect consumers' motivation for consumption. This study aimed to determine whether color (Experiment 1) and illuminance level (Experiment 2) of lighting can influence consumers' liking of appearance and their willingness to eat bell peppers. For red, green, and yellow bell peppers, yellow and blue lighting conditions consistently increased participants' liking of appearance the most and the least, respectively. Participants' willingness to consume bell peppers increased the most under yellow lighting and the least under blue lighting. In addition, a dark condition (i.e. low level of lighting illuminance) decreased liking of appearance and willingness to eat the bell peppers compared to a bright condition (i.e. high level of lighting illuminance). Our findings demonstrate that lighting color and illuminance level can influence consumers' hedonic impression and likelihood to consume bell peppers. Furthermore, the influences of color and illuminance level of lighting appear to be dependent on the surface color of bell peppers. © 2013 Society of Chemical Industry.

  2. The Influence of the Environment and Clothing on Human Exposure to Ultraviolet Light

    PubMed Central

    Liu, Jin; Zhang, Wei

    2015-01-01

    Objection The aim of this study is to determine the effect of clothing and the environment on human exposure to ultraviolet light. Methods The ultraviolet (ultraviolet A and ultraviolet B) light intensity was measured, and air quality parameters were recorded in 2014 in Beijing, China. Three types of clothing (white polyester cloth, pure cotton white T-shirt, and pure cotton black T-shirt) were individually placed on a mannequin. The ultraviolet (ultraviolet A and ultraviolet B) light intensities were measured above and beneath each article of clothing, and the percentage of ultraviolet light transmission through the clothing was calculated. Results (1) The ultraviolet light transmission was significantly higher through white cloth than through black cloth; the transmission was significantly higher through polyester cloth than through cotton. (2) The weather significantly influenced ultraviolet light transmission through white polyester cloth; transmission was highest on clear days and lowest on overcast days (ultraviolet A: P=0.000; ultraviolet B: P=0.008). (3) Air quality parameters (air quality index and particulate matter 2.5 and 10) were inversely related to the ultraviolet light intensity that reached the earth’s surface. Ultraviolet B transmission through white polyester cloth was greater under conditions of low air pollution compared with high air pollution. Conclusion Clothing color and material and different types of weather affected ultraviolet light transmission; for one particular cloth, the transmission decreased with increasing air pollution. PMID:25923778

  3. Ambient light-based optical biosensing platform with smartphone-embedded illumination sensor.

    PubMed

    Park, Yoo Min; Han, Yong Duk; Chun, Hyeong Jin; Yoon, Hyun C

    2017-07-15

    We present a hand-held optical biosensing system utilizing a smartphone-embedded illumination sensor that is integrated with immunoblotting assay method. The smartphone-embedded illumination sensor is regarded as an alternative optical receiver that can replaces the conventional optical analysis apparatus because the illumination sensor can respond to the ambient light in a wide range of wavelengths, including visible and infrared. To demonstrate the biosensing applicability of our system employing the enzyme-mediated immunoblotting and accompanying light interference, various types of ambient light conditions including outdoor sunlight and indoor fluorescent were tested. For the immunoblotting assay, the biosensing channel generating insoluble precipitates as an end product of the enzymatic reaction is fabricated and mounted on the illumination sensor of the smartphone. The intensity of penetrating light arrives on the illumination sensor is inversely proportional to the amount of precipitates produced in the channel, and these changes are immediately analyzed and quantified via smartphone software. In this study, urinary C-terminal telopeptide fragment of type II collagen (uCTX-II), a biomarker of osteoarthritis diagnosis, was tested as a model analyte. The developed smartphone-based sensing system efficiently measured uCTX-II in the 0-5ng/mL concentration range with a high sensitivity and accuracy under various light conditions. These assay results show that the illumination sensor-based optical biosensor is suitable for point-of-care testing (POCT). Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Light pollution: the possible consequences of excessive illumination on retina.

    PubMed

    Contín, M A; Benedetto, M M; Quinteros-Quintana, M L; Guido, M E

    2016-02-01

    Light is the visible part of the electromagnetic radiation within a range of 380-780 nm; (400-700 on primates retina). In vertebrates, the retina is adapted to capturing light photons and transmitting this information to other structures in the central nervous system. In mammals, light acts directly on the retina to fulfill two important roles: (1) the visual function through rod and cone photoreceptor cells and (2) non-image forming tasks, such as the synchronization of circadian rhythms to a 24 h solar cycle, pineal melatonin suppression and pupil light reflexes. However, the excess of illumination may cause retinal degeneration or accelerate genetic retinal diseases. In the last century human society has increased its exposure to artificial illumination, producing changes in the Light/Dark cycle, as well as in light wavelengths and intensities. Although, the consequences of unnatural illumination or light pollution have been underestimated by modern society in its way of life, light pollution may have a strong impact on people's health. The effects of artificial light sources could have direct consequences on retinal health. Constant exposure to different wavelengths and intensities of light promoted by light pollution may produce retinal degeneration as a consequence of photoreceptor or retinal pigment epithelium cells death. In this review we summarize the different mechanisms of retinal damage related to the light exposure, which generates light pollution.

  5. Light pollution: the possible consequences of excessive illumination on retina

    PubMed Central

    Contín, M A; Benedetto, M M; Quinteros-Quintana, M L; Guido, M E

    2016-01-01

    Light is the visible part of the electromagnetic radiation within a range of 380–780 nm; (400–700 on primates retina). In vertebrates, the retina is adapted to capturing light photons and transmitting this information to other structures in the central nervous system. In mammals, light acts directly on the retina to fulfill two important roles: (1) the visual function through rod and cone photoreceptor cells and (2) non-image forming tasks, such as the synchronization of circadian rhythms to a 24 h solar cycle, pineal melatonin suppression and pupil light reflexes. However, the excess of illumination may cause retinal degeneration or accelerate genetic retinal diseases. In the last century human society has increased its exposure to artificial illumination, producing changes in the Light/Dark cycle, as well as in light wavelengths and intensities. Although, the consequences of unnatural illumination or light pollution have been underestimated by modern society in its way of life, light pollution may have a strong impact on people's health. The effects of artificial light sources could have direct consequences on retinal health. Constant exposure to different wavelengths and intensities of light promoted by light pollution may produce retinal degeneration as a consequence of photoreceptor or retinal pigment epithelium cells death. In this review we summarize the different mechanisms of retinal damage related to the light exposure, which generates light pollution. PMID:26541085

  6. Detection of Single Molecules Illuminated by a Light-Emitting Diode

    PubMed Central

    Gerhardt, Ilja; Mai, Lijian; Lamas-Linares, Antía; Kurtsiefer, Christian

    2011-01-01

    Optical detection and spectroscopy of single molecules has become an indispensable tool in biological imaging and sensing. Its success is based on fluorescence of organic dye molecules under carefully engineered laser illumination. In this paper we demonstrate optical detection of single molecules on a wide-field microscope with an illumination based on a commercially available, green light-emitting diode. The results are directly compared with laser illumination in the same experimental configuration. The setup and the limiting factors, such as light transfer to the sample, spectral filtering and the resulting signal-to-noise ratio are discussed. A theoretical and an experimental approach to estimate these parameters are presented. The results can be adapted to other single emitter and illumination schemes. PMID:22346610

  7. The possible ocular hazards of LED dental illumination applications.

    PubMed

    Stamatacos, Catherine; Harrison, Janet L

    2014-04-01

    The use of high-intensity illumination via Light-Emitting Diode (LED) headlamps is gaining in popularity with dentists and student dentists. Practitioners are using LED headlamps together with magnifying loupes, overhead LED illumination and fiber-optic dental handpieces for long periods of time. Although most manufacturers of these LED illuminators advertise that their devices emit "white" light, these still consist of two spectral bands - the blue spectral band, with its peak at 445 nm, and the green with its peak at 555 nm. While manufacturers suggest that their devices emit "white" light, spectral components of LED lights from different companies are significantly different. Dental headlamp manufacturers strive to create a white LED, and they advertise that this type of light emitted from their product offers bright white-light illumination. However, the manufacturing of a white LED light is done through selection of a white LED-type based on the peak blue strength in combination with the green peak strength and thus creating a beam-forming optic, which determines the beam quality. Some LED illuminators have a strong blue-light component versus the green-light component. Blue-light is highly energized and is close in the color spectrum to ultraviolet-light. The hazards of retinal damage with the use of high-intensity blue-lights has been well-documented. There is limited research regarding the possible ocular hazards of usage of high-intensity illuminating LED devices. Furthermore, the authors have found little research, standards, or guidelines examining the possible safety issues regarding the unique dental practice setting consisting of the combined use of LED illumination systems. Another unexamined component is the effect of high-intensity light reflective glare and magnification back to the practitioner's eyes due to the use of water during dental procedures. Based on the result of Dr. Janet Harrison's observations of beginning dental students in a

  8. The possible ocular hazards of LED dental illumination applications.

    PubMed

    Stamatacos, Catherine; Harrison, Janet L

    2013-01-01

    The use of high-intensity illumination via Light-Emitting Diode (LED) headlamps is gaining in popularity with dentists and student dentists. Practitioners are using LED headlamps together with magnifying loupes, overhead LED illumination and fiber-optic dental handpieces for long periods of time. Although most manufacturers of these LED illuminators advertise that their devices emit "white" light, these still consist of two spectral bands--the blue spectral band, with its peak at 445 nm, and the green with its peak at 555 nm. While manufacturers suggest that their devices emit "white" light, spectral components of LED lights from different companies are significantly different. Dental headlamp manufacturers strive to create a white LED, and they advertise that this type of light emitted from their product offers bright white-light illumination. However, the manufacturing of a white LED light is done through selection of a white LED-type based on the peak blue strength in combination with the green peak strength and thus creating a beam-forming optic, which determines the beam quality. Some LED illuminators have a strong blue-light component versus the green-light component. Blue-light is highly energized and is close in the color spectrum to ultraviolet-light. The hazards of retinal damage with the use of high-intensity blue-lights has been well-documented. There is limited research regarding the possible ocular hazards of usage of high-intensity illuminating LED devices. Furthermore, the authors have found little research, standards, or guidelines examining the possible safety issues regarding the unique dental practice setting consisting of the combined use of LED illumination systems. Another unexamined component is the effect of high-intensity light reflective glare and magnification back to the practitioner's eyes due to the use of water during dental procedures. Based on the result of Dr. Janet Harrison's observations of beginning dental students in a

  9. Volumetric bioimaging based on light field microscopy with temporal focusing illumination

    NASA Astrophysics Data System (ADS)

    Hsu, Feng-Chun; Sie, Yong Da; Lai, Feng-Jie; Chen, Shean-Jen

    2018-02-01

    Light field technique at a single shot can get the whole volume image of observed sample. Therefore, the original frame rate of the optical system can be taken as the volumetric image rate. For dynamically imaging whole micron-scale biosample, a light field microscope with temporal focusing illumination has been developed. In the light field microscope, the f-number of the microlens array (MLA) is adopted to match that of the objective; hence, the subimages via adjacent lenslets do not overlay each other. A three-dimensional (3D) deconvolution algorithm is utilized to deblur the out-of-focusing part. Conventional light field microscopy (LFM) illuminates whole volume sample even noninteresting parts; nevertheless, whole volume excitation causes even more damage on bio-sample and also increase the background noise from the out of range. Therefore, temporal focusing is integrated into the light field microscope for selecting the illumination volume. Herein, a slit on the back focal plane of the objective is utilized to control the axial excitation confinement for selecting the illumination volume. As a result, the developed light field microscope with the temporal focusing multiphoton illumination (TFMPI) can reconstruct 3D images within the selected volume, and the lateral resolution approaches to the theoretical value. Furthermore, the 3D Brownian motion of two-micron fluorescent beads is observed as the criterion of dynamic sample. With superior signal-to-noise ratio and less damage to tissue, the microscope is potential to provide volumetric imaging for vivo sample.

  10. Automatic illumination compensation device based on a photoelectrochemical biofuel cell driven by visible light

    NASA Astrophysics Data System (ADS)

    Yu, You; Han, Yanchao; Xu, Miao; Zhang, Lingling; Dong, Shaojun

    2016-04-01

    Inverted illumination compensation is important in energy-saving projects, artificial photosynthesis and some forms of agriculture, such as hydroponics. However, only a few illumination adjustments based on self-powered biodetectors that quantitatively detect the intensity of visible light have been reported. We constructed an automatic illumination compensation device based on a photoelectrochemical biofuel cell (PBFC) driven by visible light. The PBFC consisted of a glucose dehydrogenase modified bioanode and a p-type semiconductor cuprous oxide photocathode. The PBFC had a high power output of 161.4 μW cm-2 and an open circuit potential that responded rapidly to visible light. It adjusted the amount of illumination inversely irrespective of how the external illumination was changed. This rational design of utilizing PBFCs provides new insights into automatic light adjustable devices and may be of benefit to intelligent applications.Inverted illumination compensation is important in energy-saving projects, artificial photosynthesis and some forms of agriculture, such as hydroponics. However, only a few illumination adjustments based on self-powered biodetectors that quantitatively detect the intensity of visible light have been reported. We constructed an automatic illumination compensation device based on a photoelectrochemical biofuel cell (PBFC) driven by visible light. The PBFC consisted of a glucose dehydrogenase modified bioanode and a p-type semiconductor cuprous oxide photocathode. The PBFC had a high power output of 161.4 μW cm-2 and an open circuit potential that responded rapidly to visible light. It adjusted the amount of illumination inversely irrespective of how the external illumination was changed. This rational design of utilizing PBFCs provides new insights into automatic light adjustable devices and may be of benefit to intelligent applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00759g

  11. Dim ultraviolet light as a means of deterring activity by the Hawaiian hoary bat Lasiurus cinereus semotus

    USGS Publications Warehouse

    Gorresen, P. Marcos; Cryan, Paul M.; Dalton, David C.; Wolf, Sandy; Johnson, Jessica A.; Todd, Christopher M.; Bonaccorso, Frank J.

    2015-01-01

    Widespread bat fatalities at industrial wind turbines are a conservation issue with the potential to inhibit efficient use of an abundant source of energy. Bat fatalities can be reduced by altering turbine operations, but such curtailment decreases turbine efficiency. If additional ways of reducing bat fatalities at wind turbines were available such tradeoffs might not be needed. Based on the facts that bats perceive distant objects primarily through vision and can see in very dim lighting conditions, and the possibility that bats might interact with turbines after approaching them as they would trees, we propose a novel method of reducing bat activity at wind turbines: illumination of the structure with dim light. As a first step toward assessing this approach, we illuminated trees with dim flickering ultraviolet (UV) light in areas frequented by Hawaiian hoary bats Lasiurus cinereus semotus, an endangered subspecies affected by wind turbines. We used a repeated-measures design to quantify bat activity near trees with acoustic detectors and thermal video cameras in the presence and absence of UV illumination, while concurrently monitoring insect numbers. Results indicate that dim UV reduces bat activity despite an increase in insect numbers. Experimental treatment did not completely inhibit bat activity near trees, nor did all measures of bat activity show statistically significant differences due to high variance in bat activity among sites. However, the observed decreases in bat activity with dim UV illumination justify further testing of this method as a means to reduce bat fatalities at wind turbines.

  12. Inorganic volumetric light source excited by ultraviolet light

    DOEpatents

    Reed, Scott; Walko, Robert J.; Ashley, Carol S.; Brinker, C. Jeffrey

    1994-01-01

    The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light.

  13. Inorganic volumetric light source excited by ultraviolet light

    DOEpatents

    Reed, S.; Walko, R.J.; Ashley, C.S.; Brinker, C.J.

    1994-04-26

    The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light. 4 figures.

  14. A sensitive ultraviolet light photodiode based on graphene-on-zinc oxide Schottky junction

    NASA Astrophysics Data System (ADS)

    Zhang, Teng-Fei; Wu, Guo-An; Wang, Jiu-Zhen; Yu, Yong-Qiang; Zhang, Deng-Yue; Wang, Dan-Dan; Jiang, Jing-Bo; Wang, Jia-Mu; Luo, Lin-Bao

    2017-08-01

    In this study, we present a simple ultraviolet (UV) light photodiode by transferring a layer of graphene film on single-crystal ZnO substrate. The as-fabricated heterojunction exhibited typical rectifying behavior, with a Schottky barrier height of 0.623 eV. Further optoelectronic characterization revealed that the graphene-ZnO Schottky junction photodiode displayed obvious sensitivity to 365-nm light illumination with good reproducibility. The responsivity and photoconductive gain were estimated to be 3×104 A/W and 105, respectively, which were much higher than other ZnO nanostructure-based devices. In addition, it was found that the on/off ratio of the present device can be considerably improved from 2.09 to 12.1, when the device was passivated by a layer of AlOx film. These results suggest that the present simply structured graphene-ZnO UV photodiode may find potential application in future optoelectronic devices.

  15. Effect of ultraviolet light on mood, depressive disorders and well-being.

    PubMed

    Veleva, Bistra I; van Bezooijen, Rutger L; Chel, Victor G M; Numans, Mattijs E; Caljouw, Monique A A

    2018-06-01

    Human and animal studies have shown that exposure to ultraviolet light can incite a chain of endocrine, immunologic, and neurohumoral reactions that might affect mood. This review focuses on the evidence from clinical trials and observational studies on the effect of ultraviolet light on mood, depressive disorders, and well-being. A search was made in PubMed, Embase, Web of Science, Cochrane, Psychinfo, CINAHL, Academic Search Premier and Science Direct, and the references of key papers, for clinical trials and observational studies describing the effect of ultraviolet light applied to skin or eyes on mood, depressive disorders, and well-being. Of the seven studies eligible for this review, the effect of ultraviolet light on mood, depressive symptoms and seasonal affective disorders was positive in six of them. Of the seven studies, six demonstrated benefit of exposure to ultraviolet radiation and improvement in mood which supports a positive effect of ultraviolet light on mood. Because of the small number of the studies and their heterogeneity, more research is warranted to confirm and document this correlation. © 2018 The Authors. Photodermatology, Photoimmunology & Photomedicine Published by John Wiley & Sons Ltd.

  16. Improvement of illumination uniformity for LED flat panel light by using micro-secondary lens array.

    PubMed

    Lee, Hsiao-Wen; Lin, Bor-Shyh

    2012-11-05

    LED flat panel light is an innovative lighting product in recent years. However, current flat panel light products still contain some drawbacks, such as narrow lighting areas and hot spots. In this study, a micro-secondary lens array technique was proposed and applied for the design of the light guide surface to improve the illumination uniformity. By using the micro-secondary lens array, the candela distribution of the LED flat panel light can be adjusted to similar to batwing distribution to improve the illumination uniformity. The experimental results show that the enhancement of the floor illumination uniformity is about 61%, and that of the wall illumination uniformity is about 20.5%.

  17. Method for the detection of nitro-containing compositions using ultraviolet photolysis

    DOEpatents

    Reagen, William K.; Lancaster, Gregory D.; Partin, Judy K.; Moore, Glenn A.

    2000-01-01

    A method for detecting nitro-containing compositions (e.g. nitrate/nitrite materials) in water samples and on solid substrates. In a water sample, ultraviolet light is applied to the sample so that dissolved nitro compositions therein will photolytically dissociate into gaseous nitrogen oxides (NO.sub.2(g) and/or NO.sub.(g)). A carrier gas is then introduced into the sample to generate a gaseous stream which includes the carrier gas combined with any gaseous nitrogen oxides. The carrier gas is thereafter directed into a detector. To detect nitro-compositions on solid substrates, ultraviolet light is applied thereto. A detector is then used to detect any gaseous nitrogen oxides which are photolytically generated during ultraviolet illumination. An optional carrier gas may be applied to the substrate during illumination to produce a gaseous stream which includes the carrier gas and any gaseous nitrogen oxides. The gaseous stream is then supplied to the detector.

  18. Photocatalytic disinfection of surfaces with copper doped Ti02 nanotube coatings illuminated by ceiling mounted fluorescent light

    PubMed Central

    Koklic, Tilen; Pintarič, Štefan; Zdovc, Irena; Golob, Majda; Umek, Polona; Mehle, Alma; Dobeic, Martin; Štrancar, Janez

    2018-01-01

    High economic burden is associated with foodborne illnesses. Different disinfection methods are therefore employed in food processing industry; such as use of ultraviolet light or usage of surfaces with copper-containing alloys. However, all the disinfection methods currently in use have some shortcomings. In this work we show that copper doped TiO2 nanotubes deposited on existing surfaces and illuminated with ceiling mounted fluorescent lights can retard the growth of Listeria Innocua by 80% in seven hours of exposure to the fluorescent lights at different places in a food processing plant or in the laboratory conditions with daily reinocuation and washing. The disinfection properties of the surfaces seem to depend mainly on the temperature difference of the surface and the dew point, where for the maximum effectiveness the difference should be about 3 degrees celsius. The TiO2 nanotubes have a potential to be employed for an economical and continuous disinfection of surfaces. PMID:29768464

  19. Photocatalytic disinfection of surfaces with copper doped Ti02 nanotube coatings illuminated by ceiling mounted fluorescent light.

    PubMed

    Koklic, Tilen; Pintarič, Štefan; Zdovc, Irena; Golob, Majda; Umek, Polona; Mehle, Alma; Dobeic, Martin; Štrancar, Janez

    2018-01-01

    High economic burden is associated with foodborne illnesses. Different disinfection methods are therefore employed in food processing industry; such as use of ultraviolet light or usage of surfaces with copper-containing alloys. However, all the disinfection methods currently in use have some shortcomings. In this work we show that copper doped TiO2 nanotubes deposited on existing surfaces and illuminated with ceiling mounted fluorescent lights can retard the growth of Listeria Innocua by 80% in seven hours of exposure to the fluorescent lights at different places in a food processing plant or in the laboratory conditions with daily reinocuation and washing. The disinfection properties of the surfaces seem to depend mainly on the temperature difference of the surface and the dew point, where for the maximum effectiveness the difference should be about 3 degrees celsius. The TiO2 nanotubes have a potential to be employed for an economical and continuous disinfection of surfaces.

  20. Abnormal hump in capacitance-voltage measurements induced by ultraviolet light in a-IGZO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Tsao, Yu-Ching; Chang, Ting-Chang; Chen, Hua-Mao; Chen, Bo-Wei; Chiang, Hsiao-Cheng; Chen, Guan-Fu; Chien, Yu-Chieh; Tai, Ya-Hsiang; Hung, Yu-Ju; Huang, Shin-Ping; Yang, Chung-Yi; Chou, Wu-Ching

    2017-01-01

    This work demonstrates the generation of abnormal capacitance for amorphous indium-gallium-zinc oxide (a-InGaZnO4) thin-film transistors after being subjected to negative bias stress under ultraviolet light illumination stress (NBIS). At various operation frequencies, there are two-step tendencies in their capacitance-voltage curves. When gate bias is smaller than threshold voltage, the measured capacitance is dominated by interface defects. Conversely, the measured capacitance is dominated by oxygen vacancies when gate bias is larger than threshold voltage. The impact of these interface defects and oxygen vacancies on capacitance-voltage curves is verified by TCAD simulation software.

  1. Illumination of dense urban areas by light redirecting panels.

    PubMed

    El-Henawy, Sally I; Mohamed, Mohamed W N; Mashaly, Islam A; Mohamed, Osama N; Galal, Ola; Taha, Iman; Nassar, Khaled; Safwat, Amr M E

    2014-05-05

    With the high population growth rate, especially in developing countries, and the scarcity of land resources, buildings are becoming so close to each other, depriving the lower floors and the alleys from sunlight and consequently causing health problems. Therefore, there is an urgent need for cost-effective efficient light redirecting panels that guide sun rays into those dim places. In this paper, we address this problem. A novel sine wave based panel is presented to redirect/diverge light downward and enhance the illumination level in those dark places. Simulation results show that the proposed panel improves the illuminance values by more than 200% and 400% in autumn and winter respectively, operates over wide solar altitude ranges, and redirects light efficiently. Experimental and simulation results are in good agreement.

  2. Hybrid sunlight/LED illumination and renewable solar energy saving concepts for indoor lighting.

    PubMed

    Tsuei, Chih-Hsuan; Sun, Wen-Shing; Kuo, Chien-Cheng

    2010-11-08

    A hybrid method for using sunlight and light-emitting diode (LED) illumination powered by renewable solar energy for indoor lighting is simulated and presented in this study. We can illuminate an indoor space and collect the solar energy using an optical switching system. When the system is turned off, the full spectrum of the sunlight is concentrated by a concentrator, to be absorbed by solar photovoltaic devices that provide the electricity to power the LEDs. When the system is turned on, the sunlight collected by the concentrator is split into visible and non-visible rays by a beam splitter. The visible rays pass through the light guide into a light box where it is mixed with LED light to ultimately provide uniform illumination by a diffuser. The non-visible rays are absorbed by the solar photovoltaic devices to provide electrical power for the LEDs. Simulation results show that the efficiency of the hybrid sunlight/LED illumination with the renewable solar energy saving design is better than that of LED and traditional lighting systems.

  3. Single-layer graphene/titanium oxide cubic nanorods array/FTO heterojunction for sensitive ultraviolet light detection

    NASA Astrophysics Data System (ADS)

    Liang, Feng-Xia; Wang, Jiu-Zhen; Wang, Yi; Lin, Yi; Liang, Lin; Gao, Yang; Luo, Lin-Bao

    2017-12-01

    In this study, we report on the fabrication of a sensitive ultraviolet photodetector (UVPD) by simply transferring single-layer graphene (SLG) on rutile titanium oxide cubic nanorod (TiO2NRs) array. The cubic TiO2NRs array with strong light trapping effect was grown on fluorine-doped tin oxide (FTO) glass through a hydrothermal approach. The as-assembled UVPD was very sensitive to UV light illumination, but virtually blind to white light illumination. The responsivity and specific detectivity were estimated to be 52.1 A/W and 4.3 × 1012 Jones, respectively. What is more, in order to optimize device performance of UVPD, a wet-chemistry treatment was then employed to reduce the high concentration of defects in TiO2NRs during hydrothermal growth. It was found that the UVPD after treatment showed obvious decrease in sensitivity, but the response speed (rise time: 80 ms, fall time: 160 ms) and specific detectivity were substantially increased. It is also found that the speicific detectivity was imporoved by six-fold to 3.2 × 1013 Jones, which was the best result in comparison with previously reported TiO2 nanostructures or thin film based UVPDs. This totality of this study shows that the present SLG/TiO2NR/FTO UVPD may find potential application in future optoelectronic devices and systems.

  4. Design, simulation and experimental analysis of an anti-stray-light illumination system of fundus camera

    NASA Astrophysics Data System (ADS)

    Ma, Chen; Cheng, Dewen; Xu, Chen; Wang, Yongtian

    2014-11-01

    Fundus camera is a complex optical system for retinal photography, involving illumination and imaging of the retina. Stray light is one of the most significant problems of fundus camera because the retina is so minimally reflective that back reflections from the cornea and any other optical surface are likely to be significantly greater than the light reflected from the retina. To provide maximum illumination to the retina while eliminating back reflections, a novel design of illumination system used in portable fundus camera is proposed. Internal illumination, in which eyepiece is shared by both the illumination system and the imaging system but the condenser and the objective are separated by a beam splitter, is adopted for its high efficiency. To eliminate the strong stray light caused by corneal center and make full use of light energy, the annular stop in conventional illumination systems is replaced by a fiber-coupled, ring-shaped light source that forms an annular beam. Parameters including size and divergence angle of the light source are specially designed. To weaken the stray light, a polarized light source is used, and an analyzer plate is placed after beam splitter in the imaging system. Simulation results show that the illumination uniformity at the fundus exceeds 90%, and the stray light is within 1%. Finally, a proof-of-concept prototype is developed and retinal photos of an ophthalmophantom are captured. The experimental results show that ghost images and stray light have been greatly reduced to a level that professional diagnostic will not be interfered with.

  5. "Light-box" accelerated growth of poinsettias: LED-only illumination

    NASA Astrophysics Data System (ADS)

    Weerasuriya, Charitha; Detez, Stewart; Hock Ng, Soon; Hughes, Andrew; Callaway, Michael; Harrison, Iain; Katkus, Tomas; Juodkazis, Saulius

    2018-01-01

    For the current commercialized agricultural industry which requires a reduced product lead time to customer and supply all year round, an artificial light emitting diodes (LEDs)-based illumination has high potential due to high efficiency of electrical-to-light conversion. The main advantage of the deployed Red Green Blue Amber LED lighting system is colour mixing capability, which means ability to generate all the colours in the spectrum by using three or four primary colours LEDs. The accelerated plant growth was carried out in a "light-box" which was made to generate an artificial day/night cycle by moving the colour mixing ratio along the colour temperature curve of the chromaticity diagram. The control group of plants form the same initial batch was grown on the same shelf in a greenhouse at the same conditions with addition of artificial illumination by incandescent lamps for few hours. Costs and efficiency projections of LED lamps for horticultural applications is discussed together with required capital investment. The total cost of the "light-box" including LED lamps and electronics was 850 AUD.

  6. Near infrared photoluminescence properties of porous silicon prepared under the influence of light illumination

    NASA Astrophysics Data System (ADS)

    Hamadeh, H.; Naddaf, M.; Jazmati, A.

    2008-12-01

    Porous silicon (PS) has been prepared by anodic etching of boron doped silicon under the influence of monochromatic light illumination. The optical properties of the PS samples have been investigated using temperature dependent photoluminescence (PL) spectroscopy. An overall enhancement of the infrared luminescence yield is caused by the light illumination. In the visible spectral range, changes at the low energy side of the broad PL band were observed. In the near infrared spectral range, a new PL band at 850 nm, which is strongly correlated with light illumination, was detected. The new PL band disappears once blue light is used, whereas an increase in its intensity is observed, when the etching is performed under the illumination of light with wavelengths close to the band gap. By increasing the temperature, the 850 nm transition band grows at the expense of the main near infrared transition at 1100 nm. The recombination characteristics of this PL band are indicative of its extrinsic nature. The macroscopic morphology shows strong dependence on the wavelength of the illumination light. Photoassisted preparation could provide a tool for the control of the optical and structural properties of PS.

  7. Design Considerations for a Water Treatment System Utilizing Ultra-Violet Light Emitting Diodes

    DTIC Science & Technology

    2014-03-27

    DESIGN CONSIDERATIONS FOR A WATER TREATMENT SYSTEM UTILIZING ULTRA-VIOLET LIGHT EMITTING DIODES...the United States. ii AFIT-ENV-14-M-58 DESIGN CONSIDERATIONS FOR A WATER TREATMENT SYSTEM UTILIZING ULTRA-VIOLET LIGHT EMITTING DIODES...DISTRIBUTION UNLIMITED. iii AFIT-ENV-14-M-58 DESIGN CONSIDERATIONS FOR A WATER TREATMENT SYSTEM UTILIZING ULTRA-VIOLET LIGHT EMITTING

  8. GALEX 1st Light Far Ultraviolet

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image was taken May 21 and 22 by NASA's Galaxy Evolution Explorer. The image was made from data gathered by the far ultraviolet channel of the spacecraft camera during the mission's 'first light' milestone. It shows about 400 celestial objects, appearing in blue, detected over a 3-minute, 20-second period in the constellation Hercules.

    The Galaxy Evolution Explorer's first light images are dedicated to the crew of the Space Shuttle Columbia. The Hercules region was directly above Columbia when it made its last contact with NASA Mission Control on February 1, over the skies of Texas.

    The Galaxy Evolution Explorer launched on April 28 on a mission to map the celestial sky in the ultraviolet and determine the history of star formation in the universe over the last 10 billion years.

  9. Optimization of LED light spectrum to enhance colorfulness of illuminated objects with white light constraints.

    PubMed

    Wu, Haining; Dong, Jianfei; Qi, Gaojin; Zhang, Guoqi

    2015-07-01

    Enhancing the colorfulness of illuminated objects is a promising application of LED lighting for commercial, exhibiting, and scientific purposes. This paper proposes a method to enhance the color of illuminated objects for a given polychromatic lamp. Meanwhile, the light color is restricted to white. We further relax the white light constraints by introducing soft margins. Based on the spectral and electrical characteristics of LEDs and object surface properties, we determine the optimal mixing of the LED light spectrum by solving a numerical optimization problem, which is a quadratic fractional programming problem by formulation. Simulation studies show that the trade-off between the white light constraint and the level of the color enhancement can be adjusted by tuning an upper limit value of the soft margin. Furthermore, visual evaluation experiments are performed to evaluate human perception of the color enhancement. The experiments have verified the effectiveness of the proposed method.

  10. Study on light and thermal energy of illumination device for plant factory design

    NASA Astrophysics Data System (ADS)

    Yoshida, A.; Moriuchi, K.; Ueda, Y.; Kinoshita, S.

    2018-01-01

    To investigate the effect of illumination devices on the yield of crops cultivated in a plant factory, it is necessary to measure the actual cultivation environmental factors related to the plant growth and understand the distribution ratio of light and thermal energy to the electrical energy injected into the illumination device. Based on cultivation results, we found that light intensity greatly affected the growth of plant weight. Regarding the selection of illumination device, its spectral components also affected the morphological change. Lighting experiments using a high frequency (Hf) fluorescent lamp and a light emitting diode (LED) bulb were performed. A certain difference was found in the distribution ratio of light energy to electrical energy between Hf and LED. It was showed that by placing the safety equipment or internal circuits outside the cultivated site, the air conditioning load could be reduced.

  11. Outgassing Measurements for Three Materials, Combined with Vacuum Ultraviolet Radiation Illumination of the Volatile Condensable Materials

    NASA Technical Reports Server (NTRS)

    Albyn, Keith

    2005-01-01

    The photolysis of three organic materials, by vacuum ultraviolet (VUV) radiation, has been quantified using 15-MHz temperature-controlled quartz microbalances (TQCM's). The rate at which molecular species, released from the individual samples, condensed on two TQCM s was measured for periods of up to 139.9-hours. The individual samples were heated in an effusion cell and the emitted molecular species collected on a pair of TQCM's which were maintained at -40 degrees Celsius. At several points during the deposition measurement, the deposition surface of one TQCM was illuminated by a 30 Watt deuterium lamp, and the loss of material from that surface was observed. V W illumination of the TQCM, concurrent with condensation, reduced the rate that material was lost from the deposition surface. These measurements present a contrasting picture of molecular deposition, in the presence of VUV, to that presented by other investigators who observed an enhanced rate of molecular deposition, when the deposition surface was illuminated by VUV.

  12. Can the circadian system of a diurnal and a nocturnal rodent entrain to ultraviolet light?

    PubMed

    Hut, R A; Scheper, A; Daan, S

    2000-01-01

    Spectral measurements of sunlight throughout the day show close correspondence between the timing of above ground activity of the European ground squirrel and the presence of ultraviolet light in the solar spectrum. However, in a standard entrainment experiment ground squirrels show no entrainment to ultraviolet light, while Syrian hamsters do entrain under the same protocol. Presented transmittance spectra for lenses, corneas, and vitreous bodies may explain the different results of the entrainment experiment. We found ultraviolet light transmittance in the colourless hamster lens (50% cut-off at 341 nm), but not in the yellow ground squirrel lens (50% cut-off around 493 nm). Ultraviolet sensitivity in the ground squirrels based upon possible fluorescence mechanisms was not evident. Possible functions of ultraviolet lens filters in diurnal mammals are discussed, and compared with nocturnal mammals and diurnal birds. Species of the latter two groups lack ultraviolet filtering properties of their lenses and their circadian system is known to respond to ultraviolet light, a feature that does not necessarily has to depend on ultraviolet photoreceptors. Although the circadian system of several species responds to ultraviolet light, we argue that the role of ultraviolet light as a natural Zeitgeber is probably limited.

  13. GALEX 1st Light Far Ultraviolet

    NASA Image and Video Library

    2003-05-28

    This image was taken May 21 and 22, 2003 by NASA Galaxy Evolution Explorer. The image was made from data gathered by the far ultraviolet channel of the spacecraft camera during the mission first light milestone. It shows about 400 celestial objects

  14. Roadway lighting : illumination study of Rte. 1-95, Shirley Highway.

    DOT National Transportation Integrated Search

    1976-01-01

    This report is concerned with a study of the quantity and uniformity of the illumination on some selected sections of the roadway lighting on Rte. I-95 in Northern Virginia. The evaluation of the lighting was made to obtain data that could be used as...

  15. Up-converted ultraviolet luminescence of Er3+:BaGd2ZnO5 phosphors for healthy illumination

    NASA Astrophysics Data System (ADS)

    Zhang, Ya; Cui, Qingzhi; Wang, Zhanyong; Liu, Gan; Tian, Tian; Xu, Jiayue

    2016-09-01

    Moderate level of exposure to the solar irradiation containing UV component is essential for health care. To incorporate the UV-emitting phosphors into the commercial YAG-based white light-emitting diode introduces the possibilities of healthy illumination to individuals' daily lives. 1 mol.% Er3+-doped BaGd2ZnO5 (BGZ) particles were synthesized via sol-gel method and efficient up-converted luminescence peaked at 380 nm was detected under 480 nm excitation. The mixed phosphors with varied mass ratio of Er3+:BGZ and Ce3+:YAG particles were encapsulated to form LEDs. The study of the LEDs indicated that the introduction of BGZ component favored the enhancement of color-rendering index and the neutralization of the white light emitting. The WLED with the BGZ/YAG ratio of 8:2 was recommendable for its excellent overall white light luminous performances and UV intensity of 84.55 mW/cm2. The UV illumination dose of the WLEDs with mixed YAG and BGZ was controllable by adjusting the ratio, the illumination distance and the illumination time. Er3+:BGZ phosphors are promising UVemitting phosphors for healthy indoor illumination.

  16. Restoration of uneven illumination in light sheet microscopy images.

    PubMed

    Uddin, Mohammad Shorif; Lee, Hwee Kuan; Preibisch, Stephan; Tomancak, Pavel

    2011-08-01

    Light microscopy images suffer from poor contrast due to light absorption and scattering by the media. The resulting decay in contrast varies exponentially across the image along the incident light path. Classical space invariant deconvolution approaches, while very effective in deblurring, are not designed for the restoration of uneven illumination in microscopy images. In this article, we present a modified radiative transfer theory approach to solve the contrast degradation problem of light sheet microscopy (LSM) images. We confirmed the effectiveness of our approach through simulation as well as real LSM images.

  17. Deep ultraviolet light-emitting and laser diodes

    NASA Astrophysics Data System (ADS)

    Khan, Asif; Asif, Fatima; Muhtadi, Sakib

    2016-02-01

    Nearly all the air-water purification/polymer curing systems and bio-medical instruments require 250-300 nm wavelength ultraviolet light for which mercury lamps are primarily used. As a potential replacement for these hazardous mercury lamps, several global research teams are developing AlGaN based Deep Ultraviolet (DUV) light emitting diodes (LEDs) and DUV LED Lamps and Laser Diodes over Sapphire and AlN substrates. In this paper, we review the current research focus and the latest device results. In addition to the current results we also discuss a new quasipseudomorphic device design approach. This approach which is much easier to integrate in a commercial production setting was successfully used to demonstrate UVC devices on Sapphire substrates with performance levels equal to or better than the conventional relaxed device designs.

  18. 3D topography of biologic tissue by multiview imaging and structured light illumination

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Zhang, Shiwu; Xu, Ronald

    2014-02-01

    Obtaining three-dimensional (3D) information of biologic tissue is important in many medical applications. This paper presents two methods for reconstructing 3D topography of biologic tissue: multiview imaging and structured light illumination. For each method, the working principle is introduced, followed by experimental validation on a diabetic foot model. To compare the performance characteristics of these two imaging methods, a coordinate measuring machine (CMM) is used as a standard control. The wound surface topography of the diabetic foot model is measured by multiview imaging and structured light illumination methods respectively and compared with the CMM measurements. The comparison results show that the structured light illumination method is a promising technique for 3D topographic imaging of biologic tissue.

  19. High Efficiency, Illumination Quality OLEDs for Lighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph Shiang; James Cella; Kelly Chichak

    The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature ismore » 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is

  20. Rectangular illumination using a secondary optics with cylindrical lens for LED street light.

    PubMed

    Chen, Hsi-Chao; Lin, Jun-Yu; Chiu, Hsuan-Yi

    2013-02-11

    The illumination pattern of an LED street light is required to have a rectangular distribution at a divergence-angle ratio of 7:3 for economical illumination. Hence, research supplying a secondary optics with two cylindrical lenses was different from free-form curvature for rectangular illumination. The analytical solution for curvatures with different ratio rectangles solved this detail by light tracing and boundary conditions. Similarities between the experiments and the simulation for a single LED and a 9-LED module were analyzed by Normalized Cross Correlation (NCC), and the error rate was studied by the Root Mean Square (RMS). The tolerance of position must be kept under ± 0.2 mm in the x, y and z directions to ensure that the relative illumination is over 99%.

  1. Ultraviolet photometry from the Orbiting Astronomical Observatory. XXVIII - Ultraviolet light curves for Alpha Lupi and BW Vulpeculae

    NASA Technical Reports Server (NTRS)

    Lesh, J. R.

    1978-01-01

    Photometric data from the Wisconsin Experiment Package on OAO-2 have been used to construct light curves at three ultraviolet wavelengths for Alpha Lup and at seven wavelengths for BW Vul. Both stars are well-known variables of the Beta Cephei (Beta Canis Majoris) type. The light curves for Alpha Lup are in good agreement with the radial-velocity period. A temperature variation of 400-500 K is derived. The BW Vul light curves confirm recent ephemerides based on a secularly varying period and show a stillstand near light maximum at some wavelengths. Both stars exhibit increasing light amplitude at the shortest ultraviolet wavelengths. There is little evidence for cycle-to-cycle variations on a time scale of the order of 1 day.

  2. Optimal front light design for reflective displays under different ambient illumination

    NASA Astrophysics Data System (ADS)

    Wang, Sheng-Po; Chang, Ting-Ting; Li, Chien-Ju; Bai, Yi-Ho; Hu, Kuo-Jui

    2011-01-01

    The goal of this study is to find out the optimal luminance and color temperature of front light for reflective displays in different ambient illumination by conducting series of psychophysical experiments. A color and brightness tunable front light device with ten LED units was built and been calibrated to present 256 luminance levels and 13 different color temperature at fixed luminance of 200 cd/m2. The experiment results revealed the best luminance and color temperature settings for human observers under different ambient illuminant, which could also assist the e-paper manufacturers to design front light device, and present the best image quality on reflective displays. Furthermore, a similar experiment procedure was conducted by utilizing new flexible e-signage display developed by ITRI and an optimal front light device for the new display panel has been designed and utilized.

  3. Photocatalytic antibacterial activity of copper-based nanoparticles under visible light illumination

    NASA Astrophysics Data System (ADS)

    Wu, Zong-Yan; Abdullah, Hairus; Kuo, Dong-Hau

    2018-04-01

    Copper oxide and sulfide nanoparticles after annealing treatment at 400 °Chave been characterized and tested for their bactericidal properties toward Staphylococcus aureus and Escherichia coli under the dark and LED light illuminated conditions. It was found that the nanoparticles with the formation of CuS/Cu2S/CuO nanoheterostructuresexhibited a great capability of killing Staphylococcus aureus and Escherichia coli with or without light illumination. The antibacterial activity of the nanoparticles was demonstrated and simply observed with colony counting method. A mechanism of the antibacterial behaviour had been proposed and elucidated in this work.

  4. Light shield and cooling apparatus. [high intensity ultraviolet lamp

    NASA Technical Reports Server (NTRS)

    Meador, T. G., Jr. (Inventor)

    1974-01-01

    A light shield and cooling apparatus was developed for a high intensity ultraviolet lamp including water and high pressure air for cooling and additional apparatus for shielding the light and suppressing the high pressure air noise.

  5. Ultraviolet light absorbers having two different chromophors in the same molecule

    DOEpatents

    Vogl, O.; Li, S.

    1983-10-06

    This invention relates to novel ultraviolet light absorbers having two chromophors in the same molecule, and more particularly to benzotriazole substituted dihydroxybenzophenones and acetophenones. More particularly, this invention relates to 3,5-(di(2H-benzotriazole-2-yl))-2,4-dihydroxybenzophenone and 3,5-(di(2H-benzotriazole-2-yl))-2,4-dihydroxyacetophenone which are particularly useful as an ultraviolet light absorbers.

  6. Anode catalysts for direct ethanol fuel cells utilizing directly solar light illumination.

    PubMed

    Chu, Daobao; Wang, Shuxi; Zheng, Peng; Wang, Jian; Zha, Longwu; Hou, Yuanyuan; He, Jianguo; Xiao, Ying; Lin, Huashui; Tian, Zhaowu

    2009-01-01

    Shine a light: A PtNiRu/TiO(2) anode catalyst for direct ethanol fuel cells shows photocatalytic activity. The peak current density for ethanol oxidation under solar light illumination is 2-3 times greater than that in the absence of solar light. Ethanol is oxidized by light-generated holes, and the electrons are collected by the TiO(2) support to generate the oxidation current.Novel PtNiRu/TiO(2) anode catalysts for direct ethanol fuel cells (DEFCs) were prepared from PtNiRu nanoparticles (1:1:1 atomic ratios) and a nanoporous TiO(2) film by a sol-gel and electrodeposition method. The performances of the catalysts for ethanol oxidation were investigated by cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. The results indicate a remarkable enhancement of activity for ethanol oxidation under solar light illumination. Under solar light illumination, the generated oxidation peak current density is 24.6 mA cm(-2), which is about 2.5 times higher than that observed without solar light (9.9 mA cm(-2)). The high catalytic activity of the PtNiRu/TiO(2) complex catalyst for the electrooxidation of ethanol may be attributed to the modified metal/nanoporous TiO(2) film, and the enhanced electrooxidation of ethanol under solar light may be due to the photogeneration of holes in the modified nanoporous TiO(2) film.

  7. Condenser for ring-field deep ultraviolet and extreme ultraviolet lithography

    DOEpatents

    Chapman, Henry N.; Nugent, Keith A.

    2002-01-01

    A condenser for use with a ring-field deep ultraviolet or extreme ultraviolet lithography system. A condenser includes a ripple-plate mirror which is illuminated by a collimated or converging beam at grazing incidence. The ripple plate comprises a flat or curved plate mirror into which is formed a series of channels along an axis of the mirror to produce a series of concave surfaces in an undulating pattern. Light incident along the channels of the mirror is reflected onto a series of cones. The distribution of slopes on the ripple plate leads to a distribution of angles of reflection of the incident beam. This distribution has the form of an arc, with the extremes of the arc given by the greatest slope in the ripple plate. An imaging mirror focuses this distribution to a ring-field arc at the mask plane.

  8. Condenser for ring-field deep-ultraviolet and extreme-ultraviolet lithography

    DOEpatents

    Chapman, Henry N.; Nugent, Keith A.

    2001-01-01

    A condenser for use with a ring-field deep ultraviolet or extreme ultraviolet lithography system. A condenser includes a ripple-plate mirror which is illuminated by a collimated beam at grazing incidence. The ripple plate comprises a plate mirror into which is formed a series of channels along an axis of the mirror to produce a series of concave surfaces in an undulating pattern. Light incident along the channels of the mirror is reflected onto a series of cones. The distribution of slopes on the ripple plate leads to a distribution of angles of reflection of the incident beam. This distribution has the form of an arc, with the extremes of the arc given by the greatest slope in the ripple plate. An imaging mirror focuses this distribution to a ring-field arc at the mask plane.

  9. Micromachined edge illuminated optically transparent automotive light guide panels

    NASA Astrophysics Data System (ADS)

    Ronny, Rahima Afrose; Knopf, George K.; Bordatchev, Evgueni; Tauhiduzzaman, Mohammed; Nikumb, Suwas

    2012-03-01

    Edge-lit backlighting has been used extensively for a variety of small and medium-sized liquid crystal displays (LCDs). The shape, density and spatial distribution pattern of the micro-optical elements imprinted on the surface of the flat light-guide panel (LGP) are often "optimized" to improve the overall brightness and luminance uniformity. A similar concept can be used to develop interior convenience lighting panels and exterior tail lamps for automotive applications. However, costly diffusive sheeting and brightness enhancement films are not be considered for these applications because absolute luminance uniformity and the minimization of Moiré fringe effects are not significant factors in assessing quality of automotive lighting. A new design concept that involves micromilling cylindrical micro-optical elements on optically transparent plastic substrates is described in this paper. The variable parameter that controls illumination over the active regions of the panel is the depth of the individual cylindrical micro-optical elements. LightTools™ is the optical simulation tool used to explore how changing the micro-optical element depth can alter the local and global luminance. Numerical simulation and microfabrication experiments are performed on several (100mmx100mmx6mm) polymethylmethacrylate (PMMA) test samples in order to verify the illumination behavior.

  10. Protection from visible light by commonly used textiles is not predicted by ultraviolet protection.

    PubMed

    Van den Keybus, Caroline; Laperre, Jan; Roelandts, Rik

    2006-01-01

    Interest is increasing in the prevention of acute and chronic actinic damage provided by clothing. This interest has focused mainly on protection against ultraviolet irradiation, but it has now also turned to protection against visible light. This change is mainly due to the action spectrum in the visible light range of some photodermatoses and the increasing interest in photodynamic therapy. The ultraviolet protection provided by commercially available textiles can be graded by determining an ultraviolet protection factor. Several methods have already been used to determine the ultraviolet protection factor. The fact that protection from visible light by textiles cannot be predicted by their ultraviolet protection makes the situation more complicated. This study attempts to determine whether or not the ultraviolet protection factor value of a particular textile is a good parameter for gauging its protection in the visible light range and concludes that a protection factor of textile materials against visible light needs to be developed. This development should go beyond the protection factor definition used in this article, which has some limitations, and should take into account the exact action spectrum for which the protection is needed.

  11. Ultraviolet fluorescence to identify navel oranges with poor peel quality and decay

    USDA-ARS?s Scientific Manuscript database

    Navel oranges were sorted into four groups under ultraviolet (UV) illumination in commercial packinghouse black light rooms based upon the amount of fluorescence visible on each fruit to determine if fluorescence was predictive of peel quality. The groups corresponded to fruit with: 1) no fluorescen...

  12. ULTRAVIOLET LIGHT DISINFECTION OF COMBINED SEWER OVERFLOW (NEW ORLEANS)

    EPA Science Inventory

    The objective of this state-of-the-art review is to examine the performance and effectiveness of ultraviolet (UV) light disinfection for combined sewer overflow (CSO) applications. Topics presented include the use of UV light as a disinfecting agent, its practical applications, d...

  13. Using Medtronic's MAST Quadrant, Radiance, and Radiance X Illumination Systems with high-power light sources increases burn risk.

    PubMed

    2010-11-01

    Connecting the Medtronic MAST Quadrant Illumination System, Radiance Illumination System, or Radiance X Illumination System--all of which are specialized fiberoptic light cables used with the company's minimally invasive spinal products--to a high-power surgical light source significantly increases the risk of patient burns. Hospitals should ensure that the products are used only with 100 W light sources and 5 mm light cables, as prescribed in the product labeling.

  14. HUBBLE IDENTIFIES SOURCE OF ULTRAVIOLET LIGHT IN AN OLD GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Hubble Space Telescope's exquisite resolution has allowed astronomers to resolve, for the first time, hot blue stars deep inside an elliptical galaxy. The swarm of nearly 8,000 blue stars resembles a blizzard of snowflakes near the core (lower right) of the neighboring galaxy M32, located 2.5 million light-years away in the constellation Andromeda. Hubble confirms that the ultraviolet light comes from a population of extremely hot helium-burning stars at a late stage in their lives. Unlike the Sun, which burns hydrogen into helium, these old stars exhausted their central hydrogen long ago, and now burn helium into heavier elements. The observations, taken in October 1998, were made with the camera mode of the Space Telescope Imaging Spectrograph (STIS) in ultraviolet light. The STIS field of view is only a small portion of the entire galaxy, which is 20 times wider on the sky. For reference, the full moon is 70 times wider than the STIS field-of-view. The bright center of the galaxy was placed on the right side of the image, allowing fainter stars to be seen on the left side of the image. These results are to be published in the March 1, 2000 issue of The Astrophysical Journal. Thirty years ago, the first ultraviolet observations of elliptical galaxies showed that they were surprisingly bright when viewed in ultraviolet light. Before those pioneering UV observations, old groups of stars were assumed to be relatively cool and thus extremely faint in the ultraviolet. Over the years since the initial discovery of this unexpected ultraviolet light, indirect evidence has accumulated that it originates in a population of old, but hot, helium-burning stars. Now Hubble provides the first direct visual evidence. Nearby elliptical galaxies are thought to be relatively simple galaxies comprised of old stars. Because they are among the brightest objects in the Universe, this simplicity makes them useful for tracing the evolution of stars and galaxies. Credits: NASA and Thomas

  15. Shedding light on light: benefits of anthropogenic illumination to a nocturnally foraging shorebird.

    PubMed

    Dwyer, Ross G; Bearhop, Stuart; Campbell, Hamish A; Bryant, David M

    2013-03-01

    Intertidal habitats provide important feeding areas for migratory shorebirds. Anthropogenic developments along coasts can increase ambient light levels at night across adjacent inter-tidal zones. Here, we report the effects of elevated nocturnal light levels upon the foraging strategy of a migratory shorebird (common redshank Tringa totanus) overwintering on an industrialised estuary in Northern Europe. To monitor behaviour across the full intertidal area, individuals were located by day and night using VHF transmitters, and foraging behaviour was inferred from inbuilt posture sensors. Natural light was scored using moon-phase and cloud cover information and nocturnal artificial light levels were obtained using geo-referenced DMSP/OLS night-time satellite imagery at a 1-km resolution. Under high illumination levels, the commonest and apparently preferred foraging behaviour was sight-based. Conversely, birds feeding in areas with low levels of artificial light had an elevated foraging time and fed by touch, but switched to visual rather than tactile foraging behaviour on bright moonlit nights in the absence of cloud cover. Individuals occupying areas which were illuminated continuously by lighting from a large petrochemical complex invariably exhibited a visually based foraging behaviour independently of lunar phase and cloud cover. We show that ambient light levels affect the timing and distribution of foraging opportunities for redshank. We argue that light emitted from an industrial complex improved nocturnal visibility. This allowed sight-based foraging in place of tactile foraging, implying both a preference for sight-feeding and enhanced night-time foraging opportunities under these conditions. The study highlights the value of integrating remotely sensed data and telemetry techniques to assess the effect of anthropogenic change upon nocturnal behaviour and habitat use. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  16. Low-Light-Level InGaAs focal plane arrays with and without illumination

    NASA Astrophysics Data System (ADS)

    Macdougal, Michael; Geske, Jon; Wang, Chad; Follman, David

    2010-04-01

    Short wavelength IR imaging using InGaAs-based FPAs is shown. Aerius demonstrates low dark current in InGaAs detector arrays with 15 μm pixel pitch. The same material is mated with a 640x 512 CTIA-based readout integrated circuit. The resulting FPA is capable of imaging photon fluxes with wavelengths between 1 and 1.6 microns at low light levels. The mean dark current density on the FPAs is extremely low at 0.64 nA/cm2 at 10°C. Noise due to the readout can be reduced from 95 to 57 electrons by using off-chip correlated double sampling (CDS). In addition, Aerius has developed laser arrays that provide flat illumination in scenes that are normally light-starved. The illuminators have 40% wall-plug efficiency and provide speckle-free illumination, provide artifact-free imagery versus conventional laser illuminators.

  17. Multispectral imaging of the ocular fundus using light emitting diode illumination

    NASA Astrophysics Data System (ADS)

    Everdell, N. L.; Styles, I. B.; Calcagni, A.; Gibson, J.; Hebden, J.; Claridge, E.

    2010-09-01

    We present an imaging system based on light emitting diode (LED) illumination that produces multispectral optical images of the human ocular fundus. It uses a conventional fundus camera equipped with a high power LED light source and a highly sensitive electron-multiplying charge coupled device camera. It is able to take pictures at a series of wavelengths in rapid succession at short exposure times, thereby eliminating the image shift introduced by natural eye movements (saccades). In contrast with snapshot systems the images retain full spatial resolution. The system is not suitable for applications where the full spectral resolution is required as it uses discrete wavebands for illumination. This is not a problem in retinal imaging where the use of selected wavelengths is common. The modular nature of the light source allows new wavelengths to be introduced easily and at low cost. The use of wavelength-specific LEDs as a source is preferable to white light illumination and subsequent filtering of the remitted light as it minimizes the total light exposure of the subject. The system is controlled via a graphical user interface that enables flexible control of intensity, duration, and sequencing of sources in synchrony with the camera. Our initial experiments indicate that the system can acquire multispectral image sequences of the human retina at exposure times of 0.05 s in the range of 500-620 nm with mean signal to noise ratio of 17 dB (min 11, std 4.5), making it suitable for quantitative analysis with application to the diagnosis and screening of eye diseases such as diabetic retinopathy and age-related macular degeneration.

  18. Multispectral imaging of the ocular fundus using light emitting diode illumination.

    PubMed

    Everdell, N L; Styles, I B; Calcagni, A; Gibson, J; Hebden, J; Claridge, E

    2010-09-01

    We present an imaging system based on light emitting diode (LED) illumination that produces multispectral optical images of the human ocular fundus. It uses a conventional fundus camera equipped with a high power LED light source and a highly sensitive electron-multiplying charge coupled device camera. It is able to take pictures at a series of wavelengths in rapid succession at short exposure times, thereby eliminating the image shift introduced by natural eye movements (saccades). In contrast with snapshot systems the images retain full spatial resolution. The system is not suitable for applications where the full spectral resolution is required as it uses discrete wavebands for illumination. This is not a problem in retinal imaging where the use of selected wavelengths is common. The modular nature of the light source allows new wavelengths to be introduced easily and at low cost. The use of wavelength-specific LEDs as a source is preferable to white light illumination and subsequent filtering of the remitted light as it minimizes the total light exposure of the subject. The system is controlled via a graphical user interface that enables flexible control of intensity, duration, and sequencing of sources in synchrony with the camera. Our initial experiments indicate that the system can acquire multispectral image sequences of the human retina at exposure times of 0.05 s in the range of 500-620 nm with mean signal to noise ratio of 17 dB (min 11, std 4.5), making it suitable for quantitative analysis with application to the diagnosis and screening of eye diseases such as diabetic retinopathy and age-related macular degeneration.

  19. FBG-based sensorized light pipe for robotic intraocular illumination facilitates bimanual retinal microsurgery.

    PubMed

    Horise, Yuki; He, Xingchi; Gehlbach, Peter; Taylor, Russell; Iordachita, Iulian

    2015-01-01

    In retinal surgery, microsurgical instruments such as micro forceps, scissors and picks are inserted through the eye wall via sclerotomies. A handheld intraocular light source is typically used to visualize the tools during the procedure. Retinal surgery requires precise and stable tool maneuvers as the surgical targets are micro scale, fragile and critical to function. Retinal surgeons typically control an active surgical tool with one hand and an illumination source with the other. In this paper, we present a "smart" light pipe that enables true bimanual surgery via utilization of an active, robot-assisted source of targeted illumination. The novel sensorized smart light pipe measures the contact force between the sclerotomy and its own shaft, thereby accommodating the motion of the patient's eye. Forces at the point of contact with the sclera are detected by fiber Bragg grating (FBG) sensors on the light pipe. Our calibration and validation results demonstrate reliable measurement of the contact force as well as location of the sclerotomy. Preliminary experiments have been conducted to functionally evaluate robotic intraocular illumination.

  20. UV Light Illumination Can Improve the Sensing Properties of LaFeO₃ to Acetone Vapor.

    PubMed

    Zhang, Heng; Qin, Hongwei; Gao, Chengyong; Zhou, Guangjun; Chen, Yanping; Hu, Jifan

    2018-06-21

    The synthesized LaFeO₃ nanocrystalline sensor powders show positive response to sensing acetone vapor at 200 °C. The responses to acetone vapor (at 0.5, 1, 2, 5, 10 ppm) are 1.18, 1.22, 1.89, 3.2 and 7.83. To make the sensor operate at a lower optimum temperature, UV light illumination 365 nm is performed. Response of the sensor has a larger improvement under 365 nm UV light illumination than without it. The responses to acetone vapor (at 0.5, 1, 2, 5, 10 ppm) are 1.37, 1.85, 3.16, 8.32 and 14.1. Furthermore, the optimum operating temperature is reduced to 170 °C. As the relative humidity increases, the resistance and sensitivity of sensor are reduced. The sensor shows good selectivity toward acetone when compared with other gases. Since the detection of ultralow concentrations of acetone vapor is possible, the sensor can be used to preliminarily judge diabetes in the general public, as a high concentration of acetone is exhaled in breath of diabetic patients. The sensor shows a good stability, which is further enhanced under UV light illumination. The sensor shows better stability when under 365 nm UV light illumination. Whether under light illumination or not. The LaFeO₃ material shows good performance as a sensor when exposed to acetone vapor.

  1. Genotoxicity and carcinogenicity of the light emitted by artificial illumination systems.

    PubMed

    De Flora, Silvio

    2013-03-01

    The light delivered by artificial illumination systems, and in particular by halogen quartz bulbs, contains UVA, UVB, and UVC radiation, is genotoxic to both bacterial and human cells and is potently carcinogenic to hairless mice. Since IARC has classified UV radiation in Group 1, any source of UV light poses a carcinogenic hazard to humans. Suitable regulations would be needed in order to control the safety of the light emitted by artificial light sources.

  2. GALEX 1st Light Near and Far Ultraviolet -100

    NASA Image and Video Library

    2003-05-28

    NASA's Galaxy Evolution Explorer took this image on May 21 and 22, 2003. The image was made from data gathered by the two channels of the spacecraft camera during the mission's "first light" milestone. It shows about 100 celestial objects in the constellation Hercules. The reddish objects represent those detected by the camera's near ultraviolet channel over a 5-minute period, while bluish objects were detected over a 3-minute period by the camera's far ultraviolet channel. The Galaxy Evolution Explorer's first light images are dedicated to the crew of the Space Shuttle Columbia. The Hercules region was directly above Columbia when it made its last contact with NASA Mission Control on February 1, over the skies of Texas. The Galaxy Evolution Explorer launched on April 28 on a mission to map the celestial sky in the ultraviolet and determine the history of star formation in the universe over the last 10 billion years. http://photojournal.jpl.nasa.gov/catalog/PIA04281

  3. Simulation based comparative analysis of photoresponse in front- and back-illuminated GaN P-I-N ultraviolet photodetectors

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Guo, Jin; Xie, Feng; Wang, Guosheng; Wu, Haoran; Song, Man; Yi, Yuanyuan

    2016-10-01

    This paper presents the comparative analysis of influence of doping level and doping profile of the active region on zero bias photoresponse characteristics of GaN-based p-i-n ultraviolet (UV) photodetectors operating at front- and back-illuminated. A two dimensional physically-based computer simulation of GaN-based p-i-n UV photodetectors is presented. We implemented GaN material properties and physical models taken from the literature. It is shown that absorption layer doping profile has notable impacts on the photoresponse of the device. Especially, the effect of doping concentration and distribution of the absorption layer on photoresponse is discussed in detail. In the case of front illumination, comparative to uniform n-type doping, the device with n-type Gaussian doping profiles at absorption layer has higher responsivity. Comparative to front illumination, back illuminated detector with p-type doping profiles at absorption layer has higher maximum photoresponse, while the Gaussian doping profiles have a weaker ability to enhance the device responsivity. It is demonstrated that electric field distribution, mobility degradation, and recombinations are jointly responsible for the variance of photoresponse. Our work enriches the understanding and utilization of GaN based p-i-n UV photodetectors.

  4. City Lights Illuminate the Nile

    NASA Image and Video Library

    2017-12-08

    NASA image acquired October 13, 2012 The Nile River Valley and Delta comprise less than 5 percent of Egypt’s land area, but provide a home to roughly 97 percent of the country’s population. Nothing makes the location of human population clearer than the lights illuminating the valley and delta at night. On October 13, 2012, the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite captured this nighttime view of the Nile River Valley and Delta. This image is from the VIIRS “day-night band,” which detects light in a range of wavelengths from green to near-infrared and uses filtering techniques to observe signals such as gas flares, auroras, wildfires, city lights, and reflected moonlight. The city lights resemble a giant calla lily, just one with a kink in its stem near the city of Luxor. Some of the brightest lights occur around Cairo, but lights are abundant along the length of the river. Bright city lights also occur along the Suez Canal and around Tel Aviv. Away from the lights, however, land and water appear uniformly black. This image was acquired near the time of the new Moon, and little moonlight was available to brighten land and water surfaces. NASA Earth Observatory image by Jesse Allen and Robert Simmon, using VIIRS Day-Night Band data from the Suomi National Polar-orbiting Partnership. Suomi NPP is the result of a partnership between NASA, the National Oceanic and Atmospheric Administration, and the Department of Defense. Caption by Michon Scott. Instrument: Suomi NPP - VIIRS Credit: NASA Earth Observatory Click here to view all of the Earth at Night 2012 images Click here to read more about this image NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency

  5. Two-mode squeezed light source for quantum illumination and quantum imaging

    NASA Astrophysics Data System (ADS)

    Masada, Genta

    2015-09-01

    We started to research quantum illumination radar and quantum imaging by utilizing high quality continuous-wave two-mode squeezed light source as a quantum entanglement resource. Two-mode squeezed light is a macroscopic quantum entangled state of the electro-magnetic field and shows strong correlation between quadrature phase amplitudes of each optical field. One of the most effective methods to generate two-mode squeezed light is combining two independent single-mode squeezed lights by using a beam splitter with relative phase of 90 degrees between each optical field. As a first stage of our work we are developing two-mode squeezed light source for exploring the possibility of quantum illumination radar and quantum imaging. In this article we introduce current development of experimental investigation of single-mode squeezed light. We utilize a sub-threshold optical parametric oscillator with bow-tie configuration which includes a periodically-polled potassium titanyl phosphate crystal as a nonlinear optical medium. We observed the noise level of squeezed quadrature -3.08+/-0.13 dB and anti-squeezed quadrature at 9.29+/-0.13 dB, respectively. We also demonstrated the remote tuning of squeezing level of the light source which leads to the technology for tuning the quantum entanglement in order to adapt to the actual environmental condition.

  6. Metal-Free Photocatalyst with Visible-Light-Driven Post-Illumination Catalytic Memory.

    PubMed

    Zhang, Qi; Wang, Hua; Li, Zhangliang; Geng, Cong; Leng, Jinhui

    2017-07-05

    A novel metal-free photocatalyst with post-illumination catalytic memory was fabricated by the graphitic carbon nitride (g-C 3 N 4 ), carbon nanotubes (CNTs), and graphene (Gr), in which g-C 3 N 4 acts as an efficient photocatalyst and the CNTs and Gr act as supercapacitors. The removal of phenol was achieved in the dark by post-illumination catalytic memory because the photocatalyst could store a portion of its photoactivity via photogenerated electrons in the CNTs and Gr under visible-light illumination and then release the electrons again in the dark. Therefore, this metal-free photocatalyst is capable of operation in the dark for a broad range of applications.

  7. Research on illumination uniformity of high-power LED array light source

    NASA Astrophysics Data System (ADS)

    Yu, Xiaolong; Wei, Xueye; Zhang, Ou; Zhang, Xinwei

    2018-06-01

    Uniform illumination is one of the most important problem that must be solved in the application of high-power LED array. A numerical optimization algorithm, is applied to obtain the best LED array typesetting so that the light intensity of the target surface is evenly distributed. An evaluation function is set up through the standard deviation of the illuminance function, then the particle swarm optimization algorithm is utilized to optimize different arrays. Furthermore, the light intensity distribution is obtained by optical ray tracing method. Finally, a hybrid array is designed and the optical ray tracing method is applied to simulate the array. The simulation results, which is consistent with the traditional theoretical calculation, show that the algorithm introduced in this paper is reasonable and effective.

  8. Saturn's Rings in Ultraviolet Light

    NASA Image and Video Library

    2017-12-08

    Saturn's Rings in Ultraviolet Light Credit: NASA and E. Karkoschka (University of Arizona) The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html

  9. Resolving the depth of fluorescent light by structured illumination and shearing interferometry

    NASA Astrophysics Data System (ADS)

    Schindler, Johannes; Elmaklizi, Ahmed; Voit, Florian; Hohmann, Ansgar; Schau, Philipp; Brodhag, Nicole; Krauter, Philipp; Frenner, Karsten; Kienle, Alwin; Osten, Wolfgang

    2016-03-01

    A method for the depth-sensitive detection of fluorescent light is presented. It relies on a structured illumination restricting the excitation volume and on an interferometric detection of the wave front curvature. The illumination with two intersecting beams of a white-light laser separated in a Sagnac interferometer coupled to the microscope provides a coarse confinement in lateral and axial direction. The depth reconstruction is carried out by evaluating shearing interferograms produced with a Michelson interferometer. This setup can also be used with spatially and temporally incoherent light as emitted by fluorophores. A simulation workflow of the method was developed using a combination of a solution of Maxwell's equations with the Monte Carlo method. These simulations showed the principal feasibility of the method. The method is validated by measurements at reference samples with characterized material properties, locations and sizes of fluorescent regions. It is demonstrated that sufficient signal quality can be obtained for materials with scattering properties comparable to dental enamel while maintaining moderate illumination powers in the milliwatt range. The depth reconstruction is demonstrated for a range of distances and penetration depths of several hundred micrometers.

  10. CHALLENGES OF COMBINED SEWER OVERFLOW DISINFECTION BY ULTRAVIOLET LIGHT IRRADIATION

    EPA Science Inventory

    This article examines the performance and effectiveness of ultraviolet (UV) light irradiation for disinfection of combined sewer overflow (CSO). Due to the negative impact of conventional water disinfectants on aquatic life, new agents (e.g., UV light) are being investigated for ...

  11. Illumination of interior spaces by bended hollow light guides: Application of the theoretical light propagation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darula, Stanislav; Kocifaj, Miroslav; Kittler, Richard

    2010-12-15

    To ensure comfort and healthy conditions in interior spaces the thermal, acoustics and daylight factors of the environment have to be considered in the building design. Due to effective energy performance in buildings the new technology and applications also in daylight engineering are sought such as tubular light guides. These allow the transport of natural light into the building core reducing energy consumption. A lot of installations with various geometrical and optical properties can be applied in real buildings. The simplest set of tubular light guide consists of a transparent cupola, direct tube with high reflected inner surface and amore » ceiling cover or diffuser redistributing light into the interior. Such vertical tubular guide is often used on flat roofs. When the roof construction is inclined a bend in the light guide system has to be installed. In this case the cupola is set on the sloped roof which collects sunlight and skylight from the seen part of the sky hemisphere as well as that reflected from the ground and opposite facades. In comparison with the vertical tube some additional light losses and distortions of the propagated light have to be expected in bended tubular light guides. Recently the theoretical model of light propagation was already published and its applications are presented in this study solving illuminance distributions on the ceiling cover interface and further illuminance distribution on the working plane in the interior. (author)« less

  12. LED light design method for high contrast and uniform illumination imaging in machine vision.

    PubMed

    Wu, Xiaojun; Gao, Guangming

    2018-03-01

    In machine vision, illumination is very critical to determine the complexity of the inspection algorithms. Proper lights can obtain clear and sharp images with the highest contrast and low noise between the interested object and the background, which is conducive to the target being located, measured, or inspected. Contrary to the empirically based trial-and-error convention to select the off-the-shelf LED light in machine vision, an optimization algorithm for LED light design is proposed in this paper. It is composed of the contrast optimization modeling and the uniform illumination technology for non-normal incidence (UINI). The contrast optimization model is built based on the surface reflection characteristics, e.g., the roughness, the reflective index, and light direction, etc., to maximize the contrast between the features of interest and the background. The UINI can keep the uniformity of the optimized lighting by the contrast optimization model. The simulation and experimental results demonstrate that the optimization algorithm is effective and suitable to produce images with the highest contrast and uniformity, which is very inspirational to the design of LED illumination systems in machine vision.

  13. Soft-light overhead illumination systems improve laparoscopic task performance.

    PubMed

    Takai, Akihiro; Takada, Yasutsugu; Motomura, Hideki; Teramukai, Satoshi

    2014-02-01

    The aim of this study was to evaluate the impact of attached shadow cues for laparoscopic task performance. We developed a soft-light overhead illumination system (SOIS) that produced attached shadows on objects. We compared results using the SOIS with those using a conventional illumination system with regard to laparoscopic experience and laparoscope-to-target distances (LTDs). Forty-two medical students and 23 surgeons participated in the study. A peg transfer task (LTD, 120 mm) for students and surgeons, and a suture removal task (LTD, 30 mm) for students were performed. Illumination systems were randomly assigned to each task. Endpoints were: total number of peg transfers; percentage of peg-dropping errors; and total execution time for suture removal. After the task, participants filled out a questionnaire on their preference for a particular illumination system. Total number of peg transfers was greater with the SOIS for both students and surgeons. Percentage of peg-dropping errors for surgeons was lower with the SOIS. Total execution time for suture removal was shorter with the SOIS. Forty-five participants (69% in total) evaluated the SOIS for easier task performance. The present results confirm that the SOIS improves laparoscopic task performance, regardless of previous laparoscopic experience or LTD.

  14. Illumination-compensated non-contact imaging photoplethysmography via dual-mode temporally coded illumination

    NASA Astrophysics Data System (ADS)

    Amelard, Robert; Scharfenberger, Christian; Wong, Alexander; Clausi, David A.

    2015-03-01

    Non-contact camera-based imaging photoplethysmography (iPPG) is useful for measuring heart rate in conditions where contact devices are problematic due to issues such as mobility, comfort, and sanitation. Existing iPPG methods analyse the light-tissue interaction of either active or passive (ambient) illumination. Many active iPPG methods assume the incident ambient light is negligible to the active illumination, resulting in high power requirements, while many passive iPPG methods assume near-constant ambient conditions. These assumptions can only be achieved in environments with controlled illumination and thus constrain the use of such devices. To increase the number of possible applications of iPPG devices, we propose a dual-mode active iPPG system that is robust to changes in ambient illumination variations. Our system uses a temporally-coded illumination sequence that is synchronized with the camera to measure both active and ambient illumination interaction for determining heart rate. By subtracting the ambient contribution, the remaining illumination data can be attributed to the controlled illuminant. Our device comprises a camera and an LED illuminant controlled by a microcontroller. The microcontroller drives the temporal code via synchronizing the frame captures and illumination time at the hardware level. By simulating changes in ambient light conditions, experimental results show our device is able to assess heart rate accurately in challenging lighting conditions. By varying the temporal code, we demonstrate the trade-off between camera frame rate and ambient light compensation for optimal blood pulse detection.

  15. Reactivation of latent herpes simplex virus infection by ultraviolet light: a human model.

    PubMed

    Perna, J J; Mannix, M L; Rooney, J F; Notkins, A L; Straus, S E

    1987-09-01

    Infection with herpes simplex virus often results in a latent infection of local sensory ganglia and a disease characterized by periodic viral reactivation and mucocutaneous lesions. The factors that trigger reactivation in humans are still poorly defined. In our study, five patients with documented histories of recurrent herpes simplex virus infection on the buttocks or sacrum were exposed to three times their minimal erythema dose of ultraviolet light. Site-specific cutaneous herpes simplex virus infection occurred at 4.4 +/- 0.4 days after exposure to ultraviolet light in 8 of 13 attempts at reactivation. We conclude that ultraviolet light can reactivate herpes simplex virus under experimentally defined conditions. This model in humans should prove useful in evaluating the pathophysiology and prevention of viral reactivation.

  16. Characteristics of ultraviolet light and radicals formed by pulsed discharge in water

    NASA Astrophysics Data System (ADS)

    Sun, Bing; Kunitomo, Shinta; Igarashi, Chiaki

    2006-09-01

    In this investigation, the ultraviolet light characteristics and OH radical properties produced by a pulsed discharge in water were studied. For the plate-rod reactor, it was found that the ultraviolet light energy has a 3.2% total energy injected into the reactor. The ultraviolet light changed with the peak voltage and electrode distance. UV characteristics in tap water and the distilled water are given. The intensity of the OH radicals was the highest for the 40 mm electrode distance reactor. In addition, the properties of hydrogen peroxide and ozone were also studied under arc discharge conditions. It was found that the OH radicals were in the ground state and the excited state when a pulsed arc discharge was used. The ozone was produced by the arc discharge even if the oxygen gas is not bubbled into the reactor. The ozone concentration produces a maximum value with treatment time.

  17. A transparent ultraviolet triggered amorphous selenium p-n junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Ichitaro; Soga, Kenichi; Overend, Mauro

    2011-04-11

    This paper will introduce a semitransparent amorphous selenium (a-Se) film exhibiting photovoltaic effects under ultraviolet light created through a simple and inexpensive method. We found that chlorine can be doped into a-Se through electrolysis of saturated salt water, and converts the weak p-type material into an n-type material. Furthermore, we found that a p-n diode fabricated through this process has shown an open circuit voltage of 0.35 V toward ultraviolet illumination. Our results suggest the possibility of doping control depending on the electric current during electrolysis and the possibility of developing a simple doping method for amorphous photoconductors.

  18. Reactivation of latent herpes simplex virus infection by ultraviolet light: a human model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perna, J.J.; Mannix, M.L.; Rooney, J.F.

    1987-09-01

    Infection with herpes simplex virus often results in a latent infection of local sensory ganglia and a disease characterized by periodic viral reactivation and mucocutaneous lesions. The factors that trigger reactivation in humans are still poorly defined. In our study, five patients with documented histories of recurrent herpes simplex virus infection on the buttocks or sacrum were exposed to three times their minimal erythema dose of ultraviolet light. Site-specific cutaneous herpes simplex virus infection occurred at 4.4 +/- 0.4 days after exposure to ultraviolet light in 8 of 13 attempts at reactivation. We conclude that ultraviolet light can reactivate herpesmore » simplex virus under experimentally defined conditions. This model in humans should prove useful in evaluating the pathophysiology and prevention of viral reactivation.« less

  19. Ultraviolet vision may be widespread in bats

    USGS Publications Warehouse

    Gorresen, P. Marcos; Cryan, Paul; Dalton, David C.; Wolf, Sandy; Bonaccorso, Frank

    2015-01-01

    Insectivorous bats are well known for their abilities to find and pursue flying insect prey at close range using echolocation, but they also rely heavily on vision. For example, at night bats use vision to orient across landscapes, avoid large obstacles, and locate roosts. Although lacking sharp visual acuity, the eyes of bats evolved to function at very low levels of illumination. Recent evidence based on genetics, immunohistochemistry, and laboratory behavioral trials indicated that many bats can see ultraviolet light (UV), at least at illumination levels similar to or brighter than those before twilight. Despite this growing evidence for potentially widespread UV vision in bats, the prevalence of UV vision among bats remains unknown and has not been studied outside of the laboratory. We used a Y-maze to test whether wild-caught bats could see reflected UV light and whether such UV vision functions at the dim lighting conditions typically experienced by night-flying bats. Seven insectivorous species of bats, representing five genera and three families, showed a statistically significant ‘escape-toward-the-light’ behavior when placed in the Y-maze. Our results provide compelling evidence of widespread dim-light UV vision in bats.

  20. The interaction of ultraviolet light with Arctic sea ice during SHEBA

    NASA Astrophysics Data System (ADS)

    Perovich, Donald K.

    The reflection, absorption and transmission of ultraviolet light by a sea-ice cover strongly impacts primary productivity, higher trophic components of the food web, and humans. Measurements of the incident irradiance at 305, 320, 340 and 380 nm and of the photosynthetically active radiation were made from April through September 1998 as part of the SHEBA (Surface Heat Budget of the Arctic Ocean program) field experiment in the Arctic Ocean. In addition, observations of snow depth and ice thickness were made at more than 100 sites encompassing a comprehensive range of conditions. The thickness observations were combined with a radiative transfer model to compute a time series of the ultraviolet light transmitted by the ice cover from April through September. Peak values of incident ultraviolet irradiance occurred in mid-June. Peak transmittance was later in the summer at the end of the melt season when the snow cover had completely melted, the ice had thinned and pond coverage was extensive. The fraction of the incident ultraviolet irradiance transmitted through the ice increased by several orders of magnitude as the melt season progressed. Ultraviolet transmittance was approximately a factor of ten greater for melt ponds than bare ice. Climate change has the potential to alter the amplitude and timing of the annual albedo cycle of sea ice. If the onset of melt occurs at increasingly earlier dates, ultraviolet transmittance will be significantly enhanced, with potentially deleterious biological impacts.

  1. Ultraviolet Extensions

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Side-by-Side Comparison Click on image for larger view

    This ultraviolet image from NASA's Galaxy Evolution Explorer shows the Southern Pinwheel galaxy, also know as Messier 83 or M83. It is located 15 million light-years away in the southern constellation Hydra.

    Ultraviolet light traces young populations of stars; in this image, young stars can be seen way beyond the main spiral disk of M83 up to 140,000 light-years from its center. Could life exist around one of these far-flung stars? Scientists say it's unlikely because the outlying regions of a galaxy are lacking in the metals required for planets to form.

    The image was taken at scheduled intervals between March 15 and May 20, 2007. It is one of the longest-exposure, or deepest, images ever taken of a nearby galaxy in ultraviolet light. Near-ultraviolet light (or longer-wavelength ultraviolet light) is colored yellow, and far-ultraviolet light is blue.

    What Lies Beyond the Edge of a Galaxy The side-by-side comparison shows the Southern Pinwheel galaxy, or M83, as seen in ultraviolet light (right) and at both ultraviolet and radio wavelengths (left). While the radio data highlight the galaxy's long, octopus-like arms stretching far beyond its main spiral disk (red), the ultraviolet data reveal clusters of baby stars (blue) within the extended arms.

    The ultraviolet image was taken by NASA's Galaxy Evolution Explorer between March 15 and May 20, 2007, at scheduled intervals. Back in 2005, the telescope first photographed M83 over a shorter period of time. That picture was the first to reveal far-flung baby stars forming up to 63,000 light-years from the edge of the main spiral disk. This came as a surprise to astronomers because a galaxy's outer territory typically lacks high densities of star-forming materials.

    The newest picture of M83 from the Galaxy Evolution Explorer is shown at the right, and was taken over a longer period of

  2. Design and analysis of reflector for uniform light-emitting diode illuminance.

    PubMed

    Tsai, Chung-Yu

    2013-05-01

    A light-emitting diode (LED) projection system is proposed, composed of an LED chip and a variable-focus-parabolic (VFP) reflector, in which the focal length varies as a function of the vertical displacement of the incidence point relative to the horizontal centerline of the LED chip. The light-ray paths within the projection system are analyzed using an exact analytical model and a skew-ray tracing approach. The profile of the proposed VFP reflector and the position of the LED chip are then optimized in such a way as to enhance the uniformity of the illuminance distribution on the target region of the image plane. The validity of the optimized design is demonstrated by means of ZEMAX simulations. It is shown that the optimized VFP projector system yields a significant improvement in illuminance uniformity compared to conventional spherical and parabolic projectors and therefore minimizes the glare effect.

  3. Energy Savings Forecast of Solid-State Lighting in General Illumination Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penning, Julie; Stober, Kelsey; Taylor, Victor

    2016-09-01

    The DOE report, Energy Savings Forecast of Solid-State Lighting in General Illumination Applications, is a biannual report which models the adoption of LEDs in the U.S. general-lighting market, along with associated energy savings, based on the full potential DOE has determined to be technically feasible over time. This version of the report uses an updated 2016 U.S. lighting-market model that is more finely calibrated and granular than previous models, and extends the forecast period to 2035 from the 2030 limit that was used in previous editions.

  4. Effect of ultraviolet light on fatigue of lead zirconate titanate thin-film capacitors

    NASA Astrophysics Data System (ADS)

    Lee, J.; Esayan, S.; Safari, A.; Ramesh, R.

    1994-07-01

    Fatigue of Pb(Zr0.52Ti0.48)O3 (PZT) thin-film capacitors was studied under UV light (He-Cd laser, λ=325 nm). The remanent polarization of the PZT film capacitors increased upon light illumination. Fatigue resistance was also improved under UV light. During fatigue test, the change in polarization of PZT films upon UV light illumination increased gradually with cycling. These results were examined within the framework of the polarization screening model, which is suggested as an essential process for fatigue. This leads to a conclusion that more charged defects are involved in the fatigue process through internal screening of polarization.

  5. Shedding light on the subject: introduction to illumination engineering and design for multidiscipline engineering students

    NASA Astrophysics Data System (ADS)

    Ronen, Ram S.; Smith, R. Frank

    1995-10-01

    Educating engineers and architects in Illumination Engineering and related subjects has become a very important field and a very satisfying and rewarding one. Main reasons include the need to significantly conserve lighting energy and meet government regulations while supplying appropriate light levels and achieving aesthetical requirements. The proliferation of new lamps, luminaries and lighting controllers many of which are 'energy savers' also helps a trend to seek help from lighting engineers when designing new commercial and residential buildings. That trend is believed to continue and grow as benefits become attractive and new government conservation regulations take affect. To make things even better one notices that Engineering and Science students in most disciplines make excellent candidates for Illumination Engineers because of their background and teaching them can move ahead at a brisk pace and be a rewarding experience nevertheless. In the past two years, Cal Poly Pomona College of Engineering has been the beneficiary of a DOE/California grant. Its purpose was to precipitate and oversee light curricula in various California community colleges and also develop and launch an Illumination Engineering minor at Cal Poly University. Both objectives have successfully been met. Numerous community colleges throughout California developed and are offering a sequence of six lighting courses leading to a certificate; the first graduating class is now coming out of both Cypress and Consumnes Community Colleges. At Cal Poly University a four course/laboratory sequence leading to a minor in Illumination Engineering (ILE) is now offered to upper division students in the College of Engineering, College of Science and College of Architecture and Design. The ILE sequence will briefly be described. The first course, Introduction to Illumination Engineering and its laboratory are described in more detail alter. Various methods of instruction including lectures, self work

  6. STUDIES ON BIOLUMINESCENCE : XVII. FLUORESCENCE AND INHIBITION OF LUMINESCENCE IN CTENOPHORES BY ULTRA-VIOLET LIGHT.

    PubMed

    Harvey, E N

    1925-01-20

    1. Small dumps of the luminous cells of Mnemiopsis cannot readily be stimulated mechanically but will luminesce on treatment with saponin solution. Larger groups of luminous cells (such as are connected with two paddle plates) luminesce on mechanical stimulation. This suggests that mechanical stimulation to luminesce occurs chiefly through a nerve mechanism which has been broken up in the small dumps of luminous tissue. 2. The smallest bits of luminous tissue, even cells freed from the animal by agitation, that will pass through filter paper, lose their power to luminesce in daylight and regain it (at least partially) in the dark. 3. Luminescence of the whole animal and of individual cells is suppressed by near ultra-violet light (without visible light). 4. Inhibition in ultra-violet light is not due to stimulation (by the ultra-violet light) of the animal to luminesce, thereby using up the store of photogenic material. 5. Animals stimulated mechanically several times and placed in ultra-violet light show a luminescence along the meridians in the same positions as the luminescence that appears on stimulation. This luminescence in the ultra-violet or "tonic luminescence," is not obtained with light adapted ctenophores and is interpreted to be a fluorescence of the product of oxidation of the photogenic material. 6. Marked fluorescence of the luminous organ of the glowworm (Photuris) and of the luminous slime of Chatopterus may be observed in ultra-violet but no marked fluorescence of the luminous substances of Cypridina is apparent. 7. Evidence is accumulating to show a close relation between fluorescent and chemiluminescent substances in animals, similar to that described for unsaturated silicon compounds and the Grignard reagents.

  7. Ultraviolet-C light effect on physicochemical, bioactive, microbiological, and sensorial characteristics of carrot (Daucus carota) beverages.

    PubMed

    Hernández-Carranza, Paola; Ruiz-López, Irving Israel; Pacheco-Aguirre, Francisco Manuel; Guerrero-Beltrán, José Ángel; Ávila-Sosa, Raúl; Ochoa-Velasco, Carlos Enrique

    2016-09-01

    The aim of this research was to evaluate the effect of ultraviolet-C light on physicochemical, bioactive, microbial, and sensory characteristics of carrot beverages. Beverages were formulated with different concentrations of carrot juice (60, 80, and 100% [v/v]) and treated with ultraviolet-C light at different flow rates (0, 0.5, 3.9, and 7.9 mL s(-1)) and times (5, 10, 15, 20, and 30 min), equivalent to ultraviolet-C dosages of 13.2, 26.4, 39.6, 52.8, and 79.2 J cm(-2) Total soluble solids, pH, and titratable acidity were not affected by the ultraviolet-C light treatment. Ultraviolet-C light significantly affected (p < 0.05) color parameters of pure juice; however, at low concentration of juice, total color change was slightly affected (ΔE = 2.0 ± 0.7). Phenolic compounds (4.1 ± 0.1, 5.2 ± 0.2, and 8.6 ± 0.3 mg of GAE 100 mL(-1) of beverage with 60, 80, and 100% of juice, respectively) and antioxidant capacity (6.1 ± 0.4, 8.5 ± 0.4, and 9.4 ± 0.3 mg of Trolox 100 mL(-1) of beverage with 60, 80, and 100% of juice, respectively) of carrot beverages were not affected by ultraviolet-C light treatment. Microbial kinetics showed that mesophiles were mostly reduced at high flow rates in carrot beverages with 60% of juice. Maximum logarithmic reductions for mesophiles and total coliforms were 3.2 ± 0.1 and 2.6 ± 0.1, respectively, after 30 min of ultraviolet-C light processing. Beverages were well accepted (6-7) by judges who did not perceive the difference between untreated and Ultraviolet-C light treated beverages. © The Author(s) 2016.

  8. Inactivation of Pseudomonas aeruginosa biofilm after ultraviolet light-emitting diode treatment: a comparative study between ultraviolet C and ultraviolet B

    NASA Astrophysics Data System (ADS)

    Argyraki, Aikaterini; Markvart, Merete; Bjørndal, Lars; Bjarnsholt, Thomas; Petersen, Paul Michael

    2017-06-01

    The objective of this study was to test the inactivation efficiency of two different light-based treatments, namely ultraviolet B (UVB) and ultraviolet C (UVC) irradiation, on Pseudomonas aeruginosa biofilms at different growth stages (24, 48, and 72 h grown). In our experiments, a type of AlGaN light-emitting diodes (LEDs) was used to deliver UV irradiation on the biofilms. The effectiveness of the UVB at 296 nm and UVC at 266 nm irradiations was quantified by counting colony-forming units. The survival of less mature biofilms (24 h grown) was studied as a function of UV-radiant exposure. All treatments were performed on three different biological replicates to test reproducibility. It was shown that UVB irradiation was significantly more effective than UVC irradiation in inactivating P. aeruginosa biofilms. UVC irradiation induced insignificant inactivation on mature biofilms. The fact that the UVB at 296 nm exists in daylight and has such disinfection ability on biofilms provides perspectives for the treatment of infectious diseases.

  9. Effects of colored light-emitting diode illumination on behavior and performance of laying hens.

    PubMed

    Huber-Eicher, B; Suter, A; Spring-Stähli, P

    2013-04-01

    The best method for lighting poultry houses has been an issue for many decades, generating much interest in any new systems that become available. Poultry farmers are now increasingly using colored LED (light-emitting diodes) to illuminate hen houses (e.g., in Germany, Austria, the Netherlands, and England). In Switzerland all newly installed systems are now equipped with LED, preferably green ones. The LED give monochromatic light from different wavelengths and have several advantages over conventional illuminants, including high energy efficiency, long life, high reliability, and low maintenance costs. The following study examines the effects of illumination with white, red, and green LED on behavior and production parameters of laying hens. Light intensities in the 3 treatments were adjusted to be perceived by hens as equal. Twenty-four groups of 25 laying hens were kept in identical compartments (5.0 × 3.3 m) equipped with a litter area, raised perches, feed and drinking facilities, and nest boxes. Initially, they were kept under white LED for a 2-wk adaptation period. For the next 4 wk, 8 randomly chosen compartments were lit with red LED (640 nm) and 8 others with green LED (520 nm). Behavior was monitored during the last 2 wk of the trial. Additionally weight gain, feed consumption, onset of lay, and laying performance were recorded. The results showed minor effects of green light on explorative behavior, whereas red light reduced aggressiveness compared with white light. The accelerating effect of red light on sexual development of laying hens was confirmed, and the trial demonstrated that this effect was due to the specific wavelength and not the intensity of light. However, an additional effect of light intensity may exist and should not be excluded.

  10. Impact of Ultraviolet Light on Vitiligo.

    PubMed

    Singh, Rasnik K

    2017-01-01

    Vitiligo is a disorder of the melanocytes that results in a dynamic spectrum of skin depigmentation. Its etiology is complex and multifactorial, with data supporting several different hypotheses. Given its prominent phenotype, vitiligo has a significant negative impact on quality of life. Coupled with the chronic and incurable nature of the disease, this presents a formidable treatment challenge. Several treatment modalities have been instituted over the years, with varying efficacy. This chapter focuses on the use of ultraviolet light in vitiligo as an established therapeutic option.

  11. Room-temperature Coulomb staircase in semiconducting InP nanowires modulated with light illumination.

    PubMed

    Yamada, Toshishige; Yamada, Hidenori; Lohn, Andrew J; Kobayashi, Nobuhiko P

    2011-02-04

    Detailed electron transport analysis is performed for an ensemble of conical indium phosphide nanowires bridging two hydrogenated n(+)-silicon electrodes. The current-voltage (I-V) characteristics exhibit a Coulomb staircase in the dark with a period of ∼ 1 V at room temperature. The staircase is found to disappear under light illumination. This observation can be explained by assuming the presence of a tiny Coulomb island, and its existence is possible due to the large surface depletion region created within contributing nanowires. Electrons tunnel in and out of the Coulomb island, resulting in the Coulomb staircase I-V. Applying light illumination raises the electron quasi-Fermi level and the tunneling barriers are buried, causing the Coulomb staircase to disappear.

  12. Side-emitting illuminators using LED sources

    NASA Astrophysics Data System (ADS)

    Zhao, Feng; Van Derlofske, John F.

    2003-11-01

    This study investigates illuminators composed of light emitting diode (LED) array sources and side-emitting light guides to provide efficient general illumination. Specifically, new geometries are explored to increase the efficiency of current systems while maintaining desired light distribution. LED technology is already successfully applied in many illumination applications, such as traffic signals and liquid crystal display (LCD) backlighting. It provides energy-efficient, small-package, long-life, and color-adjustable illumination. However, the use of LEDs in general illumination is still in its early stages. Current side-emitting systems typically use a light guide with light sources at one end, an end-cap surface at the other end, and light releasing sidewalls. This geometry introduces efficiency loss that can be as high as 40%. The illuminators analyzed in this study use LED array sources along the longitude of a light guide to increase the system efficiency. These new geometries also provide the freedom of elongating the system without sacrificing system efficiency. In addition, alternative geometries can be used to create white light with monochromatic LED sources. As concluded by this study, the side-emitting illuminators using LED sources gives the possibility of an efficient, distribution-controllable linear lighting system.

  13. HUBBLE FINDS A BARE BLACK HOLE POURING OUT LIGHT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope has provided a never-before-seen view of a warped disk flooded with a torrent of ultraviolet light from hot gas trapped around a suspected massive black hole. [Right] This composite image of the core of the galaxy was constructed by combining a visible light image taken with Hubble's Wide Field Planetary Camera 2 (WFPC2), with a separate image taken in ultraviolet light with the Faint Object Camera (FOC). While the visible light image shows a dark dust disk, the ultraviolet image (color-coded blue) shows a bright feature along one side of the disk. Because Hubble sees ultraviolet light reflected from only one side of the disk, astronomers conclude the disk must be warped like the brim of a hat. The bright white spot at the image's center is light from the vicinity of the black hole which is illuminating the disk. [Left] A ground-based telescopic view of the core of the elliptical galaxy NGC 6251. The inset box shows Hubble Space Telescope's field of view. The galaxy is 300 million light-years away in the constellation Ursa Minor. Photo Credit: Philippe Crane (European Southern Observatory), and NASA

  14. Lightwave: An interactive estimation of indirect illumination using waves of light

    NASA Astrophysics Data System (ADS)

    Robertson, Michael

    With the growth of computers and technology, so to has grown the desire to accurately recreate our world using computer graphics. However, our world is very complex and in many ways beyond our comprehension. Therefore, in order to perform this task, we must consider multiple disciplines and areas of research including physics, mathematics, optics, geology, and many more to at the very least approximate the world around us. The applications of being able to do this are plentiful as well, including the use of graphics in entertainment such as movies and games, in science such as weather forecasts and simulations, in medicine with body scans, or used in architecture, design, and many other areas. In order to recreate the world around us, an important task is to accurately recreate the way light travels and affects the objects we see. Rendering lighting has been a heavily researched area since the 1970's and has gotten more sophisticated over the years. Until recent developments in technology, realistic lighting of scenes has only been achievable offline taking seconds to hours or more to create a single image, however, due to advances in graphics technology, realistic lighting can be done in real-time. An important aspect of realistic lighting involves the inclusion of indirect illumination. However, to achieve a real-time rendering with indirect illumination, we must make trade-offs between scientific accuracy and performance, but as will be discussed later, scientific accuracy may not be necessary after all.

  15. Developing daisy chain receivers for light-emitting diode illumination adopting the digital multiplex-512 protocol.

    PubMed

    Um, Keehong; Yoo, Sooyeup

    2013-10-01

    Protocol for digital multiplex with 512 pieces of information is increasingly adopted in the design of illumination systems. In conventional light-emitting diode systems, the receivers are connected in parallel and each of the receiving units receives all the data from the master dimmer console, but each receiving unit operates by recognizing as its own data that which corresponds to the assigned number of the receiver. Because the serial numbers of illumination devices are transmitted in binary code, synchronization is too complicated to be used properly. In order to improve the protocol of illumination control systems, we propose an algorithm of protocol reception to install and manage the system in a simpler and more convenient way. We propose the systems for controlling the light-emitting diode illumination of simplified receiver slaves adopting the digital multiplex-512 protocol where master console and multiple receiver slaves are connected in a daisy chain fashion. The digital multiplex-512 data packet is received according to the sequence order of their locations from the console, without assigning the sequence number of each channel at the receiving device. The purpose of this paper is to design a simple and small-sized controller for the control systems of lamps and lighting adopting the digital multiplex-512 network.

  16. Imaging multicellular specimens with real-time optimized tiling light-sheet selective plane illumination microscopy

    PubMed Central

    Fu, Qinyi; Martin, Benjamin L.; Matus, David Q.; Gao, Liang

    2016-01-01

    Despite the progress made in selective plane illumination microscopy, high-resolution 3D live imaging of multicellular specimens remains challenging. Tiling light-sheet selective plane illumination microscopy (TLS-SPIM) with real-time light-sheet optimization was developed to respond to the challenge. It improves the 3D imaging ability of SPIM in resolving complex structures and optimizes SPIM live imaging performance by using a real-time adjustable tiling light sheet and creating a flexible compromise between spatial and temporal resolution. We demonstrate the 3D live imaging ability of TLS-SPIM by imaging cellular and subcellular behaviours in live C. elegans and zebrafish embryos, and show how TLS-SPIM can facilitate cell biology research in multicellular specimens by studying left-right symmetry breaking behaviour of C. elegans embryos. PMID:27004937

  17. Dataset of red light induced pupil constriction superimposed on post-illumination pupil response.

    PubMed

    Lei, Shaobo; Goltz, Herbert C; Sklar, Jaime C; Wong, Agnes M F

    2016-09-01

    We collected and analyzed pupil diameter data from of 7 visually normal participants to compare the maximum pupil constriction (MPC) induced by "Red Only" vs. "Blue+Red" visual stimulation conditions. The "Red Only" condition consisted of red light (640±10 nm) stimuli of variable intensity and duration presented to dark-adapted eyes with pupils at resting state. This condition stimulates the cone-driven activity of the intrinsically photosensitive retinal ganglion cells (ipRGC). The "Blue+Red" condition consisted of the same red light stimulus presented during ongoing blue (470±17 nm) light-induced post-illumination pupil response (PIPR), representing the cone-driven ipRGC activity superimposed on the melanopsin-driven intrinsic activity of the ipRGCs ("The Absence of Attenuating Effect of Red light Exposure on Pre-existing Melanopsin-Driven Post-illumination Pupil Response" Lei et al. (2016) [1]). MPC induced by the "Red Only" condition was compared with the MPC induced by the "Blue+Red" condition by multiple paired sample t -tests with Bonferroni correction.

  18. Visible light guided manipulation of liquid wettability on photoresponsive surfaces

    PubMed Central

    Kwon, Gibum; Panchanathan, Divya; Mahmoudi, Seyed Reza; Gondal, Mohammed A.; McKinley, Gareth H.; Varanasi, Kripa K.

    2017-01-01

    Photoresponsive titania surfaces are of great interest due to their unique wettability change upon ultraviolet light illumination. However, their applications are often limited either by the inability to respond to visible light or the need for special treatment to recover the original wettability. Sensitizing TiO2 surfaces with visible light-absorbing materials has been utilized in photovoltaic applications. Here we demonstrate that a dye-sensitized TiO2 surface can selectively change the wettability towards contacting liquids upon visible light illumination due to a photo-induced voltage across the liquid and the underlying surface. The photo-induced wettability change of our surfaces enables external manipulation of liquid droplet motion upon illumination. We show demulsification of surfactant-stabilized brine-in-oil emulsions via coalescence of brine droplets on our dye-sensitized TiO2 surface upon visible light illumination. We anticipate that our surfaces will have a wide range of applications including microfluidic devices with customizable wettability, solar-driven oil–water clean-up and demulsification technologies. PMID:28440292

  19. Effect of some ultraviolet light absorbers on photo-stabilization of azadirachtin-A.

    PubMed

    Deota, P T; Upadhyay, P R; Patel, K B; Mehta, K J; Varshney, A K; Mehta, M H

    2002-10-01

    The effect of photo-stabilization of Azadirachtin-A (Aza-A) was examined when exposed to sunlight and ultraviolet light in the presence of four structurally different ultraviolet stabilizers namely 4-aminobenzoic acid, 2,4-dihydroxybenzophenone, 4,4'-dihydroxybenzophenone and phenyl salicylate. The percentages of Aza-A recovered at different time intervals from slides exposed to different light conditions with and without UV stabilizers as well as kinetic studies indicated that the addition of phenyl salicylate in methanolic solution of Aza-A (in 1:1 mole ratio) provides the best photo-stabilization of Aza-A molecule among the four UV stabilizers studied.

  20. Sol-Gel Glass Holographic Light-Shaping Diffusers

    NASA Technical Reports Server (NTRS)

    Yu, Kevin; Lee, Kang; Savant, Gajendra; Yin, Khin Swe (Lillian)

    2005-01-01

    Holographic glass light-shaping diffusers (GLSDs) are optical components for use in special-purpose illumination systems (see figure). When properly positioned with respect to lamps and areas to be illuminated, holographic GLSDs efficiently channel light from the lamps onto specified areas with specified distributions of illumination for example, uniform or nearly uniform irradiance can be concentrated with intensity confined to a peak a few degrees wide about normal incidence, over a circular or elliptical area. Holographic light diffusers were developed during the 1990s. The development of the present holographic GLSDs extends the prior development to incorporate sol-gel optical glass. To fabricate a holographic GLSD, one records a hologram on a sol-gel silica film formulated specially for this purpose. The hologram is a quasi-random, micro-sculpted pattern of smoothly varying changes in the index of refraction of the glass. The structures in this pattern act as an array of numerous miniature lenses that refract light passing through the GLSD, such that the transmitted light beam exhibits a precisely tailored energy distribution. In comparison with other light diffusers, holographic GLSDs function with remarkably high efficiency: they typically transmit 90 percent or more of the incident lamp light onto the designated areas. In addition, they can withstand temperatures in excess of 1,000 C. These characteristics make holographic GLSDs attractive for use in diverse lighting applications that involve high temperatures and/or requirements for high transmission efficiency for ultraviolet, visible, and near-infrared light. Examples include projectors, automobile headlights, aircraft landing lights, high-power laser illuminators, and industrial and scientific illuminators.

  1. The Inherent Visible Light Signature of an Intense Underwater Ultraviolet Light Source Due to Combined Raman and Fluorescence Effects

    DTIC Science & Technology

    2000-01-01

    Humans cannot see ultraviolet light. The blue-sensitive cones in the retina would respond weakly to ultraviolet wavelengths if exposed to them, but...545, 1992. 3. C. S. Yentsch, and D. A. Phinney, " Autofluorescence and Raman scattering in the marine underwater environment," Ocean Optics X, SPIE

  2. Preventing Ultraviolet Light-Induced Damage: The Benefits of Antioxidants

    ERIC Educational Resources Information Center

    Yip, Cheng-Wai

    2007-01-01

    Extracts of fruit peels contain antioxidants that protect the bacterium "Escherichia coli" against damage induced by ultraviolet light. Antioxidants neutralise free radicals, thus preventing oxidative damage to cells and deoxyribonucleic acid. A high survival rate of UV-exposed cells was observed when grapefruit or grape peel extract was…

  3. Effects of illuminants and illumination time on lettuce growth, yield and nutritional quality in a controlled environment

    NASA Astrophysics Data System (ADS)

    Shen, Y. Z.; Guo, S. S.; Ai, W. D.; Tang, Y. K.

    2014-07-01

    Effects of illuminants and illumination time on the growth of lettuce were researched. Red-blue light-emitting diodes (LEDs, 90% red light +10% blue light) and white light fluorescent (WF) lamps were compared as the illuminants for plant cultivation. Under each type of illuminant, lettuce was grown at 4 illumination times: 12 h, 16 h, 20 h and 24 h, with the same light intensity of 600 μmolm-2s-1. The leaf net photosynthetic rate (Pn) under the two illuminants was comparable but the shape of lettuce was obviously affected by the illuminant. The WF lamps produced more compact plant, while red-blue LED resulted in less but longer leaves. However, the total leaf area was not significantly affected by the illuminant. The red-blue LED produced nearly same aboveground biomass with far less energy consumption relative to WF lamps. The underground biomass was lowered under red-blue LED in comparison with WF lamps. Red-blue LED could improve the nutritional quality of lettuce by increasing the concentration of soluble sugar and vitamin C (VC) and reducing the concentration of nitrate. Under each type of illuminant, longer illumination time resulted in higher Pn, more leaves and larger leaf area. The total chlorophyll concentration increased while the concentration ratio of chlorophyll a/b decreased with the extension of illumination time. Illumination time had highly significant positive correlation with biomass. Moreover, when total daily light input was kept the same, longer illumination time increased the biomass significantly as well. In addition, longer illumination time increased the concentration of crude fiber, soluble sugar and VC and reduced the concentration of nitrate. In summary, red-blue LEDs and 24 h illumination time were demonstrated to be more suitable for lettuce cultivation in the controlled environment.

  4. Light trapping for photovoltaic cells using polarization-insensitive angle-selective filters under monochromatic illumination.

    PubMed

    Takeda, Yasuhiko; Iizuka, Hideo; Yamada, Noboru; Ito, Tadashi

    2017-07-10

    We have proposed a light-trapping concept for photovoltaic (PV) cells under monochromatic illumination with restricted incident angles. We employed a configuration consisting of a shortpass filter (SPF) on the front surface and a diffuse reflector on the rear surface of the cell. The SPF was designed so that it functioned as a polarization-insensitive angle-selective filter. We fabricated 30-80-μm-thick crystalline silicon samples for incident angles changing within 30°, and analyzed the measured results using a ray-trace simulation with the Monte Carlo method. The ratio of the absorbed intensity to the 1064 nm illumination intensity was 0.69-0.85, which was higher than those equipped with antireflection coatings instead of the SPFs by 0.19-0.13. Thus, we have proven the light-trapping concept of the SPF/diffuse reflector configuration for monochromatic illumination. The PV cells could be applied to wireless power supply, in particular from solar-pumped lasers.

  5. Study of polarization phenomena in Schottky CdTe diodes using infrared light illumination

    NASA Astrophysics Data System (ADS)

    Sato, Goro; Fukuyama, Taro; Watanabe, Shin; Ikeda, Hirokazu; Ohta, Masayuki; Ishikawa, Shin'nosuke; Takahashi, Tadayuki; Shiraki, Hiroyuki; Ohno, Ryoichi

    2011-10-01

    Schottky CdTe diode detectors suffer from a polarization phenomenon, which is characterized by degradation of the spectral properties over time following exposure to high bias voltage. This is considered attributable to charge accumulation at deep acceptor levels. A Schottky CdTe diode was illuminated with an infrared light for a certain period during a bias operation, and two opposite behaviors emerged. The detector showed a recovery when illuminated after the bias-induced polarization had completely progressed. Conversely, when the detector was illuminated before the emergence of bias-induced polarization, the degradation of the spectral properties was accelerated. Interpretation of these effects and discussion on the energy level of deep acceptors are presented.

  6. Effects of exposure to ultraviolet light on the development of Rana pipiens, the northern leopard frog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, J.J.; Wofford, H.W.

    1996-10-01

    The increase in ultraviolet light intensity levels due to ozone depletion recently has been linked to the decline in amphibian population. In this experiment, eggs and larvae of Rana pipiens were subjected to differing amounts of ultraviolet radiation to determine the effects of ultraviolet light on the development of amphibian tadpoles. The total length, length of body without tail, and maximum width of each specimen was recorded for a month of the tadpoles` development, including several measurements after the ultraviolet exposures were concluded. It was found that ultraviolet exposure significantly reduced the size of the organisms in comparison with themore » control group in all three measured areas. Ultraviolet radiation altered the health and appearance of the exposed organisms and was lethal at large amounts. This experiment showed that ultraviolet radiation could cause many problems in developing amphibians. By slowing their development and physically weakening predation, thus contributing to a decline in overall population levels.« less

  7. Ultraviolet light curves of beta Lyrae: Comparison of OAO A-2, IUE, and Voyager Observations

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji; Mccluskey, George E.; Silvis, Jeffery M. S.; Polidan, Ronald S.; Mccluskey, Carolina P. S.; Eaton, Joel A.

    1994-01-01

    The six-band ultraviolet light curves of beta Lyrae obtained with the Orbiting Astronomical Observatory (OAO) A-2 in 1970 exhibited a very unusual behavior. The secondary minimum deepened at shorter wavelength, indicating that one was not observing light variations caused primarily by the eclipses of two stars having a roughly Planckian energy distribution. It was then suggested that the light variations were caused by a viewing angle effect of an optically thick, ellipsoidal circumbinary gas cloud. Since 1978 beta Lyrae has been observed with the International Ultraviolet Explorer (IUE) satellite. We have constructed ultraviolet light curves from the IUE archival data for comparison with the OAO A-2 results. We find that they are in substantial agreement with each other. The Voyager ultraviolet spectrometer was also used to observe this binary during a period covered by IUE observations. The Voyager results agree with those of the two other satellite observatories at wavelengths longer than about 1350 A. However, in the wavelength region shorter than the Lyman-alpha line at 1216 A, the light curves at 1085 and 965 A show virtually no light variation except an apparent flaring near phase 0.7, which is also in evidence at longer wavelengths. We suggest that the optically thick circumbinary gas cloud, which envelops the two stars completely, assumes a roughly spherical shape when observed at these shorter wavelengths.

  8. Internal-illumination photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    Li, Mucong; Lan, Bangxin; Liu, Wei; Xia, Jun; Yao, Junjie

    2018-03-01

    We report a photoacoustic computed tomography (PACT) system using a customized optical fiber with a cylindrical diffuser to internally illuminate deep targets. The traditional external light illumination in PACT usually limits the penetration depth to a few centimeters from the tissue surface, mainly due to strong optical attenuation along the light propagation path from the outside in. By contrast, internal light illumination, with external ultrasound detection, can potentially detect much deeper targets. Different from previous internal illumination PACT implementations using forward-looking optical fibers, our internal-illumination PACT system uses a customized optical fiber with a 3-cm-long conoid needle diffuser attached to the fiber tip, which can homogeneously illuminate the surrounding space and substantially enlarge the field of view. We characterized the internal illumination distribution and PACT system performance. We performed tissue phantom and in vivo animal studies to further demonstrate the superior imaging depth using internal illumination over external illumination. We imaged a 7.5-cm-deep leaf target embedded in optically scattering medium and the beating heart of a mouse overlaid with 3.7-cm-thick chicken tissue. Our results have collectively demonstrated that the internal light illumination combined with external ultrasound detection might be a useful strategy to improve the penetration depth of PACT in imaging deep organs of large animals and humans.

  9. Demand illumination control apparatus

    NASA Technical Reports Server (NTRS)

    Warren, Carl (Inventor); Arline, Jimmie (Inventor); LaPalme, Julius (Inventor)

    1981-01-01

    Solar illuminating compensating apparatus is disclosed whereby the interior of a building is illuminated to a substantially constant, predetermined level of light intensity by a combination of natural illumination from the sun and artificial illumination from electricity wherein the intensity of said artificial illumination is controlled by fully electronic means which increases the level of artificial illumination when the natural illumination is inadequate and vice versa.

  10. Mechanism of a-IGZO TFT device deterioration—illumination light wavelength and substrate temperature effects

    NASA Astrophysics Data System (ADS)

    Chen, Te-Chih; Kuo, Yue; Chang, Ting-Chang; Chen, Min-Chen; Chen, Hua-Mao

    2017-10-01

    Device characteristics changes in an a-IGZO thin film transistor under light illumination and at raised temperature have been investigated. Light exposure causes a large leakage current, which is more obvious with an increase in the illumination energy, power and the temperature. The increase in the leakage current is due to the trap assisted photon excitation process that generates electron-hole pairs and the mechanism is enhanced with the additional thermal energy. The leakage current comes from the source side because holes generated in the process drift to the source side and therefore lower the barrier height. The above mechanism has been further verified with experiments of drain bias induced shifts in the threshold voltage and the subthreshold slope.

  11. Particle detection for patterned wafers of 100nm design rule by evanescent light illumination: analysis of evanescent light scattering using Finite-Difference Time-Domain (FDTD) method

    NASA Astrophysics Data System (ADS)

    Yoshioka, Toshie; Miyoshi, Takashi; Takaya, Yasuhiro

    2005-12-01

    To realize high productivity and reliability of the semiconductor, patterned wafers inspection technology to maintain high yield becomes essential in modern semiconductor manufacturing processes. As circuit feature is scaled below 100nm, the conventional imaging and light scattering methods are impossible to apply to the patterned wafers inspection technique, because of diffraction limit and lower S/N ratio. So, we propose a new particle detection method using annular evanescent light illumination. In this method, a converging annular light used as a light source is incident on a micro-hemispherical lens. When the converging angle is larger than critical angle, annular evanescent light is generated under the bottom surface of the hemispherical lens. Evanescent light is localized near by the bottom surface and decays exponentially away from the bottom surface. So, the evanescent light selectively illuminates the particles on the patterned wafer surface, because it can't illuminate the patterned wafer surface. The proposed method evaluates particles on a patterned wafer surface by detecting scattered evanescent light distribution from particles. To analyze the fundamental characteristics of the proposed method, the computer simulation was performed using FDTD method. The simulation results show that the proposed method is effective for detecting 100nm size particle on patterned wafer of 100nm lines and spaces, particularly under the condition that the evanescent light illumination with p-polarization and parallel incident to the line orientation. Finally, the experiment results suggest that 220nm size particle on patterned wafer of about 200nm lines and spaces can be detected.

  12. Curcumin uptake enhancement using low dose light illumination during incubation in Candida albicans

    NASA Astrophysics Data System (ADS)

    Romano, Renan A.; Pratavieira, Sebastião.; da Silva, Ana P.; Kurachi, Cristina; Bagnato, Vanderlei S.; Guimarães, Francisco E. G.

    2017-07-01

    A new PDI protocol is presented in this study. C. albicans cells pre-illuminated with a low dose light demonstrated an increase of curcumin uptake when compared to dark incubation, leading to a higher PDI efficacy.

  13. Current-Voltage Characteristics of Nb2O5 nanoporous via light illumination

    NASA Astrophysics Data System (ADS)

    Samihah Khairir, Nur; Rani, Rozina Abdul; Fazlida Hanim Abdullah, Wan; Hafiz Mamat, Mohamad; Kadir, Rosmalini Abdul; Rusop, M.; Sabirin Zoolfakar, Ahmad

    2018-03-01

    This work discussed the effect of light on I-V characteristics of anodized niobium pentoxide (Nb2O5) which formed nanoporous structure film. The structure was synthesized by anodizing niobium foils in glycerol based solution with 10 wt% supplied by two different voltages, 5V and 10V. The anodized foils that contained Nb2O5 film were then annealed to obtain an orthorhombic phase for 30 minutes at 450°C. The metal contact used for I-V testing was platinum (Pt) and it was deposited using thermal evaporator at 30nm thickness. I-V tests were conducted under different condition; dark and illumination to study the effect of light on I-V characteristics of anodized nanoporous Nb2O5. Higher anodization voltage and longer anodization time resulted in higher pore dispersion and larger pore size causing the current to increase. The increase of conductivity in I-V behaviour of Nb2O5 device is also affected by the illumination test as higher light intensity caused space charge region width to increase, thus making it easier for electron transfer between energy band gap.

  14. A beam splitter of natural light guiding system based on dichroic prism for ecological illumination

    NASA Astrophysics Data System (ADS)

    Li, Yu-Chi; Chen, Yi-Yung; Whang, Allen Jong-Woei

    2009-08-01

    In thremmatology, many researches focus on ecological illumination for improving the growing speed of animal or plant. According to the Trichromatic theory, any specific color can be made up of red, green, and blue light. Sunlight has full spectrum so it is the most applicable source. A Natural Light Guiding System includes collecting, transmitting, and lighting parts. In our research, we would like to design a beam splitter in the transmitting part to separate the sunlight into red, green, and blue light for ecological illumination. We use high pass and low pass dichroic coatings in a prism, called dichroic prism, to be the beam splitter to separate the wavelength. For measuring the spectra of the exit beams, we build a space with the Natural Light Guiding System. In the space, the spectra of sunlight outside and inside the space and the exit beams of the beam splitter are measured. Finally, we use prismatic structure to design the beam splitter, and optimize the surface of the element with aspheric surface and Fresnel surface to reduce the beam angle of exit light.

  15. Preparation strategy and illumination of three-dimensional cell cultures in light sheet-based fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Bruns, Thomas; Schickinger, Sarah; Wittig, Rainer; Schneckenburger, Herbert

    2012-10-01

    A device for selective plane illumination microscopy (SPIM) of three-dimensional multicellular spheroids, in culture medium under stationary or microfluidic conditions, is described. Cell spheroids are located in a micro-capillary and a light sheet, for illumination, is generated in an optical setup adapted to a conventional inverse microscope. Layers of the sample, of about 10 μm or less in diameter, are, thus, illuminated selectively and imaged by high resolution fluorescence microscopy. SPIM is operated at low light exposure even if a larger number of layers is imaged and is easily combined with laser scanning microscopy. Chinese hamster ovary cells expressing a membrane-associated green fluorescent protein are used for preliminary tests, and the uptake of the fluorescent marker, acridine orange via a microfluidic system, is visualized to demonstrate its potential in cancer research such as for the detection of cellular responses to anticancer drugs.

  16. Photomorphogenic responses to ultraviolet-B light.

    PubMed

    Jenkins, Gareth I

    2017-11-01

    Exposure to ultraviolet B (UV-B) light regulates numerous aspects of plant metabolism, morphology and physiology through the differential expression of hundreds of genes. Photomorphogenic responses to UV-B are mediated by the photoreceptor UV RESISTANCE LOCUS8 (UVR8). Considerable progress has been made in understanding UVR8 action: the structural basis of photoreceptor function, how interaction with CONSTITUTIVELY PHOTOMORPHOGENIC 1 initiates signaling and how REPRESSOR OF UV-B PHOTOMORPHOGENESIS proteins negatively regulate UVR8 action. In addition, recent research shows that UVR8 mediates several responses through interaction with other signaling pathways, in particular auxin signaling. Nevertheless, many aspects of UVR8 action remain poorly understood. Most research to date has been undertaken with Arabidopsis, and it is important to explore the functions and regulation of UVR8 in diverse plant species. Furthermore, it is essential to understand how UVR8, and UV-B signaling in general, regulates processes under natural growth conditions. Ultraviolet B regulates the expression of many genes through UVR8-independent pathways, but the activity and importance of these pathways in plants growing in sunlight are poorly understood. © 2017 John Wiley & Sons Ltd.

  17. The role of graphene formed on silver nanowire transparent conductive electrode in ultra-violet light emitting diodes

    PubMed Central

    Seo, Tae Hoon; Lee, Seula; Min, Kyung Hyun; Chandramohan, S.; Park, Ah Hyun; Lee, Gun Hee; Park, Min; Suh, Eun-Kyung; Kim, Myung Jong

    2016-01-01

    This paper reports a highly reliable transparent conductive electrode (TCE) that integrates silver nanowires (AgNWs) and high-quality graphene as a protecting layer. Graphene with minimized defects and large graphene domains has been successfully obtained through a facile two-step growth approach. Ultraviolet light emitting diodes (UV-LEDs) were fabricated with AgNWs or hybrid electrodes where AgNWs were combined with two-step grown graphene (A-2GE) or conventional one-step grown graphene (A-1GE). The device performance and reliability of the UV-LEDs with three different electrodes were compared. The A-2GE offered high figure of merit owing to the excellent UV transmittance and reduced sheet resistance. As a consequence, the UV-LEDs made with A-2GE demonstrated reduced forward voltage, enhanced electroluminescence (EL) intensity, and alleviated efficiency droop. The effects of joule heating and UV light illumination on the electrode stability were also studied. The present findings prove superior performance of the A-2GE under high current injection and continuous operation of UV LED, compared to other electrodes. From our observation, the A-2GE would be a reliable TCE for high power UV-LEDs. PMID:27387274

  18. The role of graphene formed on silver nanowire transparent conductive electrode in ultra-violet light emitting diodes

    NASA Astrophysics Data System (ADS)

    Seo, Tae Hoon; Lee, Seula; Min, Kyung Hyun; Chandramohan, S.; Park, Ah Hyun; Lee, Gun Hee; Park, Min; Suh, Eun-Kyung; Kim, Myung Jong

    2016-07-01

    This paper reports a highly reliable transparent conductive electrode (TCE) that integrates silver nanowires (AgNWs) and high-quality graphene as a protecting layer. Graphene with minimized defects and large graphene domains has been successfully obtained through a facile two-step growth approach. Ultraviolet light emitting diodes (UV-LEDs) were fabricated with AgNWs or hybrid electrodes where AgNWs were combined with two-step grown graphene (A-2GE) or conventional one-step grown graphene (A-1GE). The device performance and reliability of the UV-LEDs with three different electrodes were compared. The A-2GE offered high figure of merit owing to the excellent UV transmittance and reduced sheet resistance. As a consequence, the UV-LEDs made with A-2GE demonstrated reduced forward voltage, enhanced electroluminescence (EL) intensity, and alleviated efficiency droop. The effects of joule heating and UV light illumination on the electrode stability were also studied. The present findings prove superior performance of the A-2GE under high current injection and continuous operation of UV LED, compared to other electrodes. From our observation, the A-2GE would be a reliable TCE for high power UV-LEDs.

  19. Electrical behaviour of fully solution processed HfO2 (MOS) in presence of different light illumination

    NASA Astrophysics Data System (ADS)

    Mondal, Sandip

    2018-04-01

    This experiment demonstrates the electrical behaviors of fully solution processed HfO2(MOS) in presence of different optical illumination. The capacitance voltage measurement was performed at frequency of 100 kHz with a DC gate sweep voltage of ±5V (with additional AC voltage of 100mV) in presence of deep UV (wavelength of 365nm with power of 25W) as well as white light (20W). It is found that there is a large shift in flatband voltage of 120mV due presence of white light during the CV measurement. However there is negligible change in flatband voltage (30mV) has been observed due to illumination of deep UV light.

  20. Specimen illumination apparatus with optical cavity for dark field illumination

    DOEpatents

    Pinkel, Daniel; Sudar, Damir; Albertson, Donna

    1999-01-01

    An illumination apparatus with a specimen slide holder, an illumination source, an optical cavity producing multiple reflection of illumination light to a specimen comprising a first and a second reflective surface arranged to achieve multiple reflections of light to a specimen is provided. The apparatus can further include additional reflective surfaces to achieve the optical cavity, a slide for mounting the specimen, a coverslip which is a reflective component of the optical cavity, one or more prisms for directing light within the optical cavity, antifading solutions for improving the viewing properties of the specimen, an array of materials for analysis, fluorescent components, curved reflective surfaces as components of the optical cavity, specimen detection apparatus, optical detection equipment, computers for analysis of optical images, a plane polarizer, fiberoptics, light transmission apertures, microscopic components, lenses for viewing the specimen, and upper and lower mirrors above and below the specimen slide as components of the optical cavity. Methods of using the apparatus are also provided.

  1. Forensic photography. Ultraviolet imaging of wounds on skin.

    PubMed

    Barsley, R E; West, M H; Fair, J A

    1990-12-01

    The use of ultraviolet light (UVL) to study and document patterned injuries on human skin has opened a new frontier for law enforcement. This article discusses the photographic techniques involved in reflective and fluorescent UVL. Documentation of skin wounds via still photography and dynamic video photographic techniques, which utilize various methods of UV illumination, are covered. Techniques important for courtroom presentation of evidence gathered from lacerations, contusions, abrasions, and bite marks are presented through case studies and controlled experiments. Such injuries are common sequelae in the crimes of child abuse, rape, and assault.

  2. Light illumination intensity dependence of photovoltaic parameter in polymer solar cells with ammonium heptamolybdate as hole extraction layer.

    PubMed

    Liu, Zhiyong; Niu, Shengli; Wang, Ning

    2018-01-01

    A low-temperature, solution-processed molybdenum oxide (MoO X ) layer and a facile method for polymer solar cells (PSCs) is developed. The PSCs based on a MoO X layer as the hole extraction layer (HEL) is a significant advance for achieving higher photovoltaic performance, especially under weaker light illumination intensity. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) measurements show that the (NH 4 ) 6 Mo 7 O 24 molecule decomposes and forms the molybdenum oxide (MoO X ) molecule when undergoing thermal annealing treatment. In this study, PSCs with the MoO X layer as the HEL exhibited better photovoltaic performance, especially under weak light illumination intensity (from 100 to 10mWcm -2 ) compared to poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS)-based PSCs. Analysis of the current density-voltage (J-V) characteristics at various light intensities provides information on the different recombination mechanisms in the PSCs with a MoO X and PEDOT:PSS layer as the HEL. That the slopes of the open-circuit voltage (V OC ) versus light illumination intensity plots are close to 1 unity (kT/q) reveals that bimolecular recombination is the dominant and weaker monomolecular recombination mechanism in open-circuit conditions. That the slopes of the short-circuit current density (J SC ) versus light illumination intensity plots are close to 1 reveals that the effective charge carrier transport and collection mechanism of the MoO X /indium tin oxide (ITO) anode is the weaker bimolecular recombination in short-circuit conditions. Our results indicate that MoO X is an alternative candidate for high-performance PSCs, especially under weak light illumination intensity. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Design of angle-resolved illumination optics using nonimaging bi-telecentricity for 193 nm scatterfield microscopy.

    PubMed

    Sohn, Martin Y; Barnes, Bryan M; Silver, Richard M

    2018-03-01

    Accurate optics-based dimensional measurements of features sized well-below the diffraction limit require a thorough understanding of the illumination within the optical column and of the three-dimensional scattered fields that contain the information required for quantitative metrology. Scatterfield microscopy can pair simulations with angle-resolved tool characterization to improve agreement between the experiment and calculated libraries, yielding sub-nanometer parametric uncertainties. Optimized angle-resolved illumination requires bi-telecentric optics in which a telecentric sample plane defined by a Köhler illumination configuration and a telecentric conjugate back focal plane (CBFP) of the objective lens; scanning an aperture or an aperture source at the CBFP allows control of the illumination beam angle at the sample plane with minimal distortion. A bi-telecentric illumination optics have been designed enabling angle-resolved illumination for both aperture and source scanning modes while yielding low distortion and chief ray parallelism. The optimized design features a maximum chief ray angle at the CBFP of 0.002° and maximum wavefront deviations of less than 0.06 λ for angle-resolved illumination beams at the sample plane, holding promise for high quality angle-resolved illumination for improved measurements of deep-subwavelength structures using deep-ultraviolet light.

  4. Optimization of the excitation light sheet in selective plane illumination microscopy

    PubMed Central

    Gao, Liang

    2015-01-01

    Selective plane illumination microscopy (SPIM) allows rapid 3D live fluorescence imaging on biological specimens with high 3D spatial resolution, good optical sectioning capability and minimal photobleaching and phototoxic effect. SPIM gains its advantage by confining the excitation light near the detection focal plane, and its performance is determined by the ability to create a thin, large and uniform excitation light sheet. Several methods have been developed to create such an excitation light sheet for SPIM. However, each method has its own strengths and weaknesses, and tradeoffs must be made among different aspects in SPIM imaging. In this work, we present a strategy to select the excitation light sheet among the latest SPIM techniques, and to optimize its geometry based on spatial resolution, field of view, optical sectioning capability, and the sample to be imaged. Besides the light sheets discussed in this work, the proposed strategy is also applicable to estimate the SPIM performance using other excitation light sheets. PMID:25798312

  5. High-resolution light-sheet microscopy: a simulation of an optical illumination system for oil immersion

    NASA Astrophysics Data System (ADS)

    Lu, Xiang; Heintzmann, Rainer; Leischner, Ulrich

    2015-09-01

    Light sheet microscopy is a microscopy technique characterized by an illumination from the side, perpendicular to the direction of observation. While this is often used and easy to implement for imaging samples with water-immersion, the application in combination with oil-immersion is less often used and requires a specific optimization. In this paper we present our design of a light-sheet illumination optical system with a ~1μm illumination thickness, a long working distance through the immersion oil, and including a focusing system allowing for moving the focus-spot of the lightsheet laterally through the field of view. This optical design allows for the acquisition of fluorescence images in 3D with isotropic resolution of below 1 micrometer of whole-mount samples with a size of ~1mm diameter. This technique enables high-resolution insights in the 3D structure of biological samples, e.g. for research of insect anatomy or for imaging of biopsies in medical diagnostics.

  6. Diffusive-light invisibility cloak for transient illumination

    NASA Astrophysics Data System (ADS)

    Orazbayev, B.; Beruete, M.; Martínez, A.; García-Meca, C.

    2016-12-01

    Invisibility in a diffusive-light-scattering medium has been recently demonstrated by employing a scattering-cancellation core-shell cloak. Unlike nondiffusive cloaks, such a device can be simultaneously macroscopic, broadband, passive, polarization independent, and omnidirectional. Unfortunately, it has been verified that this cloak, as well as more sophisticated ones based on transformation optics, fail under pulsed illumination, invalidating their use for a variety of applications. Here, we introduce a different approach based on unimodular transformations that enables the construction of unidirectional diffusive-light cloaks exhibiting a perfect invisibility effect, even under transient conditions. Moreover, we demonstrate that a polygonal cloak can extend this functionality to multiple directions with a nearly ideal behavior, while preserving all other features. We propose and numerically verify a simple cloak realization based on a layered stack of two isotropic materials. The studied devices have several applications not addressable by any of the other cloaks proposed to date, including shielding from pulse-based detection techniques, cloaking undesired scattering elements in time-of-flight imaging or high-speed communication systems for diffusive environments, and building extreme optical security features. The discussed cloaking strategy could also be applied to simplify the implementation of thermal cloaks.

  7. A Fast Responsive Ultraviolet Sensor from mSILAR-Processed Sn-ZnO

    NASA Astrophysics Data System (ADS)

    Thomas, Deepu; Vijayalakshmi, K. A.; Sadasivuni, Kishor Kumar; Thomas, Ajith; Ponnamma, Deepalekshmi; Cabibihan, John-John

    2017-11-01

    Microwave-assisted successive ionic layer adsorption and reaction was employed to synthesize Sn-ZnO (tin-doped zinc oxide), and its sensitivity to ultraviolet radiation is compared with zinc oxide (ZnO). The sensing films were made by the dip-coated method on an indium titanium oxide glass substrate, and the sensing performance was monitored using the 300-700 nm wavelength of UV-Vis light. Excellent sensitivity and recovery were observed for the Sn-doped ZnO sensor device, especially at 380 nm wavelength of ultraviolet (UV) light (response and recovery time 2.26 s and 8.63 s, respectively, at 5 V bias voltage). The variation in photocurrent with respect to dark and light illumination atmosphere was well illustrated based on the Schottky and inter-particle network effects. Doping of Sn on ZnO nanoparticles varied the surface roughness and crystallite size as observed from scanning electron microscopic and x-ray diffraction studies. Here, we demonstrate a simple and economical fabrication technique for designing a high-performance UV light sensor. The developed device works at room temperature with high durability and stability.

  8. High-nitrogen-based pyrotechnics: development of perchlorate-free green-light illuminants for military and civilian applications.

    PubMed

    Sabatini, Jesse J; Raab, James M; Hann, Ronald K; Damavarapu, Reddy; Klapötke, Thomas M

    2012-06-01

    The development of perchlorate-free hand-held signal illuminants for the US Army's M195 green star parachute is described. Compared with the perchlorate-containing control, the optimized perchlorate-free illuminants were less sensitive toward various ignition stimuli while offering comparable burn times and visible-light outputs. The results were also important from the perspective of civilian fireworks because the development of perchlorate-free illuminants remains an important objective of the commercial fireworks industry. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Can pulsed xenon ultraviolet light systems disinfect aerobic bacteria in the absence of manual disinfection?

    PubMed

    Jinadatha, Chetan; Villamaria, Frank C; Ganachari-Mallappa, Nagaraja; Brown, Donna S; Liao, I-Chia; Stock, Eileen M; Copeland, Laurel A; Zeber, John E

    2015-04-01

    Whereas pulsed xenon-based ultraviolet light no-touch disinfection systems are being increasingly used for room disinfection after patient discharge with manual cleaning, their effectiveness in the absence of manual disinfection has not been previously evaluated. Our study indicates that pulsed xenon-based ultraviolet light systems effectively reduce aerobic bacteria in the absence of manual disinfection. These data are important for hospitals planning to adopt this technology as adjunct to routine manual disinfection. Published by Elsevier Inc.

  10. Enhanced astaxanthin accumulation in Haematococcus pluvialis using high carbon dioxide concentration and light illumination.

    PubMed

    Christian, David; Zhang, Jun; Sawdon, Alicia J; Peng, Ching-An

    2018-05-01

    In this study, an economical two-stage method was proposed for the production of natural astaxanthin from Haematococcus pluvialis without a medium replacement step. In stage 1, H. pluvialis were grown under low light illumination until they reached optimal biomass. In stage 2, cells were switched to astaxanthin induction conditions utilizing the combination of high light illumination and elevated carbon dioxide levels (5 or 15%). The introduction of CO 2 altered the C/N balance creating a nutrient deficiency without a change of media. The resulting astaxanthin yield was 2-3 times that of using either stressor alone. This astaxanthin induction method has many advantages over current methods including no medium replacement and a short induction time of less than four days. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Large area, surface discharge pumped, vacuum ultraviolet light source

    DOEpatents

    Sze, Robert C.; Quigley, Gerard P.

    1996-01-01

    Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source. A contamination-free VUV light source having a 225 cm.sup.2 emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm.sup.2 at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing.

  12. Large area, surface discharge pumped, vacuum ultraviolet light source

    DOEpatents

    Sze, R.C.; Quigley, G.P.

    1996-12-17

    Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source is disclosed. A contamination-free VUV light source having a 225 cm{sup 2} emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm{sup 2} at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing. 3 figs.

  13. Fragmentation of mercury compounds under ultraviolet light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokkonen, E.; Hautala, L.; Jänkälä, K.

    2015-08-21

    Ultraviolet light induced photofragmentation of mercury compounds is studied experimentally with electron energy resolved photoelectron-photoion coincidence techniques and theoretically with computational quantum chemical methods. A high resolution photoelectron spectrum using synchrotron radiation is presented. Fragmentation of the molecule is studied subsequent to ionization to the atomic-mercury-like d orbitals. State dependent fragmentation behaviour is presented and specific reactions for dissociation pathways are given. The fragmentation is found to differ distinctly in similar orbitals of different mercury compounds.

  14. Kansas highway LED illumination manual : a guide for the use of LED lighting systems.

    DOT National Transportation Integrated Search

    2015-12-01

    The research project was aimed to assist the Kansas Department of Transportation (KDOT) in the development of a Highway LED Illumination Manual for guiding the upcoming implementation of successful LED roadway lighting systems in Kansas to replace th...

  15. Real-time global illumination on mobile device

    NASA Astrophysics Data System (ADS)

    Ahn, Minsu; Ha, Inwoo; Lee, Hyong-Euk; Kim, James D. K.

    2014-02-01

    We propose a novel method for real-time global illumination on mobile devices. Our approach is based on instant radiosity, which uses a sequence of virtual point lights in order to represent the e ect of indirect illumination. Our rendering process consists of three stages. With the primary light, the rst stage generates a local illumination with the shadow map on GPU The second stage of the global illumination uses the re ective shadow map on GPU and generates the sequence of virtual point lights on CPU. Finally, we use the splatting method of Dachsbacher et al 1 and add the indirect illumination to the local illumination on GPU. With the limited computing resources in mobile devices, a small number of virtual point lights are allowed for real-time rendering. Our approach uses the multi-resolution sampling method with 3D geometry and attributes simultaneously and reduce the total number of virtual point lights. We also use the hybrid strategy, which collaboratively combines the CPUs and GPUs available in a mobile SoC due to the limited computing resources in mobile devices. Experimental results demonstrate the global illumination performance of the proposed method.

  16. COMPARATIVE TOXICITY OF FLUORANTHENE TO FRESHWATER AND SALTWATER SPECIES UNDER FLUORESCENT AND ULTRAVIOLET LIGHT

    EPA Science Inventory

    The acute and chronic toxicity of fluoranthene was determined for a diverse group of freshwater and saltwater species under both standard laboratory fluorescent light and ultraviolet (UV) light test conditions. Acute tests with 21 species demonstrated that fluoranthene was not le...

  17. Far-ultraviolet Bidirectional Photometry of Apollo Soil 10084: New Results from The Southwest Ultraviolet Reflectance Chamber (SwURC).

    NASA Astrophysics Data System (ADS)

    Raut, U.

    2017-12-01

    We report new measurements of the far-ultraviolet (115-180 nm) bidirectional reflectance of Apollo soil 10084 in the Southwest Ultraviolet Reflectance Chamber (SwURC). We find the bidirectional reflectance distribution function (BRDF) to be featureless in this wavelength region, though with a small blue slope. The angular distribution of the BRDF at Ly-α and 160 nm shows that this mature mare soil, containing nanophase Fe and enriched in Ti, anisotropically scatters light in the forward direction. The phase angle dependence of the BRDF is fitted with Hapke's photometric model with an additional diffuse-directional term. Future plans include measurements of mare and highland soils of differing maturity index (Is/FeO), water ice frost and lunar soil-ice aggregates. Such measurements will help constrain the abundance and distribution of the water ice on the illuminated lunar surface and dark permanently shadowed regions of the moon, as reported by LRO-LAMP.

  18. A Semitransparent Inorganic Perovskite Film for Overcoming Ultraviolet Light Instability of Organic Solar Cells and Achieving 14.03% Efficiency.

    PubMed

    Chen, Weijie; Zhang, Jingwen; Xu, Guiying; Xue, Rongming; Li, Yaowen; Zhou, Yinhua; Hou, Jianhui; Li, Yongfang

    2018-05-01

    Organic solar cells (OSCs) can be unstable under ultraviolet (UV) irradiation. To address this issue and enhance the power conversion efficiency (PCE), an inorganic-perovskite/organic four-terminal tandem solar cell (TSC) based on a semitransparent inorganic CsPbBr 3 perovskite solar cell (pero-SC) as the top cell and an OSC as bottom cell is constructed. The high-quality CsPbBr 3 photoactive layer of the planar pero-SC is prepared with a dual-source vacuum coevaporation method, using stoichiometric precursors of CsBr and PbBr 2 with a low evaporation rate. The resultant opaque planar pero-SC exhibits an ultrahigh open-circuit voltage of 1.44 V and the highest reported PCE of 7.78% for a CsPbBr 3 -based planar pero-SC. Importantly, the devices show no degradation after 120 h UV light illumination. The related semitransparent pero-SC can almost completely filter UV light and well maintain photovoltaic performance; it additionally shows an extremely high average visible transmittance. When it is used to construct a TSC, the top pero-SC acting as a UV filter can utilize UV light for photoelectric conversion, avoiding the instability problem of UV light on the bottom OSC that can meet the industrial standards of UV-light stability for solar cells, and leading to the highest reported PCE of 14.03% for the inorganic-perovskite/organic TSC. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Depth resolved hyperspectral imaging spectrometer based on structured light illumination and Fourier transform interferometry

    PubMed Central

    Choi, Heejin; Wadduwage, Dushan; Matsudaira, Paul T.; So, Peter T.C.

    2014-01-01

    A depth resolved hyperspectral imaging spectrometer can provide depth resolved imaging both in the spatial and the spectral domain. Images acquired through a standard imaging Fourier transform spectrometer do not have the depth-resolution. By post processing the spectral cubes (x, y, λ) obtained through a Sagnac interferometer under uniform illumination and structured illumination, spectrally resolved images with depth resolution can be recovered using structured light illumination algorithms such as the HiLo method. The proposed scheme is validated with in vitro specimens including fluorescent solution and fluorescent beads with known spectra. The system is further demonstrated in quantifying spectra from 3D resolved features in biological specimens. The system has demonstrated depth resolution of 1.8 μm and spectral resolution of 7 nm respectively. PMID:25360367

  20. Preliminary results for the design, fabrication, and performance of a backside-illuminated avalanche drift detector

    NASA Astrophysics Data System (ADS)

    Qiao, Yun; Liang, Kun; Chen, Wen-Fei; Han, De-Jun

    2013-10-01

    The detection of low-level light is a key technology in various experimental scientific studies. As a photon detector, the silicon photomultiplier (SiPM) has gradually become an alternative to the photomultiplier tube (PMT) in many applications in high-energy physics, astroparticle physics, and medical imaging because of its high photon detection efficiency (PDE), good resolution for single-photon detection, insensitivity to magnetic field, low operating voltage, compactness, and low cost. However, primarily because of the geometric fill factor, the PDE of most SiPMs is not very high; in particular, for those SiPMs with a high density of micro cells, the effective area is small, and the bandwidth of the light response is narrow. As a building block of the SiPM, the concept of the backside-illuminated avalanche drift detector (ADD) was first proposed by the Max Planck Institute of Germany eight years ago; the ADD is promising to have high PDE over the full energy range of optical photons, even ultraviolet light and X-ray light, and because the avalanche multiplication region is very small, the ADD is beneficial for the fabrication of large-area SiPMs. However, because of difficulties in design and fabrication, no significant progress had been made, and the concept had not yet been verified. In this paper, preliminary results in the design, fabrication, and performance of a backside-illuminated ADD are reported; the difficulties in and limitations to the backside-illuminated ADD are analyzed.

  1. Isotropic image in structured illumination microscopy patterned with a spatial light modulator.

    PubMed

    Chang, Bo-Jui; Chou, Li-Jun; Chang, Yun-Ching; Chiang, Su-Yu

    2009-08-17

    We developed a structured illumination microscopy (SIM) system that uses a spatial light modulator (SLM) to generate interference illumination patterns at four orientations - 0 degrees, 45 degrees, 90 degrees, and 135 degrees, to reconstruct a high-resolution image. The use of a SLM for pattern alterations is rapid and precise, without mechanical calibration; moreover, our design of SLM patterns allows generating the four illumination patterns of high contrast and nearly equivalent periods to achieve a near isotropic enhancement in lateral resolution. We compare the conventional image of 100-nm beads with those reconstructed from two (0 degrees +90 degrees or 45 degrees +135 degrees) and four (0 degrees +45 degrees +90 degrees +135 degrees) pattern orientations to show the differences in resolution and image, with the support of simulations. The reconstructed images of 200-nm beads at various depths and fine structures of actin filaments near the edge of a HeLa cell are presented to demonstrate the intensity distributions in the axial direction and the prospective application to biological systems. (c) 2009 Optical Society of America

  2. Interpretation of OAO-2 ultraviolet light curves of beta Doradus

    NASA Technical Reports Server (NTRS)

    Hutchinson, J. L.; Lillie, C. F.; Hill, S. J.

    1975-01-01

    Middle-ultraviolet light curves of beta Doradus, obtained by OAO-2, are presented along with other evidence indicating that the small additional bumps observed on the rising branches of these curves have their origin in shock-wave phenomena in the upper atmosphere of this classical Cepheid. A simple piston-driven spherical hydrodynamic model of the atmosphere is developed to explain the bumps, and the calculations are compared with observations. The model is found to be consistent with the shapes of the light curves as well as with measurements of the H-alpha radial velocities.

  3. Spectral transmittance of intraocular lenses under natural and artificial illumination: criteria analysis for choosing a suitable filter.

    PubMed

    Artigas, Jose M; Felipe, Adelina; Navea, Amparo; Artigas, Cristina; García-Domene, Maria C

    2011-01-01

    To compare the spectral transmission of different intraocular lenses (IOLs) with either ultraviolet (UV) or blue-light filters, and to analyze the performance of these filters with artificial light sources as well as sunlight. Experimental study. The spectral transmission curve of 10 IOLs was measured using a PerkinElmer Lambda 800 UV/VIS spectrometer (Waltham, MA). Different filtering simulations were performed using the D65 standard illuminant as daylight and standard incandescent lamp and fluorescent bulb illuminants. Spectral transmittance of the IOLs. All the IOLs studied provide good UVC (200-280 nm) and UVB (280-315 nm) protection, except for one that presented an appreciable window at 270 nm. Nevertheless, both natural and artificial sources have practically no emission under 300 nm. In the UVA (315-380 nm) range the curves of the different IOLs manifested different degrees of absorption. Not all the UV filters incorporated in different IOLs protect equally. The filters that provide greater photoprotection against UV radiation, even blue light, are yellow and orange. Then, yellow and orange IOL filters may be best suited for cases requiring special retinal protection. The filters that favor better photoreception of visible light (380-780 nm) are those that transmit this radiation close to 100%. Artificial illumination practically does not emit in the UV range, but its levels of illumination are very low when compared with solar light. A possible balance between photoprotection and photoreception could be a sharp cutoff filter with the cutoff wavelength near 400 nm and a maximum transmittance around 100%. Copyright © 2011 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  4. Color selectivity of surface-plasmon holograms illuminated with white light.

    PubMed

    Ozaki, Miyu; Kato, Jun-ichi; Kawata, Satoshi

    2013-09-20

    By using the optical frequency dependence of surface-plasmon polaritons, color images can be reconstructed from holograms illuminated with white light. We report details on the color selectivity of the color holograms. The selectivity is tuned by the thickness of a dielectric film covering a plasmonic metal film. When the dielectric is SiO(2) and the metal is silver, the appropriate thicknesses are 25 and 55 nm, respectively. In terms of spatial color uniformity, holograms made of silver-film corrugations are better than holograms recorded on photographic film on a flat silver surface.

  5. Illumination devices for uniform delivery of light to the oral cavity for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Canavesi, Cristina; Cassarly, William J.; Foster, Thomas H.; Rolland, Jannick P.

    2011-10-01

    To date, the lack of light delivery mechanisms to the oral cavity remains a barrier to the treatment of oral cancer with photodynamic therapy (PDT). The greatest impediment to medical practitioners is the current need to shield the normal tissues of the oral cavity, a costly and time-consuming procedure. In this research, we present the design of illumination devices to deliver light to the oral cavity for PDT, which will facilitate administration of PDT in the clinic. The goal for such an illumination device, as indicated by our clinical collaborators at Roswell Park Cancer Institute in Buffalo, NY, is to limit exposure of healthy tissue and produce an average irradiance of 100 mW/cm2 over the treatment field, with spatial non-uniformities below 10%. Furthermore, the size of the device must be compact to allow use in the oral cavity. Our research led to the design and fabrication of two devices producing spatial non-uniformities below 6% over a treatment area of 0.25 cm2 by design. One device consisted of an appropriately-sized reflector, inspired by solar concentrators, illuminated by a cylindrical diffusing fiber optimally located within the reflector; another was a solid lightpipe with a combination of optimized tapered and straight components.

  6. Ultraviolet light exposure and skin cancer in the city of Arica, Chile.

    PubMed

    Rivas, Miguel; Araya, María C; Durán, Viviava; Rojas, Elisa; Cortes, Juan; Calaf, Gloria M

    2009-01-01

    An increase in the amount of solar ultraviolet light that reaches the Earth is considered to be responsible for the worldwide increase in skin cancer. Solar ultraviolet B (UVB) light (290-320 nm) has multiple effects that can be harmful to human beings. The city of Arica in Chile receives high UV levels. This can explain the high prevalence of skin cancer in the Arica population. In the present study, pathological reports of skin cancer were collected from an Arica hospital and retrospectively examined to investigate the possible effects of UV radiation. Among the malignant skin tumor types, basocellular and spinocellular carcinomas were more common in men (44.4 and 16.6%, respectively) than in women (24.9 and 10.7%, respectively). Basocellular carcinoma was observed in individuals 40-79 years of age. The incidence of skin cancer significantly increased (P<0.05) between 2000 and 2006 per 100,000 population. The factor of incidence of skin cancer per 100,000 population significantly increased (P<0.05) between 1980 and 2000 in both genders, but was higher in men (0.79-1.99) than in women (0.63-1.56). The results of the study indicate a steady increase in the incidence of skin cancer in Arica, Chile, most probably due to the high levels of ultraviolet light to which individuals are exposed throughout the year, and the cumulative effect of this type of radiation on the skin.

  7. Optimization of low-level light therapy's illumination parameters for spinal cord injury in a rat model

    NASA Astrophysics Data System (ADS)

    Shuaib, Ali; Bourisly, Ali

    2018-02-01

    Spinal cord injury (SCI) can result in complete or partial loss of sensation and motor function due to interruption along the severed axonal tract(s). SCI can result in tetraplegia or paraplegia, which can have prohibitive lifetime medical costs and result in shorter life expectancy. A promising therapeutic technique that is currently in experimental phase and that has the potential to be used to treat SCI is Low-level light therapy (LLLT). Preclinical studies have shown that LLLT has reparative and regenerative capabilities on transected spinal cords, and that LLLT can enhance axonal sprouting in animal models. However, despite the promising effects of LLLT as a therapy for SCI, it remains difficult to compare published results due to the use of a wide range of illumination parameters (i.e. different wavelengths, fluences, beam types, and beam diameter), and due to the lack of a standardized experimental protocol(s). Before any clinical applications of LLLT for SCI treatment, it is crucial to standardize illumination parameters and efficacy of light delivery. Therefore, in this study we aim to evaluate the light fluence distribution on a 3D voxelated SCI rat model with different illumination parameters (wavelengths: 660, 810, and 980 nm; beam types: Gaussian and Flat; and beam diameters: 0.1, 0.2, and 0.3 cm) for LLLT using Monte Carlo simulation. This study provides an efficient approach to guide researchers in optimizing the illumination parameters for LLLT spinal cord injury in an experimental model and will aid in quantitative and qualitative standardization of LLLT-SCI treatment.

  8. DARK-FIELD ILLUMINATION SYSTEM

    DOEpatents

    Norgren, D.U.

    1962-07-24

    A means was developed for viewing objects against a dark background from a viewing point close to the light which illuminates the objects and under conditions where the back scattering of light by the objects is minimal. A broad light retro-directing member on the opposite side of the objects from the light returns direct light back towards the source while directing other light away from the viewing point. The viewing point is offset from the light and thus receives only light which is forwardly scattered by an object while returning towards the source. The object is seen, at its true location, against a dark background. The invention is particularly adapted for illuminating and viewing nuclear particle tracks in a liquid hydrogen bubble chamber through a single chamber window. (AEC)

  9. Influence of white light illumination on the performance of a-IGZO thin film transistor under positive gate-bias stress

    NASA Astrophysics Data System (ADS)

    Tang, Lan-Feng; Yu, Guang; Lu, Hai; Wu, Chen-Fei; Qian, Hui-Min; Zhou, Dong; Zhang, Rong; Zheng, You-Dou; Huang, Xiao-Ming

    2015-08-01

    The influence of white light illumination on the stability of an amorphous InGaZnO thin film transistor is investigated in this work. Under prolonged positive gate bias stress, the device illuminated by white light exhibits smaller positive threshold voltage shift than the device stressed under dark. There are simultaneous degradations of field-effect mobility for both stressed devices, which follows a similar trend to that of the threshold voltage shift. The reduced threshold voltage shift under illumination is explained by a competition between bias-induced interface carrier trapping effect and photon-induced carrier detrapping effect. It is further found that white light illumination could even excite and release trapped carriers originally exiting at the device interface before positive gate bias stress, so that the threshold voltage could recover to an even lower value than that in an equilibrium state. The effect of photo-excitation of oxygen vacancies within the a-IGZO film is also discussed. Project supported by the State Key Program for Basic Research of China (Grant Nos. 2011CB301900 and 2011CB922100) and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.

  10. A volumetric three-dimensional digital light photoactivatable dye display

    NASA Astrophysics Data System (ADS)

    Patel, Shreya K.; Cao, Jian; Lippert, Alexander R.

    2017-07-01

    Volumetric three-dimensional displays offer spatially accurate representations of images with a 360° view, but have been difficult to implement due to complex fabrication requirements. Herein, a chemically enabled volumetric 3D digital light photoactivatable dye display (3D Light PAD) is reported. The operating principle relies on photoactivatable dyes that become reversibly fluorescent upon illumination with ultraviolet light. Proper tuning of kinetics and emission wavelengths enables the generation of a spatial pattern of fluorescent emission at the intersection of two structured light beams. A first-generation 3D Light PAD was fabricated using the photoactivatable dye N-phenyl spirolactam rhodamine B, a commercial picoprojector, an ultraviolet projector and a custom quartz imaging chamber. The system displays a minimum voxel size of 0.68 mm3, 200 μm resolution and good stability over repeated `on-off' cycles. A range of high-resolution 3D images and animations can be projected, setting the foundation for widely accessible volumetric 3D displays.

  11. A volumetric three-dimensional digital light photoactivatable dye display

    PubMed Central

    Patel, Shreya K.; Cao, Jian; Lippert, Alexander R.

    2017-01-01

    Volumetric three-dimensional displays offer spatially accurate representations of images with a 360° view, but have been difficult to implement due to complex fabrication requirements. Herein, a chemically enabled volumetric 3D digital light photoactivatable dye display (3D Light PAD) is reported. The operating principle relies on photoactivatable dyes that become reversibly fluorescent upon illumination with ultraviolet light. Proper tuning of kinetics and emission wavelengths enables the generation of a spatial pattern of fluorescent emission at the intersection of two structured light beams. A first-generation 3D Light PAD was fabricated using the photoactivatable dye N-phenyl spirolactam rhodamine B, a commercial picoprojector, an ultraviolet projector and a custom quartz imaging chamber. The system displays a minimum voxel size of 0.68 mm3, 200 μm resolution and good stability over repeated ‘on-off’ cycles. A range of high-resolution 3D images and animations can be projected, setting the foundation for widely accessible volumetric 3D displays. PMID:28695887

  12. Finite element modeling of light propagation in fruit under illumination of continuous-wave beam

    USDA-ARS?s Scientific Manuscript database

    Spatially-resolved spectroscopy provides a means for measuring the optical properties of biological tissues, based on analytical solutions to diffusion approximation for semi-infinite media under the normal illumination of infinitely small size light beam. The method is, however, prone to error in m...

  13. Bidirectional reflectance distribution function of Spectralon white reflectance standard illuminated by incoherent unpolarized and plane-polarized light.

    PubMed

    Bhandari, Anak; Hamre, Børge; Frette, Øvynd; Zhao, Lu; Stamnes, Jakob J; Kildemo, Morten

    2011-06-01

    A Lambert surface would appear equally bright from all observation directions regardless of the illumination direction. However, the reflection from a randomly scattering object generally has directional variation, which can be described in terms of the bidirectional reflectance distribution function (BRDF). We measured the BRDF of a Spectralon white reflectance standard for incoherent illumination at 405 and 680 nm with unpolarized and plane-polarized light from different directions of incidence. Our measurements show deviations of the BRDF for the Spectralon white reflectance standard from that of a Lambertian reflector that depend both on the angle of incidence and the polarization states of the incident light and detected light. The non-Lambertian reflection characteristics were found to increase more toward the direction of specular reflection as the angle of incidence gets larger.

  14. Nonimaging Optical Illumination System

    DOEpatents

    Winston, Roland

    1994-02-22

    A nonimaging illumination or concentration optical device. An optical device is provided having a light source, a light reflecting surface with an opening and positioned partially around the light source which is opposite the opening of the light reflecting surface. The light reflecting surface is disposed to produce a substantially uniform intensity output with the reflecting surface defined in terms of a radius vector R.sub.i in conjunction with an angle .phi..sub.i between R.sub.i, a direction from the source and an angle .theta..sub.i between direct forward illumination and the light ray reflected once from the reflecting surface. R.sub.i varies as the exponential of tan (.phi..sub.i -.theta..sub.i)/2 integrated over .phi..sub.i.

  15. LRO-LAMP Observations of Illumination Conditions in the Lunar South Pole

    NASA Astrophysics Data System (ADS)

    Mandt, K.; Greathouse, T. K.; Retherford, K. D.; Mazarico, E.; Gladstone, R.; Liu, Y.; Hendrix, A.; Hurley, D.; Lemelin, M.; Patterson, G. W.; Bowman-Cisneros, E.

    2016-12-01

    The south pole of the Moon is an area of great interest for space exploration and scientific research, because many low-lying regions are permanently shaded while adjacent topographic highs experience near constant sunlight. The lack of direct sunlight in permanently shaded regions (PSRs) provides cold enough conditions for them to potentially trap and retain large quantities of volatiles in their soils, while the locations that receive extended periods of sunlight could provide a reliable source of solar energy and relatively stable temperature conditions. Illumination conditions at the lunar south pole vary diurnally and seasonally, but on different timescales than days and seasons on the Earth. The most important advancements in understanding illumination conditions at the poles are provided by topographic mapping and illumination modeling. These efforts have provided estimates of the extent of PSRs and the percent of time that sunlit peaks are illuminated. They also help to constrain the thermal balance of the PSRs based on other sources of illumination. However, comparing model results with spacecraft observations can help to validate the models and provides ground truth for planning future exploration efforts. We have developed a new method for observing illumination conditions at the south pole using data taken by the LRO Lyman Alpha Mapping Project (LAMP), a far ultraviolet (FUV) imaging spectrograph. LAMP produces maps of the albedo of the upper 25-100 nm of lunar regolith using measurements of the brightness of reflected light relative to known light sources in daytime and nighttime conditions. Nighttime observations have been used previously to determine the abundance of surface frost within the PSRs and the surface porosity of regolith within the PSRs. The maps that have been used for these studies excluded scattered sunlight by restricting observations to nighttime conditions when the solar zenith angle is greater than 91°. However, by producing maps

  16. A role for calcium hydroxide and dolomite in water: acceleration of the reaction under ultraviolet light.

    PubMed

    Nagase, Hiroyasu; Tsujino, Hidekazu; Kurihara, Daisuke; Saito, Hiroshi; Kawase, Masaya

    2014-04-01

    Organic environmental pollutants are now being detected with remarkably high frequency in the aquatic environment. Photodegradation by ultraviolet light is sometimes used as a method for removing organic chemicals from water; however, this method is relatively inefficient because of the low degradation rates involved, and more efficient methods are under development. Here we show that the removal of various organic pollutants can be assisted by calcined dolomite in aqueous solution under irradiation with ultraviolet light. It was possible to achieve substantial removal of bisphenol A, chlorophenols, alkylphenols, 1-naphthol and 17β-estradiol. The major component of dolomite responsible for the removal was calcium hydroxide. Our results demonstrate that the use of calcium hydroxide with ultraviolet light irradiation can be a very effective method of rapidly removing organic environmental pollutants from water. This is a new role for calcium hydroxide and dolomite in water treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Effect of surfactant concentration on the ultraviolet sensing properties of ZnO-cellulose nanocomposites

    NASA Astrophysics Data System (ADS)

    Sahoo, Karunakar; Nayak, J.

    2018-05-01

    ZnO nanoparticles were grown, on cellulose fiber surfaces, at three different concentrations of hexamethylenetetramine by an aqueous chemical method. A typical ZnO-cellulose nanocomposite showed an enhanced UV sensing activity due to its large surface area. Due to illumination with ultraviolet light, the surface photocurrent of ZnO-cellulose nanocomposite pellet increased from 8.90 × 10‒7 A to 3.18 × 10‒5 A in 15 s. The UV ON to OFF (IUV/IDark) ratio for this sample was 35.73. Hence, an enhancement in the conductivity due to UV illumination shows that our ZnO-cellulose can be used for the fabrication of UV sensors.

  18. A calibrated iterative reconstruction for quantitative photoacoustic tomography using multi-angle light-sheet illuminations

    NASA Astrophysics Data System (ADS)

    Wang, Yihan; Lu, Tong; Zhang, Songhe; Song, Shaoze; Wang, Bingyuan; Li, Jiao; Zhao, Huijuan; Gao, Feng

    2018-02-01

    Quantitative photoacoustic tomography (q-PAT) is a nontrivial technique can be used to reconstruct the absorption image with a high spatial resolution. Several attempts have been investigated by setting point sources or fixed-angle illuminations. However, in practical applications, these schemes normally suffer from low signal-to-noise ratio (SNR) or poor quantification especially for large-size domains, due to the limitation of the ANSI-safety incidence and incompleteness in the data acquisition. We herein present a q-PAT implementation that uses multi-angle light-sheet illuminations and a calibrated iterative multi-angle reconstruction. The approach can acquire more complete information on the intrinsic absorption and SNR-boosted photoacoustic signals at selected planes from the multi-angle wide-field excitations of light-sheet. Therefore, the sliced absorption maps over whole body can be recovered in a measurementflexible, noise-robust and computation-economic way. The proposed approach is validated by the phantom experiment, exhibiting promising performances in image fidelity and quantitative accuracy.

  19. [Effect of long-wave ultraviolet light (UV-A) and medium-wave ultraviolet rays (UV-B) on human skin. Critical comparison].

    PubMed

    Raab, W

    1980-04-15

    When discussing the effects of ultraviolet radiation on human skin, one should carefully distinguish between the long wave ultraviolet light (UV-A) and the short wave radiations (UV-B and UV-C). Ultraviolet A induces immediate pigmentation but, if high energies are applied, a permanent pigmentation is elicited. This type of ultraviolet A-induced pigmentation has been called "spontaneous" pigmentation as no erythematous reaction is necessary to induce or accelerate melanine formation. Ultraviolet B provokes erythema and consecutive pigmentation. Upon chronic exposure, ultraviolet B causes the wellknown actinic damage of the skin and even provokes carcinoma. With exposures to the sunlight (global radiation), one should be most careful. The public must be informed extensively about the dangers of excessive sunbaths. The use of artificial "suns" with spectra between 260 and 400 nm is limited as it may cause the same type of damage as the global radiation. An exact schedule for use of artificial lamps is strongly recommended. After one cycle of exposures, an interruption is necessary until the next cycle of irradiations may start. Upon continual use for tanning of the skin, artificial lamps may provoke irreversible damage of the skin. Radiation sources with emission spectra of wavelengths between 315 and 400 nm exclusively are well suited for the induction of skin pigmentation (cosmetic use). Potent radiation such as UVASUN systems provoke a "pleasant" permanent pigmentation after exposures for less than one hour. The use of ultraviolet A (UV-A) does not carry any risk for the human skin.

  20. Illuminating light-dependent color shifts in core and veneer layers of dental all-ceramics.

    PubMed

    Lee, Yong-Keun; Cha, Hyun-Suk; Yu, Bin

    2014-09-01

    The color of an object is perceived differently depending on the ambient light conditions. Since dental all-ceramic restorations are fabricated by building up several layers to reproduce the tooth shade, the optical properties of each layer should be optimized for successful shade reproduction. This study aimed to determine the separate contributions of the color shifts in each of the core and veneer layers of all-ceramics by switching the illuminating lights on the color shifts of layered ceramics. Specimens of seven kinds of core ceramics and the corresponding veneer ceramics for each core were fabricated with a layered thickness of 1.5 mm. A sintering ceramic was used as a reference core material. The Commission Internationale de l’Eclairage (CIE) color coordinates of core, veneer, and layered specimens were measured with a spectroradiometer under the CIE illuminant D65 (daylight), A (incandescent lamp), and F9 (fluorescent lamp) simulating lights. Color shifts of the layered specimens were primarily determined by the CIE a shifts (D65 to A switch) or by the CIE b shifts (D65 to F9 switch) of the veneer layer. The color coordinates shifts in the constituent layers differentially influenced those of the layered specimens by the kind of switched lights. Therefore, the optical properties of the constituent layers of all-ceramics should be controlled to reflect these findings.

  1. Illuminating light-dependent color shifts in core and veneer layers of dental all-ceramics

    NASA Astrophysics Data System (ADS)

    Lee, Yong-Keun; Cha, Hyun-Suk; Yu, Bin

    2014-09-01

    The color of an object is perceived differently depending on the ambient light conditions. Since dental all-ceramic restorations are fabricated by building up several layers to reproduce the tooth shade, the optical properties of each layer should be optimized for successful shade reproduction. This study aimed to determine the separate contributions of the color shifts in each of the core and veneer layers of all-ceramics by switching the illuminating lights on the color shifts of layered ceramics. Specimens of seven kinds of core ceramics and the corresponding veneer ceramics for each core were fabricated with a layered thickness of 1.5 mm. A sintering ceramic was used as a reference core material. The Commission Internationale de l'Eclairage (CIE) color coordinates of core, veneer, and layered specimens were measured with a spectroradiometer under the CIE illuminant D65 (daylight), A (incandescent lamp), and F9 (fluorescent lamp) simulating lights. Color shifts of the layered specimens were primarily determined by the CIE a* shifts (D65 to A switch) or by the CIE b* shifts (D65 to F9 switch) of the veneer layer. The color coordinates shifts in the constituent layers differentially influenced those of the layered specimens by the kind of switched lights. Therefore, the optical properties of the constituent layers of all-ceramics should be controlled to reflect these findings.

  2. Real-time optically sectioned wide-field microscopy employing structured light illumination and a CMOS detector

    NASA Astrophysics Data System (ADS)

    Mitic, Jelena; Anhut, Tiemo; Serov, Alexandre; Lasser, Theo; Bourquin, Stephane

    2003-07-01

    Real-time optically sectioned microscopy is demonstrated using an AC-sensitive detection concept realized with smart CMOS image sensor and structured light illumination by a continuously moving periodic pattern. We describe two different detection systems based on CMOS image sensors for the detection and on-chip processing of the sectioned images in real time. A region-of-interest is sampled at high frame rate. The demodulated signal delivered by the detector corresponds to the depth discriminated image of the sample. The measured FWHM of the axial response depends on the spatial frequency of the projected grid illumination and is in the μm-range. The effect of using broadband incoherent illumination is discussed. The performance of these systems is demonstrated by imaging technical as well as biological samples.

  3. ASSESSING THE EFFECTIVENESS OF LOW PRESSURE ULTRAVIOLET LIGHT FOR INACTIVATING HELICOBACTER PYLORI

    EPA Science Inventory

    Three strains of Helicobacter pylori were exposed to ultraviolet (UV) light from a low-pressure source to determine log inactivation versus applied fluence. Results indicate that H. pylori is readily inactivated at UV fluences typically used in water treatment r...

  4. Light based anti-infectives: ultraviolet C irradiation, photodynamic therapy, blue light, and beyond

    PubMed Central

    Yin, Rui; Dai, Tianhong; Avci, Pinar; Jorge, Ana Elisa Serafim; de Melo, Wanessa CMA; Vecchio, Daniela; Huang, Ying-Ying; Gupta, Asheesh; Hamblin, Michael R

    2013-01-01

    Owing to the worldwide increase in antibiotic resistance, researchers are investigating alternative anti-infective strategies to which it is supposed microorganisms will be unable to develop resistance. Prominent among these strategies, is a group of approaches which rely on light to deliver the killing blow. As is well known, ultraviolet light, particularly UVC (200–280nm), is germicidal, but it has not been much developed as an anti-infective approach until recently, when it was realized that the possible adverse effects to host tissue were relatively minor compared to its high activity in killing pathogens. Photodynamic therapy is the combination of non-toxic photosensitizing dyes with harmless visible light that together produce abundant destructive reactive oxygen species (ROS). Certain cationic dyes or photosensitizers have good specificity for binding to microbial cells while sparing host mammalian cells and can be used for treating many localized infections, both superficial and even deep-seated by using fiber optic delivered light. Many microbial cells are highly sensitive to killing by blue light (400–470 nm) due to accumulation of naturally occurring photosensitizers such as porphyrins and flavins. Near infrared light has also been shown to have antimicrobial effects against certain species. Clinical applications of these technologies include skin, dental, wound, stomach, nasal, toenail and other infections which are amenable to effective light delivery. PMID:24060701

  5. Predicting Ground Illuminance

    NASA Astrophysics Data System (ADS)

    Lesniak, Michael V.; Tregoning, Brett D.; Hitchens, Alexandra E.

    2015-01-01

    Our Sun outputs 3.85 x 1026 W of radiation, of which roughly 37% is in the visible band. It is directly responsible for nearly all natural illuminance experienced on Earth's surface, either in the form of direct/refracted sunlight or in reflected light bouncing off the surfaces and/or atmospheres of our Moon and the visible planets. Ground illuminance, defined as the amount of visible light intercepting a unit area of surface (from all incident angles), varies over 7 orders of magnitude from day to night. It is highly dependent on well-modeled factors such as the relative positions of the Sun, Earth, and Moon. It is also dependent on less predictable factors such as local atmospheric conditions and weather.Several models have been proposed to predict ground illuminance, including Brown (1952) and Shapiro (1982, 1987). The Brown model is a set of empirical data collected from observation points around the world that has been reduced to a smooth fit of illuminance against a single variable, solar altitude. It provides limited applicability to the Moon and for cloudy conditions via multiplicative reduction factors. The Shapiro model is a theoretical model that treats the atmosphere as a three layer system of light reflectance and transmittance. It has different sets of reflectance and transmittance coefficients for various cloud types.In this paper we compare the models' predictions to ground illuminance data from an observing run at the White Sands missile range (data was obtained from the United Kingdom's Meteorology Office). Continuous illuminance readings were recorded under various cloud conditions, during both daytime and nighttime hours. We find that under clear skies, the Shapiro model tends to better fit the observations during daytime hours with typical discrepancies under 10%. Under cloudy skies, both models tend to poorly predict ground illuminance. However, the Shapiro model, with typical average daytime discrepancies of 25% or less in many cases

  6. Wide-field fundus imaging with trans-palpebral illumination.

    PubMed

    Toslak, Devrim; Thapa, Damber; Chen, Yanjun; Erol, Muhammet Kazim; Paul Chan, R V; Yao, Xincheng

    2017-01-28

    In conventional fundus imaging devices, transpupillary illumination is used for illuminating the inside of the eye. In this method, the illumination light is directed into the posterior segment of the eye through the cornea and passes the pupillary area. As a result of sharing the pupillary area for the illumination beam and observation path, pupil dilation is typically necessary for wide-angle fundus examination, and the field of view is inherently limited. An alternative approach is to deliver light from the sclera. It is possible to image a wider retinal area with transcleral-illumination. However, the requirement of physical contact between the illumination probe and the sclera is a drawback of this method. We report here trans-palpebral illumination as a new method to deliver the light through the upper eyelid (palpebra). For this study, we used a 1.5 mm diameter fiber with a warm white LED light source. To illuminate the inside of the eye, the fiber illuminator was placed at the location corresponding to the pars plana region. A custom designed optical system was attached to a digital camera for retinal imaging. The optical system contained a 90 diopter ophthalmic lens and a 25 diopter relay lens. The ophthalmic lens collected light coming from the posterior of the eye and formed an aerial image between the ophthalmic and relay lenses. The aerial image was captured by the camera through the relay lens. An adequate illumination level was obtained to capture wide angle fundus images within ocular safety limits, defined by the ISO 15004-2: 2007 standard. This novel trans-palpebral illumination approach enables wide-angle fundus photography without eyeball contact and pupil dilation.

  7. Optical effects of exposing intact human lenses to ultraviolet radiation and visible light.

    PubMed

    Kessel, Line; Eskildsen, Lars; Lundeman, Jesper Holm; Jensen, Ole Bjarlin; Larsen, Michael

    2011-12-30

    The human lens is continuously exposed to high levels of light. Ultraviolet radiation is believed to play a causative role in the development of cataract. In vivo, however, the lens is mainly exposed to visible light and the ageing lens absorbs a great part of the short wavelength region of incoming visible light. The aim of the present study was to examine the optical effects on human lenses of short wavelength visible light and ultraviolet radiation. Naturally aged human donor lenses were irradiated with UVA (355 nm), violet (400 and 405 nm) and green (532 nm) lasers. The effect of irradiation was evaluated qualitatively by photography and quantitatively by measuring the direct transmission before and after irradiation. Furthermore, the effect of pulsed and continuous laser systems was compared as was the effect of short, intermediate and prolonged exposures. Irradiation with high intensity lasers caused scattering lesions in the human lenses. These effects were more likely to be seen when using pulsed lasers because of the high pulse intensity. Prolonged irradiation with UVA led to photodarkening whereas no detrimental effects were observed after irradiation with visible light. Irradiation with visible light does not seem to be harmful to the human lens except if the lens is exposed to laser irradiances that are high enough to warrant thermal protein denaturation that is more readily seen using pulsed laser systems.

  8. Photoprotection and photoreception of intraocular lenses under xenon and white LED illumination.

    PubMed

    Artigas, J M; Navea, A; García-Domene, M C; Artigas, C; Lanzagorta, A

    2016-05-01

    To analyze the photoprotection and phototransmission that various intraocular lenses (IOLs) provide under the illumination of a xenon (Xe) lamp and white LEDs (light emitting diode). The spectral transmission curves of six representative IOLs were measured using a Perkin-Elmer Lambda 35 UV/VIS spectrometer. Various filtering simulations were performed using a Xe lamp and white LEDs. The spectral emissions of these lamps were measured with an ILT-950 spectroradiometer. The IOLs analyzed primarily show transmission of nearly 100% in the visible spectrum. In the ultraviolet (UV) region, the filters incorporated in the various IOLs did not filter equally, and some of them let an appreciable amount of UV through. The Xe lamp presented a strong emission of ultraviolet A (UVA), and its emission under 300nm was not negligible. The white LED did not present an appreciable emission under 380nm. The cut-off wavelength of most filters is between 380 and 400nm (Physiol Hydriol60C(®), IOLTECH E4T(®), Alcon SA60AT(®), Alcon IQ SN60WF(®)), so that their UV protection is very effective. Nonetheless, the IOL OPHTEC Oculaid(®) contains a filter that, when a Xe lamp is used, lets through up to 20% for 350nm and up to 15% for 300nm, which at this point is ultraviolet B (UVB). The OPHTEC(®) Artisan IOL has a transmission peak below 300nm, which must be taken into account under Xe illumination. White LEDs do not emit energy below 380nm, so no special protection is required in the UV region. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Illuminated push-button switch

    NASA Technical Reports Server (NTRS)

    Iwagiri, T.

    1983-01-01

    An illuminated push-button switch is described. It is characterized by the fact that is consists of a switch group, an operator button opening and closing the switch group, and a light-emitting element which illuminates the face of the operator button.

  10. Biological Effects Of Artificial Illumination

    NASA Astrophysics Data System (ADS)

    Corth, Richard

    1980-10-01

    We are increasingly being warned of the possible effects of so called "polluted" light, that is light that differs in spectral content from that of sunlight. We should be concerned, we are told, because all animals and plants have evolved under this natural daylight and therefore any difference between that illuminant and the artificial illuminants that are on the market today, is suspect. The usual presentation of the differences between the sunlight and the artificial illuminants are as shown in Figure 1. Here we are shown the spectral power distribution of sunlight and Cool White fluorescent light. The spectral power distributions of each have been normalized to some convenient wavelength so that each can be seen and easily compared on the same figure. But this presentation is misleading for one does not experience artificial illuminants at the same intensity as one experiences sunlight. Sunlight intensities are ordinarily found to be in the 8000 to 10,000 footcandle range whereas artificial illuminants are rarely experienced at intensity levels greater than 100 footcandles. Therefore a representative difference between the two types of illumination conditions is more accurately represented as in Figure 2. Thus if evolutionary adaptations require that humans and other animals be exposed to sunlight to ensure wellbeing, it is clear that one must be exposed to sunlight intensities. It is not feasible to expect that artificially illuminated environments will be lit to the same intensity as sunlight

  11. Converting a conventional wired-halogen illuminated indirect ophthalmoscope to a wireless-light emitting diode illuminated indirect ophthalmoscope in less than 1000/- rupees.

    PubMed

    Kothari, Mihir; Kothari, Kedar; Kadam, Sanjay; Mota, Poonam; Chipade, Snehal

    2015-01-01

    To report the "do it yourself" method of converting an existing wired-halogen indirect ophthalmoscope (IO) to a wireless-light emitting diode (LED) IO and report the preferences of the patients and the ophthalmologists. In this prospective observational study, a conventional IO was converted to wireless-LED IO using easily available, affordable electrical components. Conventional and the converted IO were then used to perform photo-stress test and take the feedback of subjects and the ophthalmologists regarding its handling and illumination characteristics. The cost of conversion to wireless-LED was 815/- rupees. Twenty-nine subjects, mean age 34.3 [formula in text] 10 years with normal eyes were recruited in the study. Between the two illumination systems, there was no statistical difference in the magnitude of the visual acuity loss and the time to recovery of acuity and the bleached vision on photo-stress test, although the visual recovery was clinically faster with LED illumination. The heat sensation was more with halogen illumination than the LED (P = 0.009). The ophthalmologists rated wireless-LED IO higher than wired-halogen IO on the handling, examination comfort, patient's visual comfort and quality of the image. Twenty-two (81%) ophthalmologists wanted to change over to wireless-LED IO. Converting to wireless-LED IO is easy, cost-effective and preferred over a wired-halogen indirect ophthalmoscope.

  12. Recording of individual identification information on dental prostheses using fluorescent material and ultraviolet light.

    PubMed

    Naito, Yoshihito; Meinar, Ashrin N; Iwawaki, Yuki; Kashiwabara, Toshiya; Goto, Takaharu; Ito, Teruaki; Sakuma, Tetsuro; Ichikawa, Tetsuo

    2013-01-01

    The placement of individual identification on a prosthesis is very important for forensic dentistry and traceability. This article describes the unique naming/labeling of dentures with information for individual identification using a method in which information is invisible under natural light but visible under ultraviolet light-emitting diode/black light exposure. The use of laser beam machining with this method will enable the recording of a large amount of information.

  13. Ultraviolet Light-Assisted Copper Oxide Nanowires Hydrogen Gas Sensor

    NASA Astrophysics Data System (ADS)

    Sihar, Nabihah; Tiong, Teck Yaw; Dee, Chang Fu; Ooi, Poh Choon; Hamzah, Azrul Azlan; Mohamed, Mohd Ambri; Majlis, Burhanuddin Yeop

    2018-05-01

    We fabricated copper oxide nanowires (CuO NWs) ultraviolet (UV) light-assisted hydrogen gas sensor. The fabricated sensor shows promising sensor response behavior towards 100 ppm of H2 at room temperature and elevated temperature at 100 °C when exposed to UV light (3.0 mW/cm2). One hundred-cycle device stability test has been performed, and it is found that for sample elevated at 100 °C, the UV-activated sample achieved stability in the first cycle as compared to the sample without UV irradiation which needed about 10 cycles to achieve stability at the initial stage, whereas the sample tested at room temperature was able to stabilize with the aid of UV irradiation. This indicates that with the aid of UV light, after some "warming up" time, it is possible for the conventional CuO NW sensor which normally work at elevated temperature to function at room temperature because UV source is speculated to play a dominant role to increase the interaction of the surface of CuO NWs and hydrogen gas molecules absorbed after the light exposure.

  14. Ultraviolet photometry from the orbiting astronomical observatory. XXX - The Orion reflection nebulosity

    NASA Technical Reports Server (NTRS)

    Witt, A. N.; Lillie, C. F.

    1978-01-01

    Surface-brightness measurements are presented that cover the region of Orion in nine intermediate-width bandpasses ranging from 4250 to 1550 A. The existence of an extended ultraviolet reflection nebulosity in this area is confirmed, and the characteristics of its spectrum and spatial distribution are derived. The observations are consistent with a model in which the dense molecular cloud complex in Orion is illuminated by the foreground Orion aggregate of early-type stars. The interpretation is complicated by the fact that foreground dust may contribute to the observed scattered light. The scattering particles in the cloud appear to exhibit a wavelength-dependent albedo similar to that found for interstellar grains in general, with a strong indication that the phase function changes to a less forward-scattering form in the ultraviolet.

  15. Observation of abnormal mobility enhancement in multilayer MoS2 transistor by synergy of ultraviolet illumination and ozone plasma treatment

    NASA Astrophysics Data System (ADS)

    Guo, Junjie; Yang, Bingchu; Zheng, Zhouming; Jiang, Jie

    2017-03-01

    Mobility engineering through physical or chemical process is a fruitful approach for the atomically-layered two-dimensional electronic applications. Unfortunately, the usual process with either illumination or oxygen treatment would greatly deteriorate the mobility in two-dimensional MoS2 field-effect transistor (FET). Here, in this work, we report that the mobility can be abnormally enhanced to an order of magnitude by the synergy of ultraviolet illumination (UV) and ozone plasma treatment in multilayer MoS2 FET. This abnormal mobility enhancement is attributed to the trap passivation due to the photo-generated excess carriers during UV/ozone plasma treatment. An energy band model based on Schottky barrier modulation is proposed to understand the underlying mechanism. Raman spectra results indicate that the oxygen ions are incorporated into the surface of MoS2 (some of them are in the form of ultra-thin Mo-oxide) and can further confirm this proposed mechanism. Our results can thus provide a simple approach for mobility engineering in MoS2-based FET and can be easily expanded to other 2D electronic devices, which represents a significant step toward applications of 2D layered materials in advanced cost-effective electronics.

  16. Red versus blue light illumination in hexyl 5-aminolevulinate photodynamic therapy: the influence of light color and irradiance on the treatment outcome in vitro

    NASA Astrophysics Data System (ADS)

    Helander, Linda; Krokan, Hans E.; Johnsson, Anders; Gederaas, Odrun A.; Plaetzer, Kristjan

    2014-08-01

    Hexyl 5-aminolevulinate (HAL) is a lipophilic derivative of 5-aminolevulinate, a key intermediate in biosynthesis of the photosensitizer protoporphyrin IX (PpIX). The photodynamic efficacy and cell death mode after red versus blue light illumination of HAL-induced PpIX have been examined and compared using five different cancer cell lines. LED arrays emitting at 410 and 624 nm served as homogenous and adjustable light sources. Our results show that the response after HAL-PDT is cell line specific, both regarding the shape of the dose-survival curve, the overall dose required for efficient cell killing, and the relative amount of apoptosis. The ratio between 410 and 624 nm in absorption coefficient correlates well with the difference in cell killing at the same wavelengths. In general, the PDT efficacy was several folds higher for blue light as compared with red light, as expected. However, HAL-PDT624 induced more apoptosis than HAL-PDT410 and illumination with low irradiance resulted in more apoptosis than high irradiance at the same lethal dose. This indicates differences in death modes after low and high irradiance after similar total light doses. From a treatment perspective, these differences may be important.

  17. Red versus blue light illumination in hexyl 5-aminolevulinate photodynamic therapy: the influence of light color and irradiance on the treatment outcome in vitro.

    PubMed

    Helander, Linda; Krokan, Hans E; Johnsson, Anders; Gederaas, Odrun A; Plaetzer, Kristjan

    2014-08-01

    Hexyl 5-aminolevulinate (HAL) is a lipophilic derivative of 5-aminolevulinate, a key intermediate in biosynthesis of the photosensitizer protoporphyrin IX (PpIX). The photodynamic efficacy and cell death mode after red versus blue light illumination of HAL-induced PpIX have been examined and compared using five different cancer cell lines. LED arrays emitting at 410 and 624 nm served as homogenous and adjustable light sources. Our results show that the response after HAL-PDT is cell line specific, both regarding the shape of the dose-survival curve, the overall dose required for efficient cell killing, and the relative amount of apoptosis. The ratio between 410 and 624 nm in absorption coefficient correlates well with the difference in cell killing at the same wavelengths. In general, the PDT efficacy was several folds higher for blue light as compared with red light, as expected. However, HAL-PDT₆₂₄ induced more apoptosis than HAL-PDT₄₁₀ and illumination with low irradiance resulted in more apoptosis than high irradiance at the same lethal dose. This indicates differences in death modes after low and high irradiance after similar total light doses. From a treatment perspective, these differences may be important.

  18. Effects of forward and backward transitions in light intensities in tau-illuminance curves of the rat motor activity rhythm under constant dim light.

    PubMed

    Cambras, Trinitat; Díez-Noguera, Antoni

    2012-07-01

    Circadian rhythms are strongly influenced by light intensity, the effects of which may persist beyond the duration of light exposure (aftereffects). Here, the authors constructed period-illuminance curves for the motor activity circadian rhythm of male and female rats by recording the effects of a series of small upward and downward steps in light intensity (illuminance ranging between .01 lux of dim red light and 1 lux of white light) on their activity. In all cases, stepwise changes were made in five logarithmic steps (irradiance: dim red light: .692 µW/cm(2) and white light: .006, .016, .044, .12, and .315 µW/cm(2), corresponding, respectively, to .02, .05, .14, .13, and 1 lux measured at cage level), with changes in intensity every 2 wks. One group of rats (DLD) started in dim red light, moved up to 1 lux white light, and then back down to the original light intensity. Another group (LDL) started at 1 lux, moved down to .01 lux, and then back up to the original intensity. Motor activity data were recorded throughout the experiment and tau values, the percentage of variance explained by the rhythm, and the mean motor activity for each stage and group were calculated. The results show differences in the dynamics of tau values between the DLD and LDL groups and between males and females. In the LDL group, the tau values of both males and females were dependent on light intensity, and were similar for the forward and backward transitions. In other words, no aftereffects were found, and no differences were detected between males and females. In the DLD group, however, differences were found between males and females. Males had a tau value of 24 h 20 min under dim red light, 25 h 40 min under 1 lux, and 24 h 50 min on return to dim red light. It is noticeable that the tau values of the backward branch of the illuminance curve contradicted classical predictions, since at .38 and .14 lux the tau values were shorter than those found under the same intensities after

  19. Nonimaging optical illumination system

    DOEpatents

    Winston, R.; Ries, H.

    1996-12-17

    A nonimaging illumination optical device for producing a selected far field illuminance over an angular range. The optical device includes a light source, a light reflecting surface, and a family of light edge rays defined along a reference line with the reflecting surface defined in terms of the reference line as a parametric function R(t) where t is a scalar parameter position and R(t)=k(t)+Du(t) where k(t) is a parameterization of the reference line, and D is a distance from a point on the reference line to the reflection surface along the desired edge ray through the point. 35 figs.

  20. Nonimaging optical illumination system

    DOEpatents

    Winston, R.; Ries, H.

    1998-10-06

    A nonimaging illumination optical device for producing a selected far field illuminance over an angular range. The optical device includes a light source a light reflecting surface, and a family of light edge rays defined along a reference line with the reflecting surface defined in terms of the reference lines a parametric function R(t) where t is a scalar parameter position and R(t)=k(t)+Du(t) where k(t) is a parameterization of the reference line, and D is a distance from a point on the reference line to the reflection surface along the desired edge ray through the point. 35 figs.

  1. Flexible ultraviolet photodetectors based on ZnO-SnO2 heterojunction nanowire arrays

    NASA Astrophysics Data System (ADS)

    Lou, Zheng; Yang, Xiaoli; Chen, Haoran; Liang, Zhongzhu

    2018-02-01

    A ZnO-SnO2 nanowires (NWs) array, as a metal oxide semiconductor, was successfully synthesized by a near-field electrospinning method for the applications as high performance ultraviolet photodetectors. Ultraviolet photodetectors based on a single nanowire exhibited excellent photoresponse properties to 300 nm ultraviolet light illumination including ultrahigh I on/I off ratios (up to 103), good stability and reproducibility because of the separation between photo-generated electron-hole pairs. Moreover, the NWs array shows an enhanced photosensing performance. Flexible photodetectors on the PI substrates with similar tendency properties were also fabricated. In addition, under various bending curvatures and cycles, the as-fabricated flexible photodetectors revealed mechanical flexibility and good stable electrical properties, showing that they have the potential for applications in future flexible photoelectron devices. Project supported by the National Science Foundation of China (No. 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine and Physics, Chinese Academy of Sciences.

  2. Use of light absorbers to alter optical interrogation with epi-illumination and transillumination in three-dimensional cardiac models

    NASA Astrophysics Data System (ADS)

    Ramshesh, Venkat K.; Knisley, Stephen B.

    2006-03-01

    Cardiac optical mapping currently provides 2-D maps of transmembrane voltage-sensitive fluorescence localized near the tissue surface. Methods for interrogation at different depths are required for studies of arrhythmias and the effects of defibrillation shocks in 3-D cardiac tissue. We model the effects of coloading with a dye that absorbs excitation or fluorescence light on the radius and depth of the interrogated region with specific illumination and collection techniques. Results indicate radii and depths of interrogation are larger for transillumination versus epi-illumination, an effect that is more pronounced for broad-field excitation versus laser scanner. Coloading with a fluorescence absorber lessens interrogated depth for epi-illumination and increases it for transillumination, which is confirmed with measurements using transillumination of heart tissue slices. Coloading with an absorber of excitation light consistently decreases the interrogated depths. Transillumination and coloading also decrease the intensities of collected fluorescence. Thus, localization can be modified with wavelength-specific absorbers at the expense of a reduction in fluorescence intensity.

  3. Enhanced light extraction efficiency of micro-ring array AlGaN deep ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Bekele Fayisa, Gabisa; Lee, Jong Won; Kim, Jungsub; Kim, Yong-Il; Park, Youngsoo; Kim, Jong Kyu

    2017-09-01

    An effective approach to overcome inherently poor light extraction efficiency of AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) is presented. We demonstrated the 5 × 5 array micro-ring DUV LED having an inclined sidewall at the outer perimeter and a p-GaN-removed inner circle of the micro-ring, together with MgF2/Al omnidirectional reflectors. The micro-ring array DUV LED shows remarkably higher light output power by 70% than the reference, consistent with the calculated result, as well as comparable turn-on and operational voltages, which are attributed to the effective extraction of strong transverse-magnetic polarized anisotropic emission and the reduction of the absorption loss by the p-GaN contact layer, simultaneously.

  4. Critical illumination condenser for x-ray lithography

    DOEpatents

    Cohen, S.J.; Seppala, L.G.

    1998-04-07

    A critical illumination condenser system is disclosed, particularly adapted for use in extreme ultraviolet (EUV) projection lithography based on a ring field imaging system and a laser produced plasma source. The system uses three spherical mirrors and is capable of illuminating the extent of the mask plane by scanning either the primary mirror or the laser plasma source. The angles of radiation incident upon each mirror of the critical illumination condenser vary by less than eight (8) degrees. For example, the imaging system in which the critical illumination condenser is utilized has a 200 {micro}m source and requires a magnification of 26. The three spherical mirror system constitutes a two mirror inverse Cassegrain, or Schwarzschild configuration, with a 25% area obstruction (50% linear obstruction). The third mirror provides the final pupil and image relay. The mirrors include a multilayer reflective coating which is reflective over a narrow bandwidth. 6 figs.

  5. Critical illumination condenser for x-ray lithography

    DOEpatents

    Cohen, Simon J.; Seppala, Lynn G.

    1998-01-01

    A critical illumination condenser system, particularly adapted for use in extreme ultraviolet (EUV) projection lithography based on a ring field imaging system and a laser produced plasma source. The system uses three spherical mirrors and is capable of illuminating the extent of the mask plane by scanning either the primary mirror or the laser plasma source. The angles of radiation incident upon each mirror of the critical illumination condenser vary by less than eight (8) degrees. For example, the imaging system in which the critical illumination condenser is utilized has a 200 .mu.m source and requires a magnification of 26.times.. The three spherical mirror system constitutes a two mirror inverse Cassegrain, or Schwarzschild configuration, with a 25% area obstruction (50% linear obstruction). The third mirror provides the final pupil and image relay. The mirrors include a multilayer reflective coating which is reflective over a narrow bandwidth.

  6. Integrating motion, illumination, and structure in video sequences with applications in illumination-invariant tracking.

    PubMed

    Xu, Yilei; Roy-Chowdhury, Amit K

    2007-05-01

    In this paper, we present a theory for combining the effects of motion, illumination, 3D structure, albedo, and camera parameters in a sequence of images obtained by a perspective camera. We show that the set of all Lambertian reflectance functions of a moving object, at any position, illuminated by arbitrarily distant light sources, lies "close" to a bilinear subspace consisting of nine illumination variables and six motion variables. This result implies that, given an arbitrary video sequence, it is possible to recover the 3D structure, motion, and illumination conditions simultaneously using the bilinear subspace formulation. The derivation builds upon existing work on linear subspace representations of reflectance by generalizing it to moving objects. Lighting can change slowly or suddenly, locally or globally, and can originate from a combination of point and extended sources. We experimentally compare the results of our theory with ground truth data and also provide results on real data by using video sequences of a 3D face and the entire human body with various combinations of motion and illumination directions. We also show results of our theory in estimating 3D motion and illumination model parameters from a video sequence.

  7. Kansas highway LED illumination manual : a guide for the use of LED lighting systems : [technical summary].

    DOT National Transportation Integrated Search

    2015-12-01

    The research project was aimed to assist the Kansas Department of Transportation (KDOT) in the development of a Highway LED Illumination Manual for guiding the upcoming implementation of successful LED roadway lighting systems in Kansas to replace th...

  8. Development of a quantitative assessment method of pigmentary skin disease using ultraviolet optical imaging.

    PubMed

    Lee, Onseok; Park, Sunup; Kim, Jaeyoung; Oh, Chilhwan

    2017-11-01

    The visual scoring method has been used as a subjective evaluation of pigmentary skin disorders. Severity of pigmentary skin disease, especially melasma, is evaluated using a visual scoring method, the MASI (melasma area severity index). This study differentiates between epidermal and dermal pigmented disease. The study was undertaken to determine methods to quantitatively measure the severity of pigmentary skin disorders under ultraviolet illumination. The optical imaging system consists of illumination (white LED, UV-A lamp) and image acquisition (DSLR camera, air cooling CMOS CCD camera). Each camera is equipped with a polarizing filter to remove glare. To analyze images of visible and UV light, images are divided into frontal, cheek, and chin regions of melasma patients. Each image must undergo image processing. To reduce the curvature error in facial contours, a gradient mask is used. The new method of segmentation of front and lateral facial images is more objective for face-area-measurement than the MASI score. Image analysis of darkness and homogeneity is adequate to quantify the conventional MASI score. Under visible light, active lesion margins appear in both epidermal and dermal melanin, whereas melanin is found in the epidermis under UV light. This study objectively analyzes severity of melasma and attempts to develop new methods of image analysis with ultraviolet optical imaging equipment. Based on the results of this study, our optical imaging system could be used as a valuable tool to assess the severity of pigmentary skin disease. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Nighttime highway construction illumination.

    DOT National Transportation Integrated Search

    2014-08-01

    The nighttime driving environment, consisting of roadway illumination, signs, vehicle lighting and markers, delineators : and flashing lights, can be complex or even confusing for both pedestrians and drivers. The nighttime construction : environment...

  10. Riboflavin-ultraviolet light pathogen reduction treatment does not impact the immunogenicity of murine red blood cells.

    PubMed

    Tormey, Christopher A; Santhanakrishnan, Manjula; Smith, Nicole H; Liu, Jingchun; Marschner, Susanne; Goodrich, Raymond P; Hendrickson, Jeanne E

    2016-04-01

    Ultraviolet (UV) illumination/pathogen reduction effectively inactivates white blood cells (WBCs) in whole blood. Given that cotransfused WBCs may impact recipient immune responses, we hypothesized that pathogen reduction of whole blood may alter responses to RBC antigens. Transgenic mice expressing a model (HOD) antigen, authentic human (hGPA or KEL) antigens, or natural fluorescence (uGFP) on their RBCs were utilized as blood donors. Recipients were transfused with fresh whole blood to which riboflavin had been added or fresh whole blood treated by UV illumination/pathogen reduction treatment after the addition of riboflavin. Posttransfusion RBC recovery, survival, and alloimmunization were measured by flow cytometry. UV illumination/pathogen reduction treatment did not alter RBC antigen expression, and recipients of treated syngeneic RBCs had persistently negative direct antiglobulin tests. Greater than 75% of treated and untreated syngeneic RBCs were recovered 24 hours posttransfusion in all experiments, although alterations in the long-term posttransfusion survival of treated RBCs were observed. Treated and untreated KEL RBCs induced similar recipient alloimmune responses, with all recipients making anti-KEL glycoprotein immunoglobulins (p > 0.05). Alloimmune responses to treated HOD or hGPA RBCs were no different from untreated RBCs (p > 0.05). Pathogen inactivation treatment of fresh whole murine blood with riboflavin and UV illumination does not impact the rate or magnitude of RBC alloimmunization to three distinct RBC antigens. Further, UV illumination/pathogen reduction appears safe from an immunohematologic standpoint, with no immunogenic neoantigens detected on treated murine RBCs. Future studies with fresh and stored human RBCs are warranted to confirm these findings. © 2015 AABB.

  11. Pulsed ultraviolet light reduces immunoglobulin E binding to atlantic white shrimp (litopenaeus setiferus).

    USDA-ARS?s Scientific Manuscript database

    To date, the only effective method to prevent allergic reactions to shellfish is complete avoidance; however, if processing methods could be employed to minimize shellfish allergens before products reach consumers, illness could be substantially lessened. Pulsed ultraviolet light (PUV), a novel food...

  12. Black light - How sensors filter spectral variation of the illuminant

    NASA Technical Reports Server (NTRS)

    Brainard, David H.; Wandell, Brian A.; Cowan, William B.

    1989-01-01

    Visual sensor responses may be used to classify objects on the basis of their surface reflectance functions. In a color image, the image data are represented as a vector of sensor responses at each point in the image. This vector depends both on the surface reflectance functions and on the spectral power distribution of the ambient illumination. Algorithms designed to classify objects on the basis of their surface reflectance functions typically attempt to overcome the dependence of the sensor responses on the illuminant by integrating sensor data collected from multiple surfaces. In machine vision applications, it is shown that it is often possible to design the sensor spectral responsivities so that the vector direction of the sensor responses does not depend upon the illuminant. The conditions under which this is possible are given and an illustrative calculation is performed. In biological systems, where the sensor responsivities are fixed, it is shown that some changes in the illumination cause no change in the sensor responses. Such changes in illuminant are called black illuminants. It is possible to express any illuminant as the sum of two unique components. One component is a black illuminant. The second component is called the visible component. The visible component of an illuminant completely characterizes the effect of the illuminant on the vector of sensor responses.

  13. Error correcting coding-theory for structured light illumination systems

    NASA Astrophysics Data System (ADS)

    Porras-Aguilar, Rosario; Falaggis, Konstantinos; Ramos-Garcia, Ruben

    2017-06-01

    Intensity discrete structured light illumination systems project a series of projection patterns for the estimation of the absolute fringe order using only the temporal grey-level sequence at each pixel. This work proposes the use of error-correcting codes for pixel-wise correction of measurement errors. The use of an error correcting code is advantageous in many ways: it allows reducing the effect of random intensity noise, it corrects outliners near the border of the fringe commonly present when using intensity discrete patterns, and it provides a robustness in case of severe measurement errors (even for burst errors where whole frames are lost). The latter aspect is particular interesting in environments with varying ambient light as well as in critical safety applications as e.g. monitoring of deformations of components in nuclear power plants, where a high reliability is ensured even in case of short measurement disruptions. A special form of burst errors is the so-called salt and pepper noise, which can largely be removed with error correcting codes using only the information of a given pixel. The performance of this technique is evaluated using both simulations and experiments.

  14. Nonimaging optical illumination system

    DOEpatents

    Winston, Roland; Ries, Harald

    2000-01-01

    A nonimaging illumination optical device for producing a selected far field illuminance over an angular range. The optical device includes a light source 102, a light reflecting surface 108, and a family of light edge rays defined along a reference line 104 with the reflecting surface 108 defined in terms of the reference line 104 as a parametric function R(t) where t is a scalar parameter position and R(t)=k(t)+Du(t) where k(t) is a parameterization of the reference line 104, and D is a distance from a point on the reference line 104 to the reflection surface 108 along the desired edge ray through the point.

  15. Nonimaging optical illumination system

    DOEpatents

    Winston, Roland; Ries, Harald

    1998-01-01

    A nonimaging illumination optical device for producing a selected far field illuminance over an angular range. The optical device includes a light source 102, a light reflecting surface 108, and a family of light edge rays defined along a reference line 104 with the reflecting surface 108 defined in terms of the reference line 104 as a parametric function R(t) where t is a scalar parameter position and R(t)=k(t)+Du(t) where k(t) is a parameterization of the reference line 104, and D is a distance from a point on the reference line 104 to the reflection surface 108 along the desired edge ray through the point.

  16. Nonimaging optical illumination system

    DOEpatents

    Winston, Roland; Ries, Harald

    1996-01-01

    A nonimaging illumination optical device for producing a selected far field illuminance over an angular range. The optical device includes a light source 102, a light reflecting surface 108, and a family of light edge rays defined along a reference line 104 with the reflecting surface 108 defined in terms of the reference line 104 as a parametric function R(t) where t is a scalar parameter position and R(t)=k(t)+Du(t) where k(t) is a parameterization of the reference line 104, and D is a distance from a point on the reference line 104 to the reflection surface 108 along the desired edge ray through the point.

  17. Ultraviolet Light-Assisted Copper Oxide Nanowires Hydrogen Gas Sensor.

    PubMed

    Sihar, Nabihah; Tiong, Teck Yaw; Dee, Chang Fu; Ooi, Poh Choon; Hamzah, Azrul Azlan; Mohamed, Mohd Ambri; Majlis, Burhanuddin Yeop

    2018-05-15

    We fabricated copper oxide nanowires (CuO NWs) ultraviolet (UV) light-assisted hydrogen gas sensor. The fabricated sensor shows promising sensor response behavior towards 100 ppm of H 2 at room temperature and elevated temperature at 100 °C when exposed to UV light (3.0 mW/cm 2 ). One hundred-cycle device stability test has been performed, and it is found that for sample elevated at 100 °C, the UV-activated sample achieved stability in the first cycle as compared to the sample without UV irradiation which needed about 10 cycles to achieve stability at the initial stage, whereas the sample tested at room temperature was able to stabilize with the aid of UV irradiation. This indicates that with the aid of UV light, after some "warming up" time, it is possible for the conventional CuO NW sensor which normally work at elevated temperature to function at room temperature because UV source is speculated to play a dominant role to increase the interaction of the surface of CuO NWs and hydrogen gas molecules absorbed after the light exposure.

  18. Semi-transparent all-oxide ultraviolet light-emitting diodes based on ZnO/NiO-core/shell nanowires

    NASA Astrophysics Data System (ADS)

    Shi, Zhi-Feng; Xu, Ting-Ting; Wu, Di; Zhang, Yuan-Tao; Zhang, Bao-Lin; Tian, Yong-Tao; Li, Xin-Jian; Du, Guo-Tong

    2016-05-01

    Semi-transparent all-oxide light-emitting diodes based on ZnO/NiO-core/shell nanowire structures were prepared on double-polished c-Al2O3 substrates. The entire heterojunction diode showed an average transparency of ~65% in the ultraviolet and visible regions. Under forward bias, the diode displayed an intense ultraviolet emission at ~382 nm, and its electroluminescence performance was remarkable in terms of a low emission onset, acceptable operating stability, and the ability to optically excite emissive semiconductor nanoparticle chromophores.Semi-transparent all-oxide light-emitting diodes based on ZnO/NiO-core/shell nanowire structures were prepared on double-polished c-Al2O3 substrates. The entire heterojunction diode showed an average transparency of ~65% in the ultraviolet and visible regions. Under forward bias, the diode displayed an intense ultraviolet emission at ~382 nm, and its electroluminescence performance was remarkable in terms of a low emission onset, acceptable operating stability, and the ability to optically excite emissive semiconductor nanoparticle chromophores. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07236k

  19. Quantitative phase retrieval with arbitrary pupil and illumination

    DOE PAGES

    Claus, Rene A.; Naulleau, Patrick P.; Neureuther, Andrew R.; ...

    2015-10-02

    We present a general algorithm for combining measurements taken under various illumination and imaging conditions to quantitatively extract the amplitude and phase of an object wave. The algorithm uses the weak object transfer function, which incorporates arbitrary pupil functions and partially coherent illumination. The approach is extended beyond the weak object regime using an iterative algorithm. Finally, we demonstrate the method on measurements of Extreme Ultraviolet Lithography (EUV) multilayer mask defects taken in an EUV zone plate microscope with both a standard zone plate lens and a zone plate implementing Zernike phase contrast.

  20. Dim nighttime illumination interacts with parametric effects of bright light to increase the stability of circadian rhythm bifurcation in hamsters.

    PubMed

    Evans, Jennifer A; Elliott, Jeffrey A; Gorman, Michael R

    2011-07-01

    The endogenous circadian pacemaker of mammals is synchronized to the environmental day by the ambient cycle of relative light and dark. The present studies assessed the actions of light in a novel circadian entrainment paradigm where activity rhythms are bifurcated following exposure to a 24-h light:dark:light:dark (LDLD) cycle. Bifurcated entrainment under LDLD reflects the temporal dissociation of component oscillators that comprise the circadian system and is facilitated when daily scotophases are dimly lit rather than completely dark. Although bifurcation can be stably maintained in LDLD, it is quickly reversed under constant conditions. Here the authors examine whether dim scotophase illumination acts to maintain bifurcated entrainment under LDLD through potential interactions with the parametric actions of bright light during the two daily photophases. In three experiments, wheel-running rhythms of Syrian hamsters were bifurcated under LDLD with dimly lit scotophases, and after several weeks, dim scotophase illumination was either retained or extinguished. Additionally, "full" and "skeleton" photophases were employed under LDLD cycles with dimly lit or completely dark scotophases to distinguish parametric from nonparametric effects of bright light. Rhythm bifurcation was more stable in full versus skeleton LDLD cycles. Dim light facilitated the maintenance of bifurcated entrainment under full LDLD cycles but did not prevent the loss of rhythm bifurcation in skeleton LDLD cycles. These studies indicate that parametric actions of bright light maintain the bifurcated entrainment state; that dim scotophase illumination increases the stability of the bifurcated state; and that dim light interacts with the parametric effects of bright light to increase the stability of rhythm bifurcation under full LDLD cycles. A further understanding of the novel actions of dim light may lead to new strategies for understanding, preventing, and treating chronobiological

  1. Diffuse-Illumination Systems for Growing Plants

    NASA Technical Reports Server (NTRS)

    May, George; Ryan, Robert

    2010-01-01

    Agriculture in both terrestrial and space-controlled environments relies heavily on artificial illumination for efficient photosynthesis. Plant-growth illumination systems require high photon flux in the spectral range corresponding with plant photosynthetic active radiation (PAR) (400 700 nm), high spatial uniformity to promote uniform growth, and high energy efficiency to minimize electricity usage. The proposed plant-growth system takes advantage of the highly diffuse reflective surfaces on the interior of a sphere, hemisphere, or other nearly enclosed structure that is coated with highly reflective materials. This type of surface and structure uniformly mixes discrete light sources to produce highly uniform illumination. Multiple reflections from within the domelike structures are exploited to obtain diffuse illumination, which promotes the efficient reuse of photons that have not yet been absorbed by plants. The highly reflective surfaces encourage only the plant tissue (placed inside the sphere or enclosure) to absorb the light. Discrete light sources, such as light emitting diodes (LEDs), are typically used because of their high efficiency, wavelength selection, and electronically dimmable properties. The light sources are arranged to minimize shadowing and to improve uniformity. Different wavelengths of LEDs (typically blue, green, and red) are used for photosynthesis. Wavelengths outside the PAR range can be added for plant diagnostics or for growth regulation

  2. Effects of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: a review.

    PubMed

    Sklar, Lindsay R; Almutawa, Fahad; Lim, Henry W; Hamzavi, Iltefat

    2013-01-01

    The effects of ultraviolet radiation, visible light, and infrared radiation on cutaneous erythema, immediate pigment darkening, persistent pigment darkening, and delayed tanning are affected by a variety of factors. Some of these factors include the depth of cutaneous penetration of the specific wavelength, the individual skin type, and the absorption spectra of the different chromophores in the skin. UVB is an effective spectrum to induce erythema, which is followed by delayed tanning. UVA induces immediate pigment darkening, persistent pigment darkening, and delayed tanning. At high doses, UVA (primarily UVA2) can also induce erythema in individuals with skin types I-II. Visible light has been shown to induce erythema and a tanning response in dark skin, but not in fair skinned individuals. Infrared radiation produces erythema, which is probably a thermal effect. In this article we reviewed the available literature on the effects of ultraviolet radiation, visible light, and infrared radiation on the skin in regards to erythema and pigmentation. Much remains to be learned on the cutaneous effects of visible light and infrared radiation.

  3. Light shift from ultraviolet to near infrared light: Cerenkov luminescence with gold nanocluster - near infrared (AuNc-NIR) conjugates

    NASA Astrophysics Data System (ADS)

    Yoo, Su Woong; Mun, Hyoyoung; Oh, Gyungseok; Ryu, Youngjae; Kim, Min-Gon; Chung, Euiheon

    2015-03-01

    Cerenkov luminescence (CL) is generated when a charged particle moves faster than the speed of light in dielectric media. Recently CL imaging becomes an emerging technique with the use of radioisotopes. However, due to relatively weak blue light production and massive tissue attenuation, CL has not been applied widely. Therefore, we attempted to shift the CL emission to more near infrared (NIR) spectrum for better tissue penetration by using Cerenkov Radiation Energy Transfer (CRET). Gold nanoclusters were conjugated with NIR dye molecules (AuNc-IR820 and AuNc-ICG) to be activated with ultraviolet light. We found optimal conjugate concentrations of AuNc-NIR conjugates by spectroscopy system to generate maximal photon emission. When exposed by ultraviolet light, the emission of NIR light from the conjugates were verified. In quantitative analysis, AuNc-NIR conjugates emit brighter light signal than pure AuNc. This result implies that NIR fluorescent dyes (both IR820 and ICG) can be excited by the emission from AuNc. Following the above baseline experiment, we mixed F-18 fluorodeoxyglucose (F-18 FDG) radioisotope to the AuNc- NIR conjugates, to confirm NIR emission induced from Cerenkov radiation. Long pass filter was used to block Cerenkov luminescence and to collect the emission from AuNc-NIR conjugates. Instead of one long exposure imaging with CCD, we used multiple frame scheme to eliminate gamma radiation strike in each frame prior to combination. In summary, we obtained NIR emission light from AuNc-NIR conjugated dyes that is induced from CL. We plan to perform in vivo small animal imaging with these conjugates to assess better tissue penetration.

  4. Electrical instability of InGaZnO thin-film transistors with and without titanium sub-oxide layer under light illumination

    NASA Astrophysics Data System (ADS)

    Chiu, Y. C.; Zheng, Z. W.; Cheng, C. H.; Chen, P. C.; Yen, S. S.; Fan, C. C.; Hsu, H. H.; Kao, H. L.; Chang, C. Y.

    2017-03-01

    The electrical instability behaviors of amorphous indium-gallium-zinc oxide thin-film transistors with and without titanium sub-oxide passivation layer were investigated under light illumination in this study. For the unpassivated IGZO TFT device, in contrast with the dark case, a noticeable increase of the sub-threshold swing was observed when under the illumination environment, which can be attributed to the generation of ionized oxygen vacancies within the α-IGZO active layer by high energy photons. For the passivated TFT device, the much smaller SS of 70 mV/dec and high device mobility of >100 cm2/Vs at a drive voltage of 3 V with negligible degradation under light illumination are achieved due to the passivation effect of n-type titanium sub-oxide semiconductor, which may create potential application for high-performance display.

  5. 29 CFR 1918.92 - Illumination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operations, illumination for cargo transfer operations shall be of a minimum light intensity of five foot-candles (54 lux). Where work tasks require more light to be performed safely, supplemental lighting shall... surface, in the plane in which the task/working surface is present. (c) Arrangement of lights. Lights...

  6. Finite element modeling of light propagation in turbid media under illumination of a continuous-wave beam

    USDA-ARS?s Scientific Manuscript database

    Spatially-resolved spectroscopy provides a means for measuring the optical properties of biological tissues, based on analytical solutions to diffusion approximation for semi-infinite media under the normal illumination of infinitely small size light beam. The method is, however, prone to error in m...

  7. Xenon lighting adjusted to plant requirements

    NASA Technical Reports Server (NTRS)

    Koefferlein, M.; Doehring, T.; Payer, Hans D.; Seidlitz, H. K.

    1994-01-01

    Xenon lamps are available as low and high power lamps with relatively high efficiency and a relatively long lifetime up to several thousand hours. Different construction types of short-arc and long-arc lamps permit a good adaptation to various applications in projection and illumination techniques without substantial changes of the spectral quality. Hence, the xenon lamp was the best choice for professional technical purposes where high power at simultaneously good spectral quality of the light was required. However, technical development does not stand still. Between the luminous efficacy of xenon lamps of 25-50 lm/W and the theoretical limit for 'white light' of 250 lm/W is still much room for improvement. The present development mainly favors other lamp types, like metal halide lamps and fluorescent lamps for commercial lighting purposes. The enclosed sections deal with some of the properties of xenon lamps relevant to plant illumination; particularly the spectral aspects, the temporal characteristics of the emission, and finally the economy of xenon lamps will be addressed. Due to radiation exceeding the natural global radiation in both the ultraviolet (UV) and the infrared (IR) regions, filter techniques have to be included into the discussion referring to the requirements of plant illumination. Most of the presented results were obtained by investigations in the GSF phytotron or in the closed Phytocell chambers of the University of Erlangen. As our experiences are restricted to area plant illumination rather than spot lights our discussion will concentrate on low pressure long-arc xenon lamps which are commonly used for such plant illuminations. As the spectral properties of short-arc lamps do not differ much from those of long-arc lamps most of our conclusions will be valid for high pressure xenon lamps too. These lamps often serve as light sources for small sun simulators and for monochromators which are used for action spectroscopy of plant responses.

  8. Deep ultraviolet semiconductor light sources for sensing and security

    NASA Astrophysics Data System (ADS)

    Shatalov, Max; Bilenko, Yuri; Yang, Jinwei; Gaska, Remis

    2009-09-01

    III-Nitride based deep ultraviolet (DUV) light emitting diodes (LEDs) rapidly penetrate into sensing market owing to several advantages over traditional UV sources (i.e. mercury, xenon and deuterium lamps). Small size, a wide choice of peak emission wavelengths, lower power consumption and reduced cost offer flexibility to system integrators. Short emission wavelength offer advantages for gas detection and optical sensing systems based on UV induced fluorescence. Large modulation bandwidth for these devices makes them attractive for frequency-domain spectroscopy. We will review present status of DUV LED technology and discuss recent advances in short wavelength emitters and high power LED lamps.

  9. High-nitrogen-based pyrotechnics: longer- and brighter-burning, perchlorate-free, red-light illuminants for military and civilian applications.

    PubMed

    Sabatini, Jesse J; Nagori, Amita V; Chen, Gary; Chu, Phillip; Damavarapu, Reddy; Klapötke, Thomas M

    2012-01-09

    The full-up prototype testing of perchlorate-free, hand-held, signal illuminants for the US Army's M126A1 red star parachute hand-held signal is described. Compared to the perchlorate-containing control, the disclosed illuminants yielded excellent stabilities toward various ignition stimuli while offering superior pyrotechnic performance. Militarily, the illuminants provided further evidence that development of smaller hand-held signal items in an environmentally conscious way is a realistic and obtainable goal. The results are also important from the perspective of civilian fireworks, as the development of brighter, longer-burning, and environmentally compatible red-light-emitting pyrotechnics is now possible. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A novel CD4-conjugated ultraviolet light-activated photocatalyst inactivates HIV-1 and SIV efficiently.

    PubMed

    Yamaguchi, Koushi; Sugiyama, Takahiro; Kato, Shinji; Kondo, Yoichi; Ageyama, Naohide; Kanekiyo, Masaru; Iwata, Misao; Koyanagi, Yoshio; Yamamoto, Naoki; Honda, Mitsuo

    2008-08-01

    In this study, we found that the electric potential derived from the redox reaction of ultraviolet (UV)-illuminated CD4-conjugated titanium dioxide (TiO2) inactivated a wide range of high-titered primary HIV-1 isolates, regardless of virus co-receptor usage or genetic clade. In vitro incubation of HIV-1 isolates with CD4-conjugated TiO2 (CD4-TiO2) followed by UV illumination led to inhibition of viral infectivity in both H9 cells and peripheral blood mononuclear cells as well as to the complete inactivation of plasma virions from HIV-1-infected individuals. Treatment with a newly established extra-corporeal circulation system with the photocatalyst in rhesus macaques completely inactivated plasma virus in the system and effectively reduced the infectious plasma viral load. Furthermore, plasma viremia and infectious viral loads were controlled following a second therapeutic photocatalyst treatment during primary SIV(mac239) infection of macaques. Our findings suggest that this therapeutic immunophysical strategy may help control human immunodeficiency viral infection in vivo.

  11. Optical Microfiber Technology for Current, Temperature, Acceleration, Acoustic, Humidity and Ultraviolet Light Sensing

    PubMed Central

    Lancaster, David G.; Monro, Tanya M.

    2017-01-01

    Optical microfibers possess excellent optical and mechanical properties that have been exploited for sensing. We highlight the authors’ recent work in the areas of current, temperature, acceleration, acoustic, humidity and ultraviolet-light sensing based on this exquisite technology, and the advantages and challenges of using optical microfibers are discussed. PMID:29283414

  12. Predicting Ground Illuminance

    NASA Astrophysics Data System (ADS)

    Lesniak, Michael V.

    2014-01-01

    Our Sun outputs 3.85 × 1026 W of radiation, of which ≈37% is in the visible band. It is directly responsible for nearly all natural illuminance experienced on Earth's surface, either in the form of direct/refracted sunlight or in reflected light bouncing off the surfaces and/or atmospheres of our Moon and the visible planets. Ground illuminance, defined as the amount of visible light intercepting a unit area of surface (from all incident angles), varies over 7 orders of magnitude from day to night. It is highly dependent on well-modeled factors such as the relative positions of the Sun, Earth, and Moon. It is also dependent on less predictable factors such as local atmospheric conditions and weather. Several models have been proposed to predict ground illuminance, including Brown (1952) and Shapiro (1982, 1987). The Brown model is a set of empirical data collected from observation points around the world that has been reduced to a smooth fit of illuminance against a single variable, solar altitude. It provides limited applicability to the Moon and for cloudy conditions via multiplicative reduction factors. The Shapiro model is a theoretical model that treats the atmosphere as a three layer system of light reflectance and transmittance. It has different sets of reflectance and transmittance coefficients for various cloud types. Ground illuminance data from an observing run at the White Sands missile range were obtained from the United Kingdom Meteorology Office. Based on available weather reports, five days of clear sky observations were selected. These data are compared to the predictions of the two models. We find that neither of the models provide an accurate treatment during twilight conditions when the Sun is at or a few degrees below the horizon. When the Sun is above the horizon, the Shapiro model straddles the observed data, ranging between 90% and 120% of the recorded illuminance. During the same times, the Brown model is between 70% and 90% of the

  13. Uniformity of LED light illumination in application to direct imaging lithography

    NASA Astrophysics Data System (ADS)

    Huang, Ting-Ming; Chang, Shenq-Tsong; Tsay, Ho-Lin; Hsu, Ming-Ying; Chen, Fong-Zhi

    2016-09-01

    Direct imaging has widely applied in lithography for a long time because of its simplicity and easy-maintenance. Although this method has limitation of lithography resolution, it is still adopted in industries. Uniformity of UV irradiance for a designed area is an important requirement. While mercury lamps were used as the light source in the early stage, LEDs have drawn a lot of attention for consideration from several aspects. Although LED has better and better performance, arrays of LEDs are required to obtain desired irradiance because of limitation of brightness for a single LED. Several effects are considered that affect the uniformity of UV irradiance such as alignment of optics, temperature of each LED, performance of each LED due to production uniformity, and pointing of LED module. Effects of these factors are considered to study the uniformity of LED Light Illumination. Numerical analysis is performed by assuming a serious of control factors to have a better understanding of each factor.

  14. Interactive Dynamic Volume Illumination with Refraction and Caustics.

    PubMed

    Magnus, Jens G; Bruckner, Stefan

    2018-01-01

    In recent years, significant progress has been made in developing high-quality interactive methods for realistic volume illumination. However, refraction - despite being an important aspect of light propagation in participating media - has so far only received little attention. In this paper, we present a novel approach for refractive volume illumination including caustics capable of interactive frame rates. By interleaving light and viewing ray propagation, our technique avoids memory-intensive storage of illumination information and does not require any precomputation. It is fully dynamic and all parameters such as light position and transfer function can be modified interactively without a performance penalty.

  15. Micromilled optical elements for edge-lit illumination panels

    NASA Astrophysics Data System (ADS)

    Ronny, Rahima Afrose; Knopf, George K.; Bordatchev, Evgueni; Nikumb, Suwas

    2013-04-01

    Edge-lit light guide panels (LGPs) with micropatterned surfaces represent a new technology for developing small- and medium-sized illumination sources for application such as automotive, residential lighting, and advertising displays. The shape, density, and spatial distribution of the micro-optical structures (MOSs) imprinted on the transparent LGP must be selected to achieve high brightness and uniform luminance over the active surface. We examine how round-tip cylindrical MOSs fabricated by precision micromilling can be used to create patterned surfaces on low-cost transparent polymethyl-methacrylate substrates for high-intensity illumination applications. The impact of varying the number, pitch, spatial distribution, and depth of the optical microstructures on lighting performance is initially investigated using LightTools™ simulation software. To illustrate the microfabrication process, several 100×100×6 mm3 LGP prototypes are constructed and tested. The prototypes include an "optimized" array of MOSs that exhibit near-uniform illumination (approximately 89%) across its active light-emitting surface. Although the average illumination was 7.3% less than the value predicted from numerical simulation, it demonstrates how LGPs can be created using micromilling operations. Customized MOS arrays with a bright rectangular pattern near the center of the panel and a sequence of MOSs that illuminate a predefined logo are also presented.

  16. Disinfection of swine wastewater using chlorine, ultraviolet light and ozone.

    PubMed

    Macauley, John J; Qiang, Zhimin; Adams, Craig D; Surampalli, Rao; Mormile, Melanie R

    2006-06-01

    Veterinary antibiotics are widely used at concentrated animal feeding operations (CAFOs) to prevent disease and promote growth of livestock. However, the majority of antibiotics are excreted from animals in urine, feces, and manure. Consequently, the lagoons used to store these wastes can act as reservoirs of antibiotics and antibiotic-resistant bacteria. There is currently no regulation or control of these systems to prevent the spread of these bacteria and their genes for antibiotic resistance into other environments. This study was conducted to determine the disinfection potential of chlorine, ultraviolet light and ozone against swine lagoon bacteria. Results indicate that a chlorine dose of 30 mg/L could achieve a 2.2-3.4 log bacteria reduction in lagoon samples. However, increasing the dose of chlorine did not significantly enhance the disinfection activity due to the presence of chlorine-resistant bacteria. The chlorine resistant bacteria were identified to be closely related to Bacillus subtilis and Bacillus licheniformis. A significant percentage of lagoon bacteria were not susceptible to the four selected antibiotics: chlortetracycline, lincomycin, sulfamethazine and tetracycline (TET). However, the presence of both chlorine and TET could inactivate all bacteria in one lagoon sample. The disinfection potential of UV irradiation and ozone was also examined. Ultraviolet light was an effective bacterial disinfectant, but was unlikely to be economically viable due to its high energy requirements. At an ozone dose of 100 mg/L, the bacteria inactivation efficiency could reach 3.3-3.9 log.

  17. Ultraviolet light exposure, skin cancer risk and vitamin D production.

    PubMed

    Rivas, Miguel; Rojas, Elisa; Araya, María C; Calaf, Gloria M

    2015-10-01

    The danger of overexposure to solar ultraviolet radiation has been widely reviewed since the 1980s due to the depletion of the ozone layer. However, the benefits of mild exposure of the skin to ultraviolet (UV) light have not been widely investigated. Numerous reports have demonstrated that an association exists between low light exposure to the sun, non-melanoma skin cancer and a lack of vitamin D synthesis. As vitamin D synthesis in the body depends on skin exposure to UVB radiation from the sun (wavelength, 290-320 nm), experimental measurements for this type of solar radiation are important. The present study analyzed data obtained from a laboratory investigating UV radiation from the sun at the University of Tarapacá (Arica, Chile), where systematic experimental UVB measurements had been performed using a calibrated biometer instrument since 2006. These data were compared with skin cancer data from the local population. The results demonstrated that the incidence of skin cancer systematically increased from 7.4 to 18.7 in men and from 10.0 to 21.7 in women between 2000 and 2006 in Arica, respectively; this increase may be due to multiple factors, including the lack of adequate levels of vitamin D in risk groups such as post-menopausal women and senior age. This marked increase may also be due to the high levels of UV radiation measured in this region throughout the year. However, it is not certain that the local population has adequate vitamin D levels, nor that their skin has been predominantly exposed to artificial light that does not allow adequate vitamin D synthesis. Thus, the current study presents the association between skin type IV, the time to induce solar erythema and the time required to produce 1,000 international units of vitamin D.

  18. Ultraviolet light exposure, skin cancer risk and vitamin D production

    PubMed Central

    RIVAS, MIGUEL; ROJAS, ELISA; ARAYA, MARÍA C.; CALAF, GLORIA M.

    2015-01-01

    The danger of overexposure to solar ultraviolet radiation has been widely reviewed since the 1980s due to the depletion of the ozone layer. However, the benefits of mild exposure of the skin to ultraviolet (UV) light have not been widely investigated. Numerous reports have demonstrated that an association exists between low light exposure to the sun, non-melanoma skin cancer and a lack of vitamin D synthesis. As vitamin D synthesis in the body depends on skin exposure to UVB radiation from the sun (wavelength, 290–320 nm), experimental measurements for this type of solar radiation are important. The present study analyzed data obtained from a laboratory investigating UV radiation from the sun at the University of Tarapacá (Arica, Chile), where systematic experimental UVB measurements had been performed using a calibrated biometer instrument since 2006. These data were compared with skin cancer data from the local population. The results demonstrated that the incidence of skin cancer systematically increased from 7.4 to 18.7 in men and from 10.0 to 21.7 in women between 2000 and 2006 in Arica, respectively; this increase may be due to multiple factors, including the lack of adequate levels of vitamin D in risk groups such as post-menopausal women and senior age. This marked increase may also be due to the high levels of UV radiation measured in this region throughout the year. However, it is not certain that the local population has adequate vitamin D levels, nor that their skin has been predominantly exposed to artificial light that does not allow adequate vitamin D synthesis. Thus, the current study presents the association between skin type IV, the time to induce solar erythema and the time required to produce 1,000 international units of vitamin D. PMID:26622830

  19. 21 CFR 892.1890 - Radiographic film illuminator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radiographic film illuminator. 892.1890 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1890 Radiographic film illuminator. (a) Identification. A radiographic film illuminator is a device containing a visible light source covered with a...

  20. 21 CFR 892.1890 - Radiographic film illuminator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radiographic film illuminator. 892.1890 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1890 Radiographic film illuminator. (a) Identification. A radiographic film illuminator is a device containing a visible light source covered with a...

  1. 21 CFR 892.1890 - Radiographic film illuminator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radiographic film illuminator. 892.1890 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1890 Radiographic film illuminator. (a) Identification. A radiographic film illuminator is a device containing a visible light source covered with a...

  2. 21 CFR 892.1890 - Radiographic film illuminator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radiographic film illuminator. 892.1890 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1890 Radiographic film illuminator. (a) Identification. A radiographic film illuminator is a device containing a visible light source covered with a...

  3. 21 CFR 892.1890 - Radiographic film illuminator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiographic film illuminator. 892.1890 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1890 Radiographic film illuminator. (a) Identification. A radiographic film illuminator is a device containing a visible light source covered with a...

  4. Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination

    PubMed Central

    Ambrosio, Antonio; Marrucci, Lorenzo; Borbone, Fabio; Roviello, Antonio; Maddalena, Pasqualino

    2012-01-01

    When an azobenzene-containing polymer film is exposed to non-uniform illumination, a light-induced mass migration process may be induced, leading to the formation of relief patterns on the polymer-free surface. Despite many years of research effort, several aspects of this phenomenon remain poorly understood. Here we report the appearance of spiral-shaped relief patterns on the polymer film under the illumination of focused Laguerre–Gauss beams with helical wavefronts and an optical vortex at their axis. The induced spiral reliefs are sensitive to the vortex topological charge and to the wavefront handedness. These findings are unexpected because the doughnut-shaped intensity profile of Laguerre–Gauss beams contains no information about the wavefront handedness. We propose a model that explains the main features of this phenomenon through the surface-mediated interference of the longitudinal and transverse components of the optical field. These results may find applications in optical nanolithography and optical-field nanoimaging. PMID:22871808

  5. Investigation of Ultraviolet Light Curable Polysilsesquioxane Gate Dielectric Layers for Pentacene Thin Film Transistors.

    PubMed

    Shibao, Hideto; Nakahara, Yoshio; Uno, Kazuyuki; Tanaka, Ichiro

    2016-04-01

    Polysilsesquioxane (PSQ) comprising 3-methacryloxypropyl groups was investigated as an ultraviolet (UV)-light curable gate dielectric-material for pentacene thin film transistors (TFTs). The surface of UV-light cured PSQ films was smoother than that of thermally cured ones, and the pentacene layers deposited on the UV-Iight cured PSQ films consisted of larger grains. However, carrier mobility of the TFTs using the UV-light cured PSQ films was lower than that of the TFTs using the thermally cured ones. It was shown that the cross-linker molecules, which were only added to the UV-light cured PSQ films, worked as a major mobility-limiting factor for the TFTs.

  6. OLED area illumination source

    DOEpatents

    Foust, Donald Franklin [Scotia, NY; Duggal, Anil Raj [Niskayuna, NY; Shiang, Joseph John [Niskayuna, NY; Nealon, William Francis [Gloversville, NY; Bortscheller, Jacob Charles [Clifton Park, NY

    2008-03-25

    The present invention relates to an area illumination light source comprising a plurality of individual OLED panels. The individual OLED panels are configured in a physically modular fashion. Each OLED panel comprising a plurality of OLED devices. Each OLED panel comprises a first electrode and a second electrode such that the power being supplied to each individual OLED panel may be varied independently. A power supply unit capable of delivering varying levels of voltage simultaneously to the first and second electrodes of each of the individual OLED panels is also provided. The area illumination light source also comprises a mount within which the OLED panels are arrayed.

  7. Effects of ultraviolet light on Hymenolepis diminuta ova and cysticercoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGavock, W.D.; Howard, K.E.

    The ova and cysticercoids of Hymenolepis diminuta were exposed to a 2537 A wave length of ultraviolet light for various time periods. Development was extremely impaired in the cysts which had been irradiated for 30 and 60 minutes. When these were administered to the final host no tapeworms developed. From 113 intermediate host beetle larvae fed with irradiated ova, only three cysticercoids were recovered. Development was impaired in both cases and the infective rate of irradiated ova and cysts of the least exposed groups was lower than that of the controls.

  8. Easier detection of invertebrate "identification-key characters" with light of different wavelengths

    PubMed Central

    2011-01-01

    The marine α-taxonomist often encounters two problems. Firstly, the "environmental dirt" that is frequently present on the specimens and secondly the difficulty in distinguishing key-features due to the uniform colours which fixed animals often adopt. Here we show that illuminating animals with deep-blue or ultraviolet light instead of the normal white-light abrogates both difficulties; dirt disappears and important details become clearly visible. This light regime has also two other advantages. It allows easy detection of very small, normally invisible, animals (0.1 μm range). And as these light wavelengths can induce fluorescence, new identification markers may be discovered by this approach. PMID:22040277

  9. Geometry of illumination, luminance contrast, and gloss perception.

    PubMed

    Leloup, Frédéric B; Pointer, Michael R; Dutré, Philip; Hanselaer, Peter

    2010-09-01

    The influence of both the geometry of illumination and luminance contrast on gloss perception has been examined using the method of paired comparison. Six achromatic glass samples having different lightness were illuminated by two light sources. Only one of these light sources was visible in reflection by the observer. By separate adjustment of the intensity of both light sources, the luminance of both the reflected image and the adjacent off-specular surroundings could be individually varied. It was found that visual gloss appraisal did not correlate with instrumentally measured specular gloss; however, psychometric contrast seemed to be a much better correlate. It has become clear that not only the sample surface characteristics determine gloss perception: the illumination geometry could be an even more important factor.

  10. Application of ultraviolet-C light on oranges for the inactivation of postharvest wound pathogens

    USDA-ARS?s Scientific Manuscript database

    Germicidal effects of ultraviolet-C (UV-C) light on the postharvest wound pathogens of citrus fruits namely Penicillium digitatum and Penicillium italicum were investigated. P. digitatum and P. italicum spores were inoculated (4.00 – 4.50 log cfu/ orange) onto Washington navel oranges (Citrus sinens...

  11. Modeling Indications of Technology in Planetary Transit Light Curves-Dark-side Illumination

    NASA Astrophysics Data System (ADS)

    Korpela, Eric J.; Sallmen, Shauna M.; Leystra Greene, Diana

    2015-08-01

    We analyze potential effects of an extraterrestrial civilization’s use of orbiting mirrors to illuminate the dark side of a synchronously rotating planet on planetary transit light curves. Previous efforts to detect civilizations based on side effects of planetary-scale engineering have focused on structures affecting the host star output (e.g., Dyson spheres). However, younger civilizations are likely to be less advanced in their engineering efforts, yet still capable of sending small spacecraft into orbit. Since M dwarfs are the most common type of star in the solar neighborhood, it seems plausible that many of the nearest habitable planets orbit dim, low-mass M stars, and will be in synchronous rotation. Logically, a civilization evolving on such a planet may be inspired to illuminate their planet’s dark side by placing a single large mirror at the L2 Lagrangian point, or launching a fleet of small thin mirrors into planetary orbit. We briefly examine the requirements and engineering challenges of such a collection of orbiting mirrors, then explore their impact on transit light curves. We incorporate stellar limb darkening and model a simplistic mirror fleet’s effects for transits of Earth-like (R = 0.5 to 2 {R}{Earth}) planets which would be synchronously rotating for orbits within the habitable zone of their host star. Although such an installation is undetectable in Kepler data, the James Webb Space Telescope will provide the sensitivity necessary to detect a fleet of mirrors orbiting Earth-like habitable planets around nearby stars.

  12. Increased visible-light photocatalytic activity of TiO2 via band gap manipulation

    NASA Astrophysics Data System (ADS)

    Pennington, Ashley Marie

    Hydrogen gas is a clean burning fuel that has potential applications in stationary and mobile power generation and energy storage, but is commercially produced from non-renewable fossil natural gas. Using renewable biomass as the hydrocarbon feed instead could provide sustainable and carbon-neutral hydrogen. We focus on photocatalytic oxidation and reforming of methanol over modified titanium dioxide (TiO2) nanoparticles to produce hydrogen gas. Methanol is used as a model for biomass sugars. By using a photocatalyst, we aim to circumvent the high energy cost of carrying out endothermic reactions at commercial scale. TiO2 is a semiconductor metal oxide of particular interest in photocatalysis due to its photoactivity under ultraviolet illumination and its stability under catalytic reaction conditions. However, TiO2 primarily absorbs ultraviolet light, with little absorption of visible light. While an effective band gap for absorbance of photons from visible light is 1.7 eV, TiO2 polymorphs rutile and anatase, have band gaps of 3.03 eV and 3.20 eV respectively, which indicate ultraviolet light. As most of incident solar radiation is visible light, we hypothesize that decreasing the band gap of TiO2 will increase the efficiency of TiO2 as a visible-light active photocatalyst. We propose to modify the band gap of TiO2 by manipulating the catalyst structure and composition via metal nanoparticle deposition and heteroatom doping in order to more efficiently utilize solar radiation. Of the metal-modified Degussa P25 TiO2 samples (P25), the copper and nickel modified samples, 1%Cu/P25 and 1%Ni/P25 yielded the lowest band gap of 3.05 eV each. A difference of 0.22 eV from the unmodified P25. Under visible light illumination 1%Ni/P25 and 1%Pt/P25 had the highest conversion of methanol of 9.9% and 9.6%, respectively.

  13. On-chip ultraviolet holography for high-throughput nanoparticle and biomolecule detection

    NASA Astrophysics Data System (ADS)

    Daloglu, Mustafa Ugur; Ray, Aniruddha; Gorocs, Zoltán.; Xiong, Matthew; Malik, Ravinder; Bitan, Gal; McLeod, Euan; Ozcan, Aydogan

    2018-02-01

    Nanoparticle and biomolecule imaging has become an important need for various applications. In an effort to find a higher throughput alternative to existing devices, we have designed a lensfree on-chip holographic imaging platform operating at an ultraviolet (UV) wavelength of 266 nm. With a custom-designed free-space light delivery system to illuminate the sample that is placed very close (<0.5 mm) to an opto-electronic image sensor chip, without any imaging lenses in between, the full active area of the imager chip (>16 mm2 ) was utilized as the imaging field-of-view (FOV) capturing holographic signatures of target objects on a chip. These holograms were then digitally back propagated to extract both the amplitude and phase information of the sample. The increased forward scattering from nanoparticles due to this shorter illumination wavelength has enabled us to image individual particles that are smaller than 30 nm over an FOV of >16 mm2 . Our platform was further utilized in high-contrast imaging of nanoscopic biomolecule aggregates since 266 nm illumination light is strongly absorbed by biomolecules including proteins and nucleic acids. Aggregates of Cu/Zn-superoxide dismutase (SOD1), which has been linked to a fatal neurodegenerative disease, ALS (amyotrophic lateral sclerosis), have been imaged with significantly improved contrast compared to imaging at visible wavelengths. This unique UV imaging modality could be valuable for biomedical applications (e.g., viral load measurements) and environmental monitoring including air and water quality monitoring.

  14. Nonimaging Optical Illumination System

    DOEpatents

    Winston, Roland

    1994-08-02

    A nonimaging illumination optical device for producing selected intensity output over an angular range. The device includes a light reflecting surface (24, 26) around a light source (22) which is disposed opposite the aperture opening of the light reflecting surface (24, 26). The light source (22) has a characteristic dimension which is small relative to one or more of the distance from the light source (22) to the light reflecting surface (24, 26) or the angle subtended by the light source (22) at the light reflecting surface (24, 26).

  15. Macular photostress and visual experience between microscope and intracameral illumination during cataract surgery.

    PubMed

    Seo, Hyejin; Nam, Dong Heun; Lee, Jong Yeon; Park, Su Jin; Kim, Yu Jeong; Kim, Seong-Woo; Chung, Tae-Young; Inoue, Makoto; Kim, Terry

    2018-02-01

    To evaluate macular photostress and visual experience between coaxial microscope illumination versus oblique intracameral illumination during cataract surgery. Gachon University Gil Hospital, Incheon, South Korea. Prospective case series. Consecutive patients who had cataract surgery using microscope illumination and intracameral illumination were included. The patients were asked to complete a questionnaire (seeing strong lights, feeling photophobia, feeling startled (fright) when seeing lights, seeing any colors, seeing any instruments or surgical procedures, and estimating intraoperative visual function) designed to describe their cataract surgery experience. The images projected on the retina of the model eye (rear view) with artificial opaque fragments in the anterior chamber during simulating cataract surgery were compared between the 2 illumination types. Sixty patients completed the questionnaire. Scores for strong lights, photophobia, fright, and color perception were significantly higher with microscope illumination than with intracameral illumination (all P < .001). More patients preferred the intracameral illumination (45 [75.0%]) to the microscope illumination (13 [21.7%]). In the rear-view images created in a model eye, only the bright microscope light in the center was seen without any lens image in the microscope illumination. However, in the intracameral illumination, the less bright light from the light pipe in the periphery and the lens fragments were seen more clearly. In a view of the patients' visual experience, oblique intracameral illumination caused less subjective photostress and was preferred over coaxial microscope illumination. Objective findings from the model-eye experiment correlated to the result of visual experience. Copyright © 2018 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  16. Optical design applications for enhanced illumination performance

    NASA Astrophysics Data System (ADS)

    Gilray, Carl; Lewin, Ian

    1995-08-01

    Nonimaging optical design techniques have been applied in the illumination industry for many years. Recently however, powerful software has been developed which allows accurate simulation and optimization of illumination devices. Wide experience has been obtained in using such design techniques for practical situations. These include automotive lighting where safety is of greatest importance, commercial lighting systems designed for energy efficiency, and numerous specialized applications. This presentation will discuss the performance requirements of a variety of illumination devices. It will further cover design methodology and present a variety of examples of practical applications for enhanced system performance.

  17. Open LED Illuminator: A Simple and Inexpensive LED Illuminator for Fast Multicolor Particle Tracking in Neurons

    PubMed Central

    Bosse, Jens B.; Tanneti, Nikhila S.; Hogue, Ian B.; Enquist, Lynn W.

    2015-01-01

    Dual-color live cell fluorescence microscopy of fast intracellular trafficking processes, such as axonal transport, requires rapid switching of illumination channels. Typical broad-spectrum sources necessitate the use of mechanical filter switching, which introduces delays between acquisition of different fluorescence channels, impeding the interpretation and quantification of highly dynamic processes. Light Emitting Diodes (LEDs), however, allow modulation of excitation light in microseconds. Here we provide a step-by-step protocol to enable any scientist to build a research-grade LED illuminator for live cell microscopy, even without prior experience with electronics or optics. We quantify and compare components, discuss our design considerations, and demonstrate the performance of our LED illuminator by imaging axonal transport of herpes virus particles with high temporal resolution. PMID:26600461

  18. Light trapping for emission from a photovoltaic cell under normally incident monochromatic illumination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeda, Yasuhiko, E-mail: takeda@mosk.tytlabs.co.jp; Iizuka, Hideo; Mizuno, Shintaro

    2014-09-28

    We have theoretically demonstrated a new light-trapping mechanism to reduce emission from a photovoltaic (PV) cell used for a monochromatic light source, which improves limiting conversion efficiency determined by the detailed balance. A multilayered bandpass filter formed on the surface of a PV cell has been found to prevent the light generated inside by radiative recombination from escaping the cell, resulting in a remarkable decrease of the effective solid angle for the emission. We have clarified a guide to design a suitable configuration of the bandpass filter and achieved significant reduction of the emission. The resultant gain in monochromatic conversionmore » efficiency in the radiative limit due to the optimally designed 18-layerd bandpass filters is as high as 6% under normally incident 1064 nm illumination of 10 mW/cm²~ 1 kW/cm², compared with the efficiency for the perfect anti-reflection treatment to the surface of a conventional solar cell.« less

  19. Dual-foci detection in photoacoustic computed tomography with coplanar light illumination and acoustic detection: a phantom study.

    PubMed

    Lin, Xiangwei; Liu, Chengbo; Meng, Jing; Gong, Xiaojing; Lin, Riqiang; Sun, Mingjian; Song, Liang

    2018-05-01

    A dual-foci transducer with coplanar light illumination and acoustic detection was applied for the first time. It overcame the small directivity angle, low-sensitivity, and large datasets in conventional circular scanning or array-based photoacoustic computed tomography (PACT). The custom-designed transducer is focused on both the scanning plane with virtual-point detection and the elevation direction for large field of view (FOV) cross-sectional imaging. Moreover, a coplanar light illumination and acoustic detection configuration can provide ring-shaped light irradiation with highly efficient acoustic detection, which in principle has a better adaptability when imaging samples of irregular surfaces. Phantom experiments showed that our PACT system can achieve high resolution (∼0.5  mm), enhanced signal-to-noise ratio (16-dB improvement), and a more complete structure in a greater FOV with an equal number of sampling points compared with the results from a flat aperture transducer. This study provides the proof of concept for the fabrication of a sparse array with the dual-foci property and large aperture size for high-quality, low-cost, and high-speed photoacoustic imaging. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  20. Large Volume, Behaviorally-relevant Illumination for Optogenetics in Non-human Primates.

    PubMed

    Acker, Leah C; Pino, Erica N; Boyden, Edward S; Desimone, Robert

    2017-10-03

    This protocol describes a large-volume illuminator, which was developed for optogenetic manipulations in the non-human primate brain. The illuminator is a modified plastic optical fiber with etched tip, such that the light emitting surface area is > 100x that of a conventional fiber. In addition to describing the construction of the large-volume illuminator, this protocol details the quality-control calibration used to ensure even light distribution. Further, this protocol describes techniques for inserting and removing the large volume illuminator. Both superficial and deep structures may be illuminated. This large volume illuminator does not need to be physically coupled to an electrode, and because the illuminator is made of plastic, not glass, it will simply bend in circumstances when traditional optical fibers would shatter. Because this illuminator delivers light over behaviorally-relevant tissue volumes (≈ 10 mm 3 ) with no greater penetration damage than a conventional optical fiber, it facilitates behavioral studies using optogenetics in non-human primates.

  1. EML1 (CNG-Modulin) Controls Light Sensitivity in Darkness and under Continuous Illumination in Zebrafish Retinal Cone Photoreceptors

    PubMed Central

    Mehta, Milap; Tserentsoodol, Nomingerel; Postlethwait, John H.; Rebrik, Tatiana I.

    2013-01-01

    The ligand sensitivity of cGMP-gated (CNG) ion channels in cone photoreceptors is modulated by CNG-modulin, a Ca2+-binding protein. We investigated the functional role of CNG-modulin in phototransduction in vivo in morpholino-mediated gene knockdown zebrafish. Through comparative genomic analysis, we identified the orthologue gene of CNG-modulin in zebrafish, eml1, an ancient gene present in the genome of all vertebrates sequenced to date. We compare the photoresponses of wild-type cones with those of cones that do not express the EML1 protein. In the absence of EML1, dark-adapted cones are ∼5.3-fold more light sensitive than wild-type cones. Previous qualitative studies in several nonmammalian species have shown that immediately after the onset of continuous illumination, cones are less light sensitive than in darkness, but sensitivity then recovers over the following 15–20 s. We characterize light sensitivity recovery in continuously illuminated wild-type zebrafish cones and demonstrate that sensitivity recovery does not occur in the absence of EML1. PMID:24198367

  2. EML1 (CNG-modulin) controls light sensitivity in darkness and under continuous illumination in zebrafish retinal cone photoreceptors.

    PubMed

    Korenbrot, Juan I; Mehta, Milap; Tserentsoodol, Nomingerel; Postlethwait, John H; Rebrik, Tatiana I

    2013-11-06

    The ligand sensitivity of cGMP-gated (CNG) ion channels in cone photoreceptors is modulated by CNG-modulin, a Ca(2+)-binding protein. We investigated the functional role of CNG-modulin in phototransduction in vivo in morpholino-mediated gene knockdown zebrafish. Through comparative genomic analysis, we identified the orthologue gene of CNG-modulin in zebrafish, eml1, an ancient gene present in the genome of all vertebrates sequenced to date. We compare the photoresponses of wild-type cones with those of cones that do not express the EML1 protein. In the absence of EML1, dark-adapted cones are ∼5.3-fold more light sensitive than wild-type cones. Previous qualitative studies in several nonmammalian species have shown that immediately after the onset of continuous illumination, cones are less light sensitive than in darkness, but sensitivity then recovers over the following 15-20 s. We characterize light sensitivity recovery in continuously illuminated wild-type zebrafish cones and demonstrate that sensitivity recovery does not occur in the absence of EML1.

  3. Tolerancing a lens for LED uniform illumination

    NASA Astrophysics Data System (ADS)

    Ryu, Jieun; Sasian, Jose

    2017-08-01

    A method to evaluate tolerance sensitivities for lenses used to produce uniform illumination is presented. Closed form surfaces are used to define optical surfaces and relative illumination is calculated from light etendue considerations.

  4. Cellular imaging of deep organ using two-photon Bessel light-sheet nonlinear structured illumination microscopy

    PubMed Central

    Zhao, Ming; Zhang, Han; Li, Yu; Ashok, Amit; Liang, Rongguang; Zhou, Weibin; Peng, Leilei

    2014-01-01

    In vivo fluorescent cellular imaging of deep internal organs is highly challenging, because the excitation needs to penetrate through strong scattering tissue and the emission signal is degraded significantly by photon diffusion induced by tissue-scattering. We report that by combining two-photon Bessel light-sheet microscopy with nonlinear structured illumination microscopy (SIM), live samples up to 600 microns wide can be imaged by light-sheet microscopy with 500 microns penetration depth, and diffused background in deep tissue light-sheet imaging can be reduced to obtain clear images at cellular resolution in depth beyond 200 microns. We demonstrate in vivo two-color imaging of pronephric glomeruli and vasculature of zebrafish kidney, whose cellular structures located at the center of the fish body are revealed in high clarity by two-color two-photon Bessel light-sheet SIM. PMID:24876996

  5. 3D Monte Carlo simulation of light propagation for laser acupuncture and optimization of illumination parameters

    NASA Astrophysics Data System (ADS)

    Zhong, Fulin; Li, Ting; Pan, Boan; Wang, Pengbo

    2017-02-01

    Laser acupuncture is an effective photochemical and nonthermal stimulation of traditional acupuncture points with lowintensity laser irradiation, which is advantageous in painless, sterile, and safe compared to traditional acupuncture. Laser diode (LD) provides single wavelength and relatively-higher power light for phototherapy. The quantitative effect of illumination parameters of LD in use of laser acupuncture is crucial for practical operation of laser acupuncture. However, this issue is not fully demonstrated, especially since experimental methodologies with animals or human are pretty hard to address to this issue. For example, in order to protect viability of cells and tissue, and get better therapeutic effect, it's necessary to control the output power varied at 5mW 10mW range, while the optimized power is still not clear. This study aimed to quantitatively optimize the laser output power, wavelength, and irradiation direction with highly realistic modeling of light transport in acupunctured tissue. A Monte Carlo Simulation software for 3D vowelized media and the highest-precision human anatomical model Visible Chinese Human (VCH) were employed. Our 3D simulation results showed that longer wavelength/higher illumination power, larger absorption in laser acupuncture; the vertical direction emission of the acupuncture laser results in higher amount of light absorption in both the acupunctured voxel of tissue and muscle layer. Our 3D light distribution of laser acupuncture within VCH tissue model is potential to be used in optimization and real time guidance in clinical manipulation of laser acupuncture.

  6. New reversing design method for LED uniform illumination.

    PubMed

    Wang, Kai; Wu, Dan; Qin, Zong; Chen, Fei; Luo, Xiaobing; Liu, Sheng

    2011-07-04

    In light-emitting diode (LED) applications, it is becoming a big issue that how to optimize light intensity distribution curve (LIDC) and design corresponding optical component to achieve uniform illumination when distance-height ratio (DHR) is given. A new reversing design method is proposed to solve this problem, including design and optimization of LIDC to achieve high uniform illumination and a new algorithm of freeform lens to generate the required LIDC by LED light source. According to this method, two new LED modules integrated with freeform lenses are successfully designed for slim direct-lit LED backlighting with thickness of 10mm, and uniformities of illuminance increase from 0.446 to 0.915 and from 0.155 to 0.887 when DHRs are 2 and 3 respectively. Moreover, the number of new LED modules dramatically decreases to 1/9 of the traditional LED modules while achieving similar uniform illumination in backlighting. Therefore, this new method provides a practical and simple way for optical design of LED uniform illumination when DHR is much larger than 1.

  7. The study of LED light source illumination conditions for ideal algae cultivation

    NASA Astrophysics Data System (ADS)

    Tsai, Chun-Chin; Huang, Chien-Fu; Chen, Cin-Fu; Yue, Cheng-Feng

    2017-02-01

    Utilizing LED light source modules with 3 different RGB colors, the illumination effect of different wavelengths had been investigated on the growth curve of the same kind of micro algae. It was found that the best micro algae culturing status came out with long wavelength light such as red light (650 670 nm). Based on the same condition for a period of 3 weeks , the grown micro algae population density ratio represented by Optical Density (O.D.) ratio is 1?0.4?0.7 corresponding to growth with Red, Green, Blue light sources, respectively. Mixing 3 types and 2 types of LEDs with different parameters, the grown micro algae population densities were compared in terms of O.D. Interestingly enough, different light sources resulted in significant discoloration on micro algae growth, appearing yellow, brown, green, etc. Our experiments results showed such discoloration effect is reversible. Based on the same lighting condition, micro algae growth can be also affected by incubator size, nutrition supply, and temperature variation. In recent years, micro algae related technologies have been international wise a hot topic of energy and environmental protection for research and development institutes, and big energy companies among those developed countries. There will be an economically prosperous future. From this study of LED lighting to ideal algae cultivation, it was found that such built system would be capable of optimizing artificial cultivation system, leading to economic benefits for its continuous development. Since global warming causing weather change, accompanying with reducing energy sources and agriculture growth shortage are all threatening human being survival.

  8. Laser Illumination Modality of Photoacoustic Imaging Technique for Prostate Cancer

    NASA Astrophysics Data System (ADS)

    Peng, Dong-qing; Peng, Yuan-yuan; Guo, Jian; Li, Hui

    2016-02-01

    Photoacoustic imaging (PAI) has recently emerged as a promising imaging technique for prostate cancer. But there was still a lot of challenge in the PAI for prostate cancer detection, such as laser illumination modality. Knowledge of absorbed light distribution in prostate tissue was essential since the distribution characteristic of absorbed light energy would influence the imaging depth and range of PAI. In order to make a comparison of different laser illumination modality of photoacoustic imaging technique for prostate cancer, optical model of human prostate was established and combined with Monte Carlo simulation method to calculate the light absorption distribution in the prostate tissue. Characteristic of light absorption distribution of transurethral and trans-rectal illumination case, and of tumor at different location was compared with each other.The relevant conclusions would be significant for optimizing the light illumination in a PAI system for prostate cancer detection.

  9. Joint transform correlators with spatially incoherent illumination

    NASA Astrophysics Data System (ADS)

    Bykovsky, Yuri A.; Karpiouk, Andrey B.; Markilov, Anatoly A.; Rodin, Vladislav G.; Starikov, Sergey N.

    1997-03-01

    Two variants of joint transform correlators with monochromatic spatially incoherent illumination are considered. The Fourier-holograms of the reference and recognized images are recorded simultaneously or apart in a time on the same spatial light modulator directly by monochromatic spatially incoherent light. To create the signal of mutual correlation of the images it is necessary to execute nonlinear transformation when the hologram is illuminated by coherent light. In the first scheme of the correlator this aim was achieved by using double pas of a restoring coherent wave through the hologram. In the second variant of the correlator the non-linearity of the characteristic of the spatial light modulator for hologram recording was used. Experimental schemes and results on processing teste images by both variants of joint transform correlators with monochromatic spatially incoherent illumination. The use of spatially incoherent light on the input of joint transform correlators permits to reduce the requirements to optical quality of elements, to reduce accuracy requirements on elements positioning and to expand a number of devices suitable to input images in correlators.

  10. Discolouration of orthodontic adhesives caused by food dyes and ultraviolet light.

    PubMed

    Faltermeier, Andreas; Rosentritt, Martin; Reicheneder, Claudia; Behr, Michael

    2008-02-01

    Enamel discolouration after debonding of orthodontic attachments could occur because of irreversible penetration of resin tags into the enamel structure. Adhesives could discolour because of food dyes or ultraviolet irradiation. The aim of this study was to investigate the colour stability of adhesives during ultraviolet irradiation and exposure to food colourants. Four different adhesives were exposed in a Suntest CPS+ ageing device to a xenon lamp to simulate natural daylight (Transbond XT, Enlight, RelyX Unicem, and Meron Plus AC). Tomato ketchup, Coca Cola, and tea were chosen as the food colourants. After 72 hours of exposure, colour measurements were performed by means of a spectrophotometer according to the Commission Internationale de l'Eclairage L*a*b* system and colour changes (DeltaE*) were computed. Statistical differences were investigated using two-way analysis of variance (ANOVA) and Friedman test. Unsatisfactory colour stability after in vitro exposure to food colourants and ultraviolet light was observed for the conventional adhesive systems, Transbond XT and Enlight. RelyX Unicem showed the least colour change and the resin-reinforced glass-ionomer cement (GIC), Meron Plus AC, the greatest colour change. The investigated adhesives seem to be susceptible to both internal and external discolouration. These in vitro findings indicate that the tested conventional adhesive systems reveal unsatisfactory colour stability which should be improved to avoid enamel discolouration.

  11. Illumination in diverse codimensions

    NASA Technical Reports Server (NTRS)

    Banks, David C.

    1994-01-01

    This paper derives a model of diffuse and specular illumination in arbitrarily large dimensions, based on a few characteristics of material and light in three-space. It then describes how to adjust for the anomaly of excess brightness in large codimensions. If a surface is grooved or furry, it can be illuminated with a hybrid model that incorporates both the one dimensional geometry (the grooves or fur) and the two dimensional geometry (the surface).

  12. Ultraviolet Thomson Scattering from Direct-Drive Coronal Plasmas

    NASA Astrophysics Data System (ADS)

    Henchen, R. J.; Goncharov, V. N.; Michel, D. T.; Follett, R. K.; Katz, J.; Froula, D. H.

    2013-10-01

    Ultraviolet (λ4 ω = 263 nm) Thomson scattering (TS) was used to probe ion-acoustic waves (IAW's) and electron plasma waves (EPW's) from direct-drive coronal plasmas. Fifty-nine drive beams (λ3 ω = 351 nm) illuminate a spherical target with a radius of ~860 μm. Advances in the ultraviolet (UV) TS diagnostic at the Omega Laser Facility provide the ability to detect deep UV photons (~190 nm) and allow access to scattered light from EPW's propagating near the 3 ω quarter-critical surface (~2.5 × 1021 cm-3) . A series of experiments studied the effects of ablator materials on coronal plasma conditions. Electron temperatures and densities were measured from 150 μm to 400 μm from the initial target surface. Standard CH shells were compared to three-layered shells consisting of Si doped CH, Si, and Be. Early analysis indicates that these multilayered targets have less hot-electron energy as a result of higher electron temperature in the coronal plasma. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  13. A new three-dimensional nonscanning laser imaging system based on the illumination pattern of a point-light-source array

    NASA Astrophysics Data System (ADS)

    Xia, Wenze; Ma, Yayun; Han, Shaokun; Wang, Yulin; Liu, Fei; Zhai, Yu

    2018-06-01

    One of the most important goals of research on three-dimensional nonscanning laser imaging systems is the improvement of the illumination system. In this paper, a new three-dimensional nonscanning laser imaging system based on the illumination pattern of a point-light-source array is proposed. This array is obtained using a fiber array connected to a laser array with each unit laser having independent control circuits. This system uses a point-to-point imaging process, which is realized using the exact corresponding optical relationship between the point-light-source array and a linear-mode avalanche photodiode array detector. The complete working process of this system is explained in detail, and the mathematical model of this system containing four equations is established. A simulated contrast experiment and two real contrast experiments which use the simplified setup without a laser array are performed. The final results demonstrate that unlike a conventional three-dimensional nonscanning laser imaging system, the proposed system meets all the requirements of an eligible illumination system. Finally, the imaging performance of this system is analyzed under defocusing situations, and analytical results show that the system has good defocusing robustness and can be easily adjusted in real applications.

  14. Determination of the Solar Ultraviolet Transmission in Tree Shade.

    ERIC Educational Resources Information Center

    Parisi, Alfio V.; Kimlin, Michael G.

    1999-01-01

    Presents an activity in which the amount of solar ultraviolet radiation in tree shade is measured at different times of the day and compared with changes in illumination levels and temperature. (Author/WRM)

  15. Imaging a seizure model in zebrafish with structured illumination light sheet microscopy

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Dale, Savannah; Ball, Rebecca; VanLeuven, Ariel J.; Baraban, Scott; Sornborger, Andrew; Lauderdale, James D.; Kner, Peter

    2018-02-01

    Zebrafish are a promising vertebrate model for elucidating how neural circuits generate behavior under normal and pathological conditions. The Baraban group first demonstrated that zebrafish larvae are valuable for investigating seizure events and can be used as a model for epilepsy in humans. Because of their small size and transparency, zebrafish embryos are ideal for imaging seizure activity using calcium indicators. Light-sheet microscopy is well suited to capturing neural activity in zebrafish because it is capable of optical sectioning, high frame rates, and low excitation intensities. We describe work in our lab to use light-sheet microscopy for high-speed long-time imaging of neural activity in wildtype and mutant zebrafish to better understand the connectivity and activity of inhibitory neural networks when GABAergic signaling is altered in vivo. We show that, with light-sheet microscopy, neural activity can be recorded at 23 frames per second in twocolors for over 10 minutes allowing us to capture rare seizure events in mutants. We have further implemented structured illumination to increase resolution and contrast in the vertical and axial directions during high-speed imaging at an effective frame rate of over 7 frames per second.

  16. High-space resolution imaging plate analysis of extreme ultraviolet (EUV) light from tin laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Musgrave, Christopher S. A.; Murakami, Takehiro; Ugomori, Teruyuki; Yoshida, Kensuke; Fujioka, Shinsuke; Nishimura, Hiroaki; Atarashi, Hironori; Iyoda, Tomokazu; Nagai, Keiji

    2017-03-01

    With the advent of high volume manufacturing capabilities by extreme ultraviolet lithography, constant improvements in light source design and cost-efficiency are required. Currently, light intensity and conversion efficiency (CE) measurments are obtained by charged couple devices, faraday cups etc, but also phoshpor imaging plates (IPs) (BaFBr:Eu). IPs are sensitive to light and high-energy species, which is ideal for studying extreme ultraviolet (EUV) light from laser produced plasmas (LPPs). In this work, we used IPs to observe a large angular distribution (10°-90°). We ablated a tin target by high-energy lasers (1064 nm Nd:YAG, 1010 and 1011 W/cm2) to generate the EUV light. The europium ions in the IP were trapped in a higher energy state from exposure to EUV light and high-energy species. The light intensity was angular dependent; therefore excitation of the IP depends on the angle, and so highly informative about the LPP. We obtained high-space resolution (345 μm, 0.2°) angular distribution and grazing spectrometer (5-20 nm grate) data simultaneously at different target to IP distances (103 mm and 200 mm). Two laser systems and IP types (BAS-TR and BAS-SR) were also compared. The cosine fitting values from the IP data were used to calculate the CE to be 1.6% (SD ± 0.2) at 13.5 nm 2% bandwidth. Finally, a practical assessment of IPs and a damage issue are disclosed.

  17. Apparatus and method for generating partially coherent illumination for photolithography

    DOEpatents

    Sweatt, W.C.

    1999-07-06

    The present invention relates an apparatus and method for creating a bright, uniform source of partially coherent radiation for illuminating a pattern, in order to replicate an image of said pattern with a high degree of acuity. The present invention introduces a novel scatter plate into the optical path of source light used for illuminating a replicated object. The scatter plate has been designed to interrupt a focused, incoming light beam by introducing between about 8 to 24 diffraction zones blazed onto the surface of the scatter plate which intercept the light and redirect it to a like number of different positions in the condenser entrance pupil each of which is determined by the relative orientation and the spatial frequency of the diffraction grating in each of the several zones. Light falling onto the scatter plate, therefore, generates a plurality of unphased sources of illumination as seen by the back half of the optical system. The system includes a high brightness source, such as a laser, creating light which is taken up by a beam forming optic which focuses the incoming light into a condenser which in turn, focuses light into a field lens creating Kohler illumination image of the source in a camera entrance pupil. The light passing through the field lens illuminates a mask which interrupts the source light as either a positive or negative image of the object to be replicated. Light passing by the mask is focused into the entrance pupil of the lithographic camera creating an image of the mask onto a receptive media. 7 figs.

  18. Apparatus and method for generating partially coherent illumination for photolithography

    DOEpatents

    Sweatt, William C.

    1999-01-01

    The present invention relates an apparatus and method for creating a bright, uniform source of partially coherent radiation for illuminating a pattern, in order to replicate an image of said pattern with a high degree of acuity. The present invention introduces a novel scatter plate into the optical path of source light used for illuminating a replicated object. The scatter plate has been designed to interrupt a focused, incoming light beam by introducing between about 8 to 24 diffraction zones blazed onto the surface of the scatter plate which intercept the light and redirect it to a like number of different positions in the condenser entrance pupil each of which is determined by the relative orientation and the spatial frequency of the diffraction grating in each of the several zones. Light falling onto the scatter plate, therefore, generates a plurality of unphased sources of illumination as seen by the back half of the optical system. The system includes a high brightness source, such as a laser, creating light which is taken up by a beam forming optic which focuses the incoming light into a condenser which in turn, focuses light into a field lens creating Kohler illumination image of the source in a camera entrance pupil. The light passing through the field lens illuminates a mask which interrupts the source light as either a positive or negative image of the object to be replicated. Light passing by the mask is focused into the entrance pupil of the lithographic camera creating an image of the mask onto a receptive media.

  19. Simultaneous removal of NO and SO2 using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS).

    PubMed

    Liu, Yangxian; Wang, Yan; Wang, Qian; Pan, Jianfeng; Zhang, Jun

    2018-01-01

    Simultaneous removal process of SO 2 and NO from flue gas using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS) in a VUV spraying reactor was proposed. The key influencing factors, active species, reaction products and mechanism of SO 2 and NO simultaneous removal were investigated. The results show that vacuum ultraviolet light (185 nm) achieves the highest NO removal efficiency and yield of and under the same test conditions. NO removal is enhanced at higher PMS concentration, light intensity and oxygen concentration, and is inhibited at higher NO concentration, SO 2 concentration and solution pH. Solution temperature has a double impact on NO removal. CO 2 concentration has no obvious effect on NO removal. and produced from VUV-activation of PMS play a leading role in NO removal. O 3 and ·O produced from VUV-activation of O 2 also play an important role in NO removal. SO 2 achieves complete removal under all experimental conditions due to its very high solubility in water and good reactivity. The highest simultaneous removal efficiency of SO 2 and NO reaches 100% and 91.3%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Defect-Enabled Electrical Current Leakage in Ultraviolet Light-Emitting Diodes

    DOE PAGES

    Moseley, Michael William; Allerman, Andrew A.; Crawford, Mary H.; ...

    2015-04-13

    The AlGaN materials system offers a tunable, ultra-wide bandgap that is exceptionally useful for high-power electronics and deep ultraviolet optoelectronics. Moseley et al. (pp. 723–726) investigate a structural defect known as an open-core threading dislocation or ''nanopipe'' that is particularly detrimental to devices that employ these materials. Furthermore, an AlGaN thin film was synthesized using metal-organic chemical-vapor deposition. Electrical current leakage is detected at a discrete point using a conductive atomic-force microscope (CAFM). However, no physical feature or abnormality at this location was visible by an optical microscope. The AlGaN thin film was then etched in hot phosphoric acid, andmore » the same location that was previously analyzed was revisited with the CAFM. The point that previously exhibited electrical current leakage had been decorated with a 1.1 μm wide hexagonal pit, which identified the site of electrical current leakage as a nanopipe and allows these defects to be easily observed by optical microscopy. Moreover, with this nanopipe identification and quantification strategy, the authors were able to correlate decreasing ultraviolet light-emitting diode optical output power with increasing nanopipe density.« less

  1. Efficacy of Ultraviolet (UV-C) Light in a Thin-Film Turbulent Flow for the Reduction of Milkborne Pathogens.

    PubMed

    Crook, Jennifer A; Rossitto, Paul V; Parko, Jared; Koutchma, Tatiana; Cullor, James S

    2015-06-01

    Nonthermal technologies are being investigated as viable alternatives to, or supplemental utilization, with thermal pasteurization in the food-processing industry. In this study, the effect of ultraviolet (UV)-C light on the inactivation of seven milkborne pathogens (Listeria monocytogenes, Serratia marcescens, Salmonella Senftenberg, Yersinia enterocolitica, Aeromonas hydrophila, Escherichia coli, and Staphylococcus aureus) was evaluated. The pathogens were suspended in ultra-high-temperature whole milk and treated at UV doses between 0 and 5000 J/L at a flow rate of 4300 L/h in a thin-film turbulent flow-through pilot system. Of the seven milkborne pathogens tested, L. monocytogenes was the most UV resistant, requiring 2000 J/L of UV-C exposure to reach a 5-log reduction. The most sensitive bacterium was S. aureus, requiring only 1450 J/L to reach a 5-log reduction. This study demonstrated that the survival curves were nonlinear. Sigmoidal inactivation curves were observed for all tested bacterial strains. Nonlinear modeling of the inactivation data was a better fit than the traditional log-linear approach. Results obtained from this study indicate that UV illumination has the potential to be used as a nonthermal method to reduce microorganism populations in milk.

  2. Improved light-induced cell detachment on rutile TiO₂ nanodot films.

    PubMed

    Cheng, Kui; Sun, Yu; Wan, Hongping; Wang, Xiaozhao; Weng, Wenjian; Lin, Jun; Wang, Huiming

    2015-10-01

    Anatase TiO2 nanodot films have been found to be able to release cells under light illumination with excellent efficiency and safety. In the present study, we investigated the effects of rutile contents in TiO2 nanodot films on such light induced cell detachment behavior. The results showed that TiO2 nanodot films with different contents of rutile phase have been prepared successfully. The content of rutile phase increased with the increase in calcination temperature. All films possessed good cell adhesion but there was a decrease in cell proliferation with the increasing content of rutile phase. Single cell detachment assay showed that the films with high rutile contents (calcined at 900°C and 1100°C) showed better cell detachment performance. That was ascribed to the changes of the secondary structure of extracellular proteins adsorbed on the nanodot surface after ultraviolet (365 nm, UV365) illumination. In addition, cell sheets detached through UV365 illumination maintained high activity and could be further used in tissue engineering. The present work showed that the existence of rutile phase is helpful in cell detachment behavior and it could be utilized to optimize light-induced cell detachment behavior. This work discovers that the presence of rutile phase in TiO2 nanodot films could improve the light-induced cell detachment behavior, although rutile phase is inferior to anatase phase on light induced superhydrophilicity. That strongly supported that the behaviors of adsorbed proteins are crucial in acquiring cell sheet with light illumination. In fact, the state and behavior of adsorbed protein greatly affect the interaction between biomaterials and living cells. Therefore, we consider this work is not only important in harvesting cells or cell sheets through light illumination, but also helpful in further understanding of interaction between biomaterials and cells. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Tunnel junction enhanced nanowire ultraviolet light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarwar, A. T. M. Golam; May, Brelon J.; Deitz, Julia I.

    Polarization engineered interband tunnel junctions (TJs) are integrated in nanowire ultraviolet (UV) light emitting diodes (LEDs). A ∼6 V reduction in turn-on voltage is achieved by the integration of tunnel junction at the base of polarization doped nanowire UV LEDs. Moreover, efficient hole injection into the nanowire LEDs leads to suppressed efficiency droop in TJ integrated nanowire LEDs. The combination of both reduced bias voltage and increased hole injection increases the wall plug efficiency in these devices. More than 100 μW of UV emission at ∼310 nm is measured with external quantum efficiency in the range of 4–6 m%. The realization of tunnel junctionmore » within the nanowire LEDs opens a pathway towards the monolithic integration of cascaded multi-junction nanowire LEDs on silicon.« less

  4. 21 CFR 872.6350 - Ultraviolet detector.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultraviolet detector. 872.6350 Section 872.6350...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6350 Ultraviolet detector. (a) Identification. An ultraviolet detector is a device intended to provide a source of ultraviolet light which is used...

  5. 21 CFR 872.6350 - Ultraviolet detector.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ultraviolet detector. 872.6350 Section 872.6350...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6350 Ultraviolet detector. (a) Identification. An ultraviolet detector is a device intended to provide a source of ultraviolet light which is used...

  6. 21 CFR 872.6350 - Ultraviolet detector.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultraviolet detector. 872.6350 Section 872.6350...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6350 Ultraviolet detector. (a) Identification. An ultraviolet detector is a device intended to provide a source of ultraviolet light which is used...

  7. 21 CFR 872.6350 - Ultraviolet detector.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ultraviolet detector. 872.6350 Section 872.6350...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6350 Ultraviolet detector. (a) Identification. An ultraviolet detector is a device intended to provide a source of ultraviolet light which is used...

  8. 21 CFR 872.6350 - Ultraviolet detector.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ultraviolet detector. 872.6350 Section 872.6350...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6350 Ultraviolet detector. (a) Identification. An ultraviolet detector is a device intended to provide a source of ultraviolet light which is used...

  9. Laser agile illumination for object tracking and classification - Feasibility study

    NASA Technical Reports Server (NTRS)

    Scholl, Marija S.; Vanzyl, Jakob J.; Meinel, Aden B.; Meinel, Marjorie P.; Scholl, James W.

    1988-01-01

    The 'agile illumination' concept for discrimination between ICBM warheads and decoys involves a two-aperture illumination with coherent light, diffraction of light by propagation, and a resulting interference pattern on the object surface. A scanning two-beam interference pattern illuminates one object at a time; depending on the shape, momentum, spinning, and tumbling characteristics of the interrogated object, different temporal signals will be obtained for different classes of objects.

  10. A fast feedback method to design easy-molding freeform optical system with uniform illuminance and high light control efficiency.

    PubMed

    Hongtao, Li; Shichao, Chen; Yanjun, Han; Yi, Luo

    2013-01-14

    A feedback method combined with fitting technique based on variable separation mapping is proposed to design freeform optical systems for an extended LED source with prescribed illumination patterns, especially with uniform illuminance distribution. Feedback process performs well with extended sources, while fitting technique contributes not only to the decrease of pieces of sub-surfaces in discontinuous freeform lenses which may cause loss in manufacture, but also the reduction in the number of feedback iterations. It is proved that light control efficiency can be improved by 5%, while keeping a high uniformity of 82%, with only two feedback iterations and one fitting operation can improve. Furthermore, the polar angle θ and azimuthal angle φ is used to specify the light direction from the light source, and the (θ,φ)-(x,y) based mapping and feedback strategy makes sure that even few discontinuous sections along the equi-φ plane exist in the system, they are perpendicular to the base plane, making it eligible for manufacturing the surfaces using injection molding.

  11. Ultraviolet Enceladus

    NASA Image and Video Library

    2004-09-23

    Looking beyond Saturn's south pole, this was the Cassini spacecraft's view of the distant, icy moon Enceladus on July 28, 2004. The planet itself shows few obvious features at these ultraviolet wavelengths, due to scattering of light by molecules of the gases high in the atmosphere. Enceladus is 499 kilometers (310 miles) wide. The image was taken with the Cassini spacecraft narrow angle camera at a distance of 7.4 million kilometers (4.6 million miles) from Saturn through a filter sensitive to ultraviolet wavelengths of light. The image scale is 44 kilometers (27 miles) per pixel of Saturn. http://photojournal.jpl.nasa.gov/catalog/PIA06483

  12. Ultraviolet and short wavelength visible light exposure: why ultraviolet protection alone is not adequate.

    PubMed

    Reichow, Alan W; Citek, Karl; Edlich, Richard F

    2006-01-01

    The danger of exposure to ultraviolet (UV) radiation in both the natural environment and artificial occupational settings has long been recognized by national and international standards committees and worker safety agencies. There is an increasing body of literature that suggests that protection from UV exposure is not enough. Unprotected exposure to the short wavelengths of the visible spectrum, termed the "blue light hazard", is gaining acceptance as a true risk to long-term visual health. Global standards and experts in the field are now warning that those individuals who spend considerable time outdoors should seek sun filter eyewear with high impact resistant lenses that provide 100% UV filtration, high levels of blue light filtration, and full visual field lens/frame coverage as provided by high wrap eyewear. The Skin Cancer Foundation has endorsed certain sunglasses as "product[s]...effective [as] UV filter[s] for the eyes and surrounding skin". However, such endorsement does not necessarily mean that the eyewear meets all the protective needs for outdoor use. There are several brands that offer products with such protective characteristics. Performance sun eyewear by Nike Vision, available in both corrective and plano (nonprescription) forms, is one such brand incorporating these protective features.

  13. Back-illuminate fiber system research for multi-object fiber spectroscopic telescope

    NASA Astrophysics Data System (ADS)

    Zhou, Zengxiang; Liu, Zhigang; Hu, Hongzhuan; Wang, Jianping; Zhai, Chao; Chu, Jiaru

    2016-07-01

    In the telescope observation, the position of fiber will highly influence the spectra efficient input in the fiber to the spectrograph. When the fibers were back illuminated on the spectra end, they would export light on the positioner end, so the CCD cameras could capture the photo of fiber tip position covered the focal plane, calculates the precise position information by light centroid method and feeds back to control system. A set of fiber back illuminated system was developed which combined to the low revolution spectro instruments in LAMOST. It could provide uniform light output to the fibers, meet the requirements for the CCD camera measurement. The paper was introduced the back illuminated system design and different test for the light resource. After optimization, the effect illuminated system could compare with the integrating sphere, meet the conditions of fiber position measurement.Using parallel controlled fiber positioner as the spectroscopic receiver is an efficiency observation system for spectra survey, has been used in LAMOST recently, and will be proposed in CFHT and rebuilt telescope Mayall. In the telescope observation, the position of fiber will highly influence the spectra efficient input in the fiber to the spectrograph. When the fibers were back illuminated on the spectra end, they would export light on the positioner end, so the CCD cameras could capture the photo of fiber tip position covered the focal plane, calculates the precise position information by light centroid method and feeds back to control system. After many years on these research, the back illuminated fiber measurement was the best method to acquire the precision position of fibers. In LAMOST, a set of fiber back illuminated system was developed which combined to the low revolution spectro instruments in LAMOST. It could provide uniform light output to the fibers, meet the requirements for the CCD camera measurement and was controlled by high-level observation system which

  14. Apparatus and method for generating partially coherent illumination for photolithography

    DOEpatents

    Sweatt, William C.

    2001-01-01

    The present invention introduces a novel scatter plate into the optical path of source light used for illuminating a replicated object. The scatter plate has been designed to interrupt a focused, incoming light beam by introducing between about 8 to 24 diffraction zones blazed onto the surface of the scatter plate which intercept the light and redirect it to a like number of different positions in the condenser entrance pupil each of which is determined by the relative orientation and the spatial frequency of the diffraction grating in each of the several zones. Light falling onto the scatter plate, therefore, generates a plurality of unphased sources of illumination as seen by the back half of the optical system. The system comprises a high brightness source, such as a laser, creating light which is taken up by a beam forming optic which focuses the incoming light into a condenser which in turn, focuses light into a field lens creating Kohler illumination image of the source in a camera entrance pupil. The light passing through the field lens illuminates a mask which interrupts the source light as either a positive or negative image of the object to be replicated. Light passing by the mask is focused into the entrance pupil of the lithographic camera creating an image of the mask onto a receptive media.

  15. Potent circadian effects of dim illumination at night in hamsters.

    PubMed

    Gorman, Michael R; Evans, Jennifer A; Elliott, Jeffrey A

    2006-01-01

    Conventional wisdom holds that the circadian pacemaker of rodents and humans is minimally responsive to light of the intensity provided by dim moonlight and starlight. However, dim illumination (<0.005 lux) provided during the daily dark periods markedly alters entrainment in hamsters. Under dimly lit scotophases, compared to completely dark ones phases, the upper range of entrainment is increased by approximately 4 h, and re-entrainment is accelerated following transfer from long to short day lengths. Moreover, the incidence of bimodal entrainment to 24 h light:dark:light:dark cycles is increased fourfold. Notably, the nocturnal illumination inducing these pronounced effects is equivalent in photic energy to that of a 2 sec, 100 lux light pulse. These effects may be parsimoniously interpreted as an action of dim light on the phase relations between multiple oscillators comprising the circadian pacemaker. An action of dim light distinct from that underlying bright-light phase-resetting may promote more effective entrainment. Together, the present results refute the view that scotopic illumination is environmental "noise" and indicate that clock function is conspicuously altered by nighttime illumination like that experienced under dim moonlight and starlight. We interpret our results as evidence for a novel action of dim light on the coupling of multiple circadian oscillators.

  16. Antibacterial effect of light emitting diodes of visible wavelengths on selected foodborne pathogens at different illumination temperatures.

    PubMed

    Ghate, Vinayak S; Ng, Kheng Siang; Zhou, Weibiao; Yang, Hyunsoo; Khoo, Gek Hoon; Yoon, Won-Byong; Yuk, Hyun-Gyun

    2013-09-16

    The antibacterial effect of light emitting diodes (LEDs) in the visible region (461, 521 and 642 nm) of the electromagnetic spectrum was investigated on Escherichia coli O157:H7, Salmonella typhimurium, Listeria monocytogenes and Staphylococcus aureus. The irradiances of the 461, 521 and 642 nm LEDs were 22.1, 16 and 25.4 mW/cm², respectively. Bacterial cultures suspended in tryptic soy broth were illuminated by 10-watt LEDs at a distance of 4.5 cm for 7.5h at 20, 15 and 10 °C. Regardless of the bacterial strains, bacterial inactivation was observed with the range of 4.6-5.2 logCFU/ml at 10 and 15 °C after illumination with the 461 nm LED, while illumination with the 521 nm LED resulted in only 1.0-2.0 log reductions after 7.5h. On the other hand, no antibacterial effect was observed using the 642 nm LED treatment. The photodynamic inactivation by 461 and 521 nm LEDs was found to be greater at the set temperatures of 10 and 15 °C than at 20 °C. The D-values for the four bacterial strains at 10 and 15 °C after the illumination of 461 nm LED ranged from 1.29 to 1.74 h, indicating that there was no significant difference in the susceptibility of the bacterial strains to the LED illumination between 10 and 15 °C, except for L. monocytogenes. Regardless of the illumination temperature, sublethal injury was observed in all bacterial strains during illumination with the 461 and the 521 nm LED and the percentage of injured cells increased as the treatment time increased. Thus, the results show that the antibacterial effect of the LEDs was highly dependent on the wavelength and the illumination temperature. This study suggests the potential of 461 and 521 nm LEDs in combination with chilling to be used as a novel food preservation technology. © 2013 Elsevier B.V. All rights reserved.

  17. Optical Fiber Illumination System for visual flight simulation

    NASA Technical Reports Server (NTRS)

    Hollow, R. H.

    1981-01-01

    An electronically controlled lighting system simulating runway, aircraft carrier, and landing aid lights for flight simulations is described. The various colored lights that would be visible to a pilot by day, at dusk, or at night are duplicated at the distances the lights would normally become visible. Plastic optical fiber illuminators using tungsten halogen lights are distributed behind the model. The tips of the fibers of illuminators simulating runway lights are bevelled in order that they may be seen from long distances and at low angles. Fibers representing taxiway lights are pointed and polished for omni-directional visibility. The electronic intensity controls, which can be operated either manually or remotely, regulate the intensity of the lights to simulate changes in distance. A dichronic mirror, infrared filter system is used to maintain color integrity.

  18. UV/blue light-induced fluorescence for assessing apple maturity

    NASA Astrophysics Data System (ADS)

    Noh, Hyun Kwon; Lu, Renfu

    2005-11-01

    Chlorophyll fluorescence has been researched for assessing fruit post-harvest quality and condition. The objective of this preliminary research was to investigate the potential of fluorescence spectroscopy for measuring apple fruit quality. Ultraviolet (UV) and blue light was used as an excitation source for inducing fluorescence in apples. Fluorescence spectra were measured from 'Golden Delicious' (GD) and 'Red Delicious' (RD) apples by using a visible/near-infrared spectrometer after one, three, and five minutes of continuous UV/blue light illumination. Standard destructive tests were performed to measure fruit firmness, skin and flesh color, soluble solids and acid content from the apples. Calibration models for each of the three illumination time periods were developed to predict fruit quality indexes. The results showed that fluorescence emission decreased steadily during the first three minutes of UV/blue light illumination and was stable within five minutes. The differences were minimal in the model prediction results based on fluorescence data at one, three or five minutes of illumination. Overall, better predictions were obtained for apple skin chroma and hue and flesh hue with values for the correlation coefficient of validation between 0.80 and 0.90 for both GD and RD. Relatively poor predictions were obtained for fruit firmness, soluble solids content, titrational acid, and flesh chroma. This research demonstrated that fluorescence spectroscopy is potentially useful for assessing selected quality attributes of apple fruit and further research is needed to improve fluorescence measurements so that better predictions of fruit quality can be achieved.

  19. EFFECTS OF ULTRAVIOLET-B LIGHT AND POLYAROMATIC HYDROCARBON EXPOSURE ON SEA URCHIN DEVELOPMENT AND BACTERIAL BIOLUMINESCENCE

    EPA Science Inventory

    Polycyclic aromatic hydrocarbons (PAHs) are relatively common contaminants of the Gulf of Mexico and may be activated to more toxic metabolites by ultraviolet-B (UV-B) light. A marine bacterial bioassay system (Vibrio fischeri) which focused on the reduction of luciferase-mediate...

  20. Assessing the effectiveness of low-pressure ultraviolet light for inactivating Mycobacterium avium complex (MAC) micro-organisms

    EPA Science Inventory

    Aims: To assess low-pressure ultraviolet light (LP-UV) inactivation kinetics of Mycobacterium avium complex (MAC) strains in a water matrix using collimated beam apparatus. Methods and Results: Strains of M. avium (n = 3) and Mycobacterium intracellulare (n = 2) were exposed t...

  1. Water Treatment Using Advanced Ultraviolet Light Sources Final Report CRADA No. TC02089.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoppes, W.; Oster, S.

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Teknichal Services, LLC (TkS), to develop water treatment systems using advanced ultraviolet light sources. The Russian institutes involved with this project were The High Current Electronics Institute (HCEI) and Russian Institute of Technical Physics-Institute of Experimental Physics (VNIIEF). HCEI and VNIIEF developed and demonstrated the potential commercial viability of short-wavelength ultraviolet excimer lamps under a Thrust 1 Initiatives for Proliferation Prevention (IPP) Program. The goals of this collaboration were to demonstrate both the commercial viability of excilampbased watermore » disinfection and achieve further substantial operational improvement in the lamps themselves; particularly in the area of energy efficiency.« less

  2. Quantum illumination with Gaussian states.

    PubMed

    Tan, Si-Hui; Erkmen, Baris I; Giovannetti, Vittorio; Guha, Saikat; Lloyd, Seth; Maccone, Lorenzo; Pirandola, Stefano; Shapiro, Jeffrey H

    2008-12-19

    An optical transmitter irradiates a target region containing a bright thermal-noise bath in which a low-reflectivity object might be embedded. The light received from this region is used to decide whether the object is present or absent. The performance achieved using a coherent-state transmitter is compared with that of a quantum-illumination transmitter, i.e., one that employs the signal beam obtained from spontaneous parametric down-conversion. By making the optimum joint measurement on the light received from the target region together with the retained spontaneous parametric down-conversion idler beam, the quantum-illumination system realizes a 6 dB advantage in the error-probability exponent over the optimum reception coherent-state system. This advantage accrues despite there being no entanglement between the light collected from the target region and the retained idler beam.

  3. Near unity ultraviolet absorption in graphene without patterning

    NASA Astrophysics Data System (ADS)

    Zhu, Jinfeng; Yan, Shuang; Feng, Naixing; Ye, Longfang; Ou, Jun-Yu; Liu, Qing Huo

    2018-04-01

    Enhancing the light-matter interaction of graphene is an important issue for related photonic devices and applications. In view of its potential ultraviolet applications, we aim to achieve extremely high ultraviolet absorption in graphene without any nanostructure or microstructure patterning. By manipulating the polarization and angle of incident light, the ultraviolet power can be sufficiently coupled to the optical dissipation of graphene based on single-channel coherent perfect absorption in an optimized multilayered thin film structure. The ultraviolet absorbance ratios of single and four atomic graphene layers are enhanced up to 71.4% and 92.2%, respectively. Our research provides a simple and efficient scheme to trap ultraviolet light for developing promising photonic and optoelectronic devices based on graphene and potentially other 2D materials.

  4. High performance organic ultraviolet photodetectors based on m-MTDATA

    NASA Astrophysics Data System (ADS)

    Zhao, Zhongli; Bai, Xiaofeng; Shang, Yubin; Yang, Jikai; Li, Baozeng; Song, De

    2018-02-01

    We demonstrate highly efficient organic ultraviolet photodetectors using 4,4',4'' -tris[3-methyl-pheny(phenyl) amino] triphenylamine (m-MTDATA) and aluminum Tris(8-Hydroxyquinolinate) Synonym Alq3). The optimized photodetector delivers a photocurrent of 1.40 mA/cm2 at10 V, corresponding to a response of 127 mA/W under an illumination of 375 nm UV light irradiation with an intensity of 10.5 mW/cm2 and a detectivity of 2.15×1011 cm Hz1/2 /W. The high response is attributed to the larger band offset at m-MTDATA/ Alq3 heterojunction, the suppression of radiative decay of m-MTDATA and efficient electron transfer from m-MTDATA to Alq3. The working mechanism of harvesting high performance is also discussed in detail.

  5. Investigating the protective properties of milk phospholipids against ultraviolet light exposure in a skin equivalent model

    NASA Astrophysics Data System (ADS)

    Russell, Ashley; Laubscher, Andrea; Jimenez-Flores, Rafael; Laiho, Lily H.

    2010-02-01

    Current research on bioactive molecules in milk has documented health advantages of bovine milk and its components. Milk Phospholipids, selected for this study, represent molecules with great potential benefit in human health and nutrition. In this study we used confocal reflectance and multiphoton microscopy to monitor changes in skin morphology upon skin exposure to ultraviolet light and evaluate the potential of milk phospholipids in preventing photodamage to skin equivalent models. The results suggest that milk phospholipids act upon skin cells in a protective manner against the effect of ultraviolet (UV) radiation. Similar results were obtained from MTT tissue viability assay and histology.

  6. Ultraviolet light exposure influences skin cancer in association with latitude.

    PubMed

    Rivas, Miguel; Araya, María C; Caba, Fresia; Rojas, Elisa; Calaf, Gloria M

    2011-04-01

    The increase in the amount of solar ultraviolet (UV) light that reaches the earth is considered to be responsible for the worldwide increase in skin cancer. It has been reported that excessive levels of UVA and UVB light have multiple effects, which can be harmful to humans. Experimental measurements were obtained using wide-band solar light YES biometers from 2006 to 2009 in Arica, Chile and from 2003 to 2006 in Valdivia, Chile, both instruments having been calibrated according to the World Health Organization (WHO) criteria and integrated into the Chilean Meteorological Organization network. To explain the possible effect of radiation on skin cancer, revised pathological reports in Arica and Valdivia were analyzed. In Arica, data on men and women were collected between 1997 and 1998-2002, and in Valdivia, between 1997-2000 and 2001-2007. In this study, comparative values of ultraviolet index (UVI) from the above datasets, were analyzed. Arica is a city located in the subtropical zone of northern Chile, 25 meters above sea level, with a latitude of 18˚49'S and a longitude of 70˚19'W. It has a microclimate characterized by stable meteorological conditions throughout the year, including low precipitation (<5 mm per decade), predictable winds, a high percentage of clear sky days and high ground reflectivity due to the presence of light sand. Due to its location near sea level, the population performs a great number of outdoor activities. Valdivia is a city located in the southern part of Chile, 19 meters above sea level with a latitude of 39˚38'S and a longitude of 73˚5'W. The aim of the present study was to determine the relationship between latitude and the risk of skin cancer in two cities with different latitudes. The incidence of skin cancer per 100,000 persons significantly (P<0.05) increased in both genders between the periods 1997-2000 and 2001-2007 in Arica. However, it decreased in men between the periods 1993-1997 and 1998-2002 in Valdivia. The results

  7. Integrated light-guide plates that can control the illumination angle for liquid crystal display backlight system

    NASA Astrophysics Data System (ADS)

    Feng, Di; Yang, Xingpeng; Jin, Guofan; Yan, Yingbai; Fan, Shoushan

    2006-01-01

    Liquid crystal displays (LCDs) with edge-lit backlight systems offer several advantages, such as low energy consuming, low weight, and high uniformity of intensity, over traditional cathode-ray tube displays, and make them ideal for many applications including monitors in notebook personal computers, screens for TV, and many portable information terminals, such as mobile phones, personal digital assistants, etc. To satisfy market requirements for mobile and personal display panels, it is more and more necessary to modify the backlight system and make it thinner, lighter, and brighter all at once. In this paper, we have proposed a new integrated LGP based on periodic and aperiodic microprism structures by using polymethyl methacrylate material, which can be designed to control the illumination angle, and to get high uniformity of intensity. So the backlight system will be simplified to use only light sources and one LGP without using other optical sheets, such as reflection sheet, diffusion sheet and prism sheets. By using optimizing program and ray tracing method, the designed LGPs can achieve a uniformity of intensity better than 86%, and get a peak illumination angle from +400 to -200, without requiring other optical sheets. We have designed a backlight system with only one LED light source and one LGP, and other LGP design examples with different sizes (1.8 inches and 14.1 inches) and different light source (LED or CCFL), are performed also.

  8. Lattice-matched double dip-shaped BAlGaN/AlN quantum well structures for ultraviolet light emission devices

    NASA Astrophysics Data System (ADS)

    Park, Seoung-Hwan; Ahn, Doyeol

    2018-05-01

    Ultraviolet light emission characteristics of lattice-matched BxAlyGa1-x-y N/AlN quantum well (QW) structures with double AlGaN delta layers were investigated theoretically. In contrast to conventional single dip-shaped QW structure where the reduction effect of the spatial separation between electron and hole wave functions is negligible, proposed double dip-shaped QW shows significant enhancement of the ultraviolet light emission intensity from a BAlGaN/AlN QW structure due to the reduced spatial separation between electron and hole wave functions. The emission peak of the double dip-shaped QW structure is expected to be about three times larger than that of the conventional rectangular AlGaN/AlN QW structure.

  9. Probing of Hermean Exosphere by ultraviolet spectroscopy: Instrument presentation, calibration philosophy and first lights results

    NASA Astrophysics Data System (ADS)

    Mariscal, J. F.; Rouanet, N.; Maria, J. L.; Quémerais, E.; Mine, P. O.; Zuppella, P.; Suman, M.; Nicolosi, P.; Pelizzo, M. G.; Yoshikawa, I.; Yoshioka, K.; Murakami, G.

    2017-11-01

    PHEBUS (Probing of Hermean Exosphere by Ultraviolet Spectroscopy) is a double spectrometer for the Extreme Ultraviolet range (55-155 nm) and the Far Ultraviolet range (145-315 nm) dedicated to the characterization of Mercury's exosphere composition and dynamics, and surface-exosphere connections. PHEBUS is part of the ESA BepiColombo cornerstone mission payload devoted to the study of Mercury. The BepiColombo mission consists of two spacecrafts: the Mercury Magnetospheric Orbiter (MMO) and the Mercury Planetary Orbiter (MPO) on which PHEBUS will be mounted. PHEBUS is a French-led instrument implemented in a cooperative scheme involving Japan (detectors), Russia (scanner) and Italy (ground calibration). Before launch, PHEBUS team want to perform a full absolute calibration on ground, in addition to calibrations which will be made in-flight, in order to know the instrument's response as precisely as possible. Instrument overview and calibration philosophy are introduced along with the first lights results observed by a first prototype.

  10. Hermite scatterers in an ultraviolet sky

    NASA Astrophysics Data System (ADS)

    Parker, Kevin J.

    2017-12-01

    The scattering from spherical inhomogeneities has been a major historical topic in acoustics, optics, and electromagnetics and the phenomenon shapes our perception of the world including the blue sky. The long wavelength limit of ;Rayleigh scattering; is characterized by intensity proportional to k4 (or λ-4) where k is the wavenumber and λ is the wavelength. With the advance of nanotechnology, it is possible to produce scatterers that are inhomogeneous with material properties that are functions of radius r, such as concentric shells. We demonstrate that with proper choice of material properties linked to the Hermite polynomials in r, scatterers can have long wavelength scattering behavior of higher powers: k8, k16, and higher. These ;Hermite scatterers; could be useful in providing unique signatures (or colors) to regions where they are present. If suspended in air under white light, the back-scattered spectrum would be shifted from blue towards violet and then ultraviolet as the higher order Hermite scatterers were illuminated.

  11. Optimized constants for an ultraviolet light-adjustable intraocular lens.

    PubMed

    Conrad-Hengerer, Ina; Dick, H Burkhard; Hütz, Werner W; Haigis, Wolfgang; Hengerer, Fritz H

    2011-12-01

    To determine the accuracy of intraocular lens (IOL) power calculations and to suggest adjusted constants for implantation of ultraviolet light-adjustable IOLs. Center for Vision Science, Ruhr University Eye Clinic, Bochum, Germany. Cohort study. Eyes with a visually significant cataract that had phacoemulsification with implantation of a light-adjustable IOL were evaluated. IOLMaster measurements were performed before phacoemulsification and IOL implantation and 4 weeks after surgery before the first adjustment of the IOL. The difference in the expected refraction and estimation error was studied. The study evaluated 125 eyes. Using the surgical constants provided by the manufacturer of the light-adjustable IOL, the SRK/T formula gave a more hyperopic refraction than the Hoffer Q and Holladay 1 formulas. The mean error of prediction was 0.93 diopter (D) ± 0.69 (SD), 0.91 ± 0.63 D, and 0.86 ± 0.65 D, respectively. The corresponding mean absolute error of prediction was 0.98 ± 0.61 D, 0.93 ± 0.61 D, and 0.90 ± 0.59 D, respectively. With optimized constants for the formulas, the mean error of prediction was 0.00 ± 0.63 D for Hoffer Q, 0.00 ± 0.64 D for Holladay 1, and 0.00 ± 0.66 D for SRK/T. The expected refraction after phacoemulsification and implantation of a light-adjustable IOL toward the hyperopic side of the desired refraction could be considered when using the optimized constants for all formulas. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  12. Chromatic illumination discrimination ability reveals that human colour constancy is optimised for blue daylight illuminations.

    PubMed

    Pearce, Bradley; Crichton, Stuart; Mackiewicz, Michal; Finlayson, Graham D; Hurlbert, Anya

    2014-01-01

    The phenomenon of colour constancy in human visual perception keeps surface colours constant, despite changes in their reflected light due to changing illumination. Although colour constancy has evolved under a constrained subset of illuminations, it is unknown whether its underlying mechanisms, thought to involve multiple components from retina to cortex, are optimised for particular environmental variations. Here we demonstrate a new method for investigating colour constancy using illumination matching in real scenes which, unlike previous methods using surface matching and simulated scenes, allows testing of multiple, real illuminations. We use real scenes consisting of solid familiar or unfamiliar objects against uniform or variegated backgrounds and compare discrimination performance for typical illuminations from the daylight chromaticity locus (approximately blue-yellow) and atypical spectra from an orthogonal locus (approximately red-green, at correlated colour temperature 6700 K), all produced in real time by a 10-channel LED illuminator. We find that discrimination of illumination changes is poorer along the daylight locus than the atypical locus, and is poorest particularly for bluer illumination changes, demonstrating conversely that surface colour constancy is best for blue daylight illuminations. Illumination discrimination is also enhanced, and therefore colour constancy diminished, for uniform backgrounds, irrespective of the object type. These results are not explained by statistical properties of the scene signal changes at the retinal level. We conclude that high-level mechanisms of colour constancy are biased for the blue daylight illuminations and variegated backgrounds to which the human visual system has typically been exposed.

  13. Optical design and fabrication of palm/fingerprint uniform illumination system with a high-power near-infrared light-emitting diode.

    PubMed

    Jing, Lei; Wang, Yao; Zhao, Huifu; Ke, Hongliang; Wang, Xiaoxun; Gao, Qun

    2017-06-10

    In order to meet the requirements of uniform illumination for optical palm/fingerprint instruments and overcome the shortcomings of the poor uniform illumination on the working plane of the optical palm/fingerprint prism, a novel secondary optical lens with a free-form surface, compact structure, and high uniformity is presented in this paper. The design of the secondary optical lens is based on emission properties of the near-infrared light-emitting diode (LED) and basic principles of non-imaging optics, especially considering the impact of the thickness of the prism in the design. Through the numerical solution of Snell's law in geometric optics, we obtain the profile of the free-form surface of the lens. Using the optical software TracePro, we trace and simulate the illumination system. The results show that the uniformity is 89.8% on the working plane of the prism, and the test results show that the actual uniformity reaches 85.7% in the experiment, which provides an effective way for realizing a highly uniform illumination system with high-power near-infrared LED.

  14. Evaluation of shear bond strength of orthodontic brackets using trans-illumination technique with different curing profiles of LED light-curing unit in posterior teeth.

    PubMed

    Heravi, Farzin; Moazzami, Saied Mostafa; Ghaffari, Negin; Jalayer, Javad; Bozorgnia, Yasaman

    2013-11-21

    Although using light-cured composites for bonding orthodontic brackets has become increasingly popular, curing light cannot penetrate the metallic bulk of brackets and polymerization of composites is limited to the edges. Limited access and poor direct sight may be a problem in the posterior teeth. Meanwhile, effectiveness of the trans-illumination technique is questionable due to increased bucco-lingual thickness of the posterior teeth. Light-emitting diode (LED) light-curing units cause less temperature rise and lower risk to the pulpal tissue. The purpose of this study was to evaluate the clinical effectiveness of trans-illumination technique in bonding metallic brackets to premolars, using different light intensities and curing times of an LED light-curing unit. Sixty premolars were randomly divided into six groups. Bonding of brackets was done with 40- and 80-s light curing from the buccal or lingual aspect with different intensities. Shear bond strengths of brackets were measured using a universal testing machine. Data were analyzed by one-way analysis of variance test and Duncan's post hoc test. The highest shear bond belonged to group 2 (high intensity, 40 s, buccal) and the lowest belonged to group 3 (low intensity, 40 s, lingual). Bond strength means in control groups were significantly higher than those in experimental groups. In all experimental groups except group 6 (80 s, high intensity, lingual), shear bond strength was below the clinically accepted values. In clinical limitations where light curing from the same side of the bracket is not possible, doubling the curing time and increasing the light intensity during trans-illumination are recommended for achieving acceptable bond strengths.

  15. Light interaction in sapphire/MgF2/Al triple-layer omnidirectional reflectors in AlGaN-based near ultraviolet light-emitting diodes

    PubMed Central

    Lee, Keon Hwa; Moon, Yong-Tae; Song, June-O; Kwak, Joon Seop

    2015-01-01

    This study examined systematically the mechanism of light interaction in the sapphire/MgF2/Al triple-layer omnidirectional reflectors (ODR) and its effects on the light output power in near ultraviolet light emitting diodes (NUV-LEDs) with the ODR. The light output power of NUV-LEDs with the triple-layer ODR structure increased with decreasing surface roughness of the sapphire backside in the ODR. Theoretical modeling of the roughened surface suggests that the dependence of the reflectance of the triple-layer ODR structure on the surface roughness can be attributed mainly to light absorption by the Al nano-structures and the trapping of scattered light in the MgF2 layer. Furthermore, the ray tracing simulation based upon the theoretical modeling showed good agreement with the measured reflectance of the ODR structure in diffuse mode. PMID:26010378

  16. Light interaction in sapphire/MgF2/Al triple-layer omnidirectional reflectors in AlGaN-based near ultraviolet light-emitting diodes.

    PubMed

    Lee, Keon Hwa; Moon, Yong-Tae; Song, June-O; Kwak, Joon Seop

    2015-05-26

    This study examined systematically the mechanism of light interaction in the sapphire/MgF2/Al triple-layer omnidirectional reflectors (ODR) and its effects on the light output power in near ultraviolet light emitting diodes (NUV-LEDs) with the ODR. The light output power of NUV-LEDs with the triple-layer ODR structure increased with decreasing surface roughness of the sapphire backside in the ODR. Theoretical modeling of the roughened surface suggests that the dependence of the reflectance of the triple-layer ODR structure on the surface roughness can be attributed mainly to light absorption by the Al nano-structures and the trapping of scattered light in the MgF2 layer. Furthermore, the ray tracing simulation based upon the theoretical modeling showed good agreement with the measured reflectance of the ODR structure in diffuse mode.

  17. Saturn's E Ring in Ultraviolet Light

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Visible from Earth only at times of ring plane crossing, Saturn's tenuous E Ring was discovered during the 1966 crossings and imaged again in 1980. From these observations, its color is known to be distinctively blue. The E Ring was captured in ultraviolet light for the first time in this image taken with HST's Wide Field and Planetary Camera on 9 August 1995. Five individual images taken with a broadband 3000 A filter were combined, amounting to a total exposure time of 2200 sec. Shorter exposure images were also obtained with blue, red and infrared filters in order to characterize the ring's color. The peak brightness of the E Ring occurs at 3.9 Saturn radii (235,000 km), coinciding with the orbit of Enceladus. In the HST images it can be traced out to a maximum distance of approximately 8 Rs (480,000 km). The vertical thickness of the ring, on the other hand, is smallest at Enceladus' orbit, with the ring puffing up noticeably at larger distances to 15,000 km or more thick. Also visible in this image, between the E Ring and the overexposed outermost part of the main rings near the lower edge of the frame, is the tenuous, thin, 6000 km-wide G Ring at 2.8 Rs (170,000 km). This is among the first earth-based observations of the G Ring, which was discovered by the Pioneer 11 spacecraft in 1979. Noticeably thinner than the E Ring and more neutral in color, the G Ring is thought to be composed of larger, macroscopic particles, and to pose a significant hazard to spacecraft. The faint diagonal band in the lower right part of the image is due to diffracted light from the heavily-overexposed planet. Credit: Phil Nicholson (Cornell University), Mark Showalter (NASA-Ames/Stanford) and NASA

  18. Heterostructured ZnS/InP nanowires for rigid/flexible ultraviolet photodetectors with enhanced performance.

    PubMed

    Zhang, Kai; Ding, Jia; Lou, Zheng; Chai, Ruiqing; Zhong, Mianzeng; Shen, Guozhen

    2017-10-19

    Heterostructured ZnS/InP nanowires, composed of single-crystalline ZnS nanowires coated with a layer of InP shell, were synthesized via a one-step chemical vapor deposition process. As-grown heterostructured ZnS/InP nanowires exhibited an ultrahigh I on /I off ratio of 4.91 × 10 3 , a high photoconductive gain of 1.10 × 10 3 , a high detectivity of 1.65 × 10 13 Jones and high response speed even in the case of very weak ultraviolet light illumination (1.87 μW cm -2 ). The values are much higher than those of previously reported bare ZnS nanowires owing to the formation of core/shell heterostructures. Flexible ultraviolet photodetectors were also fabricated with the heterostructured ZnS/InP nanowires, which showed excellent mechanical flexibility, electrical stability and folding endurance besides excellent photoresponse properties. The results elucidated that the heterostructured ZnS/InP nanowires could find good applications in next generation flexible optoelectronic devices.

  19. Dim-light photoreceptor of chub mackerel Scomber japonicus and the photoresponse upon illumination with LEDs of different wavelengths.

    PubMed

    Jang, Jun-Chul; Choi, Mi-Jin; Yang, Yong-Soo; Lee, Hyung-Been; Yu, Young-Moon; Kim, Jong-Myoung

    2016-06-01

    To study the absorption characteristics of rhodopsin, a dim-light photoreceptor, in chub mackerel (Scomber japonicus) and the relationship between light wavelengths on the photoresponse, the rod opsin gene was cloned into an expression vector, pMT4. Recombinant opsin was transiently expressed in COS-1 cells and reconstituted with 11-cis-retinal. Cells containing the regenerated rhodopsin were solubilized and subjected to UV/Vis spectroscopic analysis in the dark and upon illumination. Difference spectra from the lysates indicated an absorption maximum of mackerel rhodopsin around 500 nm. Four types of light-emitting diode (LED) modules with different wavelengths (red, peak 627 nm; cyan, 505 nm; blue, 442 nm; white, 447 + 560 nm) were constructed to examine their effects on the photoresponse in chub mackerel. Behavioral responses of the mackerels, including speed and frequencies acclimated in the dark and upon LED illumination, were analyzed using an underwater acoustic camera. Compared to an average speed of 22.25 ± 1.57 cm/s of mackerel movement in the dark, speed increased to 22.97 ± 0.29, 24.66 ± 1.06, 26.28 ± 2.28, and 25.19 ± 1.91 cm/s upon exposure to red, blue, cyan, and white LEDs, respectively. There were increases of 103.48 ± 1.58, 109.37 ± 5.29, 118.48 ± 10.82, and 109.43 ± 3.92 %, respectively, in the relative speed of the fishes upon illumination with red, blue, cyan, and white LEDs compared with that in the dark (set at 100 %). Similar rate of wavelength-dependent responses was observed in a frequency analysis. These results indicate that an LED emitting a peak wavelength close to an absorption maximum of rhodopsin is more effective at eliciting a response to light.

  20. A simple sub-nanosecond ultraviolet light pulse generator with high repetition rate and peak power.

    PubMed

    Binh, P H; Trong, V D; Renucci, P; Marie, X

    2013-08-01

    We present a simple ultraviolet sub-nanosecond pulse generator using commercial ultraviolet light-emitting diodes with peak emission wavelengths of 290 nm, 318 nm, 338 nm, and 405 nm. The generator is based on step recovery diode, short-circuited transmission line, and current-shaping circuit. The narrowest pulses achieved have 630 ps full width at half maximum at repetition rate of 80 MHz. Optical pulse power in the range of several hundreds of microwatts depends on the applied bias voltage. The bias voltage dependences of the output optical pulse width and peak power are analysed and discussed. Compared to commercial UV sub-nanosecond generators, the proposed generator can produce much higher pulse repetition rate and peak power.

  1. Experimental illumination of natural habitat—an experimental set-up to assess the direct and indirect ecological consequences of artificial light of different spectral composition

    PubMed Central

    Spoelstra, Kamiel; van Grunsven, Roy H. A.; Donners, Maurice; Gienapp, Phillip; Huigens, Martinus E.; Slaterus, Roy; Berendse, Frank; Visser, Marcel E.; Veenendaal, Elmar

    2015-01-01

    Artificial night-time illumination of natural habitats has increased dramatically over the past few decades. Generally, studies that assess the impact of artificial light on various species in the wild make use of existing illumination and are therefore correlative. Moreover, studies mostly focus on short-term consequences at the individual level, rather than long-term consequences at the population and community level—thereby ignoring possible unknown cascading effects in ecosystems. The recent change to LED lighting has opened up the exciting possibility to use light with a custom spectral composition, thereby potentially reducing the negative impact of artificial light. We describe here a large-scale, ecosystem-wide study where we experimentally illuminate forest-edge habitat with different spectral composition, replicated eight times. Monitoring of species is being performed according to rigid protocols, in part using a citizen-science-based approach, and automated where possible. Simultaneously, we specifically look at alterations in behaviour, such as changes in activity, and daily and seasonal timing. In our set-up, we have so far observed that experimental lights facilitate foraging activity of pipistrelle bats, suppress activity of wood mice and have effects on birds at the community level, which vary with spectral composition. Thus far, we have not observed effects on moth populations, but these and many other effects may surface only after a longer period of time. PMID:25780241

  2. Integral freeform illumination lens design of LED based pico-projector.

    PubMed

    Zhao, Shuang; Wang, Kai; Chen, Fei; Qin, Zong; Liu, Sheng

    2013-05-01

    In this paper, an illumination lens design for a LED-based pico-projector is presented. Different from the traditional illumination systems composed by lens group, the integral illumination lens consists of a total internal reflector (TIR) and a freeform surface. TIR acts as collimation lens and its top surface formed by a freeform surface reshapes the nonuniform circular light pattern generated by TIR to be rectangular and uniform. Diameter and height of the lens are 16 and 10 mm, respectively. An optimization method to deal with the problem of extended light source is also presented in detail in this paper. According to the simulation results of the final optimized lens, 77% (neglecting the effect of polarization) of the power of light source is collected on liquid crystal on silicon panel with a 16∶9 ratio and illumination uniformity achieves 92%.

  3. Color rendering indices in global illumination methods

    NASA Astrophysics Data System (ADS)

    Geisler-Moroder, David; Dür, Arne

    2009-02-01

    Human perception of material colors depends heavily on the nature of the light sources used for illumination. One and the same object can cause highly different color impressions when lit by a vapor lamp or by daylight, respectively. Based on state-of-the-art colorimetric methods we present a modern approach for calculating color rendering indices (CRI), which were defined by the International Commission on Illumination (CIE) to characterize color reproduction properties of illuminants. We update the standard CIE method in three main points: firstly, we use the CIELAB color space, secondly, we apply a Bradford transformation for chromatic adaptation, and finally, we evaluate color differences using the CIEDE2000 total color difference formula. Moreover, within a real-world scene, light incident on a measurement surface is composed of a direct and an indirect part. Neumann and Schanda1 have shown for the cube model that interreflections can influence the CRI of an illuminant. We analyze how color rendering indices vary in a real-world scene with mixed direct and indirect illumination and recommend the usage of a spectral rendering engine instead of an RGB based renderer for reasons of accuracy of CRI calculations.

  4. Effects of lighting illuminance levels on stair negotiation performance in individuals with visual impairment.

    PubMed

    Shaheen, Aliah F; Sourlas, Alexandros; Horton, Khim; McLean, Christopher; Ewins, David; Gould, David; Ghoussayni, Salim

    2018-04-01

    Stair-related falls of older people cause a substantial financial and social burden. Deterioration of the visual system amongst other factors put older people at a high risk of falling. Improved lighting is often recommended. The aim of this study was to investigate the effect of lighting illuminance on stair negotiation performance in older individuals with visual impairment. Eleven participants aged 60 or over with a vision of 6/18 or worse ascended and descended a staircase under: 50 lx, 100 lx, 200 lx, 300 lx and distributed 200 lx lighting. A motion capture system was used to measure movements of the lower limb. Clearance, clearance variability, temporal and spatial parameters and joint/segment kinematics were computed. There was no effect on clearance or clearance variability. Participants had lower speed, cadence, increased cycle time and stance time in the 50 lx compared to 300 lx and distributed 200 lx lighting in descent. The minimum hip angle in ascent was increased in the 200 lx lighting. Clearance was found to be moderately correlated with balance scores. Individuals with visual impairment adopt precautionary gait in dim lighting conditions. This does not always result in improvements in the parameters associated with risk of falling (e.g. clearance). Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Color-rendering indices in global illumination methods

    NASA Astrophysics Data System (ADS)

    Geisler-Moroder, David; Dür, Arne

    2009-10-01

    Human perception of material colors depends heavily on the nature of the light sources that are used for illumination. One and the same object can cause highly different color impressions when lit by a vapor lamp or by daylight, respectively. On the basis of state-of-the-art colorimetric methods, we present a modern approach for the calculation of color-rendering indices (CRI), which were defined by the International Commission on Illumination (CIE) to characterize color reproduction properties of illuminants. We update the standard CIE method in three main points: first, we use the CIELAB color space; second, we apply a linearized Bradford transformation for chromatic adaptation; and finally, we evaluate color differences using the CIEDE2000 total color difference formula. Moreover, within a real-world scene, light incident on a measurement surface is composed of a direct and an indirect part. Neumann and Schanda [Proc. CGIV'06 Conf., Leeds, UK, pp. 283-286 (2006)] have shown for the cube model that diffuse interreflections can influence the CRI of a light source. We analyze how color-rendering indices vary in a real-world scene with mixed direct and indirect illumination and recommend the usage of a spectral rendering engine instead of an RGB-based renderer for reasons of accuracy of CRI calculations.

  6. Effect of Pulsed Ultraviolet Light and High Hydrostatic Pressure on the Antigenicity of Almond Protein Extracts.

    USDA-ARS?s Scientific Manuscript database

    The efficacy of pulsed ultraviolet light (PUV) and high hydrostatic pressure (HHP) on reducing the IgE binding to the almond extracts, was studied using SDS-PAGE, Western Blot, and ELISA probed with human plasma containing IgE antibodies to almond allergens, and a polyclonal antibody against almond ...

  7. Inactivation of avirulent Yersinia pestis on food and food contact surfaces by ultraviolet light and freezing

    USDA-ARS?s Scientific Manuscript database

    Yersinia pestis, the causative agent of plague, can occasionally be contracted as a naso-pharangeal or gastrointestinal illness through consumption of contaminated meat. In this study, the use of 254 nm ultraviolet light (UV-C) to inactivate a multi-isolate cocktail of avirulent Y. pestis on food an...

  8. Skin β-endorphin mediates addiction to ultraviolet light

    PubMed Central

    Fell, Gillian L.; Robinson, Kathleen C.; Mao, Jianren; Woolf, Clifford J.; Fisher, David E.

    2014-01-01

    SUMMARY Ultraviolet light is an established carcinogen yet evidence suggests that UV-seeking behavior has addictive features. Following UV exposure, epidermal keratinocytes synthesize Proopiomelanocortin that is processed to Melanocyte Stimulating Hormone, inducing tanning. We show that in rodents another POMC-derived peptide, β-endorphin, is coordinately synthesized in skin, elevating plasma levels after low-dose UV. Increases in pain-related thresholds are observed, and reversed by pharmacologic opioid antagonism. Opioid blockade also elicits withdrawal signs after chronic UV exposure. This effect was sufficient to guide operant behavioral choices to avoidance of opioid withdrawal (conditioned place aversion). These UV-induced nociceptive and behavioral effects were absent in β-endorphin knockout mice and in mice lacking p53-mediated POMC induction in epidermal keratinocytes. While primordial UV addiction, mediated by the hedonic action of β-endorphin and anhedonic effects of withdrawal, may theoretically have enhanced evolutionary vitamin D biosynthesis, it now may contribute to the relentless rise in skin cancer incidence in man. PMID:24949966

  9. Three-dimensional characterization of extreme ultraviolet mask blank defects by interference contrast photoemission electron microscopy.

    PubMed

    Lin, Jingquan; Weber, Nils; Escher, Matthias; Maul, Jochen; Han, Hak-Seung; Merkel, Michael; Wurm, Stefan; Schönhense, Gerd; Kleineberg, Ulf

    2008-09-29

    A photoemission electron microscope based on a new contrast mechanism "interference contrast" is applied to characterize extreme ultraviolet lithography mask blank defects. Inspection results show that positioning of interference destructive condition (node of standing wave field) on surface of multilayer in the local region of a phase defect is necessary to obtain best visibility of the defect on mask blank. A comparative experiment reveals superiority of the interference contrast photoemission electron microscope (Extreme UV illumination) over a topographic contrast one (UV illumination with Hg discharge lamp) in detecting extreme ultraviolet mask blank phase defects. A depth-resolved detection of a mask blank defect, either by measuring anti-node peak shift in the EUV-PEEM image under varying inspection wavelength condition or by counting interference fringes with a fixed illumination wavelength, is discussed.

  10. 29 CFR 1918.92 - Illumination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Walking, working, and climbing areas. Walking, working, and climbing areas shall be illuminated. Unless... contact with drafts, running gear, and other moving equipment. (4) Portable cargo lights furnished by the...

  11. Three-dimensional illumination procedure for photodynamic therapy of dermatology

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-ming; Zhang, Feng-juan; Dong, Fei; Zhou, Ya

    2014-09-01

    Light dosimetry is an important parameter that affects the efficacy of photodynamic therapy (PDT). However, the irregular morphologies of lesions complicate lesion segmentation and light irradiance adjustment. Therefore, this study developed an illumination demo system comprising a camera, a digital projector, and a computing unit to solve these problems. A three-dimensional model of a lesion was reconstructed using the developed system. Hierarchical segmentation was achieved with the superpixel algorithm. The expected light dosimetry on the targeted lesion was achieved with the proposed illumination procedure. Accurate control and optimization of light delivery can improve the efficacy of PDT.

  12. Large enhancement of light extraction efficiency in AlGaN-based nanorod ultraviolet light-emitting diode structures.

    PubMed

    Ryu, Han-Youl

    2014-02-04

    Light extraction efficiency (LEE) of AlGaN-based nanorod deep ultraviolet (UV) light-emitting diodes (LEDs) is numerically investigated using three-dimensional finite-difference time-domain simulations. LEE of deep UV LEDs is limited by strong light absorption in the p-GaN contact layer and total internal reflection. The nanorod structure is found to be quite effective in increasing LEE of deep UV LEDs especially for the transverse magnetic (TM) mode. In the nanorod LED, strong dependence of LEE on structural parameters such as the diameter of a nanorod and the p-GaN thickness is observed, which can be attributed to the formation of resonant modes inside the nanorod structure. Simulation results show that, when the structural parameters of the nanorod LED are optimized, LEE can be higher than 50% and 60% for the transverse electric (TE) and TM modes, respectively. The nanorod structure is expected to be a good candidate for the application to future high-efficiency deep UV LEDs. PACS: 41.20.Jb; 42.72.Bj; 85.60.Jb.

  13. Large enhancement of light extraction efficiency in AlGaN-based nanorod ultraviolet light-emitting diode structures

    PubMed Central

    2014-01-01

    Light extraction efficiency (LEE) of AlGaN-based nanorod deep ultraviolet (UV) light-emitting diodes (LEDs) is numerically investigated using three-dimensional finite-difference time-domain simulations. LEE of deep UV LEDs is limited by strong light absorption in the p-GaN contact layer and total internal reflection. The nanorod structure is found to be quite effective in increasing LEE of deep UV LEDs especially for the transverse magnetic (TM) mode. In the nanorod LED, strong dependence of LEE on structural parameters such as the diameter of a nanorod and the p-GaN thickness is observed, which can be attributed to the formation of resonant modes inside the nanorod structure. Simulation results show that, when the structural parameters of the nanorod LED are optimized, LEE can be higher than 50% and 60% for the transverse electric (TE) and TM modes, respectively. The nanorod structure is expected to be a good candidate for the application to future high-efficiency deep UV LEDs. PACS 41.20.Jb; 42.72.Bj; 85.60.Jb PMID:24495598

  14. Chromatic Illumination Discrimination Ability Reveals that Human Colour Constancy Is Optimised for Blue Daylight Illuminations

    PubMed Central

    Pearce, Bradley; Crichton, Stuart; Mackiewicz, Michal; Finlayson, Graham D.; Hurlbert, Anya

    2014-01-01

    The phenomenon of colour constancy in human visual perception keeps surface colours constant, despite changes in their reflected light due to changing illumination. Although colour constancy has evolved under a constrained subset of illuminations, it is unknown whether its underlying mechanisms, thought to involve multiple components from retina to cortex, are optimised for particular environmental variations. Here we demonstrate a new method for investigating colour constancy using illumination matching in real scenes which, unlike previous methods using surface matching and simulated scenes, allows testing of multiple, real illuminations. We use real scenes consisting of solid familiar or unfamiliar objects against uniform or variegated backgrounds and compare discrimination performance for typical illuminations from the daylight chromaticity locus (approximately blue-yellow) and atypical spectra from an orthogonal locus (approximately red-green, at correlated colour temperature 6700 K), all produced in real time by a 10-channel LED illuminator. We find that discrimination of illumination changes is poorer along the daylight locus than the atypical locus, and is poorest particularly for bluer illumination changes, demonstrating conversely that surface colour constancy is best for blue daylight illuminations. Illumination discrimination is also enhanced, and therefore colour constancy diminished, for uniform backgrounds, irrespective of the object type. These results are not explained by statistical properties of the scene signal changes at the retinal level. We conclude that high-level mechanisms of colour constancy are biased for the blue daylight illuminations and variegated backgrounds to which the human visual system has typically been exposed. PMID:24586299

  15. Utility and safety of a novel surgical microscope laser light source

    PubMed Central

    Bakhit, Mudathir S.; Suzuki, Kyouichi; Sakuma, Jun; Fujii, Masazumi; Murakami, Yuta; Ito, Yuhei; Sugano, Tetsuo; Saito, Kiyoshi

    2018-01-01

    Objective Tissue injuries caused by the thermal effects of xenon light microscopes have previously been reported. Due to this, the development of a safe microscope light source became a necessity. A newly developed laser light source is evaluated regarding its effectiveness and safety as an alternative to conventional xenon light source. Methods We developed and tested a new laser light source for surgical microscopes. Four experiments were conducted to compare xenon and laser lights: 1) visual luminance comparison, 2) luminous and light chromaticity measurements, 3) examination and analysis of visual fatigue, and 4) comparison of focal temperature elevation due to light source illumination using porcine muscle samples. Results Results revealed that the laser light could be used at a lower illumination value than the xenon light (p < 0.01). There was no significant difference in visual fatigue status between the laser light and the xenon light. The laser light was superior to the xenon light regarding luminous intensity and color chromaticity. The focal temperature elevation of the muscle samples was significantly higher when irradiated with xenon light in vitro than with laser light (p < 0.01). Conclusion The newly developed laser light source is more efficient and safer than a conventional xenon light source. It lacks harmful ultraviolet waves, has a longer lifespan, a lower focal temperature than that of other light sources, a wide range of brightness and color production, and improved safety for the user’s vision. Further clinical trials are necessary to validate the impact of this new light source on the patient’s outcome and prognosis. PMID:29390016

  16. Ultraviolet stress delays chromosome replication in light/dark synchronized cells of the marine cyanobacterium Prochlorococcus marinus PCC9511

    PubMed Central

    2010-01-01

    Background The marine cyanobacterium Prochlorococcus is very abundant in warm, nutrient-poor oceanic areas. The upper mixed layer of oceans is populated by high light-adapted Prochlorococcus ecotypes, which despite their tiny genome (~1.7 Mb) seem to have developed efficient strategies to cope with stressful levels of photosynthetically active and ultraviolet (UV) radiation. At a molecular level, little is known yet about how such minimalist microorganisms manage to sustain high growth rates and avoid potentially detrimental, UV-induced mutations to their DNA. To address this question, we studied the cell cycle dynamics of P. marinus PCC9511 cells grown under high fluxes of visible light in the presence or absence of UV radiation. Near natural light-dark cycles of both light sources were obtained using a custom-designed illumination system (cyclostat). Expression patterns of key DNA synthesis and repair, cell division, and clock genes were analyzed in order to decipher molecular mechanisms of adaptation to UV radiation. Results The cell cycle of P. marinus PCC9511 was strongly synchronized by the day-night cycle. The most conspicuous response of cells to UV radiation was a delay in chromosome replication, with a peak of DNA synthesis shifted about 2 h into the dark period. This delay was seemingly linked to a strong downregulation of genes governing DNA replication (dnaA) and cell division (ftsZ, sepF), whereas most genes involved in DNA repair (such as recA, phrA, uvrA, ruvC, umuC) were already activated under high visible light and their expression levels were only slightly affected by additional UV exposure. Conclusions Prochlorococcus cells modified the timing of the S phase in response to UV exposure, therefore reducing the risk that mutations would occur during this particularly sensitive stage of the cell cycle. We identified several possible explanations for the observed timeshift. Among these, the sharp decrease in transcript levels of the dnaA gene

  17. Fiber-type dosimeter with improved illuminator

    DOEpatents

    Fox, Richard J.

    1987-01-01

    A single-piece, molded plastic, Cassigrainian-type condenser arrangement is incorporated in a tubular-shaped personal pocket dosimeter of the type which combines an ionization chamber with an optically-read fiber electrometer to provide improved illumination of the electrometer fiber. The condenser routes incoming light from one end of the dosimeter tubular housing around a central axis charging pin assembly and focuses the light at low angles to the axis so that it falls within the acceptance angle of the electrometer fiber objective lens viewed through an eyepiece lens disposed in the opposite end of the dosimeter. This results in improved fiber illumination and fiber image contrast.

  18. Direct design of achromatic lens for Lambertian sources in collimating illumination

    NASA Astrophysics Data System (ADS)

    Yin, Peng; Xu, Xiping; Jiang, Zhaoguo; Wang, Hongshu

    2017-10-01

    Illumination design used to redistribute the spatial energy distribution of light source is a key technique in lighting applications. However, there is still no effective illumination design method for the removing of the chromatic dispersion. What we present here is an achromatic lens design to enhance the efficiency and uniform illumination of white light-emitting diode (LED) with diffractive optical element (DOE). We employ the chromatic aberration value (deg) to measure the degree of chromatic dispersion in illumination systems. Monte Carlo ray tracing simulation results indicate that the chromatic dispersion of the modified achromatic collimator significantly decreases from 0.5 to 0.1 with LED chip size of 1.0mm×1.0mm and simulation efficiency of 90.73%, compared with the traditional collimator. Moreover, with different corrected wavelengths we compared different chromatic aberration values that followed with the changing pupil percent. The achromatic collimator provided an effective way to achieve white LED with low chromatic dispersion at high efficiency and uniform illumination.

  19. Ferroelectric Thin-Film Capacitors As Ultraviolet Detectors

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita

    1995-01-01

    Advantages include rapid response, solar blindness, and relative invulnerability to ionizing radiation. Ferroelectric capacitor made to function as photovoltaic detector of ultraviolet photons by making one of its electrodes semitransparent. Photovoltaic effect exploited more fully by making Schottky barrier at illuminated semitransparent-electrode/ferroelectric interface taller than Schottky barrier at other electrode/ferroelectric interface.

  20. Numerical analysis of lateral illumination lightpipes using elliptical grooves

    NASA Astrophysics Data System (ADS)

    Sánchez-Guerrero, Guillermo E.; Viera-González, Perla M.; Martínez-Guerra, Edgar; Ceballos-Herrera, Daniel E.

    2017-09-01

    Lightpipes are used for illumination in applications such as back-lighting or solar cell concentrators due to the high irradiance uniformity, but its optimal design requires several parameters. This work presents a procedure to design a square lightpipe to control the light-extraction on its lateral face using commercial LEDs placed symmetrically in the lightpipe frontal face. We propose the use of grooves using total internal reflection placed successively in the same face of extraction to control the area of emission. The LED area of emission is small compared with the illuminated area, and, as expected, the lateral face total power is attenuated. These grooves reduce the optical elements in the system and can control areas of illumination. A mathematical and numerical analysis are presented to determine the dependencies on the light-extraction.

  1. Ba2Mg(BO3)2:Bi3+ - A new phosphor with ultraviolet light emission

    NASA Astrophysics Data System (ADS)

    Lakshminarasimhan, N.; Jayakiruba, S.; Prabhavathi, K.

    2017-10-01

    Ultraviolet light emission was observed in a new Ba2Mg(BO3)2:Bi3+ phosphor. Bi3+ substitution for Ba2+ in the lattice was supplemented with K+ to maintain the charge neutrality. The samples of the formula Ba2-2xBixKxMg(BO3)2 [x = 0, 0.001, 0.01, 0.02, and 0.05] synthesized by solid state reaction were characterized using powder X-ray diffraction for their phase formation. Raman and diffuse reflectance UV-Vis spectroscopic techniques were used to obtain information on the vibrational modes and optical properties, respectively. The room temperature photoluminescence measurements revealed an ultraviolet emission at 370 nm when excited using 304 nm wavelength and the Stokes shift is 5868 cm-1.

  2. Ultraviolet light-responsive photorheological fluids: as a new class of smart fluids

    NASA Astrophysics Data System (ADS)

    Cho, Min-Young; Kim, Ji-Sik; Choi, Hyoung Jin; Choi, Seung-Bok; Kim, Gi-Woo

    2017-05-01

    We present a comprehensive introduction to the photorheological (PR) fluids whose rheological behavior can be changed by ultraviolet (UV) light with a wavelength of 365 nm. When the PR fluid was exposed to UV light, the viscosity of the fluid decreased, while the viscosity recovered to its initial value when UV light was turned off, indicating that the viscosity of these types of fluids can be reversible and tunable by UV light. Contrary to conventional smart fluids, such as electrorheological and magnetorheological fluids, PR fluid does not suffer from a phase splitting problem because it exists in a single-phase solution. Additionally, the PR fluid does not require any contact component, such as electrodes, and electric wires that are essential components for conventional smart fluids. In this work, the PR fluids were synthesized by doping lecithin/sodium deoxycholate reverse micelles with a photo-chromic spiropyran compound. It is demonstrated that the viscosity changes of PR fluids can be induced by UV light, and their rheological properties are examined in detail. In addition, an example of tailoring rheological properties using photoluminescence was introduced for improved response time. One of the potential applications, such as microfluidic flow control using the PR fluids, is also briefly presented.

  3. Micro-optics: enabling technology for illumination shaping in optical lithography

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard

    2014-03-01

    Optical lithography has been the engine that has empowered semiconductor industry to continually reduce the half-pitch for over 50 years. In early mask aligners a simple movie lamp was enough to illuminate the photomask. Illumination started to play a more decisive role when proximity mask aligners appeared in the mid-1970s. Off-axis illumination was introduced to reduce diffraction effects. For early projection lithography systems (wafer steppers), the only challenge was to collect the light efficiently to ensure short exposure time. When projection optics reached highest level of perfection, further improvement was achieved by optimizing illumination. Shaping the illumination light, also referred as pupil shaping, allows the optical path from reticle to wafer to be optimized and thus has a major impact on aberrations and diffraction effects. Highly-efficient micro-optical components are perfectly suited for this task. Micro-optics for illumination evolved from simple flat-top (fly's-eye) to annular, dipole, quadrupole, multipole and freeform illumination. Today, programmable micro-mirror arrays allow illumination to be changed on the fly. The impact of refractive, diffractive and reflective microoptics for photolithography will be discussed.

  4. Experimental illumination of natural habitat--an experimental set-up to assess the direct and indirect ecological consequences of artificial light of different spectral composition.

    PubMed

    Spoelstra, Kamiel; van Grunsven, Roy H A; Donners, Maurice; Gienapp, Phillip; Huigens, Martinus E; Slaterus, Roy; Berendse, Frank; Visser, Marcel E; Veenendaal, Elmar

    2015-05-05

    Artificial night-time illumination of natural habitats has increased dramatically over the past few decades. Generally, studies that assess the impact of artificial light on various species in the wild make use of existing illumination and are therefore correlative. Moreover, studies mostly focus on short-term consequences at the individual level, rather than long-term consequences at the population and community level-thereby ignoring possible unknown cascading effects in ecosystems. The recent change to LED lighting has opened up the exciting possibility to use light with a custom spectral composition, thereby potentially reducing the negative impact of artificial light. We describe here a large-scale, ecosystem-wide study where we experimentally illuminate forest-edge habitat with different spectral composition, replicated eight times. Monitoring of species is being performed according to rigid protocols, in part using a citizen-science-based approach, and automated where possible. Simultaneously, we specifically look at alterations in behaviour, such as changes in activity, and daily and seasonal timing. In our set-up, we have so far observed that experimental lights facilitate foraging activity of pipistrelle bats, suppress activity of wood mice and have effects on birds at the community level, which vary with spectral composition. Thus far, we have not observed effects on moth populations, but these and many other effects may surface only after a longer period of time. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. Carrier Conduction and Light Emission by Modification of Poly(alkylfluorene) Interface under Vacuum Ultraviolet Light Irradiation

    NASA Astrophysics Data System (ADS)

    Ohmori, Yutaka; Kajii, Hirotake; Terashima, Daiki; Kusumoto, Yusuke

    2013-03-01

    Organic field effect transistors (OFETs) have been extensively studied for flexible electronics. The characteristics of poly(9,9-dioctylfluorenyl-2,7-dyl) (F8) modified by thermal or light are strongly dependent on the carrier transport and optical characteristics. We investigate all solution-processed OFETs with Ag nano-ink as gate electrodes patterned by Vacuum Ultraviolet (VUV) (172 nm). Bi-layer gate insulators of amorphous fluoro-polymer CYTOP (Asahi Glass Corp.) and poly(methylmethacrylate) (PMMA) were used. Top-gate-type OFETs with ITO source/drain electrode utilizing F8 or poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) as an active layer were fabricated, and investigated the carrier conduction and emission characteristic. Without VUV irradiation, both OFETs showed the ambipolar and light-emitting characteristics. On the other hand, F8 devices with VUV exhibited only p-type conduction. The quenching centers were generated in F8 layer by VUV irradiation, which are related to the electron trap sites at the interface. OFETs with F8BT showed both p- and n-type conduction even after VUV. F8BT suffers less damage by VUV and maintain light emission. Light emitting transistors were realized utilizing F8BT patterned by VUV irradiation. This research was partially supported financially by MEXT. The authors thank Harima Chemicals Inc. for providing Ag nano-ink.

  6. Fiber Coupled Laser Diodes with Even Illumination Pattern

    NASA Technical Reports Server (NTRS)

    Howard, Richard T. (Inventor)

    2007-01-01

    An optical fiber for evenly illuminating a target. The optical fiber is coupled to a laser emitting diode and receives laser light. The la ser light travels through the fiber optic and exits at an exit end. T he exit end has a diffractive optical pattern formed thereon via etch ing, molding or cutting, to reduce the Gaussian profile present in co nventional fiber optic cables The reduction of the Gaussian provides an even illumination from the fiber optic cable.

  7. Synthesis and characterization of attosecond light vortices in the extreme ultraviolet

    PubMed Central

    Géneaux, R.; Camper, A.; Auguste, T.; Gobert, O.; Caillat, J.; Taïeb, R.; Ruchon, T.

    2016-01-01

    Infrared and visible light beams carrying orbital angular momentum (OAM) are currently thoroughly studied for their extremely broad applicative prospects, among which are quantum information, micromachining and diagnostic tools. Here we extend these prospects, presenting a comprehensive study for the synthesis and full characterization of optical vortices carrying OAM in the extreme ultraviolet (XUV) domain. We confirm the upconversion rules of a femtosecond infrared helically phased beam into its high-order harmonics, showing that each harmonic order carries the total number of OAM units absorbed in the process up to very high orders (57). This allows us to synthesize and characterize helically shaped XUV trains of attosecond pulses. To demonstrate a typical use of these new XUV light beams, we show our ability to generate and control, through photoionization, attosecond electron beams carrying OAM. These breakthroughs pave the route for the study of a series of fundamental phenomena and the development of new ultrafast diagnosis tools using either photonic or electronic vortices. PMID:27573787

  8. Exciplex formation and electroluminescent absorption in ultraviolet organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Zhang, Hao; Zhang, Xiao-Wen; Xu, Tao; Wei, Bin

    2015-02-01

    We investigated the formation of exciplex and electroluminescent absorption in ultraviolet organic light-emitting diodes (UV OLEDs) using different heterojunction structures. It is found that an energy barrier of over 0.3 eV between the emissive layer (EML) and adjacent transport layer facilitates exciplex formation. The electron blocking layer effectively confines electrons in the EML, which contributes to pure UV emission and enhances efficiency. The change in EML thickness generates tunable UV emission from 376 nm to 406 nm. In addition, the UV emission excites low-energy organic function layers and produces photoluminescent emission. In UV OLED, avoiding the exciplex formation and averting light absorption can effectively improve the purity and efficiency. A maximum external quantum efficiency of 1.2% with a UV emission peak of 376 nm is realized. Project supported by the National Natural Science Foundation of China (Grant Nos. 61136003 and 61275041) and the Guangxi Provincial Natural Science Foundation, China (Grant No. 2012GXNSFBA053168).

  9. Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp

    NASA Astrophysics Data System (ADS)

    Muramoto, Yoshihiko; Kimura, Masahiro; Nouda, Suguru

    2014-06-01

    Ultraviolet light-emitting diodes (UV-LEDs) have started replacing UV lamps. The power per LED of high-power LED products has reached 12 W (14 A), which is 100 times the values observed ten years ago. In addition, the cost of these high-power LEDs has been decreasing. In this study, we attempt to understand the technologies and potential of UV-LEDs.

  10. Ultraviolet laser beam monitor using radiation responsive crystals

    DOEpatents

    McCann, Michael P.; Chen, Chung H.

    1988-01-01

    An apparatus and method for monitoring an ultraviolet laser beam includes disposing in the path of an ultraviolet laser beam a substantially transparent crystal that will produce a color pattern in response to ultraviolet radiation. The crystal is exposed to the ultraviolet laser beam and a color pattern is produced within the crystal corresponding to the laser beam intensity distribution therein. The crystal is then exposed to visible light, and the color pattern is observed by means of the visible light to determine the characteristics of the laser beam that passed through crystal. In this manner, a perpendicular cross sectional intensity profile and a longitudinal intensity profile of the ultraviolet laser beam may be determined. The observation of the color pattern may be made with forward or back scattered light and may be made with the naked eye or with optical systems such as microscopes and television cameras.

  11. High performance organic integrated device with ultraviolet photodetective and electroluminescent properties consisting of a charge-transfer-featured naphthalimide derivative

    NASA Astrophysics Data System (ADS)

    Wang, Hanyu; Zhou, Jie; Wang, Xu; Lu, Zhiyun; Yu, Junsheng

    2014-08-01

    A high performance organic integrated device (OID) with ultraviolet photodetective and electroluminescent (EL) properties was fabricated by using a charge-transfer-featured naphthalimide derivative of 6-{3,5-bis-[9-(4-t-butylphenyl)-9H-carbazol-3-yl]-phenoxy}-2-(4-t-butylphenyl)-benzo[de]isoquinoline-1,3-dione (CzPhONI) as the active layer. The results showed that the OID had a high detectivity of 1.5 × 1011 Jones at -3 V under the UV-350 nm illumination with an intensity of 0.6 mW/cm2, and yielded an exciplex EL light emission with a maximum brightness of 1437 cd/m2. Based on the energy band diagram, both the charge transfer feature of CzPhONI and matched energy level alignment were responsible for the dual ultraviolet photodetective and EL functions of OID.

  12. Light-induced changes in silicon nanocrystal based solar cells: Modification of silicon-hydrogen bonding on silicon nanocrystal surface under illumination

    NASA Astrophysics Data System (ADS)

    Kim, Ka-Hyun; Johnson, Erik V.; Cabarrocas, Pere Roca i.

    2016-07-01

    Hydrogenated polymorphous silicon (pm-Si:H) is a material consisting of a small volume fraction of nanocrystals embedded in an amorphous matrix. pm-Si:H solar cells demonstrate interesting initial degradation behaviors such as rapid initial change in photovoltaic parameters and self-healing after degradation during light-soaking. The precise dynamics of the light-induced degradation was studied in a series of light-soaking experiments under various illumination conditions such as AM1.5G and filtered 570 nm yellow light. Hydrogen effusion experiment before and after light-soaking further revealed that the initial degradation of pm-Si:H solar cells originate from the modification of silicon-hydrogen bonding on the surface of silicon nanocrystals in pm-Si:H.

  13. Illumination normalization of face image based on illuminant direction estimation and improved Retinex.

    PubMed

    Yi, Jizheng; Mao, Xia; Chen, Lijiang; Xue, Yuli; Rovetta, Alberto; Caleanu, Catalin-Daniel

    2015-01-01

    Illumination normalization of face image for face recognition and facial expression recognition is one of the most frequent and difficult problems in image processing. In order to obtain a face image with normal illumination, our method firstly divides the input face image into sixteen local regions and calculates the edge level percentage in each of them. Secondly, three local regions, which meet the requirements of lower complexity and larger average gray value, are selected to calculate the final illuminant direction according to the error function between the measured intensity and the calculated intensity, and the constraint function for an infinite light source model. After knowing the final illuminant direction of the input face image, the Retinex algorithm is improved from two aspects: (1) we optimize the surround function; (2) we intercept the values in both ends of histogram of face image, determine the range of gray levels, and stretch the range of gray levels into the dynamic range of display device. Finally, we achieve illumination normalization and get the final face image. Unlike previous illumination normalization approaches, the method proposed in this paper does not require any training step or any knowledge of 3D face and reflective surface model. The experimental results using extended Yale face database B and CMU-PIE show that our method achieves better normalization effect comparing with the existing techniques.

  14. Wide-area SWIR arrays and active illuminators

    NASA Astrophysics Data System (ADS)

    MacDougal, Michael; Hood, Andrew; Geske, Jon; Wang, Chad; Renner, Daniel; Follman, David; Heu, Paula

    2012-01-01

    We describe the factors that go into the component choices for a short wavelength (SWIR) imager, which include the SWIR sensor, the lens, and the illuminator. We have shown the factors for reducing dark current, and shown that we can achieve well below 1.5 nA/cm2 for 15 μm devices at 7°C. We have mated our InGaAs detector arrays to 640x512 readout integrated integrated circuits (ROICs) to make focal plane arrays (FPAs). In addition, we have fabricated high definition 1920x1080 FPAs for wide field of view imaging. The resulting FPAs are capable of imaging photon fluxes with wavelengths between 1 and 1.6 microns at low light levels. The dark current associated with these FPAs is extremely low, exhibiting a mean dark current density of 0.26 nA/cm2 at 0°C. FLIR has also developed a high definition, 1920x1080, 15 um pitch SWIR sensor. In addition, FLIR has developed laser arrays that provide flat illumination in scenes that are normally light-starved. The illuminators have 40% wall-plug efficiency and provide low-speckle illumination, provide artifact-free imagery versus conventional laser illuminators.

  15. Ultraviolet electroluminescence from zinc oxide nanorods/deoxyribonucleic acid hybrid bio light-emitting diode

    NASA Astrophysics Data System (ADS)

    Gupta, Rohini Bhardwaj; Nagpal, Swati; Arora, Swati; Bhatnagar, Pramod Kumar; Mathur, Parmatma Chandra

    2011-01-01

    Ultraviolet (UV) light-emitting diode using salmon deoxyribonucleic acid (sDNA)-cetyltrimethylammonium complex as an electron blocking layer and zinc oxide (ZnO) nanorods as emissive material was fabricated. UV emission, which was blue shifted up to 335 nm with respect to the band edge emission of 390 nm, was observed. This blue shift was caused due to accumulation of electrons in the conduction band of ZnO because of a high potential barrier existing at the sDNA/ZnO interface.

  16. A Simple low-cost device enables four epi-illumination techniques on standard light microscopes.

    PubMed

    Ishmukhametov, Robert R; Russell, Aidan N; Wheeler, Richard J; Nord, Ashley L; Berry, Richard M

    2016-02-08

    Back-scattering darkfield (BSDF), epi-fluorescence (EF), interference reflection contrast (IRC), and darkfield surface reflection (DFSR) are advanced but expensive light microscopy techniques with limited availability. Here we show a simple optical design that combines these four techniques in a simple low-cost miniature epi-illuminator, which inserts into the differential interference-contrast (DIC) slider bay of a commercial microscope, without further additions required. We demonstrate with this device: 1) BSDF-based detection of Malarial parasites inside unstained human erythrocytes; 2) EF imaging with and without dichroic components, including detection of DAPI-stained Leishmania parasite without using excitation or emission filters; 3) RIC of black lipid membranes and other thin films, and 4) DFSR of patterned opaque and transparent surfaces. We believe that our design can expand the functionality of commercial bright field microscopes, provide easy field detection of parasites and be of interest to many users of light microscopy.

  17. A Simple low-cost device enables four epi-illumination techniques on standard light microscopes

    NASA Astrophysics Data System (ADS)

    Ishmukhametov, Robert R.; Russell, Aidan N.; Wheeler, Richard J.; Nord, Ashley L.; Berry, Richard M.

    2016-02-01

    Back-scattering darkfield (BSDF), epi-fluorescence (EF), interference reflection contrast (IRC), and darkfield surface reflection (DFSR) are advanced but expensive light microscopy techniques with limited availability. Here we show a simple optical design that combines these four techniques in a simple low-cost miniature epi-illuminator, which inserts into the differential interference-contrast (DIC) slider bay of a commercial microscope, without further additions required. We demonstrate with this device: 1) BSDF-based detection of Malarial parasites inside unstained human erythrocytes; 2) EF imaging with and without dichroic components, including detection of DAPI-stained Leishmania parasite without using excitation or emission filters; 3) RIC of black lipid membranes and other thin films, and 4) DFSR of patterned opaque and transparent surfaces. We believe that our design can expand the functionality of commercial bright field microscopes, provide easy field detection of parasites and be of interest to many users of light microscopy.

  18. STEREO's Extreme UltraViolet Imager (EUVI)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    At a pixel resolution of 2048x2048, the STEREO EUVI instrument provides views of the Sun in ultraviolet light that rivals the full-disk views of SOHO/EIT. This image is through the 171 Angstrom (ultraviolet) filter which is characteristic of iron ions (missing eight and nine electrons) at 1 million degrees. There is a short data gap in the latter half of the movie that creates a freeze and then jump in the data view. This is a movie of the Sun in 171 Angstrom ultraviolet light. The time frame is late January, 2007

  19. The ultraviolet variations of iota Cas

    NASA Technical Reports Server (NTRS)

    Molnar, M. R.; Mallama, A. D.; Soskey, D. G.; Holm, A. V.

    1976-01-01

    The Ap variable star iota Cas was observed with the photometers on OAO-2 covering the spectral range 1430-4250 A. The ultraviolet light curves show a double wave with primary minimum and maximum at phase ? 0.00 and 0.35, respectively. Secondary minimum light is at phase ? 0.65 with secondary maximum at phase ? 0.85. The light curves longward of 3150 A vary in opposition to those shortward of this 'null region'. Ground-based coude spectra show that the Fe II and Cr II line strengths have a double-wave variation such that maximum strength occurs at minimum ultraviolet light. We suggest that the strong ultraviolet opacities due to photoionization and line blanketing by these metals may cause the observed photometric variations. We have also constructed an oblique-rotator model which shows iron and chromium lying in a great circle band rather than in circular spots.

  20. Effect of ultraviolet light on water- and fat-soluble vitamins in cow and goat milk.

    PubMed

    Guneser, O; Karagul Yuceer, Y

    2012-11-01

    The objective of this study was to investigate and compare the effects of UV light and heat treatment on vitamins A, B(2), C, and E in cow and goat milk. Vitamins were analyzed by reverse-phase high-pressure liquid chromatography. Ultraviolet and pasteurization treatments caused loss in vitamin C in milk. Pasteurization did not have any significant effect on vitamin B(2). However, UV light treatment decreased the amount of vitamin B(2) after several passes of milk through the UV system. In addition, UV light treatment decreased the amount of vitamins A and E. Vitamins C and E are more sensitive to UV light. UV light sensitivities of vitamins were C>E>A>B(2). These results show that UV light treatment decreases the vitamin content in milk. Also, the number of passes through the UV system and the initial amount of vitamins in milk are important factors affecting vitamin levels. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. 49 CFR 230.86 - Required illumination.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Tenders Cabs, Warning Signals, Sanders and Lights § 230.86 Required illumination. (a) General provisions... in this paragraph (a). (b) Dimming device. Such headlights shall be provided with a device whereby the light from same may be diminished in yards and at stations or when meeting trains. (c) Where...

  2. Variation of outdoor illumination as a function of solar elevation and light pollution

    NASA Astrophysics Data System (ADS)

    Spitschan, Manuel; Aguirre, Geoffrey K.; Brainard, David H.; Sweeney, Alison M.

    2016-06-01

    The illumination of the environment undergoes both intensity and spectral changes during the 24 h cycle of a day. Daylight spectral power distributions are well described by low-dimensional models such as the CIE (Commission Internationale de l’Éclairage) daylight model, but the performance of this model in non-daylight regimes is not characterised. We measured downwelling spectral irradiance across multiple days in two locations in North America: One rural location (Cherry Springs State Park, PA) with minimal anthropogenic light sources, and one city location (Philadelphia, PA). We characterise the spectral, intensity and colour changes and extend the existing CIE model for daylight to capture twilight components and the spectrum of the night sky.

  3. Variation of outdoor illumination as a function of solar elevation and light pollution

    PubMed Central

    Spitschan, Manuel; Aguirre, Geoffrey K.; Brainard, David H.; Sweeney, Alison M.

    2016-01-01

    The illumination of the environment undergoes both intensity and spectral changes during the 24 h cycle of a day. Daylight spectral power distributions are well described by low-dimensional models such as the CIE (Commission Internationale de l’Éclairage) daylight model, but the performance of this model in non-daylight regimes is not characterised. We measured downwelling spectral irradiance across multiple days in two locations in North America: One rural location (Cherry Springs State Park, PA) with minimal anthropogenic light sources, and one city location (Philadelphia, PA). We characterise the spectral, intensity and colour changes and extend the existing CIE model for daylight to capture twilight components and the spectrum of the night sky. PMID:27272736

  4. Variation of outdoor illumination as a function of solar elevation and light pollution.

    PubMed

    Spitschan, Manuel; Aguirre, Geoffrey K; Brainard, David H; Sweeney, Alison M

    2016-06-07

    The illumination of the environment undergoes both intensity and spectral changes during the 24 h cycle of a day. Daylight spectral power distributions are well described by low-dimensional models such as the CIE (Commission Internationale de l'Éclairage) daylight model, but the performance of this model in non-daylight regimes is not characterised. We measured downwelling spectral irradiance across multiple days in two locations in North America: One rural location (Cherry Springs State Park, PA) with minimal anthropogenic light sources, and one city location (Philadelphia, PA). We characterise the spectral, intensity and colour changes and extend the existing CIE model for daylight to capture twilight components and the spectrum of the night sky.

  5. Heavy Mg-doping of (Al,Ga)N films for potential applications in deep ultraviolet light-emitting structures

    NASA Astrophysics Data System (ADS)

    Liang, Y. H.; Towe, E.

    2018-03-01

    Doping of high aluminum-containing (Al,Ga)N thin films has remained a challenging problem that has hindered progress in the development of deep ultraviolet light-emitters. This paper reports on the synthesis and use of heavily doped (Al,Ga)N films in deep ultraviolet (˜274 nm) light-emitting structures; these structures were synthesized by molecular beam epitaxy under liquid-metal growth conditions that facilitate the incorporation of extremely high density of Mg dopant impurities (up to 5 × 1019 cm-3) into aluminum-rich (Al,Ga)N thin films. Prototypical light-emitting diode structures incorporating Al0.7Ga0.3N films doped with Mg impurities that ionize to give free hole carrier concentrations of up to 6 × 1017 cm-3 exhibit external quantum efficiencies of up 0.56%; this is an improvement from previous devices made from molecular beam epitaxy-grown materials. This improvement is believed to be due to the high hole carrier concentration enabled by the relatively low activation energy of 220 meV compared to the expected values of 408-507 meV for Al0.7Ga0.3N films.

  6. Modeling the Infrared Reverberation Response of the Circumnuclear Dusty Torus in AGNs: The Effects of Cloud Orientation and Anisotropic Illumination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almeyda, Triana; Robinson, Andrew; Richmond, Michael

    The obscuring circumnuclear torus of dusty molecular gas is one of the major components of active galactic nuclei (AGN). The torus can be studied by analyzing the time response of its infrared (IR) dust emission to variations in the AGN continuum luminosity, a technique known as reverberation mapping. The IR response is the convolution of the AGN ultraviolet/optical light curve with a transfer function that contains information about the size, geometry, and structure of the torus. Here, we describe a new computer model that simulates the reverberation response of a clumpy torus. Given an input optical light curve, the codemore » computes the emission of a 3D ensemble of dust clouds as a function of time at selected IR wavelengths, taking into account light travel delays. We present simulated dust emission responses at 3.6, 4.5, and 30 μ m that explore the effects of various geometrical and structural properties, dust cloud orientation, and anisotropy of the illuminating radiation field. We also briefly explore the effects of cloud shadowing (clouds are shielded from the AGN continuum source). Example synthetic light curves have also been generated, using the observed optical light curve of the Seyfert 1 galaxy NGC 6418 as input. The torus response is strongly wavelength-dependent, due to the gradient in cloud surface temperature within the torus, and because the cloud emission is strongly anisotropic at shorter wavelengths. Anisotropic illumination of the torus also significantly modifies the torus response, reducing the lag between the IR and optical variations.« less

  7. Tunnel-injected sub-260 nm ultraviolet light emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih; Bajaj, Sanyam; Allerman, Andrew A.; Moseley, Michael W.; Armstrong, Andrew M.; Rajan, Siddharth

    2017-05-01

    We report on tunnel-injected deep ultraviolet light emitting diodes (UV LEDs) configured with a polarization engineered Al0.75Ga0.25 N/In0.2Ga0.8 N tunnel junction structure. Tunnel-injected UV LED structure enables n-type contacts for both bottom and top contact layers. However, achieving Ohmic contact to wide bandgap n-AlGaN layers is challenging and typically requires high temperature contact metal annealing. In this work, we adopted a compositionally graded top contact layer for non-alloyed metal contact and obtained a low contact resistance of ρc = 4.8 × 10-5 Ω cm2 on n-Al0.75Ga0.25 N. We also observed a significant reduction in the forward operation voltage from 30.9 V to 19.2 V at 1 kA/cm2 by increasing the Mg doping concentration from 6.2 × 1018 cm-3 to 1.5 × 1019 cm-3. Non-equilibrium hole injection into wide bandgap Al0.75Ga0.25 N with Eg>5.2 eV was confirmed by light emission at 257 nm. This work demonstrates the feasibility of tunneling hole injection into deep UV LEDs and provides a structural design towards high power deep-UV emitters.

  8. Ultraviolet Extensions

    NASA Image and Video Library

    2008-04-16

    This ultraviolet image from NASA Galaxy Evolution Explorer shows the Southern Pinwheel galaxy, also know as Messier 83 or M83. It is located 15 million light-years away in the southern constellation Hydra.

  9. Comparison of two structured illumination techniques based on different 3D illumination patterns

    NASA Astrophysics Data System (ADS)

    Shabani, H.; Patwary, N.; Doblas, A.; Saavedra, G.; Preza, C.

    2017-02-01

    Manipulating the excitation pattern in optical microscopy has led to several super-resolution techniques. Among different patterns, the lateral sinusoidal excitation was used for the first demonstration of structured illumination microscopy (SIM), which provides the fastest SIM acquisition system (based on the number of raw images required) compared to the multi-spot illumination approach. Moreover, 3D patterns that include lateral and axial variations in the illumination have attracted more attention recently as they address resolution enhancement in three dimensions. A threewave (3W) interference technique based on coherent illumination has already been shown to provide super-resolution and optical sectioning in 3D-SIM. In this paper, we investigate a novel tunable technique that creates a 3D pattern from a set of multiple incoherently illuminated parallel slits that act as light sources for a Fresnel biprism. This setup is able to modulate the illumination pattern in the object space both axially and laterally with adjustable modulation frequencies. The 3D forward model for the new system is developed here to consider the effect of the axial modulation due to the 3D patterned illumination. The performance of 3D-SIM based on 3W interference and the tunable system are investigated in simulation and compared based on two different criteria. First, restored images obtained for both 3D-SIM systems using a generalized Wiener filter are compared to determine the effect of the illumination pattern on the reconstruction. Second, the effective frequency response of both systems is studied to determine the axial and lateral resolution enhancement that is obtained in each case.

  10. Negative gate bias and light illumination-induced hump in amorphous InGaZnO thin film transistor.

    PubMed

    Jeon, Jae-Hong; Seo, Seung-Bum; Park, Han-Sung; Choe, Hee-Hwan; Seo, Jong-Hyun; Park, Kee-Chan; Park, Sang-Hee Ko

    2013-11-01

    While observing the transfer characteristics of a-IGZO TFTs, it was noticed that a hump occurred in the subthreshold regime after light and bias stress. This study analyzes the mechanism of the hump occurrence. It was determined that hump characteristics were related with parasitic TFTs which formed at the peripheral edges parallel with the channel direction. It seems that the negative shift of the transfer characteristics of parasitic TFTs was larger than that of the main TFT under light and bias stress. Therefore, the difference in the negative shift between the main TFT and the parasitic TFT was the origin of the hump occurrence. We investigated the instability of a-IGZO TFTs under negative gate bias with light illumination for various channel structures in order to verify the above mechanism.

  11. Characterization of an ultraviolet imaging detector with high event rate ROIC (HEROIC) readout

    NASA Astrophysics Data System (ADS)

    Nell, Nicholas; France, Kevin; Harwit, Alex; Bradley, Scott; Franka, Steve; Freymiller, Ed; Ebbets, Dennis

    2016-07-01

    We present characterization results from a photon counting imaging detector consisting of one microchannel plate (MCP) and an array of two readout integrated circuits (ROIC) that record photon position. The ROICs used in the position readout are the high event rate ROIC (HEROIC) devices designed to handle event rates up to 1 MHz per pixel, recently developed by the Ball Aerospace and Technologies Corporation in collaboration with the University of Colorado. An opaque cesium iodide (CsI) photocathode sensitive in the far-ultraviolet (FUV; 122-200 nm), is deposited on the upper surface of the MCP. The detector is characterized in a chamber developed by CU Boulder that is capable of illumination with vacuum-ultraviolet (VUV) monochromatic light and measurement of absolute ux with a calibrated photodiode. Testing includes investigation of the effects of adjustment of internal settings of the HEROIC devices including charge threshold, gain, and amplifier bias. The detector response to high count rates is tested. We report initial results including background, uniformity, and quantum detection efficiency (QDE) as a function of wavelength.

  12. Pupillary efficient lighting system

    DOEpatents

    Berman, Samuel M.; Jewett, Don L.

    1991-01-01

    A lighting system having at least two independent lighting subsystems each with a different ratio of scotopic illumination to photopic illumination. The radiant energy in the visible region of the spectrum of the lighting subsystems can be adjusted relative to each other so that the total scotopic illumination of the combined system and the total photopic illumination of the combined system can be varied independently. The dilation or contraction of the pupil of an eye is controlled by the level of scotopic illumination and because the scotopic and photopic illumination can be separately controlled, the system allows the pupil size to be varied independently of the level of photopic illumination. Hence, the vision process can be improved for a given level of photopic illumination.

  13. Intermittent illumination increases biophotolytic hydrogen yield by Anabaena cylindrica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffries, T.W.; Leach, K.L.

    Intermittent illumination increased H/sub 2/ and C/sub 2/H/sub 4/ yields per unit of light from growing cells and from nitrogen-starved cells by 1.7- and 1.35-fold, respectively, as compared with continuous illumination.

  14. Individual Differences in the Post-Illumination Pupil Response to Blue Light: Assessment without Mydriatics

    PubMed Central

    Bruijel, Jessica; van der Meijden, Wisse P.; Bijlenga, Denise; Dorani, Farangis; Coppens, Joris E.; te Lindert, Bart H. W.; Kooij, J. J. Sandra; Van Someren, Eus J. W.

    2016-01-01

    Melanopsin-containing retinal ganglion cells play an important role in the non-image forming effects of light, through their direct projections on brain circuits involved in circadian rhythms, mood and alertness. Individual differences in the functionality of the melanopsin-signaling circuitry can be reliably quantified using the maximum post-illumination pupil response (PIPR) after blue light. Previous protocols for acquiring PIPR relied on the use of mydriatics to dilate the light-exposed eye. However, pharmacological pupil dilation is uncomfortable for the participants and requires ophthalmological expertise. Hence, we here investigated whether an individual’s maximum PIPR can be validly obtained in a protocol that does not use mydriatics but rather increases the intensity of the light stimulus. In 18 participants (5 males, mean age ± SD: 34.6 ± 13.6 years) we evaluated the PIPR after exposure to intensified blue light (550 µW/cm2) provided to an undilated dynamic pupil. The test-retest reliability of the primary PIPR outcome parameter was very high, both between day-to-day assessments (Intraclass Correlation Coefficient (ICC) = 0.85), as well as between winter and summer assessments (ICC = 0.83). Compared to the PIPR obtained with the use of mydriatics and 160 µW/cm2 blue light exposure, the method with intensified light without mydriatics showed almost zero bias according to Bland-Altman plots and had moderate to strong reliability (ICC = 0.67). In conclusion, for PIPR assessments, increasing the light intensity is a feasible and reliable alternative to pupil dilation to relieve the participant’s burden and to allow for performance outside the ophthalmological clinic. PMID:27618116

  15. Perceived color shift of ceramics according to the change of illuminating light with spectroradiometer

    PubMed Central

    Cha, Hyun-Suk; Yu, Bin

    2013-01-01

    PURPOSE Perceived color of ceramics changes by the spectral power distribution of ambient light. This study aimed to quantify the amount of shifts in color and color coordinates of clinically simulated seven all-ceramics due to the switch of three ambient light sources using a human vision simulating spectroradiometer. MATERIALS AND METHODS CIE color coordinates, such as L*, a* and b*,of ceramic specimens were measured under three light sources, which simulate the CIE standard illuminant D65 (daylight), A (incandescent lamp), and F9 (fluorescent lamp). Shifts in color and color coordinate by the switch of lights were determined. Influence of the switched light (D65 to A, or D65 to F9), shade of veneer ceramics (A2 or A3), and brand of ceramics on the shifts was analyzed by a three-way ANOVA. RESULTS Shifts in color and color coordinates were influenced by three factors (P<.05). Color shifts by the switch to A were in the range of 5.9 to 7.7 ΔE*abunits, and those by the switch to F9 were 7.7 to 10.2; all of which were unacceptable (ΔE*ab > 5.5). When switched to A, CIE a* increased (Δa*: 5.6 to 7.6), however, CIE b* increased (Δb*: 4.9 to 7.8) when switched to F9. CONCLUSION Clinically simulated ceramics demonstrated clinically unacceptable color shifts according to the switches in ambient lights based on spectroradiometric readings. Therefore, shade matching and compatibility evaluation should be performed considering ambient lighting conditions and should be done under most relevant lighting condition. PMID:24049567

  16. High-power AlGaN-based near-ultraviolet light-emitting diodes grown on Si(111)

    NASA Astrophysics Data System (ADS)

    Li, Zengcheng; Liu, Legong; Huang, Yingnan; Sun, Qian; Feng, Meixin; Zhou, Yu; Zhao, Hanmin; Yang, Hui

    2017-07-01

    High-power AlGaN-based 385 nm near-ultraviolet light-emitting diodes (UVA-LEDs) grown on Si(111) substrates are reported. The threading dislocation (TD) density of AlGaN was reduced by employing an Al-composition step-graded AlN/AlGaN multilayer buffer. V-shaped pits were intentionally incorporated into the active region to screen the carriers from the nonradiative recombination centers (NRCs) around the TDs and to facilitate hole injection. The light extraction efficiency was enhanced by the surface roughening of a thin-film (TF) vertical chip structure. The as-fabricated TF-UVA-LED exhibited a light output power of 960 mW at 500 mA, corresponding to an external quantum efficiency of 59.7%.

  17. Alternatives to Outdoor Daylight Illumination for Photodynamic Therapy--Use of Greenhouses and Artificial Light Sources.

    PubMed

    Lerche, Catharina M; Heerfordt, Ida M; Heydenreich, Jakob; Wulf, Hans Christian

    2016-02-29

    Daylight-mediated photodynamic therapy (daylight PDT) is a simple and pain free treatment of actinic keratoses. Weather conditions may not always allow daylight PDT outdoors. We compared the spectrum of five different lamp candidates for indoor "daylight PDT" and investigated their ability to photobleach protoporphyrin IX (PpIX). Furthermore, we measured the amount of PpIX activating daylight available in a glass greenhouse, which can be an alternative when it is uncomfortable for patients to be outdoors. The lamps investigated were: halogen lamps (overhead and slide projector), white light-emitting diode (LED) lamp, red LED panel and lamps used for conventional PDT. Four of the five light sources were able to photobleach PpIX completely. For halogen light and the red LED lamp, 5000 lux could photobleach PpIX whereas 12,000 lux were needed for the white LED lamp. Furthermore, the greenhouse was suitable for daylight PDT since the effect of solar light is lowered only by 25%. In conclusion, we found four of the five light sources and the greenhouse usable for indoor daylight PDT. The greenhouse is beneficial when the weather outside is rainy or windy. Only insignificant ultraviolet B radiation (UVB) radiation passes through the greenhouse glass, so sun protection is not needed.

  18. Alternatives to Outdoor Daylight Illumination for Photodynamic Therapy—Use of Greenhouses and Artificial Light Sources

    PubMed Central

    Lerche, Catharina M.; Heerfordt, Ida M.; Heydenreich, Jakob; Wulf, Hans Christian

    2016-01-01

    Daylight-mediated photodynamic therapy (daylight PDT) is a simple and pain free treatment of actinic keratoses. Weather conditions may not always allow daylight PDT outdoors. We compared the spectrum of five different lamp candidates for indoor “daylight PDT” and investigated their ability to photobleach protoporphyrin IX (PpIX). Furthermore, we measured the amount of PpIX activating daylight available in a glass greenhouse, which can be an alternative when it is uncomfortable for patients to be outdoors. The lamps investigated were: halogen lamps (overhead and slide projector), white light-emitting diode (LED) lamp, red LED panel and lamps used for conventional PDT. Four of the five light sources were able to photobleach PpIX completely. For halogen light and the red LED lamp, 5000 lux could photobleach PpIX whereas 12,000 lux were needed for the white LED lamp. Furthermore, the greenhouse was suitable for daylight PDT since the effect of solar light is lowered only by 25%. In conclusion, we found four of the five light sources and the greenhouse usable for indoor daylight PDT. The greenhouse is beneficial when the weather outside is rainy or windy. Only insignificant ultraviolet B radiation (UVB) radiation passes through the greenhouse glass, so sun protection is not needed. PMID:26938525

  19. Interactive lethal and mutagenic effects of ultraviolet light and bleomycin in yeast: synergism or antagonism?

    PubMed

    Lillo, O L; Severgnini, A A; Nunes, E M

    1997-11-01

    The mutagenic interactions of ultraviolet light and bleomycin in haploid populations of Saccharomyces cerevisiae were analyzed. Survival and mutation frequency as a function of different bleomycin concentrations after one conditioning dose of UV radiation were determined. Furthermore, corresponding interaction functions and sensitization factors were calculated. A synergistic interaction between UV light and bleomycin was shown for both lethal and mutagenic events when the cells were in nutrient broth during the treatments. Conversely, the interaction between UV light and bleomycin was antagonistic when the cells were in deionized water during the treatment. The magnitude of lethal and mutagenic interactions depends on dose, and thus presumably on the number of lesions. The observed interactions between UV light and bleomycin suggest that the mechanism that is most likely involved is the induction of repair systems with different error probabilities during the delay of cell division.

  20. Laryngoscope illuminance in a tertiary children's hospital: implications for quality laryngoscopy.

    PubMed

    Volsky, Peter G; Murphy, Michael K; Darrow, David H

    2014-07-01

    Laryngoscopes are used by otolaryngologists in a variety of hospital emergency and critical care settings. However, only rarely have quality-related aspects of laryngoscope function and application been studied. To compare the illuminance of laryngoscopes commonly used in a hospital setting to established standards and to assess the potential effects of maintenance practices on laryngoscope illuminance. Observational study of laryngoscope light output and cross-sectional survey of individuals charged with laryngoscope maintenance in a tertiary care children's hospital. Illuminance was chosen as the unit of measurement (lux). Laryngoscopes in the operating room, emergency department, and pediatric intensive care unit were tested according to a standard technique. Illuminance standards for laryngoscopes, published by the International Organization for Standardization (ISO) (500 lux) and in the medical literature (867 lux) were used as benchmarks. Mean laryngoscope illuminance by type of laryngoscope and light source and percentage of laryngoscopes with illuminance below established standards as well as nonfunctioning units. Maintenance practices were evaluated as a secondary outcome. A total of 319 laryngoscopes were tested; 283 were incandescent bulb units used by anesthesiologists, emergency physicians, and intensivists and 36 were xenon light units used by otolaryngologists. Mean (SD) illuminance was 1330 (1160) lux in the incandescent group and 16,600 (13,000) lux in the xenon group (P < .001). Substandard illuminance was observed only in the incandescent group, in 29% to 43% of laryngoscopes; 5% of the incandescent group did not turn on at all. Maintenance of laryngoscopes was performed on a reactive rather than a preventive basis. At our facility, approximately one-third of incandescent laryngoscopes exhibited substandard light output. On the basis of these findings, our hospital has converted all of its incandescent laryngoscopes to light-emitting diode (LED

  1. Measuring the Photocatalytic Breakdown of Crystal Violet Dye using a Light Emitting Diode Approach

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Underwood, Lauren W.; O'Neal, Duane; Pagnutti, Mary; Davis, Bruce A.

    2009-01-01

    A simple method to estimate the photocatalytic reactivity performance of spray-on titanium dioxide coatings for transmissive glass surfaces was developed. This novel technique provides a standardized method to evaluate the efficiency of photocatalytic material systems over a variety of illumination levels. To date, photocatalysis assessments have generally been conducted using mercury black light lamps. Illumination levels for these types of lamps are difficult to vary, consequently limiting their use for assessing material performance under a diverse range of simulated environmental conditions. This new technique uses an ultraviolet (UV) gallium nitride (GaN) light emitting diode (LED) array instead of a traditional black light to initiate and sustain photocatalytic breakdown. This method was tested with a UV-resistant dye (crystal violet) applied to a titanium dioxide coated glass slide. Experimental control is accomplished by applying crystal violet to both titanium dioxide coated slides and uncoated control slides. A slide is illuminated by the UV LED array, at various light levels representative of outdoor and indoor conditions, from the dye side of the slide. To monitor degradation of the dye over time, a temperature-stabilized white light LED, whose emission spectrum overlaps with the dye absorption spectrum, is used to illuminate the opposite side of the slide. Using a spectrometer, the amount of light from the white light LED transmitted through the slide as the dye degrades is monitored as a function of wavelength and time and is subsequently analyzed. In this way, the rate of degradation for photocatalytically coated versus uncoated slide surfaces can be compared. Results demonstrate that the dye absorption decreased much more rapidly on the photocatalytically coated slides than on the control uncoated slides, and that dye degradation is dependent on illumination level. For photocatalytic activity assessment purposes, this experimental configuration and

  2. Low energy sign illumination system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minogue, R.W.

    A low energy sign contruction is illustrated for illumination of signs of the type having translucent illuminated faces. An opaque sign border is bridged by a reflector extending generally parallel to the illuminated face and having a truncated sawtooth profile. For single sided signs, one set of sawtooth points is truncated; for dual sided signs, both set of sawtooth points are truncated. Bayonet mounted lighting sockets are mounted at apertures in the respective truncations and utilize the metallic reflective surface as one side of a low voltage (10.5-volt) ac circuit. The reflector forms a cooled heat sink mounting the bulbsmore » as well as a supporting matrix. The lamps, as mounted to this supporting matrix, are typically spaced at distances which do not exceed twice the distance of the lamp filament to the translucent face. By the expedient of using 14-V lamps, prolonged lamp life with low energy illumination results.« less

  3. Thermal effects of white light illumination during microsurgery: clinical pilot study on the application safety of surgical microscopes.

    PubMed

    Hibst, Raimund; Saal, David; Russ, Detlef; Kunzi-Rapp, Karin; Kienle, Alwin; Stock, Karl

    2010-01-01

    Modern operating microscopes offer high power illumination to ensure optimal visualization, but can also cause thermal damage. The aim of our study is to quantify the thermal effects in vivo and discuss conditions for safe use. In a pilot study on volunteers, we measured the temperature at the skin surface during microscope illumination, including the influence of anaesthesia and the effects of staining, draping, or moistening of the skin. Irradiation within the limit given by safety regulations (200 mW/cm(2)) results in skin surface temperature of 43 degrees C. Higher intensities (forearm 335 mW/cm(2), back 250 mW/cm(2)) are tolerated, resulting in reversible hyperaemia. At a very high illumination intensity (750 mW/cm(2)), pain occurs within 30 s at temperatures of 46 degrees C+/-1 degrees C (hand and forearm), and 43 degrees C+/-2 degrees C (back), respectively. Anaesthesia has no distinct effect on the temperature, whereas staining and drapes result in much higher temperatures (>100 degrees C). Moistening at practicable flow rates can reduce temperature efficiently when combined with a light absorbing and water absorbent drape. In conclusion, surgeons must be aware that surgical microscope illumination without protective means can cause skin temperatures to rise much above pain threshold, which in our study serves as a (conservative) benchmark for potential damage.

  4. Thermal effects of white light illumination during microsurgery: clinical pilot study on the application safety of surgical microscopes

    NASA Astrophysics Data System (ADS)

    Hibst, Raimund; Saal, David; Russ, Detlef; Kunzi-Rapp, Karin; Kienle, Alwin; Stock, Karl

    2010-07-01

    Modern operating microscopes offer high power illumination to ensure optimal visualization, but can also cause thermal damage. The aim of our study is to quantify the thermal effects in vivo and discuss conditions for safe use. In a pilot study on volunteers, we measured the temperature at the skin surface during microscope illumination, including the influence of anaesthesia and the effects of staining, draping, or moistening of the skin. Irradiation within the limit given by safety regulations (200 mW/cm2) results in skin surface temperature of 43 °C. Higher intensities (forearm 335 mW/cm2, back 250 mW/cm2) are tolerated, resulting in reversible hyperaemia. At a very high illumination intensity (750 mW/cm2), pain occurs within 30 s at temperatures of 46 °C+/-1 °C (hand and forearm), and 43 °C+/-2 °C (back), respectively. Anaesthesia has no distinct effect on the temperature, whereas staining and drapes result in much higher temperatures (>100 °C). Moistening at practicable flow rates can reduce temperature efficiently when combined with a light absorbing and water absorbent drape. In conclusion, surgeons must be aware that surgical microscope illumination without protective means can cause skin temperatures to rise much above pain threshold, which in our study serves as a (conservative) benchmark for potential damage.

  5. Inactivation of Staphylococcus saprophyticus in chicken meat and exudate using high pressure processing, gamma radiation, and ultraviolet light

    USDA-ARS?s Scientific Manuscript database

    Stapylococcus saprophyticus is a common contaminant in foods and causes urinary tract infections in humans. Three nonthermal food safety intervention technologies used to improve the safety foods include high pressure processing (HPP), ionizing (gamma) radiation (GR), and ultraviolet light (UV-C). A...

  6. Alternative light source (polilight) illumination with digital image analysis does not assist in determining the age of bruises.

    PubMed

    Hughes, V K; Ellis, P S; Langlois, N E I

    2006-05-10

    The age of a bruise may be of interest to forensic investigators. Previous research has demonstrated that an alternative light source may assist in the visualisation of faint or non-visible bruises. This project aimed to determine if an alternative light source could be utilised to assist investigators estimate the age of a bruise. Forty braises, sustained from blunt force trauma, were examined from 30 healthy subjects. The age of the bruises ranged from 2 to 231 h (mean = 74.6, median = 69.0). Alternative light source (polilight) illumination at 415 and 450 nm was used. The black and white photographs obtained were assessed using densitometry. A statistical analysis indicated that there was no correlation between time and the mean densitometry values. The alternative light source used in this study was unable to assist in determining the age of a bruise.

  7. Method and apparatus for producing durationally short ultraviolet or x-ray laser pulses

    DOEpatents

    MacGowan, B.J.; Matthews, D.L.; Trebes, J.E.

    1987-05-05

    A method and apparatus is disclosed for producing ultraviolet or x- ray laser pulses of short duration. An ultraviolet or x-ray laser pulse of long duration is progressively refracted, across the surface of an opaque barrier, by a streaming plasma that is produced by illuminating a solid target with a pulse of conventional line focused high power laser radiation. The short pulse of ultraviolet or x-ray laser radiation, which may be amplified to high power, is separated out by passage through a slit aperture in the opaque barrier.

  8. The use of holographic and diffractive optics for optimized machine vision illumination for critical dimension inspection

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.; Ohar, Orest

    2004-02-01

    Illuminators used in machine vision applications typically produce non-uniform illumination onto the targeted surface being observed, causing a variety of problems with machine vision alignment or measurement. In most circumstances the light source is broad spectrum, leading to further problems with image quality when viewed through a CCD camera. Configured with a simple light bulb and a mirrored reflector and/or frosted glass plates, these general illuminators are appropriate for only macro applications. Over the last 5 years newer illuminators have hit the market including circular or rectangular arrays of high intensity light emitting diodes. These diode arrays are used to create monochromatic flood illumination of a surface that is to be inspected. The problem with these illumination techniques is that most of the light does not illuminate the desired areas, but broadly spreads across the surface, or when integrated with diffuser elements, tend to create similar shadowing effects to the broad spectrum light sources. In many cases a user will try to increase the performance of these illuminators by adding several of these assemblies together, increasing the intensity or by moving the illumination source closer or farther from the surface being inspected. In this case these non-uniform techniques can lead to machine vision errors, where the computer machine vision may read false information, such as interpreting non-uniform lighting or shadowing effects as defects. This paper will cover a technique involving the use of holographic / diffractive hybrid optical elements that are integrated into standard and customized light sources used in the machine vision industry. The bulk of the paper will describe the function and fabrication of the holographic/diffractive optics and how they can be tailored to improve illuminator design. Further information will be provided a specific design and examples of it in operation will be disclosed.

  9. Color digital lensless holographic microscopy: laser versus LED illumination.

    PubMed

    Garcia-Sucerquia, Jorge

    2016-08-20

    A comparison of the performance of color digital lensless holographic microscopy (CDLHM) as utilized for illumination of RGB lasers or a super-bright white-light LED with a set of spectral filters is presented. As the use of lasers in CDLHM conceals the possibility of having a compact, lightweight, portable, and low cost microscope, and additionally the limited available laser radiation wavelengths limit a real multispectral imaging microscope, here we present the use of super-bright white-light LED and spectral filters for illuminating the sample. The performance of RGB laser-CDLHM and LED-CDLHM is evaluated on imaging a section of the head of a Drosophila melanogaster fly. This comparison shows that there is trade-off between the spatial resolution of the microscope and the light sources utilized, which can be understood with regard to the coherence properties of the illuminating light. Despite the smaller spatial coherence features of LED-CDLHM in comparison with laser-CDLHM, the former shows promise as a portable RGB digital lensless holographic microscope that could be extended to other wavelengths by the use of different spectral filters.

  10. The importance of illumination in nest site choice and nest characteristics of cavity nesting birds.

    PubMed

    Podkowa, Paweł; Surmacki, Adrian

    2017-05-02

    Light has a significant impact on many aspects of avian biology, physiology and behaviour. An increasing number of studies show that illumination may positively influences birds' offspring fitness by e.g. acceleration of embryo development, stimulation of skeleton growth or regulation of circadian rhythm. Because nest cavities have especially low illumination, suitable light levels may be especially important for species which nest there. We may therefore expect that birds breeding in relatively dim conditions should prefer brighter nest sites and/or evolve behavioral mechanisms to secure sufficient light levels in the nest. Using nest boxes with modified internal illumination, we experimentally tested whether light regime is a cue for nest site selection of secondary cavity-nesting species. Additionally, we investigated whether nest building strategies are tuned to internal illumination. Our results demonstrate that, nest boxes with elevated illumination were chosen twice as often as dark nest boxes. Moreover, birds built higher nests in dark nest boxes than birds in boxes with elevated illumination, which suggests a mechanism of compensating for low light conditions. Our results provide the first experimental support for the idea that nest site choice and nest building behaviour in cavity-nesting birds are influenced by ambient illumination.

  11. Luminous flux and illumination

    NASA Astrophysics Data System (ADS)

    Schröer, H.

    2001-06-01

    Themes of this book are luminous flux and illumination. The book begins with definitions of the notions luminous flux and solid angle. Then the luminous flux through simple geometrical areas as circle, ball, triangles and n-gons is treated. Chapter 7 deals with luminous flux through general surfaces. A comparison between photometric and radiation dimensions follow. The next chapter contains the luminous flux through simple areas in medium (gas). At last illumination and temperature are presented. The content is interesting for opticians, light technicians and all physicists and natural scientists, who have to do with radiation. There is an english and a german edition.

  12. Spectrally optimal illuminations for diabetic retinopathy detection in retinal imaging

    NASA Astrophysics Data System (ADS)

    Bartczak, Piotr; Fält, Pauli; Penttinen, Niko; Ylitepsa, Pasi; Laaksonen, Lauri; Lensu, Lasse; Hauta-Kasari, Markku; Uusitalo, Hannu

    2017-04-01

    Retinal photography is a standard method for recording retinal diseases for subsequent analysis and diagnosis. However, the currently used white light or red-free retinal imaging does not necessarily provide the best possible visibility of different types of retinal lesions, important when developing diagnostic tools for handheld devices, such as smartphones. Using specifically designed illumination, the visibility and contrast of retinal lesions could be improved. In this study, spectrally optimal illuminations for diabetic retinopathy lesion visualization are implemented using a spectrally tunable light source based on digital micromirror device. The applicability of this method was tested in vivo by taking retinal monochrome images from the eyes of five diabetic volunteers and two non-diabetic control subjects. For comparison to existing methods, we evaluated the contrast of retinal images taken with our method and red-free illumination. The preliminary results show that the use of optimal illuminations improved the contrast of diabetic lesions in retinal images by 30-70%, compared to the traditional red-free illumination imaging.

  13. In vitro evaluation of color change in maxillofacial elastomer through the use of an ultraviolet light absorber and a hindered amine light stabilizer.

    PubMed

    Tran, Ngoc H; Scarbecz, Mark; Gary, John J

    2004-05-01

    External prostheses composed of silicone elastomers exhibit an unwanted color change over time. This study evaluated color stability when an ultraviolet light absorber and hindered amine light stabilizer were mixed in the maxillofacial elastomer containing either organic or inorganic pigments. The materials used were an RTV silicone elastomer, 1 natural inorganic dry-earth pigment (burnt sienna) and 2 synthesized organic pigments (hansa yellow and alizarin red), ultraviolet light absorber (UVA) and hindered amine light stabilizer (HALS). Specimens (n=160) were fabricated in a custom mold and randomly assigned and exposed to weathering sites in Miami and Phoenix for approximately 3 months. Eight test groups (2 of each 4 material types with or without additives) of 10 specimens each were assigned to each site. L*, a*, b* readings were obtained before and after weathering from a spectrocolorimeter. Nonpigmented elastomers served as the control. Three-factor ANOVA was conducted to examine interaction effects between weathering sites, specimen type, and the presence of additive (alpha=.05). Overall color change (Delta E) and change in color coordinates (Delta L*, Delta a*, Delta b*) of specimen groups with and without additive were analyzed with independent sample t tests. In specimen groups with the additives (UVA and HALS), color change decreased significantly (P<.05) in burnt sienna and hansa yellow in Phoenix and in the control and hansa yellow in Miami. Additives did not affect color change in the alizarin red group. UVA and HALS were shown to be effective in retarding color change in some circumstances.

  14. The effect of night illumination, red and infrared light, on locomotor activity, behaviour and melatonin of Senegalese sole (Solea senegalensis) broodstock.

    PubMed

    Carazo, I; Norambuena, F; Oliveira, C; Sánchez-Vázquez, F J; Duncan, N J

    2013-06-13

    The present study aimed to determine a non-invasive nocturnal lighting system for the behavioural observation of a highly light sensitive species, Senegalese sole (Solea senegalensis). Locomotor activity, four types of behaviour and plasma melatonin were analysed in groups of 12 adult Senegalese sole (Solea senegalensis) reared in captivity and held under four night illumination treatments: total darkness (control), high 50lux intensity red light (group RH), low 5lux intensity red light (group RL) and infrared light (group IR). All groups experienced the same conditions during the day (lights on from 07:00 to 19:00) with white lighting of 125lux. Clarity of video images taken at night for the observation of fish behaviour were ranked as follows: group RH>RL>IR>control. All treatments presented a daily rhythm in locomotor activity with high activity from 14:00 to 18:00 and low activity from 21:00 to 12:00. The sole exposed to the high intensity red light at night appeared to be disturbed as during the low nocturnal locomotor activity period group RH presented higher activity and significantly higher nocturnal behaviour related to escape or fear than was observed in the other groups. The groups control, RL and IR exhibited similar levels of nocturnal locomotor activity and nocturnal behaviour related to escape or fear. Plasma melatonin, at mid-dark was not significantly different between the control and groups RL and IR, while melatonin was significantly lower in group RH compared to the control. The authors recommended low intensity red night illumination for the non-invasive study of nocturnal behaviour of Senegalese sole adults. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Assessment of illumination conditions in a single-pixel imaging configuration

    NASA Astrophysics Data System (ADS)

    Garoi, Florin; Udrea, Cristian; Damian, Cristian; Logofǎtu, Petre C.; Colţuc, Daniela

    2016-12-01

    Single-pixel imaging based on multiplexing is a promising technique, especially in applications where 2D detectors or raster scanning imaging are not readily applicable. With this method, Hadamard masks are projected on a spatial light modulator to encode an incident scene and a signal is recorded at the photodiode detector for each of these masks. Ultimately, the image is reconstructed on the computer by applying the inverse transform matrix. Thus, various algorithms were optimized and several spatial light modulators already characterized for such a task. This work analyses the imaging quality of such a single-pixel arrangement, when various illumination conditions are used. More precisely, the main comparison is made between coherent and incoherent ("white light") illumination and between two multiplexing methods, namely Hadamard and Scanning. The quality of the images is assessed by calculating their SNR, using two relations. The results show better images are obtained with "white light" illumination for the first method and coherent one for the second.

  16. Ultraviolet spectrophotometry of three LINERs

    NASA Technical Reports Server (NTRS)

    Goodrich, R. W.; Keel, W. C.

    1986-01-01

    Three galaxies known to be LINERs were observed spectroscopically in the ultraviolet in an attempt to detect the presumed nonthermal continuum source thought to be the source of photoionization in the nuclei. NGC 4501 was found to be too faint for study with the IUE spectrographs, while NGC 5005 had an extended ultraviolet light profile. Comparison with the optical light profile of NGC 5005 indicates that the ultraviolet source is distributed spatially in the same manner as the optical starlight, probably indicating that the ultraviolet excess is due to a component of hot stars in the nucleus. These stars contribute detectable absorption features longward of 2500 A; together with optical data, the IUE spectra suggest a burst of star formation about 1 billion yr ago, with a lower rate continuing to produce a few OB stars. In NGC 4579, a point source contributing most of the ultraviolet excess is found that is much different than the optical light distribution. Furthermore, the ultraviolet to X-ray spectral index in NGC 4579 is 1.4, compatible with the UV to X-ray indices found for samples of Seyfert galaxies. This provides compelling evidence for the detection of the photoionizing continuum in NGC 4579 and draws the research fields of normal galaxies and active galactic nuclei closer together. The emission-line spectrum of NGC 4579 is compared with calculations from a photoionization code, CLOUDY, and several shock models. The photoionization code is found to give superior results, adding to the increasing weight of evidence that the LINER phenomenon is essentially a scaled-down version of the Seyfert phenomenon.

  17. Feasibility of Ultraviolet Light Emitting Diodes as an Alternative Light Source for Photocatalysis

    NASA Technical Reports Server (NTRS)

    Levine, Langanf H.; Richards, Jeffrey T.; Soler, Robert; Maxik, Fred; Coutts, Janelle; Wheeler, Raymond M.

    2011-01-01

    The objective of this study was to determine whether ultraviolet light emitting diodes (UV-LEDs) could serve as an alternative photon source efficiently for heterogeneous photocatalytic oxidation (PCO). An LED module consisting of 12 high-power UV-A LEDs was designed to be interchangeable with a UV-A fluorescent black light blue (BLB) lamp in a Silica-Titania Composite (STC) packed bed annular reactor. Lighting and thermal properties were characterized to assess the uniformity and total irradiant output. A forward current of (I(sub F)) 100 mA delivered an average irradiance of 4.0 m W cm(exp -2), which is equivalent to the maximum output of the BLB, but the irradiance of the LED module was less uniform than that of the BLB. The LED- and BLB-reactors were tested for the oxidization of 50 ppmv ethanol in a continuous flow-through mode with 0.94 sec space time. At the same irradiance, the UV-A LED reactor resulted in a lower PCO rate constant than the UV-A BLB reactor (19.8 vs. 28.6 nM CO2 sec-I), and consequently lower ethanol removal (80% vs. 91%) and mineralization efficiency (28% vs. 44%). Ethanol mineralization increased in direct proportion to the irradiance at the catalyst surface. This result suggests that reduced ethanol mineralization in the LED- reactor could be traced to uneven irradiance over the photocatalyst, leaving a portion of the catalyst was under-irradiated. The potential of UV-A LEDs may be fully realized by optimizing the light distribution over the catalyst and utilizing their instantaneous "on" and "off' feature for periodic irradiation. Nevertheless, the current UV-A LED module had the same wall plug efficiency (WPE) of 13% as that of the UV-A BLB. These results demonstrated that UV-A LEDs are a viable photon source both in terms of WPE and PCO efficiency.

  18. Selective protection of cultured human cells from the toxic effects of ultraviolet light by proflavine pretreatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, J.R.; Little, J.B.

    1977-10-01

    Pretreatment of LICH human cells by nontoxic doses (0.1 to 5.0 ..mu..g/ml) of proflavine protects them from inactivation by ultraviolet light. The protection is acquired rapidly after exposure of cells to proflavine, with 50 percent of maximum protection being afforded within 5 min and cells being maximally protected by 20 min. Loss of protection follows similar kinetics upon removal of proflavine from the culture medium. Protection is selective and cannot be explained on the basis of proflavine absorption of uv light. Cellular survival curves after ultraviolet light for cells protected by 1, 2, 3, 4, or 5 ..mu..g/ml of proflavinemore » show that protection alters only the slope of the survival curve, not altering the quasi-threshold dose, D/sub q/. The D/sub 0/ varies from 4.8 J/m/sup 2/ for untreated cells to 10.5 J/m/sup 2/ for cells pretreated with 5 ..mu..g/ml. These data suggest the D/sub 0/ and D/sub q/ do not represent parameters of a single underlying process, manifested in a random stochastic manner, but may reflect different cellular mechanisms or responses to different DNA damage. Proflavine is selective in mitigating only those which predominate at uv doses greater than the D/sub q/.« less

  19. Enhanced facial texture illumination normalization for face recognition.

    PubMed

    Luo, Yong; Guan, Ye-Peng

    2015-08-01

    An uncontrolled lighting condition is one of the most critical challenges for practical face recognition applications. An enhanced facial texture illumination normalization method is put forward to resolve this challenge. An adaptive relighting algorithm is developed to improve the brightness uniformity of face images. Facial texture is extracted by using an illumination estimation difference algorithm. An anisotropic histogram-stretching algorithm is proposed to minimize the intraclass distance of facial skin and maximize the dynamic range of facial texture distribution. Compared with the existing methods, the proposed method can more effectively eliminate the redundant information of facial skin and illumination. Extensive experiments show that the proposed method has superior performance in normalizing illumination variation and enhancing facial texture features for illumination-insensitive face recognition.

  20. Energy efficient LED layout optimization for near-uniform illumination

    NASA Astrophysics Data System (ADS)

    Ali, Ramy E.; Elgala, Hany

    2016-09-01

    In this paper, we consider the problem of designing energy efficient light emitting diodes (LEDs) layout while satisfying the illumination constraints. Towards this objective, we present a simple approach to the illumination design problem based on the concept of the virtual LED. We formulate a constrained optimization problem for minimizing the power consumption while maintaining a near-uniform illumination throughout the room. By solving the resulting constrained linear program, we obtain the number of required LEDs and the optimal output luminous intensities that achieve the desired illumination constraints.

  1. The detection of food soils and cells on stainless steel using industrial methods: UV illumination and ATP bioluminescence.

    PubMed

    Whitehead, Kathryn A; Smith, Lindsay A; Verran, Joanna

    2008-09-30

    Open food contact surfaces were subjected to organic soiling to provide a source for transfer of microbial cells. Rapid industrial methods used for the detection of residual cells and soil e.g. ATP (adenosine triphosphate) bioluminescence and an ultraviolet (UV) light detection method were assessed for their ability to detect organic soils, or organic soil-cell mix on surfaces. A range of soils (complex [meat extract, fish extract, cottage cheese extract]; oils [cholesterol, fish oil, mixed fatty acids]; proteins [bovine serum albumin, fish peptones casein]; carbohydrates [glycogen, starch, lactose]); was used. Under UV, oily soils, mixed fatty acids, cholesterol and casein were detected at low concentrations, with detection levels ranging from 1% to 0.001% for different substances. Glycogen was the most difficult substance to detect at lower concentrations. Using UV wavelength bands (lambda) of 330-380 nm, 510-560 nm and 590-650 nm, wavelength bands of 330-380 nm, illuminated most of the soils well, whilst the wavelength band of 510-560 nm illuminated the fish extract, cholesterol and fatty acids; the 590-650 nm wavelength band illuminated the lactose. Soils at all concentrations were detected by the ATP bioluminescence method; the complex soils gave the highest readings. When complex soils were combined with Listeria monocytogenes Scott A or a non-pathogenic Escherichia coli O157:H7, ATP measurements increased by 1-2 logs. For UV illumination, the L. monocytogenes and cheese combination was the most intensely illuminated, with E. coli and meat the least. UV illumination is a simple well established method for detecting food soil, with little change in findings when microorganisms are included. Performance can be enhanced in certain circumstances by altering the wavelength. ATP bioluminescence is a proven system for hygienic assessment being especially useful in the presence of microorganisms rather than organic soil alone.

  2. Effects of supplementary lighting by natural light for growth of Brassica chinensis

    NASA Astrophysics Data System (ADS)

    Yeh, Shih-Chuan; Lee, Hui-Ping; Kao, Shih-Tse; Lu, Ju-Lin

    2016-04-01

    This paper present a model of cultivated chamber with supplementary natural colour light. We investigate the effects of supplementary natural red light and natural blue light on growth of Brassica chinensis under natural white light illumination. After 4 weeks of supplementary colour light treatment, the experiment results shown that the weight of fresh leaf were not affected by supplementary natural blue light. However, those Brassica chinensis were cultivated in the chambers with supplementary natural red light obtained a significant increasing of fresh weight of leaf under both white light illuminate models. The combination of natural white light with supplementary natural red light illumination will be benefits in growth for cultivation and energy saving.

  3. Astro-1 Image Taken by the Ultraviolet Imaging Telescope

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This is a presentation of two comparison images of the Spiral Galaxy M81 in the constellation URA Major. The galaxy is about 12-million light years from Earth. The left image is the Spiral Galaxy M81 as photographed by the Ultraviolet Imaging Telescope (UIT) during the Astro-1 Mission (STS-35) on December 9, 1990. This UIT photograph, made with ultraviolet light, reveals regions where new stars are forming at a rapid rate. The right image is a photograph of the same galaxy in red light made with a 36-inch (0.9-meter) telescope at the Kitt Peak National Observatory near Tucson, Arizona. The Astro Observatory was designed to explore the universe by observing and measuring ultraviolet radiation from celestial objects. Three instruments made up the Astro Observatory: The Hopkins Ultraviolet Telescope (HUT), the Ultraviolet Imaging Telescope (UIT), and the Wisconsin Ultraviolet Photo-Polarimetry Experiment (WUPPE). The Marshall Space Flight Center had management responsibilities for the Astro-1 mission. The Astro-1 Observatory was launched aboard the Space Shuttle Orbiter Columbia (STS-35) on December 2, 1990.

  4. Synthesis and characterization of attosecond light vortices in the extreme ultraviolet

    DOE PAGES

    Géneaux, R.; Camper, A.; Auguste, T.; ...

    2016-08-30

    Infrared and visible light beams carrying orbital angular momentum (OAM) are currently thoroughly studied for their extremely broad applicative prospects, among which are quantum information, micromachining and diagnostic tools. Here we extend these prospects, presenting a comprehensive study for the synthesis and full characterization of optical vortices carrying OAM in the extreme ultraviolet (XUV) domain. We confirm the upconversion rules of a femtosecond infrared helically phased beam into its high-order harmonics, showing that each harmonic order carries the total number of OAM units absorbed in the process up to very high orders (57). This allows us to synthesize and characterizemore » helically shaped XUV trains of attosecond pulses. To demonstrate a typical use of these new XUV light beams, we show our ability to generate and control, through photoionization, attosecond electron beams carrying OAM. Furthermore, these breakthroughs pave the route for the study of a series of fundamental phenomena and the development of new ultrafast diagnosis tools using either photonic or electronic vortices.« less

  5. Evaluation of Current Practice for Illumination at Roundabouts : Safety and Illumination of Roundabouts (Phase I)

    DOT National Transportation Integrated Search

    2016-03-01

    This report is for the first phase of a two-phase research program to develop recommended practices for GDOT for lighting rural roundabouts. Phase I of the study was designed to improve our understanding of the relationship between roundabout illumin...

  6. An overview of LED applications for general illumination

    NASA Astrophysics Data System (ADS)

    Pelka, David G.; Patel, Kavita

    2003-11-01

    This paper begins by reviewing the current state of development of LEDs, their existing markets as well as their potential for energy conservation and their potential for gaining market share in the general illumination market. It discusses LED metrics such as chip size, lumens per watt, thermal resistance, and the recommended maximum current rating. The paper then goes on to consider the importance of non-imaging optics for both optically efficient and extremely compact LED lighting systems. Finally, microstructures useful for controlling the fields-of-view of LED lighting systems are considered and described in some detail. An extremely efficient and cost effective microstructure, called kinoform diffusers, is shown to have very unique properties that make this technology almost ideal for shaping the output beams of LED lighting systems. It concludes by illustrating some general illumination LED lighting systems

  7. Lighting considerations in controlled environments for nonphotosynthetic plant responses to blue and ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Caldwell, M. M.; Flint, S. D.

    1994-01-01

    This essay will consider both physical and photobiological aspects of controlled environment lighting in the spectral region beginning in the blue and taken to the normal limit of the solar spectrum in the ultraviolet. The primary emphasis is directed to questions of plant response to sunlight. Measurement and computations used in radiation dosimetry in this part of the spectrum are also briefly treated. Because of interest in the ozone depletion problem, there has been some activity in plant UV-B research and there are several recent reviews available. Some aspects of growth chamber lighting as it relates to UV-B research were covered earlier. Apart from work related to the blue/UV-A receptor, less attention has been given to UV-A responses.

  8. Evaluation of illumination system uniformity for wide-field biomedical hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Sawyer, Travis W.; Siri Luthman, A.; E Bohndiek, Sarah

    2017-04-01

    Hyperspectral imaging (HSI) systems collect both spatial (morphological) and spectral (chemical) information from a sample. HSI can provide sensitive analysis for biological and medical applications, for example, simultaneously measuring reflectance and fluorescence properties of a tissue, which together with structural information could improve early cancer detection and tumour characterisation. Illumination uniformity is a critical pre-condition for quantitative data extraction from an HSI system. Non-uniformity can cause glare, specular reflection and unwanted shading, which negatively impact statistical analysis procedures used to extract abundance of different chemical species. Here, we model and evaluate several illumination systems frequently used in wide-field biomedical imaging to test their potential for HSI. We use the software LightTools and FRED. The analysed systems include: a fibre ring light; a light emitting diode (LED) ring; and a diffuse scattering dome. Each system is characterised for spectral, spatial, and angular uniformity, as well as transfer efficiency. Furthermore, an approach to measure uniformity using the Kullback-Leibler divergence (KLD) is introduced. The KLD is generalisable to arbitrary illumination shapes, making it an attractive approach for characterising illumination distributions. Although the systems are quite comparable in their spatial and spectral uniformity, the most uniform angular distribution is achieved using a diffuse scattering dome, yielding a contrast of 0.503 and average deviation of 0.303 over a ±60° field of view with a 3.9% model error in the angular domain. Our results suggest that conventional illumination sources can be applied in HSI, but in the case of low light levels, bespoke illumination sources may offer improved performance.

  9. Broadband reflective liquid crystalline gels due to the ultraviolet light screening made by the liquid crystal

    NASA Astrophysics Data System (ADS)

    Relaix, Sabrina; Bourgerette, Christian; Mitov, Michel

    2006-12-01

    It is shown that the natural ultraviolet light absorbing properties of the liquid crystal constituent during the photoinduced elaboration of a liquid crystalline gel induce the broadening of the reflection bandwidth. The polymer component is then included in a resin by preserving its spatial distribution, and transmission electron microscopy investigations of cross sections show the existence of a structure gradient, which is at the origin of the broadening phenomenon. Such reflectors may be of interest for reflective polarizer-free displays or smart windows for the control of solar light for which a broadband reflection is required.

  10. The planarian TRPA1 homolog mediates extraocular behavioral responses to near-ultraviolet light.

    PubMed

    Birkholz, Taylor R; Beane, Wendy S

    2017-07-15

    Although light is most commonly thought of as a visual cue, many animals possess mechanisms to detect light outside of the eye for various functions, including predator avoidance, circadian rhythms, phototaxis and migration. Here we confirm that planarians (like Caenorhabditis elegans , leeches and Drosophila larvae) are capable of detecting and responding to light using extraocular photoreception. We found that, when either eyeless or decapitated worms were exposed to near-ultraviolet (near-UV) light, intense wild-type photophobic behaviors were still observed. Our data also revealed that behavioral responses to green wavelengths were mediated by ocular mechanisms, whereas near-UV responses were driven by extraocular mechanisms. As part of a candidate screen to uncover the genetic basis of extraocular photoreception in the planarian species Schmidtea mediterranea , we identified a potential role for a homolog of the transient receptor potential channel A1 ( TRPA1 ) in mediating behavioral responses to extraocular light cues. RNA interference (RNAi) to Smed-TrpA resulted in worms that lacked extraocular photophobic responses to near-UV light, a mechanism previously only identified in Drosophila These data show that the planarian TRPA1 homolog is required for planarian extraocular-light avoidance and may represent a potential ancestral function of this gene. TRPA1 is an evolutionarily conserved detector of temperature and chemical irritants, including reactive oxygen species that are byproducts of UV-light exposure. Our results suggest that planarians possess extraocular photoreception and display an unconventional TRPA1-mediated photophobic response to near-UV light. © 2017. Published by The Company of Biologists Ltd.

  11. Ultraviolet Source For Testing Hydrogen-Fire Detectors

    NASA Technical Reports Server (NTRS)

    Hall, Gregory A.; Larson, William E.; Youngquist, Robert C.; Moerk, John S.; Haskell, William D.; Cox, Robert B.; Polk, Jimmy D.; Stout, Stephen J.; Strobel, James P.

    1995-01-01

    Hand-held portable unit emits ultraviolet light similar to that emitted by hydrogen burning in air. Developed for use in testing optoelectronic hydrogen-fire detectors, which respond to ultraviolet light at wavelengths from 180 to 240 nanometers. Wavelength range unique in that within it, hydrogen fires emit small but detectable amounts of radiation, light from incandescent lamps and Sun almost completely absent, and air sufficiently transmissive to enable detection of hydrogen fire from distance. Consequently, this spectral region favorable for detecting hydrogen fires while minimizing false alarms.

  12. 46 CFR 112.43-11 - Illumination for launching operations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 112.43-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Lighting Systems § 112.43-11 Illumination for launching operations. Branch circuits supplying power to lights for survival craft launching operations must supply no...

  13. 46 CFR 112.43-11 - Illumination for launching operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 112.43-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Lighting Systems § 112.43-11 Illumination for launching operations. Branch circuits supplying power to lights for survival craft launching operations must supply no...

  14. 46 CFR 112.43-11 - Illumination for launching operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 112.43-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Lighting Systems § 112.43-11 Illumination for launching operations. Branch circuits supplying power to lights for survival craft launching operations must supply no...

  15. 46 CFR 112.43-11 - Illumination for launching operations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 112.43-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Lighting Systems § 112.43-11 Illumination for launching operations. Branch circuits supplying power to lights for survival craft launching operations must supply no...

  16. 46 CFR 112.43-11 - Illumination for launching operations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 112.43-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Lighting Systems § 112.43-11 Illumination for launching operations. Branch circuits supplying power to lights for survival craft launching operations must supply no...

  17. A method of solving tilt illumination for multiple distance phase retrieval

    NASA Astrophysics Data System (ADS)

    Guo, Cheng; Li, Qiang; Tan, Jiubin; Liu, Shutian; Liu, Zhengjun

    2018-07-01

    Multiple distance phase retrieval is a technique of using a series of intensity patterns to reconstruct a complex-valued image of object. However, tilt illumination originating from the off-axis displacement of incident light significantly impairs its imaging quality. To eliminate this affection, we use cross-correlation calibration to estimate oblique angle of incident light and a Fourier-based strategy to correct tilted illumination effect. Compared to other methods, binary and biological object are both stably reconstructed in simulation and experiment. This work provides a simple but beneficial method to solve the problem of tilt illumination for lens-free multi-distance system.

  18. Ultraviolet radiation induced discharge laser

    DOEpatents

    Gilson, Verle A.; Schriever, Richard L.; Shearer, James W.

    1978-01-01

    An ultraviolet radiation source associated with a suitable cathode-anode electrode structure, disposed in a gas-filled cavity of a high pressure pulsed laser, such as a transverse electric atmosphere (TEA) laser, to achieve free electron production in the gas by photoelectric interaction between ultraviolet radiation and the cathode prior to the gas-exciting cathode-to-anode electrical discharge, thereby providing volume ionization of the gas. The ultraviolet radiation is produced by a light source or by a spark discharge.

  19. Ultraviolet Light Curves of Gaia16apd in Superluminous Supernova Models

    NASA Astrophysics Data System (ADS)

    Tolstov, Alexey; Zhiglo, Andrey; Nomoto, Ken'ichi; Sorokina, Elena; Kozyreva, Alexandra; Blinnikov, Sergei

    2017-08-01

    Observations of Gaia16apd revealed extremely luminous ultraviolet emission among superluminous supernovae (SLSNe). Using radiation hydrodynamics simulations, we perform a comparison of UV light curves, color temperatures, and photospheric velocities between the most popular SLSN models: pair-instability supernova, magnetar, and interaction with circumstellar medium. We find that the interaction model is the most promising to explain the extreme UV luminosity of Gaia16apd. The differences in late-time UV emission and in color evolution found between the models can be used to link an observed SLSN event to the most appropriate model. Observations at UV wavelengths can be used to clarify the nature of SLSNe and more attention should be paid to them in future follow-up observations.

  20. Ultraviolet Light Curves of Gaia16apd in Superluminous Supernova Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolstov, Alexey; Zhiglo, Andrey; Nomoto, Ken’ichi

    2017-08-10

    Observations of Gaia16apd revealed extremely luminous ultraviolet emission among superluminous supernovae (SLSNe). Using radiation hydrodynamics simulations, we perform a comparison of UV light curves, color temperatures, and photospheric velocities between the most popular SLSN models: pair-instability supernova, magnetar, and interaction with circumstellar medium. We find that the interaction model is the most promising to explain the extreme UV luminosity of Gaia16apd. The differences in late-time UV emission and in color evolution found between the models can be used to link an observed SLSN event to the most appropriate model. Observations at UV wavelengths can be used to clarify the naturemore » of SLSNe and more attention should be paid to them in future follow-up observations.« less

  1. Freeform lens generation for quasi-far-field successive illumination targets

    NASA Astrophysics Data System (ADS)

    Zhuang, Zhenfeng; Thibault, Simon

    2018-07-01

    A predefined mapping to tailor one or more freeform surfaces is employed to build a freeform illumination system. The emergent rays from the light source corresponding to the prescribed target mesh for a pre-determined lighting distance are mapped by a point-to-point algorithm with respect to the freeform optics, which involves limiting design flexibility. To tackle the problem of design limitation and find the optimum design results, a freeform lens is exploited to produce the desired rectangular illumination distribution at successive target planes at quasi-far-field lighting distances. It is generated using numerical solutions to find out an initial starting point, and an appropriate approach to obtain variables for parameterization of the freeform surface is introduced. The relative standard deviation, which is a useful figure of merit for the analysis, is set up as merit function with respect to illumination non-uniformity at the successive sampled target planes. Therefore, the irradiance distribution in terms of the specific lighting distance range can be ensured by the proposed scheme. A design example of a freeform illumination system, composed of a spherical surface and a freeform surface, is given to produce desired irradiance distribution within the lighting distance range. An optical performance with low non-uniformity and high efficiency is achieved. Compared with the conventional approach, the uniformity of the sampled targets is dramatically enhanced; meanwhile, a design result with a large tolerance of LED size is offered.

  2. Calibration of a microchannel plate based extreme ultraviolet grazing incident spectrometer at the Advanced Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakeman, M. S.; Lawrence Berkeley National Laboratory, Berkeley, California 94720; Tilborg, J. van

    We present the design and calibration of a microchannel plate based extreme ultraviolet spectrometer. Calibration was performed at the Advance Light Source (ALS) at the Lawrence Berkeley National Laboratory (LBNL). This spectrometer will be used to record the single shot spectrum of radiation emitted by the tapered hybrid undulator (THUNDER) undulator installed at the LOASIS GeV-class laser-plasma-accelerator. The spectrometer uses an aberration-corrected concave grating with 1200 lines/mm covering 11-62 nm and a microchannel plate detector with a CsI coated photocathode for increased quantum efficiency in the extreme ultraviolet. A touch screen interface controls the grating angle, aperture size, and placementmore » of the detector in vacuum, allowing for high-resolution measurements over the entire spectral range.« less

  3. Narrowband ultraviolet photodetector based on MgZnO and NPB heterojunction.

    PubMed

    Hu, Zuofu; Li, Zhenjun; Zhu, Lu; Liu, Fengjuan; Lv, Yanwu; Zhang, Xiqing; Wang, Yongsheng

    2012-08-01

    An ultraviolet photodetector was fabricated based on Mg0.07Zn0.93O heterojunction. N, N'-bis (naphthalen-1-y1)-N, N'-bis(pheny) benzidine was selected as the hole transporting layer. I-V characteristic curves of the device were measured in the dark and under the illumination of 340 nm UV light with density of 1.33 mW/cm2. The device showed a low dark current of about 3×10(-10) A and a high photo-dark current ratio of 1×10(5) at -2 V bias. A narrowband photoresponse was observed from 300 to 400 nm and centered at 340 nm with a full width at half-maximum of only 30 nm. The maximum peak response is at 340 nm, which is 0.192 A/W at the bias of -1 V.

  4. Method and apparatus for producing durationally short ultraviolet or X-ray laser pulses

    DOEpatents

    MacGowan, Brian J.; Matthews, Dennis L.; Trebes, James E.

    1988-01-01

    A method and apparatus is disclosed for producing ultraviolet or X-ray laser pulses of short duration (32). An ultraviolet or X-ray laser pulse of long duration (12) is progressively refracted, across the surface of an opaque barrier (28), by a streaming plasma (22) that is produced by illuminating a solid target (16, 18) with a pulse of conventional line focused high power laser radiation (20). The short pulse of ultraviolet or X-ray laser radiation (32), which may be amplified to high power (40, 42), is separated out by passage through a slit aperture (30) in the opaque barrier (28).

  5. The electronics in fluorescent bulbs and light emitting diodes (LED), rather than ultraviolet radiation, cause increased malignant melanoma incidence in indoor office workers and tanning bed users.

    PubMed

    Milham, Samuel; Stetzer, Dave

    2018-07-01

    The epidemiology of cutaneous malignant melanoma (CMM) has a number of facets that do not fit with sunlight and ultraviolet light as the primary etiologic agents. Indoor workers have higher incidence and mortality rates of CMM than outdoor workers; CMM occurs in body locations never exposed to sunlight; CMM incidence is increasing in spite of use of UV blocking agents and small changes in solar radiation. Installation of two new fluorescent lights in the milking parlor holding area of a Minnesota dairy farm in 2015 caused an immediate drop in milk production. This lead to measurement of body amperage in humans exposed to modern non-incandescent lighting. People exposed to old and new fluorescent lights, light emitting diodes (LED) and compact fluorescent lights (CFL) had body amperage levels above those considered carcinogenic. We hypothesize that modern electric lighting is a significant health hazard, a carcinogen, and is causing increasing CMM incidence in indoor office workers and tanning bed users. These lights generate dirty electricity (high frequency voltage transients), radio frequency (RF) radiation, and increase body amperage, all of which have been shown to be carcinogenic. This could explain the failure of ultraviolet blockers to stem the malignant melanoma pandemic. Tanning beds and non-incandescent lighting could be made safe by incorporating a grounded Faraday cage which allows passage of ultraviolet and visible light frequencies and blocks other frequencies. Modern electric lighting should be fabricated to be electrically clean. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. A spectral image processing algorithm for evaluating the influence of the illuminants on the reconstructed reflectance

    NASA Astrophysics Data System (ADS)

    Toadere, Florin

    2017-12-01

    A spectral image processing algorithm that allows the illumination of the scene with different illuminants together with the reconstruction of the scene's reflectance is presented. Color checker spectral image and CIE A (warm light 2700 K), D65 (cold light 6500 K) and Cree TW Series LED T8 (4000 K) are employed for scene illumination. Illuminants used in the simulations have different spectra and, as a result of their illumination, the colors of the scene change. The influence of the illuminants on the reconstruction of the scene's reflectance is estimated. Demonstrative images and reflectance showing the operation of the algorithm are illustrated.

  7. Ultraviolet light emitting diodes and bio-aerosol sensing

    NASA Astrophysics Data System (ADS)

    Davitt, Kristina M.

    Recent interest in compact ultraviolet (UV) light emitters has produced advances in material quality and device performance from aluminum-rich alloys of the nitride semiconductor system. The epitaxial growth of device structures from this material poses remarkable challenges, and state-of-the-art in semiconductor UV light sources at wavelengths shorter than 350 nm is currently limited to LEDs. A portion of the work presented in this thesis involves the design and characterization of UV LED structures, with particular focus on sub-300 nm LEDs which have only been demonstrated within the last four years. Emphasis has been placed on the integration of early devices with modest efficiencies and output powers into a practical, fluorescence-based bio-sensing instrument. The quality of AlGaInN and AlGaN-based materials is characterized by way of the performance of 340 nm and 290 nm LEDs respectively. A competitive level of device operation is achieved, although much room remains for improvement in the efficiency of light emission from this material system. A preliminary investigation of 300 nm LEDs grown on bulk AIN shows promising electrical and optical characteristics, and illustrates the numerous advantages that this native substrate offers to the epitaxy of wide bandgap nitride semiconductors. The application of UV LEDs to the field of bio-aerosol sensing is pursued by constructing an on-the-fly fluorescence detection system. A linear array of UV LEDs is designed and implemented, and the capability of test devices to excite native fluorescence from bacterial spores is established. In order to fully capitalize on the reduction in size afforded by LEDs, effort is invested in re-engineering the remaining sensor components. Operation of a prototype system for physically sorting bio-aerosols based on fluorescence spectra acquired in real-time from single airborne particles excited by a UV-LED array is demonstrated using the bio-fluorophores NADH and tryptophan. Sensor

  8. Optical mapping at increased illumination intensities

    NASA Astrophysics Data System (ADS)

    Kanaporis, Giedrius; Martišienė, Irma; Jurevičius, Jonas; Vosyliūtė, Rūta; Navalinskas, Antanas; Treinys, Rimantas; Matiukas, Arvydas; Pertsov, Arkady M.

    2012-09-01

    Voltage-sensitive fluorescent dyes have become a major tool in cardiac and neuro-electrophysiology. Achieving high signal-to-noise ratios requires increased illumination intensities, which may cause photobleaching and phototoxicity. The optimal range of illumination intensities varies for different dyes and must be evaluated individually. We evaluate two dyes: di-4-ANBDQBS (excitation 660 nm) and di-4-ANEPPS (excitation 532 nm) in the guinea pig heart. The light intensity varies from 0.1 to 5 mW/mm2, with the upper limit at 5 to 10 times above values reported in the literature. The duration of illumination was 60 s, which in guinea pigs corresponds to 300 beats at a normal heart rate. Within the identified duration and intensity range, neither dye shows significant photobleaching or detectable phototoxic effects. However, light absorption at higher intensities causes noticeable tissue heating, which affects the electrophysiological parameters. The most pronounced effect is a shortening of the action potential duration, which, in the case of 532-nm excitation, can reach ˜30%. At 660-nm excitation, the effect is ˜10%. These findings may have important implications for the design of optical mapping protocols in biomedical applications.

  9. Prediction of skin cancer occurrence by ultraviolet solar index

    PubMed Central

    Rivas, Miguel; Rojas, Elisa; Calaf, Gloria M.

    2012-01-01

    An increase in the amount of solar ultraviolet light that reaches the Earth is considered to be responsible for the worldwide increase in skin cancer. It has been reported that exposure to excessive levels of solar ultraviolet light has multiple effects, which can be harmful to humans. Experimental ultraviolet light measurements were obtained in several locations in Chile between 2006 and 2009 using wide-band solar light Biometer YES, calibrated according to World Meteorological Organization (WMO) criteria and integrated into the National Meteorological Center of Chile ultraviolet network (DMC). The aim of this study was to determine skin cancer rates in relation to experimental data accumulated during one year of studying the solar ultraviolet index in Chile, in order to explain the possible effect of radiation on skin cancer. The rate of skin cancer per 100,000 persons was considered in Arica, Santiago, Concepción and Valdivia and extrapolated to other cities. Results of the present study showed that the incidence of skin cancer was markedly correlated with accumulative ultraviolet radiation, and rates of skin cancer could be extrapolated to other locations in Chile. There is a steady increase in the rate of skin cancer in cities located nearest to the equator (low latitude) that receive greater accumulated solar ultraviolet radiation, due to the accumulative effects of this type of radiation on the skin. It can be concluded that Arica is a city at sea level that receives higher levels of ultraviolet solar radiation than other locations, which may explain the higher prevalence of skin cancer in the population of this location, compared with other cities in Chile. PMID:22741013

  10. Reducing cross-sensitivity of TiO2-(B) nanowires to humidity using ultraviolet illumination for trace explosive detection.

    PubMed

    Wang, Danling; Chen, Antao; Jen, Alex K-Y

    2013-04-14

    Environmental humidity is an important factor that can influence the sensing performance of a metal oxide. TiO2-(B) in the form of nanowires has been demonstrated to be a promising material for the detection of explosive gases such as 2,4,6-trinitrotoluene (TNT). However, the elimination of cross-sensitivity of the explosive detectors based on TiO2-(B) toward environmental humidity is still a major challenge. It was found that the cross-sensitivity could be effectively modulated when the thin film of TiO2-(B) nanowires was exposed to ultraviolet (UV) light during the detection of explosives under operating conditions. Such a modulation of sensing responses of TiO2-(B) nanowires to explosives by UV light was attributed to a photocatalytic effect, with which the water adsorbed on the TiO2-(B) nanowire surface was split and therefore the sensor response performance was less affected. It was revealed that the cross-sensitivity could be suppressed up to 51% when exposed to UV light of 365 nm wavelength with an intensity of 40 mW cm(-2). This finding proves that the reduction of cross-sensitivity to humidity through UV irradiation is an effective approach that can improve the performance of a sensor based on TiO2-(B) nanowires for the detection of explosive gas.

  11. Analysis of Simulated Temporal Illumination at the Lunar PSRs

    NASA Astrophysics Data System (ADS)

    Thompson, T. J.; Mahanti, P.

    2018-04-01

    Illumination on the Moon is modeled temporally for permanently shadowed regions to lighting trends. Crater topography is used to generate viewfactor maps, which show which areas contribute most to scattered light into the primary shadows.

  12. Lighting considerations in controlled environments for nonphotosynthetic plant responses to blue and ultraviolet radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caldwell, M.M.; Flint, S.D.

    1994-12-31

    This essay will consider both physical and photobiological aspects of controlled environment lighting in the spectral region beginning in the blue and taken to the normal limit of the solar spectrum in the ultraviolet. The primary emphasis is directed to questions of plant response to sunlight. Measurement and computations used in radiation dosimetry in this part of the spectrum are also briefly treated. Because of interest in the ozone depletion problem, there has been some activity in plant UV-B research and there are several recent reviews available. Some aspects of growth chamber lighting as it relates to UV-B research weremore » covered earlier. Apart from work related to the blue/UV-A receptor, less attention has been given to UV-A responses.« less

  13. Atmospheric effects on active illumination

    NASA Astrophysics Data System (ADS)

    Shaw, Scot E. J.; Kansky, Jan E.

    2005-08-01

    For some beam-control applications, we can rely on the cooperation of the target when gathering information about the target location and the state of the atmosphere between the target and the beam-control system. The typical example is a cooperative point-source beacon on the target. Light from such a beacon allows the beam-control system to track the target accurately, and, if higher-order adaptive optics is to be employed, to make wave-front measurements and apply appropriate corrections with a deformable mirror. In many applications, including directed-energy weapons, the target is not cooperative. In the absence of a cooperative beacon, we must find other ways to collect the relevant information. This can be accomplished with an active-illumination system. Typically, this means shining one or more lasers at the target and observing the reflected light. In this paper, we qualitatively explore a number of difficulties inherent to active illumination, and suggest some possible mitigation techniques.

  14. Computational On-Chip Imaging of Nanoparticles and Biomolecules using Ultraviolet Light.

    PubMed

    Daloglu, Mustafa Ugur; Ray, Aniruddha; Gorocs, Zoltan; Xiong, Matthew; Malik, Ravinder; Bitan, Gal; McLeod, Euan; Ozcan, Aydogan

    2017-03-09

    Significant progress in characterization of nanoparticles and biomolecules was enabled by the development of advanced imaging equipment with extreme spatial-resolution and sensitivity. To perform some of these analyses outside of well-resourced laboratories, it is necessary to create robust and cost-effective alternatives to existing high-end laboratory-bound imaging and sensing equipment. Towards this aim, we have designed a holographic on-chip microscope operating at an ultraviolet illumination wavelength (UV) of 266 nm. The increased forward scattering from nanoscale objects at this short wavelength has enabled us to detect individual sub-30 nm nanoparticles over a large field-of-view of >16 mm 2 using an on-chip imaging platform, where the sample is placed at ≤0.5 mm away from the active area of an opto-electronic sensor-array, without any lenses in between. The strong absorption of this UV wavelength by biomolecules including nucleic acids and proteins has further enabled high-contrast imaging of nanoscopic aggregates of biomolecules, e.g., of enzyme Cu/Zn-superoxide dismutase, abnormal aggregation of which is linked to amyotrophic lateral sclerosis (ALS) - a fatal neurodegenerative disease. This UV-based wide-field computational imaging platform could be valuable for numerous applications in biomedical sciences and environmental monitoring, including disease diagnostics, viral load measurements as well as air- and water-quality assessment.

  15. Computational On-Chip Imaging of Nanoparticles and Biomolecules using Ultraviolet Light

    NASA Astrophysics Data System (ADS)

    Daloglu, Mustafa Ugur; Ray, Aniruddha; Gorocs, Zoltan; Xiong, Matthew; Malik, Ravinder; Bitan, Gal; McLeod, Euan; Ozcan, Aydogan

    2017-03-01

    Significant progress in characterization of nanoparticles and biomolecules was enabled by the development of advanced imaging equipment with extreme spatial-resolution and sensitivity. To perform some of these analyses outside of well-resourced laboratories, it is necessary to create robust and cost-effective alternatives to existing high-end laboratory-bound imaging and sensing equipment. Towards this aim, we have designed a holographic on-chip microscope operating at an ultraviolet illumination wavelength (UV) of 266 nm. The increased forward scattering from nanoscale objects at this short wavelength has enabled us to detect individual sub-30 nm nanoparticles over a large field-of-view of >16 mm2 using an on-chip imaging platform, where the sample is placed at ≤0.5 mm away from the active area of an opto-electronic sensor-array, without any lenses in between. The strong absorption of this UV wavelength by biomolecules including nucleic acids and proteins has further enabled high-contrast imaging of nanoscopic aggregates of biomolecules, e.g., of enzyme Cu/Zn-superoxide dismutase, abnormal aggregation of which is linked to amyotrophic lateral sclerosis (ALS) - a fatal neurodegenerative disease. This UV-based wide-field computational imaging platform could be valuable for numerous applications in biomedical sciences and environmental monitoring, including disease diagnostics, viral load measurements as well as air- and water-quality assessment.

  16. Photocatalytic properties of Au-deposited mesoporous SiO{sub 2}–TiO{sub 2} photocatalyst under simultaneous irradiation of UV and visible light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okuno, T., E-mail: t093507@edu.imc.tut.ac.jp; Kawamura, G., E-mail: gokawamura@ee.tut.ac.jp; Muto, H., E-mail: muto@ee.tut.ac.jp

    Mesoporous SiO{sub 2} templates deposited TiO{sub 2} nanocrystals are synthesized via a sol–gel route, and Au nanoparticles (NPs) are deposited in the tubular mesopores of the templates by a photodeposition method (Au/SiO{sub 2}–TiO{sub 2}). The photocatalytic characteristics of Au/SiO{sub 2}–TiO{sub 2} are discussed with the action spectra of photoreactions of 2-propanol and methylene blue. Photocatalytic activities of SiO{sub 2}–TiO{sub 2} under individual ultraviolet (UV) and visible (Vis) light illumination are enhanced by deposition of Au NPs. Furthermore, Au/SiO{sub 2}–TiO{sub 2} shows higher photocatalytic activities under simultaneous irradiation of UV and Vis light compared to the activity under individual UV andmore » Vis light irradiation. Since the photocatalytic activity under simultaneous irradiation is almost the same as the total activities under individual UV and Vis light irradiation, it is concluded that the electrons and the holes generated by lights of different wavelengths are efficiently used for photocatalysis without carrier recombination. - Graphical abstract: This graphic shows the possible charge behavior in Au/SiO{sub 2}–TiO{sub 2} under independent light irradiation of ultraviolet and visible light irradiation. Both reactions under independent UV and Vis light irradiation occurred in parallel when Au/SiO{sub 2}–TiO{sub 2} photocatalyst was illuminated UV and Vis light simultaneously, and then photocatalytic activity is improved by simultaneous irradiation. - Highlights: • Au nanoparticles were deposited in mesoporous SiO{sub 2}–TiO{sub 2} by a photodeposition method. • Photocatalytic activity under UV and Vis light was enhanced by deposition of Au. • Photocatalytic activity of Au/SiO{sub 2}–TiO{sub 2} was improved by simultaneous irradiation.« less

  17. Ultraviolet-C Light Sanitization of English Cucumber (Cucumis sativus) Packaged in Polyethylene Film.

    PubMed

    Tarek, Abdussamad R; Rasco, Barbara A; Sablani, Shyam S

    2016-06-01

    Food safety is becoming an increasing concern in the United States. This study investigated the effects of ultraviolet-C (UV-C) light as a postpackaging bactericidal treatment on the quality of English cucumber packaged in polyethylene (PE) film. Escherichia coli k-12 was used as a surrogate microbe. The microbial growth and physical properties of packaged cucumbers were analyzed during a 28-d storage period at 5 °C. Inoculating packaged cucumbers treated at 23 °C for 6 min with UV-C (560 mJ/cm(2) ) resulted in a 1.60 log CFU/g reduction. However, this treatment had no significant effect (P > 0.05) on the water vapor transmission rate or oxygen transmission rate of the PE film. Results show that UV-C light treatment delayed the loss of firmness and yellowing of English cucumber up to 28 d at 5 °C. In addition, UV-C light treatment extended the shelf life of treated cucumber 1 wk longer compared to untreated cucumbers. Electron microscopy images indicate that UV-C light treatment influences the morphology of the E. coli k-12 cells. Findings demonstrate that treating cucumbers with UV-C light following packaging in PE film can reduce bacterial populations significantly and delay quality loss. This technology may also be effective for other similarly packaged fresh fruits and vegetables. © 2016 Institute of Food Technologists®

  18. Solid-state semiconductors are better alternatives to arc-lamps for efficient and uniform illumination in minimal access surgery.

    PubMed

    Lee, Alex C H; Elson, Daniel S; Neil, Mark A; Kumar, Sunil; Ling, Bingo W; Bello, Fernando; Hanna, George B

    2009-03-01

    Current arc-lamp illumination systems have a number of technical and ergonomic limitations. White light-emitting diodes (LEDs) are energy-efficient solid-state lighting devices which are small, durable and inexpensive. Their use as an alternative to arc-lamp light sources in minimal access surgery has not been explored. This study aims to develop an LED-based endo-illuminator and to determine its lighting characteristics for use in minimal access surgery. We developed an LED endo-illuminator using a white LED mounted at the tip of a steel rod. Offline image analysis was carried out to compare the illuminated field using the LED endo-illuminator or an arc-lamp based endoscope in terms of uniformity, shadow sharpness and overall image intensity. Direct radiometric power measurements in light intensity and stability were obtained. Visual perception of fine details at the peripheral endoscopic field was assessed by 13 subjects using the different illumination systems. Illumination from the LED endo-illuminator was more uniform compared to illumination from an arc-lamp source, especially at the closer distance of 4 cm (0.0006 versus 0.0028 arbitrary units--lower value indicates more uniform illumination). The shadows were also sharper (edge widths of 16 versus 44 pixels for the first edge and 15 versus 61 pixels for the second edge). The overall mean image intensity was higher (127 versus 100 arbitrary units) when using the autoshutter mode despite the lower direct radiometric power, about one tenth of the arc-lamp endoscopic system. The illumination was also more stable with less flickering (0.02% versus 5% of total power in non-DC components). Higher median scores on visual perception was also obtained (237 versus 157, p < 0.001). The LED endo-illuminator provides more uniform illumination with sharper shadows, less flickering and better illumination for visual perception than the arc-lamp-based system currently used.

  19. 405 ± 5 nm light emitting diode illumination causes photodynamic inactivation of Salmonella spp. on fresh-cut papaya without deterioration.

    PubMed

    Kim, Min-Jeong; Bang, Woo Suk; Yuk, Hyun-Gyun

    2017-04-01

    This study evaluated the antibacterial effect of 405 ± 5 nm light emitting diode (LED) illumination against four Salmonella serovars on fresh-cut papaya and on fruit quality at various storage temperatures. To determine the antibacterial mechanism of LED illumination at 0.9 kJ/cm 2 , oxidative damage to DNA and membrane lipids of Salmonella in phosphate-buffered saline solution was measured. The populations of Salmonella on cut fruits were significantly (P < 0.05) reduced by 0.3-1.3 log CFU/cm 2 at chilling temperatures following LED illumination for 36-48 h (1.3-1.7 kJ/cm 2 ). However, at room temperature, bacterial populations increased rapidly to 6.3-7.0 log CFU/cm 2 following LED illumination for 24 h (0.9 kJ/cm 2 ), which was approximately 1.0 log lower than the number of colonies on non-illuminated fruits. Levels of bacterial DNA oxidation significantly increased, whereas lipid peroxidation in bacterial membrane was not observed, suggesting that DNA oxidation contributes to photodynamic inactivation by LED illumination. LED illumination did not adversely affect the physicochemical and nutritional qualities of cut papaya, regardless of storage temperature. These results indicate that a food chiller equipped with 405 ± 5 nm LEDs can preserve fresh-cut papayas in retail stores without deterioration, minimizing the risk of salmonellosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Super-hydrophilic copper sulfide films as light absorbers for efficient solar steam generation under one sun illumination

    NASA Astrophysics Data System (ADS)

    Guo, Zhenzhen; Ming, Xin; Wang, Gang; Hou, Baofei; Liu, Xinghang; Mei, Tao; Li, Jinhua; Wang, Jianying; Wang, Xianbao

    2018-02-01

    Solar steam technology is one of the simplest, most direct and effective ways to harness solar energy through water evaporation. Here, we report the development using super-hydrophilic copper sulfide (CuS) films with double-layer structures as light absorbers for solar steam generation. In the double-layer structure system, a porous mixed cellulose ester (MCE) membrane is used as a supporting layer, which enables water to get into the CuS light absorbers through a capillary action to provide continuous water during solar steam generation. The super-hydrophilic property of the double-layer system (CuS/MCE) leads to a thinner water film close to the air-water interface where the surface temperature is sufficiently high, leading to more efficient evaporation (˜80 ± 2.5%) under one sun illumination. Furthermore, the evaporation efficiencies still keep a steady value after 15 cycles of testing. The super-hydrophilic CuS film is promising for practical application in water purification and evaporation as a light absorption material.

  1. Illuminance and luminance distributions of a prototype ambient illumination system for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Mullican, R. C.; Hayes, B. C.

    1991-01-01

    Preliminary results of research conducted in the late 1970's indicate that perceptual qualities of an enclosure can be influenced by the distribution of illumination within the enclosure. Subjective impressions such as spaciousness, perceptual clarity, and relaxation or tenseness, among others, appear to be related to different combinations of surface luminance. A prototype indirect ambient illumination system was developed which will allow crew members to alter surface luminance distributions within an enclosed module, thus modifying perceptual cues to match crew preferences. A traditional lensed direct lighting system was compared to the prototype utilizing the full-scale mockup of Space Station Freedom developed by Marshall Space Flight Center. The direct lensed system was installed in the habitation module with the indirect prototype deployed in the U.S. laboratory module. Analysis centered on the illuminance and luminance distributions resultant from these systems and the implications of various luminaire spacing options. All test configurations were evaluated for compliance with NASA Standard 3000, Man-System Integration Standards.

  2. Feasibility of ultraviolet-light-emitting diodes as an alternative light source for photocatalysis.

    PubMed

    Levine, Lanfang H; Richards, Jeffrey T; Coutts, Janelle L; Soler, Robert; Maxik, Fred; Wheeler, Raymond M

    2011-09-01

    The objective of this study was to determine whether ultraviolet-light-emitting diodes (UV-LEDs) could serve as an efficient photon source for heterogeneous photocatalytic oxidation (PCO). An LED module consisting of 12 high-power UV-A (lambda max = 365 nm) LEDs was designed to be interchangeable with a UV-A fluorescent black light blue (BLB) lamp for a bench scale annular reactor packed with silica-titania composite (STC) pellets. Lighting and thermal properties of the module were characterized to assess its uniformity and total irradiance. A forward current (I(F)) of 100 mA delivered an average irradiance of 4.0 mW cm(-2) at a distance of 8 mm, which is equivalent to the maximum output of the BLB, but the irradiance of the LED module was less uniform than that of the BLB. The LED and BLB reactors were tested for the oxidization of ethanol (50 ppm(v)) in a continuous-flow-through mode with 0.94 sec residence time. At the same average irradiance, the UV-A LED reactor resulted in a lower CO2 production rate (19.8 vs. 28.6 nmol L(-1) s(-1)), lower ethanol removal (80% vs. 91%), and lower mineralization efficiency (28% vs. 44%) than the UV-A BLB reactor. Ethanol mineralization was enhanced with the increase of the irradiance at the catalyst surface. This result suggests that reduced ethanol mineralization in the LED reactor relative to the BLB reactor at the same average irradiance could be attributed to the nonuniform irradiance over the photocatalyst, that is, a portion of the catalyst was exposed to less than the average irradiance. The potential of UV-A LEDs may be fully realized by optimizing the light distribution over the catalyst and utilizing their instantaneous "on" and "off" feature for periodic irradiation. Nevertheless, our results also showed that the current UV-A LED module had the same wall plug efficiency (WPE) of 13% as that of the UV-A BLB, demonstrating that UV-A LEDs are a viable photon source both in terms of WPE and PCO efficiency.

  3. Thermal-structural modeling of polymer Bragg grating waveguides illuminated by a light emitting diode.

    PubMed

    Joon Kim, Kyoung; Bar-Cohen, Avram; Han, Bongtae

    2012-02-20

    This study reports both analytical and numerical thermal-structural models of polymer Bragg grating (PBG) waveguides illuminated by a light emitting diode (LED). A polymethyl methacrylate (PMMA) Bragg grating (BG) waveguide is chosen as an analysis vehicle to explore parametric effects of incident optical powers and substrate materials on the thermal-structural behavior of the BG. Analytical models are verified by comparing analytically predicted average excess temperatures, and thermally induced axial strains and stresses with numerical predictions. A parametric study demonstrates that the PMMA substrate induces more adverse effects, such as higher excess temperatures, complex axial temperature profiles, and greater and more complicated thermally induced strains in the BG compared with the Si substrate. © 2012 Optical Society of America

  4. Graphene Oxide Transparent Hybrid Film and Its Ultraviolet Shielding Property.

    PubMed

    Xie, Siyuan; Zhao, Jianfeng; Zhang, Bowu; Wang, Ziqiang; Ma, Hongjuan; Yu, Chuhong; Yu, Ming; Li, Linfan; Li, Jingye

    2015-08-19

    Herein, we first reported a facile strategy to prepare functional Poly(vinyl alcohol) (PVA) hybrid film with well ultraviolet (UV) shielding property and visible light transmittance using graphene oxide nanosheets as UV-absorber. The absorbance of ultraviolet light at 300 nm can be up to 97.5%, while the transmittance of visible light at 500 nm keeps 40% plus. This hybrid film can protect protein from UVA light induced photosensitive damage, remarkably.

  5. Efficient photochemical generation of peroxycarboxylic nitric anhydrides with ultraviolet light emitting diodes

    NASA Astrophysics Data System (ADS)

    Rider, N. D.; Taha, Y. M.; Odame-Ankrah, C. A.; Huo, J. A.; Tokarek, T. W.; Cairns, E.; Moussa, S. G.; Liggio, J.; Osthoff, H. D.

    2015-01-01

    Photochemical sources of peroxycarboxylic nitric anhydrides (PANs) are utilized in many atmospheric measurement techniques for calibration or to deliver an internal standard. Conventionally, such sources rely on phosphor-coated low-pressure mercury (Hg) lamps to generate the UV light necessary to photo-dissociate a dialkyl ketone (usually acetone) in the presence of a calibrated amount of nitric oxide (NO) and oxygen (O2). In this manuscript, a photochemical PAN source in which the Hg lamp has been replaced by arrays of ultraviolet light-emitting diodes (UV-LEDs) is described. The output of the UV-LED source was analyzed by gas chromatography (PAN-GC) and thermal dissociation cavity ring-down spectroscopy (TD-CRDS). Using acetone, diethyl ketone (DIEK), diisopropyl ketone (DIPK), or di-n-propyl ketone (DNPK), respectively, the source produces peroxyacetic (PAN), peroxypropionic (PPN), peroxyisobutanoic (PiBN), or peroxy-n-butanoic nitric anhydride (PnBN) from NO in high yield (> 90%). Box model simulations with a subset of the Master Chemical Mechanism (MCM) were carried out to rationalize products yields and to identify side products. The use of UV-LED arrays offers many advantages over conventional Hg lamp setups, including greater light output over a narrower wavelength range, lower power consumption, and minimal generation of heat.

  6. Ultraviolet/blue light-emitting diodes based on single horizontal ZnO microrod/GaN heterojunction

    PubMed Central

    2014-01-01

    We report electroluminescence (EL) from single horizontal ZnO microrod (MR) and p-GaN heterojunction light-emitting diodes under forward and reverse bias. EL spectra were composed of two blue emissions centered at 431 and 490 nm under forward biases, but were dominated by a ultraviolet (UV) emission located at 380 nm from n-ZnO MR under high reverse biases. Light-output-current characteristic of the UV emission reveals that the rate of radiative recombination is faster than that of the nonradiative recombination. Highly efficient ZnO excitonic recombination at reverse bias is caused by electrons tunneling from deep-level states near the n-ZnO/p-GaN interface to the conduction band in n-ZnO. PMID:25232299

  7. Ultraviolet/blue light-emitting diodes based on single horizontal ZnO microrod/GaN heterojunction.

    PubMed

    Du, Chia-Fong; Lee, Chen-Hui; Cheng, Chao-Tsung; Lin, Kai-Hsiang; Sheu, Jin-Kong; Hsu, Hsu-Cheng

    2014-01-01

    We report electroluminescence (EL) from single horizontal ZnO microrod (MR) and p-GaN heterojunction light-emitting diodes under forward and reverse bias. EL spectra were composed of two blue emissions centered at 431 and 490 nm under forward biases, but were dominated by a ultraviolet (UV) emission located at 380 nm from n-ZnO MR under high reverse biases. Light-output-current characteristic of the UV emission reveals that the rate of radiative recombination is faster than that of the nonradiative recombination. Highly efficient ZnO excitonic recombination at reverse bias is caused by electrons tunneling from deep-level states near the n-ZnO/p-GaN interface to the conduction band in n-ZnO.

  8. Glass-Based Transparent Conductive Electrode: Its Application to Visible-to-Ultraviolet Light-Emitting Diodes.

    PubMed

    Lee, Tae Ho; Kim, Kyeong Heon; Lee, Byeong Ryong; Park, Ju Hyun; Schubert, E Fred; Kim, Tae Geun

    2016-12-28

    Nitride-based ultraviolet light-emitting diodes (UV LEDs) are promising replacements for conventional UV lamps. However, the external quantum efficiency of UV LEDs is much lower than for visible LEDs due to light absorption in the p-GaN contact and electrode layers, along with p-AlGaN growth and doping issues. To minimize such absorption, we should obtain direct ohmic contact to p-AlGaN using UV-transparent ohmic electrodes and not use p-GaN as a contact layer. Here, we propose a glass-based transparent conductive electrode (TCE) produced using electrical breakdown (EBD) of an AlN thin film, and we apply the thin film to four (Al)GaN-based visible and UV LEDs with thin buffer layers for current spreading and damage protection. Compared to LEDs with optimal ITO contacts, our LEDs with AlN TCEs exhibit a lower forward voltage, higher light output power, and brighter light emission for all samples. The ohmic transport mechanism for current injection and spreading from the metal electrode to p-(Al)GaN layer via AlN TCE is also investigated by analyzing the p-(Al)GaN surface before and after EBD.

  9. Superradiance and dynamical instability in an illuminated BEC

    NASA Astrophysics Data System (ADS)

    Lunden, William; Amato-Grill, Jesse; Dimitrova, Ivana; Jepsen, Niklas; Ketterle, Wolfgang

    2017-04-01

    An elongated, trapped Bose-Einstein condensate illuminated by an off-resonant laser beam has been used as a platform to observe superradiant Rayleigh scattering for almost two decades. We now consider the case of an elongated BEC illuminated by a pair of non-interfering, off-resonant lasers, and explore the dynamics of the coupled light-matter system in the short-time regime (i.e., times on the order of the inverse of the single-photon recoil frequency). In particular, we look for signatures of a proposed dynamical instability in the coupled system which spontaneously breaks the translational symmetry of both the BEC density and the total light field's intensity profile along the long axis of the trap. We also explore the relative roles of the spontaneous light force and the dipole force in both superradiance and this dynamical instability.

  10. Evaluation of Particle Image Velocimetry Measurement Using Multi-wavelength Illumination

    NASA Astrophysics Data System (ADS)

    Lai, HC; Chew, TF; Razak, NA

    2018-05-01

    In past decades, particle image velocimetry (PIV) has been widely used in measuring fluid flow and a lot of researches have been done to improve the PIV technique. Many researches are conducted on high power light emitting diode (HPLED) to replace the traditional laser illumination system in PIV. As an extended work to the research in PIV illumination system, two high power light emitting diodes (HPLED) with different wavelength are introduced as PIV illumination system. The objective of this research is using dual colours LED to directly replace laser as illumination system in order for a single frame to be captured by a normal camera instead of a high speed camera. Dual colours HPLEDs PIV are capable with single frame double pulses mode which able to plot the velocity vector of the particles after correlation. An illumination system is designed and fabricated and evaluated by measuring water flow in a small tank. The results indicates that HPLEDs promises a few advantages in terms of cost, safety and performance. It has a high potential to be develop into an alternative for PIV in the near future.

  11. Filter Enhances Fluorescent-Penetrant-Inspecting Borescope

    NASA Technical Reports Server (NTRS)

    Molina, Orlando G.

    1990-01-01

    Slip-on eyepiece for commercial ultraviolet-light borescope reduces both amount of short-wave ultraviolet light that reaches viewer's eye and apparent intensity of unwanted reflections of white light from surfaces undergoing inspection. Fits on stock eyepiece of borescope, which illuminates surface inspected with intense ultraviolet light. Surface, which is treated with fluorescent dye, emits bright-green visible light wherever dye penetrates - in cracks and voids. Eyepiece contains deep-yellow Wratten 15 (G) filter, which attenuates unwanted light strongly but passes yellow-green fluorescence so defects seen clearly.

  12. Ultraviolet Light Enhances the Bovine Serum Albumin Fixation for Acid Fast Bacilli Stain

    PubMed Central

    Lai, Pei-Yin; Lee, Shih-Yi; Chou, Yu-Ching; Fu, Yung-Chieh; Wu, Chen-Cheng; Chiueh, Tzong-Shi

    2014-01-01

    The use of a liquid culture system such as MGIT broth has greatly improved the sensitivity of isolating mycobacteria in clinical laboratories. Microscopic visualization of acid fast bacilli (AFB) in the culture positive MGIT broth remains the first routine step for rapidly indicating the presence of mycobacteria. We modified an ultraviolet (UV) light fixation process to increase AFB cells adherence to the slide. The retained haze proportion of a 1-cm circle marked area on the smear slide was quantified after the staining procedure indicating the adherence degree of AFB cells. More AFB cells were preserved on the slide after exposure to UV light of either germicidal lamp or UV crosslinker in a time-dependent manner. We demonstrated both the bovine serum albumin (BSA) in MGIT media and UV light exposure were required for enhancing fixation of AFB cells. While applying to AFB stains for 302 AFB positive MGIT broths in clinics, more AFB cells were retained and observed on smear slides prepared by the modified fixation procedure rather than by the conventional method. The modified fixation procedure was thus recommended for improving the sensitivity of microscopic diagnosis of AFB cells in culture positive MGIT broth. PMID:24586725

  13. New illuminations approaches with single-use micro LEDs endoilluminators for the pars plana vitrectomy

    NASA Astrophysics Data System (ADS)

    Koelbl, Philipp Simon; Koch, Frank H. J.; Lingenfelder, Christian; Hessling, Martin

    2018-02-01

    The illumination of the intraocular space during pars plana vitrectomy always bears the risk of retina damage by irradiation. Conventional illumination systems consist of an external light source and an optical fiber to transfer the visible light (radiation) into the eye. Often xenon arc and halogen lamps are employed for this application with some disadvantageous properties like high phototoxicity and low efficiency. Therefore, we propose to generate the light directly within the eye by inserting a white micro LED with a diameter of 0.6 mm. The LED offers a luminous flux of 0.6 lm of white light with a blue peak @ 450 nm and a yellow peak @ 555 nm. The presented prototypes fit through a standard 23 G trocar and are the first intraocular light sources worldwide. Two different single-use approaches have already been developed: a handguided and a chandelier device. The hand-guided applicator enables a directly navigation and illumination up to a working distance of 6 mm. The chandelier device is much smaller and does not need an active navigation of the light cone. The brightness and homogeneity of the illumination of these LED devices have been successfully tested on porcine eyes. Presented measurements and calculations prove that even for high LED currents and small distances to the retina these intraocular micro LED devices expose the retina to less hazard than conventional illumination sources like fiber based xenon systems. Even under the worst circumstances application durations of 180 hours would be justifiable.

  14. Simultaneously Enhancing Light Emission and Suppressing Efficiency Droop in GaN Microwire-Based Ultraviolet Light-Emitting Diode by the Piezo-Phototronic Effect.

    PubMed

    Wang, Xingfu; Peng, Wenbo; Yu, Ruomeng; Zou, Haiyang; Dai, Yejing; Zi, Yunlong; Wu, Changsheng; Li, Shuti; Wang, Zhong Lin

    2017-06-14

    Achievement of p-n homojuncted GaN enables the birth of III-nitride light emitters. Owing to the wurtzite-structure of GaN, piezoelectric polarization charges present at the interface can effectively control/tune the optoelectric behaviors of local charge-carriers (i.e., the piezo-phototronic effect). Here, we demonstrate the significantly enhanced light-output efficiency and suppressed efficiency droop in GaN microwire (MW)-based p-n junction ultraviolet light-emitting diode (UV LED) by the piezo-phototronic effect. By applying a -0.12% static compressive strain perpendicular to the p-n junction interface, the relative external quantum efficiency of the LED is enhanced by over 600%. Furthermore, efficiency droop is markedly reduced from 46.6% to 7.5% and corresponding droop onset current density shifts from 10 to 26.7 A cm -2 . Enhanced electrons confinement and improved holes injection efficiency by the piezo-phototronic effect are revealed and theoretically confirmed as the physical mechanisms. This study offers an unconventional path to develop high efficiency, strong brightness and high power III-nitride light sources.

  15. Digital micromirror based near-infrared illumination system for plasmonic photothermal neuromodulation

    PubMed Central

    Jung, Hyunjun; Kang, Hongki; Nam, Yoonkey

    2017-01-01

    Light-mediated neuromodulation techniques provide great advantages to investigate neuroscience due to its high spatial and temporal resolution. To generate a spatial pattern of neural activity, it is necessary to develop a system for patterned-light illumination to a specific area. Digital micromirror device (DMD) based patterned illumination system have been used for neuromodulation due to its simple configuration and design flexibility. In this paper, we developed a patterned near-infrared (NIR) illumination system for region specific photothermal manipulation of neural activity using NIR-sensitive plasmonic gold nanorods (GNRs). The proposed system had high power transmission efficiency for delivering power density up to 19 W/mm2. We used a GNR-coated microelectrode array (MEA) to perform biological experiments using E18 rat hippocampal neurons and showed that it was possible to inhibit neural spiking activity of specific area in neural circuits with the patterned NIR illumination. This patterned NIR illumination system can serve as a promising neuromodulation tool to investigate neuroscience in a wide range of physiological and clinical applications. PMID:28663912

  16. Digital micromirror based near-infrared illumination system for plasmonic photothermal neuromodulation.

    PubMed

    Jung, Hyunjun; Kang, Hongki; Nam, Yoonkey

    2017-06-01

    Light-mediated neuromodulation techniques provide great advantages to investigate neuroscience due to its high spatial and temporal resolution. To generate a spatial pattern of neural activity, it is necessary to develop a system for patterned-light illumination to a specific area. Digital micromirror device (DMD) based patterned illumination system have been used for neuromodulation due to its simple configuration and design flexibility. In this paper, we developed a patterned near-infrared (NIR) illumination system for region specific photothermal manipulation of neural activity using NIR-sensitive plasmonic gold nanorods (GNRs). The proposed system had high power transmission efficiency for delivering power density up to 19 W/mm 2 . We used a GNR-coated microelectrode array (MEA) to perform biological experiments using E18 rat hippocampal neurons and showed that it was possible to inhibit neural spiking activity of specific area in neural circuits with the patterned NIR illumination. This patterned NIR illumination system can serve as a promising neuromodulation tool to investigate neuroscience in a wide range of physiological and clinical applications.

  17. Ultraviolet Communication for Medical Applications

    DTIC Science & Technology

    2015-06-01

    DEI procured several UVC phosphors and tested them with vacuum UV (VUV) excitation. Available emission peaks include: 226 nm, 230 nm, 234 nm, 242...SUPPLEMENTARY NOTES Report contains color. 14. ABSTRACT Under this Phase II SBIR effort, Directed Energy Inc.’s (DEI) proprietary ultraviolet ( UV ...15. SUBJECT TERMS Non-line-of-sight (NLOS), networking, optical communication, plasma-shells, short range, ultraviolet ( UV ) light 16. SECURITY

  18. Indium gallium nitride-based ultraviolet, blue, and green light-emitting diodes functionalized with shallow periodic hole patterns

    PubMed Central

    Jeong, Hyun; Salas-Montiel, Rafael; Lerondel, Gilles; Jeong, Mun Seok

    2017-01-01

    In this study, we investigated the improvement in the light output power of indium gallium nitride (InGaN)-based ultraviolet (UV), blue, and green light-emitting diodes (LEDs) by fabricating shallow periodic hole patterns (PHPs) on the LED surface through laser interference lithography and inductively coupled plasma etching. Noticeably, different enhancements were observed in the light output powers of the UV, blue, and green LEDs with negligible changes in the electrical properties in the light output power versus current and current versus voltage curves. In addition, confocal scanning electroluminescence microscopy is employed to verify the correlation between the enhancement in the light output power of the LEDs with PHPs and carrier localization of InGaN/GaN multiple quantum wells. Light propagation through the PHPs on the UV, blue, and green LEDs is simulated using a three-dimensional finite-difference time-domain method to confirm the experimental results. Finally, we suggest optimal conditions of PHPs for improving the light output power of InGaN LEDs based on the experimental and theoretical results. PMID:28374856

  19. Indium gallium nitride-based ultraviolet, blue, and green light-emitting diodes functionalized with shallow periodic hole patterns.

    PubMed

    Jeong, Hyun; Salas-Montiel, Rafael; Lerondel, Gilles; Jeong, Mun Seok

    2017-04-04

    In this study, we investigated the improvement in the light output power of indium gallium nitride (InGaN)-based ultraviolet (UV), blue, and green light-emitting diodes (LEDs) by fabricating shallow periodic hole patterns (PHPs) on the LED surface through laser interference lithography and inductively coupled plasma etching. Noticeably, different enhancements were observed in the light output powers of the UV, blue, and green LEDs with negligible changes in the electrical properties in the light output power versus current and current versus voltage curves. In addition, confocal scanning electroluminescence microscopy is employed to verify the correlation between the enhancement in the light output power of the LEDs with PHPs and carrier localization of InGaN/GaN multiple quantum wells. Light propagation through the PHPs on the UV, blue, and green LEDs is simulated using a three-dimensional finite-difference time-domain method to confirm the experimental results. Finally, we suggest optimal conditions of PHPs for improving the light output power of InGaN LEDs based on the experimental and theoretical results.

  20. Reduced-illuminance autofluorescence imaging in ABCA4-associated retinal degenerations

    NASA Astrophysics Data System (ADS)

    Cideciyan, Artur V.; Swider, Malgorzata; Aleman, Tomas S.; Roman, Marisa I.; Sumaroka, Alexander; Schwartz, Sharon B.; Stone, Edwin M.; Jacobson, Samuel G.

    2007-05-01

    The health of the retinal pigment epithelium (RPE) can be estimated with autofluorescence (AF) imaging of lipofuscin, which accumulates as a byproduct of retinal exposure to light. Lipofuscin may be toxic to the RPE, and its toxicity may be enhanced by short-wavelength (SW) illumination. The high-intensity and SW excitation light used in conventional AF imaging could, at least in principle, increase the rate of lipofuscin accumulation and/or increase its toxicity. We considered two reduced-illuminance AF imaging (RAFI) methods as alternatives to conventional AF imaging. RAFI methods use either near-infrared (NIR) light or reduced-radiance SW illumination for excitation of fluorophores. We quantified the distribution of RAFI signals in relation to retinal structure and function in patients with the prototypical lipofuscin accumulation disease caused by mutations in ABCA4. There was evidence for two subclinical stages of macular ABCA4 disease involving hyperautofluorescence of both SW- and NIR-RAFI with and without associated loss of visual function. Use of RAFI methods and microperimetry in future clinical trials involving lipofuscinopathies should allow quantification of subclinical disease expression and progression without subjecting the diseased retina/RPE to undue light exposure.