Sample records for ultraviolet light reveals

  1. Transmitting and reflecting diffuser. [for ultraviolet light

    NASA Technical Reports Server (NTRS)

    Keafer, L. S., Jr.; Burcher, E. E.; Kopia, L. P. (Inventor)

    1973-01-01

    A near-Lambertian diffuser is described which transmits and reflects ultraviolet light. An ultraviolet grade fused silica substrate is coated with vaporized fuse silica. The coating thickness is controlled, one thickness causing ultraviolet light to diffuse and another thickness causing ultraviolet light to reflect a near Lambertian pattern.

  2. Scatter Measurements Made With Ultraviolet Light

    NASA Astrophysics Data System (ADS)

    Anthon, Erik W.

    1985-09-01

    The quality of optical surfaces is generally evaluated by how much light (normally visible light) is scattered by the surface. Most optical glasses and many coating materials are completely opaque to ultraviolet light (253.7 nm). Ultraviolet light tends to scatter much more than visible light. Scatter measurements made with ultraviolet light are therefore very sensitive and the scatter from second surfaces and from the interior (bulk) of the optical material is eliminated by the opacity. A novel scattermeter that operates with ultraviolet light has been developed. The construction and operation of this scattermeter will be described. Cleaning soon becomes the limiting factor when measuring the surfaces with very low level of scatter. Sensitivity to repeated cleaning has been investigated. Different surfaces are compared and uniformity of surfaces is measured by mapping a surface area with an x-y stage. Polished glass surfaces generally have much higher scatter than natural glass surfaces (fire polished, drawn or floated surfaces). Very low scatter levels have been found on thin drawn glass.

  3. Ultraviolet light-an FDA approved technology

    USDA-ARS?s Scientific Manuscript database

    Ultraviolet Light (254 nm) is a U.S. Food and Drug Administration approved nonthermal intervention technology that can be used for decontamination of food and food contact surfaces. Ultraviolet light is a green technology that leaves no chemical residues. Results from our laboratory indicate that ex...

  4. Ultraviolet safety assessments of insect light traps.

    PubMed

    Sliney, David H; Gilbert, David W; Lyon, Terry

    2016-01-01

    Near-ultraviolet (UV-A: 315-400 nm), "black-light," electric lamps were invented in 1935 and ultraviolet insect light traps (ILTs) were introduced for use in agriculture around that time. Today ILTs are used indoors in several industries and in food-service as well as in outdoor settings. With recent interest in photobiological lamp safety, safety standards are being developed to test for potentially hazardous ultraviolet emissions. A variety of UV "Black-light" ILTs were measured at a range of distances to assess potential exposures. Realistic time-weighted human exposures are shown to be well below current guidelines for human exposure to ultraviolet radiation. These UV-A exposures would be far less than the typical UV-A exposure in the outdoor environment. Proposals are made for realistic ultraviolet safety standards for ILT products.

  5. Microwave-driven ultraviolet light sources

    DOEpatents

    Manos, Dennis M.; Diggs, Jessie; Ametepe, Joseph D.

    2002-01-29

    A microwave-driven ultraviolet (UV) light source is provided. The light source comprises an over-moded microwave cavity having at least one discharge bulb disposed within the microwave cavity. At least one magnetron probe is coupled directly to the microwave cavity.

  6. Far-ultraviolet spectral changes of titanium dioxide with gold nanoparticles by ultraviolet and visible light

    NASA Astrophysics Data System (ADS)

    Tanabe, Ichiro; Kurawaki, Yuji

    2018-05-01

    Attenuated total reflectance spectra including the far-ultraviolet (FUV, ≤ 200 nm) region of titanium dioxide (TiO2) with and without gold (Au) nanoparticles were measured. A newly developed external light-irradiation system enabled to observe spectral changes of TiO2 with Au nanoparticles upon light irradiations. Absorption in the FUV region decreased and increased by the irradiation with ultraviolet and visible light, respectively. These spectral changes may reflect photo-induced electron transfer from TiO2 to Au nanoparticles under ultraviolet light and from Au nanoparticles to TiO2 under visible light, respectively.

  7. Ultraviolet safety assessments of insect light traps

    PubMed Central

    Sliney, David H.; Gilbert, David W.; Lyon, Terry

    2016-01-01

    ABSTRACT Near-ultraviolet (UV-A: 315–400 nm), “black-light,” electric lamps were invented in 1935 and ultraviolet insect light traps (ILTs) were introduced for use in agriculture around that time. Today ILTs are used indoors in several industries and in food-service as well as in outdoor settings. With recent interest in photobiological lamp safety, safety standards are being developed to test for potentially hazardous ultraviolet emissions. A variety of UV “Black-light” ILTs were measured at a range of distances to assess potential exposures. Realistic time-weighted human exposures are shown to be well below current guidelines for human exposure to ultraviolet radiation. These UV-A exposures would be far less than the typical UV-A exposure in the outdoor environment. Proposals are made for realistic ultraviolet safety standards for ILT products. PMID:27043058

  8. Ultraviolet Extensions

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Side-by-Side Comparison Click on image for larger view

    This ultraviolet image from NASA's Galaxy Evolution Explorer shows the Southern Pinwheel galaxy, also know as Messier 83 or M83. It is located 15 million light-years away in the southern constellation Hydra.

    Ultraviolet light traces young populations of stars; in this image, young stars can be seen way beyond the main spiral disk of M83 up to 140,000 light-years from its center. Could life exist around one of these far-flung stars? Scientists say it's unlikely because the outlying regions of a galaxy are lacking in the metals required for planets to form.

    The image was taken at scheduled intervals between March 15 and May 20, 2007. It is one of the longest-exposure, or deepest, images ever taken of a nearby galaxy in ultraviolet light. Near-ultraviolet light (or longer-wavelength ultraviolet light) is colored yellow, and far-ultraviolet light is blue.

    What Lies Beyond the Edge of a Galaxy The side-by-side comparison shows the Southern Pinwheel galaxy, or M83, as seen in ultraviolet light (right) and at both ultraviolet and radio wavelengths (left). While the radio data highlight the galaxy's long, octopus-like arms stretching far beyond its main spiral disk (red), the ultraviolet data reveal clusters of baby stars (blue) within the extended arms.

    The ultraviolet image was taken by NASA's Galaxy Evolution Explorer between March 15 and May 20, 2007, at scheduled intervals. Back in 2005, the telescope first photographed M83 over a shorter period of time. That picture was the first to reveal far-flung baby stars forming up to 63,000 light-years from the edge of the main spiral disk. This came as a surprise to astronomers because a galaxy's outer territory typically lacks high densities of star-forming materials.

    The newest picture of M83 from the Galaxy Evolution Explorer is shown at the right, and was taken over a longer period of

  9. Far-ultraviolet spectral changes of titanium dioxide with gold nanoparticles by ultraviolet and visible light.

    PubMed

    Tanabe, Ichiro; Kurawaki, Yuji

    2018-05-15

    Attenuated total reflectance spectra including the far-ultraviolet (FUV, ≤200nm) region of titanium dioxide (TiO 2 ) with and without gold (Au) nanoparticles were measured. A newly developed external light-irradiation system enabled to observe spectral changes of TiO 2 with Au nanoparticles upon light irradiations. Absorption in the FUV region decreased and increased by the irradiation with ultraviolet and visible light, respectively. These spectral changes may reflect photo-induced electron transfer from TiO 2 to Au nanoparticles under ultraviolet light and from Au nanoparticles to TiO 2 under visible light, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Stimulation of hair cells with ultraviolet light

    NASA Astrophysics Data System (ADS)

    Azimzadeh, Julien B.; Fabella, Brian A.; Hudspeth, A. J.

    2018-05-01

    Hair bundles are specialized organelles that transduce mechanical inputs into electrical outputs. To activate hair cells, physiologists have resorted to mechanical methods of hair-bundle stimulation. Here we describe a new method of hair-bundle stimulation, irradiation with ultraviolet light. A hair bundle illuminated by ultraviolet light rapidly moves towards its tall edge, a motion typically associated with excitatory stimulation. The motion disappears upon tip-link rupture and is associated with the opening of mechanotransduction channels. Hair bundles can be induced to move sinusoidally with oscillatory modulation of the stimulation power. We discuss the implications of ultraviolet stimulation as a novel hair-bundle stimulus.

  11. Novel Ultraviolet Light Absorbing Polymers For Optical Applications

    NASA Astrophysics Data System (ADS)

    Doddi, Namassivaya; Yamada, Akira; Dunks, Gary B.

    1988-07-01

    Ultraviolet light absorbing monomers have been developed that can be copolymerized with acrylates. The composition of the resultant stable copolymers can be adjusted to totally block the transmission of light below about 430 nm. Fabrication of lenses from the materials is accomplished by lathe cutting and injection molding procedures. These ultraviolet light absorbing materials are non-mutagenic and non-toxic and are currently being used in intraocular lenses.

  12. Hubble Space Telescope Ultraviolet Light Curves Reveal Interesting Properties of CC Sculptoris and RZ Leonis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szkody, Paula; Mukadam, Anjum S.; Toloza, Odette

    2017-03-01

    Time-tag ultraviolet data obtained on the Hubble Space Telescope in 2013 reveal interesting variability related to the white dwarf spin in the two cataclysmic variables RZ Leo and CC Scl. RZ Leo shows a period at 220 s and its harmonic at 110 s, thus identifying it as a likely Intermediate Polar (IP). The spin signal is not visible in a short single night of ground-based data in 2016, but the shorter exposures in that data set indicate a possible partial eclipse. The much larger UV amplitude of the spin signal in the known IP CC Scl allows the spinmore » of 389 s, previously only seen at outburst, to be visible at quiescence. Spectra created from the peaks and troughs of the spin times indicate a hotter temperature of several thousand degrees during the peak phases, with multiple components contributing to the UV light.« less

  13. The influence of the environment and clothing on human exposure to ultraviolet light.

    PubMed

    Liu, Jin; Zhang, Wei

    2015-01-01

    The aim of this study is to determine the effect of clothing and the environment on human exposure to ultraviolet light. The ultraviolet (ultraviolet A and ultraviolet B) light intensity was measured, and air quality parameters were recorded in 2014 in Beijing, China. Three types of clothing (white polyester cloth, pure cotton white T-shirt, and pure cotton black T-shirt) were individually placed on a mannequin. The ultraviolet (ultraviolet A and ultraviolet B) light intensities were measured above and beneath each article of clothing, and the percentage of ultraviolet light transmission through the clothing was calculated. (1) The ultraviolet light transmission was significantly higher through white cloth than through black cloth; the transmission was significantly higher through polyester cloth than through cotton. (2) The weather significantly influenced ultraviolet light transmission through white polyester cloth; transmission was highest on clear days and lowest on overcast days (ultraviolet A: P=0.000; ultraviolet B: P=0.008). (3) Air quality parameters (air quality index and particulate matter 2.5 and 10) were inversely related to the ultraviolet light intensity that reached the earth's surface. Ultraviolet B transmission through white polyester cloth was greater under conditions of low air pollution compared with high air pollution. Clothing color and material and different types of weather affected ultraviolet light transmission; for one particular cloth, the transmission decreased with increasing air pollution.

  14. High extraction efficiency ultraviolet light-emitting diode

    DOEpatents

    Wierer, Jonathan; Montano, Ines; Allerman, Andrew A.

    2015-11-24

    Ultraviolet light-emitting diodes with tailored AlGaN quantum wells can achieve high extraction efficiency. For efficient bottom light extraction, parallel polarized light is preferred, because it propagates predominately perpendicular to the QW plane and into the typical and more efficient light escape cones. This is favored over perpendicular polarized light that propagates along the QW plane which requires multiple, lossy bounces before extraction. The thickness and carrier density of AlGaN QW layers have a strong influence on the valence subband structure, and the resulting optical polarization and light extraction of ultraviolet light-emitting diodes. At Al>0.3, thinner QW layers (<2.5 nm are preferred) result in light preferentially polarized parallel to the QW plane. Also, active regions consisting of six or more QWs, to reduce carrier density, and with thin barriers, to efficiently inject carriers in all the QWs, are preferred.

  15. The Influence of the Environment and Clothing on Human Exposure to Ultraviolet Light

    PubMed Central

    Liu, Jin; Zhang, Wei

    2015-01-01

    Objection The aim of this study is to determine the effect of clothing and the environment on human exposure to ultraviolet light. Methods The ultraviolet (ultraviolet A and ultraviolet B) light intensity was measured, and air quality parameters were recorded in 2014 in Beijing, China. Three types of clothing (white polyester cloth, pure cotton white T-shirt, and pure cotton black T-shirt) were individually placed on a mannequin. The ultraviolet (ultraviolet A and ultraviolet B) light intensities were measured above and beneath each article of clothing, and the percentage of ultraviolet light transmission through the clothing was calculated. Results (1) The ultraviolet light transmission was significantly higher through white cloth than through black cloth; the transmission was significantly higher through polyester cloth than through cotton. (2) The weather significantly influenced ultraviolet light transmission through white polyester cloth; transmission was highest on clear days and lowest on overcast days (ultraviolet A: P=0.000; ultraviolet B: P=0.008). (3) Air quality parameters (air quality index and particulate matter 2.5 and 10) were inversely related to the ultraviolet light intensity that reached the earth’s surface. Ultraviolet B transmission through white polyester cloth was greater under conditions of low air pollution compared with high air pollution. Conclusion Clothing color and material and different types of weather affected ultraviolet light transmission; for one particular cloth, the transmission decreased with increasing air pollution. PMID:25923778

  16. Inorganic volumetric light source excited by ultraviolet light

    DOEpatents

    Reed, Scott; Walko, Robert J.; Ashley, Carol S.; Brinker, C. Jeffrey

    1994-01-01

    The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light.

  17. Inorganic volumetric light source excited by ultraviolet light

    DOEpatents

    Reed, S.; Walko, R.J.; Ashley, C.S.; Brinker, C.J.

    1994-04-26

    The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light. 4 figures.

  18. Effect of ultraviolet light on mood, depressive disorders and well-being.

    PubMed

    Veleva, Bistra I; van Bezooijen, Rutger L; Chel, Victor G M; Numans, Mattijs E; Caljouw, Monique A A

    2018-06-01

    Human and animal studies have shown that exposure to ultraviolet light can incite a chain of endocrine, immunologic, and neurohumoral reactions that might affect mood. This review focuses on the evidence from clinical trials and observational studies on the effect of ultraviolet light on mood, depressive disorders, and well-being. A search was made in PubMed, Embase, Web of Science, Cochrane, Psychinfo, CINAHL, Academic Search Premier and Science Direct, and the references of key papers, for clinical trials and observational studies describing the effect of ultraviolet light applied to skin or eyes on mood, depressive disorders, and well-being. Of the seven studies eligible for this review, the effect of ultraviolet light on mood, depressive symptoms and seasonal affective disorders was positive in six of them. Of the seven studies, six demonstrated benefit of exposure to ultraviolet radiation and improvement in mood which supports a positive effect of ultraviolet light on mood. Because of the small number of the studies and their heterogeneity, more research is warranted to confirm and document this correlation. © 2018 The Authors. Photodermatology, Photoimmunology & Photomedicine Published by John Wiley & Sons Ltd.

  19. MAHLI Calibration Target in Ultraviolet Light

    NASA Image and Video Library

    2012-02-07

    During pre-flight testing in March 2011, the Mars Hand Lens Imager MAHLI camera on NASA Mars rover Curiosity took this image of the MAHLI calibration target under illumination from MAHLI two ultraviolet LEDs light emitting diodes.

  20. Design Considerations for a Water Treatment System Utilizing Ultra-Violet Light Emitting Diodes

    DTIC Science & Technology

    2014-03-27

    DESIGN CONSIDERATIONS FOR A WATER TREATMENT SYSTEM UTILIZING ULTRA-VIOLET LIGHT EMITTING DIODES...the United States. ii AFIT-ENV-14-M-58 DESIGN CONSIDERATIONS FOR A WATER TREATMENT SYSTEM UTILIZING ULTRA-VIOLET LIGHT EMITTING DIODES...DISTRIBUTION UNLIMITED. iii AFIT-ENV-14-M-58 DESIGN CONSIDERATIONS FOR A WATER TREATMENT SYSTEM UTILIZING ULTRA-VIOLET LIGHT EMITTING

  1. GALEX 1st Light Far Ultraviolet

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image was taken May 21 and 22 by NASA's Galaxy Evolution Explorer. The image was made from data gathered by the far ultraviolet channel of the spacecraft camera during the mission's 'first light' milestone. It shows about 400 celestial objects, appearing in blue, detected over a 3-minute, 20-second period in the constellation Hercules.

    The Galaxy Evolution Explorer's first light images are dedicated to the crew of the Space Shuttle Columbia. The Hercules region was directly above Columbia when it made its last contact with NASA Mission Control on February 1, over the skies of Texas.

    The Galaxy Evolution Explorer launched on April 28 on a mission to map the celestial sky in the ultraviolet and determine the history of star formation in the universe over the last 10 billion years.

  2. Can the circadian system of a diurnal and a nocturnal rodent entrain to ultraviolet light?

    PubMed

    Hut, R A; Scheper, A; Daan, S

    2000-01-01

    Spectral measurements of sunlight throughout the day show close correspondence between the timing of above ground activity of the European ground squirrel and the presence of ultraviolet light in the solar spectrum. However, in a standard entrainment experiment ground squirrels show no entrainment to ultraviolet light, while Syrian hamsters do entrain under the same protocol. Presented transmittance spectra for lenses, corneas, and vitreous bodies may explain the different results of the entrainment experiment. We found ultraviolet light transmittance in the colourless hamster lens (50% cut-off at 341 nm), but not in the yellow ground squirrel lens (50% cut-off around 493 nm). Ultraviolet sensitivity in the ground squirrels based upon possible fluorescence mechanisms was not evident. Possible functions of ultraviolet lens filters in diurnal mammals are discussed, and compared with nocturnal mammals and diurnal birds. Species of the latter two groups lack ultraviolet filtering properties of their lenses and their circadian system is known to respond to ultraviolet light, a feature that does not necessarily has to depend on ultraviolet photoreceptors. Although the circadian system of several species responds to ultraviolet light, we argue that the role of ultraviolet light as a natural Zeitgeber is probably limited.

  3. GALEX 1st Light Far Ultraviolet

    NASA Image and Video Library

    2003-05-28

    This image was taken May 21 and 22, 2003 by NASA Galaxy Evolution Explorer. The image was made from data gathered by the far ultraviolet channel of the spacecraft camera during the mission first light milestone. It shows about 400 celestial objects

  4. Deep ultraviolet light-emitting and laser diodes

    NASA Astrophysics Data System (ADS)

    Khan, Asif; Asif, Fatima; Muhtadi, Sakib

    2016-02-01

    Nearly all the air-water purification/polymer curing systems and bio-medical instruments require 250-300 nm wavelength ultraviolet light for which mercury lamps are primarily used. As a potential replacement for these hazardous mercury lamps, several global research teams are developing AlGaN based Deep Ultraviolet (DUV) light emitting diodes (LEDs) and DUV LED Lamps and Laser Diodes over Sapphire and AlN substrates. In this paper, we review the current research focus and the latest device results. In addition to the current results we also discuss a new quasipseudomorphic device design approach. This approach which is much easier to integrate in a commercial production setting was successfully used to demonstrate UVC devices on Sapphire substrates with performance levels equal to or better than the conventional relaxed device designs.

  5. Ultraviolet photometry from the Orbiting Astronomical Observatory. XXVIII - Ultraviolet light curves for Alpha Lupi and BW Vulpeculae

    NASA Technical Reports Server (NTRS)

    Lesh, J. R.

    1978-01-01

    Photometric data from the Wisconsin Experiment Package on OAO-2 have been used to construct light curves at three ultraviolet wavelengths for Alpha Lup and at seven wavelengths for BW Vul. Both stars are well-known variables of the Beta Cephei (Beta Canis Majoris) type. The light curves for Alpha Lup are in good agreement with the radial-velocity period. A temperature variation of 400-500 K is derived. The BW Vul light curves confirm recent ephemerides based on a secularly varying period and show a stillstand near light maximum at some wavelengths. Both stars exhibit increasing light amplitude at the shortest ultraviolet wavelengths. There is little evidence for cycle-to-cycle variations on a time scale of the order of 1 day.

  6. Light shield and cooling apparatus. [high intensity ultraviolet lamp

    NASA Technical Reports Server (NTRS)

    Meador, T. G., Jr. (Inventor)

    1974-01-01

    A light shield and cooling apparatus was developed for a high intensity ultraviolet lamp including water and high pressure air for cooling and additional apparatus for shielding the light and suppressing the high pressure air noise.

  7. Ultraviolet light absorbers having two different chromophors in the same molecule

    DOEpatents

    Vogl, O.; Li, S.

    1983-10-06

    This invention relates to novel ultraviolet light absorbers having two chromophors in the same molecule, and more particularly to benzotriazole substituted dihydroxybenzophenones and acetophenones. More particularly, this invention relates to 3,5-(di(2H-benzotriazole-2-yl))-2,4-dihydroxybenzophenone and 3,5-(di(2H-benzotriazole-2-yl))-2,4-dihydroxyacetophenone which are particularly useful as an ultraviolet light absorbers.

  8. Protection from visible light by commonly used textiles is not predicted by ultraviolet protection.

    PubMed

    Van den Keybus, Caroline; Laperre, Jan; Roelandts, Rik

    2006-01-01

    Interest is increasing in the prevention of acute and chronic actinic damage provided by clothing. This interest has focused mainly on protection against ultraviolet irradiation, but it has now also turned to protection against visible light. This change is mainly due to the action spectrum in the visible light range of some photodermatoses and the increasing interest in photodynamic therapy. The ultraviolet protection provided by commercially available textiles can be graded by determining an ultraviolet protection factor. Several methods have already been used to determine the ultraviolet protection factor. The fact that protection from visible light by textiles cannot be predicted by their ultraviolet protection makes the situation more complicated. This study attempts to determine whether or not the ultraviolet protection factor value of a particular textile is a good parameter for gauging its protection in the visible light range and concludes that a protection factor of textile materials against visible light needs to be developed. This development should go beyond the protection factor definition used in this article, which has some limitations, and should take into account the exact action spectrum for which the protection is needed.

  9. ULTRAVIOLET LIGHT DISINFECTION OF COMBINED SEWER OVERFLOW (NEW ORLEANS)

    EPA Science Inventory

    The objective of this state-of-the-art review is to examine the performance and effectiveness of ultraviolet (UV) light disinfection for combined sewer overflow (CSO) applications. Topics presented include the use of UV light as a disinfecting agent, its practical applications, d...

  10. HUBBLE IDENTIFIES SOURCE OF ULTRAVIOLET LIGHT IN AN OLD GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Hubble Space Telescope's exquisite resolution has allowed astronomers to resolve, for the first time, hot blue stars deep inside an elliptical galaxy. The swarm of nearly 8,000 blue stars resembles a blizzard of snowflakes near the core (lower right) of the neighboring galaxy M32, located 2.5 million light-years away in the constellation Andromeda. Hubble confirms that the ultraviolet light comes from a population of extremely hot helium-burning stars at a late stage in their lives. Unlike the Sun, which burns hydrogen into helium, these old stars exhausted their central hydrogen long ago, and now burn helium into heavier elements. The observations, taken in October 1998, were made with the camera mode of the Space Telescope Imaging Spectrograph (STIS) in ultraviolet light. The STIS field of view is only a small portion of the entire galaxy, which is 20 times wider on the sky. For reference, the full moon is 70 times wider than the STIS field-of-view. The bright center of the galaxy was placed on the right side of the image, allowing fainter stars to be seen on the left side of the image. These results are to be published in the March 1, 2000 issue of The Astrophysical Journal. Thirty years ago, the first ultraviolet observations of elliptical galaxies showed that they were surprisingly bright when viewed in ultraviolet light. Before those pioneering UV observations, old groups of stars were assumed to be relatively cool and thus extremely faint in the ultraviolet. Over the years since the initial discovery of this unexpected ultraviolet light, indirect evidence has accumulated that it originates in a population of old, but hot, helium-burning stars. Now Hubble provides the first direct visual evidence. Nearby elliptical galaxies are thought to be relatively simple galaxies comprised of old stars. Because they are among the brightest objects in the Universe, this simplicity makes them useful for tracing the evolution of stars and galaxies. Credits: NASA and Thomas

  11. GALEX 1st Light Near and Far Ultraviolet -100

    NASA Image and Video Library

    2003-05-28

    NASA's Galaxy Evolution Explorer took this image on May 21 and 22, 2003. The image was made from data gathered by the two channels of the spacecraft camera during the mission's "first light" milestone. It shows about 100 celestial objects in the constellation Hercules. The reddish objects represent those detected by the camera's near ultraviolet channel over a 5-minute period, while bluish objects were detected over a 3-minute period by the camera's far ultraviolet channel. The Galaxy Evolution Explorer's first light images are dedicated to the crew of the Space Shuttle Columbia. The Hercules region was directly above Columbia when it made its last contact with NASA Mission Control on February 1, over the skies of Texas. The Galaxy Evolution Explorer launched on April 28 on a mission to map the celestial sky in the ultraviolet and determine the history of star formation in the universe over the last 10 billion years. http://photojournal.jpl.nasa.gov/catalog/PIA04281

  12. Saturn's Rings in Ultraviolet Light

    NASA Image and Video Library

    2017-12-08

    Saturn's Rings in Ultraviolet Light Credit: NASA and E. Karkoschka (University of Arizona) The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. Goddard is responsible for HST project management, including mission and science operations, servicing missions, and all associated development activities. To learn more about the Hubble Space Telescope go here: www.nasa.gov/mission_pages/hubble/main/index.html

  13. CHALLENGES OF COMBINED SEWER OVERFLOW DISINFECTION BY ULTRAVIOLET LIGHT IRRADIATION

    EPA Science Inventory

    This article examines the performance and effectiveness of ultraviolet (UV) light irradiation for disinfection of combined sewer overflow (CSO). Due to the negative impact of conventional water disinfectants on aquatic life, new agents (e.g., UV light) are being investigated for ...

  14. Reactivation of latent herpes simplex virus infection by ultraviolet light: a human model.

    PubMed

    Perna, J J; Mannix, M L; Rooney, J F; Notkins, A L; Straus, S E

    1987-09-01

    Infection with herpes simplex virus often results in a latent infection of local sensory ganglia and a disease characterized by periodic viral reactivation and mucocutaneous lesions. The factors that trigger reactivation in humans are still poorly defined. In our study, five patients with documented histories of recurrent herpes simplex virus infection on the buttocks or sacrum were exposed to three times their minimal erythema dose of ultraviolet light. Site-specific cutaneous herpes simplex virus infection occurred at 4.4 +/- 0.4 days after exposure to ultraviolet light in 8 of 13 attempts at reactivation. We conclude that ultraviolet light can reactivate herpes simplex virus under experimentally defined conditions. This model in humans should prove useful in evaluating the pathophysiology and prevention of viral reactivation.

  15. Characteristics of ultraviolet light and radicals formed by pulsed discharge in water

    NASA Astrophysics Data System (ADS)

    Sun, Bing; Kunitomo, Shinta; Igarashi, Chiaki

    2006-09-01

    In this investigation, the ultraviolet light characteristics and OH radical properties produced by a pulsed discharge in water were studied. For the plate-rod reactor, it was found that the ultraviolet light energy has a 3.2% total energy injected into the reactor. The ultraviolet light changed with the peak voltage and electrode distance. UV characteristics in tap water and the distilled water are given. The intensity of the OH radicals was the highest for the 40 mm electrode distance reactor. In addition, the properties of hydrogen peroxide and ozone were also studied under arc discharge conditions. It was found that the OH radicals were in the ground state and the excited state when a pulsed arc discharge was used. The ozone was produced by the arc discharge even if the oxygen gas is not bubbled into the reactor. The ozone concentration produces a maximum value with treatment time.

  16. Reactivation of latent herpes simplex virus infection by ultraviolet light: a human model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perna, J.J.; Mannix, M.L.; Rooney, J.F.

    1987-09-01

    Infection with herpes simplex virus often results in a latent infection of local sensory ganglia and a disease characterized by periodic viral reactivation and mucocutaneous lesions. The factors that trigger reactivation in humans are still poorly defined. In our study, five patients with documented histories of recurrent herpes simplex virus infection on the buttocks or sacrum were exposed to three times their minimal erythema dose of ultraviolet light. Site-specific cutaneous herpes simplex virus infection occurred at 4.4 +/- 0.4 days after exposure to ultraviolet light in 8 of 13 attempts at reactivation. We conclude that ultraviolet light can reactivate herpesmore » simplex virus under experimentally defined conditions. This model in humans should prove useful in evaluating the pathophysiology and prevention of viral reactivation.« less

  17. The interaction of ultraviolet light with Arctic sea ice during SHEBA

    NASA Astrophysics Data System (ADS)

    Perovich, Donald K.

    The reflection, absorption and transmission of ultraviolet light by a sea-ice cover strongly impacts primary productivity, higher trophic components of the food web, and humans. Measurements of the incident irradiance at 305, 320, 340 and 380 nm and of the photosynthetically active radiation were made from April through September 1998 as part of the SHEBA (Surface Heat Budget of the Arctic Ocean program) field experiment in the Arctic Ocean. In addition, observations of snow depth and ice thickness were made at more than 100 sites encompassing a comprehensive range of conditions. The thickness observations were combined with a radiative transfer model to compute a time series of the ultraviolet light transmitted by the ice cover from April through September. Peak values of incident ultraviolet irradiance occurred in mid-June. Peak transmittance was later in the summer at the end of the melt season when the snow cover had completely melted, the ice had thinned and pond coverage was extensive. The fraction of the incident ultraviolet irradiance transmitted through the ice increased by several orders of magnitude as the melt season progressed. Ultraviolet transmittance was approximately a factor of ten greater for melt ponds than bare ice. Climate change has the potential to alter the amplitude and timing of the annual albedo cycle of sea ice. If the onset of melt occurs at increasingly earlier dates, ultraviolet transmittance will be significantly enhanced, with potentially deleterious biological impacts.

  18. Ba2Mg(BO3)2:Bi3+ - A new phosphor with ultraviolet light emission

    NASA Astrophysics Data System (ADS)

    Lakshminarasimhan, N.; Jayakiruba, S.; Prabhavathi, K.

    2017-10-01

    Ultraviolet light emission was observed in a new Ba2Mg(BO3)2:Bi3+ phosphor. Bi3+ substitution for Ba2+ in the lattice was supplemented with K+ to maintain the charge neutrality. The samples of the formula Ba2-2xBixKxMg(BO3)2 [x = 0, 0.001, 0.01, 0.02, and 0.05] synthesized by solid state reaction were characterized using powder X-ray diffraction for their phase formation. Raman and diffuse reflectance UV-Vis spectroscopic techniques were used to obtain information on the vibrational modes and optical properties, respectively. The room temperature photoluminescence measurements revealed an ultraviolet emission at 370 nm when excited using 304 nm wavelength and the Stokes shift is 5868 cm-1.

  19. Discolouration of orthodontic adhesives caused by food dyes and ultraviolet light.

    PubMed

    Faltermeier, Andreas; Rosentritt, Martin; Reicheneder, Claudia; Behr, Michael

    2008-02-01

    Enamel discolouration after debonding of orthodontic attachments could occur because of irreversible penetration of resin tags into the enamel structure. Adhesives could discolour because of food dyes or ultraviolet irradiation. The aim of this study was to investigate the colour stability of adhesives during ultraviolet irradiation and exposure to food colourants. Four different adhesives were exposed in a Suntest CPS+ ageing device to a xenon lamp to simulate natural daylight (Transbond XT, Enlight, RelyX Unicem, and Meron Plus AC). Tomato ketchup, Coca Cola, and tea were chosen as the food colourants. After 72 hours of exposure, colour measurements were performed by means of a spectrophotometer according to the Commission Internationale de l'Eclairage L*a*b* system and colour changes (DeltaE*) were computed. Statistical differences were investigated using two-way analysis of variance (ANOVA) and Friedman test. Unsatisfactory colour stability after in vitro exposure to food colourants and ultraviolet light was observed for the conventional adhesive systems, Transbond XT and Enlight. RelyX Unicem showed the least colour change and the resin-reinforced glass-ionomer cement (GIC), Meron Plus AC, the greatest colour change. The investigated adhesives seem to be susceptible to both internal and external discolouration. These in vitro findings indicate that the tested conventional adhesive systems reveal unsatisfactory colour stability which should be improved to avoid enamel discolouration.

  20. STUDIES ON BIOLUMINESCENCE : XVII. FLUORESCENCE AND INHIBITION OF LUMINESCENCE IN CTENOPHORES BY ULTRA-VIOLET LIGHT.

    PubMed

    Harvey, E N

    1925-01-20

    1. Small dumps of the luminous cells of Mnemiopsis cannot readily be stimulated mechanically but will luminesce on treatment with saponin solution. Larger groups of luminous cells (such as are connected with two paddle plates) luminesce on mechanical stimulation. This suggests that mechanical stimulation to luminesce occurs chiefly through a nerve mechanism which has been broken up in the small dumps of luminous tissue. 2. The smallest bits of luminous tissue, even cells freed from the animal by agitation, that will pass through filter paper, lose their power to luminesce in daylight and regain it (at least partially) in the dark. 3. Luminescence of the whole animal and of individual cells is suppressed by near ultra-violet light (without visible light). 4. Inhibition in ultra-violet light is not due to stimulation (by the ultra-violet light) of the animal to luminesce, thereby using up the store of photogenic material. 5. Animals stimulated mechanically several times and placed in ultra-violet light show a luminescence along the meridians in the same positions as the luminescence that appears on stimulation. This luminescence in the ultra-violet or "tonic luminescence," is not obtained with light adapted ctenophores and is interpreted to be a fluorescence of the product of oxidation of the photogenic material. 6. Marked fluorescence of the luminous organ of the glowworm (Photuris) and of the luminous slime of Chatopterus may be observed in ultra-violet but no marked fluorescence of the luminous substances of Cypridina is apparent. 7. Evidence is accumulating to show a close relation between fluorescent and chemiluminescent substances in animals, similar to that described for unsaturated silicon compounds and the Grignard reagents.

  1. Ultraviolet-C light effect on physicochemical, bioactive, microbiological, and sensorial characteristics of carrot (Daucus carota) beverages.

    PubMed

    Hernández-Carranza, Paola; Ruiz-López, Irving Israel; Pacheco-Aguirre, Francisco Manuel; Guerrero-Beltrán, José Ángel; Ávila-Sosa, Raúl; Ochoa-Velasco, Carlos Enrique

    2016-09-01

    The aim of this research was to evaluate the effect of ultraviolet-C light on physicochemical, bioactive, microbial, and sensory characteristics of carrot beverages. Beverages were formulated with different concentrations of carrot juice (60, 80, and 100% [v/v]) and treated with ultraviolet-C light at different flow rates (0, 0.5, 3.9, and 7.9 mL s(-1)) and times (5, 10, 15, 20, and 30 min), equivalent to ultraviolet-C dosages of 13.2, 26.4, 39.6, 52.8, and 79.2 J cm(-2) Total soluble solids, pH, and titratable acidity were not affected by the ultraviolet-C light treatment. Ultraviolet-C light significantly affected (p < 0.05) color parameters of pure juice; however, at low concentration of juice, total color change was slightly affected (ΔE = 2.0 ± 0.7). Phenolic compounds (4.1 ± 0.1, 5.2 ± 0.2, and 8.6 ± 0.3 mg of GAE 100 mL(-1) of beverage with 60, 80, and 100% of juice, respectively) and antioxidant capacity (6.1 ± 0.4, 8.5 ± 0.4, and 9.4 ± 0.3 mg of Trolox 100 mL(-1) of beverage with 60, 80, and 100% of juice, respectively) of carrot beverages were not affected by ultraviolet-C light treatment. Microbial kinetics showed that mesophiles were mostly reduced at high flow rates in carrot beverages with 60% of juice. Maximum logarithmic reductions for mesophiles and total coliforms were 3.2 ± 0.1 and 2.6 ± 0.1, respectively, after 30 min of ultraviolet-C light processing. Beverages were well accepted (6-7) by judges who did not perceive the difference between untreated and Ultraviolet-C light treated beverages. © The Author(s) 2016.

  2. Inactivation of Pseudomonas aeruginosa biofilm after ultraviolet light-emitting diode treatment: a comparative study between ultraviolet C and ultraviolet B

    NASA Astrophysics Data System (ADS)

    Argyraki, Aikaterini; Markvart, Merete; Bjørndal, Lars; Bjarnsholt, Thomas; Petersen, Paul Michael

    2017-06-01

    The objective of this study was to test the inactivation efficiency of two different light-based treatments, namely ultraviolet B (UVB) and ultraviolet C (UVC) irradiation, on Pseudomonas aeruginosa biofilms at different growth stages (24, 48, and 72 h grown). In our experiments, a type of AlGaN light-emitting diodes (LEDs) was used to deliver UV irradiation on the biofilms. The effectiveness of the UVB at 296 nm and UVC at 266 nm irradiations was quantified by counting colony-forming units. The survival of less mature biofilms (24 h grown) was studied as a function of UV-radiant exposure. All treatments were performed on three different biological replicates to test reproducibility. It was shown that UVB irradiation was significantly more effective than UVC irradiation in inactivating P. aeruginosa biofilms. UVC irradiation induced insignificant inactivation on mature biofilms. The fact that the UVB at 296 nm exists in daylight and has such disinfection ability on biofilms provides perspectives for the treatment of infectious diseases.

  3. Impact of Ultraviolet Light on Vitiligo.

    PubMed

    Singh, Rasnik K

    2017-01-01

    Vitiligo is a disorder of the melanocytes that results in a dynamic spectrum of skin depigmentation. Its etiology is complex and multifactorial, with data supporting several different hypotheses. Given its prominent phenotype, vitiligo has a significant negative impact on quality of life. Coupled with the chronic and incurable nature of the disease, this presents a formidable treatment challenge. Several treatment modalities have been instituted over the years, with varying efficacy. This chapter focuses on the use of ultraviolet light in vitiligo as an established therapeutic option.

  4. Effect of some ultraviolet light absorbers on photo-stabilization of azadirachtin-A.

    PubMed

    Deota, P T; Upadhyay, P R; Patel, K B; Mehta, K J; Varshney, A K; Mehta, M H

    2002-10-01

    The effect of photo-stabilization of Azadirachtin-A (Aza-A) was examined when exposed to sunlight and ultraviolet light in the presence of four structurally different ultraviolet stabilizers namely 4-aminobenzoic acid, 2,4-dihydroxybenzophenone, 4,4'-dihydroxybenzophenone and phenyl salicylate. The percentages of Aza-A recovered at different time intervals from slides exposed to different light conditions with and without UV stabilizers as well as kinetic studies indicated that the addition of phenyl salicylate in methanolic solution of Aza-A (in 1:1 mole ratio) provides the best photo-stabilization of Aza-A molecule among the four UV stabilizers studied.

  5. The Inherent Visible Light Signature of an Intense Underwater Ultraviolet Light Source Due to Combined Raman and Fluorescence Effects

    DTIC Science & Technology

    2000-01-01

    Humans cannot see ultraviolet light. The blue-sensitive cones in the retina would respond weakly to ultraviolet wavelengths if exposed to them, but...545, 1992. 3. C. S. Yentsch, and D. A. Phinney, " Autofluorescence and Raman scattering in the marine underwater environment," Ocean Optics X, SPIE

  6. Preventing Ultraviolet Light-Induced Damage: The Benefits of Antioxidants

    ERIC Educational Resources Information Center

    Yip, Cheng-Wai

    2007-01-01

    Extracts of fruit peels contain antioxidants that protect the bacterium "Escherichia coli" against damage induced by ultraviolet light. Antioxidants neutralise free radicals, thus preventing oxidative damage to cells and deoxyribonucleic acid. A high survival rate of UV-exposed cells was observed when grapefruit or grape peel extract was…

  7. Influence of ultraviolet light irradiation on the corrosion behavior of carbon steel AISI 1015

    NASA Astrophysics Data System (ADS)

    Riazi, H. R.; Danaee, I.; Peykari, M.

    2013-03-01

    Corrosion of carbon steel in sodium chloride solution was studied under ultraviolet illumination using weight loss, polarization, electrochemical impedance spectroscopy and current transient tests. The polarization test revealed an increase in the corrosion current density observed under UV illumination. The impedance spectroscopy indicated that the charge transfer resistance of the system was decreased by irradiation of UV light on a carbon steel electrode. The weight loss of carbon steel in solution increased under UV light, which confirms the results obtained from electrochemical measurements. We propose that the main effect of UV irradiation is on the oxide film, which forms on the surface. Thus, in presence of UV, the conductivity of oxide film might increase and lead to higher metal dissolution and corrosion rate.

  8. Effects of exposure to ultraviolet light on the development of Rana pipiens, the northern leopard frog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, J.J.; Wofford, H.W.

    1996-10-01

    The increase in ultraviolet light intensity levels due to ozone depletion recently has been linked to the decline in amphibian population. In this experiment, eggs and larvae of Rana pipiens were subjected to differing amounts of ultraviolet radiation to determine the effects of ultraviolet light on the development of amphibian tadpoles. The total length, length of body without tail, and maximum width of each specimen was recorded for a month of the tadpoles` development, including several measurements after the ultraviolet exposures were concluded. It was found that ultraviolet exposure significantly reduced the size of the organisms in comparison with themore » control group in all three measured areas. Ultraviolet radiation altered the health and appearance of the exposed organisms and was lethal at large amounts. This experiment showed that ultraviolet radiation could cause many problems in developing amphibians. By slowing their development and physically weakening predation, thus contributing to a decline in overall population levels.« less

  9. Ultraviolet light curves of beta Lyrae: Comparison of OAO A-2, IUE, and Voyager Observations

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji; Mccluskey, George E.; Silvis, Jeffery M. S.; Polidan, Ronald S.; Mccluskey, Carolina P. S.; Eaton, Joel A.

    1994-01-01

    The six-band ultraviolet light curves of beta Lyrae obtained with the Orbiting Astronomical Observatory (OAO) A-2 in 1970 exhibited a very unusual behavior. The secondary minimum deepened at shorter wavelength, indicating that one was not observing light variations caused primarily by the eclipses of two stars having a roughly Planckian energy distribution. It was then suggested that the light variations were caused by a viewing angle effect of an optically thick, ellipsoidal circumbinary gas cloud. Since 1978 beta Lyrae has been observed with the International Ultraviolet Explorer (IUE) satellite. We have constructed ultraviolet light curves from the IUE archival data for comparison with the OAO A-2 results. We find that they are in substantial agreement with each other. The Voyager ultraviolet spectrometer was also used to observe this binary during a period covered by IUE observations. The Voyager results agree with those of the two other satellite observatories at wavelengths longer than about 1350 A. However, in the wavelength region shorter than the Lyman-alpha line at 1216 A, the light curves at 1085 and 965 A show virtually no light variation except an apparent flaring near phase 0.7, which is also in evidence at longer wavelengths. We suggest that the optically thick circumbinary gas cloud, which envelops the two stars completely, assumes a roughly spherical shape when observed at these shorter wavelengths.

  10. Ultraviolet Light Curves of Gaia16apd in Superluminous Supernova Models

    NASA Astrophysics Data System (ADS)

    Tolstov, Alexey; Zhiglo, Andrey; Nomoto, Ken'ichi; Sorokina, Elena; Kozyreva, Alexandra; Blinnikov, Sergei

    2017-08-01

    Observations of Gaia16apd revealed extremely luminous ultraviolet emission among superluminous supernovae (SLSNe). Using radiation hydrodynamics simulations, we perform a comparison of UV light curves, color temperatures, and photospheric velocities between the most popular SLSN models: pair-instability supernova, magnetar, and interaction with circumstellar medium. We find that the interaction model is the most promising to explain the extreme UV luminosity of Gaia16apd. The differences in late-time UV emission and in color evolution found between the models can be used to link an observed SLSN event to the most appropriate model. Observations at UV wavelengths can be used to clarify the nature of SLSNe and more attention should be paid to them in future follow-up observations.

  11. Ultraviolet Light Curves of Gaia16apd in Superluminous Supernova Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolstov, Alexey; Zhiglo, Andrey; Nomoto, Ken’ichi

    2017-08-10

    Observations of Gaia16apd revealed extremely luminous ultraviolet emission among superluminous supernovae (SLSNe). Using radiation hydrodynamics simulations, we perform a comparison of UV light curves, color temperatures, and photospheric velocities between the most popular SLSN models: pair-instability supernova, magnetar, and interaction with circumstellar medium. We find that the interaction model is the most promising to explain the extreme UV luminosity of Gaia16apd. The differences in late-time UV emission and in color evolution found between the models can be used to link an observed SLSN event to the most appropriate model. Observations at UV wavelengths can be used to clarify the naturemore » of SLSNe and more attention should be paid to them in future follow-up observations.« less

  12. Photomorphogenic responses to ultraviolet-B light.

    PubMed

    Jenkins, Gareth I

    2017-11-01

    Exposure to ultraviolet B (UV-B) light regulates numerous aspects of plant metabolism, morphology and physiology through the differential expression of hundreds of genes. Photomorphogenic responses to UV-B are mediated by the photoreceptor UV RESISTANCE LOCUS8 (UVR8). Considerable progress has been made in understanding UVR8 action: the structural basis of photoreceptor function, how interaction with CONSTITUTIVELY PHOTOMORPHOGENIC 1 initiates signaling and how REPRESSOR OF UV-B PHOTOMORPHOGENESIS proteins negatively regulate UVR8 action. In addition, recent research shows that UVR8 mediates several responses through interaction with other signaling pathways, in particular auxin signaling. Nevertheless, many aspects of UVR8 action remain poorly understood. Most research to date has been undertaken with Arabidopsis, and it is important to explore the functions and regulation of UVR8 in diverse plant species. Furthermore, it is essential to understand how UVR8, and UV-B signaling in general, regulates processes under natural growth conditions. Ultraviolet B regulates the expression of many genes through UVR8-independent pathways, but the activity and importance of these pathways in plants growing in sunlight are poorly understood. © 2017 John Wiley & Sons Ltd.

  13. Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing

    NASA Astrophysics Data System (ADS)

    Wang, Zhaona; Yu, Ruomeng; Pan, Caofeng; Li, Zhaoling; Yang, Jin; Yi, Fang; Wang, Zhong Lin

    2015-09-01

    Zinc oxide is potentially a useful material for ultraviolet detectors; however, a relatively long response time hinders practical implementation. Here by designing and fabricating a self-powered ZnO/perovskite-heterostructured ultraviolet photodetector, the pyroelectric effect, induced in wurtzite ZnO nanowires on ultraviolet illumination, has been utilized as an effective approach for high-performance photon sensing. The response time is improved from 5.4 s to 53 μs at the rising edge, and 8.9 s to 63 μs at the falling edge, with an enhancement of five orders in magnitudes. The specific detectivity and the responsivity are both enhanced by 322%. This work provides a novel design to achieve ultrafast ultraviolet sensing at room temperature via light-self-induced pyroelectric effect. The newly designed ultrafast self-powered ultraviolet nanosensors may find promising applications in ultrafast optics, nonlinear optics, optothermal detections, computational memories and biocompatible optoelectronic probes.

  14. MAHLI First Night Imaging of Martian Rock Under Ultraviolet Lighting

    NASA Image and Video Library

    2013-01-24

    This image of a Martian rock dubbed Sayunei is illuminated by ultraviolet LEDs light emitting diodes is part of the first set of nighttime images taken by the Mars Hand Lens Imagery camera at the end of the robotic arm of NASA Mars rover Curiosity.

  15. Astro-1 Image Taken by the Ultraviolet Imaging Telescope

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This is a presentation of two comparison images of the Spiral Galaxy M81 in the constellation URA Major. The galaxy is about 12-million light years from Earth. The left image is the Spiral Galaxy M81 as photographed by the Ultraviolet Imaging Telescope (UIT) during the Astro-1 Mission (STS-35) on December 9, 1990. This UIT photograph, made with ultraviolet light, reveals regions where new stars are forming at a rapid rate. The right image is a photograph of the same galaxy in red light made with a 36-inch (0.9-meter) telescope at the Kitt Peak National Observatory near Tucson, Arizona. The Astro Observatory was designed to explore the universe by observing and measuring ultraviolet radiation from celestial objects. Three instruments made up the Astro Observatory: The Hopkins Ultraviolet Telescope (HUT), the Ultraviolet Imaging Telescope (UIT), and the Wisconsin Ultraviolet Photo-Polarimetry Experiment (WUPPE). The Marshall Space Flight Center had management responsibilities for the Astro-1 mission. The Astro-1 Observatory was launched aboard the Space Shuttle Orbiter Columbia (STS-35) on December 2, 1990.

  16. Ultraviolet/blue light-emitting diodes based on single horizontal ZnO microrod/GaN heterojunction

    PubMed Central

    2014-01-01

    We report electroluminescence (EL) from single horizontal ZnO microrod (MR) and p-GaN heterojunction light-emitting diodes under forward and reverse bias. EL spectra were composed of two blue emissions centered at 431 and 490 nm under forward biases, but were dominated by a ultraviolet (UV) emission located at 380 nm from n-ZnO MR under high reverse biases. Light-output-current characteristic of the UV emission reveals that the rate of radiative recombination is faster than that of the nonradiative recombination. Highly efficient ZnO excitonic recombination at reverse bias is caused by electrons tunneling from deep-level states near the n-ZnO/p-GaN interface to the conduction band in n-ZnO. PMID:25232299

  17. Ultraviolet/blue light-emitting diodes based on single horizontal ZnO microrod/GaN heterojunction.

    PubMed

    Du, Chia-Fong; Lee, Chen-Hui; Cheng, Chao-Tsung; Lin, Kai-Hsiang; Sheu, Jin-Kong; Hsu, Hsu-Cheng

    2014-01-01

    We report electroluminescence (EL) from single horizontal ZnO microrod (MR) and p-GaN heterojunction light-emitting diodes under forward and reverse bias. EL spectra were composed of two blue emissions centered at 431 and 490 nm under forward biases, but were dominated by a ultraviolet (UV) emission located at 380 nm from n-ZnO MR under high reverse biases. Light-output-current characteristic of the UV emission reveals that the rate of radiative recombination is faster than that of the nonradiative recombination. Highly efficient ZnO excitonic recombination at reverse bias is caused by electrons tunneling from deep-level states near the n-ZnO/p-GaN interface to the conduction band in n-ZnO.

  18. A sensitive ultraviolet light photodiode based on graphene-on-zinc oxide Schottky junction

    NASA Astrophysics Data System (ADS)

    Zhang, Teng-Fei; Wu, Guo-An; Wang, Jiu-Zhen; Yu, Yong-Qiang; Zhang, Deng-Yue; Wang, Dan-Dan; Jiang, Jing-Bo; Wang, Jia-Mu; Luo, Lin-Bao

    2017-08-01

    In this study, we present a simple ultraviolet (UV) light photodiode by transferring a layer of graphene film on single-crystal ZnO substrate. The as-fabricated heterojunction exhibited typical rectifying behavior, with a Schottky barrier height of 0.623 eV. Further optoelectronic characterization revealed that the graphene-ZnO Schottky junction photodiode displayed obvious sensitivity to 365-nm light illumination with good reproducibility. The responsivity and photoconductive gain were estimated to be 3×104 A/W and 105, respectively, which were much higher than other ZnO nanostructure-based devices. In addition, it was found that the on/off ratio of the present device can be considerably improved from 2.09 to 12.1, when the device was passivated by a layer of AlOx film. These results suggest that the present simply structured graphene-ZnO UV photodiode may find potential application in future optoelectronic devices.

  19. Can pulsed xenon ultraviolet light systems disinfect aerobic bacteria in the absence of manual disinfection?

    PubMed

    Jinadatha, Chetan; Villamaria, Frank C; Ganachari-Mallappa, Nagaraja; Brown, Donna S; Liao, I-Chia; Stock, Eileen M; Copeland, Laurel A; Zeber, John E

    2015-04-01

    Whereas pulsed xenon-based ultraviolet light no-touch disinfection systems are being increasingly used for room disinfection after patient discharge with manual cleaning, their effectiveness in the absence of manual disinfection has not been previously evaluated. Our study indicates that pulsed xenon-based ultraviolet light systems effectively reduce aerobic bacteria in the absence of manual disinfection. These data are important for hospitals planning to adopt this technology as adjunct to routine manual disinfection. Published by Elsevier Inc.

  20. Large area, surface discharge pumped, vacuum ultraviolet light source

    DOEpatents

    Sze, Robert C.; Quigley, Gerard P.

    1996-01-01

    Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source. A contamination-free VUV light source having a 225 cm.sup.2 emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm.sup.2 at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing.

  1. Large area, surface discharge pumped, vacuum ultraviolet light source

    DOEpatents

    Sze, R.C.; Quigley, G.P.

    1996-12-17

    Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source is disclosed. A contamination-free VUV light source having a 225 cm{sup 2} emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm{sup 2} at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing. 3 figs.

  2. Fragmentation of mercury compounds under ultraviolet light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokkonen, E.; Hautala, L.; Jänkälä, K.

    2015-08-21

    Ultraviolet light induced photofragmentation of mercury compounds is studied experimentally with electron energy resolved photoelectron-photoion coincidence techniques and theoretically with computational quantum chemical methods. A high resolution photoelectron spectrum using synchrotron radiation is presented. Fragmentation of the molecule is studied subsequent to ionization to the atomic-mercury-like d orbitals. State dependent fragmentation behaviour is presented and specific reactions for dissociation pathways are given. The fragmentation is found to differ distinctly in similar orbitals of different mercury compounds.

  3. Formation of the thioester, N,S-diacetylcysteine, from acetaldehyde and N,N'-diacetylcystine in aqueous solution with ultraviolet light

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1981-01-01

    The thioester, N,S-diacetylcysteine, is formed during the illumination of phosphate buffered (pH 7.0) aqueous solutions of acetaldehyde and N,N'-diacetylcystine with ultraviolet light. The yield of N,S-diacetylcysteine relative to N-acetylcysteine and unidentified products progressively increases as ultraviolet light below 239 nm, 253 nm and 281 nm is cut off with optical filters. When ultraviolet light below 320 nm is removed with an optical filter, there is no detectable reaction. Illumination of 0.025 M N,N'-diacetylcystine with 0.5 M and 1.0 M acetaldehyde with filtered ultraviolet light gives, respectively, 20% and 80% yields of N,S-diacetylcysteine. In the reaction with 1.0 M acetaldehyde, N-acetylcysteine forms early in the reaction and later decreases with its conversion to N,S-diacetylcysteine. The prebiotic significance of these reactions is discussed.

  4. 282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates

    NASA Astrophysics Data System (ADS)

    Dong, Peng; Yan, Jianchang; Wang, Junxi; Zhang, Yun; Geng, Chong; Wei, Tongbo; Cong, Peipei; Zhang, Yiyun; Zeng, Jianping; Tian, Yingdong; Sun, Lili; Yan, Qingfeng; Li, Jinmin; Fan, Shunfei; Qin, Zhixin

    2013-06-01

    We first report AlGaN-based deep ultraviolet light-emitting diodes (UV-LEDs) grown on nano-patterned sapphire substrates (NPSS) prepared through a nanosphere lithography technique. The AlN coalescence thickness on NPSS is only 3 μm due to AlN's nano-scaled lateral growth, which also leads to low dislocation densities in AlN and epi-layers above. On NPSS, the light-output power of a 282-nm UV-LED reaches 3.03 mW at 20 mA with external quantum efficiency of 3.45%, exhibiting 98% better performance than that on flat sapphire. Temperature-dependent photoluminescence reveals this significant enhancement to be a combination of higher internal quantum efficiency and higher light extraction efficiency.

  5. COMPARATIVE TOXICITY OF FLUORANTHENE TO FRESHWATER AND SALTWATER SPECIES UNDER FLUORESCENT AND ULTRAVIOLET LIGHT

    EPA Science Inventory

    The acute and chronic toxicity of fluoranthene was determined for a diverse group of freshwater and saltwater species under both standard laboratory fluorescent light and ultraviolet (UV) light test conditions. Acute tests with 21 species demonstrated that fluoranthene was not le...

  6. Interpretation of OAO-2 ultraviolet light curves of beta Doradus

    NASA Technical Reports Server (NTRS)

    Hutchinson, J. L.; Lillie, C. F.; Hill, S. J.

    1975-01-01

    Middle-ultraviolet light curves of beta Doradus, obtained by OAO-2, are presented along with other evidence indicating that the small additional bumps observed on the rising branches of these curves have their origin in shock-wave phenomena in the upper atmosphere of this classical Cepheid. A simple piston-driven spherical hydrodynamic model of the atmosphere is developed to explain the bumps, and the calculations are compared with observations. The model is found to be consistent with the shapes of the light curves as well as with measurements of the H-alpha radial velocities.

  7. Simultaneously Enhancing Light Emission and Suppressing Efficiency Droop in GaN Microwire-Based Ultraviolet Light-Emitting Diode by the Piezo-Phototronic Effect.

    PubMed

    Wang, Xingfu; Peng, Wenbo; Yu, Ruomeng; Zou, Haiyang; Dai, Yejing; Zi, Yunlong; Wu, Changsheng; Li, Shuti; Wang, Zhong Lin

    2017-06-14

    Achievement of p-n homojuncted GaN enables the birth of III-nitride light emitters. Owing to the wurtzite-structure of GaN, piezoelectric polarization charges present at the interface can effectively control/tune the optoelectric behaviors of local charge-carriers (i.e., the piezo-phototronic effect). Here, we demonstrate the significantly enhanced light-output efficiency and suppressed efficiency droop in GaN microwire (MW)-based p-n junction ultraviolet light-emitting diode (UV LED) by the piezo-phototronic effect. By applying a -0.12% static compressive strain perpendicular to the p-n junction interface, the relative external quantum efficiency of the LED is enhanced by over 600%. Furthermore, efficiency droop is markedly reduced from 46.6% to 7.5% and corresponding droop onset current density shifts from 10 to 26.7 A cm -2 . Enhanced electrons confinement and improved holes injection efficiency by the piezo-phototronic effect are revealed and theoretically confirmed as the physical mechanisms. This study offers an unconventional path to develop high efficiency, strong brightness and high power III-nitride light sources.

  8. Ultraviolet light exposure and skin cancer in the city of Arica, Chile.

    PubMed

    Rivas, Miguel; Araya, María C; Durán, Viviava; Rojas, Elisa; Cortes, Juan; Calaf, Gloria M

    2009-01-01

    An increase in the amount of solar ultraviolet light that reaches the Earth is considered to be responsible for the worldwide increase in skin cancer. Solar ultraviolet B (UVB) light (290-320 nm) has multiple effects that can be harmful to human beings. The city of Arica in Chile receives high UV levels. This can explain the high prevalence of skin cancer in the Arica population. In the present study, pathological reports of skin cancer were collected from an Arica hospital and retrospectively examined to investigate the possible effects of UV radiation. Among the malignant skin tumor types, basocellular and spinocellular carcinomas were more common in men (44.4 and 16.6%, respectively) than in women (24.9 and 10.7%, respectively). Basocellular carcinoma was observed in individuals 40-79 years of age. The incidence of skin cancer significantly increased (P<0.05) between 2000 and 2006 per 100,000 population. The factor of incidence of skin cancer per 100,000 population significantly increased (P<0.05) between 1980 and 2000 in both genders, but was higher in men (0.79-1.99) than in women (0.63-1.56). The results of the study indicate a steady increase in the incidence of skin cancer in Arica, Chile, most probably due to the high levels of ultraviolet light to which individuals are exposed throughout the year, and the cumulative effect of this type of radiation on the skin.

  9. The planarian TRPA1 homolog mediates extraocular behavioral responses to near-ultraviolet light.

    PubMed

    Birkholz, Taylor R; Beane, Wendy S

    2017-07-15

    Although light is most commonly thought of as a visual cue, many animals possess mechanisms to detect light outside of the eye for various functions, including predator avoidance, circadian rhythms, phototaxis and migration. Here we confirm that planarians (like Caenorhabditis elegans , leeches and Drosophila larvae) are capable of detecting and responding to light using extraocular photoreception. We found that, when either eyeless or decapitated worms were exposed to near-ultraviolet (near-UV) light, intense wild-type photophobic behaviors were still observed. Our data also revealed that behavioral responses to green wavelengths were mediated by ocular mechanisms, whereas near-UV responses were driven by extraocular mechanisms. As part of a candidate screen to uncover the genetic basis of extraocular photoreception in the planarian species Schmidtea mediterranea , we identified a potential role for a homolog of the transient receptor potential channel A1 ( TRPA1 ) in mediating behavioral responses to extraocular light cues. RNA interference (RNAi) to Smed-TrpA resulted in worms that lacked extraocular photophobic responses to near-UV light, a mechanism previously only identified in Drosophila These data show that the planarian TRPA1 homolog is required for planarian extraocular-light avoidance and may represent a potential ancestral function of this gene. TRPA1 is an evolutionarily conserved detector of temperature and chemical irritants, including reactive oxygen species that are byproducts of UV-light exposure. Our results suggest that planarians possess extraocular photoreception and display an unconventional TRPA1-mediated photophobic response to near-UV light. © 2017. Published by The Company of Biologists Ltd.

  10. A role for calcium hydroxide and dolomite in water: acceleration of the reaction under ultraviolet light.

    PubMed

    Nagase, Hiroyasu; Tsujino, Hidekazu; Kurihara, Daisuke; Saito, Hiroshi; Kawase, Masaya

    2014-04-01

    Organic environmental pollutants are now being detected with remarkably high frequency in the aquatic environment. Photodegradation by ultraviolet light is sometimes used as a method for removing organic chemicals from water; however, this method is relatively inefficient because of the low degradation rates involved, and more efficient methods are under development. Here we show that the removal of various organic pollutants can be assisted by calcined dolomite in aqueous solution under irradiation with ultraviolet light. It was possible to achieve substantial removal of bisphenol A, chlorophenols, alkylphenols, 1-naphthol and 17β-estradiol. The major component of dolomite responsible for the removal was calcium hydroxide. Our results demonstrate that the use of calcium hydroxide with ultraviolet light irradiation can be a very effective method of rapidly removing organic environmental pollutants from water. This is a new role for calcium hydroxide and dolomite in water treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. [Effect of long-wave ultraviolet light (UV-A) and medium-wave ultraviolet rays (UV-B) on human skin. Critical comparison].

    PubMed

    Raab, W

    1980-04-15

    When discussing the effects of ultraviolet radiation on human skin, one should carefully distinguish between the long wave ultraviolet light (UV-A) and the short wave radiations (UV-B and UV-C). Ultraviolet A induces immediate pigmentation but, if high energies are applied, a permanent pigmentation is elicited. This type of ultraviolet A-induced pigmentation has been called "spontaneous" pigmentation as no erythematous reaction is necessary to induce or accelerate melanine formation. Ultraviolet B provokes erythema and consecutive pigmentation. Upon chronic exposure, ultraviolet B causes the wellknown actinic damage of the skin and even provokes carcinoma. With exposures to the sunlight (global radiation), one should be most careful. The public must be informed extensively about the dangers of excessive sunbaths. The use of artificial "suns" with spectra between 260 and 400 nm is limited as it may cause the same type of damage as the global radiation. An exact schedule for use of artificial lamps is strongly recommended. After one cycle of exposures, an interruption is necessary until the next cycle of irradiations may start. Upon continual use for tanning of the skin, artificial lamps may provoke irreversible damage of the skin. Radiation sources with emission spectra of wavelengths between 315 and 400 nm exclusively are well suited for the induction of skin pigmentation (cosmetic use). Potent radiation such as UVASUN systems provoke a "pleasant" permanent pigmentation after exposures for less than one hour. The use of ultraviolet A (UV-A) does not carry any risk for the human skin.

  12. ASSESSING THE EFFECTIVENESS OF LOW PRESSURE ULTRAVIOLET LIGHT FOR INACTIVATING HELICOBACTER PYLORI

    EPA Science Inventory

    Three strains of Helicobacter pylori were exposed to ultraviolet (UV) light from a low-pressure source to determine log inactivation versus applied fluence. Results indicate that H. pylori is readily inactivated at UV fluences typically used in water treatment r...

  13. Light based anti-infectives: ultraviolet C irradiation, photodynamic therapy, blue light, and beyond

    PubMed Central

    Yin, Rui; Dai, Tianhong; Avci, Pinar; Jorge, Ana Elisa Serafim; de Melo, Wanessa CMA; Vecchio, Daniela; Huang, Ying-Ying; Gupta, Asheesh; Hamblin, Michael R

    2013-01-01

    Owing to the worldwide increase in antibiotic resistance, researchers are investigating alternative anti-infective strategies to which it is supposed microorganisms will be unable to develop resistance. Prominent among these strategies, is a group of approaches which rely on light to deliver the killing blow. As is well known, ultraviolet light, particularly UVC (200–280nm), is germicidal, but it has not been much developed as an anti-infective approach until recently, when it was realized that the possible adverse effects to host tissue were relatively minor compared to its high activity in killing pathogens. Photodynamic therapy is the combination of non-toxic photosensitizing dyes with harmless visible light that together produce abundant destructive reactive oxygen species (ROS). Certain cationic dyes or photosensitizers have good specificity for binding to microbial cells while sparing host mammalian cells and can be used for treating many localized infections, both superficial and even deep-seated by using fiber optic delivered light. Many microbial cells are highly sensitive to killing by blue light (400–470 nm) due to accumulation of naturally occurring photosensitizers such as porphyrins and flavins. Near infrared light has also been shown to have antimicrobial effects against certain species. Clinical applications of these technologies include skin, dental, wound, stomach, nasal, toenail and other infections which are amenable to effective light delivery. PMID:24060701

  14. Optical effects of exposing intact human lenses to ultraviolet radiation and visible light.

    PubMed

    Kessel, Line; Eskildsen, Lars; Lundeman, Jesper Holm; Jensen, Ole Bjarlin; Larsen, Michael

    2011-12-30

    The human lens is continuously exposed to high levels of light. Ultraviolet radiation is believed to play a causative role in the development of cataract. In vivo, however, the lens is mainly exposed to visible light and the ageing lens absorbs a great part of the short wavelength region of incoming visible light. The aim of the present study was to examine the optical effects on human lenses of short wavelength visible light and ultraviolet radiation. Naturally aged human donor lenses were irradiated with UVA (355 nm), violet (400 and 405 nm) and green (532 nm) lasers. The effect of irradiation was evaluated qualitatively by photography and quantitatively by measuring the direct transmission before and after irradiation. Furthermore, the effect of pulsed and continuous laser systems was compared as was the effect of short, intermediate and prolonged exposures. Irradiation with high intensity lasers caused scattering lesions in the human lenses. These effects were more likely to be seen when using pulsed lasers because of the high pulse intensity. Prolonged irradiation with UVA led to photodarkening whereas no detrimental effects were observed after irradiation with visible light. Irradiation with visible light does not seem to be harmful to the human lens except if the lens is exposed to laser irradiances that are high enough to warrant thermal protein denaturation that is more readily seen using pulsed laser systems.

  15. Recording of individual identification information on dental prostheses using fluorescent material and ultraviolet light.

    PubMed

    Naito, Yoshihito; Meinar, Ashrin N; Iwawaki, Yuki; Kashiwabara, Toshiya; Goto, Takaharu; Ito, Teruaki; Sakuma, Tetsuro; Ichikawa, Tetsuo

    2013-01-01

    The placement of individual identification on a prosthesis is very important for forensic dentistry and traceability. This article describes the unique naming/labeling of dentures with information for individual identification using a method in which information is invisible under natural light but visible under ultraviolet light-emitting diode/black light exposure. The use of laser beam machining with this method will enable the recording of a large amount of information.

  16. Ultraviolet Light-Assisted Copper Oxide Nanowires Hydrogen Gas Sensor

    NASA Astrophysics Data System (ADS)

    Sihar, Nabihah; Tiong, Teck Yaw; Dee, Chang Fu; Ooi, Poh Choon; Hamzah, Azrul Azlan; Mohamed, Mohd Ambri; Majlis, Burhanuddin Yeop

    2018-05-01

    We fabricated copper oxide nanowires (CuO NWs) ultraviolet (UV) light-assisted hydrogen gas sensor. The fabricated sensor shows promising sensor response behavior towards 100 ppm of H2 at room temperature and elevated temperature at 100 °C when exposed to UV light (3.0 mW/cm2). One hundred-cycle device stability test has been performed, and it is found that for sample elevated at 100 °C, the UV-activated sample achieved stability in the first cycle as compared to the sample without UV irradiation which needed about 10 cycles to achieve stability at the initial stage, whereas the sample tested at room temperature was able to stabilize with the aid of UV irradiation. This indicates that with the aid of UV light, after some "warming up" time, it is possible for the conventional CuO NW sensor which normally work at elevated temperature to function at room temperature because UV source is speculated to play a dominant role to increase the interaction of the surface of CuO NWs and hydrogen gas molecules absorbed after the light exposure.

  17. Light-induced absorption and its relaxation under illumination of continuous wave ultraviolet light in Mn-doped near-stoichiometric LiNbO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Youwen; Kitamura, Kenji; Takekawa, Shunji

    2005-04-01

    The steady-state light-induced absorption and the temporal relaxation behavior under illumination of cw ultraviolet light in Mn-doped near-stoichiometric LiNbO{sub 3} with different crystal compositions are investigated. The ultraviolet-light-induced absorption has been assigned to small polarons Nb{sub Li}{sup 4+} by measuring the absorption spectra at room temperature. The dependences of relaxation behaviors (time constant and stretching factor) of light-induced absorption on various illumination conditions (intensity, polarization) and temperature are presented, which are very different from those observed in Fe-doped LiNbO{sub 3} illuminated with highly intense light pulse, though the temporal relaxation follows the same stretched-exponential decay behavior in both cases. Themore » results are explained reasonably by using the model of distance-dependent electron transition probabilities between localized deep traps and small polarons without any additional assumptions, and discussed to tailor doped near-stoichiometric LiNbO{sub 3} crystals for two-color holographic recording with cw laser light.« less

  18. Enhanced light extraction efficiency of micro-ring array AlGaN deep ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Bekele Fayisa, Gabisa; Lee, Jong Won; Kim, Jungsub; Kim, Yong-Il; Park, Youngsoo; Kim, Jong Kyu

    2017-09-01

    An effective approach to overcome inherently poor light extraction efficiency of AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) is presented. We demonstrated the 5 × 5 array micro-ring DUV LED having an inclined sidewall at the outer perimeter and a p-GaN-removed inner circle of the micro-ring, together with MgF2/Al omnidirectional reflectors. The micro-ring array DUV LED shows remarkably higher light output power by 70% than the reference, consistent with the calculated result, as well as comparable turn-on and operational voltages, which are attributed to the effective extraction of strong transverse-magnetic polarized anisotropic emission and the reduction of the absorption loss by the p-GaN contact layer, simultaneously.

  19. Pulsed ultraviolet light reduces immunoglobulin E binding to atlantic white shrimp (litopenaeus setiferus).

    USDA-ARS?s Scientific Manuscript database

    To date, the only effective method to prevent allergic reactions to shellfish is complete avoidance; however, if processing methods could be employed to minimize shellfish allergens before products reach consumers, illness could be substantially lessened. Pulsed ultraviolet light (PUV), a novel food...

  20. Ultraviolet Light-Assisted Copper Oxide Nanowires Hydrogen Gas Sensor.

    PubMed

    Sihar, Nabihah; Tiong, Teck Yaw; Dee, Chang Fu; Ooi, Poh Choon; Hamzah, Azrul Azlan; Mohamed, Mohd Ambri; Majlis, Burhanuddin Yeop

    2018-05-15

    We fabricated copper oxide nanowires (CuO NWs) ultraviolet (UV) light-assisted hydrogen gas sensor. The fabricated sensor shows promising sensor response behavior towards 100 ppm of H 2 at room temperature and elevated temperature at 100 °C when exposed to UV light (3.0 mW/cm 2 ). One hundred-cycle device stability test has been performed, and it is found that for sample elevated at 100 °C, the UV-activated sample achieved stability in the first cycle as compared to the sample without UV irradiation which needed about 10 cycles to achieve stability at the initial stage, whereas the sample tested at room temperature was able to stabilize with the aid of UV irradiation. This indicates that with the aid of UV light, after some "warming up" time, it is possible for the conventional CuO NW sensor which normally work at elevated temperature to function at room temperature because UV source is speculated to play a dominant role to increase the interaction of the surface of CuO NWs and hydrogen gas molecules absorbed after the light exposure.

  1. Semi-transparent all-oxide ultraviolet light-emitting diodes based on ZnO/NiO-core/shell nanowires

    NASA Astrophysics Data System (ADS)

    Shi, Zhi-Feng; Xu, Ting-Ting; Wu, Di; Zhang, Yuan-Tao; Zhang, Bao-Lin; Tian, Yong-Tao; Li, Xin-Jian; Du, Guo-Tong

    2016-05-01

    Semi-transparent all-oxide light-emitting diodes based on ZnO/NiO-core/shell nanowire structures were prepared on double-polished c-Al2O3 substrates. The entire heterojunction diode showed an average transparency of ~65% in the ultraviolet and visible regions. Under forward bias, the diode displayed an intense ultraviolet emission at ~382 nm, and its electroluminescence performance was remarkable in terms of a low emission onset, acceptable operating stability, and the ability to optically excite emissive semiconductor nanoparticle chromophores.Semi-transparent all-oxide light-emitting diodes based on ZnO/NiO-core/shell nanowire structures were prepared on double-polished c-Al2O3 substrates. The entire heterojunction diode showed an average transparency of ~65% in the ultraviolet and visible regions. Under forward bias, the diode displayed an intense ultraviolet emission at ~382 nm, and its electroluminescence performance was remarkable in terms of a low emission onset, acceptable operating stability, and the ability to optically excite emissive semiconductor nanoparticle chromophores. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07236k

  2. Effects of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: a review.

    PubMed

    Sklar, Lindsay R; Almutawa, Fahad; Lim, Henry W; Hamzavi, Iltefat

    2013-01-01

    The effects of ultraviolet radiation, visible light, and infrared radiation on cutaneous erythema, immediate pigment darkening, persistent pigment darkening, and delayed tanning are affected by a variety of factors. Some of these factors include the depth of cutaneous penetration of the specific wavelength, the individual skin type, and the absorption spectra of the different chromophores in the skin. UVB is an effective spectrum to induce erythema, which is followed by delayed tanning. UVA induces immediate pigment darkening, persistent pigment darkening, and delayed tanning. At high doses, UVA (primarily UVA2) can also induce erythema in individuals with skin types I-II. Visible light has been shown to induce erythema and a tanning response in dark skin, but not in fair skinned individuals. Infrared radiation produces erythema, which is probably a thermal effect. In this article we reviewed the available literature on the effects of ultraviolet radiation, visible light, and infrared radiation on the skin in regards to erythema and pigmentation. Much remains to be learned on the cutaneous effects of visible light and infrared radiation.

  3. Extending the use of ultraviolet light for fruit quality sorting in citrus packinghouses

    USDA-ARS?s Scientific Manuscript database

    Illumination with ultraviolet light (UV) is commonly used in citrus packinghouses as a means to aid in the identification and removal of decayed oranges from the packline. This technique is effective because areas of decay strongly fluoresce under UV illumination. It was observed that oranges often ...

  4. Light shift from ultraviolet to near infrared light: Cerenkov luminescence with gold nanocluster - near infrared (AuNc-NIR) conjugates

    NASA Astrophysics Data System (ADS)

    Yoo, Su Woong; Mun, Hyoyoung; Oh, Gyungseok; Ryu, Youngjae; Kim, Min-Gon; Chung, Euiheon

    2015-03-01

    Cerenkov luminescence (CL) is generated when a charged particle moves faster than the speed of light in dielectric media. Recently CL imaging becomes an emerging technique with the use of radioisotopes. However, due to relatively weak blue light production and massive tissue attenuation, CL has not been applied widely. Therefore, we attempted to shift the CL emission to more near infrared (NIR) spectrum for better tissue penetration by using Cerenkov Radiation Energy Transfer (CRET). Gold nanoclusters were conjugated with NIR dye molecules (AuNc-IR820 and AuNc-ICG) to be activated with ultraviolet light. We found optimal conjugate concentrations of AuNc-NIR conjugates by spectroscopy system to generate maximal photon emission. When exposed by ultraviolet light, the emission of NIR light from the conjugates were verified. In quantitative analysis, AuNc-NIR conjugates emit brighter light signal than pure AuNc. This result implies that NIR fluorescent dyes (both IR820 and ICG) can be excited by the emission from AuNc. Following the above baseline experiment, we mixed F-18 fluorodeoxyglucose (F-18 FDG) radioisotope to the AuNc- NIR conjugates, to confirm NIR emission induced from Cerenkov radiation. Long pass filter was used to block Cerenkov luminescence and to collect the emission from AuNc-NIR conjugates. Instead of one long exposure imaging with CCD, we used multiple frame scheme to eliminate gamma radiation strike in each frame prior to combination. In summary, we obtained NIR emission light from AuNc-NIR conjugated dyes that is induced from CL. We plan to perform in vivo small animal imaging with these conjugates to assess better tissue penetration.

  5. Deep ultraviolet semiconductor light sources for sensing and security

    NASA Astrophysics Data System (ADS)

    Shatalov, Max; Bilenko, Yuri; Yang, Jinwei; Gaska, Remis

    2009-09-01

    III-Nitride based deep ultraviolet (DUV) light emitting diodes (LEDs) rapidly penetrate into sensing market owing to several advantages over traditional UV sources (i.e. mercury, xenon and deuterium lamps). Small size, a wide choice of peak emission wavelengths, lower power consumption and reduced cost offer flexibility to system integrators. Short emission wavelength offer advantages for gas detection and optical sensing systems based on UV induced fluorescence. Large modulation bandwidth for these devices makes them attractive for frequency-domain spectroscopy. We will review present status of DUV LED technology and discuss recent advances in short wavelength emitters and high power LED lamps.

  6. Optical Microfiber Technology for Current, Temperature, Acceleration, Acoustic, Humidity and Ultraviolet Light Sensing

    PubMed Central

    Lancaster, David G.; Monro, Tanya M.

    2017-01-01

    Optical microfibers possess excellent optical and mechanical properties that have been exploited for sensing. We highlight the authors’ recent work in the areas of current, temperature, acceleration, acoustic, humidity and ultraviolet-light sensing based on this exquisite technology, and the advantages and challenges of using optical microfibers are discussed. PMID:29283414

  7. DNA's Encounter with Ultraviolet Light: An Instinct for Self-Preservation?

    PubMed

    Barlev, Adam; Sen, Dipankar

    2018-02-20

    Photochemical modification is the major class of environmental damage suffered by DNA, the genetic material of all free-living organisms. Photolyases are enzymes that carry out direct photochemical repair (photoreactivation) of covalent pyrimidine dimers formed in DNA from exposure to ultraviolet light. The discovery of catalytic RNAs in the 1980s led to the "RNA world hypothesis", which posits that early in evolution RNA or a similar polymer served both genetic and catalytic functions. Intrigued by the RNA world hypothesis, we set out to test whether a catalytic RNA (or a surrogate, a catalytic DNA) with photolyase activity could be contemplated. In vitro selection from a random-sequence DNA pool yielded two DNA enzymes (DNAzymes): Sero1C, which requires serotonin as an obligate cofactor, and UV1C, which is cofactor-independent and optimally uses light of 300-310 nm wavelength to repair cyclobutane thymine dimers within a gapped DNA substrate. Both Sero1C and UV1C show multiple turnover kinetics, and UV1C repairs its substrate with a quantum yield of ∼0.05, on the same order as the quantum yields of certain classes of photolyase enzymes. Intensive study of UV1C has revealed that its catalytic core consists of a guanine quadruplex (G-quadruplex) positioned proximally to the bound substrate's thymine dimer. We hypothesize that electron transfer from photoexcited guanines within UV1C's G-quadruplex is responsible for substrate photoreactivation, analogous to electron transfer to pyrimidine dimers within a DNA substrate from photoexcited flavin cofactors located within natural photolyase enzymes. Though the analogy to evolution is necessarily limited, a comparison of the properties of UV1C and Sero1C, which arose out of the same in vitro selection experiment, reveals that although the two DNAzymes comparably accelerate the rate of thymine dimer repair, Sero1C has a substantially broader substrate repertoire, as it can repair many more kinds of pyrimidine dimers than

  8. Novel cylindrical illuminator tip for ultraviolet light delivery

    NASA Astrophysics Data System (ADS)

    Shangguan, HanQun; Haw, Thomas E.; Gregory, Kenton W.; Casperson, Lee W.

    1993-06-01

    The design, processing, and sequential testing of a novel cylindrical diffusing optical fiber tip for ultraviolet light delivery is described. This device has been shown to uniformly (+/- 15%) illuminate angioplasty balloons, 20 mm in length, that are used in an experimental photochemotherapeutic treatment of swine intimal hyperplasia. Our experiments show that uniform diffusing tips of < 400 micron diameter can be reliably constructed for this and other interstitial applications. Modeling results indicate that this design is scalable to smaller diameters. The diffusing tips are made by stripping the protective buffer and etching away the cladding over a length of 20 mm from the fiber tip and replacing it with a thin layer of optical epoxy mixed with Al2O3 powder. To improve the uniformity and ease of fabrication, we have evaluated a new device configuration where the tip is etched into a modified conical shape, and the distal end face is polished and then coated with an optically opaque epoxy. This is shown to uniformly scatter approximately 70% of the light launched into the fiber without forward transmission.

  9. Disinfection of swine wastewater using chlorine, ultraviolet light and ozone.

    PubMed

    Macauley, John J; Qiang, Zhimin; Adams, Craig D; Surampalli, Rao; Mormile, Melanie R

    2006-06-01

    Veterinary antibiotics are widely used at concentrated animal feeding operations (CAFOs) to prevent disease and promote growth of livestock. However, the majority of antibiotics are excreted from animals in urine, feces, and manure. Consequently, the lagoons used to store these wastes can act as reservoirs of antibiotics and antibiotic-resistant bacteria. There is currently no regulation or control of these systems to prevent the spread of these bacteria and their genes for antibiotic resistance into other environments. This study was conducted to determine the disinfection potential of chlorine, ultraviolet light and ozone against swine lagoon bacteria. Results indicate that a chlorine dose of 30 mg/L could achieve a 2.2-3.4 log bacteria reduction in lagoon samples. However, increasing the dose of chlorine did not significantly enhance the disinfection activity due to the presence of chlorine-resistant bacteria. The chlorine resistant bacteria were identified to be closely related to Bacillus subtilis and Bacillus licheniformis. A significant percentage of lagoon bacteria were not susceptible to the four selected antibiotics: chlortetracycline, lincomycin, sulfamethazine and tetracycline (TET). However, the presence of both chlorine and TET could inactivate all bacteria in one lagoon sample. The disinfection potential of UV irradiation and ozone was also examined. Ultraviolet light was an effective bacterial disinfectant, but was unlikely to be economically viable due to its high energy requirements. At an ozone dose of 100 mg/L, the bacteria inactivation efficiency could reach 3.3-3.9 log.

  10. Ultraviolet light exposure, skin cancer risk and vitamin D production.

    PubMed

    Rivas, Miguel; Rojas, Elisa; Araya, María C; Calaf, Gloria M

    2015-10-01

    The danger of overexposure to solar ultraviolet radiation has been widely reviewed since the 1980s due to the depletion of the ozone layer. However, the benefits of mild exposure of the skin to ultraviolet (UV) light have not been widely investigated. Numerous reports have demonstrated that an association exists between low light exposure to the sun, non-melanoma skin cancer and a lack of vitamin D synthesis. As vitamin D synthesis in the body depends on skin exposure to UVB radiation from the sun (wavelength, 290-320 nm), experimental measurements for this type of solar radiation are important. The present study analyzed data obtained from a laboratory investigating UV radiation from the sun at the University of Tarapacá (Arica, Chile), where systematic experimental UVB measurements had been performed using a calibrated biometer instrument since 2006. These data were compared with skin cancer data from the local population. The results demonstrated that the incidence of skin cancer systematically increased from 7.4 to 18.7 in men and from 10.0 to 21.7 in women between 2000 and 2006 in Arica, respectively; this increase may be due to multiple factors, including the lack of adequate levels of vitamin D in risk groups such as post-menopausal women and senior age. This marked increase may also be due to the high levels of UV radiation measured in this region throughout the year. However, it is not certain that the local population has adequate vitamin D levels, nor that their skin has been predominantly exposed to artificial light that does not allow adequate vitamin D synthesis. Thus, the current study presents the association between skin type IV, the time to induce solar erythema and the time required to produce 1,000 international units of vitamin D.

  11. Ultraviolet light exposure, skin cancer risk and vitamin D production

    PubMed Central

    RIVAS, MIGUEL; ROJAS, ELISA; ARAYA, MARÍA C.; CALAF, GLORIA M.

    2015-01-01

    The danger of overexposure to solar ultraviolet radiation has been widely reviewed since the 1980s due to the depletion of the ozone layer. However, the benefits of mild exposure of the skin to ultraviolet (UV) light have not been widely investigated. Numerous reports have demonstrated that an association exists between low light exposure to the sun, non-melanoma skin cancer and a lack of vitamin D synthesis. As vitamin D synthesis in the body depends on skin exposure to UVB radiation from the sun (wavelength, 290–320 nm), experimental measurements for this type of solar radiation are important. The present study analyzed data obtained from a laboratory investigating UV radiation from the sun at the University of Tarapacá (Arica, Chile), where systematic experimental UVB measurements had been performed using a calibrated biometer instrument since 2006. These data were compared with skin cancer data from the local population. The results demonstrated that the incidence of skin cancer systematically increased from 7.4 to 18.7 in men and from 10.0 to 21.7 in women between 2000 and 2006 in Arica, respectively; this increase may be due to multiple factors, including the lack of adequate levels of vitamin D in risk groups such as post-menopausal women and senior age. This marked increase may also be due to the high levels of UV radiation measured in this region throughout the year. However, it is not certain that the local population has adequate vitamin D levels, nor that their skin has been predominantly exposed to artificial light that does not allow adequate vitamin D synthesis. Thus, the current study presents the association between skin type IV, the time to induce solar erythema and the time required to produce 1,000 international units of vitamin D. PMID:26622830

  12. Investigation of Ultraviolet Light Curable Polysilsesquioxane Gate Dielectric Layers for Pentacene Thin Film Transistors.

    PubMed

    Shibao, Hideto; Nakahara, Yoshio; Uno, Kazuyuki; Tanaka, Ichiro

    2016-04-01

    Polysilsesquioxane (PSQ) comprising 3-methacryloxypropyl groups was investigated as an ultraviolet (UV)-light curable gate dielectric-material for pentacene thin film transistors (TFTs). The surface of UV-light cured PSQ films was smoother than that of thermally cured ones, and the pentacene layers deposited on the UV-Iight cured PSQ films consisted of larger grains. However, carrier mobility of the TFTs using the UV-light cured PSQ films was lower than that of the TFTs using the thermally cured ones. It was shown that the cross-linker molecules, which were only added to the UV-light cured PSQ films, worked as a major mobility-limiting factor for the TFTs.

  13. Effects of ultraviolet light on Hymenolepis diminuta ova and cysticercoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGavock, W.D.; Howard, K.E.

    The ova and cysticercoids of Hymenolepis diminuta were exposed to a 2537 A wave length of ultraviolet light for various time periods. Development was extremely impaired in the cysts which had been irradiated for 30 and 60 minutes. When these were administered to the final host no tapeworms developed. From 113 intermediate host beetle larvae fed with irradiated ova, only three cysticercoids were recovered. Development was impaired in both cases and the infective rate of irradiated ova and cysts of the least exposed groups was lower than that of the controls.

  14. Application of ultraviolet-C light on oranges for the inactivation of postharvest wound pathogens

    USDA-ARS?s Scientific Manuscript database

    Germicidal effects of ultraviolet-C (UV-C) light on the postharvest wound pathogens of citrus fruits namely Penicillium digitatum and Penicillium italicum were investigated. P. digitatum and P. italicum spores were inoculated (4.00 – 4.50 log cfu/ orange) onto Washington navel oranges (Citrus sinens...

  15. Responses of the picoprasinophyte Micromonas commoda to light and ultraviolet stress.

    PubMed

    Cuvelier, Marie L; Guo, Jian; Ortiz, Alejandra C; van Baren, Marijke J; Tariq, Muhammad Akram; Partensky, Frédéric; Worden, Alexandra Z

    2017-01-01

    Micromonas is a unicellular marine green alga that thrives from tropical to polar ecosystems. We investigated the growth and cellular characteristics of acclimated mid-exponential phase Micromonas commoda RCC299 over multiple light levels and over the diel cycle (14:10 hour light:dark). We also exposed the light:dark acclimated M. commoda to experimental shifts from moderate to high light (HL), and to HL plus ultraviolet radiation (HL+UV), 4.5 hours into the light period. Cellular responses of this prasinophyte were quantified by flow cytometry and changes in gene expression by qPCR and RNA-seq. While proxies for chlorophyll a content and cell size exhibited similar diel variations in HL and controls, with progressive increases during day and decreases at night, both parameters sharply decreased after the HL+UV shift. Two distinct transcriptional responses were observed among chloroplast genes in the light shift experiments: i) expression of transcription and translation-related genes decreased over the time course, and this transition occurred earlier in treatments than controls; ii) expression of several photosystem I and II genes increased in HL relative to controls, as did the growth rate within the same diel period. However, expression of these genes decreased in HL+UV, likely as a photoprotective mechanism. RNA-seq also revealed two genes in the chloroplast genome, ycf2-like and ycf1-like, that had not previously been reported. The latter encodes the second largest chloroplast protein in Micromonas and has weak homology to plant Ycf1, an essential component of the plant protein translocon. Analysis of several nuclear genes showed that the expression of LHCSR2, which is involved in non-photochemical quenching, and five light-harvesting-like genes, increased 30 to >50-fold in HL+UV, but was largely unchanged in HL and controls. Under HL alone, a gene encoding a novel nitrite reductase fusion protein (NIRFU) increased, possibly reflecting enhanced N

  16. Responses of the picoprasinophyte Micromonas commoda to light and ultraviolet stress

    DOE PAGES

    Cuvelier, Marie L.; Guo, Jian; Ortiz, Alejandra C.; ...

    2017-03-09

    Micromonas is a unicellular marine green alga that thrives from tropical to polar ecosystems. We investigated the growth and cellular characteristics of acclimated mid-exponential phase Micromonas commoda RCC299 over multiple light levels and over the diel cycle (14:10 hour light:dark). We also exposed the light:dark acclimated M. commoda to experimental shifts from moderate to high light (HL), and to HL plus ultraviolet radiation (HL+UV), 4.5 hours into the light period. Cellular responses of this prasinophyte were quantified by flow cytometry and changes in gene expression by qPCR and RNA-seq. While proxies for chlorophyll a content and cell size exhibited similarmore » diel variations in HL and controls, with progressive increases during day and decreases at night, both parameters sharply decreased after the HL+UV shift. Two distinct transcriptional responses were observed among chloroplast genes in the light shift experiments: i) expression of transcription and translation-related genes decreased over the time course, and this transition occurred earlier in treatments than controls; ii) expression of several photosystem I and II genes increased in HL relative to controls, as did the growth rate within the same diel period. However, expression of these genes decreased in HL+UV, likely as a photoprotective mechanism. RNA-seq also revealed two genes in the chloroplast genome, ycf2-like and ycf1-like, that had not previously been reported. The latter encodes the second largest chloroplast protein in Micromonas and has weak homology to plant Ycf1, an essential component of the plant protein translocon. Analysis of several nuclear genes showed that the expression of LHCSR2, which is involved in non-photochemical quenching, and five light-harvesting-like genes, increased 30 to >50-fold in HL+UV, but was largely unchanged in HL and controls. Under HL alone, a gene encoding a novel nitrite reductase fusion protein (NIRFU) increased, possibly reflecting enhanced N

  17. Responses of the picoprasinophyte Micromonas commoda to light and ultraviolet stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuvelier, Marie L.; Guo, Jian; Ortiz, Alejandra C.

    Micromonas is a unicellular marine green alga that thrives from tropical to polar ecosystems. We investigated the growth and cellular characteristics of acclimated mid-exponential phase Micromonas commoda RCC299 over multiple light levels and over the diel cycle (14:10 hour light:dark). We also exposed the light:dark acclimated M. commoda to experimental shifts from moderate to high light (HL), and to HL plus ultraviolet radiation (HL+UV), 4.5 hours into the light period. Cellular responses of this prasinophyte were quantified by flow cytometry and changes in gene expression by qPCR and RNA-seq. While proxies for chlorophyll a content and cell size exhibited similarmore » diel variations in HL and controls, with progressive increases during day and decreases at night, both parameters sharply decreased after the HL+UV shift. Two distinct transcriptional responses were observed among chloroplast genes in the light shift experiments: i) expression of transcription and translation-related genes decreased over the time course, and this transition occurred earlier in treatments than controls; ii) expression of several photosystem I and II genes increased in HL relative to controls, as did the growth rate within the same diel period. However, expression of these genes decreased in HL+UV, likely as a photoprotective mechanism. RNA-seq also revealed two genes in the chloroplast genome, ycf2-like and ycf1-like, that had not previously been reported. The latter encodes the second largest chloroplast protein in Micromonas and has weak homology to plant Ycf1, an essential component of the plant protein translocon. Analysis of several nuclear genes showed that the expression of LHCSR2, which is involved in non-photochemical quenching, and five light-harvesting-like genes, increased 30 to >50-fold in HL+UV, but was largely unchanged in HL and controls. Under HL alone, a gene encoding a novel nitrite reductase fusion protein (NIRFU) increased, possibly reflecting enhanced N

  18. CR-39 (PADC) Reflection and Transmission of Light in the Ultraviolet-Near-Infrared (UV-NIR) Range.

    PubMed

    Traynor, Nathan B J; McLauchlin, Christopher; Dodge, Kenneth; McGarrah, James E; Padalino, Stephen J; McCluskey, Michelle; Sangster, T C; McLean, James G

    2018-04-01

    The spectral reflection (specular and diffuse) and transmission of Columbia Resin 39 (CR-39) were measured for incoherent light with wavelengths in the range of 200-2500 nm. These results will be of use for the optical characterization of CR-39, as well as in investigations of the chemical modifications of the polymer caused by ultraviolet (UV) exposure. A Varian Cary 5000 was used to perform spectroscopy on several different thicknesses of CR-39. With proper analysis for the interdependence of reflectance and transmittance, results are consistent across all samples. The reflectivity from each CR-39-air boundary reveals an increase in the index of refraction in the near-UV. Absorption observations are consistent with the Beer-Lambert law. Strong absorption of UV light of wavelength shorter than 350 nm suggests an optical band gap of 3.5 eV, although the standard analysis is not conclusive. Absorption features observed in the near infrared are assigned to molecular vibrations, including some that are new to the literature.

  19. 234 nm and 246 nm AlN-Delta-GaN quantum well deep ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Liu, Cheng; Ooi, Yu Kee; Islam, S. M.; Xing, Huili Grace; Jena, Debdeep; Zhang, Jing

    2018-01-01

    Deep ultraviolet (DUV) AlN-delta-GaN quantum well (QW) light-emitting diodes (LEDs) with emission wavelengths of 234 nm and 246 nm are proposed and demonstrated in this work. Our results reveal that the use of AlN-delta-GaN QW with ˜1-3 monolayer GaN delta-layer can achieve a large transverse electric (TE)-polarized spontaneous emission rate instead of transverse magnetic-polarized emission, contrary to what is observed in conventional AlGaN QW in the 230-250 nm wavelength regime. The switching of light polarization in the proposed AlN-delta-GaN QW active region is attributed to the rearrangement of the valence subbands near the Γ-point. The light radiation patterns obtained from angle-dependent electroluminescence measurements for the Molecular Beam Epitaxy (MBE)-grown 234 nm and 246 nm AlN-delta-GaN QW LEDs show that the photons are mainly emitted towards the surface rather than the edge, consistent with the simulated patterns achieved by the finite-difference time-domain modeling. The results demonstrate that the proposed AlN-delta-GaN QWs would potentially lead to high-efficiency TE-polarized surface-emitting DUV LEDs.

  20. High-space resolution imaging plate analysis of extreme ultraviolet (EUV) light from tin laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Musgrave, Christopher S. A.; Murakami, Takehiro; Ugomori, Teruyuki; Yoshida, Kensuke; Fujioka, Shinsuke; Nishimura, Hiroaki; Atarashi, Hironori; Iyoda, Tomokazu; Nagai, Keiji

    2017-03-01

    With the advent of high volume manufacturing capabilities by extreme ultraviolet lithography, constant improvements in light source design and cost-efficiency are required. Currently, light intensity and conversion efficiency (CE) measurments are obtained by charged couple devices, faraday cups etc, but also phoshpor imaging plates (IPs) (BaFBr:Eu). IPs are sensitive to light and high-energy species, which is ideal for studying extreme ultraviolet (EUV) light from laser produced plasmas (LPPs). In this work, we used IPs to observe a large angular distribution (10°-90°). We ablated a tin target by high-energy lasers (1064 nm Nd:YAG, 1010 and 1011 W/cm2) to generate the EUV light. The europium ions in the IP were trapped in a higher energy state from exposure to EUV light and high-energy species. The light intensity was angular dependent; therefore excitation of the IP depends on the angle, and so highly informative about the LPP. We obtained high-space resolution (345 μm, 0.2°) angular distribution and grazing spectrometer (5-20 nm grate) data simultaneously at different target to IP distances (103 mm and 200 mm). Two laser systems and IP types (BAS-TR and BAS-SR) were also compared. The cosine fitting values from the IP data were used to calculate the CE to be 1.6% (SD ± 0.2) at 13.5 nm 2% bandwidth. Finally, a practical assessment of IPs and a damage issue are disclosed.

  1. Synchrotron Vacuum Ultraviolet Light and Soft X-Ray Radiation Effects on Aluminized Teflon FEP Investigated

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Townsend, Jacqueline A.; Gaier, James R.; Jalics, Alice I.

    1999-01-01

    Since the Hubble Space Telescope (HST) was deployed in low Earth orbit in April 1990, two servicing missions have been conducted to upgrade its scientific capabilities. Minor cracking of second-surface metalized Teflon FEP (DuPont; fluorinated ethylene propylene) surfaces from multilayer insulation (MLI) was first observed upon close examination of samples with high solar exposure retrieved during the first servicing mission, which was conducted 3.6 years after deployment. During the second HST servicing mission, 6.8 years after deployment, astronaut observations and photographic documentation revealed significant cracks in the Teflon FEP layer of the MLI on both the solar- and anti-solar-facing surfaces of the telescope. NASA Goddard Space Flight Center directed the efforts of the Hubble Space Telescope MLI Failure Review Board, whose goals included identifying the low-Earth-orbit environmental constituent(s) responsible for the cracking and embrittling of Teflon FEP which was observed during the second servicing mission. The NASA Lewis Research Center provided significant support to this effort. Because soft x-ray radiation from solar flares had been considered as a possible cause for the degradation of the mechanical properties of Teflon FEP (ref. 1), the effects of soft xray radiation and vacuum ultraviolet light on Teflon FEP were investigated. In this Lewisled effort, samples of Teflon FEP with a 100-nm layer of vapor-deposited aluminum (VDA) on the backside were exposed to synchrotron radiation of various vacuum ultraviolet and soft x-ray wavelengths between 18 nm (69 eV) and 0.65 nm (1900 eV). Synchrotron radiation exposures were conducted using the National Synchrotron Light Source at Brookhaven National Laboratory. Samples of FEP/VDA were exposed with the FEP surface facing the synchrotron beam. Doses and fluences were compared with those estimated for the 20-yr Hubble Space Telescope mission.

  2. Simultaneous removal of NO and SO2 using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS).

    PubMed

    Liu, Yangxian; Wang, Yan; Wang, Qian; Pan, Jianfeng; Zhang, Jun

    2018-01-01

    Simultaneous removal process of SO 2 and NO from flue gas using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS) in a VUV spraying reactor was proposed. The key influencing factors, active species, reaction products and mechanism of SO 2 and NO simultaneous removal were investigated. The results show that vacuum ultraviolet light (185 nm) achieves the highest NO removal efficiency and yield of and under the same test conditions. NO removal is enhanced at higher PMS concentration, light intensity and oxygen concentration, and is inhibited at higher NO concentration, SO 2 concentration and solution pH. Solution temperature has a double impact on NO removal. CO 2 concentration has no obvious effect on NO removal. and produced from VUV-activation of PMS play a leading role in NO removal. O 3 and ·O produced from VUV-activation of O 2 also play an important role in NO removal. SO 2 achieves complete removal under all experimental conditions due to its very high solubility in water and good reactivity. The highest simultaneous removal efficiency of SO 2 and NO reaches 100% and 91.3%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Defect-Enabled Electrical Current Leakage in Ultraviolet Light-Emitting Diodes

    DOE PAGES

    Moseley, Michael William; Allerman, Andrew A.; Crawford, Mary H.; ...

    2015-04-13

    The AlGaN materials system offers a tunable, ultra-wide bandgap that is exceptionally useful for high-power electronics and deep ultraviolet optoelectronics. Moseley et al. (pp. 723–726) investigate a structural defect known as an open-core threading dislocation or ''nanopipe'' that is particularly detrimental to devices that employ these materials. Furthermore, an AlGaN thin film was synthesized using metal-organic chemical-vapor deposition. Electrical current leakage is detected at a discrete point using a conductive atomic-force microscope (CAFM). However, no physical feature or abnormality at this location was visible by an optical microscope. The AlGaN thin film was then etched in hot phosphoric acid, andmore » the same location that was previously analyzed was revisited with the CAFM. The point that previously exhibited electrical current leakage had been decorated with a 1.1 μm wide hexagonal pit, which identified the site of electrical current leakage as a nanopipe and allows these defects to be easily observed by optical microscopy. Moreover, with this nanopipe identification and quantification strategy, the authors were able to correlate decreasing ultraviolet light-emitting diode optical output power with increasing nanopipe density.« less

  4. Tunnel junction enhanced nanowire ultraviolet light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarwar, A. T. M. Golam; May, Brelon J.; Deitz, Julia I.

    Polarization engineered interband tunnel junctions (TJs) are integrated in nanowire ultraviolet (UV) light emitting diodes (LEDs). A ∼6 V reduction in turn-on voltage is achieved by the integration of tunnel junction at the base of polarization doped nanowire UV LEDs. Moreover, efficient hole injection into the nanowire LEDs leads to suppressed efficiency droop in TJ integrated nanowire LEDs. The combination of both reduced bias voltage and increased hole injection increases the wall plug efficiency in these devices. More than 100 μW of UV emission at ∼310 nm is measured with external quantum efficiency in the range of 4–6 m%. The realization of tunnel junctionmore » within the nanowire LEDs opens a pathway towards the monolithic integration of cascaded multi-junction nanowire LEDs on silicon.« less

  5. 21 CFR 872.6350 - Ultraviolet detector.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultraviolet detector. 872.6350 Section 872.6350...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6350 Ultraviolet detector. (a) Identification. An ultraviolet detector is a device intended to provide a source of ultraviolet light which is used...

  6. 21 CFR 872.6350 - Ultraviolet detector.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ultraviolet detector. 872.6350 Section 872.6350...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6350 Ultraviolet detector. (a) Identification. An ultraviolet detector is a device intended to provide a source of ultraviolet light which is used...

  7. 21 CFR 872.6350 - Ultraviolet detector.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultraviolet detector. 872.6350 Section 872.6350...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6350 Ultraviolet detector. (a) Identification. An ultraviolet detector is a device intended to provide a source of ultraviolet light which is used...

  8. 21 CFR 872.6350 - Ultraviolet detector.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ultraviolet detector. 872.6350 Section 872.6350...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6350 Ultraviolet detector. (a) Identification. An ultraviolet detector is a device intended to provide a source of ultraviolet light which is used...

  9. 21 CFR 872.6350 - Ultraviolet detector.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ultraviolet detector. 872.6350 Section 872.6350...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6350 Ultraviolet detector. (a) Identification. An ultraviolet detector is a device intended to provide a source of ultraviolet light which is used...

  10. Investigation of ultraviolet fluxes of normal and peculiar stars

    NASA Technical Reports Server (NTRS)

    Deutschman, W. A.; Schild, R. E.

    1974-01-01

    Data from Project Celescope, a program that photographed the ultraviolet sky, in order to study several problems in current astrophysics are analyzed. Two star clusters, the Pleiades and the Hyades, reveal differences between the two that we are unable to explain simply from their differences in chemical abundance, rotation, or reddening. Data for Orion show large scatter, which appears to be in the sense that the Orion stars are too faint for their ground-based photometry. Similarly, many supergiants in the association Sco OB1 are too faint in the ultraviolet, but the ultraviolet brightness appears to be only poorly correlated with spectral type. Ultraviolet Celescope data for several groups of peculiar stars have also been analyzed. The strong He I stars are too faint in the ultraviolet, possibly owing to enhancement of O II continuous opacity due to oxygen overabundance. The Be stars appear to have ultraviolet colors normal for their MK spectral types. The P Cygni stars are considerably fainter than main-sequence stars of comparable spectral type, probably owing, at least in part, to line blocking by resonance lines of multiply ionized light metals. The Wolf-Rayet stars have ultraviolet color temperatures of O stars.

  11. Ultraviolet Enceladus

    NASA Image and Video Library

    2004-09-23

    Looking beyond Saturn's south pole, this was the Cassini spacecraft's view of the distant, icy moon Enceladus on July 28, 2004. The planet itself shows few obvious features at these ultraviolet wavelengths, due to scattering of light by molecules of the gases high in the atmosphere. Enceladus is 499 kilometers (310 miles) wide. The image was taken with the Cassini spacecraft narrow angle camera at a distance of 7.4 million kilometers (4.6 million miles) from Saturn through a filter sensitive to ultraviolet wavelengths of light. The image scale is 44 kilometers (27 miles) per pixel of Saturn. http://photojournal.jpl.nasa.gov/catalog/PIA06483

  12. Ultraviolet and short wavelength visible light exposure: why ultraviolet protection alone is not adequate.

    PubMed

    Reichow, Alan W; Citek, Karl; Edlich, Richard F

    2006-01-01

    The danger of exposure to ultraviolet (UV) radiation in both the natural environment and artificial occupational settings has long been recognized by national and international standards committees and worker safety agencies. There is an increasing body of literature that suggests that protection from UV exposure is not enough. Unprotected exposure to the short wavelengths of the visible spectrum, termed the "blue light hazard", is gaining acceptance as a true risk to long-term visual health. Global standards and experts in the field are now warning that those individuals who spend considerable time outdoors should seek sun filter eyewear with high impact resistant lenses that provide 100% UV filtration, high levels of blue light filtration, and full visual field lens/frame coverage as provided by high wrap eyewear. The Skin Cancer Foundation has endorsed certain sunglasses as "product[s]...effective [as] UV filter[s] for the eyes and surrounding skin". However, such endorsement does not necessarily mean that the eyewear meets all the protective needs for outdoor use. There are several brands that offer products with such protective characteristics. Performance sun eyewear by Nike Vision, available in both corrective and plano (nonprescription) forms, is one such brand incorporating these protective features.

  13. EFFECTS OF ULTRAVIOLET-B LIGHT AND POLYAROMATIC HYDROCARBON EXPOSURE ON SEA URCHIN DEVELOPMENT AND BACTERIAL BIOLUMINESCENCE

    EPA Science Inventory

    Polycyclic aromatic hydrocarbons (PAHs) are relatively common contaminants of the Gulf of Mexico and may be activated to more toxic metabolites by ultraviolet-B (UV-B) light. A marine bacterial bioassay system (Vibrio fischeri) which focused on the reduction of luciferase-mediate...

  14. Assessing the effectiveness of low-pressure ultraviolet light for inactivating Mycobacterium avium complex (MAC) micro-organisms

    EPA Science Inventory

    Aims: To assess low-pressure ultraviolet light (LP-UV) inactivation kinetics of Mycobacterium avium complex (MAC) strains in a water matrix using collimated beam apparatus. Methods and Results: Strains of M. avium (n = 3) and Mycobacterium intracellulare (n = 2) were exposed t...

  15. Multiomics in grape berry skin revealed specific induction of the stilbene synthetic pathway by ultraviolet-C irradiation.

    PubMed

    Suzuki, Mami; Nakabayashi, Ryo; Ogata, Yoshiyuki; Sakurai, Nozomu; Tokimatsu, Toshiaki; Goto, Susumu; Suzuki, Makoto; Jasinski, Michal; Martinoia, Enrico; Otagaki, Shungo; Matsumoto, Shogo; Saito, Kazuki; Shiratake, Katsuhiro

    2015-05-01

    Grape (Vitis vinifera) accumulates various polyphenolic compounds, which protect against environmental stresses, including ultraviolet-C (UV-C) light and pathogens. In this study, we looked at the transcriptome and metabolome in grape berry skin after UV-C irradiation, which demonstrated the effectiveness of omics approaches to clarify important traits of grape. We performed transcriptome analysis using a genome-wide microarray, which revealed 238 genes up-regulated more than 5-fold by UV-C light. Enrichment analysis of Gene Ontology terms showed that genes encoding stilbene synthase, a key enzyme for resveratrol synthesis, were enriched in the up-regulated genes. We performed metabolome analysis using liquid chromatography-quadrupole time-of-flight mass spectrometry, and 2,012 metabolite peaks, including unidentified peaks, were detected. Principal component analysis using the peaks showed that only one metabolite peak, identified as resveratrol, was highly induced by UV-C light. We updated the metabolic pathway map of grape in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and in the KaPPA-View 4 KEGG system, then projected the transcriptome and metabolome data on a metabolic pathway map. The map showed specific induction of the resveratrol synthetic pathway by UV-C light. Our results showed that multiomics is a powerful tool to elucidate the accumulation mechanisms of secondary metabolites, and updated systems, such as KEGG and KaPPA-View 4 KEGG for grape, can support such studies. © 2015 American Society of Plant Biologists. All Rights Reserved.

  16. Water Treatment Using Advanced Ultraviolet Light Sources Final Report CRADA No. TC02089.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoppes, W.; Oster, S.

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Teknichal Services, LLC (TkS), to develop water treatment systems using advanced ultraviolet light sources. The Russian institutes involved with this project were The High Current Electronics Institute (HCEI) and Russian Institute of Technical Physics-Institute of Experimental Physics (VNIIEF). HCEI and VNIIEF developed and demonstrated the potential commercial viability of short-wavelength ultraviolet excimer lamps under a Thrust 1 Initiatives for Proliferation Prevention (IPP) Program. The goals of this collaboration were to demonstrate both the commercial viability of excilampbased watermore » disinfection and achieve further substantial operational improvement in the lamps themselves; particularly in the area of energy efficiency.« less

  17. Near unity ultraviolet absorption in graphene without patterning

    NASA Astrophysics Data System (ADS)

    Zhu, Jinfeng; Yan, Shuang; Feng, Naixing; Ye, Longfang; Ou, Jun-Yu; Liu, Qing Huo

    2018-04-01

    Enhancing the light-matter interaction of graphene is an important issue for related photonic devices and applications. In view of its potential ultraviolet applications, we aim to achieve extremely high ultraviolet absorption in graphene without any nanostructure or microstructure patterning. By manipulating the polarization and angle of incident light, the ultraviolet power can be sufficiently coupled to the optical dissipation of graphene based on single-channel coherent perfect absorption in an optimized multilayered thin film structure. The ultraviolet absorbance ratios of single and four atomic graphene layers are enhanced up to 71.4% and 92.2%, respectively. Our research provides a simple and efficient scheme to trap ultraviolet light for developing promising photonic and optoelectronic devices based on graphene and potentially other 2D materials.

  18. Investigating the protective properties of milk phospholipids against ultraviolet light exposure in a skin equivalent model

    NASA Astrophysics Data System (ADS)

    Russell, Ashley; Laubscher, Andrea; Jimenez-Flores, Rafael; Laiho, Lily H.

    2010-02-01

    Current research on bioactive molecules in milk has documented health advantages of bovine milk and its components. Milk Phospholipids, selected for this study, represent molecules with great potential benefit in human health and nutrition. In this study we used confocal reflectance and multiphoton microscopy to monitor changes in skin morphology upon skin exposure to ultraviolet light and evaluate the potential of milk phospholipids in preventing photodamage to skin equivalent models. The results suggest that milk phospholipids act upon skin cells in a protective manner against the effect of ultraviolet (UV) radiation. Similar results were obtained from MTT tissue viability assay and histology.

  19. Ultraviolet light exposure influences skin cancer in association with latitude.

    PubMed

    Rivas, Miguel; Araya, María C; Caba, Fresia; Rojas, Elisa; Calaf, Gloria M

    2011-04-01

    The increase in the amount of solar ultraviolet (UV) light that reaches the earth is considered to be responsible for the worldwide increase in skin cancer. It has been reported that excessive levels of UVA and UVB light have multiple effects, which can be harmful to humans. Experimental measurements were obtained using wide-band solar light YES biometers from 2006 to 2009 in Arica, Chile and from 2003 to 2006 in Valdivia, Chile, both instruments having been calibrated according to the World Health Organization (WHO) criteria and integrated into the Chilean Meteorological Organization network. To explain the possible effect of radiation on skin cancer, revised pathological reports in Arica and Valdivia were analyzed. In Arica, data on men and women were collected between 1997 and 1998-2002, and in Valdivia, between 1997-2000 and 2001-2007. In this study, comparative values of ultraviolet index (UVI) from the above datasets, were analyzed. Arica is a city located in the subtropical zone of northern Chile, 25 meters above sea level, with a latitude of 18˚49'S and a longitude of 70˚19'W. It has a microclimate characterized by stable meteorological conditions throughout the year, including low precipitation (<5 mm per decade), predictable winds, a high percentage of clear sky days and high ground reflectivity due to the presence of light sand. Due to its location near sea level, the population performs a great number of outdoor activities. Valdivia is a city located in the southern part of Chile, 19 meters above sea level with a latitude of 39˚38'S and a longitude of 73˚5'W. The aim of the present study was to determine the relationship between latitude and the risk of skin cancer in two cities with different latitudes. The incidence of skin cancer per 100,000 persons significantly (P<0.05) increased in both genders between the periods 1997-2000 and 2001-2007 in Arica. However, it decreased in men between the periods 1993-1997 and 1998-2002 in Valdivia. The results

  20. Lattice-matched double dip-shaped BAlGaN/AlN quantum well structures for ultraviolet light emission devices

    NASA Astrophysics Data System (ADS)

    Park, Seoung-Hwan; Ahn, Doyeol

    2018-05-01

    Ultraviolet light emission characteristics of lattice-matched BxAlyGa1-x-y N/AlN quantum well (QW) structures with double AlGaN delta layers were investigated theoretically. In contrast to conventional single dip-shaped QW structure where the reduction effect of the spatial separation between electron and hole wave functions is negligible, proposed double dip-shaped QW shows significant enhancement of the ultraviolet light emission intensity from a BAlGaN/AlN QW structure due to the reduced spatial separation between electron and hole wave functions. The emission peak of the double dip-shaped QW structure is expected to be about three times larger than that of the conventional rectangular AlGaN/AlN QW structure.

  1. Probing of Hermean Exosphere by ultraviolet spectroscopy: Instrument presentation, calibration philosophy and first lights results

    NASA Astrophysics Data System (ADS)

    Mariscal, J. F.; Rouanet, N.; Maria, J. L.; Quémerais, E.; Mine, P. O.; Zuppella, P.; Suman, M.; Nicolosi, P.; Pelizzo, M. G.; Yoshikawa, I.; Yoshioka, K.; Murakami, G.

    2017-11-01

    PHEBUS (Probing of Hermean Exosphere by Ultraviolet Spectroscopy) is a double spectrometer for the Extreme Ultraviolet range (55-155 nm) and the Far Ultraviolet range (145-315 nm) dedicated to the characterization of Mercury's exosphere composition and dynamics, and surface-exosphere connections. PHEBUS is part of the ESA BepiColombo cornerstone mission payload devoted to the study of Mercury. The BepiColombo mission consists of two spacecrafts: the Mercury Magnetospheric Orbiter (MMO) and the Mercury Planetary Orbiter (MPO) on which PHEBUS will be mounted. PHEBUS is a French-led instrument implemented in a cooperative scheme involving Japan (detectors), Russia (scanner) and Italy (ground calibration). Before launch, PHEBUS team want to perform a full absolute calibration on ground, in addition to calibrations which will be made in-flight, in order to know the instrument's response as precisely as possible. Instrument overview and calibration philosophy are introduced along with the first lights results observed by a first prototype.

  2. Optimized constants for an ultraviolet light-adjustable intraocular lens.

    PubMed

    Conrad-Hengerer, Ina; Dick, H Burkhard; Hütz, Werner W; Haigis, Wolfgang; Hengerer, Fritz H

    2011-12-01

    To determine the accuracy of intraocular lens (IOL) power calculations and to suggest adjusted constants for implantation of ultraviolet light-adjustable IOLs. Center for Vision Science, Ruhr University Eye Clinic, Bochum, Germany. Cohort study. Eyes with a visually significant cataract that had phacoemulsification with implantation of a light-adjustable IOL were evaluated. IOLMaster measurements were performed before phacoemulsification and IOL implantation and 4 weeks after surgery before the first adjustment of the IOL. The difference in the expected refraction and estimation error was studied. The study evaluated 125 eyes. Using the surgical constants provided by the manufacturer of the light-adjustable IOL, the SRK/T formula gave a more hyperopic refraction than the Hoffer Q and Holladay 1 formulas. The mean error of prediction was 0.93 diopter (D) ± 0.69 (SD), 0.91 ± 0.63 D, and 0.86 ± 0.65 D, respectively. The corresponding mean absolute error of prediction was 0.98 ± 0.61 D, 0.93 ± 0.61 D, and 0.90 ± 0.59 D, respectively. With optimized constants for the formulas, the mean error of prediction was 0.00 ± 0.63 D for Hoffer Q, 0.00 ± 0.64 D for Holladay 1, and 0.00 ± 0.66 D for SRK/T. The expected refraction after phacoemulsification and implantation of a light-adjustable IOL toward the hyperopic side of the desired refraction could be considered when using the optimized constants for all formulas. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  3. Light interaction in sapphire/MgF2/Al triple-layer omnidirectional reflectors in AlGaN-based near ultraviolet light-emitting diodes

    PubMed Central

    Lee, Keon Hwa; Moon, Yong-Tae; Song, June-O; Kwak, Joon Seop

    2015-01-01

    This study examined systematically the mechanism of light interaction in the sapphire/MgF2/Al triple-layer omnidirectional reflectors (ODR) and its effects on the light output power in near ultraviolet light emitting diodes (NUV-LEDs) with the ODR. The light output power of NUV-LEDs with the triple-layer ODR structure increased with decreasing surface roughness of the sapphire backside in the ODR. Theoretical modeling of the roughened surface suggests that the dependence of the reflectance of the triple-layer ODR structure on the surface roughness can be attributed mainly to light absorption by the Al nano-structures and the trapping of scattered light in the MgF2 layer. Furthermore, the ray tracing simulation based upon the theoretical modeling showed good agreement with the measured reflectance of the ODR structure in diffuse mode. PMID:26010378

  4. Light interaction in sapphire/MgF2/Al triple-layer omnidirectional reflectors in AlGaN-based near ultraviolet light-emitting diodes.

    PubMed

    Lee, Keon Hwa; Moon, Yong-Tae; Song, June-O; Kwak, Joon Seop

    2015-05-26

    This study examined systematically the mechanism of light interaction in the sapphire/MgF2/Al triple-layer omnidirectional reflectors (ODR) and its effects on the light output power in near ultraviolet light emitting diodes (NUV-LEDs) with the ODR. The light output power of NUV-LEDs with the triple-layer ODR structure increased with decreasing surface roughness of the sapphire backside in the ODR. Theoretical modeling of the roughened surface suggests that the dependence of the reflectance of the triple-layer ODR structure on the surface roughness can be attributed mainly to light absorption by the Al nano-structures and the trapping of scattered light in the MgF2 layer. Furthermore, the ray tracing simulation based upon the theoretical modeling showed good agreement with the measured reflectance of the ODR structure in diffuse mode.

  5. Saturn's E Ring in Ultraviolet Light

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Visible from Earth only at times of ring plane crossing, Saturn's tenuous E Ring was discovered during the 1966 crossings and imaged again in 1980. From these observations, its color is known to be distinctively blue. The E Ring was captured in ultraviolet light for the first time in this image taken with HST's Wide Field and Planetary Camera on 9 August 1995. Five individual images taken with a broadband 3000 A filter were combined, amounting to a total exposure time of 2200 sec. Shorter exposure images were also obtained with blue, red and infrared filters in order to characterize the ring's color. The peak brightness of the E Ring occurs at 3.9 Saturn radii (235,000 km), coinciding with the orbit of Enceladus. In the HST images it can be traced out to a maximum distance of approximately 8 Rs (480,000 km). The vertical thickness of the ring, on the other hand, is smallest at Enceladus' orbit, with the ring puffing up noticeably at larger distances to 15,000 km or more thick. Also visible in this image, between the E Ring and the overexposed outermost part of the main rings near the lower edge of the frame, is the tenuous, thin, 6000 km-wide G Ring at 2.8 Rs (170,000 km). This is among the first earth-based observations of the G Ring, which was discovered by the Pioneer 11 spacecraft in 1979. Noticeably thinner than the E Ring and more neutral in color, the G Ring is thought to be composed of larger, macroscopic particles, and to pose a significant hazard to spacecraft. The faint diagonal band in the lower right part of the image is due to diffracted light from the heavily-overexposed planet. Credit: Phil Nicholson (Cornell University), Mark Showalter (NASA-Ames/Stanford) and NASA

  6. Characterization of electrically-active defects in ultraviolet light-emitting diodes with laser-based failure analysis techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Mary A.; Tangyunyong, Paiboon; Cole, Edward I.

    2016-01-14

    Laser-based failure analysis techniques demonstrate the ability to quickly and non-intrusively screen deep ultraviolet light-emitting diodes (LEDs) for electrically-active defects. In particular, two laser-based techniques, light-induced voltage alteration and thermally-induced voltage alteration, generate applied voltage maps (AVMs) that provide information on electrically-active defect behavior including turn-on bias, density, and spatial location. Here, multiple commercial LEDs were examined and found to have dark defect signals in the AVM indicating a site of reduced resistance or leakage through the diode. The existence of the dark defect signals in the AVM correlates strongly with an increased forward-bias leakage current. This increased leakage ismore » not present in devices without AVM signals. Transmission electron microscopy analysis of a dark defect signal site revealed a dislocation cluster through the pn junction. The cluster included an open core dislocation. Even though LEDs with few dark AVM defect signals did not correlate strongly with power loss, direct association between increased open core dislocation densities and reduced LED device performance has been presented elsewhere [M. W. Moseley et al., J. Appl. Phys. 117, 095301 (2015)].« less

  7. Characterization of electrically-active defects in ultraviolet light-emitting diodes with laser-based failure analysis techniques

    DOE PAGES

    Miller, Mary A.; Tangyunyong, Paiboon; Edward I. Cole, Jr.

    2016-01-12

    In this study, laser-based failure analysis techniques demonstrate the ability to quickly and non-intrusively screen deep ultraviolet light-emitting diodes(LEDs) for electrically-active defects. In particular, two laser-based techniques, light-induced voltage alteration and thermally-induced voltage alteration, generate applied voltage maps (AVMs) that provide information on electrically-active defect behavior including turn-on bias, density, and spatial location. Here, multiple commercial LEDs were examined and found to have dark defect signals in the AVM indicating a site of reduced resistance or leakage through the diode. The existence of the dark defect signals in the AVM correlates strongly with an increased forward-bias leakage current. This increasedmore » leakage is not present in devices without AVM signals. Transmission electron microscopyanalysis of a dark defect signal site revealed a dislocation cluster through the pn junction. The cluster included an open core dislocation. Even though LEDs with few dark AVM defect signals did not correlate strongly with power loss, direct association between increased open core dislocation densities and reduced LED device performance has been presented elsewhere [M. W. Moseley et al., J. Appl. Phys. 117, 095301 (2015)].« less

  8. A simple sub-nanosecond ultraviolet light pulse generator with high repetition rate and peak power.

    PubMed

    Binh, P H; Trong, V D; Renucci, P; Marie, X

    2013-08-01

    We present a simple ultraviolet sub-nanosecond pulse generator using commercial ultraviolet light-emitting diodes with peak emission wavelengths of 290 nm, 318 nm, 338 nm, and 405 nm. The generator is based on step recovery diode, short-circuited transmission line, and current-shaping circuit. The narrowest pulses achieved have 630 ps full width at half maximum at repetition rate of 80 MHz. Optical pulse power in the range of several hundreds of microwatts depends on the applied bias voltage. The bias voltage dependences of the output optical pulse width and peak power are analysed and discussed. Compared to commercial UV sub-nanosecond generators, the proposed generator can produce much higher pulse repetition rate and peak power.

  9. Ultrafast Spin Crossover in [FeII (bpy)3 ]2+ : Revealing Two Competing Mechanisms by Extreme Ultraviolet Photoemission Spectroscopy.

    PubMed

    Moguilevski, Alexandre; Wilke, Martin; Grell, Gilbert; Bokarev, Sergey I; Aziz, Saadullah G; Engel, Nicholas; Raheem, Azhr A; Kühn, Oliver; Kiyan, Igor Yu; Aziz, Emad F

    2017-03-03

    Photoinduced spin-flip in Fe II complexes is an ultrafast phenomenon that has the potential to become an alternative to conventional processing and magnetic storage of information. Following the initial excitation by visible light into the singlet metal-to-ligand charge-transfer state, the electronic transition to the high-spin quintet state may undergo different pathways. Here we apply ultrafast XUV (extreme ultraviolet) photoemission spectroscopy to track the low-to-high spin dynamics in the aqueous iron tris-bipyridine complex, [Fe(bpy) 3 ] 2+ , by monitoring the transient electron density distribution among excited states with femtosecond time resolution. Aided by first-principles calculations, this approach enables us to reveal unambiguously both the sequential and direct de-excitation pathways from singlet to quintet state, with a branching ratio of 4.5:1. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Effect of Pulsed Ultraviolet Light and High Hydrostatic Pressure on the Antigenicity of Almond Protein Extracts.

    USDA-ARS?s Scientific Manuscript database

    The efficacy of pulsed ultraviolet light (PUV) and high hydrostatic pressure (HHP) on reducing the IgE binding to the almond extracts, was studied using SDS-PAGE, Western Blot, and ELISA probed with human plasma containing IgE antibodies to almond allergens, and a polyclonal antibody against almond ...

  11. Inactivation of avirulent Yersinia pestis on food and food contact surfaces by ultraviolet light and freezing

    USDA-ARS?s Scientific Manuscript database

    Yersinia pestis, the causative agent of plague, can occasionally be contracted as a naso-pharangeal or gastrointestinal illness through consumption of contaminated meat. In this study, the use of 254 nm ultraviolet light (UV-C) to inactivate a multi-isolate cocktail of avirulent Y. pestis on food an...

  12. Skin β-endorphin mediates addiction to ultraviolet light

    PubMed Central

    Fell, Gillian L.; Robinson, Kathleen C.; Mao, Jianren; Woolf, Clifford J.; Fisher, David E.

    2014-01-01

    SUMMARY Ultraviolet light is an established carcinogen yet evidence suggests that UV-seeking behavior has addictive features. Following UV exposure, epidermal keratinocytes synthesize Proopiomelanocortin that is processed to Melanocyte Stimulating Hormone, inducing tanning. We show that in rodents another POMC-derived peptide, β-endorphin, is coordinately synthesized in skin, elevating plasma levels after low-dose UV. Increases in pain-related thresholds are observed, and reversed by pharmacologic opioid antagonism. Opioid blockade also elicits withdrawal signs after chronic UV exposure. This effect was sufficient to guide operant behavioral choices to avoidance of opioid withdrawal (conditioned place aversion). These UV-induced nociceptive and behavioral effects were absent in β-endorphin knockout mice and in mice lacking p53-mediated POMC induction in epidermal keratinocytes. While primordial UV addiction, mediated by the hedonic action of β-endorphin and anhedonic effects of withdrawal, may theoretically have enhanced evolutionary vitamin D biosynthesis, it now may contribute to the relentless rise in skin cancer incidence in man. PMID:24949966

  13. Detection and modeling of leakage current in AlGaN-based deep ultraviolet light-emitting diodes

    DOE PAGES

    Moseley, Michael William; Allerman, Andrew A.; Crawford, Mary H.; ...

    2015-03-01

    Current-voltage (IV) characteristics of two AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) with differing densities of open-core threading dislocations (nanopipes) are analyzed. A three-diode circuit is simulated to emulate the IV characteristics of the DUV-LEDs, but is only able to accurately model the lower leakage current, lower nanopipe density DUV-LED. It was found that current leakage through the nanopipes in these structures is rectifying, despite nanopipes being previously established as inherently n-type. Using defect-sensitive etching, the nanopipes are revealed to terminate within the p-type GaN capping layer of the DUV-LEDs. The circuit model is modified to account for another p-nmore » junction between the n-type nanopipes and the p-type GaN, and an excellent fit to the IV characteristics of the leaky DUV-LED is achieved.« less

  14. Large enhancement of light extraction efficiency in AlGaN-based nanorod ultraviolet light-emitting diode structures.

    PubMed

    Ryu, Han-Youl

    2014-02-04

    Light extraction efficiency (LEE) of AlGaN-based nanorod deep ultraviolet (UV) light-emitting diodes (LEDs) is numerically investigated using three-dimensional finite-difference time-domain simulations. LEE of deep UV LEDs is limited by strong light absorption in the p-GaN contact layer and total internal reflection. The nanorod structure is found to be quite effective in increasing LEE of deep UV LEDs especially for the transverse magnetic (TM) mode. In the nanorod LED, strong dependence of LEE on structural parameters such as the diameter of a nanorod and the p-GaN thickness is observed, which can be attributed to the formation of resonant modes inside the nanorod structure. Simulation results show that, when the structural parameters of the nanorod LED are optimized, LEE can be higher than 50% and 60% for the transverse electric (TE) and TM modes, respectively. The nanorod structure is expected to be a good candidate for the application to future high-efficiency deep UV LEDs. PACS: 41.20.Jb; 42.72.Bj; 85.60.Jb.

  15. Large enhancement of light extraction efficiency in AlGaN-based nanorod ultraviolet light-emitting diode structures

    PubMed Central

    2014-01-01

    Light extraction efficiency (LEE) of AlGaN-based nanorod deep ultraviolet (UV) light-emitting diodes (LEDs) is numerically investigated using three-dimensional finite-difference time-domain simulations. LEE of deep UV LEDs is limited by strong light absorption in the p-GaN contact layer and total internal reflection. The nanorod structure is found to be quite effective in increasing LEE of deep UV LEDs especially for the transverse magnetic (TM) mode. In the nanorod LED, strong dependence of LEE on structural parameters such as the diameter of a nanorod and the p-GaN thickness is observed, which can be attributed to the formation of resonant modes inside the nanorod structure. Simulation results show that, when the structural parameters of the nanorod LED are optimized, LEE can be higher than 50% and 60% for the transverse electric (TE) and TM modes, respectively. The nanorod structure is expected to be a good candidate for the application to future high-efficiency deep UV LEDs. PACS 41.20.Jb; 42.72.Bj; 85.60.Jb PMID:24495598

  16. Multiomics in Grape Berry Skin Revealed Specific Induction of the Stilbene Synthetic Pathway by Ultraviolet-C Irradiation1

    PubMed Central

    Suzuki, Mami; Nakabayashi, Ryo; Ogata, Yoshiyuki; Sakurai, Nozomu; Tokimatsu, Toshiaki; Goto, Susumu; Suzuki, Makoto; Jasinski, Michal; Martinoia, Enrico; Otagaki, Shungo; Matsumoto, Shogo; Saito, Kazuki; Shiratake, Katsuhiro

    2015-01-01

    Grape (Vitis vinifera) accumulates various polyphenolic compounds, which protect against environmental stresses, including ultraviolet-C (UV-C) light and pathogens. In this study, we looked at the transcriptome and metabolome in grape berry skin after UV-C irradiation, which demonstrated the effectiveness of omics approaches to clarify important traits of grape. We performed transcriptome analysis using a genome-wide microarray, which revealed 238 genes up-regulated more than 5-fold by UV-C light. Enrichment analysis of Gene Ontology terms showed that genes encoding stilbene synthase, a key enzyme for resveratrol synthesis, were enriched in the up-regulated genes. We performed metabolome analysis using liquid chromatography-quadrupole time-of-flight mass spectrometry, and 2,012 metabolite peaks, including unidentified peaks, were detected. Principal component analysis using the peaks showed that only one metabolite peak, identified as resveratrol, was highly induced by UV-C light. We updated the metabolic pathway map of grape in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and in the KaPPA-View 4 KEGG system, then projected the transcriptome and metabolome data on a metabolic pathway map. The map showed specific induction of the resveratrol synthetic pathway by UV-C light. Our results showed that multiomics is a powerful tool to elucidate the accumulation mechanisms of secondary metabolites, and updated systems, such as KEGG and KaPPA-View 4 KEGG for grape, can support such studies. PMID:25761715

  17. Ultraviolet light-responsive photorheological fluids: as a new class of smart fluids

    NASA Astrophysics Data System (ADS)

    Cho, Min-Young; Kim, Ji-Sik; Choi, Hyoung Jin; Choi, Seung-Bok; Kim, Gi-Woo

    2017-05-01

    We present a comprehensive introduction to the photorheological (PR) fluids whose rheological behavior can be changed by ultraviolet (UV) light with a wavelength of 365 nm. When the PR fluid was exposed to UV light, the viscosity of the fluid decreased, while the viscosity recovered to its initial value when UV light was turned off, indicating that the viscosity of these types of fluids can be reversible and tunable by UV light. Contrary to conventional smart fluids, such as electrorheological and magnetorheological fluids, PR fluid does not suffer from a phase splitting problem because it exists in a single-phase solution. Additionally, the PR fluid does not require any contact component, such as electrodes, and electric wires that are essential components for conventional smart fluids. In this work, the PR fluids were synthesized by doping lecithin/sodium deoxycholate reverse micelles with a photo-chromic spiropyran compound. It is demonstrated that the viscosity changes of PR fluids can be induced by UV light, and their rheological properties are examined in detail. In addition, an example of tailoring rheological properties using photoluminescence was introduced for improved response time. One of the potential applications, such as microfluidic flow control using the PR fluids, is also briefly presented.

  18. Carrier Conduction and Light Emission by Modification of Poly(alkylfluorene) Interface under Vacuum Ultraviolet Light Irradiation

    NASA Astrophysics Data System (ADS)

    Ohmori, Yutaka; Kajii, Hirotake; Terashima, Daiki; Kusumoto, Yusuke

    2013-03-01

    Organic field effect transistors (OFETs) have been extensively studied for flexible electronics. The characteristics of poly(9,9-dioctylfluorenyl-2,7-dyl) (F8) modified by thermal or light are strongly dependent on the carrier transport and optical characteristics. We investigate all solution-processed OFETs with Ag nano-ink as gate electrodes patterned by Vacuum Ultraviolet (VUV) (172 nm). Bi-layer gate insulators of amorphous fluoro-polymer CYTOP (Asahi Glass Corp.) and poly(methylmethacrylate) (PMMA) were used. Top-gate-type OFETs with ITO source/drain electrode utilizing F8 or poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) as an active layer were fabricated, and investigated the carrier conduction and emission characteristic. Without VUV irradiation, both OFETs showed the ambipolar and light-emitting characteristics. On the other hand, F8 devices with VUV exhibited only p-type conduction. The quenching centers were generated in F8 layer by VUV irradiation, which are related to the electron trap sites at the interface. OFETs with F8BT showed both p- and n-type conduction even after VUV. F8BT suffers less damage by VUV and maintain light emission. Light emitting transistors were realized utilizing F8BT patterned by VUV irradiation. This research was partially supported financially by MEXT. The authors thank Harima Chemicals Inc. for providing Ag nano-ink.

  19. Synthesis and characterization of attosecond light vortices in the extreme ultraviolet

    PubMed Central

    Géneaux, R.; Camper, A.; Auguste, T.; Gobert, O.; Caillat, J.; Taïeb, R.; Ruchon, T.

    2016-01-01

    Infrared and visible light beams carrying orbital angular momentum (OAM) are currently thoroughly studied for their extremely broad applicative prospects, among which are quantum information, micromachining and diagnostic tools. Here we extend these prospects, presenting a comprehensive study for the synthesis and full characterization of optical vortices carrying OAM in the extreme ultraviolet (XUV) domain. We confirm the upconversion rules of a femtosecond infrared helically phased beam into its high-order harmonics, showing that each harmonic order carries the total number of OAM units absorbed in the process up to very high orders (57). This allows us to synthesize and characterize helically shaped XUV trains of attosecond pulses. To demonstrate a typical use of these new XUV light beams, we show our ability to generate and control, through photoionization, attosecond electron beams carrying OAM. These breakthroughs pave the route for the study of a series of fundamental phenomena and the development of new ultrafast diagnosis tools using either photonic or electronic vortices. PMID:27573787

  20. Exciplex formation and electroluminescent absorption in ultraviolet organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Zhang, Hao; Zhang, Xiao-Wen; Xu, Tao; Wei, Bin

    2015-02-01

    We investigated the formation of exciplex and electroluminescent absorption in ultraviolet organic light-emitting diodes (UV OLEDs) using different heterojunction structures. It is found that an energy barrier of over 0.3 eV between the emissive layer (EML) and adjacent transport layer facilitates exciplex formation. The electron blocking layer effectively confines electrons in the EML, which contributes to pure UV emission and enhances efficiency. The change in EML thickness generates tunable UV emission from 376 nm to 406 nm. In addition, the UV emission excites low-energy organic function layers and produces photoluminescent emission. In UV OLED, avoiding the exciplex formation and averting light absorption can effectively improve the purity and efficiency. A maximum external quantum efficiency of 1.2% with a UV emission peak of 376 nm is realized. Project supported by the National Natural Science Foundation of China (Grant Nos. 61136003 and 61275041) and the Guangxi Provincial Natural Science Foundation, China (Grant No. 2012GXNSFBA053168).

  1. Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp

    NASA Astrophysics Data System (ADS)

    Muramoto, Yoshihiko; Kimura, Masahiro; Nouda, Suguru

    2014-06-01

    Ultraviolet light-emitting diodes (UV-LEDs) have started replacing UV lamps. The power per LED of high-power LED products has reached 12 W (14 A), which is 100 times the values observed ten years ago. In addition, the cost of these high-power LEDs has been decreasing. In this study, we attempt to understand the technologies and potential of UV-LEDs.

  2. Ultraviolet laser beam monitor using radiation responsive crystals

    DOEpatents

    McCann, Michael P.; Chen, Chung H.

    1988-01-01

    An apparatus and method for monitoring an ultraviolet laser beam includes disposing in the path of an ultraviolet laser beam a substantially transparent crystal that will produce a color pattern in response to ultraviolet radiation. The crystal is exposed to the ultraviolet laser beam and a color pattern is produced within the crystal corresponding to the laser beam intensity distribution therein. The crystal is then exposed to visible light, and the color pattern is observed by means of the visible light to determine the characteristics of the laser beam that passed through crystal. In this manner, a perpendicular cross sectional intensity profile and a longitudinal intensity profile of the ultraviolet laser beam may be determined. The observation of the color pattern may be made with forward or back scattered light and may be made with the naked eye or with optical systems such as microscopes and television cameras.

  3. Solar glint suppression in compact planetary ultraviolet spectrographs

    NASA Astrophysics Data System (ADS)

    Davis, Michael W.; Cook, Jason C.; Grava, Cesare; Greathouse, Thomas K.; Gladstone, G. Randall; Retherford, Kurt D.

    2015-08-01

    Solar glint suppression is an important consideration in the design of compact photon-counting ultraviolet spectrographs. Southwest Research Institute developed the Lyman Alpha Mapping Project for the Lunar Reconnaissance Orbiter (launch in 2009), and the Ultraviolet Spectrograph on Juno (Juno-UVS, launch in 2011). Both of these compact spectrographs revealed minor solar glints in flight that did not appear in pre-launch analyses. These glints only appeared when their respective spacecraft were operating outside primary science mission parameters. Post-facto scattered light analysis verifies the geometries at which these glints occurred and why they were not caught during ground testing or nominal mission operations. The limitations of standard baffle design at near-grazing angles are discussed, as well as the importance of including surface scatter properties in standard stray light analyses when determining solar keep-out efficiency. In particular, the scattered light analysis of these two instruments shows that standard "one bounce" assumptions in baffle design are not always enough to prevent scattered sunlight from reaching the instrument focal plane. Future builds, such as JUICE-UVS, will implement improved scattered and stray light modeling early in the design phase to enhance capabilities in extended mission science phases, as well as optimize solar keep out volume.

  4. Ultraviolet electroluminescence from zinc oxide nanorods/deoxyribonucleic acid hybrid bio light-emitting diode

    NASA Astrophysics Data System (ADS)

    Gupta, Rohini Bhardwaj; Nagpal, Swati; Arora, Swati; Bhatnagar, Pramod Kumar; Mathur, Parmatma Chandra

    2011-01-01

    Ultraviolet (UV) light-emitting diode using salmon deoxyribonucleic acid (sDNA)-cetyltrimethylammonium complex as an electron blocking layer and zinc oxide (ZnO) nanorods as emissive material was fabricated. UV emission, which was blue shifted up to 335 nm with respect to the band edge emission of 390 nm, was observed. This blue shift was caused due to accumulation of electrons in the conduction band of ZnO because of a high potential barrier existing at the sDNA/ZnO interface.

  5. STEREO's Extreme UltraViolet Imager (EUVI)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    At a pixel resolution of 2048x2048, the STEREO EUVI instrument provides views of the Sun in ultraviolet light that rivals the full-disk views of SOHO/EIT. This image is through the 171 Angstrom (ultraviolet) filter which is characteristic of iron ions (missing eight and nine electrons) at 1 million degrees. There is a short data gap in the latter half of the movie that creates a freeze and then jump in the data view. This is a movie of the Sun in 171 Angstrom ultraviolet light. The time frame is late January, 2007

  6. The ultraviolet variations of iota Cas

    NASA Technical Reports Server (NTRS)

    Molnar, M. R.; Mallama, A. D.; Soskey, D. G.; Holm, A. V.

    1976-01-01

    The Ap variable star iota Cas was observed with the photometers on OAO-2 covering the spectral range 1430-4250 A. The ultraviolet light curves show a double wave with primary minimum and maximum at phase ? 0.00 and 0.35, respectively. Secondary minimum light is at phase ? 0.65 with secondary maximum at phase ? 0.85. The light curves longward of 3150 A vary in opposition to those shortward of this 'null region'. Ground-based coude spectra show that the Fe II and Cr II line strengths have a double-wave variation such that maximum strength occurs at minimum ultraviolet light. We suggest that the strong ultraviolet opacities due to photoionization and line blanketing by these metals may cause the observed photometric variations. We have also constructed an oblique-rotator model which shows iron and chromium lying in a great circle band rather than in circular spots.

  7. Effect of ultraviolet light on water- and fat-soluble vitamins in cow and goat milk.

    PubMed

    Guneser, O; Karagul Yuceer, Y

    2012-11-01

    The objective of this study was to investigate and compare the effects of UV light and heat treatment on vitamins A, B(2), C, and E in cow and goat milk. Vitamins were analyzed by reverse-phase high-pressure liquid chromatography. Ultraviolet and pasteurization treatments caused loss in vitamin C in milk. Pasteurization did not have any significant effect on vitamin B(2). However, UV light treatment decreased the amount of vitamin B(2) after several passes of milk through the UV system. In addition, UV light treatment decreased the amount of vitamins A and E. Vitamins C and E are more sensitive to UV light. UV light sensitivities of vitamins were C>E>A>B(2). These results show that UV light treatment decreases the vitamin content in milk. Also, the number of passes through the UV system and the initial amount of vitamins in milk are important factors affecting vitamin levels. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. The effects of ultraviolet light on the degradation of organic compounds: a possible explanation for the absence of organic matter on Mars.

    PubMed

    Oro, J; Holzer, G

    1979-01-01

    The analysis of the top layer of the Martian regolith at the two Viking landing sites did not reveal any indigenous organic compounds. However the existence of such compounds at deeper layers cannot be ruled out. Cosmochemical considerations indicate various potential sources for organic matter on Mars, such as comets and meteorites. Its disappearance from the top layer could be caused by degradation processes on the surface of the planet. Possible destructive agents include ultraviolet light, oxygen and metal oxides. In this study we tested the stability of a sample of the Murchison meteorite and various organic substances which have been detected in carbonaceous chondrites, such as glycine, adenine and naphthalene, to the action of ultraviolet light. The compounds were adsorbed on powdered quartz and on California desert soil and were irradiated in the presence or absence of oxygen. The organic content, before and after irradiation, was measured by carbon elementary analysis, UV-absorption, amino acid analysis or pyrolysis-gas chromatography-mass spectrometry. In the absence of oxygen, adenine and glycine appear to be stable over the given period of irradiation. A definite degradation was noticed in the case of naphthalene and the Murchison meteorite. In the presence of oxygen in amounts comparable to those on Mars all compounds were degraded. The degree of degradation was influenced by the irradiation time, temperature and oxygen content.

  9. Heavy Mg-doping of (Al,Ga)N films for potential applications in deep ultraviolet light-emitting structures

    NASA Astrophysics Data System (ADS)

    Liang, Y. H.; Towe, E.

    2018-03-01

    Doping of high aluminum-containing (Al,Ga)N thin films has remained a challenging problem that has hindered progress in the development of deep ultraviolet light-emitters. This paper reports on the synthesis and use of heavily doped (Al,Ga)N films in deep ultraviolet (˜274 nm) light-emitting structures; these structures were synthesized by molecular beam epitaxy under liquid-metal growth conditions that facilitate the incorporation of extremely high density of Mg dopant impurities (up to 5 × 1019 cm-3) into aluminum-rich (Al,Ga)N thin films. Prototypical light-emitting diode structures incorporating Al0.7Ga0.3N films doped with Mg impurities that ionize to give free hole carrier concentrations of up to 6 × 1017 cm-3 exhibit external quantum efficiencies of up 0.56%; this is an improvement from previous devices made from molecular beam epitaxy-grown materials. This improvement is believed to be due to the high hole carrier concentration enabled by the relatively low activation energy of 220 meV compared to the expected values of 408-507 meV for Al0.7Ga0.3N films.

  10. Tunnel-injected sub-260 nm ultraviolet light emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih; Bajaj, Sanyam; Allerman, Andrew A.; Moseley, Michael W.; Armstrong, Andrew M.; Rajan, Siddharth

    2017-05-01

    We report on tunnel-injected deep ultraviolet light emitting diodes (UV LEDs) configured with a polarization engineered Al0.75Ga0.25 N/In0.2Ga0.8 N tunnel junction structure. Tunnel-injected UV LED structure enables n-type contacts for both bottom and top contact layers. However, achieving Ohmic contact to wide bandgap n-AlGaN layers is challenging and typically requires high temperature contact metal annealing. In this work, we adopted a compositionally graded top contact layer for non-alloyed metal contact and obtained a low contact resistance of ρc = 4.8 × 10-5 Ω cm2 on n-Al0.75Ga0.25 N. We also observed a significant reduction in the forward operation voltage from 30.9 V to 19.2 V at 1 kA/cm2 by increasing the Mg doping concentration from 6.2 × 1018 cm-3 to 1.5 × 1019 cm-3. Non-equilibrium hole injection into wide bandgap Al0.75Ga0.25 N with Eg>5.2 eV was confirmed by light emission at 257 nm. This work demonstrates the feasibility of tunneling hole injection into deep UV LEDs and provides a structural design towards high power deep-UV emitters.

  11. Ultraviolet Extensions

    NASA Image and Video Library

    2008-04-16

    This ultraviolet image from NASA Galaxy Evolution Explorer shows the Southern Pinwheel galaxy, also know as Messier 83 or M83. It is located 15 million light-years away in the southern constellation Hydra.

  12. High-power AlGaN-based near-ultraviolet light-emitting diodes grown on Si(111)

    NASA Astrophysics Data System (ADS)

    Li, Zengcheng; Liu, Legong; Huang, Yingnan; Sun, Qian; Feng, Meixin; Zhou, Yu; Zhao, Hanmin; Yang, Hui

    2017-07-01

    High-power AlGaN-based 385 nm near-ultraviolet light-emitting diodes (UVA-LEDs) grown on Si(111) substrates are reported. The threading dislocation (TD) density of AlGaN was reduced by employing an Al-composition step-graded AlN/AlGaN multilayer buffer. V-shaped pits were intentionally incorporated into the active region to screen the carriers from the nonradiative recombination centers (NRCs) around the TDs and to facilitate hole injection. The light extraction efficiency was enhanced by the surface roughening of a thin-film (TF) vertical chip structure. The as-fabricated TF-UVA-LED exhibited a light output power of 960 mW at 500 mA, corresponding to an external quantum efficiency of 59.7%.

  13. Interactive lethal and mutagenic effects of ultraviolet light and bleomycin in yeast: synergism or antagonism?

    PubMed

    Lillo, O L; Severgnini, A A; Nunes, E M

    1997-11-01

    The mutagenic interactions of ultraviolet light and bleomycin in haploid populations of Saccharomyces cerevisiae were analyzed. Survival and mutation frequency as a function of different bleomycin concentrations after one conditioning dose of UV radiation were determined. Furthermore, corresponding interaction functions and sensitization factors were calculated. A synergistic interaction between UV light and bleomycin was shown for both lethal and mutagenic events when the cells were in nutrient broth during the treatments. Conversely, the interaction between UV light and bleomycin was antagonistic when the cells were in deionized water during the treatment. The magnitude of lethal and mutagenic interactions depends on dose, and thus presumably on the number of lesions. The observed interactions between UV light and bleomycin suggest that the mechanism that is most likely involved is the induction of repair systems with different error probabilities during the delay of cell division.

  14. Inactivation of Staphylococcus saprophyticus in chicken meat and exudate using high pressure processing, gamma radiation, and ultraviolet light

    USDA-ARS?s Scientific Manuscript database

    Stapylococcus saprophyticus is a common contaminant in foods and causes urinary tract infections in humans. Three nonthermal food safety intervention technologies used to improve the safety foods include high pressure processing (HPP), ionizing (gamma) radiation (GR), and ultraviolet light (UV-C). A...

  15. AlGaN-based deep ultraviolet light-emitting diodes grown on nano-patterned sapphire substrates with significant improvement in internal quantum efficiency

    NASA Astrophysics Data System (ADS)

    Dong, Peng; Yan, Jianchang; Zhang, Yun; Wang, Junxi; Zeng, Jianping; Geng, Chong; Cong, Peipei; Sun, Lili; Wei, Tongbo; Zhao, Lixia; Yan, Qingfeng; He, Chenguang; Qin, Zhixin; Li, Jinmin

    2014-06-01

    We report high-performance AlGaN-based deep ultraviolet light-emitting diodes grown on nano-patterned sapphire substrates (NPSS) using metal-organic chemical vapor deposition. By nanoscale epitaxial lateral overgrowth on NPSS, 4-μm AlN buffer layer has shown strain relaxation and a coalescence thickness of only 2.5 μm. The full widths at half-maximum of X-ray diffraction (002) and (102) ω-scan rocking curves of AlN on NPSS are only 69.4 and 319.1 arcsec. The threading dislocation density in AlGaN-based multi-quantum wells, which are grown on this AlN/NPSS template with a light-emitting wavelength at 283 nm at room temperature, is reduced by 33% compared with that on flat sapphire substrate indicated by atomic force microscopy measurements, and the internal quantum efficiency increases from 30% to 43% revealed by temperature-dependent photoluminescent measurement.

  16. In vitro evaluation of color change in maxillofacial elastomer through the use of an ultraviolet light absorber and a hindered amine light stabilizer.

    PubMed

    Tran, Ngoc H; Scarbecz, Mark; Gary, John J

    2004-05-01

    External prostheses composed of silicone elastomers exhibit an unwanted color change over time. This study evaluated color stability when an ultraviolet light absorber and hindered amine light stabilizer were mixed in the maxillofacial elastomer containing either organic or inorganic pigments. The materials used were an RTV silicone elastomer, 1 natural inorganic dry-earth pigment (burnt sienna) and 2 synthesized organic pigments (hansa yellow and alizarin red), ultraviolet light absorber (UVA) and hindered amine light stabilizer (HALS). Specimens (n=160) were fabricated in a custom mold and randomly assigned and exposed to weathering sites in Miami and Phoenix for approximately 3 months. Eight test groups (2 of each 4 material types with or without additives) of 10 specimens each were assigned to each site. L*, a*, b* readings were obtained before and after weathering from a spectrocolorimeter. Nonpigmented elastomers served as the control. Three-factor ANOVA was conducted to examine interaction effects between weathering sites, specimen type, and the presence of additive (alpha=.05). Overall color change (Delta E) and change in color coordinates (Delta L*, Delta a*, Delta b*) of specimen groups with and without additive were analyzed with independent sample t tests. In specimen groups with the additives (UVA and HALS), color change decreased significantly (P<.05) in burnt sienna and hansa yellow in Phoenix and in the control and hansa yellow in Miami. Additives did not affect color change in the alizarin red group. UVA and HALS were shown to be effective in retarding color change in some circumstances.

  17. Ultraviolet spectrophotometry of three LINERs

    NASA Technical Reports Server (NTRS)

    Goodrich, R. W.; Keel, W. C.

    1986-01-01

    Three galaxies known to be LINERs were observed spectroscopically in the ultraviolet in an attempt to detect the presumed nonthermal continuum source thought to be the source of photoionization in the nuclei. NGC 4501 was found to be too faint for study with the IUE spectrographs, while NGC 5005 had an extended ultraviolet light profile. Comparison with the optical light profile of NGC 5005 indicates that the ultraviolet source is distributed spatially in the same manner as the optical starlight, probably indicating that the ultraviolet excess is due to a component of hot stars in the nucleus. These stars contribute detectable absorption features longward of 2500 A; together with optical data, the IUE spectra suggest a burst of star formation about 1 billion yr ago, with a lower rate continuing to produce a few OB stars. In NGC 4579, a point source contributing most of the ultraviolet excess is found that is much different than the optical light distribution. Furthermore, the ultraviolet to X-ray spectral index in NGC 4579 is 1.4, compatible with the UV to X-ray indices found for samples of Seyfert galaxies. This provides compelling evidence for the detection of the photoionizing continuum in NGC 4579 and draws the research fields of normal galaxies and active galactic nuclei closer together. The emission-line spectrum of NGC 4579 is compared with calculations from a photoionization code, CLOUDY, and several shock models. The photoionization code is found to give superior results, adding to the increasing weight of evidence that the LINER phenomenon is essentially a scaled-down version of the Seyfert phenomenon.

  18. Feasibility of Ultraviolet Light Emitting Diodes as an Alternative Light Source for Photocatalysis

    NASA Technical Reports Server (NTRS)

    Levine, Langanf H.; Richards, Jeffrey T.; Soler, Robert; Maxik, Fred; Coutts, Janelle; Wheeler, Raymond M.

    2011-01-01

    The objective of this study was to determine whether ultraviolet light emitting diodes (UV-LEDs) could serve as an alternative photon source efficiently for heterogeneous photocatalytic oxidation (PCO). An LED module consisting of 12 high-power UV-A LEDs was designed to be interchangeable with a UV-A fluorescent black light blue (BLB) lamp in a Silica-Titania Composite (STC) packed bed annular reactor. Lighting and thermal properties were characterized to assess the uniformity and total irradiant output. A forward current of (I(sub F)) 100 mA delivered an average irradiance of 4.0 m W cm(exp -2), which is equivalent to the maximum output of the BLB, but the irradiance of the LED module was less uniform than that of the BLB. The LED- and BLB-reactors were tested for the oxidization of 50 ppmv ethanol in a continuous flow-through mode with 0.94 sec space time. At the same irradiance, the UV-A LED reactor resulted in a lower PCO rate constant than the UV-A BLB reactor (19.8 vs. 28.6 nM CO2 sec-I), and consequently lower ethanol removal (80% vs. 91%) and mineralization efficiency (28% vs. 44%). Ethanol mineralization increased in direct proportion to the irradiance at the catalyst surface. This result suggests that reduced ethanol mineralization in the LED- reactor could be traced to uneven irradiance over the photocatalyst, leaving a portion of the catalyst was under-irradiated. The potential of UV-A LEDs may be fully realized by optimizing the light distribution over the catalyst and utilizing their instantaneous "on" and "off' feature for periodic irradiation. Nevertheless, the current UV-A LED module had the same wall plug efficiency (WPE) of 13% as that of the UV-A BLB. These results demonstrated that UV-A LEDs are a viable photon source both in terms of WPE and PCO efficiency.

  19. Selective protection of cultured human cells from the toxic effects of ultraviolet light by proflavine pretreatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, J.R.; Little, J.B.

    1977-10-01

    Pretreatment of LICH human cells by nontoxic doses (0.1 to 5.0 ..mu..g/ml) of proflavine protects them from inactivation by ultraviolet light. The protection is acquired rapidly after exposure of cells to proflavine, with 50 percent of maximum protection being afforded within 5 min and cells being maximally protected by 20 min. Loss of protection follows similar kinetics upon removal of proflavine from the culture medium. Protection is selective and cannot be explained on the basis of proflavine absorption of uv light. Cellular survival curves after ultraviolet light for cells protected by 1, 2, 3, 4, or 5 ..mu..g/ml of proflavinemore » show that protection alters only the slope of the survival curve, not altering the quasi-threshold dose, D/sub q/. The D/sub 0/ varies from 4.8 J/m/sup 2/ for untreated cells to 10.5 J/m/sup 2/ for cells pretreated with 5 ..mu..g/ml. These data suggest the D/sub 0/ and D/sub q/ do not represent parameters of a single underlying process, manifested in a random stochastic manner, but may reflect different cellular mechanisms or responses to different DNA damage. Proflavine is selective in mitigating only those which predominate at uv doses greater than the D/sub q/.« less

  20. An Ultraviolet Excess in the Superluminous Supernova Gaia16apd Reveals a Powerful Central Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholl, M.; Berger, E.; Blanchard, P. K.

    Since the discovery of superluminous supernovae (SLSNe) in the last decade, it has been known that these events exhibit bluer spectral energy distributions than other supernova subtypes, with significant output in the ultraviolet. However, the event Gaia16apd seems to outshine even the other SLSNe at rest-frame wavelengths below ∼3000 Å. Yan et al. have recently presented HST UV spectra and attributed the UV flux to low iron-group abundance in the outer ejecta, and hence reduced line blanketing. Here, we present UV and optical light curves over a longer baseline in time, revealing a rapid decline at UV wavelengths despite amore » typical optical evolution. Combining the published UV spectra with our own optical data, we demonstrate that Gaia16apd has a much hotter continuum than virtually any SLSN at maximum light, but it cools rapidly thereafter and is indistinguishable from the others by ∼10–15 days after peak. Comparing the equivalent widths of UV absorption lines with those of other events, we show that the excess UV continuum is a result of a more powerful central power source, rather than a lack of UV absorption relative to other SLSNe or an additional component from interaction with the surrounding medium. These findings strongly support the central-engine hypothesis for hydrogen-poor SLSNe. An explosion ejecting M {sub ej} = 4.8(0.2/ κ ) M {sub ⊙}, where κ is the opacity in cm{sup 2} g{sup −1}, and forming a magnetar with spin period P = 2 ms, and B = 2 × 10{sup 14} G (lower than other SLSNe with comparable rise times) can consistently explain the light curve evolution and high temperature at peak. The host metallicity, Z = 0.18 Z {sub ⊙}, is comparable to other SLSNe.« less

  1. Synthesis and characterization of attosecond light vortices in the extreme ultraviolet

    DOE PAGES

    Géneaux, R.; Camper, A.; Auguste, T.; ...

    2016-08-30

    Infrared and visible light beams carrying orbital angular momentum (OAM) are currently thoroughly studied for their extremely broad applicative prospects, among which are quantum information, micromachining and diagnostic tools. Here we extend these prospects, presenting a comprehensive study for the synthesis and full characterization of optical vortices carrying OAM in the extreme ultraviolet (XUV) domain. We confirm the upconversion rules of a femtosecond infrared helically phased beam into its high-order harmonics, showing that each harmonic order carries the total number of OAM units absorbed in the process up to very high orders (57). This allows us to synthesize and characterizemore » helically shaped XUV trains of attosecond pulses. To demonstrate a typical use of these new XUV light beams, we show our ability to generate and control, through photoionization, attosecond electron beams carrying OAM. Furthermore, these breakthroughs pave the route for the study of a series of fundamental phenomena and the development of new ultrafast diagnosis tools using either photonic or electronic vortices.« less

  2. Lighting considerations in controlled environments for nonphotosynthetic plant responses to blue and ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Caldwell, M. M.; Flint, S. D.

    1994-01-01

    This essay will consider both physical and photobiological aspects of controlled environment lighting in the spectral region beginning in the blue and taken to the normal limit of the solar spectrum in the ultraviolet. The primary emphasis is directed to questions of plant response to sunlight. Measurement and computations used in radiation dosimetry in this part of the spectrum are also briefly treated. Because of interest in the ozone depletion problem, there has been some activity in plant UV-B research and there are several recent reviews available. Some aspects of growth chamber lighting as it relates to UV-B research were covered earlier. Apart from work related to the blue/UV-A receptor, less attention has been given to UV-A responses.

  3. Broadband reflective liquid crystalline gels due to the ultraviolet light screening made by the liquid crystal

    NASA Astrophysics Data System (ADS)

    Relaix, Sabrina; Bourgerette, Christian; Mitov, Michel

    2006-12-01

    It is shown that the natural ultraviolet light absorbing properties of the liquid crystal constituent during the photoinduced elaboration of a liquid crystalline gel induce the broadening of the reflection bandwidth. The polymer component is then included in a resin by preserving its spatial distribution, and transmission electron microscopy investigations of cross sections show the existence of a structure gradient, which is at the origin of the broadening phenomenon. Such reflectors may be of interest for reflective polarizer-free displays or smart windows for the control of solar light for which a broadband reflection is required.

  4. Ultraviolet Source For Testing Hydrogen-Fire Detectors

    NASA Technical Reports Server (NTRS)

    Hall, Gregory A.; Larson, William E.; Youngquist, Robert C.; Moerk, John S.; Haskell, William D.; Cox, Robert B.; Polk, Jimmy D.; Stout, Stephen J.; Strobel, James P.

    1995-01-01

    Hand-held portable unit emits ultraviolet light similar to that emitted by hydrogen burning in air. Developed for use in testing optoelectronic hydrogen-fire detectors, which respond to ultraviolet light at wavelengths from 180 to 240 nanometers. Wavelength range unique in that within it, hydrogen fires emit small but detectable amounts of radiation, light from incandescent lamps and Sun almost completely absent, and air sufficiently transmissive to enable detection of hydrogen fire from distance. Consequently, this spectral region favorable for detecting hydrogen fires while minimizing false alarms.

  5. Ultraviolet radiation induced discharge laser

    DOEpatents

    Gilson, Verle A.; Schriever, Richard L.; Shearer, James W.

    1978-01-01

    An ultraviolet radiation source associated with a suitable cathode-anode electrode structure, disposed in a gas-filled cavity of a high pressure pulsed laser, such as a transverse electric atmosphere (TEA) laser, to achieve free electron production in the gas by photoelectric interaction between ultraviolet radiation and the cathode prior to the gas-exciting cathode-to-anode electrical discharge, thereby providing volume ionization of the gas. The ultraviolet radiation is produced by a light source or by a spark discharge.

  6. Calibration of a microchannel plate based extreme ultraviolet grazing incident spectrometer at the Advanced Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakeman, M. S.; Lawrence Berkeley National Laboratory, Berkeley, California 94720; Tilborg, J. van

    We present the design and calibration of a microchannel plate based extreme ultraviolet spectrometer. Calibration was performed at the Advance Light Source (ALS) at the Lawrence Berkeley National Laboratory (LBNL). This spectrometer will be used to record the single shot spectrum of radiation emitted by the tapered hybrid undulator (THUNDER) undulator installed at the LOASIS GeV-class laser-plasma-accelerator. The spectrometer uses an aberration-corrected concave grating with 1200 lines/mm covering 11-62 nm and a microchannel plate detector with a CsI coated photocathode for increased quantum efficiency in the extreme ultraviolet. A touch screen interface controls the grating angle, aperture size, and placementmore » of the detector in vacuum, allowing for high-resolution measurements over the entire spectral range.« less

  7. The photocytotoxicity of different lights on mammalian cells in interior lighting system.

    PubMed

    Song, Jiayin; Gao, Tingting; Ye, Maole; Bi, Hongtao; Liu, Gang

    2012-12-05

    In the present paper, two light sources commonly used in interior lighting system: incandescent light and light emitting diode (LED) were chosen to evaluate their influences on three kinds of mammalian cells, together with UVA and UVB, and the mechanism of the photocytotoxicity was investigated in terms of intracellular ROS production, lipid peroxidation, SOD activity and GSH level assays. The results showed that LED and incandescent light both had some photocytotoxicities. In the interior lighting condition (100lx-250lx), the cytotoxicities of LED and incandescent lamp on RF/6A cells (rhesus retinal pigment epithelium cell line) were stronger than that on two fibroblast cell lines, while the cytotoxicity of UVA and UVB on HS68 cells (fibroblast cell line) was highest in the tests. The mechanism analysis revealed that the photocytotoxicities of LED and incandescent lamp were both caused by cell lipid peroxidation. LED and incandescent light could promote the production of ROS, raise lipid peroxidation level and lower the activity of the antioxidant key enzymes in mammalian cells, and finally cause a number of cells death. However, the negative function of LED was significantly smaller than incandescent light and ultraviolet in daily interior lighting condition. And the significantly lower photocytotoxicity of LED might be due to the less existence of ultraviolet. Therefore, LED is an efficient and relative safe light source in interior lighting system, which should be widely used instead of traditional light source. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. The electronics in fluorescent bulbs and light emitting diodes (LED), rather than ultraviolet radiation, cause increased malignant melanoma incidence in indoor office workers and tanning bed users.

    PubMed

    Milham, Samuel; Stetzer, Dave

    2018-07-01

    The epidemiology of cutaneous malignant melanoma (CMM) has a number of facets that do not fit with sunlight and ultraviolet light as the primary etiologic agents. Indoor workers have higher incidence and mortality rates of CMM than outdoor workers; CMM occurs in body locations never exposed to sunlight; CMM incidence is increasing in spite of use of UV blocking agents and small changes in solar radiation. Installation of two new fluorescent lights in the milking parlor holding area of a Minnesota dairy farm in 2015 caused an immediate drop in milk production. This lead to measurement of body amperage in humans exposed to modern non-incandescent lighting. People exposed to old and new fluorescent lights, light emitting diodes (LED) and compact fluorescent lights (CFL) had body amperage levels above those considered carcinogenic. We hypothesize that modern electric lighting is a significant health hazard, a carcinogen, and is causing increasing CMM incidence in indoor office workers and tanning bed users. These lights generate dirty electricity (high frequency voltage transients), radio frequency (RF) radiation, and increase body amperage, all of which have been shown to be carcinogenic. This could explain the failure of ultraviolet blockers to stem the malignant melanoma pandemic. Tanning beds and non-incandescent lighting could be made safe by incorporating a grounded Faraday cage which allows passage of ultraviolet and visible light frequencies and blocks other frequencies. Modern electric lighting should be fabricated to be electrically clean. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Ultraviolet light emitting diodes and bio-aerosol sensing

    NASA Astrophysics Data System (ADS)

    Davitt, Kristina M.

    Recent interest in compact ultraviolet (UV) light emitters has produced advances in material quality and device performance from aluminum-rich alloys of the nitride semiconductor system. The epitaxial growth of device structures from this material poses remarkable challenges, and state-of-the-art in semiconductor UV light sources at wavelengths shorter than 350 nm is currently limited to LEDs. A portion of the work presented in this thesis involves the design and characterization of UV LED structures, with particular focus on sub-300 nm LEDs which have only been demonstrated within the last four years. Emphasis has been placed on the integration of early devices with modest efficiencies and output powers into a practical, fluorescence-based bio-sensing instrument. The quality of AlGaInN and AlGaN-based materials is characterized by way of the performance of 340 nm and 290 nm LEDs respectively. A competitive level of device operation is achieved, although much room remains for improvement in the efficiency of light emission from this material system. A preliminary investigation of 300 nm LEDs grown on bulk AIN shows promising electrical and optical characteristics, and illustrates the numerous advantages that this native substrate offers to the epitaxy of wide bandgap nitride semiconductors. The application of UV LEDs to the field of bio-aerosol sensing is pursued by constructing an on-the-fly fluorescence detection system. A linear array of UV LEDs is designed and implemented, and the capability of test devices to excite native fluorescence from bacterial spores is established. In order to fully capitalize on the reduction in size afforded by LEDs, effort is invested in re-engineering the remaining sensor components. Operation of a prototype system for physically sorting bio-aerosols based on fluorescence spectra acquired in real-time from single airborne particles excited by a UV-LED array is demonstrated using the bio-fluorophores NADH and tryptophan. Sensor

  10. Prediction of skin cancer occurrence by ultraviolet solar index

    PubMed Central

    Rivas, Miguel; Rojas, Elisa; Calaf, Gloria M.

    2012-01-01

    An increase in the amount of solar ultraviolet light that reaches the Earth is considered to be responsible for the worldwide increase in skin cancer. It has been reported that exposure to excessive levels of solar ultraviolet light has multiple effects, which can be harmful to humans. Experimental ultraviolet light measurements were obtained in several locations in Chile between 2006 and 2009 using wide-band solar light Biometer YES, calibrated according to World Meteorological Organization (WMO) criteria and integrated into the National Meteorological Center of Chile ultraviolet network (DMC). The aim of this study was to determine skin cancer rates in relation to experimental data accumulated during one year of studying the solar ultraviolet index in Chile, in order to explain the possible effect of radiation on skin cancer. The rate of skin cancer per 100,000 persons was considered in Arica, Santiago, Concepción and Valdivia and extrapolated to other cities. Results of the present study showed that the incidence of skin cancer was markedly correlated with accumulative ultraviolet radiation, and rates of skin cancer could be extrapolated to other locations in Chile. There is a steady increase in the rate of skin cancer in cities located nearest to the equator (low latitude) that receive greater accumulated solar ultraviolet radiation, due to the accumulative effects of this type of radiation on the skin. It can be concluded that Arica is a city at sea level that receives higher levels of ultraviolet solar radiation than other locations, which may explain the higher prevalence of skin cancer in the population of this location, compared with other cities in Chile. PMID:22741013

  11. Lighting considerations in controlled environments for nonphotosynthetic plant responses to blue and ultraviolet radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caldwell, M.M.; Flint, S.D.

    1994-12-31

    This essay will consider both physical and photobiological aspects of controlled environment lighting in the spectral region beginning in the blue and taken to the normal limit of the solar spectrum in the ultraviolet. The primary emphasis is directed to questions of plant response to sunlight. Measurement and computations used in radiation dosimetry in this part of the spectrum are also briefly treated. Because of interest in the ozone depletion problem, there has been some activity in plant UV-B research and there are several recent reviews available. Some aspects of growth chamber lighting as it relates to UV-B research weremore » covered earlier. Apart from work related to the blue/UV-A receptor, less attention has been given to UV-A responses.« less

  12. Ultraviolet-C Light Sanitization of English Cucumber (Cucumis sativus) Packaged in Polyethylene Film.

    PubMed

    Tarek, Abdussamad R; Rasco, Barbara A; Sablani, Shyam S

    2016-06-01

    Food safety is becoming an increasing concern in the United States. This study investigated the effects of ultraviolet-C (UV-C) light as a postpackaging bactericidal treatment on the quality of English cucumber packaged in polyethylene (PE) film. Escherichia coli k-12 was used as a surrogate microbe. The microbial growth and physical properties of packaged cucumbers were analyzed during a 28-d storage period at 5 °C. Inoculating packaged cucumbers treated at 23 °C for 6 min with UV-C (560 mJ/cm(2) ) resulted in a 1.60 log CFU/g reduction. However, this treatment had no significant effect (P > 0.05) on the water vapor transmission rate or oxygen transmission rate of the PE film. Results show that UV-C light treatment delayed the loss of firmness and yellowing of English cucumber up to 28 d at 5 °C. In addition, UV-C light treatment extended the shelf life of treated cucumber 1 wk longer compared to untreated cucumbers. Electron microscopy images indicate that UV-C light treatment influences the morphology of the E. coli k-12 cells. Findings demonstrate that treating cucumbers with UV-C light following packaging in PE film can reduce bacterial populations significantly and delay quality loss. This technology may also be effective for other similarly packaged fresh fruits and vegetables. © 2016 Institute of Food Technologists®

  13. Feasibility of ultraviolet-light-emitting diodes as an alternative light source for photocatalysis.

    PubMed

    Levine, Lanfang H; Richards, Jeffrey T; Coutts, Janelle L; Soler, Robert; Maxik, Fred; Wheeler, Raymond M

    2011-09-01

    The objective of this study was to determine whether ultraviolet-light-emitting diodes (UV-LEDs) could serve as an efficient photon source for heterogeneous photocatalytic oxidation (PCO). An LED module consisting of 12 high-power UV-A (lambda max = 365 nm) LEDs was designed to be interchangeable with a UV-A fluorescent black light blue (BLB) lamp for a bench scale annular reactor packed with silica-titania composite (STC) pellets. Lighting and thermal properties of the module were characterized to assess its uniformity and total irradiance. A forward current (I(F)) of 100 mA delivered an average irradiance of 4.0 mW cm(-2) at a distance of 8 mm, which is equivalent to the maximum output of the BLB, but the irradiance of the LED module was less uniform than that of the BLB. The LED and BLB reactors were tested for the oxidization of ethanol (50 ppm(v)) in a continuous-flow-through mode with 0.94 sec residence time. At the same average irradiance, the UV-A LED reactor resulted in a lower CO2 production rate (19.8 vs. 28.6 nmol L(-1) s(-1)), lower ethanol removal (80% vs. 91%), and lower mineralization efficiency (28% vs. 44%) than the UV-A BLB reactor. Ethanol mineralization was enhanced with the increase of the irradiance at the catalyst surface. This result suggests that reduced ethanol mineralization in the LED reactor relative to the BLB reactor at the same average irradiance could be attributed to the nonuniform irradiance over the photocatalyst, that is, a portion of the catalyst was exposed to less than the average irradiance. The potential of UV-A LEDs may be fully realized by optimizing the light distribution over the catalyst and utilizing their instantaneous "on" and "off" feature for periodic irradiation. Nevertheless, our results also showed that the current UV-A LED module had the same wall plug efficiency (WPE) of 13% as that of the UV-A BLB, demonstrating that UV-A LEDs are a viable photon source both in terms of WPE and PCO efficiency.

  14. Graphene Oxide Transparent Hybrid Film and Its Ultraviolet Shielding Property.

    PubMed

    Xie, Siyuan; Zhao, Jianfeng; Zhang, Bowu; Wang, Ziqiang; Ma, Hongjuan; Yu, Chuhong; Yu, Ming; Li, Linfan; Li, Jingye

    2015-08-19

    Herein, we first reported a facile strategy to prepare functional Poly(vinyl alcohol) (PVA) hybrid film with well ultraviolet (UV) shielding property and visible light transmittance using graphene oxide nanosheets as UV-absorber. The absorbance of ultraviolet light at 300 nm can be up to 97.5%, while the transmittance of visible light at 500 nm keeps 40% plus. This hybrid film can protect protein from UVA light induced photosensitive damage, remarkably.

  15. Efficient photochemical generation of peroxycarboxylic nitric anhydrides with ultraviolet light emitting diodes

    NASA Astrophysics Data System (ADS)

    Rider, N. D.; Taha, Y. M.; Odame-Ankrah, C. A.; Huo, J. A.; Tokarek, T. W.; Cairns, E.; Moussa, S. G.; Liggio, J.; Osthoff, H. D.

    2015-01-01

    Photochemical sources of peroxycarboxylic nitric anhydrides (PANs) are utilized in many atmospheric measurement techniques for calibration or to deliver an internal standard. Conventionally, such sources rely on phosphor-coated low-pressure mercury (Hg) lamps to generate the UV light necessary to photo-dissociate a dialkyl ketone (usually acetone) in the presence of a calibrated amount of nitric oxide (NO) and oxygen (O2). In this manuscript, a photochemical PAN source in which the Hg lamp has been replaced by arrays of ultraviolet light-emitting diodes (UV-LEDs) is described. The output of the UV-LED source was analyzed by gas chromatography (PAN-GC) and thermal dissociation cavity ring-down spectroscopy (TD-CRDS). Using acetone, diethyl ketone (DIEK), diisopropyl ketone (DIPK), or di-n-propyl ketone (DNPK), respectively, the source produces peroxyacetic (PAN), peroxypropionic (PPN), peroxyisobutanoic (PiBN), or peroxy-n-butanoic nitric anhydride (PnBN) from NO in high yield (> 90%). Box model simulations with a subset of the Master Chemical Mechanism (MCM) were carried out to rationalize products yields and to identify side products. The use of UV-LED arrays offers many advantages over conventional Hg lamp setups, including greater light output over a narrower wavelength range, lower power consumption, and minimal generation of heat.

  16. Fine structural dependence of ultraviolet reflections in the King Penguin beak horn.

    PubMed

    Dresp, Birgitta; Langley, Keith

    2006-03-01

    The visual perception of many birds extends into the near-ultraviolet (UV) spectrum and ultraviolet is used by some to communicate. The beak horn of the King Penguin (Aptenodytes patagonicus) intensely reflects in the ultraviolet and this appears to be implicated in partner choice. In a preliminary study, we recently demonstrated that this ultraviolet reflectance has a structural basis, resulting from crystal-like photonic structures, capable of reflecting in the near-UV. The present study attempted to define the origin of the photonic elements that produce the UV reflectance and to better understand how the UV signal is optimized by their fine structure. Using light and electron microscopic analysis combined with new spectrophotometric data, we describe here in detail the fine structure of the entire King Penguin beak horn in addition to that of its photonic crystals. The data obtained reveal a one-dimensional structural periodicity within this tissue and demonstrate a direct relationship between its fine structure and its function. In addition, they suggest how the photonic structures are produced and how they are stabilized. The measured lattice dimensions of the photonic crystals, together with morphological data on its composition, permit predictions of the wavelength of reflected light. These correlate well with experimentally observed values. The way the UV signal is optimized by the fine structure of the beak tissue is discussed with regard to its putative biological role.

  17. Protection from UV light is an evolutionarily conserved feature of the haematopoietic niche

    USGS Publications Warehouse

    Kapp, Friedrich G.; Perlin, Julie R.; Hagedorn, Elliott J.; Gansner, John M.; Schwarz, Daniel E.; O'Connell, Lauren A.; Johnson, Nicholas; Amemiya, Chris; Fisher, David E.; Wolfle, Ute; Trompouki, Eirini; Niemeyer, Charlotte M.; Driever, Wolfgang; Zon, Leonard I.

    2018-01-01

    Haematopoietic stem and progenitor cells (HSPCs) require a specific microenvironment, the haematopoietic niche, which regulates HSPC behaviour. The location of this niche varies across species, but the evolutionary pressures that drive HSPCs to different microenvironments remain unknown. The niche is located in the bone marrow in adult mammals, whereas it is found in other locations in non-mammalian vertebrates, for example, in the kidney marrow in teleost fish. Here we show that a melanocyte umbrella above the kidney marrow protects HSPCs against ultraviolet light in zebrafish. Because mutants that lack melanocytes have normal steady-state haematopoiesis under standard laboratory conditions, we hypothesized that melanocytes above the stem cell niche protect HSPCs against ultraviolet-light-induced DNA damage. Indeed, after ultraviolet-light irradiation, unpigmented larvae show higher levels of DNA damage in HSPCs, as indicated by staining of cyclobutane pyrimidine dimers and have reduced numbers of HSPCs, as shown by cmyb (also known as myb) expression. The umbrella of melanocytes associated with the haematopoietic niche is highly evolutionarily conserved in aquatic animals, including the sea lamprey, a basal vertebrate. During the transition from an aquatic to a terrestrial environment, HSPCs relocated into the bone marrow, which is protected from ultraviolet light by the cortical bone around the marrow. Our studies reveal that melanocytes above the haematopoietic niche protect HSPCs from ultraviolet-light-induced DNA damage in aquatic vertebrates and suggest that during the transition to terrestrial life, ultraviolet light was an evolutionary pressure affecting the location of the haematopoietic niche.

  18. Protection from UV light is an evolutionarily conserved feature of the haematopoietic niche.

    PubMed

    Kapp, Friedrich G; Perlin, Julie R; Hagedorn, Elliott J; Gansner, John M; Schwarz, Daniel E; O'Connell, Lauren A; Johnson, Nicholas S; Amemiya, Chris; Fisher, David E; Wölfle, Ute; Trompouki, Eirini; Niemeyer, Charlotte M; Driever, Wolfgang; Zon, Leonard I

    2018-06-01

    Haematopoietic stem and progenitor cells (HSPCs) require a specific microenvironment, the haematopoietic niche, which regulates HSPC behaviour 1,2 . The location of this niche varies across species, but the evolutionary pressures that drive HSPCs to different microenvironments remain unknown. The niche is located in the bone marrow in adult mammals, whereas it is found in other locations in non-mammalian vertebrates, for example, in the kidney marrow in teleost fish. Here we show that a melanocyte umbrella above the kidney marrow protects HSPCs against ultraviolet light in zebrafish. Because mutants that lack melanocytes have normal steady-state haematopoiesis under standard laboratory conditions, we hypothesized that melanocytes above the stem cell niche protect HSPCs against ultraviolet-light-induced DNA damage. Indeed, after ultraviolet-light irradiation, unpigmented larvae show higher levels of DNA damage in HSPCs, as indicated by staining of cyclobutane pyrimidine dimers and have reduced numbers of HSPCs, as shown by cmyb (also known as myb) expression. The umbrella of melanocytes associated with the haematopoietic niche is highly evolutionarily conserved in aquatic animals, including the sea lamprey, a basal vertebrate. During the transition from an aquatic to a terrestrial environment, HSPCs relocated into the bone marrow, which is protected from ultraviolet light by the cortical bone around the marrow. Our studies reveal that melanocytes above the haematopoietic niche protect HSPCs from ultraviolet-light-induced DNA damage in aquatic vertebrates and suggest that during the transition to terrestrial life, ultraviolet light was an evolutionary pressure affecting the location of the haematopoietic niche.

  19. Glass-Based Transparent Conductive Electrode: Its Application to Visible-to-Ultraviolet Light-Emitting Diodes.

    PubMed

    Lee, Tae Ho; Kim, Kyeong Heon; Lee, Byeong Ryong; Park, Ju Hyun; Schubert, E Fred; Kim, Tae Geun

    2016-12-28

    Nitride-based ultraviolet light-emitting diodes (UV LEDs) are promising replacements for conventional UV lamps. However, the external quantum efficiency of UV LEDs is much lower than for visible LEDs due to light absorption in the p-GaN contact and electrode layers, along with p-AlGaN growth and doping issues. To minimize such absorption, we should obtain direct ohmic contact to p-AlGaN using UV-transparent ohmic electrodes and not use p-GaN as a contact layer. Here, we propose a glass-based transparent conductive electrode (TCE) produced using electrical breakdown (EBD) of an AlN thin film, and we apply the thin film to four (Al)GaN-based visible and UV LEDs with thin buffer layers for current spreading and damage protection. Compared to LEDs with optimal ITO contacts, our LEDs with AlN TCEs exhibit a lower forward voltage, higher light output power, and brighter light emission for all samples. The ohmic transport mechanism for current injection and spreading from the metal electrode to p-(Al)GaN layer via AlN TCE is also investigated by analyzing the p-(Al)GaN surface before and after EBD.

  20. Ultraviolet Light Enhances the Bovine Serum Albumin Fixation for Acid Fast Bacilli Stain

    PubMed Central

    Lai, Pei-Yin; Lee, Shih-Yi; Chou, Yu-Ching; Fu, Yung-Chieh; Wu, Chen-Cheng; Chiueh, Tzong-Shi

    2014-01-01

    The use of a liquid culture system such as MGIT broth has greatly improved the sensitivity of isolating mycobacteria in clinical laboratories. Microscopic visualization of acid fast bacilli (AFB) in the culture positive MGIT broth remains the first routine step for rapidly indicating the presence of mycobacteria. We modified an ultraviolet (UV) light fixation process to increase AFB cells adherence to the slide. The retained haze proportion of a 1-cm circle marked area on the smear slide was quantified after the staining procedure indicating the adherence degree of AFB cells. More AFB cells were preserved on the slide after exposure to UV light of either germicidal lamp or UV crosslinker in a time-dependent manner. We demonstrated both the bovine serum albumin (BSA) in MGIT media and UV light exposure were required for enhancing fixation of AFB cells. While applying to AFB stains for 302 AFB positive MGIT broths in clinics, more AFB cells were retained and observed on smear slides prepared by the modified fixation procedure rather than by the conventional method. The modified fixation procedure was thus recommended for improving the sensitivity of microscopic diagnosis of AFB cells in culture positive MGIT broth. PMID:24586725

  1. Ultraviolet Communication for Medical Applications

    DTIC Science & Technology

    2015-06-01

    DEI procured several UVC phosphors and tested them with vacuum UV (VUV) excitation. Available emission peaks include: 226 nm, 230 nm, 234 nm, 242...SUPPLEMENTARY NOTES Report contains color. 14. ABSTRACT Under this Phase II SBIR effort, Directed Energy Inc.’s (DEI) proprietary ultraviolet ( UV ...15. SUBJECT TERMS Non-line-of-sight (NLOS), networking, optical communication, plasma-shells, short range, ultraviolet ( UV ) light 16. SECURITY

  2. Indium gallium nitride-based ultraviolet, blue, and green light-emitting diodes functionalized with shallow periodic hole patterns

    PubMed Central

    Jeong, Hyun; Salas-Montiel, Rafael; Lerondel, Gilles; Jeong, Mun Seok

    2017-01-01

    In this study, we investigated the improvement in the light output power of indium gallium nitride (InGaN)-based ultraviolet (UV), blue, and green light-emitting diodes (LEDs) by fabricating shallow periodic hole patterns (PHPs) on the LED surface through laser interference lithography and inductively coupled plasma etching. Noticeably, different enhancements were observed in the light output powers of the UV, blue, and green LEDs with negligible changes in the electrical properties in the light output power versus current and current versus voltage curves. In addition, confocal scanning electroluminescence microscopy is employed to verify the correlation between the enhancement in the light output power of the LEDs with PHPs and carrier localization of InGaN/GaN multiple quantum wells. Light propagation through the PHPs on the UV, blue, and green LEDs is simulated using a three-dimensional finite-difference time-domain method to confirm the experimental results. Finally, we suggest optimal conditions of PHPs for improving the light output power of InGaN LEDs based on the experimental and theoretical results. PMID:28374856

  3. Indium gallium nitride-based ultraviolet, blue, and green light-emitting diodes functionalized with shallow periodic hole patterns.

    PubMed

    Jeong, Hyun; Salas-Montiel, Rafael; Lerondel, Gilles; Jeong, Mun Seok

    2017-04-04

    In this study, we investigated the improvement in the light output power of indium gallium nitride (InGaN)-based ultraviolet (UV), blue, and green light-emitting diodes (LEDs) by fabricating shallow periodic hole patterns (PHPs) on the LED surface through laser interference lithography and inductively coupled plasma etching. Noticeably, different enhancements were observed in the light output powers of the UV, blue, and green LEDs with negligible changes in the electrical properties in the light output power versus current and current versus voltage curves. In addition, confocal scanning electroluminescence microscopy is employed to verify the correlation between the enhancement in the light output power of the LEDs with PHPs and carrier localization of InGaN/GaN multiple quantum wells. Light propagation through the PHPs on the UV, blue, and green LEDs is simulated using a three-dimensional finite-difference time-domain method to confirm the experimental results. Finally, we suggest optimal conditions of PHPs for improving the light output power of InGaN LEDs based on the experimental and theoretical results.

  4. Impact of pulsed xenon ultraviolet light on hospital-acquired infection rates in a community hospital.

    PubMed

    Vianna, Pedro G; Dale, Charles R; Simmons, Sarah; Stibich, Mark; Licitra, Carmelo M

    2016-03-01

    The role of contaminated environments in the spread of hospital-associated infections has been well documented. This study reports the impact of a pulsed xenon ultraviolet no-touch disinfection system on infection rates in a community care facility. This study was conducted in a community hospital in Southern Florida. Beginning November 2012, a pulsed xenon ultraviolet disinfection system was implemented as an adjunct to traditional cleaning methods on discharge of select rooms. The technology uses a xenon flashlamp to generate germicidal light that damages the DNA of organisms in the hospital environment. The device was implemented in the intensive care unit (ICU), with a goal of using the pulsed xenon ultraviolet system for disinfecting all discharges and transfers after standard cleaning and prior to occupation of the room by the next patient. For all non-ICU discharges and transfers, the pulsed xenon ultraviolet system was only used for Clostridium difficile rooms. Infection data were collected for methicillin-resistant Staphylococcus aureus, C difficile, and vancomycin-resistant Enterococci (VRE). The intervention period was compared with baseline using a 2-sample Wilcoxon rank-sum test. In non-ICU areas, a significant reduction was found for C difficile. There was a nonsignificant decrease in VRE and a significant increase in methicillin-resistant S aureus. In the ICU, all infections were reduced, but only VRE was significant. This may be because of the increased role that environment plays in the transmission of this pathogen. Overall, there were 36 fewer infections in the whole facility and 16 fewer infections in the ICU during the intervention period than would have been expected based on baseline data. Implementation of pulsed xenon ultraviolet disinfection is associated with significant decreases in facility-wide and ICU infection rates. These outcomes suggest that enhanced environmental disinfection plays a role in the risk mitigation of hospital

  5. Surface hole gas enabled transparent deep ultraviolet light-emitting diode

    NASA Astrophysics Data System (ADS)

    Zhang, Jianping; Gao, Ying; Zhou, Ling; Gil, Young-Un; Kim, Kyoung-Min

    2018-07-01

    The inherent deep-level nature of acceptors in wide-band-gap semiconductors makes p-ohmic contact formation and hole supply difficult, impeding progress for short-wavelength optoelectronics and high-power high-temperature bipolar electronics. We provide a general solution by demonstrating an ultrathin rather than a bulk wide-band-gap semiconductor to be a successful hole supplier and ohmic contact layer. Free holes in this ultrathin semiconductor are assisted to activate from deep acceptors and swept to surface to form hole gases by a large electric field, which can be provided by engineered spontaneous and piezoelectric polarizations. Experimentally, a 6 nm thick AlN layer with surface hole gas had formed p-ohmic contact to metals and provided sufficient hole injection to a 280 nm light-emitting diode, demonstrating a record electrical-optical conversion efficiency exceeding 8.5% at 20 mA (55 A cm‑2). Our approach of forming p-type wide-band-gap semiconductor ohmic contact is critical to realizing high-efficiency ultraviolet optoelectronic devices.

  6. Ultraviolet refractometry using field-based light scattering spectroscopy

    PubMed Central

    Fu, Dan; Choi, Wonshik; Sung, Yongjin; Oh, Seungeun; Yaqoob, Zahid; Park, YongKeun; Dasari, Ramachandra R.; Feld, Michael S.

    2010-01-01

    Accurate refractive index measurement in the deep ultraviolet (UV) range is important for the separate quantification of biomolecules such as proteins and DNA in biology. This task is demanding and has not been fully exploited so far. Here we report a new method of measuring refractive index using field-based light scattering spectroscopy, which is applicable to any wavelength range and suitable for both solutions and homogenous objects with well-defined shape such as microspheres. The angular scattering distribution of single microspheres immersed in homogeneous media is measured over the wavelength range 260 to 315 nm using quantitative phase microscopy. By least square fitting the observed scattering distribution with Mie scattering theory, the refractive index of either the sphere or the immersion medium can be determined provided that one is known a priori. Using this method, we have measured the refractive index dispersion of SiO2 spheres and bovine serum albumin (BSA) solutions in the deep UV region. Specific refractive index increments of BSA are also extracted. Typical accuracy of the present refractive index technique is ≤0.003. The precision of refractive index measurements is ≤0.002 and that of specific refractive index increment determination is ≤0.01 mL/g. PMID:20372622

  7. Extreme sensitivity to ultraviolet light in the fungal pathogen causing white-nose syndrome of bats.

    PubMed

    Palmer, Jonathan M; Drees, Kevin P; Foster, Jeffrey T; Lindner, Daniel L

    2018-01-02

    Bat white-nose syndrome (WNS), caused by the fungal pathogen Pseudogymnoascus destructans, has decimated North American hibernating bats since its emergence in 2006. Here, we utilize comparative genomics to examine the evolutionary history of this pathogen in comparison to six closely related nonpathogenic species. P. destructans displays a large reduction in carbohydrate-utilizing enzymes (CAZymes) and in the predicted secretome (~50%), and an increase in lineage-specific genes. The pathogen has lost a key enzyme, UVE1, in the alternate excision repair (AER) pathway, which is known to contribute to repair of DNA lesions induced by ultraviolet (UV) light. Consistent with a nonfunctional AER pathway, P. destructans is extremely sensitive to UV light, as well as the DNA alkylating agent methyl methanesulfonate (MMS). The differential susceptibility of P. destructans to UV light in comparison to other hibernacula-inhabiting fungi represents a potential "Achilles' heel" of P. destructans that might be exploited for treatment of bats with WNS.

  8. Isolation and characterization of ultraviolet light-sensitive mutants of the blue-green alga Anacystis nidulans.

    NASA Technical Reports Server (NTRS)

    Asato, Y.

    1972-01-01

    Three independently isolated ultraviolet light sensitive (uvs) mutants of Anacystis nidulans were characterized. Strain uvs-1 showed the highest sensitivity to UV by its greatly reduced photoreactivation capacity following irradiation. Pretreatment with caffeine suppressed the dark-survival curve of strain uvs-1, thus indicating the presence of excision enzymes involved in dark repair. Under 'black' and 'white' illumination, strain uvs-1 shows photorecovery properties comparable with wild-type cultures. Results indicate that strains uvs-1, uvs-35, and uvs-88 are probably genetically distinct UV-sensitive mutants.

  9. Honing the accuracy of extreme-ultraviolet optical system testing: at-wavelength and visible-light measurements of the ETS Set-2 projection optic

    NASA Astrophysics Data System (ADS)

    Goldberg, Kenneth A.; Naulleau, Patrick P.; Bokor, Jeffrey; Chapman, Henry N.

    2002-07-01

    As the quality of optical systems for extreme ultraviolet lithography improves, high-accuracy wavefront metrology for alignment and qualification becomes ever more important. To enable the development of diffraction-limited EUV projection optics, visible-light and EUV interferometries must work in close collaboration. We present a detailed comparison of EUV and visible-light wavefront measurements performed across the field of view of a lithographic-quality EUV projection optical system designed for use in the Engineering Test Stand developed by the Virtual National Laboratory and the EUV Limited Liability Company. The comparisons reveal that the present level of RMS agreement lies in the 0.3-0.4-nm range. Astigmatism is the most significant aberration component for the alignment of this optical system; it is also the dominant term in the discrepancy, and the aberration with the highest measurement uncertainty. With EUV optical systems requiring total wavefront quality in the (lambda) EUV/50 range, and even higher surface-figure quality for the individual mirror elements, improved accuracy through future comparisons, and additional studies, are required.

  10. A Novel Mechanism for the Pathogenesis of Nonmelanoma Skin Cancer Resulting from Early Exposure to Ultraviolet Light

    DTIC Science & Technology

    2013-09-01

    entering the circulation, and traveling throughout the body may be a new behavior of epidermal stem cells. We proposed that sunburn following...response to sunburn . We address the following question: Do hair follicle stem cells migrate from the skin following sunburn as a consequence of ultraviolet...light induced inflammation? Our hypothesis is that sunburn makes the hair follicles stem cells leave the skin and enter the blood circulation, and

  11. Stress-Induced Sleep After Exposure to Ultraviolet Light Is Promoted by p53 in Caenorhabditis elegans.

    PubMed

    DeBardeleben, Hilary K; Lopes, Lindsey E; Nessel, Mark P; Raizen, David M

    2017-10-01

    Stress-induced sleep (SIS) in Caenorhabditis elegans is important for restoration of cellular homeostasis and is a useful model to study the function and regulation of sleep. SIS is triggered when epidermal growth factor (EGF) activates the ALA neuron, which then releases neuropeptides to promote sleep. To further understand this behavior, we established a new model of SIS using irradiation by ultraviolet C (UVC) light. While UVC irradiation requires ALA signaling and leads to a sleep state similar to that induced by heat and other stressors, it does not induce the proteostatic stress seen with heat exposure. Based on the known genotoxic effects of UVC irradiation, we tested two genes, atl-1 and cep-1 , which encode proteins that act in the DNA damage response pathway. Loss-of-function mutants of atl-1 had no defect in UVC-induced SIS but a partial loss-of-function mutant of cep-1 , gk138 , had decreased movement quiescence following UVC irradiation. Germline ablation experiments and tissue-specific RNA interference experiments showed that cep-1 is required somatically in neurons for its effect on SIS. The cep-1 ( gk138 ) mutant suppressed body movement quiescence controlled by EGF, indicating that CEP-1 acts downstream or in parallel to ALA activation to promote quiescence in response to ultraviolet light. Copyright © 2017 by the Genetics Society of America.

  12. Far-infrared-light shadowgraphy for high extraction efficiency of extreme ultraviolet light from a CO2-laser-generated tin plasma

    NASA Astrophysics Data System (ADS)

    Matsukuma, Hiraku; Hosoda, Tatsuya; Suzuki, Yosuke; Yogo, Akifumi; Yanagida, Tatsuya; Kodama, Takeshi; Nishimura, Hiroaki

    2016-08-01

    The two-color, double-pulse method is an efficient scheme to generate extreme ultraviolet light for fabricating the next generation semiconductor microchips. In this method, a Nd:YAG laser pulse is used to expand a several-tens-of-micrometers-scale tin droplet, and a CO2 laser pulse is subsequently directed at the expanded tin vapor after an appropriate delay time. We propose the use of shadowgraphy with a CO2 laser probe-pulse scheme to optimize the CO2 main-drive laser. The distribution of absorption coefficients is derived from the experiment, and the results are converted to a practical absorption rate for the CO2 main-drive laser.

  13. Printable Top-Gate-Type Polymer Light-Emitting Transistors with Surfaces of Amorphous Fluoropolymer Insulators Modified by Vacuum Ultraviolet Light Treatment

    NASA Astrophysics Data System (ADS)

    Kajii, Hirotake; Terashima, Daiki; Kusumoto, Yusuke; Ikezoe, Ikuya; Ohmori, Yutaka

    2013-04-01

    We investigated the fabrication and electrical and optical properties of top-gate-type polymer light-emitting transistors with the surfaces of amorphous fluoropolymer insulators, CYTOP (Asahi Glass) modified by vacuum ultraviolet light (VUV) treatment. The surface energy of CYTOP, which has a good solution barrier property was increased by VUV irradiation, and the gate electrode was fabricated by solution processing on the CYTOP film using the Ag nano-ink. The influence of VUV irradiation on the optical properties of poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) films with various gate insulators was investigated to clarify the passivation effect of gate insulators. It was found that the poly(methyl methacrylate) (PMMA) film prevented the degradation of the F8BT layer under VUV irradiation because the PMMA film can absorb VUV. The solution-processed F8BT device with multilayer PMMA/CYTOP insulators utilizing a gate electrode fabricated using the Ag nano-ink exhibited both the ambipolar characteristics and yellow-green emission.

  14. On the Hole Injection for III-Nitride Based Deep Ultraviolet Light-Emitting Diodes.

    PubMed

    Li, Luping; Zhang, Yonghui; Xu, Shu; Bi, Wengang; Zhang, Zi-Hui; Kuo, Hao-Chung

    2017-10-24

    The hole injection is one of the bottlenecks that strongly hinder the quantum efficiency and the optical power for deep ultraviolet light-emitting diodes (DUV LEDs) with the emission wavelength smaller than 360 nm. The hole injection efficiency for DUV LEDs is co-affected by the p-type ohmic contact, the p-type hole injection layer, the p-type electron blocking layer and the multiple quantum wells. In this report, we review a large diversity of advances that are currently adopted to increase the hole injection efficiency for DUV LEDs. Moreover, by disclosing the underlying device physics, the design strategies that we can follow have also been suggested to improve the hole injection for DUV LEDs.

  15. On the Hole Injection for III-Nitride Based Deep Ultraviolet Light-Emitting Diodes

    PubMed Central

    Li, Luping; Zhang, Yonghui; Kuo, Hao-Chung

    2017-01-01

    The hole injection is one of the bottlenecks that strongly hinder the quantum efficiency and the optical power for deep ultraviolet light-emitting diodes (DUV LEDs) with the emission wavelength smaller than 360 nm. The hole injection efficiency for DUV LEDs is co-affected by the p-type ohmic contact, the p-type hole injection layer, the p-type electron blocking layer and the multiple quantum wells. In this report, we review a large diversity of advances that are currently adopted to increase the hole injection efficiency for DUV LEDs. Moreover, by disclosing the underlying device physics, the design strategies that we can follow have also been suggested to improve the hole injection for DUV LEDs. PMID:29073738

  16. Effects of GaN/AlGaN/Sputtered AlN nucleation layers on performance of GaN-based ultraviolet light-emitting diodes

    PubMed Central

    Hu, Hongpo; Zhou, Shengjun; Liu, Xingtong; Gao, Yilin; Gui, Chengqun; Liu, Sheng

    2017-01-01

    We report on the demonstration of GaN-based ultraviolet light-emitting diodes (UV LEDs) emitting at 375 nm grown on patterned sapphire substrate (PSS) with in-situ low temperature GaN/AlGaN nucleation layers (NLs) and ex-situ sputtered AlN NL. The threading dislocation (TD) densities in GaN-based UV LEDs with GaN/AlGaN/sputtered AlN NLs were determined by high-resolution X-ray diffraction (XRD) and cross-sectional transmission electron microscopy (TEM), which revealed that the TD density in UV LED with AlGaN NL was the highest, whereas that in UV LED with sputtered AlN NL was the lowest. The light output power (LOP) of UV LED with AlGaN NL was 18.2% higher than that of UV LED with GaN NL owing to a decrease in the absorption of 375 nm UV light in the AlGaN NL with a larger bandgap. Using a sputtered AlN NL instead of the AlGaN NL, the LOP of UV LED was further enhanced by 11.3%, which is attributed to reduced TD density in InGaN/AlInGaN active region. In the sputtered AlN thickness range of 10–25 nm, the LOP of UV LED with 15-nm-thick sputtered AlN NL was the highest, revealing that optimum thickness of the sputtered AlN NL is around 15 nm. PMID:28294166

  17. Reduced ultraviolet light transmission increases insecticide longevity in protected culture raspberry production.

    PubMed

    Leach, Heather; Wise, John C; Isaacs, Rufus

    2017-12-01

    High tunnels are large protective structures used for season extension of many crops, including raspberries. These structures are often covered in plastic films to reduce and diffuse ultraviolet light transmission for pest and disease control, but this may also affect the photodegradation and efficacy of pesticides applied under these tunnels. We compared the residue levels of ten insecticides under three tunnel plastics with varying levels of UV transmission and open field conditions. Raspberry plants placed in research-scale tunnels were treated with insecticides and residues on fruit and foliage were monitored for one or two weeks in early 2015 and early and late 2016. Plastics that reduce UV transmission resulted in 50% greater residues of some insecticides compared to transparent plastics, and 60% compared to uncovered tunnels. This increased persistence of residues was evident within 1 day and remained consistently higher for up to 14 days. This pattern was demonstrated for multiple insecticides, including bifenthrin, esfenvalerate, imidacloprid, thiamethoxam, and spinosad. In contrast, the insecticide malathion degraded rapidly regardless of the plastic treatment, indicating less sensitivity to photodegradation. Bioassays using insecticide-treated leaves that were under UV-blocking plastic revealed higher mortality of the invasive fruit pest, Drosophila suzukii, compared to leaves that were uncovered. This indicates that the activity of pesticides under high tunnels covered in UV-reducing plastics may be prolonged, allowing for fewer insecticide applications and longer intervals between sprays. This information can be used to help optimize pest control in protected culture berry production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Extreme ultra-violet movie camera for imaging microsecond time scale magnetic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chai, Kil-Byoung; Bellan, Paul M.

    2013-12-15

    An ultra-fast extreme ultra-violet (EUV) movie camera has been developed for imaging magnetic reconnection in the Caltech spheromak/astrophysical jet experiment. The camera consists of a broadband Mo:Si multilayer mirror, a fast decaying YAG:Ce scintillator, a visible light block, and a high-speed visible light CCD camera. The camera can capture EUV images as fast as 3.3 × 10{sup 6} frames per second with 0.5 cm spatial resolution. The spectral range is from 20 eV to 60 eV. EUV images reveal strong, transient, highly localized bursts of EUV radiation when magnetic reconnection occurs.

  19. Efficient photochemical generation of peroxycarboxylic nitric anhydrides with ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Rider, N. D.; Taha, Y. M.; Odame-Ankrah, C. A.; Huo, J. A.; Tokarek, T. W.; Cairns, E.; Moussa, S. G.; Liggio, J.; Osthoff, H. D.

    2015-07-01

    Photochemical sources of peroxycarboxylic nitric anhydrides (PANs) are utilized in many atmospheric measurement techniques for calibration or to deliver an internal standard. Conventionally, such sources rely on phosphor-coated low-pressure mercury (Hg) lamps to generate the UV light necessary to photo-dissociate a dialkyl ketone (usually acetone) in the presence of a calibrated amount of nitric oxide (NO) and oxygen (O2). In this manuscript, a photochemical PAN source in which the Hg lamp has been replaced by arrays of ultraviolet light-emitting diodes (UV-LEDs) is described. The output of the UV-LED source was analyzed by gas chromatography (PAN-GC) and thermal dissociation cavity ring-down spectroscopy (TD-CRDS). Using acetone, diethyl ketone (DIEK), diisopropyl ketone (DIPK), or di-n-propyl ketone (DNPK), respectively, the source produces peroxyacetic (PAN), peroxypropionic (PPN), peroxyisobutanoic (PiBN), or peroxy-n-butanoic nitric anhydride (PnBN) from NO in high yield (> 90 %). Box model simulations with a subset of the Master Chemical Mechanism (MCM) were carried out to rationalize product yields and to identify side products. The present work demonstrates that UV-LED arrays are a viable alternative to current Hg lamp setups.

  20. Ultraviolet light-emitting diodes in water disinfection.

    PubMed

    Vilhunen, Sari; Särkkä, Heikki; Sillanpää, Mika

    2009-06-01

    The novel system of ultraviolet light-emitting diodes (UV LEDs) was studied in water disinfection. Conventional UV lamps, like mercury vapor lamp, consume much energy and are considered to be problem waste after use. UV LEDs are energy efficient and free of toxicants. This study showed the suitability of LEDs in disinfection and provided information of the effect of two emitted wavelengths and different test mediums to Escherichia coli destruction. Common laboratory strain of E. coli (K12) was used and the effects of two emitted wavelengths (269 and 276 nm) were investigated with two photolytic batch reactors both including ten LEDs. The effects of test medium were examined with ultrapure water, nutrient and water, and nutrient and water with humic acids. Efficiency of reactors was almost the same even though the one emitting higher wavelength had doubled optical power compared to the other. Therefore, the effect of wavelength was evident and the radiation emitted at 269 nm was more powerful. Also, the impact of background was studied and noticed to have only slight deteriorating effect. In the 5-min experiment, the bacterial reduction of three to four log colony-forming units (CFU) per cubic centimeter was achieved, in all cases. When turbidity of the test medium was greater, part of the UV radiation was spent on the absorption and reactions with extra substances on liquid. Humic acids can also coat the bacteria reducing the sensitivity of the cells to UV light. The lower wavelength was distinctly more efficient when the optical power is considered, even though the difference of wavelengths was small. The reason presumably is the greater absorption of DNA causing more efficient bacterial breakage. UV LEDs were efficient in E. coli destruction, even if LEDs were considered to have rather low optical power. The effect of wavelengths was noticeable but the test medium did not have much impact. This study found UV LEDs to be an optimal method for bacterial

  1. Modelling and Display of the Ultraviolet Sky

    NASA Astrophysics Data System (ADS)

    Daniels, J.; Henry, R.; Murthy, J.; Allen, M.; McGlynn, T. A.; Scollick, K.

    1994-12-01

    A computer program is currently under development to model in 3D - one dimension of which is wavelength - all the known and major speculated sources of ultraviolet (900 A - 3100 A ) radiation over the celestial sphere. The software is being written in Fortran 77 and IDL and currently operates under IRIX (the operating system of the Silicon Graphics Iris Machine); all output models are in FITS format. Models along with display software will become available to the astronomical community. The Ultraviolet Sky Model currently includes the Zodiacal Light, Point Sources of Emission, and the Diffuse Galactic Light. The Ultraviolet Sky Model is currently displayed using SkyView: a package under development at NASA/ GSFC, which allows users to retrieve and display publically available all-sky astronomical survey data (covering many wavebands) over the Internet. We present a demonstration of the SkyView display of the Ultraviolet Model. The modelling is a five year development project: the work illustrated here represents product output at the end of year one. Future work includes enhancements to the current models and incorporation of the following models: Galactic Molecular Hydrogen Fluorescence; Galactic Highly Ionized Atomic Line Emission; Integrated Extragalactic Light; and speculated sources in the intergalactic medium such as Ionized Plasma and radiation from Non-Baryonic Particle Decay. We also present a poster which summarizes the components of the Ultraviolet Sky Model and outlines a further package that will be used to display the Ultraviolet Model. This work is supported by United States Air Force Contract F19628-93-K-0004. Dr J. Daniels is supported with a post-doctoral Fellowship from the Leverhulme Foundation, London, United Kingdom. We are also grateful for the encouragement of Dr Stephen Price (Phillips Laboratory, Hanscomb Air Force Base, MA)

  2. Ocular media transmission of coral reef fish--can coral reef fish see ultraviolet light?

    PubMed

    Siebeck, U E; Marshall, N J

    2001-01-15

    Many coral reef fish are beautifully coloured and the reflectance spectra of their colour patterns may include UVa wavelengths (315-400 nm) that are largely invisible to the human eye (Losey, G. S., Cronin, T. W., Goldsmith, T. H., David, H., Marshall, N. J., & McFarland, W.N. (1999). The uv visual world of fishes: a review. Journal of Fish Biology, 54, 921-943; Marshall, N. J. & Oberwinkler, J. (1999). The colourful world of the mantis shrimp. Nature, 401, 873-874). Before the possible functional significance of UV patterns can be investigated, it is of course essential to establish whether coral reef fishes can see ultraviolet light. As a means of tackling this question, in this study the transmittance of the ocular media of 211 coral reef fish species was measured. It was found that the ocular media of 50.2% of the examined species strongly absorb light of wavelengths below 400 nm, which makes the perception of UV in these fish very unlikely. The remaining 49.8% of the species studied possess ocular media that do transmit UV light, making the perception of UV possible.

  3. Artificial sunlight and ultraviolet light induced photo-epoxidation of propylene over V-Ti/MCM-41 photocatalyst

    PubMed Central

    Nguyen, Van-Huy; Bai, Hsunling

    2014-01-01

    Summary The light irradiation parameters, including the wavelength spectrum and intensity of light source, can significantly influence a photocatalytic reaction. This study examines the propylene photo-epoxidation over V-Ti/MCM-41 photocatalyst by using artificial sunlight (Xe lamp with/without an Air Mass 1.5 Global Filter at 1.6/18.5 mW·cm−2) and ultraviolet light (Mercury Arc lamp with different filters in the range of 0.1–0.8 mW·cm−2). This is the first report of using artificial sunlight to drive the photo-epoxidation of propylene. Over V-Ti/MCM-41 photocatalyst, the propylene oxide (PO) formation rate is 193.0 and 112.1 µmol·gcat −1·h−1 with a PO selectivity of 35.0 and 53.7% under UV light and artificial sunlight, respectively. A normalized light utilization (NLU) index is defined and found to correlate well with the rate of both PO formation and C3H6 consumption in log–log scale. The light utilization with a mercury arc lamp is better than with a xenon lamp. The selectivity to PO remains practically unchanged with respect to NLU, suggesting that the photo-epoxidation occurs through the same mechanism under the conditions tested in this study. PMID:24991493

  4. Ultraviolet reflective coating

    NASA Technical Reports Server (NTRS)

    Schutt, J. B.

    1974-01-01

    Composition consists of dispersion of barium sulphate in aqueous solution of water-soluble inorganic binder. Binder is selected from group consisting of alkali metal sulphates. Coating exhibits high reflectance of ultraviolet light to wavelengths of approximately 200.0 nm, which compares favorably with high reflectance of virgin barium sulphate power.

  5. Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors.

    PubMed

    Lee, Changmin; Shen, Chao; Cozzan, Clayton; Farrell, Robert M; Speck, James S; Nakamura, Shuji; Ooi, Boon S; DenBaars, Steven P

    2017-07-24

    Data communication based on white light generated using a near-ultraviolet (NUV) laser diode (LD) pumping red-, green-, and blue-emitting (RGB) phosphors was demonstrated for the first time. A III-nitride laser diode (LD) on a semipolar (2021¯)  substrate emitting at 410 nm was used for the transmitter. The measured modulation bandwidth of the LD was 1 GHz, which was limited by the avalanche photodetector. The emission from the NUV LD and the RGB phosphor combination measured a color rendering index (CRI) of 79 and correlated color temperature (CCT) of 4050 K, indicating promise of this approach for creating high quality white lighting. Using this configuration, data was successfully transmitted at a rate of more than 1 Gbps. This NUV laser-based system is expected to have lower background noise from sunlight at the LD emission wavelength than a system that uses a blue LD due to the rapid fall off in intensity of the solar spectrum in the NUV spectral region.

  6. Two pathogen reduction technologies--methylene blue plus light and shortwave ultraviolet light--effectively inactivate hepatitis C virus in blood products.

    PubMed

    Steinmann, Eike; Gravemann, Ute; Friesland, Martina; Doerrbecker, Juliane; Müller, Thomas H; Pietschmann, Thomas; Seltsam, Axel

    2013-05-01

    Contamination of blood products with hepatitis C virus (HCV) can cause infections resulting in acute and chronic liver diseases. Pathogen reduction methods such as photodynamic treatment with methylene blue (MB) plus visible light as well as irradiation with shortwave ultraviolet (UVC) light were developed to inactivate viruses and other pathogens in plasma and platelet concentrates (PCs), respectively. So far, their inactivation capacities for HCV have only been tested in inactivation studies using model viruses for HCV. Recently, a HCV infection system for the propagation of infectious HCV in cell culture was developed. Inactivation studies were performed with cell culture-derived HCV and bovine viral diarrhea virus (BVDV), a model for HCV. Plasma units or PCs were spiked with high titers of cell culture-grown viruses. After treatment of the blood units with MB plus light (Theraflex MB-Plasma system, MacoPharma) or UVC (Theraflex UV-Platelets system, MacoPharma), residual viral infectivity was assessed using sensitive cell culture systems. HCV was sensitive to inactivation by both pathogen reduction procedures. HCV in plasma was efficiently inactivated by MB plus light below the detection limit already by 1/12 of the full light dose. HCV in PCs was inactivated by UVC irradiation with a reduction factor of more than 5 log. BVDV was less sensitive to the two pathogen reduction methods. Functional assays with human HCV offer an efficient tool to directly assess the inactivation capacity of pathogen reduction procedures. Pathogen reduction technologies such as MB plus light treatment and UVC irradiation have the potential to significantly reduce transfusion-transmitted HCV infections. © 2012 American Association of Blood Banks.

  7. Ultraviolet Ring Around the Galaxies

    NASA Image and Video Library

    2010-08-11

    Astronomers have found unexpected rings and arcs of ultraviolet light around a selection of galaxies, four of which are shown here as viewed by NASA and the European Space Agency Hubble Space Telescope.

  8. Light transmission and ultraviolet protection of contact lenses under artificial illumination.

    PubMed

    Artigas, José M; Navea, Amparo; García-Domene, M Carmen; Gené, Andrés; Artigas, Cristina

    2016-04-01

    To determine the spectral transmission of contact lenses (CLs), with and without an ultraviolet (UV) filter to evaluate their capacity for protection under UV radiation from artificial illumination (incandescent, fluorescent, xenon (Xe) lamps, or white LEDs (light-emitting diode)). The transmission curves of nine soft CLs were obtained by using a PerkinElmer Lambda 35 UV-vis spectrophotometer. A CIE standard was used for the emission spectra of incandescent and fluorescent lamps, and Xe lamps and white LEDs were measured by using an International Light Technologies ILT-950 spectroradiometer. Five of the nine soft CLs analysed state that they incorporate UV filters, but the other four do not specify anything in this regard. The spectral transmission of all the CLs studied is excellent in the visible region. The CLs with UV filters filter out this radiation more or less effectively. Xe lamps emit a part in the UV region. Incandescent, fluorescent and white LEDs do not emit at all in the UV. Incorporating UV filters is important when the illumination is from a Xe lamp since this light source emits in the UV region. This, however, does not occur with incandescent and fluorescent lamps or white LEDs. The CLs that do incorporate UV filters meet all the standard requirements that the U.S. FDA (Food and Drug Administration) has for UV-blocking CLs Class II (OcularScience, CooperVision and Neolens), and AcuvueMoist and HydronActifresh400 even comply with the stricter Class I. The CLs without UV filters let UVA, UVB and even some UVC through. Copyright © 2015. Published by Elsevier Ltd.

  9. Near infrared and extreme ultraviolet light pulses induced modifications of ultrathin Co films

    NASA Astrophysics Data System (ADS)

    Kisielewski, Jan; Sveklo, Iosif; Kurant, Zbigniew; Bartnik, Andrzej; Jakubowski, Marcin; Dynowska, ElŻbieta; Klinger, Dorota; Sobierajski, Ryszard; Wawro, Andrzej; Maziewski, Andrzej

    2017-05-01

    We report on comparative study of magnetic properties of Pt/Co/Pt trilayers after irradiation with different light sources. Ultrathin Pt/Co/Pt films were deposited by molecular beam epitaxy technique on sapphire (0001) substrates. Pt buffers were grown at room temperature (RT) and at 750°C (high temperature, HT). The samples were irradiated with a broad range of light energy densities (up to film ablation) using two different single pulse irradiation sources: (i) 40 fs laser with 800 nm wavelength and (ii) 3 ns laser-plasma source of extreme ultraviolet (EUV) with the most intense emission centered at 11 nm. The light pulse-driven irreversible structural and as a consequence, magnetic modifications were investigated using polar magneto-optical Kerr effect-based microscopy and atomic and magnetic force microscopies. The light pulse-induced transitions from the out-of-plane to in-plane magnetization state, and from in-plane to out-of-plane, were observed for both types of samples and irradiation methods. Diagrams of the magnetic states as a function of the Co layer thickness and energy density of the absorbed femtosecond pulses were constructed for the samples with both the RT and HT buffers. The energy density range responsible for the creation of the out-of-plane magnetization was wider for the HT than for RT buffer. This is correlated with the higher (for HT) crystalline quality and much smoother Pt/Co surface deduced from the X-ray diffraction studies. Submicrometer magnetic domains were observed in the irradiated region while approaching the out-of-plane magnetization state. Changes of Pt/Co/Pt structures are discussed for both types of light pulses.

  10. Tunable ultraviolet and blue light generation from Nd:YAB random laser bolstered by second-order nonlinear processes

    NASA Astrophysics Data System (ADS)

    Moura, André L.; Carreño, Sandra J. M.; Pincheira, Pablo I. R.; Fabris, Zanine V.; Maia, Lauro J. Q.; Gomes, Anderson S. L.; de Araújo, Cid B.

    2016-06-01

    Ultraviolet and blue light were obtained by nonlinear frequency conversion in a random laser (RL) based on Nd0.10Y0.90Al3(BO3)4 nanocrystalline powder. RL operation at 1062 nm, due to the 4F3/2 → 4I11/2 transition of neodymium ions (Nd3+), was achieved by exciting the Nd3+ with a tunable beam from 680 to 920 nm covering the ground state absorption transitions to the 4F9/2, (4F7/2,4S3/2), (4F5/2,2H9/2), and 4F3/2 states. Light from 340 to 460 nm was obtained via the second-harmonic generation of the excitation beam while tunable blue light, from 417 to 486 nm, was generated by self-sum-frequency mixing between the excitation beam and the RL emission.

  11. [Decrease of spontaneous mutations in Haemophilus influenzae caused by transformation with its own DNA irradiated with near-ultraviolet light].

    PubMed

    Alarcón-Hernández, E; Cabrera-Juárez, E

    1992-01-01

    Transforming DNA containing the streptomycin resistance marker, was irradiated for 8 h with broad near ultraviolet light (325-400 nm) at pH 4.8, and the inactivation kinetics determined. After selection of streptomycin resistant transformants, they were grown until a turbidity of 150-200 Klett units. In these cultures we looked for new markers coming from the irradiated transforming DNA. We looked and found the novobiocin resistance marker and one that conveys to protoporphyrin IX utilization, measured as an increase in the mutation frequency of these markers in the streptomycin resistant population. In other experiments, we found a decline in spontaneous mutation frequency for the same markers in the cells transformed with irradiated DNA. This last finding rises the possibility of alterations on the mutator genes as a result of near ultraviolet irradiation.

  12. Flexible ultraviolet photodetectors based on ZnO-SnO2 heterojunction nanowire arrays

    NASA Astrophysics Data System (ADS)

    Lou, Zheng; Yang, Xiaoli; Chen, Haoran; Liang, Zhongzhu

    2018-02-01

    A ZnO-SnO2 nanowires (NWs) array, as a metal oxide semiconductor, was successfully synthesized by a near-field electrospinning method for the applications as high performance ultraviolet photodetectors. Ultraviolet photodetectors based on a single nanowire exhibited excellent photoresponse properties to 300 nm ultraviolet light illumination including ultrahigh I on/I off ratios (up to 103), good stability and reproducibility because of the separation between photo-generated electron-hole pairs. Moreover, the NWs array shows an enhanced photosensing performance. Flexible photodetectors on the PI substrates with similar tendency properties were also fabricated. In addition, under various bending curvatures and cycles, the as-fabricated flexible photodetectors revealed mechanical flexibility and good stable electrical properties, showing that they have the potential for applications in future flexible photoelectron devices. Project supported by the National Science Foundation of China (No. 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine and Physics, Chinese Academy of Sciences.

  13. Interband Tunneling for Hole Injection in III-Nitride Ultraviolet Emitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuewei; Krishnamoorthy, Sriram; Johnson, Jared M.

    Low p-type conductivity and high contact resistance remain a critical problem in wide band gap AlGaN-based ultraviolet light emitters due to the high acceptor ionization energy. In this work, interband tunneling is demonstrated for non-equilibrium injection of holes through the use of ultra-thin polarization-engineered layers that enhance tunneling probability by several orders of magnitude over a PN homojunction. Al 0.3Ga 0.7N interband tunnel junctions with a lowresistance of 5.6 × 10 -4 Ω cm 2 were obtained and integrated on ultraviolet light emitting diodes.Tunnel injection of holes was used to realize GaN-free ultraviolet light emitters with bottom and top n-typemore » Al 0.3Ga 0.7N contacts. At an emission wavelength of 327 nm, stable output power of 6 W/cm 2 at a current density of 120 A/cm 2 with a forward voltage of 5.9 V was achieved. Our demonstration of efficient interband tunneling could enable device designs for higher efficiency ultraviolet emitters.« less

  14. Very light dilaton and naturally light Higgs boson

    NASA Astrophysics Data System (ADS)

    Hong, Deog Ki

    2018-02-01

    We study very light dilaton, arising from a scale-invariant ultraviolet theory of the Higgs sector in the standard model of particle physics. Imposing the scale symmetry below the ultraviolet scale of the Higgs sector, we alleviate the fine-tuning problem associated with the Higgs mass. When the electroweak symmetry is spontaneously broken radiatively à la Coleman-Weinberg, the dilaton develops a vacuum expectation value away from the origin to give an extra contribution to the Higgs potential so that the Higgs mass becomes naturally around the electroweak scale. The ultraviolet scale of the Higgs sector can be therefore much higher than the electroweak scale, as the dilaton drives the Higgs mass to the electroweak scale. We also show that the light dilaton in this scenario is a good candidate for dark matter of mass m D ˜ 1 eV - 10 keV, if the ultraviolet scale is about 10-100 TeV. Finally we propose a dilaton-assisted composite Higgs model to realize our scenario. In addition to the light dilaton the model predicts a heavy U(1) axial vector boson and two massive, oppositely charged, pseudo Nambu-Goldstone bosons, which might be accessible at LHC.

  15. Characterizing mid-ultraviolet to optical light curves of nearby type IIn supernovae

    DOE PAGES

    de la Rosa, Janie; Roming, Pete; Pritchard, Tyler; ...

    2016-03-21

    Here, we present early mid-ultraviolet and optical observations of Type IIn supernovae (SNe IIn) observed from 2007 to 2013. Our results focus on the properties of UV light curves: peak absolute magnitudes, temporal decay, and color evolution. During early times, this sample demonstrates that UV light decays faster than optical, and each event transitions from a predominantly UV-bright phase to an optically bright phase. In order to understand early UV behavior, we generate and analyze the sample's blackbody luminosity, temperature, and radius as the SN ejecta expand and cool. Since most of our observations were detected post maximum luminosity, wemore » introduce a method for estimating the date of peak magnitude. When our observations are compared based on filter, we find that even though these SNe IIn vary in peak magnitudes, there are similarities in UV decay rates. We use a simple semi-analytical SN model in order to understand the effects of the explosion environment on our UV observations. Understanding the UV characteristics of nearby SNe IIn during an early phase can provide valuable information about the environment surrounding these explosions, leading us to evaluating the diversity of observational properties in this subclass.« less

  16. Inactivation of Ebola virus and Middle East respiratory syndrome coronavirus in platelet concentrates and plasma by ultraviolet C light and methylene blue plus visible light, respectively.

    PubMed

    Eickmann, Markus; Gravemann, Ute; Handke, Wiebke; Tolksdorf, Frank; Reichenberg, Stefan; Müller, Thomas H; Seltsam, Axel

    2018-05-06

    Ebola virus (EBOV) and Middle East respiratory syndrome coronavirus (MERS-CoV) have been identified as potential threats to blood safety. This study investigated the efficacy of the THERAFLEX UV-Platelets and THERAFLEX MB-Plasma pathogen inactivation systems to inactivate EBOV and MERS-CoV in platelet concentrates (PCs) and plasma, respectively. PCs and plasma were spiked with high titers of cell culture-derived EBOV and MERS-CoV, treated with various light doses of ultraviolet C (UVC; THERAFLEX UV-Platelets) or methylene blue (MB) plus visible light (MB/light; THERAFLEX MB-Plasma), and assessed for residual viral infectivity. UVC reduced EBOV (≥4.5 log) and MERS-CoV (≥3.7 log) infectivity in PCs to the limit of detection, and MB/light decreased EBOV (≥4.6 log) and MERS-CoV (≥3.3 log) titers in plasma to nondetectable levels. Both THERAFLEX UV-Platelets (UVC) and THERAFLEX MB-Plasma (MB/light) effectively reduce EBOV and MERS-CoV infectivity in platelets and plasma, respectively. © 2018 AABB.

  17. An upper limit on ultraviolet shot noise from Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Duthie, J. G.; Mcmillan, R. S.

    1979-01-01

    Rapid photometry of Cygnus X-1 through an ultraviolet filter centered on 0.35 micron has been obtained at 100-ms sampling intervals. The autocorrelation function of these data has been examined for shot noise analogous to the behavior of the X-ray light curve. The ultraviolet data are entirely consistent with white noise. Considering randomly occurring ultraviolet shots with the same duration (0.5 s) and average rate (1 per sec) as the X-ray shots, a 3-sigma upper limit on the ratio of optical to X-ray energies per shot is estimated to be 0.13, before the ultraviolet light is attenuated by interstellar dust. This limit is then generalized for shots of arbitrary duration and rate.

  18. Stability of the Stevia-Derived Sweetener Rebaudioside A in Solution as Affected by Ultraviolet Light Exposure.

    PubMed

    Zhang, Jiewen; Bell, Leonard N

    2017-04-01

    Rebaudioside A is a natural noncaloric high-potency sweetener extracted from the leaves of Stevia rebaudiana. With rebaudioside A use increasing in foods, understanding the factors affecting its stability is necessary. This project evaluated the degradation rate constants of rebaudioside A in water, 0.1 M phosphate buffer, and 0.1 M citrate buffer at pH 3 and 7 as a function of ultraviolet (UV) light intensity (365 nm, 0 μW/cm 2 for dark conditions, 27 μW/cm 2 for low intensity, and 190 μW/cm 2 for high intensity) at 32.5 °C. Rebaudioside A stability was adversely affected by light exposure. The pseudo-1st-order degradation rate constants increased significantly (P < 0.05) with increasing light intensity in all solutions. Under dark conditions, rebaudioside A in phosphate buffers was more susceptible to breakdown than in water and citrate buffers at both pH levels. However, exposure to UV light resulted in rebaudioside A degradation occurring approximately 10 times faster in citrate than in phosphate buffers at both pH levels. The sensitivity of rebaudioside A to UV light was greater in citrate buffers than in water or phosphate buffers. The use of light-protective packaging for beverages containing rebaudioside A will improve its stability. © 2017 Institute of Food Technologists®.

  19. Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes in biofilms by pulsed ultraviolet light.

    PubMed

    Montgomery, Nedra L; Banerjee, Pratik

    2015-06-10

    The inactivation of biofilms formed by pathogenic bacteria on ready-to-eat and minimally processed fruits and vegetables by nonthermal processing methods is critical to ensure food safety. Pulsed ultraviolet (PUV) light has shown promise in the surface decontamination of liquid, powdered, and solid foods. In this study, the antimicrobial efficacy of PUV light treatment on nascent biofilms formed by Escherichia coli O157:H7 and Listeria monocytogenes on the surfaces of food packaging materials, such as low-density polyethylene (LDPE), and fresh produce, such as lettuce (Lactuca sativa) leaves, was investigated. The formation of biofilms on Romaine lettuce leaves and LDPE films was confirmed by crystal violet and Alcian blue staining methods. Inactivation of cells in the biofilm was determined by standard plating procedures, and by a luminescence-based bacterial cell viability assay. Upon PUV treatment of 10 s at two different light source to sample distances (4.5 and 8.8 cm), viable cell counts of L. monocytogenes and E. coli O157:H7 in biofilms on the lettuce surface were reduced by 0.6-2.2 log CFU mL(-1) and 1.1-3.8 log CFU mL(-1), respectively. On the LDPE surface, the efficiency of inactivation of biofilm-encased cells was slightly higher. The maximum values for microbial reduction on LDPE were 2.7 log CFU mL(-1) and 3.9 log CFU mL(-1) for L. monocytogenes and E. coli O157:H7, respectively. Increasing the duration of PUV light exposure resulted in a significant (P < 0.05) reduction in biofilm formation by both organisms. The results also revealed that PUV treatment was more effective at reducing E. coli biofilms compared with Listeria biofilms. A moderate increase in temperature (~7-15°C) was observed for both test materials. PUV is an effective nonthermal intervention method for surface decontamination of E. coli O157:H7 and L. monocytogenes on fresh produce and packaging materials.

  20. High Mobility Flexible Amorphous IGZO Thin-Film Transistors with a Low Thermal Budget Ultra-Violet Pulsed Light Process.

    PubMed

    Benwadih, M; Coppard, R; Bonrad, K; Klyszcz, A; Vuillaume, D

    2016-12-21

    Amorphous, sol-gel processed, indium gallium zinc oxide (IGZO) transistors on plastic substrate with a printable gate dielectric and an electron mobility of 4.5 cm 2 /(V s), as well as a mobility of 7 cm 2 /(V s) on solid substrate (Si/SiO 2 ) are reported. These performances are obtained using a low temperature pulsed light annealing technique. Ultraviolet (UV) pulsed light system is an innovative technique compared to conventional (furnace or hot-plate) annealing process that we successfully implemented on sol-gel IGZO thin film transistors (TFTs) made on plastic substrate. The photonic annealing treatment has been optimized to obtain IGZO TFTs with significant electrical properties. Organic gate dielectric layers deposited on this pulsed UV light annealed films have also been optimized. This technique is very promising for the development of amorphous IGZO TFTs on plastic substrates.

  1. Time Effectiveness of Ultraviolet C Light (UVC) Emitted by Light Emitting Diodes (LEDs) in Reducing Stethoscope Contamination.

    PubMed

    Messina, Gabriele; Fattorini, Mattia; Nante, Nicola; Rosadini, Daniele; Serafini, Andrea; Tani, Marco; Cevenini, Gabriele

    2016-09-23

    Today it is well demonstrated that stethoscopes can be as contaminated as hands, which are a recognized source of Health-Care Associated Infections (HCAIs). Ultraviolet C (UVC) light has proven disinfection capacity and the innovative UVC technology of Light Emitting Diode (LED) shows several potential benefits. To verify whether the use of UVC LEDs is effective and reliable in stethoscope membrane disinfection after prolonged use, a pre-post intervention study was conducted. A total of 1668 five-minute cycles were performed on two UVC LEDs to simulate their use; thereafter, their disinfection capacity was tested on stethoscope membranes used on a previously auscultated volunteer. Then, a further 1249 cycles were run and finally the LEDs were tested to assess performance in reducing experimental contamination by Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli on the stethoscope membrane. Baseline volunteer contamination identified 104 Colony Forming Units (CFUs) while treated Petri dishes had 12 and 15 CFUs (p < 0.001). Statistically significant differences (p < 0.001) were also found relating to the reduction of specific bacteria: in particular, after treatment no CFU were observed for S. aureus and E. coli. UVC LEDs demonstrated the capacity to maintain high levels of disinfection after more than 240 h of use and they were effective against common microorganisms that are causative agents of HCAIs.

  2. Time Effectiveness of Ultraviolet C Light (UVC) Emitted by Light Emitting Diodes (LEDs) in Reducing Stethoscope Contamination

    PubMed Central

    Messina, Gabriele; Fattorini, Mattia; Nante, Nicola; Rosadini, Daniele; Serafini, Andrea; Tani, Marco; Cevenini, Gabriele

    2016-01-01

    Today it is well demonstrated that stethoscopes can be as contaminated as hands, which are a recognized source of Health-Care Associated Infections (HCAIs). Ultraviolet C (UVC) light has proven disinfection capacity and the innovative UVC technology of Light Emitting Diode (LED) shows several potential benefits. To verify whether the use of UVC LEDs is effective and reliable in stethoscope membrane disinfection after prolonged use, a pre-post intervention study was conducted. A total of 1668 five-minute cycles were performed on two UVC LEDs to simulate their use; thereafter, their disinfection capacity was tested on stethoscope membranes used on a previously auscultated volunteer. Then, a further 1249 cycles were run and finally the LEDs were tested to assess performance in reducing experimental contamination by Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli on the stethoscope membrane. Baseline volunteer contamination identified 104 Colony Forming Units (CFUs) while treated Petri dishes had 12 and 15 CFUs (p < 0.001). Statistically significant differences (p < 0.001) were also found relating to the reduction of specific bacteria: in particular, after treatment no CFU were observed for S. aureus and E. coli. UVC LEDs demonstrated the capacity to maintain high levels of disinfection after more than 240 h of use and they were effective against common microorganisms that are causative agents of HCAIs. PMID:27669273

  3. Improvement of electrical and optical properties of p-GaN Ohmic metals under ultraviolet light irradiation annealing processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chae, S.W.; Yoon, S.K.; Kwak, J.S.

    2006-05-15

    We report the improvement of electrical and optical properties of p-GaN Ohmic metals, ZnNi(10 nm)/Au(10 nm), by ultraviolet (UV) light irradiation. After UV light irradiation, the specific contact resistance of p-GaN decreased slightly from 2.99x10{sup -4} to 2.54x10{sup -4} {omega} cm{sup 2}, while the transmittance of the contact layer increased form 75% to 85% at a wavelength of 460 nm. In addition, the forward voltage of InGaN/GaN light-emitting diode chip at 20 mA decreased from 3.55 to 3.45 V, and the output power increased form 18 to 25 mW by UV light irradiation. The low resistance and high transmittance ofmore » the p-GaN Ohmic metals are attributed to the reduced Shottky barrier by the formation of gallium oxide and the increased oxidation of p-Ohmic metals, respectively, due to ozone generated form oxygen during UV light irradiation.« less

  4. Performance improvement of AlGaN-based deep-ultraviolet light-emitting diodes via Al-composition graded quantum wells

    NASA Astrophysics Data System (ADS)

    Lu, Lin; Zhang, Yu; Xu, Fujun; Ding, Gege; Liu, Yuhang

    2018-06-01

    Characteristics of AlGaN-based deep-ultraviolet light-emitting diodes (DUV-LEDs) with step-like and Al-composition graded quantum wells have been investigated. The simulation results show that compared to DUV-LEDs with the conventional AlGaN multiple quantum wells (MQWs) structure, the light output power (LOP) and efficiency droop of DUV-LEDs with the Al-composition graded wells were remarkably improved. The key factor accounting for the improved performance is ascribed to the better modulation of carrier distribution in the quantum wells to increase the overlap between electron and hole wavefunctions, which contributes to more efficient recombination of electrons and holes, and thereby a significant enhancement in the LOP.

  5. Low-threshold voltage ultraviolet light-emitting diodes based on (Al,Ga)N metal-insulator-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Liang, Yu-Han; Towe, Elias

    2017-12-01

    Al-rich III-nitride-based deep-ultraviolet (UV) (275-320 nm) light-emitting diodes are plagued with a low emission efficiency and high turn-on voltages. We report Al-rich (Al,Ga)N metal-insulator-semiconductor UV light-emitting Schottky diodes with low turn-on voltages of <3 V, which are about half those of typical (Al,Ga)N p-i-n diodes. Our devices use a thin AlN film as the insulator and an n-type Al0.58Ga0.42N film as the semiconductor. To improve the efficiency, we inserted a GaN quantum-well structure between the AlN insulator and the n-type Al x Ga1- x N semiconductor. The benefits of the quantum-well structure include the potential to tune the emission wavelength and the capability to confine carriers for more efficient radiative recombination.

  6. Egg colour matching in an African cuckoo, as revealed by ultraviolet-visible reflectance spectrophotometry.

    PubMed Central

    Cherry, M I; Bennett, A T

    2001-01-01

    Despite major differences between human and avian colour vision, previous studies of cuckoo egg mimicry have used human colour vision (or standards based thereon) to assess colour matching. Using ultraviolet-visible reflectance spectrophotometry (300-700 nm), we measured museum collections of eggs of the red-chested cuckoo and its hosts. The first three principal components explained more than 99% of the variance in spectra, and measures of cuckoo host egg similarity derived from these transformations were compared with measures of cuckoo host egg similarity estimated by human observers unaware of the hypotheses we were testing. Monte Carlo methods were used to simulate laying of cuckoo eggs at random in nests. Results showed that host and cuckoo eggs were very highly matched for an ultraviolet versus greenness component, which was not detected by humans. Furthermore, whereas cuckoo and host were dissimilar in achromatic brightness, humans did not detect this difference. Our study thus reveals aspects of cuckoo-host egg colour matching which have hitherto not been described. These results suggest subtleties and complexities in the evolution of host-cuckoo egg mimicry that were not previously suspected. Our results also have the potential to explain the longstanding paradox that some host species accept cuckoo eggs that are non-mimetic to the human eye. PMID:11297172

  7. Simultaneous multi-wavelength ultraviolet excited single-phase white light emitting phosphor Ba1-x(Zr,Ti)Si3O9:xEu

    NASA Astrophysics Data System (ADS)

    Zhou, Zhenzhen; Liu, Guanghui; Ni, Jia; Liu, Wanlu; Liu, Qian

    2018-05-01

    A kind of novel compound Ba1-x(Zr,Ti)Si3O9:xEu simultaneously activated by different-valence Eu2+ and Eu3+ ions has been successfully synthesized. The existence of Ti4+-O2- charge transfer (CT) transitions in Ba1-xZrSi3O9:xEu is proved by the photoluminescence spectra and first principle calculations, and the Ti4+ ions come from the impurities in commercial ZrO2 raw materials. Under the excitation of multi-wavelength ultraviolet radiation (λEX = 392, 260, 180 nm), Ba1-xZrSi3O9:xEu (x = 0.15) can directly emit nearly white light. The coexistence of multiple luminescent centers and the energy transfer among Zr4+-O2- CT state, Ti4+-O2- CT state, Eu2+ and Eu3+ ions play important roles in the white light emission. Ba1-xZrSi3O9:xEu (x = 0.15) has good thermal stability, in particular, the intensity of emission spectrum (λEX = 392 nm) at 150 °C is ∼96% of that at room temperature. In general, the multi-wavelength ultraviolet-excited single-phase white light emitting phosphor Ba1-x(Zr,Ti)Si3O9:xEu possesses a promise for applications in white light emitting diodes (WLEDs), agriculture, medicine and other photonic fields.

  8. Upper-Room Ultraviolet Light and Negative Air Ionization to Prevent Tuberculosis Transmission

    PubMed Central

    Escombe, A. Roderick; Moore, David A. J; Gilman, Robert H; Navincopa, Marcos; Ticona, Eduardo; Mitchell, Bailey; Noakes, Catherine; Martínez, Carlos; Sheen, Patricia; Ramirez, Rocio; Quino, Willi; Gonzalez, Armando; Friedland, Jon S; Evans, Carlton A

    2009-01-01

    Background Institutional tuberculosis (TB) transmission is an important public health problem highlighted by the HIV/AIDS pandemic and the emergence of multidrug- and extensively drug-resistant TB. Effective TB infection control measures are urgently needed. We evaluated the efficacy of upper-room ultraviolet (UV) lights and negative air ionization for preventing airborne TB transmission using a guinea pig air-sampling model to measure the TB infectiousness of ward air. Methods and Findings For 535 consecutive days, exhaust air from an HIV-TB ward in Lima, Perú, was passed through three guinea pig air-sampling enclosures each housing approximately 150 guinea pigs, using a 2-d cycle. On UV-off days, ward air passed in parallel through a control animal enclosure and a similar enclosure containing negative ionizers. On UV-on days, UV lights and mixing fans were turned on in the ward, and a third animal enclosure alone received ward air. TB infection in guinea pigs was defined by monthly tuberculin skin tests. All guinea pigs underwent autopsy to test for TB disease, defined by characteristic autopsy changes or by the culture of Mycobacterium tuberculosis from organs. 35% (106/304) of guinea pigs in the control group developed TB infection, and this was reduced to 14% (43/303) by ionizers, and to 9.5% (29/307) by UV lights (both p < 0.0001 compared with the control group). TB disease was confirmed in 8.6% (26/304) of control group animals, and this was reduced to 4.3% (13/303) by ionizers, and to 3.6% (11/307) by UV lights (both p < 0.03 compared with the control group). Time-to-event analysis demonstrated that TB infection was prevented by ionizers (log-rank 27; p < 0.0001) and by UV lights (log-rank 46; p < 0.0001). Time-to-event analysis also demonstrated that TB disease was prevented by ionizers (log-rank 3.7; p = 0.055) and by UV lights (log-rank 5.4; p = 0.02). An alternative analysis using an airborne infection model demonstrated that ionizers prevented 60% of

  9. Aluminum nitride nanowire light emitting diodes: Breaking the fundamental bottleneck of deep ultraviolet light sources

    PubMed Central

    Zhao, S.; Connie, A. T.; Dastjerdi, M. H. T.; Kong, X. H.; Wang, Q.; Djavid, M.; Sadaf, S.; Liu, X. D.; Shih, I.; Guo, H.; Mi, Z.

    2015-01-01

    Despite broad interest in aluminum gallium nitride (AlGaN) optoelectronic devices for deep ultraviolet (DUV) applications, the performance of conventional Al(Ga)N planar devices drastically decays when approaching the AlN end, including low internal quantum efficiencies (IQEs) and high device operation voltages. Here we show that these challenges can be addressed by utilizing nitrogen (N) polar Al(Ga)N nanowires grown directly on Si substrate. By carefully tuning the synthesis conditions, a record IQE of 80% can be realized with N-polar AlN nanowires, which is nearly ten times higher compared to high quality planar AlN. The first 210 nm emitting AlN nanowire light emitting diodes (LEDs) were achieved, with a turn on voltage of about 6 V, which is significantly lower than the commonly observed 20 – 40 V. This can be ascribed to both efficient Mg doping by controlling the nanowire growth rate and N-polarity induced internal electrical field that favors hole injection. In the end, high performance N-polar AlGaN nanowire LEDs with emission wavelengths covering the UV-B/C bands were also demonstrated. PMID:25684335

  10. Enhanced Output Power of Near-Ultraviolet Light-Emitting Diodes by p-GaN Micro-Rods

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Sheng; Zhang, Ke-Xiong; Liang, Hong-Wei; Song, Shi-Wei; Yang, De-Chao; Shen, Ren-Sheng; Liu, Yang; Xia, Xiao-Chuan; Luo, Ying-Min; Du, Guo-Tong

    2014-02-01

    Near-ultraviolet (UV) InGaN/AlGaN light-emitting diodes (LEDs) are grown by low-pressure metal-organic chemical vapor deposition. The scanning electronic microscope image shows that the p-GaN micro-rods are formed above the interface of p-AlGaN/p-GaN due to the rapid growth rate of p-GaN in the vertical direction. The p-GaN micro-rods greatly increase the escape probability of photons inside the LED structure. Electroluminescence intensities of the 372 nm UV LED lamps with p-GaN micro rods are 88% higher than those of the flat surface LED samples.

  11. Ultraviolet laser ablation as technique for defect repair of GaN-based light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Passow, Thorsten; Kunzer, Michael; Pfeuffer, Alexander; Binder, Michael; Wagner, Joachim

    2018-03-01

    Defect repair of GaN-based light-emitting diodes (LEDs) by ultraviolet laser micromachining is reported. Percussion and helical drilling in GaN by laser ablation were investigated using 248 nm nanosecond and 355 nm picosecond pulses. The influence of laser ablation including different laser parameters on electrical and optical properties of GaN-based LED chips was evaluated. The results for LEDs on sapphire with transparent conductive oxide p-type contact on top as well as for thin-film LEDs are reported. A reduction of leakage current by up to six orders in magnitude and homogeneous luminance distribution after proper laser defect treatment were achieved.

  12. Near-ultraviolet light-emitting diodes with transparent conducting layer of gold-doped multi-layer graphene

    NASA Astrophysics Data System (ADS)

    Cho, Chu-Young; Choe, Minhyeok; Lee, Sang-Jun; Hong, Sang-Hyun; Lee, Takhee; Lim, Wantae; Kim, Sung-Tae; Park, Seong-Ju

    2013-03-01

    We report on gold (Au)-doped multi-layer graphene (MLG), which can be used as a transparent conducting layer in near-ultraviolet light-emitting diodes (NUV-LEDs). The optical output power of NUV-LEDs with thermally annealed Au-doped MLG was increased by 34% compared with that of NUV-LEDs with a bare MLG. This result is attributed to the reduced sheet resistance and the enhanced current injection efficiency of NUV-LEDs by the thermally annealed Au-doped MLG film, which shows high transmittance in NUV and UV regions and good adhesion of Au-doped MLG on p-GaN layer of NUV-LEDs.

  13. Lighting theory and luminous characteristics of white light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Uchida, Yuji; Taguchi, Tsunemasa

    2005-12-01

    A near-ultraviolet (UV)-based white light-emitting diode (LED) lighting system linked with a semiconductor InGaN LED and compound phosphors for general lighting applications is proposed. We have developed for the first time a novel type of high-color rendering index (Ra) white LED light source, which is composed of near-UV LED and multiphosphor materials showing orange (O), yellow (Y), green (G), and blue (B) emissions. The white LED shows the superior characteristics of luminous efficacy and high Ra to be about 40 lm/W and 93, respectively. Luminous and chromaticity characteristics, and their spectral distribution of the present white LED can be evaluated using the multipoint LED light source theory. It is revealed that the OYGB white LED can provide better irradiance properties than that of conventional white LEDs. Near-UV white LED technologies, in conjunction with phosphor blends, can offer superior color uniformity, high Ra, and excellent light quality. Consequently we are carrying out a "white LEDs for medical applications" program in the second phase of this national project from 2004 to 2009.

  14. Flexible liquid core light guide with focusing and light shaping attachments

    DOEpatents

    Kross, B.J.; Majewski, S.; Zorn, C.J.; Majewski, L.A.

    1997-11-04

    A liquid light guide system for ultraviolet light is disclosed that has a light shaping arrangement for the emitted light, a stable liquid core and sheath and reliable and effective end closures. 12 figs.

  15. Measurement system to determine the total and angle-resolved light scattering of optical components in the deep-ultraviolet and vacuum-ultraviolet spectral regions

    NASA Astrophysics Data System (ADS)

    Schröder, Sven; Gliech, Stefan; Duparré, Angela

    2005-10-01

    An instrumentation for total and angle-resolved scattering (ARS) at 193 and 157 nm has been developed at the Fraunhofer Institute in Jena to meet the severe requirements for scattering analysis of deep- and vacuum-ultraviolet optical components. Extremely low backscattering levels of 10^-6 for the total scattering measurements and more than 9 orders of magnitude dynamic range for ARS have been accomplished. Examples of application extend from the control of at-wavelength scattering losses of superpolished substrates with rms roughness as small as 0.1 nm to the detection of volume material scattering and the study into the scattering of multilayer coatings. In addition, software programs were developed to model the roughness-induced light scattering of substrates and thin-film coatings.

  16. Transparent ultraviolet photovoltaic cells.

    PubMed

    Yang, Xun; Shan, Chong-Xin; Lu, Ying-Jie; Xie, Xiu-Hua; Li, Bing-Hui; Wang, Shuang-Peng; Jiang, Ming-Ming; Shen, De-Zhen

    2016-02-15

    Photovoltaic cells have been fabricated from p-GaN/MgO/n-ZnO structures. The photovoltaic cells are transparent to visible light and can transform ultraviolet irradiation into electrical signals. The efficiency of the photovoltaic cells is 0.025% under simulated AM 1.5 illumination conditions, while it can reach 0.46% under UV illumination. By connecting several such photovoltaic cells in a series, light-emitting devices can be lighting. The photovoltaic cells reported in this Letter may promise the applications in glass of buildings to prevent UV irradiation and produce power for household appliances in the future.

  17. Abnormal hump in capacitance-voltage measurements induced by ultraviolet light in a-IGZO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Tsao, Yu-Ching; Chang, Ting-Chang; Chen, Hua-Mao; Chen, Bo-Wei; Chiang, Hsiao-Cheng; Chen, Guan-Fu; Chien, Yu-Chieh; Tai, Ya-Hsiang; Hung, Yu-Ju; Huang, Shin-Ping; Yang, Chung-Yi; Chou, Wu-Ching

    2017-01-01

    This work demonstrates the generation of abnormal capacitance for amorphous indium-gallium-zinc oxide (a-InGaZnO4) thin-film transistors after being subjected to negative bias stress under ultraviolet light illumination stress (NBIS). At various operation frequencies, there are two-step tendencies in their capacitance-voltage curves. When gate bias is smaller than threshold voltage, the measured capacitance is dominated by interface defects. Conversely, the measured capacitance is dominated by oxygen vacancies when gate bias is larger than threshold voltage. The impact of these interface defects and oxygen vacancies on capacitance-voltage curves is verified by TCAD simulation software.

  18. An ultraviolet responsive hybrid solar cell based on titania/poly(3-hexylthiophene).

    PubMed

    Wu, Jihuai; Yue, Gentian; Xiao, Yaoming; Lin, Jianming; Huang, Miaoliang; Lan, Zhang; Tang, Qunwei; Huang, Yunfang; Fan, Leqing; Yin, Shu; Sato, Tsugio

    2013-01-01

    Here we present an ultraviolet responsive inorganic-organic hybrid solar cell based on titania/poly(3-hexylthiophene) (TiO(2)/P3HT) heterojuction. In this solar cell, TiO(2) is an ultraviolet light absorber and electronic conductor, P3HT is a hole conductor, the light-to-electrical conversion is realized by the cooperation for these two components. Doping ionic salt in P3HT polymer can improve the photovoltaic performance of the solar cell. Under ultraviolet light irradiation with intensity of 100 mW·cm(-2), the hybrid solar cell doped with 1.0 wt.% lithium iodide achieves an energy conversion efficiency of 1.28%, which is increased by 33.3% compared to that of the hybrid solar cell without lithium iodide doping. Our results open a novel sunlight irradiation field for solar energy utilization, demonstrate the feasibility of ultraviolet responsive solar cells, and provide a new route for enhancing the photovoltaic performance of solar cells.

  19. An ultraviolet responsive hybrid solar cell based on titania/poly(3-hexylthiophene)

    PubMed Central

    Wu, Jihuai; Yue, Gentian; Xiao, Yaoming; Lin, Jianming; Huang, Miaoliang; Lan, Zhang; Tang, Qunwei; Huang, Yunfang; Fan, Leqing; Yin, Shu; Sato, Tsugio

    2013-01-01

    Here we present an ultraviolet responsive inorganic-organic hybrid solar cell based on titania/poly(3-hexylthiophene) (TiO2/P3HT) heterojuction. In this solar cell, TiO2 is an ultraviolet light absorber and electronic conductor, P3HT is a hole conductor, the light-to-electrical conversion is realized by the cooperation for these two components. Doping ionic salt in P3HT polymer can improve the photovoltaic performance of the solar cell. Under ultraviolet light irradiation with intensity of 100 mW·cm−2, the hybrid solar cell doped with 1.0 wt.% lithium iodide achieves an energy conversion efficiency of 1.28%, which is increased by 33.3% compared to that of the hybrid solar cell without lithium iodide doping. Our results open a novel sunlight irradiation field for solar energy utilization, demonstrate the feasibility of ultraviolet responsive solar cells, and provide a new route for enhancing the photovoltaic performance of solar cells. PMID:23412470

  20. Rapid diagnosis of sensitivity to ultraviolet light in fibroblasts from dermatologic disorders, with particular reference to xeroderma pigmentosum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleaver, J.E.; Thomas, G.H.

    1988-04-01

    A rapid and simple method for determining the sensitivity of human fibroblasts to ultraviolet light is described. As an alternative to the colony formation assay, this method can be used for the rapid diagnosis of ultraviolet light sensitivity in fibroblasts from photosensitive disorders. The method is based on growth of small numbers of cells in 1-cm wells of culture trays for 4 or more days after irradiation and determination of cell survival by the incorporation of (/sup 3/H)hypoxanthine. D37 values (the dose at which 37% of the control level of incorporation remains) obtained from this procedure showed the same relativemore » sensitivity of normal and xeroderma pigmentosum fibroblasts as was obtained by colony formation. Untransformed and SV40-transformed fibroblasts, which have different growth rates and different responses to high cell densities, gave different D37 values by this assay in culture trays as compared with colony formation. Comparison of relative sensitivities to irradiation should therefore be made only between cell types with similar growth characteristics. The similar sensitivity of normal and xeroderma pigmentosum cells to mitomycin C was also determined by this culture tray method. By increasing cell density at the beginning of the experiments, a greater capacity of group C compared with group D fibroblasts for recovery from potentially lethal damage was also detected.« less

  1. OAO-2 observations of the zodiacal light

    NASA Technical Reports Server (NTRS)

    Lillie, C. F.

    1972-01-01

    Photometric measurements of the night sky brightness have been obtained at twelve wavelengths between 1000 A and 4300 A from above the earth's atmosphere. A preliminary analysis of the data reveals a component of the sky brightness with ecliptic symmetry and an intensity distribution similar to that of the zodiacal light. The ultraviolet spectrum of the zodiacal light can be closely approximated with a two component model in which one component has an albedo proportional to the wavelength lambda and the other component has a scattering efficiency proportional to lambda to lbe minus 19 power.

  2. Efficacy of ultraviolet light exposure against survival of Listeria monocytogenes on conveyor belts.

    PubMed

    Morey, Amit; McKee, Shelly R; Dickson, James S; Singh, Manpreet

    2010-06-01

    Listeria monocytogenes has been repeatedly isolated from foods and food-processing facilities including food contact surfaces such as conveyor belts (CB). CBs are often difficult to clean and require rigorous sanitation programs for decontamination. Ultraviolet (UV) light has exhibited microbicidal properties on food contact surfaces and this study was conducted to determine the efficacy of UV against L. monocytogenes on CB made of different materials. A four-strain cocktail of L. monocytogenes (serotypes 3A, 4A, 4B, and 4C) was made to give a suspension of approximately 10(7) CFU/mL. CBs made from four different types of materials, (1) Ropanyl DM 8/2 A2 + 04 (belt 1), (2) Volta FRMW-3.0 (belt 2), (3) Volta FRMB-3.0 (belt 3), and (4) Ropanyl DM (belt 4), were inoculated with 1 mL of the four-strain cocktail (approximately 10(7) CFU/mL) of the bacterial suspension. CBs were treated with UV light (254 nm) for 1 and 3 sec at 5.53 and 5.95 mW/cm(2). Three replications of the experiments were conducted. Two-way analysis of variance of survival populations of L. monocytogenes showed that bacterial counts were significantly reduced (p < 0.05) on all belt types irrespective of UV light intensities and times of exposure. L. monocytogenes populations were reduced (p < 0.05) to below detection limits on belts 1, 2, and 3 after exposure to 5.95 mW/cm(2) UV light intensity for 3 sec. L. monocytogenes-inoculated CBs that were exposed to 5.53 mW/cm(2) showed higher (p < 0.05) survival populations of L. monocytogenes compared with 5.95 mW/cm(2) on all the four CBs. Belt 4 showed survival populations of L. monocytogenes ranging from 1.42 to 1.73 log(10) CFU/cm(2) after UV light treatment for 1 and 3 sec. UV light can be effectively used to reduce L. monocytogenes contamination on CBs.

  3. Broadband sensitized white light emission of g-C{sub 3}N{sub 4}/Y{sub 2}MoO{sub 6}:Eu{sup 3+} composite phosphor under near ultraviolet excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Bing, E-mail: hanbing@zzuli.edu.cn; Xue, Yongfei; Li, Pengju

    2015-12-15

    The g-C{sub 3}N{sub 4}/Y{sub 2}MoO{sub 6}:Eu{sup 3+} composite phosphors were synthesized and characterized by X-ray diffraction, Fourier transform-infrared spectroscopy, ultraviolet visible diffuse reflection spectra, photoluminescence spectra and luminescence decay curves. Under the excitation of 360 nm near ultraviolet light, these composite phosphors show tunable emission from blue to red region, in which white light emission can be obtained in term of appropriate quality proportion of Y{sub 2}MoO{sub 6}:Eu{sup 3+} relative to g-C{sub 3}N{sub 4}/Y{sub 2}MoO{sub 6}:Eu{sup 3+}. In addition, the emission color can be also dependent on the excitation wavelength in g-C{sub 3}N{sub 4}/Y{sub 2}MoO{sub 6}:Eu{sup 3+} composite phosphor. -more » Graphical abstract: Under the excitation of 360 nm near ultraviolet light, the g-C{sub 3}N{sub 4}/Y{sub 2}MoO{sub 6}:Eu{sup 3+} composite phosphors show tunable emission from blue to red region, in which white light emission can be obtained. - Highlights: • The g-C3N4/Y2MoO6:Eu{sup 3+} composite phosphors were synthesized and characterized. • White light emission was realized in the g-C3N4/Y2MoO6:Eu{sup 3+} composites under UV excitation. • A novel idea to realize the broadband sensitized white light emission in phosphors was provided.« less

  4. Ultra-fast switching of light by absorption saturation in vacuum ultra-violet region.

    PubMed

    Yoneda, Hitoki; Inubushi, Yuichi; Tanaka, Toshihiro; Yamaguchi, Yuta; Sato, Fumiya; Morimoto, Shunsuke; Kumagai, Taisuke; Nagasono, Mitsuru; Higashiya, Atsushi; Yabashi, Makina; Ishikawa, Tetsuya; Ohashi, Haruhiko; Kimura, Hiroaki; Kitamura, Hikaru; Kodama, Ryosuke

    2009-12-21

    Advances in free electron lasers producing high energy photons [Nat. Photonics 2(9), 555-559 (2008)] are expected to open up a new science of nonlinear optics of high energy photons. Specifically, lasers of photon energy higher than the plasma frequency of a metal can show new interaction features because they can penetrate deeply into metals without strong reflection. Here we show the observation of ultra-fast switching of vacuum ultra-violet (VUV) light caused by saturable absorption of a solid metal target. A strong gating is observed at energy fluences above 6J/cm2 at wavelength of 51 nm with tin metal thin layers. The ratio of the transmission at high intensity to low intensity is typically greater than 100:1. This means we can design new nonlinear photonic devices such as auto-correlator and pulse slicer for the VUV region.

  5. Effect of Ultraviolet Light Irradiation on Structure and Electrochemical Properties of Iron Surface

    NASA Astrophysics Data System (ADS)

    Nanjo, Hiroshi; Deng, Huihua; Oconer, Irmin S.; Ishikawa, Ikuo; Suzuki, Toshishige M.

    2005-01-01

    The effect of ultraviolet light (UV) irradiation (254 nm, 0.8 mW/cm2) on air-formed oxide films and passivated films on iron was investigated by electrochemical methods and scanning tunneling microscopy (STM), in particular with respect to surface micro/nanostructures and the surface protective property. An as-deposited film appeared uniformly flat after UV irradiation for 2-4 h, which is associated with a decrease in current density. UV irradiation for 1-4 h assisted N-dodecylhydroxamic acid (DHA) molecules to strongly bond to the air-formed oxide film. UV irradiation for 1 h led to the formation of a flat terrace of atomic resolution on a surface passivated at 800 mV for 15 min. However, it was difficult to observe a terrace wider than 3 nm on the passive film irradiated for 4 h.

  6. Effect of Ultraviolet Light Irradiation Combined with Riboflavin on Different Bacterial Pathogens from Ocular Surface Infection.

    PubMed

    Shen, Jing; Liang, Qingfeng; Su, Guanyu; Zhang, Yang; Wang, Zhiqun; Liang, Hong; Baudouin, Christophe; Labbé, Antoine

    2017-01-01

    In order to study Staphylococcus epidermis and Staphylococcus aureus in vitro viability after the exposure to ultraviolet (UV) light and riboflavin, twelve strains of Staphylococcus epidermis and twelve strains of Staphylococcus aureus were isolated from patients with bacterial keratitis. The growth situation of Staphylococcus epidermidis and Staphylococcus aureus under different experimental conditions was qualitatively observed. The number of colonies surviving bacteria was counted under different UV light power and different exposure time. The experiment showed that there was no inhibition effect on the growth of bacteria using riboflavin alone. In UV alone group and UV-riboflavin group, inhibition effect on the bacteria growth was found. The UV-riboflavin combination had better inhibition effect on bacteria than UV irradiation alone. The amount of bacteria in the UV-riboflavin group was decreased by 99.1%~99.5% and 54.8%~64.6% in the UV alone group, when the UV light power was 10.052 mW/cm 2 and the irradiation time was 30 min. Moreover, with the increase of the UV power or irradiation time, the survival rates of bacteria were rapidly reduced. Compared with Staphylococcus aureus , Staphylococcus epidermis was more easily to be killed under the action of UV light combined with riboflavin.

  7. Photo-enhanced toxicity of fluoranthene to Gulf of Mexico marine organisms at different larval ages and ultraviolet light intensities.

    PubMed

    Finch, Bryson E; Stubblefield, William A

    2016-05-01

    Significant increases in toxicity have been observed as a result of polycyclic aromatic hydrocarbon (PAH) absorption of ultraviolet (UV) radiation in aquatic organisms. Early life stage aquatic organisms are predicted to be more susceptible to PAH photo-enhanced toxicity as a result of their translucence and tendency to inhabit shallow littoral or surface waters. The objective of the present study was to evaluate the sensitivity of varying ages of larval mysid shrimp (Americamysis bahia), inland silverside (Menidia beryllina), sheepshead minnow (Cyprinodon variegatus), and Gulf killifish (Fundulus grandis) to photo-enhanced toxicity and to examine the correlation between photo-enhanced toxicity and organism pigmentation. Organisms were exposed to fluoranthene and artificial UV light at different larval ages and results were compared using median lethal concentrations (LC50s) and the lethal time-to-death (LT50s). In addition, a high UV light intensity, short-duration (4-h) experiment was conducted at approximately 24 W/m(2) of ultraviolet radiation A (UV-A) and compared with a low-intensity, long-duration (12-h) experiment at approximately 8 W/m(2) of UV-A. The results indicated decreased toxicity with increasing age for all larval organisms. The amount of organism pigmentation was correlated with observed LC50 and LT50 values. High-intensity short-duration exposure resulted in greater toxicity than low-intensity long-duration UV treatments for mysid shrimp, inland silverside, and sheepshead minnow. Data from these experiments suggest that toxicity is dependent on age, pigmentation, UV light intensity, and fluoranthene concentration. © 2015 SETAC.

  8. Photoprotection of human skin beyond ultraviolet radiation.

    PubMed

    Grether-Beck, Susanne; Marini, Alessandra; Jaenicke, Thomas; Krutmann, Jean

    2014-01-01

    Photoprotection of human skin by means of sunscreens or daily skin-care products is traditionally centered around the prevention of acute (e.g. sunburn) and chronic (e.g. skin cancer and photoaging) skin damage that may result from exposure to ultraviolet rays (UVB and UVA). Within the last decade, however, it has been appreciated that wavelengths beyond the ultraviolet spectrum, in particular visible light and infrared radiation, contribute to skin damage in general and photoaging of human skin in particular. As a consequence, attempts have been made to develop skin care/sunscreen products that not only protect against UVB or UVA radiation but provide photoprotection against visible light and infrared radiation as well. In this article, we will briefly review the current knowledge about the mechanisms responsible for visible light/infrared radiation-induced skin damage and then, based on this information, discuss strategies that have been successfully used or may be employed in the future to achieve photoprotection of human skin beyond ultraviolet radiation. In this regard we will particularly focus on the use of topical antioxidants and the challenges that result from the task of showing their efficacy. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Aqueous humour and ultraviolet radiation.

    PubMed

    Ringvold, A

    1980-01-01

    Studies on the ultraviolet ray absorption in the aqueous humour of rabbit, cat, monkey, guinea pig, and rat showed marked species differences. In the rabbit aqueous the ascorbic acid, the proteins, and some amino acids (tyrosine, phenylalanine, cystine, and tryptophane) are together responsible for the total absorption, and a very great part of it refers to the ascorbic acid content. Accordingly, species with significant amounts of ascorbic acid in the aqueous (monkey, rabbit, guinea pig) have a greater absorption capacity towards ultraviolet radiation than species (cat, rat) lacking this substance. This effect of the ascorbic acid may contribute in protecting the lens against the most biotoxic ultraviolet rays. It seems that the ascorbic acid concentration is highest in the aqueous of typical day animals and lowest in species being active in the dark, indicating a correlation between the aqueous' ascorbic acid level and the quantity of incident light on the eye. The possible significance of changed aqueous ultraviolet ray absorption in the pathogenesis of human cataract development is discussed.

  10. Deep Ultraviolet Light Emitters Based on (Al,Ga)N/GaN Semiconductor Heterostructures

    NASA Astrophysics Data System (ADS)

    Liang, Yu-Han

    Deep ultraviolet (UV) light sources are useful in a number of applications that include sterilization, medical diagnostics, as well as chemical and biological identification. However, state-of-the-art deep UV light-emitting diodes and lasers made from semiconductors still suffer from low external quantum efficiency and low output powers. These limitations make them costly and ineffective in a wide range of applications. Deep UV sources such as lasers that currently exist are prohibitively bulky, complicated, and expensive. This is typically because they are constituted of an assemblage of two to three other lasers in tandem to facilitate sequential harmonic generation that ultimately results in the desired deep UV wavelength. For semiconductor-based deep UV sources, the most challenging difficulty has been finding ways to optimally dope the (Al,Ga)N/GaN heterostructures essential for UV-C light sources. It has proven to be very difficult to achieve high free carrier concentrations and low resistivities in high-aluminum-containing III-nitrides. As a result, p-type doped aluminum-free III-nitrides are employed as the p-type contact layers in UV light-emitting diode structures. However, because of impedance-mismatch issues, light extraction from the device and consequently the overall external quantum efficiency is drastically reduced. This problem is compounded with high losses and low gain when one tries to make UV nitride lasers. In this thesis, we provide a robust and reproducible approach to resolving most of these challenges. By using a liquid-metal-enabled growth mode in a plasma-assisted molecular beam epitaxy process, we show that highly-doped aluminum containing III-nitride films can be achieved. This growth mode is driven by kinetics. Using this approach, we have been able to achieve extremely high p-type and n-type doping in (Al,Ga)N films with high aluminum content. By incorporating a very high density of Mg atoms in (Al,Ga)N films, we have been able to

  11. Localized surface plasmon-enhanced ultraviolet electroluminescence from n-ZnO/i-ZnO/p-GaN heterojunction light-emitting diodes via optimizing the thickness of MgO spacer layer

    NASA Astrophysics Data System (ADS)

    Liu, W. Z.; Xu, H. Y.; Zhang, L. X.; Zhang, C.; Ma, J. G.; Wang, J. N.; Liu, Y. C.

    2012-10-01

    Localized surface plasmon (LSP)-enhanced ultraviolet light-emitting diodes were manufactured by introducing Ag nanoparticles and MgO spacer layer into n-ZnO/i-ZnO/p-GaN heterostructures. By optimizing the MgO thickness, which can suppress the undesired charge transfer and nonradiative Förster resonant energy transfer between Ag and ZnO, a 7-fold electroluminescence enhancement was achieved. Time-resolved and temperature-dependent photoluminescence measurements reveal that both spontaneous emission rate and internal quantum efficiency are increased as a result of coupling between ZnO excitons and Ag LSPs, and simple calculations, based on experimental data, also indicate that most of LSP's energy can be converted into the photon energy.

  12. Development of ultraviolet- and visible-light one-shot spectral domain optical coherence tomography and in situ measurements of human skin

    NASA Astrophysics Data System (ADS)

    Hirayama, Heijiro; Nakamura, Sohichiro

    2015-07-01

    We have developed ultraviolet (UV)- and visible-light one-shot spectral domain (SD) optical coherence tomography (OCT) that enables in situ imaging of human skin with an arbitrary wavelength in the UV-visible-light region (370-800 nm). We alleviated the computational burden for each color OCT image by physically dispersing the irradiating light with a color filter. The system consists of SD-OCT with multicylindrical lenses; thus, mechanical scanning of the mirror or stage is unnecessary to obtain an OCT image. Therefore, only a few dozens of milliseconds are necessary to obtain single-image data. We acquired OCT images of one subject's skin in vivo and of a skin excision ex vivo for red (R, 650±20 nm), green (G, 550±20 nm), blue (B, 450±20 nm), and UV (397±5 nm) light. In the visible-light spectrum, R light penetrated the skin and was reflected at a lower depth than G or B light. On the skin excision, we demonstrated that UV light reached the dermal layer. We anticipated that basic knowledge about the spectral properties of human skin in the depth direction could be acquired with this system.

  13. Development of ultraviolet- and visible-light one-shot spectral domain optical coherence tomography and in situ measurements of human skin.

    PubMed

    Hirayama, Heijiro; Nakamura, Sohichiro

    2015-07-01

    We have developed ultraviolet (UV)- and visible-light one-shot spectral domain (SD) optical coherence tomography (OCT) that enables in situ imaging of human skin with an arbitrary wavelength in the UV-visible-light region (370-800 nm). We alleviated the computational burden for each color OCT image by physically dispersing the irradiating light with a color filter. The system consists of SD-OCT with multicylindrical lenses; thus, mechanical scanning of the mirror or stage is unnecessary to obtain an OCT image. Therefore, only a few dozens of milliseconds are necessary to obtain single-image data. We acquired OCT images of one subject's skin in vivo and of a skin excision ex vivo for red (R, 650 ± 20 nm), green (G, 550 ± 20 nm), blue (B, 450 ± 20 nm), and UV (397 ± 5 nm) light. In the visible-light spectrum, R light penetrated the skin and was reflected at a lower depth than G or B light. On the skin excision, we demonstrated that UV light reached the dermal layer. We anticipated that basic knowledge about the spectral properties of human skin in the depth direction could be acquired with this system.

  14. Horizontal supergranule-scale motions inferred from TRACE ultraviolet observations of the chromosphere

    NASA Astrophysics Data System (ADS)

    Tian, H.; Potts, H. E.; Marsch, E.; Attie, R.; He, J.-S.

    2010-09-01

    Aims: We study horizontal supergranule-scale motions revealed by TRACE observation of the chromospheric emission, and investigate the coupling between the chromosphere and the underlying photosphere. Methods: A highly efficient feature-tracking technique called balltracking has been applied for the first time to the image sequences obtained by TRACE (transition region and coronal explorer) in the passband of white light and the three ultraviolet passbands centered at 1700 Å, 1600 Å, and 1550 Å. The resulting velocity fields have been spatially smoothed and temporally averaged in order to reveal horizontal supergranule-scale motions that may exist at the emission heights of these passbands. Results: We find indeed a high correlation between the horizontal velocities derived in the white-light and ultraviolet passbands. The horizontal velocities derived from the chromospheric and photospheric emission are comparable in magnitude. Conclusions: The horizontal motions derived in the UV passbands might indicate the existence of a supergranule-scale magneto-convection in the chromosphere, which may shed new light on the study of mass and energy supply to the corona and solar wind at the height of the chromosphere. However, it is also possible that the apparent motions reflect the chromospheric brightness evolution as produced by acoustic shocks which might be modulated by the photospheric granular motions in their excitation process, or advected partly by the supergranule-scale flow towards the network while propagating upward from the photosphere. To reach a firm conclusion, it is necessary to investigate the role of granular motions in the excitation of shocks through numerical modeling, and future high-cadence chromospheric magnetograms must be scrutinized.

  15. A far-ultraviolet contamination-irradiation facility for in situ reflectance measurements

    NASA Astrophysics Data System (ADS)

    Meier, Steven R.; Tveekrem, June L.; Keski-Kuha, Ritva A. M.

    1998-10-01

    In this article, a contamination-irradiation facility designed to measure contamination effects on far-ultraviolet optical surfaces is described. An innovative feature of the facility is the capability of depositing a contaminant, photopolymerizing the contaminant with far-ultraviolet light, and measuring the reflectance of the contaminated sample, all in situ. In addition to describing the facility, we present far-ultraviolet reflectance measurements for a contaminated mirror.

  16. Condenser for ring-field deep ultraviolet and extreme ultraviolet lithography

    DOEpatents

    Chapman, Henry N.; Nugent, Keith A.

    2002-01-01

    A condenser for use with a ring-field deep ultraviolet or extreme ultraviolet lithography system. A condenser includes a ripple-plate mirror which is illuminated by a collimated or converging beam at grazing incidence. The ripple plate comprises a flat or curved plate mirror into which is formed a series of channels along an axis of the mirror to produce a series of concave surfaces in an undulating pattern. Light incident along the channels of the mirror is reflected onto a series of cones. The distribution of slopes on the ripple plate leads to a distribution of angles of reflection of the incident beam. This distribution has the form of an arc, with the extremes of the arc given by the greatest slope in the ripple plate. An imaging mirror focuses this distribution to a ring-field arc at the mask plane.

  17. Condenser for ring-field deep-ultraviolet and extreme-ultraviolet lithography

    DOEpatents

    Chapman, Henry N.; Nugent, Keith A.

    2001-01-01

    A condenser for use with a ring-field deep ultraviolet or extreme ultraviolet lithography system. A condenser includes a ripple-plate mirror which is illuminated by a collimated beam at grazing incidence. The ripple plate comprises a plate mirror into which is formed a series of channels along an axis of the mirror to produce a series of concave surfaces in an undulating pattern. Light incident along the channels of the mirror is reflected onto a series of cones. The distribution of slopes on the ripple plate leads to a distribution of angles of reflection of the incident beam. This distribution has the form of an arc, with the extremes of the arc given by the greatest slope in the ripple plate. An imaging mirror focuses this distribution to a ring-field arc at the mask plane.

  18. Polarization of III-nitride blue and ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Shakya, J.; Knabe, K.; Kim, K. H.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2005-02-01

    Polarization-resolved electroluminescence studies of III-nitride blue and ultraviolet (UV) light-emitting diodes (LEDs) were performed. The LEDs were fabricated on nitride materials grown by metalorganic chemical vapor deposition on sapphire substrates (0001). Transverse electric (TE) polarization dominates in the InGaN/GaN quantum-well (QW) blue LEDs (λ'=458nm), whereas transverse magnetic (TM) polarization is dominant in the AlInGaN QW UV LEDs (λ=333nm). For the case of edge emission in blue LEDs, a ratio (r=I⊥/I ‖) of about 1.8:1 was observed between the EL intensities with polarization E ⊥c (TE mode) and E ‖c (TM mode), which corresponds to a degree of polarization ˜0.29. The UV LEDs exhibit a ratio r of about 1:2.3, corresponding to a degree of polarization ˜0.4. This is due to the fact that the degree of polarization of the bandedge emission of the AlxInyGa1-x -yN active layer changes with Al concentration. The low emission efficiency of nitride UV LEDs is partly related to this polarization property. Possible consequences and ways to enhance UV emitter performances related to this unique polarization property are discussed.

  19. Construction, alignment, and implementation of an acousto-optical deflector-based system for patterned uncaging with ultraviolet light.

    PubMed

    Civillico, Eugene F; Shoham, Shy; O'Connor, Daniel H; Sarkisov, Dmitry V; Wang, Samuel S-H

    2012-08-01

    The method of patterned photoactivation is a natural fit for the study of neuronal dendritic integration. Photoactivatable molecules that influence a wide range of extracellular and intracellular neurophysiological functions are available. The choice of photosensitive molecules depends on the research question and will influence the design of the experimental apparatus. An acousto-optical deflector (AOD)-based system can be used for rapid ultraviolet (UV) photolysis in arbitrary spatial and temporal patterns. Photolysis-activated "caged" diffusible molecules or newer light-sensitive membrane proteins can be used in this system. This protocol describes the addition of a UV beam for uncaging to a homebuilt two-photon microscope. The goal is to get UV light from the light source (laser) to the approximate center of the objective's back aperture, passing through a pair of perpendicularly oriented AODs along the way. The protocol also describes the fine alignment of the UV beam and the implementation of AOD-based beam steering. Performing the final alignment with the beam passing through the AODs will ensure that the system is optimized for the idiosyncrasies of the crystals.

  20. Effectiveness of automated ultraviolet-C light for decontamination of textiles inoculated with Enterococcus faecium.

    PubMed

    Smolle, C; Huss, F; Lindblad, M; Reischies, F; Tano, E

    2018-01-01

    Healthcare textiles are increasingly recognized as potential vehicles for transmission of hospital-acquired infections. This study tested the ability of an automated ultraviolet-C (UV-C) room disinfection device (Tru-D Smart UV-C) to decontaminate textiles inoculated with Enterococcus faecium in a clinical setting. Contaminated polycotton (50/50 polyester/cotton) swatches were distributed to predefined locations in a ward room and exposed to UV-C light. UV-C decontamination reduced E. faecium counts by a mean log 10 reduction factor of 1.37 (all P = 0.005, Wilcoxon signed rank test). UV-C decontamination may be a feasible adjunctive measure to conventional laundering to preserve the cleanliness of healthcare textiles in ward rooms. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  1. Highly ultraviolet transparent textured indium tin oxide thin films and the application in light emitting diodes

    NASA Astrophysics Data System (ADS)

    Chen, Zimin; Zhuo, Yi; Tu, Wenbin; Ma, Xuejin; Pei, Yanli; Wang, Chengxin; Wang, Gang

    2017-06-01

    Various kinds of materials have been developed as transparent conductors for applications in semiconductor optoelectronic devices. However, there is a bottleneck that transparent conductive materials lose their transparency at ultraviolet (UV) wavelengths and could not meet the demands for commercial UV device applications. In this work, textured indium tin oxide (ITO) is grown and its potential to be used at UV wavelengths is explored. It is observed that the pronounced Burstein-Moss effect could widen the optical bandgap of the textured ITO to 4.7 eV. The average transmittance in UVA (315 nm-400 nm) and UVB (280 nm-315 nm) ranges is as high as 94% and 74%, respectively. The excellent optical property of textured ITO is attributed to its unique structural property. The compatibility of textured ITO thin films to the device fabrication is demonstrated on 368-nm nitride-based light emitting diodes, and the enhancement of light output power by 14.8% is observed compared to sputtered ITO.

  2. Pulsed ultraviolet light reduces immunoglobulin E binding to Atlantic white shrimp (Litopenaeus setiferus) extract.

    PubMed

    Shriver, Sandra; Yang, Wade; Chung, Si-Yin; Percival, Susan

    2011-07-01

    Pulsed ultraviolet light (PUV), a novel food processing and preservation technology, has been shown to reduce allergen levels in peanut and soybean samples. In this study, the efficacy of using PUV to reduce the reactivity of the major shrimp allergen, tropomyosin (36-kDa), and to attenuate immunoglobulin E (IgE) binding to shrimp extract was examined. Atlantic white shrimp (Litopenaeus setiferus) extract was treated with PUV (3 pulses/s, 10 cm from light source) for 4 min. Tropomyosin was compared in the untreated, boiled, PUV-treated and [boiled+PUV]-treated samples, and changes in the tropomyosin levels were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). IgE binding of the treated extract was analyzed via immunoblot and enzyme-linked immunosorbent assay (ELISA) using pooled human plasma containing IgE antibodies against shrimp allergens. Results showed that levels of tropomyosin and IgE binding were reduced following PUV treatment. However, boiling increased IgE binding, while PUV treatment could offset the increased allergen reactivity caused by boiling. In conclusion, PUV treatment reduced the reactivity of the major shrimp allergen, tropomyosin, and decreased the IgE binding capacity of the shrimp extract.

  3. Oil leakage detection for electric power equipment based on ultraviolet fluorescence effect

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Wang, Jian-hui; Xu, Bin; Huang, Zhi-dong; Huang, Lan-tao

    2018-03-01

    This paper presents a method to detect the oil leakage of high voltage power equipment based on ultraviolet fluorescence effect. The method exploits the principle that the insulating oil has the fluorescent effect under the irradiation of specific ultraviolet light. The emission spectrum of insulating oil under excitation light with different wavelengths is measured and analyzed first. On this basis, a portable oil leakage detective device for high voltage power equipment is designed and developed with a selected 365 nm ultraviolet as the excitation light and the low light level camera as the fluorescence image collector. Then, the feasibility of the proposed method and device in different conditions is experimentally verified in the laboratory environment. Finally, the developed oil leakage detective device is applied to 500 kV Xiamen substation and Quanzhou substation. And the results show that the device can detect the oil leakage of high voltage electrical equipment quickly and conveniently even under the condition of a slight oil leakage especially in the low light environment.

  4. Long-term lithium-ion battery performance improvement via ultraviolet light treatment of the graphite anode

    DOE PAGES

    An, Seong Jin; Li, Jianlin; Sheng, Yangping; ...

    2016-01-01

    Effects of ultraviolet (UV) light on dried graphite anodes were investigated in terms of the cycle life of lithium ion batteries. The time variations for the UV treatment were 0 (no treatment), 20, 40, and 60 minutes. UV-light-treated graphite anodes were assembled for cycle life tests in pouch cells with pristine Li 1.02Ni 0.50Mn 0.29Co 0.19O 2 (NMC 532) cathodes. UV treatment for 40 minutes resulted in the highest capacity retention and the lowest resistance after the cycle life testing. X-ray photoelectron spectroscopy (XPS) and contact angle measurements on the graphite anodes showed changes in surface chemistry and wetting aftermore » the UV treatment. XPS also showed increases in solvent products and decreases in salt products on the SEI surface when UV-treated anodes were used. In conclusion, the thickness of the surface films and their compositions on the anodes and cathodes were also estimated using survey scans and snapshots from XPS depth profiles.« less

  5. Riboflavin and ultraviolet light reduce the infectivity of Babesia microti in whole blood.

    PubMed

    Tonnetti, Laura; Thorp, Aaron M; Reddy, Heather L; Keil, Shawn D; Goodrich, Raymond P; Leiby, David A

    2013-04-01

    Babesia microti is the parasite most frequently transmitted by blood transfusion in the United States. Previous work demonstrated the efficacy of riboflavin (RB) and ultraviolet (UV) light to inactivate B.microti in apheresis plasma and platelet units. In this study we investigated the effectiveness of RB and UV light to reduce the levels of B.microti in whole blood (WB). WB units were spiked with B. microti-infected hamster blood. Spearman-Karber methods were used to calculate infectivity of each sample in terms of hamster infectious dose 50% (HID50 ) value. After RB addition, the units were illuminated with 80 J/mLRBC UV light. Two samples were collected: one before illumination and one after illumination. The samples were serially diluted and dilutions injected into a group of five naive hamsters. Four weeks postinoculation (PI), blood was collected from the animals and evaluated by microscopic observation. One pilot study showed a good dose response in the animals and demonstrated that sample infectivity could be calculated in terms of an HID50 . Three additional replicates were performed in the same manner as the pilot study, but with fewer dilutions. Infectivity values were consistent between the experiments and were used to calculate log reduction. The posttreatment reduction of B. microti for all the experiments was more than 5 log. The data collected indicate that use of RB and UV is able to decrease the parasite load in WB units thus reducing the risk of transfusion-transmitted B. microti from blood components containing B. microti-infected RBCs. © 2012 American Association of Blood Banks.

  6. Advanced Oxidation of Tartrazine and Brilliant Blue with Pulsed Ultraviolet Light Emitting Diodes

    PubMed Central

    Scott, Robert; Mudimbi, Patrick; Miller, Michael E.; Magnuson, Matthew; Willison, Stuart; Phillips, Rebecca; Harper, Willie F.

    2018-01-01

    This study investigated the effect of ultraviolet light-emitting diodes (UVLEDs) coupled with hydrogen peroxide as an advanced oxidation process (AOP) for the degradation of two test chemicals. Brilliant Blue FCF consistently exhibited greater degradation than tartrazine, with 83% degradation after 300 minutes at the 100% duty cycle compared with only 17% degradation of tartrazine under the same conditions. These differences are attributable to the structural properties of the compounds. Duty cycle was positively correlated with the first-order rate constants (k) for both chemicals but, interestingly, negatively correlated with the normalized first-order rate constants (k/duty cycle). Synergistic effects of both hydraulic mixing and LED duty cycle were manifested as novel oscillations in the effluent contaminant concentration. Further, LED output and efficiency were dependent upon duty cycle and less efficient over time perhaps due to heating effects on semiconductor performance. PMID:28236826

  7. Mapping the solar wind HI outflow velocity in the inner heliosphere by coronagraphic ultraviolet and visible-light observations

    NASA Astrophysics Data System (ADS)

    Dolei, S.; Susino, R.; Sasso, C.; Bemporad, A.; Andretta, V.; Spadaro, D.; Ventura, R.; Antonucci, E.; Abbo, L.; Da Deppo, V.; Fineschi, S.; Focardi, M.; Frassetto, F.; Giordano, S.; Landini, F.; Naletto, G.; Nicolini, G.; Nicolosi, P.; Pancrazzi, M.; Romoli, M.; Telloni, D.

    2018-05-01

    We investigated the capability of mapping the solar wind outflow velocity of neutral hydrogen atoms by using synergistic visible-light and ultraviolet observations. We used polarised brightness images acquired by the LASCO/SOHO and Mk3/MLSO coronagraphs, and synoptic Lyα line observations of the UVCS/SOHO spectrometer to obtain daily maps of solar wind H I outflow velocity between 1.5 and 4.0 R⊙ on the SOHO plane of the sky during a complete solar rotation (from 1997 June 1 to 1997 June 28). The 28-days data sequence allows us to construct coronal off-limb Carrington maps of the resulting velocities at different heliocentric distances to investigate the space and time evolution of the outflowing solar plasma. In addition, we performed a parameter space exploration in order to study the dependence of the derived outflow velocities on the physical quantities characterising the Lyα emitting process in the corona. Our results are important in anticipation of the future science with the Metis instrument, selected to be part of the Solar Orbiter scientific payload. It was conceived to carry out near-sun coronagraphy, performing for the first time simultaneous imaging in polarised visible-light and ultraviolet H I Lyα line, so providing an unprecedented view of the solar wind acceleration region in the inner corona. The movie (see Sect. 4.2) is available at https://www.aanda.org

  8. Nonthermal combined ultraviolet and vacuum-ultraviolet curing process for organosilicate dielectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, H.; Guo, X.; Pei, D.

    2016-06-13

    Porous SiCOH films are of great interest in semiconductor fabrication due to their low-dielectric constant properties. Post-deposition treatments using ultraviolet (UV) light on organosilicate thin films are required to decompose labile pore generators (porogens) and to ensure optimum network formation to improve the electrical and mechanical properties of low-k dielectrics. The goal of this work is to choose the best vacuum-ultraviolet photon energy in conjunction with vacuum ultraviolet (VUV) photons without the need for heating the dielectric to identify those wavelengths that will have the most beneficial effect on improving the dielectric properties and minimizing damage. VUV irradiation between 8.3more » and 8.9 eV was found to increase the hardness and elastic modulus of low-k dielectrics at room temperature. Combined with UV exposures of 6.2 eV, it was found that this “UV/VUV curing” process is improved compared with current UV curing. We show that UV/VUV curing can overcome drawbacks of UV curing and improve the properties of dielectrics more efficiently without the need for high-temperature heating of the dielectric.« less

  9. Ultraviolet corona detection sensor study

    NASA Technical Reports Server (NTRS)

    Schmitt, R. J.; MATHERN

    1976-01-01

    The feasibility of detecting electrical corona discharge phenomena in a space simulation chamber via emission of ultraviolet light was evaluated. A corona simulator, with a hemispherically capped point to plane electrode geometry, was used to generate corona glows over a wide range of pressure, voltage, current, electrode gap length and electrode point radius. Several ultraviolet detectors, including a copper cathode gas discharge tube and a UV enhanced silicon photodiode detector, were evaluated in the course of the spectral intensity measurements. The performance of both silicon target vidicons and silicon intensified target vidicons was evaluated analytically using the data generated by the spectroradiometer scans and the performance data supplied by the manufacturers.

  10. Biocompatibility and light transmission of liposomal lenses.

    PubMed

    Danion, Anne; Doillon, Charles J; Giasson, Claude J; Djouahra, Saliha; Sauvageau, Patrick; Paradis, Renée; Vermette, Patrick

    2007-10-01

    To validate the biocompatibility and transmittance properties of contact lenses bearing intact liposomes. These liposomal lenses loaded with therapeutics can be used as ophthalmic drug delivery systems. The biocompatibility of soft contact lenses, coated with liposomes was evaluated through in vitro direct and indirect cytocompatibility assays on human corneal epithelial cells, on reconstructed human corneas and on ex vivo rabbit corneas. The direct and indirect transmission spectra of liposome-covered lenses were also evaluated to test if they transmit all wavelengths of the ultraviolet-visible spectrum, to thereby fulfill their optical function, without gross alteration of the colors perception and with a minimum of light dispersion. Contact lenses bearing layers of stable liposomes did not induce any significant changes in cell viability and in cell growth, compared with lenses bearing no liposome. Elution assays revealed that no cytotoxic compound leaks from the lenses whether bearing liposomes or not. Histological analyses of reconstructed human corneas and ex vivo rabbit corneas directly exposed to liposomal lenses revealed neither alteration to the cell nor to the tissue structures. Contact lenses bearing layers of liposomes did not significantly affect light transmission compared with control lenses without liposome at the wavelength of maximal photopic sensitivity, i.e., 550 nm. In addition, the contact lenses afford more eye protection in the ultraviolet spectrum, compared with the control lenses. Liposomal contact lenses are biocompatible and their transmittance properties are not affected in the visible light range.

  11. Bio-inspired, colorful, flexible, defrostable light-scattering hybrid films for the effective distribution of LED light.

    PubMed

    An, Seongpil; Jo, Hong Seok; Kim, Yong Il; Song, Kyo Yong; Kim, Min-Woo; Lee, Kyu Bum; Yarin, Alexander L; Yoon, Sam S

    2017-07-06

    Bioluminescent jellyfish has a unique structure derived from fiber/polymer interfaces that is advantageous for effective light scattering in the dark, deep sea water. Herein, we demonstrate the fabrication of bio-inspired hybrid films by mimicry of the jellyfish's structure, leading to excellent light-scattering performance and defrosting capability. A haze value reaching 59.3% and a heating temperature of up to 292 °C were achieved with the films. Accordingly, the developed surface constitutes an attractive optical device for lighting applications, especially for street or vehicle luminaries for freezing Arctic-climate countries. The morphological details of the hybrid films were revealed by scanning electron microscopy. The light-scattering properties of these films were examined by ultraviolet-visible-infrared spectrophotometry and anti-glare effect analyses. The defrosting performance of the hybrid films was evaluated via heating tests and infra-red observations.

  12. Inactivation of indigenous coliform bacteria in unfiltered surface water by ultraviolet light.

    PubMed

    Cantwell, Raymond E; Hofmann, Ron

    2008-05-01

    This study examined the potential for naturally occurring particles to protect indigenous coliform from ultraviolet (UV) disinfection in four surface waters. Tailing in the UV dose-response curve of the bacteria was observed in 3 of the 4 water samples after 1.3-2.6-log of log-linear inactivation, implying particle-related protection. The impact of particles was confirmed by comparing coliform UV inactivation data for parallel filtered (11 microm pore-size nylon filters) and unfiltered surface water. In samples from the Grand River (UVT: 65%/cm; 5.4 nephelometric turbidity units (NTU)) and the Rideau Canal (UVT: 60%/cm; 0.84 NTU), a limit of approximately 2.5 log inactivation was achieved in the unfiltered samples for a UV dose of 20 mJ/cm2 while both the filtered samples exhibited >3.4-log inactivation of indigenous coliform bacteria. The results suggest that particles as small as 11 microm, naturally found in surface water with low turbidity (<3NTU), are able to harbor indigenous coliform bacteria and offer protection from low-pressure UV light.

  13. Al x Ga1‑ x N-based semipolar deep ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Akaike, Ryota; Ichikawa, Shuhei; Funato, Mitsuru; Kawakami, Yoichi

    2018-06-01

    Deep ultraviolet (UV) emission from Al x Ga1‑ x N-based light-emitting diodes (LEDs) fabricated on semipolar (1\\bar{1}02) (r-plane) AlN substrates is presented. The growth conditions are optimized. A high NH3 flow rate during metalorganic vapor phase epitaxy yields atomically flat Al y Ga1‑ y N (y > x) on which Al x Ga1‑ x N/Al y Ga1‑ y N multiple quantum wells with abrupt interfaces and good periodicity are fabricated. The fabricated r-Al x Ga1‑ x N-based LED emits at 270 nm, which is in the germicidal wavelength range. Additionally, the emission line width is narrow, and the peak wavelength is stable against the injection current, so the semipolar LED shows promise as a UV emitter.

  14. Note: a novel vacuum ultraviolet light source assembly with aluminum-coated electrodes for enhancing the ionization efficiency of photoionization mass spectrometry.

    PubMed

    Zhu, Zhixiang; Wang, Jian; Qiu, Keqing; Liu, Chengyuan; Qi, Fei; Pan, Yang

    2014-04-01

    A novel vacuum ultraviolet (VUV) light source assembly (VUVLSA) for enhancing the ionization efficiency of photoionization mass spectrometer has been described. The VUVLSA composes of a Krypton lamp and a pair of disk electrodes with circular center cavities. The two interior surfaces that face the photoionization region were aluminum-coated. VUV light can be reflected back and forth in the photoionization region between the electrodes, thus the photoionization efficiency can be greatly enhanced. The performances of two different shaped electrodes, the coated double flat electrodes (DFE), and double conical electrodes, were studied. We showed that the signal amplification of coated DFE is around 4 times higher than that of uncoated electrodes without VUV light reflection. The relationship between the pressure of ionization chamber and mass signal enhancement has also been studied.

  15. Effects of shock waves, ultraviolet light, and electric fields from pulsed discharges in water on inactivation of Escherichia coli.

    PubMed

    Sun, Bing; Xin, Yanbin; Zhu, Xiaomei; Gao, Zhiying; Yan, Zhiyu; Ohshima, Takayuki

    2018-04-01

    In this work, the bacterial inactivation effects of shock waves, ultraviolet (UV) light, and electric field produced by high-voltage pulsed discharge in liquid with needle-plate configurations were studied. The contributions of each effect on the bacterial killing ratio in the discharge process were obtained individually by modifying reactor type and usage of glass, quartz, and black balloons. The results showed that the location from the discharge center axis significantly influenced the effects of shock waves and electric fields, although the effect of UV light was not affected by the location in the reactor. The effects of shock waves and electric fields were improved by decreasing the distance from the discharge center axis. Under this experimental condition, the effects of shock waves, UV light, and electric fields produced by discharges on bacterial inactivation were approximately 36.1%, 30.8%, 12.7%, respectively. Other contributions seemed to be due to activated species. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Single-layer graphene/titanium oxide cubic nanorods array/FTO heterojunction for sensitive ultraviolet light detection

    NASA Astrophysics Data System (ADS)

    Liang, Feng-Xia; Wang, Jiu-Zhen; Wang, Yi; Lin, Yi; Liang, Lin; Gao, Yang; Luo, Lin-Bao

    2017-12-01

    In this study, we report on the fabrication of a sensitive ultraviolet photodetector (UVPD) by simply transferring single-layer graphene (SLG) on rutile titanium oxide cubic nanorod (TiO2NRs) array. The cubic TiO2NRs array with strong light trapping effect was grown on fluorine-doped tin oxide (FTO) glass through a hydrothermal approach. The as-assembled UVPD was very sensitive to UV light illumination, but virtually blind to white light illumination. The responsivity and specific detectivity were estimated to be 52.1 A/W and 4.3 × 1012 Jones, respectively. What is more, in order to optimize device performance of UVPD, a wet-chemistry treatment was then employed to reduce the high concentration of defects in TiO2NRs during hydrothermal growth. It was found that the UVPD after treatment showed obvious decrease in sensitivity, but the response speed (rise time: 80 ms, fall time: 160 ms) and specific detectivity were substantially increased. It is also found that the speicific detectivity was imporoved by six-fold to 3.2 × 1013 Jones, which was the best result in comparison with previously reported TiO2 nanostructures or thin film based UVPDs. This totality of this study shows that the present SLG/TiO2NR/FTO UVPD may find potential application in future optoelectronic devices and systems.

  17. Inactivation of uropathogenic Escherichia coli in ground chicken meat using high pressure processing and gamma radiation, and in purge and chicken meat surfaces by ultraviolet light

    USDA-ARS?s Scientific Manuscript database

    Uropathogenic Escherichia coli (UPEC) are common contaminants in meat and poultry. Nonthermal food safety intervention technologies used to improve safety and shelf-life of both human and pet foods can include high pressure processing (HPP), ionizing (gamma) radiation (GR), and ultraviolet light (UV...

  18. The ultraviolet detection component based on Te-Cs image intensifier

    NASA Astrophysics Data System (ADS)

    Qian, Yunsheng; Zhou, Xiaoyu; Wu, Yujing; Wang, Yan; Xu, Hua

    2017-05-01

    Ultraviolet detection technology has been widely focused and adopted in the fields of ultraviolet warning and corona detection for its significant value and practical meaning. The component structure of ultraviolet ICMOS, imaging driving and the photon counting algorithm are studied in this paper. Firstly, the one-inch and wide dynamic range CMOS chip with the coupling optical fiber panel is coupled to the ultraviolet image intensifier. The photocathode material in ultraviolet image intensifier is Te-Cs, which contributes to the solar blind characteristic, and the dual micro-channel plates (MCP) structure ensures the sufficient gain to achieve the single photon counting. Then, in consideration of the ultraviolet detection demand, the drive circuit of the CMOS chip is designed and the corresponding program based on Verilog language is written. According to the characteristics of ultraviolet imaging, the histogram equalization method is applied to enhance the ultraviolet image and the connected components labeling way is utilized for the ultraviolet single photon counting. Moreover, one visible light video channel is reserved in the ultraviolet ICOMS camera, which can be used for the fusion of ultraviolet and visible images. Based upon the module, the ultraviolet optical lens and the deep cut-off solar blind filter are adopted to construct the ultraviolet detector. At last, the detection experiment of the single photon signal is carried out, and the test results are given and analyzed.

  19. Tunnel-injected sub 290 nm ultra-violet light emitting diodes with 2.8% external quantum efficiency

    NASA Astrophysics Data System (ADS)

    Zhang, Yuewei; Jamal-Eddine, Zane; Akyol, Fatih; Bajaj, Sanyam; Johnson, Jared M.; Calderon, Gabriel; Allerman, Andrew A.; Moseley, Michael W.; Armstrong, Andrew M.; Hwang, Jinwoo; Rajan, Siddharth

    2018-02-01

    We report on the high efficiency tunnel-injected ultraviolet light emitting diodes (UV LEDs) emitting at 287 nm. Deep UV LED performance has been limited by the severe internal light absorption in the p-type contact layers and low electrical injection efficiency due to poor p-type conduction. In this work, a polarization engineered Al0.65Ga0.35N/In0.2Ga0.8N tunnel junction layer is adopted for non-equilibrium hole injection to replace the conventionally used direct p-type contact. A reverse-graded AlGaN contact layer is further introduced to realize a low resistance contact to the top n-AlGaN layer. This led to the demonstration of a low tunnel junction resistance of 1.9 × 10-3 Ω cm2 obtained at 1 kA/cm2. Light emission at 287 nm with an on-wafer peak external quantum efficiency of 2.8% and a wall-plug efficiency of 1.1% was achieved. The measured power density at 1 kA/cm2 was 54.4 W/cm2, confirming the efficient hole injection through interband tunneling. With the benefits of the minimized internal absorption and efficient hole injection, a tunnel-injected UV LED structure could enable future high efficiency UV emitters.

  20. The vitamin D hypothesis revisited: race-based disparities in birth outcomes in the United States and ultraviolet light availability.

    PubMed

    Thayer, Zaneta M

    2014-04-15

    Skin color has been proposed to contribute to race-based health disparities in the United States because of differences in ultraviolet (UV) light-induced vitamin D synthesis. The prediction of this hypothesis, herein named the UVD hypothesis, is that racial disparities in health outcomes are correlated with UV light availability. This paper investigates whether UV light availability is associated with disparities in the rates of low birth weight (LBW) and preterm birth (PTB) between whites and blacks, because these outcomes are thought to be influenced by vitamin D status and to shape disease risk in later life. Data on LBW and PTB from 2007 (n = 2,825,620 births) were compared with data on UV light exposure across the United States. Contrary to the predictions of the UVD hypothesis, LBW and PTB rate disparities were greatest in states with the highest UV light exposure. Notably, income inequality was positively and significantly related to LBW and PTB disparities, even after controlling for UV light availability. The results of this analysis demonstrate that there is a significant environmental gradient in racial disparities in birth outcomes in the United States, but other social or environmental factors associated with living in the southern United States are likely stronger contributors to disparities in birth outcomes than UV light-induced vitamin D status.

  1. Ultraviolet and visible light spectrophotometric approach to blood typing: objective analysis by agglutination index.

    PubMed

    Narayanan, S; Orton, S; Leparc, G F; Garcia-Rubio, L H; Potter, R L

    1999-10-01

    A new blood typing technology based on ultraviolet (UV) and visible light spectroscopy (UV/visible spectroscopy) has been developed. Blood groups and types are determined by quantifying reproducible changes in the UV and visible light spectra of blood in the presence of agglutinating antibodies. Samples of red cells in the presence and absence of agglutinating antibodies were examined by UV/visible spectroscopy. Blood groups and types were determined by comparing the optical density spectra obtained between 665 and 1000 nm. These comparisons generate numbers (agglutination index) ranging from 0 to 100, with smaller numbers corresponding to lack of agglutination and larger numbers corresponding to agglutination. The optical density of agglutinated blood is dramatically different from that of unagglutinated blood. The agglutination index derived from the relative slopes of the spectra is an objective indicator of agglutination strength. An agglutination index greater than 17 consistently and accurately established blood group- and type-specific agglutination. The method accurately predicted A, B, and O blood groups, and D type in over 275 samples. Scattering theory-based calculations of relative volumes of red cells before and after agglutination show a direct correlation with the agglutination index and provide the theoretical basis of the analysis. This quantitative technique is reproducible and has the potential for automation.

  2. Micronucleated erythrocytes in newborns of rat dams exposed to ultraviolet-A light during pregnancy; protection by ascorbic acid supplementation.

    PubMed

    Zúñiga-González, Guillermo M; Gómez-Meda, Belinda C; Zamora-Perez, Ana L; Martínez-González, María A; Muñoz de Haro, Ilse A; Pérez-Navarro, Adhoksaja E; Armendáriz-Borunda, Juan; Gallegos-Arreola, Martha P

    2015-04-01

    Pregnant hairless rat dams were exposed to ultraviolet-A light (UVA) to induce micronucleated erythrocytes (MNE) in their fetuses. The control group was exposed to conventional light; the experimental groups were exposed to UVA (365nm) during gestational days 16-21. In some cases, ascorbic acid (Asc) was administered in the drinking water from gestational day 15 until delivery. Dams were sampled at 48-h intervals during gestation, from day 16 until delivery. Blood was also obtained from neonates at birth; MNE, micronucleated polychromatic erythrocytes (MNPCE), and polychromatic erythrocytes (PCE) were scored. Increased MNE and MNPCE were observed in neonates born to mothers exposed to UVA for 40, 80 or 160min, compared to the control group. Asc treatment reduced MNE and MNPCE induction. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Research on the calibration of ultraviolet energy meters

    NASA Astrophysics Data System (ADS)

    Lin, Fangsheng; Yin, Dejin; Li, Tiecheng; Lai, Lei; Xia, Ming

    2016-10-01

    Ultraviolet (UV) radiation is a kind of non-lighting radiation with the wavelength range from 100nm to 400nm. Ultraviolet irradiance meters are now widely used in many areas. However, as the development of science and technology, especially in the field of light-curing industry, there are more and more UV energy meters or UV-integrators need to be measured. Because the structure, wavelength band and measured power intensity of UV energy meters are different from traditional UV irradiance meters, it is important for us to take research on the calibration. With reference to JJG879-2002, we SIMT have independently developed the UV energy calibration device and the standard of operation and experimental methods for UV energy calibration in detail. In the calibration process of UV energy meter, many influencing factors will affect the final results, including different UVA-band UV light sources, different spectral response for different brands of UV energy meters, instability and no uniformity of UV light source and temperature. Therefore we need to take all of these factors into consideration to improve accuracy in UV energy calibration.

  4. Flexible, liquid core light guide with focusing and light shaping attachments

    DOEpatents

    Wojcik, Randolph Frank; Majewski, Stanislaw; Zorn, Carl John; Kross, Brian

    1999-01-01

    A liquid light guide system for ultraviolet light is disclosed that has a light shaping arrangement for the emitted light, a stable liquid core and sheath and reliable and effective end closures. The end closures include a metal crimping arrangement that utilizes two layers of deformable materials to prevent cracking of endplugs.

  5. Flexible deep-ultraviolet light-emitting diodes for significant improvement of quantum efficiencies by external bending

    NASA Astrophysics Data System (ADS)

    Shervin, Shahab; Oh, Seung Kyu; Park, Hyun Jung; Lee, Keon-Hwa; Asadirad, Mojtaba; Kim, Seung-Hwan; Kim, Jeomoh; Pouladi, Sara; Lee, Sung-Nam; Li, Xiaohang; Kwak, Joon Seop; Ryou, Jae-Hyun

    2018-03-01

    We report a new route to improve quantum efficiencies of AlGaN-based deep-ultraviolet light-emitting diodes (DUV LEDs) using mechanical flexibility of recently developed bendable thin-film structures. Numerical studies show that electronic band structures of AlGaN heterostructures and resulting optical and electrical characteristics of the devices can be significantly modified by external bending through active control of piezoelectric polarization. Internal quantum efficiency is enhanced higher than three times, when the DUV LEDs are moderately bent with concave curvatures. Furthermore, an efficiency droop at high injection currents is mitigated and turn-on voltage of diodes decreases with the same bending condition. The concept of bendable DUV LEDs with a controlled external strain can provide a new path for high-output-power and high-efficiency devices.

  6. A fiber optic, ultraviolet light-emitting diode-based, two wavelength fluorometer for monitoring reactive adsorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granz, Christopher D.; Whitten, James E., E-mail: James-Whitten@uml.edu; Schindler, Bryan J.

    Construction and use of an ultraviolet light-emitting diode-based fluorometer for measuring photoluminescence (PL) from powder samples with a fiber optic probe is described. Fluorescence at two wavelengths is detected by miniature photomultiplier tubes, each equipped with a different band pass filter, whose outputs are analyzed by a microprocessor. Photoluminescent metal oxides and hydroxides, and other semiconducting nanoparticles, often undergo changes in their emission spectra upon exposure to reactive gases, and the ratio of the PL intensities at two wavelengths is diagnostic of adsorption. Use of this instrument for reactive gas sensing and gas filtration applications is illustrated by measuring changesmore » in the PL ratio for zirconium hydroxide and zinc oxide particles upon exposure to air containing low concentrations of sulfur dioxide.« less

  7. Fyn is a redox sensor involved in solar ultraviolet light-induced signal transduction in skin carcinogenesis.

    PubMed

    Kim, J-E; Roh, E; Lee, M H; Yu, D H; Kim, D J; Lim, T-G; Jung, S K; Peng, C; Cho, Y-Y; Dickinson, S; Alberts, D; Bowden, G T; Einspahr, J; Stratton, S P; Curiel-Lewandrowski, C; Bode, A M; Lee, K W; Dong, Z

    2016-08-04

    Solar ultraviolet (UV) light is a major etiological factor in skin carcinogenesis, with solar UV-stimulated signal transduction inducing pathological changes and skin damage. The primary sensor of solar UV-induced cellular signaling has not been identified. We use an experimental system of solar simulated light (SSL) to mimic solar UV and we demonstrate that Fyn is a primary redox sensor involved in SSL-induced signal transduction. Reactive oxygen species (ROS) generated by SSL exposure directly oxidize Cys488 of Fyn, resulting in increased Fyn kinase activity. Fyn oxidation was increased in mouse skin after SSL exposure and Fyn-knockout mice formed larger and more tumors compared with Fyn wild-type mice when exposed to SSL for an extended period of time. Murine embryonic fibroblasts (MEFs) lacking Fyn and cells in which Fyn expression was knocked down were resistant to SSL-induced apoptosis. Furthermore, cells expressing mutant Fyn (C448A) were resistant to SSL-induced apoptosis. These findings suggest that Fyn acts as a regulatory nexus between solar UV, ROS and signal transduction during skin carcinogenesis.

  8. Ester-free cross-linker molecules for ultraviolet-light-cured polysilsesquioxane gate dielectric layers of organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Okada, Shuichi; Nakahara, Yoshio; Uno, Kazuyuki; Tanaka, Ichiro

    2018-04-01

    Pentacene thin-film transistors (TFTs) were fabricated with ultraviolet-light (UV)-cured polysilsesquioxane (PSQ) gate dielectric layers using cross-linker molecules with or without ester groups. To polymerize PSQ without ester groups, thiol-ene reaction was adopted. The TFTs fabricated with PSQ layers comprising ester-free cross-linkers showed a higher carrier mobility than the TFTs with PSQ layers cross-linked with ester groups, which had large electric dipole moments that limited the carrier mobility. It was demonstrated that the thiol-ene reaction is more suitable than the conventional radical reaction for UV-cured PSQ with small dielectric constant.

  9. An elegant route to overcome fundamentally-limited light extraction in AlGaN deep-ultraviolet light-emitting diodes: Preferential outcoupling of strong in-plane emission

    PubMed Central

    Lee, Jong Won; Kim, Dong Yeong; Park, Jun Hyuk; Schubert, E. Fred; Kim, Jungsub; Lee, Jinsub; Kim, Yong-Il; Park, Youngsoo; Kim, Jong Kyu

    2016-01-01

    While there is an urgent need for semiconductor-based efficient deep ultraviolet (DUV) sources, the efficiency of AlGaN DUV light-emitting diodes (LEDs) remains very low because the extraction of DUV photons is significantly limited by intrinsic material properties of AlGaN. Here, we present an elegant approach based on a DUV LED having multiple mesa stripes whose inclined sidewalls are covered by a MgF2/Al omni-directional mirror to take advantage of the strongly anisotropic transverse-magnetic polarized emission pattern of AlGaN quantum wells. The sidewall-emission-enhanced DUV LED breaks through the fundamental limitations caused by the intrinsic properties of AlGaN, thus shows a remarkable improvement in light extraction as well as operating voltage. Furthermore, an analytic model is developed to understand and precisely estimate the extraction of DUV photons from AlGaN DUV LEDs, and hence to provide promising routes for maximizing the power conversion efficiency. PMID:26935402

  10. An elegant route to overcome fundamentally-limited light extraction in AlGaN deep-ultraviolet light-emitting diodes: Preferential outcoupling of strong in-plane emission

    NASA Astrophysics Data System (ADS)

    Lee, Jong Won; Kim, Dong Yeong; Park, Jun Hyuk; Schubert, E. Fred; Kim, Jungsub; Lee, Jinsub; Kim, Yong-Il; Park, Youngsoo; Kim, Jong Kyu

    2016-03-01

    While there is an urgent need for semiconductor-based efficient deep ultraviolet (DUV) sources, the efficiency of AlGaN DUV light-emitting diodes (LEDs) remains very low because the extraction of DUV photons is significantly limited by intrinsic material properties of AlGaN. Here, we present an elegant approach based on a DUV LED having multiple mesa stripes whose inclined sidewalls are covered by a MgF2/Al omni-directional mirror to take advantage of the strongly anisotropic transverse-magnetic polarized emission pattern of AlGaN quantum wells. The sidewall-emission-enhanced DUV LED breaks through the fundamental limitations caused by the intrinsic properties of AlGaN, thus shows a remarkable improvement in light extraction as well as operating voltage. Furthermore, an analytic model is developed to understand and precisely estimate the extraction of DUV photons from AlGaN DUV LEDs, and hence to provide promising routes for maximizing the power conversion efficiency.

  11. Flexible, liquid core light guide with focusing and light shaping attachments

    DOEpatents

    Wojcik, R.F.; Majewski, S.; Zorn, C.J.; Kross, B.

    1999-04-20

    A liquid light guide system for ultraviolet light is disclosed that has a light shaping arrangement for the emitted light, a stable liquid core and sheath and reliable and effective end closures. The end closures include a metal crimping arrangement that utilizes two layers of deformable materials to prevent cracking of endplugs. 19 figs.

  12. Astro-1 Image Taken by Ultraviolet Imaging Telescope

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This image shows a part of the Cygnus loop supernova remnant, taken by the Ultraviolet Imaging Telescope (UIT) on the Astro Observatory during the Astro-1 mission (STS-35) on December 5, 1990. Pictured is a portion of the huge Cygnus loop, an array of interstellar gas clouds that have been blasted by a 900,000 mile per hour shock wave from a prehistoric stellar explosion, which occurred about 20,000 years ago, known as supernova. With ultraviolet and x-rays, astronomers can see emissions from extremely hot gases, intense magnetic fields, and other high-energy phenomena that more faintly appear in visible and infrared light or in radio waves that are crucial to deepening the understanding of the universe. The Astro Observatory was designed to explore the universe by observing and measuring the ultraviolet radiation from celestial objects. Three instruments make up the Astro Observatory: The Hopkins Ultraviolet Telescope (HUT), the Ultraviolet Imaging Telescope (UIT), and the Wisconsin Ultraviolet Photo-Polarimetry Experiment (WUPPE). The Marshall Space Flight Center had managment responsibilities for the Astro-1 mission. The Astro-1 Observatory was launched aboard the Space Shuttle Orbiter Columbia (STS-35) on December 2, 1990.

  13. Ultraviolet Patterns on Rear of Flowers: Basis of Disparity of Buds and Blossoms

    PubMed Central

    Eisner, Thomas; Eisner, Maria; Aneshansley, D.

    1973-01-01

    Flowers of Jasminium primulinum and Hypericum spp. have ultraviolet patterns on the reverse surface of the corolla. Those areas of the surface that are exposed to the outside in the bud are ultraviolet absorbent, whereas the portions that come into view at maturity in the open blossom are ultraviolet reflectant. Buds and blossoms, as a result, appear different in color to insects sensitive to ultraviolet light. Experimental evidence indicates that the ultraviolet-absorbent quality of the outer surface of the bud is a consequence of exposure itself, attributable possibly to a “sun tanning” effect. Images PMID:16592074

  14. Effects of combination of ultraviolet light and hydrogen peroxide on inactivation of Escherichia coli O157:H7, native microbial loads, and quality of button mushrooms

    USDA-ARS?s Scientific Manuscript database

    Mushrooms are prone to microbial spoilage and browning during growing and processing. Ultraviolet light (UV-C) has been used as an alternative technology to chemical sanitizers for food products. Hydrogen peroxide is classified as generally recognized as safe for use in foods as a bleaching and ant...

  15. Jupiter in blue, ultraviolet and near infrared

    NASA Technical Reports Server (NTRS)

    2000-01-01

    These three images of Jupiter, taken through the narrow angle camera of NASA's Cassini spacecraft from a distance of 77.6 million kilometers (48.2 million miles) on October 8, reveal more than is apparent to the naked eye through a telescope.

    The image on the left was taken through the blue filter. The one in the middle was taken in the ultraviolet. The one on the right was taken in the near infrared.

    The blue-light filter is within the part of the electromagnetic spectrum detectable by the human eye. The appearance of Jupiter in this image is, consequently, very familiar. The Great Red Spot (below and to the right of center) and the planet's well-known banded cloud lanes are obvious. The brighter bands of clouds are called zones and are probably composed of ammonia ice particles. The darker bands are called belts and are made dark by particles of unknown composition intermixed with the ammonia ice.

    Jupiter's appearance changes dramatically in the ultraviolet and near infrared images. These images are near negatives of each other and illustrate the way in which observations in different wavelength regions can reveal different physical regimes on the planet.

    All gases scatter sunlight efficiently at short wavelengths; this is why the sky appears blue on Earth. The effect is even more pronounced in the ultraviolet. The gases in Jupiter's atmosphere, above the clouds, are no different. They scatter strongly in the ultraviolet, making the deep banded cloud layers invisible in the middle image. Only the very high altitude haze appears dark against the bright background. The contrast is reversed in the near infrared, where methane gas, abundant on Jupiter but not on Earth, is strongly absorbing and therefore appears dark. Again the deep clouds are invisible, but now the high altitude haze appears relatively bright against the dark background. High altitude haze is seen over the poles and the equator.

    The Great Red Spot, prominent in all images, is

  16. The response of mammalian cells to UV-light reveals Rad54-dependent and independent pathways of homologous recombination.

    PubMed

    Eppink, Berina; Tafel, Agnieszka A; Hanada, Katsuhiro; van Drunen, Ellen; Hickson, Ian D; Essers, Jeroen; Kanaar, Roland

    2011-11-10

    Ultraviolet (UV) radiation-induced DNA lesions can be efficiently repaired by nucleotide excision repair (NER). However, NER is less effective during replication of UV-damaged chromosomes. In contrast, translesion DNA synthesis (TLS) and homologous recombination (HR) are capable of dealing with lesions in replicating DNA. The core HR protein in mammalian cells is the strand exchange protein RAD51, which is aided by numerous proteins, including RAD54. We used RAD54 as a cellular marker for HR to study the response of mammalian embryonic stem (ES) cells to UV irradiation. In contrast to yeast, ES cells lacking RAD54 are not UV sensitive. Here we show that the requirement for mammalian RAD54 is masked by active NER. By genetically inactivating NER and HR through disruption of the Xpa and Rad54 genes, respectively, we demonstrate the contribution of HR to chromosomal integrity upon UV irradiation. We demonstrate using chromosome fiber analysis at the individual replication fork level, that HR activity is important for the restart of DNA replication after induction of DNA damage by UV-light in NER-deficient cells. Furthermore, our data reveal RAD54-dependent and -independent contributions of HR to the cellular sensitivity to UV-light, and they uncover that RAD54 can compensate for the loss of TLS polymerase η with regard to UV-light sensitivity. In conclusion, we show that HR is important for the progression of UV-stalled replication forks in ES cells, and that protection of the fork is an interplay between HR and TLS. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Coupling a versatile aerosol apparatus to a synchrotron: Vacuum ultraviolet light scattering, photoelectron imaging, and fragment free mass spectrometry

    NASA Astrophysics Data System (ADS)

    Shu, Jinian; Wilson, Kevin R.; Ahmed, Musahid; Leone, Stephen R.

    2006-04-01

    An aerosol apparatus has been coupled to the Chemical Dynamics Beamline of the Advanced Light Source at Lawrence Berkeley National Laboratory. This apparatus has multiple capabilities for aerosol studies, including vacuum ultraviolet (VUV) light scattering, photoelectron imaging, and mass spectroscopy of aerosols. By utilizing an inlet system consisting of a 200μm orifice nozzle and aerodynamic lenses, aerosol particles of ˜50nm-˜1μm in diameter can be sampled directly from atmospheric pressure. The machine is versatile and can probe carbonaceous aerosols generated by a laboratory flame, nebulized solutions of biological molecules, hydrocarbon aerosol reaction products, and synthesized inorganic nanoparticles. The sensitivity of this apparatus is demonstrated by the detection of nanoparticles with VUV light scattering, photoelectron imaging, and charged particle detection. In addition to the detection of nanoparticles, the thermal vaporization of aerosols on a heater tip leads to the generation of intact gas phase molecules. This phenomenon coupled to threshold single photon ionization, accessible with tunable VUV light, allows for fragment-free mass spectrometry of complex molecules. The initial experiments with light scattering, photoelectron imaging, and aerosol mass spectrometry reported here serve as a demonstration of the design philosophy and multiple capabilities of the apparatus.

  18. Effects of ultraviolet light on B-doped CdS thin films prepared by spray pyrolysis method using perfume atomizer

    NASA Astrophysics Data System (ADS)

    Novruzov, V. D.; Keskenler, E. F.; Tomakin, M.; Kahraman, S.; Gorur, O.

    2013-09-01

    Boron doped CdS thin films were deposited by spray pyrolysis method using perfume atomizer. The effects of ultraviolet light on the structural, optical and electrical properties of B-doped CdS thin films were investigated as a function of dopant concentration (B/Cd). X-ray diffraction studies showed that all samples were polycrystalline nature with hexagonal structure. It was determined that the preferred orientation of non-illuminated samples changes from (1 0 1) to (0 0 2) with B concentration. The c lattice constant of films decreases from 6.810 Å to 6.661 Å with boron doping. The XRD peak intensity increased with the illumination for almost all the samples. The lattice parameters of B-doped samples remained nearly constant after illumination. It was found that the optical transmittance, photoluminescence spectra, resistivity and carrier concentration of the B-doped samples are stable after the illumination with UV light. Also the effects of UV light on B-doped CdS/Cu2S solar cell were investigated and it was determined that photoelectrical parameters of B-doped solar cell were more durable against the UV light.

  19. Ultraviolet Observations of Three Dwarf Cepheids

    NASA Astrophysics Data System (ADS)

    Sturch, Conrad R.

    Ultraviolet observations of three dwarf Cepheids (VZ Cnc, SX Phe, and AI Vel) have been obtained with the ANS. Analysis of these observations (Sturch and WU 1982) reveals that the flux distributions observed for each of these objects exhibit UV deficiencies which increase monotonically with decreasing wavelengths. The largest UV deficiencies are noted for SX Phe which has been identified with group of dwarf Cepheids with low metallicity and low luminosity, two attributes that are expected to have opposite effects on the UV flux distribution. It is proposed to obtain low dispersion IUE spectra of the three stars throughout each of their light cycles. Such observations will identify spectral features responsible for the flux deficiencies and will provide data necessary for a detailed comparison with model atmospheres. Knowledge of atmospheric parameters will lead to a better understanding of the evolutionary status of dwarf Cepheids.

  20. Ultraviolet-C light inactivation of Penicillium expansum on fruit surfaces

    USDA-ARS?s Scientific Manuscript database

    Understanding the influence of fruit surface morphology on ultraviolet-C (UV-C 254 nm) inactivation of microorganisms is required for designing effective treatment systems. In this study, we analyzed UV-C inactivation of Penicillium expansum that was inoculated onto the surface of organic fruits. Re...

  1. HUBBLE FINDS A BARE BLACK HOLE POURING OUT LIGHT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope has provided a never-before-seen view of a warped disk flooded with a torrent of ultraviolet light from hot gas trapped around a suspected massive black hole. [Right] This composite image of the core of the galaxy was constructed by combining a visible light image taken with Hubble's Wide Field Planetary Camera 2 (WFPC2), with a separate image taken in ultraviolet light with the Faint Object Camera (FOC). While the visible light image shows a dark dust disk, the ultraviolet image (color-coded blue) shows a bright feature along one side of the disk. Because Hubble sees ultraviolet light reflected from only one side of the disk, astronomers conclude the disk must be warped like the brim of a hat. The bright white spot at the image's center is light from the vicinity of the black hole which is illuminating the disk. [Left] A ground-based telescopic view of the core of the elliptical galaxy NGC 6251. The inset box shows Hubble Space Telescope's field of view. The galaxy is 300 million light-years away in the constellation Ursa Minor. Photo Credit: Philippe Crane (European Southern Observatory), and NASA

  2. White Light Stray Light Test of the SOHO UVCS

    NASA Technical Reports Server (NTRS)

    Gardner, L. N.; Gardner, L. N.; Fineschi, S.

    1998-01-01

    During the late stages of the integration phase of the Ultraviolet Coronagraph Spectrometer (UVCS) instrument for the Solar and Heliospheric Observatory (SOHO) at MATRA-Marconi in Toulouse, France, SOHO Project management at Goddard Space Flight Center (GSFC) became concerned that the elaborate stray light rejection system for the instrument had not been tested and might possibly be misaligned such that the instrument could not deliver promised scientific returns. A white light stray light test, which would place an upper bound on the value of UVCS's stray light rejection capability, was commissioned, conceived, and carried out. This upper bound value would be indicative of the weakest coronal features the spectrometer would be capable of discerning. The test was rapidly developed at GSFC in coordination with science team members from Harvard-Smithsonian Center for Astrophysics (CFA) and was carried out at MATRA in late February 1995. The outcome of this test helped to justify similar, much desired tests with visible and far ultraviolet light at CFA in a facility specifically designed to perform such testing.

  3. ULTRAVIOLET DISINFECTION STUDIES WITH CCL LISTED MICROORGANISMS

    EPA Science Inventory

    Resistance to ultraviolet (UV) disinfection is an essential aspect regarding all microbial groups listed on the CCL. The U.S. drinking water industry is interested in including UV light treatment as an amendment to conventional treatment for disinfecting water supplies. UV disi...

  4. Photovoltaic powered ultraviolet and visible light-emitting diodes for sustainable point-of-use disinfection of drinking waters.

    PubMed

    Lui, Gough Yumu; Roser, David; Corkish, Richard; Ashbolt, Nicholas; Jagals, Paul; Stuetz, Richard

    2014-09-15

    For many decades, populations in rural and remote developing regions will be unable to access centralised piped potable water supplies, and indeed, decentralised options may be more sustainable. Accordingly, improved household point-of-use (POU) disinfection technologies are urgently needed. Compared to alternatives, ultraviolet (UV) light disinfection is very attractive because of its efficacy against all pathogen groups and minimal operational consumables. Though mercury arc lamp technology is very efficient, it requires frequent lamp replacement, involves a toxic heavy metal, and their quartz envelopes and sleeves are expensive, fragile and require regular cleaning. An emerging alternative is semiconductor-based units where UV light emitting diodes (UV-LEDs) are powered by photovoltaics (PV). Our review charts the development of these two technologies, their current status, and challenges to their integration and POU application. It explores the themes of UV-C-LEDs, non-UV-C LED technology (e.g. UV-A, visible light, Advanced Oxidation), PV power supplies, PV/LED integration and POU suitability. While UV-C LED technology should mature in the next 10 years, research is also needed to address other unresolved barriers to in situ application as well as emerging research opportunities especially UV-A, photocatalyst/photosensitiser use and pulsed emission options. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. The difficulty of ultraviolet emssion from supernovae

    NASA Technical Reports Server (NTRS)

    Colgate, S. A.

    1971-01-01

    There are certain conceptual difficulties in the theory of the generation of ultraviolet radiation which is presumed for the creation of the optical fluorescence mechanism of supernova light emission and ionization of a nebula as large as the Gum nebula. Requirements concerning the energy distribution of the ultraviolet photons are: 1) The energy of the greater part of the photons must be sufficient to cause both helium fluorescence and hydrogen ionization. 2) If the photons are emitted in an approximate black body spectrum, the fraction of energy emitted in the optical must be no more than what is already observed. Ultraviolet black body emission depends primarily on the energy source. The probability that the wide mixture of elements present in the interstellar medium and supernova ejecta results in an emission localized in a limited region with less than 0.001 emission in the visible, for either ionization or fluorescence ultraviolet, is remote. Therefore transparent emission must be excluded as unlikely, and black body or at least quasi-black-body emission is more probable.

  6. Crystallization-mediated amorphous CuxO (x = 1, 2)/crystalline CuI p-p type heterojunctions with visible light enhanced and ultraviolet light restrained photocatalytic dye degradation performance

    NASA Astrophysics Data System (ADS)

    Wang, Hongli; Cai, Yun; Zhou, Jian; Fang, Jun; Yang, Yang

    2017-04-01

    We report simple and cost-effective fabrication of amorphous CuxO (x = 1, 2)/crystalline CuI p-p type heterojunctions based on crystallization-mediated approaches including antisolvent crystallization and crystal reconstruction. Starting from CuI acetonitrile solution, large crystals in commercial CuI can be easily converted to aggregates consisting of small particles by the crystallization processes while the spontaneous oxidation of CuI by atmospheric/dissolved oxygen can induce the formation of trace CuxO on CuI surface. As a proof of concept, the as-fabricated CuxO/CuI heterojunctions exhibit effective photocatalytic activity towards the degradation of methyl blue and other organic pollutants under visible light irradiation, although the wide band-gap semiconductor CuI is insensible to visible light. Unexpectedly, the CuxO/CuI heterojunctions exhibit restrained photocatalytic activity when ultraviolet light is applied in addition to the visible. It is suggested that the CuxO/CuI interface can enhance the spatial separation of the electron-hole pairs with the excitation of CuxO under visible light and prolong the lifetime of photogenerated charges with high redox ability. The present work represents a critically important step in advancing the crystallization technique for potential mass production of semiconductor heterojunctions in a mild manner.

  7. SN 2012fr: Ultraviolet, Optical, and Near-infrared Light Curves of a Type Ia Supernova Observed within a Day of Explosion

    NASA Astrophysics Data System (ADS)

    Contreras, Carlos; Phillips, M. M.; Burns, Christopher R.; Piro, Anthony L.; Shappee, B. J.; Stritzinger, Maximilian D.; Baltay, C.; Brown, Peter J.; Conseil, Emmanuel; Klotz, Alain; Nugent, Peter E.; Turpin, Damien; Parker, Stu; Rabinowitz, D.; Hsiao, Eric Y.; Morrell, Nidia; Campillay, Abdo; Castellón, Sergio; Corco, Carlos; González, Consuelo; Krisciunas, Kevin; Serón, Jacqueline; Tucker, Brad E.; Walker, E. S.; Baron, E.; Cain, C.; Childress, Michael J.; Folatelli, Gastón; Freedman, Wendy L.; Hamuy, Mario; Hoeflich, P.; Persson, S. E.; Scalzo, Richard; Schmidt, Brian; Suntzeff, Nicholas B.

    2018-05-01

    We present detailed ultraviolet, optical, and near-infrared light curves of the Type Ia supernova (SN) 2012fr, which exploded in the Fornax cluster member NGC 1365. These precise high-cadence light curves provide a dense coverage of the flux evolution from ‑12 to +140 days with respect to the epoch of B-band maximum ({t}{B\\max }). Supplementary imaging at the earliest epochs reveals an initial slow and nearly linear rise in luminosity with a duration of ∼2.5 days, followed by a faster rising phase that is well reproduced by an explosion model with a moderate amount of 56Ni mixing in the ejecta. From our analysis of the light curves, we conclude that: (i) the explosion occurred <22 hr before the first detection of the supernova, (ii) the rise time to peak bolometric (λ > 1800 Å) luminosity was 16.5 ± 0.6 days, (iii) the supernova suffered little or no host-galaxy dust reddening, (iv) the peak luminosity in both the optical and near-infrared was consistent with the bright end of normal Type Ia diversity, and (v) 0.60 ± 0.15 M ⊙ of 56Ni was synthesized in the explosion. Despite its normal luminosity, SN 2012fr displayed unusually prevalent high-velocity Ca II and Si II absorption features, and a nearly constant photospheric velocity of the Si II λ6355 line at ∼12,000 {km} {{{s}}}-1 that began ∼5 days before {t}{B\\max }. We also highlight some of the other peculiarities in the early phase photometry and the spectral evolution. SN 2012fr also adds to a growing number of Type Ia supernovae that are hosted by galaxies with direct Cepheid distance measurements. This paper includes data gathered with the 6.5 m Magellan Baade Telescope, located at Las Campanas Observatory, Chile.

  8. SN 2012fr: Ultraviolet, Optical, and Near-infrared Light Curves of a Type Ia Supernova Observed within a Day of Explosion

    DOE PAGES

    Contreras, Carlos; Phillips, M. M.; Burns, Christopher R.; ...

    2018-05-18

    We present detailed ultraviolet, optical, and near-infrared light curves of the Type Ia supernova (SN) 2012fr, which exploded in the Fornax cluster member NGC 1365. These precise high-cadence light curves provide a dense coverage of the flux evolution from -12 to +140 days with respect to the epoch of B-band maximum (more » $${t}_{{B}_{\\max }}$$). Supplementary imaging at the earliest epochs reveals an initial slow and nearly linear rise in luminosity with a duration of ~2.5 days, followed by a faster rising phase that is well reproduced by an explosion model with a moderate amount of 56 Ni mixing in the ejecta. From our analysis of the light curves, we conclude that: (i) the explosion occurred < 22 hr before the first detection of the supernova, (ii) the rise time to peak bolometric (λ >1800) luminosity was 16.5 ± 0.6 days, (iii) the supernova suffered little or no host-galaxy dust reddening, (iv) the peak luminosity in both the optical and near-infrared was consistent with the bright end of normal Type Ia diversity, and (v) 0.60 ± 0.15 M ⊙ of 56Ni was synthesized in the explosion. Despite its normal luminosity, SN 2012fr displayed unusually prevalent high-velocity Ca ii and Si ii absorption features, and a nearly constant photospheric velocity of the Si ii λ6355 line at ~12,000 km s -1 that began ~5 days before $${t}_{{B}_{\\max }}$$. We also highlight some of the other peculiarities in the early phase photometry and the spectral evolution. SN 2012fr also adds to a growing number of Type Ia supernovae that are hosted by galaxies with direct Cepheid distance measurements.« less

  9. SN 2012fr: Ultraviolet, Optical, and Near-infrared Light Curves of a Type Ia Supernova Observed within a Day of Explosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Contreras, Carlos; Phillips, M. M.; Burns, Christopher R.

    We present detailed ultraviolet, optical, and near-infrared light curves of the Type Ia supernova (SN) 2012fr, which exploded in the Fornax cluster member NGC 1365. These precise high-cadence light curves provide a dense coverage of the flux evolution from -12 to +140 days with respect to the epoch of B-band maximum (more » $${t}_{{B}_{\\max }}$$). Supplementary imaging at the earliest epochs reveals an initial slow and nearly linear rise in luminosity with a duration of ~2.5 days, followed by a faster rising phase that is well reproduced by an explosion model with a moderate amount of 56 Ni mixing in the ejecta. From our analysis of the light curves, we conclude that: (i) the explosion occurred < 22 hr before the first detection of the supernova, (ii) the rise time to peak bolometric (λ >1800) luminosity was 16.5 ± 0.6 days, (iii) the supernova suffered little or no host-galaxy dust reddening, (iv) the peak luminosity in both the optical and near-infrared was consistent with the bright end of normal Type Ia diversity, and (v) 0.60 ± 0.15 M ⊙ of 56Ni was synthesized in the explosion. Despite its normal luminosity, SN 2012fr displayed unusually prevalent high-velocity Ca ii and Si ii absorption features, and a nearly constant photospheric velocity of the Si ii λ6355 line at ~12,000 km s -1 that began ~5 days before $${t}_{{B}_{\\max }}$$. We also highlight some of the other peculiarities in the early phase photometry and the spectral evolution. SN 2012fr also adds to a growing number of Type Ia supernovae that are hosted by galaxies with direct Cepheid distance measurements.« less

  10. Hubble Images Reveal Jupiter's Auroras

    NASA Technical Reports Server (NTRS)

    1996-01-01

    These images, taken by the Hubble Space Telescope, reveal changes in Jupiter's auroral emissions and how small auroral spots just outside the emission rings are linked to the planet's volcanic moon, Io. The images represent the most sensitive and sharply-detailed views ever taken of Jovian auroras.

    The top panel pinpoints the effects of emissions from Io, which is about the size of Earth's moon. The black-and-white image on the left, taken in visible light, shows how Io and Jupiter are linked by an invisible electrical current of charged particles called a 'flux tube.' The particles - ejected from Io (the bright spot on Jupiter's right) by volcanic eruptions - flow along Jupiter's magnetic field lines, which thread through Io, to the planet's north and south magnetic poles. This image also shows the belts of clouds surrounding Jupiter as well as the Great Red Spot.

    The black-and-white image on the right, taken in ultraviolet light about 15 minutes later, shows Jupiter's auroral emissions at the north and south poles. Just outside these emissions are the auroral spots. Called 'footprints,' the spots are created when the particles in Io's 'flux tube' reach Jupiter's upper atmosphere and interact with hydrogen gas, making it fluoresce. In this image, Io is not observable because it is faint in the ultraviolet.

    The two ultraviolet images at the bottom of the picture show how the auroral emissions change in brightness and structure as Jupiter rotates. These false-color images also reveal how the magnetic field is offset from Jupiter's spin axis by 10 to 15 degrees. In the right image, the north auroral emission is rising over the left limb; the south auroral oval is beginning to set. The image on the left, obtained on a different date, shows a full view of the north aurora, with a strong emission inside the main auroral oval.

    The images were taken by the telescope's Wide Field and Planetary Camera 2 between May 1994 and September 1995.

    This image and

  11. IUE's treasure-chest of the ultraviolet Universe

    NASA Astrophysics Data System (ADS)

    1997-11-01

    to 3200 angstrom units, which is blotted out by the Earths atmosphere. Operating far above the atmosphere, IUE generated spectra showing intensities at different wavelengths, coming from the selected objects in the sky. To an astrophysicist, such spectra are much more informative than images, about the mechanisms that produce and dissipate the objects energy. Temperatures, motions, magnetism and chemical composition are all discernable in the ultraviolet spectra. As a result, astronomers have a far better picture of the hot atmospheres of stars than they did before IUE's launch. Even the Sun, a quiet star of moderate size, possesses a very hot atmosphere emitting ultraviolet light, which is now being monitored non-stop by the ESA-NASA solar spacecraft SOHO. Some other stars, ranging from small white dwarfs to large, massive stars, give off ultraviolet emissions from their very hot surfaces. Hot and fierce winds of gas emitted from stars have a profound effect on the lives and environments of the stars, and on any companions caught up in the winds. IUE unmasked the ultraviolet behaviour of a large menagerie of different star types, and astronomers at the Sevilla meeting will discuss profound revisions in astrophysical ideas resulting from the observations. Other participants will review IUE's contribution to new knowledge about galaxies. These vast assemblies of stars also reveal violent behaviour in ultraviolet light. In a special campaign, a multinational team used IUE to observe the stormy galaxy NGC 5548 some 60 times in eight months. As a result, they discovered effects of central outbursts spreading from hot regions at the very core of the galaxy to adjacent cooler regions, in a timescale of weeks. In galaxy NGC 7469, observed simultaneously by IUE and by the X-ray satellite Rossi XTE, the timescale shrank to days. Quasars are erupting galaxies observable at great distances, and their examination by ultraviolet light, by IUE and more recently by the Hubble Space

  12. Enhancing the light-extraction efficiency of AlGaN deep-ultraviolet light-emitting diodes using highly reflective Ni/Mg and Rh as p-type electrodes

    NASA Astrophysics Data System (ADS)

    Maeda, Noritoshi; Yun, Joosun; Jo, Masafumi; Hirayama, Hideki

    2018-04-01

    Improving the light-extraction efficiency (LEE) is a major issue for the development of deep-ultraviolet (DUV) light-emitting diodes (LEDs). For this improvement, we introduced a transparent p-AlGaN contact layer and a reflective p-type electrode. In this work, we investigated the improvements obtained by replacing conventional Ni/Au p-type electrodes with highly reflective Ni/Mg and Rh electrodes. The external quantum efficiencies (EQEs) of 279 nm DUV LEDs were increased from 4.2 to 6.6% and from 3.4 to 4.5% by introducing Ni/Mg and Rh p-type electrodes, respectively. The LEE enhancement factors for the Ni/Mg and Rh electrodes were 1.6 and 1.4, respectively. These results are explained by the fact that the measured reflectances of the Ni/Mg and Rh electrodes were approximately 80 and 55%, respectively. Moreover, it was concluded that a passivation layer is required for Ni/Mg electrodes to prevent the degradation of the LED properties by the oxidation of Mg.

  13. Efficacy of on-farm use of ultraviolet light for inactivation of bacteria in milk for calves.

    PubMed

    Gelsinger, S L; Heinrichs, A J; Jones, C M; Van Saun, R J; Wolfgang, D R; Burns, C M; Lysczek, H R

    2014-05-01

    Ultraviolet light is being employed for bacterial inactivation in milk for calves; however, limited evidence is available to support the claim that UV light effectively inactivates bacteria found in milk. Thus, the objective of this observational study was to investigate the efficacy of on-farm UV light treatment in reducing bacteria populations in waste milk used for feeding calves. Samples of nonsaleable milk were collected from 9 Pennsylvania herds, twice daily for 15 d, both before and after UV light treatment (n=60 samples per farm), and analyzed for standard plate count, coliforms, noncoliform, gram-negative bacteria, environmental and contagious streptococci, coagulase-negative staphylococci, Streptococcus agalactiae, Staphylococcus aureus count, and total solids percentage, and log reduction and percentage log reduction were calculated. Data were analyzed using the mixed procedure in SAS. In all bacteria types, samples collected after UV treatment contained significantly fewer bacteria compared with samples collected before UV treatment. Weighted least squares means for log reduction (percentage log reduction) were 1.34 (29%), 1.27 (58%), 1.48 (53%), 1.85 (55%), 1.37 (72%), 1.92 (63%), 1.07 (33%), and 1.67 (82%) for standard plate count, coliforms, noncoliform, gram-negative bacteria, environmental and contagious streptococci, Strep. agalactiae, coagulase-negative staphylococci, and Staph. aureus, respectively. A percentage log reduction greater than 50% was achieved in 6 of 8 bacteria types, and 43 and 94% of samples collected after UV treatment met recommended bacterial standards for milk for feeding calves. Based on these results, UV light treatment may be effective for some, but not all bacteria types found in nonsaleable waste milk. Thus, farmers should take into account the bacteria types that may need to be reduced when considering the purchase of a UV-treatment system. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc

  14. Surface processing: existing and potential applications of ultraviolet light.

    PubMed

    Manzocco, Lara; Nicoli, Maria Cristina

    2015-01-01

    Solid foods represent optimal matrices for ultraviolet processing with effects well beyond nonthermal surface disinfection. UV radiation favors hormetic response in plant tissues and degradation of toxic compound on the product surface. Photoinduced reactions can also provide unexplored possibilities to steer structure and functionality of food biopolymers. The possibility to extensively exploit this technology will depend on availability of robust information about efficacious processing conditions and adequate strategies to completely and homogeneously process food surface.

  15. ULTRAVIOLET HALOS AROUND SPIRAL GALAXIES. I. MORPHOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodges-Kluck, Edmund; Cafmeyer, Julian; Bregman, Joel N., E-mail: hodgeskl@umich.edu

    2016-12-10

    We examine ultraviolet halos around a sample of highly inclined galaxies within 25 Mpc to measure their morphology and luminosity. Despite contamination from galactic light scattered into the wings of the point-spread function, we find that ultraviolet (UV) halos occur around each galaxy in our sample. Around most galaxies the halos form a thick, diffuse disk-like structure, but starburst galaxies with galactic superwinds have qualitatively different halos that are more extensive and have filamentary structure. The spatial coincidence of the UV halos above star-forming regions, the lack of consistent association with outflows or extraplanar ionized gas, and the strong correlationmore » between the halo and galaxy UV luminosity suggest that the UV light is an extragalactic reflection nebula. UV halos may thus represent 10{sup 6}–10{sup 7} M {sub ⊙} of dust within 2–10 kpc of the disk, whose properties may change with height in starburst galaxies.« less

  16. Broadband ultraviolet reflectance filters for space applications.

    NASA Technical Reports Server (NTRS)

    Osantowski, J. F.; Toft, A. R.

    1973-01-01

    It is shown that a simple metal-dielectric-metal filter for broadband ultraviolet (BUV) reflectance control can provide a stable and effective means for reducing stray visible radiation in UV reflective optical systems. The application of such a filter in a BUV instrument resulted in a reduction of scattered visible light by at least an order of magnitude. The instrument has been in orbit for 2.5 year without loss of sensitivity or an increase in scattered light background.-

  17. Laboratory measurement of the absorption coefficient of riboflavin for ultraviolet light (365 nm).

    PubMed

    Iseli, Hans Peter; Popp, Max; Seiler, Theo; Spoerl, Eberhard; Mrochen, Michael

    2011-03-01

    Corneal cross-linking (CXL) is an increasingly used treatment technique for stabilizing the cornea in keratoconus. Cross-linking (polymerization) between collagen fibrils is induced by riboflavin (vitamin B2) and ultraviolet light (365 nm). Although reported to reach a constant value at higher riboflavin concentrations, the Lambert-Beer law predicts a linear increase in the absorption coefficient. This work was carried out to determine absorption behavior at different riboflavin concentrations and to further investigate the purported plateau absorption coefficient value of riboflavin and to identify possible bleaching effects. The Lambert-Beer law was used to calculate the absorption coefficient at various riboflavin concentrations. The following investigated concentrations of riboflavin solutions were prepared using a mixture of 0.5% riboflavin and 20% Dextran T500 dissolved in 0.9% sodium chloride solution: 0%, 0.02%, 0.03%, 0.04%, 0.05%, 0.06%, 0.08%, 0.1%, 0.2%, 0.3%, 0.4%, and 0.5%, and were investigated with and without aperture plate implementation. An additional test series measured the transmitted power at selected riboflavin concentrations over time. In diluted solutions, a linear correlation exists between the absorption coefficient and riboflavin concentration. The absorption coefficient reaches a plateau, but this occurs at a higher riboflavin concentration (0.1%) than previously reported (just above 0.04%). Transmitted light power increases over time, indicating a bleaching effect of riboflavin. The riboflavin concentration can be effectively varied as a treatment parameter in a considerably broader range than previously thought. Copyright 2011, SLACK Incorporated.

  18. Riboflavin and ultraviolet light for pathogen reduction of murine cytomegalovirus in blood products.

    PubMed

    Keil, Shawn D; Saakadze, Natia; Bowen, Richard; Newman, James L; Karatela, Sulaiman; Gordy, Paul; Marschner, Susanne; Roback, John; Hillyer, Christopher D

    2015-04-01

    Two studies were performed to test the effectiveness of riboflavin and ultraviolet (UV) light treatment (Mirasol PRT, Terumo BCT) against murine cytomegalovirus (MCMV). The first study utilized immune-compromised mice to measure the reduction of cell-free MCMV. A second study used a murine model to evaluate the ability of Mirasol PRT to prevent transfusion-transmitted (TT)-MCMV infection. Human plasma was inoculated with MCMV and then treated with Mirasol PRT. The viral titer was measured using an infectious dose 50% assay in nude mice. Mice were euthanized on Day 10 posttransfusion, and their spleens were tested for the presence of MCMV DNA using polymerase chain reaction (PCR). Mirasol PRT was also evaluated to determine its effectiveness in preventing TT-MCMV in platelets (PLTs) stored in PLT additive solution. PLTs were inoculated with either cell-associated MCMV or cell-free MCMV and then treated with Mirasol PRT. Mice were transfused with treated or untreated product and were euthanized 14 days posttransfusion. Blood and spleens were assayed for MCMV DNA by real-time-PCR. Using nude mice to titer MCMV, a modest 2.1-log reduction was observed in plasma products after Mirasol PRT treatment. TT-MCMV was not observed in the mouse transfusion model when either cell-free or cell-associated MCMV was treated with Mirasol PRT; MCMV transmission was uniformly observed in mice transfused with untreated PLTs. These results suggest that using riboflavin and UV light treatment may be able to reduce the occurrence of transmission of human CMV from infectious PLTs and plasma units. © 2014 AABB.

  19. Photorefraction in the ultraviolet: Materials and effects

    NASA Astrophysics Data System (ADS)

    Laeri, F.; Jungen, R.; Angelow, G.; Vietze, U.; Engel, T.; Würtz, M.; Hilgenberg, D.

    1995-10-01

    Doped as well as nominally pure crystals of Lithium Niobate (LiNbO3), ι-Arginine Phosphate (LAP), Lithium Iodate (LiIO3), Potassium Dihydrogen Phosphate (KDP), Lithium Formate (LFM), Beta-Barium Borate (BBO), and lithium tetra borate were grown and investigated for photorefractive effects at ultraviolet wavelengths down to 333 nm. In nominally undoped LiNbO3 crystals strong beam coupling effects were observed. In contrast to the visible we revealed a diffusion-dominated charge transport mechanism based on holes, and a low photovoltaic field in the order of 550 V/cm. With such a crystal we investigated the modulation transfer function of a lensless image projection system based on a phase conjugation scheme. A spatial frequency response beyond 2800 line pairs per millimeter was observed. Photorefractive beam coupling was also obtained in LiIO3. Light-induced scattering was detected in iron-doped LiIO3 whereas as-grown LAP material did not exhibit any observable photorefractive effects. However, 100 kV X-ray irradiation seems to induce material defects which can lead to weak light-induced scattering at 351 nm. In all other above-mentioned materials, doped as well as undoped, light-induced scattering could not be observed. On the other hand, this is appreciated in all the applications where the crystals are used as nonlinear material for optical frequency conversion.

  20. LHEA contributions to the Future of Ultraviolet Astronomy Based on Six Years of IUE Research

    NASA Technical Reports Server (NTRS)

    Mushotzky, R. F.; Urry, C. M.

    1984-01-01

    Astronomical models of galactic nuclei emission spectra are reassessed in light of ultraviolet and X-ray spectroscopic observations. Spectral analysis of BL Lacertae objects using data collected by the International Ultraviolet Explorer (IUE) and other astronomical observatories is presented.

  1. Ultrastructure study of hair damage after ultraviolet irradiation.

    PubMed

    Zuel-Fakkar, Nehal Mohamed; El Khateeb, Ekramy Ahmed; Cousha, Hala Sobhi; Hamed, Dina Mohamed

    2013-12-01

    Natural ultraviolet exposure induces hair damage, which is difficult to avoid. Most of the research work is focused on the effect of ultraviolet on the epidermis, dermis as well as the immune system, whereas the long-term effect of ultraviolet on hair has not been investigated. we performed our experiment to find out the changes induced in hair follicle and shaft in those patients exposed to high doses of ultraviolet (A and B) during treatment of other skin conditions. Light and transmission electron microscopy examination of scalp hair follicles and shafts of 10 patients with vitiligo under psoralen plus ultraviolet A (group 1) and 10 patients with vitiligo under narrow band ultraviolet B (group 2) was carried out and compared with those of 10 healthy volunteers (group 3). Physical changes in the appearance of hair were more in groups 1 and 2 than control. Reduced hair follicle thickness and perifollicular infiltrate and hyaline disorganized perifollicular collagen were observed more in group 1 than in group 2 with the absence of these changes in group 3. Transmission electron microscopy showed nonspecific cell injury in hair follicles in group 1 more than the other 2 groups, while the damaging effect on hair was more in the second group than the others. Due to the damaging effect of ultraviolet on hair, patients under treatment with this modality should be cautious to protect their hair during treatment. © 2013 Wiley Periodicals, Inc.

  2. Fluorescence Imaging Reveals Surface Contamination

    NASA Technical Reports Server (NTRS)

    Schirato, Richard; Polichar, Raulf

    1992-01-01

    In technique to detect surface contamination, object inspected illuminated by ultraviolet light to make contaminants fluoresce; low-light-level video camera views fluorescence. Image-processing techniques quantify distribution of contaminants. If fluorescence of material expected to contaminate surface is not intense, tagged with low concentration of dye.

  3. Method for the detection of nitro-containing compositions using ultraviolet photolysis

    DOEpatents

    Reagen, William K.; Lancaster, Gregory D.; Partin, Judy K.; Moore, Glenn A.

    2000-01-01

    A method for detecting nitro-containing compositions (e.g. nitrate/nitrite materials) in water samples and on solid substrates. In a water sample, ultraviolet light is applied to the sample so that dissolved nitro compositions therein will photolytically dissociate into gaseous nitrogen oxides (NO.sub.2(g) and/or NO.sub.(g)). A carrier gas is then introduced into the sample to generate a gaseous stream which includes the carrier gas combined with any gaseous nitrogen oxides. The carrier gas is thereafter directed into a detector. To detect nitro-compositions on solid substrates, ultraviolet light is applied thereto. A detector is then used to detect any gaseous nitrogen oxides which are photolytically generated during ultraviolet illumination. An optional carrier gas may be applied to the substrate during illumination to produce a gaseous stream which includes the carrier gas and any gaseous nitrogen oxides. The gaseous stream is then supplied to the detector.

  4. The effects of ultraviolet light on the degradation of organic compounds - A possible explanation for the absence of organic matter on Mars

    NASA Technical Reports Server (NTRS)

    Oro, J.; Holzer, G.

    1979-01-01

    The analysis of the top layer of the Martian regolith at the two Viking landing sites did not reveal any indigenous organic compounds. However, the existence of such compounds at deeper layers cannot be ruled out. Cosmochemical considerations indicate various potential sources for organic matter on Mars, such as comets and meteorites. The study tested the stability of a sample of the Murchison meteorite and various organic substances which have been detected in carbonaceous chondrites, such as glycine, adenine and naphthalene, to the action of ultraviolet light. The compounds were adsorbed on powdered quartz and on California desert soil and were irradiated in the presence or absence of oxygen. The organic content, before and after irradiation, was measured by carbon elementary analysis, UV-absorption, amino acid analysis or pyrolysis-gas chromatography-mass spectrometry. In the absence of oxygen, adenine and glycine appear to be stable over the given part of irradiation. A definite degradation was noticed in the case of naphtalene and the Murchison meteorite. In the presence of oxygen in amounts comparable to those on Mars all compounds were degraded. The degree of degradation was influenced by the irradiation time, temperature and oxygen content.

  5. Nonclassical light revealed by the joint statistics of simultaneous measurements.

    PubMed

    Luis, Alfredo

    2016-04-15

    Nonclassicality cannot be a single-observable property, since the statistics of any quantum observable is compatible with classical physics. We develop a general procedure to reveal nonclassical behavior of light states from the joint statistics arising in the practical measurement of multiple observables. Beside embracing previous approaches, this protocol can disclose nonclassical features for standard examples of classical-like behavior, such as SU(2) and Glauber coherent states. When combined with other criteria, this would imply that every light state is nonclassical.

  6. Current crowding and self-heating effects in AlGaN-based flip-chip deep-ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Hao, Guo-Dong; Taniguchi, Manabu; Tamari, Naoki; Inoue, Shin-ichiro

    2018-01-01

    We thoroughly explored the physical origin of the efficiency decrease with increasing injection current and current crowding effect in 280 nm AlGaN-based flip-chip deep-ultraviolet (DUV) light-emitting diodes (LEDs). The current spreading length was experimentally determined to be much smaller in DUV LEDs than that in conventional InGaN-based visible LEDs. The severe self-heating caused by the low power conversion efficiency of DUV LEDs should be mainly responsible for the considerable decrease of efficiency when current crowding is present. The wall-plug efficiency of the DUV LEDs was markedly enhanced by using a well-designed p-electrode pattern to improve the current distribution.

  7. All-angle negative refraction and active flat lensing of ultraviolet light.

    PubMed

    Xu, Ting; Agrawal, Amit; Abashin, Maxim; Chau, Kenneth J; Lezec, Henri J

    2013-05-23

    Decades ago, Veselago predicted that a material with simultaneously negative electric and magnetic polarization responses would yield a 'left-handed' medium in which light propagates with opposite phase and energy velocities--a condition described by a negative refractive index. He proposed that a flat slab of left-handed material possessing an isotropic refractive index of -1 could act like an imaging lens in free space. Left-handed materials do not occur naturally, and it has only recently become possible to achieve a left-handed response using metamaterials, that is, electromagnetic structures engineered on subwavelength scales to elicit tailored polarization responses. So far, left-handed responses have typically been implemented using resonant metamaterials composed of periodic arrays of unit cells containing inductive-capacitive resonators and conductive wires. Negative refractive indices that are isotropic in two or three dimensions at microwave frequencies have been achieved in resonant metamaterials with centimetre-scale features. Scaling the left-handed response to higher frequencies, such as infrared or visible, has been done by shrinking critical dimensions to submicrometre scales by means of top-down nanofabrication. This miniaturization has, however, so far been achieved at the cost of reduced unit-cell symmetry, yielding a refractive index that is negative along only one axis. Moreover, lithographic scaling limits have so far precluded the fabrication of resonant metamaterials with left-handed responses at frequencies beyond the visible. Here we report the experimental implementation of a bulk metamaterial with a left-handed response to ultraviolet light. The structure, based on stacked plasmonic waveguides, yields an omnidirectional left-handed response for transverse magnetic polarization characterized by a negative refractive index. By engineering the structure to have a refractive index close to -1 over a broad angular range, we achieve Veselago

  8. High efficiency single Ag nanowire/p-GaN substrate Schottky junction-based ultraviolet light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Y.; Li, X.; Xu, P.

    2015-02-02

    We report a high efficiency single Ag nanowire (NW)/p-GaN substrate Schottky junction-based ultraviolet light emitting diode (UV-LED). The device demonstrates deep UV free exciton electroluminescence at 362.5 nm. The dominant emission, detectable at ultralow (<1 μA) forward current, does not exhibit any shifts when the forward current is increased. External quantum efficiency (EQE) as high as 0.9% is achieved at 25 μA current at room temperature. Experiments and simulation analysis show that devices fabricated with thinner Ag NWs have higher EQE. However, for very thin Ag NWs (diameter < 250 nm), this trend breaks down due to heat accumulation in the NWs. Our simple device architecturemore » offers a potentially cost-effective scheme to fabricate high efficiency Schottky junction-based UV-LEDs.« less

  9. Extreme Ultraviolet Explorer. Long look at the next window

    NASA Technical Reports Server (NTRS)

    Maran, Stephen P.

    1991-01-01

    The Extreme Ultraviolet Explorer (EUVE) will map the entire sky to determine the existence, direction, brightness, and temperature of thousands of objects that are sources of so-called extreme ultraviolet (EUV) radiation. The EUV spectral region is located between the x-ray and ultraviolet regions of the electromagnetic spectrum. From the sky survey by EUVE, astronomers will determine the nature of sources of EUV light in our galaxy, and infer the distribution of interstellar gas for hundreds of light years around the solar system. It is from this gas and the accompanying dust in space that new stars and solar systems are born and to which evolving and dying stars return much of their material in an endless cosmic cycle of birth, death, and rebirth. Besides surveying the sky, astronomers will make detailed studies of selected objects with EUVE to determine their physical properties and chemical compositions. Also, they will learn about the conditions that prevail and the processes at work in stars, planets, and other sources of EUV radiation, maybe even quasars. The EUVE mission and instruments are described. The objects that EUVE will likely find are described.

  10. The early ultraviolet, optical, and radio evolution of the soft X-ray transient GRO J0422+32

    NASA Technical Reports Server (NTRS)

    Shrader, C. R.; Wagner, R. Mark; Hjellming, R. M.; Han, X. H.; Starrfield, S. G.

    1994-01-01

    We have monitored the evolution of the transient X-ray source GRO J0422+32 from approximately 2 weeks postdiscovery into its early decline phase at ultraviolet, optical, and radio wavelengths. Optical and ultraviolet spectra exhibit numerous, but relatively weak, high-excitation emission lines such as those arising from He II, N III, N V, and C IV superposed on an intrinsically blue continuum. High-resolution optical spectroscopy reveals line profiles which are double peaked, and in the case of the higher order Balmer lines, superposed on a broad absorption profile. The early outburst optical-ultraviolet continuum energy distribution is well represented by a two power-law fit with a break at approximately equal 4000 A. Radio observations with the Very Large Array (VLA) reveal a flat-spectrum source, slowly increasing in intensity at the earliest epochs observed, followed by an approximate power-law decay light curve with an index of -1. Light curves for each wavelength domain are presented and discussed. Notable are the multiple secondary outbursts seen in the optical more than 1 year postdiscovery, and spectral changes associated with secondary rises seen in the radio and UV. We find that the ultraviolet and optical characteristics of GRO J0422+32 as well as its radio evolution, are similar to other recent well-observed soft X-ray transients (also called X-ray novae) such as Cen X-4, A0620-00 (V616 Mon), and Nova Muscae 1991 (GS 1124-683), suggesting that GRO J0422+32 is also a member of that subclass of low-mass X-ray binaries. We present definitive astrometric determination of the source position, and place an upper limit of R approximately equals 20 from our analysis of the Palomar Observatory Sky Survey (POSS). Additionally, we derive distinct values for color excess from analysis of the optical (E(B-V) = 0.23) and ultraviolet (E(B-V) = 0.4) data, suggesting an intrinsic magnitude of 19-19.5 for the progenitor if it is mid-K dwarf. This leads to a likely range

  11. A Semitransparent Inorganic Perovskite Film for Overcoming Ultraviolet Light Instability of Organic Solar Cells and Achieving 14.03% Efficiency.

    PubMed

    Chen, Weijie; Zhang, Jingwen; Xu, Guiying; Xue, Rongming; Li, Yaowen; Zhou, Yinhua; Hou, Jianhui; Li, Yongfang

    2018-05-01

    Organic solar cells (OSCs) can be unstable under ultraviolet (UV) irradiation. To address this issue and enhance the power conversion efficiency (PCE), an inorganic-perovskite/organic four-terminal tandem solar cell (TSC) based on a semitransparent inorganic CsPbBr 3 perovskite solar cell (pero-SC) as the top cell and an OSC as bottom cell is constructed. The high-quality CsPbBr 3 photoactive layer of the planar pero-SC is prepared with a dual-source vacuum coevaporation method, using stoichiometric precursors of CsBr and PbBr 2 with a low evaporation rate. The resultant opaque planar pero-SC exhibits an ultrahigh open-circuit voltage of 1.44 V and the highest reported PCE of 7.78% for a CsPbBr 3 -based planar pero-SC. Importantly, the devices show no degradation after 120 h UV light illumination. The related semitransparent pero-SC can almost completely filter UV light and well maintain photovoltaic performance; it additionally shows an extremely high average visible transmittance. When it is used to construct a TSC, the top pero-SC acting as a UV filter can utilize UV light for photoelectric conversion, avoiding the instability problem of UV light on the bottom OSC that can meet the industrial standards of UV-light stability for solar cells, and leading to the highest reported PCE of 14.03% for the inorganic-perovskite/organic TSC. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Aluminum nanostructures for ultraviolet plasmonics

    NASA Astrophysics Data System (ADS)

    Martin, Jérôme; Khlopin, Dmitry; Zhang, Feifei; Schuermans, Silvère; Proust, Julien; Maurer, Thomas; Gérard, Davy; Plain, Jérôme

    2017-08-01

    An electromagnetic field is able to produce a collective oscillation of free electrons at a metal surface. This allows light to be concentrated in volumes smaller than its wavelength. The resulting waves, called surface plasmons can be applied in various technological applications such as ultra-sensitive sensing, Surface Enhanced Raman Spectroscopy, or metal-enhanced fluorescence, to name a few. For several decades plasmonics has been almost exclusively studied in the visible region by using nanoparticles made of gold or silver as these noble metals support plasmonic resonances in the visible and near-infrared range. Nevertheless, emerging applications will require the extension of nano-plasmonics toward higher energies, in the ultraviolet range. Aluminum is one of the most appealing metal for pushing plasmonics up to ultraviolet energies. The subsequent applications in the field of nano-optics are various. This metal is therefore a highly promising material for commercial applications in the field of ultraviolet nano-optics. As a consequence, aluminum (or ultraviolet, UV) plasmonics has emerged quite recently. Aluminium plasmonics has been demonstrated efficient for numerous potential applications including non-linear optics, enhanced fluorescence, UV-Surface Enhanced Raman Spectroscopy, optoelectronics, plasmonic assisted solid-state lasing, photocatalysis, structural colors and data storage. In this article, different preparation methods developed in the laboratory to obtain aluminum nanostructures with different geometries are presented. Their optical and morphological characterizations of the nanostructures are given and some proof of principle applications such as fluorescence enhancement are discussed.

  13. Ultraviolet light and laser irradiation enhances the antibacterial activity of glucosamine-functionalized gold nanoparticles

    PubMed Central

    Govindaraju, Saravanan; Ramasamy, Mohankandhasamy; Baskaran, Rengarajan; Ahn, Sang Jung; Yun, Kyusik

    2015-01-01

    Here we report a novel method for the synthesis of glucosamine-functionalized gold nanoparticles (GlcN-AuNPs) using biocompatible and biodegradable glucosamine for antibacterial activity. GlcN-AuNPs were prepared using different concentrations of glucosamine. The synthesized AuNPs were characterized for surface plasmon resonance, surface morphology, fluorescence spectroscopy, and antibacterial activity. The minimum inhibitory concentrations (MICs) of the AuNPs, GlcN-AuNPs, and GlcN-AuNPs when irradiated by ultraviolet light and laser were investigated and compared with the MIC of standard kanamycin using Escherichia coli by the microdilution method. Laser-irradiated GlcN-AuNPs exhibited significant bactericidal activity against E. coli. Flow cytometry and fluorescence microscopic analysis supported the cell death mechanism in the presence of GlcN-AuNP-treated bacteria. Further, morphological changes in E. coli after laser treatment were investigated using atomic force microscopy and transmission electron microscopy. The overall results of this study suggest that the prepared nanoparticles have potential as a potent antibacterial agent for the treatment of a wide range of disease-causing bacteria. PMID:26345521

  14. Effects of near-ultraviolet light on mutations, intragenic and intergenic recombinations in Saccharomyces cerevisiae.

    PubMed

    Machida, I; Saeki, T; Nakai, S

    1986-03-01

    The effects of far (254 nm) and near (290-350 nm) ultraviolet (UV) light on mutations, intragenic and intergenic recombinations were compared in diploid strains of Saccharomyces cerevisiae. At equivalent survival levels there was not much difference in the induction of nonsense and missense mutations between far- and near-UV radiations. However, frameshift mutations were induced more frequently by near-UV than by far-UV radiation. Near-UV radiation induced intragenic recombination (gene conversion) as efficiently as far-UV radiation and the induced levels were similar in both radiations at equitoxic doses. A strikingly higher frequency was observed for the intergenic recombination induced by near-UV radiation than by far-UV radiation when compared at equivalent survival levels. Photoreactivation reduced the frequency only slightly in far-UV induced intergenic recombination and not at all in near-UV induction. These results indicate that near-UV damage involves strand breakage in addition to pyrimidine dimers and other lesions induced, whereas far-UV damage consists largely of photoreactivable lesions, pyrimidine dimers, and near-UV induced damage is more efficient for the induction of crossing-over.

  15. Uv-Light Stabilization Additive Package For Solar Cell Module And Laminated Glass Applications

    DOEpatents

    Hanoka, Jack I.; Klemchuk, Peter P.

    2002-03-05

    An ultraviolet light stabilization additive package is used in an encapsulant material that may be used in solar cell modules, laminated glass and a variety of other applications. The ultraviolet light stabilization additive package comprises a first hindered amine light stabilizer and a second hindered amine light stabilizer. The first hindered amine light stabilizer provides thermal oxidative stabilization, and the second hindered amine light stabilizer providing photo-oxidative stabilization.

  16. The effectiveness of riboflavin and ultraviolet light pathogen reduction technology in eliminating Trypanosoma cruzi from leukoreduced whole blood.

    PubMed

    Jimenez-Marco, Teresa; Cancino-Faure, Beatriz; Girona-Llobera, Enrique; Alcover, M Magdalena; Riera, Cristina; Fisa, Roser

    2017-06-01

    The parasitic Chagas disease is caused by the protozoan Trypanosoma cruzi, which is mainly transmitted by insect vectors. Other infection routes, both in endemic and in nonendemic areas, include organ and marrow transplantation, congenital transmission, and blood transfusion. Asymptomatic chronic chagasic individuals may have a low and transient parasitemia in peripheral blood and, consequently, they can unknowingly transmit the disease via blood transfusion. Riboflavin and ultraviolet (UV) light pathogen reduction is a method to reduce pathogen transfusion transmission risk based on damage to the pathogen nucleic acids. In this study, we tested the effectiveness of this technology for the elimination of T. cruzi parasites in artificially contaminated whole blood units (WBUs) and thus for decreasing the risk of T. cruzi transfusion transmission. The contaminated WBUs were leukoreduced by filtration and treated with riboflavin and UV light. The level of pathogen reduction was quantified by a real-time polymerase chain reaction (qPCR) and a real-time reverse transcription-polymerase chain reaction (RT-qPCR) as a viability assay. The RNA (cDNA) quantification of the parasites showed a more than 99% reduction of viable T. cruzi parasites after leukoreduction and a complete reduction (100%) after the riboflavin and UV light treatment. Riboflavin and UV light treatment and leukoreduction used in conjunction appears to eliminate significant amounts of viable T. cruzi in whole blood. Both strategies could complement other blood bank measures already implemented to prevent the transmission of T. cruzi via blood transfusion. © 2017 AABB.

  17. Ultraweak photon emission induced by visible light and ultraviolet A radiation via photoactivated skin chromophores: in vivo charge coupled device imaging.

    PubMed

    Prasad, Ankush; Pospíšil, Pavel

    2012-08-01

    Solar radiation that reaches Earth's surface can have severe negative consequences for organisms. Both visible light and ultraviolet A (UVA) radiation are known to initiate the formation of reactive oxygen species (ROS) in human skin by photosensitization reactions (types I and II). In the present study, we investigated the role of visible light and UVA radiation in the generation of ROS on the dorsal and the palmar side of a hand. The ROS are known to oxidize biomolecules such as lipids, proteins, and nucleic acids to form electronically excited species, finally leading to ultraweak photon emission. We have employed a highly sensitive charge coupled device camera and a low-noise photomultiplier tube for detection of two-dimensional and one-dimensional ultraweak photon emission, respectively. Our experimental results show that oxidative stress is generated by the exposure of human skin to visible light and UVA radiation. The oxidative stress generated by UVA radiation is claimed to be significantly higher than that by visible light. Two-dimensional photon imaging can serve as a potential tool for monitoring the oxidative stress in the human skin induced by various stress factors irrespective of its physical or chemical nature.

  18. The role of graphene formed on silver nanowire transparent conductive electrode in ultra-violet light emitting diodes

    PubMed Central

    Seo, Tae Hoon; Lee, Seula; Min, Kyung Hyun; Chandramohan, S.; Park, Ah Hyun; Lee, Gun Hee; Park, Min; Suh, Eun-Kyung; Kim, Myung Jong

    2016-01-01

    This paper reports a highly reliable transparent conductive electrode (TCE) that integrates silver nanowires (AgNWs) and high-quality graphene as a protecting layer. Graphene with minimized defects and large graphene domains has been successfully obtained through a facile two-step growth approach. Ultraviolet light emitting diodes (UV-LEDs) were fabricated with AgNWs or hybrid electrodes where AgNWs were combined with two-step grown graphene (A-2GE) or conventional one-step grown graphene (A-1GE). The device performance and reliability of the UV-LEDs with three different electrodes were compared. The A-2GE offered high figure of merit owing to the excellent UV transmittance and reduced sheet resistance. As a consequence, the UV-LEDs made with A-2GE demonstrated reduced forward voltage, enhanced electroluminescence (EL) intensity, and alleviated efficiency droop. The effects of joule heating and UV light illumination on the electrode stability were also studied. The present findings prove superior performance of the A-2GE under high current injection and continuous operation of UV LED, compared to other electrodes. From our observation, the A-2GE would be a reliable TCE for high power UV-LEDs. PMID:27387274

  19. Inactivation of carotenoid-producing and albino strains of Neurospora crassa by visible light, blacklight, and ultraviolet radiation.

    PubMed Central

    Blanc, P L; Tuveson, R W; Sargent, M L

    1976-01-01

    Suspensions of Neurospora crassa conidia were inactivated by blacklight (BL) radiation (300 to 425 nm) in the absence of exogenous photosensitizing compounds. Carotenoid-containing wild-type conidia were less sensitive to BL radiation than albino conidia, showing a dose enhancement factor (DEF) of 1.2 for dose levels resulting in less than 10% survival. The same strains were about equally sensitive to shortwave ultraviolet (UV) inactivation. The kinetics of BL inactivation are similar to those of photodynamic inactivation by visible light in the presence of a photosensitizing dye (methylene blue). Only limited inactivation by visible light in the absence of exogenous photosensitizers was observed. BL and UV inactivations are probably caused by different mechanisms since wild-type conidia are only slightly more resistant to BL radiation (DEF = 1.2 at 1.0% survival) than are conidia from a UV-sensitive strain (upr-1, uvs-3). The BL-induced lethal lesions are probably no cyclobutyl pyrimidine dimers since BL-inactivated Haemophilus influenzae transforming deoxyribonucleic acid is not photoreactivated by N. crassa wild-type enzyme extracts, whereas UV-inactivated transforming deoxyribonucleic acid is photoreactivable with this treatment. PMID:128556

  20. The role of graphene formed on silver nanowire transparent conductive electrode in ultra-violet light emitting diodes

    NASA Astrophysics Data System (ADS)

    Seo, Tae Hoon; Lee, Seula; Min, Kyung Hyun; Chandramohan, S.; Park, Ah Hyun; Lee, Gun Hee; Park, Min; Suh, Eun-Kyung; Kim, Myung Jong

    2016-07-01

    This paper reports a highly reliable transparent conductive electrode (TCE) that integrates silver nanowires (AgNWs) and high-quality graphene as a protecting layer. Graphene with minimized defects and large graphene domains has been successfully obtained through a facile two-step growth approach. Ultraviolet light emitting diodes (UV-LEDs) were fabricated with AgNWs or hybrid electrodes where AgNWs were combined with two-step grown graphene (A-2GE) or conventional one-step grown graphene (A-1GE). The device performance and reliability of the UV-LEDs with three different electrodes were compared. The A-2GE offered high figure of merit owing to the excellent UV transmittance and reduced sheet resistance. As a consequence, the UV-LEDs made with A-2GE demonstrated reduced forward voltage, enhanced electroluminescence (EL) intensity, and alleviated efficiency droop. The effects of joule heating and UV light illumination on the electrode stability were also studied. The present findings prove superior performance of the A-2GE under high current injection and continuous operation of UV LED, compared to other electrodes. From our observation, the A-2GE would be a reliable TCE for high power UV-LEDs.

  1. Ultraviolet-B component of sunlight stimulates photosynthesis and flavonoid accumulation in variegated Plectranthus coleoides leaves depending on background light.

    PubMed

    Vidović, Marija; Morina, Filis; Milić, Sonja; Zechmann, Bernd; Albert, Andreas; Winkler, Jana Barbro; Veljović Jovanović, Sonja

    2015-05-01

    We used variegated Plectranthus coleoides as a model plant with the aim of clarifying whether the effects of realistic ultraviolet-B (UV-B) doses on phenolic metabolism in leaves are mediated by photosynthesis. Plants were exposed to UV-B radiation (0.90 W m(-2) ) combined with two photosynthetically active radiation (PAR) intensities [395 and 1350 μmol m(-2)  s(-1) , low light (LL) and high light (HL)] for 9 d in sun simulators. Our study indicates that UV-B component of sunlight stimulates CO2 assimilation and stomatal conductance, depending on background light. UV-B-specific induction of apigenin and cyanidin glycosides was observed in both green and white tissues. However, all the other phenolic subclasses were up to four times more abundant in green leaf tissue. Caffeic and rosmarinic acids, catechin and epicatechin, which are endogenous peroxidase substrates, were depleted at HL in green tissue. This was correlated with increased peroxidase and ascorbate peroxidase activities and increased ascorbate content. The UV-B supplement to HL attenuated antioxidative metabolism and partly recovered the phenolic pool indicating stimulation of the phenylpropanoid pathway. In summary, we propose that ortho-dihydroxy phenolics are involved in antioxidative defence in chlorophyllous tissue upon light excess, while apigenin and cyanidin in white tissue have preferentially UV-screening function. © 2014 John Wiley & Sons Ltd.

  2. Effects of near ultraviolet and green radiations on plant growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, R.M.; Edsall, P.C.; Gentile, A.C.

    Selective removal of near ultraviolet and green wavelengths from white light permitted enhanced growth of marigold, tomato, corn, and Impatiens plants, Chlamydomonas cells and the mycelium of Sordaria. Additions of near ultraviolet and green radiations caused repressions in the growth of marigold and Sordaria. These wavelengths do not alter the oxidative mechanisms of mitochondria, intact algal cells or marigold leaf tissues. The capacity for chlorophyll and carotenoid synthesis by Euglena cells was unaffected by these wavelengths. 23 references, 2 figures, 4 tables.

  3. Heat and ultraviolet light treatment of colostrum and hospital milk: effects on colostrum and hospital milk characteristics and calf health and growth parameters.

    PubMed

    Teixeira, A G V; Bicalho, M L S; Machado, V S; Oikonomou, G; Kacar, C; Foditsch, C; Young, R; Knauer, W A; Nydam, D V; Bicalho, R C

    2013-08-01

    The aim of this study was to evaluate the effects of different physical treatments of bovine colostrum and hospital milk on milk bacteriology, immunoglobulin G (IgG) and lactoferrin concentrations, calf serum IgG concentrations and calf health, growth and survivability. Pooled colostrum samples (n=297) were heat treated (HTC; 63°C for 60 min), exposed to ultraviolet light (UVC; 45 J/cm(2)) or untreated ('raw', RC). Hospital milk (n=712) was subjected to high temperature short time pasteurization (HTST; 72°C for 15s), ultraviolet light irradiation (UVH; 45 J/cm(2)) or was untreated. Neonatal Holstein heifer calves (n=875) were randomly enrolled (309 HTC, 285 UVC, 281 RC) and block randomized (by colostrum treatment) into hospital milk treatments HTST (n=449) or UVH (n=426). HTC was more effective than UVC and HTST was more effective than UVH in reducing bacterial counts. IgG and lactoferrin concentrations were significantly lower in HTC and UVC than in RC. Lactoferrin concentrations were significantly lower in HTST than in UVH or untreated hospital milk. There were no significant differences in serum IgG concentrations among calves fed HTC, UVC or RC. Colostrum and hospital milk treatments did not have any significant effect on calf body weight gain, survivability, or frequency of diarrhea or pneumonia. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Solid-State Laser Source of Tunable Narrow-Bandwidth Ultraviolet Radiation

    NASA Technical Reports Server (NTRS)

    Goldberg, Lew; Kliner, Dahv A.; Koplow, Jeffrey P.

    1998-01-01

    A solid-state laser source of tunable and narrow-bandwidth UV light is disclosed. The system relies on light from a diode laser that preferably generates light at infrared frequencies. The light from the seed diode laser is pulse amplified in a light amplifier, and converted into the ultraviolet by frequency tripling, quadrupling, or quintupling the infrared light. The narrow bandwidth, or relatively pure light, of the seed laser is preserved, and the pulse amplifier generates high peak light powers to increase the efficiency of the nonlinear crystals in the frequency conversion stage. Higher output powers may be obtained by adding a fiber amplifier to power amplify the pulsed laser light prior to conversion.

  5. Suppression of electron overflow in 370-nm InGaN/AlGaN ultraviolet light emitting diodes with different insertion layer thicknesses

    NASA Astrophysics Data System (ADS)

    Wang, C. K.; Wang, Y. W.; Chiou, Y. Z.; Chang, S. H.; Jheng, J. S.; Chang, S. P.; Chang, S. J.

    2017-06-01

    In this study, the properties of 370-nm InGaN/AlGaN ultraviolet light emitting diodes (UV LEDs) with different thicknesses of un-doped Al0.3Ga0.7N insertion layer (IL) between the last quantum barrier and electron blocking layer (EBL) have been numerically simulated by Advance Physical Model of Semiconductor Devices (APSYS). The results show that the LEDs using the high Al composition IL can effectively improve the efficiency droop, light output power, and internal quantum efficiency (IQE) compared to the original structure. The improvements of the optical properties are mainly attributed to the energy band discontinuity and offset created by IL, which increase the potential barrier height of conduction band to suppress the electron overflow from the active region to the p-side layer.

  6. Development of vacuum ultraviolet absorption spectroscopy system for wide measurement range of number density using a dual-tube inductively coupled plasma light source

    NASA Astrophysics Data System (ADS)

    Kuwahara, Akira; Matsui, Makoto; Yamagiwa, Yoshiki

    2012-12-01

    A vacuum ultraviolet absorption spectroscopy system for a wide measurement range of atomic number densities is developed. Dual-tube inductively coupled plasma was used as a light source. The probe beam profile was optimized for the target number density range by changing the mass flow rate of the inner and outer tubes. This system was verified using cold xenon gas. As a result, the measurement number density range was extended from the conventional two orders to five orders of magnitude.

  7. Assessment of Levels of Ultraviolet A Light Protection in Automobile Windshields and Side Windows.

    PubMed

    Boxer Wachler, Brian S

    2016-07-01

    Ultraviolet A (UV-A) light is associated with the risks of cataract and skin cancer. To assess the level of UV-A light protection in the front windshields and side windows of automobiles. In this cross-sectional study, 29 automobiles from 15 automobile manufacturers were analyzed. The outside ambient UV-A radiation, along with UV-A radiation behind the front windshield and behind the driver's side window of all automobiles, was measured. The years of the automobiles ranged from 1990 to 2014, with an average year of 2010. The automobile dealerships were located in Los Angeles, California. Amount of UV-A blockage from windshields and side windows. The average percentage of front-windshield UV-A blockage was 96% (range, 95%-98% [95% CI, 95.7%-96.3%]) and was higher than the average percentage of side-window blockage, which was 71% (range, 44%-96% [95% CI, 66.4%-75.6%]). The difference between these average percentages is 25% (95% CI, 21%-30% [P < .001]). A high level of side-window UV-A blockage (>90%) was found in 4 of 29 automobiles (13.8%). The level of front-windshield UV-A protection was consistently high among automobiles. The level of side-window UV-A protection was lower and highly variable. These results may in part explain the reported increased rates of cataract in left eyes and left-sided facial skin cancer. Automakers may wish to consider increasing the degree of UV-A protection in the side windows of automobiles.

  8. Apollo 17 ultraviolet spectrometer experiment (S-169)

    NASA Technical Reports Server (NTRS)

    Fastie, W. G.

    1974-01-01

    The scientific objectives of the ultraviolet spectrometer experiment are discussed, along with design and operational details, instrument preparation and performance, and scientific results. Information gained from the experiment is given concerning the lunar atmosphere and albedo, zodiacal light, astronomical observations, spacecraft environment, and the distribution of atomic hydrogen in the solar system and in the earth's atmosphere.

  9. The Development of Ultraviolet Light Emitting Diodes on p-SiC Substrates

    NASA Astrophysics Data System (ADS)

    Brummer, Gordon

    Ultraviolet (UV) light emitting diodes (LEDs) are promising light sources for purification, phototherapy, and resin curing applications. Currently, commercial UV LEDs are composed of AlGaN-based n-i-p junctions grown on sapphire substrates. These devices suffer from defects in the active region, inefficient p-type doping, and poor light extraction efficiency. This dissertation addresses the development of a novel UV LED device structure, grown on p-SiC substrates. In this device structure, the AlGaN-based intrinsic (i) and n-layers are grown directly on the p-type substrate, forming a p-i-n junction. The intrinsic layer (active region) is composed of an AlN buffer layer followed by three AlN/Al0.30Ga0.70N quantum wells. After the intrinsic layer, the n-layer is formed from n-type AlGaN. This device architecture addresses the deficiencies of UV LEDs on sapphire substrates while providing a vertical device geometry, reduced fabrication complexity, and improved thermal management. The device layers were grown by molecular beam epitaxy (MBE). The material properties were optimized by considering varying growth conditions and by considering the role of the layer within the device. AlN grown at 825 C and with a Ga surfactant yielded material with screw dislocation density of 1x10 7 cm-2 based on X-ray diffraction (XRD) analysis. AlGaN alloys grown in this work contained compositional inhomogeneity, as verified by high-resolution XRD, photoluminescence, and absorption measurements. Based on Stokes shift measurements, the degree of compositional inhomogeneity was correlated with the amount of excess Ga employed during growth. Compositional inhomogeneity yields carrier localizing potential fluctuations, which are advantages in light emitting device layers. Therefore, excess Ga growth conditions were used to grow AlN/Al0.30Ga0.70N quantum wells (designed using a wurtzite k.p model) with 35% internal quantum efficiency. Potential fluctuations limit the mobility of carriers

  10. Microgap ultra-violet detector

    DOEpatents

    Wuest, Craig R.; Bionta, Richard M.

    1994-01-01

    A microgap ultra-violet detector of photons with wavelengths less than 400 run (4000 Angstroms) which comprises an anode and a cathode separated by a gas-filled gap and having an electric field placed across the gap. Either the anode or the cathode is semi-transparent to UV light. Upon a UV photon striking the cathode an electron is expelled and accelerated across the gap by the electric field causing interactions with other electrons to create an electron avalanche which contacts the anode. The electron avalanche is detected and converted to an output pulse.

  11. Ultraviolet light treatment for the restoration of age-related degradation of titanium bioactivity.

    PubMed

    Hori, Norio; Ueno, Takeshi; Suzuki, Takeo; Yamada, Masahiro; Att, Wael; Okada, Shunsaku; Ohno, Akinori; Aita, Hideki; Kimoto, Katsuhiko; Ogawa, Takahiro

    2010-01-01

    To examine the bioactivity of differently aged titanium (Ti) disks and to determine whether ultraviolet (UV) light treatment reverses the possible adverse effects of Ti aging. Ti disks with three different surface topographies were prepared: machined, acid-etched, and sandblasted. The disks were divided into three groups: disks tested for biologic capacity immediately after processing (fresh surfaces), disks stored under dark ambient conditions for 4 weeks, and disks stored for 4 weeks and treated with UV light. The protein adsorption capacity of Ti was examined using albumin and fibronectin. Cell attraction to Ti was evaluated by examining migration, attachment, and spreading behaviors of human osteoblasts on Ti disks. Osteoblast differentiation was evaluated by examining alkaline phosphatase activity, the expression of bone-related genes, and mineralized nodule area in the culture. Four-week-old Ti disks showed = or < 50% protein adsorption after 6 hours of incubation compared with fresh disks, regardless of surface topography. Total protein adsorption for 4-week-old surfaces did not reach the level of fresh surfaces, even after 24 hours of incubation. Fifty percent fewer human osteoblasts migrated and attached to 4-week-old surfaces compared with fresh surfaces. Alkaline phosphatase activity, gene expression, and mineralized nodule area were substantially reduced on the 4-week-old surfaces. The reduction of these biologic parameters was associated with the conversion of Ti disks from superhydrophilicity to hydrophobicity during storage for 4 weeks. UV-treated 4-week-old disks showed even higher protein adsorption, osteoblast migration, attachment, differentiation, and mineralization than fresh surfaces, and were associated with regenerated superhydrophilicity. Time-related degradation of Ti bioactivity is substantial and impairs the recruitment and function of human osteoblasts as compared to freshly prepared Ti surfaces, suggesting a "biologic aging

  12. CITIUS: An infrared-extreme ultraviolet light source for fundamental and applied ultrafast science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grazioli, C.; Gauthier, D.; Ivanov, R.

    2014-02-15

    We present the main features of CITIUS, a new light source for ultrafast science, generating tunable, intense, femtosecond pulses in the spectral range from infrared to extreme ultraviolet (XUV). The XUV pulses (about 10{sup 5}-10{sup 8} photons/pulse in the range 14-80 eV) are produced by laser-induced high-order harmonic generation in gas. This radiation is monochromatized by a time-preserving monochromator, also allowing one to work with high-resolution bandwidth selection. The tunable IR-UV pulses (10{sup 12}-10{sup 15} photons/pulse in the range 0.4-5.6 eV) are generated by an optical parametric amplifier, which is driven by a fraction of the same laser pulse thatmore » generates high order harmonics. The IR-UV and XUV pulses follow different optical paths and are eventually recombined on the sample for pump-probe experiments. We also present the results of two pump-probe experiments: with the first one, we fully characterized the temporal duration of harmonic pulses in the time-preserving configuration; with the second one, we demonstrated the possibility of using CITIUS for selective investigation of the ultra-fast dynamics of different elements in a magnetic compound.« less

  13. Far-ultraviolet astronomy on the Astro-1 space shuttle mission

    NASA Technical Reports Server (NTRS)

    Davidsen, Arthur F.

    1993-01-01

    The Astro-1 mission obtained observations related to a wide variety of current problems in astronomy during a 9-day flight of the space shuttle Columbia. Early results from one of the instruments, the Hopkins Ultraviolet Telescope, are reviewed here. Among these are new insights concerning the origin of the ultraviolet light from the old stellar population in elliptical galaxies, new evidence for a hot, gaseous corona surrounding the Milky Way, improved views of the physical conditions in active galactic nuclei, and a measurement of the ionization state of the local interstellar medium.

  14. National Synchrotron Light Source

    ScienceCinema

    BNL

    2017-12-09

    A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.

  15. Real-Time Analysis of Isoprene in Breath by Using Ultraviolet-Absorption Spectroscopy with a Hollow Optical Fiber Gas Cell

    PubMed Central

    Iwata, Takuro; Katagiri, Takashi; Matsuura, Yuji

    2016-01-01

    A breath analysis system based on ultraviolet-absorption spectroscopy was developed by using a hollow optical fiber as a gas cell for real-time monitoring of isoprene in breath. The hollow optical fiber functions as an ultra-small-volume gas cell with a long path. The measurement sensitivity of the system was evaluated by using nitric-oxide gas as a gas sample. The evaluation result showed that the developed system, using a laser-driven, high-intensity light source and a 3-m-long, aluminum-coated hollow optical fiber, could successfully measure nitric-oxide gas with a 50 ppb concentration. An absorption spectrum of a breath sample in the wavelength region of around 200–300 nm was measured, and the measured spectrum revealed the main absorbing components in breath as water vapor, isoprene, and ozone converted from oxygen by radiation of ultraviolet light. The concentration of isoprene in breath was estimated by multiple linear regression. The regression analysis results showed that the proposed analysis system enables real-time monitoring of isoprene during the exhaling of breath. Accordingly, it is suitable for measuring the circadian variation of isoprene. PMID:27929387

  16. Real-Time Analysis of Isoprene in Breath by Using Ultraviolet-Absorption Spectroscopy with a Hollow Optical Fiber Gas Cell.

    PubMed

    Iwata, Takuro; Katagiri, Takashi; Matsuura, Yuji

    2016-12-05

    A breath analysis system based on ultraviolet-absorption spectroscopy was developed by using a hollow optical fiber as a gas cell for real-time monitoring of isoprene in breath. The hollow optical fiber functions as an ultra-small-volume gas cell with a long path. The measurement sensitivity of the system was evaluated by using nitric-oxide gas as a gas sample. The evaluation result showed that the developed system, using a laser-driven, high-intensity light source and a 3-m-long, aluminum-coated hollow optical fiber, could successfully measure nitric-oxide gas with a 50 ppb concentration. An absorption spectrum of a breath sample in the wavelength region of around 200-300 nm was measured, and the measured spectrum revealed the main absorbing components in breath as water vapor, isoprene, and ozone converted from oxygen by radiation of ultraviolet light. The concentration of isoprene in breath was estimated by multiple linear regression. The regression analysis results showed that the proposed analysis system enables real-time monitoring of isoprene during the exhaling of breath. Accordingly, it is suitable for measuring the circadian variation of isoprene.

  17. An AlGaN Core-Shell Tunnel Junction Nanowire Light-Emitting Diode Operating in the Ultraviolet-C Band.

    PubMed

    Sadaf, S M; Zhao, S; Wu, Y; Ra, Y-H; Liu, X; Vanka, S; Mi, Z

    2017-02-08

    To date, semiconductor light emitting diodes (LEDs) operating in the deep ultraviolet (UV) spectral range exhibit very low efficiency due to the presence of large densities of defects and extremely inefficient p-type conduction of conventional AlGaN quantum well heterostructures. We have demonstrated that such critical issues can be potentially addressed by using nearly defect-free AlGaN tunnel junction core-shell nanowire heterostructures. The core-shell nanowire arrays exhibit high photoluminescence efficiency (∼80%) in the UV-C band at room temperature. With the incorporation of an epitaxial Al tunnel junction, the p-(Al)GaN contact-free nanowire deep UV LEDs showed nearly one order of magnitude reduction in the device resistance, compared to the conventional nanowire p-i-n device. The unpackaged Al tunnel junction deep UV LEDs exhibit an output power >8 mW and a peak external quantum efficiency ∼0.4%, which are nearly one to two orders of magnitude higher than previously reported AlGaN nanowire devices. Detailed studies further suggest that the maximum achievable efficiency is limited by electron overflow and poor light extraction efficiency due to the TM polarized emission.

  18. Performance characteristics of proximity focused ultraviolet image converters

    NASA Technical Reports Server (NTRS)

    Williams, J. T.; Feibelman, W. A.

    1973-01-01

    Performance characteristics of Bendix type BX 8025-4522 proximity focused image tubes for ultraviolet to visible light conversion are presented. Quantum efficiency, resolution, background, geometric distortion, and environmental test results are discussed. The converters use magnesium fluoride input windows with Cs - Te photocathodes, and P-11 phosphors on fiber optic output windows.

  19. Coal tar phototherapy for psoriasis reevaluated: erythemogenic versus suberythemogenic ultraviolet with a tar extract in oil and crude coal tar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, N.J.; Wortzman, M.S.; Breeding, J.

    1983-06-01

    Recent studies have questioned the therapeutic value of coal tar versus ultraviolet (UV) radiation and their relative necessity in phototherapy for psoriasis. In this investigation, different aspects of tar phototherapy have been studied in single-blind bilateral paired comparison studies. The effects of 1% crude coal tar were compared with those of petrolatum in conjunction with erythemogenic and suberythemogenic doses of ultraviolet light (UVB) using a FS72 sunlamp tubed cabinet. Crude coal tar was clinically superior to petrolatum with suberythemogenic ultraviolet. With the erythemogenic UVB, petrolatum was equal in efficacy to crude coal tar. Suberythemogenic UVB was also used adjunctively tomore » compare the effects of a 5% concentration of a tar extract in an oil base to 5% crude coal tar in petrolatum or the oil base without tar. The tar extract in oil plus suberythemogenic UVB produced significantly more rapid improvement than the oil base plus UVB. The direct bilateral comparison of equal concentrations of tar extract in oil base versus crude coal tar in petrolatum in a suberythemogenic UV photo regimen revealed no statistical differences between treatments. In a study comparing tar extract in oil and the oil base without ultraviolet radiation, the tar extract in oil side responded more rapidly.« less

  20. Xeroderma pigmentosum variants have a slow recovery of DNA synthesis after irradiation with ultraviolet light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleaver, J.E.; Thomas, G.H.; Park, S.D.

    1979-01-01

    Human cells (normal and xeroderma pigmentosum variant) irradiated with ultraviolet light and pulse-labelled with (/sup 3/H)thymidine underwent transient decline and recovery of molecular weights of newly synthesized DNA and rates of (/sup 3/H)thymidine incorporation. The ability to synthesize normal-sized DNA recovered more rapidly in both cell types than thymidine incorporation. During recovery cells steadily increased in their ability to replicate normal-sized DNA on damaged templates. The molecular weight versus time curves fitted exponential functions with similar rate constants in normal and heterozygous xeroderma pigmentosum cells, but with a slower rate in two xeroderma pigmentosum variant cell lines. Caffeine added duringmore » the post-irradiation period eliminated the recovery of molecular weights in xeroderma pigmentosum variant but not in normal cells. The recovery of the ability to synthesize normal-sized DNA represents a combination of a number of cellular regulatory processes, some of which are constitutive, and one of which is altered in the xeroderma pigmentosum variant such that recovery becomes slow and caffeine sensitive.« less

  1. The effects of two different doses of ultraviolet-A light exposure on nitric oxide metabolites and cardiorespiratory outcomes.

    PubMed

    Monaghan, Chris; McIlvenna, Luke C; Liddle, Luke; Burleigh, Mia; Weller, Richard B; Fernandez, Bernadette O; Feelisch, Martin; Muggeridge, David J; Easton, Chris

    2018-05-01

    The present study investigated different doses of ultraviolet-A (UV-A) light on plasma nitric oxide metabolites and cardiorespiratory variables. Ten healthy male participants completed three experimental conditions, 7 days apart. Participants were exposed to no light (CON); 10 J cm 2 (15 min) of UV-A light (UVA10) and 20 J cm 2 (30 min) of UV-A light (UVA20) in a randomized order. Plasma nitrite [NO 2 - ] and nitrate [NO 3 - ] concentrations, blood pressure (BP), and heart rate (HR) were recorded before, immediately after exposure and 30 min post-exposure. Whole body oxygen utilization ([Formula: see text]), resting metabolic rate (RMR) and skin temperature were recorded continuously. None of the measured parameters changed significantly during CON (all P > 0.05). [Formula: see text] and RMR were significantly reduced immediately after UVA10 (P < 0.05) despite no change in plasma [NO 2 - ] (P > 0.05). Immediately after exposure to UVA20, plasma [NO 2 - ] was higher (P = 0.014) and [Formula: see text] and RMR tended to be lower compared to baseline (P = 0.06). There were no differences in [NO 2 - ] or [Formula: see text] at the 30 min time point in any condition. UV-A exposure did not alter systolic BP, diastolic BP or MAP (all P > 0.05). UV-A light did not alter plasma [NO 3 - ] at any time point (all P > 0.05). This study demonstrates that a UV-A dose of 20 J cm 2 is necessary to increase plasma [NO 2 - ] although a smaller dose is capable of reducing [Formula: see text] and RMR at rest. Exposure to UV-A did not significantly reduce BP in this cohort of healthy adults. These data suggest that exposure to sunlight has a meaningful acute impact on metabolic function.

  2. Cytotoxic and mutagenic properties of shale oil byproducts. II. Comparison of mutagenic effects at five genetic markers induced by retort process water plus near ultraviolet light in Chinese hamster ovary cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, D.J.C.; Strniste, G.F.

    1982-01-01

    A Chinese hamster ovary (CHO) cell line heterozygous at the adenine phosphoribosyl transferase (APRT) locus was used for selection of induced mutants resistant to 8-azaadenine (8AA), 6-thioguanine (6TG), ouabain (OUA), emetine (EMT) and diphtheria toxin (DIP). The expression times necessary for optimizing the number of mutants recovered at the different loci have been determined using the known direct acting mutagen, far ultraviolet light (FUV), and a complex aqueous organic mixture (shale oil process water) activated with near ultraviolet light (NUV). The results indicate that optimal expression times following treatment with either mutagen was between 2 and 8 days. For CHOmore » cells treated with shale oil process water and subsequently exposed to NUV a linear dose response for mutant induction was observed for all five genetic loci. At 10% surviving fraction of cells, between 35- and 130-fold increases above backgound mutation frequencies were observed for the various markers examined.« less

  3. Invisible Misconceptions: Student Understanding of Ultraviolet and Infrared Radiation

    ERIC Educational Resources Information Center

    Libarkin, Julie C.; Asghar, Anila; Crockett, C.; Sadler, Philip

    2011-01-01

    The importance of nonvisible wavelengths for the study of astronomy suggests that student understanding of nonvisible light is an important consideration in astronomy classrooms. Questionnaires, interviews, and panel discussions were used to investigate 6-12 student and teacher conceptions of ultraviolet (UV) and infrared (IR). Alternative…

  4. A Fast Responsive Ultraviolet Sensor from mSILAR-Processed Sn-ZnO

    NASA Astrophysics Data System (ADS)

    Thomas, Deepu; Vijayalakshmi, K. A.; Sadasivuni, Kishor Kumar; Thomas, Ajith; Ponnamma, Deepalekshmi; Cabibihan, John-John

    2017-11-01

    Microwave-assisted successive ionic layer adsorption and reaction was employed to synthesize Sn-ZnO (tin-doped zinc oxide), and its sensitivity to ultraviolet radiation is compared with zinc oxide (ZnO). The sensing films were made by the dip-coated method on an indium titanium oxide glass substrate, and the sensing performance was monitored using the 300-700 nm wavelength of UV-Vis light. Excellent sensitivity and recovery were observed for the Sn-doped ZnO sensor device, especially at 380 nm wavelength of ultraviolet (UV) light (response and recovery time 2.26 s and 8.63 s, respectively, at 5 V bias voltage). The variation in photocurrent with respect to dark and light illumination atmosphere was well illustrated based on the Schottky and inter-particle network effects. Doping of Sn on ZnO nanoparticles varied the surface roughness and crystallite size as observed from scanning electron microscopic and x-ray diffraction studies. Here, we demonstrate a simple and economical fabrication technique for designing a high-performance UV light sensor. The developed device works at room temperature with high durability and stability.

  5. GALEX 1st Light Near Ultraviolet

    NASA Image and Video Library

    2003-05-28

    This image was taken on May 21 and 22, 2003, by NASA Galaxy Evolution Explorer. The image was made from data gathered during the missions first light milestone, and shows celestial objects in the constellation Hercules.

  6. Dim ultraviolet light as a means of deterring activity by the Hawaiian hoary bat Lasiurus cinereus semotus

    USGS Publications Warehouse

    Gorresen, P. Marcos; Cryan, Paul M.; Dalton, David C.; Wolf, Sandy; Johnson, Jessica A.; Todd, Christopher M.; Bonaccorso, Frank J.

    2015-01-01

    Widespread bat fatalities at industrial wind turbines are a conservation issue with the potential to inhibit efficient use of an abundant source of energy. Bat fatalities can be reduced by altering turbine operations, but such curtailment decreases turbine efficiency. If additional ways of reducing bat fatalities at wind turbines were available such tradeoffs might not be needed. Based on the facts that bats perceive distant objects primarily through vision and can see in very dim lighting conditions, and the possibility that bats might interact with turbines after approaching them as they would trees, we propose a novel method of reducing bat activity at wind turbines: illumination of the structure with dim light. As a first step toward assessing this approach, we illuminated trees with dim flickering ultraviolet (UV) light in areas frequented by Hawaiian hoary bats Lasiurus cinereus semotus, an endangered subspecies affected by wind turbines. We used a repeated-measures design to quantify bat activity near trees with acoustic detectors and thermal video cameras in the presence and absence of UV illumination, while concurrently monitoring insect numbers. Results indicate that dim UV reduces bat activity despite an increase in insect numbers. Experimental treatment did not completely inhibit bat activity near trees, nor did all measures of bat activity show statistically significant differences due to high variance in bat activity among sites. However, the observed decreases in bat activity with dim UV illumination justify further testing of this method as a means to reduce bat fatalities at wind turbines.

  7. Photocurrent enhancement mechanisms in bilayer nanofilm-based ultraviolet photodetectors made from ZnO and ZnS spherical nanoshells

    PubMed Central

    2014-01-01

    Hollow-sphere bilayer nanofilm-based ultraviolet light photodetectors made from ZnO and ZnS spherical nanoshells show enhanced photocurrent, which are comparable to or even better than those of other semiconductor nanostructures with different shapes. In this work, the photocurrent enhancement mechanisms of these bilayer nanofilm-based ultraviolet light photodetectors are explained, which could be attributed to the strong light absorption based on the whispering gallery mode resonances, the separation of the photogenerated carriers through the internal electric field within the bilayer nanofilms, the hopping-like electrical transport, and the effective charge injection from Cr/Au contacts to the nanofilms. PMID:25136287

  8. The ultraviolet variability of early-type supergiants

    NASA Technical Reports Server (NTRS)

    Underhill, A. B.

    1984-01-01

    Four early-type supergiants - HD 79186 (B5 Ia), HD 96919 (B9 Ia), HD 105056 (ON9.7 Iae), and HD 148379 (B2 Iae) - have been observed with the low-resolution spectrographs of IUE in the large aperture on 14 days. The behavior of the ultraviolet fluxes with time is studied. The light from all four stars seems to vary. Typically the dispersion about the mean magnitude at any wavelength corresponds to + or - 0.085, + or - 0.080, + or - 0.101, and + or - 0.106 mag, respectively. These amplitudes exceed the typical uncertainty in an IUE measurement of flux by about a factor of 3; they are somewhat larger than the variations known in the visible wavelength range. There are insufficient data to investigate periodicity in the observed light changes. The effective temperatures and angular diameters of the stars have been estimated using the present ultraviolet photometry, published UBV and uvby photometry, and the model-atmosphere fluxes reported by Kurucz in 1979. The program stars have dimensions typical for their spectral types. A brief discussion is given of possible causes of the variability of hot supergiants.

  9. HUBBLE'S ULTRAVIOLET VIEWS OF NEARBY GALAXIES YIELD CLUES TO EARLY UNIVERSE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronomers are using these three NASA Hubble Space Telescope images to help tackle the question of why distant galaxies have such odd shapes, appearing markedly different from the typical elliptical and spiral galaxies seen in the nearby universe. Do faraway galaxies look weird because they are truly weird? Or, are they actually normal galaxies that look like oddballs, because astronomers are getting an incomplete picture of them, seeing only the brightest pieces? Light from these galaxies travels great distances (billions of light-years) to reach Earth. During its journey, the light is 'stretched' due to the expansion of space. As a result, the light is no longer visible, but has been shifted to the infrared where present instruments are less sensitive. About the only light astronomers can see comes from regions where hot, young stars reside. These stars emit mostly ultraviolet light. But this light is stretched, appearing as visible light by the time it reaches Earth. Studying these distant galaxies is like trying to put together a puzzle with some of the pieces missing. What, then, do distant galaxies really look like? Astronomers studied 37 nearby galaxies to find out. By viewing these galaxies in ultraviolet light, astronomers can compare their shapes with those of their distant relatives. These three Hubble telescope pictures, taken with the Wide Field and Planetary Camera 2, represent a sampling from that survey. Astronomers observed the galaxies in ultraviolet and visible light to study all the stars that make up these 'cities of stars.' The results of their survey support the idea that astronomers are detecting the 'tip of the iceberg' of very distant galaxies. Based on these Hubble ultraviolet images, not all the faraway galaxies necessarily possess intrinsically odd shapes. The results are being presented today at the 197th meeting of the American Astronomical Society in San Diego, CA. The central region of the 'star-burst' spiral galaxy at far left

  10. ANS ultraviolet observations of dwarf Cepheids

    NASA Astrophysics Data System (ADS)

    Sturch, C. R.; Wu, C.-C.

    1983-03-01

    Ultraviolet observations of three dwarf Cepheids (VZ Cnc, SX Phe, and AI Vel) are presented. The UV light curves are consistent with those in the visual region. When compared to standard stars, all three dwarf Cepheids exhibit flux deficiencies at the shortest observed wavelengths. The most extreme deficiencies appear for SX Phe; these may be related to the other properties previously noted for this star, including low metallicity, high space motion, and low luminosity.

  11. Far-ultraviolet Spectroscopy of the Nova-like Variable KQ Monocerotis: A New SW Sextantis Star?

    NASA Astrophysics Data System (ADS)

    Wolfe, Aaron; Sion, Edward M.; Bond, Howard E.

    2013-06-01

    New optical spectra obtained with the SMARTS 1.5 m telescope and archival International Ultraviolet Explorer (IUE) far-ultraviolet (FUV) spectra of the nova-like variable KQ Mon are discussed. The optical spectra reveal Balmer lines in absorption as well as He I absorption superposed on a blue continuum. The 2011 optical spectrum is similar to the KPNO 2.1 m IIDS spectrum we obtained 33 years earlier except that the Balmer and He I absorption is stronger in 2011. Far-ultraviolet IUE spectra reveal deep absorption lines due to C II, Si III, Si IV, C IV, and He II, but no P Cygni profiles indicative of wind outflow. We present the results of the first synthetic spectral analysis of the IUE archival spectra of KQ Mon with realistic optically thick, steady-state, viscous accretion-disk models with vertical structure and high-gravity photosphere models. We find that the photosphere of the white dwarf (WD) contributes very little FUV flux to the spectrum and is overwhelmed by the accretion light of a steady disk. Disk models corresponding to a WD mass of ~0.6 M ⊙, with an accretion rate of order 10-9 M ⊙ yr-1 and disk inclinations between 60° and 75°, yield distances from the normalization in the range of 144-165 pc. KQ Mon is discussed with respect to other nova-like variables. Its spectroscopic similarity to the FUV spectra of three definite SW Sex stars suggests that it is likely a member of the SW Sex class and lends support to the possibility that the WD is magnetic.

  12. The effect of ultra-violet light curing on the molecular structure and fracture properties of an ultra low-k material

    NASA Astrophysics Data System (ADS)

    Smith, Ryan Scott

    As the gate density increases in microelectronic devices, the interconnect delay or RC response also increases and has become the limiting delay to faster devices. In order to decrease the RC time delay, a new metallization scheme has been chosen by the semiconductor industry. Copper has replaced aluminum as the metal lines and new low-k dielectric materials are being developed to replace silicon dioxide. A promising low-k material is porous organosilicate glass or p-OSG. The p-OSG film is a hybrid material where the silicon dioxide backbone is terminated with methyl or hydrogen, reducing the dielectric constant and creating mechanically weak films that are prone to fracture. A few methods of improving the mechanical properties of p-OSG films have been attempted-- exposing the film to hydrogen plasma, electron beam curing, and ultra-violet light curing. Hydrogen plasma and electron-beam curing suffer from a lack of specificity and can cause charging damage to the gates. Therefore, ultra-violet light curing (UV curing) is preferable. The effect of UV curing on an ultra-low-k, k~2.5, p-OSG film is studied in this dissertation. Changes in the molecular structure were measured with Fourier Transform Infrared Spectroscopy and X-ray Photoelectron Spectroscopy. The evolution of the molecular structure with UV curing was correlated with material and fracture properties. The material properties were film shrinkage, densification, and an increase in dielectric constant. From the changes in molecular structure and material properties, a set of condensation reactions with UV light are predicted. The connectivity of the film increases with the condensation reactions and, therefore, the fracture toughness should also increase. The effect of UV curing on the critical and sub-critical fracture toughness was also studied. The critical fracture toughness was measured at four different mode-mixes-- zero, 15°, 32°, and 42°. It was found that the critical fracture toughness

  13. A transparent ultraviolet triggered amorphous selenium p-n junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Ichitaro; Soga, Kenichi; Overend, Mauro

    2011-04-11

    This paper will introduce a semitransparent amorphous selenium (a-Se) film exhibiting photovoltaic effects under ultraviolet light created through a simple and inexpensive method. We found that chlorine can be doped into a-Se through electrolysis of saturated salt water, and converts the weak p-type material into an n-type material. Furthermore, we found that a p-n diode fabricated through this process has shown an open circuit voltage of 0.35 V toward ultraviolet illumination. Our results suggest the possibility of doping control depending on the electric current during electrolysis and the possibility of developing a simple doping method for amorphous photoconductors.

  14. Ultraviolet Microscopy of Candida albicans

    PubMed Central

    Balish, Edward; Svihla, George

    1966-01-01

    Balish, Edward (Argonne National Laboratory, Argonne, Ill.), and George Svihla. Ultraviolet microscopy of Candida albicans. J. Bacteriol. 92:1812–1820. 1966.—Yeast and mycelial strains of Candida albicans were grown in medium supplemented with sulfur amino acids in an effort to determine factors that control the morphology and pathogenicity of the organism. Ultraviolet microscopy revealed a greater concentration of S-adenosylmethionine in the vacuoles of the mycelial phase than in those of yeast phases. Supplementation with amino acids greatly increased the concentration of S-adenosylmethionine in the mycelial phase, and made these cells more sensitive to the lytic action of snail gut enzymes than two yeast phase strains. This indicates a difference in cell wall structure that may be related to the pathogenicity of the mycelial phase. Images PMID:5958110

  15. Ultraviolet spectroscopy of meteoric debris of comets

    NASA Technical Reports Server (NTRS)

    Wdowiak, T. J.; Kubinec, W. R.; Nuth, J. A.

    1986-01-01

    It is proposed to carry out slitless spectroscopy at ultraviolet wavelengths from orbit of meteoric debris associated with comets. The Eta Aquarid and Orionid/Halley and the Perseid/1962 862 Swift-Tuttle showers would be principal targets. Low light level, ultraviolet video technique will be used during night side of the orbit in a wide field, earthward viewing mode. Data will be stored in compact video cassette recorders. The experiment may be configured as a GAS package or in the HITCHHIKER mode. The latter would allow flexible pointing capability beyond that offered by shuttle orientation of the GAS package, and doubling of the data record. The 1100 to 3200 A spectral region should show emissions of atomic, ionic, and molecular species of interest on cometary and solar system studies.

  16. Microgap ultra-violet detector

    DOEpatents

    Wuest, C.R.; Bionta, R.M.

    1994-09-20

    A microgap ultra-violet detector of photons with wavelengths less than 400 run (4,000 Angstroms) which comprises an anode and a cathode separated by a gas-filled gap and having an electric field placed across the gap is disclosed. Either the anode or the cathode is semi-transparent to UV light. Upon a UV photon striking the cathode an electron is expelled and accelerated across the gap by the electric field causing interactions with other electrons to create an electron avalanche which contacts the anode. The electron avalanche is detected and converted to an output pulse. 2 figs.

  17. An elegant route to overcome fundamentally-limited light extraction in AlGaN deep-ultraviolet light-emitting diodes: preferential outcoupling of strong in-plane emission (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Jong Kyu; Lee, Jong Won; Kim, Dong-Yeong; Park, Jun Hyuk; Schubert, E. Fred; Kim, Jungsub; Kim, Yong-Il

    2016-09-01

    AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) are being developed for their numerous applications such as purification of air and water, sterilization in food processing, UV curing, medical-, and defense-related light sources. However, external quantum efficiency (EQE) of AlGaN-based DUV LEDs is very poor (<5% for 250nm) particularly due to low hole concentration and light extraction efficiency (LEE). Conventional LEE-enhancing techniques used for GaInN-based visible LEDs turned out to be ineffective for DUV LEDs due to difference in intrinsic material property between GaInN and AlGaN (Al< 30%). Unlike GaInN visible LEDs, DUV light from a high Al-content AlGaN active region is strongly transverse-magnetic (TM) polarized, that is, the electric field vector is parallel to the (0001) c-axis and shows strong sidewall emission through m- or a-plane due to crystal-field split-off hole band being top most valence band. Therefore, a new LEE-enhancing approach addressing the unique intrinsic property of AlGaN DUV LEDs is strongly desired. In this study, an elegant approach based on a DUV LED having multiple mesa stripes whose inclined sidewalls are covered by a MgF2/Al omni-directional mirror to take advantage of the strongly anisotropic transverse-magnetic polarized emission pattern of AlGaN quantum wells is presented. The sidewall-emission-enhanced DUV LED breaks through the fundamental limitations caused by the intrinsic properties of AlGaN, thus shows a remarkable improvement in light extraction as well as operating voltage simultaneously. Furthermore, an analytic model is developed to understand and precisely estimate the extraction of DUV photons from AlGaN DUV LEDs, and hence to provide promising routes to maximize the power conversion efficiency.

  18. Multiple wavelength light collimator and monitor

    NASA Technical Reports Server (NTRS)

    Gore, Warren J. (Inventor)

    2011-01-01

    An optical system for receiving and collimating light and for transporting and processing light received in each of N wavelength ranges, including near-ultraviolet, visible, near-infrared and mid-infrared wavelengths, to determine a fraction of light received, and associated dark current, in each wavelength range in each of a sequence of time intervals.

  19. Biological effects of ultraviolet irradiation on bees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Es`kov, E.K.

    1995-09-01

    The influence of natural solar and artificial ultraviolet irradiation on developing bees was studied. Lethal exposures to irradiation at different stages of development were determined. The influence of irradiation on the variability of the morphometric features of bees was revealed. 5 refs., 1 fig.

  20. Effects of Mg-doped AlN/AlGaN superlattices on properties of p-GaN contact layer and performance of deep ultraviolet light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al tahtamouni, T. M., E-mail: talal@yu.edu.jo; Lin, J. Y.; Jiang, H. X.

    2014-04-15

    Mg-doped AlN/AlGaN superlattice (Mg-SL) and Mg-doped AlGaN epilayers have been investigated in the 284 nm deep ultraviolet (DUV) light emitting diodes (LEDs) as electron blocking layers. It was found that the use of Mg-SL improved the material quality of the p-GaN contact layer, as evidenced in the decreased density of surface pits and improved surface morphology and crystalline quality. The performance of the DUV LEDs fabricated using Mg-SL was significantly improved, as manifested by enhanced light intensity and output power, and reduced turn-on voltage. The improved performance is attributed to the enhanced blocking of electron overflow, and enhanced hole injection.

  1. MAVEN Ultraviolet Image of Comet Siding Spring’s Hydrogen Coma

    NASA Image and Video Library

    2017-12-08

    NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft obtained this ultraviolet image of hydrogen surrounding comet Siding Spring on Friday, Oct. 17, two days before the comet’s closest approach to Mars. The Imaging Ultraviolet Spectrograph (IUVS) instrument imaged the comet at a distance of 5.3 million miles (8.5 million kilometers). The image shows sunlight that has been scattered by atomic hydrogen, and is shown as blue in this false-color representation. Comets are surrounded by a huge cloud of atomic hydrogen because water (H2O) vaporizes from the icy nucleus, and solar ultraviolet light breaks it apart into hydrogen and oxygen. Hydrogen atoms scatter solar ultraviolet light, and it was this light that was imaged by the IUVS. Two observations were combined to create this image, after removing the foreground signal that results from sunlight being scattered from hydrogen surrounding Mars. The bulk of the scattered sunlight shows a cloud that was about a half degree across on the “sky” background, comparable in size to Earth’s moon as seen from Earth. Hydrogen was detected to as far as 93,000 miles (150,000 kilometers) away from the comet’s nucleus. The distance is comparable to the distance of the comet from Mars at its closest approach. Gas from the comet is likely to have hit Mars, and would have done so at a speed of 125,000 mph (56 kilometers/second. This gas may have disturbed the Mars atmosphere. Credit: Laboratory for Atmospheric and Space Physics, University of Colorado; NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Research in extreme ultraviolet and far ultraviolet astronomy

    NASA Technical Reports Server (NTRS)

    Labov, S. E.

    1985-01-01

    Instruments designed to explore different aspects of far and extreme ultraviolet cosmic radiation were studied. The far ultraviolet imager (FUVI) was flown on the Aries sounding rocket. Its unique large format 75mm detector mapped out the far ultraviolet background radiation with a resolution of only a few arc minutes. Analysis of this data indicates to what extent the FUVI background is extra galactic in origin. A power spectrum of the spatial fluctuations will have direct consequences for galactic evolution.

  3. Effect of ultraviolet light irradiation and sandblasting treatment on bond strengths between polyamide and chemical-cured resin.

    PubMed

    Asakawa, Yuya; Takahashi, Hidekazu; Iwasaki, Naohiko; Kobayashi, Masahiro

    2014-01-01

    The aim of this study was to evaluate the effects of ultraviolet light (UV) irradiation and sandblasting treatment on the shear bond strength between polyamide and chemical-cured resin. Three types of commercial polyamides were treated using UV irradiation, sandblasting treatment, and a combining sandblasting and UV irradiation. The shear bond strength was measured and analyzed using the Kruskal-Wallis test (α=0.05). Comparing shear bond strengths without surface treatment, from 4.1 to 5.7 MPa, the UV irradiation significantly increased the shear bond strengths except for Valplast, whose shear bond strengths ranged from 5.2 to 9.3 MPa. The sandblasting treatment also significantly increased the shear bond strengths (8.0 to 11.4 MPa). The combining sandblasting and UV irradiation significantly increased the shear bond strengths (15.2 to 18.3 MPa) comparing without surface treatment. This combined treatment was considered the most effective at improving the shear bond strength between polyamide and chemical-cured resin.

  4. DEVELOPMENT OF A RATIONALLY BASED DESIGN PROTOCOL FOR THE ULTRAVIOLET LIGHT DISINFECTION PROCESS

    EPA Science Inventory

    A protocol is demonstrated for the design and evaluation of ultraviolet (UV) disinfection systems based on a mathematical model. The disinfection model incorporates the system's physical dimensions, the residence time distribution of the reactor and dispersion characteristics, th...

  5. The Vitiligo Working Group recommendations for narrowband ultraviolet B light phototherapy treatment of vitiligo.

    PubMed

    Mohammad, Tasneem F; Al-Jamal, Mohammed; Hamzavi, Iltefat H; Harris, John E; Leone, Giovanni; Cabrera, Raúl; Lim, Henry W; Pandya, Amit G; Esmat, Samia M

    2017-05-01

    Treatment of vitiligo with narrowband ultraviolet B light (NBUVB) is an important component of the current standard of care. However, there are no consistent guidelines regarding the dosing and administration of NBUVB in vitiligo, reflected by varied treatment practices around the world. To create phototherapy recommendations to facilitate clinical management and identify areas requiring future research. The Vitiligo Working Group (VWG) Phototherapy Committee addressed 19 questions regarding the administration of phototherapy over 3 conference calls. Members of the Photomedicine Society and a group of phototherapy experts were surveyed regarding their phototherapy practices. Based on comparison and analysis of survey results, expert opinion, and discussion held during conference calls, expert recommendations for the administration of NBUVB phototherapy in vitiligo were created. There were several areas that required further research before final recommendations could be made. In addition, no standardized methodology was used during literature review and to assess the strength of evidence during the development of these recommendations. This set of expert recommendations by the VWG is based on the prescribing practices of phototherapy experts from around the world to create a unified, broadly applicable set of recommendations on the use of NBUVB in vitiligo. Copyright © 2017 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  6. In vivo viability of stored red blood cells derived from riboflavin plus ultraviolet light-treated whole blood.

    PubMed

    Cancelas, Jose A; Rugg, Neeta; Fletcher, Dana; Pratt, P Gayle; Worsham, D Nicole; Dunn, Susan K; Marschner, Susanne; Reddy, Heather L; Goodrich, Raymond P

    2011-07-01

    A novel system using ultraviolet (UV) light and riboflavin (Mirasol System, CaridianBCT Biotechnologies) to fragment nucleic acids has been developed to treat whole blood (WB), aiming at the reduction of potential pathogen load and white blood cell inactivation. We evaluated stored red blood cell (RBC) metabolic status and viability, in vitro and in vivo, of riboflavin/UV light-treated WB (IMPROVE study). The study compared recovery and survival of RBCs obtained from nonleukoreduced WB treated using three different UV light energies (22, 33, or 44 J/mL(RBC)). After treatment, WB from 12 subjects was separated into components and tested at the beginning and end of component storage. After 42 days of storage, an aliquot of RBCs was radiolabeled and autologously reinfused into subjects for analysis of 24-hour recovery and survival of RBCs. Eleven subjects completed the in vivo study. No device-related adverse events were observed. By Day 42 of storage, a significant change in the concentrations of sodium and potassium was observed. Five subjects had a 24-hour RBC recovery of 75% or more with no significant differences among the energy groups. RBC t(1/2) was 24 ± 9 days for the combined three groups. Significant correlations between 24-hour RBC recovery and survival, hemolysis, adenosine triphosphate (ATP), and CO(2) levels were observed. This study shows that key RBC quality variables, hemolysis, and ATP concentration may be predictive of their 24-hour recovery and t(1/2) survival. These variables will now be used to assess modifications to the system including storage duration, storage temperature, and appropriate energy dose for treatment. © 2011 American Association of Blood Banks.

  7. Comparison of ultraviolet light-emitting diodes and low-pressure mercury-arc lamps for disinfection of water.

    PubMed

    Sholtes, Kari A; Lowe, Kincaid; Walters, Glenn W; Sobsey, Mark D; Linden, Karl G; Casanova, Lisa M

    2016-09-01

    Ultraviolet (UV) light-emitting diodes (LEDs) emitting at 260 nm were evaluated to determine the inactivation kinetics of bacteria, viruses, and spores compared to low-pressure (LP) UV irradiation. Test microbes were Escherichia coli B, a non-enveloped virus (MS-2), and a bacterial spore (Bacillus atrophaeus). For LP UV, 4-log10 reduction doses were: E. coli B, 6.5 mJ/cm(2); MS-2, 59.3 mJ/cm(2); and B. atrophaeus, 30.0 mJ/cm(2). For UV LEDs, the 4-log10 reduction doses were E. coli B, 6.2 mJ/cm(2); MS-2, 58 mJ/cm(2); and B. atrophaeus, 18.7 mJ/cm(2). Microbial inactivation kinetics of the two UV technologies were not significantly different for E. coli B and MS-2, but were different for B. atrophaeus spores. UV LEDs at 260 nm are at least as effective for inactivating microbes in water as conventional LP UV sources and should undergo further development in treatment systems to disinfect drinking water.

  8. Enhanced wall-plug efficiency in AlGaN-based deep-ultraviolet light-emitting diodes with uniform current spreading p-electrode structures

    NASA Astrophysics Data System (ADS)

    Hao, Guo-Dong; Taniguchi, Manabu; Tamari, Naoki; Inoue, Shin-ichiro

    2016-06-01

    The current crowding is an especially severe issue in AlGaN-based deep-ultraviolet (DUV) light-emitting diodes (LEDs) because of the low conductivity of the n-AlGaN cladding layer that has a high Al fraction. We theoretically investigated the improvement in internal quantum efficiency and total resistances in DUV-LEDs with an emission wavelength of 265 nm by a well-designed p-electrode geometry to produce uniform current spreading. As a result, the wall-plug efficiency was enhanced by a factor of 60% at an injection current of 350 mA in the designed uniform-current-spreading p-electrode LED when compared with an LED with a conventional cross-bar p-electrode pattern.

  9. Stray-light suppression in a reflecting white-light coronagraph

    NASA Technical Reports Server (NTRS)

    Romoli, Marco; Weiser, Heinz; Gardner, Larry D.; Kohl, John L.

    1993-01-01

    An analysis of stray-light suppression in the white-light channel of the Ultraviolet Coronagraph Spectrometer experiment for the Solar and Heliospheric Observatory is reported. The white-light channel consists of a reflecting telescope with external and internal occultation and a polarimeter section. Laboratory tests and analytical methods are used to perform the analysis. The various stray-light contributions are classified in two main categories: the contribution from sunlight that passes directly through the entrance aperture and the contribution of sunlight that is diffracted by the edges of the entrance aperture. Values of the stray-light contributions from various sources and the total stray-light level for observations at heliocentric heights from 1.4 to 5 solar radii are derived. Anticipated signal-to-stray-light ratios are presented together with the effective stray-light rejection by the polarimeter, demonstrating the efficacy of the stray-light suppression design.

  10. A route to improved extraction efficiency of light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhu, H.; Shan, C. X.; Wang, L. K.; Yang, Y.; Zhang, J. Y.; Yao, B.; Shen, D. Z.; Fan, X. W.

    2010-01-01

    The electroluminescence from an n-MgZnO/i-ZnO/MgO/p-GaN asymmetric double heterojunction has been demonstrated. With the injection of electrons from n-MgZnO and holes from p-GaN, an intense ultraviolet emission coming from the ZnO active layer was observed. It is revealed that the emission intensity of the diode recorded from the MgZnO side is significantly larger than that from the MgO side because of the asymmetric waveguide structure formed by the lower refractive index of MgO than that of MgZnO. The asymmetric waveguide structure reported in this letter may promise a simple and effective route to light-emitting diodes with improved light-extraction efficiency.

  11. Prevalence of sun protection behaviors in Hispanic youth residing in a high ultraviolet light environment.

    PubMed

    Altieri, Lisa; Miller, Kimberly A; Huh, Jimi; Peng, David H; Unger, Jennifer B; Richardson, Jean L; Allen, Martin W; Cockburn, Myles

    2018-01-01

    Although rates of late-stage melanoma are rising in Hispanics, particularly those living in high ultraviolet light environments, little is known about the prevalence of sun protective behaviors in Hispanic children. We analyzed baseline data including frequency of sunburn, sun protective behaviors, level of U.S. acculturation, and skin phototype from a cross-sectional survey of 2003 Hispanic elementary school children in Los Angeles, California, who participated in a skin cancer prevention intervention. Although the Hispanic children reported frequently engaging in some sun protective behaviors, they also had a high rate of sunburn (59%) that exceeded previous national estimates for non-Hispanic white children (43%). Fewer U.S.-acculturated children reported more frequent shade-seeking at home (P = .02), along with less shade-seeking at school (P = .001) and more sunscreen use at school (P = .02). The surprisingly high rate of sunburn in Hispanic children suggests that the way in which they are practicing sun protection is not preventing sunburns. Sun safety interventions should be targeted toward Hispanic youth to provide them with practical methods of effective sun protection, in addition to education on the risks of high sun exposure. © 2017 Wiley Periodicals, Inc.

  12. Emerging Massive Star Clusters Revealed: High-Resolution Imaging of NGC 4449 from the Radio to the Ultraviolet

    NASA Astrophysics Data System (ADS)

    Reines, Amy E.; Johnson, Kelsey E.; Goss, W. M.

    2008-06-01

    We present a multi-wavelength study of embedded massive clusters in the nearby (3.9 Mpc) starburst galaxy NGC 4449 in an effort to uncover the earliest phases of massive cluster evolution. By combining high-resolution imaging from the radio to the ultraviolet, we reveal these clusters to be in the process of emerging from their gaseous and dusty birth cocoons. We use Very Large Array (VLA) observations at centimeter wavelengths to identify young clusters surrounded by ultra-dense H II regions, detectable via their production of thermal free-free radio continuum. Ultraviolet, optical and infrared observations are obtained from the Hubble and Spitzer Space Telescope archives for comparison. We detect 39 compact radio sources toward NGC 4449 at 3.6 cm using the highest resolution (1farcs3) and sensitivity (~12 μJy) VLA image of the galaxy to date. We reliably identify 13 thermal radio sources and derive their physical properties using both nebular emission from the H II regions and spectral energy distribution fitting to the stellar continuum. These radio-detected clusters have ages lsim5 Myr and stellar masses of order 104 M sun. The measured extinctions are quite low: 12 of the 13 thermal radio sources have A V lsim 1.5, while the most obscured source has A V ≈ 4.3. By combining results from the nebular and stellar emission, we find an I-band excess that is anti-correlated with cluster age and an apparent mass-age correlation. Additionally, we find evidence that local processes such as supernovae and stellar winds likely play an important role in triggering the current bursts of star formation within NGC 4449.

  13. Effect of quantum-well thickness on the optical polarization of AlGaN-based ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Liu, Cheng; Zhang, Jing

    2018-02-01

    Optical polarization from AlGaN quantum well (QW) is crucial for realizing high-efficiency deep-ultraviolet (UV) light-emitting diodes (LEDs) because it determines the light emission patterns and light extraction mechanism of the devices. As the Al-content of AlGaN QW increases, the valence bands order changes and consequently the light polarization switches from transverse-electric (TE) to transverse-magnetic (TM) owing to the different sign and the value of the crystal field splitting energy between AlN (-169meV) and GaN (10meV). Several groups have reported that the ordering of the bands and the TE/TM crossover Al-content could be influenced by the strain state and the quantum confinement from the AlGaN QW system. In this work, we investigate the influence of QW thickness on the optical polarization switching point from AlGaN QW with AlN barriers by using 6-band k•p model. The result presents a decreasing trend of the critical Al-content where the topmost valence band switches from heave hole (HH) to crystal field spilt-off (CH) with increasing QW thicknesses due to the internal electric field and the strain state from the AlGaN QW. Instead, the TE- and TM-polarized spontaneous emission rates switching Al-content rises first and falls later because of joint consequence of the band mixing effect and the Quantum Confined Stark Effect. The reported optical polarization from AlGaN QW emitters in the UV spectral range is assessed in this work and the tendency of the polarization switching point shows great consistency with the theoretical results, which deepens the understanding of the physics from AlGaN QW UV LEDs.

  14. Synthesis and characterization of pure and Li⁺ activated Alq₃ complexes for green and blue organic light emitting diodes and display devices.

    PubMed

    Bhagat, S A; Borghate, S V; Kalyani, N Thejo; Dhoble, S J

    2014-08-01

    Pure and Li(+)-doped Alq3 complexes were synthesized by simple precipitation method at room temperature, maintaining the stoichiometric ratio. These complexes were characterized by X-ray diffraction, ultraviolet-visible absorption and Fourier transform infrared and photoluminescence (PL) spectra. X-ray diffraction analysis reveals the crystalline nature of the synthesized complexes, while Fourier transform infrared spectroscopy confirm the molecular structure, the completion of quinoline ring formation and presence of quinoline structure in the metal complex. Ultraviolet-visible and PL spectra revealed that Li(+) activated Alq3 complexes exhibit the highest intensity in comparison to pure Alq3 phosphor. Thus, Li(+) enhances PL emission intensity when doped into Alq3 phosphor. The excitation spectra lie in the range of 383-456 nm. All the synthesized complexes other than Liq give green emission, while Liq gives blue emission with enhanced intensity. Thus, he synthesized phosphors are the best suitable candidates for green- and blue-emitting organic light emitting diode, PL liquid-crystal display and solid-state lighting applications. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Use of coupled wavelength ultraviolet light-emitting diodes for inactivation of bacteria in subsea oil-field injection water.

    PubMed

    Qiao, Yang; Chen, Daoyi; Wen, Diya

    2018-06-04

    The development of subsea injection water disinfection systems will enable the novel exploration of offshore oilfields. Ultraviolet light emitting diodes (UV-LEDs) with peak wavelengths at 255 nm, 280 nm, 350 nm, and combinations of 255 nm and 350 nm, and 280 nm and 350 nm were investigated in this study to determine their efficiency at disinfecting saprophytic bacteria, iron bacteria, and sulfate reducing bacteria. Results show that UV-LEDs with peak wavelengths at 280 nm were the most practical in this domain because of their high performance in both energy-efficiency and reactivation suppression, although 255 nm UV-LEDs achieved an optimal germicidal effect in dose-based experiments. The use of combined 280 nm and 350 nm wavelengths also induced synergistic bactericidal effects on saprophytic bacteria. Copyright © 2018. Published by Elsevier B.V.

  16. Ultraviolet spectroscopic breath analysis using hollow-optical fiber as gas cell

    NASA Astrophysics Data System (ADS)

    Iwata, T.; Katagiri, T.; Matsuura, Y.

    2017-02-01

    For breath analysis on ultraviolet absorption spectroscopy, an analysis system using a hollow optical fiber as gas cell is developed. The hollow optical fiber functions as a long path and extremely small volume gas cell. Firstly, the measurement sensitivity of the system is evaluated by using NO gas as a gas sample. The result shows that NO gas with 50 ppb concentration is measured by using a system with a laser-driven, high intensity light source and a 3-meter long, aluminum-coated hollow optical fiber. Then an absorption spectrum of breath sample is measured in the wavelength region of around 200-300 nm and from the spectrum, it is found that the main absorbing components in breath were H2O, isoprene, and O3 converted from O2 by radiation of ultraviolet light. Then the concentration of isoprene in breath is estimated by using multiple linear regression analysis.

  17. Stray light correction of array spectroradiometer measurement in ultraviolet

    NASA Astrophysics Data System (ADS)

    Wu, Zhifeng; Dai, Caihong; Wang, Yanfei; Li, Ling

    2018-02-01

    For most of the array spectroradiometer, stray light is significant in UV band. Stray light correction of a UV array spectroradiometer is investigated using optical filters. If a group of filters with continuous bandpass are chosen, stray light contribution due to all the bands can be obtained using a numerical algorithm. The array spectroradiometer with the stray light corrected is used to measure the spectral irradiance of several UV lamps. The measurement results are compared to a double monochromator spectroradiometer. When xenon lamp is the array spectroradiometer calibration lamp, after stray light correction, the difference can be improved from nearly 10% to 2.0% in UVC band. When tungsten lamp is the calibration lamp, the difference can be improved from around 90% to less than 20%.

  18. Continuous-wave ultraviolet generation at 320 nm by intracavity frequency doubling of red-emitting Praseodymium lasers

    NASA Astrophysics Data System (ADS)

    Richter, A.; Pavel, N.; Heumann, E.; Huber, G.; Parisi, D.; Toncelli, A.; Tonelli, M.; Diening, A.; Seelert, W.

    2006-04-01

    We describe a new approach for the generation of coherent ultraviolet radiation. Continuous-wave ultraviolet light at 320 nm has been obtained by intracavity frequency doubling of red-emitting Praseodymium lasers. Lasing at the 640-nm fundamental wavelength in Pr:LiYF4 and Pr:BaY2F8 was realized by employing an optically pumped semiconductor laser at 480 nm as pump source.Using LiB3O5 as nonlinear medium, ~19 mW of ultraviolet radiation with ~9% optical efficiency with respect to absorbed power was reached for both laser crystals; the visible-to-ultraviolet conversion efficiency was 26% and 35% for Pr:LiYF4 and Pr:BaY2F8, respectively.

  19. Biological Effects of Sunlight, Ultraviolet Radiation, Visible Light, Infrared Radiation and Vitamin D for Health.

    PubMed

    Holick, Michael F

    2016-03-01

    Humans evolved in sunlight and had depended on sunlight for its life giving properties that was appreciated by our early ancestors. However, for more than 40 years the lay press and various medical and dermatology associations have denounced sun exposure because of its association with increased risk for skin cancer. The goal of this review is to put into perspective the many health benefits that have been associated with exposure to sunlight, ultraviolet A (UVA) ultraviolet B (UVB), visible and infrared radiation. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  20. Induction of sister chromatid exchange in preimplantation mouse embryos in vitro by /sup 3/H-thymidine or ultraviolet light in combination with caffeine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, W.U.S.; Spindle, A.

    1986-01-01

    Preimplantation mouse embryos were exposed in vitro to /sup 3/H-thymidine (25, 100, or 250 Bq/ml) or ultraviolet (UV) light (1.35 or 4.05 J/m2), either alone or in combination with caffeine (1 mM with /sup 3/H-thymidine and 0.5 mM with UV light). Exposure to /sup 3/H-thymidine lasted for 2 days, from the two-cell stage to the late morula/early blastocyst stage, and UV radiation was applied acutely at the late morula/early blastocyst stage. The effects were quantified by the sister chromatid exchange (SCE) assay. All three agents induced SCEs when used singly. /sup 3/H-thymidine was effective in inducing SCEs only at 250more » Bq/ml, whereas UV light was effective at both fluences. Although caffeine did not induce SCEs when it was added before exposure to bromodeoxyuridine (BrdUrd), which is used to visualize SCEs, it did induce SCEs when present during the entire culture period (/sup 3/H-thymidine experiments) or during incubation in BrdUrd (UV experiments). Caffeine markedly enhanced the SCE-inducing effect of UV light but did not influence the effect of /sup 3/H-thymidine.« less

  1. The early faint sun paradox: organic shielding of ultraviolet-labile greenhouse gases

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Chyba, C.

    1997-01-01

    Atmospheric mixing ratios of approximately 10(-5 +/- 1) for ammonia on the early Earth would have been sufficient, through the resulting greenhouse warming, to counteract the temperature effects of the faint early sun. One argument against such model atmospheres has been the short time scale for ammonia photodissociation by solar ultraviolet light. Here it is shown that ultraviolet absorption by steady-state amounts of high-altitude organic solids produced from methane photolysis may have shielded ammonia sufficiently that ammonia resupply rates were able to maintain surface temperatures above freezing.

  2. Reverse leakage current characteristics of InGaN/GaN multiple quantum well ultraviolet/blue/green light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhou, Shengjun; Lv, Jiajiang; Wu, Yini; Zhang, Yuan; Zheng, Chenju; Liu, Sheng

    2018-05-01

    We investigated the reverse leakage current characteristics of InGaN/GaN multiple quantum well (MQW) near-ultraviolet (NUV)/blue/green light-emitting diodes (LEDs). Experimental results showed that the NUV LED has the smallest reverse leakage current whereas the green LED has the largest. The reason is that the number of defects increases with increasing nominal indium content in InGaN/GaN MQWs. The mechanism of the reverse leakage current was analyzed by temperature-dependent current–voltage measurement and capacitance–voltage measurement. The reverse leakage currents of NUV/blue/green LEDs show similar conduction mechanisms: at low temperatures, the reverse leakage current of these LEDs is attributed to variable-range hopping (VRH) conduction; at high temperatures, the reverse leakage current of these LEDs is attributed to nearest-neighbor hopping (NNH) conduction, which is enhanced by the Poole–Frenkel effect.

  3. Development of Ultraviolet (UV) Radiation Protective Fabric Using Combined Electrospinning and Electrospraying Technique

    NASA Astrophysics Data System (ADS)

    Sinha, Mukesh Kumar; Das, B. R.; Kumar, Kamal; Kishore, Brij; Prasad, N. Eswara

    2017-06-01

    The article reports a novel technique for functionization of nanoweb to develop ultraviolet (UV) radiation protective fabric. UV radiation protection effect is produced by combination of electrospinning and electrospraying technique. A nanofibrous web of polyvinylidene difluoride (PVDF) coated on polypropylene nonwoven fabric is produced by latest nanospider technology. Subsequently, web is functionalized by titanium dioxide (TiO2). The developed web is characterized for evaluation of surface morphology and other functional properties; mechanical, chemical, crystalline and thermal. An optimal (judicious) nanofibre spinning condition is achieved and established. The produced web is uniformly coated by defect free functional nanofibres in a continuous form of useable textile structural membrane for ultraviolet (UV) protective clothing. This research initiative succeeds in preparation and optimization of various nanowebs for UV protection. Field Emission Scanning Electron Microscope (FESEM) result reveals that PVDF webs photo-degradative behavior is non-accelerated, as compared to normal polymeric grade fibres. Functionalization with TiO2 has enhanced the photo-stability of webs. The ultraviolet protection factor of functionalized and non-functionalized nanowebs empirically evaluated to be 65 and 24 respectively. The developed coated layer could be exploited for developing various defence, para-military and civilian UV protective light weight clothing (tent, covers and shelter segments, combat suit, snow bound camouflaging nets). This research therefore, is conducted in an attempt to develop a scientific understanding of PVDF fibre coated webs for photo-degradation and applications for defence protective textiles. This technological research in laboratory scale could be translated into bulk productionization.

  4. Ultraviolet radiation cataract: dose dependence

    NASA Astrophysics Data System (ADS)

    Soderberg, Per G.; Loefgren, Stefan

    1994-07-01

    Current safety limits for cataract development after acute exposure to ultraviolet radiation (UVR) are based on experiments analyzing experimental data with a quantal, effect-no effect, dose-response model. The present study showed that intensity of forward light scattering is better described with a continuous dose-response model. It was found that 3, 30 and 300 kJ/m2UVR300nm induces increased light scattering within 6 h. For all three doses the intensity of forward light scattering was constant after 6 h. The intensity of forward light scattering was proportional to the log dose of UVR300nm. There was a slight increase of the intensity of forward light scattering on the contralateral side in animals that received 300 kJ/m2. Altogether 72 Sprague-Dawley male rats were included. Half of the rats were exposed in vivo on one side to UVR300nm. The other half was kept as a control group, receiving the same treatment as exposed rats but without delivery of UVR300nm to the eye. Subgroups of the rats received either of the three doses. Rats were sacrificed at varying intervals after the exposure. The lenses were extracted and the forward light scattering was estimated. It is concluded that intensity of forward light scattering in the lens after exposure to UVR300nm should be described with a continuous dose-reponse model.

  5. The Ultraviolet Surprise. Efficient Soft X-Ray High Harmonic Generation in Multiply-Ionized Plasmas

    DOE PAGES

    Popmintchev, Dimitar; Hernandez-Garcia, Carlos; Dollar, Franklin; ...

    2015-12-04

    High-harmonic generation is a universal response of matter to strong femtosecond laser fields, coherently upconverting light to much shorter wavelengths. Optimizing the conversion of laser light into soft x-rays typically demands a trade-off between two competing factors. Reduced quantum diffusion of the radiating electron wave function results in emission from each species which is highest when a short-wavelength ultraviolet driving laser is used. But, phase matching—the constructive addition of x-ray waves from a large number of atoms—favors longer-wavelength mid-infrared lasers. We identified a regime of high-harmonic generation driven by 40-cycle ultraviolet lasers in waveguides that can generate bright beams inmore » the soft x-ray region of the spectrum, up to photon energies of 280 electron volts. Surprisingly, the high ultraviolet refractive indices of both neutral atoms and ions enabled effective phase matching, even in a multiply ionized plasma. We observed harmonics with very narrow linewidths, while calculations show that the x-rays emerge as nearly time-bandwidth–limited pulse trains of ~100 attoseconds.« less

  6. Design, fabrication, and measurement of two silicon-based ultraviolet and blue-extended photodiodes

    NASA Astrophysics Data System (ADS)

    Chen, Changping; Wang, Han; Jiang, Zhenyu; Jin, Xiangliang; Luo, Jun

    2014-12-01

    Two silicon-based ultraviolet (UV) and blue-extended photodiodes are presented, which were fabricated for light detection in the ultraviolet/blue spectral range. Stripe-shaped and octagon-ring-shaped structures were designed to verify parameters of the UV-responsivity, UV-selectivity, breakdown voltage, and response time. The ultra-shallow lateral pn junction had been successfully realized in a standard 0.5-μm complementary metal oxide semiconductor (CMOS) process to enlarge the pn junction area, enhance the absorption of UV light, and improve the responsivity and quantum efficiency. The test results illustrated that the stripe-shaped structure has the lower breakdown voltage, higher UV-responsicity, and higher UV-selectivity. But the octagon-ring-shaped structure has the lower dark current. The response time of both structures was almost the same.

  7. A Hot Companion to a Blue Straggler in NGC 188 as Revealed by the Ultra-Violet Imaging Telescope (UVIT) on ASTROSAT

    NASA Astrophysics Data System (ADS)

    Subramaniam, Annapurni; Sindhu, N.; Tandon, S. N.; Kameswara Rao, N.; Postma, J.; Côté, Patrick; Hutchings, J. B.; Ghosh, S. K.; George, K.; Girish, V.; Mohan, R.; Murthy, J.; Sankarasubramanian, K.; Stalin, C. S.; Sutaria, F.; Mondal, C.; Sahu, S.

    2016-12-01

    We present early results from the Ultra-Violet Imaging Telescope (UVIT) on board the ASTROSAT observatory. We report the discovery of a hot companion associated with one of the blue straggler stars (BSSs) in the old open cluster, NGC 188. Using fluxes measured in four filters in UVIT’s far-UV (FUV) channel, and two filters in the near-UV (NUV) channel, we have constructed the spectral energy distribution (SED) of the star WOCS-5885, after combining with flux measurements from GALEX, Ultraviolet Imaging Telescope, Ultraviolet Optical Telescope, SPITZER, WISE, and several ground-based facilities. The resulting SED spans a wavelength range of 0.15 μm to 7.8 μm. This object is found to be one of the brightest FUV sources in the cluster. An analysis of the SED reveals the presence of two components. The cooler component is found to have a temperature of 6000 ± 150 K, confirming that it is a BSS. Assuming it to be a main-sequence star, we estimate its mass to be ˜1.1-1.2 M ⊙. The hotter component, with an estimated temperature of 17,000 ± 500 K, has a radius of ˜ 0.6 R ⊙ and L ˜30 L ⊙. Bigger and more luminous than a white dwarf, yet cooler than a sub-dwarf, we speculate that it is a post-AGB/HB star that has recently transferred its mass to the BSS, which is known to be a rapid rotator. This binary system, which is the first BSS with a post-AGB/HB companion identified in an open cluster, is an ideal laboratory to study the process of BSS formation via mass transfer.

  8. Spectral shifts of mammalian ultraviolet-sensitive pigments (short wavelength-sensitive opsin 1) are associated with eye length and photic niche evolution

    PubMed Central

    Emerling, Christopher A.; Huynh, Hieu T.; Nguyen, Minh A.; Meredith, Robert W.; Springer, Mark S.

    2015-01-01

    Retinal opsin photopigments initiate mammalian vision when stimulated by light. Most mammals possess a short wavelength-sensitive opsin 1 (SWS1) pigment that is primarily sensitive to either ultraviolet or violet light, leading to variation in colour perception across species. Despite knowledge of both ultraviolet- and violet-sensitive SWS1 classes in mammals for 25 years, the adaptive significance of this variation has not been subjected to hypothesis testing, resulting in minimal understanding of the basis for mammalian SWS1 spectral tuning evolution. Here, we gathered data on SWS1 for 403 mammal species, including novel SWS1 sequences for 97 species. Ancestral sequence reconstructions suggest that the most recent common ancestor of Theria possessed an ultraviolet SWS1 pigment, and that violet-sensitive pigments evolved at least 12 times in mammalian history. We also observed that ultraviolet pigments, previously considered to be a rarity, are common in mammals. We then used phylogenetic comparative methods to test the hypotheses that the evolution of violet-sensitive SWS1 is associated with increased light exposure, extended longevity and longer eye length. We discovered that diurnal mammals and species with longer eyes are more likely to have violet-sensitive pigments and less likely to possess UV-sensitive pigments. We hypothesize that (i) as mammals evolved larger body sizes, they evolved longer eyes, which limited transmittance of ultraviolet light to the retina due to an increase in Rayleigh scattering, and (ii) as mammals began to invade diurnal temporal niches, they evolved lenses with low UV transmittance to reduce chromatic aberration and/or photo-oxidative damage. PMID:26582021

  9. Bidirectional Reflectance Function Measurement of Molecular Contaminant Scattering in the Vacuum Ultraviolet

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Gregory, Don A.

    2006-01-01

    Bi-directional reflectance distribution function (BRDF) measurements of optical surfaces both before and after molecular contamination were done using UV, VUV and visible light. Molecular contamination of optical surfaces from outgassed material has been shown in many cases to proceed from acclimation centers, and to produce many roughly hemispherical "islands" of contamination on the surface. Vacuum Ultraviolet (VW) wavelengths are used here to measure angularly scattered light from optical surfaces.

  10. Edge-emitting ultraviolet n-ZnO:Al/i-ZnO/p-GaN heterojunction light-emitting diode with a rib waveguide.

    PubMed

    Liang, H K; Yu, S F; Yang, H Y

    2010-02-15

    An edge-emitting ultraviolet n-ZnO:Al/i-ZnO/p-GaN heterojunction light-emitting diode with a rib waveguide is fabricated by filtered cathodic vacuum arc technique at low deposition temperature (approximately 150 degrees C). Electroluminescence with emission peak at 387 nm is observed. Good correlation between electro- and photo- luminescence spectra suggests that the i-ZnO layer of the heterojunction supports radiative excitonic recombination. Furthermore, it is found that the emission intensity can be enhanced by approximately 5 times due to the presence of the rib waveguide. Only fundamental TE and TM polarizations are supported inside the rib waveguide and the intensity of TE polarization is approximately 2.2 time larger than that of TM polarization.

  11. Effects of solar ultraviolet radiations on Bacillus subtilis spores and T-7 bacteriophage

    NASA Technical Reports Server (NTRS)

    Spizizen, J.; Isherwood, J. E.; Taylor, G. R.

    1975-01-01

    Spores of Bacillus subtilis HA 101 and the DNA polymerase I-defective mutant HA 101 (59)F were exposed to selected wavelengths of solar ultraviolet light and space vacuum during the return of Apollo 16. In addition, coliphage T-7 suspensions were exposed to solar ultraviolet radiation as part of the Microbial Response to Space Environment Experiment. Optical filters were employed to provide different energy levels at wavelengths 254 nm and 280 nm. Dose-response curves for lethal and mutagenic effects were compared with ground-based data. A close parallel was observed between the results of solar radiation and ground tests with spores of the two strains. However, significantly greater inactivation of T-7 bacteriophage was observed after exposure to solar ultraviolet radiation.

  12. Absolute calibration of a hydrogen discharge lamp in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Nealy, J. E.

    1975-01-01

    A low-pressure hydrogen discharge lamp was calibrated for radiant intensity in the vacuum ultraviolet spectral region on an absolute basis and was employed as a laboratory standard source in spectrograph calibrations. This calibration was accomplished through the use of a standard photodiode detector obtained from the National Bureau of Standards together with onsite measurements of spectral properties of optical components used. The stability of the light source for use in the calibration of vacuum ultraviolet spectrographs and optical systems was investigated and found to be amenable to laboratory applications. The lamp was studied for a range of operating parameters; the results indicate that with appropriate peripheral instrumentation, the light source can be used as a secondary laboratory standard source when operated under preset controlled conditions. Absolute intensity measurements were recorded for the wavelengths 127.7, 158.0, 177.5, and 195.0 nm for a time period of over 1 month, and the measurements were found to be repeatable to within 11 percent.

  13. Ultraviolet surprise: Efficient soft x-ray high-harmonic generation in multiply ionized plasmas.

    PubMed

    Popmintchev, Dimitar; Hernández-García, Carlos; Dollar, Franklin; Mancuso, Christopher; Pérez-Hernández, Jose A; Chen, Ming-Chang; Hankla, Amelia; Gao, Xiaohui; Shim, Bonggu; Gaeta, Alexander L; Tarazkar, Maryam; Romanov, Dmitri A; Levis, Robert J; Gaffney, Jim A; Foord, Mark; Libby, Stephen B; Jaron-Becker, Agnieszka; Becker, Andreas; Plaja, Luis; Murnane, Margaret M; Kapteyn, Henry C; Popmintchev, Tenio

    2015-12-04

    High-harmonic generation is a universal response of matter to strong femtosecond laser fields, coherently upconverting light to much shorter wavelengths. Optimizing the conversion of laser light into soft x-rays typically demands a trade-off between two competing factors. Because of reduced quantum diffusion of the radiating electron wave function, the emission from each species is highest when a short-wavelength ultraviolet driving laser is used. However, phase matching--the constructive addition of x-ray waves from a large number of atoms--favors longer-wavelength mid-infrared lasers. We identified a regime of high-harmonic generation driven by 40-cycle ultraviolet lasers in waveguides that can generate bright beams in the soft x-ray region of the spectrum, up to photon energies of 280 electron volts. Surprisingly, the high ultraviolet refractive indices of both neutral atoms and ions enabled effective phase matching, even in a multiply ionized plasma. We observed harmonics with very narrow linewidths, while calculations show that the x-rays emerge as nearly time-bandwidth-limited pulse trains of ~100 attoseconds. Copyright © 2015, American Association for the Advancement of Science.

  14. Pairing of near-ultraviolet solar cells with electrochromic windows for smart management of the solar spectrum

    NASA Astrophysics Data System (ADS)

    Davy, Nicholas C.; Sezen-Edmonds, Melda; Gao, Jia; Lin, Xin; Liu, Amy; Yao, Nan; Kahn, Antoine; Loo, Yueh-Lin

    2017-08-01

    Current smart window technologies offer dynamic control of the optical transmission of the visible and near-infrared portions of the solar spectrum to reduce lighting, heating and cooling needs in buildings and to improve occupant comfort. Solar cells harvesting near-ultraviolet photons could satisfy the unmet need of powering such smart windows over the same spatial footprint without competing for visible or infrared photons, and without the same aesthetic and design constraints. Here, we report organic single-junction solar cells that selectively harvest near-ultraviolet photons, produce open-circuit voltages eclipsing 1.6 V and exhibit scalability in power generation, with active layers (10 cm2) substantially larger than those typical of demonstration organic solar cells (0.04-0.2 cm2). Integration of these solar cells with a low-cost, polymer-based electrochromic window enables intelligent management of the solar spectrum, with near-ultraviolet photons powering the regulation of visible and near-infrared photons for natural lighting and heating purposes.

  15. [Research of spectrum characteristics for light conversion agricultural films].

    PubMed

    Zhang, Song-pei; Li, Jian-yu; Chen, Juan; Xiao, Yang; Sun, Yu-e

    2004-10-01

    The solar spectrum and the function spectrum in chrysanthemum and tomato were determined in this paper. The research for a relation plant growth to solar spectrum showed that the efficiency of plant making use of ultraviolet light of 280-380 nm and yellow-green light of 500-600 nm and near IR spectra over 720 nm are lower, that the blue-purple light of 430-480 nm and red light of 630-690 nm are beneficial to enhancing photosynthesis and promoting plant growth. According to plant photosynthesis and solar spectrum characteristic, the author developed CaS:Cu+, Cl- blue light film, and red light film added with CaS:Eu2+, Mn2+, Cl- to convert green light into red light, and discussed the spectrum characteristic of red-blue double peak in agricultural film and rare earth organic complex which could convert ultraviolet light into red light. Just now, the study on light conversion regents in farm films is going to face new breakthrough and the technology of anti-stocks displacement to study red film which can convert near infrared light are worth to attention.

  16. Far-ultraviolet Bidirectional Photometry of Apollo Soil 10084: New Results from The Southwest Ultraviolet Reflectance Chamber (SwURC).

    NASA Astrophysics Data System (ADS)

    Raut, U.

    2017-12-01

    We report new measurements of the far-ultraviolet (115-180 nm) bidirectional reflectance of Apollo soil 10084 in the Southwest Ultraviolet Reflectance Chamber (SwURC). We find the bidirectional reflectance distribution function (BRDF) to be featureless in this wavelength region, though with a small blue slope. The angular distribution of the BRDF at Ly-α and 160 nm shows that this mature mare soil, containing nanophase Fe and enriched in Ti, anisotropically scatters light in the forward direction. The phase angle dependence of the BRDF is fitted with Hapke's photometric model with an additional diffuse-directional term. Future plans include measurements of mare and highland soils of differing maturity index (Is/FeO), water ice frost and lunar soil-ice aggregates. Such measurements will help constrain the abundance and distribution of the water ice on the illuminated lunar surface and dark permanently shadowed regions of the moon, as reported by LRO-LAMP.

  17. Psoralen-ultraviolet A treatment with Psoralen-ultraviolet B therapy in the treatment of psoriasis.

    PubMed

    Ahmed Asim, Sadaf; Ahmed, Sitwat; Us-Sehar, Najam

    2013-05-01

    To compare the conventional psoralen-ultraviolet A treatment with psoralen-ultraviolet B therapy in the treatment of psoriasis. We studied 50 patients of plaque type psoriasis who were selected to receive either conventional psoralen-ultraviolet A or psoralen-ultraviolet B treatment. There was no significant difference between the two treatment groups in the number of patients whose skin cleared of psoriasis or the number of exposures required for clearance. Profile of side effects and disease status was also similar after three months of follow up. Psoralen-ultraviolet B treatment is as effective as conventional psoralen-ultraviolet A in the treatment of psoriasis. Further long term studies are needed to assess the safety of psoralen-ultraviolet B.

  18. GALEX 1st Light Near Ultraviolet -50

    NASA Image and Video Library

    2003-05-28

    This image was taken May 21 and 22, 2003, by NASA Galaxy Evolution Explorer. The image was made from data gathered by the two channels of the spacecraft camera during the mission first light milestone.

  19. [Photodrugtherapy of psoriasis with oral psoralen and black light therapy].

    PubMed

    Corrales Padilla, H

    1975-01-01

    Oral 4, 5', 8 trimethoxypsoralen (TMP) or 8-M-methoxypsoralen (8 MP) plus black light therapy of psoriasis produced disappearing of lesions in 6 out of 8 pacients treated with TMP and in 6 out of 7 treated with 8 MP. In three patients treated with the first drug, a paired comparision demonstrated that the ingestion of it, when followed of black exposure, is more effective than the exposure to conventional ultraviolet light. Parrish et al. have shown this for oral methoxalen and long wave ultraviolet light. Combined TMP or 8-MP and black light therapy inhibits epidermal DNA synthesis and this is the scientific base of its application in the therapy of psoriasis, disease in which an accelerated celular cicle and DNA synthesis has been postulated.

  20. Effect of Ultraviolet Irradiation of the Implant Surface on Progression of Periimplantitis--A Pilot Study in Dogs.

    PubMed

    Ishii, Kouken; Matsuo, Masato; Hoshi, Noriyuki; Takahashi, Shun-Suke; Kawamata, Ryota; Kimoto, Katsuhiko

    2016-02-01

    The objective of this study was to investigate morphologically the progression of periimplantitis around an ultraviolet (UV)-light-irradiated implant in dogs. Pure titanium implants (3.3 mm in diameter and 8 mm long) were placed into dog jawbone bilaterally. Implants on one side were irradiated with UV light for 15 minutes using a photodevice immediately before placement (UV group), whereas those on the other side were not irradiated (non-UV group). Osseointegration was confirmed 90 days after implant placement by radiography. Experimental periimplantitis was induced by the application of dental floss over 90 days. Clinical and radiographic examination and micro-computed tomography (micro-CT) were performed after 90 and 180 days, and bone resorption was measured. The bone-implant interface in tissue sections was examined by light microscopy. Bone resorption around the UV-irradiated implant was less pronounced than around the non-UV-irradiated implant in the ligature-induced periimplantitis model. Tissue section images revealed no contact and partial destruction at the bone-implant interface. Within the limitations of this preliminary investigation, it is suggested that UV-light-irradiated implants suppress spontaneous progression of periimplantitis.

  1. ZnO-based ultra-violet light emitting diodes and nanostructures fabricated by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Chen, Miin-Jang; Yang, Jer-Ren; Shiojiri, Makoto

    2012-07-01

    We have investigated ZnO-based light-emitting diodes (LEDs) fabricated by atomic layer deposition (ALD), demonstrating that ALD is one of the noteworthy techniques to prepare high-quality ZnO required for ultraviolet (UV) photonic devices. Here, we review our recent investigations on different ZnO-based heterojunction LEDs such as n-ZnO/p-GaN LEDS, n-ZnO:Al/ZnO nanodots-SiO2 composite/p-GaN LEDS, n-ZnO/ZnO nanodots-SiO2 composite/p-AlGaN LEDs, n-ZnO:Al/i-ZnO/p-SiC(4H) LEDs, and also on ZnO-based nanostructures including ZnO quantum dots embedded in SiO2 nanoparticle layer, ZnO nanopillars on sapphire substrates, Al-doped ZnO films on sapphire substrate and highly (0 0 0 1)-oriented ZnO films on amorphous glass substrate. The latest investigation also demonstrated p-type ZnO:P films prepared on amorphous silica substrates, which allow us to fabricate ZnO-based homojunction LEDs. These devices and structures were studied by x-ray diffraction and various analytical electron microscopy observations as well as electric and electro-optical measurements.

  2. Susceptible cytotoxicity to ultraviolet B light in fibroblasts and keratinocytes cultured from autoimmune-prone MRL/Mp-lpr/lpr mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furukawa, F.; Lyon, M.B.; Norris, D.A.

    1989-09-01

    The MRL/Mp-lpr/lpr (MRL/l) mouse is an autoimmune model of spontaneous lupus erythematosus (LE), in addition to lupus nephritis. In order to better understand the mechanisms of photosensitivity in LE, in vitro photocytotoxicity was examined by using fibroblasts and keratinocytes cultured from MRL/l mice, control MRL/Mp- +/+ (MRL/n) mice, and normal BALB/c mice. A colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and the acridine orange/ethidium bromide assay were used for determination of cytotoxicity. Fibroblasts cultured from newborn MRL/l mice showed higher susceptibility to single ultraviolet light B (UVB) light irradiation at a dose of 100-500 mJ than those from MRL/n, F1 hybrid ofmore » (MRL/l x MRL/n mice), and BALB/c mice. However, the susceptibility to UVB was not observed in young (1-month-old) and adult (4-month-old) MRL/l mice. UVA light irradiation was not cytotoxic. Keratinocytes cultured from MRL mice showed lower cytotoxicity to UVB irradiation than fibroblasts cultured. However, keratinocytes from newborn MRL/l mice showed higher cytotoxicity to 50 mJ UVB irradiation than cells from MRL/n mice. Syngeneic or allogeneic sera augmented UVB-induced cytotoxicity of fibroblasts cultured. UVB irradiation of spleen cells induced no significant difference of cytotoxicity between MRL/l and MRL/n mice. Based on the results of F1 hybrid of (MRL/l x MRL/n) mice, the susceptibility seemed to be associated with autoimmune traits and to be regulated by genetical background.« less

  3. Psoralen-ultraviolet A treatment with Psoralen-ultraviolet B therapy in the treatment of psoriasis

    PubMed Central

    Ahmed Asim, Sadaf; Ahmed, Sitwat; us-Sehar, Najam

    2013-01-01

    Objective: To compare the conventional psoralen-ultraviolet A treatment with psoralen-ultraviolet B therapy in the treatment of psoriasis. Methodology: We studied 50 patients of plaque type psoriasis who were selected to receive either conventional psoralen-ultraviolet A or psoralen-ultraviolet B treatment. Results: There was no significant difference between the two treatment groups in the number of patients whose skin cleared of psoriasis or the number of exposures required for clearance. Profile of side effects and disease status was also similar after three months of follow up. Conclusion: Psoralen-ultraviolet B treatment is as effective as conventional psoralen-ultraviolet A in the treatment of psoriasis. Further long term studies are needed to assess the safety of psoralen-ultraviolet B. PMID:24353623

  4. Modularized and water-cooled photo-catalyst cleaning devices for aquaponics based on ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Yang, Henglong; Lung, Louis; Wei, Yu-Chien; Huang, Yi-Bo; Chen, Zi-Yu; Chou, Yu-Yang; Lin, Anne-Chin

    2017-08-01

    The feasibility of applying ultraviolet light-emitting diodes (UV-LED's) as triggering sources of photo-catalyst based on titanium dioxide (TiO2) nano-coating specifically for water-cleaning process in an aquaponics system was designed and proposed. The aquaponics system is a modern farming system to integrate aquaculture and hydroponics into a single system to establish an environmental-friendly and lower-cost method for farming fish and vegetable all together in urban area. Water treatment in an aquaponics system is crucial to avoid mutual contamination. we proposed a modularized watercleaning device composed of all commercially available components and parts to eliminate organic contaminants by using UV-LED's for TiO2 photo-catalyst reaction. This water-cleaning module consisted of two coaxial hollowed cylindrical pipes can be submerged completely in water for water treatment and cooling UV-LED's. The temperature of the UV-LED after proper thermal management can be reduced about 16% to maintain the optimal operation condition. Our preliminary experimental result by using Methylene Blue solution to simulate organic contaminants indicated that TiO2 photo-catalyst triggered by UV-LED's can effectively decompose organic compound and decolor Methylene Blue solution.

  5. Direct measurement of light waves.

    PubMed

    Goulielmakis, E; Uiberacker, M; Kienberger, R; Baltuska, A; Yakovlev, V; Scrinzi, A; Westerwalbesloh, Th; Kleineberg, U; Heinzmann, U; Drescher, M; Krausz, F

    2004-08-27

    The electromagnetic field of visible light performs approximately 10(15) oscillations per second. Although many instruments are sensitive to the amplitude and frequency (or wavelength) of these oscillations, they cannot access the light field itself. We directly observed how the field built up and disappeared in a short, few-cycle pulse of visible laser light by probing the variation of the field strength with a 250-attosecond electron burst. Our apparatus allows complete characterization of few-cycle waves of visible, ultraviolet, and/or infrared light, thereby providing the possibility for controlled and reproducible synthesis of ultrabroadband light waveforms.

  6. Ultraviolet, visible, and gravity astrophysics: A plan for the 1990's

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Office of Space Science and Applications (OSSA) receives advice on scientific strategy and priorities from the U.S. National Academy of Sciences. Guidance to the OSSA Astrophysics Division, in particular, is provided by dedicated academy committees, ad hoc study groups, and, at ten-year intervals, by broadly mandated astronomy and astrophysics survey committees charged with making recommendations for the coming decade. Many of the academy's recommendations have important implications for the conduct of ultraviolet and visible-light astronomy from space. Moreover, these areas are now poised for an era of rapid growth. Through technological progress, ultraviolet astronomy has already risen from a novel observational technique four decades ago to the mainstream of astronomical research today. Recent developments in space technology and instrumentation have the potential to generate comparably dramatic strides in observational astronomy within the next ten years. In 1989, the Ultraviolet and Visible Astrophysics Branch of the OSSA Astrophysics Division recognized the need for a new, long-range plan that would implement the academy's recommendations in a way that yielded the most advantageous use of new technology. NASA's Ultraviolet, Visible, and Gravity Astrophysics Management Operations Working Group was asked to develop such a plan for the 1990's. Since the branch holds programmatic responsibility for space research in gravitational physics and relativity, as well as for ultraviolet and visible-light astrophysics, missions in those areas were also included. The working group met throughout 1989 and 1990 to survey current astrophysical problems, assess the potential of new technologies, examine prior academy recommendations, and develop the implementation plan. The present report is the product of those deliberations. Key astrophysical questions to be addressed cover topics such as the structure and evolution of the early universe, energetics of active

  7. SR-71 Ship #1 - Ultraviolet Experiment

    NASA Technical Reports Server (NTRS)

    1994-01-01

    NASA's SR-71 streaks into the twilight on a night/science flight from the Dryden Flight Research Center, Edwards, California. Mounted in the nose of the SR-71 was an ultraviolet video camera aimed skyward to capture images of stars, asteroids and comets. The science portion of the flight is a project of the Jet Propulsion Laboratory, Pasadena, California. Two SR-71 aircraft have been used by NASA as test beds for high-speed and high-altitude aeronautical research. One early research project flown on one of Dryden's SR-71s consisted of a proposal for a series of flights using the SR-71 as a science camera platform for the Jet Propulsion Laboratory (JPL) of the California Institute of Technology, which operates under contract to NASA in much the way that NASA centers do. In March 1993, an upward-looking ultraviolet (UV) video camera placed in the SR-71's nosebay studied a variety of celestial objects in the ultraviolet light spectrum. The SR-71 was proposed as a test bed for the experiment because it is capable of flying at altitudes above 80,000 feet for an extended length of time. Observation of ultraviolet radiation is not possible from the Earth's surface because the atmosphere's ozone layer absorbs UV rays. Study of UV radiation is important because it is known to cause skin cancer with prolonged exposure. UV radiation is also valuable to study from an astronomical perspective. Satellite study of ultraviolet radiation is very expensive. As a result, the South West Research Institute (SWRI) in Texas developed the hypothesis of using a high-flying aircraft such as the SR-71 to conduct UV observations. The SR-71 is capable of flying above 90 percent of the Earth's atmosphere. The flight program was also designed to test the stability of the aircraft as a test bed for UV observation. A joint flight program was developed between the JPL and NASA's Ames-Dryden Flight Research Facility (redesignated the Dryden Flight Research Center, Edwards, California, in 1994) in

  8. Effects of ultraviolet light emitting diodes (LEDs) on microbial and enzyme inactivation of apple juice.

    PubMed

    Akgün, Merve Pelvan; Ünlütürk, Sevcan

    2017-11-02

    In this study, the effects of Ultraviolet light-emitting diodes (UV-LEDs) on the inactivation of E. coli K12 (ATCC 25253), an indicator organism of E. coli O157:H7, and polyphneoloxidase (PPO) in cloudy apple juice (CAJ) were investigated. The clear (AJ) and cloudy apple juice were exposed to UV rays for 40min by using a UV device composed of four UV-LEDs with peak emissions at 254 and 280nm and coupled emissions as follows: 254/365, 254/405, 280/365, 280/405 and 254/280/365/405nm. UV-LEDs at 254nm achieved 1.6±0.1 log 10 CFU/mL inactivation of E. coli K12 at UV dose of 707.2mJ/cm 2 . The highest inactivation of E. coli K12 (2.0±0.1log 10 CFU/mL and 2.0±0.4log 10 CFU/mL) was achieved when the cloudy apple juice was treated with both 280nm and 280/365nm UV-LEDs. For clear apple juice the highest inactivation 4.4log 10 CFU/mL obtained for E. coli K12 was achieved using 4 lamps emitting light at 280nm for 40min exposure time. For the same treatment time, the experiments using a combination of lamps emitting light at 280 and 365nm (2lamp/2lamp) were resulted in 3.9±0.2log 10 CFU/mL reductions. UV-A and UV-C rays in combination showed a better inactivation effect on PPO than UV-C rays used separately. Residual activity of PPO in CAJ was reduced to 32.58% when treated with UV-LED in combination of UV-C (280nm) and UV-A (365nm) rays. Additionally, the total color change (ΔE) of CAJ subjected to combined UV-LED irradiation at 280/365nm was the lowest compared to other studied processing conditions. This study provides key implications for the future application of UV-LEDs to fruit juice pasteurization. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Ultraviolet fluorescence to identify navel oranges with poor peel quality and decay

    USDA-ARS?s Scientific Manuscript database

    Navel oranges were sorted into four groups under ultraviolet (UV) illumination in commercial packinghouse black light rooms based upon the amount of fluorescence visible on each fruit to determine if fluorescence was predictive of peel quality. The groups corresponded to fruit with: 1) no fluorescen...

  10. Rapidly synthesized ZnO nanowires by ultraviolet decomposition process in ambient air for flexible photodetector.

    PubMed

    Wu, Jyh Ming; Chen, Yi-Ru; Lin, Yu-Hung

    2011-03-01

    We are the first group to use a simple direct ultraviolet light (UV, λ=365 nm, I=76 mW cm(-2)) in a decomposition process to fabricate ZnO nanowires on a flexible substrate using a zinc acetylacetonate hydrate precursor in ambient air. ZnO nanocrystal (or nanowire) production only requires three to ten minutes. A field emission scanning electron microscopy (FESEM) image reveals a high aspect ratio of the ZnO nanowires, which are grown on a substrate with a diameter of ∼50-100 nm, and a length of up to several hundred microns. High resolution transmission electron microscopy (HRTEM) images reveal that the nanowires consist of many single crystalline ZnO nanoparticles that grow along the c axis, which suggests an oriented attachment process. A potential application for flexible UV photodetectors was investigated using a UV lamp (λ=365 nm, I=2.34 mW cm(-2)). A significant ratio of photocurrent to dark current--around 11,300%--was achieved.

  11. Spectroscopy of Highly Charged Tin Ions for AN Extreme Ultraviolet Light Source for Lithography

    NASA Astrophysics Data System (ADS)

    Torretti, Francesco; Windberger, Alexander; Ubachs, Wim; Hoekstra, Ronnie; Versolato, Oscar; Ryabtsev, Alexander; Borschevsky, Anastasia; Berengut, Julian; Crespo Lopez-Urrutia, Jose

    2017-06-01

    Laser-produced tin plasmas are the prime candidates for the generation of extreme ultraviolet (EUV) light around 13.5 nm in nanolithographic applications. This light is generated primarily by atomic transitions in highly charged tin ions: Sn^{8+}-Sn^{14+}. Due to the electronic configurations of these charge states, thousands of atomic lines emit around 13.5 nm, clustered in a so-called unresolved transition array. As a result, accurate line identification becomes difficult in this regime. Nevertheless, this issue can be circumvented if one turns to the optical: with far fewer atomic states, only tens of transitions take place and the spectra can be resolved with far more ease. We have investigated optical emission lines in an electron-beam-ion-trap (EBIT), where we managed to charge-state resolve the spectra. Based on this technique and on a number of different ab initio techniques for calculating the level structure, the optical spectra could be assigned [1,2]. As a conclusion the assignments of EUV transitions in the literature require corrections. The EUV and optical spectra are measured simultaneously in the controlled conditions of the EBIT as well as in a droplet-based laser-produced plasma source providing information on the contribution of Sn^{q+} charge states to the EUV emission. [1] A. Windberger, F. Torretti, A. Borschevsky, A. Ryabtsev, S. Dobrodey, H. Bekker, E. Eliav, U. Kaldor, W. Ubachs, R. Hoekstra, J.R. Crespo Lopez-Urrutia, O.O. Versolato, Analysis of the fine structure of Sn^{11+} - Sn^{14+} ions by optical spectroscopy in an electron beam ion trap, Phys. Rev. A 94, 012506 (2016). [2] F. Torretti, A. Windberger, A. Ryabtsev, S. Dobrodey, H. Bekker, W. Ubachs, R. Hoekstra, E.V. Kahl, J.C. Berengut, J.R. Crespo Lopez-Urrutia, O.O. Versolato, Optical spectroscopy of complex open 4d-shell ions Sn^{7+} - Sn^{10+}, arXiv:1612.00747

  12. Spectral shifts of mammalian ultraviolet-sensitive pigments (short wavelength-sensitive opsin 1) are associated with eye length and photic niche evolution.

    PubMed

    Emerling, Christopher A; Huynh, Hieu T; Nguyen, Minh A; Meredith, Robert W; Springer, Mark S

    2015-11-22

    Retinal opsin photopigments initiate mammalian vision when stimulated by light. Most mammals possess a short wavelength-sensitive opsin 1 (SWS1) pigment that is primarily sensitive to either ultraviolet or violet light, leading to variation in colour perception across species. Despite knowledge of both ultraviolet- and violet-sensitive SWS1 classes in mammals for 25 years, the adaptive significance of this variation has not been subjected to hypothesis testing, resulting in minimal understanding of the basis for mammalian SWS1 spectral tuning evolution. Here, we gathered data on SWS1 for 403 mammal species, including novel SWS1 sequences for 97 species. Ancestral sequence reconstructions suggest that the most recent common ancestor of Theria possessed an ultraviolet SWS1 pigment, and that violet-sensitive pigments evolved at least 12 times in mammalian history. We also observed that ultraviolet pigments, previously considered to be a rarity, are common in mammals. We then used phylogenetic comparative methods to test the hypotheses that the evolution of violet-sensitive SWS1 is associated with increased light exposure, extended longevity and longer eye length. We discovered that diurnal mammals and species with longer eyes are more likely to have violet-sensitive pigments and less likely to possess UV-sensitive pigments. We hypothesize that (i) as mammals evolved larger body sizes, they evolved longer eyes, which limited transmittance of ultraviolet light to the retina due to an increase in Rayleigh scattering, and (ii) as mammals began to invade diurnal temporal niches, they evolved lenses with low UV transmittance to reduce chromatic aberration and/or photo-oxidative damage. © 2015 The Author(s).

  13. 21 CFR 1040.20 - Sunlamp products and ultraviolet lamps intended for use in sunlamp products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... irradiation of any part of the living human body, by ultraviolet radiation with wavelengths in air between 200..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) RADIOLOGICAL HEALTH PERFORMANCE STANDARDS FOR LIGHT...

  14. 21 CFR 1040.20 - Sunlamp products and ultraviolet lamps intended for use in sunlamp products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... irradiation of any part of the living human body, by ultraviolet radiation with wavelengths in air between 200..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) RADIOLOGICAL HEALTH PERFORMANCE STANDARDS FOR LIGHT...

  15. Ultraviolet stress delays chromosome replication in light/dark synchronized cells of the marine cyanobacterium Prochlorococcus marinus PCC9511

    PubMed Central

    2010-01-01

    Background The marine cyanobacterium Prochlorococcus is very abundant in warm, nutrient-poor oceanic areas. The upper mixed layer of oceans is populated by high light-adapted Prochlorococcus ecotypes, which despite their tiny genome (~1.7 Mb) seem to have developed efficient strategies to cope with stressful levels of photosynthetically active and ultraviolet (UV) radiation. At a molecular level, little is known yet about how such minimalist microorganisms manage to sustain high growth rates and avoid potentially detrimental, UV-induced mutations to their DNA. To address this question, we studied the cell cycle dynamics of P. marinus PCC9511 cells grown under high fluxes of visible light in the presence or absence of UV radiation. Near natural light-dark cycles of both light sources were obtained using a custom-designed illumination system (cyclostat). Expression patterns of key DNA synthesis and repair, cell division, and clock genes were analyzed in order to decipher molecular mechanisms of adaptation to UV radiation. Results The cell cycle of P. marinus PCC9511 was strongly synchronized by the day-night cycle. The most conspicuous response of cells to UV radiation was a delay in chromosome replication, with a peak of DNA synthesis shifted about 2 h into the dark period. This delay was seemingly linked to a strong downregulation of genes governing DNA replication (dnaA) and cell division (ftsZ, sepF), whereas most genes involved in DNA repair (such as recA, phrA, uvrA, ruvC, umuC) were already activated under high visible light and their expression levels were only slightly affected by additional UV exposure. Conclusions Prochlorococcus cells modified the timing of the S phase in response to UV exposure, therefore reducing the risk that mutations would occur during this particularly sensitive stage of the cell cycle. We identified several possible explanations for the observed timeshift. Among these, the sharp decrease in transcript levels of the dnaA gene

  16. Preventing skin cancer: findings of the Task Force on Community Preventive Services On reducing Exposure to Ultraviolet Light.

    PubMed

    Saraiya, Mona; Glanz, Karen; Briss, Peter; Nichols, Phyllis; White, Cornelia; Das, Debjani

    2003-10-17

    Rates of skin cancer, the most common cancer in the United States, are increasing. The most preventable risk factor for skin cancer is unprotected ultraviolet (UV) exposure. Seeking to identify effective approaches to reducing the incidence of skin cancer by improving individual and community efforts to reduce unprotected UV exposure, the Task Force on Community Preventive Services conducted systematic reviews of community interventions to reduce exposure to ultraviolet light and increase protective behaviors. The Task Force found sufficient evidence to recommend two interventions that are based on improvements in sun protective or "covering-up" behavior (wearing protective clothing including long-sleeved clothing or hats): educational and policy approaches in two settings--primary schools and recreational or tourism sites. They found insufficient evidence to determine the effectiveness of a range of other population-based interventions and recommended additional research in these areas: educational and policy approaches in child care centers, secondary schools and colleges, recreational or tourism sites for children, and workplaces; interventions conducted in health-care settings and targeted to both providers and children's parents or caregivers; media campaigns alone; and community wide multicomponent interventions. This report also presents additional information regarding the recommended community interventions, briefly describes how the reviews were conducted, provides resources for further information, and provides information that can help in applying the interventions locally. The U.S. Preventive Services Task Force conducted a systematic review of counseling by primary care clinicians to prevent skin cancer (CDC. Counseling to prevent skin cancer: recommendation and rationale of the U.S. Preventive Services Task Force. MMWR 2003;52[No. RR-15]:13-17), which is also included in this issue, the first jointly released findings from the Task Force on Community

  17. Evaluation of anogenital injuries using white and UV-light among adult volunteers following consensual sexual intercourse.

    PubMed

    Joki-Erkkilä, Minna; Rainio, Juha; Huhtala, Heini; Salonen, Aki; Karhunen, Pekka J

    2014-09-01

    New clinical forensic examination techniques for sexual assaults have not been introduced over the last few decades. We evaluated the benefit of ultraviolet light compared to white light for detecting minor anogenital injuries and scars, following consensual sexual intercourse among adult volunteers. A prospective study comparing female genital findings utilising white and ultraviolet light. A colposcopy with photographic documentation was used. Personal invitation to healthcare students, hospital employees or acquaintances to volunteer for a gynecological examination, with a focus on clinical forensic aspects. Eighty-eight adult female volunteers were recruited for the study. The examination was performed after consensual intercourse. Age ranged from 20 to 52 years (median 26.5 years). Presence of acute findings and scars in the genital area using white and UV-light. Acute genital injury rate was 14.8% under white light colposcopy and 23.0% using UV light. Submucosal hemorrhages in the genital area were documented significantly better under UV-light than white light (14.9% vs. 6.8%; p=0.016), whereas petechiaes (4.5%) and abrasions (2.3%) were detected using either method. UV-light revealed significantly more often delivery-associated genital scars compared to white light (39.8% vs. 31.8%; p=0.016). Furthermore, 10 out of 31 (33.3%) women had no residual anogenital skin or mucosal surface findings, despite a prior episiotomy or rupture of the vaginal outlet wall during delivery, supporting its enormous ability to heal even after major trauma. UV-light may provide additional value for the evaluation of physical findings in clinical forensic examinations after sexual assault, and is especially useful in detecting otherwise invisible early submucosal hemorrhages and scars. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Effect of Hydrogen Post-Annealing on Transparent Conductive ITO/Ga2O3 Bi-Layer Films for Deep Ultraviolet Light-Emitting Diodes.

    PubMed

    Kim, Kyeong Heon; Kim, Su Jin; Park, Sang Young; Kim, Tae Geun

    2015-10-01

    The effect of hydrogen post-annealing on the electrical and optical properties of ITO/Ga2O bi-layer films, deposited by RF magnetron sputtering, is investigated for potential applications to transparent conductive electrodes of ultraviolet (UV) light-emitting diodes. Three samples--an as-deposited sample and two samples post-annealed in N2 gas and N2-H2 gas mixture--were prepared and annealed at different temperatures ranging from 100 °C to 500 °C for comparison. Among these samples, the sample annealed at 300 °C in a mixture of N2 and H2 gases shows the lowest sheet resistance of 301.3 Ω/square and a high UV transmittance of 87.1% at 300 nm.

  19. A volumetric three-dimensional digital light photoactivatable dye display

    NASA Astrophysics Data System (ADS)

    Patel, Shreya K.; Cao, Jian; Lippert, Alexander R.

    2017-07-01

    Volumetric three-dimensional displays offer spatially accurate representations of images with a 360° view, but have been difficult to implement due to complex fabrication requirements. Herein, a chemically enabled volumetric 3D digital light photoactivatable dye display (3D Light PAD) is reported. The operating principle relies on photoactivatable dyes that become reversibly fluorescent upon illumination with ultraviolet light. Proper tuning of kinetics and emission wavelengths enables the generation of a spatial pattern of fluorescent emission at the intersection of two structured light beams. A first-generation 3D Light PAD was fabricated using the photoactivatable dye N-phenyl spirolactam rhodamine B, a commercial picoprojector, an ultraviolet projector and a custom quartz imaging chamber. The system displays a minimum voxel size of 0.68 mm3, 200 μm resolution and good stability over repeated `on-off' cycles. A range of high-resolution 3D images and animations can be projected, setting the foundation for widely accessible volumetric 3D displays.

  20. A volumetric three-dimensional digital light photoactivatable dye display

    PubMed Central

    Patel, Shreya K.; Cao, Jian; Lippert, Alexander R.

    2017-01-01

    Volumetric three-dimensional displays offer spatially accurate representations of images with a 360° view, but have been difficult to implement due to complex fabrication requirements. Herein, a chemically enabled volumetric 3D digital light photoactivatable dye display (3D Light PAD) is reported. The operating principle relies on photoactivatable dyes that become reversibly fluorescent upon illumination with ultraviolet light. Proper tuning of kinetics and emission wavelengths enables the generation of a spatial pattern of fluorescent emission at the intersection of two structured light beams. A first-generation 3D Light PAD was fabricated using the photoactivatable dye N-phenyl spirolactam rhodamine B, a commercial picoprojector, an ultraviolet projector and a custom quartz imaging chamber. The system displays a minimum voxel size of 0.68 mm3, 200 μm resolution and good stability over repeated ‘on-off’ cycles. A range of high-resolution 3D images and animations can be projected, setting the foundation for widely accessible volumetric 3D displays. PMID:28695887

  1. Solution-processed nanoparticle super-float-gated organic field-effect transistor as un-cooled ultraviolet and infrared photon counter.

    PubMed

    Yuan, Yongbo; Dong, Qingfeng; Yang, Bin; Guo, Fawen; Zhang, Qi; Han, Ming; Huang, Jinsong

    2013-01-01

    High sensitivity photodetectors in ultraviolet (UV) and infrared (IR) range have broad civilian and military applications. Here we report on an un-cooled solution-processed UV-IR photon counter based on modified organic field-effect transistors. This type of UV detectors have light absorbing zinc oxide nanoparticles (NPs) sandwiched between two gate dielectric layers as a floating gate. The photon-generated charges on the floating gate cause high resistance regions in the transistor channel and tune the source-drain output current. This "super-float-gating" mechanism enables very high sensitivity photodetectors with a minimum detectable ultraviolet light intensity of 2.6 photons/μm(2)s at room temperature as well as photon counting capability. Based on same mechansim, infrared photodetectors with lead sulfide NPs as light absorbing materials have also been demonstrated.

  2. Comparison of homeopathic globules prepared from high and ultra-high dilutions of various starting materials by ultraviolet light spectroscopy.

    PubMed

    Klein, Sabine D; Wolf, Ursula

    2016-02-01

    Homeopathic globules are commonly used in clinical practice, while research focuses on liquid potencies. Sequential dilution and succussion in their production process has been proposed to change the physico-chemical properties of the solvent(s). It has been reported that aqueous potencies of various starting materials showed significant differences in ultraviolet light transmission compared to controls and between different dilution levels. The aim of the present study was to repeat and expand these experiments to homeopathic globules. Globules were specially produced for this study by Spagyros AG (Gümligen, Switzerland) from 6 starting materials (Aconitum napellus, Atropa belladonna, phosphorus, sulfur, Apis mellifica, quartz) and for 6 dilution levels (6x, 12x, 30c, 200c, 200CF (centesimal discontinuous fluxion), 10,000CF). Native globules and globules impregnated with solvents were used as controls. Globules were dissolved in ultrapure water, and absorbance in the ultraviolet range was measured. The average absorbance from 200 to 340nm was calculated and corrected for differences between measurement days and instrumental drift. Statistically significant differences were found for A. napellus, sulfur, and A. mellifica when normalized average absorbance of the various dilution levels from the same starting material (including control and solvent control globules) was compared. Additionally, absorbance within dilution levels was compared among the various starting materials. Statistically significant differences were found among 30c, 200c and 200CF dilutions. This study has expanded previous findings from aqueous potencies to globules and may indicate that characteristics of aqueous high dilutions may be preserved and detectable in dissolved globules. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Near-simultaneous ultraviolet and optical spectrophotometry of T Tauri stars

    NASA Technical Reports Server (NTRS)

    Goodrich, Robert W.; Herbig, G. H.

    1986-01-01

    A set of near-simultaneous ultraviolet and optical spectra and UBVR(J)I(J) photometry of five T Tauri stars has been analyzed for the shape of the energy distribution shortward of 3000 A. The far-ultraviolet continua of these stars are very much stronger than the level of light scattered from longer wavelengths in the IUE spectrograph. The results, expressed as two-color plots, show that the UV colors of T Tauri stars differ significantly from those expected from their optical spectral types. Although these particular K-type T Tauri stars are not extreme members of the class, they have the UV colors of A stars. The spectral shape of this UV excess is approximately that expected from published chromospheric models of T Tauri stars.

  4. Pattern Inspection of EUV Masks Using DUV Light

    NASA Astrophysics Data System (ADS)

    Liang, Ted; Tejnil, Edita; Stivers, Alan R.

    2002-12-01

    Inspection of extreme ultraviolet (EUV) lithography masks requires reflected light and this poses special challenges for inspection tool suppliers as well as for mask makers. Inspection must detect all the printable defects in the absorber pattern as well as printable process-related defects. Progress has been made under the NIST ATP project on "Intelligent Mask Inspection Systems for Next Generation Lithography" in assessing the factors that impact the inspection tool sensitivity. We report in this paper the inspection of EUV masks with programmed absorber defects using 257nm light. All the materials of interests for masks are highly absorptive to EUV light as compared to deep ultraviolet (DUV) light. Residues and contamination from mask fabrication process and handling are prone to be printable. Therefore, it is critical to understand their EUV printability and optical inspectability. Process related defects may include residual buffer layer such as oxide, organic contaminants and possible over-etch to the multilayer surface. Both simulation and experimental results will be presented in this paper.

  5. Low resolution ultraviolet and optical spectrophotometry of symbiotic stars

    NASA Technical Reports Server (NTRS)

    Slovak, M. H.

    1982-01-01

    Low resolution International Ultraviolet Explorer spectra combined with optical spectrophotometry provide absolute flux distributions for seven symbiotic variables from 1200 to 6450 A. For five stars (EG And, BF Cyg, CI Cyg, AG Peg, and Z And) the data are representative of the quiescent/out-of-eclipse energy distributions; for CH Cyg and AX Per, the observations were obtained following their atest outburst in 1977 and 1978, respectively. The de-reddened distributions reveal a remarkable diversity of both line spectra and continua. While the optical and near infrared regions lambda = 5500 A) are well represented by single component stellar models, multicomponent flux distributions are required to reproduce the ultraviolet continua.

  6. Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV

    PubMed Central

    Wang, He; Xu, Yiming; Ulonska, Stefan; Robinson, Joseph S.; Ranitovic, Predrag; Kaindl, Robert A.

    2015-01-01

    Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. Here, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas. In this cascaded scheme, a photon flux beyond ≈3 × 1013 s−1 is generated at 22.3 eV, with 5 × 10−5 conversion efficiency that surpasses similar harmonics directly driven by the fundamental by two orders-of-magnitude. The enhancement arises from both wavelength scaling of the atomic dipole and improved spatio-temporal phase matching, confirmed by simulations. Spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz extreme-ultraviolet source a powerful tool for ultrafast photoemission, nanoscale imaging and other applications. PMID:26067922

  7. Protocol for Determining Ultraviolet Light Emitting Diode (UV-LED) Fluence for Microbial Inactivation Studies.

    PubMed

    Kheyrandish, Ataollah; Mohseni, Madjid; Taghipour, Fariborz

    2018-06-15

    Determining fluence is essential to derive the inactivation kinetics of microorganisms and to design ultraviolet (UV) reactors for water disinfection. UV light emitting diodes (UV-LEDs) are emerging UV sources with various advantages compared to conventional UV lamps. Unlike conventional mercury lamps, no standard method is available to determine the average fluence of the UV-LEDs, and conventional methods used to determine the fluence for UV mercury lamps are not applicable to UV-LEDs due to the relatively low power output, polychromatic wavelength, and specific radiation profile of UV-LEDs. In this study, a method was developed to determine the average fluence inside a water suspension in a UV-LED experimental setup. In this method, the average fluence was estimated by measuring the irradiance at a few points for a collimated and uniform radiation on a Petri dish surface. New correction parameters were defined and proposed, and several of the existing parameters for determining the fluence of the UV mercury lamp apparatus were revised to measure and quantify the collimation and uniformity of the radiation. To study the effect of polychromatic output and radiation profile of the UV-LEDs, two UV-LEDs with peak wavelengths of 262 and 275 nm and different radiation profiles were selected as the representatives of typical UV-LEDs applied to microbial inactivation. The proper setup configuration for microorganism inactivation studies was also determined based on the defined correction factors.

  8. A new endstation at the Swiss Light Source for ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy measurements of liquid solutions.

    PubMed

    Brown, Matthew A; Redondo, Amaia Beloqui; Jordan, Inga; Duyckaerts, Nicolas; Lee, Ming-Tao; Ammann, Markus; Nolting, Frithjof; Kleibert, Armin; Huthwelker, Thomas; Müächler, Jean-Pierre; Birrer, Mario; Honegger, Juri; Wetter, Reto; Wörner, Hans Jakob; van Bokhoven, Jeroen A

    2013-07-01

    A new liquid microjet endstation designed for ultraviolet (UPS) and X-ray (XPS) photoelectron, and partial electron yield X-ray absorption (XAS) spectroscopies at the Swiss Light Source is presented. The new endstation, which is based on a Scienta HiPP-2 R4000 electron spectrometer, is the first liquid microjet endstation capable of operating in vacuum and in ambient pressures up to the equilibrium vapor pressure of liquid water at room temperature. In addition, the Scienta HiPP-2 R4000 energy analyzer of this new endstation allows for XPS measurements up to 7000 eV electron kinetic energy that will enable electronic structure measurements of bulk solutions and buried interfaces from liquid microjet samples. The endstation is designed to operate at the soft X-ray SIM beamline and at the tender X-ray Phoenix beamline. The endstation can also be operated using a Scienta 5 K ultraviolet helium lamp for dedicated UPS measurements at the vapor-liquid interface using either He I or He II α lines. The design concept, first results from UPS, soft X-ray XPS, and partial electron yield XAS measurements, and an outlook to the potential of this endstation are presented.

  9. "Bio-lighting." Lighting Techniques in Architecture (Madison, December 9-10, 1969).

    ERIC Educational Resources Information Center

    Logan, H. L.

    The electromagnetic environment has a great amount of influence on the existence of life and man. The main points of concern are--(1) that sea-level solar radiation is biologically beneficial and necessary for man's physical and mental health, (2) that urban man has inadequate exposure to certain wavelengths of ultraviolet light normally received…

  10. ULTRAVIOLET SPECTROSCOPY OF PQ Gem AND V405 Aur FROM THE HST AND IUE SATELLITES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanad, M. R., E-mail: mrsanad1@yahoo.com

    Ultraviolet spectra of two intermediate polars (IPs), PQ Gem and V405 Aur, observed with Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph and Faint Object Spectrograph and International Ultraviolet Explorer (IUE) satellites were analyzed during the period between 1994–2000. We estimated the reddening of the two systems from the 2200 Å feature. Six spectra of the two systems revealing modulations of line fluxes at different times are presented. PQ Gem and V405 Aur are featured by spectral lines in different ionization states. This paper focuses on the third ionized carbon emission line at 1550 Å and the first ionized heliummore » emission line at 1640 Å produced in the optically thin outer region of the accretion curtain for the two systems by calculating spectral line fluxes. From HST and IUE data, we deduced ultraviolet luminosities and ultraviolet accretion rates for the two binary stars. The average temperature of the accretion streams for PQ Gem and V405 Aur are ∼4500 K and 4100 K, respectively. The results reveal that there are modulations in fluxes of spectral lines, ultraviolet luminosities, and ultraviolet accretion rates with time for both systems. These modulations are referred to the changes of both density and temperature as a result of the variations of mass transfer rate from the secondary star to the primary star. The current results are consistent with an accretion curtain model for IPs.« less

  11. Formation of an indium tin oxide nanodot/Ag nanowire electrode as a current spreader for near ultraviolet AlGaN-based light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Park, Jae-Seong; Kim, Jae-Ho; Kim, Jun-Yong; Kim, Dae-Hyun; Na, Jin-Young; Kim, Sun-Kyung; Kang, Daesung; Seong, Tae-Yeon

    2017-01-01

    Indium tin oxide (ITO) nanodots (NDs) were combined with Ag nanowires (Ag NWs) as a p-type electrode in near ultraviolet AlGaN-based light-emitting diodes (LEDs) to increase light output power. The Ag NWs were 30 ± 5 nm in diameter and 25 ± 5 μm in length. The transmittance of 10 nm-thick ITO-only was 98% at 385 nm, while the values for ITO ND/Ag NW were 83%-88%. ITO ND/Ag NW films showed lower sheet resistances (32-51 Ω sq-1) than the ITO-only film (950 Ω sq-1). LEDs (chip size: 300 × 800 μm2) fabricated using the ITO NDs/Ag NW electrodes exhibited higher forward-bias voltages (3.52-3.75 V at 20 mA) than the LEDs with the 10 nm-thick ITO-only electrode (3.5 V). The LEDs with ITO ND/Ag NW electrodes yielded a 24%-62% higher light output power (at 20 mA) than those with the 10 nm-thick ITO-only electrode. Furthermore, finite-difference time-domain (FDTD) simulations were performed to investigate the extraction efficiency. Based on the emission images and FDTD simulations, the enhanced light output with the ITO ND/Ag NW electrodes is attributed to improved current spreading and better extraction efficiency.

  12. Effect of ultraviolet light irradiation period on bond strengths between fiber-reinforced composite post and core build-up composite resin.

    PubMed

    Asakawa, Yuya; Takahashi, Hidekazu; Iwasaki, Naohiko; Kobayashi, Masahiro

    2014-01-01

    The aim of the present study was to characterize the effects of the ultraviolet light (UV) irradiation period on the bond strength of fiber-reinforced composite (FRC) posts to core build-up resin. Three types of FRC posts were prepared using polymethyl methacrylate, urethane dimethacrylate, and epoxy resin. The surfaces of these posts were treated using UV irradiation at a distance of 15 mm for 0 to 600 s. The pull-out bond strength was measured and analyzed with the Dunnett's comparison test (α=0.05). The bond strengths of the post surfaces without irradiation were 6.9 to 7.4 MPa; those after irradiation were 4.2 to 26.1 MPa. The bond strengths significantly increased after 15 to 120-s irradiation. UV irradiation on the FRC posts improved the bond strengths between the FRC posts and core build-up resin regardless of the type of matrix resin.

  13. Blue light-induced immunosuppression in Bactrocera dorsalis adults, as a carryover effect of larval exposure.

    PubMed

    Tariq, K; Noor, M; Hori, M; Ali, A; Hussain, A; Peng, W; Chang, C-J; Zhang, H

    2017-12-01

    Detrimental effects of ultraviolet (UV) light on living organisms are well understood, little is known about the effects of blue light irradiation. Although a recent study revealed that blue light caused more harmful effects on insects than UV light and blue light irradiation killed insect pests of various orders including Diptera, the effects of blue light on physiology of insects are still largely unknown. Here we studied the effects of blue light irradiation on cuticular melanin in larval and the immune response in adult stage of Bactrocera dorsalis. We also evaluated the effects of blue light exposure in larval stage on various age and mass at metamorphosis and the mediatory role of cuticular melanin in carryover effects of larval stressors across metamorphosis. We found that larvae exposed to blue light decreased melanin contents in their exoskeleton with smaller mass and delayed metamorphosis than insects reared without blue light exposure. Across metamorphosis, lower melanotic encapsulation response and higher susceptibility to Beauveria bassiana was detected in adults that had been exposed to blue light at their larval stage, thereby constituting the first evidence that blue light impaired adult immune function in B. dorsalis as a carryover effect of larval exposure.

  14. Effect of smokeless tobacco and tobacco-related chemical carcinogens on survival of ultraviolet light-inactivated herpes simplex virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dokko, H.; Min, P.S.; Cherrick, H.M.

    1991-04-01

    Low doses of ultraviolet (UV) light, x-rays, photodynamic treatment, or aflatoxins increase the survival of UV-irradiated virus in cells. This effect is postulated to occur by enhancement of the error-prone cellular repair function, which could also be associated with oncogenic cell transformation. The present study was designed to investigate whether treatment of green monkey kidney cells with water extract of snuff (snuff extract), benzo(a)pyrene, nicotine, or tobacco-specific N'-nitrosamines would result in enhanced survival of UV-irradiated herpes simplex virus (HSV). Exposure of the cells with snuff extract, benzo(a)pyrene, N'-nitrosonornicotine, or 4-(N-methyl-N'-nitrosamino)-1-(3-pyridyl)-1-butanone resulted in an enhancement of survival of UV-irradiated HSV typemore » 1 compared with the control whereas exposure of the cells with nicotine did not. These data indicate that the water-extractable component of snuff and tobacco-related chemical carcinogens increase the cellular repair mechanism and provides for increased survival of UV-irradiated HSV.« less

  15. An Ultraviolet/Optical Atlas of Bright Galaxies

    NASA Astrophysics Data System (ADS)

    Marcum, Pamela M.; O'Connell, Robert W.; Fanelli, Michael N.; Cornett, Robert H.; Waller, William H.; Bohlin, Ralph C.; Neff, Susan G.; Roberts, Morton S.; Smith, Andrew M.; Cheng, K.-P.; Collins, Nicholas R.; Hennessy, Gregory S.; Hill, Jesse K.; Hill, Robert S.; Hintzen, Paul; Landsman, Wayne B.; Ohl, Raymond G.; Parise, Ronald A.; Smith, Eric P.; Freedman, Wendy L.; Kuchinski, Leslie E.; Madore, Barry; Angione, Ronald; Palma, Christopher; Talbert, Freddie; Stecher, Theodore P.

    2001-02-01

    We present wide-field imagery and photometry of 43 selected nearby galaxies of all morphological types at ultraviolet and optical wavelengths. The ultraviolet (UV) images, in two broad bands at 1500 and 2500 Å, were obtained using the Ultraviolet Imaging Telescope (UIT) during the Astro-1 Spacelab mission. The UV images have ~3" resolution, and the comparison sets of ground-based CCD images (in one or more of B, V, R, and Hα) have pixel scales and fields of view closely matching the UV frames. The atlas consists of multiband images and plots of UV/optical surface brightness and color profiles. Other associated parameters, such as integrated photometry and half-light radii, are tabulated. In an appendix, we discuss the sensitivity of different wavebands to a galaxy's star formation history in the form of ``history weighting functions'' and emphasize the importance of UV observations as probes of evolution during the past 10-1000 Myr. We find that UV galaxy morphologies are usually significantly different from visible band morphologies as a consequence of spatially inhomogeneous stellar populations. Differences are quite pronounced for systems in the middle range of Hubble types, Sa through Sc, but less so for ellipticals or late-type disks. Normal ellipticals and large spiral bulges are fainter and more compact in the UV. However, they typically exhibit smooth UV profiles with far-UV/optical color gradients which are larger than any at optical/IR wavelengths. The far-UV light in these cases is probably produced by extreme horizontal branch stars and their descendants in the dominant, low-mass, metal-rich population. The cool stars in the large bulges of Sa and Sb spirals fade in the UV while hot OB stars in their disks brighten, such that their Hubble classifications become significantly later. In the far-UV, early-type spirals often appear as peculiar, ringlike systems. In some spiral disks, UV-bright structures closely outline the spiral pattern; in others, the

  16. Colour and Light Effects on Students' Achievement, Behavior and Physiology.

    ERIC Educational Resources Information Center

    Wohlfarth, H.

    A quasi-experimental non-equivalent control group design was used to investigate the effects of full-spectrum light, prescribed color and light/color combinations, ultra-violet light, and electromagnetic radiation in an elementary school environment. Four schools in the Wetaskiwin School District, Alberta, were involved in the study; three served…

  17. Atmospheric Processing of Perovskite Solar Cells Using Intense Pulsed Light Sintering

    NASA Astrophysics Data System (ADS)

    Ankireddy, Krishnamraju; Lavery, Brandon W.; Druffel, Thad

    2018-02-01

    Atmospheric processing of metal-organic halide perovskite materials is highly desirable for large-scale manufacturing of solar cells. Atmospheric deposition and thermal processing of perovskite thin films for photovoltaic applications facilitated via rapid intense pulsed light (IPL) processing have been carried out. The interplay between the deposition chemistry, process, and IPL parameters to produce a functional photoactive thin film is discussed. Further addition of polyvinylpyrrolidone (PVP) as functional surfactant is explored to influence grain growth during the IPL process. Structural analysis by x-ray diffraction revealed formation of mixed-phase perovskite crystals from methylammonium chloride and lead iodide precursors. Ultraviolet-visible (UV-Vis) spectroscopy indicated that the light absorption by the perovskite films lay within a narrow band of the visible spectrum with bandgap of 2.9 eV. Scanning electron microscopy characterization of the surface morphology of the perovskite films revealed that addition of PVP to the ink chemistry assisted the IPL process in forming a fully covered surface with clearly defined grains. Functional devices with perovskite thin film processed by IPL under fully atmospheric conditions were demonstrated.

  18. Does infrared or ultraviolet light damage the lens?

    PubMed Central

    Söderberg, P G; Talebizadeh, N; Yu, Z; Galichanin, K

    2016-01-01

    In daylight, the human eye is exposed to long wavelength ultraviolet radiation (UVR), visible radiation and short wavelength infrared radiation (IRR). Almost all the UVR and a fraction of the IRR waveband, respectively, left over after attenuation in the cornea, is absorbed in the lens. The time delay between exposure and onset of biological response in the lens varies from immediate-to-short-to-late. After exposure to sunlight or artificial sources, generating irradiances of the same order of magnitude or slightly higher, biological damage may occur photochemically or thermally. Epidemiological studies suggest a dose-dependent association between short wavelength UVR and cortical cataract. Experimental data infer that repeated daily in vivo exposures to short wavelength UVR generate photochemically induced damage in the lens, and that short delay onset cataract after UVR exposure is photochemically induced. Epidemiology suggests that daily high-intensity short wavelength IRR exposure of workers, is associated with a higher prevalence of age-related cataract. It cannot be excluded that this effect is owing to a thermally induced higher denaturation rate. Recent experimental data rule out a photochemical effect of 1090 nm in the lens but other wavelengths in the near IRR should be investigated. PMID:26768915

  19. Inactivation of avirulent Yersinia pestis on food and food contact surfaces by ultraviolet light and freezing.

    PubMed

    Sommers, Christopher H; Sheen, Shiowshuh

    2015-09-01

    Yersinia pestis, the causative agent of plague, can occasionally be contracted as a naso-pharyngeal or gastrointestinal illness through consumption of contaminated meat. In this study, the use of 254 nm ultraviolet light (UV-C) to inactivate a multi-isolate cocktail of avirulent Y. pestis on food and food contact surfaces was investigated. When a commercial UV-C conveyor was used (5 mW/cm(2)/s) 0.5 J/cm(2) inactivated >7 log of the Y. pestis cocktail on agar plates. At 0.5 J/cm(2), UV-C inactivated ca. 4 log of Y. pestis in beef, chicken, and catfish, exudates inoculated onto high density polypropylene or polyethylene, and stainless steel coupons, and >6 log was eliminated at 1 J/cm(2). Approximately 1 log was inactivated on chicken breast, beef steak, and catfish fillet surfaces at a UV-C dose of 1 J/cm(2). UV-C treatment prior to freezing of the foods did not increase the inactivation of Y. pestis over freezing alone. These results indicate that routine use of UV-C during food processing would provide workers and consumers some protection against Y. pestis. Published by Elsevier Ltd.

  20. Far-Ultraviolet Spectroscopy of Three Long-Period Novalike Variables

    NASA Astrophysics Data System (ADS)

    Bisol, Alexandra C.; Godon, Patrick; Sion, Edward M.

    2012-02-01

    We have selected three novalike variables at the long-period extreme of novalike orbital periods: V363 Aur, RZ Gru, and AC Cnc, all with IUE archival far-ultraviolet spectra. All are UX UMa-type novalike variables and all have Porb > 7 hr. V363 Aur is a bona fide SW Sex star, and AC Cnc is a probable one, while RZ Gru has not proven to be a member of the SW Sex subclass. We have carried out the first synthetic spectral analysis of far-ultraviolet spectra of the three systems using state-of-the-art models of both accretion disks and white dwarf photospheres. We find that the FUV spectral energy distribution of both V363 Aur and RZ Gru are in agreement with optically thick steady-state accretion disk models in which the luminous disk accounts for 100% of the FUV light. We present accretion rates and model-derived distances for V363 Aur and RZ Gru. For AC Cnc, we find that a hot accreting white dwarf accounts for ˜60% of the FUV light, with an accretion disk providing the rest. We compare our accretion rates and model-derived distances with estimates in the literature.

  1. Antioxidant characterization and sensory evaluation during storage of ultraviolet-B light exposed baby carrots (abstract)

    USDA-ARS?s Scientific Manuscript database

    Baby carrot processing induces wounding stress activation of phenylalanine ammonia-lyase (PAL), enhancing its nutrient content by increasing synthesis of secondary metabolites. Ultraviolet-B (UV-B) exposure further promotes the formation of soluble phenolic compounds, significantly increasing antiox...

  2. Research in extreme ultraviolet and far ultraviolet astronomy

    NASA Technical Reports Server (NTRS)

    Bowyer, C. S.

    1985-01-01

    The Far Ultraviolet imager (FUVI) was flown on the Aries class sounding rocket 24.015, producing outstanding results. The diffuse extreme ultraviolet (EUV) background spectrometer which is under construction is described. It will be launched on the Black Brant sounding rocket flight number 27.086. Ongoing design studies of a high resolution spectrometer are discussed. This instrument incorporates a one meter normal incidence mirror and will be suitable for an advanced Spartan mission.

  3. 300-mW narrow-linewidth deep-ultraviolet light generation at 193 nm by frequency mixing between Yb-hybrid and Er-fiber lasers.

    PubMed

    Xuan, Hongwen; Zhao, Zhigang; Igarashi, Hironori; Ito, Shinji; Kakizaki, Kouji; Kobayashi, Yohei

    2015-04-20

    A narrow-linewidth, high average power deep-ultraviolet (DUV) coherent laser emitting at 193 nm is demonstrated by frequency mixing a Yb-hybrid laser with an Er-fiber laser. The Yb-hybrid laser consists of Yb-fiber lasers and an Yb:YAG amplifier. The average output power of the 193 nm laser is 310 mW at 6 kHz, which corresponds to a pulse energy of 51 μJ. To the best of our knowledge, this is the highest average power and pulse energy ever reported for a narrow-linewidth 193 nm light generated by a combination of solid-state and fiber lasers with frequency mixing. We believe this laser will be beneficial for the application of interference lithography by seeding an injection-locking ArF eximer laser.

  4. Ultraviolet electroluminescence from nitrogen-doped ZnO-based heterojuntion light-emitting diodes prepared by remote plasma in situ atomic layer-doping technique.

    PubMed

    Chien, Jui-Fen; Liao, Hua-Yang; Yu, Sheng-Fu; Lin, Ray-Ming; Shiojiri, Makoto; Shyue, Jing-Jong; Chen, Miin-Jang

    2013-01-23

    Remote plasma in situ atomic layer doping technique was applied to prepare an n-type nitrogen-doped ZnO (n-ZnO:N) layer upon p-type magnesium-doped GaN (p-GaN:Mg) to fabricate the n-ZnO:N/p-GaN:Mg heterojuntion light-emitting diodes. The room-temperature electroluminescence exhibits a dominant ultraviolet peak at λ ≈ 370 nm from ZnO band-edge emission and suppressed luminescence from GaN, as a result of the decrease in electron concentration in ZnO and reduced electron injection from n-ZnO:N to p-GaN:Mg because of the nitrogen incorporation. The result indicates that the in situ atomic layer doping technique is an effective approach to tailoring the electrical properties of materials in device applications.

  5. Ultraviolet absorption hygrometer

    DOEpatents

    Gersh, M.E.; Bien, F.; Bernstein, L.S.

    1986-12-09

    An ultraviolet absorption hygrometer is provided including a source of pulsed ultraviolet radiation for providing radiation in a first wavelength region where water absorbs significantly and in a second proximate wavelength region where water absorbs weakly. Ultraviolet radiation in the first and second regions which has been transmitted through a sample path of atmosphere is detected. The intensity of the radiation transmitted in each of the first and second regions is compared and from this comparison the amount of water in the sample path is determined. 5 figs.

  6. Survey of the variation in ultraviolet outputs from ultraviolet A sunbeds in Bradford.

    PubMed

    Wright, A L; Hart, G C; Kernohan, E; Twentyman, G

    1996-02-01

    Concerns have been expressed for some time regarding the growth of the cosmetic suntanning industry and the potential harmful effects resulting from these exposures. Recently published work has appeared to confirm a link between sunbed use and skin cancer. A previous survey in Oxford some years ago demonstrated significant output variations, and we have attempted to extend and update that work. Ultraviolet A, UVB and blue-light output measurements were made on 50 sunbeds using a radiometer fitted with broad-band filters and detectors. A number of irradiance measurements were made on each sunbed within each waveband so that the uniformity of the output could also be assessed. UVA outputs varied by a factor of 3, with a mean of 13.5 mW/cm2; UVB outputs varied by a factor of 60, with a mean of 19.2 microW/cm2; and blue-light outputs varied by a factor of 2.5, with a mean of 2.5 mW/cm2. Outputs fall on average to 80% of the central value at either end of the sunbed. Facial units in sunbeds ranged in output between 18 and 45 mW/cm2. Output uniformity shows wide variation, with 16% of the sunbeds having an axial coefficient of variation > 10%. UVB output is highly tube-specific. Eyewear used in sunbeds should also protect against blue light.

  7. Towards objective hand hygiene technique assessment: validation of the ultraviolet-dye-based hand-rubbing quality assessment procedure.

    PubMed

    Lehotsky, Á; Szilágyi, L; Bánsághi, S; Szerémy, P; Wéber, G; Haidegger, T

    2017-09-01

    Ultraviolet spectrum markers are widely used for hand hygiene quality assessment, although their microbiological validation has not been established. A microbiology-based assessment of the procedure was conducted. Twenty-five artificial hand models underwent initial full contamination, then disinfection with UV-dyed hand-rub solution, digital imaging under UV-light, microbiological sampling and cultivation, and digital imaging of the cultivated flora were performed. Paired images of each hand model were registered by a software tool, then the UV-marked regions were compared with the pathogen-free sites pixel by pixel. Statistical evaluation revealed that the method indicates correctly disinfected areas with 95.05% sensitivity and 98.01% specificity. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  8. Planarian Phototactic Assay Reveals Differential Behavioral Responses Based on Wavelength.

    PubMed

    Paskin, Taylor R; Jellies, John; Bacher, Jessica; Beane, Wendy S

    2014-01-01

    Planarians are free-living aquatic flatworms that possess a well-documented photophobic response to light. With a true central nervous system and simple cerebral eyes (ocelli), planarians are an emerging model for regenerative eye research. However, comparatively little is known about the physiology of their photoreception or how their behavior is affected by various wavelengths. Most phototactic studies have examined planarian behavior using white light. Here, we describe a novel planarian behavioral assay to test responses to small ranges of visible wavelengths (red, blue, green), as well as ultraviolet (UV) and infrared (IR) which have not previously been examined. Our data show that planarians display behavioral responses across a range of wavelengths. These responses occur in a hierarchy, with the shortest wavelengths (UV) causing the most intense photophobic responses while longer wavelengths produce no effect (red) or an apparent attraction (IR). In addition, our data reveals that planarian photophobia is comprised of both a general photophobic response (that drives planarians to escape the light source regardless of wavelength) and wavelength-specific responses that encompass specific behavioral reactions to individual wavelengths. Our results serve to improve the understanding of planarian phototaxis and suggest that behavioral studies performed with white light mask a complex behavioral interaction with the environment.

  9. Energy efficiency for the removal of non-polar pollutants during ultraviolet irradiation, visible light photocatalysis and ozonation of a wastewater effluent.

    PubMed

    Santiago-Morales, Javier; Gómez, María José; Herrera-López, Sonia; Fernández-Alba, Amadeo R; García-Calvo, Eloy; Rosal, Roberto

    2013-10-01

    This study aims to assess the removal of a set of non-polar pollutants in biologically treated wastewater using ozonation, ultraviolet (UV 254 nm low pressure mercury lamp) and visible light (Xe-arc lamp) irradiation as well as visible light photocatalysis using Ce-doped TiO2. The compounds tracked include UV filters, synthetic musks, herbicides, insecticides, antiseptics and polyaromatic hydrocarbons. Raw wastewater and treated samples were analyzed using stir-bar sorptive extraction coupled with comprehensive two-dimensional gas chromatography (SBSE-CG × GC-TOF-MS). Ozone treatment could remove most pollutants with a global efficiency of over 95% for 209 μM ozone dosage. UV irradiation reduced the total concentration of the sixteen pollutants tested by an average of 63% with high removal of the sunscreen 2-ethylhexyl trans-4-methoxycinnamate (EHMC), the synthetic musk 7-acetyl-1,1,3,4,4,6-hexamethyltetrahydronaphthalene (tonalide, AHTN) and several herbicides. Visible light Ce-TiO2 photocatalysis reached ~70% overall removal with particularly high efficiency for synthetic musks. In terms of power usage efficiency expressed as nmol kJ(-1), the results showed that ozonation was by far the most efficient process, ten-fold over Xe/Ce-TiO2 visible light photocatalysis, the latter being in turn considerably more efficient than UV irradiation. In all cases the efficiency decreased along the treatments due to the lower reaction rate at lower pollutant concentration. The use of photocatalysis greatly improved the efficiency of visible light irradiation. The collector area per order decreased from 9.14 ± 5.11 m(2) m(-3) order(-1) for visible light irradiation to 0.16 ± 0.03 m(2) m(-3) order(-1) for Ce-TiO2 photocatalysis. The toxicity of treated wastewater was assessed using the green alga Pseudokirchneriella subcapitata. Ozonation reduced the toxicity of treated wastewater, while UV irradiation and visible light photocatalysis limited by 20-25% the algal growth due to

  10. Non-Visual Effects of Classroom Lighting on Children.

    ERIC Educational Resources Information Center

    Hathaway, Warren E.

    1993-01-01

    A two-year study in Alberta on the effects of classroom lighting found that elementary school students exposed to full-spectrum lighting with measurable ultraviolet output had fewer dental caries, larger gains in height and weight, larger gains in achievement, and better attendance. Students exposed to high-pressure sodium vapor lamps had the…

  11. The Production of Titan's Ultraviolet Nitrogen Airglow

    NASA Astrophysics Data System (ADS)

    Stevens, Michael H.; Gustin, J.; Ajello, J. M.; Evans, J. S.; Meier, R. R.; Stewart, A. I. F.; Esposito, L. W.; McClintock, W. E.; Stephan, A. W.

    2010-10-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed Titan's dayside limb on 22 June, 2009, obtaining high quality extreme ultraviolet (EUV) and far ultraviolet (FUV) spectra from a distance of only 60,000 km (23 Titan radii). The observations reveal the same EUV and FUV emissions arising from photoelectron excitation and photofragmentation of molecular nitrogen (N2) on Earth but with the altitude of peak emission much higher on Titan near 1000 km altitude. In the EUV, emission bands from the photoelectron excited N2 Carroll-Yoshino c4'-X system and N I and N II multiplets arising from photofragmentation of N2 dominate, with no detectable c4'(0,0) emission near 958 Å, contrary to many interpretations of the lower resolution Voyager 1 Ultraviolet Spectrometer data. The FUV is dominated by emission bands from the N2 Lyman-Birge-Hopfield a-X system and additional N I multiplets. We also identify several N2 Vegard-Kaplan A-X bands between 1500-1900 Å, two of which are located near 1561 and 1657 Å where C I multiplets were previously identified from a separate UVIS disk observation. We compare these limb emissions to predictions from a terrestrial airglow model adapted to Titan that uses a solar spectrum appropriate for these June, 2009 observations. Volume production rates and limb radiances are calculated, including extinction by methane and allowance for multiple scattering within the readily excited c4'(0,v') system, and compared to UVIS observations. We find that for these airglow data only emissions arising from processes involving N2 are present.

  12. Characterization and imaging of nanostructured materials using tabletop extreme ultraviolet light sources

    NASA Astrophysics Data System (ADS)

    Karl, Robert; Knobloch, Joshua; Frazer, Travis; Tanksalvala, Michael; Porter, Christina; Bevis, Charles; Chao, Weilun; Abad Mayor, Begoña.; Adams, Daniel; Mancini, Giulia F.; Hernandez-Charpak, Jorge N.; Kapteyn, Henry; Murnane, Margaret

    2018-03-01

    Using a tabletop coherent extreme ultraviolet source, we extend current nanoscale metrology capabilities with applications spanning from new models of nanoscale transport and materials, to nanoscale device fabrication. We measure the ultrafast dynamics of acoustic waves in materials; by analyzing the material's response, we can extract elastic properties of films as thin as 11nm. We extend this capability to a spatially resolved imaging modality by using coherent diffractive imaging to image the acoustic waves in nanostructures as they propagate. This will allow for spatially resolved characterization of the elastic properties of non-isotropic materials.

  13. Ultraviolet vision may be widespread in bats

    USGS Publications Warehouse

    Gorresen, P. Marcos; Cryan, Paul; Dalton, David C.; Wolf, Sandy; Bonaccorso, Frank

    2015-01-01

    Insectivorous bats are well known for their abilities to find and pursue flying insect prey at close range using echolocation, but they also rely heavily on vision. For example, at night bats use vision to orient across landscapes, avoid large obstacles, and locate roosts. Although lacking sharp visual acuity, the eyes of bats evolved to function at very low levels of illumination. Recent evidence based on genetics, immunohistochemistry, and laboratory behavioral trials indicated that many bats can see ultraviolet light (UV), at least at illumination levels similar to or brighter than those before twilight. Despite this growing evidence for potentially widespread UV vision in bats, the prevalence of UV vision among bats remains unknown and has not been studied outside of the laboratory. We used a Y-maze to test whether wild-caught bats could see reflected UV light and whether such UV vision functions at the dim lighting conditions typically experienced by night-flying bats. Seven insectivorous species of bats, representing five genera and three families, showed a statistically significant ‘escape-toward-the-light’ behavior when placed in the Y-maze. Our results provide compelling evidence of widespread dim-light UV vision in bats.

  14. Spectrally-resolved measurements of aerosol extinction at ultraviolet and visible wavelengths

    NASA Astrophysics Data System (ADS)

    Flores, M.; Washenfelder, R. A.; Brock, C. A.; Brown, S. S.; Rudich, Y.

    2012-12-01

    Aerosols play an important role in the Earth's radiative budget. Aerosol extinction includes both the scattering and absorption of light, and these vary with wavelength, aerosol diameter, and aerosol composition. Historically, aerosol absorption has been measured using filter-based or extraction methods that are prone to artifacts. There have been few investigations of ambient aerosol optical properties at the blue end of the visible spectrum and into the ultraviolet. Brown carbon is particularly important in this spectral region, because it both absorbs and scatters light, and encompasses a large and variable group of organic compounds from biomass burning and secondary organic aerosol. We have developed a laboratory instrument that combines new, high-power LED light sources with high-finesse optical cavities to achieve sensitive measurements of aerosol optical extinction. This instrument contains two broadband channels, with spectral coverage from 360 - 390 nm and 385 - 420 nm. Using this instrument, we report aerosol extinction in the ultraviolet and near-visible spectral region as a function of chemical composition and structure. We have measured the extinction cross-sections between 360 - 420 nm with 0.5 nm resolution using different sizes and concentrations of polystyrene latex spheres, ammonium sulfate, and Suwannee River fulvic acid. Fitting the real and imaginary part of the refractive index allows the absorption and scattering to be determined.

  15. Cost effectiveness of home ultraviolet B phototherapy for psoriasis: economic evaluation of a randomised controlled trial (PLUTO study).

    PubMed

    Koek, Mayke B G; Sigurdsson, Vigfús; van Weelden, Huib; Steegmans, Paul H A; Bruijnzeel-Koomen, Carla A F M; Buskens, Erik

    2010-04-20

    To assess the costs and cost effectiveness of phototherapy with ultraviolet B light provided at home compared with outpatient ultraviolet B phototherapy for psoriasis. Cost utility, cost effectiveness, and cost minimisation analyses performed alongside a pragmatic randomised clinical trial (the PLUTO study) at the end of phototherapy (mean 17.6 weeks) and at one year after the end of phototherapy (mean 68.4 weeks). Secondary care, provided by a dermatologist in the Netherlands. 196 adults with psoriasis who were clinically eligible for narrowband (TL-01) ultraviolet B phototherapy were recruited from the dermatology departments of 14 hospitals and were followed until the end of phototherapy. From the end of phototherapy onwards, follow-up was continued for an unselected, consecutive group of 105 patients for one year after end of phototherapy. Ultraviolet B phototherapy provided at home (intervention) and conventional outpatient ultraviolet B phototherapy (control) in a setting reflecting routine practice in the Netherlands. Both treatments used narrowband ultraviolet B lamps (TL-01). Total costs to society, quality adjusted life years (QALYs) as calculated using utilities measured by the EQ-5D questionnaire, and the number of days with a relevant treatment effect (>/=50% improvement of the baseline self administered psoriasis area and severity index (SAPASI)). Home phototherapy is at least as effective and safe as outpatient phototherapy, therefore allowing cost minimisation analyses (simply comparing costs). The average total costs by the end of phototherapy were euro800 for home treatment and euro752 for outpatient treatment, showing an incremental cost per patient of euro48 (95% CI euro-77 to euro174). The average total costs by one year after the end of phototherapy were euro1272 and euro1148 respectively (difference euro124, 95% CI euro-155 to euro403). Cost utility analyses revealed that patients experienced equal health benefits-that is, a gain of 0

  16. EFFECTS OF LABORATORY ULTRAVIOLET LIGHT AND NATURAL SUNLIGHT ON SURVIVAL AND DEVELOPMENT OF RANA PIPIENS

    EPA Science Inventory

    Changes in solar ultraviolet (UV) radiation have been proposed as a possible factor contributing to seeming increases in hindlimb malformations in anuran amphibians in North America. A primary purpose of this study was to reproduce results from an earlier experiment in which Ran...

  17. Multifunctional optical correlator for picosecond ultraviolet laser pulse measurement

    DOE PAGES

    Rakhman, Abdurahim; Wang, Yang; Garcia, Frances; ...

    2014-01-01

    A compact optical correlator system that measures both the autocorrelation between two infrared (IR) lights and the cross-correlation between an IR and an ultraviolet (UV) light using a single nonlinear optical crystal has been designed and experimentally demonstrated. The rapid scanning of optical delay line, switching between auto and cross-correlations, crystal angle tuning, and data acquisition and processing are all computer controlled. Pulse widths of an IR light from a mode-locked laser are measured by the correlator and the results are compared with a direct measurement using a high-speed photodetector system. The correlator has been used to study the parametermore » dependence of the pulse width of a macropulse UV laser designed for laser-assisted hydrogen ion (H-) beam stripping for the Spallation Neutron Source at Oak Ridge National Laboratory.« less

  18. Modification of the optoelectronic properties of two-dimensional MoS2 crystals by ultraviolet-ozone treatment

    NASA Astrophysics Data System (ADS)

    Yang, Hae In; Park, Seonyoung; Choi, Woong

    2018-06-01

    We report the modification of the optoelectronic properties of mechanically-exfoliated single layer MoS2 by ultraviolet-ozone exposure. Photoluminescence emission of pristine MoS2 monotonically decreased and eventually quenched as ultraviolet-ozone exposure time increased from 0 to 10 min. The reduction of photoluminescence emission accompanied reduction of Raman modes, suggesting structural degradation in ultraviolet-ozone exposed MoS2. Analysis with X-ray photoelectron spectroscopy revealed that the formation of Ssbnd O and Mosbnd O bonding increases with ultraviolet-ozone exposure time. Measurement of electrical transport properties of MoS2 in a bottom-gate thin-film transistor configuration suggested the presence of insulating MoO3 after ultraviolet-ozone exposure. These results demonstrate that ultraviolet-ozone exposure can significantly influence the optoelectronic properties of single layer MoS2, providing important implications on the application of MoS2 and other two-dimensional materials into optoelectronic devices.

  19. [Reliability and reproducibility of the Fitzpatrick phototype scale for skin sensitivity to ultraviolet light].

    PubMed

    Sánchez, Guillermo; Nova, John; Arias, Nilsa; Peña, Bibiana

    2008-12-01

    The Fitzpatrick phototype scale has been used to determine skin sensitivity to ultraviolet light. The reliability of this scale in estimating sensitivity permits risk evaluation of skin cancer based on phototype. Reliability and changes in intra and inter-observer concordance was determined for the Fitzpatrick phototype scale after the assessment methods for establishing the phototype were standardized. An analytical study of intra and inter-observer concordance was performed. The Fitzpatrick phototype scale was standardized using focus group methodology. To determine intra and inter-observer agreement, the weighted kappa statistical method was applied. The standardization effect was measured using the equal kappa contrast hypothesis and Wald test for dependent measurements. The phototype scale was applied to 155 patients over 15 years of age who were assessed four times by two independent observers. The sample was drawn from patients of the Centro Dermatol6gico Federico Lleras Acosta. During the pre-standardization phase, the baseline and six-week inter-observer weighted kappa were 0.31 and 0.40, respectively. The intra-observer kappa values for observers A and B were 0.47 and 0.51, respectively. After the standardization process, the baseline and six-week inter-observer weighted kappa values were 0.77, and 0.82, respectively. Intra-observer kappa coefficients for observers A and B were 0.78 and 0.82. Statistically significant differences were found between coefficients before and after standardization (p<0.001) in all comparisons. Following a standardization exercise, the Fitzpatrick phototype scale yielded reliable, reproducible and consistent results.

  20. Synthetic ultraviolet light filtering chemical contamination of coastal waters of Virgin Islands National Park, St. John, U.S. Virgin Islands

    USGS Publications Warehouse

    Bargar, Timothy A.; Alvarez, David; Garrison, Virginia H.

    2015-01-01

    Contamination of surface waters by synthetic ultraviolet light (UV) filtering chemicals is a concern for the Virgin Islands National Park (VINP). Discrete water samples were collected from VINP bays to determine UV filter chemical presence in the coastal waters. Spatial distribution and the potential for partitioning between subsurface waters and the sea surface microlayer (SML) were also examined. The UV filter chemicals 4-methylbenzylidene camphor, benzophenone-3, octinoxate, homosalate, and octocrylene were detected at concentrations up to 6073 ng/L (benzophenone-3). Concentrations for benzophenone-3 and homosalate declined exponentially (r2 = 0.86 to 0.98) with distance from the beach. Limited data indicate that some UV filter chemicals may partition to the SML relative to the subsurface waters. Contamination of VINP coastal waters by UV filter chemicals may be a significant issue, but an improved understanding of the temporal and spatial variability of their concentrations would be necessary to better understand the risk they present.

  1. Transparent conductive oxide films mixed with gallium oxide nanoparticle/single-walled carbon nanotube layer for deep ultraviolet light-emitting diodes

    PubMed Central

    2013-01-01

    We propose a transparent conductive oxide electrode scheme of gallium oxide nanoparticle mixed with a single-walled carbon nanotube (Ga2O3 NP/SWNT) layer for deep ultraviolet light-emitting diodes using spin and dipping methods. We investigated the electrical, optical and morphological properties of the Ga2O3 NP/SWNT layers by increasing the thickness of SWNTs via multiple dipping processes. Compared with the undoped Ga2O3 films (current level 9.9 × 10-9 A @ 1 V, transmittance 68% @ 280 nm), the current level flowing in the Ga2O3 NP/SWNT increased by approximately 4 × 105 times and the transmittance improved by 9% after 15 times dip-coating (current level 4 × 10-4 A at 1 V; transmittance 77.0% at 280 nm). These improvements result from both native high transparency of Ga2O3 NPs and high conductivity and effective current spreading of SWNTs. PMID:24295342

  2. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres.

    PubMed

    Taniyasu, Yoshitaka; Kasu, Makoto; Makimoto, Toshiki

    2006-05-18

    Compact high-efficiency ultraviolet solid-state light sources--such as light-emitting diodes (LEDs) and laser diodes--are of considerable technological interest as alternatives to large, toxic, low-efficiency gas lasers and mercury lamps. Microelectronic fabrication technologies and the environmental sciences both require light sources with shorter emission wavelengths: the former for improved resolution in photolithography and the latter for sensors that can detect minute hazardous particles. In addition, ultraviolet solid-state light sources are also attracting attention for potential applications in high-density optical data storage, biomedical research, water and air purification, and sterilization. Wide-bandgap materials, such as diamond and III-V nitride semiconductors (GaN, AlGaN and AlN; refs 3-10), are potential materials for ultraviolet LEDs and laser diodes, but suffer from difficulties in controlling electrical conduction. Here we report the successful control of both n-type and p-type doping in aluminium nitride (AlN), which has a very wide direct bandgap of 6 eV. This doping strategy allows us to develop an AlN PIN (p-type/intrinsic/n-type) homojunction LED with an emission wavelength of 210 nm, which is the shortest reported to date for any kind of LED. The emission is attributed to an exciton transition, and represents an important step towards achieving exciton-related light-emitting devices as well as replacing gas light sources with solid-state light sources.

  3. The Effects of Blue Light on Ocular Health.

    ERIC Educational Resources Information Center

    Kitchel, Elaine

    2000-01-01

    This review of the literature examines the effects of blue light (or near UV - ultraviolet), especially that given off by black-light tubes, often used with children with visual impairments. It finds a long-term danger of retinal and lens damage and offers six practical suggestions which emphasize using proper filters and limiting exposure to…

  4. Corongraphic Observations and Analyses of The Ultraviolet Solar Corona

    NASA Technical Reports Server (NTRS)

    Kohl, John L.

    2000-01-01

    The activities supported under NASA Grant NAG5-613 included the following: 1) reduction and scientific analysis of data from three sounding rocket flights of the Rocket Ultraviolet Coronagraph Spectrometer, 2) development of ultraviolet spectroscopic diagnostic techniques to provide a detailed empirical description of the extended solar corona, 3) extensive upgrade of the rocket instrument to become the Ultraviolet Coronal Spectrometer (UVCS) for Spartan 201,4) instrument scientific calibration and characterization, 5) observation planning and mission support for a series of five Spartan 201 missions (fully successful except for STS 87 where the Spartan spacecraft was not successfully deployed and the instruments were not activated), and 6) reduction and scientific analysis of the UVCS/Spartan 201 observational data. The Ultraviolet Coronal Spectrometer for Spartan 201 was one unit of a joint payload and the other unit was a White Light Coronagraph (WLC) provided by the High Altitude Observatory and the Goddard Space Flight Center. The two instruments were used in concert to determine plasma parameters describing structures in the extended solar corona. They provided data that could be used individually or jointly in scientific analyses. The WLC provided electron column densities in high spatial resolution and high time resolution. UVCS/Spartan provided hydrogen velocity distributions, and line of sight hydrogen velocities. The hydrogen intensities from UVCS together with the electron densities from WLC were used to determine hydrogen outflow velocities. The UVCS also provided O VI intensities which were used to develop diagnostics for velocity distributions and outflow velocities of minor ions.

  5. Cr/ITO semi-transparent n-type electrode for high-efficiency AlGaN/InGaN-based near ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Kim, Hwankyo; Kim, Dae-Hyun; Seong, Tae-Yeon

    2017-11-01

    We investigated the electrical performance of near ultraviolet (NUV) (390 nm) light-emitting diodes (LEDs) fabricated with various semi-transparent Cr/ITO n-type contacts. It was shown that after annealing at 400 °C, Cr/ITO (10 nm/40 nm) contact was ohmic with a specific contact resistance of 9.8 × 10-4 Ωcm2. NUV AlGaN-based LEDs fabricated with different Cr/ITO (6-12 nm/40 nm) electrodes exhibited forward-bias voltages of 3.27-3.30 V at an injection current of 20 mA, which are similar to that of reference LED with Cr/Ni/Au (20 nm/25 nm/200 nm) electrode (3.29 V). The LEDs with the Cr/ITO electrodes gave series resistances of 10.69-11.98 Ω, while the series resistance is 10.84 Ohm for the reference LED. The transmittance of the Cr/ITO samples significantly improved when annealed at 400 °C. The transmittance (25.8-45.2% at 390 nm) of the annealed samples decreased with increasing Cr layer thickness. The LEDs with the Cr/ITO electrodes exhibited higher light output power than reference LED (with Cr/Ni/Au electrode). In particular, the LED with the Cr/ITO (12 nm/40 nm) electrode showed 9.3% higher light output power at 100 mA than reference LED. Based on the X-ray photoemission spectroscopy (XPS) and electrical results, the ohmic formation mechanism is described and discussed.

  6. Ultraviolet and thermally stable polymer compositions

    NASA Technical Reports Server (NTRS)

    Reinisch, R. F.; Gloria, H. R.; Goldsberry, R. E.; Adamson, M. J. (Inventor)

    1976-01-01

    A new class of polymers is provided, namely, poly (diarylsiloxy) arylazines. These novel polymers have a basic chemical composition which has the property of stabilizing the optical and physical properties of the polymer against the degradative effect of ultraviolet light and high temperatures. This stabilization occurs at wavelengths including those shorter than found on the surface of the earth and in the absence or presence of oxygen, making the polymers useful for high performance coating applications in extraterrestrial space as well as similar applications in terrestrial service. The invention also provides novel aromatic azines which are useful in the preparation of polymers such as those described.

  7. Ultraviolet and thermally stable polymer compositions

    NASA Technical Reports Server (NTRS)

    Reinisch, R. F.; Gloria, H. R.; Goldsberry, R. E.; Adamson, M. J. (Inventor)

    1974-01-01

    A class of polymers is provided, namely, poly(diarylsiloxy) arylazines. These polymers have a basic chemical composition which has the property of stabilizing the optical and physical properties of the polymer against the degradative effect of ultraviolet light and high temperatures. This stabilization occurs at wavelengths including those shorter than found on the surface of the earth and in the absence or presence of oxygen, making the polymers of the present invention useful for high performance coating applications in extraterrestrial space as well as similar applications in terrestrial service. The invention also provides aromatic azines which are useful in the preparation of polymers such as those of the present invention.

  8. Characterisation of ultraviolet-absorbing recalcitrant organics in landfill leachate for treatment process optimisation.

    PubMed

    Keen, Olya S

    2017-03-01

    Organics in leachate from municipal solid waste landfills are notoriously difficult to treat by biological processes. These organics have high ultraviolet absorbance and can interfere with the ultraviolet disinfection process at the wastewater treatment plant that receives leachate if the leachate flow contribution is large enough. With more wastewater treatment plants switching to ultraviolet disinfection, landfills face increased pressure to treat leachate further. This study used size exclusion chromatography, fluorescence spectroscopy and ultraviolet/Vis spectrophotometry to characterise the bulk organic matter in raw landfill leachate and the biorecalcitrant organic matter in biologically treated leachate from the same site. The results indicate that biorecalcitrant organics have the polyphenolic absorbance peak at 280 nm, fluorescence peak at 280 nm excitation and 315 nm emission, and molecular size range of 1000-7000 Da, all of which are consistent with lignin. The lignin-like nature of biorecalcitrant leachate organics is supported by the fact that 30%-50% of municipal solid waste consists of plant debris and paper products. These findings shed light on the nature of biorecalcitrant organics in leachate and will be useful for the design of leachate treatment processes and further research on leachate treatment methods.

  9. Utility and safety of a novel surgical microscope laser light source

    PubMed Central

    Bakhit, Mudathir S.; Suzuki, Kyouichi; Sakuma, Jun; Fujii, Masazumi; Murakami, Yuta; Ito, Yuhei; Sugano, Tetsuo; Saito, Kiyoshi

    2018-01-01

    Objective Tissue injuries caused by the thermal effects of xenon light microscopes have previously been reported. Due to this, the development of a safe microscope light source became a necessity. A newly developed laser light source is evaluated regarding its effectiveness and safety as an alternative to conventional xenon light source. Methods We developed and tested a new laser light source for surgical microscopes. Four experiments were conducted to compare xenon and laser lights: 1) visual luminance comparison, 2) luminous and light chromaticity measurements, 3) examination and analysis of visual fatigue, and 4) comparison of focal temperature elevation due to light source illumination using porcine muscle samples. Results Results revealed that the laser light could be used at a lower illumination value than the xenon light (p < 0.01). There was no significant difference in visual fatigue status between the laser light and the xenon light. The laser light was superior to the xenon light regarding luminous intensity and color chromaticity. The focal temperature elevation of the muscle samples was significantly higher when irradiated with xenon light in vitro than with laser light (p < 0.01). Conclusion The newly developed laser light source is more efficient and safer than a conventional xenon light source. It lacks harmful ultraviolet waves, has a longer lifespan, a lower focal temperature than that of other light sources, a wide range of brightness and color production, and improved safety for the user’s vision. Further clinical trials are necessary to validate the impact of this new light source on the patient’s outcome and prognosis. PMID:29390016

  10. Ultraviolet radiation as an ant repellent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thorvilson, H.G.; Russell, S.A.; Green, B.

    1996-12-31

    In an effort to repel red imported fire ants (RIFA) from electrical devices, such as transformers, ultraviolet (UV) light was tested. Initial tests determined if RIFA`s tolerate a UV-irradiated environment when given a choice between UV-irradiated and non-irradiated. All replications in this test indicated that RIFA`s are intolerant of UV-irradiation and sought to escape it. RIFA`s moved to shaded environments and transported their brood out its well. A second test sought to determine if long-term UV-irradiation of the entire colonies cause increased RIFA mortality. Queenright colonies were exposed to UV irradiation of 254nm constantly for 115 days and colonies hadmore » a higher mortality rate than did a control colony. RIFA`s attempted to escape UV light and had increased rate when exposed to UV (254nm), but a practical application of this technique may be detrimental to insulation on electrical wiring.« less

  11. Thin film solar cell inflatable ultraviolet rigidizable deployment hinge

    NASA Technical Reports Server (NTRS)

    Simburger, Edward J. (Inventor); Giants, Thomas W. (Inventor); Perry, Alan R. (Inventor); Rawal, Suraj (Inventor); Lin, John K. H. (Inventor); Matsumoto, James H. (Inventor); Garcia, III, Alec (Inventor); Marshall, Craig H. (Inventor); Day, Jonathan Robert (Inventor); Kerslake, Thomas W. (Inventor)

    2010-01-01

    A flexible inflatable hinge includes curable resin for rigidly positioning panels of solar cells about the hinge in which wrap around contacts and flex circuits are disposed for routing power from the solar cells to the power bus further used for grounding the hinge. An indium tin oxide and magnesium fluoride coating is used to prevent static discharge while being transparent to ultraviolet light that cures the embedded resin after deployment for rigidizing the inflatable hinge.

  12. Examination of Laser Microprobe Vacuum Ultraviolet Ionization Mass Spectrometry with Application to Mapping Mars Returned Samples

    NASA Astrophysics Data System (ADS)

    Burton, A. S.; Berger, E. L.; Locke, D. R.; Lewis, E. K.; Moore, J. F.

    2018-04-01

    Laser microprobe of surfaces utilizing a two laser setup whereby the desorption laser threshold is lowered below ionization, and the resulting neutral plume is examined using 157nm Vacuum Ultraviolet laser light for mass spec surface mapping.

  13. Electrical Current Leakage and Open-Core Threading Dislocations in AlGaN-Based Deep Ultraviolet Light-Emitting Diodes.

    DOE PAGES

    Moseley, Michael William; Allerman, Andrew A.; Crawford, Mary H.; ...

    2014-08-04

    Electrical current transport through leakage paths in AlGaN-based deep ultraviolet (DUV) lightemitting diodes (LEDs) and their effect on LED performance are investigated. Open-core threading dislocations, or nanopipes, are found to conduct current through nominally insulating Al0.7Ga0.3N layers and limit the performance of DUV-LEDs. A defect-sensitive phosphoric acid etch reveals these opencore threading dislocations in the form of large, micron-scale hexagonal etch pits visible with optical microscopy, while closed-core screw-, edge-, and mixed-type threading dislocations are represented by smaller and more numerous nanometer-scale pits visible by atomic-force microscopy. The electrical and optical performances of DUV-LEDs fabricated on similar Si-doped Al0.7Ga0.3N templatesmore » are found to have a strong correlation to the density of these nanopipes, despite their small fraction (<0.1% in this study) of the total density of threading dislocations.« less

  14. QUANTITATIVE ULTRAVIOLET SPECTROSCOPY IN WEATHERING OF A MODEL POLYESTER-URETHANE COATING. (R828081E01)

    EPA Science Inventory

    Spectroscopy was used to quantify the effects of ultraviolet light on a model polyester–urethane coating as it degraded in an accelerated exposure chamber. An explorative calculation of the effective dosage absorbed by the coatings was made and, depending on the quantum...

  15. Influence of ultraviolet irradiation on data retention characteristics in resistive random access memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, K.; Ohmi, K.; Tottori University Electronic Display Research Center, 101 Minami4-chome, Koyama-cho, Tottori-shi, Tottori 680-8551

    With increasing density of memory devices, the issue of generating soft errors by cosmic rays is becoming more and more serious. Therefore, the irradiation resistance of resistance random access memory (ReRAM) to cosmic radiation has to be elucidated for practical use. In this paper, we investigated the data retention characteristics of ReRAM against ultraviolet irradiation with a Pt/NiO/ITO structure. Soft errors were confirmed to be caused by ultraviolet irradiation in both low- and high-resistance states. An analysis of the wavelength dependence of light irradiation on data retention characteristics suggested that electronic excitation from the valence to the conduction band andmore » to the energy level generated due to the introduction of oxygen vacancies caused the errors. Based on a statistically estimated soft error rates, the errors were suggested to be caused by the cohesion and dispersion of oxygen vacancies owing to the generation of electron-hole pairs and valence changes by the ultraviolet irradiation.« less

  16. Light-Driven Polymeric Bimorph Actuators

    NASA Technical Reports Server (NTRS)

    Adamovsky, Gregory; Sarkisov, Sergey S.; Curley, Michael J.

    2009-01-01

    Light-driven polymeric bimorph actuators are being developed as alternatives to prior electrically and optically driven actuators in advanced, highly miniaturized devices and systems exemplified by microelectromechanical systems (MEMS), micro-electro-optical-mechanical systems (MEOMS), and sensor and actuator arrays in smart structures. These light-driven polymeric bimorph actuators are intended to satisfy a need for actuators that (1) in comparison with the prior actuators, are simpler and less power-hungry; (2) can be driven by low-power visible or mid-infrared light delivered through conventional optic fibers; and (3) are suitable for integration with optical sensors and multiple actuators of the same or different type. The immediate predecessors of the present light-driven polymeric bimorph actuators are bimorph actuators that exploit a photorestrictive effect in lead lanthanum zirconate titanate (PLZT) ceramics. The disadvantages of the PLZT-based actuators are that (1) it is difficult to shape the PLZT ceramics, which are hard and brittle; (2) for actuation, it is necessary to use ultraviolet light (wavelengths < 380 nm), which must be generated by use of high-power, high-pressure arc lamps or lasers; (3) it is difficult to deliver sufficient ultraviolet light through conventional optical fibers because of significant losses in the fibers; (4) the response times of the PLZT actuators are of the order of several seconds unacceptably long for typical applications; and (5) the maximum mechanical displacements of the PLZT-based actuators are limited to those characterized by low strains beyond which PLZT ceramics disintegrate because of their brittleness. The basic element of a light-driven bimorph actuator of the present developmental type is a cantilever beam comprising two layers, at least one of which is a polymer that exhibits a photomechanical effect (see figure). The dominant mechanism of the photomechanical effect is a photothermal one: absorption of

  17. Photoluminescence emission spectra of Makrofol® DE 1-1 upon irradiation with ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    El Ghazaly, M.; Aydarous, Abdulkadir

    Photoluminescence (PL) emission spectra of Makrofol® DE 1-1 (bisphenol-A based polycarbonate) upon irradiation with ultraviolet radiation of different wavelengths were investigated. The absorption-and attenuation coefficient measurements revealed that the Makrofol® DE 1-1 is characterized by high absorbance in the energy range 6.53-4.43 eV but for a lower energy than 4.43 eV, it is approximately transparent. Makrofol® DE 1-1 samples were irradiated with ultraviolet radiation of wavelength in the range from 250 (4.28 eV) to 400 (3.10 eV) nm in step of 10 nm and the corresponding photoluminescence (PL) emission spectra were measured with a spectrofluorometer. It is found that the integrated counts and the peak height of the photoluminescence emission (PL) bands are strongly correlated with the ultraviolet radiation wavelength. They are increased at the ultraviolet radiation wavelength 280 nm and have maximum at 290 nm, thereafter they decrease and diminish at 360 nm of ultraviolet wavelength. The position of the PL emission band peak was red shifted starting from 300 nm, which increased with the increase the ultraviolet radiation wavelength. The PL bandwidth increases linearly with the increase of the ultraviolet radiation wavelength. When Makrofol® DE 1-1 is irradiated with ultraviolet radiation of short wavelength (UVC), the photoluminescence emission spectra peaks also occur in the UVC but of a relatively longer wavelength. The current new findings should be considered carefully when using Makrofol® DE 1-1 in medical applications related to ultraviolet radiation.

  18. Photon extraction from nitride ultraviolet light-emitting devices

    DOEpatents

    Schowalter, Leo J; Chen, Jianfeng; Grandusky, James R

    2015-02-24

    In various embodiments, a rigid lens is attached to a light-emitting semiconductor die via a layer of encapsulant having a thickness insufficient to prevent propagation of thermal expansion mismatch-induced strain between the rigid lens and the semiconductor die.

  19. The Ultraviolet Spectrograph (UVS) on Juno

    NASA Astrophysics Data System (ADS)

    Gladstone, G. R.; Persyn, S.; Eterno, J.; Slater, D. C.; Davis, M. W.; Versteeg, M. H.; Persson, K. B.; Siegmund, O. H.; Marquet, B.; Gerard, J.; Grodent, D. C.

    2008-12-01

    Juno, a NASA New Frontiers mission, plans for launch in August 2011, a 5-year cruise (including a flyby of Earth in October 2013 for a gravity boost), and 14 months around Jupiter after arriving in August 2016. The spinning (2 RPM), solar-powered Juno will study Jupiter from a highly elliptical orbit, in which the spacecraft (for about 6 hours once every 11 days) dives down over the north pole, skims the outermost atmosphere, and rises back up over the south pole. This orbit allows Juno avoid most of the intense particle radiation surrounding the planet and provides an excellent platform for investigating Jupiter's polar magnetosphere. Part of the exploration of Jupiter's polar magnetosphere will involve remote sensing of the far-ultraviolet H and H2 auroral emissions, plus gases such as methane and acetylene which add their absorption signature to the H2 emissions. This hydrocarbon absorption can be used to estimate the energy of the precipitating electrons; since more energetic electrons penetrate deeper into the atmosphere and the UV emissions they produce will show more absorption. Juno will carry an Ultraviolet Spectrograph (UVS) to make spectral images of Jupiter's aurora. UVS is a UV imaging spectrograph sensitive to both extreme and far ultraviolet emissions in the 70-205~nm range that will characterize the morphology and spectral nature of Jupiter's auroral emissions. Juno UVS consists of two separate sections: a dedicated telescope/spectrograph assembly and a vault electronics box. The telescope/spectrograph assembly contains a telescope which feeds a 0.15-m Rowland circle spectrograph. The telescope has an input aperture 40×40~mm2 and uses an off-axis parabolic primary mirror. A flat scan mirror situated at the front end of the telescope (used to target specific auroral features at up to ±30° perpendicular to the Juno spin plane) directs incoming light to the primary. The light is then focused onto the spectrograph entrance slit, which has a 'dog

  20. Rectified photocurrent in a planar ITO/graphene/ITO photodetector on SiC by local irradiation of ultraviolet light

    NASA Astrophysics Data System (ADS)

    Yang, Junwei; Guo, Liwei; Huang, Jiao; Mao, Qi; Guo, Yunlong; Jia, Yuping; Peng, Tonghua; Chen, Xiaolong

    2017-10-01

    A rectified photocurrent behaviour is demonstrated in a simple planar structure of ITO-graphene-ITO formed on a SiC substrate when an ultraviolet (UV) light is locally incident on one of the edges between the graphene and ITO electrode. The photocurrent has similar characteristics as those of a vertical structure graphene/semiconductor junction photodiode, but is clearly different from those found in a planar structure metal-graphene-metal device. Furthermore, the device behaves multi-functionally as a photodiode with sensitive UV photodetection capability (responsivity of 11.7 mA W-1 at 0.3 V) and a self-powered UV photodetector (responsivity of 4.4 mA W-1 at zero bias). Both features are operative in a wide dynamic range and with a fast speed of response in about gigahertz. The linear I-V behaviour with laser power at forward bias and cutoff at reverse bias leads to a conceptual photodiode, which is compatible with modern semiconductor planar device architecture. This paves a potential way to realize ultrafast graphene planar photodiodes for monolithic integration of graphene-based devices on the same SiC substrate.